Chapter 2

Basic Reuse Contracts

2.1 Definition of Reuse Contracts

This dissertation introduces reuse contracts as a solution to the problems with in-
cremental development of reusable components as discussed in the previous chapter.
In this chapter we give a basic definition of reuse contracts and their operators. In
general, reuse contracts consist of two major parts. First, they hold an extended
interface description, providing information about the internal structure of a compo-
nent which is necessary for reusers. Second, the reuse operators provide structured
information on how different versions or parts of reusable components relate to each
other.

We therefore first define interface descriptions and then a set of basic operators.
Along with the definition we introduce a graphical notation, which will be used
throughout the dissertation in most examples. Chapters 3 and 4 discuss how this
basic model can be used to manage change propagation. In chapter 5 we then apply
this basic definition to object-oriented systems. We do not immediately define reuse
contracts for object-oriented systems, because we believe that the basic definition
in this chapter is applicable to a broader range of components than just classes and
objects. We come back to this scalability issue in chapter 8.

2.1.1 Participants

A basic reuse contract consists of a number of related participants. Each participant
has a name, an acquaintance clause and an interface.

Definition 2.1 (Reuse Contract) A reuse contract is a set of participants, each
with

1. a name that is unique within this reuse contract;

2. an acquaintance clause;

42

Basic Reuse Contracts

3. an interface.

Acquaintance clauses and interfaces are further discussed in the following sec-
tions.

2.1.2 Acquaintance Clauses

In order to be able to work together the participants in a contract have to be
acquainted in some way. We say that there is an acquaintance relationship between
the participants'. Acquaintance relationships are graphically depicted by a thick line
between the two related participants, called a binding, as in figure 2.1. Throughout
this chapter we use the example of an automatic teller machine (ATM) to illustrate
our notation and definitions. It is a simple example, but sufficient to illustrate our
ideas. More elaborate and real-life examples will be provided in later chapters.

In figure 2.1 we see two participants with names ATM and Consortium (represent-
ing a consortium of banks that share automatic teller machines). The line between
the two participants represents two acquaintance relationships: one of ATM with
Consortium and one of Consortium with ATM. When no arrows are drawn at the
ends of the line, as in the picture, there are two acquaintance relationships. When
depicting just one acquaintance relationship, an arrow is added to the line, point-
ing from a participant to the participant it is acquainted with. That is if ATM was
acquainted with Consortium and not vice versa, we would have an arrow pointing
from left to right in figure 2.1.

ATM Consortinm)|
theATM

theCons

Figure 2.1: Two Acquainted Participants

An acquaintance relationship has a name. This name is noted along the binding,
on the side of the participant that the acquaintance relationship points to. In the
figure, ATM has an acquaintance theCons that points to the participant Consortium.
It might seem awkward to place the acquaintance name on that side of the binding,
but this corresponds to the notation of most methodologies. The rationale behind
this choice is that the acquaintance name can also describe the role a participant
plays in an acquaintance relationship.

We can now give the definition of an acquaintance clause.

'For now we make abstraction of what an acquaintance relationship corresponds with in actual
code. An acquaintance relationship could be anything ranging from an association or a parameter
binding to the transitive closure of a series of acquaintance relationships.

2.1 Definition of Reuse Contracts

43

Definition 2.2 (Acquaintance Clause) An acquaintance clause is a set of ac-
quaintance relationships a.p , associating an acquaintance name a with a participant
name p .

The acquaintance clause of ATM contains only one acquaintance relationship:
theCons.Consortium. The acquaintance clause of Consortium also contains exactly
one acquaintance relationship: theATM.ATM.

Note the difference between the uses of the words ’acquaintance’ and ’partic-
ipant’. All reuse contracts are composed of a number of participants and every
participant is possibly acquainted with a number of other participants, called its
acquaintances. As a short-hand for the definitions of the operators we introduce the
following notation.

Notation 2.1 When the acquaintance clause of a participant p contains a.q , we
say that ¢ on p refers to ¢ or simply that p refers to ¢ .

Further on, we also use the following terminology.

Definition 2.3 (Context) The set of participants in a contract together with the
acquaintance relationships between them is called the context of a contract.

2.1.3 Client Interface

In order to be able to perform the behaviour represented by the reuse contract each
participant has a number of operations defined on it. The set of all operation names
defined on a participant is called this participant’s client interface. Client interfaces
are depicted graphically as in figure 2.2. Here ATM has two operations defined on it:
checkCard and transactionRequest.

ATM

checkCard;
transactionRequest

Figure 2.2: A Participant’s Client Interface

We still need to further define the form of interfaces.
Definition 2.4 (Interface) An interface is a set of operations each consisting of
1. an operation name that is unique within this interface,

2. a specialisation clause.

44

Basic Reuse Contracts

The set of operation names of an interface constitutes the client interface.

Note that we only use operation names and not signatures. This definition can
later be extended with operation annotations as abstract and concrete, but this will
not affect the uniqueness of the operation names. To handle typing and overloading,
the entire signature can be used as a unique name.

2.1.4 The Specialisation Interface

Extra information about internal dependencies between operations is described in
what is called the specialisation interface. A specialisation interface is a collection of
the different specialisation clauses, which are attached to operations. The special-
isation clause of an operation enumerates the operations on which that operation
relies?.

We graphically represent specialisation clauses by means of operation names
attached to the acquaintance relationships. The annotation checkCard{verifyAc-
count} along the binding from ATM to Consortium, as depicted in figure 2.3, sig-
nifies that the operation verifyAccount is invoked on Consortium by the opera-
tion checkCard of ATM. We call this an operation invocation. As this binding is
bi-directional (i.e., it represents two acquaintance relationships), a thin arrow is
added to show the direction of the operation invocation. When the binding is uni-
directional the arrow can be omitted.

AT™M checkCard{verifyAccount}| Consortium
R o
checkCard theATM theCons verify Account

Figure 2.3: Part of the Protocol between Two Participants

Note that it is not allowed to put just any operation invocation anywhere. The
operations that are referred to have to exist on the concerning participants and an
acquaintance relationship in the right direction must be present.

For the annotation z{y} along an arrow from participantl to participant2 to be
correct the following conditions need to be fulfilled:

e 7 has to be an element of the client interface of participantl and y an element
of the client interface of participant2;

>This terminology is based on [Lam93], where John Lamping first introduced specialisation
interfaces. That paper focused on specialising classes through inheritance and on documenting self
sends. One could argue for the use of the term reuse interface or composition interface in our case,
but we use specialisation interface, because it is more general and to acknowledge the origins of our
ideas.

2.1 Definition of Reuse Contracts

45

e participantl refers to participant2.

When an operation x on participantl invokes more than one operation on par-
ticipant2, this is denoted by an enumeration as in z{y, ..., z}. Note that it is also
possible for participantl to be equal to participant2. A participant can be acquainted
with itself. This kind of binding can be graphically represented by a loop. Opera-
tions along such a loop represent intra-participant behaviour.

Finally we define specialisation clauses. Recall that each specialisation clause is
part of each operation in an interface as stated in definition 2.4.

Definition 2.5 (Specialisation Clause) A specialisation clause is a set of op-
eration invocations a.m , associating an acquaintance name ¢ with an operation
name m .

The specialisation clause of checkCard on ATM in figure 2.3 has one element:
theCons.verifyAccount. Again as a short-hand for the definitions of the operators
we introduce the following notation.

Notation 2.2 When the specialisation clause of an operation m on a participant p
contains a.n , and a on p refers to ¢ we say that m (on p) invokes n (on ¢q).

