
Vrije Universiteit Brussel
Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Techniques For Building
Open Hypermedia Systems

Serge Demeyer - Patrick Steyaert - Koen De Hondt
Presented at the first workshop on open hypermedia systems (Edingburg, UK — 1994)

Published in Wiil, U. K. / Østerbye, K. (Ed) "Proceedings of the ECHT'94 Workshop on Open Hypermedia Systems";
Technical report R-94-2038 / Institute for Electronic Systems Department of Mathematics and Computer Science -

Fredrik Bajers Vej 7 - DK 9220 Aalborg - Denmark.

Techreport vub-prog-tr-94-11

Programming Technology Lab

PROG(WE)

VUB

Pleinlaan 2

1050 Brussel

BELGIUM

Fax: (+32) 2-629-3525

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be

WWW: progwww.vub.ac.be

Techniques For Building
Open Hypermedia Systems

Serge Demeyer - Patrick Steyaert - Koen De Hondt
Programming Technology Lab

 Brussels Free University (BELGIUM)
{prsteyae, kdehondt, sademeye}@vnet3.vub.ac.be

ABSTRACT

This paper describes a methodology the authors found very useful in the development of open systems for object-
oriented languages, user-interface builders and hypermedia. We promote the idea of "open designs" as being a key factor
for success and discuss software engineering techniques useful in implementing such designs.

INTRODUCTION

In today's computer science community, we observe a general trend towards open systems. Important arguments for this
trend are the "Buy versus Build" and "Incremental development" approaches as solutions for the inherent difficulties in
constructing large software applications [BROO'87]. We perceive this open-systems-trend in areas like operating
systems (OLE [MICR'94]), databases (CORBA [CATE'94]), programming languages (CLOS [KI/RI/BO'91]) and many
others, including the hypermedia community. We believe it is important to learn from other research on open systems.

There are two important tendencies in open systems research: interoperability and extensibility. The first seeks to define
techniques for interchanging information between different systems, the second attempts to build systems able to
incorporate new kinds of information. An example for the first tendency is the CORBA-architecture [CATE'94] for
interchanging data between different object oriented (database)systems. Typical for the second tendency is the CLOS
Meta-object protocol [KI/RI/BO'91] that can be used to install new functionality into the Common Lisp Object
System. Within this context, it is interesting to note that most of the experiments in the second tendency use object-
oriented techniques.

In the Hypermedia community we encounter proponents of both tendencies as well. Within the interoperability tendency
we find HyTime [NE/KI/NE'91], MHEG [CCIT'92] (information exchange standards) Proxhy [KA/LE'91], Multicard
[RI/SA'92], MicroCOSM [DAVal'92] (extensible architectures providing inter application hypertext services). In the
extensibility tendency we encounter De Bra et al. [DE/HO/KO'92], Hydesign [MA/SC'92] and Dexter [HA/SC'94].

Some people will argue against classifying the Dexter model [HA/SC'94] as an open system1. We believe it is. Not
only is it defined as a set of important abstractions commonly found in a wide range of hypertext systems, but —more
importantly— several people build extensible implementations of the model (e.g. DeVise HyperMedia [GR/TR'94,
GROal'94], Amsterdam Hypermedia Model [HA/BU/VA'94]). Nevertheless, it is interesting to observe that the Dexter
model is quite different from the others, in the way it is defined "after the facts".

In the remainder of this paper we will report on our experiences during the development of several open systems
belonging to the extensibility tendency. Afterwards, we will propose some techniques we have found very useful during
this process. Finally, we will return to open hypermedia systems and draw some conclusions.

EXPERIMENTS

As already stated, we are conducting several experiments implementing open systems situated in the extensibility
tendency. This sections gives a brief overview of our work and will lead to the concept of "open designs".

The most mature of these experiments is the AGORA framework [STEal'93, STEY'94, CODal'94] used for the
exploration of object-oriented languages. In its basic version, AGORA is a reflective, prototype-based language that
features a general mixin-based approach to (multiple) inheritance. One of the major innovations of AGORA is that
many important features of object-orientation including inheritance, slot access, reification, cloning and inline objects,
are introduced by means of message passing rather than by ordinary programming structures. This makes AGORA an
extensible programming system that allows the exploration of different object oriented programming paradigms.

1 "It is our hope that the workshop will give the area of open hypermedia systems the same boost as the Dexter model gave
the area of monolithic hypermedia system architectures and data models." [Call for participation: Workshop on Open
Hypermedia Systems in connection with ECHT'94]

A second experiment investigates what is needed to make user interface builders incrementally refinable [STEal'94]. We
start from the assumption that user interface builders are essential tools for the development of modern applications, and
argue that the state of the art of the field lacks a way of incorporating new user interface paradigms. Indeed, in analogy
to programming paradigms (e.g. functional and imperative programming), it can be observed that different user interface
paradigms exist (e.g. direct manipulation, menu driven, navigational). We propose a framework for a higher level user
interface builder and show how reflection can be used to install new interface paradigms.

We also investigated the possibilities of object oriented software engineering techniques to build an extensible hypertext
system [DEME'94]. The introduction of a path-concept allowed us to "end the tyranny of the link" [HALA'91] and to
explore different navigational paradigms (e.g. hard links, virtual links, search and query). Moreover, the notion of
"virtual structures" [HAL'91] allows us to manipulate information outside the hypertext (this positions our work in
both the interoperability and extensibility tendencies of open systems). All of this is demonstrated in prototype
applications (e.g. a Smalltalk browser and an electronic agenda manager).

We find it very important that open systems have the means to incorporate different paradigms. It is not enough that
new features can be installed: a higher level kind of extensibility is needed. Skilled users should be able to extend the
system in such a way that important functionality can be absorbed in the system and applied by occasional users. On
the other hand, it is important to enforce certain design constraints to avoid diverging implementations.

Systems able to incorporate different paradigms and enforce design constraints are systems with an open design. In the
following section we will discuss techniques for building such systems.

TECHNIQUES FOR OPEN DESIGNS

One of the lessons learned from the above experiments is that incremental refinement is well suited for adapting open
designs to different paradigms. Refinement enables code reuse which is important for the skilled user extending the
system. Incremental refinement promotes design reuse, as the different steps of the refinement process are separated from
each other.

Isolated from each other, the following techniques are unable to produce this notion of incremental refinement. It is only
when used in conjunction that they will grow to full potential.

Object Oriented Frameworks

According to [WIRF'90], an object-oriented framework is a skeleton implementation of an application or application
subsystem in a particular problem domain. It is composed of concrete and abstract classes and provides a model of
interaction or collaboration among the instances of classes defined by the framework. As frameworks themselves are
extended by subclassing [JO/FO'88, HE/HO/GA'90], they typically impose an incremental structure on the refinement
process. Important in this context is that a framework provides two interfaces: 1) the framework internal interfaces that
specify how the framework can be reused and 2) the framework external interface to clients of applications or application
subsystems generated with the framework.

Object-oriented frameworks alone are not sufficient to express open systems. The emphasis of object-oriented
frameworks is on code-reuse, not on design-reuse. The consequence is that while incrementally modifying a framework
one typically can adapt it to problem domains outside the initial intention of the framework such that the contract, or
the external interface, with the clients of the initial framework is broken. Plain reuse of a framework is too much of an
uncontrolled mechanism. Therefore other mechanisms such as open implementations need to be studied.

Open Implementations

Open implementations distinguish themselves from plain 'black-box' or fixed implementations by giving a structured,
'open-ended' access to their implementation.

Open Implementations [RAO91] : A system with an open implementation provides (at least) two
linked interfaces to its clients, a base-level interface to the system's functionality similar to the
interface of other such systems, and a meta-level interface that reveals aspects of how the base-level
interface is implemented.

