
Chapter �

Managing Evolution and

Composition

In the previous chapter we introduced reuse contracts with their reuse operators�
Reuse contracts provide structured documentation of software systems� We also
claimed that the use of reuse operators makes it possible to detect the evolution
con�icts we discussed in chapter �� In this chapter we introduce rules for con�ict
detection based on reuse operators� Sections ��� to ��� give rules for situations
where both modi�cations can be represented by one reuse modi�er� Section ��� then
discusses how this approach scales to modi�cations made by chains of modi�ers� In
the next two chapters we then elaborate on this basic model� while in chapter � we
show how the rules presented in this chapter were used to manage the evolution of
a small framework�

��� Evolution and Composition of Basic Modi�ers

In this chapter� we discuss how the problems that were discussed in chapter � can
be detected by means of reuse contracts and what the possible solutions for these
problems can be� In order to do that we investigate how two modi�cations made to
one reuse contract interact� This is depicted in �gure ���� We call the original reuse
contract which both operators will be applied to the base �reuse� contract� We name
the two modi�ersM� andM�� the reuse contract corresponding to the application of
M� to the base contract R� and the reuse contract corresponding to the application
of M� to the base contract R�� We then examine the e�ect of applying M� to R��
In other words� we assume that M� and M� are two modi�ers that are applicable to
the base contract and we want to see whether the combination of both is possible
and whether the result will be as expected� Note that although we need to give
the modi�ers names and therefore talk about M� and M�� the order in which the



�� Managing Evolution and Composition

modi�ers are applied is irrelevant to the possible con�icts��

Base (reuse) 
contract

Resulting
(reuse) contract

M2 M2

M1
Rbase

R2

R1

Rresult?

Figure ���	 Base Reuse Contract Exchange

We follow the same classi�cation of problems as in chapter �� We �rst consider
interface con�icts� then dangling reference con�icts and then con�icts concerning the
calling structure� As we include information on the calling structure in the interfaces
of reuse contracts and as all con�icts 
 except one 
 are detected by comparing
the reuse modi�ers� one could argue that all these con�icts are interface con�icts�
Here� we make the distinction based on how a developer would perceive the di�erent
kinds of con�icts�

Interface and dangling reference con�icts are fairly basic and some of them can be
detected by compilers of typed object�oriented languages� Interface con�icts occur
when two operators introduce two items with the same name� Dangling reference
con�icts occur when one operator removes an item from the interface� while the
other operator refers to this item� This leads to inconsistent situations� Take as
an example the case where one modi�cation removes an operation� while the other
modi�cation adds an extra invocation of this same operation� In strongly typed
languages such as C�� or Java this can be detected� in languages such as Smalltalk
it will not be detected� The included information on the calling structure makes
it possible to have interface con�icts on that level as well� These are currently not
detected anywhere�

The con�icts concerning the calling structure we discuss in section �� indicate
much more serious problems� which now remain undetected in statically as well as
dynamically typed languages� Con�icts such as operation capture� inconsistent op�
erations and unanticipated recursion do not necessarily make a system break down�
but may result in a working system that does not exhibit the expected behaviour	
it does not behave the way the developers assumed it would� Con�icts such as the

�That is we will set up rules do detect con�icts when considering two independent modi�ers�

Of course� when looking at applicability de�nitions the order does play a role� This will be further

discussed in section ���



��� Interface Con�icts ��

ones with the counting set or the gateway and visitor packets in chapter � fall into
this category�

We will see that there are di�erent approaches possible to detect the con�icts�

� Most often it is possible to detect a con�ict by comparing the modi�ers�

� Sometimes a con�ict may also be identi�ed by looking at the applicability
de�nitions�

� Sometimes� the information provided by the modi�ers does not su�ce and
the base contract needs to be consulted or the resulting contract needs to be
computed�

Where possible� we start by stating rules based on comparison of the modi�ers�
In section ��� we then discuss other options� In that section we also discuss the
trade�o� between being able to detect a maximum of con�icts and having �exible
modi�ers�

��� Interface Con�icts

The �rst category of con�icts concerns interface con�icts� These are caused by two
modi�ers adding the same kind of information to the base contract� Since there are
four kinds of information in a reuse contract� there can be four kinds of interface
con�icts� Since these four kinds of information are added by the four di�erent basic
operators the rules are straightforward� These con�icts always occur when the two
modi�ers represent the same operation adding or adapting items with the same
name�

����� Operation Name Con�icts

We start with operation name con�icts� Operation name con�icts can occur when
two modi�cations both introduce operations with the same name for the same par�
ticipant� An example of an operation name con�ict is depicted in �gure ���� where
both modi�cations introduce an operation transaction on the participant Bank�
This situation needs to be signalled and either one of the two versions of transaction
is preferred� or a combination of both needs to be made�

Since the introduction of new operation names is always achieved through par�
ticipant extension� operation name con�icts can only occur when both modi�cations
perform a participant extension �of the same participant��

Rule ��� �Operation Name Con�ict� An operation name con�ict occurs
when an operation m and a participant p exist such that bothM� andM� represent
participant extensions by m on p �



�� Managing Evolution and Composition

ATMContract

cb

Consortium

verifyAccount

Bank

verifyCard

ATMContract1

cb

Consortium

verifyAccount

Bank

verifyCard
transaction

ATMContract2

cb

Consortium

verifyAccount

Bank

M1 M2

verifyCard
transaction

Figure ���	 An Operation Name Con�ict

Operation name con�icts can be resolved by either renaming one of the opera�
tions or by hiding one or both of these operations� Hiding is a technique that can
be applied� for example� in object�oriented languages by declaring operations to be
private to a class�

����� Participant Name Con�icts

A participant name con�ict appears when both modi�ers add a new participant with
the same name� This can happen only through context extension�

Rule ��� �Participant Name Con�ict� A participant name con�ict occurs
when a participant p exists such that both M� and M� represent context extensions
by p �

The solution to this con�ict can be either the renaming of one of the added
participants or the merging of both participants� Whether the �rst or the second
option is chosen will depend on whether both participants were introduced for similar
purposes or not�

����� Operation Invocation Con�icts

The next two con�icts take a slightly di�erent form� Before� a con�ict was caused
when two modi�cations introduced the same item� Here� a con�ict occurs whenever



��� Interface Con�icts ��

two modi�cations alter the dependencies of the same item in a di�erent way� Con�
sider� for example� two modi�cations re�ning the same operation in a di�erent way�
We call this an operation invocation con�ict� An example of such a con�ict is given
in �gure ���� While the �rst modi�cation re�nes the operation transaction to in�
voke verifyAccount� the second modi�cation re�nes the same operation to invoke
processTrAct� When keeping in mind that an implementation will be associated
with both modi�cations� it is clear that combining both modi�cations leads to a
problem� Picking one will neglect the re�nement made by the other� Whether a
combination of both is desirable depends on the situation� When it is� a combined
re�nement has to be established and the corresponding operation re�implemented�

ATMContract

cb

ConsortiumBank

verifyAccount
processTrAct

transaction

ATMContract1

cb

ConsortiumBank

ATMContract2

cb

ConsortiumBank

M1 M2

verifyAccount
processTrAct

transaction verifyAccount
processTrAct

transaction

transaction
{verifyAccount}

transaction
{processTrAct}

Figure ���	 An Operation Invocation Con�ict

Operation invocation con�icts can happen through participant re�nement� but
also through participant coarsening� We do not make a distinction between con�icts
caused by re�nement and con�ict caused by coarsening here� because on a conceptual
level the con�icts are completely similar� In both cases� two independent modi��
cations change the specialisation clause of the same operation� The corresponding
implementations will therefore not be compatible�

A con�ict occurs when the specialisation clause of the adapted operation in M�

does not represent a correct re�nement or coarsening of the specialisation clause of
the same operation in M�� Note that this is the reason why we repeat the entire
specialisation clause in the re�nement operator� Otherwise we would not be able to
detect 
 by looking at the modi�er only 
 that the implementation attached to
M� will not take into account the extra operation invocations added by M�� It is
in order to be able to express these con�icts clearly that we introduced the short�



�	 Managing Evolution and Composition

hand notations for repeating and resulting specialisation clauses in chapter �� Recall
that both participant re�nements and coarsenings have to repeat the specialisation
clauses on the original contracts of the operations they are adapting�

Rule ��� �Operation Invocation Con�ict� An operation invocation con�ict
occurs when an operation m and a participant p exist� such that both M� and M�

represent participant re�nements or participant coarsenings of m on p and the re�
peating specialisation clause ofm inM� is not identical to the resulting specialisation
clause of m in M��

����� Acquaintance Relationship Con�icts

Acquaintance relationship con�icts are completely similar to operation invocation
con�icts� but concern adding new acquaintance relationships to the acquaintance
clauses� Acquaintance relationship con�icts can therefore only occur when both
modi�cations perform a context re�nement or a context coarsening� Therefore
we also introduced short�hand notations for repeating and resulting acquaintance
clauses�

Rule ��	 �Acquaintance Relationship Con�ict� An acquaintance relation

ship con�ict occurs when a participant p exists� such that both M� and M� repre�
sent context re�nements or context coarsenings of p � and the repeating acquaintance
clause of p in M� is not identical to the resulting acquaintance clause of p in M��

Note again that to detect this con�ict we repeat the acquaintance clause in the
context re�nement modi�er� The solutions to this con�ict are equivalent to the
solutions of specialisation clause con�icts�

����� Summary of Interface Con�icts

To �nish the discussion on interface con�icts table ��� states a summary of all
con�icts� Note that we only completed one half of the table because it is symmetric�
It is clear from the table that the operators are completely orthogonal	 interface
con�icts only occur due to interaction of two identical reuse operators� Note that
we do not mention cancellation in this table� One could consider operation name or
participant name con�icts to occur when both modi�cations remove the same item�
but we chose not to consider this as a con�ict here�

��� Dangling Reference Con�icts

The second category of con�icts are dangling reference con�icts� They occur when
one operator removes an item from the interface� while another operator continues
to refer to it� These con�icts can also be checked by means of rules comparing the
modi�ers�



��� Dangling Reference Con�icts ��

participant
extension

context ex�
tension

participant
ref��coars�

context
ref��coars

participant
extension

operation
name

no con�icts no con�icts no con�icts

context ex�
tension

� participant
name

no con�icts no con�icts

participant
ref��coars

� � operation
invocation

no con�icts

context
ref��coars

� � � acquaintance
relationship

Table ���	 Interface Con�icts

Note that there are three di�erent dangling item con�icts while there were four
kinds of interface con�icts� The reason for this is that from the four basic modelling
constructs in reuse contracts �participants� acquaintances� operations and operation
invocations�� only the �rst three can be referred to by other constructs� For example�
operation invocations refer to the participants the operations are de�ned on� to
the operations themselves and to the acquaintance relationship along which the
operation is invoked� Operation invocations are never referenced�

����� Dangling Operation Reference

Figure �� depicts an example of a dangling operation reference� While the second
modi�er adds an invocation of processTrAct� the �rst modi�cation removes exactly
this operation� Combining the two modi�cations obviously leads to errors�

This con�ict occurs when an operation is removed by M� and M� refers to this
removed participant� This can only happen when M� is a participant cancellation
and M� a participant cancellation� re�nement or coarsening�

Rule ��� �Dangling Operation Con�ict� A dangling operation reference
occurs when an operation m and a participant name p exist such thatM� represents
a participant cancellation of m on p andM� a participant cancellation or re�nement
referencing m on p or a participant coarsening dereferencing m on p �

����� Dangling Participant Reference

This con�ict occurs when one of the participants is removed by M� and M� refers
to this removed participant� This can only happen when M� is a context cancella�
tion� M� can be any possible operator except for context extension� because context
extensions do not refer to existing participants�



�� Managing Evolution and Composition

ATMContract

cb

ConsortiumBank

verifyAccount
processTrAct

transaction

ATMContract1

cb

ConsortiumBank

ATMContract2

cb

ConsortiumBank

M1 M2

verifyAccounttransaction verifyAccount
processTrAct

transaction

transaction
{processTrAct}

Figure ��	 A Dangling Operation Reference

Rule ��� �Dangling Participant Con�ict� A dangling participant reference
occurs when a participant name p exists such that M� represents a context cancel�
lation of p and M� is any modi�er mentioning p except for a context extension
modi�er�

����� Dangling Acquaintance Reference

This con�ict occurs when one of the acquaintance relationships is removed by M�

and M� refers to this removed acquaintance relationship� This can only happen
when M� is a context coarsening and M� is a participant extension� re�nement or
coarsening�

Rule �� �Dangling Acquaintance Con�ict� A dangling acquaintance ref

erence occurs when an acquaintance name a exists such that M� represents a con�
text coarsening of a on p and M� represents a participant extension� re�nement or
coarsening mentioning a on p �

����� Summary of Dangling Reference Con�icts

Note that for all these con�icts a distinction can be made between two cases� The
�rst case is where M� adds information concerning the item removed by M�� the
second is where M� removes information concerning the item removed by M�� For
example� in the rule for dangling operation references� when an operation m is
removed� we mention a con�ict both when the second modi�er references m and



��	 Con�icts Concerning the Calling Structure �

dereferences m� The �rst case constitutes a real problem� In the second case� this
might not really be a con�ict� We could have made distinct rules for these two cases
for each of the previous con�icts� but did not want to include too many similar�
basic con�icts� The only di�erence between the two cases is whether M� is an
inverse operator or not�

Table ��� gives an overview of these con�icts� Note that the table does not list
all possible operators� In order to keep the table concise� we grouped the operators
by how they appear in the rules�

context cancel�
lation

participant
cancellation

context coars�
ening

any operator ex�
cept context ex�
tension

dangling partic�
ipant reference

� �

part� cancellation
part� re�nement
part� coarsening

� dangling oper�
ation reference

�

part� extension
part� re�nement
part� coarsening

� � dangling ac�
quaintance
reference

Table ���	 Dangling Reference Con�icts

��� Con�icts Concerning the Calling Structure

In addition to interface con�icts� we identi�ed con�icts concerning the calling struc�
ture� In this section we set up rules to detect those con�icts by means of reuse
contracts as well� We again accomplish this by investigating the modi�ers� For the
last con�ict� unanticipated recursion� it is however not enough to consider only the
two modi�ers� The base reuse contract needs to be considered as well�

����� Operation Capture

But let us start with operation capture� Figure ��� gives an example of an operation
capture� While the �rst modi�er adds an invocation of calcCode by verifyCard� the
second modi�er adds an invocation of verifyCard by verifyTrans� The result of
combining both combinations is that every time verifyTrans is invoked� this results
in an invocation of calcCode� We say that verifyCard gets captured� because
the changes made to it by the �rst modi�cation have an in�uence on the second
modi�cation� This could amount to no problem at all� but it is also possible that
this leads to unforeseen situations� or to an overhead� Maybe it is not necessary
to invoke calcCode for every verifyTrans� Therefore� such situations should be



�� Managing Evolution and Composition

signalled on integration� Note that any change to verifyCard made by M� would
lead to operation capture in combination with M�� Operation capture implies that
a change to one operation might in�uence more operations than the person making
the change expected�

M1 M2

ATMContract

cb

Consortium

verifyTrans

Bank

verifyCard
calcCode

ATMContract2

cb

Consortium

verifyTrans

Bank verifyTrans
{verifyCard}

verifyCard
verifyCode

ATMContract1

cb

b

Consortium

verifyTrans

Bank

verifyCard
calcCode

verifyCard 
{calcCode}

Figure ���	 Regular Operation Capture

Remember that we distinguished regular operation capture from accidental op�
eration capture� Figure ��� models a regular operation capture� because verifyCard
was already present on the original reuse contract� We call it regular� because the
person making the change to verifyCard knew that other modi�ers could possibly
add invocations to it�

Accidental operation capture would have occurred when verifyCard was not
present on the original reuse contract and both modi�cations introduced it� while
one added an invocation to it� We call this accidental because both developers
introducing verifyCard could not foresee the other one introducing an operation
with the same name� Note that accidental operation capture always coincides with
an operation name con�ict�

Regular Operation Capture

A regular operation capture occurs when an operation invocation of m is added
to a specialisation clause by one modi�er and this same operation m is changed by



��	 Con�icts Concerning the Calling Structure ��

another modi�er� As a consequence� operation capture can only be caused when
one modi�er is a re�nement� The other modi�er changes m� so it can only be a
re�nement or a coarsening�

Rule ��� �Regular Operation Capture� A regular capture of an operation n
by an operation m occurs when

� M� represents a participant re�nement of m on p referencing n on q �

� M� represents a participant re�nement of n on q or a participant coarsening
of n on q �

The solution to regular operation capture depends on the situation� It is possible
that the operation that is captured performs the desired behaviour� so there is no
real con�ict and nothing needs to be done� If not� the captured operation either has
to be re�implemented to provide the desired behaviour or it has to be encapsulated
so that it is no longer captured�

Accidental Operation Capture

If the operation m did not yet exist on the original base contract the operation
capture is accidental� as one could not foresee it� Since this con�ict can only occur
when a dependency is added to a newly added operation� this can only occur after
performing an extension�

This becomes apparent through the operation name con�ict that always occurs
simultaneously with the accidental operation capture� because the two modi�cations
independently introduce the same operation�

Rule ��� �Accidental Operation Capture� An accidental capture of an op�
eration n by an operation m occurs when

� M� represents a participant extension by m on p referencing n on q �

� M� represents a participant extension by n on q �

Note that in fact these two extensions also cause an operation name con�ict� Note
also that the �rst clause of this rule implies that n is also newly added� because of
the self�containedness of extension� As a solution� both the name con�ict and the
capture have to be resolved in the ways described above�

����� Inconsistent Operations

While operation capture occurs when specialisation clauses are augmented� incon�
sistent operations appear when operations are removed from specialisation clauses�
Consider the example in �gure ��� where the �rst modi�cation adds the invocation



