
Vrije Universiteit Brussel

Faculteit Wetenschappen

SREVINU

ITEIT
EJI

R
V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S
AI

T
N

EI
C

S

Generalised Mixin-based Inheritance
to Support Multiple Inheritance

Niels Boyen, Carine Lucas, Patrick Steyaert

Techreport vub-prog-tr-94-12

Programming Technology Lab

PROG(WE) VUB

Pleinlaan 2

1050 Brussel

BELGIUM

Fax: (+32) 2-629-3495

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be

WWW: progwww.vub.ac.be

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 2 -

Generalised Mixin-based Inheritance
to Support Multiple Inheritance

Niels Boyen, Carine Lucas, Patrick Steyaert
Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussels BELGIUM

email: {nboyen | clucas | prsteyae}@vnet3.vub.ac.be
http://progwww.vub.ac.be

Abstract

The semantics of multiple inheritance is still very much a subject of debate. Before a clearer view
on the issue is obtained, multiple inheritance will not enjoy wide-spread use. As stated by Alan
Snyder in [Shan&al.93] "it is easy to design a multiple inheritance model that supports any given
example; it is not clear how to design one that supports new examples". We argue that it is
possible to construct a simple, comprehensible, and general multiple inheritance mechanism.
This is achieved by fragmenting the functionality of multiple inheritance. For this purpose a
generalised form of mixin-based inheritance is introduced. We show that these generalised
mixins are exactly the right building blocks, and provide exactly the right balance between
exposure and encapsulation of inheritance to express multiple inheritance hierarchies.

Keyword Codes: D.1.5, D.3.3

Keywords: Object-oriented Programming, Language Constructs and Features

1 Introduction

Whereas the semantics of single inheritance is relatively well understood, the semantics of
multiple inheritance is still a debatable issue. It is not even clear whether it is possible to construct
a single, simple, comprehensible, and general mechanism that solves all problems related to
multiple inheritance [Shan&al.93]. We argue that this is possible and that the solution can be
found in the fragmentation of the functionality of the inheritance mechanism into its primitive
building blocks in such a way that a greater flexibility is obtained for the user to adapt the
inheritance strategy to specific situations. We claim that this can be achieved by making the
underlying mechanisms of inheritance explicit. In casu wrappers and wrapper application such as
studied in the context of single inheritance [Cook&Palsberg89] will be used.

Making wrappers explicit results in mixin-based inheritance. We generalise mixin-based
inheritance in two ways. In their original form [Moon89] [Bracha&Cook90] mixins were used to
extend classes. In our case mixins are made applicable to objects to enable object-based
inheritance. Second, our mixins are based on a more general form of wrappers, where wrappers
can have multiple parents. This enables mixins to invoke parent operations of non-direct
ancestors.

Whether name conflicts are entirely resolved in the resulting class or not is crucial to our
approach. We thus distinguish two orthogonal sorts of inheritance. With the latter sort the
interfaces of the combined classes are kept strictly separate, and name conflicts must be resolved
when passing a message to the inheritor (e.g. by qualification). With the former kind, the
interfaces of the combined classes are merged and all name conflicts are to be explicitly resolved
in the inheritor. We will show that while multiple inheritance problems are manageable in both
pure forms, this is less clear for hybrid mechanisms.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 3 -

2 Generalised Mixin-based Inheritance

In this section we will first discuss mixin-based inheritance as it was originally introduced and
then present our generalisations.

2.1 Mixin-based Inheritance

Consider inheritance as an incremental modification mechanism [Wegner&Zdonik88], where a
parent P is transformed with a modifier M to form a result R = P+M(P). The modifier M is
parameterised by a parent P to model the fact that a subclass can invoke operations defined in the
superclass. Whereas in classical inheritance the modifier M has no existence of its own, the
essence of mixin-based inheritance is exactly to view the modifier M as an abstraction that exists
apart from parent and result (Listing 1). Modifiers are called ‘mixins’. In ‘pure’ mixin-based
inheritance [Bracha&Cook90], classes can only be extended through application of mixins.

