
An informal tour on denotational semantics

- 1 -

Vrije Universiteit Brussel
Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V
BRUS

S
E

L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

An Informal Tour on Denotational
Semantics

De Meuter Wolfgang
Niels Boyen

Techreport vub-prog-tr-94-08

Programming Technology Lab
PROG(WE)

VUB
Pleinlaan 2

1050 Brussel
BELGIUM

Fax: (+32) 2-629-3495
Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

An informal tour on denotational semantics

- 2 -

An Informal Tour On
Denotational Semantics

Wolfgang De Meuter Niels Boyen

Brussels Free University
Department of Computer Science
Programming Technology Lab

Pleinlaan 2
1050 Brussels

e-mail
wdmeuter@vnet3.vub.ac.be

nboyen@vnet3.vub.ac.be

ABSTRACT
This paper presents a semi-formal overview of the most important topics from the theory of

denotational semantics. The emphasis has been laid on the natural introduction of most
concepts of the semantic realm. Since this theory is usually hard to understand and accept in a
seemingly intuitive discipline as computer science, we try to introduce them from a computer
scientist point of view. By this, we mean that most mathematical constructions will be
presented in a manner as if they were trivially connected to reasoning about real computer
programs. One of the most important intentions of this paper is to give the reader a brief
overview of the existing results, while laying adequate pointers to relevant literature. We hope
that the way in which the material is presented, will contribute to the popularization of
semantics theory1.

1. Introduction

Usually, a programming language is characterized by three main descriptions: its syntax, its
semantics and its pragmatics. The syntax of the language describes the appearance and the structure of
its sentences. Its semantics on the other hand gives a meaning to those sentences. Finally, the
pragmatics of the language describes the usability of the sentences. Topics involving pragmatics are the
ease of implementation of the language, the domains of its applicability and so on. For short, one
could state that the syntax describes how to form right sentences, the semantics outlines how to assign
a meaning to those sentences and the pragmatics describes how to use those sentences. Because this is a
paper about formal semantics, the first and last topic will not be further discussed. Pragmatics is by no
means formalisable, and for a formal or informal treatment on syntax, we refer to a standard textbook
about formal grammars such as [Hopcroft79] or [Rayward-Smidt84].

Why should anybody be concerned with a formal study of the semantics of programming languages?
In fact, several reasons can be quoted by different people, each having a different view on the meaning
of programs. For example: a programmer might desire a formal specification with which he can
construct correctness proofs about the programs he has written. The language designer, on the other
hand, might want a notion of semantics to be able to determine whether the main constructions of his
language behave in an orthogonal manner. And last, the implementor of the language could require a
formal specification in order to ensure the correctness of his compiler. A bit more taxonomically, one
could list the arguments in favor of formal semantics as follows:

1 It is important to keep in mind that this paper is about formal semantics of deterministic sequential program constructs. The
introduction of parallellism and nondeterminism requires some important changes to the theory. The resulting theory is somewhat
harder to comprehend. An extensive treatment of both concurrency and nondeterminism can be found in [Hennessy88].

An informal tour on denotational semantics

- 3 -

• A formal specification of the behaviour of programming language constructs allows
correctness proofs of the language’s implementation, which could enable a compiler designer to
state that his compiler formally corresponds to the definition of the language.
• Formal semantics might, in a declarative way, support a formal reasoning system about the
mechanisms a language contains. These reasoning systems consist of so called partial
correctness proofs, and a bunch of inference rules allow the programmer to combine them into
correctness proofs for his entire program.
• Another point at which formal semantics might help a user of a language is its definition. Up
until now, the semantics of most languages is still defined by informal statements, and
experience has shown that almost every language ever described by means of natural language,
contains at least a few holes in the specification of its semantics. Apart from the troubles in
implementing such a language, as a consequence, programmers often tend to create subtle bugs
in their minds about some of the languages features. The only way to avoid this is to formally
specify the meaning of those features.
• The last good reason to study formal semantics is the generation of compilers and interpreters.
By analogy to the generation of syntax checkers, it is not difficult to see that a formal
specification of semantics could easily lead to construction tools that translate semantic
constructs into executable code which is able to do the semantic checking stage of a compiler.

However, at the time of writing(1994), the semantics area is not as well developed as the syntax
area. Standard methods for describing formal semantics of programming languages are still evolving.
Meanwhile, we hope that this paper will contribute to the popularization of the currently established
results.

The structure of the paper is as follows. In the following section, we will give a general
introduction and taxonomy of the realm of semantics. In section 3, we will try to provide a quick
overview of the denotational approach. One of the central research issues in the seventies was the
characterization of the so called semantic domains. Once found, they seemed to have many artificial
properties. In section 4 we try to introduce them from a computer scientist point of view. In section
five we formalize the concepts introduced in section 4 and give methods for the modularization of
semantic definitions. Section 6 applies these mathematical definitions to some important language
constructions. The final section briefly discusses the relations between the several approaches.

2. An Overview of the Semantic Landscape

As already mentioned in section 1, not everyone has the same idea as to what a formal description of
programming languages should be. As a consequence, different researchers started to design their
formalisms with different intentions, and therefore several approaches to formal semantics have been
proposed. For the moment, these can be classified into three different tendencies: operational,
denotational and axiomatic semantics. It is important to know that these approaches should by no
means be viewed as competitors. They were one by one designed to serve different purposes and their
theoretical equivalence has been shown more than ten years ago. However, from a ‘practical’ point of
view, it is meaningless to compare them to each other, and arguing about which of them should be
seen as the best, can be safely called an idiotism. This should be clear by the following brief overview.

• Operational semantics
Operational semantics is based on an evolutionary model. One defines a semantic function f and a

class of abstract machines m such that every element of the set of valid syntactic constructions s , can
be mapped by f to some abstract machine in m, that is f : s → m. According to the operational
approach, the meaning of the elements in s is therefore specified in terms of the computations or
operations performed by the machine when executing the construct.

