
Vrije Universiteit Brussel

Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V
BRUS

S
E

L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Documenting Evolving Software Systems

through Reuse Contracts

Kim Mens, Patrick Steyaert, Carine Lucas

Techreport vub-prog-tr-96-12

Programming Technology Lab

PROG(WE)

VUB

Pleinlaan 2

1050 Brussel

BELGIUM

Fax: (+32) 2-629-3525

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be

WWW: progwww.vub.ac.be

Documenting Evolving Software Systems through Reuse Contracts

Submitted to the OOPSLA’96 Workshop on
“Object-Oriented Software Evolution and Re-Engineering”

Kim Mens, Patrick Steyaert, Carine Lucas

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Email: kimmens@is1.vub.ac.be, prsteyae@vnet3.vub.ac.be, clucas@vnet3.vub.ac.be

Introduction

Minimisation of dependencies between the parts of a software system is by far the most successful

software engineering principle to cope with change and evolution. This principle is the foundation of,

amongst others, encapsulation, modularity, high cohesion and loose coupling. It enables reasoning

about different system parts separately as well as making changes to certain parts of a system without

interfering with the other parts. Details that are of no importance to other parts of the system are hidden

behind interfaces. As these other parts only rely on the information they get from these interfaces, they

are not affected when the structures and implementations behind the interfaces are changed.

While the continuous elaboration on this principle accounts for much of the progress that has been

made in software engineering, it can only take us so far. At a certain point in the evolution of a

software system, changes occur that cannot be kept local to one system part and thus interfaces do have

to be changed as well.

Assessing the impact of such non-local changes remains one of the most compelling problems in the

development of software. This can only be dealt with by a careful documentation of dependencies

between different system parts. Such a documentation must not only include which parts depend on

what other parts, but more importantly how they depend on each other. The former gives an indication

on where problems might occur upon change; the latter provides us information on what the problem is

(and thus on how it can be solved). The lack of this kind of documentation is a major impediment to

building reusable software with current methodologies.

We propose to document the protocol between designers of different parts of a system by means of

reuse contracts. Reuse contracts not only document how a system part can be reused, but also how and

why the part is actually reused by other parts. Just as real world contracts can be extended, amended

and customised, reuse contracts are subject to parallel changes encoded by formal reuse operators:

extension, refinement and concretisation. The inverse operators: coarsening, cancellation and

abstraction intuitively correspond to the (partial) breaching of a contract.

Reuse contracts together with their operators facilitate managing the evolution of a software system by

indicating how much work is needed to update the system, by forecasting when and which problems

might occur, and by providing information on where and how to test and adjust the system.

Managing Parent Class Exchange

The use of abstract classes with inheritance as reuse mechanism is undoubtedly the best-known

technique available today for structuring and adapting object-oriented software. Therefore, in

[Steyaert&al96] we focused on the problem of evolution of class-hierarchies as a more tangible case to

explain the ideas behind reuse contracts. In that context, reuse contracts and their operators describe the

protocol between managers and users of (abstract) class libraries. Reuse contracts of abstract classes

provide an explicit representation of the design decisions behind an abstract class, including

information such as: which methods can be sent to the class, which methods are invoked by what other

methods, which methods are abstract or concrete, relationships with other classes, ... Only information

relevant to the design is included. For example, auxiliary or implementation-specific methods are not

mentioned in a reuse contract.

Reuse contracts can be manipulated by means of reuse operators. Refinement refines the design of

some methods, extension adds new methods, concretisation makes abstract methods concrete. These

reuse operators not only allow documenting the changes (and the intentions of these changes) made to a

class, but a careful investigation of their interactions also allows to predict and manage the effect of

these changes.

Consider the example of a Collection hierarchy. A class Set defines a method add and a method

addAll to add a collection of elements simultaneously.

Class Set

method add(Element) = 0

method addAll(aSet:Set) =

 begin

for e in aSet do

self.add(e)

 end

end

In order to decide which methods need to be overridden when creating a subclass CountableSet of

Set that keeps a count of the number of elements in the set, we need information on which methods

depend on what other methods. For example, if we know that addAll depends in its implementation on

add, it is sufficient to override the method add to take counting into account. Reuse contracts for

classes document these dependencies. In a reuse contract each method has a specialisation clause (in

italics in the example) that documents how it depends on the other methods from this reuse contract (as

in Lamping’s specialisation interfaces [Lamping93]). The reuse contract is an interface description to

which the implementation must comply. It provides information that is typically not included in other

methodologies.

reuse contract Set

abstract

add(Element)

concrete

addAll(Set) {add(Element)}
end

Reuse contracts in their current form only document the internal dependencies among a class's

methods. Part of our future work is studying how reuse contracts can be extended to include interclass

dependencies as well. Other experiments are being conducted to include information on state and state

transformations in reuse contracts and operators.

Reuse contracts can be used to assess the impact of changes or updates to system parts. Suppose we

want to make an optimised version OptimisedSet of Set. In this version addAll stores the added

elements directly rather than invoking the add method to do this. This leads to inconsistent behaviour in

CountableSet when it decides to upgrade OptimisedSet; not all additions will be counted. This is

because the assumption made by CountableSet that addAll invokes add is broken in OptimisedSet.

Using the terminology of [Kiczales&Lamping92] we say that addAll and add have become

inconsistent methods. Although in this simple example the conflict can easily be derived from the code,

in practice it should be possible to detect such conflicts without code inspection. The major obstacle for

locating problems such as inconsistent methods is that the different conceptual ways to reuse an

(abstract) class are all performed by the same operator, i.e. inheritance. More information about the

intentions of inheritor is needed. This kind of information is precisely provided by the reuse operators

on reuse contracts. In the example the reuse contract of CountableSet and OptimisedSet document

how they were derived from Set.

reuse contract CountableSet concretises Set

concrete

add(Element)

end

reuse contract OptimisedSet coarsens Set

concrete

addAll(Element) {-add(Element})
end

The fact that add and addAll have become inconsistent can be derived directly from the reuse

contracts: CountableSet concretises a method that has been removed from the specialisation clause

while changing from the old parent class to the new parent class (in italics above).

For a more complete set of possible conflicts on parent class exchange we refer to [Steyaert&al96].

Furthermore, it gives a complete set of reuse operators together with a set of rules that allow automatic

detection of conflicts based on the interaction of reuse operators.

Environment and Tool Support for Reuse Contracts

An environment for managing software evolution based on the concept of reuse contracts should

include tool support for assessing the impact of making changes to a system by signalling possible

problems that (might) occur. A prototype version of such a tool has been implemented in PROLOG.

The environment can also assist in the synchronisation of reuse contracts and their corresponding

implementations. Two situations can be distinguished. In those parts of the system that have a stable

design, the implementation must be forced to comply to the reuse contract. In those parts that are still

subject to major redesign, it should be possible to make changes to both implementation and reuse

contracts independently. The environment could discretely issue warnings, but should not become a

hindrance.

Finally, for software systems that have not been documented by means of reuse contracts, tools can be

constructed that semi-automatically extract this documentation from the code, based on the calling

structure. The programmer only has to delete the implementation-specific parts of the extracted

documentation, as reuse contracts should include only information relevant to the design. Once the

different reuse contracts have been extracted, the tool can easily compute how the reuse contracts

corresponding to the different parts of the system are related to one another by means of reuse

operators. A prototype implementation of such a tool for Smalltalk classes has been implemented.

Conclusion

Current methodological and tool support for managing the evolution of large, long-lived software

systems, focuses mainly on minimising dependencies between system parts. However, the question

what happens when these dependencies are changed at some point during the evolution process is

largely neglected. Documenting these dependencies by means of reuse contracts and reuse operators

allows us to signal such changes and to assess their impact. Many tools to support the use of reuse

contracts for managing software evolution can be conceived. When adopted, reuse contracts may

significantly enhance the way in which software is being built and managed.

References

[Kiczales&Lamping92] G. Kiczales, J. Lamping: Issues in the Design and Specification of Class
Libraries, Proceedings of OOPSLA '92, Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp. 435-451, ACM
Press, 1992.

[Lamping93] J. Lamping: Typing the Specialisation Interface, Proceedings of OOPSLA '93,
Conference on Object-Oriented Programming, Systems, Languages and
Applications, pp. 201-215, ACM Press, 1993.

[Steyaert&al.96] P.Steyaert, C.Lucas, K.Mens, T.D'Hondt: Reuse Contracts: Managing the
Evolution of Reusable Assets, To appear in Proceedings of OOPSLA‘96
Conference on Object Oriented Programming, Systems, Languages and
Applications, ACM Press 1996.

