
CHAPTER 7

Tailorability In An Open
Hypermedia Framework

This chapter introduces three meta-objects in the design
of the Zypher Open Hypermedia Framework —Path,
Session, and Hypertext— and one meta-meta-object
HypermediaContext.

Navigation (Path)

Presentation
(Session)

Storage
(Hypertext)

The introduction of the meta-objects is a necessary step
to introduce tailorability in the design space for
hypermedia systems, this way turning a interoperable
hypermedia system into a completely open hypermedia
system. A design space is delineated by three orthogonal
design axes, where each axis represents aspects
important for all hypermedia systems, namely navigation, presentation and storage. A
hypermedia system is then a three dimensional volume in that design space. The meta-objects
are chosen to represent one of these design axes (i.e. Path for the navigation axis, Session
for the presentation axis and Hypertext for the storage axis), while the meta-meta-object
(HypermediaContext) represents the axis system itself.

As such, the meta-objects are introduced as explicit representations for the framework
contracts that follow from the third of our framework design guidelines, stating that "Each
design space axis should correspond to a framework contract". The one meta-meta-object is
introduced as an explicit representation for the framework contract that followed from the
fourth of our framework design guidelines, stating that "The configuration of the design
space axes should correspond to a framework contract".

The purpose of these meta-levels is the following. The design patterns in the previous
chapters describe the base level of a hypermedia framework. This base level introduces
domain level tailorability, i.e. the ability to add points to an axis in the design space. The
introduction of the three meta-objects —Path, Session, Hypertext— extends the framework
with system level tailorability, i.e. the ability to change the behaviour of all points residing
on at least one axis in a uniform way. Finally, the introduction of the HypermediaContext
meta-meta-object extends the framework with configuration level tailorability, i.e. the ability
to change the relationship (in the mathematical sense of the world) between points residing in
different axes of the design space.

The three levels of tailorability are recapitulated in this chapter to emphasise on the different
roles they perform in the framework design.

- 115 -

Meta-objects: Introduce System Level
Tailorability

Intent
Provide an interface for plugging services that affect the global behaviour of
the hypermedia system.

Analysis
Because a hypermedia system encourages the exploration of information (i.e. see
[navigation]), the approach is a potential benefit for all computer applications that deal with
information. But it is impossible to build a hypermedia system that incorporates all
functionality required by all possible application domains. Therefore, a hypermedia system
designer requires a tailorable hypermedia framework that enables the installation of special
features needed for the application domain at hand.

In the case of the Zypher hypermedia framework, a hypermedia system designer may
assemble a hypermedia system for a particular application domain by creating specific
resolver-, editor-, loader-, anchor-, marker-, instantiation- and component classes and
glueing them all together. This corresponds with the notion of domain level tailorability.

Domain Level Tailorability

(The icon associated with this tailorability level is based on the puppet master metaphor
(see [puppet master metaphor]).

Domain level tailorability is the kind of tailorability needed to deliver a hypermedia
system for a specific application domain.

Domain level tailorability is achieved by extending the basic hypermedia framework
with domain specific classes. Creating such domain specific classes requires a great
deal of technical expertise about the software systems applied in the problem domain
but has little to do with the hypermedia system as such. One does not need to
understand the inner details of the hypermedia system to tailor the system. Note that
some classes, if written 'good', can be reused for different problem domains.

Typical usage of domain level tailorability in hypermedia systems would involve the
incorporation of new data formats, extra information presentation methods or supplementary
types of navigation techniques. Domain level tailorability corresponds with the addition of
extra points (or the modification of existing points) on the axes of the Zypher design space.

EXAMPLE

The Zypher framework documentation is stored in files or on a HTTP server. This
accounts for storage layer classes like the file and HTTP component and the file and
HTTP loaders. To manipulate this documentation using the Microsoft Word third party
application or the home cooked text editor and the HTML-browser, one must add
presentation layer classes like the Microsoft Word, HTML and Text instantiations and
editors. To allow navigation between documents, the navigation layer is equipped with

- 116 -

a range and value anchor; sensitive text and active bookmark markers and several URL
resolvers.

The various code and pattern browsers that inspect the design and implementation of
the framework fetch their information from the Smalltalk development environment
and a pattern fact base. This explains storage layer classes like the class, method and
pattern fact components and the Smalltalk and pattern loader. The browsers themselves
are assembled from pre-compiled parts like the list pane, the source code pane. The
navigation is made possible by index anchors, range anchors, menu markers, list
markers, Smalltalk markers, Smalltalk resolvers and pattern resolvers.

However, experience has shown that system designers are not satisfied with the potential of
domain level tailorability. Sometimes, it is necessary to suit the behaviour of the system to
satisfy certain requirements. This explains the notion of system level tailorability that allows
the hypermedia system designer to tailor the behaviour of the system itself.

System Level Tailorability

(The icon associated with this tailorability level is based on the puppet master metaphor
(see [puppet master metaphor]).

System level tailorability aims to deliver services that affect the global behaviour of the
system.

System level tailorability requires some knowledge about the internal architecture of the
hypermedia system. Services attained through system level tailorability can be applied
on different incarnations of the hypermedia framework: once we have implemented the
technique in one framework incarnation, it requires little effort to reuse the code in
other incarnations.

Typical examples of services that can be accomplished with system level tailorability
concurrency control (i.e. manage concurrent access to shared data), logging (i.e. maintaining
a log of navigation activities to provide backtracking features), caching (predict future
behaviour on the basis of registered activities), authority control (check whether the user of
the system has the privileges to see or modify information) and integrity control (control
operations to preserve the consistency of the system's data structures). All these examples
have in common that they change the behaviour of several modules in the system in a
uniform way. System level tailorability corresponds with wrapping uniform behaviour
around different points residing on an axis of the Zypher design space.

EXAMPLE

The Zypher hypermedia framework has been incarnated in a framework browser.
Currently, the framework browser targets the VisualWorks\Smalltalk development
environment documented using HTML and Microsoft Word. Porting the framework
browser to a framework written in another programming language, developed using
another development environment and documented with other documentation formats
needs domain level tailorability. Such a port would require the construction of some
specific classes and installing them in the framework. Writing such specific classes
requires knowledge about the particular development environment and documentation
applications involved.

On the other hand, a hypermedia system designer might decide to improve the general
behaviour of the hypermedia system. An example may be to let the hypermedia system
maintain a log of all navigation actions, which would allow the system to guide users
backtracking the trail they have followed. Also, to improve the speed of the
hypermedia system, one may want to manage a cache of recently accessed information
fragments. Likewise, before opening or modifying a certain information fragment, one
should be able to check whether the user is authorised to access that information. A
final example would be to implement integrity control services to maintain the

- 117 -

consistency of the hypermedia network in a distributed setting where multiple users
share information.

Both levels of tailorability are important to suit the behaviour of the system to specific needs.
However, since their aim is quite different, it is better to separate domain level tailorability
from system level tailorability. Not only the separation results in a clearer design, but it also
guides the software engineer when making the desired adjustments.

Problem
How can one make the domain level and system level functionality explicit, yet separate, in
the design ?

Solution
Domain level functionality is already furnished with the classes and interfaces specified in
[resolver], [editor], [loader]. What is left implicit are the contracts between the different
classes and that is precisely where the system behaviour is specified. So, to tailor the system
behaviour one must represent those contracts explicitly.

Refer to the explicit contract representations as meta-level objects, which separates them
from the participants in the contracts called base level objects. Rather than execute the
contracts themselves, base level objects request the meta-objects to control the execution.

Have one meta-object for each axis in the design space, to attain a transparent design. Call
Path the meta-object for the navigation layer, Session the meta-object for the presentation
layer and Hypertext the meta-object for the storage layer.

Contract
a) Meta-object Protocol - Navigation

Marker

activateOn (instantiation)
createdMarkerOn (instantiation)
releasedMarkerOn (instantiation)

Instantiation

enumerateMarkers ()
validMarker (marker)
activatedMarker (marker)

Anchor

activateOn (component)
createdAnchorOn (component)
releasedAnchorOn (component)

Component

enumerateAnchors ()
validAnchor (anchor)
activatedAnchor (anchor)

Resolver

resolveAnchorComponent
 (anchor, component)
createdAnchorOn (anchor, component)
releasedAnchorOn (anchor, component)

Path

activateMarkerOn (marker, instantiation)
activateAnchorOn (anchor, component)

enumerateMarkersFor (instantiation)
validMarkerFor (marker, instantiation)
enumerateAnchorsFor (component)
validAnchorFor (anchor, component)
createAnchorOn (anchor, component)
releaseAnchorOn (anchor, component)

installedResolvers ()

META OBJECT

- 118 -

(See [class diagrams] for a short survey of the main elements in a class diagram)

Instantiation

All instantiations must delegate the enumerateMarkers and validMarker
messages to the global Path object by means of the enumerateMarkersFor and
validMarkerFor messages, but are allowed to perform additional operations. All
instantiations implement an activatedMarker message sent by the global Path
object when a navigation action on that particular instantiation was finished.

Marker

All markers must delegate the activateOn message to the global Path object by
means of the activateMarkerOn message, but are allowed to perform additional
operations. All markers implement the createdMarkerOn, releasedMarkerOn
messages sent by the Path object to notify that the aggregation relation between an
instantiation and a marker has been altered.

Component

All components must delegate the enumerateAnchors and validAnchor
messages to the global Path object by means of the enumerateAnchorsFor and
validAnchorFor messages, but are allowed to perform additional operations. All
components implement an activatedAnchor message sent by the global Path
object when a navigation action on that particular component was finished.

Anchor

All anchors must delegate the activateOn message to the global Path object by
means of the activateAnchorOn message, but are allowed to perform additional
operations. All anchors implement the createdAnchorOn, releasedAnchorOn
messages sent by the Path object to notify that the aggregation relation between a
component and an anchor has been altered.

Resolver

All resolvers implement a resolveAnchorComponent message sent by the global
Path object to request for the determination of the target of a navigation operation. See
[meta-meta-objects ~ contracts] and [navigation template ~ contracts] for further
details.

All resolvers implement the createdAnchorOn, releasedAnchorOn messages
sent by the Path object to notify that the aggregation relation between a component and
an anchor has been altered.

Path

There is exactly one Path object for each hypermedia system.

The Path implements an activateMarkerOn message as delegated by the marker
object. This implementation must send an activatedMarker message to the
instantiation associated with that marker; the implementation must finish with an
activateOn message to the associated anchor (with the associated component as
parameter).
The Path implements an activateAnchorOn message as delegated by the anchor
object. This implementation must send an activatedAnchor message to the
component associated with that anchor and an resolveAnchorComponent
message to the associated resolver. See [meta-meta-objects ~ contracts] and [navigation
template ~ contracts] for further details.

The Path is responsible for the maintenance of the aggregation relation between a
component (instantiation) and an anchor (marker). For this purpose, the Path

- 119 -

implements enumerateMarkersFor, validMarkerFor,
enumerateAnchorsFor and validAnchorFor messages as delegated by the
instantiation or component objects. The Path implements createAnchorOn and
releaseAnchorOn message sent by any object that wants to alter the aggregation
relation between an instantiation and a marker. The implementation must notify the
anchor and resolver by means of the createdAnchorOn, releasedAnchorOn
messages; the implementation must notify the marker by means of the
createdMarkerOn, releasedMarkerOn messages.

Path / Resolver aggregation

For the navigation layer, the Path is an aggregation of resolvers. This should be
interpreted that, at a certain moment, the Path contains a number of (zero or more)
resolvers. The aggregation is allowed to vary over time. A Path implements the
installedResolvers method to enumerate all the resolvers in the aggregation.

- 120 -

b) Meta-object Protocol - Presentation

Marker

highlightOn (instantiation)
selectOn (instantiation)

updatedPresentation (instantiation)

Instantiation

edit ()

PresentationLayerObject

representationOf ()

createdOn (storageLayerObject)
releasedOn (storageLayerObject)

Editor

editInstantiation (instantiation)
highlightMarkerOn (marker, instantiation)
selectMarkerOn (marker, instantiation)

created (presentationLayerObject)
released (presentationLayerObject)
preAccessOf (presentationLayerObject)
postAccessOf (presentationLayerObject)
preChangeOf (presentationLayerObject)
postChangeOf (presentationLayerObject)

createdOn (pLayerObject, sLayerObject)
releasedOn (pLayerObject, sLayerObject)

AnchorComponent

StorageLayerObject

representationsFor ()

Session

editInstantiation (instantiation)
highlightMarkerOn (marker, instantiation)
selectMarkerOn (marker, instantiation)

preAccessOf (presentationLayerObject)
postAccessOf (presentationLayerObject)
preChangeOf (presentationLayerObject)
postChangeOf (presentationLayerObject)

representationOf (pLayerObject)
representationsFor (pLayerObject)

createFrom (storageLayerObject,
 presentationSpecification)
createOn (sLayerObject, pLayerObject)
releaseOf (sLayerObject, pLayerObject)

installedEditors ()

META OBJECT

(See [class diagrams] for a short survey of the main elements in a class diagram)

PresentationLayerObject

All markers and instantiations must delegate the representationOf message to the
global Session object by means of the representationOf message, but are
allowed to perform additional operations. All markers and instantiations implement the
createdOn, releasedOn messages sent by the Session object to notify that the
association between an instantiation (marker) and a component (anchor) has been
altered.

