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Abstract . Current prototype-based languages suffer from an inherent conflict between
inheritance and encapsulation. Whereas encapsulation tries to hide implementation details from
the user, inheritance depends at least to some extent on exposing these implementation details.
We propose a powerful calculus with dynamic object modification which solves this conflict.
This calculus constitutes a formal foundation of prototype-based languages with a clean
interaction between encapsulation and inheritance.

1 Introduction
Two essential concepts in object-oriented programming are inheritance and encapsulation. Inheritance allows
building new objects or classes by incrementally modifying existing ones. Encapsulation provides objects
with abstraction barriers behind which implementation details are hidden from the user. As inheritance depends
at least to some extent on these implementation details [7], there is an inherent conflict between inheritance
and encapsulation.

Class-based languages solve this conflict by introducing the notion of “encapsulated inheritance” [7]:
inheriting clients have no direct access to the private attributes of their parents. However class-based languages
are sometimes considered too rigid, e.g. when dynamic evolution of an object's behaviour is required [5].
Prototype-based languages are more flexible and expressive and therefore well-suited for rapid prototyping and
exploratory programming. Unfortunately this flexibility comes with a serious loss of safety. Since prototype-
based languages define inheritance directly on objects rather than classes, encapsulated inheritance cannot
prevent all violations of an object's encapsulation barrier, as observed in [9] and confirmed in [4] and [5].

To illustrate the problem, consider the following example in a C++ like syntax, but featuring inheritance on
objects rather than classes. A bank account is implemented as an object containing methods for withdrawing
and depositing money. Withdrawal is secured with a password.

Object Account {
   Private:
      amount = 5000;
      password = “007”;
   Protected:
      verify(pwd) { return (password==pwd); }
   Public:
      deposit(val) { amount=amount+val; }
      withdraw(val,pwd) { if (this.verify(pwd)) amount=amount-val; }
};

Inheritors can use the protected verify method to create specialised versions of password verification.
Although it is important to hide this information from message sending clients, current prototype-based
languages cannot enforce this. Fraudulent “message sending” clients can gain access to implementation details
by temporarily turning into inheritors and creating their own specialised version of an object. The example
below illustrates how this technique can be used to steal money from the Account object.

Object Fraud {
Private:
   Object ForgedAccount : Inherits Account {
      Protected:
         verify(pwd) { return true };
   };
Public:
   steal(amount) { ForgedAccount.withdraw(amount,”?”); }

};
Fraud.steal(5000);        // steal some money



Such malicious practice cannot occur in class-based languages, where inheritance is not defined on objects
directly, but on distinct inheritable entities called classes. Classes can be instantiated to form objects that can
only be sent messages and cannot be further specialised.

The challenge with prototype-based languages is to remove the inheritance-encapsulation conflict without
sacrificing their flexibility. We tackle this problem by providing a formal calculus with dynamic object
modification and a clean interaction between encapsulation and inheritance. To highlight the essence of the
model features such as typing, object identity, state and private attributes have not been included.

2 A Layered Calculus
Essentially the problem in prototype-based languages is that inheritance and message sending are both
performed on objects. Analogous to class-based languages, this can be solved by making a distinction between
objects for message sending and “inheritable entities” —called generators [3]— for specialisation. We show
that this distinction does not necessarily sacrifice flexibility.

The proposed calculus has a two layered syntax, clearly distinguishing generator expressions from object
expressions. The top layer deals with objects and message sending. The second layer deals with generators and
inheritance with late binding of self. Due to the layering and a careful scoping of generator names, the use of
generators is restricted to the inside of an object so that encapsulation cannot be breached. In spite of this
restriction it is still possible to model several mechanisms for (encapsulated) dynamic object modification.

2 . 1 Syntax

The top layer of the syntax is given by the following production rules. Terminal symbols are written in
boldface. Identifiers (Ident) are also considered to be terminals.

Object → Object.Ident(Object) message sending

| [ Generator ] object creation

| Ident argument reference

Objects are created from "generators". Upon creation of an object its generator is encapsulated inside the
object, hiding information only important for inheritors behind the object’s message sending interface.

The second layer of the syntax deals with generator expressions and specialisation:

Generator → Generator ; Generator composition

| Ident(Ident)=Ident#Object method

| > Object < object to generator conversion

| Ident self reference

| ε empty generator

Generators are specialisable entities from which objects can be created. The most primitive non-empty
generators are single method descriptions. They can refer to a late-bound “self” generator via the name assigned
by the # binding operator1. Informally, m(a)=Self#body means that the name Self can be used inside the
body of m to denote self references.  Inheritance can be accomplished through generator composition.
Composing generators redirects their late bound self to the resulting composed generator.

The “>…<” operator “converts” an object into a generator. This provides some extra flexibility in dynamic
object modification. Care must be taken however in defining the semantics of this operator. For example, a
semantics that returns the encapsulated generator would reintroduce the encapsulation problems we are trying
to avoid.

Here is a simple example2 of a well-formed object expression. It denotes an object containing a method
letterhead that performs a self send of the title message:

                                                
1Neglecting syntactic differences, this binding operator serves the same purpose as the ς() operator defined in [1].

2Although not explicitly present in the syntax, we will use predefined strings (understanding add and equal), numerals (understanding

equal, add and subtract) and booleans (understanding if and ifTrue) to make more meaningful examples.



[ title(dummy) = Self # “Mr. ”;
letterhead(name) = Self # [Self].title([ε]).add(name) ]

In what follows, we assume some conventions to make examples more concise and readable. To avoid
confusion we start argument references with lowercase and references to generators with uppercase letters. We
omit the # binding operator when no reference to the self generator is made inside the method body. A
message send without actual argument is considered equivalent to a message with the empty object [ε] as
argument. We omit the formal argument from a method definition when it is not referred to in the method
body. Using these conventions the example can be written more concisely:

[ title = “Mr. ”;
letterhead(name) = Self # [Self].title.add(name) ]

2 . 2 Denotational Semantics

In this section we use a denotational semantics to validate our claim that an object’s encapsulation boundaries
cannot be breached through inheritance. We use the notation of [6], extended with square brackets for
parameterised domains.

Syntactic Domains

ObjExpr = set of all syntactic object expressions
GenExpr = set of all syntactic generator expressions
Ident = set of all syntactic identifiers

Semantic Domains

An Object is represented as a record of methods. Each Method expects an Object as argument and returns an
Object after evaluation.

Record[α] = Ident → α ⊕ Unit
Object = Record[Method]
Method = Object → Object

The above representation of objects guarantees object-based encapsulation because properties of an object that
are not accessible through its message sending interface are not manifest in the representation either. Another
consequence of the object representation is that inheritance is not possible on objects. Instead inheritance is
accomplished indirectly via generators.

Generator = Generator → Object

To allow late binding a generator is a template for an object with a still undetermined (late bound) self. It is a
function mapping a self Generator onto an Object.

Wrapping a generator transforms it into an object by self applying the generator. The resulting object can
internally manipulate its self generator. This generator represents an unencapsulated version of the object on
which inheritance is still possible. Externally however, the object is encapsulated.

wrap : Generator → Object
wrap g = g g

Scoping of generator names and argument names

To obtain lexical scoping of argument and generator names, both the semantics of object and generator
expressions pass around two records containing the bindings for argument and generator names in their lexical
environment. In the semantic equations the names a and g will be used for these environments of argument
objects and self generators respectively.

Also in the semantics below, {} denotes the empty record, {key→val} a single slot record, r1 +r r2 right
preferential record concatenation, and lookup r I denotes the selection of identifier I in record r (which is
undefined ⊥ when I does not occur in r).

Semantics of an Object Expression

The semantics [[[[[…]]]]]O of an object expression is a function parameterised with the two lexical environments and
returning an object. The semantics of message sends or references to formal arguments is straightforward. An
encapsulated object is created from a generator by wrapping this generator.



[[[[[ObjExpr]]]]]O : Record[Object] → Record[Generator] → Object

[[[[[Or.I(Oa)]]]]]O a g = (lookup ([[[[[Or]]]]]O a g) I) ([[[[[Oa]]]]]O a g)

[[[[[I]]]]]O a g = lookup a I

[[[[[[G]]]]]]O a g = wrap ([[[[[G]]]]]G a g)

Semantics of a Generator Expression

The semantics [[[[[…]]]]]G of a generator expression is similar to that of an object expression. It is again a function
requiring two lexical environment parameters but it returns a generator rather than an object.

[[[[[GenExpr]]]]]G : Record[Object] → Record[Generator] → Generator

The semantics of a composition of generators is a new generator of which the self is distributed over its
constituents. The semantics of a self reference and an empty generator are straightforward.

[[[[[G1;G2]]]]]G a g = λself.([[[[[G1]]]]]G a g) self +r ([[[[[G2]]]]]G a g) self

[[[[[I]]]]]G a g = lookup g I

[[[[[ε]]]]]G a g = λself.{}

A method generator augments the lexical environments with bindings of the actual argument and late bound
self to the appropriate identifiers. Upon invocation, the method is evaluated in these environments.

[[[[[Im(Ia)=Is#Obody]]]]]G a g = λself.{Im→method}

where method = λarg.[[[[[Obody]]]]]O ( )a +r {Ia→arg}  ( )g +r {Is→self}  

The “>…<” operator turns an object into a generator of which the self argument is ignored. A message sender
can extend an object O by turning it into a generator >O< and subsequently composing it with some other
generator. This is not really inheritance and does not breach encapsulation because it does not involve late
binding of self in the object under extension.

[[[[[>O<]]]]]G a g = λself.[[[[[O]]]]]O a g

Summarising

From the above semantics follows that the calculus indeed respects encapsulation boundaries of objects. The
representation of an object as a record of methods exposes no more than the functionality of a message send.
More specifically, Object and Method have no provisions for late binding. Inheritance with late binding can
only be achieved by composing Generators. Although objects can be converted to generators and vice versa
(using >…< and […] respectively), care has been taken that these conversions do not compromise
encapsulation.

3 (Encapsulated) Dynamic Object Modification
In this section we illustrate that the proposed calculus is still expressive enough to model several mechanisms
for dynamic object modification.

3 . 1 Encapsulated Inheritance on Objects

Inheritance with late binding of self can be modelled by adding (composing) methods directly to an object's
self generator. Since self generators are only visible to code inside the object, an object can only specialise
itself or any of its surrounding objects (due to the lexical scoping of generators). Other objects do not have
access to any of its implementation details.

As a concrete example, consider a person object with attributes name, sex and title. When the message
letterhead is sent to the object, the name is returned with the correct title prefixed to it. The message
newPerson is used for modifying the original object to create a new person with a similar behaviour.



[ name   = "Ann Ticipate";
  sex    = "Female";
  title  = Self # [Self].sex.equal("Female").if([then="Miss ";else="Mr. "]);
  letterhead = Self # [Self].title.add([Self].name);
  newPerson(init) = Self # [ Self; name = init.name; sex = init.sex ]
]

The title method anticipates the overriding of the sex attribute by performing a self send to it. From the
viewpoint of a message sender this is only an implementation detail. For inheritors however it is important
information. Since objects only contain information important for message senders, inheritance must be
performed on an object’s generator which is only accessible inside the object. The newPerson method for
example uses inheritance on its receiver’s self generator to override the name and sex attributes. In doing so it
actually depends on the title and letterhead method’s self sending behaviour.

Inheritance schemes such as the one above where an object is modified indirectly through a message send thus
respecting the object’s encapsulation boundaries are called “encapsulated inheritance on objects” in [9]. As far
as we know, Agora [2] is the only language featuring such an encapsulated inheritance mechanism. The only
way to modify an object there is through invoking a so called “mixin method” which, upon invocation,
extends the receiver with attributes enumerated in its body [10].

The example above illustrates that the calculus provides a formal basis for languages with encapsulated
inheritance on objects. It allows more flexibility than mixin methods since generators can be explicitly
manipulated whereas with mixin methods generators can only be manipulated implicitly at the semantic level.
Therefore, the calculus also constitutes a medium for exploring how to extend languages like Agora with new
features. An example of such a new feature is the alternative (encapsulated) dynamic modification mechanism
given below.

The example in this section might seem somewhat verbose, but this need not be the case in a real
programming language built on top of our model. For example, Agora has a very simple Smalltalk-like
syntax.

3 . 2 Conservative Object Modification

Although inheritance is only possible with generators, the “>…<” operator allows an existing object to be
extended “from the outside” without breaching encapsulation. It casts an object into a generator that can be
extended afterwards. Since this generator ignores its self argument, late binding of self does not apply. We call
such modifications conservative since they embed the object as is, without changing its internal workings.
The modifier cannot depend on the self sends performed in the object but only on the abstract functionality
offered by the object’s message sending interface and therefore cannot breach encapsulation. To illustrate that
conservative modification does not breach object-based encapsulation we translate the bank account example of
section 1 into the calculus:

[ makeAccount(password) =
    [ amount = 5000;
      verify(pwd) = password.equals(pwd);
      deposit(val) = Self # [ Self; amount=[Self].amount.add(val) ];
      withdraw(arg) = Self # [Self].verify(arg.pwd)
            .ifTrue([ Self; amount=[Self].amount.subtract(arg.val) ])
    ];
  account = Env # [Env].makeAccount("007");
  fraud = Env # [
         ForgedAccount = [ >[Env].account<; verify(pwd) = TRUE ];
         steal(amount) = Self#[Self].ForgedAccount.withdraw([val=amount,pwd=“?”])]
].fraud.steal(5000)    // Unsuccessful attempt to steal money.

The above account cannot be modified at will. It can only be modified indirectly by calling its withdraw and
deposit methods. When a malevolent client tries to override the verify method from the outside through
conservative modification, this does not affect the account’s internal workings. Its withdraw method will
still refer to the original verify method, so the account is not compromised.

The ability to perform conservative modifications is not (yet) included in Agora, but based on the similarities
with the calculus we are convinced that this new feature would be a valuable extension to the language.



4 Related Work
The delegation-based object calculus developed by Fisher and Mitchell [8] contains many similarities with
ours. Whereas their calculus adds new syntactic forms to untyped lambda calculus, we prefer a pure object
model, containing only objects as first-class entities, not functions. By adding a type system to their basic
calculus, Fisher and Mitchell explicitly distinguish objects from inheritable entities called prototypes. This
approach differs from ours from a pragmatic as well as a theoretical point of view:
• The theoretical difference is that we embed the distinction between objects and inheritable entities in the

basic syntax and semantics of the calculus, so we do not need an additional type system for this purpose.
• A pragmatic difference lies in the motivation of the calculus: Fisher and Mitchell developed a new type

system to cope with problems in existing type systems (such as [1]), while we have developed a two-
layered calculus to solve the encapsulation problems in current prototype-based languages.

• Another difference between both approaches lies in the functionality of objects and inheritable entities. In
[8] the functionality of objects forms a subset of the possible operations on prototypes: while prototypes
can be used to send messages and to add or redefine methods, an object can only be sent messages to. In
contrast, we keep the functionality of both kinds of entities strictly orthogonal. An object can only be sent
messages to, while a generator can only be used to add or redefine methods.

• A more essential difference lies in the expressivity of objects. In [8] methods in an object are only allowed
to redefine themselves or other methods due to typing problems. They are not allowed to add new methods.
Nevertheless, the latter kind of behaviour is sometimes desired. It corresponds to the Agora-concept of
mixin-method based inheritance.

In [1] a simple object calculus supporting method override and object subsumption is introduced. As in our
approach, instead of struggling with complex encodings of objects as λ-terms or other primitive constructs,
objects are taken as primitives themselves. The object calculus however does not have encapsulated
modification of objects. An example similar to our “bank account” example of section 1 can be constructed to
show that local variables can be exported using a clever overriding of methods. Moreover, as in [8] the
mechanisms for incremental modification in this calculus are too restrictive. Only overriding of already defined
methods is allowed. It is impossible to add new methods to an existing object.

In [9], a denotational semantics for a subset of AGORA (called MiniMix) is presented. Although this semantics
was a major source of inspiration, MiniMix and AGORA only offer a limited form of encapsulated
modification of objects. They only offer part of the functionality —inheritance with mixin methods— but
offer no mechanism for conservative modifications. Furthermore the ability to explicitly name and manipulate
the self of an object as a generator makes our inheritance mechanism more flexible than mixin methods.

5 Conclusions
We have presented a calculus modelling the kernel of a safe prototype-based language. This calculus does not
suffer from the conflict between encapsulation and inheritance. This is accomplished by distinguishing objects
from generators. Objects only provide message sending interfaces and generators take care of late binding.

The denotational semantics clearly shows that an object’s message sending interface serves as an unbreachable
abstraction barrier behind which implementation details can be hidden. The representation of objects as records
of methods only exhibits how they react to messages. Properties of an object not accessible through its
message sending interface are not manifest in the object’s semantic representation. This guarantees that
encapsulation boundaries cannot be breached.

Despite of the restrictions ensuing from the sober object model it is still possible to model several types of
dynamic object modification. Inheritance with late binding is only possible by inheritors “from inside” an
object. Conservative modifications without late binding can be performed to extend an object from the outside.
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