
Vrije Universiteit Brussel
Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Formalising Operations on ACIDs

and Their Interactions

Kim Mens, Carine Lucas, Patrick Steyaert

Techreport vub-prog-tr-96-03

Programming Technology Lab

PROG(WE)

VUB

Pleinlaan 2

1050 Brussel

BELGIUM

Fax: (+32) 2-629-3525

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be

WWW: progwww.vub.ac.be

-- DRAFT --

- 2 -

Formalising Operations on ACIDs and Their Interactions

-- DRAFT1 - Do not distribute --
Kim Mens, Carine Lucas, Patrick Steyaert

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Email: kimmens@is1.vub.ac.be, clucas@vnet3.vub.ac.be, prsteyae@vnet3.vub.ac.be

Abstract This paper provides a formal foundation of the concept of

Abstract Class Interface Descriptions (ACIDs). It gives a definition of both

ACIDs and the operations defined on them and proves a number of

properties concerning their interactions. In class libraries and frameworks

documented with ACIDs these properties can be used to provide a better

understanding of their layered structure and to help in assessing the impact

of changes.

1. Introduction
This technical report formally introduces ACIDs, operations on ACIDs and their

interactions on a formal level. For a more intuitive discussion of ACIDs and their

interactions and of how they can be used in object-oriented software engineering in

general, we refer the reader to [Steyaert&al.96].

2. ACIDs and Operations on ACIDs

2.1 Definition of ACIDs

Every ACID A is an interface, i.e. a set of method signatures. To every method signature

a (possibly empty) specialisation clause is attached. Furthermore, to every method

signature an annotation ‘abstract’ or ‘concrete’ is attached.

We define the following selector functions on an ACID A:

Client(A) = set of all method signatures in A (without the attached

specialisation clauses and without the attached annotation ‘abstract’ or

‘concrete’)

Abstract(A) = set of all abstract method signatures of A

Concrete(A) = set of all concrete method signatures of A

1 This technical report is currently being finalised. This version provides proofs for the main properties
discussed in [Steyaert&al96], but lacks binding text and some additional proofs. A final version will be
made public in the near future.

-- DRAFT --

- 3 -

SpecA(m) = specialisation clause corresponding to the method signature m

in A

AnnotA(m) = annotation corresponding to the method signature m in A

Following property follows directly from the definition:

Property:
For every ACID A: Abstract(A) ∩ Concrete(A) = ∅

Furthermore, an ACID is well-formed if every method appearing in one of its

specialisation clauses also appears in the client interface of the ACID:

An ACID A is well-formed if:

∀ m ∈ Client(A): ∀ n ∈ SpecA(m): n ∈ Client(A)

2.2 Definition of applicability of operations on ACIDs

In the following section we will define a number of operations on ACIDs in terms of an

increment M. For such an M to be a correct increment to perform a certain operation on

an ACID, it needs to comply to certain properties. We speak of the applicability of M.

Furthermore, depending on the operation, the increments M contain different information

(names, specialisation clauses, an annotation abstract or concrete). Therefore, the

prerequisites for each operation do not only describe the conditions that the increment

must comply to in order to be correct, but also the kind of information given by this

increment. There are three applicability rules, corresponding to the three basic operations

on ACIDs. In the following definitions, consider A, Ax to be ACIDs:

A is concretisable with M ⇔
(1) M is a set of method signatures

(2) Client(M) 1 Abstract(A)

If this subset-relationship is strict, we say that M yields a partial concretisation; if the two

sets are equal we say that M yields a complete concretisation. More formally,

M yields a complete concretisation of A ⇔ Client(M) = Abstract(A)

M yields a partial concretisation of A ⇔ Client(M) 1 Abstract(A)

In the above definition and the following proofs we often need to refer to the set of all

signatures of methods in M. In order to obtain these signatures, we will write Client(M),

as we do for ACIDs. In the above case of a concretising M, ‘Client’ is simply defined as

the identity function, since M consists of method signatures only.

-- DRAFT --

- 4 -

A is extendible with M ⇔
(1) M is an ACID, i.e. a set of method signatures with a specialisation clause and

an annotation abstract or concrete attached to each one of them

(2) Client(M) ∩ Client(A) = ∅
(3) ∀ m ∈ Client(M) : SpecM(m) 1 Client(M) ∪ Client(A)

If M contains only concrete methods, we say that M yields a concrete extension,

otherwise we say that M yields an abstract extension. I.e.