- 121 -

Instantiation

All instantiations must delegate the edit message to the global Session object by
means of the editInstantiation message, but are allowed to perform additional
operations.

Marker

All markers must delegate the highlightOn and selectOn messages to the global
Session object by means of the highlightMarkerOn and selectMarkerOn
messages, but are allowed to perform additional operations. All markers implement an
updatedPresentation message sent by the global Session object when an
instantiation associated with that marker has been altered.

StorageLayerObject

All anchors and components must delegate the representationsFor message to
the global Session object by means of the representationsFor messages, but are
allowed to perform additional operations.

Editor

All editors implement an editInstantiation message sent by the global Session
object to request for the presentation of an instantiation. All editors implement an
highlightMarkerOn message sent by the global Session object to request the
highlighting of a marker on an instantiation. All editors implement an
selectMarkerOn message sent by the global Session object to request for the
selection of a marker on an instantiation.

All editors implement the created, released messages sent by the Session object
to notify that a presentation layer object has been created or removed. All editors
implement the preAccessOf, preChangeOf, postAccessOf,
postChangeOf messages sent by the global Session object to notify that a
presentation layer object is about to be, or has been, accessed or changed.

All editors implement the createdOn, releasedOn messages sent by the Session
object to notify that the association between an instantiation (marker) and a component
(anchor) has been altered.

Session

There is exactly one Session object for each hypermedia system.

The Session implements an editInstantiation message as delegated by the
instantiation object; this implementation must send an editInstantiation
message to the associated editor. The Session implements the highlightMarkerOn
and selectMarkerOn messages as delegated by the marker object; these
implementations must send an highlightMarkerOn or selectMarkerOn
message to the associated editor.

The Session implements the preAccessOf, preChangeOf, postAccessOf,
postChangeOf messages as delegated by all presentation layer objects before or
after any access or change. The implementations for the preAccessOf,
preChangeOf, postAccessOf and postChangeOf messages must notify the
associated editor by means of the corresponding messages.

The Session is responsible for the maintenance of the 1-to-many association between a
storage layer object (component or anchor) and a presentation layer object (instantiation
or marker). For this purpose, the Session implements the representationOf and
representationsFor messages as delegated by the instantiation or component
objects. Also, the Session implements the createOn and releaseOf messages

- 122 -

sent by any object that wants to alter the 1-to-many association between a component
(anchor) and an instantiation (marker). The implementation must notify the
instantiation (marker) and the editor by means of the createdOn, releasedOn
messages.

The Session implements the createFrom message that creates a presentation layer
object from a given storage layer object and a presentation specification. When the
presentation object is created, it is associated with the storage layer object by means of
the createOn message. See [meta-meta-objects ~ contracts].

Session / Editor aggregation

For the presentation layer, the Session is an aggregation of editors. This should be
interpreted that, at a certain moment, the Session contains a number of (zero or more)
editors. The aggregation is allowed to vary over time. A Session implements the
installedEditors method to enumerate all the resolvers in the aggregation.

c) Meta-object Protocol - Storage

Marker

updatedStorage (anchor)

Instantiation

updatedStorage (component)

PresentationLayerObject

Loader

created (storageLayerObject)
released (storageLayerObject)
preAccessOf (storageLayerObject)
postAccessOf (storageLayerObject)
preChangeOf (storageLayerObject)
postChangeOf (storageLayerObject)

Anchor

valueOn (component)
setValue (anyObject)
updatedStorage (component)

Component

contents ()
setContents (anyObject)

StorageLayerObject

Hypertext

createFrom (storageSpecification)
released (storageLayerObject)
preAccessOf (storageLayerObject)
postAccessOf (storageLayerObject)
preChangeOf (storageLayerObject)
postChangeOf (storageLayerObject)

enumerateStorageObjects ()

installedLoaders ()

META OBJECT

Resolver

createdStorage (storageLayerObject)
updatedStorage (storageLayerObject)
releasedStorage (storageLayerObject)

(See [class diagrams] for a short survey of the main elements in a class diagram)

- 123 -

Instantiation

All instantiations implement an updatedStorage message sent by the global
Hypertext object when a component associated with that instantiation has been altered.

Marker

All markers implement an updatedStorage message sent by the global Hypertext
object when an anchor associated with that marker has been altered.

Component

All components implement a setContents message sent by the associated loader
when loading the contents of the component. All components implement a contents
message sent by whatever object that needs the contents of the component; the returned
value is based on the value set by the setContents message.

Anchor

All anchors implement a setValue message sent by the associated loader when
loading the value of the anchor; this value is completely independent of the associated
component. All anchors implement a valueOn message sent by whatever object that
needs the value of the anchor on a certain component; the returned value is based on
the value set by the setValue message.

All anchors implement an updatedStorage message sent by the global Hypertext
object when a component associated with that anchor has been altered.

Resolver

All resolvers implement the createdStorage, updatedStorage and
releasedStorage messages sent by the Hypertext object to notify that a storage
layer object has been altered.

Loader

All loaders implement the created, released messages sent by the Hypertext
object to notify that a storage layer object has been created or removed. All loaders
implement the preAccessOf, preChangeOf, postAccessOf,
postChangeOf messages sent by the global Hypertext object to notify that a storage
layer object is about to be, or has been, accessed or changed.

Hypertext

There is exactly one Hypertext object for each hypermedia system.

The Hypertext implements the preAccessOf, preChangeOf, postAccessOf,
postChangeOf messages as delegated by all storage layer objects before or after any
access or change. The implementations for the preAccessOf, preChangeOf,
postAccessOf and postChangeOf messages must notify the associated loader by
means of the corresponding messages. All resolvers must be notified after changes by
means of the updatedStorage message.

The Hypertext implements the createFrom message that creates a storage layer
object from a given storage specification. The Hypertext implements a release
message sent by whatever object that wants to remove a storage layer object. The
implementation must notify the associated loader by means of the created and
released messages. All resolvers must be notified by means of the
createdStorage and releasedStorage messages. See [meta-meta-objects ~
contracts] and [navigation ~ contracts] for further details.

- 124 -

The Hypertext implements the enumerateStorageObjects message to
enumerate all existing component or anchors.

Hypertext / Loader aggregation

For the storage layer, the Hypertext is an aggregation of loaders. This should be
interpreted that, at a certain moment, the Hypertext contains a number of (zero or
more) loaders. The aggregation is allowed to vary over time. A Session implements the
installedLoaders method to enumerate all the resolvers in the aggregation.

Motivation
The motivation to introduce meta-objects (with a corresponding meta-object protocol) into
the design of the system was to attain system level tailorability. We chose as meta-objects the
explicit representation of the contracts between the base level objects. Why does this choice
allow us to provide system level tailorability ?

a) Behaviour

Typical examples of services that must be accomplished with system level tailorability are
things like logging (maintaining a log of certain activities to provide backtracking features),
authority control (check whether the user of the system has the privileges to do certain
operations) and caching (predict future behaviour on the basis of registered activities). Such
functionality is primarily concerned with the behaviour of the system, which is in some
sense orthogonal to the base level functionality. To tailor the system behaviour one wants to
control all occurrences of a particular message that is being sent, regardless of the objects
involved.

The messages that matter in the design are specified in the static part of the contracts (i.e. the
interface of the different classes), thus part of the design. However, the dynamic part of the
contracts (i.e. the decision when a certain message is sent) is delegated to the implementation
and it is precisely the dynamic part of the contracts that determines the behaviour. So, if the
dynamic part of the contracts is delegated to the implementation, one must verify all classes
that may send or receive an important message to control all occurrences of that message. On
the contrary, if we create meta-objects that control the dynamic parts of the contracts, all
occurrences of important messages are funnelled through a single meta-object, independent
of the participants involved. To control the system behaviour, only the single funnelling
point in the meta-object must be observed.

EXAMPLE

To implement a backtrack function on the trail of all activated navigation sources one
must log all occurrences of the activateOn message sent to markers. Without the
Path meta-object, this means that one must adjust all the implementation of all
activateOn messages in all the marker classes, or that one must adjust the
implementation of all editor classes that sent the activateOn message. With the Path
meta-object, it suffices to adjust the implementation of the activateMarkerOn
message in the sole Path meta-object that exists in the hypermedia system.

To incorporate authority control without the Session meta-object, one must adjust all
implementations of all edit messages in all instantiation classes or adjust methods
that send the edit message. With the presence of the Session meta-object, one can do
with an adjustment of the editInstantiation method in the sole Session meta-
object.

A possible technique to speed up the response time of the system, is to maintain a
cache of all recently accessed components. Without the Hypertext meta-object, if one
wants to detect what components have been accessed recently, one must adjust all
implementations of all contents messages in all component classes or adjust all
implementations of preAccessOf (or postAccessOf) messages in all loader

- 125 -

classes. With the presence of the Hypertext meta-object, it is sufficient to adjust the
implementation of the preAccessOf (or postAccessOf) message in the sole
Hypertext meta-object that exists in the hypermedia system.

b) Structure

Contracts include, besides a static (i.e. the messages understood by a given class) and a
dynamic part (i.e. the decision when a certain message is sent) also a structural part (i.e.
establish associations between objects). Along with making the dynamic part of the contracts
explicit, the meta-objects do control the structural parts. This suggests that besides the
behaviour level, there exists system tailorability on the structural level as well. Indeed,
services like integrity control depend largely on the possibility to verify all operations
modifying the structure. Again, if all such operations are funnelled through a single meta-
object, it is much easier to verify than if such operations are spread over all the classes of the
system.

EXAMPLE

In a shared and distributed hypermedia system, one needs a concurrency control
mechanism to maintain the consistency of single information fragments. Without the
Hypertext meta-object, this implies that all implementations of all contents,
setContents, valueOn and setValue messages (or all the methods sending
these messages) must be adapted. With the Hypertext meta-object, it suffices to adjust
the implementation of the created, released, preAccessOf,
postAccessOf, preChangeOf and postChangeOf messages in the sole
Hypertext meta-object that exists in the hypermedia system.

To maintain the consistency of the navigation network, one should be able to adapt the
system's data structures when a component or an anchor is deleted. Without the
Hypertext meta-object, one must adapt all implementations of all released messages
on all loaders. With the Hypertext meta-object, one can do with a modification on the
sole Hypertext meta-object that exists in the hypermedia system.

c) Multiple Inheritance

Often, people point out that multiple inheritance may provide solutions for the problems
sketched above. This is not entirely correct, as multiple inheritance should be considered an
implementation issue and not a design issue.

It is true that if we want to adapt all occurrences of a particular message, we can create a so-
called mixin class that includes that message in its interface and provides the necessary extra
functionality in the implementation. However, this mixin class must be included in the
multiple inheritance hierarchy and then there are two cases to consider. The first case a)
excludes the possible existence of a mixin class from the design. This implies that we are
obliged to adapt all the classes of the system that do implement this message: for each of
these classes, we must include the mixin class in the super class chain. Moreover, the
exclusion of the mixin classes from the design, implies that subclasses are not forced to
forward the message to their super, so for each of the classes we must check whether the
implementation of the message forwards to the super. The second case b) includes the
existence of such mixin class in the design of the framework. However, such a mixin class
is then a meta-object since it made a part of the contract explicit. Case a) leads to the
conclusion that if the possibility of multiple inheritance is not included in the design there are
no benefits to expect, as software engineers still are forced to adapt all existing classes. Case
b) implies that including multiple inheritance in the design is equivalent to the definition of
meta-objects.

- 126 -

Issues
Naming

Meta-objects are abstract: they do not have a concrete representation in the problem domain
for which the system was designed. As a consequence, choosing names for meta-objects is
hard. One option is to use the name 'X meta-object', where X is the name of an aspect in the
base level. This quickly leads to very long names unworkable in practice (i.e. navigation
layer meta-object, presentation layer meta-object, storage layer meta-object). We have chosen
the other option and have chosen short names, based on existing data models in the
hypermedia research field. The Dexter model [Halasz,Schwartz'90], furnished the
'Hypertext' and 'Session' names because these objects are responsible for the management
of the storage and presentation layer respectively. The name 'Path', stems from the work of
Zellweger [Zellweger'89].

Why is this 'Meta' ?

There is an important question that still needs an answer: why is this called 'meta' ? What
makes this different from usual software design ? What is so special about this abstraction ?

The term meta is generally connoted with the notion of reflection, i.e. the ability of a system
to inspect and modify representations of its own activities. Reflection is an intriguing idea
—certainly within computer science— but is mostly considered an academic issue.
Reflection has been studied in the area of artificial intelligence and the design of computer
languages for quite a long time now (i.e. [Maes'87], [Kiczales,Rivières,Bobrow'91],
[Steyaert'94]). There, it has been shown that reflection eases extensibility (i.e. define a small
and fixed kernel language and use that kernel to extend the language expressiveness),
compatibility (i.e. backward compatibility with older definitions of the language) and
efficiency (i.e. differ the implementation strategy to optimise behaviour). Moreover, since a
reflective system is able to monitor its own activities, powerful tools like debuggers and code
optimisers can be constructed more comfortably.

Recently the idea has been applied on the design of systems other than programming
languages (i.e. [Rao'91]), leading to what has been called implementational reflection (or
sometimes open implementations). A system with implementational reflection is able to
inspect and/or change the implementational structures of its subsystems. Implementational
reflection does not directly provide solutions for the problem domain the system has been
designed for, but it does contribute to the internal organisation and the external interface of
that system. This suggests that what we have been calling system level tailorability is indeed
a feature that can be attained with implementational reflection.

To explain why the funnel objects make the hypermedia system a reflective one, we turn to
the definitions found in [Maes'87]. There, a reflective system is defined as a system which is
about itself in a causally connected way. We elaborate on the three main ideas in this
definition (i.e. system, about-ness and causal connection) to make things more precise. A
' system' is software running on a computer with the intention to answer questions about
and/or support actions in some domain. A system incorporates internal structures
representing its domain, that is why a system is said to be 'about' its domain. A system is
said to be 'causally connected' to its domain if the internal structures and the domain they
represent are linked in such a way that if one of them changes, this leads to a corresponding
effect on the other. In an object-oriented implementation of a system, the parts of the system
that represent causally connected internal structures belong to the meta-level, hence are called
meta-objects.

The definition of causal connection implies that a causally connected system may cause
changes in the problem domain by a mere change in the internal representation of that
problem domain. As a consequence (since a reflective system incorporates structures that are
causally connected to itself) a reflective system can modify itself by changing its internal
representation.

- 127 -

To argue why the funnel objects (i.e. Path, Session, Hypertext; see the [contracts] section)
defined in the previous sections are meta-objects, we must prove that these objects are (a)
about the hypermedia system in (b) a causally connected way. The proof follows from the
insight that the funnel objects are explicit representations of the contracts defined between the
objects on the base level. Indeed, the important messages are specified in the static part of the
contracts (i.e. the interface specified in [resolver], [editor], [loader]), thus part of the design.
However, without the funnel objects, the dynamic part of the contracts (i.e. the decision
when a certain message is sent) is delegated to the implementation and it is precisely the
dynamic part of the contracts that determines the system's behaviour. If the design is
extended with the specially created Path, Session and Hypertext objects, the dynamic parts
of the contracts are explicitly available, since all occurrences of all important messages arrive
at, or originate from such funnel objects. Knowing that the specially created Path, Session
and Hypertext objects are representations of the dynamic parts of the contracts between the
base level objects —specifying how the system should behave under certain conditions— ,
they are by definition 'about' the system. Moreover, they are an explicit representation of the
contracts, which makes them 'causally connected' to the system. Changing the
implementation of a funnel object has immediate effect on the subsequent behaviour of the
system. And since the only legal way to change a framework's design is to change its
contracts, we can be sure that changing the implementation of the funnel objects is the only
way to change the general behaviour of the system.

The Meta-Linguistic Abstraction View

When dealing with meta-levels and reflection, it is important to note that there are other
possibilities to look at reflection than the system view we applied in the above
argumentation. Probably, the most popular one is the meta-linguistic abstraction view,
among others expressed in [Abelson,Sussman'84]. The meta-linguistic abstraction view
starts from the assumption that, for all computer programs, there exists some kind of a
descriptive language used to express problems on some level of abstraction. An evaluator is
then a computer program that —when applied to an expression of that language— performs
the actions required to realise the meaning of that expression; such an evaluator is called a
meta-system. If the evaluator is tailorable by the software engineer using the descriptive
language, then it is possible to control the actions realising the expression and we have
already seen that this eases the implementation of many useful system services.

The meta-linguistic abstraction view works very well in the domain of programming
languages, because there the notions of 'language' and 'evaluator' have a concrete
counterpart in the problem domain. Although it is not hard to regard any program as the
evaluator of some language, it is much harder to draw a clear line between the 'language' and
the 'evaluator' in typical software systems. Certainly, if one looks at the internal architecture
of an object-oriented software system, it is almost impossible to define objective criteria that
help in judging whether a given object is part of the base level or the meta-level. This is
largely because the meta-linguistic abstraction view requires that one must identify the
language before it is possible to distinguish the evaluator. In almost all problem domains,
there is no well specified language available, or —even worse— there are several degrees of
languages possible. We prefer the system view on meta-systems, because the definition of a
meta-system is based on 'about-ness' and 'causal connection', properties much easier to
recognise in typical application domains than 'language' and 'evaluator'.

EXAMPLE

In the problem domain of open hypermedia systems, several languages (in the meta-
linguistic sense of the word) manifest themselves. There are command languages to
instruct viewer applications and repositories to perform the necessary actions; the
algorithms that determine the navigation relations are specified in some language as
well. So the editor, loader and resolver objects in the Zypher frameworks can be seen
as meta-objects interpreting languages formed by component-anchor-instantiation-
marker structures. On the other hand, when an editor has detected a mouse click on a
sensitive region, it requests the marker to interpret the event and perform the necessary

- 128 -

actions. So the marker can be seen as an interpreter for the editor-marker-instantiation
structure. Also, loaders may detect that some information has been modified in the
repository and request a component and the associated anchors to update their contents:
then the component and anchor play the role of interpreters for the loader object. The
same applies for resolvers discovering disabled navigation endpoints: they may request
the anchors to disable themselves, in which case the anchor objects interpret resolver
messages.

