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A b s t r a c t

If a framework that internally creates objects is to
be specialisable, then not only procedure calling
must be subject to late-binding, but also object
creation. In OO languages with compile-time
classes, complicated extra code is needed that
only serves to bypass the static character of class
instantiation. The programmer has to maintain
this code during framework specialisation. In
languages with first-class classes or with
prototypes, a structure of classes respectively
prototypes has to be constructed and maintained
during specialisation, an equally complicated
task.
This paper proposes specialisable nested objects
to deal directly with late bound object creation in
frameworks. Nesting is exploited between a
framework and the objects that belong to it.
Object-based encapsulation is provided to
develop the framework and its specialisations
more independently.

1 Introduction

A framework is a family of collaborating classes,
of which some may be abstract. A specialised
version of the framework may make some of the
abstract classes concrete or may refine or extend
classes [Steyaert 96]. Amongst other things, the
class collaboration can consist of the

instantiation1 of framework classes from within
the framework itself. The instantiating code must
transparently instantiate specialised versions of
the classes. This software prerequisite has been
called the Factory Method design pattern
[Gamma 94]. In order to be able to perform the
instantiations, the classes of the framework need
to refer to each other somehow. In class-based
languages with compile time classes, as C++
[Stroustrup 91] or Eiffel [Meyer 88], the
programmer has to explicitly implement this
reference structure and reconstruct it for each
framework specialisation, cluttering the code that
represents the essential framework behaviour.

Also external clients must be able to transparently
instantiate specialised versions of a framework, a
prerequisite that corresponds to the Abstract
Factory design pattern [Gamma 94]. Usually this
is implemented by providing the client with an
object of some artificial class containing a create
method for each framework class. The
programmer has to build such an artificial class
for each framework specialisation.

If the classes of the framework are instantiated
from within the framework as well as by an
external client, then it is required to combine the
implementations of the Factory Method and
Abstract Factory design patterns, making things
even more complicated.

First-class classes, as in Smaltalk [Lalonde 90], or
clonable prototypes, as in Self [Ungar 87], do not

1 A concrete version of an abstract class is sometimes called an
"instantiation" of that abstract class. But in this paper we will reserve
the term instantiation for the creation of an object corresponding to a
class.
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alleviate the problems: In order to allow different
specialised versions of a framework to coexist, an
entire new set of interconnected classes (or
prototypes) has to be constructed for each
framework specialisation.

So, Factory Methods and Abstract Factories tend
to require complicated implementations in
current OO languages. Nevertheless these design
patterns express an essential OO idea: late
(binding of) object creation. It seems rather
natural for an OO framework to comply with
both design patterns. Therefore object creation
should be subject to the same late-binding
mechanism as method invocation, with the known
advantages of polymorphism and genericity as a
consequence.

This paper offers a thorough discussion of object
creation problems in frameworks, and provides a
solution to these problems under the form of
"specialisable nested objects". This language
concept is presented as a characteristic of an
experimental OO language called LENS (Late-
bound Encapsulated Name Spaces). A LENS
program consists of nested name spaces that can
be encapsulated and refined dynamically. Late
object creation is obtained by directly coupling
object creation to method invocation. Object
creation methods are put in a name space

representing the framework. Nested scoping
allows an object belonging to the framework to
easily create any other kind of framework
objects. The framework is not a module or
library, but an object. This allows different
versions of the framework to coexist.
Encapsulation of names is provided to hide
implementation details of the framework.

Problems with object creation in frameworks have
been addressed before in [Kiczales 93] and in
[Riehle 95]. Section 5 contrasts LENS with these
approaches, and also discusses nesting in other
OO languages, especially in the OO language
Beta [Madsen 93].

The rest of this paper is organised as follows.
Section 2 describes an example of a framework
complying simultaneously with the Abstract
Factory and Factory Method design patterns,
namely the abstract grammar of a programming
language. Section 3 thoroughly discusses the
problems when this framework is implemented in
current OO paradigms. Section 4 explains the
basic concepts of the OO language LENS and
shows how the framework implementation
problems are solved in it. Section 5 discusses
related work in detail, section 6 presents future
perspectives and section 7 concludes.
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Figure 1: Implementing a programming environment by means of an abstract grammar
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2  A Framework  example :
abstract grammar

This section presents a programming
environment as an example framework that is
used throughout the paper. In the implementation
of a programming environment, it is common to
represent a program (an instance of the concrete
grammar) internally  by a  tree of nodes. This
accords to the Interpreter design pattern
[Gamma 94]. The internal representation, often
called abstract grammar, is easy to interpret,
compile, type check, optimise, etc., independently
of the syntactical peculiarities of the concrete
grammar. Figure 1 shows a program and its
internal representation generated by the parser.
The unparser and the optimiser perform actions
on instances of the abstract grammar. The
optimiser detects which variables have a constant
value and generates a more efficient internal
representation.

In an OO approach the abstract grammar can be
implemented by representing each kind of node
by a class. Each node-class will provide a method
for each of the necessary activities: unparsing,
optimising, evaluating, etc. The node classes of
the abstract grammar together constitute a

framework that complies with the Factory Method
design pattern. Indeed, the optimising methods
generate a new instance of the abstract grammar,
i.e. they instantiate the node-classes of the
abstract grammar. Our abstract grammar also
complies with the Abstract Factory Method
design pattern. The external client that instantiates
the node-classes is the parser. It should be
possible to use the same parser code for every
abstract grammar specialisation: a variant of the
defined unparsing or optimisation, or even an
extra facility, like program execution.

Figure 2 shows an OMT-like scheme representing
a basic abstract grammar framework offering
optimisation, and a framework specialisation that
also offers unparsing. Besides the object creation
issue, also an encapsulation issue is manifested in
our example: in Figure 2, only the items
represented with thick lines should be visible
outside their surrounding rectangle. The
optimiser and the unparser both use their own
implementation details to implement their
behaviour. The optimiser needs to access  some
optimiserTable  that  holds the constant values. It
also uses its own intermediate classes. The class
RuntimeExpression  for instance is merely an
implementation aspect of the optimiser process.
The unparsing process, depicted in Figure 2 in

RuntimeExpression

Operation

Add MultiplyOutputInputSequenceAssignment Identifier Literal

unparse {abstract}

Expression

Operation

Add MultiplyOutputInputSequenceAssignment Identifier Literal

Specialisation of abstract grammar framework, extending the grammar with unparsing

Parser

(optimiserTable)
Abstract grammar framework offering optimisation

optimiseProgram
optimiseStatement {abstract}

Statement isConstant {abstract}
optimiseExpression{abstract}

Expression

Figure 2: OMT-like scheme of the abstract grammars
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the bottom rectangle, has its own, different,
p r iva te  inher i tance  s t ruc ture .  Such
implementation details should be hidden from
framework users and also from framework
specialisers.

Different research papers indicated the need to
separate  typing  and  code  reuse  in  OO
languages (e.g. [Canning 89]). Therefore we
consider inheritance as a pure code-reuse
mechanism. That 's  why the entire optimiser
inheritance tree, in the upper rectangle of Figure
2, is hidden. If type-information is desired, then
the framework should declare some (visible)
statement-type.

3 Framework implementation
p r o b l e m s

This section shows why current OO languages are
inadequate to build the abstract grammar
framework. The first part elaborates upon
problems of late object creation, the second part
upon the visibility issue. It should be clear that
the discussion is not particularly oriented to
abstract grammars, but applies to the framework
problems in general.

3.1 Object creation problems

This section discusses the problems one
encounters when implementing simultaneously
the Abstract Factory and Factory Method design
patterns in a framework. In order to implement
the Factory Method aspect, some classes of the
framework need to know (i.e. need to refer to)
some other classes, namely those they want to
instantiate. But while implementing the unparser
specialisation of our abstract grammar example
of Figure 2, the programmer does not (want to)
know which internal instantiations are performed
by the optimiser. So, the specialisation has to
foresee a total cross reference between the node-
classes, in order to make the implementation of
the specialisation (the unparser) independent of
the implementation of the original (the
optimiser). Thus each specialisation needs its own
cross-reference. The following two subsections
reveal the problems when trying to achieve these
cross-references. The first subsection acts on

languages with compile time classes and the
second on languages with prototypes or first-class
classes.

3.1.1 Object creation problems in a language
with compile time classes

[Gamma 94] describes separately how to
implement in C++ the Abstract Factory and
Factory Method design patterns. In the case of an
abstract grammar framework, we have to combine
both implementation strategies, and construct a
total cross reference for the Factory Method (for
the reason mentioned earlier). Figure 3 shows this
combination.  The grey zones implement the
cross-reference between node-classes and should
be private. Note that only the methods that serve
to implement the design patterns are present: the
real behaviour of the abstract grammar itself is
even not drawn! The slightest specialisation, for
instance only unparsing assignments in a
different way, requires a total new cross reference
to be constructed.

In C++, it is impossible to directly inherit the
create methods from a common super class due
to multiple inheritance problems: each create
method will be inherited via different paths
making it still necessary to specify the correct
one.  The same problem occurs in almost all
existing class-based languages since usually (even
in the rename clause of Eiffel) the class name is
used somehow to disambiguate between multiple
inherited homonymous attributes [Carré 90]
[Van Limberghen 96].

Can we at least avoid the ponderous code
duplication in the grey zones? The node-classes
can directly refer to their Abstract Factory class,
but they unfortunately need an instance of their
Abstract Factory class instead of that class itself.
We present the different alternatives to obtain an
instance of the Abstract Factory:

• Creating a new Abstract Factory object, i.e.
instantiating the (known) Abstract Factory
class, each time when a node is instantiated.
This causes a very expensive runtime
overhead.

• Putting an instance of the Abstract Factory
class  in a  global  variable.  The  framework
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Abstract grammar framework
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....
....
CreateOutput

. . .

Abstract Factory
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....
....
CreateOutput

Abstract Factory2
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....
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Output new()

Output new()Output new()

Assignment2 new()

Output2 new()

Assignment new() Assignment new()

Assignment new()

Assignment2 new()

Output2 new()

Assignment2 new()

Output2 new()

Figure 3: The abstract grammar framework in a language with compile time classes

must then be delivered with an initialisation
procedure to fill in this global variable. But
each specialisation requires its proper
installation code. Porting the framework
becomes more error-prone. Moreover
initialisation from the outside exposes
implementation variables: they can be
reassigned (or reinitialised) anytime. And,
last but not least, a global variable makes it is
impossible to run different specialisations
simultaneously.

• Adding a parameter in each node-creation
method. This parameter can then be filled in
with the Abstract Factory object. This is
probably the best alternative implementation
to avoid the code duplication in the grey
zones, but the code of the node-classes is
troubled by the existence of and the
communication with this extra parameter that
is not part of the essential node behaviour.

Either way, the Abstract Factory classes have to be
built and the artificial communication with it has
to be programmed: a (too) complex task only for
obtaining late creation.

3.1.2 Object creation problems in a language
with prototypes or first-class classes

In languages with first-class classes, as in
Smalltalk, classes can contain state and classes can
be stored in variables. A node class can then
contain every other node class in a variable2. The
resulting scheme would resemble Figure 3, except
that the create methods would be replaced by
variables holding the appropriate node class.
Analogously to avoiding the duplication of the
create methods in the grey zones of Figure 3, it is
now possible to avoid duplication of variables by
holding only one variable in each node-class,
namely an instance of the Abstract Factory class.

In order to allow the coexistence of different
specialised versions, the specialisation of only one
kind of node still necessitates to build a new class
for every kind of node: the cross-reference has to
be reconstructed entirely. So, compared to the
solutions of the previous section, first-class classes
do not ease the implementation of late creation.

2 In Smalltalk instance variables of class objects must be used, and
these variables must be made accessible for the instances of the
classes. Class-variables are inappropriate since they are shared with
subclasses,. That sharing would exclude the coexistence of different
specialisations.
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An additional Smalltalk-specific problem is that,
due to the absence of C++ -like constructor
methods, the variables holding the classes have to
be initialised from the outside. Again, porting the
framework is more complicated and the variables,
albeit this time class object variables, are exposed.

Clonable prototypes are sometimes proposed as
alternative object creation mechanism. But
linking the right prototypes together is exactly
equivalent to correctly filling in the Smalltalk
class object variables. The scheme of related
prototypes will be isomorphic with the
corresponding Smalltalk class structure.
Moreover prototypes give rise to other problems:
the deep versus shallow clone dilemma; the
variable exposing problem (a uniform
parameterless clone operator forces initialisation
from the outside, exposing even more
implementation variables); and an artificial
prototype only serving to be cloned can be
inconsistent with the data-model (for instance
which license plate should we give to an artificial
car only serving to be cloned?).

3.2 Framework visibility through
object-based encapsulation

As explained in section 2, the classes of our
abstract grammar need common access to names
representing state or classes. Some of these names
represent implementation details. In order to
obtain some independence in the development of
the different frameworks in a system, and in the
development of different specialisations of a
single framework, some visibility mechanism is
needed. Sharing a name between a family of
classes that are not necessarily in subclass
relationship with each other, and hiding the name
from other classes, poses a problem in many
object oriented languages. Similarly, hiding
names from the specialisation of the framework
and vice versa is often impossible.

A few object-oriented languages include some
form of separate module system to regulate
visibility. In C++ files can be used as modules.
[Wirfs-Brock 88] introduced modules in
Smalltalk. But modules are inappropriate to hide
framework implementation details for the very

same reason as they are inappropriate to hide
object implementation details. The difference
between modules and objects is just that different
objects of the same kind can coexist, whereas a
module represents a unique set of its items since it
is a compile time aspect. As a consequence
running simultaneously different specialisations
of a framework with state, or providing
simultaneously different implementations of the
same framework functionality, requires the
framework to be an object instead of a module.
Perhaps coexistence of different specialisations is
not directly a realistic need in the case of an
abstract grammar, but it certainly is in the
application-document example of a Factory
Method in [Gamma 94]. So also object-based
encapsulation instead of module-based
encapsulation is needed to hide names, not only
in simple objects but also in frameworks.

4 The abstract grammar in
LENS

Figure 4 contains the implementation of the
abstract grammar in LENS. Before discussing
how the framework problems are solved, we
briefly introduce the syntax and basic concepts of
LENS necessary to understand Figure 4.

4.1 Syntactical conventions

All identifiers and operators in bold are
predefined. Identifiers that would correspond to a
class in a class-based language, are capitalised.
But this is only a convention for clarity. The
following message passing notation is adopted:

• Messages with an explicit receiver are
denoted by writing the receiver followed by
the message-selector. Arguments are added
between parentheses, as in line 16:
optimiserTable atPut(to, whatOptimised).

• Receiverless messages represent self sends,
e.g. optimiseStatement in line 8 and
myOperation(..,...) in line 65.

• Super calls are denoted with the s u p e r
keyword. We use super calls only to refer to
the method we are currently overriding.
Consequently it is redundant to specify
which super method is activated. In other
words    when  for   example  overriding   the
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00 [
 /* Abstract grammar framework offering optimisation  */

 [
           optimiserTable variable;

05   STATEMENT method(
    [  optimiseProgram method(
         [ optimiserTable!(DICTIONARY);
           optimiseStatement])
    ]);

 10
  ASSIGNMENT(to, what) method(
    [ STATEMENT;
      optimiseStatement method(

        [ whatOptimised temporary(what optimiseExpression);
 15          whatOptimised isConstant if (

            optimiserTable atPut(to, whatOptimised),
            ASSIGNMENT(to, whatOptimised))])
     ]);

20   SEQUENCE(first, second) method(
    [ STATEMENT;
      optimiseStatement method(

        [ firstOptimised temporary(first optimiseStatement);
          (firstOptimised = nil) if(

25              second optimiseStatement,
             SEQUENCE(firstOptimised, second optimiseStatement))
        ])
     ]);

30   INPUT(to) method(
    [ STATEMENT;
      optimiseStatement method(
        [ optimiserTable removeKey(to);
          INPUT(to)])

35     ]);

  OUTPUT(what) method(
    [ STATEMENT;
      optimiseStatement method(OUTPUT(what optimiseExpression))

40     ]);

  LITERAL(val) method(
    [ isConstant method(true);
      value method(val);

45       optimiseExpression method(LITERAL(val))
    ]);

  RUNTIME_EXPRESSION method(
       isConstant method(false) 

50      );

  IDENTIFIER(label) method(
    [ RUNTIME_EXPRESSION;
      optimiseExpression method(

55         optimiserTable atIfAbsent(label, IDENTIFIER(label)))
    ]);

  OPERATION(left, right) method(
    [ RUNTIME_EXPRESSION;

60       optimiseExpression method(
        [ leftOptimised temporary(left optimiseExpression);
          rightOptimised temporary(right optimiseExpression);
          ((leftOptimised isConstant) & (rightOptimised isConstant)) if(
              LITERAL(calculate(leftOptimised value,rightOptimised value)),

65               myOperation(leftOptimised,rightOptimised))])
    ]);

  ADD(left, right) method(
    [ OPERATION(left, right);

70       calculate(left, right) method(left + right);
      myOperation(left, right) method(ADD(left, right))
    ] encaps(calculate, myOperation));

  MULTIPLY(left, right) method(
75     [ OPERATION(left, right);

      calculate(left, right) method(left * right);
      myOperation(left, right) method(MULTIPLY(left, right))
    ] encaps(calculate, myOperation))

80  ] encaps(STATEMENT, RUNTIME_EXPRESSION,
                  OPERATION, optimiserTable);

 /*Specialisation of abstract grammar,
            extending  the grammar with unparsing. */

 [
85 ASSIGNMENT(to, what) method(

    [ super(to, what);
      leftHand constant(IDENTIFIER(to));
      unparse method(
        [ leftHand unparse;

90           " := " print;
          what unparse])
    ] encaps(leftHand));

  SEQUENCE(first, second) method(
95     [ super(first, second);

      unparse method(
        [ first unparse;
          "; " println;
          second unparse])

100     ]);

  INPUT(to) method(
    [ super(to);

               toIdent constant(IDENTIFIER(to));
105       unparse method(

        [ "input(" print;
          toIdent unparse;
          ")" print])
    ] encaps(toIdent))

110
  OUTPUT(what) method(
    [ super(what);
      unparse method(
        [ "print(" print;

115           what unparse;
          ")" print]) ]);

  LITERAL(val) method(
    [ super(val);

120       unparse method(val print)
    ]);

  IDENTIFIER(label) method(
    [ super(label);

125       unparse method(label print)
    ]);

    OPERATION(left, right) method(
      unparse method(

130         [ "(" print;
          left unparse;
          printOperator;
          right unparse;
          ")" print

135         ]
    ));

  ADD(left, right) method(
    [ super(left, right);

140       OPERATION(left, right);
      printOperator method(" + " print)
    ] encaps(printOperator));

  MULTIPLY(left, right) method(
145     [ super(left, right);

      OPERATION(left, right);
      printOperator method(" * " print)
    ] encaps(printOperator));

150 ] encaps(OPERATION);

DICTIONARY method(    ...............  );

parse method(
155       SEQUENCE(

      ASSIGNMENT("a", LITERAL(3)),
       SEQUENCE(

                  ASSIGNMENT("b", LITERAL(2)),
          SEQUENCE(

 160               INPUT("c"),
                      OUTPUT(
                        ADD(MULTIPLY(IDENTIFIER("a"),
                                                      IDENTIFIER("b")),
                                 IDENTIFIER("c")))))))
 165

] parse optimiseProgram unparse

Figure 4: the abstract grammar in LENS
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ASSIGNMENT method in line 86, we will
simply write super(to,what) to call the super
variant of the ASSIGNMENT method.

LENS provides three kinds of slot declarations:
• calculate(left, rigtht) method(body) in line

70, declares a method slot with selector
calculate and the two parameters left and
r ight . b o d y  is evaluated each time the
calculate message is sent.

• optimiserTable variable in line 3, declares a
variable. This declaration introduces two
slots: a retrieve slot optimiserTable and an
update slot optimiserTable!.

• leftHand constant(value) ,in line 87, declares
a read-only instance variable by only
introducing the retrieve slot leftHand .

t emporary  declarations (le f tOptimised  and
r igh tOpt imised  in lines 61 and 62) do not
introduce object slots, but only introduce a local
variable in the lexically surrounding method
optimiseExpression.

New objects can be created from scratch by
denoting them as a block (i.e. a name space)
using brackets [...]. For instance the LITERAL
method in line 42 creates a new literal node
object consisting of the three slots declared in
lines 43 to 45. The three slots are actually
composed using inheritance, denoted by the ';'
operator. Note that the outermost block of Figure
4, beginning at line 0 and ending at line 168, also
denotes an object. We sent the message parse to it
in line 168.

The optimiseProgram method declared in line 6
is an example of a more ordinary method
invoking two statements. Since this method is
denoted using brackets, it also creates an object.
The convention is that assignments, for instance
that in line 7, return an empty object. Composing
this empty object with  the result of the second
statement, the method invocation in line 8,
eventually yields the wanted result. Syntactically
this is similar to writing the result of a method as
its last statement.

4.2 Basic concepts of LENS

LENS is slot-based because instance variables are
only accessible through a couple of retrieve and
update methods. Slot-based instance variables
blend state and behaviour, even towards
inheritors, enhancing the degree of encapsulation
[Ungar 87].

The STATEMENT  method declared in line 5
creates an incomplete (or abstract) object only
consisting of the method optimiseProgram that
calls through a self send the undefined (or
abstract) method optimiseStatement. Incomplete
objects can be passed around. Wrong use of
incomplete objects raises a runtime "message not
understood" error. We do not consider this as a
problem because we feel it is the task of an
optional static type system3 to avoid such wrong
uses at compile time.

Inheritance can be applied dynamically:
inheritance hierarchies can be built at run time. In
line 12 for example the ASSIGNMENT method,
adds by means of  inheri tance the
optimiseStatement method to a (newly created)
statement object. Figure 5 presents an OMT-like
[Rumbaugh 91] diagram of this situation. The
diagram is OMT-incorrect because in OMT only
classes can be specialised. An apparent
characteristic of LENS is life-time sharing
between child-objects and their common parent
object, a specific property of prototype-based
languages [Dony 92]. But LENS is not
prototype-based in the sense that its primitive
object creation mechanism does not rely on the
cloning of prototypes.

(STATEMENT)

(ASSIGNMENT)

STATEMENT (line 12)

result of calling the ASSIGNMENT 
method on line 11

(ASSIGNMENT)
result of  calling the ASSIGNMENT 
method on line 85, as in line 156

Figure 5: inheritance on abstract grammar node objects

3 Theoretical foundations for typing dynamic inheritance can be
found in [Lucas et al. 95]
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In LENS a sub-object does not declare the class
of its super-object: sub- and super-objects can be
freely combined. Therefore the inheritance of
LENS corresponds to mixin-based inheritance
[Bracha 90].

In line 72, the encaps operator hides the slots
calculate and myOperation from further clients
(inheritors as well as senders4 ). e n c a p s
corresponds to the 'hide' operator of [Bracha 92].
This object-based encapsulation mechanism can
be used as visibility boundary between sender and
receiver or between original and specialisation.
The combination of mixin-based inheritance and
this kind of encapsulation is an innovative way to
l o o k  a t  m u l t i p l e  i n h e r i t a n c e
[Van Limberghen 96].

A LENS program can contain nested name
spaces. Nesting gives rise to a kind of closure: an
assignment node for instance will implicitly retain
a reference to its surrounding context, i.e. its
creator. In this way it can refer to the more global
variable optimiserTable.

We conclude this section by summarising the
characteristics of LENS:

• object creation from scratch, no class
instantiation, no prototype cloning

• dynamic mixin-based inheritance
• slot-based access to methods and variables
• nesting of objects

4.3 Solution of the framework
problems

In contrast with the complicated implementations
of our abstract grammar framework in section 3,
the LENS program directly reflects its class
design: the left respectively right rectangle in
Figure 4 correspond to the upper and bottom
rectangles in Figure 2. The abstract grammar
indeed complies with

• Factory Method: during optimisation, the
operation nodes ADD  and MULTIPLY  for
instance create a L I T E R A L  when both
operands are constant (line 64).

4 LENS also contains a preventSpecialisation operation to hide a slot
only from inheritors.

• Abstract Factory: the parse method (line
154, in the program here only generating the
example code of Figure 1) can be used to
generate any specialisation of the abstract
grammar.

The Factory Method aspect is accomplished so
easily mainly thanks to object creation from
s c r a t c h . In C++ Factory Methods are
implemented by introducing (overridable)
methods that perform the creation. The code of
these methods consists of the instantiation of a
class (see figure 3). Object creation from scratch
avoids this intermediate step: in LENS these
methods directly contain the object to be created.
As a consequence the double administration of
object creating methods and their corresponding
classes is no longer necessary.

A second benefit of object creation from scratch
with regard to Factory Methods concerns nesting.
In C++, classes can be nested, but the induced
nested scoping of identifiers cannot be used
because the instance of a nested class can exist
without any instance of the surrounding class.
This is a typical problem when introducing
nesting in an OO language with compile time
classes. Object creation from scratch bypasses this
problem: a nested object can only be created by a
surrounding object. As a consequence the
induced nested scoping is valid.

The total cross reference between the node
classes, needed for the Factory Method aspect as
explained in section 3.1, is obtained thanks to this
nested scoping. By nesting the node objects in the
same surrounding object, they can call each
other. The surrounding object represents the
framework. This way we obtain the total cross
reference without having to write any
supplementary code. We only have to implement
the essential behaviour of the abstract grammar.

Most OO languages heavily emphasise object
classification, but neglect object composition.
Nevertheless object composition, especially part-
whole composition, is an important method of
apprehending real world objects during analysis.
Moreover part-whole composition can also be
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employed as a method of structuring software
objects during design [Civello 93]. The nesting of
LENS introduces a part-whole relationship
between the nested object and the lexically
surrounding object. In Figure 4 the whole is the
abstract grammar framework and the parts are the
grammar nodes.

Note that the nested scoping of LENS is not
entirely lexical. The effective surrounding whole
can be a specialised version of the statically
surrounding one. This feature allows the whole to
be specialisable, an essential requirement for the
abstract grammar framework. In general the
whole could even be abstract, i.e. some parts still
must be specified by means of inheritance.

In section 3.1.2 we showed that storing classes or
prototypes in variables is an inferior strategy to
obtain framework genericity. Since a class
instantiation or prototype cloning mechanism is
absent in LENS, the programmer is discouraged
from passing around first-class object templates.
Instead, LENS advocates to uniformly use
inheritance as genericity mechanism.

In LENS inheritance is applied on objects. This
feature allows objects to be built incrementally.
Consequently the initialisation of an object
created by a framework can be distributed over
the different parts of that framework, e.g. the
optimiser and the unparser. In a class-based
approach on the contrary, initialisation has to be
done at once at instantiation time for the entire
new object. Possibly some initialisation values,
specific for an implementation of one part of the
framework, have to be passed as arguments to the
class instantiation procedure. This violates the
independence between implementation and use of
the parts of a framework.

By encapsulating the intermediate classes in lines
80 and 150, the internal inheritance structures for
the optimiser and unparser are totally hidden,
even towards each other. Consequently, the
original framework and its specialisation(s) can
be developed more independently. But, if desired,
one can of course let part of the intermediate
class structure be visible, in order to reuse the

inheritance structure in framework specialisations.
We could for instance let class OPERATION be
visible since it represents the same classes in the
parser and the optimiser.

The program in Figure 4 only invokes one
version of the abstract grammar. But running
different specialisations simultaneously could
easily be obtained by giving the specialisations a
(method-) name. In such a case the client has to
qualify the desired framework anyway, so why
not by means of message passing: the parser
would for instance make an assignment node by
s e n d i n g  SEQUENCE to the appropriate
framework object instead of performing a self
send as in Figure 4 (line 155). Since frameworks
are objects, each version would have its own state.
It would consequently also be possible to provide
simultaneously different implementations of the
optimiser framework.

5 Related work

5.1 Other research on late creation.

[Riehle 95] introduces late creation and class tree
encapsulation in frameworks by only granting
access to classes through a class specification
system. A client can only retrieve classes by
providing a logic expression describing the
desired classes. The graphical editor in
[Riehle 95] for instance finds all graphical classes
with the class specification isGraphical and
isConcrete. This way the editor can provide a
button for each class of graphical objects that is
defined in the actual framework. The framework
implementor has to provide its classes with (meta)
methods to answer on the retrieve specifications.
Such a mechanism is useful when an external
client needs to find a set of present classes, as in
the graphics editor example. We would need a
similar specification mechanism to solve this
particular problem in LENS.

To cope with Factory Methods, [Riehle 95]
additionally introduces a special kind of class
specification to refer to the current computing
context. In the case of our abstract grammar, this
means that the implementor would specify
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something l ike  i s A s s i g n m e n t  a n d
ofCurrentContext to create an assignment node
from within the specialisable framework. Again,
the framework implementor has to provide the
class-information. In this case he must ensure that
the specification is not ambiguous since we
expect only a single class. Furthermore the class
tree has to be traversed, a rather expensive
operation for simply indicating one specific
concrete subclass. Another problem with this
approach is that specialising only one abstract
grammar node class (providing another
unparsing for assignments for instance), still
needs a whole set of new node-classes to be
introduced. The issue of frameworks containing
state, as with our optimiserTable, is not handled in
[Riehle 95]. So, the approach of logic class
specifications is not really appropriate for the
problems presented in our paper, i.e. to simply
obtain a late bound reference to the desired
subclass.

[Kiczales 93] tackled yet another object creation
problem emerging when specialising a
framework, namely when the behaviour of
internally created objects depends on the
initialisation values. For instance when extending
a framework of graphical objects with optional
moving behaviour, a polygon should only be
"movable" (i.e. contain a move method) when
every of it lines is "movable", and a line on its
turn should only be "movable" when both its end-
points are "movable". [Kiczales 93] introduced
"traces" to easily tackle this propagation
phenomenon, without the programmer having to
implement it. The concept of traces is orthogonal
to the concept of late creation we proposed:
LENS could be orthogonally extended with
traces.

5.2 Nesting in other OO languages

Most OO languages do not support nested
scoping. Smalltalk and Eiffel do not offer
nesting. In C++, classes can be nested.  But as
explained in section 4.3, the induced nested
scoping of identifiers cannot be used.

The only prototype-based language with nested
scoping that we know of is Agora [Steyaert 93].

Nesting is conceived there as a kind of
subclassing restriction (a task that we would like
to delegate to an optional and more powerful
classification system, see our future work).

Beta [Madsen 93] is a class-based language with
nested scoping. In Beta, a nested class can only be
accessed by sending a message to an instance of
the surrounding class. This allows nested scoping
to be introduced but necessitates at the same time
that classes are first-class values. LENS
deliberately omitted first-class object templates.
Just as in LENS, the Beta nested scoping is not
lexical for identifiers denoting overridable
methods. The advantage of inheritance on
objects, as in LENS, with respect to inheritance on
classes, as in Beta, concerns initialisation, as
explained in section 4.3.

5.3 Other related research

[Kiczales 92] identified problems in extending
traditional class libraries due to overridden
methods that are called from within the
framework. The specialiser does not know where
or when these calls happen in the library. For this
reason we provided a total  cross reference
between the framework "classes" by implementing
the Factory Method design pattern (see section
3.1). [Kiczales 92] criticises non-overridable
methods as solution because the framework has to
anticipate them. This criticism is not valid in
LENS because the encapsulation operators can
also be performed afterwards by the specialiser.
But, apart from this detail, LENS starts from the
philosophy that a self send to a method intends to
be possibly overridden. If not, the called
behaviour is no longer worth to be called a
method and should be encapsulated (possibly
only towards inheritors), transforming the method
internally in a procedure. In this sense we believe
that a library designer certainly should keep
specialisations in mind by indicating what is
overridable and what isn't, and by creating and
invoking intermediate methods containing
replaceable code.

[Kühne 95] identifies cases where ordinary
parametrisation is a more appropriate software
adaptability mechanism than inheritance. The
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enhanced inheritance mechanism of LENS omits
different of the flaws of traditional inheritance
enumerated in [Kühne 95] and allows inheritance
to be applied more uniformly as adaptability
mechanism.

[Ossher 95] agree with us that there is a need for
unanticipated extension and composition, for
decentralised development and for grouping
methods by functionality instead of by class.
They propose subject-orientation as a solution.
[Harrison 93], their preceding paper on subject-
oriented programming, even uses as main
example a tree with different separate
functionalities, just as our abstract grammar tree.
We also agree that traditional OO is too firmly
connected to the notion of identity. In LENS the
inheritance mechanism was detached from the
identity of the self object: self sends are used
instead of self references. We try to identify some
differences with our approach without judging:

• [Ossher 95] does not seem to propose
anything like late object creation.

• In LENS classes are constructed by means of
inheritance and encapsulation. [Ossher 95]
proposes a set of composition rules to merge
existing classes.

Contracts [Holland 92] are yet another approach
to group code by functionality instead of by
class. Contracts emphasise rather on specifications
to which the collaboration must comply, whereas
LENS deals with building the collaboration.

In [Andersen 92] separate aspects of objects are
represented in a role model, containing the roles
the objects 'play' in the context of that aspect. The
notion of role models, emerging from the design
world, very much resembles a set of collaborating
mixins as in LENS.

6 Future work

LENS was created with the aim to express OO
design ideas more directly. A comparison with
the other design patterns in [Gamma 94]
strengthens us in the approach taken. LENS is not
innovative in implementing design patterns that
are not involved with inheritance, for instance the

Iterator and Command design patterns that are
also valid in software without inheritance. But
when inheritance is involved, LENS scores well.
The Visitor design pattern for instance deals with
different classes that have to be iterated, possibly
adapting state during traversal. An abstract
grammar is actually a perfect example. In other
languages an artificial visitor class and the
communication with the visitor object has to be
programmed. The combination of dynamic
inheritance and encapsulation also allows to
directly obtain the software requirements
indicated by the design patterns Decorator,
Bridge and Strategy.

A possible way to make LENS even more design
oriented is to restrict the dynamic inheritance with
static classification. Mixins are chunks of code
that can be freely combined. Therefore mixin-
based inheritance is sometimes criticised to be a
mere code-sharing mechanism without
conceptual meaning. In traditional class-based
systems the class hierarchy partially fulfils a
combination restricting role, but still has to be
enhanced with extra restricting capabilities.
Multiple inheritance is less expressive than it
appears, essentially in its lack to put constraints
on multiple inheritance from different classes.
For example we should be able to prevent a class
to inherit from the classes Male and Female
simultaneously. To this extent, [Hamer 92]
include classifiers in their class hierarchy. We are
thinking about a similar static classification
mechanism especially destined for mixins,
preserving its characteristic of parametrical super
binding. [Lucas 95] suggested to use a
classification system as to make their type system
less verbose. Unifying static classification and
static typing sounds very reasonable and is one of
the following challenges for LENS.

Currently we execute LENS programs with a
bluntly implemented interpreter: we did not pay
attention to efficiency matters in the current
implementation. LENS and the prototype-based
language Self both contain a dynamic inheritance
mechanism and both are dynamically typed.
Therefore we expect that the results of the efforts
undertaken to optimise Self [Chambers 91] can



Marc Van Limberghen Building frameworks through specialisable nested objects

page 13

be transported to LENS and will give it an
acceptable performance. But avoiding runtime
method lookup in our dynamically typed
language seems a hard problem. Static method
lookup can be obtained in an efficient way in
dynamically typed languages, as long as the
inheritance structure remains static [Driesen 95].
But for languages with dynamic inheritance, static
method lookup techniques are as yet unavailable.
It has still to be investigated if the static type and
classification system we are thinking of, can and
should be used for efficiency matters.

7 Conclusions

Object orientation is conceived to specify
behaviour incrementally. But current OO
languages do not support the incremental
specification of a particular kind of behaviour,
namely object creation. However the design
patterns Abstract Factory and Factory Method
demand late bound object creation to be
considered as a high level concept in object
oriented frameworks.

LENS was presented as the orthogonal
combination of existing OO aspects: late-binding
(by means of message passing), pure (i.e. mixin-
based or code-reuse) inheritance and object-
based encapsulation. This combination was shown
to fit the needs for framework construction. The
object creation mechanism did not consist of class
instantiation, nor prototype cloning. Instead,
objects were created from scratch. This way we
used the same mechanism to subject both object
creation and procedure calls to late-binding.
Consequently we did not need to introduce new
language concepts to obtain late creation.

Object composition, another important
constituent of design, has been neglected in most
OO languages. In LENS it was present by means
of nesting, modelling part-whole relationships
between software components. Because objects,
especially nested objects, were specialisable, it was
easy to construct specialisable frameworks.
Object-based encapsulation was used to
selectively restrict specialisation.

The Abstract Factory and Factory Method design
patterns did no longer have to be implemented:
only the essential behaviour of the abstract
grammar framework was written down. The code
directly reflected the design of the framework.
All of this made us believe that LENS narrows the
gap between OO design and implementation and
that it constitutes a valuable basis for an OO
software design language.
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