
CHAPTER 5

A Design Space For A
Hypermedia Framework

This chapter introduces three behavioural objects in the
design of the Zypher open hypermedia framework:
resolver, editor, and loader.

Navigation (resolver)

Presentation
(editor)

Storage
(loader)

The introduction of the behavioural objects is the first
step towards modelling hypermedia systems using the
Zypher design space (p.30). This design space is
delineated by three orthogonal design axes, where each
axis represents aspects important for all hypermedia
systems, namely navigation, presentation and storage. A
hypermedia system is then a three dimensional volume in
that design space.

Based on the second of our framework design guidelines, stating that "Each design space
axis should correspond to a black-box template method" we introduce a behavioural object to
represent a point on one of these design axes (i.e. resolver for the navigation axis, editor for
the presentation axis and loader for the storage axis). This allows us to incorporate the notion
of domain level tailorability into the design of the framework.

Behavioural Objects

Behaviour is the central theme underneath the design patterns in this chapter. All the design
patterns listed here, describe objects representing behaviour for Zypher data structures.
Behavioural objects are an internal representation for (possible third party) software that is
supposed to store, present or navigate the information structures.

The design patterns in this chapter are quite similar. This should not come as a surprise as
the same basic technique is at work here: to model a certain design space axis one favours the
black-box approach over the white-box approach.

- 93 -

Resolver: The Core of an Extensible
Link Engine

Intent
Encapsulate the algorithms that determine the navigation relations (i.e. what
targets can be reached from a given source) to accomplish a hypermedia
system with an extensible link engine.

Analysis
Navigation is an answer to the problem of seamless integration, but the solution introduces a
new problem: how to manage the connections between related information ? Traditional
hypermedia systems use static links for these purposes, which means that the author of a
hypermedia system must maintain the connections between sources and targets of navigation
relations manually. Static link creation is usually accomplished by some kind of recording
mechanism, where users select parts of information fragments in viewer applications and
issue a command to mark the selection as the source or target of a link.

Static links have the advantage of being applicable in all kinds of information structures,
since they are independent of the problem domain: it is the author of a link that determines
the relations between the information fragments and provides the semantics. However,
maintenance of hypermedia systems structured with static links is a nightmare that makes the
technique unworkable in dynamic environments.

An extensible link engine is another approach to manage the navigation relations. The link
engine is the part of the hypermedia system that determines what targets can be reached from
a given source. An extensible link engine is a link engine that is able to incorporate domain
specific algorithms to infer relationships between information fragments. With an extensible
link engine, the hypermedia system is able to incorporate knowledge about the information
domain and to help in authoring and maintaining the navigation relations.

EXAMPLE

Hypermedia technology has been successfully applied in many technical
documentation projects, so it should not come as a surprise to recommend a
hypermedia system as an ideal medium to explore framework structures. However,
compared with traditional technical documentation projects, framework structures
demands an additional requirement from the underlying hypermedia system: flexible
adaptation towards changes. A concrete framework applied in real life situations is
constantly evolving. On the one hand, the framework is incarnated in applications part
of the framework's target design space. On the other hand, the framework is
redesigned to cope with new requirements. Both have impact on the framework
structure and the hypermedia system should handle such structural changes effectively.
To provide adequate support, the hypermedia system must incorporate knowledge
from the programming environment to infer information structures automatically.

- 94 -

As an example, consider the links connecting a method to all senders (implementors)
of the corresponding message. One cannot expect a software engineer to maintain such
links manually: they should be inferred from the compiler part of the framework
development environment. Moreover, to offer true support in managing frameworks,
the links connecting a framework element to the design patterns it participates in should
be maintained within the framework development environment as well.

Problem
How can one incorporate domain specific link resolution algorithms in the previously
defined navigation model (see [navigation]), so that resolution algorithms can be maintained
easily ?

Solution
Create a new class of objects, where each object represents a link resolution algorithm. Call
such an object a resolver. Define a contract on markers and anchors, stating that all
navigation actions are passed to such a resolver to determine the appropriate targets.

EXAMPLE

The Zypher framework browser incorporates navigation actions that bring a software
engineer from a given message selector to all the places where such a message is
implemented and all the places where such a message is sent. This counts for two
resolvers: a senders resolver and an implementors resolver. Also there are navigation
actions that bring a software engineer from a framework element (a class or a method)
to a design pattern where this framework element plays a particular role. Determining
these target patterns is accomplished by the pattern resolver.

The Zypher framework browser also incorporates a resolver for every URL address
space. Note that some special address spaces for the framework browser domain are
added (browser, pattern, name).