In practice a mixin has access to the base class through a pseudo variable, in the same way that a
subclass has access to a superclass through a pseudo variable (e.g. the ‘super’ variable in
Smalltalk). In a statically typed language, this means that a mixin must specify the names and
associated types of the attributes a possible base class must provide. This is why mixins are
sometimes called ‘abstract subclasses’. For a more detailed study of our approach to mixins see
[Steyaert et al.93], [Codenie et al.94] and [Steyaert94].

class-based inheritance
class R1
 inherits P1
 extended with NamedAttribute1 ... NamedAttributen
endclass

mixin-based inheritance
M is mixin

defining NamedAttribute1 ... NamedAttributen
applicable to base class with1

 SuperAttributeSignature1 ... SuperAttributeSignaturem
endmixin

class R1 inherits P1 extended with M endclass
class R2 inherits P2 extended with M endclass

Listing 1

2.2 Generalisations of Mixins

We claim that the solution to the numerous problems concerning multiple inheritance can be
found in the way one looks at the inheritance graph. Consider extending a class X with two
mixins AM and BM. Consider a method m that is defined on both AM and BM.

AM is mixin BM is mixin
 defining defining
 m m

 endmixin endmixin

Listing 2

1
 This specification will be omitted in further examples for reasons of brevity.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 4 -

There are two possibilities now. We either want the interfaces of AM and BM to remain
separated, so that we can invoke both versions of m dependent of what view on the class we
want to consider. Or we want to merge the two interfaces and need a mechanism to resolve the
name conflict. We will show how these two views can be mimicked with a generalised form of
mixin-based inheritance. We will therefore demonstrate how different views on objects can be
installed in the first approach - by using mixins as a means for prototype-based inheritance - and
introduce a mechanism to resolve name conflicts in the second - by allowing mixins to invoke
parent operations of non-direct ancestors.

2.2.1 Separated Interfaces

Let us first consider the case where we want to keep the interfaces separated. In our introduction
of mixin-based inheritance mixins were only used to compose classes. However, mixins can
equally well be used to dynamically extend objects in a prototype-based approach to object-
oriented programming. New objects can be created by taking an existing object and extending it
with a set of variables and methods. Similar to mixins in a class-based language we can identify a
base object and a set of extensions and extensions can be considered as separate abstractions.
The terminology mixins and mixin application from the class-based case can be retained.

This approach can be used to model inheritance hierarchies, where we want to keep the interfaces
of two combined classes separate. Consider wanting to extend an object x with two different
mixins AM and BM.

x is aRootObject extended with aMixin;
...
xAsA is x extended with AM;
xAsB is x extended with BM;

Listing 3

In listing 3, we start with some object x. We can then create two new objects, xAsA and xAsB,
each representing a different view on x. We can now send messages to xAsA and xAsB,
dependent of what view on the object we want to consider. Being two dynamic extensions of x,
they share its attributes (Figure 1). This means that when a message is sent to xAsA, that e.g.
changes the value of some attribute in the x-part of this object, this is visible to xAsB and vice-
versa.

x

xAsA xAsB

Figure 1

The drawbacks and advantages of this approach will be discussed further on. Let us first take a
look at the opposite view.

2.2.2 Merged Interfaces

The other possibility is that we want to merge both interfaces, so that only one version of the
message m is applicable to the extended objects. Using mixins in a convential way automatically
generates a linearised inheritance chain, so that only one version of each message is visible.
However this is not sufficient. In some cases we do not just want to take the last version of some
method, but we want to combine the conflicting methods into one method.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 5 -

ABM is mixin
needs A-Stub B-Stub
defining
 methods

m
 m super:A-Stub
 m super:B-Stub

endmixin

anAB is aRootobject
extended with AM defining A-Stub for ABM
extended with BM defining B-Stub for ABM
extended with ABM

endis

Listing 4

We therefore create a new mixin ABM, where we override m, to invoke the m-methods of both
parents (listing 4). This is achieved by using stubs.

A B

AB

A

B

AB

(a) (b)

A

B

AB

A-Stub

B-Stub

(c)

Figure 2

Simple qualified message passing does not work here since a mixin does not have a single base
class that could serve as a qualifier. The problem here is that we have to deal with a linearised
inheritance chain (figure 2.b), but we still want to be able to refer to non-direct super classes (i.e.
we want to simulate figure 2.a). To do this we have to bring some ‘hierarchy’ into the chain. We
therefore introduced the notion of stubs to create access to non-direct parents. Just as mixins,
stubs have to be inserted at the right place in the inheritance chain (figure 2.c). In this manner
subclasses can use non-direct superclasses as parameters and ‘mimic’ a graph structure in the
linear chain (dashed arrows in figure 2.c). Stubs then serve as pointers to the place in the
inheritance chain where method lookup should start when invoking parent operations.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 6 -

3 Need for a More "Global" View on the Inheritance Graph

3.1 The Diamond Problem

The basic problem one has to face when working directly with the multiple inheritance graph is
the diamond problem depicted in figure 3.a. An inheritor AB multiple inherits from
classes/objects A and B, which in turn inherit from a common ancestor O. The problems that are
related to the diamond problem are:

• Encapsulation of inheritance
Is it allowed for a client or inheritor of a class to depend on the inheritance structure of that
class?

• Common ancestor duplication problem
Must the common ancestor be duplicated or not?

• Common ancestor name conflicts problem
Are the name collisions that arise when attributes of a common ancestor are inherited along
different paths considered conflicts or not? How are these conflicts resolved?

• Duplicate parent operation invocation problem
Multiple inheriting from two classes that both invoke the same parent operation on a
common ancestor can cause duplicate invocation of this parent operation. How is this
problem dealt with?

Different multiple inheritance strategies can be classified according to how they treat the
inheritance graph in the presence of diamonds (figure 3). While graph multiple inheritance treats
the graph as is, with linearised and tree multiple inheritance the graph is transformed.

O

A B

AB

O

A

B

AB

AB

O

BA

O

 a. Graph MI b. Linearised MI c. Tree MI

Figure 3

3.2 Need for a More "Global" View on the Inheritance Graph

Each of the above inheritance mechanisms gives different answers to the questions that the
diamond problem raises. None of them gives a satisfactory solution to multiple inheritance
[Snyder87][Knudsen88], because the encapsulation of inheritance is in conflict with some of the
answers to the three other questions.

Graph multiple inheritance breaches the encapsulation of inheritance, because neither A nor B can
decide one-sidedly not to inherit from O. For example, an attribute x defined on O is, according
to the rules of graph multiple inheritance, not conflicting in AB. However if A is changed so that
it is implementing attribute x itself, this operation becomes a conflict in AB.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 7 -

Tree multiple inheritance solves the encapsulation problems by always duplicating common
ancestors, but this goes at the cost of expressivity. Duplicating common ancestors is especially
not advisable in inheritance hierarchies that have a single root class. Every class in the system
that multiple inherits from two or more ancestors will need to resolve the conflicts that arise from
the duplication of this root class. This imposes an absurd overhead on the use of multiple
inheritance.

Linearisation inheritance breaches encapsulation since an inheritor cannot reliably communicate
with its direct ancestors. Due to linearisation sometimes unrelated classes/objects are inserted
between an inheritor and one of its direct ancestors. This is the case for B in the linearised
inheritance graph above. Even though in the graph representation B has O as direct ancestor, in
the linearised graph A has become the direct ancestor of B (O becomes an indirect ancestor of B).
Especially when name conflicts are involved this can give surprising results.

So, there is a trade-off between expressivity and encapsulation. Encapsulation of inheritance can
be interpreted as imposing a localised view on the inheritance graph for each class. In some cases
a "global" view on the inheritance graph is needed to achieve the necessary expressivity. We thus
conclude that it is sometimes necessary to expose the inheritance structure in a controlled way.

4 A Global View on the Inheritance Graph with Mixins

We claim that our generalised mixin-based inheritance provides exactly the right balance between
encapsulation of inheritance and expressivity. Since a mixin is an abstract subclass, the parent
operations it invokes are part of its interface. Furthermore, mixin-based inheritance causes
explicitly linearised inheritance. Attributes in the mixin override the attributes of the base
class/object having the same name. In the absence of any name clash resolution mechanism,
attribute name lookup is determined by application order.

Let us first take a look at the common ancestors name conflicts problem. The first thing to do
when constructing a branch of the inheritance hierarchy using multiple inheritance is to decide
whether one wants to merge or separate the interfaces of the combined classes. When
considering merging the interfaces, we can again distinguish two cases. In the first case we want
to combine the methods of the combined objects in a new method on the new object. This case
was handled in section 2.2.2, where we introduced stubs. Using these stubs, a mixin ABM was
created, that solves the name conflicts appearing when A and B are combined. We should note
that to avoid problems with self references, all name conflicts have to be explicitly resolved here.
It is not sufficient to simply resolve name conflicts occurring through combination of A and B. It
is equally possible that self sends are performed of methods that are implemented in one of the
ancestors of A or B. It is therefore necessary to resolve all name conflicts in ABM. Furthermore,
the use of stubs must be restricted so that they can only be used to invoke parent operations of
non-direct parents and so that they cannot put constraints on the order in which mixins are
applied.

The second possibility concerning the merging of interfaces is that A and B both define m by
invoking a super-call of the method m. Working directly on the multiple inheritance graph would
in this case not only cause problems with name conflicts, but would also cause each message m
sent to anOAB to result in two messages m to the O subobject.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 8 -

OM is mixin
 defining

 m
 ...

 endmixin

AM is mixin
 defining

 m
 ...
 super m

 endmixin

BM is mixin
 defining

m
 ...
 super m

 endmixin

anOAB is aRootobject
extended with OM
extended with AM
extended with BM

endis

Listing 5

aRootObject

OM

AM

BM

anOAB

m

m

m

Figure 4

In an encoding with linearised multiple inheritance the anOAB method m can only invoke the
method m of its ancestor once (listing 5, figure 4). Furthermore, as the programmer has total
control over the linearisation, there are no unforeseen insertions of unrelated classes between a
class and its parent. This makes parent invocations safe. Note that the above solution is heavily
based on global information of the inheritance graph. The example can only be constructed as a
linear chain since we have information about the way each of the subobjects invokes parent
operations.

Our second approach consists of keeping the interfaces of the combined classes separated and
offering a way to express which method m is wanted. In section 2.2.1. we introduced separated
interfaces through a prototype-based approach to mixin-based inheritance. If we now send the
message to e.g. xAsA, this may lead to the evaluation of e.g. ‘self m (Figure 5). In our
approach ‘self m’ is accordingly sent to this same initial receiver object (xAsA). All ‘naive’
approaches to qualified message passing will fail to correctly interpret this sort of programs.

x

xAsA xAsB

m

mm

self m

Figure 5

Furthermore, qualified message passing can disable further refinement of certain attributes, by
encoding information about the class hierarchy as constant information [Bobrow et. al.86].
When e.g. all messages y to self, within the implementation of a class A are qualified with class
name A, then inheritors of class A can not refine (overwrite) the method y (genericity inhibition
problem in [Carré&Geib90]). This problem is also resolved in our approach.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 9 -

Regarding the common ancestor duplication problem and duplicate parent operation invocation
problem we should remark that this can be controlled explicitly by the programmer as well: not
by the order of application, but by the number of applications of one and the same mixin.

5 Open Questions

The approach suggested in this paper was based on two different views on the inheritance
hierarchy. In one view the interfaces of the combined classes were merged, in the other they
were kept separate. One question now suggests itself: should it be possible to combine these two
views? In other words, should we be able to merge and separate interfaces within one single
branch of the hierarchy? Another question concerns the distinction we make to solve name
collisions in merged interfaces. In one approach we use stubs, in the other the collisions are
automatically resolved through linearisation. Will this distinction always be clear? The solution to
these problems will probably have to be sought in a good design of mixins.

A third problem concerns the exact semantics of these mixins. We now have several entry-points
to the object x (x, xAsA, xAsB), where we can all send messages to. Certain problems
concerning self sends may still occur. These problems are related to the problems with split
objects [Dony et al 92] and to the modelling of inheritance with explicit bindings [Hauck93].
Reaching a full understanding of these problems and finding an adequate solution are the future
goals of our research.

6 Conclusions

We confirm with [Knudsen88] that: “... by choosing strict and simple inheritance rules, one is
excluding some particular usage of multiple inheritance ...”. We add to this conclusion that there
is a trade-off between full encapsulation of inheritance and the expressivity of the inheritance
strategy and, consequently, that it is sometimes necessary to expose the inheritance structure in a
controlled way. This is e.g. apparent in the case where we use linearisation to solve name
collisions.

A possible solution could be devised where the programming language provides different
inheritance operators. This is more or less the direction taken in [Knudsen88]. We proposed a
different solution based on mixins. We generalised mixin-based inheritance in two ways. First,
mixins were made applicable to objects to enable object-based inheritance. Second, we made
parent bindings explicit. We then showed that, given these generalisations, mixins are sufficient
to express all the above multiple inheritance hierarchies in an effective and simple way.

References
[Bobrow et al 86] D. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, F. Zdybel:

CommonLoops Merging Lisp and Object-Oriented Programming, In
Proceedings of OOPSLA’86, pp17-29.

[Bracha&Cook90] G. Bracha and W. Cook: Mixin-based Inheritance In Proc. of ACM Joint
OOPSLA/ECOOP’90 Conference Proceedings, pp.303-311, ACM Press
1990.

[Carré&Geib90] B. Carré and J. Geib: The Point of View notion for Multiple Inheritance
In Proc. of ACM Joint OOPSLA/ECOOP’90 Conference Proceedings,
pp.3312-321, ACM Press 1990.

[Codenie et al. 94] W. Codenie, K. De Hondt, T. D’Hondt, P. Steyaert: Agora: Message
Passing as a Foundation for Exploring OO Languages, To appear in
SIGPLAN Notices of December 1994 or January 1995

[Cook&Palsberg89] W. Cook and J. Palsberg: A denotational semantics of Inheritance and its
Correctness, In Proceedings of OOPSLA’89, pp. 433-443.

Generalised Mixin-based Inheritance to Support Multiple Inheritance

- 10 -

[Dony et al 92] C. Dony, J. Malenfant and P. Cointe: Prototype-Based Languages: From
a New Taxonomy to Constructive Proposals and Their Validation In
Proceedings of OOPSLA ‘92, pp. 201-217.

[Hauck93] F. Hauck: Inheritance Modeled with Explicit Bindings: An Approach to
Typed Inheritance In Proceedings of OOPSLA ‘93, pp. 231-239

[Knudsen88] J. Lindskov Knudsen: Name Collision in Multiple Classification
Hierarchies, In Proc. of ECOOP‘88 European Conference on Object-
Oriented Programming, pp. 93-109, Springer-Verlag 1988.

[Moon89] D.A. Moon: The COMMON LISP Object-Oriented Programming
Language Standard, Object-Oriented Concepts, Databases and
Applications, Won Kim and Frederick H. Lochovsky (Eds.), pp. 79-
126, ACM Press 1989.

[Shan&al.93] Y. Shan, T. Cargil, B.Cox, W. Cook, M. Loomis, A. Snyder: I s
Multiple Inheritance Essential to OOP, In Proc. of OOPSLA'93, pp. 360-
363, September 1993.

[Snyder87] A. Snyder: Inheritance and the Development of Encapsulated Software
Components, In Research Directions in Object-Oriented Programming,
B. Shriver and P. Wegner (eds), pp 165-188, MIT Press 1987.

[Steyaert et al.93] P. Steyaert, W. Codenie, T. D’Hondt, K. De Hondt, C. Lucas, M. Van
Limberghen: Nested Mixin-Methods in Agora, ECOOP ‘93 European
Conference on Object-Oriented Programming, pp. 197-219, Springer-
Verlag .

[Steyaert94] P. Steyaert: Compositionality and Abstraction in Agora, A Framework
for Reflective Object Oriented Programming Languages, PhD thesis,
Department of Computer Science, Brussels Free University, 1994.

[Wegner&Zdonik88] P. Wegner, S. B. Zdonik: Inheritance as an Incremental Modification
Mechanism, or What Like is and Isn’t Like. In Proc. of ECOOP‘88
European Conference on Object-Oriented Programming, pp.55-77,
Springer-Verlag 1988.

