Chapter 4

Combined Operators

The operators that were introduced in chapter 2 are too rudimentary to model a real
software system. Therefore we need a means of combining these primitive operators
into more complex ones. Experiments show that some combinations appear so often
that it is useful to explicitly introduce an operator for them. In this chapter we
first provide some general definitions on how to combine operators and then define
a number of combined operators: extension, refinement, connected extension, ex-
tending refinement and factorisation. These are not the only useful combinations,
others can be defined at will.

4.1 Composition of Modifiers

4.1.1 Applicability

To enable a more legible formulation of the rules we first introduce one extra defi-
nition, with two new expressions.

Definition 4.1 (Single Modifier Applicability & Result Of) A reuse modifier
M is applicable to a reuse contract R and R’ is the result of applying M to R
in any of the following cases:

1. M is a participant extension modifier, R is participant extendible with M and
R’ is the participant extension of R with M ;

2. M is a context extension modifier, the context of R is extendible with M and
R’ is the context extension of R with M ;

3. M is a participant cancellation modifier, R is participant cancellable with M
and R’ is the participant cancellation of R with M ;

4. M is a context cancellation modifier, the context of R is cancellable with M
and R’ is the context cancellation of R with M ;

108

Combined Operators

5. M is a participant refinement modifier, R is participant refinable with M and
R’ is the participant refinement of R with M ;

6. M is a context refinement modifier, the context of R is refinable with M and
R’ is the context refinement of R with M .

7. M is a participant coarsening modifier, R is participant coarsenable with M
and R’ is the participant coarsening of R with M ;

8. M is a context coarsening modifier, the context of R is coarsenable with M
and R’ is the context coarsening of R with M .

4.1.2 Definition and Properties

Based on the above definition we can now define in general how a sequence of
modifiers can be composed. A reuse modifier of a combined operator again has a
modifier tag. The modifier description has the form of a sequence of other reuse
modifiers. We use the terminology “sequence” here, because the order in which the
modifiers are combined is usually important.

Definition 4.2 (Combined Reuse Modifier) A combined reuse modifier
consists of a modifier tag and a sequence of reuse modifiers.

Note that this definition implies that reuse modifiers can be nested.
We can now define applicability of combined modifiers.

Definition 4.3 (Combined Modifier Applicability & Result Of) A combined
modifier M = (tag, (My,...,M,)) is applicable to a reuse contract Ry if

Vi : M; is applicable to R;_1, with R; as result

R, is then called the result of applying M to Ry.

For sequences of length one, this definition reduces to the definition of applica-
bility of section 4.1.1.

No well-formedness checks are needed in definition 4.3, because well-formedness
is checked in the applicability of each of the composing modifiers. The following
property can be proven in this regard.

Property 4.1 If R is a well-formed reuse contract, M is a combined reuse modifier
and R, is the result of applying M to R; then R, is well-formed

Proof

This property follows immediately from the definition, as R, is the result of
applying a sequence of modifiers that are all applicable to the intermediary reuse
contracts. As applicability of all primitive operators preserves well-formedness of
the resulting reuse contract, all these intermediary reuse contracts are well-formed,
with as a special case R,.

4.2 Extension and Refinement

109

4.1.3 Discussion

It was demonstrated in the previous chapter that in most cases conflicts that occur
due to one modifier in a chain also represent a conflict in the combined operator.
A number of exceptions were formulated, where one modifier annihilates the effects
(and thus the possible conflicts) of another modifier. Here, we will also see an
example of a situation where the effects caused by two or more composing modifiers
are not annihilated at the level of the combined operator, but the conflicts they
cause can be neglected because of the meaning of the combined operator. Therefore
we add a section on the ‘Impact on the Conflicts’ to every definition of a combined
operator.

The opposite situation, where at the level of the combined operator extra con-
flicts arise that do not correspond to lower level conflicts, does not occur. The
reason for this is that the combined operators do not impose any extra constraints
on the original reuse contract they are applied to. The definitions of the combined
operators only impose constraints on how the combining operators relate to each
other. When these constraints are broken, the combination simply no longer forms
the intended combined operator.

