
Chapter �

Basic Reuse Contracts

��� De�nition of Reuse Contracts

This dissertation introduces reuse contracts as a solution to the problems with in�

cremental development of reusable components as discussed in the previous chapter�

In this chapter we give a basic de�nition of reuse contracts and their operators� In

general� reuse contracts consist of two major parts� First� they hold an extended

interface description� providing information about the internal structure of a compo�

nent which is necessary for reusers� Second� the reuse operators provide structured

information on how di�erent versions or parts of reusable components relate to each

other�

We therefore �rst de�ne interface descriptions and then a set of basic operators�

Along with the de�nition we introduce a graphical notation� which will be used

throughout the dissertation in most examples� Chapters � and � discuss how this

basic model can be used to manage change propagation� In chapter � we then apply
this basic de�nition to object�oriented systems� We do not immediately de�ne reuse

contracts for object�oriented systems� because we believe that the basic de�nition

in this chapter is applicable to a broader range of components than just classes and

objects� We come back to this scalability issue in chapter ��

����� Participants

A basic reuse contract consists of a number of related participants� Each participant

has a name� an acquaintance clause and an interface�

De�nition ��� �Reuse Contract� A reuse contract is a set of participants� each

with

	� a name that is unique within this reuse contract

�� an acquaintance clause

�� Basic Reuse Contracts

�� an interface�

Acquaintance clauses and interfaces are further discussed in the following sec�

tions�

����� Acquaintance Clauses

In order to be able to work together the participants in a contract have to be

acquainted in some way� We say that there is an acquaintance relationship between

the participants�� Acquaintance relationships are graphically depicted by a thick line
between the two related participants� called a binding� as in �gure ��	� Throughout

this chapter we use the example of an automatic teller machine �ATM
 to illustrate

our notation and de�nitions� It is a simple example� but su�cient to illustrate our

ideas� More elaborate and real�life examples will be provided in later chapters�

In �gure ��	 we see two participants with names ATM and Consortium �represent�

ing a consortium of banks that share automatic teller machines
� The line between

the two participants represents two acquaintance relationships� one of ATM with

Consortium and one of Consortium with ATM� When no arrows are drawn at the

ends of the line� as in the picture� there are two acquaintance relationships� When
depicting just one acquaintance relationship� an arrow is added to the line� point�

ing from a participant to the participant it is acquainted with� That is if ATM was

acquainted with Consortium and not vice versa� we would have an arrow pointing

from left to right in �gure ��	�

ATM Consortium

theCons

theATM

Figure ��	� Two Acquainted Participants

An acquaintance relationship has a name� This name is noted along the binding�

on the side of the participant that the acquaintance relationship points to� In the

�gure� ATM has an acquaintance theCons that points to the participant Consortium�
It might seem awkward to place the acquaintance name on that side of the binding�

but this corresponds to the notation of most methodologies� The rationale behind

this choice is that the acquaintance name can also describe the role a participant

plays in an acquaintance relationship�

We can now give the de�nition of an acquaintance clause�

�For now we make abstraction of what an acquaintance relationship corresponds with in actual
code� An acquaintance relationship could be anything ranging from an association or a parameter
binding to the transitive closure of a series of acquaintance relationships�

��� De�nition of Reuse Contracts ��

De�nition ��� �Acquaintance Clause� An acquaintance clause is a set of ac�
quaintance relationships a�p � associating an acquaintance name a with a participant

name p �

The acquaintance clause of ATM contains only one acquaintance relationship�
theCons�Consortium� The acquaintance clause of Consortium also contains exactly

one acquaintance relationship� theATM�ATM�

Note the di�erence between the uses of the words �acquaintance� and �partic�

ipant�� All reuse contracts are composed of a number of participants and every

participant is possibly acquainted with a number of other participants� called its

acquaintances� As a short�hand for the de�nitions of the operators we introduce the

following notation�

Notation ��� When the acquaintance clause of a participant p contains a�q � we

say that a on p refers to q or simply that p refers to q �

Further on� we also use the following terminology�

De�nition ��� �Context� The set of participants in a contract together with the

acquaintance relationships between them is called the context of a contract�

����� Client Interface

In order to be able to perform the behaviour represented by the reuse contract each

participant has a number of operations de�ned on it� The set of all operation names

de�ned on a participant is called this participant�s client interface� Client interfaces

are depicted graphically as in �gure ���� Here ATM has two operations de�ned on it�

checkCard and transactionRequest�

ATM

checkCard;
transactionRequest

Figure ���� A Participant�s Client Interface

We still need to further de�ne the form of interfaces�

De�nition ��� �Interface� An interface is a set of operations each consisting of

	� an operation name that is unique within this interface�

�� a specialisation clause�

�� Basic Reuse Contracts

The set of operation names of an interface constitutes the client interface�

Note that we only use operation names and not signatures� This de�nition can

later be extended with operation annotations as abstract and concrete� but this will

not a�ect the uniqueness of the operation names� To handle typing and overloading�

the entire signature can be used as a unique name�

����� The Specialisation Interface

Extra information about internal dependencies between operations is described in

what is called the specialisation interface� A specialisation interface is a collection of

the di�erent specialisation clauses� which are attached to operations� The special�
isation clause of an operation enumerates the operations on which that operation

relies��

We graphically represent specialisation clauses by means of operation names
attached to the acquaintance relationships� The annotation checkCardfverifyAc�
countg along the binding from ATM to Consortium� as depicted in �gure ���� sig�

ni�es that the operation verifyAccount is invoked on Consortium by the opera�

tion checkCard of ATM� We call this an operation invocation� As this binding is

bi�directional �i�e�� it represents two acquaintance relationships
� a thin arrow is

added to show the direction of the operation invocation� When the binding is uni�

directional the arrow can be omitted�

theConstheATM

ATM

checkCard

Consortium

verifyAccount

checkCard{verifyAccount}

Figure ���� Part of the Protocol between Two Participants

Note that it is not allowed to put just any operation invocation anywhere� The

operations that are referred to have to exist on the concerning participants and an

acquaintance relationship in the right direction must be present�

For the annotation xfyg along an arrow from participant	 to participant� to be
correct the following conditions need to be ful�lled�

� x has to be an element of the client interface of participant	 and y an element

of the client interface of participant�

�This terminology is based on �Lam���� where John Lamping �rst introduced specialisation
interfaces� That paper focused on specialising classes through inheritance and on documenting self
sends� One could argue for the use of the term reuse interface or composition interface in our case�
but we use specialisation interface� because it is more general and to acknowledge the origins of our
ideas�

��� De�nition of Reuse Contracts ��

� participant	 refers to participant��

When an operation x on participant	 invokes more than one operation on par�

ticipant�� this is denoted by an enumeration as in xfy� � � � � zg� Note that it is also

possible for participant	 to be equal to participant�� A participant can be acquainted

with itself� This kind of binding can be graphically represented by a loop� Opera�

tions along such a loop represent intra�participant behaviour�

Finally we de�ne specialisation clauses� Recall that each specialisation clause is

part of each operation in an interface as stated in de�nition ����

De�nition ��� �Specialisation Clause� A specialisation clause is a set of op�

eration invocations a�m � associating an acquaintance name a with an operation

name m �

The specialisation clause of checkCard on ATM in �gure ��� has one element�

theCons�verifyAccount� Again as a short�hand for the de�nitions of the operators

we introduce the following notation�

Notation ��� When the specialisation clause of an operation m on a participant p

contains a�n � and a on p refers to q we say that m �on p
 invokes n �on q
�

A remark must be made about the kind of information that specialisation inter�

faces provide� In our case� specialisation interfaces are speci�ed by listing operation

dependencies purely based on operation names� One can also include type informa�

tion� or other semantic information about� for example� the order in which operations

