Class-management using Logical Queries,

Application of a
Reflective User Interface Builder

Roel Wuyts

Programming Technology Lab
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
E-Mail : rwuyts@isl.vub.ac.be
Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

January 15, 1996

Abstract

Current browsers for object-oriented lan-
guages suffer from restricted query capabil-
ities that only allow for class-oriented views
on the classsystem. As a result, browsers are
very poor in providing support for software
engineering techniques that go beyond single
classes, like frameworks, contracts and design
patterns. This paper proposes the combina-
tion of a logical query language and user in-
terface components as a foundation for non
class-oriented, customizable browsers able to
support recent and future object-oriented soft-
ware engineering techniques. Validation of
this proposal is done by building browsers for
different domains in Smalltalk.

1 Introduction
Recent programming environments
use browsers to permit browsing and editing
of source code. Where in classic imperative
programming languages like Pascal a simple
editor suffices, object-oriented languages need
more sophisticated tools due to the scattering
of source-code all over the class-system. In
such systems, the browser is the key to unlock
the world of object-oriented programming.
Since software engineering techniques in
the past were essentially class-based, so were
browsers. The primary static relation between
classes, i.e. inheritance, was also supported.
However, recent techniques are shifting from
single classes to more elaborate relations be-
tween classes, for example frameworks, con-
tracts and design patterns [6, 5, 7, 9]. Cur-
rent class-based browsers fail to accommodate
these new insights, due to two problems. The

first is the lack of a sophisticated query system
that enables queries ranging over the whole
class-system. The second problem is the lack
of customizability of the queries and of the
user interface used to present their results.

To address the raised problems, this paper
proposes the use of a logic programming lan-
guage as query-mechanism for questioning the
class-system, and custom user interface com-
ponents for building the user interface. The
logic programming language enables strong
queries, and cannot only range over classes,
but over the full class-system including in-
stance and class variables, methods and user-
defined facts. It is also explicit, giving the
user the power of adding facts and rules, and
using own queries. The custom user interface
components are used as pre-fabricated build-
ing blocks that are easily adapted using a re-
flective user interface builder.

VisualWorks Smalltalk [4, 8] was used as the
programming environment for validating the
proposed mechanism. First, a logic program-
ming language was implemented to serve as
query language. Then the already existing re-
flective User Interface Builder ApplFLab was
used to build the custom user interface com-
ponents. Afterwards, several browsers were
constructed to browse classes and more com-
plicated structures.

This paper is organized as follows. The two
following sections will further introduce the
two basic concepts in more detail. The next
section is concerned with high-end customiz-
able browsers. The last topic covered before
the conclusion demonstrates the use of our
concepts in building a browser for the Bridge
design pattern.

2 The Logic Programming
Language

Logic programming languages are declarative
and multi-directional languages using logical
terms to express facts, rules and queries. Facts
and rules are used to write down information,
while the queries allow to question this infor-
mation. Using a logic programming language
to express queries has the advantage that, al-
though the queries are very powerful, the lan-

guage is easy to understand and use.
Implementations of logic programming lan-
guages use the SLD-resolution algorithm to
implement the inference mechanism that takes
care of handling the queries. More elaborate
information about use and implementations of
logic programming languages can be found in
[2, 10]. A small logic programming language
based on the approach used in [1] was imple-
mented in Smalltalk to use as query mecha-
nism. We will first give some example facts,
rules and queries that demonstrate the basic
functionality!. To begin with, we will add
facts for every class we want to take in account
by giving the name of the class, the name
of the superclass and an identifier (%classIn-

cluded%) :

Dictionary Object %classIncluded%

Collection Object %classIncluded%
OrderedCollection Collection %classIncluded%
MySpecialCollection OrderedCollection
Y%classIncluded%

This adding of facts is only necessary be-
cause of the decision that was taken to sep-
arate the logic programming language from
the Smalltalk class system. This separation
ensures the generality of the query language,
since 1t is not based on a specific language or
class-system. We will now write a very simple
rule to describe what a class is, and when a
class is a direct subclass :

isClass (7class) = ?class 7X %classIncluded%
isDirectSubclass (?class 7super) = 7?class 7super

%classIncluded%

In these rules, finding values for the vari-
ables simply comes down to matching pat-
terns. The next rule that describes a hierarchy
of classes is already more interesting :

inHierarchy(?root ?class) = isDirectSubclass (?root
?class) #for

(isDirectSubclass(?root ?class-super) #and inHierar-
chy(?root ?class-super))

This rule features inference, brackets, the
logical operators #and and #or and recur-
sion. Besides these facts concerning the class-
system itself, users are also able to add facts
specific for their situation, such as for example

MySpecialCollection author Mike

1a note concerning the notation : variables are di-

rectly preceded by a question mark, the logical opera-
tions are #or and #and

MySpecialCollection version 5 sub 8
MySpecialCollection not-tested

Having defined some facts and rules, it is
time to ask some queries. To get for example
a list of all the classes we can simply pose :

isClass(?X)

The different values for X will be the classes
present. Facts and rules can be also be com-

bined :

isDirectSubclass (OrderedCollection ?class) #and
?class author Mike

Given the facts present this query will re-

turn the name "MySpecialCollection’.

As can be seen, the implemented language
is rather classic. An exception is the feature
that makes it possible to use Smalltalk blocks
as a predicate for rules or queries. This 1s the
only place where Smalltalk can be used in the
logic programming language. Such use of a
Smalltalk block takes the form of

[[Smalltalk block] arguments]

the arguments being logical variables. To
demonstrate how a Smalltalk block could be
used as predicate, we make a rule for abstract
classes that states that a class is abstract if it
has at least one method that returns ’self sub-
classResponsibility’ (as is common practice in

the Smalltalk community) :

abstract(?abs) = isClass(?abs) #and [[:absName
((Smalltalk at: absName)
whichSelectorsReferTo:
isEmpty not] 7abs]

#subclassResponsibility)

Almost the same result could be accom-
plished by adding a fact and a rule of the form

name-of-class %abstract%
abstract(?abs) = isClass(7abs) #and ?abs %abstract%

The former formulation has the advantage
of being smaller, since in the latter facts need
to be supplied for every abstract class. How-
ever, the latter is more general for two reasons.
First of all, it is independent from Smalltalk
since it only uses logical facts and rules. Sec-
ondly the smalltalk block is just a predicate,
and thus serves only as a filter to reject some
elements and keep others.

The next section will introduce the custom
user interface components and the user inter-
face builder that is used to create and manip-
ulate these components, ApplFLab.

3 The User Interface

Components

The reflective user interface builder (UIB)
used is ApplFLab (Application Framework

Laboratory), a UIB based on Parcplace’s Vi-
sualWorks. Although the VisualWorks UIB is
a proven development tool that is well inte-
grated with the underlying Smalltalk develop-
ment environment, it lacks a profound mech-
anism for reusing user interface components
[12, 11]. ApplFLab provides this reuse abil-
ity through user interface components, appli-
cations in which part of the domain knowledge
has to be specified when the component is used
in an application. User interface components
can be nested, resulting in larger components
for which again specifications can be given.
Take for example an application that displays
a list, and then waits untill the user presses a
continue button beneath the list. Reusing this
application is fine, but not on an as-is basis :
it might be necessary to change the label of
the button to OK. ApplFLab provides user-
friendly tools that enable the programmer of
the user interface component to express that
the label of the button should be filled in when

the user uses the component.

For the tools and browsers described in the
next sections, two layers of components were
constructed. First, some base components
were made (lists, buttons, text fields and text
editors), based on existing VisualWorks com-
ponents, but with simple input/output behav-
ior making 1t easy to link components with
one another. More advanced components were
built using these base components, represent-
ing higher level reusable parts of browsers.
The most important of these components are
the QueryList, Classlist, MethodList and Ed-
itSpace. These components can be used as
prefabricated browser building blocks or can
be adapted to address more specific needs.

Using the basic components, tools were
build to add, change and remove facts, rules
and queries. Since these tools were con-
structed with the user interface components,
they can easily be adapted to the taste of the
user.

The next sections show the combination
with the logic programming language on two
domains. To begin with, class browsers are
made that are far more powerful than the
browsers that are standard provided, thus
showing the validity of the concept. After-
wards a browser for a design pattern is made,
showing how new programming techniques
can be supported by browsers using the com-
bination of logic query language and user in-
terface components.

