Chapter 3

Managing Evolution and
Composition

In the previous chapter we introduced reuse contracts with their reuse operators.
Reuse contracts provide structured documentation of software systems. We also
claimed that the use of reuse operators makes it possible to detect the evolution
conflicts we discussed in chapter 1. In this chapter we introduce rules for conflict
detection based on reuse operators. Sections 3.1 to 3.5 give rules for situations
where both modifications can be represented by one reuse modifier. Section 3.6 then
discusses how this approach scales to modifications made by chains of modifiers. In
the next two chapters we then elaborate on this basic model, while in chapter 6 we
show how the rules presented in this chapter were used to manage the evolution of
a small framework.

3.1 Evolution and Composition of Basic Modifiers

In this chapter, we discuss how the problems that were discussed in chapter 1 can
be detected by means of reuse contracts and what the possible solutions for these
problems can be. In order to do that we investigate how two modifications made to
one reuse contract interact. This is depicted in figure 3.1. We call the original reuse
contract which both operators will be applied to the base (reuse) contract. We name
the two modifiers M; and My, the reuse contract corresponding to the application of
M, to the base contract R; and the reuse contract corresponding to the application
of M to the base contract Ry. We then examine the effect of applying M> to R;.
In other words, we assume that M; and Ms are two modifiers that are applicable to
the base contract and we want to see whether the combination of both is possible
and whether the result will be as expected. Note that although we need to give
the modifiers names and therefore talk about M; and Ms, the order in which the

80

Managing Evolution and Composition

modifiers are applied is irrelevant to the possible conflicts'.

Rpase My Ry

Base (reuse) ,

contract

R

result

Ry

Resulting
(I'(’II.\'(’) contract

Figure 3.1: Base Reuse Contract Exchange

We follow the same classification of problems as in chapter 1. We first consider
interface conflicts, then dangling reference conflicts and then conflicts concerning the
calling structure. As we include information on the calling structure in the interfaces
of reuse contracts and as all conflicts — except one — are detected by comparing
the reuse modifiers, one could argue that all these conflicts are interface conflicts.
Here, we make the distinction based on how a developer would perceive the different
kinds of conflicts.

Interface and dangling reference conflicts are fairly basic and some of them can be
detected by compilers of typed object-oriented languages. Interface conflicts occur
when two operators introduce two items with the same name. Dangling reference
conflicts occur when one operator removes an item from the interface, while the
other operator refers to this item. This leads to inconsistent situations. Take as
an example the case where one modification removes an operation, while the other
modification adds an extra invocation of this same operation. In strongly typed
languages such as C++ or Java this can be detected, in languages such as Smalltalk
it will not be detected. The included information on the calling structure makes
it possible to have interface conflicts on that level as well. These are currently not
detected anywhere.

The conflicts concerning the calling structure we discuss in section 3.4 indicate
much more serious problems, which now remain undetected in statically as well as
dynamically typed languages. Conflicts such as operation capture, inconsistent op-
erations and unanticipated recursion do not necessarily make a system break down,
but may result in a working system that does not exhibit the expected behaviour:
it does not behave the way the developers assumed it would. Conflicts such as the

'That is we will set up rules do detect conflicts when considering two independent modifiers.
Of course, when looking at applicability definitions the order does play a role. This will be further
discussed in section 3.5

3.2 Interface Conflicts

81

ones with the counting set or the gateway and visitor packets in chapter 1 fall into
this category.
We will see that there are different approaches possible to detect the conflicts.

e Most often it is possible to detect a conflict by comparing the modifiers;

e Sometimes a conflict may also be identified by looking at the applicability
definitions;

e Sometimes, the information provided by the modifiers does not suffice and
the base contract needs to be consulted or the resulting contract needs to be
computed.

Where possible, we start by stating rules based on comparison of the modifiers.
In section 3.5 we then discuss other options. In that section we also discuss the
trade-off between being able to detect a maximum of conflicts and having flexible
modifiers.

3.2 Interface Conflicts

The first category of conflicts concerns interface conflicts. These are caused by two
modifiers adding the same kind of information to the base contract. Since there are
four kinds of information in a reuse contract, there can be four kinds of interface
conflicts. Since these four kinds of information are added by the four different basic
operators the rules are straightforward. These conflicts always occur when the two
modifiers represent the same operation adding or adapting items with the same
name.

3.2.1 Operation Name Conflicts

We start with operation name conflicts. Operation name conflicts can occur when
two modifications both introduce operations with the same name for the same par-
ticipant. An example of an operation name conflict is depicted in figure 3.2, where
both modifications introduce an operation transaction on the participant Bank.
This situation needs to be signalled and either one of the two versions of transaction
is preferred, or a combination of both needs to be made.

Since the introduction of new operation names is always achieved through par-
ticipant extension, operation name conflicts can only occur when both modifications
perform a participant extension (of the same participant).

Rule 3.1 (Operation Name Conflict) An operation name conflict occurs
when an operation m and a participant p exist such that both M; and M, represent
participant extensions by m on p .

82

Managing Evolution and Composition

ATMContract
Bank Consortium
verifyCard verifyAccount
b c
V w
ATMContractl ATMContract2
Bank Consortium Bank Consortium
verifyCard verify Account verifyCard verify Account
transaction |} c transaction |p c

Figure 3.2: An Operation Name Conflict

Operation name conflicts can be resolved by either renaming one of the opera-
tions or by hiding one or both of these operations. Hiding is a technique that can
be applied, for example, in object-oriented languages by declaring operations to be
private to a class.

3.2.2 Participant Name Conflicts

A participant name conflict appears when both modifiers add a new participant with
the same name. This can happen only through context extension.

Rule 3.2 (Participant Name Conflict) A participant name conflict occurs
when a participant p exists such that both M; and M; represent context extensions

by p .

The solution to this conflict can be either the renaming of one of the added
participants or the merging of both participants. Whether the first or the second
option is chosen will depend on whether both participants were introduced for similar
purposes or not.

3.2.3 Operation Invocation Conflicts

The next two conflicts take a slightly different form. Before, a conflict was caused
when two modifications introduced the same item. Here, a conflict occurs whenever

3.2 Interface Conflicts

83

two modifications alter the dependencies of the same item in a different way. Con-
sider, for example, two modifications refining the same operation in a different way.
We call this an operation invocation conflict. An example of such a conflict is given
in figure 3.3. While the first modification refines the operation transaction to in-
voke verifyAccount, the second modification refines the same operation to invoke
processTrAct. When keeping in mind that an implementation will be associated
with both modifications, it is clear that combining both modifications leads to a
problem. Picking one will neglect the refinement made by the other. Whether a
combination of both is desirable depends on the situation. When it is, a combined
refinement has to be established and the corresponding operation re-implemented.

ATMContract
Bank Consortium
transaction verifyAccount
b ¢ |processTrAct
V w
ATMContractl ATMContract2
transaction . transaction .
Bank {verifyAccount} Bank {processTrAct}
transaction |_______» |verifyAccount transaction| —______» | verifyAccount
b ¢ |processTrAct b ¢ | processTrAct

Figure 3.3: An Operation Invocation Conflict

Operation invocation conflicts can happen through participant refinement, but
also through participant coarsening. We do not make a distinction between conflicts
caused by refinement and conflict caused by coarsening here, because on a conceptual
level the conflicts are completely similar. In both cases, two independent modifi-
cations change the specialisation clause of the same operation. The corresponding
implementations will therefore not be compatible.

A conflict occurs when the specialisation clause of the adapted operation in My
does not represent a correct refinement or coarsening of the specialisation clause of
the same operation in M;. Note that this is the reason why we repeat the entire
specialisation clause in the refinement operator. Otherwise we would not be able to
detect — by looking at the modifier only — that the implementation attached to
My will not take into account the extra operation invocations added by M;. It is
in order to be able to express these conflicts clearly that we introduced the short-

84

Managing Evolution and Composition

hand notations for repeating and resulting specialisation clauses in chapter 2. Recall
that both participant refinements and coarsenings have to repeat the specialisation
clauses on the original contracts of the operations they are adapting.

Rule 3.3 (Operation Invocation Conflict) An operation invocation conflict
occurs when an operation m and a participant p exist, such that both M; and M,
represent participant refinements or participant coarsenings of m on p and the re-
peating specialisation clause of m in My is not identical to the resulting specialisation
clause of m in M;.

3.2.4 Acquaintance Relationship Conflicts

Acquaintance relationship conflicts are completely similar to operation invocation
conflicts, but concern adding new acquaintance relationships to the acquaintance
clauses. Acquaintance relationship conflicts can therefore only occur when both
modifications perform a context refinement or a context coarsening. Therefore
we also introduced short-hand notations for repeating and resulting acquaintance
clauses.

Rule 3.4 (Acquaintance Relationship Conflict) An acquaintance relation-
ship conflict occurs when a participant p exists, such that both M; and M, repre-
sent context refinements or context coarsenings of p , and the repeating acquaintance
clause of p in My is not identical to the resulting acquaintance clause of p in M;.

Note again that to detect this conflict we repeat the acquaintance clause in the
context refinement modifier. The solutions to this conflict are equivalent to the
solutions of specialisation clause conflicts.

3.2.5 Summary of Interface Conflicts

To finish the discussion on interface conflicts table 3.1 states a summary of all
conflicts. Note that we only completed one half of the table because it is symmetric.
It is clear from the table that the operators are completely orthogonal: interface
conflicts only occur due to interaction of two identical reuse operators. Note that
we do not mention cancellation in this table. One could consider operation name or
participant name conflicts to occur when both modifications remove the same item,
but we chose not to consider this as a conflict here.

3.3 Dangling Reference Conflicts

The second category of conflicts are dangling reference conflicts. They occur when
one operator removes an item from the interface, while another operator continues
to refer to it. These conflicts can also be checked by means of rules comparing the
modifiers.

3.3 Dangling Reference Conflicts

85

participant | context ex- | participant | context
extension tension ref. /coars. ref. /coars
participant || operation no conflicts | no conflicts | no conflicts
extension name
context ex- || - participant | no conflicts | no conflicts
tension name
participant || - - operation no conflicts
ref./coars invocation
context - - - acquaintance
ref. /coars relationship

Table 3.1: Interface Conflicts

Note that there are three different dangling item conflicts while there were four
kinds of interface conflicts. The reason for this is that from the four basic modelling
constructs in reuse contracts (participants, acquaintances, operations and operation
invocations), only the first three can be referred to by other constructs. For example,
operation invocations refer to the participants the operations are defined on, to
the operations themselves and to the acquaintance relationship along which the
operation is invoked. Operation invocations are never referenced.

3.3.1 Dangling Operation Reference

Figure 3.4 depicts an example of a dangling operation reference. While the second
modifier adds an invocation of processTrAct, the first modification removes exactly
this operation. Combining the two modifications obviously leads to errors.

This conflict occurs when an operation is removed by M; and Ms refers to this
removed participant. This can only happen when M; is a participant cancellation
and My a participant cancellation, refinement or coarsening.

Rule 3.5 (Dangling Operation Conflict) A dangling operation reference
occurs when an operation m and a participant name p exist such that M; represents
a participant cancellation of m on p and My a participant cancellation or refinement
referencing m on p or a participant coarsening dereferencing m on p .

3.3.2 Dangling Participant Reference

This conflict occurs when one of the participants is removed by M; and My refers
to this removed participant. This can only happen when M; is a context cancella-
tion. M> can be any possible operator except for context extension, because context
extensions do not refer to existing participants.