The machines from m are usually defined as couples (S,P) where P represents the part of the
program remaining to be executed and where S represents the internal state of the machine. The
execution of the abstract machines is formalized by a set of reduction rules which transform couples.
The meaning of the initial program is then seen as the complete reduction; i.e. the evaluation history of
the program.

The main benefit coming from this approach is the preciseness with which the execution of the
program is specified. It is therefore strongly advocated by people who write compilers and interpreters
for languages. The correctness of a compiler can thus be shown by defining a one-to-one correspondence
between the abstract machine and the language to which the program is transformed. The most
important disadvantage of the operational paradigm is that for nontrivial languages, the abstract
interpreter usually gets very large and complex, and thus becomes difficult to understand. This is why

An informal tour on denotational semantics

- 4 -

the paradigm is not very well suited for programmers and language designers. A beautiful introduction
to this method is presented in [Plotkin].

• Denotational semantics
Denotational semantics is based on a denotationary model. In this paradigm, a phrase is mapped

directly onto its meaning, called its denotation. To accomplish this, one defines a semantic function f
and a semantic domain d such that every syntactic construct in s is mapped by f onto some element
of d , which is a structured set of abstract values (truth values, natural numbers, natural number
functions,...); i.e. f : s → d . Hence, one tries to denote the meaning of a program by means of
some mathematical object without going into the details of how it is actually executed. A widely used
approach is to simply define the denotational semantics of a program as a function relating input and
output values without stating its implementation details.

This paradigm should be used as a tool for designing languages. The elegance of a language is often
measured by the length of its denotational definition.

Denotational semantics can be useful to users of a language as well, because it clearly shows the
essence of a language feature, without specifying how these features are physically realized.

The denotational paradigm is sometimes referred to as the Scott-Strachey-approach, named after the
inventors of the method. An extensive treatment of it can be found in [Schmidt88].

• Axiomatic semantics
Axiomatic semantics is based on an inference model. One defines a set of predicates which can

contain the free variables of the program phrase. These predicates can thus serve as statements saying
something about the contents of those variables before and after the execution of the program segment.
Axiomatic semantics therefore consists of a proof system which contains axioms and inference rules.
The axioms usually are triples of the form {Pre}P{Post} where P is a program segment and Pre and
Post are logic formulae serving as pre and post conditions that hold for P. The inference rules depend on
the kind of construct P belongs to. For example, {}while E do C{E=false} could be a simple axiom
about the Pascal-while-statement. Evidently, it is this kind of semantics that is useful for a programmer
to construct partial correctness proofs for his programs.

The main objective of an axiomatic semantics is to lay down such a rule for every possible program
construct of a language, and to prove that this set of rules is a sound and complete reasoning system.

Axiomatic semantics was mainly advocated by Hoare. An excellent introduction can be found in
[deBakker80].

Recently, a generalization of two of the above approaches has been proposed. This is sometimes
referred to as algebraic semantics. Algebraic semantics introduces category theory into denotational
semantics. By comparing different denotational domains, it allows us to construct models that can serve
as a basis for a sound and complete axiomatic semantics. Algebraic semantics thus acts as a bridge
between the denotational and the axiomatic approach. We like to see this as a part of the denotational
approach with some nice side effects in the axiomatic paradigm.

3. The Denotational Approach

As explained in the previous section, the general idea of the denotational approach is to denote each
syntactic construct by some abstract value chosen from a domain of denotations. This will be
accomplished by a function that maps language sentences to their meanings. This function will be
called the semantic valuation function.

We assume that the syntax of our languages is defined by a context free grammar. Whenever we
want to replace a subphrase of a sentence by a phrase which has a meaning identical to the meaning of
the original subphrase, we want the meaning of the entire phrase to be preserved. As a consequence, the
meaning of a phrase should only depend on the meaning of its constituents. This is called
compositionality. Compositionality will most easily be reached by structuring the semantic valuation
function according to the structure of the BNF definition of the language. In fact, it is argued in
[Goguen77] that structuring the semantic valuation function according to the context free grammar is
crucial to denotational semantics. An important consequence of compositionality is that it allows
properties of semantic valuations to be proved by structural induction.

We keep in mind that the semantic valuation function is based on BNF and compositionality. A
denotational definition consists of a syntax definition, a semantic valuation and a semantic algebra.
The semantic algebra is a domain of semantic values together with some operations on it.

The question now arises of which kind of mathematical structures are appropriate to be used as
semantic domains. For the moment, we will let our intuition do its job, and take sets as the first

An informal tour on denotational semantics

- 5 -

candidates for being semantic domains. For example, let us create a simple language to denote additive
expressions.

<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<number> → <digit> | <number><digit>
<term> → (<expression>) | number
<expression> → <term> | <term><add-op><expression>
<add-op> → plus | minus

The semantics of this language could simply be the tuple (N, {+,-,*} , N) where N is the usual set of
natural numbers, +, -, * are the usual operators on natural numbers and N is defined as follows2:

N[[0]] = 0, N[[1]] = 1, ... , N[[9]] = 9
N[[<number><digit>]] = N[[<number>]] * 10 + N[[<digit>]]
N[[(<expression>)]] = N[[<expression>]]
N[[<term>plus<expression>]] = N[[<term>]] + N[[<expression>]]
N[[<term>minus<expression>]] = N[[<term>]] - N[[<expression>]]

Hence, every additive expression is denoted by some natural number. For example, both the
expressions 7plus4 and ((3plus14)minus6) are denoted by the natural number 11 [N.

The semantic algebra that is used in this example consists of the set of natural numbers together
with the usual operators +, - and *. The conversion from ((3plus14)minus6) to ((3+14)-6) is done by
the semantic valuation function. The latter expression is further simplified by the rules of the
underlying semantic algebra. The purpose of simplification is calculating the actual semantic value of
the phrase. For example, the actual semantic value of ((3plus14)minus6) is not ((3+14)-6) but 11.

No trouble emerged from this example and therefore we conclude that sets can be perfectly suitable
to play the role of being semantic domains. However, this is not always the case. This will be
discussed in the following section.

4. Semantic domains: some requirements

Let us start thinking about some pathological cases that may occur while designing a denotational
semantics.

First, a problem of having a meaning at all arises. For example, we would not want the expression
3+true to have any meaning. Therefore, a notion of ‘has no meaning’ should be introduced. This can be
done in two different ways. First, we could require that the semantic function (Ν in the example above)
is undefined in some cases. Second, we could include the meaning ‘no meaning’ to our semantic
domain. Although both approaches yield more or less the same theory, most authors prefer to work
with an explicit ‘no meaning’-denotation. This denotation is given by ⊥ and is pronounced ‘bottom’.

Second, it turns out that sets are not enough for designing semantic domains for general purpose
programming languages. The most important problem that forces us to leave the nice and clean world
of sets is recursion or iteration. It should be emphasized that by recursion3, we actually mean variable
recursion and not primitive recursion. To illustrate the problems arising from recursion, let us look at
the following procedure definition in some Algol-like language

function f(n:natural): natural;
begin

if n=0 then f(n):=1 else f(n):=f(n+1);
end;

Clearly, we would like the semantics of this construct to be a function g: N → N which satisfies
g(0)=1 and g(x) = g(x+1) for each x≥1. A solution for this problem could be the function h: N → N
such that h(x) = 1 for all x in N. However, every function satisfying g(0) = 1 and g(x) = a for x≥1 and
some constant a is a valid meaning of the above construct. How should we solve this one ? It should be
clear that the situation forces us to compare every function with one another. After the comparison is
made, we have to start looking for the one which seems to be the best among all functions.

2The use of [[and]] is historically grown. These double brackets separate the realm of syntax from the realm of semantics.
3 From now on, we will treat recursion and iteration identically. This is a commonly used technique when modeling computer
p r o g r a m s .

An informal tour on denotational semantics

- 6 -

To be able to compare the functions, we will install some kind of order v on the set of functions.

This order will be the formalization of the notion “contains more information”. Hence, f v g whenever

g contains more information than f. This order can never be total since there will always be functions
containing exactly the same amount of information (consider e.g. f(x) =1 and g(x) = 2)4. Therefore the
order will be a partial order. Now let S be the set of all solutions of the problem stated above. S will be
the set of all functions satisfying f(0)=1 and f(x)=f(x+1) for x≥0. Since a computer will never be able to
invent meaning itself, the meaning of a program will be the meaning which contains a minimum of
information. Therefore, the meaning of the above construct, will be the least element of S. It is clear
that this is the function g: N → N satisfying g(0) = 1 and g(x) = ⊥ for x≥1, because this literally
states that g has no meaning for every x≥1. Compatible with ordinary computability theory, ⊥
therefore denotes the concept of undefinedness or nontermination, which is what we like because it is
clear that if we run the code segment stated above, the resulting procedure will be nonterminating, for
each input x≥1.

So far, we conclude that our semantic domains should at least be partial orders.
Because it is also possible to write a procedure that has no meaning at all, for example,

function f(n:natural): natural;
begin

 f(n):= f(n+1);
end;

another argument is found to indicate that our partial orders should also contain a bottom element,
which stands for an undefined piece of code. However, it will become clear that partial orders containing
⊥ will still not satisfy our needs. To illustrate this, let us consider the following example. Let

function fac(n:natural): natural;
begin

if n=0 then fac(n):=1 else fac(n):= n*fac(n-1);
end.

 be an expression for the well-known factorial function. The denotation for this phrase is the function

f: N → N given by f(n) = n!

It is common to think of this function using its graph,

graph(f) = { }()0,1 , ()1,1 , ()2,2 , . . . , ()i,i! ,

This graph is an infinite set. The Cartesian methodology for understanding an infinite object is to
define finite objects which are its finite subparts, and then building up, step by step toward the object.
Let us therefore take functions graphi+1= { }()0,1 , ()1,1 , ()2,2 ,.., ()i,i! . Such a function can be
considered as one that is capable of unfolding the factorial definition at most i+1 times, and returning
the appropriate result. When a number larger than i is tried, the function is undefined. It is clear that
graphi 1 graphi+1 and graph0 = Ø.

Further, for all i, graphi 1 graph(f). This implies that ∪
i=0

∞
 graphi 1 graph(f).

Conversely, when (a,b) [graph(f), there will be some i such that (a,b) [graphi.

Therefore, graph(f) 1 ∪
i=0

∞
 graphi and hence graph(f) = ∪

i=0

∞
 graphi .

What we found so far is that if we want the set of graphs defined here to be a semantic domain, it
should in some way contain its limits. Expressed as in ordinary calculus, we say that our domains will
have to be complete in some way. As usual, completeness means that the upper bound of every row of
elements should be included. Hence, our domains should be complete partial orders (cpos) with a
bottom element. Notice that the problems addressed here would not arise if it were not for variable
iteration. Notice also that this example is an instance of our general methodology developed so far. The
semantic domain used here is the set of (graphs of) functions5 from N to N. The partial order v

4This is a good example to show that information value is fundamentally different from information content.
5Later, we will see that the set of all functions from N to N is not a valid domain, because there are too many functions in this set.

An informal tour on denotational semantics

- 7 -

discussed above is given by the inclusion relation 1. This relation meets the requirements because
graphi+1 contains more information than graphi. The upper bound of a sequence of graphs is the infinite
union of that sequence. Moreover, another argument for the presence of ⊥ has been found (this is Ø in
our example, because Ø contains no information, i.e. Ø 1 graphi for all i≥1).