4 Class Browsers

The first class browser built was a simulation
of the System Browser, which is a standard
tool in the VisualWorks Smalltalk environ-
ment that enables the programmer to have a
look at all the classes available, their definition
and their methods (see figure 1). This browser
can be simulated using only four queries and
five user interface components, thus showing

the generality of the concept.

Next a simple browser was build that en-
ables to walk through the class-system by ap-
plying queries, and includes a back-track fa-
cility (see figure 2). The facts and rules are
those used in the logic programming language
section. The idea is to provide a standard set
of facts, rules and queries, and let the user
extend or modify these, using the tools de-
scribed in the previous section to tailor the
functionality of the browser. One can think
of information concerning versions, authors or
frameworks. Customized queries can then im-
mediately be formulated and used, for exam-
ple

isClass (7class) #and abstract(?class) #and frame-
work(?class BrowserFramework)

that returns all the abstract classes in
the framework 'BrowserFramework’, given the
two rules abstract and framework that respec-
tively return whether 7class is abstract and
whether or not it belongs to a certain frame-
work.

The programmer is now able to paint a
browser using some of the browser user inter-
face components. The result is then a class-
oriented browser with customizable function-
ality - new facts, rules and queries can be
edited and applied - and customizable inter-
face.

To demonstrate the extendibility, the sim-
ple browser was extended to take methods into
account. This merely comes down to adding
facts of the form

class methodName %methodIncluded%
and some more rules

hasMethod(?class 7method) =

?class Tmethod %methodIncluded%

sameProtocol (?classl ?class2 ?methods) =
hasMethod

(?classl ?methods) #and hasMethod(?class2 ?meth-
ods)

This last rule can be used to compare meth-
ods from classes. This is very important in
method-oriented browsers to enable the com-
parison of protocols of classes.

Once the functionality is extended by sup-
plying facts, rules and queries that take meth-
ods into account the interface can be extended

with for example a MethodList component.
The resulting browser is depicted in figure 3.
The resulting browser demonstrates that
the customizability offered by combining our
explicit logic programming language and user
interface components i1s endless. Next sec-
tion will demonstrate this by constructing a
browser for the bridge design pattern.

5 Bridge Pattern Browser

Design patterns are solutions to common de-
sign problems that have evolved over time and
are elegant and well-designed [9, 3]. An ex-
ample is the bridge design pattern, that de-
scribes a system in which an abstraction is
decoupled from its implementation such that
both can vary independently. This gives rise
to a abstraction hierarchy, with as root the so
called ’abstraction class’, and a implementa-
tion hierarchy where the ‘implementor class’
is the root. The abstraction and implemen-
tor class are bridged by an aggregation re-
lation. This aggregation is the first part of
the bridge pattern, and can be implemented
in different ways : using an instance vari-
able, a dictionary with associations between
abstraction classes and implementor counter-
parts, or a global variable. For this different
implementations, different 'types’ of aggrega-
tion were defined : instance-variable, dictio-
nary and global-variable. The second part of
the bridge pattern is formed by the methods of
the abstraction class, the protocol. Methods
of this protocol are used on the implementor

side to implement operations.

Current programming environments pro-
vide almost no tools that support new pro-
gramming techniques like design patterns. To
demonstrate that a logic query language and
user interface components can be used to cre-
ate browsers that support such techniques, a
browser for the bridge pattern was build. As-
suming that we have the facts and rules of the
previous section, only one kind of fact is nec-
essary to obtain such browser, i.e. for each
bridge design pattern used we state the fol-
lowing :

BridgePattern Example Window Xwindow instance-
variable myReference

This fact defines a bridgePattern with name
Example, using Window as the abstraction
class, Xwindow as the implementor class, and
an aggregation of type instance-variable using
my Reference to do the reference. We can then
define some rules that facilitate working with
this fact :

allBridgePatterns (?bridge)
= BridgePattern 7bridge 7abstraction ?7implementor
?inst 7ref

bridgeParticipants (?bridge ?abstraction ?implemen-
tor) = BridgePattern ?bridge ?abstraction 7implemen-
tor 7inst 7ref

bridgeAggregation (7bridge ?inst ?ref) = BridgePat-
tern ?bridge 7abstraction 7implementor 7inst 7ref

We can now obtain the protocol of the
bridgepattern, the abstraction and implemen-
torhierarchies and the used reference types us-
ing following rules :

protocol (7bridge 7?prot) = bridgeParticipants
(?bridge ?abstraction ?implementor)
#and protocol (?abstraction ?prot)
abstractionHierarchy (?bridge ?absClass) =
bridgeParticipants (?bridge ?abstraction
?implementor) #and inHierarchy (?abstraction ?ab-
sClass)
referenceTypes (?type) = bridgeAggregation (?bridge
?type Tref)

The user interface that was constructed for
this browser resembles the OMT-like scheme
given in [3]. Tt is shown in figure 4. This exam-
ple shows how creating a highly sophisticated
browser can be done using just one fact, some
rules, and a user interface built using some
custom components.

6 Conclusion

To address two problems faced by browsers
in recent programming environments, the ab-
sence of a sophisticated query language and
the lack of customizability, this paper pro-
poses the use of a logical query language and
custom user interface components. Not only
does this combination prove to be powerful
thanks to the logic programming language,
the open-endedness ensures support of differ-
ent programming techniques. To claim this
statement, browsers were build in Smalltalk
that demonstrate the power and customiz-
ability on different domains. Such browsers
are not only keys to unlock the rich world
of object-oriented programming, they are the
master key to open just those doors the pro-
grammer wants to enter.

7 Acknowledgements

I wish to thank following persons for their
important contributions that made this work
possible : prof. dr. Theo D’Hondt, dr.
Patrick Steyaert, Serge Demeyer, Koen De
Hondt, Wim Codenie and Carine Lucas.

References

[1] H. Abelson, G.J. Sussman, and J. Suss-

man. Structure and interpretation of

[12]

8

computer programs. MIT Press, Cam-

bridge, 1985.
W.F. Clocksin and C.S. Mellish. Pro-

gramming wn Prolog. Springer-Verlag,

Berlin, 1981.

E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns. Addison-
Wesley, Reading, Massachusets, 1995.

P.D. Gray and R. Mohamed. Smalltalk-
80 : A Practical Introduction. Pitman,
1990.

R. Helm, I.M. Holland, and D. Gan-
gopadhyay. Contracts: Specifying be-
havioural composition in object-oriented
systems. pages 169-180. OOPSLA-
ECOOP’90, ACM Press, 1990. New-
York.

R.E. Johnson and B. Foote. Design-
ing reusable classes. Journal of Object-
Oriented Programmang, 1, 1988.

R.E. Johnson and V.F. Russo. Doc-
umenting frameworks using patterns.
pages 63-76. OOPSLA, ACM Press,
1992. New-York.

Parcplace Systems. VisualWorks Tuto-
rzal, 1992.

W. Pree. Design Pat-
terns for Object-Oriented Software Devel-
opment. Addison-Wesley, Reading, Mas-
sachusets, 1994.

L. Sterling and E. Shapiro. The art of
Prolog. The MIT Press, Cambridge, 1988.

Patrick Steyaert, Koen De Hondt, Serge
Demeyer, and Niels Boyen. Reflective ap-
plication builders. In Chris Zimmermann,
editor, Advances in Object-Oriented Met-
alevel Architectures and Reflection. CRC
Press Inc, Boca Raton, Florida, 1996.

Patrick Steyaert, Koen De Hondt, Serge
Demeyer, and Marleen De Molder. A
Layered Approach to Dedicated Appli-
cation Builders Based on Application
Frameworks. In D. Patel, Y. Sun,
and S. Patel, editors, Proceedings of the
1994 International Conference on Object-
Oriented Information Systems, pages

252-265. Springer-Verlag, 1995.

Figures

FRICIN SIrEweT

Tchiie rewThiect o o0 of te seCeiers dements Answer ressObjech.
Thiz meweags shauld apl be s & imiances of subclyes of SeagedCalacion

pe muticbynsFenpormbaity

Figure 1: SystemBrowser.

Simple Query Hrassem

Figure 2: SimpleQueryBrowser.

Dt misbelann . B0l o i nrwllbjea
e eeh bl © ‘rcluée rewlijart ou one of the ceweds
civpr'veanbebismes slamarie Anrwer newDbpscs
ool ripranes Thiv resseags should mai bes sent (0
Cl Bdy . Colllions- Alrimac)’ Awares il gebcbyss e of AaadCoikion =
il SRty

Figure 3: QuerySystemBrowser.

Figure 4: BridgePatternBrowser.