Contract

Marker

activateOn (instantiation)

Instantiation

Anchor

activateOn (component)

Component

Resolver

resolveAnchorComponent(anchor, component)

Viewer Application

(See [class diagrams] for a short survey of the main elements in a class diagram)

Component

A component passed as a parameter to the activateOn method defined on Anchor.

- 95 -

Instantiation

An instantiation is passed as a parameter to the activateOn method defined on
Marker.

Marker

All markers implement the activateOn message sent by the viewer application to
start a navigation action. Markers receiving this message, must pass it on to the anchor
they represent, but are allowed to perform additional actions.

Anchor

All anchors implement the activateOn message sent by a marker to start a
navigation action. Anchors receiving this message, must pass it on to the resolver by
means of the resolveAnchorComponent message, but are allowed to perform
additional actions.

Resolver

A resolver models a specific link resolution algorithm. A resolver implements the
resolveAnchorComponent message sent by the anchor to determine the target of
a navigation action. Specific resolver classes are allowed to extend the message set for
a finer grained interaction with the anchor.

Motivation
The determination of the navigation targets is crucial in all hypermedia systems. The need to
incorporate domain specific knowledge forces us to make the determination process explicit
in a resolver method. Why should this method be defined on a separate class, why not use
an existing one ?

The most obvious candidate would be the Anchor class, which would result in the following
structure.

Marker

activateOn (instantiation)

Instantiation

Anchor

activateOn (component)

resolveAnchorComponent(anchor, component)

Component

Viewer Application

In the above schema, an anchor captures two different aspects of the design, namely the
structural reference to a substructure of a component and the way to resolve an anchor-
component pair. Mixing two different aspects in a single design element causes difficulties as
the design is less configurable and less extensible.

a) Configurability

Some anchors may resolve differently depending on the navigation context, which means
that in some occasions the resolver process must change at run-time. Changing the resolver
process is not possible if the two are captured in a single design element. Moreover,

- 96 -

decoupling the resolver from the anchor enables lazy structures, one can defer to choice of
the resolution algorithm until it is needed.

EXAMPLE

The Zypher framework browser incorporates navigation actions that bring a software
engineer from a given message selector to all the places where such a message is
implemented and all the places where such a message is sent. Thus the same anchor
(the message selector) is used in different resolution algorithms: one wants to attach the
resolver to the anchor depending on the particular action that triggers the navigation.

Zypher framework documentation is stored inside HTML-documents and Microsoft
Word documents and contain many anchors in URL format. In the URL format, the
anchor value starts with a keyword defining the URL address space, followed by some
address in a format depending on the address space. The keyword identifies the
resolver that is supposed to interpret the address. However, it is not a very good idea
to parse and interpret all keywords in all anchors to determine the resolver. Most of the
anchors available in the document are not activated, so it is better to wait until the actual
activation to interpret the keyword.

b) Extensibility

Like argued in the [interoperability] pattern, separating the reference aspect from the resolver
aspect reduces the number of classes by factoring out the behaviour along the two
dimensions.

EXAMPLE

Message selectors and class names can be found in lists (i.e. the list panes of the
pattern browsers and code browser) in which case an index anchor is used, or they can
be found in Smalltalk source code in which case a range anchor is used. On both
classes of anchors the senders, implementors and pattern resolver may be applied.

Both HTML-documents and Microsoft Word documents contain many anchors in
URL format, referring to various address spaces. Anchors in a HTML-document hold
a range to refer inside the document, while anchors for Microsoft Word documents use
bookmarks (i.e. value markers).

As can be deduced from the table in [figure 19], we reduce the number of classes to
twelve (= 9 + 3) instead of eighteen (= (3 * 2) + (6 * 2)). Moreover, all URL resolver
classes are defined as a subclass from a common abstract URL resolver, which makes
it very easy to extend the system with new URL address spaces.

Anchor \

Resolver

Index Range Value

Senders x x

Implementors x x

Pattern x x

URL x x

URL File x x

URL HTTP x x

URL Browser x x

URL Pattern x x

URL Name x x

Figure 19: Combinations of anchors and resolvers

- 97 -

Issues
Naming

The concept of a resolver as defined here is not part of the Dexter model
[Halasz,Schwartz'90]. However, the Dexter specification includes the notion of a resolver
function (Dexter is quite vague there), which explains the choice of the name.

Structural Objects versus Behavioural Objects

It was not a coincidence that the same arguments (i.e. configurability and extensibility) that
plead for a separation between components, anchors, instantiations and markers, motivate
the existence of a separate resolver object. However, the absence of the dynamics argument,
suggests that there is another factorisation technique at work here.

The difference between the factorisation applied in the [interoperability] and [navigation]
patterns and the factorisation applied here is based on the difference between structure and
behaviour.

To understand why, note that the component, anchor, instantiation and marker objects
represent elements for data structures: they must be assembled properly to model external
information. The resolver object, however, represents a process that interprets a particular
constellation of these elements. The resolver thus assigns behaviour to a structure, which
explains the terms structural object and behavioural object.

Consequences
If the configuration issue was important when discussing structural objects (see
[interoperability ~ consequences], [navigation ~ consequences]), then it is even more
important if a design incorporates behavioural objects. After all, the decision about what
behavioural object should handle what structural objects has a great impact on the global
behaviour of the system. The issue is dealt with in the [meta-meta-objects] design pattern.

Relations
Where To Go Next ?

∇ People reading the Zypher design pattern documentation for the first time should have
learned how the introduction of the resolver object allows to incorporate domain specific
algorithms that determine navigation relations. The obvious next step is then the [editor]
pattern, that models a viewer application.

The [meta-meta-objects] pattern determines what resolver should handle a given
anchor/component pair.

The resolver plays an important role in the navigation template as described in the [navigation
template].

Other Catalogues

The messages defined in the contracts section participate in the template method pattern as
defined in [GammaEtAl'93] and [Pree'94]. To use the terminology of the latter, the
resolveAnchorComponent method defined on resolver is a hook method for the
activateOn template method defined on anchor. In turn, the activateOn method
defined on anchor is a hook method for the activateOn template method defined on
marker. Both are forms of the 1:1 connection meta-pattern. The activateOn and
resolveAnchorComponent messages are hook methods for the navigation template
[navigation template].

Besides participating in the 1:1 connection meta-pattern, the activateOn messages
defined on anchor and marker participate in the 1:1 recursive connection meta-pattern,

- 98 -

meaning that subclasses overriding the valueOn message must include the super method in
their behaviour.

- 99 -

Editor: Incorporate External Viewer
Applications

Intent
Encapsulate the command sets that control the viewer applications presenting
information and participating in the navigation.

Analysis
Hypermedia is about managing and presenting information. A crucial part of all hypermedia
systems is the module that is responsible for presenting information. Presenting information
in a hypermedia system is concerned with presenting a particular information fragment,
highlighting substructures of an information fragment as candidate source of a navigation
operation and selecting a substructure of an information fragment as target of a navigation
operation.

A complicating factor is the notion of [interoperability], where the hypermedia system is able
to incorporate third party applications to present information to the user and third party
applications can request link services from the hypermedia system. Moreover, the same
information can be presented by different viewer applications. Note that these applications
are allowed to modify both the information and the navigation structures.

Problem
How can one model an interoperable information system where the same information can be
manipulated by different presentation applications, possibly not part of the hypermedia
system ?

Solution
Create a special object that represents an information presentation application. Call this object
an editor, to emphasise the idea that these applications can modify information.

Create a special superclass for all objects that can be manipulated by an editor object; call this
a PresentationLayerObject.

- 100 -

Contract

Marker

highlightOn (instantiation)
selectOn (instantiation)

activateOn (instantiation)

Instantiation

edit ()

AnchorComponent

Editor

editInstantiation (instantiation)
selectMarkerOn (marker, instantiation)
highlightMarkerOn (marker, instantiation)

PresentationLayerObject

(See [class diagrams] for a short survey of the main elements in a class diagram)

Editor

An editor object represents a module of the hypermedia system (possibly an interface
to a third party application) that can be asked to present information.

All editors implement the editInstantiation method called by an instantiation
object that wants to be presented. All editors implement the highlightMarker
method called by a marker object that wants to be highlighted as a candidate source for
a navigation operation. All editors implement the selectMarker method called by a
marker object that wants to be selected as a target for a navigation operation.

PresentationLayerObject

A presentation layer object is an abstract superclass for all objects that can be
manipulated by an editor object.

Instantiation

All instantiations implement the edit method called by whatever object that wants to
present the instantiation. This method is delegated to an editInstantiation
method defined on an editor associated with the instantiation.

Marker

All markers implement the highlightOn method called by whatever object that
wants to highlight the marker as a source of a navigation operation. This method is
delegated to an highlightMarkerOn method defined on an editor associated with
the marker.

- 101 -

All markers implement the selectOn method called by whatever object that wants to
select the marker as a target of a navigation operation. This method is delegated to an
selectMarkerOn method defined on an editor associated with the marker.