The idea is that a user of an open implemented system can, by means of the meta-level interface, have a substantial
influence on the implementation, and accordingly, the behaviour of the system. In an open implementation the meta-
level interface specifies points where the user can provide alternative implementations. Such an alternative
implementation can differ from the default implementation of the system in performance characteristics, or it can alter
the behaviour of the system, or it can extend the system with new behaviour. The extent to which the behaviour of the
system can be altered, or extended, depends on the meta-level interface and its link to the object-level interface. In the
most literal sense the meta-level interface only gives access to implementational issues of the system. In a more liberal
sense it also allows extending the behaviour of the system. Thus, rather than defining a single system, an open
implementation defines a entire design space of systems.

The notion of open implementations was introduced by Rao in [RAO'91], where an open implementation is given for a
windowing system that allows the exploration of different window system behaviours and implementations. The base-
level interface of the windowing system is, obviously, an interface that allows the opening and closing of windows,
dragging, generating pictures in windows, etc. The meta-level interface allows, for example, for the definition of new
windowing relationships (such as window, sub-window relations). The so obtained architecture describes an entire design
space of related windowing systems. As the windowing system itself was described in the object-oriented paradigm, the
open implementation of the windowing system took the form of a meta-object protocol.

Meta-Object Protocols

Meta-object protocols are a particular form of open implementations that make use of object-oriented techniques to open
up their implementation. With a meta-object protocol, a software system's implementation architecture is made explicit
and open in terms of objects and their interactions. The objects that constitute the architecture (e.g. objects that
represent windows, windowing relationships, etc. in a windowing system) are called meta-objects. The relation between
meta-objects is formalised by means of protocols. A protocol describes the responsibilities of each meta-object in the
architecture.

A meta-object protocol is an interface to a system providing users of that system the ability to incrementally modify the
system's implementation and behaviour. For each meta-object a default class is given that lays down the default
behaviour of the system. These default behaviours can be incrementally modified making it possible to adjust the
system to a different point in the design space.

Meta-object protocols for windowing systems [RAO'91], programming languages [KI/RI/BO'91], compilers
[RODR'92], and operating systems [YO/TE/TO'89] have been documented in the literature.

So, meta-object protocols rely on the same object-oriented techniques as object-oriented frameworks. They differ from
'plain' object-orientation in their emphasis on protocols. The documentation of protocols is typically done in the form
of a natural language description, but can also be more formally expressed with for example contracts [HE/HO/GA'90]
or class invariants [MEYE'88]. Ensuring the fact that the protocols of the meta-objects are respected is a research topic
[STAal'92]. Protocols limit the applicability of an open implementation to a particular design space. This is an
important issue in expressing open systems since it defines the degree to which clients of the open system can rely on
the existence of some fixed interface to the open system.

WHAT ABOUT OPEN HYPERTEXT SYSTEMS ?

In the sections before, we have promoted state-of-the-art software engineering techniques (namely the combination of
object oriented frameworks and open implementations) to build open hypermedia systems. Applying ideas from the
software engineering world (especially object orientation) is not new to the hypertext community: Intermedia advocated
the use of object oriented languages [MEYR'86] and later object oriented databases [SM/ZD'87] in building the system;
Lange [LANG'90], Schütz & Streitz [SC/ST'90], WEBS [MO/PA'92], ABC [SC/SM/SM'93] moulded their model in a
class hierarchy; DeVise HyperMedia [GR/TR'94, GROal'94] and Hydesign [MA/SC'92] implemented their systems on
top of an object oriented database. We expect the hypermedia researchers will continue to have an open mind for new
ideas.

However, prior to the construction of open hypermedia systems, careful analysis of the problem domain is required. We
propose a requirement analysis in two phases: paradigm identification and meta-object definition.

Paradigm Identification

As stated before, we find it very important for open systems to have the means to absorb different paradigms. This way,
users are able to choose the paradigm best suited to their needs. Small variations can be incorporated by modifying
(extending) the internal implementation.

So what are the paradigms in the hypermedia domain ? We feel that the navigational access to information (commonly
called "browsing") is the most essential manifestation of a hypermedia system, so we focus on this aspect. In his
keynote address [HALA'91], Halasz proposes a number of dimensions of the hypermedia space we can adopt as
navigational paradigms: the navigators vs. the architects, the literalists vs. the virtualists, the card sharks vs. the holy
scrollers. Navigators jump from node to node through the information space, while architects manipulate a global
overview (a map) of the overall structure. Literalists navigate by following explicit structural connections (hard links),
while the virtualists use implicit structures (search and query). Card sharks partition the information in fixed-size
information chunks (cards), while holy scrollers navigate by "flying" within and between lengthy documents.

But we should not limit our thoughts to navigation alone. The Amsterdam Hypermedia Model [HA/BU/VA'94] states
that introducing the notion of time —needed to synchronise multimedia presentations— opens a wide range of
possibilities. Streitz [STRE'94] discusses the effects of tele-cooperation using the well-known time-space taxonomy.
Probably, there will be other areas suggesting other paradigms as well. Closely related is the work of Wiil and Leggett
[WI/LE'93].

Meta-object Definition

Once the paradigms are identified, the conception of the necessary abstractions becomes feasible. We illustrate this phase
with two examples. The first is the well-known anchor abstraction of the Dexter model, the second is a pathabstraction
we use in our open hypermedia system.

One of the goals of the Dexter model [HA/SC'94] was to permit nodes ("components") to have arbitrary contents, stored
in the within-component-layer. The storage-layer is then responsible for managing the structure of the hypertext (the
links). To accomplish this, the storage-layer needs specifying substructures of components. The anchor-abstraction was
introduced to ensure that the storage-layer remains independent of the within-component layer. Adding a new data-type to
a Dexter hypermedia system requires the definition of a new anchor type, as is described in [GR/TR'94].

With others [HALA'91] we feel that the importance of links is overestimated in the hypertext community. In
[DEME'94] we report on an experiment were an open hypermedia model is used to exploit both the possibilities of hard
links and search and query navigation (e.g. the literalists vs. the virtualists). This is accomplished through the notion of
paths. Every anchor operation will eventually be passed to the path, which is responsible to resolve the anchor, which
means that paths can (and will) determine the navigation potential of the hypertext network. We have specialised the
path mechanism to support both explicit (links) and implicit (queries) structure.

FUTURE WORK

Currently, we are building an open hypermedia system following these principles. Virtual structures allowed us to store
and retrieve information external to the hypertext and we introduced the path concept to exploit different navigational
paradigms. We refer to [DEME'94] for a detailed discussion of the matter. Future work includes the incorporation of
other paradigms, especially in the area of Computer Supported Cooperative Work. We are also working on use of
reflection facilities in an open hypermedia system, as this direction has proven its other experiments [STEal'94,
STEY'94].

CONCLUSION

From our background we claim that the construction of open hypermedia systems should be preceeded by the
identification of paradigms and the definition of meta-objects. These phases will lead to the necessary delineation of a
complete space of systems, all of which should be covered by the open design. To help in the implementation of the
open design, software engineering techniques like object oriented frameworks and open implementations are required.

REFERENCES

[BROO'87] Brooks, F. P. "No Silver Bullet. Essence and
Accidents of Software Engineering"; IEEE Computer,
April '87

[CATE'94] Catell, R. G. G. (Editor) "The Object
Database Standard: ODMG'93 - Release 1.1"; Morgan
Kaufman Publishers '94

[CCIT'92] CCITT Press Release on MHEG, December
1992.

[CODal'94] Codenie, W. / De Hondt, K. / D'Hondt, T. /
Steyaert, P. "Agora: Message Passing as a Foundation
for Exploring OO Languages"; Submitted to
SIGPLAN Notices. See also WWW & ftp {progwww,
progftp}.vub.ac.be

[DAVal'94] Davis, H. / Hall, W. / Heath, I. / Hill, G, /
Wilkins, R. "Towards An Integrated Information
Environment With Open Hypermedia Systems";
Proceedings of the ACM ECHT'92 Conference
(November 30 - December 4, Milano, Italy)

[DE/HO/KO'92] De Bra, P. / Houben, G. J. / Kornatzky,
Y. "An Extensible Data Model for Hyperdocuments";
Proceedings of the ACM ECHT'92 Conference
(November 30 - December 4, Milano, Italy)

[DEME'94] Demeyer, S. "Virtual Hypertext based on
Paths and Warm Links" (Technical report); See WWW
& ftp {progwww, progftp}.vub.ac.be

[GR/TR'94] Gronbaek, K. / Trigg, R. H. "Design Issues
for a Dexter-Based Hypermedia System";
Communications of the ACM, Vol. 37(0), February
'92. Also in Proceedings of the ACM ECHT'92
Conference (November 30 - December 4, Milano,
Italy)

[GROal'94] Gronbaek, K. / Hern, J. E. / Madsen, O. L. /
Sloth, L. "Cooperative Hypermedia Systems: A
Dexter-Based Architecture"; Communications of the
ACM, Vol. 37(0), February '92. Also in Proceedings
of the ACM HT'93 Conference (November 14-18,
Seattle, Washington)

[HA/BU/VA'94] Hardman, l. / Bulterman, D. C. A. /
Van Rossum, G. "The Amsterdam Hypermedia Model:
Adding Time and Context to the Dexter Model";
Communications of the ACM, Vol. 37(0), February
'92

[HA/SC'94] Halasz, F. / Schwartz, M. "The Dexter
Hypertext reference Model"; Communications of the
ACM, Vol. 37(0), February '92

[HALA'91] Halasz, F. "Seven issues revisited". Slides
from the ACM Hypertext '91 Conference Keynote
speech (December 15-18, San Antonio, Texas)

[HE/HO/GA'90] Helm, R. / Holland, I. M. /
Gangopadhyay, D. "Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems"; ACM

ECOOP/OOPSLA'90 Conference Proceedings
(October 21-25, Ottawa, Canada)

[JO/FO'88] Johnson, R. E. / Foote, B. "Designing
Reusable Classes" in Journal of Object-Oriented
Programming 1(2), February '88 p. 22 - 35

[KA/LE'91] Kacmar, C. J. / Legget, J. J. "PROXHY: A
Process-Oriented Extensible Hypertext Architecture";
ACM Transactions on Information Systems, Vol. 9
(4), October '91

[KI/RI/BO'91] Kiczales, G. / Rivières, J. / Bobrow, D.
G. "The Art of the Metaobject Protocol"; The MIT
Press 1991

[LANG'90] Lange, D. B. "A Formal Model of
Hypertext"; Proceedings of the 1990 NIST Hypertext
Standardization Workshop (January 16-18,
Gaithersburg, MD)

[MA/SC'92] Marmann, M. / Schlageter, G. "Towards a
Better Support for Hypermedia Structuring: The
HyDESIGN Model"; Proceedings of the ACM
ECHT'92 Conference (November 30 - December 4,
Milano, Italy)

[MEYE'88] Meyer, B. "Object Oriented Software
Construction"; Prentice Hall, 1988

[MEYR'86] Meyrowitz, N. "Intermedia: The Architecture
and Construction of an Object-Oriented Hypermedia
System and Applications Framework" in ACM
OOPSLA'86 Conference Proceedings (Sept 29 -
October 2, Portland, Oregon)

[MICR'94] Microsoft "How To Apply OLE 2
Technology in Applications"; Available through
anonymous f tp a t f t p .mic roso f t . com
/developer/drg/ole-info/

[MO/PA'92] Monnard, J. / Pasquier-Boltuck, J. "An
Object-Oriented Scripting Environment for the
WEBSs Electronic Book System"; Proceedings of the
ACM ECHT'92 Conference (November 30 - December
4, Milano, Italy)

[NE/KI/NE'91] Newcomb, S. R. / Kipp, N. A. /
Newcomb, V. T. "Hytime: Hypermedia / Time-based
Document Structuring Language"; Communications
of the ACM, Vol. 34(11), November '91

[RAO'91] Rao, R. "Implementational Reflection in
Silica"; ECOOP'91 Proceedings, Lecture Notes in
Computer Science, P. America (Ed.), pp. 251-267,
Springer-Verlag, 1991

[RI/SA'92] Rizk, A. / Sauter, L. "Multicard: An open
Hypermedia System"; Proceedings of the ACM
ECHT'92 Conference (November 30 - December 4,
Milano, Italy)

[RODR'92] Rodriguez JR., L. H. "Towards a better
understanding of compile-time mops for parallelizing
compilers"; Proceedings of the IMSA'92 Workshop on
Reflection and Meta-level Architectures (1992).

[SC/SM/SM'93] Schackelford, D. E. / Smith, J.B. /
Smith, F.D, "The Architecture and Implementation of
a Distributed Hypermedia Storage System"; ACM
Hypertext '93 Conference Proceedings (November 14-
18, Seattle, Washington USA)

[SC/ST'90] Schütt, H. / Streitz, N. "HyperBase: A
hypermedia engine based on a relational data-base
management system"; Rizk, A. / Streitz, N. / André,
J. "Hypertext: concepts, systems and Applications -
Proceedings of the European Conference on Hypertext"
(November, Versailles, France)

[SM/ZD'87] Smith, K. E. / Zdonik, S. B. "Intermedia: A
case study of the Differences Between Relational and
Object-Oriented Database Systems" in ACM
OOPSLA'87 Conference Proceedings (October 4-8,
Orlando, Florida)

[STAal'92] Stacy, W. / Helm, R. / Kaiser, G. E. /
Meyer, B. "Ensuring Semantic Integrity of Reusable
Objects (Panel)"; ACM OOPSLA'92 Conference
Proceedings (October 18-22, Vancouver, Canada)

[STEal'93] Steyaert, P. / Codenie, W. / D’Hondt, T. / De
Hondt, K. / Lucas, C. / Van Limberghen, M. "Nested
Mixin-Methods in Agora"; ECOOP ‘93 European
Conference on Object-Oriented Programming,
Springer-Verlag. See also WWW & ftp {progwww,
progftp}.vub.ac.be

[STEal'94] Steyaert, P. / De Hondt, K. / Demeyer, S. /
De Molder, M. "A Layered Approach To Dedicated
Application Builders Based On Application
Frameworks"; Submitted to OOIS'94 (International
Conference on Object-Oriented Information System),
London, UK, 19-21 December 1994. See also WWW
& ftp {progwww, progftp}.vub.ac.be

[STEY'94] Steyaert, P. "Open Design of Object-Oriented
Languages: A foundation for Specialisable Reflective
Language Frameworks"; Phd. thesis Vrije Universiteit
Brussel, 1994. See also WWW & ftp {progwww,
progftp}.vub.ac.be

[STRE'94] Streitz, N. A. "Putting Objects to Work:
Hypermedia as the Subject Matter and Medium for
Computer-Supported Cooperative Work"; ECOOP'94
Proceedings, Lecture Notes in Computer Science
(821), Tokoro, M. / Pareshi, R. (Ed.), pp. 183-193,
Springer-Verlag, 1991

[WI/LE'93] Wiil, U. K. / Legget, J. J. "Concurrency
Control in Collaborative Hypertext Systems"; ACM
Hypertext '93 Conference Proceedings (November 14-
18, Seattle, Washington USA)

[WIRF'90] Wirfs-Brock, A. "Panel Designing Reusable
Designs: Experiences Designing Object-Oriented
Frameworks"; Sigplan Notices Special Issue
OOPSLA-ECOOP’90 Addendum to the Proceedings
(Jerry L. Archibald and K.C. Burgess Yakemovic
eds.), pp.19-24, 1990.

[YO/TE/TO'89] Yokote, Y. / Teraoka, F. / Tokoro, M.
"A reflective architecture for an object-oriented
distributed operating system"; Proceedings of
European Conference on Object-Oriented
Programming (ECOOP) (July 1989).