An important topic which was also addressed by this example, is a general construction methodology
for:

Semantics of recursive program constructs

We already explained that graphi is the factorial function unfolded for i times. Hence,

graphi+1 = λn. Cond
N

 (n , 1 , n*graphi(n-1)) for all i≥0. [*]

where CondA : Z 6 A 6 A → A is the conditional, returning the first element if the condition is zero
and the second otherwise6, i.e.

{CondA (0,a,a’) = a
CondA (x,a,a’) = a’ for all x ≠ 0

If we define7 FS = λf.λn. Cond
N

 (n=0, 1, n * f(n-1)), then equation [*] can be rewritten as

graphi+1 = FS(graphi) = ... = FS
i(graph0) = FS

i(Ø)

FS is a function taking a function as an argument and returning a function as result. Such a function is
called a higher order function or a functional.

Now graph(f) = ∪
i=0

∞
 graphi can be rewritten as graph(f) = ∪

i=0

∞
 FS

i(Ø)

More general, we can state that if r is a recursive specification such that r = F(r) then we define the
semantics of r as the least upper bound of the semantics of r’s finite approximations

Semantics(r) = ∪
i=0

∞
 Semantics(F)i(Ø)) . In the case of subsets, the least upper bound is known as an

infinite union. In general, we will denote it by t. The bottom element (Ø in this example) is used as a

starting point for the unfoldings. The entire concept of the meaning of recursion is based upon it.
Notice that it can be shown that

Semantics(r) = FS(Semantics(r))

FS is the semantic version of the functional F used to define r. The semantics of r is a fixed point of the
functional FS. Furthermore, we already stated that a computer can not invent a meaning on its own.
Therefore, Semantics(r) should be the least fixed point of FS.

For pure denotational semantics, two questions remain unanswered. First, we could ask ourselves
whether it is always possible to find an appropriate domain given a syntactic phrase. Second, we might
wonder whether the least fixed point (i.e. the infinite union) used in the example always exists. We
know that when working in a cpo, this limit will be defined, if the sequence FS

0(⊥), FS
1(⊥),... is a ‘well

defined sequence. What should these sequences be like? Does every functional F gives us these kind of
sequences?

5. The Construction of Domains

5.1 Semantic domains for general purpose programming languages.

6Notice that use of integers to hide boolean expressions does not contribute to a well designed language, but design is not our main
concern in this paper. The problem can easily by solved by adding a syntactic set of boolean expressions and writing semantic
declarations for them.
7Notice that FS is the semantic version of the functional F = λ fλ n . if n=0 then 1 else n*f(n-1) which is used to denote the factorial function at a
syntactic level.

An informal tour on denotational semantics

- 8 -

In this section, we will present an overview of the techniques that are available for constructing
semantic domains. However, first, we need some formal definitions.

Definition:
A partial order (po) over a set D is a relation R 1 D 6 D such that

(1) reflexivity: for all x in D: (x,x) [R.
(2) transitivity: for all (x,y), (y,z) [R, (x,z) [R.
(3) antisymmetry: (x,y), (y,x) [R implies x=y.

The sequence that we have been constructing in the factorial example will be called a chain or a total
order.

Definition:
For a partially ordered set (D,v), a subset X of D is a chain iff X is non empty and for all a,b [X,

either a v b or b v a.

An example of a partial order is p(A), 1 where p (A) is the powerset of some arbitrary set A. The
rational numbers Q together with the ≤ relation define a total order.
In our factorial example, the relation v was taken to be 1 and D = { graphi | i≥0 }.

The limit of a chain will be formalized by the least upper bound notion.

Definition:
Let D be a partially ordered set and let X be a subset of D. d [D is called an upper bound of X iff for
all x [X, x v d. An upper bound d is called a least upper bound (lub) if for every other upper bound d’

of X, d v d’. The least upper bound of a set X is denoted tX.

Definition:
A partially ordered set D is a complete partial order iff every chain in D has a least upper bound in D.
A partially ordered set D is a pointed or lifted complete partial order if it is a complete partial order and
it has a least element, i.e. an element l such that for all x [D, l v x.

An example of a complete partial order is R,≤ (whereas Q ,≤ is not complete), but it is not lifted.
To change it into a lifted complete partial order, a notion of ⊥ should be included. This can be done by
introducing the element -∞ or by restricting the set to R+,≤ (i.e. all reals starting from zero).

Definition:
A semantic domain is a lifted complete partial order.

5.2 The semantics of recursive programs

At the end of the section 4 we asked ourselves which sequences will have limits. Now we know that
the sequences must be chains. We also wondered if every functional F will result in the sequence F0(⊥),
F1(⊥), F2(⊥),... being a good one. In other words, will every functional F yield a chain when applied
successively to ⊥ ? It turns out that this is not the case. In order to get chains, F must be a monotonic
functional.

Definition:
Let A and B be cpo’s (or just po’s). A function f: A → B is monotonic iff x vA y implies f(x) vB f(y)

Monoticity is a very natural concept for computer science. It is quite trivial that the more
information is offered to a functional, the more information it can produce. In fact, it turns out that
every computable functional is monotonic. A nice example of the converse of this statement is to show
that the Halting Problem is not computable, by showing that it is not monotonic.

It can be shown that every monotonic functional F will result in a chain F0(⊥), F1(⊥), F2(⊥),... but
this is not enough for the upper bound of this chain to satisfy the fixed point property. It can be shown

An informal tour on denotational semantics

- 9 -

(see [Tarski55]) that every monotonic function over a cpo has a cpo of fixed points. But what we need
is the least among those fixed points, because we already concluded that a computer can not add
meaning by itself. Moreover, what we require is a unique least fixed point because we do not want a
recursive program to have more than one meaning.

Of every possible meaning, the one which contains the least amount of information is the
semantics we are looking for. In order to accomplish this, we will need a generalization of monoticity
towards infinite objects (i.e. the lub’s). This generalized concept is called continuity.

Definition:
For cpos A and B, a monotonic function f: A → B is continuous iff for any chain X 1 A,
f(tX) = t { f(x) | x [X }.

Thus, continuous functions preserve limits of chains. As explained before, continuous functions are
exactly what we are looking for:

Theorem:
If the domain D is a lifted cpo, then the unique least fixed point of a continuous functional F: D → D
exists and is defined to be fix(F) = t { Fi(⊥) | i≥0 }.

As suggested by the factorial example, we state:

Definition:
The meaning of a recursive specification f = F(f) is taken to be fix(FS), the least fixed point of the
functional FS which is the denotation for F.

5.3 Constructing semantic domains

When designing a denotational semantics, one will use a bunch of primitive domains and use
domain operators to combine them into more complicated domains. For example, the semantics of a
Pascal integer variable might be given by an ordinary integer number from Z. Because every integer
number contains an equal amount of information, the partial order induced by Z is empty! These are the
kinds of domains we will use as our primitive domains. They are called flat or discrete partial orders.
We will now discuss the operators domain-theory offers us to combine domains into more complex
domains, the so called compound domains. First, we need an operator to convert a flat po into a
semantic domain.

Definition:
For a partially ordered set A, its lifting A⊥ is the set A ∪ {⊥ }, partially ordered by the relation d vA⊥

d’

iff d = ⊥ or d, d’ [A and d vAd’.

The elements of A are called proper elements while ⊥ is an improper element. Some authors prefer
to use the bottom element ⊥ to denote error situations. This is a bad idea because an error situation is
fundamentally different from an unrecoverable situation. Errors can be propagated ‘upward’ and can be
given to the user as a result of a computation, while this is certainly not the case with nontermination.
This is because the Halting Problem is undecidable. The best thing to do is to include a special element
? in our domains, which will stand for an error situation.

Definition:
For partially ordered sets A and B, their product A 6 B is the set { (a,b) | a [A and b [B}, partially
ordered by the relation (a,b) vA6B (a’,b’) iff a vA a’ and b vB b’.

The usefulness of products is obvious. They can be used to serve as semantic domains for lists, records,
arrays, pairs of functions, etc. A construction which is a bit more exotic is the disjoint union or sum of
domains.

Definition:
For partially ordered sets A and B, their sum A + B is the set { (0,a) | a [A} ∪ { (1,b) | b[B},
partially ordered by the relation d vA+B d’ iff (d = (0,a), d’ = (0,a’), and a vA a’) or

(d = (1,b), d’ = (1, b’) and b vB b’).

An informal tour on denotational semantics

- 10 -

Disjoint unions are used to specify choices between semantic elements. For example, defining domain
C as A + B (i.e. C = A + B) is used to express that a value of C can be either a value of A or one of B.

Until now, the domain constructors have been strongly biased towards modeling of data. But we also
need a domain which contains denotations that are able to process something. In theoretical computer
science, this is usually modeled by a function which transforms some value into another one. Such a
domain of transformers is actually a function space. But according to the arguments given above, we are
only interested in continuous functions. This will also turn out handy when solving recursive domain
equations.

Definition:
For partially ordered sets A and B, their function space A → B is the set of all continuous functions
with domain A and range B, partially ordered by the relation f vA→B g if for all a [A, f(a) vB g(a).

There are lots of theorems about complete partial orders and lifted complete partial orders. In fact,
the study of these structures is an entire subfield of mathematics. The most important of them are
summarized in the following properties. They resemble the closure properties of (lifted) complete
partial orders.

Properties:
A flat domain P is never lifted.
If A and B are lifted, then A 6 B is also lifted.
A + B is never lifted.
If B is lifted, so is A → B.
A⊥ is by definition always lifted.

If A and B are complete, then A 6 B, A + B as well as A → B are complete.

Another important theorem is that every operator over A 6 B, A + B and A⊥ such as projection
functions, selecting ⊥ from A⊥ , ... is continuous. Furthermore, we know that A → B only contains
continuous functions if it is defined with the order given in the above definition. These are all very
important results because they ensure that every functional expression over lifted cpos that follows the
given definitions (including functional expressions involving selectors of the compound domains) has a
least fixed point (because they are continuous) and therefore can be used to give the semantics of a
general purpose language.

The final problem that remains to be solved is the recursively defined domain equations. The theory
resumed so far only allows us to write nonrecursive equations such as Value = (Boolean + Integer)⊥ but
when one wants to give a semantics to things as lists or strings, the need for recursively defined
domains arises quickly.

5.4 Recursive domain equations

Let us, for example, try to define a domain for expressing the meaning of ordinary lists. Let FL be
the domain of finite lists. A finite list over a set A is either the empty list (which will be denoted by
nil) or an element from A followed by another finite list. A list can also be undefined.
Hence,

FL = ({nil} + (A 6 FL))⊥

Does such an equation make any sense? It is possible to solve such equations (which we will call
recursive domain equations) in an effective way? But is it really necessary to solve them? From a
mathematicians point of view, this question should be answered positive, but for a computer scientist,
the equation itself contains all the information he needs to know.

Caution is needed when interpreting such equations. For example, a semantic domain for the λ-
calculus is given by the equation D = D → D because λ-terms such as λx.xx tell us that objects from
λ-calculus can serve both as a function and as an argument. Hence, a domain for the λ-calculus should
be one that contains its own function space. From a mathematical point of view, it should be clear that
this is pure nonsense. No set can contain its own function space. Therefore, the equation sign should

An informal tour on denotational semantics

- 11 -

actually be an isomorphism sign. This makes sense because a function from D → D can always be
represented by an element of D using its Gödel encoding, and vice versa8.

In practice, the denotational descriptions are generally defined as solutions (up to an isomorphism)
of domain equations involving standard primitive domains and the standard domain constructors ⊥ , 6 , +
and →. The solution of such equations is due to Scott and has become known as the inverse limit
construction. The inverse limit method works like the limit construction used for giving semantics to a
recursive function. We will build the domain by constructing a sequence of approximating domains.
The elements in each approximation will be contained in the solution domain, and each approximation
Di will be a subdomain of Di+1. If the equation was D = F(D) where F is a functional expression build
from using ⊥ , +, 6 and →, we define Di+1:=F(Di) and D0 = {⊥ }. By some special mathematical
constructions (retraction pairs), Di is properly embedded in Di+j such that Di 1 Di+j, for all j [N. Then
the solution D∞ is defined D∞ = ∪ Di and it is easily shown that D∞ = F(D∞) and that D∞ is the least
domain satisfying the equation. We will not give further details about Scott’s construction. The only
important question remaining to be answered is a characterization of F that gives us precise conditions
to guarantee a solution. It is shown in [Schmidt88] that any domain expression F which maps a lifted
cpo E to a lifted cpo F(E) results in a solution D∞ for the equation D = F(D). Hence every domain
equation can be solved. Many examples of this can be found in the literature (see [Schmidt88] and
[Tennent91]). As a counter example consider the equation D = B + (D → D). This equation has no
solution because a disjoint union is never lifted (see the rules above). The problem is removed if we
change the equation to D = (B + (D → D))⊥ .

6. Some Standard Techniques

Since the development of denotational semantics by Dana Scott and Christopher Strachey, many
people used their ideas when trying to lay down semantic domains and valuation functions for their
languages. From this, a series of ‘standard’ techniques has become available. In this section, we will
discuss the most relevant among them. An excellent treatment of them can be found in [Gordon79].

6.1 The semantics of arithmetic expressions

In this section, a semantics will be given for an expression language in which ordinary integer
expressions can be written. We assume that expressions consist of literals, variables and the ordinary
operators +, -, * and div. The mechanism used to associate variables with a value, is given by a
function mapping variable names to values. Such a function is called a state. Hence, we will be using
three domains for denoting integer expressions. The first domain, is the flat domain Z of integer
numbers. Another flat domain is ‘Identifier’ which will be used to denote the mapping that models the
state. Finally a state is a function associating identifier names with integer numbers. In terms of the
previous paragraphs, a state is therefore an element of the space of continous functions Identifier →
Integer.

Integer = Z
State = Identifier → Integer

The value of an integer expression containing variables depends on the values of those variables. Hence,
a state (by which the value of each identifier is determined) will be given to our semantic evaluation
function. The result of evaluating an expression will therefore be a continuous function associating
states to values.

E : Expression → State → Integer9

As is often done in denotational semantics, this is the curried version of E (after Mr. Curry). The
definition of E can also be written as E : (Expression 6 State) → Integer, which is its uncurried
version. Let us now discuss this function in detail.

The semantics of syntactic numerals are their corresponding values from Z:
E[[zero]] = λs . 0

8How is this possible? Isn’t it always the case that a function space is much bigger that an ordinary set? The trick that enables us to
say that the equation D = D → D has a solution, is the fact that D→ D only contains continuous functions. There are much less
continuous functions than functions.
9Notice that → associates to the right. By A → B → C, we mean A → (B → C) and not (A→B) → C.

An informal tour on denotational semantics

- 12 -

E[[one]] = λs . 1
...

The semantics of a variable consists of looking it up in the provided state s and returning its value:

E[[i]] = λs . s(i) where i [Identifier

The semantics of other numerical expression is defined according to the syntactic definition:

E[[E1 + E2]] = λs . E[[E1]]s +
Z

 E[[E2]]s
E[[E1 * E2]] = λs . E[[E1]]s *

Z
 E[[E2]]s

E[[E1 - E2]] = λs . E[[E1]]s -
Z

 E[[E2]]s
E[[E1 div E2]] = λs . E[[E1]]s div

Z
 E[[E2]]s

where +
Z

 , *
Z

 , -
Z

 and div
Z

 are the usual operators from the semantic algebra Z. Notice that the last
clause (for div) is not quite right. Indeed, what happens if E2 evaluates to zero? This can easily be
solved by including the value ? in the ‘Integer’ domain, and returning ? every time an error has occured.

It is not difficult to see that the same techniques can be used for determining the semantics of other
kinds of expressions, as long as the expressions cause no side-effects. The essence of these techniques is
that, for an expression-like language, one needs to structure the semantic function recursively based on
the formal grammar of the language (in order to get compositionality). The recursion is stopped at the
level of the terminal symbols.

6.2 The semantics of common commands

By common commands, we mean commands that do not change control flow ‘in an unnatural
manner’. This will become clear in the following sections. As usual, a computation process consists of
transforming states through time. Thus, ordinary commands in procedural languages take a state and
transform it into another state.

C: Command → State → State

A few examples of commands are an assignment, a conditional expression and a while loop.

The semantics of an assignment reflects the adjustment of the provided state s, with the evaluation of
the right hand side of the command. Hence,

C[[i:=E]] = λs . s [] E [[E]]s / i

where s[v / i] is the same state as s, except that it maps the identifier i to the value v.
The meaning of a conditional is

C[[if E then C1 else C2]] = λs . CondState(E[[E]]s , C[[C1]]s , C[[C2]]s)

As explained in section 4, no trouble would have emerged from the use of ordinary sets, for the
constructs treated so far. Our next construction is a while loop. We already stated several times that
treating variable iteration or recursion forces us to use domains instead of sets. The semantics of a
while loop is given as follows:

C[[while E do C]] = λs . CondState(E[[E]]s , C[[while E do C]] (C[[C]] s) , s)

Clearly, C[[while E do C]] is defined in function of itself. But we saw that this is solved by taking the
fixed point of its defining functional, i.e.

C[[while E do C]] = λs . CondState(E[[E]]s , C[[while E do C]] (C[[C]] s) , s)
⇔
C[[while E do C]] = (λdλs.CondState(E[[E]]s , d (C[[C]] s) , s)) C[[while E do C]]
⇔
C[[while E do C]] = fix (F) where F = λdλs.CondState(E[[E]]s , d (C[[C]] s) , s)

An informal tour on denotational semantics

- 13 -

What remains, after applying fix to F, is a function transforming states to states, which is exactly what
we wanted according to the definition of C.

As these examples show, there is nothing mysterious or spooky about denotational semantics.
Most natural programming language constructs are modeled by it in a very trivial way. However, it
will soon become clear that a lot of research still needs to be done because the semantics of higher level
programming constructs such as procedures, types and block structuring is not so easy to comprehend.

6.3 The semantics of blockstructured languages

The use of blockstructured languages requires the notion of a ‘scope’. When can we say whether a
variable is visible or not, and which variable is actually meant when two of them with the same name
have been declared. The main problem with blocks is that at some point, they introduce the need for
sharing of variables, i.e. two different identifiers that share the same content. This is very much the
case when we talk about call-by-reference and when we introduce pointer structures.

To solve this, a pointer mechanism is introduced. Instead of immediately associating the identifiers
to a value (with a state), we will map identifiers to locations and locations to values. This makes it
possible for two different identifiers to be mapped onto the same location (and thus also to the same
value). Once the first identifier is updated by an assignment command, the second will also be adjusted.
To model the association of locations with values, we introduce the concept of a store. The domain of
stores is defined by:

Store = Location → (Value + {unused})

where Value is the set of denotable values (Integer in our case) and where Location is an arbitrary flat
domain.

The association of identifiers to stores is done using an environment. An environment maps a set of
identifiers to their corresponding location, and hence serves as a way to look at the identifiers. Stated
somewhat more technically, they define a scope.

Environment = Identifier → (Location + {unbound})

A request for the value of an identifier is then solved in two stages. First, the identifier is looked up in
the provided environment, which will return a location. Next, the contents of this location should be
determined by looking up the location in the current store. Therefore, the semantic evaluation for
expressions requires two parameters e and s, representing the current environment and store. In
particular, the semantics of an identifier is given by10:

E [[i]] = λ e s. CondValue() e(i) = unbound , error , s(e(i))

Hence, assignment commands will only change the contents of a location, but not the location of
an identifier itself. The only way in which an identifier’s location can be modified is by changing the
environment and this is exactly what is done to express the semantics of block-entering or procedure
calling. An extensive treatment of these topics can be found in [Gordon79].

6.4 The semantics of control commands

Using the techniques of the previous section, it is very difficult to denote statements in which the
control flow of the program is explicitly changed, such as procedure-calls, goto’s, exception handling,
etc.

To avoid these problems, Scott proposed a set of techniques which has become known as
continuation semantics, in contrast to direct semantics, which is a term used to denote the techniques
presented above. In continuation semantics, an explicit description of control is used. Such a
description is called a continuation. A continuation can be seen as a description of the future
computation. It models ‘the rest of the program’ or ‘what remains to be done’. The idea is that each
construct decides for itself where to pass its result. Usually, this will simply be the command
following the construct, but in some cases such as a ‘goto’ this scheme can be altered, and the result is
passed to another continuation. Other examples where continuations are useful is error handling,
exception handling, escapes, etc.

10 From now on, we will assume that E : Expression → Environment → Store → (Value + {error})

An informal tour on denotational semantics

- 14 -

We argued that a computational process is simply a transformation of memory through time. Hence,
‘the rest of the program’ should also be such a transformation. In other words, a continuation is
nothing more but a continuous function that converts a store into another store, i.e.

Continuation = Store → Store

Every command should be evaluated within a provided environment. Furthermore, a continuation must
be given which tells what to do after the command has been executed. As explained above, the
command will transform a store into another store through time. Taken all together, the semantics of a
command specifies how a provided environment, a continuation and a store are transformed into another
store, i.e.

C : Command → Environment → Continuation → Store → Store

But Store → Store = Continuation, such that

C : Command → Environment → Continuation → Continuation

Hence, every command gets a continuation and evaluates to another continuation. In order to explain
the denotation of a command, we proceed as follows.
According to the above definition, the semantics of a command is a continuous function from

Environment → Continuation → Continuation

Provided with an environment e and a continuation c, we get C[[C]] e c which is a function from

Store → Store

The meaning of this function C[[C]] e c : Store → Store is the following. The command C is
executed within environment e in store s. The result of this execution is s’ which is then passed to c,
i.e.

C [[C]] e c s = c s’

For expressions, the situation is analogous. An expression receives an expression-continuation and
transforms it to a normal continuation.

E : Expression → Environment → EContinuation → Continuation

where

Econtinuation = Value → Continuation = Value → Store → Store

Once the value v of an expression is known (in a certain environment e), it will transform a store s into
another store s’, which is then passed to the expression continuation k which resembles the rest of the
expression evaluation process, i.e.

E [[E]] e k s = k v s’

As a concrete example of continuation semantics, we redefine the denotation of a while construct.

C[[while E do C]] = λe c s. E[[E]] e (λv. λ s’.CondState(v, C[[C]] e (C[[while E do C]] e c) s’, s’)) s

These seem to be unnatural and very complicated constructs. However, continuation semantics also has
some advantages over direct semantics. One of them is the ease with which a denotation for
unconditional branches can be given.

C[[goto L]] = λ e c . E[[L]] e k where k : Value → Continuation: λc’.c’

This equation is interpreted as follows. First, the label L is evaluated in the current environment e. The
value of L will be some continuation c, which represents ‘the rest of the program’ after the label
declaration L. This continuation will be offered to λc’.c’. Hence, the overall result will be the
continuation bound to L. Notice that this requires continuations to be storable values. This should be

An informal tour on denotational semantics

- 15 -

no surprise because, in order to model jumps, it is essential that labels can be bound to program
positions which actually resemble the rest of the program.

The only problem that remains to be solved is extending the environment with the label L bound to
its corresponding continuation.

begin
...
L1 : C1;
...
Lk : Ck;
...
goto L1;
...

end;

We will assume that a label is declared by a statement L:C where L is a label and C is a (possibly
compound) command. The scope of L is defined to be the smallest surrounding block of C which
means that it is not possible to jump out of blocks in which a label was declared. When entering a
block, aside from extending the environment with any new declarations, the environment also has to be
extended with every label that is declared inside the block. This is much more difficult as it may seem.
Consider the following piece of code.

L1 :

C

c

goto L1

The semantics of this code is C [[L1 : C]] e c where c represents the computation after block C has
been executed. Suppose that we would extend our environment at this point by simply binding the
label L1 to C [[C]] e c. Hence, C [[L1 : C]] e c = C [[C]] eextended c where eextended is the environment e
upgraded with a binding of L1 to the continuation representing C.
But this is exactly C [[C]] eextended c because C has to be evaluated in its new environment in order to
look up L1 when the denotation of the goto statement has to be calculated. Again, this circularity can
be removed by solving a fixed point equation over the definition of the new environment11. This
equation is given by

c’ = C [[L:C]] e c = C [[C]] e[c’ / L] c
Thus,

C [[L:C]] e c = fix(λc. C [[C]] e[c / L] c)

Now consider the situation in which the goto statement is written before L has been declared. Then, the
approach presented here will not work because we are binding labels at the time when they are met. We
will therefore install an evaluation function J which will collect every binding of a block before the
block is entered. This function is recursively defined for every command. Hence, J [[C]] takes the
original environment together with the rest of the program, i.e. the statements following the block.
The result of J is a new environment extended with every label associated to its corresponding
continuation.

J: Command → Environment → Continuation → Environment

11This is only normal, because otherwise, we would be able to construct a variable loop without fixed point semantics.

An informal tour on denotational semantics

- 16 -

Of course, the definition of J has to be combined with the fixed point method presented above.

When J is applied to ‘normal’ commands, nothing noteworthy happens. J is only correctly distributed
over the command’s constituents. For example, in a command C1;C2, we assume that the labels
occurring in C2 override those occurring in C1. This is just a matter of convention to solve name
clashes. The only important situation in which J is worth considering, is the actual declaration of a
label, i.e. in a command of the form L : C. In such a situation, the continuation of C should be bound
to L. This is done by structuring J as follows:

J [[L : C]] e c = () J [[C]] e c [] (C [[C]] e c) / L

Hence, L is bound to the continuation corresponding to doing C followed by the rest of the program c.
The function is explained in great detail in [Gordon79].

To combine this technique with the fixed point technique presented above, the part of C used to denote
label declarations, has to be redefined.

C [[L : C]] = C [[C]]

This is because the label L was already integrated (by J of course) in the environment of the block
surrounding the command L : C.

Last, the denotation of entire blocks is given as follows.

C [[begin C end]] e c = C [[C]] e[e’] c where e’ = J [[C]] e[e’] c 12

7. Relation to Other Approaches

In section 2 it was explained that none of the three approaches should be seen as a competitor of the
others. The semantic trinity can be seen as a tool for language development. Given the task of
developing a new language, it should first be clarified how the concepts of the language are related to
each other and to the user of the language. An axiomatic description of the language is highly suited for
this task. Then a denotational description of the language should be given. With this, the meaning of
the language becomes fixed and a formal proof can be constructed to establish the desired properties of
the constructs (i.e. to show that the denotational description can be seen as a model for the axiomatic
description). Finally, the denotational semantics should be implemented using an operational definition.
Together, these orthogonal language definitions support a systematic design, development and
implementation of the language.

To make this scheme possible in practice, some formal relations between the paradigms must be
investigated. These can be found in [Tennent91]. One of the greatest break throughs in this field was
[Goguen77]. For concurrent programs, we refer to [Hennessy88].

8. Acknowledgments

This paper would have never come into existence without the numerous discussions we had with
Patrick Steyaert. We also wish to thank Kim and Tom Mens for our endless/useful discussions about
formal systems and everyone who has spent time on reading the earlier draft versions.

9. References

[deBakker80]

Bakker, de, Jaco ; Mathematical theory of program correctness; Prentice-Hall (London), 1980

12The notation e[e’] is used to denote the environment e extended (or overriden) with environment e’. For formalizations of these
issues, see [Gordon79].

An informal tour on denotational semantics

- 17 -

[Goguen77]

Goguen, J.A., Thatcher, J.W., Wagner, E.G and Wright, J.B. ; Initial algebra Semantics and
Continuous Algebras; JACM Vol. 24 No. 1 January 1977, pp 68-95.

[Gordon79]

Gordon, Micheal J.C. ; The denotational description of programming languages: An
introduction; Springer Verlag (New-York, Heidelberg, Berlin), 1979.

[Hennessy88]

Hennessy, Mathew ; Algebraic Theory of Processes;.MIT-Press (Cambridge), 1988.

[Hopcroft79]

Hopcroft, John E. and Ullman, Jeffrey D. ; Introduction to automata theory, languages and
computation; Addison-Wesley (Amsterdam), 1979.

[Plotkin]

Plotkin, G. D. ; A structural approach to operational semantics; Technical Report, University of
Aarchus, Denmark.

[Rayward-Smith84]

Rayward-Smith, V.J. ; A first course in formal language theory; Blackwell (Oxford), 1984.

[Schmidt88]

Schmidt, David A. ; Denotational Semantics: A methodology for Language Development; Wm.
C. Brown Publishers (Dubuque, Iowa), 1988.

[Tarski55]

Tarski, A. ; A Lattice-Theoretical Fixpoint Theorem and its Applications; Pacific Journal of
Mathematics 5, pp. 285-309, 1955.

[Tennent91]

Tennent, R.D. ; Semantics of Programming Languages; Prentice Hall (NY, London, Toronto,
Sydney, Tokyo, Singapore), 1991.

