Vrije Universiteit Brussel
Faculteit Wetenschappen

RSIT
$\\1E E/T@Q

Documenting Evolving Softwar e Systems
through Reuse Contracts

Kim Mens, Patrick Steyaert, Carine Lucas

Techreport vub-prog-tr-96-12

Programming Technology Lab
PROG(WE)

VUuB

Pleinlaan 2

1050 Brusse|

BELGIUM

Fax: (+32) 2-629-3525

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

Documenting Evolving Softwar e Systems through Reuse Contracts

Submitted to the OOPSL A’ 96 Workshop on
“Object-Oriented Softwar e Evolution and Re-Engineering”
Kim Mens, Patrick Steyaert, Carine Lucas

Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Email: kimmens@isl.vub.ac.be, prsteyae@vnet3.vub.ac.be, clucas@vnet3.vub.ac.be

Introduction

Minimisation of dependencies between the parts of a software system is by far the most successful
software engineering principle to cope with change and evolution. This principle is the foundation of,
amongst others, encapsulation, modularity, high cohesion and loose coupling. It enables reasoning
about different system parts separately as well as making changes to certain parts of a system without
interfering with the other parts. Details that are of no importance to other parts of the system are hidden
behind interfaces. As these other parts only rely on the information they get from these interfaces, they

are not affected when the structures and implementations behind the interfaces are changed.

While the continuous elaboration on this principle accounts for much of the progress that has been
made in software engineering, it can only take us so far. At a certain point in the evolution of a
software system, changes occur that cannot be kept local to one system part and thus interfaces do have

to be changed as well.

Assessing the impact of such non-local changes remains one of the most compelling problems in the
development of software. This can only be dealt with by a careful documentation of dependencies
between different system parts. Such a documentation must not only include which parts depend on
what other parts, but more importantly how they depend on each other. The former gives an indication
on where problems might occur upon change; the latter provides us information on what the problem is
(and thus on how it can be solved). The lack of this kind of documentation is a major impediment to

building reusable software with current methodologies.

We propose to document the protocol between designers of different parts of a system by means of
reuse contracts. Reuse contracts not only document how a system part can be reused, but also how and
why the part is actually reused by other parts. Just as real world contracts can be extended, amended
and customised, reuse contracts are subject to parallel changes encoded by formal reuse operators:
extension, refinement and concretisation. The inverse operators: coarsening, cancellation and

abstraction intuitively correspond to the (partial) breaching of a contract.

Reuse contracts together with their operators facilitate managing the evolution of a software system by
indicating how much work is needed to update the system, by forecasting when and which problems

might occur, and by providing information on where and how to test and adjust the system.

Managing Parent Class Exchange

The use of abstract classes with inheritance as reuse mechanism is undoubtedly the best-known
technique available today for structuring and adapting object-oriented software. Therefore, in
[Steyaert& al96] we focused on the problem of evolution of class-hierarchies as a more tangible case to
explain the ideas behind reuse contracts. In that context, reuse contracts and their operators describe the
protocol between managers and users of (abstract) class libraries. Reuse contracts of abstract classes
provide an explicit representation of the design decisions behind an abstract class, including
information such as: which methods can be sent to the class, which methods are invoked by what other
methods, which methods are abstract or concrete, relationships with other classes, ... Only information
relevant to the design is included. For example, auxiliary or implementation-specific methods are not

mentioned in areuse contract.

Reuse contracts can be manipulated by means of reuse operators. Refinement refines the design of
some methods, extension adds new methods, concretisation makes abstract methods concrete. These
reuse operators not only allow documenting the changes (and the intentions of these changes) madeto a
class, but a careful investigation of their interactions also allows to predict and manage the effect of

these changes.

Consider the example of a Collection hierarchy. A class Set defines a method add and a method
addAl | to add a collection of elements simultaneously.
d ass Set

nethod add(E enent) =0
nmethod addAl | (aSet:Set) =

begi n

for e in aSet do
sel f.add(e)

end

end

In order to decide which methods need to be overridden when creating a subclass Count abl eSet of
Set that keeps a count of the number of elements in the set, we need information on which methods
depend on what other methods. For example, if we know that addAl | dependsin itsimplementation on
add, it is sufficient to override the method add to take counting into account. Reuse contracts for
classes document these dependencies. In a reuse contract each method has a specialisation clause (in
italicsin the example) that documents how it depends on the other methods from this reuse contract (as

in Lamping’s specialisation interfaces [Lamping93]). The reuse contract is an interface description to

which the implementation must comply. It provides information that is typically not included in other
methodologies.
reuse contract Set
abstract
add(H erent)
concrete

addAl | (Set) {add(H enent)}
end

Reuse contracts in their current form only document the internal dependencies among a class's
methods. Part of our future work is studying how reuse contracts can be extended to include interclass
dependencies as well. Other experiments are being conducted to include information on state and state

transformations in reuse contracts and operators.

Reuse contracts can be used to assess the impact of changes or updates to system parts. Suppose we
want to make an optimised version Opt i mi sedSet of Set . In thisversion addAl | stores the added
elements directly rather than invoking the add method to do this. This leads to inconsistent behaviour in
Count abl eSet when it decides to upgrade Opt i ni sedSet ; not all additions will be counted. Thisis
because the assumption made by Count abl eSet that addAl | invokesadd is brokenin Qpt i m sedSet .
Using the terminology of [Kiczales& Lamping92] we say that addAl | and add have become
inconsistent methods. Although in this simple example the conflict can easily be derived from the code,
in practice it should be possible to detect such conflicts without code inspection. The major obstacle for
locating problems such as inconsistent methods is that the different conceptual ways to reuse an
(abstract) class are all performed by the same operator, i.e. inheritance. More information about the
intentions of inheritor is needed. This kind of information is precisely provided by the reuse operators
on reuse contracts. In the example the reuse contract of Count abl eSet and Opt i ni sedSet document
how they were derived from Set .
reuse contract Countabl eSet concretises Set
concrete

add(H enent)
end

reuse contract QptinisedSet coarsens Set
concrete
addA | (Bl errent) {-add(H enent})
end

The fact that add and addAl | have become inconsistent can be derived directly from the reuse
contracts: Count abl eSet concretises a method that has been removed from the specialisation clause

while changing from the old parent class to the new parent class (in italics above).

For a more complete set of possible conflicts on parent class exchange we refer to [Steyaert&al96].
Furthermore, it gives a complete set of reuse operators together with a set of rules that allow automatic

detection of conflicts based on the interaction of reuse operators.

Environment and Tool Support for Reuse Contracts

An environment for managing software evolution based on the concept of reuse contracts should
include tool support for assessing the impact of making changes to a system by signalling possible

problems that (might) occur. A prototype version of such atool has been implemented in PROLOG.

The environment can also assist in the synchronisation of reuse contracts and their corresponding
implementations. Two situations can be distinguished. In those parts of the system that have a stable
design, the implementation must be forced to comply to the reuse contract. In those parts that are still
subject to major redesign, it should be possible to make changes to both implementation and reuse
contracts independently. The environment could discretely issue warnings, but should not become a

hindrance.

Finadly, for software systems that have not been documented by means of reuse contracts, tools can be
constructed that semi-automatically extract this documentation from the code, based on the calling
structure. The programmer only has to delete the implementation-specific parts of the extracted
documentation, as reuse contracts should include only information relevant to the design. Once the
different reuse contracts have been extracted, the tool can easily compute how the reuse contracts
corresponding to the different parts of the system are related to one another by means of reuse

operators. A prototype implementation of such atool for Smalltalk classes has been implemented.

Conclusion

Current methodological and tool support for managing the evolution of large, long-lived software
systems, focuses mainly on minimising dependencies between system parts. However, the question
what happens when these dependencies are changed at some point during the evolution process is
largely neglected. Documenting these dependencies by means of reuse contracts and reuse operators
allows us to signal such changes and to assess their impact. Many tools to support the use of reuse
contracts for managing software evolution can be conceived. When adopted, reuse contracts may

significantly enhance the way in which software is being built and managed.

References

[Kiczales& Lamping92] G. Kiczales, J. Lamping: Issues in the Design and Specification of Class
Libraries, Proceedings of OOPSLA '92, Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp. 435-451, ACM
Press, 1992.

[Lamping93] J. Lamping: Typing the Specialisation Interface, Proceedings of OOPSLA '93,
Conference on Object-Oriented Programming, Systems, Languages and
Applications, pp. 201-215, ACM Press, 1993.

[Steyaert& al.96] P.Steyaert, C.Lucas, K.Mens, T.D'Hondt: Reuse Contracts. Managing the
Evolution of Reusable Assets, To appear in Proceedings of OOPSLA'96
Conference on Object Oriented Programming, Systems, Languages and
Applications, ACM Press 1996.