86

Managing Evolution and Composition

ATMContract
Bank Consortium
transaction verifyAccount
b ¢ |processTrAct
V w
ATMContractl ATMContract2
Bank Consortium Bank transaction Consortium
{processTrAct}
transaction verifyAccount transaction | ——— > | verifyAccount
b ¢ b ¢ | processTrAct

Figure 3.4: A Dangling Operation Reference

Rule 3.6 (Dangling Participant Conflict) A dangling participant reference
occurs when a participant name p exists such that M; represents a context cancel-
lation of p and M, is any modifier mentioning p except for a context extension
modifier.

3.3.3 Dangling Acquaintance Reference

This conflict occurs when one of the acquaintance relationships is removed by M;
and My refers to this removed acquaintance relationship. This can only happen
when M is a context coarsening and Ms is a participant extension, refinement or
coarsening.

Rule 3.7 (Dangling Acquaintance Conflict) A dangling acquaintance ref-
erence occurs when an acquaintance name ¢ exists such that M; represents a con-
text coarsening of ¢ on p and My represents a participant extension, refinement or
coarsening mentioning a on p .

3.3.4 Summary of Dangling Reference Conflicts

Note that for all these conflicts a distinction can be made between two cases. The
first case is where M; adds information concerning the item removed by Ms, the
second is where M; removes information concerning the item removed by Ms. For
example, in the rule for dangling operation references, when an operation m is
removed, we mention a conflict both when the second modifier references m and

3.4 Conflicts Concerning the Calling Structure

87

dereferences m. The first case constitutes a real problem. In the second case, this
might not really be a conflict. We could have made distinct rules for these two cases
for each of the previous conflicts, but did not want to include too many similar,
basic conflicts. The only difference between the two cases is whether M, is an
inverse operator or not.

Table 3.2 gives an overview of these conflicts. Note that the table does not list
all possible operators. In order to keep the table concise, we grouped the operators
by how they appear in the rules.

context cancel- | participant context coars-
lation cancellation ening

any operator ex- || dangling partic- | - -
cept context ex- || ipant reference
tension

part. cancellation | - dangling oper- | -
part. refinement ation reference
part. coarsening

part. extension - - dangling ac-
part. refinement quaintance
part. coarsening reference

Table 3.2: Dangling Reference Conflicts

3.4 Conflicts Concerning the Calling Structure

In addition to interface conflicts, we identified conflicts concerning the calling struc-
ture. In this section we set up rules to detect those conflicts by means of reuse
contracts as well. We again accomplish this by investigating the modifiers. For the
last conflict, unanticipated recursion, it is however not enough to consider only the
two modifiers. The base reuse contract needs to be considered as well.

3.4.1 Operation Capture

But let us start with operation capture. Figure 3.5 gives an example of an operation
capture. While the first modifier adds an invocation of calcCode by verifyCard, the
second modifier adds an invocation of verifyCard by verifyTrans. The result of
combining both combinations is that every time verifyTrans is invoked, this results
in an invocation of calcCode. We say that verifyCard gets captured, because
the changes made to it by the first modification have an influence on the second
modification. This could amount to no problem at all, but it is also possible that
this leads to unforeseen situations, or to an overhead. Maybe it is not necessary
to invoke calcCode for every verifyTrans. Therefore, such situations should be

88

Managing Evolution and Composition

signalled on integration. Note that any change to verifyCard made by M; would
lead to operation capture in combination with Ms. Operation capture implies that
a change to one operation might influence more operations than the person making
the change expected.

ATMContract
Bank Consortinm
verifyCard verifyTrans
calcCode [¢
V w
ATMContractl
) ATMContract2
Bank Consortium
verifyCard verifyTrans Bank verifyTrans Consortium
~aleCod b c . {verifyCard}
calcCode verifyCard |~ | verifyTrans
) verifyCode [¢
verifyCard
{calcCode}

Figure 3.5: Regular Operation Capture

Remember that we distinguished regular operation capture from accidental op-
eration capture. Figure 3.5 models a regular operation capture, because verifyCard
was already present on the original reuse contract. We call it regular, because the
person making the change to verifyCard knew that other modifiers could possibly
add invocations to it.

Accidental operation capture would have occurred when verifyCard was not
present on the original reuse contract and both modifications introduced it, while
one added an invocation to it. We call this accidental because both developers
introducing verifyCard could not foresee the other one introducing an operation
with the same name. Note that accidental operation capture always coincides with
an operation name conflict.

Regular Operation Capture

A regular operation capture occurs when an operation invocation of m is added
to a specialisation clause by one modifier and this same operation m is changed by

3.4 Conflicts Concerning the Calling Structure

89

another modifier. As a consequence, operation capture can only be caused when
one modifier is a refinement. The other modifier changes m, so it can only be a
refinement or a coarsening.

Rule 3.8 (Regular Operation Capture) A regular capture of an operation n
by an operation m occurs when

e M represents a participant refinement of m on p referencing n on q ;

e M, represents a participant refinement of n on ¢ or a participant coarsening
of nongq.

The solution to regular operation capture depends on the situation. It is possible
that the operation that is captured performs the desired behaviour, so there is no
real conflict and nothing needs to be done. If not, the captured operation either has
to be re-implemented to provide the desired behaviour or it has to be encapsulated
so that it is no longer captured.

Accidental Operation Capture

If the operation m did not yet exist on the original base contract the operation
capture is accidental, as one could not foresee it. Since this conflict can only occur
when a dependency is added to a newly added operation, this can only occur after
performing an extension.

This becomes apparent through the operation name conflict that always occurs
simultaneously with the accidental operation capture, because the two modifications
independently introduce the same operation.

Rule 3.9 (Accidental Operation Capture) An accidental capture of an op-
eration n by an operation m occurs when

e M, represents a participant extension by m on p referencing n on ¢ ;
e M5 represents a participant extension by n on q ;

Note that in fact these two extensions also cause an operation name conflict. Note
also that the first clause of this rule implies that n is also newly added, because of
the self-containedness of extension. As a solution, both the name conflict and the
capture have to be resolved in the ways described above.

3.4.2 Inconsistent Operations

While operation capture occurs when specialisation clauses are augmented, incon-
sistent operations appear when operations are removed from specialisation clauses.
Consider the example in figure 3.6 where the first modification adds the invocation

90

Managing Evolution and Composition

of calcCode by verifyCard, while the second modification removes the invocation
of verifyCard by verifyTrans. The developer adding the invocation of calcCode
assumed that this invocation would also have an effect on verifyTrans. After com-
bining both modifications this is no longer the case. We say that verifyTrans and
verifyCard have become inconsistent: one calculates codes, while the other does
not. Whether this is a problem or not will again depend on the situation, more
particularly on the reasons why the invocation of verifyCard by verifyTrans was
removed. If this was for pure implementation reasons with as goal still exhibiting
the same behaviour, there is a problem. To solve it the operation verifyTrans
needs to be adapted in, to get their behaviour consistent again.

ATMContract

Ranl verifyTrans C ti

] {verifyCard}
verifyCard | «—————— | verifyTrans
verifyCode b

ATMContract2

ATMContractl

verifyTrans C .
{verifyCard}

verifyCard | € | verifyTrans Ranl C .

calcCode |b c .
verifyCard verifyTrans
calcCode [
b c

verifyCard
{calcCode}

Figure 3.6: Inconsistent Operations

The removal of an operation from a specialisation clause can be achieved through
coarsening and cancellation. However, when an entire operation is removed, it can-
not become inconsistent with another operation. Therefore, this conflict only occurs
after a coarsening. Again, the second modifier should change the operation that is
removed from the specialisation clause, so it can only be a refinement or a coarsening.

Rule 3.10 (Inconsistent Operations) Two operations m and n become incon-
sistent when

e M, represents a participant coarsening of m on p dereferencing n on ¢ ;

e M, represents a participant refinement or a participant coarsening of n on q .

3.4 Conflicts Concerning the Calling Structure

91

To solve this problem the operation m needs to be adapted in M; in order to get
their behaviour consistent again.

Note that this conflict was the one that occurred with the counting set and the
gateway and visitor packets in chapter 1.

3.4.3 Unanticipated Recursion

Unanticipated recursion is the conflict that occurs when, after two separate aug-
mentations of the specialisation clauses of two separate operations, these operations
show mutually recursive behaviour. Take, for example, figure 3.7 where the first
modification adds an invocation of verifyAccount by verifyCard and the second
modification adds an invocation of verifyCard by verifyAccount

ATMContract
Bank Consortium
verifyCard verifyAccount
b c
V w
ATMContractl ATMContract2
Ranl verifyCard C fi verifyAccount C .
{verifyAccount} {verifyCard}
verifyCard | ———————» |verifyAccount verifyCard | € [verifyAccount
b c b c

Figure 3.7: Unanticipated Recursion

A first straightforward version of the rule for unanticipated recursion is:

Rule 3.11 (Unanticipated Recursion) Unanticipated recursion of two oper-
ations m and m occurs when

e M represents a participant refinement of m on p referencing n on g or a
participant extension by m on p referencing n on gq ;

e M, represents a participant refinement of n on ¢ referencing m on p or a
participant extension by n on ¢ referencing m on p .

Note that because of the applicability rules the only combinations that can ac-
tually occur are two refinements or two extensions.

92

Managing Evolution and Composition

However, this version of the rule only detects the most simple cases of this
conflict. Consider a more complex situation, as depicted in figure 3.8.

First we need to clarify our notation. What is important in the illustration of this
and further examples is not the exact form of the modifiers, but the way the different
modifiers interact. Therefore, now that the formats of the different modifiers have all
been thoroughly discussed in chapter 2, we describe the modifiers in a more intuitive
notation. We no longer depict the entire structure, but use a more intuitive notation
(that is also used further on to describe examples and tools). In this new notation,
we mark items that are added to the contract with a ‘4+’ and items that are removed
from the contract with a ‘->. When a complete interface or participant is added or
removed, the ‘4’ or ‘-’ is placed in front of the description or the description’s name.
When something is changed in the specialisation or acquaintance clause only, the
signs are placed there.

A second simplification, is that we denote intra-participant operations between
braces in the interface of the participants, instead of along a loop. This allows us to
give simple examples with contracts that only consist of one participant.

f
a {b} e a {b}
b b{+a} b {a}
c C
ref
c{+a}
a {b}
b
c {a}

Figure 3.8: Indirect Unanticipated Recursion

Coming back to the case of unanticipated recursion, figure 3.8 depicts a situation
where a participant in the original reuse contract contains three operations a, b, and
¢ and ¢ has specialisation clause containing b. If one modifier refines b to make
an invocation of ¢, and the other modifier refines ¢ to invoke a, when comparing
both modifiers, there does not seem to be any problem, occurring to the rule given
above. The global effect of both refinements is that an indirect invocation from b
to a is introduced. However, when looking at the reuse contract this actually is a
problem because a already invoked b and thus an unanticipated recursion occurs. So
in general, not only both modifiers but also the specialisation interface of the original
reuse contract needs to be taken into account. Furthermore, to be able to express
this rule we need to introduce the notion of a transitive closure of a specialisation
clause.

3.5 Evaluation

93

Definition 3.1 (Transitive Closure) The transitive closure of a specialisa-
tion clause SC is the union of SC' and the transitive closure of specialisation clauses
of all operations appearing in SC.

Based on this notion we can now give a more general rule for unanticipated
recursion. When considering only the simplest case, this new definition boils down
to the previous definition.

Rule 3.12 (Unanticipated Recursion Revisited) Unanticipated recursion
of two operations my on p; and mo on py occurs when

e M; and M are participant refinements (extensions) ;

e R is a participant refinement (extension) of R with My, R is a participant re-
finement (extension) of R with Ms, Ry is a participant refinement (extension)
of Ry with M;;

e my appears attached to an acquaintance name referring to p; in the transitive
closure of the specialisation clause of mqy in Raq;

e mo appears attached to an acquaintance name referring to ps in the transitive
closure of the specialisation clause of my in Raq;

e at least one of the last two statements was not true on R; and Rs.

