
1

� y

z x

�

y

z

x

Abstract

Re
ective Application Builders

Patrick Steyaert Koen De Hondt

Serge Demeyer Niels Boyen

January 26, 1996

Programming Technology Lab, Computer Science Department, Vrije Universiteit

Brussel, Pleinlaan 2, B-1050 Brussel, Belgium; www: http://progwww.vub.ac.be/; email:

prsteyae@vnet3.vub.ac.be

Same address; email: kdehondt@vnet3.vub.ac.be

Same address; email: sademeye@vnet3.vub.ac.be

Same address; email: nlboyen@vub.ac.be

Current visual application builders and application frameworks do

not live up to their expectations of rapid application development
or non-programming-expert application development. They fall short

when compared to component-oriented development environments in
which applications are built with components that have a strong a�n-
ity with the problem domain (i.e. being domain-speci�c). Although

the latter environments are very powerful, they are hard to build and,
in general, do not allow much variation in the problem domain that

is covered. In this paper we show how this apparent con
ict between
generality and domain speci�city can be overcome by considering ap-

plication building itself as the problem domain. This naturally leads
to the notion of a re
ective application builder, i.e. an application

framework|application builder pair that incorporates all the tools
for the visual construction of (domain-speci�c) application builders.



1 Introduction

Strengths of componentware

Strengths of object-orientation

A recent trend in software development is the fostering of component-oriented

software development in response to the claimed failing of the object-oriented

paradigm [Ude94]. However, comparing component-oriented and object-

oriented software development is like comparing apples and oranges. Both

target the highly desired goal of reuse, but the means to accomplish this goal

are complementary rather than mutual exclusive:

: end-user oriented, visual programming, ra-

pid application development, large libraries of prede�ned components.

: general purpose, solid software engineer-

ing capacity, application framework development, extendibility of class li-

braries, availability of application builders.

In our experience component-oriented environments su�er from their clo-

sed nature, which limits the applicability of componentware. Conventionally,

components can only be composed in an in
exible framework. Thus, users

rapidly encounter the limits of the system, due to a lack of solid software

engineering techniques o�ered. This is reinforced by the wide gap between

composing components into an application and the development of new com-

ponents or adapting the environment.

We are working on an application development environment (ApplFLab,

or Application Framework Laboratory) [SDHDDM95] where solid object-

oriented software engineering techniques go hand in hand with rapid appli-

cation development by visual composition. This environment supports the

construction of object-oriented frameworks together with the tools for visual

composition of components in the constructed frameworks. This constitutes

a true domain-speci�c software architecture: rapid application development

through visual composition by domain experts (not necessarily programmers)

based on a soundly engineered framework architecture produced by software

engineers. ApplFLab has the speci�c advantage that the domain experts and

the software engineers work in the same medium. The integration is achieved

by combining re
ection techniques [Rao91] with object-oriented frameworks

and graphical application builders.

In this paper, we only focus on the visual composition of the components

of the constructed frameworks, not the full ApplFLab development environ-

ment. We investigate the di�erent aspects involved in specialising a general

purpose application builder based on an application framework in contrast to

2



2 Terminology

Application frameworks

User interface management systems

application builder

a dedicated application builder based on a specialised application framework.

After covering some basic terminology, we will discuss a general application

framework serving as a basis for our application builder. Afterwards, we will

show how re
ection can be used for specialising application builders. Finally,

we will demonstrate that a re
ective application builder can be used as a tool

for the construction of new components for domain-speci�c frameworks and

for the visual composition of the di�erent objects in those frameworks.

aid in building applications and their user inter-

face by providing a skeleton or abstract implementation that can be re-

used [WB90, JF88, Deu87]. In the object-oriented community, researchers

observed that inheritance and late-binding polymorphism are powerful mech-

anisms, and that programs expressed in an object-oriented programming

language can be reused by incrementally adapting them to di�erent needs.

As such, object-oriented techniques are especially useful when building ap-

plication frameworks. An object-oriented application framework consists of

abstract and concrete classes that together form a theory on how to build

applications and their user interface. Among the earliest examples of object-

oriented application frameworks was the Smalltalk Model/View/Controller

framework [KP88, GR89, LP91]. Other examples are MacApp [Sch86] and

InterViews [LVC89].

Since application frameworks are expressed as object-oriented skeleton,

standard object-oriented techniques such as re�nement by inheritance can

be applied to it. A skeleton can be incrementally modi�ed into a new, more

specialised skeleton. An example can be found in [Mey86] where MacApp, a

fairly general application framework, is re�ned to Intermedia, an application

framework for hypermedia applications.

(UIMS) promote visual user interface

design and development to minimise the need for conventional programming.

An is a particular kind of UIMS. Conventionally, applica-

tion builders are interactive programs that allow visual composition of user

interfaces and generation of application code. They are metaprograms since

they generate skeleton programs to which the programmer must further add

the user interface logic and domain logic. In object-oriented languages, the

3



User interface component

Domain model

Application
model

displaynotify
control

control

notify

Aspects

1

1

VisualWorks is a trademark of ParcPlace Systems Inc.

3 An Application Framework for Application

Builders

generated code �ts in an application framework that can be reused incre-

mentally to build an application. The need for conventional programming

is minimised, since the bulk of the interface management is absorbed in the

underlying user interface model.

We start with the de�nition of the concepts serving as the foundation for

our UIMS. It is not an aim of this paper to propose the ultimate UIMS

framework. Rather, we want to argue that the use of a framework allows the

construction of an "open" application builder. Moreover, re
ection makes

it possible to migrate seamlessly from the user interface design level to the

component design level.

Figure 1: The Framework Architecture

For easy re�nement of a framework, a set of orthogonal concepts is es-

sential [JR91]. We adopt the terminology of VisualWorks , mainly because

4



domain model

aspect

user interface component

application model

we prefer its clear distinction between the application model and domain

model. We purify these concepts to �t them into the framework. In Fig. 1

the foundation of the framework is depicted. The core of the model con-

sists of three basic concepts: user interface component, application model

and domain model. An auxiliary concept, aspects, is needed to separate the

domain model from the user interface component. The relations between the

four concepts are display, notify and control.

A models the overall functionality of the problem domain

and maintains user interface independent constraints. From the viewpoint of

the user interface components, its main goal is to serve as a storage for the

information to be displayed. Features like printing, persistence and network

communication are included in the domain model as well. Several application

models for one domain model can exist in parallel.

An is a container for a reference to a piece of information (supplied

by the domain model) that is to be represented on the screen and can be

modi�ed by the user. Such information may be simple (e.g. strings, numbers,

dates) or complex (e.g. lists, matrices). The main function for an aspect is

to interpret operations from user interface components and translate them

into operations on the domain model. As such, aspects can be layered on

top of each other to encapsulate user interface speci�c operations from the

domain model.

A controls the display and the user interaction of

a particular piece of information. The information is supplied by the domain

model, but a series of aspects will be used to hide implementation details,

e.g. the message that is needed to retrieve the information from the domain

model, or the last choice from a pop-up menu. Among the responsibilities

of a user interface component are properties like colour, font and position

(display), and functions like mouse tracking and keyboard control (user in-

teraction). Note that every interface component has exactly one aspect, but

that one aspect can be shared between several components. Normally an in-

terface component will not stand on own: it is grouped with other interface

components to act as a whole.

An manages the global behaviour of such a group of in-

terface components. It is responsible for the user interface logic and controls

user interface behaviour like: when should what information be displayed?

What operations a�ect the information and how should the display be up-

dated? As such, an application model is an aggregation of aspects that are to

5



4 An Example

control

display

noti�cation

notify

notify

control

be considered as a whole and interact with each other. Actually, almost all

of the programming e�ort that goes into an application model is specifying

the interaction between the di�erent aspects. Readers should be aware that

the same application model can be reused on di�erent domain models.

It is recognised that user interface tools require a mechanism to synchro-

nise the di�erent interface components [KP88, WGM88]. That is precisely

the motivation for the relationships between the basic concepts.

After setting up a complete data structure, the system starts with an

initial display. This is accomplished by activating the user interface compo-

nents for all aspects contained in the application model. The user interface

component requests the aspect for the information to display, the aspect

translates this request in the appropriate operations on the domain model

(or on the next aspect). This explains the relationship from the ap-

plication model to the user interface component and the relationship

from the domain model to the interface component. When the user activates

a user interface component (by clicking a button, selecting an item in a list

or a pop-up menu, typing some characters in a text �eld, etc.) it applies

a operation on the domain model (through the aspect) which

takes the appropriate actions. Most of the aspects also the application

model. The application model might decide to alter interface components

(e.g. disabling a text �eld) or to modify the domain model through other

aspects. This explains the two relationships (from the interface compo-

nent to the domain model and from the aspect to the application model) and

both of the relationships (from the application model to the interface

component and to the aspect).

In this section we will demonstrate all the concepts introduced above by

using a simple example.

Imagine a dialog window to manipulate an integer: a possible interface

might consist of a text �eld and two buttons. In the text �eld the user

is allowed to edit the value using the keyboard; the buttons are used to

increment or decrement the value. Fig. 2 shows how such an interface may

look like.

To create this interface, the interface designer opens a new canvas (an

6



Figure 2: A Running Application to Manipulate an Integer

editor representation for the interface being developed) and draws it using

the painter. The designer drags visual components (here two buttons and

one text �eld) from a palette onto the canvas and positions them appropri-

ately. Afterwards the interface desiner uses the properties editor to de�ne

properties of these components. Two major kinds of properties can be iden-

ti�ed: visual properties and aspect properties. Visual properties in
uence

the visual representation of a component, while aspect properties name the

aspects (see Sect. 3). In this example the labels of the buttons and the font

are visual properties, and the name of the aspect that refers to the integer

value (held by the domain model) and the names of the aspects of the two

buttons are aspect properties.

After concluding this procedure, the user has created the user interface

for the application without writing a single line of code. To incorporate the

user interface logic, programming is required. First, a class must be created

as a repository for the code. Second, the interface designer uses user interface

tools to generate code for every visual component on the canvas. Regular

interface development forces designers to extend the application framework

with user interface logic afterwards.

In this example, the user interface tools are able to create an instance

variable holding the text entered in the text �eld; the appropriate initial-

isation and accessor methods are generated as well. For every button an

empty action method is generated, which must be completed by the inter-

face designer. This is where the user interface logic is de�ned (i.e. the fact

that when pressing a button, the value in the text �eld is incremented or

decremented).

The architecture of the user interface of the integer manipulation exam-

ple can be expressed in our framework that was explained in the previous

7



message
adaptor

text field

UserObject

Application
model

va
lu

e

changedprotocol
adaptor numbernumber:

button

pu
sh

ed

increment

type
converter

message
adaptor

button

pu
sh

ed

decrement

changed

changed

update

value:

�

�

�

number

number number:

UserObject

value/value: number/

number: changed

pushed

increment/decrement

changed

paragraph. Fig. 3 shows the interaction of the di�erent components of this

example.

Figure 3: The Structure Behind the Number Application

The domain model for such an application is a simple object with one

instance variable being an integer. Let us call this variable (with ac-

cessor methods and ) and the class representing the domain

model . We de�ne three user interface components for this ap-

plication: a text �eld and two buttons. The text �eld should allow numeric

characters only, the label of the increment button is a plus sign and the label

of the decrement button is a minus sign.

Aspects are needed to glue these user interface components together with

the application and the domain model (see Fig. 3):

A protocol adapter to translate the protocol of the text �eld (i.e.

) into the protocol of the domain model (i.e.

) and to notify the application model using the mes-

sage.

A type converter to convert the type of the text �eld (a string) into the

type of the domain model (an integer).

Amessage adapter to translate the protocol of the buttons (i.e. )

into the protocol of the domain model (i.e. ) and

to notify the application model using the message.

8



�

�

�

�

�

�

changed update

5 User-De�ned Components

These messages eventually cause messages being sent

from the application model to the text �eld.

In the previous section we saw di�erent examples of standard components.

All standard components have common features: they can be dragged from

a palette, they have a name, etc. The assembly of all these features de�nes

the common interface the application builder framework expects of compo-

nents. In other words, in order to play their role in the application builder,

components have to conform to this common interface. More concretely the

application builder requires the following information about a component:

Name: for textual reference.

Icon representation on component palettes: for visual reference.

User interface: the interface of the component.

Behaviour: the application model (see Sect. 3).

Link with the domain model: speci�cation of the domain model and

the aspects that reference it.

Properties editor: the meta application to set properties of the compo-

nent.

In regard to re
ective object-oriented programming languages, this inter-

face can be called the metaobject protocol [Kic92] for our application builder.

We can identify di�erent categories in this protocol. The �rst three items

from the above list have to do with the visual representation and selection

of the component. The last three items de�ne the interaction of the compo-

nent with the user and the domain model. In order to de�ne this behaviour

the component must have a link to the domain model. Furthermore, as we

saw in the previous section, a component can be parameterised by di�erent

properties. These properties are �lled in with the properties editor provided

by the component.

9



user-de�ned component

Domain-speci�c components

The standard components of a general-purpose application builder almost

never meet the requirements of the application designer, because they are too

general in their semantics. As a consequence, using these components for the

creation of domain-speci�c applications requires writing a lot of application

logic. In absence of an application reuse mechanism, this domain-speci�c

application logic is often duplicated in several applications, since not only

the user interface, but also the application logic needs to be copied when an

application is reused.

To solve the problem of code duplication, many application builders sup-

port the reuse of applications as subapplications. Although subapplications

seem similar to (user-de�ned) components, they lack some of the important

features of components. Subapplications are an important means to give

names to groups of components. However, the philosophy of subapplications

is to work as stand-alone entities. The contrary holds for components. Sub-

applications encapsulate their domain model and they do not allow the user

to associate properties with the subapplication as a whole. Thus, applications

can only be reused as-is. Changing the domain model of a subapplication re-

quires the user to delve into the subapplication's implementation. Similarly,

changing the visual representation of a subapplication can only be accom-

plished by changing the visual appearance of individual components in the

subapplication's user interface. So, subapplications solve the problem of code

duplication only partly, since application code needs to be written to adapt

the reused application to speci�c needs. Therefore fully-
edged user-de�ned

components are necessary.

We characterise a as a subapplication which al-

lows properties to be associated with it. These properties in
uence its visual

representation, its behaviour and its link to the domain model. This means

that a user de�ned component conforms to the protocol expected of compo-

nents in general.

In general, self-made components are directed towards a speci�c prob-

lem domain. are typically components that can

be reused with little or no coding e�ort, since they encapsulate all the nec-

essary component logic to live in a domain-speci�c application. To create

a domain-speci�c application the user only needs to connect the domain-

speci�c components to each other and to the domain model. Components

are linked to each other by means of aspect properties.

10



value value:

domain-speci�c application builder

Figure 4: The Properties Editor of the Integer Manipulation Component

Suppose that we want to make an abstraction of the integer manipulation

application of Sect. 4. The name of the component is "Integer Manipulation",

the user interface is the one depicted in Fig. 2 and it has a behaviour as

described in Sect. 4 (implemented as methods on a class).

The link with the domain model de�nes that the Integer Manipula-

tion component expects to communicate with an aspect understanding the

/ protocol. The properties editor is depicted in Fig. 4. With

the properties editor the labels of the plus and minus buttons can be changed

(both visual properties) and the aspect can be speci�ed (aspect property).

Also the number with which the integer value should be incremented or

decremented each time one of the buttons is clicked can be provided.

In conclusion, there is a need for user-de�ned domain-speci�c components

with their own behaviour and properties. Together, a set of user-de�ned

components all targeted for the same domain can be grouped in order to

de�ne a (see Fig. 5).

Examples of such domain-speci�c application builders range from builders

for the design of instrument controller applications [Joh94], database appli-

cations to simulation applications for children [CS95]. Especially in the area

11



domain specific application
builder for domain "X"

visual composition of "X"
applications

meta application builder = domain
specific application builder for the
domain of application builders

visual composition of
application builders

6 Why is this Meta?

meta application builder

Figure 5: Domain-speci�c Application Building

of domain-speci�c frameworks (i.e. object-oriented frameworks that target

a particular problem domain) domain-speci�c application builders are be-

coming extremely popular [BW95]. They allow the visual instantiation of a

framework into an application, which is considered as one of the hot topics

in framework research.

The problem with domain-speci�c application builders is that they are expen-

sive to build. One way to solve this problem is to consider the construction

of application builders as an application domain in itself. Not only will we

need an object-oriented framework for application builders, we will also need

the necessary components that together form an application builder for ap-

plication builders. This latter obviously is called a

.

Figure 6: Meta Application Building

What constitutes a meta application builder? Depending on the level of

sophistication of the targeted application builder the meta application builder

consists of several tools. Obvious tools can be identi�ed such as a palette

builder, i.e. an application that allows visual construction of component

palettes, a component builder that allows grouping of components into a

new component, aspect editor builder, a properties editor builder, or even

12



input field (containing increment step)

control

control

notify
 Properties

Editor

value:

Integer Manipulation
component

value

step:

step

Meta-Level

re
ective application builder

a conventional code browser for those parts of the application builder that

can not be de�ned visually. The following illustrates this using the proposed

editor builder as an example.

Properties come mainly in two di�erent kinds: visual properties and as-

pect properties. As we already said components are linked with each other

and the underlying framework by setting aspect properties. So, a properties

editor is essentially an application that sets, and gets, the properties of a

component. Therefore, a properties editor is a metalevel application (see

Fig. 7): whereas normal components manipulate aspects of some domain

model, the components that make up a properties editor manipulate aspects

of other components (i.e. properties of those components).

Figure 7: The Properties Editor is a metalevel application

Typical properties editors are composed of �elds that allow to set and get

the identi�cation of the edited component, �elds for the visual properties, and

�elds for aspect properties. These �elds are then also the components that

can be found on the properties editor builder palette, i.e. the palette used

for building properties editors (Fig. 8).

These editor components constitute a domain-speci�c application builder

for building properties editors. Together the di�erent editors (properties

editor, palette editor, etc.) constitute the meta application builder which

allows easy construction of user-de�ned components. If this meta application

builder can, in its own terms, be extended with user-de�ned components, we

can say it is a (see Fig. 9).

With a re
ective application builder user-de�ned components can be

13



reflective application builder =
application builder with causaly
connected self representation

all of the above + visual
composition of meta
application builder

Figure 8: Properties Palette with Aspect Field Selected

Figure 9: Re
ective Application Building

14



component editor

7 Implementation Issues

made that can not only be used for easier construction of particular ap-

plications, but also for easier construction of application builders.

To illustrate the re
ective use of the application builder, reconsider the

properties editor of our Integer Manipulation component (see Fig. 4). Instead

of using an input �eld for setting the increment step of the component, one

could use the Integer Manipulation component itself. Since the input �eld

and the Integer Manipulation component both use an aspect that refers to

an integer number, they can be interchanged without a�ecting the behaviour

of the properties editor. Only the user interface of the properties editor

changes.

The implementation of our application development environment ApplFLab

is an extension of VisualWorks/Smalltalk . The application framework intro-

duced in Sect. 3 is adopted from VisualWorks and the screendumps shown

in this paper were made while VisualWorks or ApplFLab was running.

Building user-de�ned components with VisualWorks is hard and requires

a lot of manual coding. Expert programming skills are required, since adding

user-de�ned components is not documented and VisualWorks does not pro-

vide any tools for component creation. The component designer has to spe-

cialise several classes of the application builder framework and has to main-

tain the implicit dependencies between these classes. In this regard, the

VisualWorks application builder is a closed system. The metalevel interface

is not made explicit and is, due to a lack of documentation, extremely hard

to comprehend for somebody who is not a VisualWorks expert.

The current implementation of ApplFLab extends VisualWorks with a

re
ective application builder as described in the previous sections. The clo-

sed VisualWorks application builder was turned into an open implementa-

tion with re
ective facilities, essentially by extending the application builder

framework and adding the , ApplFLab's metatool to cre-

ate user-de�ned components. The component editor guides the component

designer through all the steps that need to be taken for the construction

of a user de�ned component. Essentially this leads to the provision of the

information mentioned in Sect. 5: the component's name, user interface,

behaviour, link with the domain model, properties editor and icon represen-

15



tation. The component editor incorporates a standard application builder

to create the component's user interface and behaviour, and a re
ective ap-

plication builder to paint the component's properties editor (only painting,

because all behaviour is absorbed by the builder).

The use of user-de�ned components has no signi�cant e�ect on the per-

formance of the applications that make use of them. ApplFlab's user-de�ned

components are VisualWorks subapplications (so called subcanvasses) where

the standard properties are replaced by user-de�ned properties. The user-

de�ned properties are speci�ed when the component's properties editor is

painted with the component editor. No programming is required to asso-

ciate properties with user-de�ned components. Although using VisualWorks

subcanvasses to build user-de�ned components is an easy and a very natural

way for the component designer, this approach has the drawback of being

slow when setting up a user interface.

The use of components as models for other applications (see Fig. 7 and

Fig. 1), gives rise to an interesting implementation issue. Since our imple-

mentation is an object-oriented program and components have two roles, i.e.

being a subapplication and being a model for metalevel applications, multi-

ple inheritance seems a very appropriate way to design components. Visu-

alWorks uses another approach to make components play their two roles. It

splits a component into two parts, the application model and the speci�ca-

tion, each having speci�c behaviour corresponding to the role they play in

the application builder. The application model embodies the behaviour of

a component at runtime, while the speci�cation encapsulates the behaviour

of a component at creation and at building time. At painting time the user

paints a component and sets its properties by means of the properties editor.

All properties are stored in the component's speci�cation. At building time

the component's user interface is set up and its application model is created.

The component's properties are copied from the speci�cation to the applica-

tion model. Conceptually, the application model and the speci�cation share

the properties, as would be the case with multiple inheritance.

Note that both a component's speci�cation and its application model

play their role at painting time. When a component is painted on a canvas,

a running application model is created to represent it on the screen, and

a speci�cation is created to hold its properties. When the properties are

changed through the properties editor, the application model is replaced

by a newly created one (the application builder actually goes through a

16



8 Status and Future Work

building phase) to re
ect the changes. This is also very simmilar to the

multiple inheritance approach, where the speci�cation and the application

model would be represented by only one object. ApplFLab's component

editor generates both parts of a component and takes care of the copying of

the properties from its speci�cation to its application model.

ApplFLab has been used to create several domain-speci�c components for

two speci�c problem domains: metro simulation and teleshopping.

Metro simulations can be set up by visual composition of components

that represent metro stations and metro tracks. With the properties editors

of these components the user links the tracks and stations to each other to

form a metro network. A special run button can be triggered to start the

simulation. The user then is able to watch metro trains riding through the

network. The di�erent stations and trains are displayed so that the user can

monitor the ongoing activity.

Teleshopping applications are constructed with user-de�ned components

such as shelves, shopping bags, cash registers, product information compo-

nents and special buttons that put a product from a shelve into a shopping

bag. The set of basic teleshopping components has been extended with (even

more domain-speci�c) components to play CDs and videos. Some of these

components have been reused in the properties editors of other teleshop-

ping components to clearly illustrate the re
ective nature of the ApplFLab

application builder.

The above experiments are toy applications in nature. The following step

is the use of ApplFLab in real world examples. We plan to launch a project

in which ApplFLab is used to create user-de�ned components for a broadcast

planning application.

The current version of ApplFLab provides all the required tools, but they

are not su�cient for easy and fast component creation. After a series of

experiments, it is clear that the component editor needs to be specialised

towards component editors for repetitive tasks, such as the specialisation of

standard action buttons to special-purpose action buttons, i.e. buttons that

encapsulate behaviour towards a speci�c application domain.

Besides the specialisation of the component editor, we also believe that

17



9 Related Work

an adaptor editor is indispensable. ApplFlab's component editor provides a

way to specify the link with the domain model through the use of aspects,

but the set of aspects cannot be changed at this time.

Application frameworks and user interface builders that make use of ap-

plication frameworks are extensively described in various sources. Apple's

MacApp [Sch86], Borland's OWL, ZINC, ET++ [WGM88], NextStep, Vi-

sualAge and VisualWorks are the most popular examples. All of these are

general purpose application frameworks that can serve as the basis for a

broad spectrum of applications.

Apart from these general-purpose application builders, there exist (ad

hoc) application building tools for speci�c kinds of applications. Examples

are Mathematica [Wol88] and KidSim [CS95]. These tools are neither exten-

sible nor adaptable to di�erent application domains as in most cases they are

not explicitly linked to an extensible framework. Related to these are the

various component-oriented software tools. The term component is used to

describe any software entity that can be connected with other such entities

with the aid of visual programming tools and/or a scripting language [CP95].

Examples include VisualBasic and Powerbuilder. These tools also su�er from

their lack of extensibility and/or adaptability to a speci�c problem domain.

With the exception of the work described by Monroe, Karsai and Star-

ringer [MG95, Kar95, Sta94] the creation of application building tools that

are adaptable to some problem domain is still an open �eld. Starringer [Sta94]

describes an application for calculating investment risks. The NextStep de-

velopment environment was specialised such that it could be used by the

end-user for customising the application. This way new calculations can be

added without the help of expert programmers. Recon�gurable visual pro-

gramming environments are discussed by Karsai [Kar95]. The research of

recon�gurable style-speci�c programming environments is restricted to Mon-

roe's work [MG95].

18



10 Conclusion

References

IEEE Computer

Inside Taligent Technology

Proceedings of the 1995 Confer-

ence on Human Factors in Computing Systems

Tutorial: Software

Reusability

Smalltalk-80, The Language

Journal of Object Oriented Programming

Re
ective application builders are essential in the creation of domain-speci�c

applications. After all, standard application builders cannot be customised

towards a particular problem domain and current domain-speci�c program-

ming environments cannot be tuned to other domains. Re
ective application

builders bridge the gap between the generality of the former and the domain-

speci�city of the latter. They support integration of di�erent domain-speci�c

application builders since they all share a common kernel. The integration

of standard tools and domain-speci�c tools has the advantage that domain

experts and software engineers work in the same medium. Each of them em-

ploys the same re
ective user interface builder, but on a di�erent abstraction

level.

[BW95] Margaret M. Burnett and McIntyre David W. Visual Pro-

gramming, Guest Editor's Introduction. ,

28(3):14{16, March 1995.

[CP95] S. Cotter and M. Potel. . Addison-

Wesley, 1995.

[CS95] Allen Cypher and David C. Smith. KIDSIM: End User Pro-

gramming of Simulations. In

, pages 27{34.

ACM, ACM Press, 1995.

[Deu87] L. P. Deutsch. Levels of Reuse in the Smalltalk-80 Program-

ming System. In Peter Freeman, editor,

. IEEE Computer Society Press, 1987.

[GR89] A. Goldberg and D. Robson. .

Addison-Wesley Publishing Company, 1989.

[JF88] R. E. Johnson and B. Foote. Designing Reusable Classes.

, 1(2):22{35, June

1988.

19



LabVIEW Graphical Programming: Prac-

tical Applications in Instrumentation and Control

IEEE Computer

Proceedings of the International Work-

shop on New Models for Software Architecture '92, Re
ection

and Meta-Level Architecture

Journal of Object Oriented Programming

Inside Smalltalk - Volume II

IEEE Computer

Proceedings of the Conference on

Object-Oriented Programming Systems, Languages and Ap-

plications

[Joh94] Gary W. Johnson.

. McGraw-

Hill Series on Visual Technology. McGraw-Hill, 1994.

[JR91] R. E. Johnson and V. F. Russo. Reusing Object-Oriented

Design. Technical Report UIUCDCS 91-1696, University of

Illinois, 1991.

[Kar95] G. Karsai. A Con�gurable Visual Programming Environment.

, 28(3):36{44, March 1995.

[Kic92] G. Kiczales. Towards a NewModel of Abstraction in the Engi-

neering of Software. In

, pages 1{11. Research Institute

of Software Engineering (RISE), Information-Technology Pro-

motion Agency, Japan (IPA), November 1992.

[KP88] Glenn. E. Krasner and Stephen. T. Pope. A Cookbook for

Using the Model-View-Controller User Interface Paradigm

in Smalltalk-80. ,

1(3):26{49, August 1988.

[LP91] W. R. Lalonde and J. R. Pugh. .

Prentice Hall, 1991.

[LVC89] Mark. A. Linton, John. M. Vlissides, and Paul. R. Calder.

Composing User Interfaces with InterViews. ,

22(2):8{22, February 1989.

[Mey86] N. Meyrowitz. Intermedia: The Architecture and Construc-

tion of an Object-Oriented Hypermedia System and Appli-

cations Framework. In

, volume 21(11), pages 186{201. SIGPLAN, ACM

Press, November 1986.

[MG95] R.T. Monroe and D. Garland. Style-Based Reuse for Software

Architectures. Submitted to the 1996 International Confer-

ence on Software Reuse, April 1995.

20



th

th

th

rd

Proceedings of the 5 European Conference on Object-

Oriented Programming

Object-Oriented Programming for the Mac-

intosch

Proceedings of the 1994 Inter-

national Conference on Object-Oriented Information Systems

IEEE Software

Byte

Addendum

to the Proceedings of the 5 Conference on Object-Oriented

Programming Systems, Languages and Applications, and the

4 European Conference on Object-Oriented Programming

Proceedings of

the 3 Conference on Object-Oriented Programming Systems,

Languages and Applications

A System for Doing Mathematics by Computer

[Rao91] R. Rao. Implementational Re
ection in Silica. In P. America,

editor,

, pages 251{267. Springer-Verlag, 1991.

[Sch86] K. J. Schmucker.

. Hayden Book Company, 1986.

[SDHDDM95] Patrick Steyaert, Koen De Hondt, Serge Demeyer, and Mar-

leen De Molder. A Layered Approach to Dedicated Applica-

tion Builders Based on Application Frameworks. In D. Patel,

Y. Sun, and S. Patel, editors,

,

pages 252{265. Springer-Verlag, December 1995.

[Sta94] W. Staringer. Constructing Applications from Reusable Com-

ponents. , 11(5):61{68, September 1994.

[Ude94] J. Udell. ComponentWare. , 19(5):46{56, May 1994.

[WB90] Allen Wirfs-Brock. Panel: Designing Reusable Designs: Ex-

periences Designing Object-Oriented Frameworks. In Jerry L.

Archibald and K.C. Burgess Yakemovic, editors,

,

pages 19{24. ACM/SIGPLAN, ACM Press, 1990.

[WGM88] A. Weinand, E. Gamma, and R. Marty. ET++: an Object-

oriented Application Framework in C++. In

, volume 23(11), pages 46{57. As-

sociation for Computing Machinary, ACM Press, November

1988.

[Wol88] S. Wolfram. .

Addison-Wesley, 1988.

21



see

Index

ApplFLab, 2, 14, 16

application builder

application framework for, 4

de�nition, 3

domain-speci�c, 11

meta, 12

metaobject protocol, 9

re
ective, 14

Application Framework Laboratory,

ApplFLab

application frameworks, 3

application model, 5

aspect, 5

component editor, 15

componentware, 2

domain model, 5

properties editor, 13

user interface component

de�nition, 5

domain-speci�c, 10

features, 9

properties, 10

user-de�ned, 10

user interfacemanagement systems,

3

VisualWorks, 4, 14

22