M yields a concrete extension of A ⇔ Abstract(M) = ∅
M yields an abstract extension of A ⇔ Abstract(M) ≠ ∅

Again, the notation Client(M) is used for an extending M to retrieve the set of all method

signatures of M. We also overload the notation SpecM(m) to denote the specialisation

clause associated to a signature m in M.

A is refinable with M = (Me,Mr) ⇔
(1) M is composed out of two parts: Me which is an ACID and Mr which contains

only method signatures with accorded specialisation clauses (but no annotation

abstract or concrete).

(2) Client(Me) ∩ Client(A) = ∅
(3) Client(Mr) 1 Client(A)

(4) ∀ m ∈ Client(Mr) : Spec*A(m) 1 Spec*A,M(m)

(5) ∀ m ∈ Client(M) : SpecM(m) 1 Client(M) ∪ Client(A)

(6) ∀ m ∈ Client(Me) : ∃ n ∈ Client(Mr) : m ∈ Spec*A,M(n)

The two parts of the increment M represent the two parts of the refinement’s

functionality. Mr indicates which methods have their specialisation clauses refined and

how, while Me indicates which methods are added.

If the Me part of M contains only concrete methods, we say that M yields a concrete

refinement, otherwise we say that M yields an abstract refinement.

M = (Me,Mr) yields a concrete refinement of A ⇔ Abstract(Me) = ∅
M = (Me,Mr) yields an abstract refinement of A ⇔ Abstract(Me) ≠ ∅

Several remarks need to be made about the notations used in the above definition. First

the set of all method signatures of M is the union of all method signatures in Me and Mr:

Client(M) = Client(Me) ∪ Client(Mr), where Client(Me) and Client(Mr) merely select the

set of all method signatures of Me and Mr respectively. The same remark can be made

about the selector functions Spec and Annot. Secondly, in analogy with selecting the

specialisation clause SpecA(m) of a method signature m in an ACID A, SpecA,M(m) is

used to find the specialisation clause of m in the ACID which results from refining A

with M, and is defined as follows:

-- DRAFT --

- 5 -

SpecA,M(m) = SpecMe(m) if m ∈ Client(Me)

= SpecMr(m) if m ∈ Client(Mr)

= SpecA(m) if m ∈ Client(A) - Client(M)

Finally, the operator * used above denotes transitive closure and is defined as usual:

f*(m) = ∪ n≥1 fn(m) where f1(m) = f(m)

fn(m) = { m’ ∈ f(n) | n ∈ fn-1(m) }

2.3 Definition of operations on ACIDs

This section now formally introduces the three basic operations on ACIDs of which the

applicability rules were defined in the previous section. Of course, the first prerequisite is

always that the increment M has to be applicable. The other ones indicate how the

resulting ACID is to be constructed. As in the previous definitions, we consider all A and

Ax to be ACIDs:

Ac is a concretisation of A with M ⇔
(1) A is concretisable with M

(2) Client(Ac) = Client(A)

(3) ∀ m ∈ Client(Ac) : SpecAc(m) = SpecA(m)

(4) ∀ m ∈ Client(M) : AnnotAc(m) = ‘concrete’

(5) ∀ m ∈ Client(Ac) - Client(M) : AnnotAc(m) = AnnotA(m)

The following property follows immediately from the definition:

Lemma 1: If Ac is a concretisation of A with M then

(a) Concrete(Ac) = Concrete(A) ∪ Client(M)

(b) Abstract(Ac) = Abstract(A) - Client(M)

Ae is an extension of A with M ⇔
(1) A is extendible with M

(2) Client(Ae) = Client(A) ∪ Client(M)

(3) ∀ m ∈ Client(A) : SpecAe(m) = SpecA(m) ∧ AnnotAe(m) = AnnotA(m)

(4) ∀ m ∈ Client(M) : SpecAe(m) = SpecM(m) ∧ AnnotAe(m) = AnnotM(m)

Ar is a refinement of A with M = (Me,Mr) ⇔
(1) A is refinable with M

(2) Client(Ar) = Client(A) ∪ Client(Me)

(3) ∀ m ∈ Client(M) : SpecAr(m) = SpecM(m)

(4) ∀ m ∈ Client(Ar) - Client(M) : SpecAr(m) = SpecA(m)

(5) ∀ m ∈ Client(Me) : AnnotAr(m) = AnnotMe(m)