Note that while for all other rules it sufficed to consider only the modifiers in
order to detect the conflict, here we also need the original reuse contract, because
we need to compute the results of the refinements or extensions.

3.4.4 Summary of Conflicts about the Calling Structure

To round off the discussion on conflicts involving the calling structure we give a
summary of all conflicts in table 3.3. Again, only one half of the table needs to be
considered, because the rules are symmetric.

3.5 Evaluation

3.5.1 Alternative Rules

We have tried to set up rules that were based only on comparison of the reuse
modifiers. Except for unanticipated recursion, we succeeded in this goal. For some
of the rules however a different approach is possible, namely for the interface and
dangling reference conflicts. Take operation name conflicts as an example. Such
a conflict occurs when both modifiers are participant extensions introducing an
operation with the same name. Another way to detect this conflict is through
applicability.

94

Managing Evolution and Composition

H part. extension ‘ part. refinement ‘ part. coarsening
part. extension accidental oper- | no conflicts no conflicts
ation capture,
unanticipated
recursion
part. refinement || - regular oper- | regular oper-
ation capture, | ation capture,
unanticipated inconsistent
recursion operations
part. coarsening || - - inconsistent op-
erations

Table 3.3: Conflicts concerning the Calling Structure

Rule 3.13 (Operation Name Conflict) An operation name conflict occurs
when both M; and My are participant extension modifiers, and Ms is not applicable
after M.

The correctness of this last rule can be checked by looking at the applicability
definition and by taking into account that both M; and M are applicable to the base
reuse contract. The applicability definition contains four clauses only the second of
which is dependent on possible intermediary participant extensions. Therefore, if
Ms> is no longer applicable the second clause has failed. This clause states that the
operation names in My are different from all operation names already present on
the referenced participant in the contract to which Ms is applied. As this was valid
for M5 with respect to the base reuse contract, the only possibility is that M7 added
operations with names identical to operation descriptions in Ms. Again note that
the order in which the modifiers are applied is irrelevant.

Dangling reference problems can also be detected by means of the applicability
rules, but in this case the order in which the two modifiers are applied is important.
This can be clarified when considering that all these conflicts are caused by the fact
that one of the modifiers removes a certain item from the reuse contract that the
other modifier in some way relies on. When the modifier that removes something is
performed last, the conflict will not be detected through the applicability rules. An
alternative rule for the dangling participant reference conflict is given below.

Rule 3.14 (Dangling Participant Reference) A dangling participant refer-
ence occurs when M; is a context cancellation modifier, and Ms is not applicable
to the exchanged base contract.

The conflicts regarding the calling structure cannot be detected merely by ap-
plicability rules, as we need more information about what exactly is part of the

3.5 Evaluation

95

modifiers.

Note that in order to use this version of the rules, one needs to know the base
reuse contract, because applicability of a modifier depends on the reuse contract one
tries to apply it to. For the versions of the rules as given above, only the modifiers
are necessary. We have therefore chosen for the first version because these rules are
more general. When one knows the old reuse contract and the new one, it is easy
to calculate the modifiers that were applied to make the adaptation. Knowing only
the reuse modifiers does not give the same information on the base reuse contract.

3.5.2 Other Possible Conflicts

The set of conflicts that we have discussed above is obviously not complete. On
the one hand, more conflicts can be conceived that could be detected by this basic
version of reuse contracts, on the other hand the set of conflicts we can detect is
limited by the information that we include in our reuse contracts. One could for ex-
ample expect to find more conflicts concerning the acquaintance relationships. This
is however restrained by the fact that we do not make a distinction between different
kinds of acquaintance relationships, which makes it hard to say anything meaning-
ful about acquaintance relationship conflicts. The basic reuse contract interface will
therefore be extended in chapter 5.

On the other hand, the set of conflicts that can be detected is dependent on the
information we include in the reuse modifiers. We did, for example, repeat the spe-
cialisation and acquaintance clauses of the base reuse contracts in the participant
and context refinement modifiers in order to detect operation invocation and ac-
quaintance relationship conflicts. By including this information we can detect extra
conflicts but each modifier is applicable to fewer reuse contracts. A trade-off needs
to be made in the definition of each reuse modifier.

Take the example of figure 3.9. The first modifier moves the acquaintance re-
lationship with name a to point to Z instead of Y2. The second modifier adds an
operation invocation along the acquaintance relationship with name a. Combin-
ing these two modifications causes the operation invocation to be performed on a
different participant than might have been planned by the developer adding this
invocation. Two questions occur. First, is this a conflict? Second, how can it be
detected if it is?

The answer to the first question is hard to give at this level of abstraction. It
depends on the operation invocation mechanism that is being modelled. The second
answer is that if we want to detect this situation, it is not sufficient to specify
the name of the acquaintance relationship along which an operation is invoked in

“Note that doing this implies first removing the original acquaintance relationship by means of
a context coarsening and subsequently introducing the new one by means of a context refinement.
We discuss combined operators in section 3.6 and chapter 4.

96

Managing Evolution and Composition

Base Contract Contract2
M
X Y 2 X [(m{n} | Y
m)a n) m —) n
a
1 1
1 1
v My 1 Mi
A 4 A 4
Contractl Resulting Contract
X Y X Y
m n m n
N YT
VA VA
n n

Figure 3.9: An Acquaintance Relationship Conflict

the participant refinement modifier. We also need to state to which participant
this acquaintance relationship is pointing at the time of the refinement. Again,
the information that is introduced to enable detecting another conflict restricts the
number of reuse contracts to which a modifier is applicable. What information is
to be included depends on the particular flavour of reuse contracts. Another option
could be to let the user explicitly add any information he regards as being important.
We run into this issue again when setting up reuse contracts for classes and objects
in chapter 5.

3.6 Evolution of Chains of Adaptations

Until now, we have only discussed the problem of detecting conflicts when two
basic modifiers are applied to the same reuse contract. The question remains which
conflicts can or will occur when applying two chains of primitive modifiers to the
same reuse contract. Due to the subsequent modifiers in a chain local conflicts may
be annihilated. As modifications are usually modelled by a series of modifiers, this
question is crucial to the usefulness of our approach. We give a sketch of how conflicts
caused by chains of modifiers can be detected. To make the reasoning clearer this
sketch only concerns the participant modifiers, but a similar argumentation can be
made for the context modifiers and the interactions between both kinds of modifiers.
Note that since we only use the participant versions of the operators. We omit the
word “participant” when denoting the operators.

3.6 Evolution of Chains of Adaptations

97

Our approach starts by first transforming the chains so that each modifier is
independent — with respect to the possible conflicts — of the preceding ones, and
then detecting conflicts by comparing the modifiers in both chains one by one. This
approach works, except for conflicts concerning transitive closures. Even worse, a
chain can introduce additional transitive conflicts.

To simplify the situation, we first investigate the case where a reuse contract is
modified by a single primitive modifier on the one hand, and a chain of primitive
modifiers on the other hand, as depicted in figure 3.10. Sections 3.6.1 to 3.6.3 discuss
those conflicts that can be detected by comparing the modifiers only. Section 3.6.4
discusses transitive closure conflicts as well. Section 3.6.5 then summarises for the
case of one modifier versus a chain of modifiers, while 3.6.6 generalises to two chains
of modifiers.

Chain of modifiers

M; M, Mp
- - - -

Single M
Modifier

Figure 3.10: Chain vs. Single Modifier

3.6.1 Chain vs. Single Modifier

At first glance, we might expect that the possible conflicts that can occur are ezactly
those caused by the interaction of the single modifier and each of the modifiers in
the chain. T'wo possibilities should be considered: the chain can cause more or fewer
conflicts.

e s it possible that a chain causes more conflicts than the sum of those caused
by the modifiers that are part of it? When considering conflicts that can be
detected by modifier comparison only, the answer is negative. Indeed, in that
case, the chain is nothing more than a sequence, the conflicts of which can
be detected by comparing each modifier in the chain with the single modifier.
Apart from the fact that they need to be applied in a given order, no other
assumptions are made about the relationship between the modifiers in a chain.
So, the modifiers do not express additional assumptions about each other or
the base reuse contract that can be broken and no new conflicts can arise.

e Is it possible that a chain causes fewer conflicts than the sum of those caused
by the modifiers that are part of it? Here the answer is positive. It is possible

98

Managing Evolution and Composition

that some conflicts that occur due to the interaction of the single modifier
and one of the modifiers in the chain are not really conflicts when considering
the chain as a whole. For example, when one of the modifiers in the chain
introduces a new operation causing a name conflict, but the same operation is
cancelled later on in the chain, there is no name conflict with respect to the
chain as a whole.

In general, such annihilation of conflicts occurs only when some conflicting
situation earlier on in the chain gets resolved due to a subsequent modification
in the chain. Conflicts can only be annihilated by the subsequent modifiers.
preceding modifiers have an impact on the applicability of later modifiers, not
on the conflicts these modifiers cause.

In sections 3.6.2 and 3.6.3 we investigate the different combinations of modifiers
and see which combinations can lead to annihilation of conflicts and which cannot.

3.6.2 Annihilation of Conflicts
Kinds of Annihilating Pairs

As argued above, some local conflicts in a chain should not be considered as con-
flicts when considering the chain as a whole. More precisely, local conflicts due to
some modifier in a chain may be resolved by subsequent modifiers. We distinguish
between two kinds of conflict annihilation.

The first case occurs when a modifier M; in a chain modifies some operation
m and a subsequent modifier M; cancels m. Not only will the effect of what M;
did with the operation get lost, but also all possible conflicts in M; with respect
to that operation will vanish. Note that the cancellation M itself can give rise
to a dangling operation reference, but all conflicts (operation capture, inconsistent
operations, ...) due to the original modification of m, will be annihilated when m
is cancelled. Note that in this case the annihilation is independent of the particular
modification performed by M;.

The second case is more subtle and concerns conflict annihilations where a mod-
ifier is followed by an inverse modifier annihilating part of its effect. An example
is a refinement of an operation m with an operation invocation to n, followed by a
coarsening of m dereferencing n. The refinement of m may introduce, for example,
an operation capture of n, but this conflict disappears when the invocation of n is
removed again by means of the coarsening®. Note that in this case the second mod-
ifier need not always be the direct inverse of the first modifier. It can, for example,

30One might wonder whether such situations will actually ever occur, or whether they are not
just a sign of bad design. We will see later on that such situations can be found, for example,
in inheritance hierarchies in languages with single inheritance only, in order to mimic multiple
inheritance.

3.6 Evolution of Chains of Adaptations

99

also be an extension, followed by a coarsening of an operation invocation introduced
by this extension.

Elimination of Annihilations from Chain

By definition, the annihilated conflicts should not be signalled when detecting con-
flicts due to the interaction of a modifier and a chain of modifiers. Therefore, before
starting conflict detection in a chain, we transform the chain such that it contains no
more annihilating modifiers. Of course, we have to take care that the transformation
removes these conflicts only, and no others. Below, we take a more detailed look
at how such a transformation should be done. We distinguish between the different
operator combinations that can lead to conflict annihilations.

1. Extension by m followed by cancellation of m. For every subchain
starting with a modifier introducing a new operation m and ending with a
cancellation of m (and no other extensions or cancellations of m in between),
we try to eliminate this extension and cancellation. Because some modifiers in
between may also depend on m we first need to eliminate these dependencies.
Therefore, we first need to perform the steps la and 1b:

(a)

First, we eliminate all annihilating pairs of refinements and coarsenings
of some operation n with m. How to do this is explained in steps 2 and
3. Second, if the extension by m itself added an operation n referencing
m, we remove the possible annihilating pairs of the extension by m and
a coarsening of n dereferencing m, as explained in step 6. After this, it
can easily be shown that no more coarsenings or refinements of n with m
remain:

e No coarsenings of n with m remain, because this is only possible if
the coarsening was preceded by a refinement of n with m or when the
extension contained an operation n referencing m (these are the only
two ways m could have been introduced in the specialisation clause of
n). Both cases lead to annihilating pairs, and have just been worked
away.

e Also, no refinements of n with m remain: if they are followed by
an annihilating coarsening they have been worked away; the other
case is impossible because the cancellation of m would then not be
applicable.

As all references to m in specialisation clauses have now been removed,
we can simply discard all refinements and coarsenings of m. Afterwards,
the subchain contains no more dependencies on m.

Finally, discard the extension by and cancellation of m. (Of course, if the
extension by m is part of a larger extension modifier, we remove only the

100

Managing Evolution and Composition

relevant part of this modifier. A similar remark holds for the cancellation
and for the refinements and coarsenings in the previous step.)

. Refinement followed by coarsening of n referencing m. Eliminate all

annihilating pairs starting with a refinement of n with m, and ending with a
coarsening of n with m, that have no other refinements or coarsenings of n
with m in between. This can easily be done by removing both modifiers —
or their relevant parts. Note that in this case the “relevant parts” can mean
that only part of the specialisation clause in a refinement is removed. If a
refinement adds more operations to n’s specialisation clause than just m and
these operation invocations are not removed, this part of the refinement must
be preserved.

. Coarsening followed by refinement of n referencing m. This case is

completely analogous to the previous one.

. Cancellation of m followed by extension by m. Next we eliminate all

annihilating pairs starting with a cancellation of m, ending with an extension
by m and no other cancellations of m or extensions with m in between. If
there are other modifiers in between, this is not a problem, as these cannot
depend on m. If the extension by m has the same specialisation clause as m
immediately before the cancellation was performed, we can simply remove both
the cancellation and the extension (or the relevant parts of the corresponding
modifiers). Otherwise, we drop the cancellation and replace the extension
by a refinement of m adding all extra operation invocations (with respect to
the situation immediately before the cancellation) and/or a coarsening of m,
removing all operation invocations m no longer performs.

. Refinement (or coarsening) of m followed by cancellation of m. To

resolve this case we simply remove the refinement (or coarsening) of m. We
do not need to take any precautions as all references to m have been removed
before the cancellation of m is performed (otherwise the cancellation would not
be applicable), and thus it actually no longer matters whether the refinement
(or coarsening) was performed or not.

. extension by m followed by coarsening of m. The only case we have not

considered yet is when an extension by an operation m referencing n is followed
by a coarsening of the same operation m removing the invocation of n. But
as every extension could conceptually be seen as a “pure” extension (i.e., with
empty specialisation clauses) followed by a refinement, the argumentation here
is essentially the same as in step 2.

We have now given a transformation algorithm to eliminate annihilating opera-
tions from a chain. Note that this algorithm was independent of the kinds of conflicts

3.6 Evolution of Chains of Adaptations

101

we want to detect. In other words, when other conflict situations are defined that
we want to be able to detect, this part of the argumentation does not need to be
repeated.

3.6.3 Dependence of Modifiers

In this section, we verify whether no other annihilating conflicts may remain after the
above transformation. In other words, we need to investigate whether the remaining
modifiers in the chain are “independent”, in the sense that the conflicts caused by
one modifier do not influence other modifiers in the chain.

Table 3.4 gives an overview of the possible relationships between modifiers in a
chain. We imagine M; preceding M in a chain. We then have three possibilities.

1. The two modifiers are independent. This occurs, for example, with two exten-
sions. The fact that the two extensions appear in one chain implies that the
one extension is applicable after the other. Therefore, they cannot contain the
same items and so they are independent.

2. The two modifiers are annihilating. These are the cases discussed in the pre-
vious section.

3. The two modifiers are dependent. These are the cases we have not discussed
yet: they are treated below.

First, note that a single combination of modifiers sometimes has multiple kinds
of interactions in table 3.4. This depends on their contents. Take for example
extension after cancellation. When these two modifiers affect the same operation
(e.g., an extension by m and a cancellation of m) they are annihilating, when they
concern different operators (e.g., an extension by m and a cancellation of n) they
are independent. Therefore, the word independent should be marked in each com-
partment of the table. In order to keep the table concise, we have only mentioned
“independent” when it is the only possibility.

M, | extension refinement cancellation coarsening

My

extension independent independent | annihilating independent

refinement | dependent dependent independent dependent/
annihilating

cancellation | annihilating annihilating independent annihilating

coarsening | dependent/ | dependent/ | independent | dependent

annihilating annihilating

Table 3.4: Dependencies between Modifiers

102

Managing Evolution and Composition

Since independent modifiers will not influence the conflicts each of them causes
and since we have treated the case “annihilating” above, all that is left to do is take
a closer look at the remaining dependencies.

Extension versus Refinement/Coarsening Two of the remaining dependen-
cies between modifiers are when M; is an extension, and M, is a refinement or
coarsening. This does not necessarily mean that the conflicts of M; are influenced
by Ms. Suppose M; is an extension by an operation m referencing n.

e If M, is a coarsening of m, it has no influence on the conflicts caused by M.
The only possible conflicts for extension are operation name conflicts, dangling
participant references, dangling acquaintance references and accidental opera-
tion captures. A coarsening clearly does not affect the occurrence of operation
name conflicts, dangling participant references or dangling acquaintance refer-
ences as it would therefore need to influence respectively the set of operations
in an interface, the set of participants in a reuse contract and the set of ac-
quaintance relationships in a contract?. Accidental capture of n by m could,
however, be eliminated by a coarsening of m dereferencing n, but this case was
already handled by the application of step 6 above.

e If M, is a refinement of m, this again does not influence possible operation
name conflicts, dangling participant references, dangling acquaintance refer-
ences or accidental operation captures occurring due to the application of M;.

e If M, coarsens n or removes an invocation of m in some operation, this removes
an indirect dependency between M7 and Ms. If M, is a refinement of n or adds
an invocation of m in some operation, an indirect dependency is created. The
effect of such indirect dependencies is discussed in section 3.6.4, on transitive
closure conflicts.

Refinements versus Coarsenings When M; and M, are refinements or coars-
enings, indirect dependencies may also be created; for example, M| may introduce
an invocation of an operation which is further refined by M,. Again, we refer to
3.6.4. Apart from such situations, subsequent refinements or coarsenings have no
influence on the conflicts caused by preceding refinements or coarsenings, unless they
form an annihilating pair, but this case was discussed above.

3.6.4 Transitive Closure Conflicts

We saw in section 3.4.3 that some conflicts® — such as unanticipated recursion —
cannot be detected by comparing modifiers one by one, but only by comparing the

*Recall that we consider participant coarsening only here.
5In addition to unanticipated recursion, other transitive closure conflicts are imaginable; we do
not discuss them in this dissertation.

3.6 Evolution of Chains of Adaptations

103

single modifier in combination with all preceding modifiers and the original reuse
contract. In some degenerate cases it is sufficient to compare the two modifiers only.
For example, if the one modifier refines an operation m with an invocation of n,
and the other modifier does exactly the opposite, unanticipated recursion occurs. In
more complex situations, where the recursion is not introduced straightforwardly,
but through intermediate operations, not only both modifiers but also the special-
isation interface of the original reuse contract needs to be taken into account. In
general, this problem occurs whenever we need to take into account the transitive
closure of specialisation clauses. Therefore, we call these conflicts “transitive closure
conflicts”.

When we are dealing with chains of modifiers, the situation becomes even worse.
It is not sufficient to compare and the original reuse contract and the modifiers of
both chains one by one. Indeed, the preceding modifiers in the chain are important
as well. For example, if a refinement modifier adding an invocation by n of z is
replaced by a chain of refinements n referencing a, a referencing b, b referencing c
and c referencing x, the unanticipated recursion conflict still occurs.

Annihilation of Transitive Closure Conflicts

When we consider the entire chain, some of the transitive closure conflicts are not
really conflicts either. Even when all annihilating pairs have been removed, it is still
possible for inverse modifiers to appear in the chain. Because all annihilating pairs
have been removed, the remaining inverse modifiers necessarily remove parts of the
original contract. It is possible for these modifiers to annihilate transitive closure
conflicts. Consider the following example, as depicted in figure 3.11.

f coars

a {b} » a {b} a
b b{+c} b {c} a{-b} b {c}
c c c

ref

c{+a}
a {b}
b
¢ {a}

Figure 3.11: Transitive Closure Conflict Annihilation

A participant in a contract contains three operations a, b and ¢, of which a
invokes b. In the chain a refinement is performed that causes b to invoke c¢. Later
on in the chain g is coarsened. The single modifier refines ¢ to invoke a. Without

104

Managing Evolution and Composition

the coarsening, a case of unanticipated recursion would occur, but in this case it will
not.

In order to identify situations where an unanticipated recursion conflict might
have occurred somewhere down the chain but not in the final result, one must always
consider the result of the entire chain and not the intermediate results. For example,
the unanticipated recursion rule of section 3.4.3 states that when both modifiers are
refinements or extensions, the result of applying both modifiers should be checked to
see whether there are two operations in each other’s transitive closure, that were not
connected that way before both operators were applied. When considering chains
the rule should be adapted such that when the single modifier is a refinement or an
extension and refinements or extensions are present in the chain, the same should be
verified in the result of applying both the single modifier and the chain. By taking
this approach, we might have to compute the transitive closure of operations more
often than strictly necessary. Maybe situations as in figure 3.11 could be detected
with less computing work, but that would lead us too far for this sketch.

3.6.5 Summary: Single Modifier versus Chain of Modifiers

In order to detect all conflicts concerning a chain of modifiers versus a single modifier,
the following steps need to be taken.

1. remove all annihilating modifiers;

2. for the conflicts that can be detected by investigating the modifiers only: check
the remaining modifiers in the chain one by one against the single modifier;

3. for transitive closure conflicts: apply the rules on the result of applying both
the chain and the single modifier.

This way we are certain that we have detected all conflicts.

3.6.6 Conflicts between Two Chains of Modifiers

Now that we have discussed how to handle one modifier versus a chain of modifiers,
it is not so hard to see what to do when considering two chains of modifiers, as in
figure 3.12.

Again, first all annihilating modifiers need to be solved, now in each of the chains.
When this is done, all modifiers from the two chains need to be checked, one by one.
Again, the only conflicts we have missed there are transitive closure conflicts. To
detect these, we now need to compute the result of both chains and apply the rules
for transitive closure conflicts considering both results.

3.6 Evolution of Chains of Adaptations

105

Chain of modifiers
M M M
N e

1

Chain of modifiers
1]

D‘Z [I S Y i

Figure 3.12: Two Chains of Modifiers

3.6.7 Conclusion

We have presented a sketch of how the conflict detection rules for single modifiers
can be extended to chains of modifiers. A large part of this sketch, i.e., the removal
of annihilating modifiers, is independent of the conflicts we want to detect. Only
the second part as discussed in section 3.6.3 (i.e., the part on dependent modifiers),
was dependent on the kind of conflicts we are concerned with. This implies that
when we want to be able to detect other conflict situations, only this second part of
the argumentation needs to be repeated.

We only gave a construction of how this can be handled for the participant mod-
ifiers, but a similar reasoning can be developed for the context modifiers and the
interactions between both kinds of modifiers.

The possibility to use the rules for chains of modifiers as well is crucial, because
the basic modifiers as defined in chapter 2 are very rudimentary and do not suffice to
model real evolutions and variations in components. In the next chapter, we discuss
some combinations of basic modifiers that occur very often and that we therefore
want to define and name explicitly.