A remark must be made about the kind of information that specialisation inter-
faces provide. In our case, specialisation interfaces are specified by listing operation
dependencies purely based on operation names. One can also include type informa-
tion, or other semantic information about, for example, the order in which operations
must be invoked. Basic reuse contracts only indicate which operations rely on which
other operations. The inclusion of extra information is to be seen as an extension
of the basic model.

Moreover, a declaration that one operation m relies on another operation n
does not mean that m will invoke n every time. n can, for example, be within a
conditional in m. The fact that n is in m’s specialisation clause only means that n
might get invoked by m and therefore, there is a dependency between them. This
makes the compliance of code with reuse contracts checkable, without the need for
data flow analysis. We only need to consider static information.

2.1.5 The ATM Example

Figure 2.4 depicts a basic example of a reuse contract. The rectangle is used to
denote the borders of a contract, while the shaded area allows to give the contract a
name. This shaded area can also be used to denote from which other reuse contract
a contract is derived and how (i.e., by means of which operator).

To summarise, figure 2.4 represents a reuse contract containing two partici-
pants ATM and Consortium. Each participant has an acquaintance clause and an

46

Basic Reuse Contracts

ATMContract
ATM checkCard{verifyAccount}| Consortium
checkCard theATM theCons verifyAccount

Figure 2.4: The ATM Reuse Contract

interface. The acquaintance clause of ATM contains the acquaintance relationship
theCons.Consortium, the acquaintance clause of Consortium contains the acquain-
tance relationship theATM.ATM. The interface of ATM contains one operation with
name checkCard and a specialisation clause containing the operation invocation
theCons.verifyAccount. The interface of Consortium contains one operation with
name verifyAccount and an empty specialisation clause. We say the ATM refers to
Consortium and Consortium refers to ATM. We also say that checkCard (on ATM)
invokes verifyAccount (on Consortium).

The combination of the definitions above gives a strict definition of reuse con-
tracts. As reuse contracts are defined as sets of tuples, the definitions of the operators
on reuse contracts can be expressed by means of unions, intersections and differences
on these sets. Such a representation is the basis for the automated checking of rules
on change propagation, as well as all kinds of tools using reuse contracts. The
ATMContract is then mathematically denoted as follows.

ATMContract =

{ (ATM,
{ theCons.Consortium 1},
{ (checkCard, {theCons.verifyAccount}) }
),

(Consortium,

{ theATM.ATM },

{ (verifyAccount, {})}
)

This example clearly demonstrates the structure of reuse contracts. A reuse con-
tract is a set of participants, which are triples consisting of a name, an acquaintance
clause and an interface. In our example, there are two such triples, with respectively
the names ATM and Consortium. An acquaintance clause is a set of acquaintance
relationships, each relating an acquaintance name to a participant name. In our

2.1 Definition of Reuse Contracts

47

example, both acquaintance clauses are singletons. For example, ATM has an ac-
quaintance name theCons associated with the participant name Consortium.

Each interface is a set of operations, which are pairs that consist of a name and
a specialisation clause. In the example both participants have only one operation
defined on them. ATM has an operation named checkCard and Consortium has an
operation named verifyAccount.

A specialisation clause is a set of operation invocations, each relating an ac-
quaintance name with an operation name. For example, the specialisation clause of
checkCard on ATM contains an invocation associating acquaintance name theCons
with operation name verifyAccount. The specialisation clause of verifyAccount
on Consortium is empty. Note that as reuse contracts, interfaces, acquaintance
clauses and specialisation interfaces are all sets, each of them can be empty.

2.1.6 Well-Formedness

Because we do not want any dangling references in reuse contracts, for example,
an operation invocation of an operation that is not present in the contract, reuse
contracts need to comply with some well-formedness conditions:

Definition 2.6 (Well-Formedness) A reuse contract R is well-formed if for
every participant p the following conditions hold:

1. for each acquaintance relationship a.q in the acquaintance clause of p : a
participant with name ¢ exists in R (WF1);

2. for each operation invocation a.m in a specialisation clause in p :

(a) @ is an acquaintance name in the acquaintance clause of p (WF2);

(b) m is the name of an operation in the interface of the participant a refers
to (WF3).

All conditions can be checked on our example.

e The first restriction says that all participants that are named in acquaintance
clauses must be part of the reuse contract. This is the case in our example as
the acquaintance clause of ATM refers to Consortium and vice versa.

e The second restriction says that a participant can only invoke operations on
participants it is acquainted to. This is correct in the example as checkCard
only invokes an operation along theCons, which is part of ATM’s acquaintance
clause.

e The third restriction says that only those operations can be invoked on a par-
ticipant that are part of its interface. In other words, no unexisting operations
are invoked. In the example, verifyAccount is invoked on theCons, which

48

Basic Reuse Contracts

refers to the participant Consortium, which has an operation verifyAccount
in its client interface.

Note that the second and the third condition were already mentioned on page
44, when introducing the graphical notation. The first condition is automatically
respected in the graphical notation as a line representing a binding can only be
drawn to another participant of the contract.

2.2 Operators on Reuse Contracts

The extended interface description provided by reuse contracts is only a first step
towards solving the problems discussed in chapter 1. Without information on the
calling structure, i.e. which operations rely on which other operations, it is difficult
to detect problems such as operation capture and inconsistent operators. Reuse con-
tracts assist in the detection of such problems by making specialisation interfaces
explicitly available. But even making specialisation interfaces explicit does not suf-
fice in order to detect problems on evolution and composition. More information is
needed both on the assumptions that can be made by reusers about the components
and on the way the components are actually reused. Without this information,
conflicts can only be detected by meticulously comparing the reuse contracts of the
component that was reused, the new version of the component and the reusers. This
is neither practical (in practice the original component might not even be available
anymore), nor intuitively compelling.

We propose a methodology that is more intuitive for both reusers and developers
of reusable components and which guides them in managing changes to these com-
ponents. It is based on a classification of the possible changes that can be made to a
reuse contract. Basically, a reuse contract has four modelling elements: participants
and acquaintance relationships, which together form the contezt, and operations
and operation invocations. Each of these elements can be added or removed from a
contract, which leads to eight basic operators® as depicted in table 2.1.

Both at participant and at context level an ezxtension adds the most basic el-
ement: respectively, operations and participants. Then, again at both levels, re-
finement introduces new relationships between these basic elements. Participant
refinement connects operations by adding invocations, context refinement connects
participants by adding acquaintance relationships. Cancellation and coarsening are
the inverses of extension and refinement, respectively. Together these operators can
model all possible adaptations to a reuse contract. In this chapter we define the
different basic operators, in the next chapter their interactions are examined and
it is discussed how this information can be used to detect and solve conflicts. In
chapter 4 we define more complex operators based on combinations of these basic

3Note the difference: we have eight reuse operators, while interfaces contain operations.

2.2 Operators on Reuse Contracts

49

Operator Name ‘ Meaning

Participant Extension adding new operations
Participant Cancellation || removing operations
Participant Refinement adding new operation invocations

Participant Coarsening removing operation invocations
Context Extension adding new participants

Context Cancellation removing participants

Context Refinement adding new acquaintance relationships
Context Coarsening removing acquaintance relationships

Table 2.1: Basic Operators

ones.

As reuse operators describe how a reuse contract is derived from another one,
these operators are described by means of modifiers*. In general, a reuse modifier
can be defined as follows.

Definition 2.7 (Reuse Modifier) A reuse modifier consists of a modifier tag
and a modifier description.

A specific reuse modifier needs to be defined for each operator. The modifier tag
corresponds to the name of the operator the modifier wants to model, e.g., “context
extension”. The modifier description describes the form of the modifier. Depending
on which operator a modifier is modelling different information is necessary. For
example, in order to model a context refinement the modifier contains participant
names and acquaintance relationships between them. The modifier descriptions of
an operator and its inverse operator do however always have the same form. To
some extent information about the reuse contract a modifier is applied to needs
to be repeated. For example, when performing a participant extension it is not
sufficient to give the new operations, it is also necessary to identify the participants
these operations must be added to. Also information that at first sight might seem
redundant is sometimes added to the modifier. This is done in order to be able to
detect more conflicts. There is always a trade-off between the amount of information
that is added to a reuse modifier and its flexibility. The more detailed information is
added, the more conflicts are detectable, but the less flexible the modifier becomes.
This trade-off is discussed in more detail after we have discussed conflict detection.

Each operator is defined by means of three definitions and one property:

e A modifier definition: this definition describes the form of a modifier mod-
elling this particular operator and some requirements it needs to fulfil. These

“We use the term operator as an intuitive name, while the modifier actually describes the dif-
ference between two reuse contracts and is formally defined.

50

Basic Reuse Contracts

requirements are independent of the reuse contract the modifier will be applied
to;

o An applicability definition: this definition describes what properties a modifier
must comply with in order to be applicable to a particular reuse contract.
In other words, these are the requirements that are dependent of the reuse
contract the modifier will be applied to;

e An operator definition: this definition describes how the result of applying this
kind of modifier is determined;

o A well-formedness property: each application of a reuse operator to a well-
formed reuse contract results in another well-formed reuse contract. In order
to achieve this, some requirements are incorporated in the modifier and appli-
cability definitions®.

In all definitions below, R and R, represent reuse contracts, while M and M,
represent modifiers. The subscripts of R and M represent the operator, for example,
M, represents a participant extension modifier, while R,. represents the result of
applying participant extension. In the examples we do not explicitly mention the
modifiers when they are clear from the context. We start each section introducing an
operator with a motivation that is given using the ATM example. After that, we give
the definitions and property, followed by a graphical illustration of the definition.
Finally, some short-hand notations that shall prove helpful when discussing change
propagation are given.

Readers that do not want a thorough understanding of each of the definitions,
but just want to know what kind of operators there are and what they look like can
skip the actual definitions. The examples and illustrations of the definitions suffice
to get a working knowledge.

2.2.1 Participant Extension

Motivation

The goal of participant extension is to add new operations to one or more partici-
pants in a contract. This operator is usually applied in order to add new functionality
to a participant and thus to the contract. Figure 2.5 shows a participant extension
of the ATM contract, where the operations trActRequest (transactionRequest) and
processTrAct (processTransaction) are added.

Extension is self-contained: the newly added operations refer in no way to the ex-
isting operations. They can, however, refer to each other as is shown in the example,

5Another approach would have been to omit these requirements from these definitions and
then describe as a different property which requirements an operator must comply with in order
to preserve well-formedness. We opted for the former, because we never desire ill-formed reuse
contracts, not even as intermediary results.

2.2 Operators on Reuse Contracts

51

TrA ctATMContractl
ATM checkCard{verifyAccount} Consortium
B — .
checkCard verify Account
theATM theCons

TrActATMContr act2 is a participant extension of

TrActATMContractl
checkCard{verifyAccount} .
AT™M trActRequest{processTrA} Consortium
checkCard > verify Account
trActRequest |theATM theCons | processTrAct

Figure 2.5: An Example Participant Extension

where transactionRequest invokes processTransaction. As a self-contained ex-
tension is completely independent of the reuse contract it is extending, this operator
might not be desired so often in practice, but we want to keep the basic operators
as orthogonal as possible. We will show later how participant extension can be
combined with participant refinement to add dependencies between the operations
added through the extension and the already existing operations.

Definition and Properties

Participant extension of contracts is defined in terms of a participant extension
modifier. Recall that we define each operator in three steps: the modifier, the
applicability and the operator.

Definition 2.8 (Participant Extension Modifier) A participant extension
modifier is a reuse modifier with modifier tag “participant extension” and a modifier
description which is a set of pairs (p,int) each consisting of a participant name p
and an interface int ©.

Definition 2.9 (Participant Extendible) A reuse contract R is participant
extendible by a participant extension modifier M, if for each pair (p, int) in M,,":

1. p is a participant name in R;

SRecall that an interface is a set of operations each consisting of a name and a specialisation
clause.

"Note that the pairs (p,int) are actually part of the modifier description in My, but we imme-
diately say “each pair (p,int) in Mpe” to keep the definitions concise.

52

Basic Reuse Contracts

2. no operation name in int appears in the interface of participant p in R;
3. for each operation invocation a.m in a specialisation clause in int :

(a) @ is an acquaintance name in the acquaintance clause of p in R;

(b) if @ on p refers to ¢ then m is an operation in the interface of ¢ in M)p,.

Note that the last clause is almost an exact copy of WF2 and WF3. They are
necessary to ensure that the result of a participant extension is again a well-formed
reuse contract. The repetition of these clauses occurs in a number of applicability
definitions. Here a slight adaptation was necessary, because of the self-containedness
of extensions. The operation m referred to in an invocation also needs to be part
of the modifier M), and not of R. However, to which participant an acquaintance
name refers can only be seen in R.

Definition 2.10 (Participant Extension) If a reuse contract R is participant
extendible by a modifier M., then the reuse contract R,. is the participant ex-
tension of R by M,., where:

1. R, contains all participants of R that are not mentioned in Mp;

2. for each (p,int) in Mye: R, contains a participant with the same name and
acquaintance clause as p in R and that contains all operations of p , plus int .

In the resulting contract all the participants of the original contract that are not
mentioned in any pair (p,int) are maintained (clause 1). Furthermore, all partici-
pants of the original contract that are mentioned in a pair (p,int) keep their original
name and acquaintance clause, while their interface is extended with the operations
from int.

Note that the fact that R is participant extendible by M,, implies that M, is
a participant extension modifier. Note also that for a given reuse contract and a
given participant extension modifier there is exactly one reuse contract that is the
result of the participant extension of this reuse contract by this modifier. The above
definition described how it is determined.

The following property can be proven about these definitions.

Property 2.1 A participant extension of a well-formed reuse contract is well-formed.

Proof The well-formedness definition (see page 47) imposes 3 constraints.

e WF1 concerns only the acquaintance clauses. As these are not altered through
participant extension and the base reuse contract was well-formed, this condi-
tion also holds on the resulting reuse contract.

2.2 Operators on Reuse Contracts

53

e WF2 states that operation invocations only occur between participants that
are acquainted. This is ensured by the clause 3a in the participant extendibility
definition.

e WEF3 states that every operation that is invoked must be part of the client in-
terface of the participant it is invoked on. This is ensured by clause 3b in the
participant extendibility definition, which states that all operations in speciali-
sation clauses in M), must be part of M, attached to the required participant
name. As the operations that already existed on R remain unchanged and R
was well-formed, the property is also preserved for the operations that already
existed in R.

Illustration

Reuse Contract 1

namep| nameji{namepy} | "&Me2l namey {namesz} | "ome3l
namej; name;) 3 namesp
@ az
1
1 — " "
E - : Participant Extension Modifier |
S
=z | { Cpeptl, { (name;3 , {az.namez4})}),
-é 8 (pept2, { (namens , {}),
L (name2q , {}) })
| b
\4
Reuse Contract 2
namej; namej; {namen} 2:2221 ame
namej> name;3 {namen4} 22 name,{names} 31
namej3s namesn
namej3
a nameng @

Figure 2.6: Participant Extension

Figure 2.6 illustrates a participant extension. As definition 2.8 states, a partici-
pant extension modifier contains pairs each consisting of a participant name and an
interface. In the figure, there are two such pairs, one for pcptl and one for pcpt2.
The name of the participant is necessary to know to which participant the operations
are added; the associated operations are those to be added to this participant. In

Basic Reuse Contracts

the example, one operation, name;s, is added to pcptl and two operations, namess
and namesy, are added to pcpt2.

The extra constraints given in definition 2.9 on participant extendibility can also
be checked on the example.

1. The first constraints says that all participant names occurring in the modifier
must also occur in the original reuse contract. This is logical, as the participant
names specify to which participant an operation must be added.

2. The second constraint states that only operations with new names can be
added. The reason for this is obvious, as operation names are unique on every
participant and we want to model the addition of new functionality, not the
alteration of existing functionality, which is done through other operations.

3. Constraint 3a is the repetition of WF2, and is necessary to ensure well-
formedness of the resulting reuse contract. It states that a participant can
only invoke operations on its acquaintances. Note that in the example an op-
eration invocation from pcpt2 to pcptl would have been illegal, as the binding
between them is uni-directional.

4. Constraint 3b corresponds to WF3. It confirms that, after the participant
extension, operations that are invoked on certain participants are part of that
participant’s interface.

Furthermore, it ensures that the extension is self-contained. All newly added
operations refer only to other newly added ones in their specialisation clauses.

The example respects these constraints, as names only invokes namess, which
is part of the participant associated to a9, and the two operations added to
pcpt2 have an empty specialisation clause.

Definition 2.10 determines the result of a participant extension.

1. All participants of the original contract, that are not mentioned in the modifier
remain exactly the same. In the example, pcpt3 is unchanged.

2. The participants that are named in the modifier are completely preserved
(including their name and acquaintance clause), except for the addition to
their interface of the operations that are attached to them in the modifier.
In the example, names is added to the interface of pcptl and namess and
namesy are added to the interface of pcpt2. Note that the operations are
copied including their specialisation clauses. This can be seen by the extra
operation invocation that is depicted along the binding between pcptl and

pcpt2.

2.2 Operators on Reuse Contracts

55

Short-Hand Notations

In the rules on change propagation in chapter 3 we need not only the definitions as
given above. Sometimes we also need information on the contents of a modifier. For
example, an operation name conflict occurs when two participant extensions add an
operation with the same name to the same participant. It is therefore not enough
to know that two participant extension modifiers are applied, it is also necessary
to know what operations are added by the extension and to what participants.
For some conflicts it is also necessary to know what operation invocations are in
their specialisation clauses. Because we want to take abstraction of the form of
the modifier descriptions in the conflict detection rules, we introduce some extra
definitions as a form of syntactic sugar to every operator definition. In most cases,
the second is an elaboration on the first. For example, here the first definition
states which operation is added to which participant, while the second definition
also includes part of this operation’s specialisation clause.

Notation 2.3 A participant extension modifier M), represents a participant ex-
tension by m on p if M), contains a pair (p,int) with an operation m in int

Notation 2.4 A participant extension modifier M), represents a participant ex-
tension by m on p referencing n on ¢ if M. contains a pair (p,int) with an
operation m in int , with m invoking n on ¢

When using these definitions, or the analogous definitions that are defined for
other operators, it is always possible to leave out some part of the information. For
example, when it is irrelevant to which participant an operation is added we simply
say “an extension by m”.

2.2.2 Context Extension

Motivation

Besides adding operations to existing participants, one can also introduce entirely
new participants. Therefore, we introduce context extension. A context extension
of the ATMContract is depicted in figure 2.7.

Again, context extension is self-contained. A context extension adds new par-
ticipants to a contract, but the acquaintance clauses of these new participants can
only refer to names of participants that are added through the same extension. In
the example, Bank could have had an acquaintance relationship with yet another
newly added participant, but not with ATM or Consortium. In fact, a context ex-
tension modifier is an entire reuse contract (in the example, a reuse contract with
one participant), that is disjoint from the reuse contract it is extending. Adding
dependencies between these two parts is achieved through context refinement.

56

Basic Reuse Contracts

ATMContract
ATM checkCard{verifyAccount}| Consortium
checkCard the ATM theCons verifyAccount

BankATMContract is a context extension of ATMContract

AT™ checkCard{verifyAccount} Consortium Bank
checkCard > verifyAccount verifyCard

theATM theCons

Figure 2.7: An Example Context Extension

Definition and Properties

Definition 2.11 (Context Extension Modifier) A context extension mod-
ifier is a reuse modifier with modifier tag “context extension” and a modifier de-
scription which is a well-formed reuse contract Ry;qq.

Because the extension and the original part are disjoint, the extendibility defi-
nition becomes straightforward.

Definition 2.12 (Context Extendible) The context of a reuse contract R is
extendible by a context extension modifier M., with modifier description Ry;,q if
for each participant p in Rjpsoq4:

p ’s name is different from all participant names in R;

Context extension of contracts can then be defined as follows.

Definition 2.13 (Context Extension) If a reuse contract R is context extendible
by a modifier M., with modifier description Rjs,q, then the reuse contract R, is
the context extension of R by M. where:

R.. contains all participants of R and all participants of Rjs.q.

Property 2.2 A context extension of a well-formed reuse contract is well-formed.

Proof As both the added reuse contract and the original reuse contract are well-
formed and the two parts do not influence each other, well-formedness is preserved
after the extension.

2.2 Operators on Reuse Contracts

Illustration

Reuse Contract 1

namey namej{nameyy} | NamMe2l
namejp namep
az

: Context Extension Modifier |
1
N { (pept3, {ag.peptd},
2E { (name3; , {agnameqn}) }),
S (peptd, {1,
o0& : { (namey; , {}), (namesz , {}) })
1 ¥
v

Reuse Contract 2

namej nameq{nameyy} | N4Me21
name;y namen)
@
name3) {names2} | namey
name3s| name.
ay 42

Figure 2.8: Context Extension

Figure 2.8 illustrates a context extension. A context extension modifier contains
a well-formed reuse contract, i.e. a set of participants, that is completely disjoint
from the original contract. The result of a context extension is a reuse contract that
contains two disjoint parts: the contract that was extended and the contract it was
extended with.

Note that a software system will always be described by a collection of contracts,
not just one. As context extensions are completely disjoint from the rest of the
contract, instead of performing a context extension, the contract could be added to
the ‘system’ as a completely new contract. When this is not desirable, dependencies

between the extended part and the original part can be introduced by means of
refinements.

58

Basic Reuse Contracts

Short-Hand Notations

Again as a form of syntactic sugar to make the change propagation rules more
readable we introduce some extra definitions.

Notation 2.5 A context extension modifier M., represents a context extension
by p if a participant p is mentioned in M,..

Notation 2.6 A context extension modifier M., represents a context extension
by p referencing ¢ if participants p and ¢ exist such that p and ¢ are mentioned
in M., and p refers to q .

2.2.3 Participant Cancellation

The opposite of extension is cancellation. We again first discuss this operator at
participant level.

Motivation

As with extensions, cancellations are self-contained. This means that when an
operation is cancelled, all operations it refers to in its specialisation clause need to be
cancelled as well. When one wants to cancel an operation, but not the operations it
refers to, first a coarsening (removal of operation invocations from the specialisation
clause, see section 2.2.7) has to be performed®.

On the other hand, operations can only be removed if they are not referred to
by other operations, as that would violate the well-formedness of reuse contracts.

As an example of participant cancellation we can return to the first two reuse
contracts we presented, but now in the reverse order. This is depicted in figure
2.9. While in section 2.2.1 we said TrActATMContract is a participant extension
of ATMContract, here we can say ATMContract is a participant cancellation of
TrActATMContract.

Definition and Properties

As we mentioned in the introduction of reuse operators, the modifiers of inverse
operators always take the same form as the original operator’s modifier. Therefore
a participant cancellation modifier takes the same form as a participant extension
modifier.

Definition 2.14 (Participant Cancellation Modifier) A participant cancel-
lation modifier is a reuse modifier with modifier tag “participant cancellation” and
a modifier description which is a set of pairs (p,int) each consisting of a participant
name p and an interface int .

8Note that while we discuss how a developer should model systems here, in later chapters we
will discuss how tools can be developed that assist the developer in doing this. Developers do not
need to perform the more cumbersome tasks as described above manually.

2.2 Operators on Reuse Contracts

59

TrA ctATMContract
checkCard{verifyAccount} .
ATM trActRequest{processTrA} Consortium
checkCard > verify Account
trActRequest theATM theCons | processTrAct

ATMContract is a participant cancellation of

TrActATMContract
checkCard{verifyAccount} .
ATM verily N s Consortium
ify A t
checkCard theATM theCons verify Accoun

Figure 2.9: An Example Participant Cancellation

In order to be applicable the modifier needs to comply with the following con-
straints.

Definition 2.15 (Participant Cancellable) A reuse contract R is participant
cancellable by a participant cancellation modifier M, if for each pair (p,int) in
M,

1. p is a participant name in R and each operation in int is identical to an
operation in this participant in R ;

2. for all operations m , n and for all participants ¢ in R , such that m on ¢
invokes n on p : if n is an element of int , then m appears associated with ¢
in Mp,.

Note that the last constraint is necessary to ensure that no operations are re-
moved that are referred to by other operations. Again this is necessary to preserve
well-formedness.

Definition 2.16 (Participant Cancellation) If a reuse contract R is participant
cancellable by a modifier M., then the reuse contract R, is the participant can-
cellation of R by M., where:

1. R,. contains all participants of R that are not named in M,;

2. for each (p,int) in M,.: R, contains a participant with the same name and
acquaintance clause as p in R and that contains all operations of p , except for
those in int .

60 Basic Reuse Contracts

Property 2.3 A participant cancellation of a well-formed reuse contract is well-
formed.

Proof The well-formedness definition imposes 3 constraints.

e WF1 and WF2 are not affected by applying participant cancellation as they
only concern the context;

e the second clause in the participant cancellability definition ensures that WF3
is respected by checking that only operations are removed that are not invoked
by any other operations, except by operations that are themselves removed by
the same cancellation.

Illustration

Figure 2.10 illustrates a participant cancellation. The modifier contains partici-
pant names with sets of operations attached to them. In the resulting reuse contract
these operations are removed from the participants they are attached to. Note that
names; can only be removed because names; — that refers to it — is removed by
the same cancellation.

Reuse Contract 1
peptl pept2 pept3
namej namejj{namey} | NaMe2l nameo; {names;} | "AMe3!
namej; | name;p name3,
a P
i
= 5 : Participant Cancellation Modifier |
=
é. = | { Cpeptl, { (namei2, {3) }).
-g % | (pept2, { (namey; , {az.name3}) }),
£ S8 : }(pept3, { (names; , {}) })
1
\'4
Reuse Contract 2
Lo name|; {namej>} pept2 pept3
namejp @ namenn —‘13) namesp

Figure 2.10: Participant Cancellation

Note that it might seem redundant to repeat the specialisation clauses of the
operations that are to be removed. We do repeat this information in order to detect

2.2 Operators on Reuse Contracts

61

particular conflicts and to preserve the identity between the forms of modifiers of
inverse operators.

Short-Hand Notations

Notation 2.7 A participant cancellation modifier M,,. represents a participant
cancellation of m on p if M, contains a pair (p,int) with an operation m in int .

Notation 2.8 A participant cancellation modifier M, represents a participant
cancellation of m on p referencing n on g if M), contains a pair (p,int) with an
operation m in ¢nt , with m invoking n on ¢ .

2.2.4 Context Cancellation

Context cancellation is the opposite of context extension.

Motivation

Again, context cancellation is self-contained, but we need to verify that no par-
ticipants are removed that are referred to by other participants.

BankA TMContract
checkc ard C . Ranl
{verifyAccount}
checkCard > verify Account (verifyCard
theATM theCons theCons

ATMContract is a context cancellation of BankATMContract

ATM checkCard{verifyAccount}| Consortinm

checkCard theATM theCons verifyAccount

Figure 2.11: An Example Context Cancellation

In figure 2.11 ATMContract is only a correct context cancellation of BankATMCon-
tract because the binding between Bank and Consortium is uni-directional. If
Consortium also had an acquaintance name pointing to Bank, removing Bank would
have lead to an ill-formed reuse contract. We will show later that, when necessary,
context coarsenings can be applied to first remove the superfluous acquaintance re-
lationships.

62

Basic Reuse Contracts

Note that both ATM and Bank have an acquaintance relationship named theCons
that refers to Consortium. This is not a problem, because acquaintance names only
need to be unique on the participants they are defined on, in this example ATM and
Bank. We will often encounter examples, where different acquaintance relationships
referring to the same participant have the same name.

Definition and Properties

Again, the modifier of a context cancellation has the same form as the context
extension modifier, i.e., it contains a complete and well-formed reuse contract.

Definition 2.17 (Context Cancellation Modifier) A context cancellation
modifier is a reuse modifier with modifier tag “context cancellation” and a modifier
description which is a well-formed reuse contract Rjsoq.

Again, applicability becomes straightforward. We need to check that the partic-
ipants that are to be removed are actually part of R and that no participants are
removed while still referred to.

Definition 2.18 (Context Cancellable) The context of a reuse contract R is
cancellable by a context cancellation modifier M., with modifier description Rj;qq
if for each participant p in Rjpsoq4:

1. p is identical to a participant in R ;

2. p does not appear in the acquaintance clause of a participant in R that is not
in RMod-

Context cancellation of contracts can then be defined as follows.

Definition 2.19 (Context Cancellation) If a reuse contract R is context can-
cellable by a modifier M. then the reuse contract R.. is the context cancellation
of R by M., where:

R, contains all participants of R , except for those named in M,..

We again prove that the operator preserves well-formedness.

Property 2.4 A context cancellation of a well-formed reuse contract is well-formed.
Proof

e WF1 is respected in view of the constraint in the second clause of the context
cancellability that only participant names are mentioned (and thus removed),
that are not referred to by other participants;

e Because the original reuse contract was well-formed and because only partici-
pants that are not referred to are removed, the names of the removed partici-
pants appear in no specialisation clause of R.. and thus WF2 and WF3 cannot
be broken.

2.2 Operators on Reuse Contracts

63

Illustration

Reuse Contract 1

name name
namej namejj{namey} 21 namej|{name3zq} 31
namejp |) names2

@ az

= : Context Cancellation Modifier |

=}
2s | { (peptl, {ap.pept2},
2= 1
== |1 { (namey; , {az.name21})
3 % | (nameia , {3) }),

o | (pept2, {az.pept3},

‘1, { (namey; , {a3.name3;}), }) }

Reuse Contract 2

peptd

names|
namesp

Figure 2.12: Context Cancellation

Figure 2.12 illustrates a context cancellation. The modifier contains a well-
formed reuse contract containing two participants, pcptl and pcpt2. They are
identical in the modifier and in Reuse Contract 1. In the resulting contract the
participants that are named in the modifier are removed. Note that pcpt2 can only
be removed because pcptl, that refers to it, is removed as well. Participants can
only be removed if they are not referred to or if the participants that refer to them
are removed as well.

Short-Hand Notations

Again as a form of syntactic sugar to make the rules more readable we introduce
some extra definitions.

Notation 2.9 A context cancellation modifier M. represents a context cancel-
lation of p if a participant p is mentioned M.

Notation 2.10 A context cancellation modifier M. represents a context cancel-
lation of p referencing ¢ if participants p and ¢ exist such that p is mentioned in
M., and p refers to ¢q .

64

Basic Reuse Contracts

2.2.5 Participant Refinement

Motivation

In the previous four sections we have introduced extensions and cancellations,
i.e., operators that add or remove elements from a reuse contract. In the next
four sections we introduce refinements and coarsenings, i.e., operators that add or
remove dependencies between elements of the reuse contract. Again, these operators
act both at the participant and the context level, adding or removing respectively
operation invocations and acquaintance relationships.

TrActATMContractl
. C .
ATM checkCard{verifyAccount}
checkCard > verifyAccount
trActRequest theATM theCons| processTrAct

TrActATMContr act2 is a participant refinement of

TrActATMContractl
checkCard{verifyAccount} .
Consortium
AT™™ trActRequest{processTrAct}
checkCard > verifyAccount
trActRequest theATM theCons| processTrAct

Figure 2.13: An Example Participant Refinement

We start with participant refinement. This operator adds extra operation invo-
cations to the contract. Figure 2.13 shows a participant refinement: an operation
invocation of processTrAct by trActRequest is added.

Note that a participant refinement can only add invocations between existing
operations. It cannot add new operations. This needs to be done through participant
extension.

Definition and Properties

A participant refinement adds extra operation invocations to the specialisation
clauses of particular operations. In the reuse modifier we also repeat the original
specialisation clause of this operation on the reuse contract it is refining. This is
necessary to detect particular conflicts, for example, when two independent modifi-
cations refine the same operation. This issue is further discussed in chapter 3.

2.2 Operators on Reuse Contracts

65

It is not enough to verify that the new specialisation clause is a superset of the
original one. We need to explicitly state in the modifier which parts of the spe-
cialisation clause are newly added and which are repeated. Therefore, we introduce
extended interfaces. An extended interface is an interface which contains operations
with two specialisation clauses each. Incorporating this definition we can define
participant refinability. We start again with the modifier.

Definition 2.20 (Participant Refinement Modifier) A participant refine-
ment modifier is a reuse modifier with modifier tag “participant refinement” and
a modifier description containing pairs (p, extint) each consisting of a participant
name p and an extended interface extint .

An extended interface is a set of operations, each consisting of an operation name
and 2 disjoint specialisation clauses.

The disjointness of the two specialisation clauses is important, as the first repeats
the specialisation clause of the base reuse contract, while the second describes the
operation invocations that need to be added.

Definition 2.21 (Participant Refinable) A reuse contract R is participant re-
finable by a participant refinement modifier My, if for each pair (p, extint):

1. p is a participant name in R ;

2. for each operation name m in extint : m appears in participant p in R and m
’s first specialisation clause in extint is identical to the specialisation clause of
minpin R ;

3. for each operation invocation a.m in a second specialisation clause in extint :

(a) a is an acquaintance name in the acquaintance clause of p in R ;

(b) m is an operation in the interface of the participant referred to by a in p
in R .

Note that the last clause is again a slightly adapted version of well-formedness
restrictions WF2 and WF3.

Definition 2.22 (Participant Refinement) If a reuse contract R is participant
refinable by a modifier M, then the reuse contract R, is the participant refine-
ment of R by M,p,, where:

1. Ry, contains all participants of R that are not mentioned in M, ;
2. for each (p, extint) in My,: Ry, contains a participant

(a) with name p and the same acquaintance clause as p in R ;

(b) that contains all operations of p in R not mentioned in extint ;

66

Basic Reuse Contracts

(c) that contains all operations of extint with as specialisation clause the
union of their two specialisation clauses in extint .

The last clause describes how the participants that are mentioned in M, are
adapted. Their name and acquaintance clause remain the same (clause 2a). The
operations in their interfaces that are not in the extended interface attached to p in
M, also remain the same (clause 2b). The operations in their interfaces that are
mentioned in the extended interface attached to p in My, keep their name, but their
specialisation clause is extended as specified in extint (clause 2c).

Property 2.5 A participant refinement of a well-formed reuse contract is well-
formed.

Proof
e WF1 is not influenced by participant refinement;

e WEF2 is preserved because the first specialisation clause is identical to the one
on the original contract, which was well-formed, while the second specialisation
clause respects WF2 because of clause 3a of the refinability definition;

e WF3 is preserved because the first specialisation clause is identical to the one
on the original contract, which was well-formed, while the second specialisation
clause respects WF3 because of clause 3b of the refinability definition.

Illustration

Figure 2.14 illustrates a participant refinement. Operations on two participants
are refined: namei; on pcptl and namess on pept2. To both these operations
two specialisation clauses are attached. The first repeats the original specialisation
clause, the second states the newly added invocations. Note that on namess the
first specialisation clause is empty, because the specialisation clause of namess on
the original contract is empty.

Short-Hand Notations

We again introduce short-hand notations describing which operations are refined
and which extra operation invocations are added to their specialisation clauses.

Notation 2.11 A participant refinement modifier M, represents a participant
refinement of m on p if M), contains a pair (p, extint), with an operation m in
extint .

Notation 2.12 A participant refinement modifier M, represents a participant
refinement of m on p referencing n on ¢ if M), contains a pair (p, extint), with
an operation m in extint , with m invoking n on ¢ in m ’s second specialisation
clause.

2.2 Operators on Reuse Contracts

67

Reuse Contract 1

peptl

namerj|

namejj{namesy}

pept2

namep|

pept3

name3

namej; ’ namep } namesp
@

a3z

Participant Refinement Modifier |

{ Cpeptl, { (namej; , {ap.namepy}, {az.namez}) }),
(pept2, { (namep; , {} , {a3.names;}) })
3

Participant
Refinement

€—=—======

Reuse Contract 2

a

as

ametl name name
nameyj| {namej| namey,}| NamMe21 31
namejo name;; namezz{names; } names

Figure 2.14: Participant Refinement

Note the use of the term “referencing” here. We use this term to denote the ad-
dition of both operation invocations and acquaintance relationships by respectively
participant and context refinement. The term “dereferencing” is used to denote
the removal of operation invocations and acquaintance relationships by respectively
participant and context coarsening.

In the case of refinement and coarsening we need some extra notations. The op-
erations in the extended interfaces have two specialisation clauses: one repeating the
specialisation clause that is adapted and one stating the operation invocations that
are added to the specialisation clause. On the resulting contract, the specialisation
clause attached to these operations is the union of both. For refinements, as well
as for coarsenings, we need to know the specialisation clause that is repeated, we
call this the repeating specialisation clause and the specialisation clause that will be
attached to this method in the result, we call this the resulting specialisation clause.
We therefore introduce two extra notations.

Notation 2.13 The repeating specialisation clause of an operation m on p in
a participant refinement modifier M), containing a pair (p, extint), with m in extint
, 18 the first specialisation clause coupled to m in extint .

68

Basic Reuse Contracts

Notation 2.14 The resulting specialisation clause of an operation m on p in a
participant refinement modifier M), containing a pair (p, extint), with m in extint
, is the union of the two specialisation clauses coupled to m in extint .

2.2.6 Context Refinement

Motivation

A contract can be refined by adding operation invocations, but also by adding
acquaintance relationships. We call the latter context refinement. Figure 2.15 shows
a context refinement, adding a bi-directional binding between Bank and Consortium.
Note that this corresponds to two acquaintance relationships: one on Consortium
with name theBank referring to Bank and one on Bank with name theCons referring
to Consortium.

BankATMContractl
AT™™ checkCard{verifyAccount} Consortium Bank
checkCard > verifyAccount verifyCard
theATM theCons

BankATMContract2 is a context refinement of BankATMContractl

checkCard C . Ranl
{verifyAccount}
checkCard S verifyAccount theCons verifyCard
theATM theCons theBank

Figure 2.15: An Example Context Refinement

Note that a context refinement can only add acquaintance relationships between
existing participants. It cannot add new participants: this needs to be done through
context extension.

Definition and Properties

In the same way that we needed to repeat the original specialisation clause in
participant refinement modifiers, we need to repeat the original acquaintance clauses
here. This explains the form of the modifier.

Definition 2.23 (Context Refinement Modifier) A context refinement mod-
ifier is a reuse modifier with modifier tag “context refinement” and a modifier de-

2.2 Operators on Reuse Contracts

69

scription containing triples (p,acql, acq2) each consisting of a participant name p
and two disjoint acquaintance clauses.

The first acquaintance clause repeats the original acquaintance clause, while
the second contains the added invocations. It is therefore important for them to
be disjoint. Furthermore, all acquaintance names used in the second acquaintance
clause have to be different from the ones in the first acquaintance clause, because
acquaintance names are unique within acquaintance clause. This is specified in
clause 3 below.

Definition 2.24 (Context Refinable) The context of a reuse contract R is re-
finable by a context refinement modifier M,, if for each triple (p, acql, acq?):

1. p is a participant name in R ;
2. acql is identical to the acquaintance clause of p in R ;

3. acq2 contains acquaintance relationships a.q, where a is different from all ac-
quaintance names in acgl and ¢ is a participant name in R .

Definition 2.25 (Context Refinement) If the context of a reuse contract R is
refinable by a modifier M., then the reuse contract R, is the context refinement
of R by M., where:

1. R contains all participants of R that are not mentioned in M,,;

2. for each triple (p, acql, acq2) in M,,: R., contains a participant with the same
name and interface as p in R and the union of acql and acq2 as acquaintance
clause.

Context refinement preserves well-formedness.

Property 2.6 A context refinement of a well-formed reuse contract is well-formed.
Proof The well-formedness definition imposes 3 constraints.

e WF1 is preserved, because the acquaintance names that already occurred in
the acquaintance clause still refer to the same participant and the newly added
acquaintance names refer to participants in R because of clause 3 in the refin-
ability definition;

e WEF2 and WF3 are respected because nothing is changed to specialisation
clauses and no existing acquaintance relations are changed, only new ones are

added.

70

Basic Reuse Contracts

Reuse Contract 1

: name name
namer] namejj{namez>} 21 name>{names;} ame3l
namej; namey; name3p

@ az

Context Refinement Modifier |

{ (peptl, {az.pcpt2}, {az.pcpt3}),
(pept2, {a3.pcpt3}, {aj.pcptl})
}

Context
Refinement

€—======-

Reuse Contract 2

: 1 name name
namej| namej1{name2} 21 names {names} 31
namejp —» | namep; name3zp

aj az as

[a3 A

Figure 2.16: Context Refinement

Illustration

Figure 2.16 illustrates a context refinement. Acquaintance relationships are
added to two participants: pcptl and pcpt2. There are two acquaintance clauses
attached to each participant, because we need to be able to distinguish between ac-
quaintance relationships already present on the original contract and new acquain-
tance relationships. An acquaintance relationship called ag is added from peptl to
peptd and an acquaintance relationship called aq from pept2 to peptl. Note how this
last addition makes the binding between pcptl and pcept2 bi-directional and causes
a change in the graphical notation.

Short-Hand Notations

Notation 2.15 A context refinement modifier M., represents a context refine-
ment of p if M., contains a triple (p, acql, acq2).

Notation 2.16 A context refinement modifier M., represents a context refine-
ment of p referencing ¢ if M., contains a triple (p, acql, acq2) and acq2 refers to
q .

2.2 Operators on Reuse Contracts

71

As we needed short-hands to denote the repeating and resulting specialisation
clauses in participant refinement, we need similar short-hands to denote the repeat-
ing and resulting aquaintance clauses here.

Notation 2.17 The repeating aquaintance clause of a participant p in a con-
text refinement modifier M, containing (p, acql, acq2) is acql.

Notation 2.18 The resulting aquaintance clause of a participant p in a context
refinement modifier M, containing (p,acql, acq2) is the union of acql and acq2.

2.2.7 Participant Coarsening

Motivation

The inverse of refinement is called coarsening and entails the removal of depen-
dencies between the model elements. We again start with participant coarsening,
which implies the removal of operation invocations. Figure 2.17 shows a participant
coarsening: an operation invocation of processTrAct by trActRequest is removed.

TrA ctATMContract1
checkCard{verify Account} C .
ATM trActRequest{processTrA}
checkCard > verifyAccount
trActRequest theATM theCons | ProcessTrAct

TrActATMContract2 is a participant coarsening of
TrA ctATMContractl

) Consortium
AIM checkCard{verify Account}

checkCard > verify Account
trActRequest theATM theCons | ProcessTrAct

Figure 2.17: An Example Participant Coarsening

Definition and Properties

Again, the form of the coarsening modifier is identical to the form of the re-
finement modifier. This means that we again work with extended interfaces, where
operations have two specialisation clauses. The first repeats that part of the spe-
cialisation clause that is maintained, while the second indicates which operation
invocations need to be removed.

72

Basic Reuse Contracts

Definition 2.26 (Participant Coarsening Modifier) A participant coarsen-
ing modifier is a reuse modifier with modifier tag “participant coarsening” and
a modifier description containing pairs (p, extint) each consisting of a participant
name p and an extended interface extint , i.e. a set of operations, each consisting
of a name and 2 disjoint specialisation clauses.

Again the disjointness of the two specialisation clauses is important as the first
part denotes which invocations are retained and the second which are removed. The
applicability of the modifier is stated in the following definition.

Definition 2.27 (Participant Coarsenable) A reuse contract R is participant
coarsenable by a participant coarsening modifier M, if for each pair (p, extint):

1. p is a participant name in R ;

2. for each operation name m in extint : m appears in participant p in R and the
union of m ’s specialisation clauses in extint is identical to the specialisation
clause of m in p in R ;

Participant coarsening of contracts can then be defined as follows.

Definition 2.28 (Participant Coarsening) If a reuse contract R is participant
coarsenable by a modifier M), then the reuse contract R, is the participant coars-
ening of R by M, where:

1. R,. contains all participants of R that are not mentioned in M,;
2. for each pair (p, extint) mentioned in M,.: R,. contains a participant

(a) with name p and the same acquaintance clause as p in R ;
(b) that contains all operations of p not mentioned in extint ;
(c) that contains all operations of extint with as specialisation clause the

first of the two specialisation clauses in extint .

As with participant refinement the only change to the participants mentioned in
M, is the specialisation clauses of the operations mentioned in extint.

Property 2.7 A participant coarsening of a well-formed reuse contract is well-
formed.

Proof
e WF1 is not influenced by participant coarsening;

e WF2 and WF3 are preserved because acquaintance and operation names are
only omitted from specialisation clauses, they are not added to them, and the
constraint was already respected on the original reuse contract.

2.2 Operators on Reuse Contracts

73

Reuse Contract 1
namej
namej {nameZI namegz} namej| namesj
namej ’ name»» namepz{names } names
@ a3
1
- %0 1 Participant Coarsening Modifier |
1
é. £ " { Cpeptl, { (namey; , {az.namenz}, {az.namez;}) 3),
2 & (pept2, { (namep2 , {} , {az.name3;}) })
LRl
1
v
Reuse Contract 2
namej| namej {namey,} | Mame2l names|
namej2 names? names;
@ az ’

Figure 2.18: Participant Coarsening

Illustration

Figure 2.18 illustrates a participant coarsening. Operations on two participants
are removed. All operations in the modifier have two specialisation clauses. To-
gether, they describe the entire specialisation clause on the original contract of the
operation they are attached to. The second part is removed on the resulting contract.
The first specialisation clause of namess is empty, because the entire specialisation
clause of the original contract is removed.

Short-Hand Notations

We again introduce some short-hand notations. Note the use of the word “deref-
erencing” to denote that a coarsening removes dependencies, as opposed to the use
of the word “referencing” that is used with refinements to denote that dependencies
are added.

Notation 2.19 A participant coarsening modifier M, represents a participant
coarsening of m on p if M), contains a pair (p,int), with an operation m in int .

Notation 2.20 A participant coarsening modifier M,,. represents a participant
coarsening of m on p dereferencing n on ¢ if M), contains a pair (p,int), with

74

Basic Reuse Contracts

an operation m in ¢nt , with m invoking n on ¢ in m ’s second specialisation clause.

As with participant refinement we need short-hands to determine the repeating
and resulting specialisation clauses of an operation.

Notation 2.21 The repeating specialisation clause of an operation m on p in
a participant coarsening modifier M), containing a pair (p, extint), with m in extint
, is the union of the two specialisation clauses coupled to m in extint .

Notation 2.22 The resulting specialisation clause of an operation m on p in a
participant coarsening modifier M), containing a pair (p, extint), with m in extint
, is the first specialisation clause coupled to m in extint .

2.2.8 Context Coarsening

Motivation

Again, a contract cannot only be coarsened by removing operation invocations,
but also by removing acquaintance relationships. We call this lat operator context
coarsening. Figure 2.19 shows a context coarsening, the two acquaintance relation-
ships that together form the bi-directional binding between Bank and Consortium
are removed.

BankATMContractl
checkCard C . Banl
{verifyAccount}
checkCard > verifyAccount | theCons verifyCard
theATM theCons theBank

BankATMContract2 is a context coarsening of BankATMContractl

AT™ checkCard{verifyAccount} Consortium Bank

checkCard 4 verifyAccount verifyCard
theATM theCons

Figure 2.19: An Example Context Coarsening

Note that this acquaintance relationship can only be removed because there are
no operation invocations modelled along it. The acquaintance relationship between
ATM and Consortium can, for example, not be removed. (At least not in that di-
rection. Note that there is a bi-directional binding between ATM and Consortium

2.2 Operators on Reuse Contracts

75

and we can make it uni-directional by removing the acquaintance relationship from
Consortium to ATM.)

Definition and Properties

A context coarsening modifier has the same form as a context refinement modi-
fier, meaning that it contains two acquaintance clauses, for a number of participant
names. The first part contains the acquaintance relationships to be maintained, the
second part the acquaintance relationships to be removed.

Definition 2.29 (Context Coarsening Modifier) A context coarsening mod-
ifier is a reuse modifier with modifier tag “context coarsening” and a modifier de-
scription containing triples (p,acql, acq2) each consisting of a participant name p
and two disjoint acquaintance clauses.

Again, it is important that the two acquaintance clauses are disjoint, because
the first part will be maintained and the second part removed.

Definition 2.30 (Context Coarsenable) The context of a reuse contract R is
coarsenable by context coarsening modifier M., if for each triple (p, acql, acq2):

1. p is a participant name in R ;
2. the union of acql and acq?2 is identical to the acquaintance clause of p in R ;
3. for all a.q in acq2: no operation in p has a in its specialisation clause.

We can now define context coarsening as follows:

Definition 2.31 (Context Coarsening) If a reuse contract the context of R is
coarsenable by a modifier M. then the reuse contract R.. is the context coarsen-
ing of R by M,., where:

1. R contains all participants of R that are not mentioned in M,;

2. for each triple (p,acql, acq2) in M..: R.. contains a participant with the same
name and interface as p in R and acql as acquaintance clause.
Property 2.8 A context coarsening of a well-formed reuse contract is well-formed.

Proof

e WF1 is respected because no new acquaintance relationships are added and
no participants are removed;

e WEF2 is respected through the fact that only acquaintance relationships can be
removed, along which no operation invocations are modelled. This is enforced
by the restriction in the third clause of the context coarsenability definition;

76

Basic Reuse Contracts

e because of the integrity of WF2, WF3 is not affected by this operator.

Illustration

Reuse Contract 1

peptl pept2

namej{names>}

namej| —a) namej|
2

namej2 namep»
1 T
m name3zj{nameg;}
» | namesp
names names>

a3 ay

1
& : Context Coarsening Modifier |
= . 1
§ g 1 { (pept4, {az.pcpt2} {a3.pcpt3}),
£ g (pept3, {as.peptd} {ar.peptl})
)
@] 3 : }
\4
Reuse Contract 2
L namej{names} L
namej —) name;|
namej2 @ namep>
T
pept3 pepid
name3; {name42} | nameg
names| names>
ay

Figure 2.20: Context Coarsening

Figure 2.20 illustrates a context coarsening. The acquaintance clauses of two
participants are coarsened. From pcpt4 the acquaintance relationship with pcpt3
is removed, from pcpt3d the relationship with pcptl. Note that the union of the
two acquaintance clauses attached to each participant name in the modifier forms
the complete acquaintance clause of the participant on the original contract. Also
note that in the original contract no operation invocations were modelled along the
acquaintance relationships in the second parts. The operation nameyo is invoked by

2.2 Operators on Reuse Contracts

77

names; along the acquaintance relationship a4 of pcpt3, not along the acquaintance
a3 of pcpt4.

Short-Hand Notations

Notation 2.23 A context coarsening modifier M., represents a context coarsen-
ing of p if M., contains a triple (p, acql, acq2).

Notation 2.24 A context coarsening modifier M. represents a context coarsen-
ing of p dereferencing ¢ if M. contains a triple (p, acql, acq2) and acq2 refers to

q .

We again introduce short-hands for repeating and resulting aquaintance clauses.

Notation 2.25 The repeating aquaintance clause of a participant p in a con-
text coarsening modifier M, containing (p, acql, acq2) is the union of acql and acq2.

Notation 2.26 The resulting aquaintance clause of a participant p in a context
coarsening modifier M, containing (p, acql, acq2) is acql.

2.2.9 Summary

We introduced eight orthogonal and elementary operators on reuse contracts that
together are complete in that they can model all possible adaptations to a reuse
contract. Participant and context extension respectively add operations and par-
ticipants to a contract, while participant and context cancellation remove them.
Participant and context refinement respectively add operation invocations and ac-
quaintance relationships, while participant and context coarsening remove them.
This was depicted in table 2.1 on page 49.

All operators were defined by means of a modifier definition, an applicability
definition and an operator definition. The first describes what a modifier for this
particular operator looks like, independent of the reuse contract it will be applied to.
The second defines what constraints a modifier must fulfil in order to be applicable
to a particular reuse contract. The third defines how the result of applying this op-
erator to a well-formed reuse contract can be computed. We only apply operators to
well-formed reuse contracts and all operators share the property that they preserve
well-formedness.

A number of the basic reuse modifiers repeat information about the reuse con-
tract they are applied to. We said that was necessary in order to detect certain
conflicts. In the next chapter we discuss how the operators can assist in detect-
ing conflicts upon evolution and composition. We also discuss the trade-off between
adding more information to reuse modifiers, thus being able to detect more conflicts,
and adding less information, thus providing more flexibility.

