
Vrije Universiteit Brussel

Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

A Formalisation of

Encapsulated Modification of Objects

Kim Mens, Kris De Volder, Tom Mens

Techreport vub-prog-tr-96-06

Programming Technology Lab
PROG(WE)

VUB
Pleinlaan 2

1050 Brussel
BELGIUM

Fax: (+32) 2-629-3525
Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

— 1 —

A Formalisation of Encapsulated Modification of Objects

Kim Mens, Kris De Volder, Tom Mens

Department of Computer Science, Faculty of Sciences
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

e-mail: { kimmens | kdvolder | tommens }@vub.ac.be

Abstract. Currently existing formalisations of object orientation are unsatisfactory w.r.t.

inheritance. This is due to an inherent conflict between inheritance and encapsulation. To solve

this conflict, we present a formal model with a clear syntactic distinction between “inheritable

entities” and objects. This model naturally gives rise to two types of incremental modification of

objects without compromising encapsulation. Both types of modification are complementary

from a software engineering point of view.

1 Introduction

1 . 1 Encapsulation versus Inheritance

Inheritance allows building new objects by incrementally modifying the implementation of existing objects.

Encapsulation means that an object provides an abstraction barrier behind which implementation details can be

hidden from the user. Since inheritance depends at least to some extent on implementation details, there is an

inherent conflict with encapsulation. A number of problems in OO software engineering have arisen from this

conflict, and the restriction of inheritance is under strong discussion at present in the OO community, as can be

observed in the discussion about patterns, frameworks and separation of different kinds of interfaces.

In an attempt to solve this conflict, [Snyder 87] introduces a notion of encapsulated inheritance: inheriting

clients have no direct access to the private attributes of their parents. However [Steyaert & De Meuter 95] show

that this approach does not prevent all violations of encapsulation since late binding of self, which is crucial to

inheritance, also involves a form of decapsulation. They argue that breaches of encapsulation by message

passing clients can be inhibited if a clear distinction is made between inheriting clients and message passing

clients. Inheriting clients access an object through its specialisation interface (cf. [Lamping 93]) exposing

implementation details of the object important for inheritors, e.g. which method is called through self sends by

what other method1. On the other hand, message passing clients can only access an object through its client

interface, i.e. the set of all messages understood by the object.

There are two main models of inheritance employed in object oriented systems today: class based inheritance

(e.g. SMALLTALK [Goldberg & Robson 83] and C++ [Stroustrup 92]) and prototype based inheritance (e.g.

SELF [Ungar & Smith 87]). Class based systems provide classes as explicit entities for structuring inheritance

hierarchies. In these systems, inheritance is restricted to classes and is not defined on objects directly. This

restriction enables the successful integration of inheritance and encapsulation but prohibits dynamic object

extension. On the contrary, in prototype based languages no distinction is made between objects and

“inheritable entities”. Instead objects are modified directly. This is particularly suitable in situations where the

1This information is important for inheritors since it provides knowledge about the effect of overriding a method.

— 2 —

dynamic evolution of objects is desired. However this is achieved at the expense of an object model which does

not maintain the encapsulation property, as discussed by [Steyaert & De Meuter 95], [Mezini 95] and

[Snyder 87].

1 . 2 Encapsulated Modification of Objects

According to [Dony et al. 92] “languages without dynamic modification of structures enforce a robust and

more disciplined view of prototype based programming while other languages provide some flexibility which

can hurt more than it may help”. A drastic solution to this problem is to forbid all dynamic modifications (as in

the class based approach). However we prefer to find a prototype based model which offers dynamic extension of

objects without compromising encapsulation.

Research at our lab has been very concerned with finding such a model. This ongoing effort has lead to the

design of a prototype based language called AGORA ([Steyaert et al. 93], [Codenie et al. 94]) which provides

mixin methods as an encapsulated form of the pure mixins proposed by [Bracha & Cook 90]. In [Steyaert & De

Meuter 95] it is argumented that mixin methods are a form of encapsulated inheritance2 (i.e. they do not

compromise encapsulation) by indicating that it conforms to the “immaculate client interface principle for

objects”:

An object should not expose any other interface but the client interface to its message passing clients. It

must be able to hide its specialisation interface from message passing clients.

This is a sufficient condition to ensure that an object’s message passing clients cannot breach encapsulation.

Taking into account all arguments stated in this section, we demand that the prototype based model we are

looking for has the following characteristics:

(a) It provides a means for incremental modification;

(b) Such modifications are done dynamically on objects;

(c) The model satisfies the immaculate client interface principle.

A model or language satisfying these demands has encapsulated modification of objects.

1 . 3 Overview of the Paper

In this paper we propose a formal model that captures the essence of encapsulated modification of objects. As in

class based systems, our model distinguishes inheritable entities from objects. However, it is more flexible

because objects can explicitly manipulate the inheritable entities albeit in a restricted way.

We will show how the model naturally gives rise to two types of incremental modification, namely

(encapsulated) inheritance and conservative modification. These are complementary from a software engineering

point of view because they make use of an object’s specialisation interface and client interface respectively.

Inheritance should be restricted because it depends on the implementation details exposed in the specialisation

interface and therefore threatens encapsulation. Conservative modifications can be applied unrestrictedly because

they only depend on the client interface.

In section 2 we start out with describing the criteria that guided us in designing the formal model and present

the formal syntax and semantics. In section 3 we show how the model allows us to define the two types of

2Not to be confused with the notion of encapsulated inheritance as introduced by [Snyder 87].

— 3 —

incremental modification on objects without endangering encapsulation. Section 4 discusses how the

restrictions our model imposes are beneficial for software development. In section 5 we explain the drawbacks

and show that they are not inherently connected with the concept of encapsulated modification of objects but

rather due to the simplicity of the model. Section 6 discusses some related work. Section 7 indicates some

research topics that are worth investigating in the future and section 8 summarises the conclusions of the paper.

2 The Formal Model

2 . 1 Design Guidelines

Because of the proliferation of object orientation in recent years, it is very difficult to give a general

characterisation. Nevertheless, we will identify the concepts and principles we deem essential to the different

object paradigms. This assessment will be used as a general guideline in the design of our formal model.

A rigorous object oriented model should be uniform: any (first-class) entity is an object and the unique control

structure is message passing. Furthermore, as in [Steyaert 94] we demand that message passing is atomic. This

means that a message send cannot be decomposed into more elementary operations. Of course we also require

our model to have encapsulated modification of objects, to build new objects out of old ones. Finally, we deem

late binding of self to be essential since typical object oriented programming techniques make heavy use of it

and gain much of their power from it. Summarising all of this we state the following design principles:

(1) Objects (and objects only) are first-class citizens.

(2) Atomic message passing is the only control structure.

(3) The model has encapsulated modification on objects.

(4) An incremental modification mechanism with late binding of self is needed.

2 . 2 A Layered Syntax

The main idea behind the model is to syntactically distinguish first-class objects from inheritable entities. The

inheritable entities are called generators in accordance to [Cook 89]. This yields a two-layered syntax. One layer

for objects and message passing and a second (sub-)layer for generators and explicit generator manipulation.

This does not contradict design guideline (1) because the entities of the second layer are not first-class citizens in

the model.

As originally stated in [Cook 89] an object is simply an environment of methods, while a generator is a

template for an object in the sense that its “self” remains to be filled in. Since the self of a generator can be

filled in at will, unrestricted manipulation of explicit generators at language level breaches encapsulation (see

section 1.1). This is the case in existing prototype based models and languages which do not distinguish objects

from generators. In our model, the use of generators can be appropriately restricted because the layering offers a

rigid syntactic distinction between objects and generators.

2 . 3 Formal Syntax

In this section we present the formal grammar describing the syntax of the model. In order to highlight the

essence of encapsulated inheritance on objects other features such as typing, object identity, state and private

attributes are not included in the model.

The start symbol is Object and terminal symbols are printed in bold. An identifier Ident is also considered to

be a terminal symbol. The set of all object expressions is defined by the following productions.

— 4 —

Object → Object.Ident(Object) message send

| [Generator] object creation

| Ident argument reference

This definition declares message sending as an operation on objects. Sending a message m with argument object

a to a receiver object o is denoted o.m(a) and yields a new object. This is an atomic operation since it cannot

be decomposed into more primitive operations.

In the definition above, identifiers3 are used to represent (argument) objects. However, they can also be used to

represent method names or generators, as can be seen in the production rules for generator expressions:

Generator → Generator ; Generator composition

| Ident(Ident) = Ident#Object method

| > Object < object generator

| Ident self reference

| ε empty generator

The use of generators is severely restricted. They cannot be passed around as arguments, nor be returned as

values from a message send, nor be sent messages. They can only be composed with each other. We will see in

section 3.1 that this composition can be used to model an incremental modification mechanism with late

binding of self, thus satisfying guideline (3).

Since an object is an environment of methods and is created by means of a generator, the most primitive kind of

generator (apart from the empty generator) is a single method. The body of a method can refer to the late bound

self of its object to perform self sends or to extend the object. Inside the body of a method such a self reference

denotes the generator from which the inner-most object enclosing the method is created. Self references can be

named by means of the # binding-operator4. Naming of self references is not only convenient but effectively

increases the power of the model, because it allows multiple self references with different names at different

nesting levels to be accessed from within the same method body.

As an example of an object created by a composition of methods, consider the following representation of a

person named Joe5. It contains a method isThatYou performing a self send of the name message:

[name(dummy) = Self # “Joe”;
isThatYou(who) = Self # [Self].name(dummy).equal(who)

]

Intuitively, m(a)=S#body means that the name S is going to be used to denote self references inside the body of

m. For example, the identifier Self used inside the body of isThatYou refers to the following generator:

name(dummy) = Self # “Joe”;
isThatYou(who) = Self # [Self].name(dummy).equal(who)

The above example also illustrates the use of arguments. The isThatYou method expects an argument object

that can be referred to by who inside the body of the method. At message sending time, the formal argument who

will be replaced by the actual argument supplied in the method call. For example, sending the message

3In all our examples we will take the convention that identifiers denoting objects start with a lower-case letter, whereas identifiers
denoting generators start with an upper-case letter.

4Neglecting syntactic differences, this binding operator corresponds to the σ() operator as defined in [Abadi & Cardelli 94].

5Although not explicitly present in the syntax, throughout the examples we will make use of predefined strings understanding an add
message to concatenate them with other strings, and an equal method for equality testing.

— 5 —

isThatYou(“Joe”) to the object returns the TRUE object as a result.

Notice that the syntax allows only one argument to be passed with a message. This is not a restriction since

multiple arguments can be simulated in the form of an object where the arguments are listed as methods.

In what follows, we assume the following conventions:

• When no actual argument is supplied in a message send, the formal argument is substituted with the empty

object [ε].

• Vice versa, one does not need to write a formal argument that is not referred to in the body of a method. In

this case an actual argument supplied in a message send is simply ignored.

• When no reference to the self generator is made inside the body of a method, we agree to omit the local

reference name.

With all these conventions, the example becomes:

[name = “Joe”;
isThatYou(who) = Self # [Self].name.equal(who)

]

Finally, the >…< operator will allow the extension of an object without late binding. It turns an object into a

generator with fixed self. The usage and implications of this generator will become clear in section 3.2.

2 . 4 Examples

To illustrate the use of “self references” we show how two mutually recursive objects – the Boolean values

true and false – can be implemented by embedding them in the same environment (referred to by Env), and by

making “self calls” to this environment from within the objects. Notice how the same environment Env can

also be used to test the example.

[true = Env # [if(action) = action.then;
not = [Env].false;
or(boolean) = Self # [Self];
and(boolean) = boolean];

false = Env # [if(action) = action.else;
not = [Env].true;
or(boolean) = boolean;
and(boolean) = Self # [Self]];

test = Env # [Env].false.not.or([Env].true)
.if([then=[Env].true; else=[Env].false])

].test

It is important to note that self references refer to the generator from which the self object is created rather than

to the object itself. This enables extending objects in a late bound way by adding more methods to (or

overriding old methods of) the self generator. For example, consider the following simulation of an object with

state:

[getName = "Jones";
setName(newName) = Self # [Self ; getName = newName]]

Sending the message setName("Smith") to this object adds a method getName = "Smith" to the generator.

Because this method is added to the right of the already present methods, and because the semantics will ne

defined in such a way that method-lookup occurs from right to left, this has the effect of overriding the old

getName method.

2 . 5 The ∆-operator

Since generators are templates for objects with a still undetermined self, it is natural to define an operator that

— 6 —

explicitly binds the self of a generator. We use the symbol ∆ to denote this operator. The self of a generator is

again a generator in our model, thus the ∆-operator is a binary operator on generators returning an object.

Basically, the ∆-operator is a delegation operator. Its first argument is a generator in which messages sent to the

resulting object will be looked up (thus constituting a kind of client interface). The second argument represents

the generator that is used for internal self references such as self sends (thus constituting a kind of specialisation

interface).

In order to introduce the ∆-operator, the object syntax described in section 2.3 needs to be extended with one

new kind of object expression:

Object → …

| [Generator ∆ Generator] object creation

An expression of this form is also called an object creation, because from now on we consider the form [G] to

be syntactic sugar for [G∆G]6. In section 3.3 an example will be given of how this operator can be used to

perform super calls.

2 . 6 Formal Semantics

The denotational semantics of our formal model follows the notation of [Schmidt 86]. Due to space

limitations, the operational semantics and some interesting theoretical properties thereof, such as confluence and

a translation of λ-calculus into our model are left out from the paper.

Syntactic Domains

ObjExpr = set of all syntactic object expressions
GenExpr = set of all syntactic generator expressions
Ident = set of all syntactic identifiers

Semantic Domains

As in most denotational semantics of object oriented models presented in literature ([Cook 89],

[Cardelli & Mitchell 89], [Wegner & Zdonik 88]), an Object is merely an environment of methods. A

Method expects an Object as argument and returns an Object after evaluation. For reasons described in

[Steyaert & De Meuter 95], a Generator is a function mapping a Generator onto an Object. Square

brackets are used for parameterised domains.

Env[α] = Ident → Maybe[α]
Maybe[α] = α ⊕ Unit
Object = Env[Method]
Method = Object → Object
Generator = Generator → Object

Auxiliary Functions

Before presenting the semantic functions we need some auxiliary functions to create and manipulate

environments.

{} : Env[α] An empty environment
{} = λx.inMaybe[α]()

6To avoid confusion we point out that […∆…] is an atomic operation, taking two generators and returning an object. It is not the
compostion of …∆… and […]. Without the enclosing […], …∆… is not a valid expression, it is neither an object nor a generator
expression.

— 7 —

{…→…} : Ident → α → Env[α] A single slot environment
{key→val} = λx.(x=key → inMaybe[α](val) , inMaybe[α]())

… +r … : Env[α] → Env[α] → Env[α] Right preferential concatenation
f1 +r f2 = λx.cases (f2 x) of

isUnit() → f1 x ,
isα() → f2 x

 end

lookup : Env[α] → Ident → α
lookup = λr.λk.cases (r k) of

isα(v) → v ,
isUnit() → ⊥

end

Semantics of an Object Expression

The semantics of an object expression ObjExpr is a function expecting an environment of objects (the list of

formal parameters bound to the actual arguments) and an environment of generators (referring to the selves of

objects in which the current method is nested), and returning an object.

[[[[[ObjExpr]]]]]O : Env[Object] → Env[Generator] → Object

The semantics of a message send Or.I(Oa) is defined by looking up the message I in the receiver object Or,

while providing the object Oa as argument.

[[[[[Or.I(Oa)]]]]]O = λe.λc.lookup ([[[[[Or]]]]]O e c) I ([[[[[Oa]]]]]O e c)

The semantics of an object creation [G1∆G2] creates an object from G1 by installing G2 as its self.

[[[[[[G1∆G2]]]]]]O = λe.λc.([[[[[G1]]]]]G e c) ([[[[[G2]]]]]G e c)

The object creation expression [G] is a convenient abbreviation for [G∆G] which creates an object from a

generator by making the generator refer to itself.

[[[[[[G]]]]]]O = [[[[[[G∆G]]]]]]O
= λe.λc.([[[[[G]]]]]G e c) ([[[[[G]]]]]G e c)

Evaluation of an identifier on object level occurs by looking up this identifier in the environment of actual

arguments.

[[[[[I]]]]]O = λe.λc.lookup e I

Semantics of a Generator Expression

The semantics of a generator expression GenExpr is a function expecting an environment of objects (the list of

bindings of formal arguments to actual values) and an environment of generators (referring to the selves of

objects in which the current generator is nested), and it returns a Generator as result.

[[[[[GenExpr]]]]]G : Env[Object] → Env[Generator] → Generator

Composition of two generators corresponds to right preferential concatenation of their method environments.

[[[[[G1;G2]]]]]G = λe.λc.λs.([[[[[G1]]]]]G e c) s +r ([[[[[G2]]]]]G e c) s

The semantics of a method generator is a single slot environment that binds the method name to its body. This

body is a function expecting an argument, and returning an object after having evaluated the body in the

environment of local argument bindings extended with the argument passed to the method, and in the

environment of generators extended with the current self generator.

— 8 —

[[[[[Im(Ia)=Is#O]]]]]G = λe.λc.λs.{Im→body}

where body = λa.[[[[[O]]]]]O ()e +r {Ia→a} ()c +r {Is→s}

The semantics of an object considered as generator is a generator which ignores its self parameter and simply

returns the object. Extending such a generator will therefore have no influence on the self of the object, i.e. the

object’s self is not subject to late binding. The use of such generators will be discussed further in section 3.2.

[[[[[>O<]]]]]G = λe.λc.λs.[[[[[O]]]]]O e c

Evaluation of an identifier on generator level looks up this identifier in the environment of self generators.

Finally, an empty generator returns an empty object which is just an empty environment.

[[[[[I]]]]]G = λe.λc.lookup c I
[[[[[ε]]]]]G = λe.λc.λs.{}

3 Encapsulated Modification of Objects

Our model has encapsulated modification of objects (as defined in section 1.2).

• First of all, as will be discussed in detail in the rest of this section it provides a means for incremental

modifications.

• Secondly these modifications are applied dynamically on objects.

• Finally, from the denotational semantics we conclude that the immaculate client interface principle is

satisfied. This is evident in the object model: an object is merely an environment of methods. Therefore on

the semantic level an object is fully characterised by how it reacts to messages and the only way to interact

with an object is through its client interface (i.e. the set of all messages understood by the object).

3 . 1 Two types of Incremental Modification

The model supports two types of incremental modification. On the one hand a mechanism with late binding of

self, but restricted to a set of privileged inheriting clients which can access the specialisation interface. On the

other hand a mechanism without late binding, by unprivileged clients using only the client interface of the

object. The former mechanism will be referred to as inheritance, while the term conservative modification will

be reserved for the latter. Inheritance tends to be implementation dependent, whereas conservative modifications

are of an abstract nature since they can only access the client interface.

3 . 2 Conservative Modification

Unprivileged clients that only have access to the client interface can modify an object by using the >…< operator

which casts an object into a generator that can be extended afterwards. We have seen in the semantics that such

generators ignore their self argument. This means that late binding of self does not apply. Therefore such

modifications are called conservative since they embed the object as is, without changing its internal workings.

Consider for example7 the following object for making points in Cartesian coordinates:

7In this example we use numerals as basic primitives understanding an add, sqr, abs and sqrt message. We will show in section 5 how
numerals can be implemented in our model.

— 9 —

[makeCartesian(arglist) =
 [getx = arglist.x;
 gety = arglist.y;
 distance = Self # [Self].sumOfSquares.sqrt;
 sumOfSquares = Self # [Self].getx.sqr.add([Self].gety.sqr)];
 cartesianPoint = Env # [Env].makeCartesian([x=3;y=4])
]

We can override the distance method of cartesianPoint with a method that computes the Manhattan rather

than the Euclidean distance.

[makeCartesian(arglist) = … ;
 cartesianPoint = Env # [Env].makeCartesian([x=3;y=4]);
 manhattanPoint = Env #
 [>[Env].cartesianPoint<;
 distance = Self # [Self].getx.abs.add([Self].gety.abs)]
]

This modification is conservative because it only depends on the abstract functionality offered by the

cartesianPoint object’s client interface. The inheritor does not need to know which self sends are performed

in the object.

3 . 3 Inheritance

Inheritance is accomplished by adding methods directly to an object's self generator. One could call this

“extension from the inside” of an object because the visibility of the generator representing the self of an object

is restricted to code nested inside the object. Since generators are not first class and cannot be passed around as

arguments nor be returned as values, this scoping mechanism limits the use of the self generator (and thus the

use of inheritance) to the set of objects and methods whose declarations are nested inside the object the self

belongs to.

As a first example of inheritance, consider an object representing a person with public attributes name, sex and

title.

[name = "Ann Onymous";
 sex = "Female";
 title = "Miss ";
 letterHead = Self # [Self].title.add([Self].name)
]

When the message letterHead is sent to the object, the name is returned with the correct title prefixed to it.

Now suppose that we want to use the above object as a prototype for producing new objects with a similar

behaviour. For this purpose it needs to be extended with a new method newPerson modifying the original

object. This method expects two arguments representing the name and sex of the new person. It is not necessary

to pass the title of the new person as an argument since this can be determined by inspecting the sex.

[name = …; …; letterhead = …;
 newPerson(init) = Self #

[Self; name = init.name; sex = init.sex;
 title = init.sex.equal("Female").if([then="Miss ";else="Mr. "])]

]

Next consider a more general implementation of the person object that anticipates the overriding of the sex

attribute, by using a self send in its implementation of the title method. This facilitates the implementation

of the newPerson modification.

[name = "Ann Ticipate";
 sex = "Female";
 title = Self # [Self].sex.equal("Female").if([then="Miss ";else="Mr. "]);
 letterHead = Self # [Self].title.add([Self].name);
 newPerson(init) = Self # [Self; name = init.name; sex = init.sex]
]

— 10 —

The newPerson method uses inheritance to override the attributes name and sex. This is true inheritance and

cannot be accomplished by conservative modification because it makes use of implementation details of the

person object. The implementation of newPerson clearly depends on whether or not title anticipates the

overriding of sex and performs a self send to it.

As another example of inheritance suppose we want to allow a person to get married. This implies changing the

title of a female person to "Mrs.", so the title method’s implementation needs to be overwritten. In the

example below, sending getMarried appropriately overrides the title method.

[name = …; … ; newPerson(init) = …;
 getMarried = Self # [Self;
 title = Self # [Self].sex.equal("Female").if([then="Mrs. ";else="Mr. "])]
]

In the AGORA language ([Steyaert et al. 93], [Codenie et al. 94]), this kind of incremental modification is

referred to as mixin method based inheritance and is the only way to incrementally modify an object. In AGORA

terminology, the getMarried method is called a mixin method since it contains additional behaviour that

should be “mixed in” the object.

Using the ∆-operator, it is possible to model super sends to invoke parent operations in an inheritance chain.

Consider the example of a two dimensional point which can be extended to a three dimensional point. The three

dimensional point is created by overriding the parent’s sumOfSquares method and uses a super call to

implement the new sumOfSquares method.

[x = 1; setx(newx) = Self # [Self ; x = newx];
 y = 2; sety(newy) = Self # [Self ; y = newy];
 isOrigin = Self # [Self].distance.isZero;
 distance = Self # [Self].sumOfSquares.sqrt;
 sumOfSquares = Self # [Self].getx.sqr.add([Self].gety.sqr);
 thirdDimension = Super # [
 Super;
 z = 3; setz(newz) = Self # [Self ; z = newz];
 sumOfSquares = Self # [Super∆Self].sumOfSquares.add([Self].getz.sqr)]
]

Super calls are looked up in the parent’s generator (Super), while the internal self references of the parent are

redirected to the specialisation (Self), so messages to [Super∆Self] behave like super sends as in

SMALLTALK. It is also possible to invoke operations in non-direct parents by means of the explicit naming of

self generators. This can be helpful in programming tasks requiring multiple inheritance. Mixin methods

constitute an inheritance mechanism that explicitly linearises the inheritance chain. This is a problem when

dealing with multiple inheritance. When linearising a multiple inheritance graph, we need a mechanism to refer

to non-direct superclasses. In [Boyen et al. 94] such a mechanism –called stubs– is introduced for AGORA. By

inserting stubs at the right place in the inheritance chain, inheritors can use non-direct parents as parameters and

“mimic” a graph structure in the linear chain. Stubs serve as pointers to the place in the inheritance chain where

method lookup should start when invoking parent operations. We can easily model stubs, but because of space

limitations we won’t explain this any further.

4 Virtues of Encapsulated Modification of Objects

As already mentioned in section 1.1, most current day prototype based languages offer no such thing as

encapsulated modification of objects, due to their lack of encapsulation. In this section we will illustrate that

languages with encapsulation on objects are preferable for software engineering purposes, since they enforce

more safety, facilitating reuse.

— 11 —

4 . 1 Encapsulation Enforces more Safety

Encapsulated modification of objects provides an incremental modification mechanism which restricts access to

the specialisation interface to a well determined set of privileged inheriting clients. This enforces more safety, as

illustrated by the following example.

Consider a bank account as a stand-alone entity that is not subject to late binding. It is however possible to

modify the object from the inside. In this way, the account object can be extended before using it, for example

to make it a safe bank account sealed with a password.

An account object created with the makeAccount method contains the amount of money present, the name of

the account owner, and methods to withdraw money from or deposit money on the account. By invoking

secureAccount the account can be modified from the inside to make it a safe account, so that money can only

be withdrawn if a correct password is provided. Each time a withdraw is requested, a self send to

checkValidity is performed to test if the correct password was provided.

[true = …; false = …;
 makeAccount(owner) =
 [name = owner;
 amount = 0;
 withdraw(value) = Self #
 [Self; amount=[Self].amount.subtract(value)];
 deposit(value) = Self #
 [Self; amount=[Self].amount.add(value)];
 secureAccount(secret) = Super #
 [Super;
 secureAccount = “Warning: this method can only be called once!”;
 checkValidity(pwd) = Self # secret.equals(pwd);
 withdraw(arg) = Self # [Self].checkValidity(arg.password)
 .if([then = [Super∆Self].withdraw(arg.value);
 else = "Warning: your password is incorrect!"])
]
];
 account = Env #
 [Env].makeAccount("Jones").secureAccount("gf&452aQ")
 .deposit(1000).withdraw([value=500;password="gf&452aQ"])
 .setPassword([old="gf&452aQ";new="%6*tyusQ"]);
 stealMoney(amount) = Env #
 [>[Env].account<;
 checkValidity(pwd) = [Env].true
].withdraw([value=amount;password="Don't care"])
].stealMoney(500)

To illustrate the safety of the above defined account object we try to steal money by withdrawing money from

the account without providing the correct password. Our attempt consists of overriding the checkValidity

method with a new one that always returns true. Since self sends inside account are not bound late (account

is fully encapsulated), all internal self sends to checkValidity keep referring to the original version, so

cheating the account object in such a way is impossible. This is exactly the strength of encapsulated

modification of objects. The user of an object cannot inadvertently misuse an object if the programmer does not

allow this.

Note that it is also impossible to override the password of the secured account by trying to install a new

password directly through the secureAccount message. Indeed, after the secureAccount method has been

invoked once it is cancelled immediately by overriding it with a new method which returns a warning.

4 . 2 Substitutability of Objects

For software engineering purposes it is vital that whenever two objects have the same or similar behaviour

from message passing point of view, they should be substitutable for one another, i.e. code that works correctly

with one object should also work properly with the other one. Although this may seem rather trivial, it

certainly is not the case in current prototype based languages where an object exposes its specialisation

— 12 —

interface.

Substitutability is intimately related with encapsulation of implementation details. In order to be able to

substitute an object by another one with the same behaviour but a different implementation, clients using the

object should not be aware of its implementation details. Consider the following simple example of two objects

cartesianPoint and polarPoint which have exactly the same behaviour when observed from a message

passing client’s point of view.

[makeCartesian(arglist)= …as in section 3.2… ;
 makePolar(arglist)=
 [getx=arglist.r.times(arglist.teta.cos);
 gety=arglist.r.times(arglist.teta.sin);
 distance=arglist.r;
 sumOfSquares=Self#[Self].distance.sqr];
 cartesianPoint=Env#[Env].makeCartesian([x=0;y=1]);
 polarPoint=Env#[Env].makePolar([r=1;teta=π/2])
]

While cartesianPoint and polarPoint are substitutable for each other in our model, this would cause errors

in a model without encapsulated modification. The problem is that the point objects have different

specialisation interfaces: in cartesianPoint, distance performs a self send to sumOfSquares, while in

polarPoint sumOfSquares performs a self send to distance. Thus overriding the distance method will

have a different effect on each point.

In presence of non-encapsulated modification, overriding a method always involves late binding. Therefore

objects with different specialisation interfaces are not substitutable in such models. As an example reconsider

overriding the distance method so that it implements the Manhattan distance. This works perfectly in

cartesianPoint, but not in polarPoint since the sumOfSquares method in polarPoint is implemented

with a self send to distance so it would yield an incorrect result.

With encapsulated modification self sends are not visible to unprivileged clients. In our model one can safely

override the distance method of any version of point using a conservative modification:

[point = …a polar point or a Cartesian point…;
 manhattanPoint = Env #
 [>[Env].point<;
 distance = Self # [Self].getx.abs.add([Self].gety.abs)]
]

This works correctly regardless of the implementation of point because self sends to the distance method in

the original point will not be bound late and are not affected by overriding the method.

5 Shortcomings of the Model

Ideally all modifications which only require an object’s client interface must be possible in a conservative way.

We have shown an example (Cartesian and polar points) where this is feasible, however there are cases where

conservative modifications are not as elegant as one would want. They all have in common that they involve

methods which return self references in some way.

As an example consider the following implementation of positive integers. The only thing a positive integer

understands are the messages ifZero, pred and succ. The succ method in the zero numeral8 is defined as a

“mixin method” returning the next numeral by inheriting the code of zero and overriding the ifZero and pred

8The zero numeral does not understand a pred message since we only consider positive numerals.

— 13 —

method.

[zero = [ifZero(action) = action.then;
 succ = Pred #
 [Pred;
 ifZero(action) = action.else;
 pred = [Pred]
]
]
]

Using only ifZero, pred and succ, all operations on positive integers can be abstractly defined. Hence it

should be possible to add these operations from the outside using only the client interface. For example we can

extend integers with an add method as shown below.

[zero = …as defined above…;
 withAdd(number) = Env #
 [>number<;
 pred = [Env].withAdd(number.pred);
 succ = [Env].withAdd(number.succ);
 add(n) = Self # [Self].ifZero([then = n;
 else = [Self].pred.add(n.succ)])
];
 zeroWithAdd = Env # [Env].withAdd([Env].zero);
 one = Env # [Env].zeroWithAdd.succ;
 two = Env # [Env].one.succ;
 four = Env # [Env].two.add([Env].two);
 test = Env # [Env].four.pred.pred.pred.pred.ifZero([then=1;else=0])
]

This solution is not entirely satisfactory because it is necessary to “patch” the succ and pred messages.

Otherwise add would only be understood by the zeroWithAdd numeral since conservative modifications do not

affect self references in the object (no late binding). Both the results of succ and pred are constructed through

self references. In the case of succ the successor is an extension of the self. In the case of pred it is the self of

the parent object.

In general it is necessary to patch any method which directly or indirectly returns a self reference. This would

not be problematic if it were not the case that one often wants to apply the same extension to different objects.

Each different object implies patching up a potentially different set of messages. This problem already manifests

itself in the example: the pred method is always patched even for a zero numeral which does not possess a

pred method.

In a real programming environment one would like the patches to be applied automatically where needed, thus

alleviating the problem. We have implemented an elegant solution that infers the needed information from a

method’s implementation. This solution enables a more sophisticated >…< operator to dynamically detect

whether a method returns a self reference (or a derivation thereof) and automatically patch the returned result.

Since the semantics is rather difficult we have chosen not to present it in this paper.

6 Related Work

An approach that is very similar to one described here is the delegation based object calculus developed in

[Fisher & Mitchell 95]. In that paper, an object calculus is presented by adding new syntactic forms on top of

untyped lambda calculus. A problem with this approach is that functions are first class, while we prefer a pure

object model, containing only objects as first-class entities. By adding a type system to their basic calculus,

Fisher and Mitchell make an explicit difference between objects and inheritable entities called prototypes. This

approach differs from ours, from a practical as well as a theoretical point of view:

• The theoretical difference is that we have embedded the distinction between objects and inheritable entities in

the basic syntax and semantics of the calculus, so we don’t need an additional type system for this purpose.

— 14 —

• From a pragmatic point of view, the difference lies in the motivation of the calculus: Fisher and Mitchell

developed a new type system in order to solve problems in existing type systems (such as

[Abadi & Cardelli 94]), while we have developed a two-layered calculus in order to cope with the

encapsulation problems in current object oriented languages (cf. [Snyder 87], [Steyaert & De Meuter 95]).

When comparing both calculi more closely, one can found two other differences:

• A minor difference between both approaches lies in the functionality of objects and inheritable entities. In

[Fisher & Mitchell 95] the functionality of objects forms a subset of the possible operations on prototypes:

while prototypes can be used to send messages and to add or redefine methods, an object can only be sent

messages to. We prefer to keep the functionality of both kinds of entities separated for reasons of

orthogonality: an object can only be sent messages to, while a generator can only be used to add or redefine

methods.

• A more essential difference lies in the epressivity of objects. While in the Fisher/Mitchell calculus methods

in an object are allowed to to redefine themselves or other methods, they are not allowed to add new

methods, since this would give rise to type problems. Nevertheless, the latter kind of behaviour is really

desired, as shown in section 3.3. It corresponds to the concept of mixin-method based inheritance in the

Agora language.

In [Abadi & Cardelli 94] a simple object calculus supporting method override and object subsumption is

introduced. Subsumption is the ability to emulate an object by means of another object that has more refined

methods. Override is the operation that modifies the behaviour of an object by replacing one of its methods. As

in our approach, instead of struggling with complex encodings of objects as λ -terms or other primitive

constructs, objects are taken as primitives themselves. The object calculus however does not have encapsulated

modification of objects. An example similar to our “bank account” example of section 4.1 can be used to show

that local variables can be exported using a clever overriding of methods. Moreover the mechanisms for

incremental modification in this calculus are too restrictive. Only overriding of already defined methods is

allowed. It is impossible to add new methods to an already existing object.

Some of the ideas of the current model are derived from the OPUS-calculus presented in [Mens et al. 94]. This

calculus satisfies encapsulated inheritance in the sense of [Snyder 87], and with a very slight modification even

encapsulated modification on objects. Moreover it contains private attributes as basic primitives. Nevertheless

the OPUS-calculus is too low level, because arguments need to be modelled in terms of private attributes, and

similarly for self sends. For this reason examples become complicated very quickly.

In [Steyaert & De Meuter 95], a denotational semantics for a subset of AGORA (called MiniMix) is presented.

Although this semantics was a major source of inspiration, MiniMix and AGORA only offer a limited form of

encapsulated modification of objects. They only offer part of the functionality —inheritance with mixin

methods— but offer no mechanism for conservative modifications. Furthermore the ability to explicitly name

and manipulate the self of an object as a generator makes our inheritance mechanism more flexible than mixin

methods. For example, one can access the generator of a non direct parent in our model, allowing the

implementation of stub methods.

8 Conclusions and Future Work

In this paper we proposed a formal foundation for encapsulated modification of objects, taking into account a

number of design guidelines we believe to be essential to OO. Two methods for incremental modification on

objects without endangering encapsulation were presented. On the one hand inheritance, with late binding,

— 15 —

which is only possible by privileged inheriting clients “from inside” an object. On the other hand conservative

modifications, without late binding, by unprivileged clients.

Inheritance tends to be implementation dependent, whereas conservative modifications are of an abstract nature

since they can only access the client interface. Both strategies are needed since they serve different purposes.

Omitting inheritance would be a total neglect of the power of current day OO programming techniques relying

heavily on late binding of self. Prohibiting conservative modifications and only allowing inheritance is also

very restrictive. Since encapsulated modification is limited to the inside of an object, any possibly needed

modification would have to be implemented inside the object. This is in fact a major criticism on the AGORA

language which offers only mixin methods as an incremental modification mechanism.

From a software engineering point of view the manifestation of these different kinds of modification seems very

natural. Code for an implementation dependent modification of an object will have to be nested somewhere

inside the object (e.g. in a nested mixin method), thus clearly identifying it as belonging to that object and

depending on its implementation details. In contrast a conservative modification, which only depends on the

client interface of an object can be applied to several objects sharing the same abstract functionality and can be

encoded separately from the object(s).

A possible research track is the introduction of typing in the model. When trying to add typing to our model

some unexpected difficulties might turn up [Abadi & Cardelli 94]. However, based on the results of

[Fisher & Mitchell 95] and [Lucas et al. 95] we are confident that this will not be the case.

Also an attribute visibility mechanism should be looked at. Such a mechanism is indispensable in real

programming languages. In the current paper we chose not to include a method hiding mechanism in the basic

syntax to keep it as simple as possible.

9 Acknowledgements

We deeply appreciate the help of Patrick Steyaert for his numerous suggestions and remarks during the entire

development process of this work. Thanks to Carine Lucas for proofreading a draft version of this paper. We are

also indebted to our promotor Theo D'Hondt for supporting our research efforts.

10 References

[Abadi & Cardelli 94] Abadi, M. & Cardelli, L. - 1994. A Theory of Primitive Objects: Untyped and
First-Order Systems. TACS ‘94 Proceedings, Springer-Verlag.

[Boyen et al. 94] Boyen, N.; Lucas, C. & Steyaert, P. - 1994 Generalised mixin-based inheritance to
support multiple inheritance. Technical Report vub-prog-tr-94-12, presented as poster at OOPSLA ‘94.

[Bracha & Cook 90] Bracha, G. & Cook, W. - 1990. Mixin-based Inheritance. Proceedings of Joint
OOPSLA/ECOOP ’90 Conference, pp. 303-311, ACM Press.

[Cardelli & Mitchell 89] Cardelli, L. & Mitchell, J. C. - 1991 Operations on Records. Mathematical
Structures in Computer Science, 1(1):3-48.

[Codenie et al. 94] Codenie, W.; De Hondt, K.; D’Hondt, T. & Steyaert, P. - 1994. Agora: Message
Passing as a Foundation for Exploring OO Language Concepts. SIGPLAN Notices, Volume 29, Number
12, December 1994, pp. 48-58, ACM Press.

[Cook 89] Cook W. - 1989, A Denotational Semantics of Inheritance, Ph.D.-Thesis, Brown University.

— 16 —

[Dony et al. 92] Dony, C.; Malenfant, J. & Cointe, P. - 1992. Prototype-Based Languages: From a New
Taxonomy to Constructive Proposals and Their Validation. OOPSLA ‘92 Proceedings, pp. 201-217,
ACM Press.

[Fisher & Mitchell 95] Fisher, K. & Mitchell J. - 1995. A Delegation-based Object Calculus with
Subtyping. FCT ’95, LNCS 965, pp. 42-61, Springer-Verlag.

[Goldberg & Robson 83] Goldberg, A. & Robson, D. - 1983. Smalltalk 80: The Language and its
Implementation, Addison-Wesley.

[Lamping 93] Lamping, J. - 1993. Typing the Specialization Interface. OOPSLA ‘93 Proceedings, pp.
201-214, ACM Press.

[Lucas et al. 95] Lucas, C.; Mens, K. & Steyaert, P. - 1995. Typing Dynamic Inheritance: A Trade-off
between extensibility and substitutability. Submitted to TAPOS Journal.

[Mens et al. 94] Mens, T.; Mens, K. & Steyaert, P. - 1994. OPUS: a Calculus for Modelling Object-
Oriented Concepts. OOIS '94 Conference, pp. 152-165, Springer-Verlag.

[Mezini 95] Mezini, M. - 1995. Supporting Evolving Objects Without Giving Up Classes. TOOLS ‘95
Conference.

[Nierstrasz 89] Nierstrasz, O. - 1989. A survey of object-oriented concepts. Object-Oriented Concepts,
Databases and Applications, pp. 3-21, ACM Press and Addison Wesley.

[Pierce & Turner 93] Pierce, B. & Turner, D. - 1993. Object-Oriented Programming Without Recursive
Types.

[Schmidt 86] Schmidt, D. A. - 1986. Denotational Semantics: A Methodology for Language
Development; Allyn and Bacon, Inc.

[Snyder 87] Snyder, A. - 1987. Inheritance and the Development of Encapsulated Software Components.
Research Directions in Object-Oriented Programming; (eds.) Shriver, B. & Wegner, P.; pp. 165-188;
MIT Press.

[Steyaert & De Meuter 95] Steyaert, P. & De Meuter, W. - 1995. A Marriage of Class- and Object-Based
Inheritance Without Unwanted Children. ECOOP ‘95 Proceedings, LNCS 952, pp. 127-144, Springer-
Verlag.

[Steyaert 94] Steyaert, P. - 1994. Open Design of Object-Oriented Languages: A foundation for
Specialisable Reflective Frameworks. Ph.D.-thesis, Vrije Universiteit Brussel.

[Steyaert et al. 93] Steyaert, P.; Codenie, W.; D’Hondt, T.; De Hondt, K.; Lucas, C. & Van
Limberghen, M. - 1993. Nested Mixin-Methods in Agora. ECOOP ‘93 Proceedings, LNCS 707, pp.
197-219, Springer-Verlag.

[Stroustrup 92] Stroustrup B. - 1992. The C++ Programming Language Second Edition. Addison
Wesley.

[Ungar & Smith 87] Ungar, D. & Smith, R. B. - 1987. Self: The Power of Simplicity. OOPSLA ‘87
Proceedings, pp. 227-242, ACM Sigplan Notices, Vol. 22, No. 12, ACM Press.

[Wegner & Zdonik 88] Wegner, P. & Zdonik, S. B. - 1988. Inheritance as an Incremental Modification
Mechanism, or What Like is and Isn’t Like. ECOOP ‘88 Proceedings, LNCS 322, pp. 55-77, Springer-
Verlag.