Consequences
There is an important question left unanswered here, and that is why there should only be
one instance for each Path, Session and Hypertext object ? We postpone the answer to this
question until [navigation template].

Relations
Where To Go Next ?

∇ People reading the Zypher design pattern documentation for the first time should have
learned about the meta-object protocol in the Zypher framework and how this allows for
system level tailorability. The obvious next step is then the [meta-meta-objects] pattern, that
provides an interface for configure the modules of the hypermedia system.

Other Catalogues

The Path, Session and Hypertext meta-objects have much in common with the Strategy
pattern as defined in [GammaEtAl'93], p.315-323. The strategy pattern is designed to
encapsulate each member of a family of algorithms, and makes them interchangeable for the
clients that use them. From this perspective, the resolver, editor and loader objects can be
seen as three different families of algorithms, while the anchor, component, instantiation and
marker objects are the clients that use them. The Path, Session and Hypertext meta-objects
then participate in the strategy pattern playing the role of the context, in the sense that they
dispatch the client calls to the appropriate strategy object. As a consequence, the meta-objects
offer the same degree of interchangeability as does the strategy pattern. However, the role of
the meta-objects is slightly different from the role the context plays in the design pattern.
Meta-objects are not supposed to provide another (higher level) interface for the algorithms
defined in the strategy objects, as is implicitly assumed by the strategy pattern. In fact, the
interfaces of the meta-objects and the base level objects should overlap as much as possible,
as it is the primary role of the meta-object to provide a funnelling point, while the primary
role of the context object in the strategy pattern is to dispatch client calls. Note that the
strategy pattern is vague about the way the context object chooses the appropriate strategy.
For meta-objects this decision is controlled by the meta-meta-object.

- 129 -

Meta-meta-objects: Configuration
Level Tailorability

Intent
Provide an interface to configure the modules of the hypermedia system.

Analysis
Zypher is a modular hypermedia framework. To construct a hypermedia
system, the system designer assembles the necessary base level objects and controls their
behaviour using the meta-level objects (see [meta-objects]). The base level objects are
instances of classes installed in the system.

The modularity property is best illustrated with the
Zypher design space [figure 22], which consists of
three orthogonal design axes. The storage axis
enumerates all possible repositories that may be
incorporated; the presentation axis enumerates all
possible viewer applications that can be applied to
manipulate a particular information fragment and the
navigation axis enumerates all algorithms that
determine the navigation relationships. A
hypermedia system constructed with Zypher is the
sum of the classes installed in the different axes; so a
hypermedia system covers a three-dimensional cube

Navigation

Presentation

Storage

Figure 22: Zypher design space
within the Zypher design space10 .

A particular hypermedia system is created by a hypermedia system designer through the
installation of classes. At run-time those classes produce objects that are assembled in
various configurations to exhibit the desired behaviour. To achieve a maximum of flexibility,
the configuration of the objects should not depend on the implementation of the classes.
Then the system's configuration is able to vary according to the system's context, the classes
installed, the preference settings, … .

EXAMPLE

An example that illustrates the configurability principle is the interpretation of the URL
(universal resource locator) format for anchors as defined in the HTML-specification
(see [Berners-LeeEtAl'94]). HTML-documents embed the addresses of navigation
targets in their documents using the URL format and the same technique may be
applied for the Microsoft Word documents containing design pattern documentation.

10 Actually, the arrangement of the Zypher design space (see [figure @@]) is a little misleading. The three
axes of the design space are not perfectly orthogonal: some of the modules installed in one axis will not
support all of the modules in all other axes. This means that a hypermedia system constructed with
Zypher is not a Cartesian product but a relation —in the mathematical sense of the word— between
modules installed in the different orthogonal axes.

- 130 -

The URL format is open in the sense that it is prefixed by a keyword identifying the
target address space, followed by the actual address in a format depending on the
keyword prefix. So, the list of interpretable keywords delimits the linking potential of
the hypermedia system. A configurable hypermedia system allows to extend the list of
interpretable keywords without affecting the implementation of the classes dealing with
the resolution, loading and presentation of information stored in a particular URL
address space.

Another example is about the system's configuration across platforms. Framework
documentation is organised as a collection of design patterns stored in files and
displayed with different viewer application (i.e. a HTML-browser and the Microsoft
Word applications). This situation has two important consequences: some viewer
applications are not be available on all platforms (i.e. the Microsoft Word application is
not available on UNIX platforms) and some viewer applications are preferable over
others (i.e. usually the Microsoft Word viewer application is preferred over the
HTML-browser, although some users may express other preferences). So, the
determination of the optimum configuration, must be based on the underlying hard-
and software platform and the state of particular user preferences. A configurable
hypermedia system allows system designers to influence this determination process,
without modifying the implementation of the participating classes.

To provide such configurability, the hypermedia system designer should be able to influence
the system decision on which class to use in what occasion. This implies a third level of
tailorability besides the previously discussed domain tailorability and system tailorability (see
[meta-objects]).

Configuration Level

(The icon associated with this tailorability level is based on the puppet master metaphor
(see [puppet master metaphor]).

Configuration level tailorability aims to provide a 'plug and play' system, where the
coordination between the system modules is adapted without changing their internal
implementation.

Configuration level tailorability requires a deep knowledge about the internal
architecture of the hypermedia system; however technical details about individual
modules do not matter.

Typical usage of configuration level tailorability is to make the system run-time extensible.
For instance, the table of helper applications in most world-wide web browsers, where users
can associate a viewer application with a given document type is about the configuration
between the storage and presentation axis. The Java approach [Java'95] is another example,
where world-wide web browsers load system modules for handling unknown document
formats. The final example is protocol negotiation, where system modules communicate to
choose the optimal protocol for exchanging data; protocol negotiation is valuable in cross-
platform communication. Configuration level tailorability corresponds with changing the
relationship (in the mathematical sense of the word) between the points on the axes in the
Zypher design space.

The three levels of tailorability are important to suit the behaviour of the system to particular
needs. However, to attain a clear design, it is better to provide a different interface for all
levels of tailorability.

Problem
How can one make the notion of configuration level tailorability explicit —yet separate— in
the design ?

- 131 -

Solution
Elsewhere (see [meta-objects]) we have shown that system level tailorability is achieved by
the introduction of meta-level objects, i.e. explicit representations of the contracts between
base level objects. Those meta-objects are defined as objects controlling all operations
concerning a particular axis in the Zypher design space (i.e. Path for the navigation axis,
Session for the presentation axis and Hypertext for the storage axis). As we can expect from
this definition, there are more operations defined on meta-objects, as the ones that follow
from funnelling base level operations. A quick look at the design with the meta-level objects
(see [meta-objects ~ structure], [meta-objects ~ contracts]) learns that the introduction of the
meta-objects adds operations for the maintenance of the aggregation relationships Path-
Resolver, Session-Editor and Hypertext-Loader (i.e. installedResolvers,
installedEditors, installedLoaders). The role of these aggregation
relationships is to specify what kind of resolvers, loaders and editors are installed in the
hypermedia system, which corresponds to the management of the available peripheral
systems.

Also, the contracts on the meta-objects include operations to create, query and release
associations between objects (StorageLayerObject - PresentationLayerObject in Session;
Instantiation - Marker and Component - Anchor in Path) plus relations between objects and
peripheral objects (PresentationLayerObject - Editor in Session; StorageLayerObject - Loader
in Hypertext; Anchor - Resolver in Path). The role of these operations is to govern the
connections between the internal elements of the hypermedia system and to control the links
with the outside world.

Moreover, if the meta-objects must control all operations concerning a particular layer, then
the meta-objects must supervise the creation of potential objects constituting the running
hypermedia system. This implies that the contracts for those meta-objects must include
aggregation relationships specifying the available classes that create the actual objects (i.e.
Hypertext - ComponentClass, Hypertext - AnchorClass, Session - InstantiationClass,
Session - MarkerClass). These aggregation relationships manage the classes that produce the
objects that establish the actual system and are depicted in [meta-meta-objects ~ contracts].

The previous paragraphs give short descriptions of the contracts introduced by the meta-level
objects (see also [meta-objects ~ structure] and [meta-objects ~ contracts]) showing that
—besides funnelling the navigation, presentation and storage layer operations— the meta-
objects do implement the configuration of the hypermedia system. However, the
implementation of these configuration messages is not made explicit in the design, which
suggests that an explicit representation of the contracts defined on meta-level objects leads to
the required configuration level tailorability.

Call the explicit representation of contracts between meta-objects a meta-meta-object. Have a
single meta-meta-object for each hypermedia system and call it the HypermediaContext.

- 132 -

Contract

Path

determineResolverFor (anchor, comp)

META OBJECT Resolver

name ()

HypermediaContext

determineResolverFor (value, compCl)

determineEditorFor (presentationClass)
determinePresentationClassFor (storageClass,
 presentationSpec)

determineLoaderFor (storageClass)
determineStorageClassFor (storageSpec)

META META
OBJECT

ComponentClass

AnchorClass

MarkerClass

InstantiationClass

Class

makeInstance()
name ()

Session

interpretComponentAndPSpec
 (component, presentationSpec)
interpretAnchorAndPSpec
 (anchor, presentationSpec)

determineEditorFor (playerObject)

META OBJECT

Hypertext

interpretComponentSpec (compSpec)
interpretAnchorSpec (anchorSpec)

determineLoaderFor (slayerObject)

META OBJECT

Editor

name ()

Loader

name ()

(See [class diagrams] for a short survey of the main elements in a class diagram)

Path

The Path contains a number of resolvers accessible by name. The Path is installed in
the global HypermediaContext.

Each Path implements a determineResolverFor message (accepting an anchor
and a component as parameter). Each Path must use this message in the
implementation of the activateAnchorOn message to determine the resolver to
apply. The implementation of the determineResolverFor message must forward
the message (with the value of the anchor and the class name of the component as
parameters) to the global HypermediaContext object to request for the name of the
resolver.

- 133 -

Session

The Session contains a number of editors, instantiation classes and marker classes
accessible by name. The Session is installed in the global HypermediaContext.

Each Session implements an interpretComponentAndPSpec (accepting a
component and a presentation specifier as parameters) and an
interpretAnchorAndPSpec (accepting an anchor and a presentation specifier as
parameters) used to create an instantiation or marker object. Each Session must use this
message in the implementation of the createFrom message to create the actual
object. The implementation of the interpretComponentAndPSpec and
interpretAnchorAndPSpec messages must send a
determinePresentationClassFor (with the class name of the storage layer
object and the presentation specifier as parameter) to the global HypermediaContext
object to request for the name of the class.

Each Session implements a determineEditorFor message (accepting a
presentation layer object as parameter). Each Session must use this message in the
implementation of the editInstantiation, highlightMarkerOn,
selectMarkerOn, preAccessOf, postAccessOf, preChangeOf,
postChangeOf messages to determine the editor to apply. The implementation of the
determineEditorFor message must forward the message (with the class name of
the presentation layer object as parameter) to the global HypermediaContext object to
request for the name of the editor.

Hypertext

The Hypertext contains a number of loaders, component classes and anchor classes
accessible by name. A Hypertext is installed in the global HypermediaContext.

Each Hypertext implements an interpretComponentSpec (accepting a
component specifier as parameter) and an interpretAnchorSpec (accepting an
anchor specifier as parameter) used to create a component or anchor object. Each
Session must use this message in the implementation of the createFrom message to
create the actual object. The implementation of the interpretComponentSpec
and the interpretAnchorSpec messages must send a
determineStorageClassFor message (with the component specifier or anchor
specifier as parameter) to the global HypermediaContext object to request for the name
of the class.

Each Hypertext implements a determineLoaderFor message (accepting a storage
layer object as parameter). Each Hypertext must use this message in the
implementation of the preAccessOf, postAccessOf, preChangeOf,
postChangeOf messages to determine the loader to apply. The implementation of
the determineLoaderFor message must forward the message (with the class
name of the storage layer object as parameter) to the global HypermediaContext object
to request for the name of the loader.

HypermediaContext

There is exactly one HypermediaContext object for each hypermedia system. A
HypermediaContext is associated with one Path, one Resolver and one Hypertext.

The HypermediaContext implements a determineResolverFor (accepting an
anchor value and the name of a component class as parameter) message as delegated by
the Path object; the implementation returns the name of an installed and active resolver.