(6) ∀ m ∈ Client(Ar) - Client(Me) : AnnotAr(m) = AnnotA(m)

-- DRAFT --

- 6 -

The following property follows immediately from this definition:

Lemma 2: If Ar is a refinement of A with M = (Me,Mr) then

Abstract(Ar) = Abstract(A) ∪ Abstract(Me)

= Abstract(A) ∪ (Abstract(M) - Client(A))

2.4 Definition of applicability of inverse operations on ACIDs

For each of the three operations on ACIDs, the inverse operation is defined. Again we

start by defining applicability rules for these inverse operations and we consider A, Ax to

be ACIDs in the following definitions. Furthermore, as in section 2.2 we will overload

the relations ‘Client’ and ‘Spec’ for selecting the client interface, resp. specialisation

clauses of the inverse “increments”.

Abstraction is the inverse of concretisation.

A is abstractable with M ⇔
(1) M is a set of method signatures

(2) Client(M) 1 Concrete(A)

Cancellation is the inverse operation of extension.

A is cancellable with M ⇔
(1) M is a set of method signatures

(2) Client(M) 1 Client(A)

(3) ∀ m ∈ Client(M) : ™ n ∈ Client(A) - Client(M) : m ∈ SpecA(n)

Coarsening is the inverse operation of refinement.

A is coarsenable with M = (Mca,Mco) ⇔
(1) M is composed out of two parts: Mca which contains only method signatures

and Mco which contains method signatures with their accorded specialisation

clauses (but no annotation abstract or concrete).

(2) Client(M) 1 Client(A)

(3) ∀ m ∈ Client(Mco) : SpecMco(m) 1 SpecA(m)

(4) ∀ m ∈ Client(Mca) : ∀ n ∈ Client(A) with m ∈ SpecA(n):

n ∈ Client(Mco) ∧ m ∉ SpecMco(n)

2.5 Definition of inverse operations on ACIDs

For each of the three operations on ACIDs, the inverse operation is defined. As for the

base operations the definitions of the inverse operations start with an applicability

constraint, followed by a number of predicates explaining how the resulting ACID is

constructed.

-- DRAFT --

- 7 -

Ac- is an abstraction of A with M ⇔
(1) A is abstractable with M

(2) Client(Ac-) = Client(A)

(3) ∀ m ∈ Client(A) : SpecAc-(m) = SpecA(m)

(4) ∀ m ∈ Client(M) : AnnotAc-(m) = ‘abstract’

(5) ∀ m ∈ Client(Ac) - Client(M) : AnnotAc(m) = AnnotA(m)

The following property follows immediately from this definition:

Lemma 3:
(a) Abstract(Ac-) = Abstract(A) ∪ Client(M)

(b) Concrete(Ac-) = Concrete(A) - Client(M)

Ae- is a cancellation of A with M ⇔
(1) A is cancellable with M

(2) Client(Ae-) = Client(A) - Client(M)

(3) ∀ m ∈ Client(Ae-) : SpecAe-(m) = SpecA(m) ∧ AnnotAe-(m) = AnnotA(m)

Coarsening is the inverse of refinement.

Ar- is a coarsening of A with M = (Mca,Mco) ⇔
(1) A is coarsenable with M

(2) Client(Ar-) = Client(A) − Client(Mca)

(3) ∀ m ∈ Client(Mco) : SpecAr-(m) = SpecMco(m)

(4) ∀ m ∈ Client(Ar-) - Client(Mco) : SpecAr-(m) = SpecA(m)

(5) ∀ m ∈ Client(Ar
-) : AnnotAr-(m) = AnnotA(m)

3. Basic Interactions between Operations on ACIDs
We will now prove a number of properties concerning the interactions between these

operations. In this section we discuss the properties concerning base ACID exchange as

discussed in [Steyaert&al.96].

3.1 Applicability

The first range of questions we need to answer concerns the applicability of the

operations. We want to investigate whether an increment M, that was applied on a base

ACID to create an application ACID, is still applicable to an exchanged base ACID. We

therefore use the three applicability definitions (is concretisable with, is extendible with,

is refinable with) that were given in section 2.3. The fact that an increment is no longer

applicable after base ACID exchange can only be due to name clashes in the client

interface. The following table summarises under which conditions such name clashes

occur.

-- DRAFT --

- 8 -

Operation on
base ACID

Operation on
application ACID

Concretisation Extension Refinement

Concretisation
if sets of concretised
method signatures intersect

no clashes no clashes

Extension
no clashes if sets of newly added

method signatures intersect
if sets of newly added
method signatures intersect

Refinement
no clashes if sets of newly added

method signatures intersect
if sets of newly added
method signatures intersect

It demonstrates that essentially 3 categories of interactions can be distinguished. We will

discuss these 3 cases one by one.

3.1.1 Concretisation versus Concretisation

Property 1:

If A is concretisable with M1

and A2 is a concretisation of A with M2

then (A2 is concretisable with M1 ⇔ Client(M1) ∩ Client(M2) = ∅)

Proof:

Suppose that A is concretisable with M1.

A2 is concretisable with M1

⇔ M1 is a set of method signatures (o.k. because A is concretisable with M1)

Client(M1) 1 Abstract(A2)

⇔ Client(M1) 1 Abstract(A) - Client(M2) (lemma 1)

⇔ Client(M1) ∩ Client(M2) = ∅ (because Client(M2) 1 Abstract(A),

 since A is concretisable with M1)

3.1.2 Concretisation versus Refinement / Extension

Property 2a:

If A is concretisable with M1 and A is extendible or refinable with M2

then (A1 is a concretisation of A with M1

⇒ A1 is extendible or refinable with M2)

This property also holds in the reversed direction.

Property 2b:

If A is concretisable with M1 and A is extendible or refinable with M2

then (A2 is an extension or refinement of A with M2

⇒ A2 is concretisable with M1)

We give the proof for one sub-case of the first property and leave the other (analogous)

proofs to the reader.

-- DRAFT --

- 9 -

Proof:

We know that:

A1 is a concretisation of A with M1 ⇒ Client(A1) = Client(A)

Furthermore, we know that

A is extendible with M2 ⇔
(1) M2 is an ACID

(2) Client(M2) ∩ Client(A) = ∅
(3) ∀ m ∈ Client(M2) : SpecM2(m) 1 Client(M2) ∪ Client(A)

For the property to hold we need to prove that A1 is extendible with M2, in other

words we need to prove that:

(1) M2 is an ACID this holds as A is extendible with M2

(2) Client(M2) ∩ Client(A1) = ∅
⇔ Client(M2) ∩ Client(A) = ∅ as Client(A1) = Client(A)

this holds as A is extendible with M2

(3) ∀ m ∈ Client(M2): SpecM2(m) 1 Client(M2) ∪ Client(A1)

⇔ ∀ m ∈ Client(M2): SpecM2(m) 1 Client(M2) ∪ Client(A)

as Client(A1) = Client(A)

this holds as A is extendible with M2

3.1.3 Refinement / Extension versus Refinement / Extension

Property 3:

If A is extendible or refinable with M1

and A2 is an extension or refinement of A with M2

then (A2 is extendible or refinable with M1 ⇔ Client(M1) ∩ Client(M2) = ∅)

We give the proof for two extensions, the other (analogous) proofs are left to the reader.

Proof:

We know that:

A2 is an extension of A with M2 ⇒ Client(A2) = Client(A) ∪ Client(M2)

Furthermore, we know that

A is extendible with M1 ⇔
(1) M1 is an ACID

(2) Client(M1) ∩ Client(A) = ∅
(3) ∀ m ∈ Client(M1) : SpecM1(m) 1 Client(M1) ∪ Client(A)

To prove the property we need to show:

A2 is extendible or refinable with M1 ⇔ Client(M1) ∩ Client(M2) = ∅

-- DRAFT --

- 10 -

A2 is extendible with M1 ⇔
(1) M1 is an ACID this holds as A is extendible with M1

(2) Client(M1) ∩ Client(A2) = ∅
⇔ Client(M1) ∩ (Client(A) ∪ Client(M2)) = ∅ as Client(A2)=Client(A)∪ Client(M2)

⇔ Client(M1) ∩ Client(M2) = ∅ this holds because Client(M1) ∩ Client(A) = ∅

 as A is extendible with M1

(3) ∀ m ∈ Client(M1): SpecM1(m) 1 Client(M1) ∪ Client(A2)

⇔ ∀ m ∈ Client(M1): SpecM1(m) 1 Client(M1) ∪ (Client(A) ∪ Client(M2))

 this holds because ∀ m ∈ Client(M1): Spec*M1(m) 1 (Client(M1) ∪ Client(A))

 as A is extendible with M1

So the only condition left is indeed

Client(M1) ∩ Client(M2) = ∅

3.2 Partial concretisations

The second problem is that of invoking unimplemented methods. This occurs when a

base ACID is exchanged with a refined or extended version that adds new abstract

method signatures. In general, we can say:

Property 4:

If Ac is a concretisation of A with Mc

and Ar is a refinement or an extension of A with Mr

then Arc is a concretisation of Ar with Mc.

Furthermore:

Property 5:

Only if Ac is a complete concretisation of A with Mc

and Ar is a concrete refinement or extension of A with Mr

then Arc is a complete concretisation of Ar with Mc.

Proof:

This proof contains two parts.

First, the fact that Mc still provides a correct concretisation of Ar. This was already

demonstrated by property 2b.

Second, we need to proof that if Mc provides a complete concretisation of A and Mr a

concrete refinement or extension of A, than Mc also provides a complete

concretisation of Ar.

Given:

Mc provides a complete concretisation A, in other words Client(Mc) = Abstract(A)

Mr a concrete refinement or extension of A, in other words Abstract(Mr) = ∅

-- DRAFT --

- 11 -

To proof:

Mc provides a complete concretisation A, in other words Client(Mc) = Abstract(Ar)

Proof:
Abstract(Ar) = Abstract(A) ∪ (Abstract(Mr) - Client(A)) (lemma)

= Abstract(A) ∪ (∅ - Client(A)) (Mr is concrete ref. or ext.)

= Abstract(A)

= Client(Mc) (Mc is complete concretisation of A)

3.3 Detection of Method Capture

Method capture occurs on base ACID exchange, if the exchanged ACID names a certain

method m in its specialisation clauses more often than the original base ACID did. To

describe the detection of method capture we first need to introduce a new definition.

We say that a method m is bound by a method n in an ACID A, if m appears in the

specialisation clause of n in A. We define MBA(m) as the set of all methods that “bind” m

in A.

Definition: MBA(m) = {n ∈ Client(A) | m ∈ SpecA(n) }

Method capture occurs when extra bindings of a method m are introduced when going

from one base ACID A1 to another base ACID A2 and this method m was already

adapted in some way by an application ACID which applied the increment Mapp to A1. In

other words, a method m is captured if when changing ACID A1 to ACID A2, extra

methods are added and m is a member of Mapp. MC(A1,A2,Mapp) denotes the set of all

signatures of such methods.

Definition:
MC(A1,A2,Mapp) = { m ∈ Client(Mapp) | MBA2(m) - MBA1(m) ≠ ∅ }

As method capture can only occur when specialisation clauses are extended, it can only

happen when exchanging the base ACID with a refinement or extension. More

specifically, method capture only occurs when the set of hook methods that was added

through refinement or extension to the base ACID and the set of method signatures added

or changed by the application ACID are not disjoint.

Figure 1 illustrates the detection of method capture.
A1 A2

MappMapp

M2

 m m

AApp1 AApp2

 n

Refinement or
Extension

m gets
captured

by n

Figure 1: Method Capture

-- DRAFT --

- 12 -

We will now proof that method capture can only occur when a base ACID is exchanged

with a refinement or an extension. This done by proving the following

A2 is obtained from A1 by an operation different from extension or refinement ⇒
MC(A1,A2,Mapp) = ∅

Proof:

There are 6 possible operations, that can turn A1 into A2. We will demonstrate that

method capture cannot occur with the operations different from extension and

refinement. For these operations we will show that MC(A1,A2,Mapp) = ∅ or more

specifically that
∀ m ∈ Client(Mapp): MBA2(m) - MBA1(m) = ∅

To do this it is sufficient to consider all m ∈ A1 in the following proof, instead of all

m ∈ Client(Mapp).

First, because for all operations except extension and refinement Client(A2) 1

Client(A1), or in other words A2 does not introduce any new methods.

Second, because a method m ∈ Mapp cannot be captured by A2 unless this method

already appears in A2 itself. The reason for this is that for an ACID to be well-formed

it can only name methods in its specialisation clauses that appear in the ACID’s client

interface as well.

We will now show for the 4 remaining operations that:
∀ m ∈ Client(A1): MBA2(m) - MBA1(m) = ∅

(i) A2 is a concretisation of A1:

⇒ Client(A1) = Client(A2)

and ∀ m ∈ Client(A2): SpecA2(m) = SpecA1(m)

⇒ ∀ m ∈ Client(A2): MBA2(m) = MBA1(m)

⇒ ∀ m ∈ Client(A1) : MBA2(m) - MBA1(m) = ∅ // as Client(A2) = Client(A1)

(ii) A2 is an abstraction of A1:

Exactly the same reasoning as for concretisation holds here.

(iii) A2 is a cancellation of A1 with M2:

Client(A2) = Client(A1) - Client(M2)

⇒ ∀ m ∈ Client(A1) - Client(M2): SpecA2(m) = SpecA1(m) //def. cancellation

⇒ ∀ m ∈ Client(A1) - Client(M2): MBA2(m) 1 MBA1(m)

∀ m ∈ Client(M2) : m ∉ Client(A2)

⇒ ∀ m ∈ Client(M2) : ™ n ∈ Client(A2): m ∈ SpecA2(n)

⇒ ∀ m ∈ Client(M2) : MBA2(m) = ∅
⇒ ∀ m ∈ Client(A1) : MBA2(m) - MBA1(m) = ∅

-- DRAFT --

- 13 -

(iv) A2 is a coarsening of A1with M = (Mca,Mco):
⇒ ∀ m ∈ Client(Mco) : SpecA2(m) = SpecMco(m) // definition coarsening

and SpecMco(m) 1 SpecA1(m) // definition coarsenable

and Client(A2) 1 Client(A1) // definition coarsening

⇒ ∀ m ∈ Client(Mco) : MBA2(m) 1 MBA1(m)

∀ m ∈ Client(A2) - Client(Mco): SpecA2(m) = SpecA1(m): // def. coarsening

⇒ ∀ m ∈ Client(A2) - Client(Mco) : MBA2(m) 1 MBA1(m)

∀ m ∈ Client(Mca) : m ∉ Client(A2)

⇒ ∀ m ∈ Client(Mca) : MBA2(m) = ∅
⇒ ∀ m ∈ Client(A1) : MBA2(m) - MBA1(m) = ∅

Thus method capture can only occur when a base ACID is changed through a

refinement or an extension.

3.4 Detection of Inconsistent Methods

Inconsistent methods occur when there are less bindings of a method m after going from

one ACID to another ACID and this method m was adapted in some way when creating

an application ACID with the increment Mapp. In other words, a method m becomes

inconsistent if when changing ACID A1 to ACID A2, there exists a method that is no
longer an element of MBA2(m) and m is a member of Mapp (this is denoted: m ∈

IM(A1,A2,Mapp)).

Definition:
IM(A1,A2,Mapp) = { m ∈ Mapp | MBA1(m) - MBA2(m) ≠ ∅ }

The set of methods that m becomes inconsistent with can be denoted:

Definition:
IMSet (A1,A2,m) = MBA1(m) - MBA2(m)

While method capture can occur when extending the specialisation clauses in a base

ACID, inconsistent methods can be created when parts of the design are omitted by

narrowing these specialisation clauses. This can only be achieved through the operations

coarsening and cancellation. Cancellation however does not create inconsistencies, as the

method signature that omitted the reference from its specialisation clause simply does not

exist anymore. Inconsistent methods can thus only appear when the set of hook methods

removed from the base ACID through coarsening and the set of method signatures

changed or added by the application ACID are not disjoint.

Figure 2 illustrates the above rule on detection of inconsistent methods.

-- DRAFT --

- 14 -

AApp2AApp1 Mapp

A1

Mapp

M2

 m m

A2

 n

Coarsening

 n

✕ m becomes
inconsistent

with n

Figure 2: Inconsistent Methods

We will proof that inconsistent methods can only occur through coarsening, by proving

the following:

A2 is obtained from A1 by an operation different from coarsening ⇒
IM (A1,A2,Mapp) = ∅

Proof:

Again there are 6 possible operations, that can turn A1 in to A2. It can be

demonstrated in the same way as for method capture that inconsistent methods can

only occur through coarsening.

Cancellation is a special case. As coarsening, it also removes names from

specialisation clauses, but as all the names that are removed from specialisation

clauses through cancellation are removed from the client interface of the ACID as well

no inconsistencies can be created.

The proofs for other operations are straightforward.

5. References
[Steyaert&al.96] Patrick Steyaert, Carine Lucas, Kim Mens, Theo D’Hondt:

Abstract Class Interface Descriptions (ACIDs): Guiding Design

Reuse in Class Libraries, Submitted to OOPSLA '96,

Conference on Object-Oriented Programming, Systems,

Languages and Applications.