must be invoked� Basic reuse contracts only indicate which operations rely on which
other operations� The inclusion of extra information is to be seen as an extension

of the basic model�

Moreover� a declaration that one operation m relies on another operation n

does not mean that m will invoke n every time� n can� for example� be within a

conditional in m� The fact that n is in m�s specialisation clause only means that n

might get invoked by m and therefore� there is a dependency between them� This

makes the compliance of code with reuse contracts checkable� without the need for

data �ow analysis� We only need to consider static information�

����� The ATM Example

Figure ��� depicts a basic example of a reuse contract� The rectangle is used to

denote the borders of a contract� while the shaded area allows to give the contract a
name� This shaded area can also be used to denote from which other reuse contract

a contract is derived and how �i�e�� by means of which operator
�

To summarise� �gure ��� represents a reuse contract containing two partici�

pants ATM and Consortium� Each participant has an acquaintance clause and an

�	 Basic Reuse Contracts

theConstheATM

ATM

checkCard

Consortium

verifyAccount

checkCard{verifyAccount}

ATMContract

Figure ���� The ATM Reuse Contract

interface� The acquaintance clause of ATM contains the acquaintance relationship

theCons�Consortium� the acquaintance clause of Consortium contains the acquain�

tance relationship theATM�ATM� The interface of ATM contains one operation with

name checkCard and a specialisation clause containing the operation invocation

theCons�verifyAccount� The interface of Consortium contains one operation with

name verifyAccount and an empty specialisation clause� We say the ATM refers to

Consortium and Consortium refers to ATM� We also say that checkCard �on ATM

invokes verifyAccount �on Consortium
�

The combination of the de�nitions above gives a strict de�nition of reuse con�

tracts� As reuse contracts are de�ned as sets of tuples� the de�nitions of the operators

on reuse contracts can be expressed by means of unions� intersections and di�erences
on these sets� Such a representation is the basis for the automated checking of rules

on change propagation� as well as all kinds of tools using reuse contracts� The

ATMContract is then mathematically denoted as follows�

ATMContract �

� � ATM�

� theCons�Consortium ��

� �checkCard� �theCons�verifyAccount�� �

��

� Consortium�

� theATM�ATM ��

� �verifyAccount� ����

�

�

This example clearly demonstrates the structure of reuse contracts� A reuse con�

tract is a set of participants� which are triples consisting of a name� an acquaintance

clause and an interface� In our example� there are two such triples� with respectively

the names ATM and Consortium� An acquaintance clause is a set of acquaintance
relationships� each relating an acquaintance name to a participant name� In our

��� De�nition of Reuse Contracts �

example� both acquaintance clauses are singletons� For example� ATM has an ac�
quaintance name theCons associated with the participant name Consortium�

Each interface is a set of operations� which are pairs that consist of a name and

a specialisation clause� In the example both participants have only one operation

de�ned on them� ATM has an operation named checkCard and Consortium has an
operation named verifyAccount�

A specialisation clause is a set of operation invocations� each relating an ac�

quaintance name with an operation name� For example� the specialisation clause of

checkCard on ATM contains an invocation associating acquaintance name theCons

with operation name verifyAccount� The specialisation clause of verifyAccount
on Consortium is empty� Note that as reuse contracts� interfaces� acquaintance

clauses and specialisation interfaces are all sets� each of them can be empty�

����� Well�Formedness

Because we do not want any dangling references in reuse contracts� for example�

an operation invocation of an operation that is not present in the contract� reuse

contracts need to comply with some well�formedness conditions�

De�nition ��	 �Well�Formedness� A reuse contract R is well�formed if for

every participant p the following conditions hold�

	� for each acquaintance relationship a�q in the acquaintance clause of p � a

participant with name q exists in R �WF	

�� for each operation invocation a�m in a specialisation clause in p �

�a
 a is an acquaintance name in the acquaintance clause of p �WF�

�b
 m is the name of an operation in the interface of the participant a refers

to �WF�
�

All conditions can be checked on our example�

� The �rst restriction says that all participants that are named in acquaintance

clauses must be part of the reuse contract� This is the case in our example as

the acquaintance clause of ATM refers to Consortium and vice versa�

� The second restriction says that a participant can only invoke operations on
participants it is acquainted to� This is correct in the example as checkCard

only invokes an operation along theCons� which is part of ATM�s acquaintance

clause�

� The third restriction says that only those operations can be invoked on a par�

ticipant that are part of its interface� In other words� no unexisting operations
are invoked� In the example� verifyAccount is invoked on theCons� which

�� Basic Reuse Contracts

refers to the participant Consortium� which has an operation verifyAccount

in its client interface�

Note that the second and the third condition were already mentioned on page

��� when introducing the graphical notation� The �rst condition is automatically

respected in the graphical notation as a line representing a binding can only be

drawn to another participant of the contract�

��� Operators on Reuse Contracts

The extended interface description provided by reuse contracts is only a �rst step
towards solving the problems discussed in chapter 	� Without information on the

calling structure� i�e� which operations rely on which other operations� it is di�cult

to detect problems such as operation capture and inconsistent operators� Reuse con�

tracts assist in the detection of such problems by making specialisation interfaces

explicitly available� But even making specialisation interfaces explicit does not suf�

�ce in order to detect problems on evolution and composition� More information is

needed both on the assumptions that can be made by reusers about the components

and on the way the components are actually reused� Without this information�

con�icts can only be detected by meticulously comparing the reuse contracts of the

component that was reused� the new version of the component and the reusers� This

is neither practical �in practice the original component might not even be available

anymore
� nor intuitively compelling�

We propose a methodology that is more intuitive for both reusers and developers

of reusable components and which guides them in managing changes to these com�
ponents� It is based on a classi�cation of the possible changes that can be made to a

reuse contract� Basically� a reuse contract has four modelling elements� participants

and acquaintance relationships� which together form the context� and operations

and operation invocations� Each of these elements can be added or removed from a

contract� which leads to eight basic operators� as depicted in table ��	�

Both at participant and at context level an extension adds the most basic el�

ement� respectively� operations and participants� Then� again at both levels� re�

�nement introduces new relationships between these basic elements� Participant

re�nement connects operations by adding invocations� context re�nement connects

participants by adding acquaintance relationships� Cancellation and coarsening are

the inverses of extension and re�nement� respectively� Together these operators can

model all possible adaptations to a reuse contract� In this chapter we de�ne the

di�erent basic operators� in the next chapter their interactions are examined and

it is discussed how this information can be used to detect and solve con�icts� In

chapter � we de�ne more complex operators based on combinations of these basic

�Note the di�erence� we have eight reuse operators� while interfaces contain operations�

��� Operators on Reuse Contracts �

Operator Name Meaning

Participant Extension adding new operations

Participant Cancellation removing operations

Participant Re�nement adding new operation invocations

Participant Coarsening removing operation invocations

Context Extension adding new participants

Context Cancellation removing participants

Context Re�nement adding new acquaintance relationships

Context Coarsening removing acquaintance relationships

Table ��	� Basic Operators

ones�

As reuse operators describe how a reuse contract is derived from another one�

these operators are described by means of modi�ers�� In general� a reuse modi�er

can be de�ned as follows�

De�nition ��
 �Reuse Modi�er� A reuse modi�er consists of a modi�er tag

and a modi�er description�

A speci�c reuse modi�er needs to be de�ned for each operator� The modi�er tag

corresponds to the name of the operator the modi�er wants to model� e�g�� �context

extension�� The modi�er description describes the form of the modi�er� Depending

on which operator a modi�er is modelling di�erent information is necessary� For

example� in order to model a context re�nement the modi�er contains participant

names and acquaintance relationships between them� The modi�er descriptions of
an operator and its inverse operator do however always have the same form� To

some extent information about the reuse contract a modi�er is applied to needs

to be repeated� For example� when performing a participant extension it is not

su�cient to give the new operations� it is also necessary to identify the participants

these operations must be added to� Also information that at �rst sight might seem

redundant is sometimes added to the modi�er� This is done in order to be able to

detect more con�icts� There is always a trade�o� between the amount of information

that is added to a reuse modi�er and its �exibility� The more detailed information is

added� the more con�icts are detectable� but the less �exible the modi�er becomes�

This trade�o� is discussed in more detail after we have discussed con�ict detection�

Each operator is de�ned by means of three de�nitions and one property�

� A modi�er de�nition� this de�nition describes the form of a modi�er mod�

elling this particular operator and some requirements it needs to ful�l� These

�We use the term operator as an intuitive name� while the modi�er actually describes the dif	
ference between two reuse contracts and is formally de�ned�

�� Basic Reuse Contracts

requirements are independent of the reuse contract the modi�er will be applied
to

� An applicability de�nition� this de�nition describes what properties a modi�er

must comply with in order to be applicable to a particular reuse contract�
In other words� these are the requirements that are dependent of the reuse

contract the modi�er will be applied to

� An operator de�nition� this de�nition describes how the result of applying this

kind of modi�er is determined

� A well�formedness property� each application of a reuse operator to a well�

formed reuse contract results in another well�formed reuse contract� In order

to achieve this� some requirements are incorporated in the modi�er and appli�
cability de�nitions��

In all de�nitions below� R and Rx represent reuse contracts� while M and Mx

represent modi�ers� The subscripts of R andM represent the operator� for example�
Mpe represents a participant extension modi�er� while Rpe represents the result of

applying participant extension� In the examples we do not explicitly mention the

modi�ers when they are clear from the context� We start each section introducing an

operator with a motivation that is given using the ATM example� After that� we give

the de�nitions and property� followed by a graphical illustration of the de�nition�

Finally� some short�hand notations that shall prove helpful when discussing change

propagation are given�

Readers that do not want a thorough understanding of each of the de�nitions�

but just want to know what kind of operators there are and what they look like can

skip the actual de�nitions� The examples and illustrations of the de�nitions su�ce

to get a working knowledge�

����� Participant Extension

Motivation

The goal of participant extension is to add new operations to one or more partici�

pants in a contract� This operator is usually applied in order to add new functionality

to a participant and thus to the contract� Figure ��� shows a participant extension

of the ATM contract� where the operations trActRequest �transactionRequest
 and
processTrAct �processTransaction
 are added�

Extension is self�contained� the newly added operations refer in no way to the ex�

isting operations� They can� however� refer to each other as is shown in the example�

�Another approach would have been to omit these requirements from these de�nitions and
then describe as a di�erent property which requirements an operator must comply with in order
to preserve well	formedness� We opted for the former� because we never desire ill	formed reuse
contracts� not even as intermediary results�

��� Operators on Reuse Contracts ��

theConstheATM

ATM

checkCard
trActRequest

Consortium

verifyAccount
processTrAct

checkCard{verifyAccount}
trActRequest{processTrA}

TrActATMContr act2 is a participant extension of
TrActATMContract1

theConstheATM

ATM

checkCard

Consortium

verifyAccount

checkCard{verifyAccount}

TrActATMContract1

Figure ���� An Example Participant Extension

where transactionRequest invokes processTransaction� As a self�contained ex�

tension is completely independent of the reuse contract it is extending� this operator

might not be desired so often in practice� but we want to keep the basic operators

as orthogonal as possible� We will show later how participant extension can be

combined with participant re�nement to add dependencies between the operations

added through the extension and the already existing operations�

De�nition and Properties

Participant extension of contracts is de�ned in terms of a participant extension

modi�er� Recall that we de�ne each operator in three steps� the modi�er� the

applicability and the operator�

De�nition ��� �Participant Extension Modi�er� A participant extension

modi�er is a reuse modi�er with modi�er tag �participant extension� and a modi�er

description which is a set of pairs �p� int
 each consisting of a participant name p

and an interface int ��

De�nition ��
 �Participant Extendible� A reuse contract R is participant

extendible by a participant extension modi�erMpe if for each pair �p� int
 inMpe
��

	� p is a participant name in R

�Recall that an interface is a set of operations each consisting of a name and a specialisation
clause�

�Note that the pairs
p� int� are actually part of the modi�er description in Mpe� but we imme	
diately say �each pair
p� int� in Mpe
 to keep the de�nitions concise�

�� Basic Reuse Contracts

�� no operation name in int appears in the interface of participant p in R

�� for each operation invocation a�m in a specialisation clause in int �

�a
 a is an acquaintance name in the acquaintance clause of p in R

�b
 if a on p refers to q then m is an operation in the interface of q in Mpe�

Note that the last clause is almost an exact copy of WF� and WF�� They are

necessary to ensure that the result of a participant extension is again a well�formed

reuse contract� The repetition of these clauses occurs in a number of applicability

de�nitions� Here a slight adaptation was necessary� because of the self�containedness

of extensions� The operation m referred to in an invocation also needs to be part

of the modi�er Mpe and not of R� However� to which participant an acquaintance
name refers can only be seen in R�

De�nition ���� �Participant Extension� If a reuse contract R is participant
extendible by a modi�er Mpe� then the reuse contract Rpe is the participant ex�

tension of R by Mpe� where�

	� Rpe contains all participants of R that are not mentioned in Mpe

�� for each �p� int
 in Mpe� Rpe contains a participant with the same name and

acquaintance clause as p in R and that contains all operations of p � plus int �

In the resulting contract all the participants of the original contract that are not

mentioned in any pair �p� int
 are maintained �clause 	
� Furthermore� all partici�

pants of the original contract that are mentioned in a pair �p�int
 keep their original

name and acquaintance clause� while their interface is extended with the operations

from int�

Note that the fact that R is participant extendible by Mpe implies that Mpe is

a participant extension modi�er� Note also that for a given reuse contract and a

given participant extension modi�er there is exactly one reuse contract that is the

result of the participant extension of this reuse contract by this modi�er� The above

de�nition described how it is determined�

The following property can be proven about these de�nitions�

Property ��� A participant extension of a well�formed reuse contract is well�formed�

Proof The well�formedness de�nition �see page ��
 imposes � constraints�

� WF	 concerns only the acquaintance clauses� As these are not altered through

participant extension and the base reuse contract was well�formed� this condi�
tion also holds on the resulting reuse contract�

��� Operators on Reuse Contracts ��

� WF� states that operation invocations only occur between participants that
are acquainted� This is ensured by the clause �a in the participant extendibility

de�nition�

� WF� states that every operation that is invoked must be part of the client in�

terface of the participant it is invoked on� This is ensured by clause �b in the

participant extendibility de�nition� which states that all operations in speciali�

sation clauses inMpe must be part ofMpe� attached to the required participant

name� As the operations that already existed on R remain unchanged and R

was well�formed� the property is also preserved for the operations that already
existed in R�

Illustration

{ (pcpt1, { (name13 , {a2.name24})}),
 (pcpt2, { (name23 , {}),
 (name24 , {}) })
}

Participant Extension Modifier

Pa
rti

ci
pa

nt

Ex
te

ns
io

n

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3

name11{name22} name21{name31}

Reuse Contract 1

a2 a3

name31
name32

pcpt3

name21{name31}
name11
name12
name13

pcpt1
name21
name22
name23
name24

pcpt2

name11 {name22}
name13 {name24}

Reuse Contract 2

a2 a3

Figure ���� Participant Extension

Figure ��� illustrates a participant extension� As de�nition ��� states� a partici�

pant extension modi�er contains pairs each consisting of a participant name and an

interface� In the �gure� there are two such pairs� one for pcpt	 and one for pcpt��

The name of the participant is necessary to know to which participant the operations
are added
 the associated operations are those to be added to this participant� In

�� Basic Reuse Contracts

the example� one operation� name��� is added to pcpt	 and two operations� name��
and name��� are added to pcpt��

The extra constraints given in de�nition ��� on participant extendibility can also

be checked on the example�

	� The �rst constraints says that all participant names occurring in the modi�er

must also occur in the original reuse contract� This is logical� as the participant

names specify to which participant an operation must be added�

�� The second constraint states that only operations with new names can be

added� The reason for this is obvious� as operation names are unique on every

participant and we want to model the addition of new functionality� not the

alteration of existing functionality� which is done through other operations�

�� Constraint �a is the repetition of WF�� and is necessary to ensure well�

formedness of the resulting reuse contract� It states that a participant can
only invoke operations on its acquaintances� Note that in the example an op�

eration invocation from pcpt� to pcpt	 would have been illegal� as the binding

between them is uni�directional�

�� Constraint �b corresponds to WF�� It con�rms that� after the participant

extension� operations that are invoked on certain participants are part of that

participant�s interface�

Furthermore� it ensures that the extension is self�contained� All newly added

operations refer only to other newly added ones in their specialisation clauses�

The example respects these constraints� as name�� only invokes name��� which

is part of the participant associated to a�� and the two operations added to

pcpt� have an empty specialisation clause�

De�nition ��	� determines the result of a participant extension�

	� All participants of the original contract� that are not mentioned in the modi�er

remain exactly the same� In the example� pcpt� is unchanged�

�� The participants that are named in the modi�er are completely preserved

�including their name and acquaintance clause
� except for the addition to

their interface of the operations that are attached to them in the modi�er�

In the example� name�� is added to the interface of pcpt	 and name�� and
name�� are added to the interface of pcpt�� Note that the operations are

copied including their specialisation clauses� This can be seen by the extra

operation invocation that is depicted along the binding between pcpt	 and

pcpt��

��� Operators on Reuse Contracts ��

Short�Hand Notations

In the rules on change propagation in chapter � we need not only the de�nitions as

given above� Sometimes we also need information on the contents of a modi�er� For

example� an operation name con�ict occurs when two participant extensions add an

operation with the same name to the same participant� It is therefore not enough

to know that two participant extension modi�ers are applied� it is also necessary

to know what operations are added by the extension and to what participants�

For some con�icts it is also necessary to know what operation invocations are in

their specialisation clauses� Because we want to take abstraction of the form of

the modi�er descriptions in the con�ict detection rules� we introduce some extra
de�nitions as a form of syntactic sugar to every operator de�nition� In most cases�

the second is an elaboration on the �rst� For example� here the �rst de�nition

states which operation is added to which participant� while the second de�nition

also includes part of this operation�s specialisation clause�

Notation ��� A participant extension modi�er Mpe represents a participant ex�

tension by m on p if Mpe contains a pair �p� int
 with an operation m in int

Notation ��� A participant extension modi�er Mpe represents a participant ex�

tension by m on p referencing n on q if Mpe contains a pair �p� int
 with an

operation m in int � with m invoking n on q

When using these de�nitions� or the analogous de�nitions that are de�ned for

other operators� it is always possible to leave out some part of the information� For

example� when it is irrelevant to which participant an operation is added we simply

say �an extension by m��

����� Context Extension

Motivation

Besides adding operations to existing participants� one can also introduce entirely

new participants� Therefore� we introduce context extension� A context extension
of the ATMContract is depicted in �gure ����

Again� context extension is self�contained� A context extension adds new par�

ticipants to a contract� but the acquaintance clauses of these new participants can

only refer to names of participants that are added through the same extension� In

the example� Bank could have had an acquaintance relationship with yet another

newly added participant� but not with ATM or Consortium� In fact� a context ex�

tension modi�er is an entire reuse contract �in the example� a reuse contract with

one participant
� that is disjoint from the reuse contract it is extending� Adding

dependencies between these two parts is achieved through context re�nement�

�	 Basic Reuse Contracts

theConstheATM

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard{verifyAccount}

BankATMContract is a context extension of ATMContract

theConstheATM

ATM

checkCard

Consortium

verifyAccount

checkCard{verifyAccount}

ATMContract

Figure ���� An Example Context Extension

De�nition and Properties

De�nition ���� �Context Extension Modi�er� A context extension mod�

i�er is a reuse modi�er with modi�er tag �context extension� and a modi�er de�
scription which is a well�formed reuse contract RMod�

Because the extension and the original part are disjoint� the extendibility de��

nition becomes straightforward�

De�nition ���� �Context Extendible� The context of a reuse contract R is

extendible by a context extension modi�er Mce with modi�er description RMod if

for each participant p in RMod�

p �s name is di�erent from all participant names in R

Context extension of contracts can then be de�ned as follows�

De�nition ���� �Context Extension� If a reuse contract R is context extendible

by a modi�er Mce with modi�er description RMod� then the reuse contract Rce is

the context extension of R by Mce where�

Rce contains all participants of R and all participants of RMod�

Property ��� A context extension of a well�formed reuse contract is well�formed�

Proof As both the added reuse contract and the original reuse contract are well�

formed and the two parts do not in�uence each other� well�formedness is preserved

after the extension�

��� Operators on Reuse Contracts �

Illustration

{ (pcpt3, {a4.pcpt4},
 { (name31 , {a4.name42}) }),
 (pcpt4, {},
 { (name41 , {}), (name42 , {}) })
}

Context Extension Modifier

C
on

te
xt

E

xt
en

si
on

Reuse Contract 1

name11
name12

pcpt1

name21
name22

pcpt2

name11{name22}

a2

name11
name12

pcpt1

name21
name22

pcpt2

name11{name22}

a2

Reuse Contract 2

name31

pcpt3
name41
name42

pcpt4
name31 {name42}

a4

Figure ���� Context Extension

Figure ��� illustrates a context extension� A context extension modi�er contains

a well�formed reuse contract� i�e� a set of participants� that is completely disjoint

from the original contract� The result of a context extension is a reuse contract that

contains two disjoint parts� the contract that was extended and the contract it was

extended with�

Note that a software system will always be described by a collection of contracts�

not just one� As context extensions are completely disjoint from the rest of the

contract� instead of performing a context extension� the contract could be added to

the �system� as a completely new contract� When this is not desirable� dependencies

between the extended part and the original part can be introduced by means of
re�nements�

�� Basic Reuse Contracts

Short�Hand Notations

Again as a form of syntactic sugar to make the change propagation rules more

readable we introduce some extra de�nitions�

Notation ��� A context extension modi�er Mce represents a context extension

by p if a participant p is mentioned in Mce�

Notation ��	 A context extension modi�er Mce represents a context extension

by p referencing q if participants p and q exist such that p and q are mentioned

in Mce and p refers to q �

����� Participant Cancellation

The opposite of extension is cancellation� We again �rst discuss this operator at

participant level�

Motivation

As with extensions� cancellations are self�contained� This means that when an

operation is cancelled� all operations it refers to in its specialisation clause need to be

cancelled as well� When one wants to cancel an operation� but not the operations it

refers to� �rst a coarsening �removal of operation invocations from the specialisation

clause� see section �����
 has to be performed��

On the other hand� operations can only be removed if they are not referred to

by other operations� as that would violate the well�formedness of reuse contracts�

As an example of participant cancellation we can return to the �rst two reuse

contracts we presented� but now in the reverse order� This is depicted in �gure

���� While in section ����	 we said TrActATMContract is a participant extension

of ATMContract� here we can say ATMContract is a participant cancellation of

TrActATMContract�

De�nition and Properties

As we mentioned in the introduction of reuse operators� the modi�ers of inverse

operators always take the same form as the original operator�s modi�er� Therefore

a participant cancellation modi�er takes the same form as a participant extension

modi�er�

De�nition ���� �Participant Cancellation Modi�er� A participant cancel�

lation modi�er is a reuse modi�er with modi�er tag �participant cancellation� and

a modi�er description which is a set of pairs �p� int
 each consisting of a participant

name p and an interface int �

�Note that while we discuss how a developer should model systems here� in later chapters we
will discuss how tools can be developed that assist the developer in doing this� Developers do not
need to perform the more cumbersome tasks as described above manually�

��� Operators on Reuse Contracts �

theConstheATM

ATM

checkCard
trActRequest

Consortium

verifyAccount
processTrAct

checkCard{verifyAccount}
trActRequest{processTrA}

TrActATMContract

theConstheATM

ATM

checkCard

Consortium

verifyAccount

ATMContract is a participant cancellation of
TrActATMContract

checkCard{verifyAccount}

Figure ���� An Example Participant Cancellation

In order to be applicable the modi�er needs to comply with the following con�

straints�

De�nition ���� �Participant Cancellable� A reuse contract R is participant

cancellable by a participant cancellation modi�er Mpc if for each pair �p� int
 in

Mpc�

	� p is a participant name in R and each operation in int is identical to an

operation in this participant in R

�� for all operations m � n and for all participants q in R � such that m on q

invokes n on p � if n is an element of int � then m appears associated with q

in Mpc�

Note that the last constraint is necessary to ensure that no operations are re�

moved that are referred to by other operations� Again this is necessary to preserve

well�formedness�

De�nition ���	 �Participant Cancellation� If a reuse contract R is participant
cancellable by a modi�er Mpc� then the reuse contract Rpc is the participant can�

cellation of R by Mpc� where�

	� Rpc contains all participants of R that are not named in Mpc

�� for each �p� int
 in Mpc� Rpc contains a participant with the same name and

acquaintance clause as p in R and that contains all operations of p � except for
those in int �

	� Basic Reuse Contracts

Property ��� A participant cancellation of a well�formed reuse contract is well�

formed�

Proof The well�formedness de�nition imposes � constraints�

� WF	 and WF� are not a�ected by applying participant cancellation as they

only concern the context

� the second clause in the participant cancellability de�nition ensures that WF�

is respected by checking that only operations are removed that are not invoked

by any other operations� except by operations that are themselves removed by

the same cancellation�

Illustration

Figure ��	� illustrates a participant cancellation� The modi�er contains partici�

pant names with sets of operations attached to them� In the resulting reuse contract

these operations are removed from the participants they are attached to� Note that

name�� can only be removed because name�� � that refers to it � is removed by

the same cancellation�

{ (pcpt1, { (name12 , {}) }),
 (pcpt2, { (name21 , {a3.name31}) }),
 (pcpt3, { (name31 , {}) })
}

Participant Cancellation Modifier

Pa
rti

ci
pa

nt

C
an

ce
lla

tio
n

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3

name11{name22} name21{name31}

Reuse Contract 1

a2 a3

name32

pcpt3

name11

pcpt1

name22

pcpt2
name11 {name22}

Reuse Contract 2

a2 a3

Figure ��	�� Participant Cancellation

Note that it might seem redundant to repeat the specialisation clauses of the
operations that are to be removed� We do repeat this information in order to detect

��� Operators on Reuse Contracts 	�

particular con�icts and to preserve the identity between the forms of modi�ers of
inverse operators�

Short�Hand Notations

Notation ��
 A participant cancellation modi�er Mpc represents a participant

cancellation of m on p if Mpe contains a pair �p� int
 with an operation m in int �

Notation ��� A participant cancellation modi�er Mpc represents a participant

cancellation of m on p referencing n on q if Mpe contains a pair �p� int
 with an

operation m in int � with m invoking n on q �

����� Context Cancellation

Context cancellation is the opposite of context extension�

Motivation

Again� context cancellation is self�contained� but we need to verify that no par�

ticipants are removed that are referred to by other participants�

theConstheATM theCons

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard
 {verifyAccount}

BankATMContract

theConstheATM

ATM

checkCard

Consortium

verifyAccount

checkCard{verifyAccount}

ATMContract is a context cancellation of BankATMContract

Figure ��		� An Example Context Cancellation

In �gure ��		 ATMContract is only a correct context cancellation of BankATMCon�

tract because the binding between Bank and Consortium is uni�directional� If

Consortium also had an acquaintance name pointing to Bank� removing Bank would

have lead to an ill�formed reuse contract� We will show later that� when necessary�

context coarsenings can be applied to �rst remove the super�uous acquaintance re�

lationships�

	� Basic Reuse Contracts

Note that both ATM and Bank have an acquaintance relationship named theCons

that refers to Consortium� This is not a problem� because acquaintance names only

need to be unique on the participants they are de�ned on� in this example ATM and

Bank� We will often encounter examples� where di�erent acquaintance relationships

referring to the same participant have the same name�

De�nition and Properties

Again� the modi�er of a context cancellation has the same form as the context

extension modi�er� i�e�� it contains a complete and well�formed reuse contract�

De�nition ���
 �Context Cancellation Modi�er� A context cancellation
modi�er is a reuse modi�er with modi�er tag �context cancellation� and a modi�er

description which is a well�formed reuse contract RMod�

Again� applicability becomes straightforward� We need to check that the partic�

ipants that are to be removed are actually part of R and that no participants are

removed while still referred to�

De�nition ���� �Context Cancellable� The context of a reuse contract R is
cancellable by a context cancellation modi�er Mcc with modi�er description RMod

if for each participant p in RMod�

	� p is identical to a participant in R

�� p does not appear in the acquaintance clause of a participant in R that is not

in RMod�

Context cancellation of contracts can then be de�ned as follows�

De�nition ���
 �Context Cancellation� If a reuse contract R is context can�
cellable by a modi�er Mcc then the reuse contract Rcc is the context cancellation

of R by Mcc where�

Rcc contains all participants of R � except for those named in Mcc�

We again prove that the operator preserves well�formedness�

Property ��� A context cancellation of a well�formed reuse contract is well�formed�

Proof

� WF	 is respected in view of the constraint in the second clause of the context

cancellability that only participant names are mentioned �and thus removed
�

that are not referred to by other participants

� Because the original reuse contract was well�formed and because only partici�

pants that are not referred to are removed� the names of the removed partici�

pants appear in no specialisation clause of Rcc and thus WF� and WF� cannot
be broken�

��� Operators on Reuse Contracts 	�

Illustration

Context Cancellation Modifier

C
on

te
xt

C
an

ce
lla

tio
n

name11
name12

pcpt1

name21

pcpt2

name31
name32

pcpt3

name11{name21} name21{name31}

Reuse Contract 1

a2 a3

name31
name32

pcpt3

Reuse Contract 2

{ (pcpt1, {a2.pcpt2},
 { (name11 , {a2.name21})
 (name12 , {}) }),
 (pcpt2, {a3.pcpt3},
 { (name21 , {a3.name31}), }) }

Figure ��	�� Context Cancellation

Figure ��	� illustrates a context cancellation� The modi�er contains a well�

formed reuse contract containing two participants� pcpt� and pcpt	� They are

identical in the modi�er and in Reuse Contract �� In the resulting contract the

participants that are named in the modi�er are removed� Note that pcpt	 can only

be removed because pcpt�� that refers to it� is removed as well� Participants can

only be removed if they are not referred to or if the participants that refer to them

are removed as well�

Short�Hand Notations

Again as a form of syntactic sugar to make the rules more readable we introduce

some extra de�nitions�

Notation ��
 A context cancellation modi�er Mcc represents a context cancel�
lation of p if a participant p is mentioned Mcc�

Notation ���� A context cancellation modi�er Mcc represents a context cancel�

lation of p referencing q if participants p and q exist such that p is mentioned in

Mcc and p refers to q �

	� Basic Reuse Contracts

����� Participant Re�nement

Motivation

In the previous four sections we have introduced extensions and cancellations�

i�e�� operators that add or remove elements from a reuse contract� In the next

four sections we introduce re�nements and coarsenings� i�e�� operators that add or
remove dependencies between elements of the reuse contract� Again� these operators

act both at the participant and the context level� adding or removing respectively

operation invocations and acquaintance relationships�

theConstheATM

ATM

checkCard
trActRequest

Consortium

verifyAccount
processTrAct

checkCard{verifyAccount}
trActRequest{processTrAct}

TrActATMContr act2 is a participant refinement of
TrActATMContract1

theConstheATM

ATM

checkCard
trActRequest

Consortium

verifyAccount
processTrAct

checkCard{verifyAccount}

TrActATMContract1

Figure ��	�� An Example Participant Re�nement

We start with participant re�nement� This operator adds extra operation invo�

cations to the contract� Figure ��	� shows a participant re�nement� an operation

invocation of processTrAct by trActRequest is added�

Note that a participant re�nement can only add invocations between existing
operations� It cannot add new operations� This needs to be done through participant

extension�

De�nition and Properties

A participant re�nement adds extra operation invocations to the specialisation

clauses of particular operations� In the reuse modi�er we also repeat the original

specialisation clause of this operation on the reuse contract it is re�ning� This is

necessary to detect particular con�icts� for example� when two independent modi��
cations re�ne the same operation� This issue is further discussed in chapter ��

��� Operators on Reuse Contracts 	�

It is not enough to verify that the new specialisation clause is a superset of the
original one� We need to explicitly state in the modi�er which parts of the spe�

cialisation clause are newly added and which are repeated� Therefore� we introduce

extended interfaces� An extended interface is an interface which contains operations

with two specialisation clauses each� Incorporating this de�nition we can de�ne

participant re�nability� We start again with the modi�er�

De�nition ���� �Participant Re�nement Modi�er� A participant re�ne�

ment modi�er is a reuse modi�er with modi�er tag �participant re�nement� and

a modi�er description containing pairs �p� extint
 each consisting of a participant

name p and an extended interface extint �

An extended interface is a set of operations� each consisting of an operation name

and � disjoint specialisation clauses�

The disjointness of the two specialisation clauses is important� as the �rst repeats

the specialisation clause of the base reuse contract� while the second describes the

operation invocations that need to be added�

De�nition ���� �Participant Re�nable� A reuse contract R is participant re�

�nable by a participant re�nement modi�er Mpr if for each pair �p� extint
�

	� p is a participant name in R

�� for each operation name m in extint � m appears in participant p in R and m

�s �rst specialisation clause in extint is identical to the specialisation clause of

m in p in R

�� for each operation invocation a�m in a second specialisation clause in extint �

�a
 a is an acquaintance name in the acquaintance clause of p in R

�b
 m is an operation in the interface of the participant referred to by a in p

in R �

Note that the last clause is again a slightly adapted version of well�formedness

restrictions WF� and WF��

De�nition ���� �Participant Re�nement� If a reuse contract R is participant

re�nable by a modi�er Mpr then the reuse contract Rpr is the participant re�ne�

ment of R by Mpr� where�

	� Rpr contains all participants of R that are not mentioned in Mpr

�� for each �p� extint
 in Mpr� Rpr contains a participant

�a
 with name p and the same acquaintance clause as p in R

�b
 that contains all operations of p in R not mentioned in extint

		 Basic Reuse Contracts

�c
 that contains all operations of extint with as specialisation clause the
union of their two specialisation clauses in extint �

The last clause describes how the participants that are mentioned in Mpr are

adapted� Their name and acquaintance clause remain the same �clause �a
� The

operations in their interfaces that are not in the extended interface attached to p in

Mpr also remain the same �clause �b
� The operations in their interfaces that are
mentioned in the extended interface attached to p in Mpr keep their name� but their

specialisation clause is extended as speci�ed in extint �clause �c
�

Property ��� A participant re�nement of a well�formed reuse contract is well�

formed�

Proof

� WF	 is not in�uenced by participant re�nement

� WF� is preserved because the �rst specialisation clause is identical to the one

on the original contract� which was well�formed� while the second specialisation

clause respects WF� because of clause �a of the re�nability de�nition

� WF� is preserved because the �rst specialisation clause is identical to the one

on the original contract� which was well�formed� while the second specialisation

clause respects WF� because of clause �b of the re�nability de�nition�

Illustration

Figure ��	� illustrates a participant re�nement� Operations on two participants

are re�ned� name�� on pcpt	 and name�� on pcpt�� To both these operations

two specialisation clauses are attached� The �rst repeats the original specialisation

clause� the second states the newly added invocations� Note that on name�� the

�rst specialisation clause is empty� because the specialisation clause of name�� on

the original contract is empty�

Short�Hand Notations

We again introduce short�hand notations describing which operations are re�ned

and which extra operation invocations are added to their specialisation clauses�

Notation ���� A participant re�nement modi�er Mpr represents a participant

re�nement of m on p if Mpr contains a pair �p� extint
� with an operation m in

extint �

Notation ���� A participant re�nement modi�er Mpr represents a participant

re�nement of m on p referencing n on q if Mpr contains a pair �p� extint
� with

an operation m in extint � with m invoking n on q in m �s second specialisation
clause�

��� Operators on Reuse Contracts 	

{ (pcpt1, { (name11 , {a2.name22}, {a2.name21}) }),
 (pcpt2, { (name22 , {} , {a3.name31}) })
}

Participant Refinement Modifier
Pa

rt
ic

ip
an

t
R

ef
in

em
en

t

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3

name11{name22}

Reuse Contract 1

a2 a3

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3
name11
{name21, name22} name22{name31}

Reuse Contract 2

a2 a3

Figure ��	�� Participant Re�nement

Note the use of the term �referencing� here� We use this term to denote the ad�
dition of both operation invocations and acquaintance relationships by respectively

participant and context re�nement� The term �dereferencing� is used to denote

the removal of operation invocations and acquaintance relationships by respectively

participant and context coarsening�

In the case of re�nement and coarsening we need some extra notations� The op�

erations in the extended interfaces have two specialisation clauses� one repeating the

specialisation clause that is adapted and one stating the operation invocations that

are added to the specialisation clause� On the resulting contract� the specialisation

clause attached to these operations is the union of both� For re�nements� as well

as for coarsenings� we need to know the specialisation clause that is repeated� we
call this the repeating specialisation clause and the specialisation clause that will be

attached to this method in the result� we call this the resulting specialisation clause�

We therefore introduce two extra notations�

Notation ���� The repeating specialisation clause of an operation m on p in

a participant re�nement modi�erMpr containing a pair �p� extint
� withm in extint

� is the �rst specialisation clause coupled to m in extint �

	� Basic Reuse Contracts

Notation ���� The resulting specialisation clause of an operation m on p in a
participant re�nement modi�er Mpr containing a pair �p� extint
� with m in extint

� is the union of the two specialisation clauses coupled to m in extint �

����� Context Re�nement

Motivation

A contract can be re�ned by adding operation invocations� but also by adding

acquaintance relationships� We call the latter context re�nement� Figure ��	� shows

a context re�nement� adding a bi�directional binding between Bank and Consortium�

Note that this corresponds to two acquaintance relationships� one on Consortium

with name theBank referring to Bank and one on Bank with name theCons referring
to Consortium�

verifyAccount
theCons

theCons

theATM theBank

ATM

checkCard

Consortium Bank

verifyCard

checkCard
 {verifyAccount}

BankATMContract2 is a context refinement of BankATMContract1

theConstheATM

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard{verifyAccount}

BankATMContract1

Figure ��	�� An Example Context Re�nement

Note that a context re�nement can only add acquaintance relationships between

existing participants� It cannot add new participants� this needs to be done through

context extension�

De�nition and Properties

In the same way that we needed to repeat the original specialisation clause in

participant re�nement modi�ers� we need to repeat the original acquaintance clauses

here� This explains the form of the modi�er�

De�nition ���� �Context Re�nementModi�er� A context re�nement mod�
i�er is a reuse modi�er with modi�er tag �context re�nement� and a modi�er de�

��� Operators on Reuse Contracts 	

scription containing triples �p� acq	� acq�
 each consisting of a participant name p

and two disjoint acquaintance clauses�

The �rst acquaintance clause repeats the original acquaintance clause� while
the second contains the added invocations� It is therefore important for them to

be disjoint� Furthermore� all acquaintance names used in the second acquaintance

clause have to be di�erent from the ones in the �rst acquaintance clause� because

acquaintance names are unique within acquaintance clause� This is speci�ed in

clause � below�

De�nition ���� �Context Re�nable� The context of a reuse contract R is re�

�nable by a context re�nement modi�er Mcr if for each triple �p� acq	� acq�
�

	� p is a participant name in R

�� acq	 is identical to the acquaintance clause of p in R

�� acq� contains acquaintance relationships a�q� where a is di�erent from all ac�
quaintance names in acq	 and q is a participant name in R �

De�nition ���� �Context Re�nement� If the context of a reuse contract R is

re�nable by a modi�er Mcr then the reuse contract Rcr is the context re�nement

of R by Mcr� where�

	� Rcr contains all participants of R that are not mentioned in Mcr

�� for each triple �p� acq	� acq�
 in Mcr� Rcr contains a participant with the same

name and interface as p in R and the union of acq	 and acq� as acquaintance

clause�

Context re�nement preserves well�formedness�

Property ��	 A context re�nement of a well�formed reuse contract is well�formed�

Proof The well�formedness de�nition imposes � constraints�

� WF	 is preserved� because the acquaintance names that already occurred in

the acquaintance clause still refer to the same participant and the newly added

acquaintance names refer to participants in R because of clause � in the re�n�

ability de�nition

� WF� and WF� are respected because nothing is changed to specialisation

clauses and no existing acquaintance relations are changed� only new ones are
added�

� Basic Reuse Contracts

{ (pcpt1, {a2.pcpt2}, {a3.pcpt3}),
 (pcpt2, {a3.pcpt3}, {a1.pcpt1})
}

Context Refinement Modifier
C

on
te

xt

R
ef

in
em

en
t

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3

name11{name22} name21{name31}

Reuse Contract 1

a2 a3

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3

name11{name22} name21{name31}

Reuse Contract 2

a2a1

a3

a3

Figure ��	�� Context Re�nement

Illustration

Figure ��	� illustrates a context re�nement� Acquaintance relationships are

added to two participants� pcpt	 and pcpt�� There are two acquaintance clauses

attached to each participant� because we need to be able to distinguish between ac�

quaintance relationships already present on the original contract and new acquain�
tance relationships� An acquaintance relationship called a� is added from pcpt	 to

pcpt� and an acquaintance relationship called a� from pcpt� to pcpt	� Note how this

last addition makes the binding between pcpt	 and pcpt� bi�directional and causes

a change in the graphical notation�

Short�Hand Notations

Notation ���� A context re�nement modi�er Mcr represents a context re�ne�

ment of p if Mcr contains a triple �p� acq	� acq�
�

Notation ���	 A context re�nement modi�er Mcr represents a context re�ne�

ment of p referencing q if Mcr contains a triple �p� acq	� acq�
 and acq� refers to
q �

��� Operators on Reuse Contracts
�

As we needed short�hands to denote the repeating and resulting specialisation
clauses in participant re�nement� we need similar short�hands to denote the repeat�

ing and resulting aquaintance clauses here�

Notation ���
 The repeating aquaintance clause of a participant p in a con�

text re�nement modi�er Mcr containing �p� acq	� acq�
 is acq	�

Notation ���� The resulting aquaintance clause of a participant p in a context

re�nement modi�er Mcr containing �p� acq	� acq�
 is the union of acq	 and acq��

����	 Participant Coarsening

Motivation

The inverse of re�nement is called coarsening and entails the removal of depen�

dencies between the model elements� We again start with participant coarsening�

which implies the removal of operation invocations� Figure ��	� shows a participant

coarsening� an operation invocation of processTrAct by trActRequest is removed�

TrActATMContract2 is a participant coarsening of
TrActATMContract1

theConstheATM

ATM

checkCard
trActRequest

Consortium

verifyAccount
processTrAct

checkCard{verifyAccount}

TrActATMContract1

theConstheATM

ATM

checkCard
trActRequest

Consortium

verifyAccount
processTrAct

checkCard{verifyAccount}
trActRequest{processTrA}

Figure ��	�� An Example Participant Coarsening

De�nition and Properties

Again� the form of the coarsening modi�er is identical to the form of the re�

�nement modi�er� This means that we again work with extended interfaces� where

operations have two specialisation clauses� The �rst repeats that part of the spe�

cialisation clause that is maintained� while the second indicates which operation
invocations need to be removed�

� Basic Reuse Contracts

De�nition ���	 �Participant Coarsening Modi�er� A participant coarsen�
ing modi�er is a reuse modi�er with modi�er tag �participant coarsening� and

a modi�er description containing pairs �p� extint
 each consisting of a participant

name p and an extended interface extint � i�e� a set of operations� each consisting

of a name and � disjoint specialisation clauses�

Again the disjointness of the two specialisation clauses is important as the �rst

part denotes which invocations are retained and the second which are removed� The

applicability of the modi�er is stated in the following de�nition�

De�nition ���
 �Participant Coarsenable� A reuse contract R is participant

coarsenable by a participant coarsening modi�er Mpc if for each pair �p� extint
�

	� p is a participant name in R

�� for each operation name m in extint � m appears in participant p in R and the

union of m �s specialisation clauses in extint is identical to the specialisation

clause of m in p in R

Participant coarsening of contracts can then be de�ned as follows�

De�nition ���� �Participant Coarsening� If a reuse contract R is participant

coarsenable by a modi�erMpc then the reuse contract Rpc is the participant coars�

ening of R by Mpc where�

	� Rpc contains all participants of R that are not mentioned in Mpc

�� for each pair �p� extint
 mentioned in Mpc� Rpc contains a participant

�a
 with name p and the same acquaintance clause as p in R

�b
 that contains all operations of p not mentioned in extint

�c
 that contains all operations of extint with as specialisation clause the
�rst of the two specialisation clauses in extint �

As with participant re�nement the only change to the participants mentioned in

Mpc is the specialisation clauses of the operations mentioned in extint�

Property ��
 A participant coarsening of a well�formed reuse contract is well�

formed�

Proof

� WF	 is not in�uenced by participant coarsening

� WF� and WF� are preserved because acquaintance and operation names are

only omitted from specialisation clauses� they are not added to them� and the
constraint was already respected on the original reuse contract�

��� Operators on Reuse Contracts
�

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3

name11{name22}

Reuse Contract 2

a2 a3

name11
name12

pcpt1

name21
name22

pcpt2

name31
name32

pcpt3
name11
{name21, name22} name22{name31}

Reuse Contract 1

a2 a3

Participant Coarsening Modifier

Pa
rt

ic
ip

an
t

C
oa

rs
en

in
g

{ (pcpt1, { (name11 , {a2.name22}, {a2.name21}) }),
 (pcpt2, { (name22 , {} , {a3.name31}) })
}

Figure ��	�� Participant Coarsening

Illustration

Figure ��	� illustrates a participant coarsening� Operations on two participants

are removed� All operations in the modi�er have two specialisation clauses� To�

gether� they describe the entire specialisation clause on the original contract of the

operation they are attached to� The second part is removed on the resulting contract�

The �rst specialisation clause of name�� is empty� because the entire specialisation
clause of the original contract is removed�

Short�Hand Notations

We again introduce some short�hand notations� Note the use of the word �deref�

erencing� to denote that a coarsening removes dependencies� as opposed to the use

of the word �referencing� that is used with re�nements to denote that dependencies

are added�

Notation ���
 A participant coarsening modi�er Mpc represents a participant

coarsening of m on p if Mpc contains a pair �p� int
� with an operation m in int �

Notation ���� A participant coarsening modi�er Mpc represents a participant
coarsening of m on p dereferencing n on q if Mpc contains a pair �p� int
� with

� Basic Reuse Contracts

an operation m in int � with m invoking n on q in m �s second specialisation clause�

As with participant re�nement we need short�hands to determine the repeating

and resulting specialisation clauses of an operation�

Notation ���� The repeating specialisation clause of an operation m on p in

a participant coarsening modi�erMpc containing a pair �p� extint
� withm in extint

� is the union of the two specialisation clauses coupled to m in extint �

Notation ���� The resulting specialisation clause of an operation m on p in a

participant coarsening modi�er Mpc containing a pair �p� extint
� with m in extint

� is the �rst specialisation clause coupled to m in extint �

����
 Context Coarsening

Motivation

Again� a contract cannot only be coarsened by removing operation invocations�

but also by removing acquaintance relationships� We call this lat operator context

coarsening� Figure ��	� shows a context coarsening� the two acquaintance relation�

ships that together form the bi�directional binding between Bank and Consortium

are removed�

theConstheATM

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard{verifyAccount}

BankATMContract1

BankATMContract2 is a context coarsening of BankATMContract1

verifyAccount
theCons

theCons

theATM theBank

ATM

checkCard

Consortium Bank

verifyCard

checkCard
 {verifyAccount}

Figure ��	�� An Example Context Coarsening

Note that this acquaintance relationship can only be removed because there are

no operation invocations modelled along it� The acquaintance relationship between

ATM and Consortium can� for example� not be removed� �At least not in that di�
rection� Note that there is a bi�directional binding between ATM and Consortium

��� Operators on Reuse Contracts
�

and we can make it uni�directional by removing the acquaintance relationship from

Consortium to ATM�

De�nition and Properties

A context coarsening modi�er has the same form as a context re�nement modi�

�er� meaning that it contains two acquaintance clauses� for a number of participant

names� The �rst part contains the acquaintance relationships to be maintained� the
second part the acquaintance relationships to be removed�

De�nition ���
 �Context Coarsening Modi�er� A context coarsening mod�

i�er is a reuse modi�er with modi�er tag �context coarsening� and a modi�er de�

scription containing triples �p� acq	� acq�
 each consisting of a participant name p

and two disjoint acquaintance clauses�

Again� it is important that the two acquaintance clauses are disjoint� because

the �rst part will be maintained and the second part removed�

De�nition ���� �Context Coarsenable� The context of a reuse contract R is
coarsenable by context coarsening modi�er Mcc if for each triple �p� acq	� acq�
�

	� p is a participant name in R

�� the union of acq	 and acq� is identical to the acquaintance clause of p in R

�� for all a�q in acq�� no operation in p has a in its specialisation clause�

We can now de�ne context coarsening as follows�

De�nition ���� �Context Coarsening� If a reuse contract the context of R is

coarsenable by a modi�er Mcc then the reuse contract Rcc is the context coarsen�

ing of R by Mcc� where�

	� Rcc contains all participants of R that are not mentioned in Mcc

�� for each triple �p� acq	� acq�
 in Mcc� Rcc contains a participant with the same

name and interface as p in R and acq	 as acquaintance clause�

Property ��� A context coarsening of a well�formed reuse contract is well�formed�

Proof

� WF	 is respected because no new acquaintance relationships are added and

no participants are removed

� WF� is respected through the fact that only acquaintance relationships can be

removed� along which no operation invocations are modelled� This is enforced
by the restriction in the third clause of the context coarsenability de�nition

	 Basic Reuse Contracts

� because of the integrity of WF�� WF� is not a�ected by this operator�

Illustration

name11
name12

pcpt1

name21
name22

pcpt2
name11{name22}

a2

Reuse Contract 2

name31

pcpt3
name41
name42

pcpt4
name31 {name42}

a4

a2

Context Coarsening Modifier

C
on

te
xt

C

oa
rs

en
in

g

{ (pcpt4, {a2.pcpt2} ,{a3.pcpt3}),
 (pcpt3, {a4.pcpt4} ,{a1.pcpt1})
}

name11
name12

pcpt1

name21
name22

pcpt2
name11{name22}

a2

Reuse Contract 1

name31

pcpt3
name41
name42

pcpt4
name31{name42}

a4

a2a1

a3

Figure ����� Context Coarsening

Figure ���� illustrates a context coarsening� The acquaintance clauses of two

participants are coarsened� From pcpt� the acquaintance relationship with pcpt�

is removed� from pcpt� the relationship with pcpt	� Note that the union of the

two acquaintance clauses attached to each participant name in the modi�er forms

the complete acquaintance clause of the participant on the original contract� Also

note that in the original contract no operation invocations were modelled along the
acquaintance relationships in the second parts� The operation name�� is invoked by

��� Operators on Reuse Contracts

name�� along the acquaintance relationship a� of pcpt�� not along the acquaintance
a� of pcpt��

Short�Hand Notations

Notation ���� A context coarsening modi�er Mcc represents a context coarsen�

ing of p if Mcc contains a triple �p� acq	� acq�
�

Notation ���� A context coarsening modi�er Mcc represents a context coarsen�

ing of p dereferencing q if Mcc contains a triple �p� acq	� acq�
 and acq� refers to

q �

We again introduce short�hands for repeating and resulting aquaintance clauses�

Notation ���� The repeating aquaintance clause of a participant p in a con�

text coarsening modi�erMcc containing �p� acq	� acq�
 is the union of acq	 and acq��

Notation ���	 The resulting aquaintance clause of a participant p in a context
coarsening modi�er Mcc containing �p� acq	� acq�
 is acq	�

����� Summary

We introduced eight orthogonal and elementary operators on reuse contracts that

together are complete in that they can model all possible adaptations to a reuse

contract� Participant and context extension respectively add operations and par�
ticipants to a contract� while participant and context cancellation remove them�

Participant and context re�nement respectively add operation invocations and ac�

quaintance relationships� while participant and context coarsening remove them�

This was depicted in table ��	 on page ���

All operators were de�ned by means of a modi�er de�nition� an applicability

de�nition and an operator de�nition� The �rst describes what a modi�er for this

particular operator looks like� independent of the reuse contract it will be applied to�

The second de�nes what constraints a modi�er must ful�l in order to be applicable

to a particular reuse contract� The third de�nes how the result of applying this op�

erator to a well�formed reuse contract can be computed� We only apply operators to

well�formed reuse contracts and all operators share the property that they preserve
well�formedness�

A number of the basic reuse modi�ers repeat information about the reuse con�

tract they are applied to� We said that was necessary in order to detect certain

con�icts� In the next chapter we discuss how the operators can assist in detect�

ing con�icts upon evolution and composition� We also discuss the trade�o� between

adding more information to reuse modi�ers� thus being able to detect more con�icts�

and adding less information� thus providing more �exibility�

