
CHAPTER 1

Open Hypermedia

Not so many years ago, it would have taken quite a long time to explain to people the basic
notions of hypertext (or hypermedia — both names are used interchangeably throughout this
text). Oh yes, system administrators would have used technical documentation in hypertext
form and some Macintosh users might even had experiences with HyperCard stackware.
Still, most people would have shown big question marks hearing definitions like
"hypermedia is a style of building systems for information representation and management
around a network of multi-media nodes connected together by typed links" [Halasz'87] and
certainly would not see the tremendous possibilities of what has been called the navigational
paradigm to computing.

Today, this is different. With the coming of the world-wide web, almost all computer users
are well aware of basic hypermedia concepts like links, anchors, nodes, non-linearity and
navigation. The establishment of cyber cafes takes away the obstacle of not owning a
computer: people can visit specially designed places to surf the web. In the United States,
and more and more in Europe, the URL's are an integral part of advertising and hypermedia
is even becoming visible in the streets now.

If hypermedia has finally hit the mass market, then why is it still appropriate to write a Ph.D.
dissertation on such a topic ? Well, as you will notice reading this text, hypertext and
hypermedia research has a long standing history of fruitful research and the computer science
community can —and will— pluck more of those inspiring ideas in the time to come. One of
this ideas is open hypermedia, and that is the topic discussed in this chapter.

- 6 -

Hypertext & Hypermedia

With the explosive growth of the world-wide web, people are generally acquainted with the
basic hypermedia concepts. Still, there is more to hypermedia than there is to the world-wide
web and this section introduces many of the important ideas living in the hypermedia
community.

There are several ways to give an overview of those ideas. One could try for an analytical
approach by partitioning the space of hypermedia systems along a number of dimensions.
This approach has been taken in [Halasz'87], [Halasz'91] and also in
[Akscyn,McCracken,Yoder'87], [Akscyn'91].

The problem with an analytical approach is that it is hard to illustrate why a certain dimension
is 'good' way to partition the space. To avoid this problem, we chose to provide a definition
and basic vocabulary of hypermedia, followed by brief historical overview that introduces
the reader to the major milestones in hypermedia research. As a rough guide we classified the
milestones in generation of hypermedia systems. As with all brief overviews, many
contributions of many interesting projects could not be included, so be aware that this is by
no means the ultimate overview of hypermedia research.

What is Hypermedia ?
Hypertext, Non-linearity and the Navigational Paradigm

The simplest way to define hypertext is to contrast it with the more traditional
approaches to text. Traditional information sources like books are based on the idea of
a linear processing of information: readers are supposed to read from the first page to
the last page. Through the history of paper publication, people have found ways to
circumvent this linear processing of ideas (i.e. a phone book, a dictionary, a table of
contents, an index, …) and the invention of desktop computers opened a new range of
promising solutions.

Hypertext is the name of the research domain that investigates the possibilities of
manipulating non-linear text: the idea is that computers can be used to help users
create, maintain and navigate between chunks of text to form structures and shape
information. Navigation is the basic operation that brings information explorers from
one chunk to another, which explains why hypertext is sometimes called the
navigational paradigm.

Note that, although hypertext contrasts with traditional text approaches, a lot of the
traditional vocabulary of sequential text remains appropriate. The hypertext community
adopts terms like document, reading, reader, authoring, author and viewer instead of
the more computer oriented ones like file, using, user, implementing, implementor and
application.

Hypermedia = Hypertext + Multi-media

The idea of hypertext is quite old, but with the advent of powerful workstation
technology, it became feasible to extend the notion of hypertext beyond mere text-
processing. Instead of manipulating chunks of text, one could also shape information

- 7 -

structures containing pictures, video, sound, …. . Hypermedia —a contraction of the
words Hypertext and Multi-media— is a name invented to stress this change of
emphasis. However, like most material in the field, we use both terms
interchangeably.

Node, Link and Anchor

Many hypermedia projects have attempted to build models to support this navigational
paradigm. Each project invented its own terminology resulting in an enormous amount
of words referring to similar concepts. Still, the hypermedia community has managed
to reach consensus on some basic vocabulary. As the first hypermedia projects started
from a data model based on graphs, the basic vocabulary inherits quite a lot from graph
theory.

The basic unit of information in a hypermedia system is called a node, which may
contain arbitrary information like text, graphics, video, sound, … . Some hypermedia
systems allow a special kind of node, called a composite node, which can contain other
nodes.

A hypermedia system organises nodes into navigational structures. A link is the name
for an explicit representation of a navigation relationship that exists between nodes.
The navigation effect —essential to all hypermedia systems— is achieved by traversing
the links. Links can be binary or n-ary; the latter allows an arbitrary number of
endpoints for a link, the former allows exact two. Most hypermedia systems enforce
directed links, which can be traversed in one direction only. The traversal direction of
the link determines a source (the starting point of the navigation operation) and a
destination (the arrival point). Many hypermedia systems allow typed links, which
have some kind of label attached to them so that the reader may infer the purpose of the
link without actually traversing it.

Links can be connected to whole nodes, but in most occasions links have special
purpose connection points called anchors. An anchor is thus an explicit representation
of a referencable substructure of a node serving as an endpoint of a link.

Hypertext & Hypermedia Definition

In this dissertation, we adopt the definition of the influential "Seven Issues: revisited"
keynote address [Halasz'91].

"Hypermedia is a style of building systems for the creation, manipulation, presentation
and representation of information in which:
• the information is stored in a collection of multi-media nodes
• the nodes are explicitly or implicitly organised into one or more structures

(commonly, a network of nodes connected by links)
• users can access information by navigating over or through the available

information structures."

There are two important remarks to make on this definition. First of all, it is a revised
version of the definition that appeared in [Halasz'87]. The original version reads as
follows: "Hypermedia is a style of building systems for information representation and
management around a network of multi-media nodes connected together by typed
links". In the revised version, Halasz explicitly recognises that the means to construct
navigational structures (i.e. nodes and links) are less important than the idea of
navigation itself. This change of emphasis was driven by promising new approaches
for structuring navigation relationships (i.e. spatial hypertexts).

The second remark is that one cannot underestimate the importance of the word "style"
in this definition. To quote Jacob Nielsen [Nielsen'90] - p.02 "Many non-hypertext
computer techniques may at least match various aspects of the definition of hypertext,
but true hypertext should also make users feel that they can move freely through the
information according to their own needs. […] When asked whether I would view a

- 8 -

certain system as hypertext, I would not rely so much on its specific features,
commands, or data structures, but more on its user interface 'look and feel'."

On this matter of style the last word is not said. Perhaps the closest specification of the
essence of hypertext style is the one from Helen Ashman [Ashman'94]: "The common
thread that runs through most definitions is the idea that hypermedia permits users to
customise the presentation of the information in some way. At least some part of the
information presentation is in the user's control. In the simplest cases, only the order
of traversal is decided by the user. But the more complex and powerful hypermedia
systems let the user add to the hypermedia link structures as well. In every case, the
user creates a personalised environment tailored to meet their needs. It is this
personalisation and customisability of the information presentation that characterises
hypermedia. This incorporates the idea of non linearity, since non linearity gives
control of the order of traversal to the user".

The style aspect in the definition is a subjective criterion and makes it very hard to judge
whether a system is hypertext and hypermedia. Nevertheless, or maybe just as a
consequence, the lack of a precise definition has not tempered the hypermedia community to
provide numerous fruitful ideas and we discuss the most important ones below.

A Guided Tour of Hypermedia
The earlier periods of this guided tour are primarily based on the book "Hypertext &
Hypermedia" by Jacob Nielsen [Nielsen'90]. Other inspiration was drawn from the annual
conferences on Hypertext: the first two organised in the US [HT'87], [HT'89] and from
then on alternating between Europe and the US [ECHT'90], [HT'91], [ECHT'92],
[HT'93], [ECHT'94], [HT'96]. The keynote address by Randy Trigg [Trigg'96] served as a
backbone for the classification in generations.

a) The Pioneers — Memex, Augment and Xanadu

Memex — Vanevar Bush (1945)

Most people agree that Vanevar Bush is to be considered the founding father of
hypermedia research. His paper "As we may think" [Bush'45], described an imaginary
"Memex" system based on microfilm technology (!) to support scientists in their task
of tracing the enormous amount of information that was published in their discipline.
The idea was that people could use a machine to link together fragments of different
documents and pass this annotated material to colleagues: the very same idea that
started of the world-wide web project [Berners-LeeEtAl'94].

Augment/NLS — Douglas Engelbart (1962-1976)

While the Memex system coined the idea of using a machine to maintain associative
links between document fragments, it was the Augment project that —in a time where
computers were used mainly as number crunchers and instructed through punch
cards— laid the basis for computer technology as tools for realising a "Conceptual
Framework for Augmenting Human Intellect" [Engelbart'95]. This project introduced
a second major theme of the future hypermedia research, that of computer supported
co-operative work (CSCW). Besides that, the Augment project invented nearly half of
the concepts of today's desktop environments, such as e-mail, teleconferencing,
windows, the mouse pointing device, etc.

The hypermedia research community still acknowledges the great influence of the
vision of Douglas Engelbart and has established a yearly prize in honour of his person.

Xanadu — Theodor Nelson (1965-…)

It was the Xanadu project that actually coined the words hypertext and hypermedia in a
vision that all information would be published in a universal information repository,
accessible via computers ("literary machines"). Although the Xanadu Operating

- 9 -

Company (see http://www.mpx.com.au/) is entirely devoted to the implementation of
that vision, it was the world-wide web project [Berners-LeeEtAl'94] that came nearest
to a such a universal information space. Nevertheless, the Xanadu project will always
be credited as the first project that performed constructive thinking on problems like
universal referencing schemes [Nelson'87], copyright issues, versioning, etc.

The three pioneering hypermedia systems share the idea of using machines to link together
fragments of information. Yet, they came to this idea from a completely different angle.
Memex envisioned a system supporting scientists in organising information, so the emphasis
was on authoring associative links and on the annotation of material. Augment/NLS was a
prototype of an office information system, where co-operating people work on shared
material, hence the need for fine grained concurrency control mechanisms, integration of
tools and user-interface. Xanadu aimed for very large and distributed information systems,
so there the emphasis was more on coarse grained concurrency control algorithms,
replication of information and referencing schemes.

b) The Monolithic Hypermedia Systems — NoteCards and Intermedia

After these three pioneering projects, lots of activity went on in hypermedia community. We
refer the interested reader to [Conklin'87] for an overview and a comparative study of those
earlier systems (with names like Boxer, CREF, Emacs INFOR, IBIS, Intermedia, KMS,
Neptune, NoteCards, PlaneText, Document Examiner, SYNVIEW, Textnet, Hyperties, WE
— and the list is not yet complete) and concentrate on two of them: NoteCards and
Intermedia. Our choice was guided by the significant impact of both systems on all later
hypermedia research. Based on the classification of [Trigg'96], we see them as
representative for the generation of monolithic hypermedia systems.

NoteCards

NoteCards [Halasz'87] was developed as a research prototype at Xerox Parc within
the InterLisp environment. Programmers were able to extend the system by means of
an API of over a 100 routines so that the NoteCards system could be tailored to their
needs. The NoteCards prototype has been used outside Xerox Parc in numerous
settings and as such the system had quite a lot of impact on the hypermedia
community.

The design of the system was based on a 'notecard': an electronic generalisation of the
3x5 paper notecard that could contain an arbitrary amount of some editable information
(text, graphics, …). Cards could be linked together by means of typed directional
links; users could follow links by clicking on the source of a link to pop up the target
card. The 'browser' allowed users to edit a network of interlinked notecards and the
'filebox' enabled the collection of notecards into composites.

Hypermedia Research Agendas

The main reason why the NoteCards system could not be omitted from this overview
is the fact that it was used twice as a foil against which to explore some of the major
limitations of two generations of hypermedia systems and as such caused the definition
of two agendas still driving the research in the hypermedia community. The first (see
[Halasz'87]) put forward a list containing the items: (1) search and query, (2)
composite nodes, (3) virtual structures, (4) computational engines, (5) versioning, (6)
collaborative work and (7) tailorability. This agenda was revised in 1991 (see
[Halasz'91]) in the list: (1) ending the tyranny of the link, (2) open systems, (3)
support for collaborative work, (4) user interfaces for large information spaces, (5)
very large hypertexts, (6) tailorability and extensibility, (7) computation in (over)
hypermedia networks, (8) defining the hypermedia markets, (9) standards, (10)
publishing hypertexts. Figure 1 shows how both research agendas map onto each
other. It would take us too long to study each of the items in detail, but some of them
are covered in the section open hypermedia (p.22).

- 10 -

(1) Search and Query
(2) Composites
(3) Virtual Structures
(4) Computation
(5) Versioning
(6) Collaborative Work
(7) Tailorability

Research Agenda '87 Research Agenda '91

(1) Ending the Tyranny of the Link
(2) Open Systems
(3) Support for Collaborative Work
(4) User Interfaces for Large Information Spaces
(5) Very Large Hypertexts
(6) Tailorability and Extensibility
(7) Computation in (over) Hypermedia Networks

(1) Defining the Hypermedia Markets
(2) Standards
(3) Publishing Hypertexts

Technology Issues

Market Issues

Figure 1: Hypermedia Research Agendas

Intermedia

Intermedia ([Yankelovich,Meyrowitz,VanDam'85], [Meyrowitz'86],
[Catlin,Bush,Yankelovich'89], [HaanEtAl'92]) is another hypermedia system that has
influenced —directly or indirectly— all subsequent hypermedia research.
Unfortunately, the Intermedia system was only available on the AUX platform (a
UNIX operating system for the Macintosh), which has severely hampered it to spread
into real applications.

Intermedia was designed to demonstrate operating system developers that hypermedia
functionality should be integrated into the desktop computing environment and was the
first advocate for an open hypermedia system philosophy [Meyrowitz'89]. The
technology was not available at that time, which explains why Intermedia is still to be
considered a monolithic system.

Linking Protocol

In Intermedia, nodes are called 'documents' to be edited by editors part of the
Intermedia system. The Intermedia editors represent standard desktop applications like
word processors, drawing packages, e-mail, …. The Intermedia project coined the
idea of an anchor (although it was Dexter that actually named it anchor, the very first
Intermedia papers use the term block) to be an arbitrary selection within any readable
document. According to the Intermedia philosophy, creating links should be as easy
and as generic as the cut/copy/paste metaphor of desktop environments and thus must
be supported by operations in the operating systems underlying those desktop
environments. These operations are collected in a so-called linking protocol, a theme
that returns in the discussion of open hypermedia systems.

Webs, or the Separation of Structure from Data

Another important concept in the design of Intermedia was that of a web. The basic
assumption is that one document (i.e. a node in the generic hypertext terminology) can
be part of different navigation networks and that the reader must be able to switch
those navigation networks freely, depending on the reader's context. In Intermedia
terminology, one such navigation network is called a web and the Intermedia system
had special 'Web Views' containing automatically generated layouts of the network
structure.

The reason why the web concept is so important, is that it implies that a hypermedia
system should "get the links out of the data" or stated otherwise "hypermedia separates
structure from data". This principle has proven so valuable that it is almost standard in
the design of current hypermedia systems. Nevertheless, the world-wide web ignored

- 11 -

this principle with its notion of embedded links, which explains most of the critique of
the hypermedia community. We come back to this critique in the section on open
hypermedia (p.22).

Object-Oriented Software Engineering

The final justification for discussing Intermedia is that the project advocated for the
main theme of this dissertation: the cross-fertilisation between object-oriented software
engineering and hypermedia. Intermedia [Meyrowitz'86] was actually a hypermedia
specialisation of the fairly general MacApp framework [Schmucker'86] and promoted
object-oriented databases as back-end for hypermedia storage [Smith,Zdonik'87].

Both NoteCards and Intermedia are stand alone system that store structures of information.
However, they target different application domains and concerning other characteristics they
are quite different. NoteCards was there to support individuals in structuring information, so
the emphasis was on authoring and browsing tools. Intermedia was designed to support
small groups working on shared material so here issues fine-grained concurrency control,
tool integration were considered very important.

The research agendas in figure 1 give a glimpse of the problems with this generation of
systems and most of them are tackled in the three streams of research that live in the
hypermedia field today. But before discussing the issues and contributions of these three
streams of research, we mention two miscellaneous hypermedia projects that play an
important role in the remainder of this dissertation.

c) Miscellaneous — HyperCard and Dexter

This overview would be incomplete without discussing the HyperCard software [Apple'89]
and the Dexter Hypertext Reference Model [Halasz,Schwartz'90]. We classify them in a
miscellaneous category as neither of the two is to be considered a real hypermedia system.

HyperCard

HyperCard is to be considered the first really popular hypermedia product in the world
and is certainly the first software product that introduced hypermedia to the broader
public. There are several reasons for this popularity. First of all, it was bundled for
free with every Macintosh computer, so all Macintosh users had access to it. Second,
numerous 'stackware' applications were available for almost any problem domain, if
not for free then certainly at very low prices. And finally, the product was designed so
that anyone who could use a computer could read and create 'stacks'. (Note that more
or less the same ideas are part of the world-wide web success story).

The Componentware Approach to Hypermedia

HyperCard is strongly based on a card metaphor. Nodes are called cards and are
collected in a stack to form a single hypertext. Nodes take up a fixed size on the screen
and can contain several widgets containing text, drawings, …. The behaviour of these
widgets is controlled by means of scripts written in the HyperTalk scripting language.
There is no explicit notion of links, but some HyperTalk statements can achieve
hypermedia navigation effects (i.e. 'goto card …').

HyperCard must be mentioned in this overview because of its end-user tailorability.
HyperCard really advanced the state of the art in hypermedia authoring tools, by
offering end users an easy-to-use graphical programming environment including a
powerful yet easy to learn scripting language. In that sense, HyperCard is actually an
ancestor of the componentware approach for building software [Udell'94]: provide a
library of powerful customisable components and let end-users assemble their own
applications with it. Compared to object-oriented software engineering, the
componentware approach is somehow the other side of a spectrum, hence we find it so
important.

- 12 -

Is HyperCard a Hypermedia System ?

HyperCard is a good example of the implications of using a definition based on nodes
and links like found in [Halasz'87], or a definition that emphasises on the style of
building systems like the one we adopted from [Halasz'91].

Despite of its success (or maybe because of its success ?) some hypermedia
researchers (see [FountainEtAl'90], [Mylonas,Heath'90]) doubt whether HyperCard is
a full fledged hypermedia system1, among others because it has no explicit notion of
links. However, the definition we adopted classifies HyperCard as a hypermedia
system, because it offers a degree of end-user customisability rarely met in other
hypermedia software.

Nevertheless, because all HyperCard links are computed in scripts and because these
scripts reside within the cards, the HyperCard design ignores the principle of "getting
the links out of the data". Obeying this principle is not mandatory for being a
hypermedia system, but it is definitely a help for providing extra navigational aids (see
among others [Lai,Manber'91]).

The Dexter Hypertext Reference Model

The Dexter Hypertext Reference Model [Halasz,Schwartz'90] (Dexter for short) was
the result of two small workshops on hypertext with representatives from many of the
major existing hypermedia systems. The model attempted to capture the state of the art
of that time's most prominent hypermedia systems (i.e. Augment, Document
Examiner, IGD, FRESS, Intermedia, HyperCard, Hyperties, KMS/ZOG,
Neptune/HAM, NoteCards, Sun Link Service and Textnet), systems belonging mainly
to the generation of monolithic hypermedia systems. One of the original goals of the
Dexter Hypertext Reference model was to define a hypermedia interchange standard
for a wide range of existing and future hypermedia systems, and although this goal
was never realised, the Dexter model had a considerable impact on subsequent
hypermedia research; some hypermedia systems even initiated their design using the
Dexter specification (notably DeVise hypermedia-DHM [Grønbaek,Trigg'94] and the
Amsterdam Hypermedia Model-AHM [Hardman,Bulterman,VanRossum'94]).

The design of the Zypher framework was based on the Dexter Model as well, and we
refer to Chapter 3 (Data Structures for an Interoperable Hypermedia Framework- p.76)
for a more detailed discussion of the Dexter Model. Here we focus on the important
ideas.

Separation of Concerns: Storage Layer, Within-Component Layer & Run-time Layer

First, by adapting the generic hypertext system architecture of the Hypertext Abstract
Machine (HAM) model [Campbell,Goodman'87] Dexter emphasised the separation of
concerns important in hypermedia system design. As depicted in figure 2, Dexter
proposes three layers: the within-component layer (mostly referred to as the within
layer), the storage layer and the run-time layer. We quote the original paper
[Halasz,Schwartz90] to define the responsibilities of each layer.

1 According to [Nielsen'90], p. 93, Bill Atkinson (the designer of HyperCard) has admitted that it was not
really designed as a hypertext product.

- 13 -

Run-time Layer

Storage Layer

Within-Component Layer

Presentation Specifications

Anchoring

Figure 2: Dexter Model Layers

The storage layer "models the basic node/link
network structure that is the essence of
hypertext. […] The storage layer focuses on
the mechanisms by which link and non link
components are 'glued together' to form
hypertext networks. The components in this
layer are treated as generic containers of data.
No attempt is made to model any structure
within the container". The within-component
layer "is specifically concerned with the
contents and structure within the components
of the hypertext network". The run-time layer
provides "tools for the user to access, view
and manipulate the network structure".

The emphasis of the Dexter model is on the storage layer and the two adjacent
protocols. Using these two protocols, Dexter specifies a standard way of constructing
hypermedia structures and storing them into an underlying "hyperbase". The within-
component layer would rely on existing standards such as SGML and HyTime, while
the run-time layer is the responsibility of any (hypermedia) application that adheres to
the Dexter protocol.

Careful analysis of the definitions of the layers reveals that the separation of concerns
between the storage and within-component layers is actually a rephrasement of the "get
the links out of the data" principle. Also, the separation of concerns between the
storage and run-time layer is actually a preparation for the open hypermedia
philosophy, where any desktop application is allowed to manipulate the hypermedia
navigation network.

The Anchor concept

Stating that the storage layer should be separated from the within-component layer is
one thing, but then how should both layers interface with each other ? A hypertext
system obeying the principle of "separating structure from data" requires a mechanism
for addressing locations within that data. It was a major contribution of the Dexter
model to formalise the concept of anchors (borrowed from the Intermedia project) for
that purpose. Dexter also proposed the concept of presentation specifications as the
glue between the storage layer and the presentation layer, but the hypermedia
community did not pick up the idea.

We classified HyperCard an Dexter in a miscellaneous category, but again they target a
different application domain and so we can expect some fundamental differences between the
two as well. HyperCard aimed to support an individual in organising and presenting
information, so the emphasis was on authoring and presentation. Dexter was mainly
influenced by hypermedia systems supporting small groups of people working on shared
material. Hence the emphasis on the storage layer, which among others enables to
incorporate concurrency and version control.

d) The Open Hypermedia Systems — DHM and Microcosm

A first observation about the generation of monolithic hypermedia systems is that they are
not 'open' in the sense that only applications part of the hypermedia system are able to
process the information inside the navigation network. As a result, hypermedia systems are
used for specialised tasks only; not in the daily information processing since people use other
tools there (e-mail, text-processors, …) [Meyrowitz'89], [Brown'90].

The above observation gave rise to a stream of research generally referred to as open
hypermedia. One of the best specifications of what open hypermedia research encompasses
has been formulated in a scenario where engineers from the Boeing Airplane Manufacturing
Company propose a hypermedia system as a way of integrating data, tools and services that

- 14 -

support engineer's work practices [Malcolm,Poltrock,Shuler'91]. We come back to this
scenario when we discuss open hypermedia (p.22). Here we discuss two representative
examples of well-known open hypermedia Systems, and name most of the other known
hypermedia systems.

Microcosm: an example of a link service raising the interoperability issue

Microcosm [FountainEtAl'90] is one of the first hypermedia systems to incorporate
interoperability standards provided in the operating system (their first version used
DDE - Dynamic Document Exchange under Windows) to allow external applications to
make use of the linking facilities provided by the hypermedia system. Such an
approach is typically called a link service (see also [Pearl'89]). Microcosm comes
along with several built-in document viewers and the project investigated several ways
to make external applications aware of the presence of the link service
([Hall,Hill,Davis'93], [DavisEtAl'92], [Davis,Knight,Hall'94]).

An interesting remark about the Microcosm project is that they have built up a notable
reputation in dealing with multi-media archives. Among others by building electronic
versions of the Mountbatten and Churchill archives. Noteworthy is also that, after a
long period of experimentation in University labs, Microcosm has recently become a
commercial product.

Generic Links and Filters

Generic links are an important ingredient of the Microcosm philosophy. The
Microcosm project values links as an important store of knowledge besides the
documents themselves. If the links are bound too closely to the documents, they
cannot be applied to new documents. The similarities with the web concept in the
Intermedia project are striking and indeed Microcosm is a strong advocate for the "get
the links out of the data" principle [Davis'95].

Microcosm takes a slightly different approach however. Besides specific links between
particular locations inside specific documents, the Microcosm system has this notion of
a generic link, which once authored from a certain pattern (be it a text string or a piece
of multi-media information [LewisEtAl.'96]) to a destination anchor, may be followed
from any occurrence of the pattern in any document. Following generic links makes
the system search the link base for all matches of a certain pattern to compute a list of
possible target locations. Users can control this search by plugging filter modules,
where each filter represents a special matching/searching algorithm.

The Componentware Approach to Open Hypermedia

Microcosm can be regarded as representing the componentware approach to open
hypermedia. In essence, the Microcosm system is a link service for a collection of
tailorable modules to be assembled in a hypermedia environment. There exist two
types of modules: viewer applications and filters.

Microcosm classifies the viewers in three categories. Fully aware viewer applications
[Hall,Hill,Davis'93] are viewers where the source code of the viewer was available
and has been enhanced to include calls to the Microcosm API. The more interesting
categories are the semi-aware and universal viewers [Davis,Knight,Hall'94]. Semi-
aware viewers are third party applications that can be tailored (by means of a scripting
language or macros) to include at least part of the Microcosm functionality. The generic
example for these kind of viewers is Microsoft Word, which can be extended quite
easily using the VisualBasic scripting language and the Microsoft Windows DDE inter-
application communication facilities. The universal viewer is the means to handle
applications that cannot otherwise be integrated with the Microcosm link service. It is a
kind of a parasitical program (a "shim" in Microcosm terminology) that is wrapped
around an unaware application and handles communication between the Microcosm
link service and the application.

- 15 -

Filters are the modules that situate themselves on the other side of the link service.
When a viewer application passes a message to the Microcosm link service, the
message is passed through a chain of appropriate filters. Each filter decides what
actions to take and returns messages to the link service which in turn passes them to
the appropriate viewer applications.

Besides the tailoring facilities offered by viewer applications and filters, there is yet
another tailorability dimension and that is the communication protocol between the
different modules. There, Microcosm adheres to a free-format message passing
protocol where modules communicate by exchanging messages containing lists of
slots. The list of possible slots is unrestricted and receivers of the messages are not
forced to interpret all the slots in order to understand the message. This idea is now
taken as the basis for a definition of a standard communication protocol between open
hypermedia systems. Below is shown how the current proposal
[Davis,Lewis,Rizk'96] would request for opening a document called "OHP.htm" in
read-only mode. The "DocumentNickName" slot is an example of an optional slot that
can be used to provide redundant descriptions of the document.

\Subject LaunchDocument
\DocumentName "OHP.htm"
\ReadOnly True
\DocumentNickName "The OHP Protocol"
\DocumentType HTML
\DataCallBack False
\Channel 40

DHM (DeVise Hypermedia): The Framework Approach to Open Hypermedia

DHM [Grønbaek,Trigg'94] is an open hypermedia system designed to support co-
operative design in (among others) large engineering projects. In contrast with
Microcosm, DHM is more oriented towards object-oriented software engineering
techniques to provide the kind of openness demanded in engineering environments.

As such, the DHM project incorporates object-oriented database and framework
technology (again, we see the influence of the Intermedia project). Also, DHM allows
end-users to extend the system by providing a kind of access to the source code level
without the need to employ the full development environment
[Grønbaek,Malhotra'94]. This is actually an improvement over the API approach taken
by NoteCards or the framework approach taken by Intermedia.

An important distinction between DHM and Microcosm is that Microcosm enforces
viewer applications to store their own documents, while DHM provides an extra
service to the viewer applications by allowing them to store the documents inside the
hypermedia system. The latter is very important in collaborative settings to handle
integrity, version control and change notification.

DHM and Dexter

Besides being an open hypermedia system, DHM has an outstanding reputation
concerning extensions to the Dexter Reference Model [Grønbaek,Trigg'94],
[Grønbaek'94], [Grønbaek,Trigg'96].

Dexter was an attempt to capture the design of the generation of monolithic hypermedia
systems, but was underspecified to play its role as a reference model for exchange of
hypermedia. DHM has proposed some extensions and modifications, among others
concerning dangling links, link directionality, anchoring within composites
[Grønbaek,Trigg'94]; locking and notification [GrønbaekEtAl.'94]; composites
[Grønbaek'94]; location specifiers and reference specifiers to deal with embedded
references, anchors in external documents and dynamic hypermedia structures

- 16 -

[Grønbaek,Trigg'96]. The DHM project has proven that the Dexter model —although
a reference model for monolithic hypermedia systems— is a good basis to build open
hypermedia systems.

Other Open Hypermedia Systems

Since open hypermedia is one of the main themes of this dissertation, we mention the
other systems and projects that should be reckoned as open hypermedia. Sun's Link
Service [Pearl'89] is a first attempt to incorporate a linking protocol in the operating
system so that any application can make use of it. MultiCard is an open hypermedia
system somewhere in between Microcosm and DHM. With Microcosm it emphasises
on an extensible linking protocol that enables third party applications to access the link
service; like DHM it offers hyperbase functionality with concurrency control features.
HyperTED [Vanzyl'94] is an open hypermedia system that experiments with features
specific to particular application domains to see whether this may help in solving open
hypermedia problems. Hyperform [Wiil,Legget'92], [Wiil,Legget'93] and its
successor Hyperdisco [Wiil,Legget'96] is much like DHM in the sense that is also
based on object-oriented techniques to extend the system. One of the appealing features
of Hyperform is the way it allows to experiment with various approaches for
concurrency control and notification. The Hypermedia Research Laboratory in Texas
developed a series of hyperbase and hypersystem prototypes called HB0-3/SP0-3
[Kacmar,Legget'91], [Legget,Schnase'94] with the latest descendant named HOSS
[NürnbergEtAl'96]. These prototypes stress the importance of processes in an open
hypermedia system and lately started to explore potential benefits of having maximal
operating system support for hypermedia functionality. Chimera
[Anderson,Taylor,Whitehead'94] is —to our knowledge— the only system that
demonstrates how third party applications can be used to enrich software development
environments.

Microcosm and DHM are both open hypermedia systems. The reason they have chosen a
different approach is because they aim to support a different application domains. Microcosm
wants to support individuals working with various kinds of information, hence the emphasis
on tools for authoring links and on customisability. DHM supports co-operative design in
large engineering projects, so the emphasis is more on concurrency control, sharing of
information and uniform tool enhancements.

e) The Distributed Hypermedia Systems — ABC and WWW

A second observation about the generation of monolithic hypermedia systems is the lack of
'distribution', in the sense that all the information inside the navigation network is stored in
one centralised repository. In most cases, the centralised repository is a file system, although
some hyperbases apply database technology as well (i.e. [Schütt,Streitz'90],
[Wiil,Legget'92], [Wiil,Legget'93], [Wiil,Legget'96]). To some extent, the upcoming
distributed database technology may serve the needs of distributed hypermedia. However, to
implement the Xanadu vision, one must leave the notion of a centralised repository
altogether, as some hypermedia systems do. The latter are kind are classified as the
distributed hypermedia systems.

WWW: World-Wide Web

The hypermedia project coming nearest to implementing the Xanadu vision was the
world-wide web project [Berners-LeeEtAl'94]. The world-wide web consists of an
extensible set of "page-servers", where each page contains a number of embedded
references to other pages residing on (often remote) servers. Web surfers (jargon for
users reading world-wide web pages) employ browsers (the client programs) to
navigate the loosely coupled graph of web pages by loading these pages and activating
the embedded references to load referenced documents. The world-wide web utilises
the Internet wide area network to connect all those servers, so that users really

- 17 -

experience having the world at their fingertips: with a single mouse click they can jump
to the other side of the world.

The world-wide web was developed at CERN as a medium to exchange scientific
results, but rapidly reached momentum outside the scientific community and
experienced an exponential growth of running servers and clients. Most software
vendors, certainly the very large ones like Microsoft and ORACLE, adapt their
strategies and software to incorporate some kind of web functionality.

The HTML, HTTP, URL Acronyms

There are a number of acronyms often used to refer to the world-wide web, but are in
fact but technological cornerstones for enabling the establishment of such a large scale
distributed hypermedia environment.

HTML (Hypertext Mark-up Language) is an interchange standard used to submit pages
from the server to the clients. The idea is that an ordinary text document includes
several "mark-ups" that tell the client how to format it. HTML includes mark-up for
titles, boldfacing, graphics and —most important— anchors. Anchor mark-up contains
the embedded references to the other pages and is supposed to be highlighted by client
programs (typically in some colour and underline). HTML is defined as a growing
standard, in the sense that future versions of the HTML standard are supposed to
embody the older versions.

HTTP (Hypertext Transfer Protocol) is the network protocol most commonly used to
transfer pages. These pages may be in HTML format, but HTTP can handle other
formats as well (the HTTP protocol contains limited format negotiation). An important
limitation (although essential on such scale) of the HTTP protocol is that it is stateless,
i.e. the network connection is only held for the time needed to transfer the page. This
makes it especially hard to use the world-wide web in collaborative settings. Note that
most web browsers adopt other network protocols like FTP (file transfer), SMTP
(electronic mail) as well.

URL (Universal Resource Locator) is the name for the format of a page address,
which is used in the embedded references and anchor mark-up. The URL is actually an
extensible addressing format, which makes it easy to refer to new types of page
servers. A URL is prefixed with a key word identifying the address space of the
referenced page (i.e. 'file' for file servers, 'http' for HTTP servers, 'ftp' for FTP
servers, 'mailto' for electronic mail, …). The format of the rest of the address depends
entirely on this prefix, but consists in most occasions of a set of identifiers separated
by "/" (a hierarchical level) or "?" (an argument to a query).

Most world-wide web servers map HTTP requests to HTML documents residing on
some file system. However, the HTTP protocol and the HTML format are sufficiently
simple to be easily mimicked by other programs. For example, it is quite easy to set-up
a program that translates user requests into database queries and returns the result in
HTML format. Or a server may decide to store documents in another format and
generate HTML on the fly with each request.

The diversity of protocols and formats and the ability to generate everything on the fly
makes it hard to discuss the web as a hypermedia system. For example, the Web is
frequently criticised as not respecting the "separate data from structure principle" (for
using embedded references), while this is counter argued by saying that a server may
very well store the links apart from the data and embed the links only when
transferring the page (i.e. like in the Hyper-G [Andrews,Kappe,Maurer'95] and
HOME [DuvalEtAl95] projects).

ABC: Artefact Based Collaboration

ABC is a project that has taken into account the issue of distribution from the very
beginning. To deal with large scale hypermedia (such as in the aerospace industry

- 18 -

[Malcolm,Poltrock,Shuler'91]), "the architecture must permit distribution across
multiple hardware platforms; to be distributable, the data model must be partitionable
into objects that tend to be accessed separately and that have relatively few links and/or
dependencies with other objects." [Smith,Smith'91]. Besides nodes and links, the
ABC design is based on the notion of subgraphs, providing a natural way to partition
the overall graph structure and distribute it over a number of graph servers. The ABC
system comes with a multitude of network browsers that provide end-users with the
necessary tools to manipulate the complex navigation structures.

The striking difference with the world-wide web project is the support for
collaboration. The ABC project has investigated many issues related with sharing
material over distributed servers, such as access control and concurrent access
[Schackelford,Smith,Smith'93].

ABC is also an open hypermedia in the sense that the primitive nodes in the graph
structure contain files to be processed by third party applications. ABC takes the
viewpoint that hypermedia graph servers should become the file systems of the next
generation of operating systems [Smith'96] and that hypermedia navigation will be an
essential ingredient of the next generation operating systems (i.e. the graph browsers
will replace the file managers of today's desktop environments). With the growing
interest for world-wide web technology (among others by operating system vendors
like Microsoft) this seems to be very promising.

Both being representatives of distributed hypermedia systems, the world-wide web and ABC
are quite different with respect to the target application domain. The world-wide web aims to
support individuals in browsing and publishing material and most work is on the
development of interchange standards and communication protocols. ABC is about
supporting groups, so incorporates various concurrency control mechanisms.

f) The Spatial Hypermedia Systems — Aquanet and HyperCafe

A third observation about the generation of monolithic hypermedia systems is the poor
performance when dealing with 'dynamic' structures. Most hypermedia systems perform
well for information presentation, but force authors to specify all navigation relationships
explicitly by hand. So the support for structuring information can be improved, certainly
when it comes to dynamic structures.

Aquanet and its successor VIKI

Although there were other systems that abandoned the basic node/link model to deal
adequately with dynamic structures (i.e. String searching in SuperBook
[Remde,Gomez,Landauer'87]; Petri nets in Trellis [Furuta,Stotts'89]; Taxonomies
[Parunak'91]) it was with the Aquanet project [MarshallEtAl'91] that the Spatial
Hypertext research took off.

The idea underlying the Aquanet project is to support a group in structuring collective
knowledge by providing multiple views on the same knowledge structure. However,
unlike traditional hypertext approaches, users are not forced to make these knowledge
structures explicit by connecting nodes with typed (labelled) links (i.e. gIBIS
[Conklin,Begeman'88]). In Aquanet, relationships are inferred from the spatial
organisation of nodes [Marshall,Shipman'93]. VIKI [Marshall,Shipman,Coombs'94]
and [Marshall,Shipman'95], which is the successor of Aquanet, allows to formalise
those emerging structures on user's demand.

- 19 -

Issue

Position A Argument 1

Position B Argument 2

PRO

PRO

CON

a) gIBIS b) VIKI

Figure 3: Traditional Hypertext (a) versus Spatial Hypertext (b)

Figure 3 illustrates the difference between a traditional way of creating a hypertext
structure and the spatial way. On the left we see part of a gIBIS network stating that
there are two possible positions for a given issue and that there are two arguments
sustaining the positions; moreover one argument not only sustains one position but
also counters the other position. The create such an argumentation structure, a user
creates five nodes (one issue, two positions and two arguments) and five links. Note
that creating a link is a complex operation, one must choose the type of the link, mark
its source and target an provide an optional label.

To the right of figure 3, we see two VIKI structures: one with a diamond, rectangle
and oval denotes a composite relation; the other with four rectangles and a diamond
denotes a labelled relation. This means that to create a composite relation, a user must
place three node with three different types one beneath the other. And if a user places a
group of nodes with same type one beneath the other, and an extra node with different
type on top of it this is recognised as a labelled relation. So, creating relationships with
VIKI requires less steps than traditional hypertext approaches.

HyperCafe

Aquanet and VIKI emphasise the idea of structuring knowledge and somehow lose the
idea of navigation and multi-media. The HyperCafe project
[Sawhney,Balcom,Smith'96]2 reincorporates both notions into the spatial hypertext
research. HyperCafe is designed as a cinematic experience of hyper-linked video
scenes; the metaphor is that of a human visiting a cafe and picking parts of the stories
told by all the other visitors. While the users follow a story in the foreground of the
video, the background shows characters telling other stories to each other. Users can
select those background characters to switch stories. So far, this is navigation in video,
but the trick is that users can choose to run multiple foreground stories by arranging
several simultaneously running videos on the screen. Such spatial organisation
produces a whole new story, hence the classification as spatial hypermedia.

Why is this experiment worth mentioning ? Remember that, according to our
definition, hypermedia is a "style" rather than a number of features and that style is
about freedom - about customisability. However, there is not so much freedom for
"readers" of traditional hypermedia, as they can only follow the links provided by the
authors. HyperCafe shows an extra degree of freedom, where users can create stories
that were not intended by the authors.

Again we see that the differences between the two systems stem from the target application
domain. The Aquanet and VIKI design are based on the "WYSIWID" principle, which is an
acronym for "What You See Is What I Did". The systems supports co-operation and the
reason they want easy authoring is because they want to support discussion in little groups.
HyperCafe maximises the customisability of individuals and there the emphasis is on the
presentation of information.

2 This paper was rewarded with the first Douglas Engelbart award at the Hypertext'96 Conference [HT'96].

- 20 -

Conclusion
The purpose of this section was to confront the reader with the important ideas that live (and
lived) in the hypertext and hypermedia community. The section included a definition of
hypermedia as a combination of navigation and a style. Navigation is about browsing non
linear information structures. Style emphasises on a feeling of freedom, in the sense that
users must be able to customise the presentation of information in some way. The definition
comes with some basic vocabulary (i.e. node, link and anchor).

The important ideas were illustrated with an overview of existing hypermedia systems,
roughly classified as pioneering, monolithic, miscellaneous, open, distributed and spatial
systems. The overview emphasised two threads important to the remainder of the
dissertation: tailorability and the correct separation of concerns. The latter stresses the "get
the links out of the data" principle and was illustrated with the Dexter hypertext reference
model. The former was motivated by the observation that each hypermedia is designed for
another application domain and was presented as a spectrum ranging from support for
individuals as opposed to groups and componentware as opposed to object-oriented software
engineering.

- 21 -

Open Hypermedia

While the previous section provides us with a general introduction of hypermedia, this
section discusses the particular subfield called open hypermedia systems. Open hypermedia
research starts from the assumption that to provide real support for daily information
processing, hypermedia systems must integrate external applications to manipulate
information. Several compelling issues pop up when dealing with this integration
requirement.

Open hypermedia research is quite an active subfield. Since 1989, the hypermedia
conferences accepted several papers discussing approaches for open hypermedia and already
three workshops were organised to exchange ideas (i.e. the Konstanz workshop
[Aßfalg'94]; the 1st Workshop on Open Hypermedia Systems [Wiil,Østerbye'94]; the 2nd
Workshop on Open Hypermedia Systems [Wiil,Demeyer'96]).

As always within an active field of research, it is quite hard to give a precise definition. Here
we present different approaches, which should give a good overview of what researchers
mean when speaking of open hypermedia systems. Several authors have attempted to define
an open hypermedia system, but most definitions fall too short and are supplemented with
requirement lists. As such requirement lists tend to be vague and imprecise, there is a
growing tendency to write scenarios describing how these requirements fit into the usage of
an open hypermedia system for the daily work of a group of people performing a particular
task. Finally, we present the Flag taxonomy as a first attempt to classify open hypermedia
approaches rather than systems.

Open Hypermedia Definition & Requirements
We adopt the most recent definition of an open hypermedia system, as we agree that it gives
a reasonable summary of current thinking.

"An open hypermedia system is a hypermedia system, where the term open implies the
possibility of importing new objects into a system. A truly open hypermedia system should
be open with regard to:
1. Size: It should be possible to import new nodes, links, anchors and other hypermedia

objects without any limitation to the size of the objects or to the maximum number of
such objects that the system may contain, being imposed by the hypermedia system.

2. Data Formats: The system should allow the import and use of any data format, including
temporal media.

3. Applications: The system should allow any application to access the link service in order
to participate in the hypermedia functionality.

4. Data Models: The hypermedia system should not impose a single view of what
constitutes a hypermedia data model, but should be configurable and extensible so that
new hypermedia data models may be incorporated. It should thus be possible to
interoperate with external hypermedia systems, and to exchange data with external
systems.

5. Platforms: It should be possible to implement the system on multiple distributed
platforms.

- 22 -

6. Users: The system must support multiple users, and allow each user to maintain their
own private view of the objects in the system." [Davis,Lewis,Rizk'96].

We elaborate on the requirement list part of the definition by combining the following
sources3: the 7-issues research agendas [Halasz'87] and [Halasz'91]; the Boeing paper
[Malcolm,Poltrock,Shuler'91], reiterated in [Poltrock'96]; a paper from the HB/SP series of
systems [Legget,Schnase'94]; the preamble to the Konstanz Open Hypermedia Workshop
Proceedings [Aßfalg'94]; papers from the Microcosm group [DavisEtAl'92] and
[Hill,Hall'94]; a paper from the HyperTED project [Vanzyl'94]; a paper from the
Hyperdisco project [Wiil,Legget'96] and finally —the one that is part of our open
hypermedia definition and serves as the backbone— the paper on the Open Hypermedia
Protocol [Davis,Lewis,Rizk'96].

OHS-REQ 1) Size

It should be possible to import new nodes, links, anchors and other hypermedia
objects without any limitation to the size of the objects or to the maximum number of
such objects that the system may contain, being imposed by the hypermedia system.

The size issue covers two different aspects: the size of an individual object and the
number of different objects in the system. The former is a typical problem when
dealing with multi-media data. The latter is crucial when dealing with large scale
hypermedia systems (i.e. Boeing speaks in the order of 1 million nodes and 10 million
links) or distributed systems (i.e. the world-wide web).

This issue of size has some important implications. First of all, size implies the
possibility to access data residing outside the hypermedia system, since large object
sizes may prevent copying the data into the system. Secondly, size affects scalability
and thus addressability. A system having unlimited capacity needs at least an unlimited
and scalable address space. Furthermore, as one cannot expect to know the sources of
external data in advance, the address space must be extensible.

Storing information outside the hypermedia system challenges the design of the
hypermedia system with respect to consistency. For example, one cannot ensure link
consistency since data can be edited without informing the hypermedia system (this is
called the editing problem). Link robustness demands for techniques and heuristics to
fix corrupted link structures. Also, data residing outside the hypermedia system
implies that the original data must remain unchanged (this is called document sanctity),
since one cannot be sure to have write-access to the information (i.e. the data can
reside on read-only media such as a CD-ROM). Document sanctity is another argument
for the "get the links out of the data" principle [Davis'95].

OHS-REQ 2) Data Formats

The system should allow the import and use of any data format, including temporal
media.

This can be read as a multi-media requirement, although it covers issues like legacy
data formats and encryption techniques as well. The requirement implies at least the
ability to launch another application that knows how to interpret the data format, since
it is impossible to build a single hypermedia system that knows how to interpret all
current and future data formats. Standards (see OHS-REQ 4) make life easier of
course.

An implication not immediately visible from this requirement (but follows from
combining it with part of OHS-REQ 4, exchange data with external systems) is that a

3 The original idea to combine open hypermedia requirement lists came from Helen Ashman in a draft
paper investigating how well the World-Wide Web performs on each of these requirements. As may be
surprising at first, for many of the requirements the Web performs better than the proclaimed open
hypermedia systems.

- 23 -

hypermedia system should be able to deal with virtual data as well. Virtual data is not
available from some persistent storage but is generated by some external device or
program; typical examples are video conferencing, database queries and simulation
tools. Note that both temporal and virtual data impose special problems on hypermedia
systems, like how can one specify anchors inside temporal or virtual data.

OHS-REQ 3) Applications

The system should allow any application to access the link service in order to
participate in the hypermedia functionality.

No doubt this is a mandatory requirement for an open hypermedia system, raising the
interoperability issue (i.e. making applications work together without explicit
knowledge of each other). Lots of techniques are available to extend "any" application
to incorporate hypermedia functionality, among others described in the HB0/SP0 (or
Proxhy) paper ([Kacmar,Legget'91]), the Microcosm papers ([DavisEtAl'92],
[Hall,Hill,Davis'93], [Davis,Knight,Hall'94]) and the HyperTED paper
([Vanzyl'94]).

This requirement states that an open hypermedia system should have a link protocol,
accessible by any other application that wants to use it. This is the opposite of having
the hypermedia system launch another application with a given set of data (as implied
by OHS-REQ 2).

OHS-REQ 4) Data Models

The hypermedia system should not impose a single view of what constitutes a
hypermedia data model, but should be configurable and extensible so that new
hypermedia data models may be incorporated. It should thus be possible to interoperate
with external hypermedia systems, and to exchange data with external systems.

Given the enormous variety of data models existing in the hypermedia field, this
requirement is very hard to realise (conceive an open hypermedia system that is able to
deal with the basic node-link model as well as a data model supporting spatial
hypertexts). What makes it especially difficult is that lots of the information is formed
by the "link" structure, so that an open hypermedia system must be able to incorporate
different link models. Hence the need for an extensible link engine, which is free to
choose the linking model that best suits the needs of the information structure it
represents. Microcosm (with its generic links and filters) and DHM (with its location
and reference specifiers) provide building blocks for such an extensible link engine.

A first related issue is that of standards: with a standard hypermedia reference model
one could exchange data with other hypermedia systems without having to write
translators for all possible combinations. Note that [Legget,Schnase'94] reports that a
possible disadvantage of standards is the loss of structure. As far as data formats
concern, hypermedia can rely on existing standardisation efforts such as HyTime
[Newcomb,Kipp,Newcomb'91]. For the communication aspects, the open
hypermedia community is developing a standard communication protocol for link
services [Davis,Lewis,Rizk'96].

The second issue is that of extensibility, which brings us back to the style aspect in our
hypertext and hypermedia definition (p.08). As hypermedia style emphasises a feeling
of freedom and a degree of customisability, extensibility plays a crucial role. This is
not a problem of the hypermedia field alone and there are lots of techniques available
that can be applied in various combinations.
• Configuration tools: Special purpose extension tools, most of them with user-

friendly graphical interfaces. Examples are the "Preferences" tools coming with
most of today's desktop applications and the control panels in the Macintosh and
Windows operating systems. In the hypermedia community, HyperCard is still the
most prominent example of how configurable hypermedia software can be.

- 24 -

• Scripting languages & macro facilities: Programming languages aiming at skilled
end users. Examples are HyperTalk (HyperCard's scripting language) and
VisualBasic (the scripting language coming with the Microsoft Office suite of
products).

• Dedicated programming languages: Full fledged programming language dedicated
to extend one type of systems. Examples: Shell languages for operating systems;
SQL; Java [Java'95]; MC2000 [Rizk,Sauter'92].

• General purpose programming languages: A full fledged programming language
used for other purposes than extending a particular system. Example: Lisp in
AutoCAD and GNU Emacs; Scheme in Hyperform [Wiil,Legget'92].

• Object-oriented frameworks: A reusable design for a specific problem domain
implemented in some object-oriented medium and extended by plugging new
objects. Example: Intermedia [Meyrowitz'86] and DHM [Grønbaek,Trigg'94].

• Open Implementation: A computational system with the ability to manipulate its
own computations. Examples: Silica [Rao'91]; ApplFLab [SteyaertEtAl'94] &
[SteyaertEtAl'95].

• Extensible data models: Systems with a data model that can easily be extended for
certain purposes. Examples: filters in Microcosm [DavisEtAl'92]; hyperdocuments
in [DeBra,Houben,Kornatzky'92].

OHS-REQ 5) Platforms

It should be possible to implement the system on multiple distributed platforms.

Depending on the scale of distribution, systems must incorporate a range of techniques
to ensure fast response times (i.e. data caching, prefetching). To produce adequate
results the system must gather knowledge about often followed navigation trails, usage
patterns,

Also, distributed hypermedia systems raise the document sanctity issue and the editing
problem (see OHS-REQ 1). Yet, the scope of possible solutions is completely different
as consistency seems to be less crucial in large scale distributed systems such as the
world-wide web. One may adopt some local consistency scheme complemented with
periodic "garbage collection".

Supporting multiple platforms raises the issue of portability across different soft- and
hardware platforms, an issue that overlaps with the data formats (OHS-REQ 2),
applications (OHS-REQ 3) and data models (OHS-REQ 4) requirements. Indeed, there
is a multitude of data formats, applications and data models and the choosing the best
depends upon the intended soft- and hardware platform. One way to deal with
portability across different soft- and hardware platforms is to incorporate some form of
protocol negotiation, where part of the communication between modules is about
choosing the optimal configuration.

OHS-REQ 6) Users

The system must support multiple users, and allow each user to maintain their own
private view of the objects in the system.

Hypermedia has always played the role of enabling technology for computer supported
co-operative work. This requirement handles two aspects related to this role: one of
information sharing and one of information perspectives.

If multiple users work with the same hypermedia structure, then the hypermedia
system must control access to the shared data. Authority control is the process that
verifies whether a user is allowed to read or modify data. Generally, an open
hypermedia system should not have an artificial distinction between authors (allowed
to modify) and readers (read only access), such as imposed by systems having a
separate authoring environment. Concurrency control deals with the problems of
simultaneous access to the same data element and is essentially based on locking

- 25 -

(restrict access temporarily to ensure safe data transfer) and notification (warn the other
users working with a data element that something has happened).

An important aspect of co-operative work is the ability to create private work spaces.
In a hypermedia context this means that (a subgroup of) users must be able to build a
personal substructure inside the global hypermedia structure. This is again a plea for
the "get the links out of the data" principle, since a shared node may participate in
different link structures. This aspect interferes heavily with the linking models
supported in the hypermedia structure.

Closely related is the issue of version control (the ability to have several variants of the
same data element and/or structure). Many hypermedia researchers agree that
versioning is important, yet few systems provide version control and few users seem
to complain4.

The above requirement list makes it very clear that incorporating hypermedia functionality
into the everyday working environment involves more than providing link services to third
party applications. The closer examination of the items in the list reveals that open
hypermedia systems cover themes like interoperability (1-3), extensibility (4) and
distribution (5-6), which are central themes in the design of all kinds of open systems —
operating systems (i.e. UNIX and OS/2), databases (Exodus and CORBA), inter application
communication (OLE, OpenDoc), tailorable software (i.e. Emacs and AutoCAD),
programming languages (Smalltalk and CLOS). By adopting this requirement list as the
definition for an open hypermedia system, we see that open hypermedia systems are quite
representative for the domain of open systems. Which makes open hypermedia systems an
excellent choice for experimenting with techniques to build open systems, a central corner
stone in our argumentation.

Open Hypermedia Scenarios
From its conception (among others in [Yankelovich,Meyrowitz,VanDam'85]), open
hypermedia research was aiming to get hypermedia functionality out of the hypermedia
systems and into the every day environments people use for working with information. With
the "Industrial Strength Hypermedia: Requirements for a Large Engineering Enterprise"
[Malcolm,Poltrock,Shuler'91] paper, the hypermedia community finally distilled a
requirement list out of the working practices of engineers participating in the design and
manufacturing process of airplanes. The paper is a milestone in hypermedia research because
(quoting Frank Halasz [Halasz'91]) "a user-centered technology like hypermedia needs users
to drive the research". As the authors of the paper were all associated with Boeing —world's
largest producer of commercial airplanes and one of the biggest employers in the US— this
could count as a user community.

Another reason why the paper is so appealing, is because it contains a scenario illustrating
how the requirement list fits into the everyday working practice of an engineering team. The
scenario described how a new team member could learn about a project (navigating through
the project notebook), exchange information with other team members (e-mail and tele
conferencing), and contribute to the project's goals (preparing reliability analysis) all within
an environment seamlessly integrating all the different tools applied by engineers in their day
to day work. The open hypermedia community has picked up this scenario idea: it
reappeared in [GrønbaekEtAl.'94], [Legget,Schnase'94] and [Davis,Knight,Hall'94] and to
some degree in (the presentation accompanying) [Vanzyl'94]. Moreover, the 2nd Workshop
on Open Hypermedia Systems [Wiil,Demeyer'96] decided to set-up a web-site collecting and
exchanging scenarios for open hypermedia usage (see http://www.csdl.tamu.edu/ohs/).

4 Version control is not part of the Boeing requirement lists [Malcolm,Poltrock,Shuler'91] and
[Poltrock'96].

- 26 -

The Flag Taxonomy of Open Hypermedia Systems
Although the open hypermedia definition gives a good summary of current thinking, it is too
requirement oriented and thus too long. Moreover, it is too strong, since none of the existing
open hypermedia systems meet all of the listed requirements. The Flag taxonomy
[Østerbye,Wiil'96]5 takes a completely different angle by making an attempt to capture the
essence of an open hypermedia system and use them to classify open hypermedia systems.

The Flag taxonomy started of as a "written before the facts" conclusion for the first open
hypermedia workshop [Wiil,Østerbye'94]. The workshop organisers prepared a set of slides
with a number of diagrams showing many of the design trade-offs involved in the
construction of an open hypermedia system. These diagrams were discussed during the
workshop and although the preformulated conclusion proved incorrect, it served as an
adequate framework for discussing open hypermedia systems. As, the workshop proclaimed
the need for an open hypermedia reference model —i.e. much like the Dexter model was for
the generation of monolithic hypermedia systems— these diagrams were seen as a good
starting point. The flag taxonomy is actually a mixture of those concluding slides with some
of the ideas of the Dexter model.

If one looks at the layered architecture of the Dexter model (see left hand side of figure 4)
from an open hypermedia perspective, an important difficulty is revealed: the within-
component layer is separated from the run-time layer by means of a storage layer. This is a
typical symptom for monolithic systems, where a hypermedia system somehow constrains
the possible contents of nodes to be presented in the run-time layer, because these node-
contents must be stored inside the hypermedia system. However, this disregards a
fundamental principle of open hypermedia systems where viewer applications need to store
the node contents outside the hypermedia system. So, the Dexter architecture actually
violates requirements 1-3 of the open hypermedia definition. To cope with this difficulty one
can adapt the Dexter model and pull together the within-component layer and run-time layer.
Doing so results in the "Dexter-pie" depicted in the right hand side of figure 4.

Run-time Layer

Storage Layer

Within-Component Layer

a) b)

Storage
Layer

Run-time
Layer

Within-
Component

Layer

Figure 4: Layered Dexter Architecture (a) versus the Dexter Pie (b)

Remember that there is another important principle in the design of (open) hypermedia
systems, which is the "get the links out of the data". In the Dexter model, this principle is
captured in the protocols between the layers and this is inherited by the Dexter pie. The flag6

taxonomy goes one step further, as it captures those two essential separations of concerns
for an open hypermedia system by performing one additional cut (see figure 5). The
horizontal cut separates contents from structure (i.e. data from links) while the vertical cut
separates storage from run-time. This results in four functional modules, which the authors
named storage manager, viewer, data model manager and session manager. Also there are
four protocols between functional modules. Note that the protocol of prime interest in open

5 This paper was one of the nominees for the first Douglas Engelbart award at the Hypertext'96
Conference [HT'96].

6 A glance at Figure 4 combined with the Danish nationality of the authors reveals the inspiration for the
name.

- 27 -

hypermedia research is the linking protocol between the viewer and the session manager (see
[Davis,Lewis,Rizk'96]).

Storage
Manager

Data model
Manager

Viewer

Session
Manager

Storage Run-time

Contents

Structure

Figure 5: The Flag Taxonomy

What makes the flag taxonomy so appealing is that one can move the different configurations
of the four functional modules and protocols and that most (if not all) configurations can be
assigned a meaningful semantics corresponding with real systems. So the flag taxonomy
enables a rough classification of hypermedia systems.

Such is depicted in figure 6, where a white region represents a unit in the hypermedia system
that is a union of one or more functional modules in the flag. A greyed region stands for
some protocol that exist between two modules and is accessible from outside. A black region
represents a boundary between modules where no communication is allowed.

Monolithic
HyperCard

Embedded Link
World-Wide Web

Link Server
Microcosm

Open Hyperbase
DHM

Figure 6: Some Meaningful Configurations for the Flag

A monolithic hypermedia system is a system where outside the hypermedia system one
cannot distinguish the four functional modules (i.e. HyperCard) and is represented as a solid
white rectangle. Embedded link systems like the plain vanilla world-wide web make a
distinction between storage (i.e. a HTTP server) and run-time presentation (i.e. any web
browser) but mixes structure with contents. Hence the vertical protocol between storage and
run-time. A link server like Microcosm enforces third party applications to store and present
their own data and as far as the hypermedia system concerns, there is no distinction between
the storage and representation of data. However, third party applications can freely access
the link services (horizontal grey protocol) using the linking protocol. Microcosm provides
partial control over the storage and retrieval of links via the filter concept (vertical grey
protocol) but this is not directly accessible for third party applications (horizontal black
protocol). Open hyperbases have an extra service over link servers by offering viewer
applications the possibility to store their data inside or outside the hypermedia system (the
diagonal grey protocol).

The flag taxonomy can be used to separate open hypermedia systems from other hypermedia
systems. The link server and open hyperbases are considered open hypermedia systems, as
they do not impose a special data model on the viewer applications. The embedded link
approach is not considered open, as viewer applications must adhere to the structure and
contents format. According to the flag model, to be an open hypermedia system, there
should exist a linking protocol between the session manager and viewer application. Note

- 28 -

that the flag taxonomy represents the hypermedia system developer's point of view, which is
opposed to the software system developer's point of view. In the latter, all systems with at
least one protocol are open.

Although the flag taxonomy captures the essence of open hypermedia systems (i.e.
separating storage from presentation and structure from contents) in an appealing metaphor,
some important issues are not covered in the taxonomy. Only half of the requirements of the
open hypermedia system definition are covered in the flag taxonomy; that is requirements 1
to 4 (size, data formats, applications) but not requirements 4 to 6 (data models, platforms
and users). So the flag taxonomy covers only the three requirements that deal with
interoperability, but not the ones that are about extensibility and distribution. However, one
of the factors for adopting the requirement list was precisely that it covered the three main
themes found in all open systems — interoperability, extensibility and distribution. So, we
accept the design guidelines forwarded by the flag taxonomy (i.e. separate storage from
presentation, separate contents from structure) but to study open hypermedia systems as a
representative for other kinds of open systems, we need a more generic model. This more
generic model is presented in the next section under the name of the Zypher perspective.

Conclusion
Open hypermedia is an active research area, so it is difficult to provide a precise picture of
the field. To cope with this problem, we have presented three perspectives common in the
field today.

The first perspective is presented as a scenario of an imaginary system for supporting the
working practices of engineers participating in the design and manufacturing process of
airplanes. The second —closely related— perspective is presented as a definition and an
extensive requirement list. We have examined the items in the list, have sketched a number
of issues and have pointed at common themes. An important observation for the remainder
of the dissertation was that the requirement list covered important themes relevant in other
kinds of open systems — i.e., interoperability, extensibility and distribution. This shows
that open hypermedia is an excellent choice for experimenting with techniques to build open
systems. The third perspective is presented as a taxonomy, which is a first attempt to
summarise the important design principles for open hypermedia systems. The taxonomy
forwards two essential separation of concerns in the design of open hypermedia systems,
i.e. contents from structure and presentation from storage.

- 29 -

The Zypher Perspective

This section introduces our personal perspective on open hypermedia systems. We present
this perspective because we feel that what is currently available lacks some important aspects
on open hypermedia systems.

Reviewing our hypertext & hypermedia definition (p.08), we notice the importance of the
word "style", which is about freedom, about customisability. Also, the open hypermedia
definition (p.22) regards openness as the ability to incorporate new objects into as system,
which is about adaptability. Although, style and adaptability are implicitly part of the
requirement lists and scenarios, we want to make them an explicit element of our perspective
since we want to focus on techniques to construct customisable and adaptable systems.
Therefore, we present tailorability as a characteristic that encompasses both style and
adaptability.

With respect to the flag taxonomy, we see the Zypher perspective as "another side of the
coin". There are two arguments sustaining the position that the other side of this coin is
indeed important. First of all, there is the way the flag taxonomy deals with the world-wide
web. According to the flag taxonomy (see figure 6), the world-wide web is not an open
hypermedia system because it violates the "get the links out of the data" principle. This may
be true from a hypermedia system developer's point of view, but with its extensible
architecture system developers would certainly classify it open. Secondly, there's is the way
the flag taxonomy differentiates between Microcosm and DHM. Looking at figure 6, the flag
taxonomy focuses on the way open hypermedia systems like Microcosm and DHM deal with
the storage of documents. DHM provides hyperbase services, i.e. it allows third party
applications to store the contents of the documents inside the DHM database, while
Microcosm does not. We agree that this is an important difference, yet we see the difference
between the componentware and framework approach (see "The Open Hypermedia Systems
— DHM and Microcosm]" - p.15) at least as important. This difference is not covered in the
flag taxonomy and yet it is important, also from a hypermedia system developer's point of
view.

We propose tailorability as an encompassing view on openness. That is, we see tailorability
as a way to achieve the kind of customisability needed to accomplish a true hypermedia style,
but also as a way to capture the extensibility of the world-wide web, Microcosm or DHM.
More importantly, we propose tailorability as a way to achieve openness in all kinds of open
systems, such as operating systems, databases, inter application communication, tailorable
software and programming languages. To support such an encompassing view, we need to
be more precise on what is meant by the term tailorability. We define tailorability based on
the notion of a design space as a generic abstraction of all kinds of open systems and identify
three levels of tailorability afterwards.

The Zypher Design Space
Summarising the section on "hypertext & hypermedia" (p.07), we define a hypermedia
system as a unique combination of navigation, storage and presentation technology. This
summary is named the Zypher design space and it is shown in the left hand side of figure 7.
The Zypher design space has three dimensions, known as the storage axis (enumerating all

- 30 -

possible information repositories), the presentation axis (enumerating all possible viewer
applications) and the navigation axis (enumerating all techniques to specify navigation
relationships). A particular hypermedia system is then a relation (in the mathematical sense of
the word) between points on these three axes and is represented by a 3-dimensional volume
in the design space; for the sake of simplicity we represent such a volume as a cube. As
announced earlier, an open hypermedia system is then a tailorable volume in that design
space (see the right hand side of figure 7).

Presentation

Navigation

Storage

a) any hypermedia
 system

b) an open
 hypermedia system

Figure 7: The Zypher Design Space

A very important remark is the choice of these axes is left open: the remainder of the
argumentation is completely independent of the precise number and semantics of the axes.
For our experiments we found those three valuable and we motivate their existence in the
second part of this dissertation (see interoperability - p.78; navigation - p.86). However, a
designer of an open hypermedia system —or any other open system for that matter— is
allowed to change the axis system freely. The independence of the number and semantics of
axes in the system is crucially important, as it is this aspect that allows us to generalise
Zypher design space to any kind of other system. We come back on this issue when
discussing the Zypher contribution (p.63).

Three Tailorability Levels
What is tailorability ? To a large degree, this question was answered during the discussion of
the extensibility issue in the data model requirement (see OHS-REQ 4), where we list a
number of techniques that can be used to adapt a hypermedia system (configuration tools,
scripting languages & macro facilities, dedicated programming languages, general purpose
programming languages, object-oriented frameworks, open implementations, extensible data
models). This answer is not a satisfying one, as it emphasises on the techniques.

We propose a more analytical approach by presenting three levels of tailorability. Each level
of tailorability is defined using the axes system of the Zypher design space in figure 7. Note
the important property that the definition of the three levels of tailorability is independent of
the type and numbers of axes in the design space.

Domain Level Tailorability

Domain level tailorability is the kind of tailorability needed to deliver a hypermedia
system for a specific application domain. Typical usage of domain level tailorability in
hypermedia systems would involve the incorporation of new data formats, extra
information presentation methods or supplementary types of navigation techniques.
Domain level tailorability corresponds with the addition of extra points (or the
modification of existing points) on the axes of the Zypher design space.

System Level Tailorability

System level tailorability aims to deliver services that affect the global behaviour of the
hypermedia system. Examples are concurrency control (i.e. manage concurrent access

- 31 -

to shared data), logging (i.e. maintaining a log of navigation activities to provide
backtracking features), caching (predict future behaviour on the basis of registered
activities), authority control (check whether the user of the system has the privileges to
see or modify information) and integrity control (control operations to preserve the
consistency of the system's data structures). All these examples have in common that
they change the behaviour of several modules in the system in a uniform way. System
level tailorability corresponds with wrapping uniform behaviour around different
points residing on an axis of the Zypher design space.

Configuration Level Tailorability

Configuration level tailorability aims to provide a 'plug and play' hypermedia system,
where the coordination between the system modules is adapted without changing their
internal implementation. Typical usage of configuration level tailorability is to make the
system run-time extensible. For instance, the table of helper applications in most
world-wide web browsers, where users can associate a viewer application with a given
document type is about the configuration between the storage and presentation axis.
The Java approach [Java'95] is another example, where world-wide web browsers
load system modules for handling unknown document formats. The final example is
protocol negotiation, where system modules communicate to choose the optimal
protocol for exchanging data; protocol negotiation is valuable in cross-platform
communication. Configuration level tailorability corresponds with changing the
relationship (in the mathematical sense of the word) between the points on the axes in
the Zypher design space.

The Puppet Master Metaphor
These three levels of tailorability play a crucial role in this dissertation. To make sure the
reader recognises the differences and associates them with the appropriate level, we have
devised the so-called puppet master metaphor. From this metaphor we have inferred three
icons that are repeated throughout the text as little memory aids. The metaphor is based on
the analogy between adapting a software system to a changing environment and adapting
puppets to a new puppet play.

Domain Level Tailorability

Figure 8: Puppet
Master Metaphor

When preparing a story, the puppet master conceives a number
of puppets playing different characters. Archetypal puppet
characters are the harlequin and the pierrot, where the former
wears a costume with much coloured patchwork and a smiling
face and the latter is dressed in white and holds a tear under the
eye. To distinguish these characters the puppet master paints the
puppet faces and dresses them up with different costumes.

System Level Tailorability

However, for certain kinds of stories, some puppets require
special abilities not captured by the basic puppet design. Take the
example of a story that has a sword fighting scene. Pasting a
sword onto the hands of an existing puppet is not enough, since
a realistic fighting scene requires the ability to control the
movements of the sword as well. Such a scene demands for an
extra string to be attached to manipulate the special behaviour.

Configuration Level Tailorability

Puppet plays require the puppet master to co-ordinate the behaviour of each individual
puppet. Some puppets need limbs that can be moved around freely, while other
puppets require them to go in opposite directions. One must adapt the wooden cross
co-ordinating the movements to achieve this kind of tailorability.

- 32 -

Note that the users of the system correspond with the audience watching the puppet: they are
not supposed to know how the puppet is manipulated to produce the desired scenes in the
play. However, just like the audience can influence the play by applauding and shouting,
users can influence the behaviour of the system by setting preferences. The puppet master
(i.e. the software engineer) then applies the tools on the appropriate level of tailorability to
satisfy the audience.

Appropriateness of the Three Tailorability Levels
Having identified tailorability as a distinctive characteristic of open hypermedia systems and
having proposed three levels of tailorability to handle different kinds of flexibility, the natural
question that follows is how far these tailorability levels correspond with existing open
hypermedia research ? To answer that question, we contrast two representative open
hypermedia systems (Microcosm representing the componentware approach and DHM
representing the framework approach) on each level and refer to the open hypermedia
definition & requirements (p.22) to sustain our arguments.

Domain Level Tailorability

All open hypermedia systems satisfying the "size", "data formats" and "applications"
requirements (see OHS-REQ 1, OHS-REQ 2 and OHS-REQ 3) are domain level
tailorable, because satisfying these requirement boils down to lengthening the storage
or presentation axes of the Zypher design space. For example, DHM has been tailored
towards the domain of co-operative engineering (see [GrønbaekEtAl.'94]) by
incorporating different viewer applications demanded by the engineers. Microcosm
incorporated different multi-media viewers to deal with the Mountbatten and Churchill
archives (see [FountainEtAl'90]). While discussing OHS-REQ 4 we have advocated
the idea of an extensible link engine, which is essentially a stretching out of the
navigation axis. Microcosm provides the generic link and filter concepts (see
[Hill,Hall'94]) and DHM provides the notions of a location specifier and a reference
specifier (see [Grønbaek,Trigg'96]).

Yet, we classify Microcosm more domain level tailorable than DHM, because
Microcosm is more flexible. Extending the storage or presentation axis in Microcosm,
requires the hypermedia system designer to tailor a viewer application to include calls
to the Microcosm API and to perform some trivial installation procedure. With DHM a
hypermedia designer would spend a comparable effort extending the viewer
application, but installing it into the DHM framework is more difficult since it involves
writing specialised subclasses.

System Level Tailorability

Especially in collaborative and distributed settings (see OHS-REQ 5, OHS-REQ 6) the
need for system level tailorability becomes apparent. To implement the concurrency
control required in such settings, one needs to incorporate special locking or
notification strategies. DHM relies on database technology and object-oriented
inheritance (see [GrønbaekEtAl.'94]) to incorporate special locking strategies7.

Microcosm —although extended for a distributed setting (see [Hill,Hall'94])— does
not support different collaborative settings because there is no easy way to wrap
additional locking or notification behaviour around system modules in a uniform way.
This is largely due to the componentware approach taken by Microcosm, where it is
very easy to customise the behaviour of one single module, yet very difficult to extend
all modules with similar behaviour. In DHM it is more easy to incorporate uniform
locking or notification behaviour because there one can rely on object-oriented
inheritance mechanisms.

7 Hyperform ([Wiil,Legget'92] and [Wiil,Legget'93]) is an example of an open hypermedia system that
took a similar —yet more flexible— approach by permitting dynamic subclassing of locking and
notification classes.

- 33 -

The same argumentation can be repeated for other system uniform behaviour such as
logging, caching, authority control and integrity control. In a framework approach this
is relatively easy to do, because one can inherit such behaviour from a special class. In
a componentware approach this is more difficult since there is no way to change the
internal implementation of components uniformly.

Configuration Level Tailorability

DHM relies on object-oriented framework technology to support system
reconfiguration. The hypermedia system designer has to provide some specialised
classes and register them into the framework's session manager
[Grønbaek,Malhotra'94] and the framework architecture ensures that they get called on
the appropriate moment. Microcosm trusts on its extensible free-format message
passing protocol to achieve reconfiguration [Davis,Knight,Hall'94]. The Microcosm
link service passes a message to all appropriate modules which have to decide for
themselves whether they want to react.

The difference we observe here is a difference between a centralised versus a
decentralised approach. Frameworks in general, always have a tendency to centralise
the system configuration making it easier to reuse a system configuration across
different framework incarnations (see the discussion on object factories - p.54).
Componentware in general has the tendency to distribute the system configuration over
the participating components, making it easier to perform local reconfigurations. Both
approaches have their advantages and disadvantages and the one approach can not be
preferred over the other.

We conclude that the three levels of tailorability are appropriate for classifying open
hypermedia systems. Also, these three levels of tailorability allow us to differentiate between
the componentware approach (represented by Microcosm) and the framework approach
(represented by DHM) for open hypermedia systems. The componentware approach is more
domain level tailorable but less system level tailorable than the framework approach. As far
as system level tailorability concerns, we see that both approaches are different and that there
is no objective criterion to prefer one over another.

In fact the notions of domain level and system level tailorability reveal the inherent distinction
between both approaches. Componentware is just about making it easy to tailor one
component (i.e., one point on a design axis) so is always more domain level tailorable. On
the other hand, the framework approach emphasises on reusing the same solution over a
range of components (i.e., a complete design axis) so is more system level tailorable.

There is one concluding remark to make on the appropriateness of the three levels of
tailorability. As follows from the above discussion, the three tailorability levels cover all the
issues in the requirement list and thus the three central themes of open systems —
interoperability, extensibility and distribution. Indeed, domain level and configuration level
tailorability are primarily concerned with interoperability and extensibility, while system level
tailorability covers aspects that have to do with distribution and sharing. So we assert that the
three levels of tailorability can be generalised to any kind of open system.

- 34 -

A Framework Browser Scenario
Above we presented the Zypher design space and the three tailorability levels, which form
the viewpoint that has been driving our experiments. To measure the strength of our
viewpoint and to illustrate the scope of open hypermedia we envision, we pick up the idea of
an open hypermedia usage scenario. The structure of our scenario comes from the sample
published on the world-wide web at http://www.csdl.tamu.edu/ohs/; although we removed
some subtitles we found less important and added one title "Our Results" explaining how far
our experiments succeeded in achieving the goals of the scene.

Indeed, the scenario describes the vision that has been driving the design of the Zypher open
hypermedia system and that has been partially realised in the many experiments we
conducted. Nevertheless, the full completion of this vision has yet to be realised.

The scenario draws upon our experiences developing a Group Decision Support System
(GDSS) [Kenis'95]. GDSS research is part of the larger computer supported co-operative
work (CSCW) aiming to support the negotiation process in large groups and to improve the
quality of group decisions. The emphasis of this research is on finding suitable
communication structures that ameliorate the knowledge transfer between the participants,
this way ensuring that more alternatives are considered with more wisdom. A computer may
support diverse aspects of such a structured communication process, such as
• the identification of potential conflicts and possible compromises;
• the classification of different ideas, alternatives and opinions within the group;
• the shift from one decision making phase to another (support the 'chair' function);
• the publication of intermediate reports and final decisions (the 'secretary' function).

The scenario itself describes a framework browser as an integrated set of tools that supports
an interdisciplinary team in the development of an object-oriented framework. This is another
kind of engineering process than the Boeing counterpart presented in
[Malcolm,Poltrock,Shuler'91]. We do not claim that this scenario represents the best
approach to object-oriented software engineering, nor do we state that the scenario covers all
aspects of the framework development process that should be supported by an imaginary
framework browser. However, we are confident that the scenario represents a valuable
approach towards software engineering and we use citations from [Goldberg,Rubin'95] to
sustain our viewpoint.

The reader should be aware that object-oriented frameworks play several roles in this
scenario. First, frameworks are the application domain for which we describe an imaginary
open hypermedia system. In this sense, the term "framework" denotes all possible
frameworks that a group of software engineers might conceive and it is represented by the
GDSS framework in this scenario. Second, the scenario is about an integrated set of tools
that support a framework development process. The integration is accomplished by means of
an imaginary open hypermedia system with three levels of tailorability. In this sense, the
term "framework (browser)" stands for tools and is represented by an imaginary framework
browser in this scenario. Finally, the scenario illustrates the contributions of the Zypher
experiments, which is a concrete incarnation of the above "framework browser"
implemented using framework and open hypermedia technology. In this sense, the term
"framework" denotes one particular framework providing a reusable design for the domain
of open hypermedia frameworks and is named Zypher.

Especially when giving examples and discussing our experiments, it is hard to distinguish
between those three roles, because in our experiments all roles are played by one and the
same Zypher framework. Note that the Zypher framework has been implemented in the
VisualWorks/Smalltalk environment and that the Zypher framework browser incorporates
most of the programming tools that come with this environment, such as the system
browser, class browser and method list browser. We refer to [Goldberg'84] for more
information about these code browsers.

- 35 -

Scene 1: User Interface Prototype

Dirk is a sociologist and has been involved as a consultant in several projects supporting
decision making in policy problems. Dirk applies a methodology based on the Delphi
method comprising three cycles of paper questionnaires that are distributed among the group
members by surface mail. Between each cycle, Dirk analyses the answers, rewrites the
questionnaire and redistributes them among the group members. This process takes about a
year to produce the final report and Dirk would like to speed it using computers. To
illustrate his vision, Dirk uses HyperCard as a user interface prototyping tool. He authors
cards for all the screens he believes are necessary in such a GDSS and links them together
to create the effect of a working system.

Goal(s) of this Scene

"Make the end user an insider. Successful teams enrol the end user as an insider, an
active member of the product team." ([Goldberg,Rubin'95], p.294)

This scene stresses the importance of end user participation, already in the very early
stages of software design. The scene shows that a framework development
environment should support end users to prototype the user interface and control flow
of their system. HyperCard represents the level of end user programming required in
such an prototyping environment.

Character(s)

Dirk is the only character in this scene, playing the role of a requirements provider,
aggressive tester and enthusiastic supporter ([Goldberg,Rubin'95], p.305). Dirk is a
heavy user of all kinds of desktop publishing programs and is able to use such
programs to express his ideas. He claims he does not know anything about writing
programs, but he has experience with scripting languages and macro facilities that
come with the desktop publishing software.

Framework Browser Requirements

To achieve true commitment, end users should play an active role and be able to build
parts of the final program themselves. As end users typically do not have the technical
expertise to program in full-fledged object-oriented software development
environments, a componentware programming environment (like HyperCard) should
be integrated with the framework browser. However, to achieve maximum effect, the
components offered in the end user environment should correspond with concepts in
the application domain. In our scenario, the prototyping environment should include
components representing questions, answers and participants besides the generic ones
like field, button, label, icon that come along with traditional componentware.
⇒ A framework browser should include a componentware programming environment

with components tailored towards the target application domain (OHS-REQ 4: Data
Models; Domain Level Tailorability).

Our Results

The Zypher experiments do not support the above requirement. However, we were
actively engaged in the ApplFLab project, investigating how one could make user
interface builders incrementally refinable ([SteyaertEtAl'94], [SteyaertEtAl'95]). This
research starts from the assumption that user interface builders are essential tools for
the development of modern applications, and argue that the state of the art of the field
lacks a way of incorporating new user interface components. The ApplFLab
environment can extend its set of user interface components using a special purpose
meta-level interface. We plan to combine the ApplFLab environment with the Zypher
framework browser in the future.

- 36 -

Scene 2: Analysis and Design

Having finished the GDSS prototype, Dirk starts to look for a group of people that can turn
it into a working software system. He pays a visit to Patrick, a member of the computer
science department of his university. Patrick happens to have a great deal of experience with
object-oriented frameworks and he convinces Dirk to build a GDSS framework. Dirk
fancies this idea, because he wants to try the future GDSS in both synchronous-proximate
(i.e. all participants are working in the same room at the same time) and asynchronous-
distributed (i.e. the participants are connected by a WAN-network and participate at
different moments in time) settings and Patrick promises that he will be able to do both.

Patrick is well aware of potential pitfalls when building frameworks, certainly for a domain
where he has no experience with. He decides that a "design by wandering around" method
is probably the best way to cope with the uncertainties and tries a prototyping approach. To
kick of, he starts to browse through the documentation Dirk provided, meets a few times to
discuss GDSS ideas and gradually builds up an understanding of what Dirk had in his mind
when building the user interface prototype. Patrick finally writes a set of analysis and
design documents using his favourite tools (i.e. the Microsoft Word editor and a public
domain OMT editor). Patrick uses an open hypermedia system to create numerous
hypermedia links representing relationships between the OMT-diagrams and the analysis
and design documents.

Goal(s) of this Scene

"Tools. […] Much of the effort involved in analysis and design involves handling
information with complex interdependencies that have to be created and maintained
over long time periods. Tools must be available to handle the information management
aspect of a (analysis and design) method." ([Goldberg,Rubin'95], p.346)

This scene illustrates that framework development is more than writing an object-
oriented program and that a framework browser should support other related tasks as
well. Moreover the scene emphasises that software engineers have their working habits
and their favourite specialised tools, so that a framework browser must delegate
specialised tasks to third party applications.

Character(s)

Patrick enters the scenario. Patrick is the framework designer ([Goldberg,Rubin'95],
p.497), the person who determines the architecture for a generic set of parts that can be
used to form GDSS applications. In this scene, Patrick designs an initial set of
concrete parts to illustrate how the generic parts fit together to form a particular GDSS
application.

Framework Browser Requirements

To support the wide range of tasks involved in framework development, the
framework browser must be able to integrate any other application. However, the two
example applications are quite different with respect to ease of integration. Microsoft
Word is an example of a software package that incorporates interoperability standards
(i.e. DDE and OLE) and is highly tailorable (i.e. the VisualBasic scripting language)
and thus well suited for integration with the framework browser. The public domain
OMT editor stands for all other applications lacking such facilities. With the growing
support of operating systems, one can expect that more and more applications will
adhere to interoperability standards, yet legacy applications will always be around.
Techniques to deal with such legacy applications (i.e. like the "universal viewer"
[Davis,Knight,Hall'94]) are essential.
⇒ A framework browser should be able to integrate any other application, irrespective

of the degree of tailorability of such client application (OHS-REQ 3: Applications;
Domain & Configuration Level Tailorability).

- 37 -

Our Results

We have integrated Microsoft Word as a third party document viewer. We used the
macro facilities in Microsoft Word to accommodate for the necessary glue and
implemented the inter application communication with DDE (Dynamic Document
Exchange) under Windows.

The object-oriented implementation of the Zypher framework, makes it fairly easy to
reuse the solution to communicate with other applications supporting DDE. Other
interoperability standards (i.e. OLE, OpenDoc) could be incorporated if we want to.

However, the glue code in Microsoft Word is tedious to write, large in volume and
hard to maintain. There is a definite need for some kind of reuse mechanism to support
the incorporation of external application and this need is even stronger as far as
communication with legacy applications concerns. We did not experiment with legacy
applications due to a lack of resources. Standardisation efforts, and especially the idea
of a dual protocol shim like described in [Davis,Lewis,Rizk'96], may answer the need
for reusability.

Scene 3: Implementation

Patrick starts implementing a series of prototypes. As his knowledge of the GDSS domain
grows, he sees that some of the assumptions in the analysis and design documents are
incorrect and that others or missing. As is encouraged in incremental software development,
he modifies the analysis and design to reflect his new insights.

To convince Dirk of the progress of the project, Patrick asks Koen to join the team and to
develop a really attractive user interface based on the HyperCard prototype. The two of
them form a real team now, working on the same artefact and need to synchronise their
efforts. Patrick and Koen encounter two types of synchronisation problems.

The first problem is the maintenance of the relationships between evolving analysis, design
and implementation. For instance, Patrick carefully designed that part of the GDSS
framework that exchanges messages between participants, as this part must vary when
building a GDSS-system for a synchronous-proximate or an asynchronous-distributed
setting. Patrick included a link from the section in the design document to the places in the
code of his prototype that implements this design. However, Koen has code in his
prototype that implements the same functionality and Patrick wants the target of his link to
include Koen's code as well. In fact, Patrick wants his link to include all current and future
code that implements his design; he needs some kind of "smart" links that establish the
navigation relationships dynamically based on specific knowledge about the framework
architecture.

The second problem has to do with simultaneous access to shared data and what is called
"tele-presence". Sometimes Patrick is editing the analysis and design documentation while
Koen is reading it, so Koen and Patrick need to be aware that they are simultaneously
working with the same document. The viewers on Patrick's and Koen's machines must
show the document in a special colour to illustrate they work in a simultaneous access
mode, and each time Patrick saves the document Koen must see the latest version. Of
course, this schema must work with all applications used to view and edit parts of the
framework.

Goal(s) of this Scene

"Framework Goal. Set up a development environment for all team members that
enables the team to create, maintain and deliver applications." ([Goldberg,Rubin'95],
p.376)

This scene portrays that incremental development and teamwork implies facilities for
consistency maintenance and integrity control. Professional software development
environments may include such facilities, but when a framework browser incorporates
third party applications it cannot rely on these facilities.

- 38 -

Character(s)

Koen comes on stage now, playing the role of an implementor in an application
production team ([Goldberg,Rubin'95], p.282), specialised in user interface design.
Koen stands for other characters with other specialisation's (i.e. databases, networks,
statistics) as well. The point we want to make is that framework development is
teamwork, so a framework browser must support working in teams.

Framework Browser Requirements

Traditional hypermedia systems use static point-to-point links to structure navigation
relationships, which means that the author of a hypermedia system must maintain the
connections between the sources and targets of the links manually. However, in
environments where those relationships change often, static links become a
maintenance nightmare. One way to deal with dynamic structures is to have some kind
of smart links that use knowledge about the information to infer relationships. In the
scene, Patrick would create a 'smart link' that uses internal data structures of the
implementation environment to return all occurrences of the message implementing the
design.
⇒ A framework browser should be able to incorporate smart links incorporating

knowledge from inside the implementation environment (OHS-REQ 4: Data
Models; Domain Level Tailorability).

To implement tele-presence, the system must ensure integrity between different
viewers, simultaneously manipulating the same data. This implies that the framework
browser must be able to monitor open, change and close events and pass them to other
viewers. Those viewers are in principle unaware of each other and may or may not run
on the same machine.
⇒ A framework browser should be able to trap important events and notify other

viewer applications, irrespective of the type or number of viewers involved (OHS-
REQ 6: Users; System Level Tailorability).

Our Results

Zypher is equipped with a fully extensible link engine (see "resolver" - p.94) and we
have plugged in algorithms for 'smart links' between analysis and design
documentation on the one hand and the implementation on the other hand. Analysis
and design documents may include HTML style anchors8 with a special "browse:"
keyword. This keyword identifies a smart link referring to an element of the
implementation. Possible references are "system" (to open the global system browser),
"class X" (to open a class browser on the class X), "class X method Y" (to open a
method browser on the method Y in class X), "sendersOf X" (to browse all methods
that send the message X), "implementorsOf X" (to browse all methods that implement
the message X).

Zypher does not include any facilities for concurrent users, so we could not yet
demonstrate tele-presence. However, using the meta-object protocol we can trap all
open, close and change events (see "meta-objects" - p.116) and we implemented a
layered event passing mechanism on top of it (see "events" - p.107). Using this
mechanism, we have been able to synchronise two home cooked viewers (i.e. HTML
and text) that are completely unaware of each other. When we save a HTML
representation in a certain text file using the simple text viewer, the HTML viewer
opened on the same text file updates its contents automatically. The same scheme could
have been used to synchronise the contents of two third party applications running on
the same machine (i.e. the Notepad and Microsoft Word) viewing the same file.
Synchronising viewer applications running on different machines is more difficult but
would be feasible as well: besides the obvious need for a high level communication

8 In the Zypher experiments, we use embedded links to avoid the editing problem (see OHS-REQ 1).

- 39 -

channel between the two machines, it would involve an extension of the meta-object
protocol to pass events over distributed machines.

Scene 4: Reuse Library

After a few analysis/design/implementation iterations, Patrick and Koen succeed in building
two GDSS's; one for a synchronous-proximate setting and one for an asynchronous-
distributed setting. Dirk is now testing the software with a number of groups and is quite
pleased with how it works.

Patrick and Koen actually build a reusable design for the GDSS domain. However, there
solution probably contains parts that may be reused in other CSCW frameworks. They hand
over all the analysis, design and implementation to Roel, who is responsible for the
identification of reusable assets and for storing them in the computer science department
reuse library. To maximise access, this library is accessible via the world-wide web.

Roel studies the received material and via discussions with Patrick and Koen he identifies
those parts of the analysis, design and implementation that may be reused in other
frameworks. For each reusable asset, he writes a design pattern, including an analysis
section (based on some ideas in the original analysis), a contract section (based on the
original design) and an implementation section (including references to the original
implementation).

Roel is now ready to store the new design patterns in the library. As far as the design
pattern document concerns, this is not so difficult: he relies on the multitude of HTML
converters available. The references to the implementation impose a special problem
however. The tools supplied with typical programming environments provide a narrow,
class-oriented perspectives on class- and object structures. Design patterns are usually
spread over several classes and only a few methods matter to understand one particular
design pattern. Roel concludes that the tools provided with the programming environment
are not suited as viewers for the implementation of design patterns. Roel decides to build
special purpose viewers himself, using the tools provided by the open hypermedia system
(i.e. a set of components to assemble design pattern views). Moreover, he wants to translate
those views into HTML forms, so that the reuse library would accessible through the web.

The design pattern library gets larger and larger, and Roel encounters consistency
maintenance problems. A design pattern does not work alone, but is supposed to be used in
combination with others. However, it is quite difficult to manage links between design
patterns that are known to be working together. Roel decides to use the extensible link
engine of the open hypermedia system to plug in special algorithms that help in managing
the consistency of the library. The idea is that if design patterns work together, the
implementations of both design patterns will overlap to some extent. Roel extends the
hypermedia system so that when a new design pattern is added, its contents is scanned for
all references to the implementation and those references are stored inside a special database.
This database is used to infer relationships between design patterns that use the same
implementation.

Goal(s) of this Scene

"Framework Goal. Set up a structure in which to plan and manage the process of
acquiring, distributing, and maintaining reusable assets throughout the organisation."
([Goldberg,Rubin'95], p.223)

This scene illustrates the different approaches towards reuse within one framework and
reuse across frameworks. To accomplish the latter, some kind of reuse library must be
set up. There again —certainly with the advent of the world-wide web— an open
hypermedia system can play an important role to make the library easy accessible.

Character(s)

Roel is the so-called reuse librarian ([Goldberg,Rubin'95], p.500), responsible for
certifying, classifying, and storing new reusable assets in the corporate or project

- 40 -

library. Much of the reuse assets in the library are based on the design pattern
catalogue published in [GammaEtAl'93] although Roel collected many domain specific
design patterns as well.

Framework Browser Requirements

Being able to call upon services of third party applications to view information is one
of the selling arguments for an open hypermedia system. Yet, third party viewer
applications are not always able to show the desired information, partly because this
information is stored within the link structures managed by the hypermedia system. So
an open hypermedia system must provide facilities that allow the hypermedia author to
build its own viewer applications easily, probably based on some kind of
componentware approach.
⇒ A framework browser needs powerful, easy-to-use programmable tools for

building specialised viewer applications (OHS-REQ 2: Data Formats, OHS-REQ 4:
Data Models; Domain & Configuration Level Tailorability).

The world-wide web is reaching the status of a universal exchange medium. An open
hypermedia system should make it easy to exchange information with the world-wide
web.
⇒ A framework browser must be able to exchange information over the world-wide

web (OHS-REQ 2: Data Formats; Domain & Configuration Level Tailorability).

To support a library function in a framework environment, an open hypermedia system
needs tools to link a new library item with the items already in the library.
⇒ A framework browser should be able to incorporate smart links to support

consistency maintenance in large reuse libraries (OHS-REQ 1: Size, OHS-REQ 4:
Data Models; Domain Level Tailorability).

Our Results

Zypher comes with a library of components that can be assembled programmatically to
form new code browsers. We plan to integrate these components with the ApplFLab
environment to attain a componentware approach (i.e. similar to [Wuyts'95]). Using
VisualWave (a Smalltalk tool for generating HTML forms out of Smalltalk window
specifications) we can publish these code browsers on the web quite easily.

To support the consistency maintenance of the design pattern library, we have
extended Zypher's link engine to incorporate knowledge about design patterns. When
the librarian stores a new design pattern in the library, he must provide a list of all the
messages participating in the corresponding framework contract. All these messages
are stored in a special database and Zypher's link engine queries this database to
generate a pop-up menu of all related patterns.

Conclusion
We have presented our perspective on open hypermedia, which forwards tailorability as an
distinctive property of open hypermedia systems, encompassing both the style and
adaptability aspects of open hypermedia. We have identified three levels of tailorability and
have defined them based on the notion of a design space.

A design space represents a range of systems in an n-dimensional axes system, where each
axis represents a fundamental characteristic present in all systems but differs depending on
the exact system one is considering. We propose three axes to model a hypermedia design
space: a storage axis enumerating all possible information repositories, a presentation axis
enumerating all possible viewer applications and a navigation axis enumerating all techniques
to specify navigation relationships.

The three levels of tailorability are defined based on the adaptability of the axes system. We
identify domain level tailorability which corresponds with the addition of extra points to an

- 41 -

axis; system level tailorability, which corresponds with wrapping uniform behaviour around
points on one axis; and configuration level tailorability, which corresponds with changing
the relationship (in the mathematical sense of the word) between points on the design space
axis. The puppet-master metaphor is presented as a memory aid.
An important property of these three levels of tailorability is that they can be generalised for
any kind of open system. This follows from the observation that the three levels of
tailorability cover the important themes in open systems: interoperability, extensibility and
distribution.

We have shown that the proposed perspective is appropriate for classifying open hypermedia
systems by contrasting two representative systems Microcosm (representing the
componentware approach) and DHM (representing the framework approach). We have
concluded that the componentware approach is more domain level tailorable but less system
tailorable. As far as configuration level tailorability concerns, we have observed a difference
but we are unable to prefer one approach over the other.

We have illustrated the value of the proposed perspective with a scenario of a framework
browser. A framework browser is defined as an integrated set of tools that support the
development of object-oriented frameworks, and we have used the framework browser
scenario to relate the three levels of tailorability with the requirement list part of the open
hypermedia definition. This scenario describes the vision that has been driving the design of
the Zypher open hypermedia system and that has been partially realised in the many
experiments we conducted. Nevertheless, the full completion of this vision has yet to be
realised.

- 42 -