The HypermediaContext implements a determineEditorFor (accepting the name
of an instantiation class or marker class as parameter) message as delegated by the
Session object; the implementation returns the name of an installed and active editor.

- 134 -

The HypermediaContext implements a determinePresentationClassFor
(accepting the name of a component class or anchor class and a presentation specifier
as parameter) message as delegated by the Session object; the implementation returns
the name of an instantiation or marker class.

The HypermediaContext implements a determineLoaderFor (accepting the name
of a component class or anchor class as parameter) message as delegated by the
Hypertext object; the implementation returns the name of an installed and active loader.
The HypermediaContext implements a determineStorageClassFor (accepting
component or anchor specifier as parameter) message as delegated by the Hypertext
object; the implementation returns the name of a component or anchor class.

Class (InstantiationClass, MarkerClass, ComponentClass, AnchorClass)

All classes implement a makeInstance message that returns a new instance of that
class. All classes implement a name message that returns a name that uniquely
identifies the class within the system.

Resolver, Editor, Loader

All resolvers, editors and loaders implement a name message that returns a name that
uniquely identifies the resolver, editor, loader within the system.

Motivation
The motivation to introduce a meta-meta-object (with a corresponding meta-meta-object
protocol) into the design of the system was to attain configuration level tailorability. We
chose as meta-meta-object the explicit representation of the contract defined on the meta-
objects. Why does this choice allow us to provide configuration level tailorability ?

a) Configuring Behavioural Objects

Within the base level objects defined elsewhere one may recognise two categories of objects.
Some of them are intended to provide building blocks for structuring aspects of information
(i.e. Component, Instantiation, Anchor and Marker); others intend to encapsulate algorithms,
behaviour and commands sets (i.e. Resolver, Editor, Loader). These categories stem from
decoupling structure and behaviour, which eases configurability and extensibility (see
[resolver ~ motivation], [editor ~ motivation], [loader ~ motivation]). Decoupling structure
from behaviour is known to be good practice in software design, so it is a recurring theme in
almost all frameworks.

When the design of a system decouples behaviour from structure, this implies that the
system's implementation must decide how and when the two must be joined. The processes
that implement this decision are crucial in the system's configuration, because attaching
behaviour to structure actually specifies how the system behaves under certain conditions.

Reviewing the design (i.e. [meta-objects ~ contract]) with this knowledge in mind, reveals
that there is one 'behavioural' object for each layer (i.e. Resolver for the Navigation Layer,
Editor for the Presentation Layer and Loader for the Storage layer). When funnelling base
level operations, the meta-objects (i.e. Path, Session and Hypertext) dispatch the structure
operations to the appropriate behavioural equivalent, thus the meta-objects implement at least
part of the system's configuration.

In design of the meta-level (see [meta-objects ~ contract]), we know what messages
implement the attachment of a behavioural object to a structure object. However, the decision
itself is not explicitly present in the design, which gets rectified in the meta-meta-layer (see
[meta-meta-objects ~ contract]) with the introduction of the determineResolverFor,
determineEditorFor, determineLoaderFor messages that consult the meta-meta-
object to determine the name of the appropriate behavioural object.

- 135 -

To conclude, the meta-meta-object is responsible for configuration level tailorability, because
it provides an explicit decision on what behavioural object interprets a given combination of
structure objects.

EXAMPLE

A good example of behavioural configuration is the interpretation of a keyword
identifying an URL address space. As described in the analysis section (see [meta-
meta-objects ~ analysis]) a configurable hypermedia system allows to extend the list of
interpretable keywords without affecting the implementation of the classes dealing with
the resolution, loading and presentation of information stored in a particular URL
address space. In the Zypher framework, the crucial decision is the mapping of the
keyword on the resolver that interprets the address. When the Path object is asked to
activate a given anchor on a given component (by means of the activateAnchorOn
message), the Path object must dispatch this message to the appropriate resolver. To
request for the name of the resolver, the Path sends the determineResolverFor
message (with the value of the anchor as parameter) to the HypermediaContext object.
This HypermediaContext object fetches the prefix keyword from the anchor value and
queries a look-up table to find a priority list of candidate resolvers. This priority list is
matched with the list of active resolvers to find the name of the active resolver with the
highest priority.

b) Configuring Structure

Having identified the difference between structural objects (i.e. Component, Instantiation,
Anchor and Marker) and behavioural objects (i.e. Resolver, Editor, Loader) we have seen
that the meta-meta-object is explicitly consulted when a behavioural object is associated with
a structural object. However, associating structure with behaviour is but one aspect of a
system's configuration — another important aspect is what structure should be created ?
What classes should be instantiated to create a structure that models to the situation in the
application domain ?

Just like in the behaviour/structure case, the design of the meta-level (see [meta-objects ~
contract]) includes messages that implement the decision which class to instantiate. The
decision itself is made explicit in the meta-meta-layer (see [meta-meta-objects ~ contract])
with the introduction of the interpretComponentAndPSpec,
interpretAnchorAndPSpec, interpretComponentSpec,
interpretAnchorSpec (see [meta-objects ~ contract]), messages that consult the meta-
meta-object to determine the name of the appropriate class.

So the second argument sustaining the viewpoint that the meta-meta-object implements
configuration level tailorability, is that it provides an explicit decision on what structure
objects are created to model the situation in the application domain.

EXAMPLE

An example of structural configuration is the decision on the component-instantiation
pair representing a particular design pattern document. A component representing a
design pattern document may be viewed by a Microsoft Word application or a HTML;
this should be viewed by

Issues
Why Meta-Meta ?

The HypermediaContext object belongs to a meta-level as it is an explicit representation of a
framework contract. However, since that framework contract is defined on the meta-level,
the HypermediaContext object is part of the meta-level of the meta-level of the framework,
hence the name meta-meta-object.

- 136 -

Consequences
There is an important question left unanswered here, and that is why there should only be
one instance of the central HypermediaContext object ? We postpone the answer to this
question until [navigation template].

Relations
Where To Go Next ?

∇ People reading the Zypher design pattern documentation for the first time should have
learned about the meta-object protocol in the Zypher framework and how this allows for
system level tailorability. The obvious next step is then the [meta-meta-objects] pattern, that
provides an interface for configure the modules of the hypermedia system.

Other Catalogues

The meta-level objects play the role of object factories in object-oriented frameworks. The
Session and Hypertext objects are abstract factories[GammaEtAl'93], p.87-95.

- 137 -