All markers implement the activateOn method called by an editor object when it
detects that the user has activated this marker as a source of a navigation operation.

Motivation
Why should the edit, highlightOn, selectOn methods be defined on a separate
class. The same arguments that made us separate the resolver from the anchor (see
[resolver]) apply (i.e. configurability and extensibility).

Consequences
If the configuration issue was important when discussing structural objects (see
[interoperability ~ consequences], [navigation ~ consequences]), then it is even more
important if a design incorporates behavioural objects. After all, the decision about what
behavioural object should deals with what structural objects has a great impact on the global
behaviour of the system. The issue is dealt with in the [meta-meta-objects] design pattern.

Relations
Where To Go Next ?

∇ People reading the Zypher design pattern documentation for the first time should have
learned how the introduction of the editor object allows to incorporate specialised viewer
application. The obvious next step is then the [loader] pattern, that models an information
repository.

The [meta-meta-objects] pattern determines what editor should handle a given instantiation or
marker.

The editor plays an important role in the navigation template as described in the [navigation
template].

Other Catalogues

The messages defined in the contracts section participate in the template method pattern as
defined in [GammaEtAl'93] and [Pree'94]. To use the terminology of the latter, the
editInstantiation, selectMarkerOn, highlightMarkerOn methods
defined on editor are hook methods for the edit template method defined on instantiation
and the highlightOn, selectOn template methods defined on marker. In turn, the
activateOn method defined on marker is a hook method for an unspecified template
method defined on editor. Both are forms of the 1:1 connection meta-pattern. The edit,
highlightOn and selectOn messages are hook methods for the navigation template
[navigation template].

- 102 -

Loader: Incorporate Information
Repositories

Intent
Encapsulate the commands that control the repositories storing the information.

Analysis
Hypermedia is about managing and presenting information. A crucial part of
all hypermedia systems is the module that is responsible for storing and retrieving
information from information repositories.

A complicating factor is the notion of [interoperability], where the hypermedia system must
be able to incorporate various information repositories outside the hypermedia system. This
implies that the information can be changed from outside the hypermedia system.

Problem
How can one model an interoperable information system where information can be supplied
from different repositories, not part of the hypermedia system ? How can one deal with the
problem that information can be modified from outside as from within the system ?

Solution
Create a special object that represents an information repository. Call this object a loader.

Create a special superclass for all objects that can be manipulated by a loader object; call this
a StorageLayerObject.

- 103 -

Contract

MarkerInstantiation

Anchor

setValue (anyObject)

Component

setContents (anyObject)

Loader

preAccessOf (aStorageLayerObject)
postAccessOf (aStorageLayerObject)
preChangeOf (aStorageLayerObject)
postChangeOf (aStorageLayerObject)

StorageLayerObject

(See [class diagrams] for a short survey of the main elements in a class diagram)

Loader

A loader object represents a module of the hypermedia system (possibly an interface to
a third party application) that can be asked to store or retrieve information.

All loaders implement the preAccessOf, preChangeOf, postAccessOf,
postChangeOf messages, sent whatever object that accesses or changes a storage
layer object. The loader then checks whether the contents of the storage layer object
corresponds with what is in the repository and adapts the contents when necessary.

StorageLayerObject

A Storage layer object is an abstract superclass for all objects that can be manipulated
by an editor object.

Component

All components implement the setContents method called by the loader when it
detects that the contents of a component does not correspond with the contents in the
repository.

Anchor

All anchors implement the setValue method called by the loader when it detects that
the contents of an anchor does not correspond with the contents in the repository.

Motivation
Why should the preAccessOf, preChangeOf, postAccessOf, postChangeOf
methods be defined on a separate class. The same arguments that made us separate the
resolver from the anchor (see [resolver]) apply (i.e. configurability and extensibility).

- 104 -

Relations
Where To Go Next ?

∇ People reading the Zypher design pattern documentation for the first time should have
learned how the introduction of the loader object allows to incorporate specialised
repositories. The obvious next step is then the [evens] pattern, that imposes a layered
structure on top of the Zypher framework and introduces event passing as a mechanism to
transfer results from lower layers to upper layers.

The [meta-meta-objects] pattern determines what loader should handle a given component or
anchor.

The loader plays an important role in the navigation template as described in the [navigation
template].

Other Catalogues

The messages defined in the contracts section participate in the template method pattern as
defined in [GammaEtAl'93] and [Pree'94]. To use the terminology of the latter, the
setContents method defined on component and the setValue method defined on
anchor is a hook method for an unspecified template method defined on loader. This is a
form of the 1:1 connection meta-pattern.

- 105 -