�� Managing Evolution and Composition

of calcCode by verifyCard� while the second modi�cation removes the invocation
of verifyCard by verifyTrans� The developer adding the invocation of calcCode
assumed that this invocation would also have an e�ect on verifyTrans� After com�
bining both modi�cations this is no longer the case� We say that verifyTrans and
verifyCard have become inconsistent	 one calculates codes� while the other does
not� Whether this is a problem or not will again depend on the situation� more
particularly on the reasons why the invocation of verifyCard by verifyTrans was
removed� If this was for pure implementation reasons with as goal still exhibiting
the same behaviour� there is a problem� To solve it the operation verifyTrans

needs to be adapted in� to get their behaviour consistent again�

M1 M2

ATMContract2

cb

Consortium

verifyTrans

Bank

verifyCard
calcCode

ATMContract1

cb

b

Consortium

verifyTrans

Bank

verifyCard
calcCode

verifyCard 
{calcCode}

ATMContract

cb

Consortium

verifyTrans

Bank verifyTrans
{verifyCard}

verifyTrans
{verifyCard}

verifyCard
verifyCode

Figure ���	 Inconsistent Operations

The removal of an operation from a specialisation clause can be achieved through
coarsening and cancellation� However� when an entire operation is removed� it can�
not become inconsistent with another operation� Therefore� this con�ict only occurs
after a coarsening� Again� the second modi�er should change the operation that is
removed from the specialisation clause� so it can only be a re�nement or a coarsening�

Rule ���� �Inconsistent Operations� Two operationsm and n become incon

sistent when

� M� represents a participant coarsening of m on p dereferencing n on q �

� M� represents a participant re�nement or a participant coarsening of n on q �



��	 Con�icts Concerning the Calling Structure ��

To solve this problem the operation m needs to be adapted inM� in order to get
their behaviour consistent again�

Note that this con�ict was the one that occurred with the counting set and the
gateway and visitor packets in chapter ��

����� Unanticipated Recursion

Unanticipated recursion is the con�ict that occurs when� after two separate aug�
mentations of the specialisation clauses of two separate operations� these operations
show mutually recursive behaviour� Take� for example� �gure ��� where the �rst
modi�cation adds an invocation of verifyAccount by verifyCard and the second
modi�cation adds an invocation of verifyCard by verifyAccount

ATMContract

cb

Consortium

verifyAccount

Bank

verifyCard

ATMContract1

cb

Consortium

verifyAccount

Bank

verifyCard

verifyCard
{verifyAccount}

ATMContract2

cb

Consortium

verifyAccount

Bank

verifyCard

verifyAccount
{verifyCard}

M1 M2

Figure ���	 Unanticipated Recursion

A �rst straightforward version of the rule for unanticipated recursion is	

Rule ���� �Unanticipated Recursion� Unanticipated recursion of two oper�
ations m and m occurs when

� M� represents a participant re�nement of m on p referencing n on q or a
participant extension by m on p referencing n on q �

� M� represents a participant re�nement of n on q referencing m on p or a
participant extension by n on q referencing m on p �

Note that because of the applicability rules the only combinations that can ac�
tually occur are two re�nements or two extensions�



�� Managing Evolution and Composition

However� this version of the rule only detects the most simple cases of this
con�ict� Consider a more complex situation� as depicted in �gure ����

First we need to clarify our notation� What is important in the illustration of this
and further examples is not the exact form of the modi�ers� but the way the di�erent
modi�ers interact� Therefore� now that the formats of the di�erent modi�ers have all
been thoroughly discussed in chapter �� we describe the modi�ers in a more intuitive
notation� We no longer depict the entire structure� but use a more intuitive notation
�that is also used further on to describe examples and tools�� In this new notation�
we mark items that are added to the contract with a ��� and items that are removed
from the contract with a ���� When a complete interface or participant is added or
removed� the ��� or ��� is placed in front of the description or the description�s name�
When something is changed in the specialisation or acquaintance clause only� the
signs are placed there�

A second simpli�cation� is that we denote intra�participant operations between
braces in the interface of the participants� instead of along a loop� This allows us to
give simple examples with contracts that only consist of one participant�

a {b}
b
c

ref 
c{+a}

a {b}
b
c {a}

ref 
b{+a}

a {b}
b {a}
c

Figure ���	 Indirect Unanticipated Recursion

Coming back to the case of unanticipated recursion� �gure ��� depicts a situation
where a participant in the original reuse contract contains three operations a� b� and
c and a has specialisation clause containing b� If one modi�er re�nes b to make
an invocation of c� and the other modi�er re�nes c to invoke a� when comparing
both modi�ers� there does not seem to be any problem� occurring to the rule given
above� The global e�ect of both re�nements is that an indirect invocation from b

to a is introduced� However� when looking at the reuse contract this actually is a
problem because a already invoked b and thus an unanticipated recursion occurs� So
in general� not only both modi�ers but also the specialisation interface of the original
reuse contract needs to be taken into account� Furthermore� to be able to express
this rule we need to introduce the notion of a transitive closure of a specialisation
clause�



��� Evaluation ��

De�nition ��� �Transitive Closure� The transitive closure of a specialisa

tion clause SC is the union of SC and the transitive closure of specialisation clauses
of all operations appearing in SC�

Based on this notion we can now give a more general rule for unanticipated
recursion� When considering only the simplest case� this new de�nition boils down
to the previous de�nition�

Rule ���� �Unanticipated Recursion Revisited� Unanticipated recursion
of two operations m� on p� and m� on p� occurs when

� M� and M� are participant re�nements �extensions� �

� R� is a participant re�nement �extension� of R withM�� R� is a participant re�
�nement �extension� of R withM�� R�� is a participant re�nement �extension�
of R� with M��

� m� appears attached to an acquaintance name referring to p� in the transitive
closure of the specialisation clause of m� in R���

� m� appears attached to an acquaintance name referring to p� in the transitive
closure of the specialisation clause of m� in R���

� at least one of the last two statements was not true on R� and R��

Note that while for all other rules it su�ced to consider only the modi�ers in
order to detect the con�ict� here we also need the original reuse contract� because
we need to compute the results of the re�nements or extensions�

����� Summary of Con�icts about the Calling Structure

To round o� the discussion on con�icts involving the calling structure we give a
summary of all con�icts in table ���� Again� only one half of the table needs to be
considered� because the rules are symmetric�

��� Evaluation

����� Alternative Rules

We have tried to set up rules that were based only on comparison of the reuse
modi�ers� Except for unanticipated recursion� we succeeded in this goal� For some
of the rules however a di�erent approach is possible� namely for the interface and
dangling reference con�icts� Take operation name con�icts as an example� Such
a con�ict occurs when both modi�ers are participant extensions introducing an
operation with the same name� Another way to detect this con�ict is through
applicability�



�	 Managing Evolution and Composition

part� extension part� re�nement part� coarsening

part� extension accidental oper�
ation capture�
unanticipated
recursion

no con�icts no con�icts

part� re�nement � regular oper�
ation capture�
unanticipated
recursion

regular oper�
ation capture�
inconsistent
operations

part� coarsening � � inconsistent op�
erations

Table ���	 Con�icts concerning the Calling Structure

Rule ���� �Operation Name Con�ict� An operation name con�ict occurs
when bothM� andM� are participant extension modi�ers� andM� is not applicable
after M��

The correctness of this last rule can be checked by looking at the applicability
de�nition and by taking into account that bothM� andM� are applicable to the base
reuse contract� The applicability de�nition contains four clauses only the second of
which is dependent on possible intermediary participant extensions� Therefore� if
M� is no longer applicable the second clause has failed� This clause states that the
operation names in M� are di�erent from all operation names already present on
the referenced participant in the contract to which M� is applied� As this was valid
forM� with respect to the base reuse contract� the only possibility is thatM� added
operations with names identical to operation descriptions in M�� Again note that
the order in which the modi�ers are applied is irrelevant�

Dangling reference problems can also be detected by means of the applicability
rules� but in this case the order in which the two modi�ers are applied is important�
This can be clari�ed when considering that all these con�icts are caused by the fact
that one of the modi�ers removes a certain item from the reuse contract that the
other modi�er in some way relies on� When the modi�er that removes something is
performed last� the con�ict will not be detected through the applicability rules� An
alternative rule for the dangling participant reference con�ict is given below�

Rule ���	 �Dangling Participant Reference� A dangling participant refer

ence occurs when M� is a context cancellation modi�er� and M� is not applicable
to the exchanged base contract�

The con�icts regarding the calling structure cannot be detected merely by ap�
plicability rules� as we need more information about what exactly is part of the



��� Evaluation ��

modi�ers�

Note that in order to use this version of the rules� one needs to know the base
reuse contract� because applicability of a modi�er depends on the reuse contract one
tries to apply it to� For the versions of the rules as given above� only the modi�ers
are necessary� We have therefore chosen for the �rst version because these rules are
more general� When one knows the old reuse contract and the new one� it is easy
to calculate the modi�ers that were applied to make the adaptation� Knowing only
the reuse modi�ers does not give the same information on the base reuse contract�

����� Other Possible Con�icts

The set of con�icts that we have discussed above is obviously not complete� On
the one hand� more con�icts can be conceived that could be detected by this basic
version of reuse contracts� on the other hand the set of con�icts we can detect is
limited by the information that we include in our reuse contracts� One could for ex�
ample expect to �nd more con�icts concerning the acquaintance relationships� This
is however restrained by the fact that we do not make a distinction between di�erent
kinds of acquaintance relationships� which makes it hard to say anything meaning�
ful about acquaintance relationship con�icts� The basic reuse contract interface will
therefore be extended in chapter ��

On the other hand� the set of con�icts that can be detected is dependent on the
information we include in the reuse modi�ers� We did� for example� repeat the spe�
cialisation and acquaintance clauses of the base reuse contracts in the participant
and context re�nement modi�ers in order to detect operation invocation and ac�
quaintance relationship con�icts� By including this information we can detect extra
con�icts but each modi�er is applicable to fewer reuse contracts� A trade�o� needs
to be made in the de�nition of each reuse modi�er�

Take the example of �gure ���� The �rst modi�er moves the acquaintance re�
lationship with name a to point to Z instead of Y�� The second modi�er adds an
operation invocation along the acquaintance relationship with name a� Combin�
ing these two modi�cations causes the operation invocation to be performed on a
di�erent participant than might have been planned by the developer adding this
invocation� Two questions occur� First� is this a con�ict� Second� how can it be
detected if it is�

The answer to the �rst question is hard to give at this level of abstraction� It
depends on the operation invocation mechanism that is being modelled� The second
answer is that if we want to detect this situation� it is not su�cient to specify
the name of the acquaintance relationship along which an operation is invoked in

�Note that doing this implies �rst removing the original acquaintance relationship by means of

a context coarsening and subsequently introducing the new one by means of a context re�nement�

We discuss combined operators in section ��� and chapter ��



�� Managing Evolution and Composition

Contract1

X

m

Z

n

Y

n

a

Resulting Contract

X

m

Z

n

Y

n

a m{n}

Base Contract

X

m

Y

na

Contract2

X

m

Y

na

m{n}M2

M1 M1

Figure ���	 An Acquaintance Relationship Con�ict

the participant re�nement modi�er� We also need to state to which participant
this acquaintance relationship is pointing at the time of the re�nement� Again�
the information that is introduced to enable detecting another con�ict restricts the
number of reuse contracts to which a modi�er is applicable� What information is
to be included depends on the particular �avour of reuse contracts� Another option
could be to let the user explicitly add any information he regards as being important�
We run into this issue again when setting up reuse contracts for classes and objects
in chapter ��

��� Evolution of Chains of Adaptations

Until now� we have only discussed the problem of detecting con�icts when two
basic modi�ers are applied to the same reuse contract� The question remains which
con�icts can or will occur when applying two chains of primitive modi�ers to the
same reuse contract� Due to the subsequent modi�ers in a chain local con�icts may
be annihilated� As modi�cations are usually modelled by a series of modi�ers� this
question is crucial to the usefulness of our approach� We give a sketch of how con�icts
caused by chains of modi�ers can be detected� To make the reasoning clearer this
sketch only concerns the participant modi�ers� but a similar argumentation can be
made for the context modi�ers and the interactions between both kinds of modi�ers�
Note that since we only use the participant versions of the operators� We omit the
word �participant� when denoting the operators�



��� Evolution of Chains of Adaptations �

Our approach starts by �rst transforming the chains so that each modi�er is
independent 
 with respect to the possible con�icts 
 of the preceding ones� and
then detecting con�icts by comparing the modi�ers in both chains one by one� This
approach works� except for con�icts concerning transitive closures� Even worse� a
chain can introduce additional transitive con�icts�

To simplify the situation� we �rst investigate the case where a reuse contract is
modi�ed by a single primitive modi�er on the one hand� and a chain of primitive
modi�ers on the other hand� as depicted in �gure ����� Sections ����� to ����� discuss
those con�icts that can be detected by comparing the modi�ers only� Section ����
discusses transitive closure con�icts as well� Section ����� then summarises for the
case of one modi�er versus a chain of modi�ers� while ����� generalises to two chains
of modi�ers�

...

Chain of modifiers

Single
Modifier

M'

M1 M2 Mn

Figure ����	 Chain vs� Single Modi�er

����� Chain vs� Single Modi�er

At �rst glance� we might expect that the possible con�icts that can occur are exactly
those caused by the interaction of the single modi�er and each of the modi�ers in
the chain� Two possibilities should be considered	 the chain can cause more or fewer
con�icts�

� Is it possible that a chain causes more con�icts than the sum of those caused

by the modi�ers that are part of it� When considering con�icts that can be
detected by modi�er comparison only� the answer is negative� Indeed� in that
case� the chain is nothing more than a sequence� the con�icts of which can
be detected by comparing each modi�er in the chain with the single modi�er�
Apart from the fact that they need to be applied in a given order� no other
assumptions are made about the relationship between the modi�ers in a chain�
So� the modi�ers do not express additional assumptions about each other or
the base reuse contract that can be broken and no new con�icts can arise�

� Is it possible that a chain causes fewer con�icts than the sum of those caused
by the modi�ers that are part of it� Here the answer is positive� It is possible



�� Managing Evolution and Composition

that some con�icts that occur due to the interaction of the single modi�er
and one of the modi�ers in the chain are not really con�icts when considering
the chain as a whole� For example� when one of the modi�ers in the chain
introduces a new operation causing a name con�ict� but the same operation is
cancelled later on in the chain� there is no name con�ict with respect to the
chain as a whole�

In general� such annihilation of con�icts occurs only when some con�icting
situation earlier on in the chain gets resolved due to a subsequent modi�cation
in the chain� Con�icts can only be annihilated by the subsequent modi�ers�
preceding modi�ers have an impact on the applicability of later modi�ers� not
on the con�icts these modi�ers cause�

In sections ����� and ����� we investigate the di�erent combinations of modi�ers
and see which combinations can lead to annihilation of con�icts and which cannot�

����� Annihilation of Con�icts

Kinds of Annihilating Pairs

As argued above� some local con�icts in a chain should not be considered as con�
�icts when considering the chain as a whole� More precisely� local con�icts due to
some modi�er in a chain may be resolved by subsequent modi�ers� We distinguish
between two kinds of con�ict annihilation�

The �rst case occurs when a modi�er Mi in a chain modi�es some operation
m and a subsequent modi�er Mj cancels m� Not only will the e�ect of what Mi

did with the operation get lost� but also all possible con�icts in Mi with respect
to that operation will vanish� Note that the cancellation Mj itself can give rise
to a dangling operation reference� but all con�icts �operation capture� inconsistent
operations� � � � � due to the original modi�cation of m� will be annihilated when m
is cancelled� Note that in this case the annihilation is independent of the particular
modi�cation performed by Mi�

The second case is more subtle and concerns con�ict annihilations where a mod�
i�er is followed by an inverse modi�er annihilating part of its e�ect� An example
is a re�nement of an operation m with an operation invocation to n� followed by a
coarsening of m dereferencing n� The re�nement of m may introduce� for example�
an operation capture of n� but this con�ict disappears when the invocation of n is
removed again by means of the coarsening�� Note that in this case the second mod�
i�er need not always be the direct inverse of the �rst modi�er� It can� for example�

�One might wonder whether such situations will actually ever occur� or whether they are not

just a sign of bad design� We will see later on that such situations can be found� for example�

in inheritance hierarchies in languages with single inheritance only� in order to mimic multiple

inheritance�



��� Evolution of Chains of Adaptations ��

also be an extension� followed by a coarsening of an operation invocation introduced
by this extension�

Elimination of Annihilations from Chain

By de�nition� the annihilated con�icts should not be signalled when detecting con�
�icts due to the interaction of a modi�er and a chain of modi�ers� Therefore� before
starting con�ict detection in a chain� we transform the chain such that it contains no
more annihilating modi�ers� Of course� we have to take care that the transformation
removes these con�icts only� and no others� Below� we take a more detailed look
at how such a transformation should be done� We distinguish between the di�erent
operator combinations that can lead to con�ict annihilations�

�� Extension by m followed by cancellation of m� For every subchain
starting with a modi�er introducing a new operation m and ending with a
cancellation of m �and no other extensions or cancellations of m in between��
we try to eliminate this extension and cancellation� Because some modi�ers in
between may also depend on m we �rst need to eliminate these dependencies�
Therefore� we �rst need to perform the steps �a and �b	

�a� First� we eliminate all annihilating pairs of re�nements and coarsenings
of some operation n with m� How to do this is explained in steps � and
�� Second� if the extension by m itself added an operation n referencing
m� we remove the possible annihilating pairs of the extension by m and
a coarsening of n dereferencing m� as explained in step �� After this� it
can easily be shown that no more coarsenings or re�nements of n with m
remain	

� No coarsenings of n with m remain� because this is only possible if
the coarsening was preceded by a re�nement of n withm or when the
extension contained an operation n referencing m �these are the only
two waysm could have been introduced in the specialisation clause of
n�� Both cases lead to annihilating pairs� and have just been worked
away�

� Also� no re�nements of n with m remain	 if they are followed by
an annihilating coarsening they have been worked away� the other
case is impossible because the cancellation of m would then not be
applicable�

�b� As all references to m in specialisation clauses have now been removed�
we can simply discard all re�nements and coarsenings of m� Afterwards�
the subchain contains no more dependencies on m�

�c� Finally� discard the extension by and cancellation of m� �Of course� if the
extension by m is part of a larger extension modi�er� we remove only the



��� Managing Evolution and Composition

relevant part of this modi�er� A similar remark holds for the cancellation
and for the re�nements and coarsenings in the previous step��

�� Re�nement followed by coarsening of n referencing m� Eliminate all
annihilating pairs starting with a re�nement of n with m� and ending with a
coarsening of n with m� that have no other re�nements or coarsenings of n
with m in between� This can easily be done by removing both modi�ers 

or their relevant parts� Note that in this case the �relevant parts� can mean
that only part of the specialisation clause in a re�nement is removed� If a
re�nement adds more operations to n�s specialisation clause than just m and
these operation invocations are not removed� this part of the re�nement must
be preserved�

�� Coarsening followed by re�nement of n referencing m� This case is
completely analogous to the previous one�

� Cancellation of m followed by extension by m� Next we eliminate all
annihilating pairs starting with a cancellation of m� ending with an extension
by m and no other cancellations of m or extensions with m in between� If
there are other modi�ers in between� this is not a problem� as these cannot
depend on m� If the extension by m has the same specialisation clause as m
immediately before the cancellation was performed� we can simply remove both
the cancellation and the extension �or the relevant parts of the corresponding
modi�ers�� Otherwise� we drop the cancellation and replace the extension
by a re�nement of m adding all extra operation invocations �with respect to
the situation immediately before the cancellation� and�or a coarsening of m�
removing all operation invocations m no longer performs�

�� Re�nement �or coarsening� of m followed by cancellation of m� To
resolve this case we simply remove the re�nement �or coarsening� of m� We
do not need to take any precautions as all references to m have been removed
before the cancellation of m is performed �otherwise the cancellation would not
be applicable�� and thus it actually no longer matters whether the re�nement
�or coarsening� was performed or not�

�� extension by m followed by coarsening of m� The only case we have not
considered yet is when an extension by an operationm referencing n is followed
by a coarsening of the same operation m removing the invocation of n� But
as every extension could conceptually be seen as a �pure� extension �i�e�� with
empty specialisation clauses� followed by a re�nement� the argumentation here
is essentially the same as in step ��

We have now given a transformation algorithm to eliminate annihilating opera�
tions from a chain� Note that this algorithm was independent of the kinds of con�icts



��� Evolution of Chains of Adaptations ���

we want to detect� In other words� when other con�ict situations are de�ned that
we want to be able to detect� this part of the argumentation does not need to be
repeated�

����� Dependence of Modi�ers

In this section� we verify whether no other annihilating con�icts may remain after the
above transformation� In other words� we need to investigate whether the remaining
modi�ers in the chain are �independent�� in the sense that the con�icts caused by
one modi�er do not in�uence other modi�ers in the chain�

Table �� gives an overview of the possible relationships between modi�ers in a
chain� We imagine M� preceding M� in a chain� We then have three possibilities�

�� The two modi�ers are independent� This occurs� for example� with two exten�
sions� The fact that the two extensions appear in one chain implies that the
one extension is applicable after the other� Therefore� they cannot contain the
same items and so they are independent�

�� The two modi�ers are annihilating� These are the cases discussed in the pre�
vious section�

�� The two modi�ers are dependent� These are the cases we have not discussed
yet	 they are treated below�

First� note that a single combination of modi�ers sometimes has multiple kinds
of interactions in table ��� This depends on their contents� Take for example
extension after cancellation� When these two modi�ers a�ect the same operation
�e�g�� an extension by m and a cancellation of m� they are annihilating� when they
concern di�erent operators �e�g�� an extension by m and a cancellation of n� they
are independent� Therefore� the word independent should be marked in each com�
partment of the table� In order to keep the table concise� we have only mentioned
�independent� when it is the only possibility�

M� extension re�nement cancellation coarsening
M�

extension independent independent annihilating independent

re�nement dependent dependent independent dependent�
annihilating

cancellation annihilating annihilating independent annihilating

coarsening dependent�
annihilating

dependent�
annihilating

independent dependent

Table ��	 Dependencies between Modi�ers



��� Managing Evolution and Composition

Since independent modi�ers will not in�uence the con�icts each of them causes
and since we have treated the case �annihilating� above� all that is left to do is take
a closer look at the remaining dependencies�

Extension versus Re�nement�Coarsening Two of the remaining dependen�
cies between modi�ers are when M� is an extension� and M� is a re�nement or
coarsening� This does not necessarily mean that the con�icts of M� are in�uenced
by M�� Suppose M� is an extension by an operation m referencing n�

� If M� is a coarsening of m� it has no in�uence on the con�icts caused by M��
The only possible con�icts for extension are operation name con�icts� dangling
participant references� dangling acquaintance references and accidental opera�
tion captures� A coarsening clearly does not a�ect the occurrence of operation
name con�icts� dangling participant references or dangling acquaintance refer�
ences as it would therefore need to in�uence respectively the set of operations
in an interface� the set of participants in a reuse contract and the set of ac�
quaintance relationships in a contract�� Accidental capture of n by m could�
however� be eliminated by a coarsening of m dereferencing n� but this case was
already handled by the application of step � above�

� If M� is a re�nement of m� this again does not in�uence possible operation
name con�icts� dangling participant references� dangling acquaintance refer�
ences or accidental operation captures occurring due to the application of M��

� IfM� coarsens n or removes an invocation ofm in some operation� this removes
an indirect dependency betweenM� andM�� IfM� is a re�nement of n or adds
an invocation of m in some operation� an indirect dependency is created� The
e�ect of such indirect dependencies is discussed in section ����� on transitive
closure con�icts�

Re�nements versus Coarsenings When M� and M� are re�nements or coars�
enings� indirect dependencies may also be created� for example� M� may introduce
an invocation of an operation which is further re�ned by M�� Again� we refer to
����� Apart from such situations� subsequent re�nements or coarsenings have no
in�uence on the con�icts caused by preceding re�nements or coarsenings� unless they
form an annihilating pair� but this case was discussed above�

����� Transitive Closure Con�icts

We saw in section ���� that some con�icts� 
 such as unanticipated recursion 

cannot be detected by comparing modi�ers one by one� but only by comparing the

�Recall that we consider participant coarsening only here�
�In addition to unanticipated recursion� other transitive closure con�icts are imaginable� we do

not discuss them in this dissertation�



��� Evolution of Chains of Adaptations ���

single modi�er in combination with all preceding modi�ers and the original reuse
contract� In some degenerate cases it is su�cient to compare the two modi�ers only�
For example� if the one modi�er re�nes an operation m with an invocation of n�
and the other modi�er does exactly the opposite� unanticipated recursion occurs� In
more complex situations� where the recursion is not introduced straightforwardly�
but through intermediate operations� not only both modi�ers but also the special�
isation interface of the original reuse contract needs to be taken into account� In
general� this problem occurs whenever we need to take into account the transitive
closure of specialisation clauses� Therefore� we call these con�icts �transitive closure
con�icts��

When we are dealing with chains of modi�ers� the situation becomes even worse�
It is not su�cient to compare and the original reuse contract and the modi�ers of
both chains one by one� Indeed� the preceding modi�ers in the chain are important
as well� For example� if a re�nement modi�er adding an invocation by n of x is
replaced by a chain of re�nements n referencing a� a referencing b� b referencing c
and c referencing x� the unanticipated recursion con�ict still occurs�

Annihilation of Transitive Closure Con�icts

When we consider the entire chain� some of the transitive closure con�icts are not
really con�icts either� Even when all annihilating pairs have been removed� it is still
possible for inverse modi�ers to appear in the chain� Because all annihilating pairs
have been removed� the remaining inverse modi�ers necessarily remove parts of the
original contract� It is possible for these modi�ers to annihilate transitive closure
con�icts� Consider the following example� as depicted in �gure �����

a {b}
b
c

ref 
c{+a}

a {b}
b
c {a}

ref 
b{+c}

a {b}
b {c}
c

coars 
a{-b}

a
b {c}
c

Figure ����	 Transitive Closure Con�ict Annihilation

A participant in a contract contains three operations a� b and c� of which a

invokes b� In the chain a re�nement is performed that causes b to invoke c� Later
on in the chain a is coarsened� The single modi�er re�nes c to invoke a� Without



��	 Managing Evolution and Composition

the coarsening� a case of unanticipated recursion would occur� but in this case it will
not�

In order to identify situations where an unanticipated recursion con�ict might
have occurred somewhere down the chain but not in the �nal result� one must always
consider the result of the entire chain and not the intermediate results� For example�
the unanticipated recursion rule of section ���� states that when both modi�ers are
re�nements or extensions� the result of applying both modi�ers should be checked to
see whether there are two operations in each other�s transitive closure� that were not
connected that way before both operators were applied� When considering chains
the rule should be adapted such that when the single modi�er is a re�nement or an
extension and re�nements or extensions are present in the chain� the same should be
veri�ed in the result of applying both the single modi�er and the chain� By taking
this approach� we might have to compute the transitive closure of operations more
often than strictly necessary� Maybe situations as in �gure ���� could be detected
with less computing work� but that would lead us too far for this sketch�

����� Summary	 Single Modi�er versus Chain of Modi�ers

In order to detect all con�icts concerning a chain of modi�ers versus a single modi�er�
the following steps need to be taken�

�� remove all annihilating modi�ers�

�� for the con�icts that can be detected by investigating the modi�ers only	 check
the remaining modi�ers in the chain one by one against the single modi�er�

�� for transitive closure con�icts	 apply the rules on the result of applying both
the chain and the single modi�er�

This way we are certain that we have detected all con�icts�

����� Con�icts between Two Chains of Modi�ers

Now that we have discussed how to handle one modi�er versus a chain of modi�ers�
it is not so hard to see what to do when considering two chains of modi�ers� as in
�gure �����

Again� �rst all annihilating modi�ers need to be solved� now in each of the chains�
When this is done� all modi�ers from the two chains need to be checked� one by one�
Again� the only con�icts we have missed there are transitive closure con�icts� To
detect these� we now need to compute the result of both chains and apply the rules
for transitive closure con�icts considering both results�



��� Evolution of Chains of Adaptations ���

...

Chain of modifiers

C
ha

in
 o

f 
m

od
if

ie
rs

M1 M2 Mn

M'1

M'2

...

M'n

Figure ����	 Two Chains of Modi�ers

����
 Conclusion

We have presented a sketch of how the con�ict detection rules for single modi�ers
can be extended to chains of modi�ers� A large part of this sketch� i�e�� the removal
of annihilating modi�ers� is independent of the con�icts we want to detect� Only
the second part as discussed in section ����� �i�e�� the part on dependent modi�ers��
was dependent on the kind of con�icts we are concerned with� This implies that
when we want to be able to detect other con�ict situations� only this second part of
the argumentation needs to be repeated�

We only gave a construction of how this can be handled for the participant mod�
i�ers� but a similar reasoning can be developed for the context modi�ers and the
interactions between both kinds of modi�ers�

The possibility to use the rules for chains of modi�ers as well is crucial� because
the basic modi�ers as de�ned in chapter � are very rudimentary and do not su�ce to
model real evolutions and variations in components� In the next chapter� we discuss
some combinations of basic modi�ers that occur very often and that we therefore
want to de�ne and name explicitly�




