
Chapter �

Issues in Reuse and

Composition

The goal of this dissertation is to set up a methodology that can �ll a void in software
engineering and can cross the bridge between current practices in di�erent �elds� As
on the one hand� this dissertation addresses completely uncovered territory and on
the other hand� it tries to combine the bene�ts of di�erent approaches and is inspired
by work in di�erent �elds� it is related to a lot of di�erent issues�

This chapter gives an overview of these di�erent issues and simultaneously situ�
ates our work� Before doing that section ��� discusses some of the con�icts that can
occur during evolution and will be the focus of the remainder of this dissertation�
Section ��� discusses some general issues in component systems� while sections ��� to
��	 focus on the contributions of object�oriented software engineering
OOSE�� At
the end of each of these sections the relation of reuse contracts with the presented
work is discussed� Section ��� then closes this chapter by summarising the problems
and explaining how reuse contracts contribute to solving them�

��� Con�icts with Evolving Components

In the remainder of this section� we �rst give an example of the kind of con�icts that
can occur with evolving components� Second� we give a more systematic overview
of possible problems�

����� An Example

Packet Handling Consider the example of a software simulation of a local area
network
LAN�� where a packet is passed around a circular LAN� Consider two
components outputserver and packet� as depicted in �gure ����

A packet is passed from node to node in the LAN� When an outputserver
which
is a special kind of node� receives a new packet through the operation accept� it

� Issues in Reuse and Composition

accept
isDestFor
output
send

outputserver

handle
[if isDestFor
 then output
 else send]

packet

Figure ��� Packet Handling in a LAN

invokes the operation handle on the packet� The response of the packet is to invoke
the operation isDestFor on the outputserver� to check whether this outputserver
is the destination of this particular packet� If it is� it invokes the operation output

on the outputserver to perform some action with the packet� If not� it invokes the
operation send that passes the packet on to the next node�

The communication between these two components describes general packet han�
dling behaviour� Other components� representing di�erent kinds of outputservers
and packets� can be created that comply with this contract and perform a particular
behaviour by associating a particular implementation with e�g� output or handle�
Special kinds of outputserver can be printservers� where output prints the contents
of a packet� and �leservers� where output saves the contents of a packet� A special
kind of packet can be broadcast packets that are to be handled by every node� After
introducing multiple variations on outputserver and packet� it becomes di�cult
for a developer to assess how � or whether � all these adaptations work together�

Introducing gateways Now consider introducing gateways as a new kind of
node� as depicted in �gure ���� When the operation isDestFor is invoked on a gate�
way by a packet� the gateway checks the domain name� When this name is correct
it returns yes� As a consequence the operation output will be invoked on gateway

by the packet� The implementation of the operation output on gateway is adapted
to send the packet through to the particular domain� Note that the ability to make
this variation requires knowledge on the inter�participant communication�

Introducing visitor packets Now consider another adaptation of the packet
handling behaviour the introduction of visitorpackets� which have to be passed
to all nodes in a LAN to perform a particular action they encapsulate
�gure ����� An
example of such an action could be counting the number of printers in the network�

To achieve this� visitorpacket re�implements handle� so that it performs an
action and then always invokes the operation send on outputserver and is thus
always passed on� In combination with outputservers as de�ned above this works

��� Con�icts with Evolving Components �

accept
isDestFor
output
send

gateway

pass packet on
to next node

. . .

handle
[if isDestFor
 then output
 else send]

packet

Figure ��� Introducing Gateways

accept
isDestFor
output
send

outputserver

handle
 [send
 action]

visitorpacket

Figure ��� Introducing Visitor Packets

�� Issues in Reuse and Composition

perfectly�

Combining gateways and visitor packets Separately� the two variations on
the general contract � gateways and visitor packets � work perfectly with the
other component in the packet� A developer might thus assume that everything
will work as planned� Now consider introducing these two variations in one sys�
tem� Using visitorpacket and gateway together causes a problem
see �gure
����� Gateway uses the operation output to send a packet on to the right sub�
network� Since visitorpackets are always passed on by means of the operation
send� gateways never receive the operation output from visitorpackets� and thus
visitorpackets never get passed gateways�

When we investigate the two customisations closer� we see where the problem
arises� Gateway re�implemented the operation output� relying on the assumption

that packets always send this operation when the referring node is their destination�
Visitorpacket on the other hand� no longer invokes this operation� It thus breaks
the assumption gateway was relying on and the behaviour is no longer correct�

accept
isDestFor
output
send

gateway

handle
 [send
 action]

visitorpacket

pass packet on
to next node

. . .

Figure ��� Combining Gateways and Visitorpackets

The cause of the problem is that when composing components� one makes as�
sumptions about the way these components will react when certain operations are
invoked on them� Here the implementor of gateway assumed that whenever the
isDestFor operation gets invoked by a packet and returns true� the operation
output will be invoked by that packet� This was a reasonable assumption� because
until then� that was what all packets did� When visitorpackets were introduced
however� this assumption was rendered void and so was the co�operation between
the two components� This is depicted in �gure ��	� One could argue that the in�
troduction of visitorpackets should not have been allowed� because they do not
comply to the general contract� However� as we argue further on� a less coercive

��� Con�icts with Evolving Components ��

approach where certain deviations of the general contract are allowed is crucial in
the use and development of reusable components�

Assumptions before composition

gateway packet

handle
[if isDestFor(ops)
 then output]

assumes

Assumptions after composition

gateway visitorpacket

handle
 [send
 action]

actually
gets

Figure ��	 Broken Assumptions

Problems with evolving components While this example was presented as a
description of what problems can arise when combining di�erent components� the
same problems could occur with the evolution of components� One could consider�
for example� outputserver to be a �rst version of a component in some dedicated
library and gateway an enhanced implementation of this component in the following
version of the library� If an application developer had implemented visitor packets
the way they were described above� problems would occur when upgrading this
application to the next version of the library� To take it one step further� the same
problem could arise with two adaptations that were independently developed by
two developers
or even just one� on a large application� regardless of whether this
application was built with components or not�

����� An Overview of Possible Con�icts

In general� these kinds of problems can occur when changes are made to two di�erent
parts of a system� regardless of whether this is achieved through composition� during

�� Issues in Reuse and Composition

evolution or by di�erent developers� This section inventorises a number of problems
that can occur� We consider two arbitrary modi�cations that do not cause problems
when they are applied exclusively and we ask how these two modi�cations can be
integrated�

Interface Con�icts

A �rst set of problems concerns con�icts in the interface� i�e�� con�icts of operation
names� component names� etc� It is possible that separately two modi�cations in�
troduce an extra operation or component with the same name� It is possible that
both modi�cations intended to model similar behaviour� but also that they aimed
at something completely di�erent� Therefore� such a con�ict should be noted on
integration� to allow the user to decide how to solve this con�ict�

Figure ��� demonstrates such a con�ict� We depict all con�icts we discuss in
this section on an abstract level� A �rst version of two related components A and
B� is depicted at the top of the �gure� The arrows represent two modi�cations
M� and M� that result in the two versions at the bottom of the picture� The grey
areas in the pictures show where something has changed� In this �rst example both
modi�cations introduce an operation m on component B� When integrating both
modi�cations� problems might occur� Here the problem is that both modi�ers have
introduced an operation with the same name on the same component� We call this
an interface con�ict�

A B

M1 M2

A B
m

A B
m

Figure ��� Example of an Interface Con�ict

Interface con�icts can also occur with annotations made to parts of interfaces�
It is not uncommon to attach extra information to items in an interface� In C���
for example� member functions can be abstract or concrete� virtual or not� public or
private� We will also add extra information concerning crucial internal dependencies
to the external interface� We will amongst other discuss which operations invoke

�The fact that they are related is denoted by the rectangle surrounding them� We take abstrac�
tion of how they are related�

��� Con�icts with Evolving Components ��

which other operations� The notation x�m� is used to denote the fact that x invokes
m� An example is given in the next section�

Dangling Reference Con�icts

The inverse kind of interface con�icts can occur when one modi�cation removes some
item from its interface that another modi�cation refers to� We call these con�icts
dangling reference con�icts� This is depicted in �gure ���� where one modi�cation
adds an invocation of m� while the other modi�cation removes m�

A B

M1 M2

A B

m

A B
mx

x

x
x [m]

Figure ��� Dangling Reference Con�icts

Again� this kind of con�ict can occur in di�erent parts of the interface�

Con�icts Concerning the Calling Structure

While the above con�icts might seem simple and a lot of them can be detected
by compilers of statically typed languages� other con�icts are more subtle� These
con�icts� such as the inconsistent operations in the LAN example� do not necessarily
make a system break down� but may result in a working system that does not exhibit
the expected behaviour it does not behave the way the developers assumed it would�
These are con�icts that concern the assumptions made about the calling structure�
i�e�� which operations might invoke which other operations� These con�icts now
remain undetected�

Operation Captures A �rst example is operation capture� One of the modi��
cations can provide a new implementation for a certain operation� while the other
modi�cation includes extra invocations of the same operation� In that case we say
that this operation gets captured by the invocations of the second modi�cation� In
�gure ��� the new implementation of x gets captured by z� This may result in er�

�� Issues in Reuse and Composition

roneous behaviour� as the �rst modi�cation
re�implementing x� did not take into
account that its operation would be invoked by the other operation
z��

A B

M1 M2

A B
x

A B
x z

z

z [x]

x

Figure ��� Regular Operation Capture

Two cases of operation capture can be distinguished� First� after a modi�cation�
an adapted version of an operation that already existed in the original system might
be invoked by more operations than before� We call this regular operation capture�
as it can be foreseen by modi�cations that any existing operation that they change
could be invoked by operations they don�t know of�

In the second case� an operation that did not exist in the original system is
now introduced and invoked� Figure ��� shows how the two modi�cations have
introduced an operation with the same name and M� also added an invocation of
this operation� Depending on how the interface con�ict is resolved�� the operation
of M� might be invoked by the operation of M�� As this could not be foreseen� we
call this accidental operation capture�

A B

M1 M2

A B
x

A B
x z

z

z [x]

Figure ��� Accidental Operation Capture

�Note that in the case of accidental operation capture there will also be an interface con�ict�
because both modi�cations introduce an operation with the same name�

��� Con�icts with Evolving Components �	

Inconsistent Operations When method invocations are omitted� the inverse sit�
uation of operation capture can arise� If during integration the new system executes
less invocations of an operation than before� this might lead to inconsistent be�
haviour�

M1 M2

A B
x

A B
x z

z [x]

A B
x z

z [x]

Figure ���� Inconsistent Operations

This situation is depicted in �gure ����� The �rst modi�cation has adapted the
implementation of an operation x� while the second modi�cation has omitted an
invocation of this same operation� The �rst modi�er might have assumed that the
modi�cation of the operation x would also have an in�uence on z� After integration
with the second modi�cation� this is no longer the case� We then say that the two
operations x and z have become inconsistent� This terminology is due to Kiczales
and Lamping �KL���� Note that this is exactly what happened in the Gateway

example�

Unanticipated Recursion Problems might also arise when inadvertently recur�
sion is introduced� Consider again a component A with an operation x and a com�
ponent B with an operation z� Now assume that the �rst modi�cation introduces
an invocation of the operation z by x and the second modi�cation introduces an
invocation of the operation x by z� as depicted in �gure ����� This might introduce
mutual recursion� which was not foreseen by either one of the adapters�

Other Possible Con�icts

The set of possible con�icts that we discussed here is by no means complete� First�
depending on the kinds of components di�erent con�icts occur� Second� depending
on how much and which kind of information is provided in interfaces� more or
fewer and di�erent problems are detectable� We chose the problems discussed here�
because they are relevant
see the two examples and see� for example� �KL���� and
because they are exemplar for the kinds of problems we want to tackle� Further on
in the text� when relevant� other possible con�icts are mentioned�

�
 Issues in Reuse and Composition

A B

M1 M2

A B
x z

z [x]

x z

A B
x

x [z]

z

Figure ���� Unanticipated Recursion

��� The Evolution to Component Software

����� Bene�ts and Inhibitors

Since computers �rst appeared on stage� the increase in software productivity has
by no means kept pace with the growing demands or with the evolution of hardware�
Despite numerous research e�orts concerning programming languages and method�
ologies� the development of quality software still seems to be an art as much as a
science� Among others object�orientation has failed to deliver much of its promises�

Today�s software environments react to the ever�increasing customer demands
by adding feature after feature to their systems� This process results in large� mono�
lithic applications that are di�cult to customise for di�erent users� Moreover� these
systems are expensive to maintain and the interdependencies between all these fea�
tures make it harder and harder to integrate new functionalities� The combination
of these problems leads to an ever�rising development cost�

As a consequence and due to the inherent complexity that involves building
software from scratch� the software engineering community has focused on the reuse
of existing software systems and components� The possible bene�ts of component
systems both on the business and technical side are abundant� �KY�	� states� among
others� the following

� faster time to market� since the bulk of an application is already there�

� reduced expenses because applications do not duplicate existing functions and
are not written from scratch�

� quick response to changing customer needs and competitive pressures�

� increased customisation� addressing emerging market segments�

� �ne�grained integration beyond �Band Aid� interfaces�

� higher quality� reliable systems via pre�tested and pre�approved components�

��� The Evolution to Component Software ��

� simpler testing and debugging� contributing to accuracy and ultimately to user
satisfaction�

In order to achieve these goals a large number of questions still needs to be
answered� A number of these questions refer to business issues� We again follow
�KY�	� How much is a component worth� How does a company account for the
development costs� How do vendors set prices� How do companies measure return
on investment�

In addition to these business inhibitors � on a technical level � the lack of ade�
quate tools and libraries� the absence of adequate standards� the lack of certi�cation
techniques and the focus on language and source code dependent solutions are often
mentioned as the main problems� In this chapter we argue that the problems are
deeper rooted�

����� Systematic Reuse� a Paradigm Shift

While a large consensus exists on the possible bene�ts of component systems it
is equally recognised that the establishment of such a component industry� where
components are bought and sold and systems are assembled rather than written� is
a long way from reality�

According to W� Frakes �Fra���� software engineering is undergoing a paradigm
shift� in order to achieve this goal� The new paradigm� called systematic reuse� is
domain focused� based on repeatable processes� and concerned primarily with reuse
of higher level life cycle artifacts such as requirements� designs� subsystems� etc�
Systematic reuse shifts from �viewing software engineering as a discipline concerned

with the construction of single systems� to a discipline concerned primarily with

constructing related systems that share common parts and vary in certain regular and
identi�able ways�� In other words� at the heart of this paradigm shift is an evolution
from the current craftsmanship paradigm� aimed at constructing hand�crafted single
systems� to that of an organised industry centred around the production of software
components� aimed at building systems much like product lines in e�g� consumer
electronics or car manufacturing� This kind of systems is called component software�

While the high expectations provoked by the possible bene�ts of component
software can lead to discouragement when advances are not noticed as soon as
expected� Frakes stresses that positive change is almost always slow and methodical
and that changes usually come in small increments�

����� Kinds of Component Systems

The most logical approach to reuse is to store reusable components in a reuse library
or reuse repository� In the early days� a strong emphasis was put on building reuse
libraries of fragments of code� More recently� a shift in emphasis from reuse of
code and behaviour to reuse of design is noticeable� �NT�	� de�nes a component

�� Issues in Reuse and Composition

as a �static abstraction with plugs�� �NT�	� explains By �static� we mean that
a software component is a long�lived entity that can be stored in a software base�

independently of the applications in which it has been used� By �abstraction�� we

mean that a component puts a more or less opaque boundary around the software

it encapsulates� �With plugs� means that there are well�de�ned ways to interact

and communicate with the component �parameters� ports� messages�etc�� An entire
range of artifacts can possibly be reused analysis and design models� process models�
implementations� and so on� As implementation is only one phase in the software
development process� it would not be wise only to consider reuse of code�

All these components� no matter what kind or form� need to be stored in a reuse
repository� or component system� Component systems can be distinguished from ap�
plication systems as they are more generic� reusable and customisable and generally
require more e�ort to engineer� Component systems are used to engineer applica�
tion systems� as well as other component systems� Furthermore� while application
systems are delivered outside the business� component systems often are not�

Component systems can range from relatively independent components� to frame�
works of collaborating components� to more complex and sophisticated component
systems from which complete application systems can be generated� Depending on
the kind of component systems they are derived from� di�erent kinds of application
systems can be observed� Jacobson et al� distinguish three of them �JGJ���

� An application system suite is a set of di�erent application systems that are
intended to work together to help some actors accomplish their work� An
example of an application system suite is the Microsoft O�ce suite�

� Application system variants are used when essentially the same application
systems need to be con�gured� packaged� and installed di�erently for di�erent
users� An example is the Ericsson AXE family of telecommunications switch�
ing systems� Sometimes� di�erent variants can be achieved by simply installing
and adapting application systems di�erently� At other times the variability is
achieved by engineering di�erent application systems from common compo�
nents�

� Finally� sets of otherwise fairly independent application systems can be treated
as members of a family by building them from the same sets of lower�level
reusable components� An example are applications that use the Microsoft
Foundation classes�

Unless explicitly mentioned otherwise� when we refer to component systems in
this chapter we imply all of these variants� from the simplest single components to
full��edged application systems�

��� The Evolution to Component Software ��

����� The Development of Reusable Components

When the focus of software engineering is shifted from building single systems to
building families of systems� this obviously also in�uences the life cycle models� The
emergence of reusable components is not an automatic side e�ect of system devel�
opment� For reuse to be systematic� it needs to be pre�planned and the �discovery�
of reusable components needs to be a major concern in the development process�
Reusable components need to be looked for� abstracted and certi�ed� Next to the
functional requirements� describing what the system must do� on what platforms
and in what order of speed it must do it� non�functional requirements must be con�
sidered in order to achieve systematic reuse� These include writing systems that are
highly adaptable� contain clearly reusable subcomponents� and are easy to maintain�

Iterative Development

It is generally acknowledged that the classical waterfall model does not cope well with
these extra requirements� In the waterfall model� tasks are laid out and executed
sequentially� The waterfall approach is based on the assumption that everything
is known up front� so that well�de�ned tasks can be executed one at a time� This
assumption is often erroneous� as we rarely know all the requirements� even if we
could know all the requirements� they would undoubtedly change as the project
progresses�

Evolution of living organisms is often used as an analogy with the evolution of
software� Just as a living organism adapts to its changing environment� software
must adapt to ever�changing requirements� This is true during development� when
the parts to be integrated and tested change from day to day� as well as during the
rest of the system�s life cycle� Therefore a number of evolutionary models have been
proposed�� While each model has its own characteristics� in general evolutionary
models contain the same basic steps
analysis� design� integration� � � � � as the wa�
terfall model� What�s di�erent is how the steps interrelate and how each step is
accomplished�

An example of an iterative approach is incremental development� Developers
may do some requirements analysis� some design and some coding on a core part of
an application and then go on to repeat the same steps on other parts� gradually
integrating the di�erent parts� Of course� integration of new layers with the core
can call for changes at this core� � � � This approach recognises that changes can be
caused by decisions at di�erent levels in the process�

There is not only a need for evolution because requirements are constantly evolv�
ing and because the best choice for modelling a system might not always be readily
apparent� Experience shows that reusable components are generally not designed

�Examples are the spiral model� the whirlpool model� the fountain model� the baseball model�
� � � See� for example� �Wil��� for the whirlpool model�

�� Issues in Reuse and Composition

from scratch� but �discovered� through an iterative process of testing and improve�
ment �JF���� �Cas���� While some of the basic identities of components may be
discovered early on in the development� these identities will change and improve as
they evolve� Reusable components emerge as a result of an evolutionary process�
Moreover� the usefulness and thus the true degree of reusability of components can
only be tested by actually reusing them�

Domain Engineering

One way to limit the number of required iterations and one of the most successful
topics in reuse research is domain analysis �PDe���� The basic premise is that reuse of
components is much easier if not only reusable components are stored in a repository�
but also interconnections between the components that provide an architecture or
template of how to �t the components together� Specialisation guidance can also be
included�

In order for the component developer to be able to add this kind of information�
he needs to analyse the problem domain� Domain analysis di�ers from classical
systems analysis in that an entire family of systems and solutions must be considered�
�Nei��� summarises domain analysis as follows

�� Analyse four or more existing systems in the domain using classical systems
analysis�

�� Form an analysis model of the union of features of existing systems�

�� Determine and� or� not� existential and universal constraints on acceptable
domain feature variations�

�� Present model and variation constraints to domain experts for approval�

	� Continue � through � until all systems in � are variants of model � under
constraints � and approval ��

�� Provide function implementations under allowed variations�

The result of domain analysis can lead to artifacts as diverse as domain languages�
domain algebra�s� domain�speci�c software�architectures or domain�speci�c kits�

The topic is much more complex than presented here� but a full review is outside
the scope of this dissertation
see� for example� �PDe�����

����� Relationship with Reuse Contracts

While we acknowledge the contributions of domain engineering� we �rmly believe
that an evolutionary model for software engineering remains crucial� Reuse con�
tracts aim to form the basis of a new methodology that considers iteration and thus
evolution of components as the most crucial action in each part of the life�cycle�

��� Object�Oriented Reuse ��

In a later stage the information provided by reuse contracts might also be put to
use to ameliorate the reusability and adaptability of reusable components� but that
is outside the scope of this work�

��� Object�Oriented Reuse

This section examines the contributions of object�oriented software engineering�
Object�oriented programming languages are often put forward as promoting soft�
ware reuse� While features as polymorphism and inheritance do assist in enabling
reuse� on their own they are not su�cient� We �rst look at how these features enable
reuse and then discuss where they fail� what possible solutions have been proposed
and where these solutions still fall short�

����� Polymorphism	 Protocols and Inheritance

In object�oriented languages operations are performed by sending messages� Mes�
sage sending causes polymorphism� as messages with the same name can be sent
to instantiations of di�erent classes and a di�erent method is invoked� depending
on the receiver�s class� This is called late binding� As a consequence methods and
programs can be written for a set of related classes� of which instantiations can
be interchanged� A protocol is a set of messages that can be sent to an object�
Objects with an identical protocol are interchangeable� Moreover� the creation of
standard protocols makes it easier to understand programs� as methods with the
same name encode similar behaviour� In languages with no polymorphism giving
di�erent procedures the same name is discouraged� since they cannot be used in the
same program� As a consequence� sets of procedures with the same behaviour and
slightly di�erent names occur� which can be confusing� Another feature of object�
oriented programming languages that enhances reuse is inheritance� Inheritance
enhances code reuse by promoting programming�by�di�erence� where a programmer
de�nes a new class by picking a closely related class and describing the di�erences
between the old and the new class� One of the important bene�ts of inheritance
is that all the subclasses of a class inherit its protocol� creating a family of classes
that can be used interchangeably to some level� Furthermore� as these classes share
a standard protocol it is easier to understand their behaviour� Another important
bene�t is that inheritance leaves intact the original code of the class it extends�
Thus� changes made by one programmer are less likely to a�ect another� The code
in the subclass de�nes the di�erences between classes� acting as a history of the
editing operations�

����� Abstract Classes and Template Methods

While the discussed features of object�oriented languages are bene�cial in order to
achieve better reusable systems� on their own they do not su�ce to create highly

�� Issues in Reuse and Composition

reusable code� In order to obtain highly reusable classes� one must design for reuse
�JF���� This is� as mentioned above� usually an iterative process resulting in reusable
protocols that are represented by abstract classes�

An abstract class is a class that contains a number of abstract methods� i�e��
methods without an implementation� Template methods are methods that rely on
abstract methods or other template methods in their implementation� Finally� there
are concrete methods� which have a full implementation that does not rely on ab�
stract methods� Template methods are the key to reuse� They usually describe the
core behaviour of the class� Subclasses inherit the core behaviour by means of the
template methods� They only need to override the abstract methods to give them
an implementation� or some default methods to adapt their behaviour� Besides
implementing a reusable behaviour through template methods� abstract classes pro�
vide an interface with which all subclasses must comply� By having these common
interfaces� the di�erent subclasses are interchangeable���

The development of abstract classes is very important� but not easy� There is
always a trade�o� between �exibility and ease of use� A powerful template method
which is only based on a small number of abstract methods requires minimal e�ort
for adaptation� However� if these abstract methods are not su�cient to modify
the template method�s behaviour� the class is too in�exible and the whole template
method needs to be overridden� It is almost impossible to get template methods in
an abstract class right from the start and a number of iterations is usually required
to improve their reusability�

Abstract classes can encode the design of a set of classes and thus embody domain
knowledge by making the commonalities between their subclasses explicit� While
with concrete class libraries developers only reuse implementations� with abstract
classes they can also reuse designs� Another big di�erence between reusing concrete
and abstract classes is the fact that concrete classes are instantiated by the appli�
cation and messages are sent to these instance by the application� With abstract
classes this is the other way round� Methods from the application are also invoked
by methods from the abstract classes� The main domain knowledge is in the abstract
classes� not in the application� Frameworks are an elaboration on this principle�

����� Frameworks

While abstract classes and class libraries can substantially increase developers� pro�
ductivity� over the last few years it has become clear that to realise more substantial
gains one has to go one step further and start reusing multi�class components and

�This means interchangeable in the technical sense that no 	message not understood
�errors will
occur� There are no guarantees concerning behavioural correctness�

�In order to be fully interchangeable some requirements concerning argument and return types
of overridden methods need to be ful�lled� These requirements di�er depending on the language�s
type system� This is however outside the scope of this thesis�

��� Object�Oriented Reuse ��

frameworks� This evolution is closely related to the work on domain engineering�
�CP�	� gives the following de�nition of a framework

A framework is a collection of co�operating classes that make up a
reusable design solution for a given problem domain�

Abstract methods and the template methods that rely on them need not nec�
essarily reside in the same class� A framework consists of a set of related abstract
classes� with the interfaces between these classes de�ned in terms of sets of mes�
sages� Again� abstract methods need to be overridden to customise the generic
design� only now these methods reside in di�erent classes� A framework is not nec�
essarily a working application� All abstract classes must be ��lled in� with concrete
ones �rst� Often a library of concrete subclasses is provided that can be used as
components in the design�

�CP�	� mentions three main di�erences between frameworks and class libraries

� Behaviour versus protocol� While class libraries essentially provide sets of be�
haviours that programmers can use in their programs� frameworks also include
protocols that describe how these behaviours can or should be combined�

� Don	t call us� we	ll call you� While with class libraries it is always the pro�
grammer who instantiates objects and calls their methods� with frameworks
this responsibility is divided and it is also possible for framework code to call
methods that were provided by the programmer�

� Implementation versus design� While with class libraries developers only reuse
implementations� with frameworks they also reuse designs�

While the introduction of abstract classes already symbolised a shift from reuse of
code to reuse of design� frameworks go one step further by stressing the importance
for the design of co�operations between di�erent classes�

Black�box Frameworks versus White�Box Frameworks

Another important feature that frameworks can be characterised with is the
distinction between white�box frameworks and black�box frameworks �JF���� This
distinction can be made based on the the way a framework is customised� An appli�
cation built on a framework typically adds methods to subclasses of the framework�s
classes� In doing this it must abide by the internal conventions of its superclasses�
This is called white�box framework reuse because the framework�s design and im�
plementation must be understood to use them� The disadvantages of white�box
frameworks are that every application requires many new subclasses and that learn�
ing to use such a framework can be hard� because learning it is the same as learning
how it is constructed�

�� Issues in Reuse and Composition

The alternative is to supply a framework with a set of components that provide
application�speci�c behaviour� The interface between components can be de�ned by
protocol� so the user needs to understand only the external interface of the compo�
nents� This kind of framework is called a black�box framework� Black�box frame�
works have the advantage that they are easier to learn to use� but the disadvantage
that they are less �exible with respect to unforeseen changes� Mostly the available
components provide the most basic and therefore anticipated variations� but users
that want to do something slightly di�erent can run into a lot of di�culties�

Furthermore� designing black�box frameworks is much harder than designing
white�box frameworks� as a good black�box framework must anticipate all variations
users might desire and provide components for these� In white�box frameworks�
users that �nd the behaviour they desire not well anticipated can override methods
from the framework�s superclasses to adapt this behaviour� This is not the desired
approach� but preventing users from wanting to implement unanticipated variations
is not realistic� In fact� as a system is iterated over and the design becomes better
understood� white�box relationships can be replaced by black�box ones�

����� Object
Oriented Methodologies

Numerous object�oriented analysis and design methodologies have been developed

see� amongst others� �Boo���� �CY���� �RBP����� �CAB����� �BRJ����� Each of
them has a notation for class diagrams� Most methods also have a notation to model
object interactions� They have di�erent names� but model similar concepts� There
are object diagrams in Booch �Boo���� message connections in OOA�OOD �CY����
data��ow diagrams in OMT �RBP����� collaboration graphs in CRC �WBW����
object interaction graphs in Fusion �CAB���� and collaboration diagrams in UML
�BRJ���� All these methods basically de�ne graph structures that represent exe�
cution threads between models� However� the main focus of the methodologies is
usually on the development of the static model� not of the object interactions�

Two notable exceptions to this situation are CRC �WBW��� and OBA �RG����
In �WBW��� an approach to object�oriented design is described that focuses on
classes� class responsibilities and collaborations among classes
CRC�� In an initial
exploratory phase� classes� responsibilities and collaborations are de�ned by means
of so called CRC cards� In the subsequent analysis phase� systems are de�ned�
collaborations simpli�ed� hierarchies built containing abstract and concrete classes�
and object protocols are de�ned�

In �RG��� Object Behaviour Analysis
OBA� is presented as an alternative way
of performing systems analysis� Upon completion the goal is to have a clear under�
standing of the behaviours exhibited by the system� the objects that exhibit these
behaviours� the relationships among the objects� and how objects interact with one
another� They claim that what is important to understand in analysis is the nature
of the required information processing� in terms of the services to be performed�
This is what should be focused on �rst� not the search for tangible objects� OBA

��� Object�Oriented Reuse �	

starts with describing scenarios and deriving scripts from them� only in a later phase�
starting from the scripts� objects are derived and classi�ed and relationships between
them are identi�ed�

Note that both these approaches are mainly targeted for initial task analysis and
capturing of requirements� They both stress the importance of collaborations and
both emphasise the need for iterating over the system design before it is built�

����� Language Extensions

One of the problems with object�oriented software systems is that as methods need
to be attached to one class� the application logic is spread over di�erent classes and is
often hard to detect and understand� While frameworks stem from the observation
that inter�class relationships are crucial to design reuse� as they are usually expressed
in classical OOPLs this behaviour is still spread over numerous classes� Several
authors have therefore suggested di�erent extensions to the classical object�oriented
model� where these object interactions are made explicit�

Interaction contracts exist in two versions� In the �rst version they were declar�
ative and could thus be used as structured documentation �HHG���� This version
is discussed in section ������ In the second version contract language constructs can
be added to object�oriented programming languages �Hol���� They thus change the
syntactic representation of class implementations as well as the dynamic behaviour
of objects� A contract is a �package of object declarations and object behaviour def�
initions enclosed by a scope of visibility�� Contracts provide a module�like construct
to structure and organise object�oriented programs at a higher level of abstrac�
tion� by coupling groups of related class implementations� The syntactic description
of class implementations may be split up and distributed over multiple contracts�
Contracts thus provide multiple interfaces for one object and also allow multiple
implementations for one message on one object� The appropriate implementation
is selected dynamically� The work on interaction patterns was performed as part of
the Demeter project� of which the main result is adaptive programming�

Adaptive programming �Lie�	� is an extension to object�oriented programming
that attempts to focus on classes and methods that are essential not only to a par�
ticular application but also potentially to a family of related applications� Adaptive
object�oriented programs specify essential classes and methods by constraining the
con�guration of a class structure that attempts to customise the adaptive program�
without spelling out all the details of such a class structure� Adaptive programs
are speci�ed using propagation patterns� These propagation patterns are general
descriptions of how a certain part of the behaviour of a program propagates over
a generic class graph� Full��edged programs are then obtained by customising the
propagation patterns with concrete classes that comply with the desired structures�
This way the interactions described by means of propagation patterns can be used
on several concrete ensembles of classes�

Both interaction contracts and adaptive programming are based on the Law of

�
 Issues in Reuse and Composition

Demeter �LH���� The Law of Demeter essentially says that when writing a method�
one should not hardwire the details of a class structure into that method� Prop�
agation patterns take this idea further and try to keep class structure details out
of entire programs as much as possible� �Hol��� states �While the Law is geared
towards removing excessive behavioural dependencies� the Contract work focuses on
the problem of understanding the important behavioural dependencies which result
from object interactions��

�AWB���� discusses how composition �lters can be used to abstract object inter�
actions� Composition �lters are a mechanism that makes each message that arrives
at an object
or is sent from an object� subject to evaluation and manipulation by
the composition �lters of that object� A single �lter speci�es a particular manip�
ulation of methods� Various �lter types are available� Filters can� for example� be
concerned with distribution aspects or error handling� The �lters together compose
the behaviour of the object� Composition �lters can be attached to objects ex�
pressed in di�erent languages as C�� �Gla�	� or Smalltalk �vDM�	� and therefore
allow extensions of programs written in di�erent languages�

This is related to other approaches that make interaction protocols between
components explicit as separate entities next to the basic objects� Examples of
such approaches are gluons �Pin�	� and connectors �DR���� �Dem��� discusses how
better tailorable systems can be created by making representations of framework
contracts explicit as part of meta�object protocols� Meta�object protocols �KdRB���
can be used to expose design decisions in a controlled way� thereby allowing the
behaviour of a system to be customised� �SW��� discusses how using meta�object
protocols to implement non�functional requirements allows for a clean separation of
concerns while still providing the necessary �exibility for application programmers
to customise the system to meet the needs of their particular application�

����� Relationship with Reuse Contracts

While the reuse contracts approach can be applied to a range of di�erent models and
di�erent kinds of systems� in this dissertation we mainly focus on object�oriented
designs� Object�oriented systems o�er a lot of power to build �exible systems� As the
observation that building reusable components requires iterations calls for white�box
approaches� it is clear that the need for more disciplined reuse is big�

We do not intend to turn reuse contracts into a new language mechanism but
rather to advance engineering techniques for existing languages� The many propos�
als for language extensions� however� indicate the need for more focus on object
interactions� Therefore� reuse contracts will make object interactions that are now
hidden in di�erent objects explicit�

��� Documenting Reusable Components ��

��� Documenting Reusable Components

A very di�cult question to answer when designing reusable components is how much
of the internal structure of components should be made public and how much should
be hidden� Giving a lot of information makes it easier to specialise� but restricts the
range of possible specialisations� because a lot of variations are ruled out up front�
Giving less information allows for more �exibility� but requires much more work to
specialise� As a possible solution layering of protocols is proposed �KL���� A lot has
been said about the design of reusable components� mostly building on the use of
template methods and frameworks �Pre���� �JF���� Although we return to this issue
at several points in this dissertation� our approach does not give a methodology that
describes how to get a design right� Much will always depend on the situation and
experience will remain a crucial factor in the design of reusable components� We
do however focus on the kind of interfaces that are necessary to ease the tension
between �exibility and extendibility�

����� Specialisation Interfaces

As was already discussed in the section on frameworks� the distinction between
white�box and black�box components plays a crucial role in this trade�o� between
�exibility and extendibility� Current black�box component interfaces� as� e�g� COR�
BA IDL �Sie���� are designed towards developers using these components� not to�
wards developers creating speci�c versions of a component to better �t their needs�

The main problem there is that it is not only the reuser that invokes operations on
the reused components� the reused component can also invoke operations that were
provided by the reuser� Consider adapting a class to particular needs by inheriting
from it� When an inheritor overrides a method in a subclass it is possible that this
method will be invoked by methods of the superclass� the structure of which the
inheritor might have no understanding� Similarly� in component systems� when a
developer inserts a dedicated component in a larger system� this component will
not only invoke operations of other components� these other components will also
invoke operations of the user�s component� This can occur in object�oriented systems
through polymorphism and message passing� but also in other paradigms by means
of so�called call�backs� or through event propagation mechanisms as in� for example�
JavaBeans �Sun����

This problem was � to our knowledge � �rst approached by John Lamping�s
proposal to introduce specialisation interfaces �Lam���� In this paper he discusses
how inheritors of object�oriented class libraries need more information on the struc�
ture of the class than other clients� More speci�cally� they need information on
which methods invoke which other methods in their implementation in order to
assess which methods can be inherited� which methods need to be overridden and
how� This idea has been followed by many others� Ivar Jacobson� for example� sug�
gests looking at the protected operations of abstract classes as a separate interface

�� Issues in Reuse and Composition

�JGJ���� He stresses to be aware of the fact that these interfaces need to be designed
as thoroughly as public interfaces� In JavaBeans �Sun���� design�time interfaces are
distinguished from run�time interfaces�

This observation is not only valid for object�oriented programming� Subclasses
provide di�erent specialisations of their superclass and a subclass can be used wher�
ever a superclass is expected� In general� the same problem is present in any approach
where di�erent versions of one component are desirable that are interchangeable and
interact with their environment� This is exactly the goal of component systems�

����� Contractual Interfaces

However� the interfaces of single components are not the only problem� What is even
more crucial is an interface� and an understanding� of how di�erent components in�
teract with each other in a system� One of the general conclusions of the ECOOP
��� Workshop on Component�Oriented Programming was that interfaces need to be

contractual and as such a binding between any pair of provider and client� �OB���
suggests that in addition to an interface describing the services it provides to its
users� a component should also have a required interface� describing what services
it expects from components it interacts with� �MSW��� agrees that the current way
to describe components by providing their interfaces and some additional informal
documentation is inadequate� Because they feel that providing full semantic descrip�
tions is not appropriate for all kinds of components� they suggest the introduction
of an extra level of information the Originator Level� between the Interface Level
and the Semantic Level� This Originator Level should then provide information to
help address the question of which types and versions of components work together�
i�e�� information on the context in which the component was developed� including
which versions of other components it requires�

����� Documenting Frameworks

Let us now see how these documentation requirements are met with respect to
object�oriented frameworks� According to �Joh��� the documentation of a framework
has three purposes� Framework documentation must describe

� the purpose of the framework�

� how to use the framework�

� the detailed design of the framework�

The framework user must become familiar with its design� that is� the design
of its individual classes� as well as the interactions between these classes� As was
discussed in the section on white�box and black�box frameworks� there is a general
understanding that a framework should be used predominantly in a pre�de�ned way
the basic framework structures should not be violated� The rules that describe how

��� Documenting Reusable Components ��

to do so remain� however� largely informal documentation� �CP�	� describes the
documentation of the Taligent frameworks as follows

Taligent provides new CommonPoint developers with a series of devel�
oper guides that cover frameworks and services and include code exam�
ples� Taligent also provides a programming tutorial� sample code� doc�
umented sample applications� human interface guidelines� white papers�
on�line documentation and a variety of resources�

Some more structured form of documentation that is used concerns cookbooks
and design patterns�

����� Cookbooks

The Model�View�Controller construct is often cited as the �rst mini�framework
and this framework was already documented by a �Cookbook for Model�View�
Controller� �KP����

Cookbooks contain recipes that guide reusers step by step in using a framework
for application development� They describe in an informal way how to use a frame�
work and usually do not explain the internal design and implementation details of
the framework�

Besides being informal� recipes also su�er from the problem that they are overly
coercive� i�e�� they describe the typical ways that the framework will be used and
can thus only guide reuses that were speci�ed up front� A good framework can�
however� be used in ways that its designers never conceived� The MVC cookbook
therefore also included an informal description of the design of the framework� in
addition to the instructions on how to use it�

����� Design Patterns

One way to additionally document frameworks is through design patterns �GHJV����
�Pre���� �GHJV��� de�nes design patterns as

Descriptions of communicating objects and classes that are customised
to solve a general design problem in a particular context�

In general� design patterns try to record experience in designing object�oriented soft�
ware in a form such that people can e�ectively reuse it� Their �rst aim is to make it
easier to reuse successful architectures and designs� make these designs more acces�
sible to developers of new systems and help in choosing between design alternatives�
For that purpose catalogues of design patterns are put together �GHJV���� �CS�	��
�VCK���� In addition to that� design patterns can also be used to document existing
systems� For example� Ralph Johnson documented HotDraw by means of design pat�
terns �Joh��� and Wolfgang Pree documented ET�� by means of his meta�patterns
�Pre����

�� Issues in Reuse and Composition

A design pattern� in general� has four essential elements

� a name�

� a problem description�

� a description of the solution�

� a discussion of the consequences�

These four elements are all described through informal textual notations� graphic
notations
as OMT� UML�� � � � and programming language samples� Design patterns
su�er from the same lack of formal underpinnings as cookbooks� code examples�
sample applications� etc�

While most catalogued design patterns describe domain or problem�speci�c de�
signs� meta�patterns �Pre��� provide a more advanced abstraction� by categorising
patterns according to possible class�object composition attributes as the multiplic�
ity of associations or whether two classes in a design are descendants or not� This
provides a more systematic approach� but still lacks a formal model behind it�

����� Interaction Contracts

Interaction contracts were not presented speci�cally in the context of frameworks�
but more generally as a program tool for object�oriented programming� As a pro�
gram extension� they were discussed in section ����	� In their declarative version
they can be used as structured documentation �HHG����

Interaction contracts then describe object interactions� i�e�� a group of objects
which interact via message passing to accomplish some system task or cooperate
some system invariant� Interaction contracts aim at providing an explicit formal
textual representation of object interactions� An interaction contract contains

�� a name�

�� a re�nement clause stating from what other contracts this one is a specialisa�
tion�

�� a participant list �

�� obligation de�nitions describing what each participant contributes to the con�
tract� These can be instance variables� methods or method interfaces�

	� include clauses� Contracts can include other contracts�

�� invariant de�nitions� de�ning predicates which must be maintained by the
participants�

��� Documenting Reusable Components ��

Conformance declarations then need to be provided that specify the relation between
class implementations and participant de�nitions�

While interaction contracts were the �rst approach stressing the importance of
interclass co�operation in documentation of reusable object�oriented systems and
were thus instrumental in the current evolution� they never found wide�spread use�
We feel that the main reason for this is their high level of formality� which tends to
scare of developers� While the ideas were important� we think that in order to be
widely used a more intuitive notation is necessary�

����� Interface De�nition Languages

More recently� interface de�nition languages
IDLs� were introduced as part of
CORBA�s
Common Object Request Broker Architecture� e�ort to achieve language
and platform�independent composition �OH���� �Sie���� The CORBA architecture
separates the interface� written in IDL� from the implementation� which must be
written in some programming language� IDLs provide language neutral and totally
declarative descriptions of components� IDLs do not de�ne implementation details
and provide operating system and programming language independent interfaces to
all services and components that reside in a CORBA repository� An interface de�ni�
tion speci�es the operations the object is prepared to perform� the input and output
parameters they require� and any exceptions that may be generated along the way�
Clients of the object then use the same interface de�nition to build and dispatch
invocations�

���� Architecture Description Languages

Architecture description languages �GS���� �KC��b�� �GS��� are used to describe
high�level structures or designs of software applications� The focus is on software
modules and the interactions and communications between them� rather than on
the functional or algorithmic detail within a particular source module� A software
architecture is usually de�ned as the organisational structure of a software system
including components� connections� constraints� and rationale �GS���� Components
can be small pieces of code
such as modules� or larger chunks
such as stand�alone
programs�� Connections are abstractions of how components interact in a system

e�g� procedure calls� pipes� remote procedure calls�� An architecture has various
constraints and rationales associated with it� including the constraints on component
selection and the rationale for choosing a speci�c component in a given situation�

Recently a lot of work has been carried out in this area� Researchers have
identi�ed di�erent architectural styles found in existing software systems �GS����
Others have classi�ed di�erent features in existing ADLs in order to choose a good
ADL for a given situation and as a basis for developing improved and specialised
ADLs �KC��a�� Other emphasis was put on developing domain�speci�c software

�� Issues in Reuse and Composition

architectures
DSSAs�� i�e�� architectures for a family of application systems in a
domain
see for example �LRD������

����� Relationship with Reuse Contracts

Recent literature has clearly stressed the need for documentation both on how a
component is structured internally and on how components interact in a system�
This documentation can describe systems at di�erent levels of abstraction� e�g� spe�
cialisation interfaces versus ADLs� and at di�erent levels of formality� e�g� cookbooks
versus interaction contracts� In this dissertation we will focus on lower�level descrip�
tions as ensembles of classes� The application of this work on higher�level artifacts
as architecture descriptions is a next step� Reuse contracts will have a formal basis�
but will only include information of which compliance with the code can be auto�
matically checked� This means that no invariants as in� for example� interaction
contracts will be included�

Chapter � will brie�y discuss possible extensions to the model in this dissertation�
both in adding more information and describing other and higher�level constructs�

��� Evolution of Reusable Components

In addition to the technical motivations for an iterative approach to the development
of reusable components� there are also some purely economic reasons� As the discov�
ery and abstraction of reusable components has to be actively pursued� this requires
a substantial investment� Fully planning all reuse requires a very large up�front
investment� Therefore� a more gradual approach where reusable components are a
concern at several steps of the development process� is more realistic� A delicate
balance between longer term investments in reusable components and the need to
meet deadlines must be found� To be properly reusable� components should undergo
some form of certi�cation� To be able to leverage on the investment� reusers must
be able to bene�t from future improvements of the components they reuse proper
evolution of reused components should not invalidate previous reuse� If reusers do
not upgrade their applications to newer versions a proliferation of versions occurs�
While reuse of components should lead to a reduction of the maintenance e�ort� the
presence of all these di�erent versions makes maintenance only harder�

To inhibit proliferation of versions it should be made easier for reusers to up�
date their software to new versions of the components they reuse� This implies the
management of some kind of consistency in the evolution of reusable software� To
guarantee the systematic detection of problems a formal understanding of change
propagation is essential� Programming environments should provide assistance in
updating applications to new versions of reusable components� based on a formal un�
derstanding of change propagation� The absence of such management mechanisms
is recognised as an important inhibitor to successful reuse �GR�	�� �Pan�	�� �You����

��	 Evolution of Reusable Components ��

We �rst give a short overview of work that has been done in this area and then
discuss what kind of con�icts on change propagation we try to tackle with reuse
contracts�

����� Binary Compatibility

One related topic is release�to�release binary compatibility� The major concern there
is that when the evolution of the class library does not require changes to the appli�
cation source� the application source should not require recompilation� The de facto
standard way to do this was developed by the designers of SOM and is based on a
number of transformations that are guaranteed to be compatibility preserving �for
all reasonable functional speci�cations� �FCDR�	�� Transformations were set up for
procedural as well as object�oriented programming that are behaviour preserving in
this way� Object�oriented programming requires a more extensive set of transforma�
tions� because of the possibility for OO applications to subclass the classes of the
library� Our work focuses on changes that are outside these transformations�

����� Refactoring and Restructuring

A lot of work in the OOSE community has been carried out on refactoring
see
for example� �Opd���� �Cas����� Refactorings are automatic program restructuring
operations that preserve the behaviour of a program� These refactorings aim to
assist in subsequent design iterations by helping to extract reusable components
and improve the consistency among components� Examples of low�level refactorings
are moving instance variables and methods from one class to another and renaming
an instance variable� Higher�level refactorings try to �nd and create new abstract
classes or capture aggregations�

A related approach is adapted in the Famous
Fully Automated Method and Ob�
ject Update System� framework �HS�	�� This framework couples a change avoidance
approach based on Adaptive Software
see section ����	� with a change management
mechanism for automatic evolution� They see the foundation of an object�oriented
system to be its schema� i�e�� the structure of classes and their interfaces� and aim
at automatically maintaining consistency and behaviour of a system during schema
evolution� Their approach is based on a number of basic� behaviour�preserving class
graph transformations� such as the addition of a concrete class or abstraction of a
common reference�

These refactoring techniques can be helpful in� for example� assessing the design
of a system that has gradually drifted from its original architecture and make sug�
gestions about and assist in enhancing it� On the other hand� the suggested changes
are not always true clari�cations of the design� Not every method that occurs on
two sibling classes should necessarily be pulled up� Furthermore� these refactorings
do not generally assist a developer when making more substantial changes to its

�� Issues in Reuse and Composition

reusable components� They only assist in making prede�ned� frequently appearing
changes�

More recently� the FAMOOS project �DDN���� has presented the need for re�
structuring on di�erent levels� On a lower level� restructuring operations like class
refactorings are proposed� On a higher level� the use of anti patterns �Koe�	� to
detect problems and the application of design patterns to solve them is proposed�
At the time of writing this work the FAMOOS project is still in an early stage and
its approach has not yet been tested on large case studies�

����� Programming by Contract and Formal Methods

Another approach to correctness of programs is the use of formal methods as Z
�Spi���� VDM �Jon��� or Larch�C�� �Lea�	�� Similar principles are applied in
�programming by contract� as practised in Ei�el �Mey����

In such methods the relationship between a software component and its clients
is viewed as a formal agreement� expressing each party�s rights and agreements� A
big part of most formal approaches is the semantic speci�cations of operations� The
behaviour of an operation is expressed by means of preconditions and postconditions�
Preconditions express the properties that must hold whenever the operation is called�
postconditions describe the properties that the operation guarantees when it returns�
Another part is the use of state invariants which are more general and must be
preserved by all operations�

While these methods have presented good results �Lin���� �Hal���� in this dis�
sertation we want to investigate a completely di�erent approach� where we don�t
focus on declarative behavioural speci�cations� but see how operational behaviour
information can aid in managing the evolution of software systems�

����� Consistency of Class Libraries

This follows the work of some authors who have more recently focused on particular
problems with evolving class libraries and frameworks �Str���� �KL���� �Lam����
�KKS��� instead of focusing on full behavioural correctness� �Mez��� divides these
problems in vertical and horizontal evolution con�icts� Horizontal con�icts occur
when changes to a base class invalidate inheritors� while vertical con�icts occur
when the base class is extended by an inheritor in a way that was not anticipated
by the base class designer�

�KL���� �Lam��� and �Str��� give an overview of some problems � but they o�er
no particular solutions� They all emphasise the importance of clear interface de�
scriptions� the �rst two stressing the importance of structural information� �Mez���
suggests an automatic consistency maintenance system� where designers are enabled
to formulate properties of the base module to be propagated to the inheritors dur�
ing composition� Changes to the base module are monitored to �lter out alterations
that may invalidate already existing inheritors� The composition behaviour of classes

��
 Our Approach Reuse Contracts �	

is then adjusted such that before the integration�reintegration of the correspond�
ing modules is performed� the maintenance of the base module properties and the
protection of the inheritor is ensured� The speci�cations about the design and im�
plementation speci�cs of the base class to be propagated to inheritors are explicitly
formulated by the base module designer in a simple description language� called CCL

cooperation contract language�� In this language it can� for example� be speci�ed
that certain methods are functional or that all methods changing a certain instance
variable should also call a certain method� A meta�programming approach is then
proposed to alter the behaviour of linguistic constructs responsible for the evolution�

����� Relationship with Reuse Contracts

Refactoring approaches help in making a number of frequently occurring changes�
The work from �KKS��� helps in automatically checking the validity of a number of
design constraints� while Mezini�s work additionally helps in automatically solving
some problems that were speci�ed by designers� No mechanisms exist to generally
assist developers in iterating over their implementations� When a developer wants
to make a change to a reusable component it is hard to assess where and how
that change in�uences the applications built on this component� Similarly� when
an application developer wants to upgrade his application to a new version of the
components he reused� it is hard to assess whether and where problems might occur�
Reuse contracts aim to address this problem�

��� Our Approach	 Reuse Contracts

����� Summary� the Problems

In section ��� we argued that there are some fundamental technical issues that need
to be tackled in order to establish systematic reuse� Now that we have given an
overview of the state of the art� we can clearly distinguish those problems�

�� There is a trade�o� between black�box and white�box interfaces� While black
boxes restrict �exibility� white boxes are harder to use and more fragile to
change� The problem with using white boxes is that in order to reuse them�
their entire implementation needs to be understood in order to �nd the nec�
essary information� Therefore� we plead for a more selective white�box mech�
anism�� Such interfaces make only those implementation details visible that
are required for reusers� while shielding unnecessary details� As a consequence�
adapters only rely on the information given in the interface and therefore are
more brittle to change�

�Term coined to us by Karl Lieberherr �Lie����

�
 Issues in Reuse and Composition

�� As it is not easy to decide what information is needed by reusers� and thus
what information should be made public� a mechanism for layering of inter�

faces is called for� Adapters making planned changes can limit themselves to
considering the most abstract interfaces� while others can consult the interfaces
that show more detail�

�� Much of what is currently being proposed for object�oriented software reuse

cookbooks� design patterns����� lacks formal notation and rules� When using
informal descriptions of reusable artifacts only� reasoning about� for example�
how to reuse an artifact� e�ort estimations� or the impact of changes to reusers
can only be done by error prone informal reasoning� No discipline in the reuse
of artifacts can be enforced� However� as we want components to be reused by
as many applications as possible� the guidance should not be too coercive�

�� The lack of support for impact analysis and change propagation leads to a pro�
liferation of versions� which increases the maintenance problems� A number of
problems can be detected by explicitly documenting the assumptions system
parts make about each other� Disciplined reuse requires models expressed in
a formal notation and formal rules describing how changes to reusable compo�
nents a�ect reusers�

	� Yet other problems are related to the life cycle of reusable components� Too
much burden is placed on the user of reusable components� Every user must
detect possible reusable components� adapt them to his needs and integrate
them� Furthermore� when new versions appear he is largely on his own to
perform the upgrade� It would be bene�cial to shift some of this burden
back to the developer of reusable components� On the other hand� feedback
from reusers on how components were adapted is crucial in order to build
truly reusable components� This relates to the need for a contractual interface

between component providers and reusers�

����� Another Example

Consider the example of a Collection hierarchy� A class Set de�nes a method add

to add one element to a set and a method addAll to add a set of elements simulta�
neously� When creating a subclass CountableSet of Set that keeps a count of the
number of elements in the set� we need information about which methods call what
other methods� in order to decide which methods need to be overridden� In other
words� we need a specialisation interface� For example� if we know that addAll calls
add in its implementation� we know it is su�cient to override the method add to
perform the counting� This is depicted on the left�hand side of �gure �����

Suppose now that we want to make an optimised version OptimisedSet of Set�
In this version addAll stores the added elements directly rather than invoking the
add method to do this� When Set is replaced by OptimisedSet� this leads to

��
 Our Approach Reuse Contracts ��

add [...]
addAll
 [... add ...]

Set

add
 [....
 count]
count

add
 [....
 count]
count

CountableSet CountableSet

add [...]
addAll [...]

OptimisedSet

Not all elements
counted

Figure ���� Evolution of Set

inconsistent behaviour in CountableSet� Not all additions will be counted� This is
depicted in �gure �����

The reason for this failure is again that the implicit assumption made by Count�

ableSet� that addAll invokes add� is broken in OptimisedSet� As discussed in
section ���� we say that addAll and add have become inconsistent operations� Al�
though in this simple example the con�ict can easily be derived from the code� in
larger examples this is not so trivial� In practice it should be possible to detect such
con�icts without code inspection� This requires information about dependencies
between components and about the assumptions made during reuse to be made ex�
plicit� The problem for this example is depicted in �gure ����� While the developer
of CountableSet assumed that the adaptation of add would also a�ect addAll� this
is no longer true after the upgrading of Set to OptimisedSet� Allowing reusers to
explicitly document the assumptions they make about the components that they
reuse can therefore assist in detecting such problems�

����� Reuse Contracts

As an answer to these problems we propose to base the co�operation between the
component developer and the component reuser on an explicit reuse contract that
satis�es the requirements that were enumerated in section ����� and is based on
explicitly documenting assumptions as described above�

Reuse contracts provide interface descriptions that partially document the inter�
nal structure of components� This is depicted in �gure ���� by denoting add between
braces next to addAll in the interface of Set� Reuse contracts thus o�er guidelines
for reusing and adapting components� For this example� the reuse contract speci�es
that addAll relies on add� This implies that addAll can call add� not that it always
will call add� For a class Set to comply to the reuse contract SetRC as depicted

�� Issues in Reuse and Composition

CountableSetCountableSet

Set OptimisedSet

addAll
[... add ...]

addAll
 [...]

assumes actually
 gets

Valid assumptions before
parent class exchange

Valid assumptions after
parent class exchange

Figure ���� Broken Assumptions

in �gure ����� addAll needs to invoke add somewhere in its implementation� This
does not mean it will always be invoked at run�time� The reason for this approach
is that we want to adhere to simple models that can be automatically processed�
Checking whether a certain method will always be called would require extensive
data��ow analysis� The information given in the reuse contract is also limited in
that it gives no information on how a method can be called� in what order methods
can be called� etc� The reuse contract information will thus not always be su�cient
to know how a component can be reused� It does however provide a very useful
view on the code allowing to get an understanding of its structure and behaviour in
a fast and intuitive manner�

Reuse contracts can only be adapted by means of reuse operators� These record
the protocol between developers and users of a reusable component� Similarly� they
can record the relationship between di�erent layers of speci�cations of one compo�
nent� A basic set of reuse operators is de�ned� that is complete in that the operators
allow expressing all changes to the basic reuse contract model� The extension op�
erator adds new elements to an interface� while its inverse� cancellation� removes
elements� The re�nement operator adds extra interdependencies to an interface�
while its inverse� coarsening� removes them� For example� the addition of a call to
count in the implementation of add is a re�nement� This is depicted on the left
of �gure ����� The reuse operators thus express a contract between a component
provider and reuser��

�Note that a reuse contract denotes two component descriptions related by operators� Sometimes
however the term contract will also be used to denote the description of the opeartional behaviour

��
 Our Approach Reuse Contracts ��

The formal documentation of a contract between providers and reusers assists
in handling change propagation� The key to this approach is the observation that
on composition developers make assumptions about how the components will be�
have and interact� This is what makes them fragile to change� When replacing
a component with another version some of these assumptions can be broken� The
interface part of reuse contracts allows documenting what assumptions can safely be
made about a component� for example� addAll relies on add� The reuse operators
allow specifying what assumptions are actually relied on during reuse� For example�
when re�ning add this implies a�ecting addAll� This documentation allows check�
ing whether these assumptions are broken after a reusable component is adapted�
which facilitates the propagation of changes to components by indicating where
con�icts might occur� In the example� it is then clear that when Set is replaced
by OptimisedSet� the assumption that addAll relies on add is broken� This is de�
picted in �gure ���� by expressing the upgrading from Set to OptimisedSet through
a coarsening� A set of rules can be developed that identify con�ict situations based
on reuse operators� For example� one rule states that when one modi�er performs
a coarsening removing a call to one operation� while the other modi�er performs a
re�nement of the same operation the operation of which the call is removed and the
operation from which it is removed become inconsistent� In the example� add and
addAll become inconsistent� These con�ict detection rules do not guarantee full
behavioural correctness� as they work with limited models� They are however very
easy to use and provide developers with useful information on change propagation
based on minimal e�ort� They not only indicate where a problem might occur� but
also what problem� which allows suggesting possible solutions�

Reuse contracts thus help in managing the evolution of components� Reusers
can bene�t from improvements to the components they reuse and the proliferation
of di�erent versions of reusable components can be kept to a minimum� In a similar
vein� the reuse operators can be valuable to the component developer in order to
assess the impact of changes and to decide whether changes should be made� More�
over� the reuse operators provide developers with a vocabulary to discuss reuse and
evolution� that assists them in better understanding the structure and behaviour of
the systems they work with�

While the use of reuse operators encourages disciplined reuse� the presence of
inverse operators allows for making changes that break the original contract� This
leaves room for unanticipated changes in a way that more coercive approaches don�t�

The main contributions of the reuse contract approach are

� Reuse contracts can be used as structured documentation of reusable com�
ponents and generally assist a software engineer in adapting components to
particular needs�

of one component�

�� Issues in Reuse and Composition

add { }
addAll { add }

SetRC

CountableSetRC CountableSetRC

OptimisedSetRC

refinement
 add [+count]

coarsening
 addAll [-add]

refinement
 add [+count]

add
 { count }
count

add
 { count }
count

Inconsistent
Operations

add { }
addAll { }

Figure ���� Inconsistent Operations on Set

� Reuse contracts encourage disciplined reuse� without being too coercive and
provide a vocabulary and notation to discuss reuse� They do this through
simple models that are easy to learn and intuitive in use�

� On evolution� reuse contracts assist in assessing how much work is necessary
to update previously built applications� where and how to test and how to
adjust these applications�

Reuse contracts thus help in breaking down the barriers between component
producers and component reusers�

����� Structure of the Dissertation

In chapter � a basic de�nition of reuse contracts and the basic operators are intro�
duced� In chapter � a number of rules based on these operators� that allow con�ict
detection upon evolution� is given� Chapter � describes how the basic operators can
be combined to form bigger� more realistic operators and how the con�ict detection
rules behave under this composition� These �rst few chapters give a general de�ni�
tion of reuse contracts� that could be applied to di�erent kinds of reuse mechanisms�
In chapter 	 we demonstrate how reuse contracts can be applied to object�oriented
class libraries and frameworks� Chapter � then discusses a concrete project where
reuse contracts were applied� while chapter � gives an overview of how reuse con�
tracts can be used in the di�erent stages of the software life cycle� Finally� chapter
� concludes�

