
Vrije Universiteit Brussel

Faculteit Wetenschappen

SREVINU

ITEIT
EJI

R
V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S
AI

T
N

EI
C

S

Effort Estimation for Changing
Requirements

Patrick Steyaert, Wim Codenie, Wilfried
Verachtert

Techreport vub-prog-tr-96-11

Programming Technology Lab

PROG(WE)

VUB

Pleinlaan 2

1050 Brussel

BELGIUM

Fax: (+32) 2-629-3525

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be

WWW: progwww.vub.ac.be

Effort Estimation for Changing Requirements

Patrick Steyaert
Department of Computer Science
Vrije Universiteit Brussel
Pleinlaan 2
B1050 Brussel, BELGIUM
e-mail: prsteyae@vnet3.vub.ac.be

Wim Codenie, Wilfried Verachtert
OO Partners BVBA,
Otto De Mentockplein 19
B1853 Strombeek-Bever, BELGIUM
e-mail: {wilfried, wim}@oopartners.com

Abstract: Complex software systems have to cope with a steady stream of
changing requirements. However, current software engineering techniques are ill
equipped for assessing the impact of changes, either within a single system or across
reused assets and the systems in which they are reused. This is a critical inhibitor for
(amongst others) effort estimation in the object-oriented development process where
reuse and incremental development play a crucial role. We have been confronted
with this problem in deriving a commercial domain specific framework from a
custom built application (in the area of broadcast planning). In this case the problem
boils down to efficient effort estimation of customisations of the framework early in
the development process. In the context of a research project we are investigating
reuse contracts as a possible solution.

Background

This section describes the problems we encountered at OO Partners in the process of
turning a custom developed planning application for a TV-station (VTM) into a
complete domain specific framework that has been successfully installed at several TV-
stations in Europe.

The project goal was to create an application to support the planning of TV-programs.
More specific, the application should integrate all the aspects of planning, ranging from
seasonal planning to daily planning, as well as video tape management, program
information management and downloading information to specific transmission
hardware. In other words, the application should be accessible by different kinds of
users basically manipulating the same data but from a different point of view. Another
requirement was that the application should be as close as possible to the planning
processes used at VTM. At that time most of the planning was still done with the aid of
pencil and paper. The application should improve the quality of the work —e.g.
automate the work flow, reduce administrative overhead— and increase productivity,
but not influence the basic procedures that were already used for planning.

The project started early 1993 with a young team of 6 software engineers. Our first
prototype was immediately taken into production. Since the initial release, several
updates were done, mainly to add functionality. The final version was taken into
production end 1994.

Even before the final version of PSI was installed at VTM, another Belgian and several
European TV-stations showed interest in the product. Marketing research has revealed
that few software solutions are available on the market for scheduling and planning TV-
programs and that most of the existing off-the-shelf software is based on older
technologies. They lack sophisticated graphical interfaces, don't reflect the dynamic
work flow and are not easy to adapt to client-specific needs within limited time and
budget. Especially the latter shortcoming is considered a serious problem in the rapidly
evolving TV-market. This observation motivated us to build a domain specific
framework that is easily customisable.

Major Requirement Changes

Our first major modification of PSI was done at VTM for the opening of their second
channel. Because the board of directors wanted to keep their ideas for the second
channel secret for their direct competitors, only very few people were informed. The
official announcement was made only one month before the start of the new channel.
Even the planning and IT departments didn’t know of the plans in advance. Needless to
say that there was some panic among the users. In one month the existing single-
channel planning application had to be transformed into a multi-channel planning
application1. This had not only implications on the planning strategies used —e.g.
ensuring that a film is planned only on one of the channels— but also on some of the
domain components —e.g. transmission dates had to be associated with a channel.

In the mean time, a customised version of PSI has been successfully installed at two
other broadcast stations, referred to as case 1 and case 2. Both versions are derived
from the original application. In case 1 only twenty percent of the classes had to be
adapted. These adaptations mostly consisted of adding specific features. In the other
case, the existing work flow procedures had to be revised, but the underlying domain
objects could be reused. These two extra cases allowed iteration which was very
important for OO Partners to gradually transform this customised application into a
framework. The reason for this incremental approach was to limit the upfront
investments in the framework.

Our Experience with Building the Framework

The increasing interest in PSI is for our company a big challenge on the field of
software engineering. How to keep the PSI framework manageable —i.e. maintain,
support and add new features to it— and in the same time respond to the demands for
adapting PSI towards specific needs?

The need to make PSI adaptable requires the definition of a clear architecture expressed
in terms that are understandable to experts in the domain. It is the materialisation of our
years of experience in the field and includes information about the work flow, the kinds
of actions planners can perform and what they expect from other users of the
application. In our case the architecture is expressed as a framework consisting of
abstract classes, contracts between classes, and numerous hot spots that serve as hooks
for future installations of the framework.

It is often suggested that the ultimate goal of this kind of framework development is to
build - through a small number of iterations - a software architecture that can be turned
into a customised application by simply filling in the hot spots. It should be possible to
implement the requirements that differ from case to case without altering the framework
itself. In our experience this is a false delusion. Even after the initial iterations
modifications to the framework still occur, albeit less frequently. Although these latter
changes occur less frequently, they are the hardest to assess when building customised
applications. Most often such changes have a large impact on the rest of the system and
are often incompatible with previous customisations. This makes the management of the
consistency between the different customisation and the maintenance of the framework
itself extremely difficult.

Because of the difficulties we are currently very interested in methods for assessing the
impact of changes:

1 This is a good example of what it means for the IT department to be able to evolve in parallel
with the business.

• Estimating what parts of the software can be reused and what parts must
be modified (e.g. what methods can be inherited, what methods must be
added/overridden)

• How modifications propagate through other parts of the system or
reusers of the modified parts

In a joint research project we have been investigating reuse contracts as a means to
facilitate the propagation of changes to reusable assets and indicating where and how to
test and how to adjust these applications. We are currently interested in investigating
how reuse contracts can be used for effort estimation for changing requirements.

Reuse Contracts

In [Steyaert&al96] we propose reuse contracts as a means to codify the management of
change in an (adaptable) software system. Reuse contracts record the protocol between
builders and customisers of an adaptable system and offer guidelines for deriving more
transient (customised) versions of the system in some problem domain. Similar to real
world contracts that can be amended, extended, or customised, reuse contracts are
subject to typical reuse operations such as refinement, extension and concretisation. The
inverse operations: coarsening, cancellation and abstraction intuitively correspond to the
(partial) breaching of a contract.

Reuse contracts and their operations are used to document how a transient version has
been derived from the more persistent parts of the system. This documentation can be
used by tools to asses the impact of changes made to the system, to forecast when and
which problems might occur and to give directions on where and how to test the
derived transient version of a system. For example, when extending the adaptable
system with new functionality, collisions with already made extensions in more
transient versions must be checked; or, when cancelling functionality in the system, it
needs to be checked whether no transient versions rely on such functionality. To be able
to check this, more information is needed on how a transient version relies on the
design decisions made in the adaptable system. Reuse contracts provide exactly this
information.

Because the best-known technique available today for structuring and adapting object-
oriented software is undoubtedly the use of abstract classes with inheritance as the reuse
mechanism, in [Steyaert&al96] we focused on the problem of reuse of class-hierarchies
as a more tangible case to express the ideas behind reuse contracts. In that context,
reuse contracts and their operations describe the protocol between managers and users
of (abstract) class libraries. Reuse contracts of abstract classes provide an explicit
representation of the design decisions behind an abstract class, including information
such as: which methods can be sent to the class, which methods are invoked by what
other methods, which methods are abstract or concrete, relationships with other classes,
... Only information relevant to the design is included. For example, auxiliary or
implementation-specific methods are not mentioned in a reuse contract.

Reuse contracts can be manipulated by means of reuse operations. Refinement refines
the design of some methods, extension adds new methods, concretisation makes
abstract methods concrete. These reuse operations not only allow documenting the
adaptations made to a class, but a careful investigation of their interactions also allows
to predict and manage the effect of these adaptations.

Effort Estimation: An Example

Consider the example of a Collection hierarchy. A class Set defines a method add and a
method addAll to add a collection of elements simultaneously. The specification of our
set class is provided in an OMT class diagram.

Class Set
method add(Element) = 0
method addAll(aSet:Set) =
 begin

for e in aSet do
self.add(e)

 end
end

This Set class is part of our application. Due to requirement changes we are asked to
modify this set class to count the number of elements in a set. In order to estimate the
effort we need to estimate how much of the existing methods need to be modified. In
worst case we need to rewrite both add and addAll methods. When either add or addAll
depends in its implementation on the other method, we might be able to reuse one
method. The OMT diagram does not provide sufficient information for this analysis as
it does not state the dependencies between the method implementations. Because of the
simplicity of the example code inspection works fine here. In practice inspecting the
code for effort estimation is undesirable. This kind of analysis should be feasible on the
design level. An intermediate level of description is needed. Reuse contracts for classes
can provide this information. In a reuse contract each method can have a specialisation
clause (in italics in the example) that documents, at the design level, how it depends on
the other methods. The reuse contract is an interface description to which the
implementation must comply.

reuse contract Set
abstract

add(Element)
concrete

addAll(Set) {add(Element)}
end

This reuse contract gives more precise information for effort estimation than the OMT
diagram. The question is whether this reuse contract gives us sufficient information to
decide what can be reused and what must be newly developed without error-prone code
inspection. Reuse contracts will indicate which methods rely on which other methods,
by enumerating the names of methods that are invoked through self sends. The reuse
contract of the example does not state that the add method is invoked for each element
of the argument set. Although reuse contracts provide only syntactic information it is
our experience that in practice this is enough to estimate what methods can be inherited
and what methods must be overridden. The art is in finding the right balance between
descriptions that are easily understood and expressed and descriptions that capture
enough of the semantics of possible adaptations.

For simplicity we have restricted the reuse contracts we propose here to include only
documentation on the internal dependencies among a class's methods. The
dependencies among the methods of one class and the methods of its acquaintances are
at least as important. Just as our current reuse contracts are based on specialisation
interfaces, reuse contracts are being developed based on descriptions of interclass
relationships.

Based on the information provided by the reuse contract the following effort estimate
can be made.

--- effort estimate
subclassing Set
concretisation of add(Element)

Reuse contracts can also be used to asses the impact of changes or updates of reusable
assets. Let’s say that we are going to make an optimised version of Sets. In the
optimised version addAll stores the added elements directly rather than invoking the add
method. This leads to inconsistent behaviour in CountingSet when it decides to upgrade
to this optimised set as not all additions will be counted. Using the terminology of
[Kiczales&Lamping92] we say that addAll and add have become inconsistent methods.
Again, although in this simple example this can be derived from the code, in practice it
should be possible to detect these problems without code inspection. The major obstacle
for locating problems such as inconsistent methods is that the different conceptual ways
to reuse an (abstract) class are all performed by the same operation, i.e. inheritance.
More information about the intentions of inheritor is needed. This kind of information is
precisely provided by the reuse operations on reuse contracts. In the example the reuse
contracts of CountableSet and the OptimisedSet document how they were derived from
Set.

reuse contract CountableSet concretises Set
concrete

add(Element)
end

reuse contract OptimizedSet coarsens Set
concrete

addAll(Element) {-add(Element})
end

The fact that add and addAll have become inconsistent can be derived directly from the
reuse contracts: CountableSet concretises a method that has been removed from the
specialisation clause while changing from the old parent class to the new parent class (in
italics above). In this example only two reuse operations are used: concretisation and
coarsening. In [Steyaert&al96] a complete set of reuse operators is given together with
a set of rules that allow automatic detection of conflicts based on the interaction of reuse
operations.

Again an effort estimate can be given on the basis of the reuse contracts. An
inconsistent method conflict has a fixed cost in most cases as it can be resolved by a
standard rule.

--- effort estimate for replacing Set with OptimisedSet
#Resolving the inconsistent method conflict between add and
addAll in class CountingSet by:

1) copying the addAll method from OptimisedSet to
CountingSet

2) merging the code for counting elements (from add in Set)
in this addAll method

Conclus ion

In the current state-of-the-art impact of changes can only be estimated by informal
reasoning, mostly at the code level. The result is that subtle conflicts with important
consequences are often only detected during the testing phase. This is obviously not a
good basis for effort estimation. When adopted, reuse contracts can make effort
estimation of changes feasible without code inspection and by formal reasoning and
automated tool support.

In situations where reuse and incremental development are an issue, reuse contracts do
not necessarily create an overhead. We see reuse contracts as an embracing
methodology for managing the different aspects (testing, effort estimation, ...) of
change and reuse.

While we only discussed how reuse contracts can improve the predictability of the
impact of change we are confident that they can actually be used as a basis for more
formal estimation metrics for changes. The reason is that reuse contracts allow the

detection of conflicts of different categories (e.g. name conflicts, inconsistent methods,
method capture, partial implementation,... in the case of inheritance) and allow a more
fine grained estimation of what needs to be changed and what not. In our experience in
using reuse contracts the different categories can be associated different metrics.
Obviously, for those conflicts that can only be resolved by adding new methods or
classes other metrics must be used.

5 References

[Garlan&Shaw95] D.Garlan, M.Shaw: An Introduction to the Field of Software Architecture, In
V.Ambriola and G.Tortora, eds., Advances in Software Engineering and
Knowledge Engineering, volume I. World Scientific Publishing Company,
1995.

[Goldberg&Rubin95] A.Goldberg, K.S.Rubin: Succeeding with Objects Decision Frameworks for
Project Management, ISBN 0-201-62878-3, Addison-Wesley Publishing
Company, Inc., 1995.

[Kiczales&Lamping92] G. Kiczales, J. Lamping: Issues in the Design and Specification of Class
Libraries, Proceedings of OOPSLA '92, Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp. 435-451, ACM
Press 1992.

[Lieberherr96a] K.J.Lieberherr: Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns, ISBN 0-534-94602-X, PWS Publishing Company,
Boston, 1996.

[Lieberherr96b] K.J.Lieberherr: From Transience to Persistence in Object Oriented
Programming: Architecture and Patterns, Position Statement for the working
group on object-oriented programming within the ACM Workshop on
Strategic Directions in Computing Research, to be held at MIT, June 1996
and for the ECOOP’96 Adaptability workshop.

[Pancake95] C.M.PanCake: Object Roundtable, The Promise and the Cost of Object
Technology: A Five-Year Forecast, In Communications of the ACM, October
1995, Vol 38(10), pp. 32-49, ACM Press, 1995.

[Steyaert&al.96] P.Steyaert, C.Lucas, K.Mens, T.D'Hondt: Reuse Contracts: Managing the
Evolution of Reusable Assets, To appear in Proceedings of OOPSLA‘96
Conference on Object Oriented Programming, Systems, Languages and
Applications, ACM Press 1996.

[Yourdon94] E.Yourdon: Object-Oriented System Design: An Integrated Approach; Yourdon
Press Computing Systems, Prentice Hall, 1994.