Because the applicability of the composing modifiers is expressed straightfor-
wardly by means of the applicability definition for sequences of modifiers, no extra
applicability constraints are needed for the combined operators. Therefore, for each
combined operator we only state a definition of the combined modifier and the def-
inition of the operator. Moreover, this latter definition always has the same form
and is thus very straightforward. Furthermore, as we have proven the preservation
of well-formedness above for the general case, we do not need to prove it for each
operator separately.

4.2 Extension and Refinement

Motivation

The simplest combined operator is a combination of a number of operators of the
same kind. We thus define extension as a combination of participant and context
extensions and refinement as a combination of participant and context refinements.

Definition and Properties

As the structure of the combined modifiers representing extension and refinement
is very simple, we immediately define the operators.

Definition 4.4 (Extension) R, is an extension of R with M = (“extension”,
(My,....M,)) if

1. My, ... ,M, are participant extension and context extension modifiers;

110

Combined Operators

2. M is applicable to R ;
3. R, is the result of applying M to R .

Refinement can be defined in a completely similar fashion.

Definition 4.5 (Refinement) R, is a refinement of R with M = (“refinement”,
(Mb s 7Mn)) if

1. My, ..., M, are participant refinement and context refinement modifiers;
2. M is applicable to R ;
3. R, is the result of applying M to R

Completely similar definitions can also be given for coarsening and cancellation.

Note that because an extension also includes context extensions, some of the
participant extensions above can be performed on participants that are newly intro-
duced by one of these context extensions. Similarly, participant refinements can be
performed on acquaintance relationships added through context refinements. Note,
however, that for this to be possible the context modifier has to precede the partic-
ipant modifier in the sequence.

Impact on Conflicts

No conflicts are annihilated by these combinations, so the conflicts that can
occur after the application of extension is the union of those that can appear after
participant extension and those that can appear after context extension. The same
holds for refinement. Table 4.1 gives an overview of the possible conflicts. This
table is made by taking the union of the relevant parts of tables 3.1, 3.2 and 3.3
from chapter 3. Note that to detect unanticipated recursion, the rules discussed in
chapter 3 considering transitive closure should be used.

Note that, unless explicitly mentioned otherwise, when in the following sections
we define operators combined from extensions, refinements and coarsenings, we im-
ply the general operators, i.e., the combinations of participant and context exten-
sions, refinements and coarsenings. This is possible, because combined modifiers are
allowed to be nested. In the examples, we sometimes show only one level.

4.3 Connected Extension

Motivation

In the basic operators the extension is self-contained, i.e., the newly added op-
erations only contain operations added by the same extension in their specialisation
clause. Of course, one also wants to be able to add references to already existing

4.3 Connected Extension

111

Extension Refinement
part. ext. | cont.ext. [part.ref. | cont. ref.
part. ext. oper. name, - - -
acc. oper. capt.,
unant. recursion
cont. ext. - part.name | - -
part.canc. | - - dang. oper.ref. | -
cont. canc. dang. part.ref. | - dang. part. ref. | dang. part.
ref.
part. ref. - - oper. invoc., -
unant. recursion,
reg. oper. capt.
cont. ref. - - - acq. rel.
part. coars. || - - oper. invoc., -
unant. recursion,
reg. oper. capt.
cont. coars. || dang. acq. ref. - dang. acq. ref. acq. rel.

Table 4.1: Conflicts with Extension and Refinement

operations to the specialisation clauses of the newly added operations. This can
be achieved by first performing an extension and then a refinement that augments
the specialisation clauses of the newly added operations with operations from the
original contract only. In a similar vein, one can first perform a context extension
adding new participants and then a context refinement connecting those newly added
participants to participants from the original contract. This is called a connected
extension.

An example of a connected extension on the context level is given in figure 4.1.
A participant Bank is added through an extension and an acquaintance relationship
between this new participant and the already existing participant Consortium is
added through a context refinement. Note the direction of the acquaintance rela-
tionship: from the newly added participant to the existing one. The other direction
would not imply a connected extension.

Definition and Properties

Definition 4.6 (Connected Extension Modifier) A connected extension mo-
difier is a combined reuse modifier with modifier tag “connected extension” and a
modifier description containing a sequence (M., M,), where:

1. M. is an extension modifier and M, a refinement modifier;

2. (a) M, only adds operation invocations to the specialisation clauses of oper-
ations that were added by M,;

112

Combined Operators

ATMContract
ATM checkCard{verifyAccount}| Consortium
checkCard the ATM theCons verify Account

BankATMContract is a connected extension of ATMContract

checkCard K
Al {verifyAccount} Consortium Bank
_ > . .
checkCard verify Account 4(_ verifyCard
theATM theCons theCons

Figure 4.1: An Example Connected Extension

(b) M, only adds acquaintance relationships to the acquaintance clauses of
participants that were added by M.

3. (a) for each a.m added to a specialisation clause of an operation in the inter-
face of p by M,: m is not in the interface of p in M,;

(b) for each a.q added to an acquaintance clause of a participant p by M,: ¢
is not in M,.

Clause 2 ensures that the refinements are only applied to newly added items,
while 3 ensures that the refinements only add dependencies on items that already
existed.

Definition 4.7 (Connected Extension) R, is a connected extension of R by
M if

1. M is a connected extension modifier;
2. M is applicable to R ;

3. Rge is the result of applying M to R

Illustration

Figure 4.2 illustrates a connected extension. First, an extension is performed
adding a new participant, pcpt3, and a new operation on pcptl, name;o. Note that
this is an example of an extension on both participant and context level. Then a re-
finement is performed, again on both levels, that refines these two newly added items.

4.3 Connected Extension 113

Reuse Contract 1

peptl pept2
namej ay) namey|

1
'5 : Extension Modifier |
1751
§ : peptl {+namejs}
o +pcpt3
= pep
\4
Reuse Contract 2
peptl > pept2
namej| az namey|
namejp
pept3
R
g 1 Refinement Modifierl
|
= peptl { namej2 (+ a2.namey))}
g : pept3 {+ az.pept2}
v

Reuse Contract 3

peptl namejp{namey;}, pept2
namej] —az> names;

namejp

az

pept3

Figure 4.2: Connected Extension

114

Combined Operators

The specialisation clause of name;s is augmented with an invocation of names; on
pept2 and the acquaintance clause of pcpt3d is augmented, with an acquaintance
name ay referring to pcpt2.

Note that, as stated by clauses 2 and 3 of the connected extendibility definition,
only items added through the extensions are refined (pcpt3 and name;s) and the
refinement only adds dependencies on items already existing in the original contract
(pept2 and names;).

Impact on Conflicts

The conflicts that can occur after the application of connected extension are the
sum of those that appear after extension and refinement separately. Table 4.2 gives
an overview of the possible conflicts. This table is again constructed by taking the
union of the relevant parts of tables 3.1, 3.2 and 3.3 from chapter 3.

Connected Extension
part. ext. | part. ref. | cont. ext. | cont. ref.
part. ext. oper. name, - - -
acc. oper. capt.,
unant. recursion
cont. ext. - - part. name | -
part.canc. || - dang. oper. ref. - -
cont. canc. dang. part. ref. dang. part. ref. - dang. part.
ref.
part. ref. - oper. invoc., - -
unant. recursion,
reg. op. capt.
cont. ref. - - - acq. rel.
part. coars. || - oper. invoc., - -
unant. recursion,
reg. oper. capt.
cont. coars. || dang.acq. ref. dang. acq. ref. - acq. rel.

Table 4.2: Conflicts with Connected Extension

4.4 Extending Refinement

Motivation

Currently, a refinement can only extend specialisation and acquaintance clauses
with references to operation and participant names that already exist on the base
reuse contract. Sometimes one wants to simultaneously add extra operations or

4.4 Extending Refinement

115

participants that can be referred to in the refinement. One thus wants to add an
extending part to the refinement. We call this an extending refinement.

TrActATMContractl
. Consortium
AL checkCard{verifyAccount}
checkCard > verifyAccount
trActRequest |theATM theCons

TrActATMContr act2 is an extending refinement of
TrActATMContractl

checkCard{verifyAccount}
tr ActRequest{processTr Act}

checkCard > verifyAccount

trActRequest theATM theCons | processTrAct

ATM Consortinm

Figure 4.3: An Example Extending Refinement

Figure 4.3 shows an extending refinement on the participant level. The operation
trActRequest on ATM is refined with an invocation of processTrAct on Consortium.
Using the same reuse operator this operation processTrAct is added to Consortium.

Definition and Properties

Definition 4.8 (Extending Refinement Modifier) An extending refinement
modifier is a combined reuse modifier with modifier tag “extending refinement” and
a modifier description containing a sequence (M., M,), where:

1. M, is a refinement modifier and M, is an extension modifier;
2. (a) for all operation invocations a.m , added to specialisation clauses by M,.,
with a referring to g : m is added to ¢ by M,;
(b) for all acquaintance relationships a.q , added to acquaintance clauses by

M,, q is added to R by M;

3. (a) for all operations m added to ¢ by M,: an operation invocation a.m ,
where a refers to ¢ is added to a specialisation clause by M,;

(b) for all participants ¢ added by M,: an acquaintance relationship a.q , is
added to an acquaintance clause by M,..

116

Combined Operators

Clause 2 ensures that the refinements only add dependencies on items that al-
ready existed in the original contract, while clause 3 ensures that all items that are
added are referred to by the refinement.

Definition 4.9 (Extending Refinement) R,, is an extending refinement of
R by M if

1. M is an extending refinement modifier;
2. M is applicable to R ;

3. Rgy is the result of applying M to R .

Illustration

Figure 4.4 illustrates an extending refinement. First, a new participant and
operation are added through an extension. Second, a participant and an operation
that already existed in the original contract are refined. As demanded by clause 2
these refinements only add dependencies on the items added by the extension. Note
that, as required by clause 3 of the extending refinement definition, all items added
through the extension are referred to by the refinement. Otherwise, this would just
be a basic extension.

Also note that extension has to be applied first, for extending refinement as well
as for connected extension, otherwise the intermediary contract would not be well-
formed. However, in the first case the refinement refines operations that were added
through the extension, while in the second case the refinement refines operations
that already existed before the extension.

Impact on Conflicts

The conflicts that can occur after the application of extending refinement are the
union of those of its parts. They are thus the same set of conflicts as for connected
extension, only they appear within different parts. They were already depicted in
table 4.2.

4.5 Factorisation

Motivation

The third combined operator we discuss is called factorisation. Note that we do
not mean factoring out common behaviour here. Intuitively, with factorisation we
mean factoring out some part of the behaviour of one operation into an intermediary
operation. This is achieved by replacing an operation name in a specialisation clause
by another operation name, the specialisation clause of which in turn contains the
originally removed operation. The net result is that the same operations that were

4.5 Factorisation 117

Reuse Contract 1

peptl ; pept2
namejj az name|

1
_S : Extension Modifier |
w)
§ : pept2 {+namen;}
% 1 + t3
< I pep
v

Reuse Contract 2

el T
) namej|

namej] names
pept3
E i
g 1 Refinement Modifierl
g : peptl { nameq; (+ a2. namep))}
& : pept2 { +a3.pept3}
& v

Reuse Contract 3

peptl namej{nameo} P
—) namejj
namej)

namen)

peptd a3

Figure 4.4: Extending Refinement

118

Combined Operators

originally invoked are still invoked, but now through an extra indirection. This
indirection can be added to the same participant, as well as to another participant.
We only define factorisation on participant level here. A similar operator can be
constructed at context level, but that would lead us too far for what we want to do
here. Note that contrary to the other operators, factorisation does not really alter
the behaviour of a system. It just makes the design more modular, and often better
adaptable.

ATMContract
ATM Bank Consortium
checkCard theATM theBank | verifyCard |theBank — theCons |VeTifyAccount
theATM | | theCons
»
checkCard {verifyAccount}

BankATMContract is a factorisation of ATMContract

checkCard verifyCard .
. h Consortium
ATM {verifyCard} Bank {verifyAccount}
—) . _— > .
checkCard verifyCard verifyAccount
theATM theBank theBank theCons
theATM | | tneCons

Figure 4.5: An Example Factorisation

Figure 4.5 shows an example of a factorisation. It is a factorisation because the
invocation of verifyAccount on Consortium by checkCard on ATM now transits
through verifyCard on Bank. Note that factorisation does not necessarily have to
pass over another participant. It can also go via intra-participant invocations.

Definition and Properties

Definition 4.10 (Factorisation Modifier) A factorisation modifier is a com-
bined reuse modifier with modifier tag “factorisation” and a modifier description
containing the sequence (M., M., M,), where:

1. M, is a participant connected extension modifier, M. a participant coarsening
modifier and M, a participant refining modifier;

2. the set of operations that are coarsened by M, is equal to the set of operations
that are refined by M,;

4.5 Factorisation

119

3. for all operation invocations a.m , removed from specialisation clauses by M.,
with a referring to ¢ : operation invocations b.m are added by M., with b
referring ¢ !;

4. for all operation invocations b.m , with b referring ¢ , added by M..: an
operation invocation a.m , where a refers to ¢ is removed from a specialisation
clause by M;

5. for each operation invocation a.n added to the specialisation clause of an op-
eration m by M,: n is an operation in M., which holds all operation names
in its specialisation clause that were removed from the specialisation clause of
m by M;;

Factorisation can then be defined as follows.

Definition 4.11 (Factorisation) Ry is a factorisation of R by M if
1. M is a factorisation modifier;
2. M is applicable to R ;

3. Ry is the result of applying M to R .

Illustration

Figure 4.6 illustrates a factorisation. Comparing reuse contracts 1 and 4 in the
figure allows to see the result of a factorisation. The communication between pcptl
and pcpt2, i.e., the invocation of names; of name;, is preserved, but now it goes
through an intermediary participant pcpt3 and an intermediary operation names;.

This result is achieved in three steps. First, a connected extension adds the
intermediary operation and the operation invocation that is copied from participant
peptl. Second, through a coarsening, the behaviour that pcpt3 has copied from
peptl (i.e., the invocation of names; on pept2, is removed from peptl). Third and
last, through a refinement, a new operation invocation is added to pcptl to invoke
the operation that has taken over its behaviour. It thus re-establishes the original
behaviour through an indirection.

Note that the same result could be achieved by first applying the coarsening
and then the refining extension. Even other combinations are imaginable with, for
example, a pure participant extension and a refinement that adds the behaviour it
adds now, as well as the refining part of the connected extension. The only require-
ment is that for applicability reasons the refinement should be performed after the
(connected) extension. We chose the given combination because we find it more
intuitive. The combination used to define factorisation is not so important, because

!Note that a and b can be identical as well as different.

120

Combined Operators

Reuse Contract 1

peptl

namej]

namejj{namey|}

pept2

a , name)]

az
N

Connected
Extension
€

Connected Extension Modifier |

+ pept3. name3; {ap.namep;}

Reuse Contract 2

peptl

namej{namey;}

pept2

namej az namey|
S pept3
names; name3j{namey;}

g1
g : Coarsening Modifier |
£
§ | peptl.namey; {-a.namey;}

A\

Reuse Contract 3

peptl

—az)mpﬂ

namej namep]
az
S| pept3
names name3|{namej;}

~— 1
5 1
s 1 Refinement Modifier |
|
% 1 pceptl.nameq {+a3z.name3;} |
z |

A4

Reuse Contract 4

peptl

namej|

pept2.

namep|

a ¥V

namejj{names }.

az

pept3

name3] name3j{namezi}

Figure 4.6: Factorisation

4.5 Factorisation

121

it is always possible to transform one combination into another one and there is no
difference in the detected conflicts. What matters is that the final result is the same.
Note that the definition of this operator uses the fact that combined operators can
be nested. It could of course have been done with basic operators only?, but the
fact that combined operators can be nested allow for a more intuitive definition.

Let us now take a closer look at the definition. The first clause is straightforward.
Clauses 2 to 5 put restrictions on the way the different sub-operators fit together,
with as a goal to perform a factorisation and nothing else. One does, for example,
not want the refinement to refine any other operations, than those that are strictly
necessary for the factorisation.

e Clause 2 specifies that only those operations the specialisation clauses of which
are coarsened should be refined. The reason for this is that the refinement
should only be used to refine operations from which behaviour was removed
(through the coarsening), in order to invoke the same behaviour through an
intermediary operation. In the example this is correct as both the coarsening
and refinement affect only name;.

e Clause 3 specifies that the operation invocations that were removed through
the coarsening should be added through the refining part of the connected
extension. In other words, the intermediary operation should only have the
behaviour that was removed from the original participant and nothing else.
In the example, names; is removed from a specialisation clause through the
coarsening and added to a specialisation clause through the connected exten-
sion.

e Furthermore, clause 4 requires the operation invocations added in clause 3
are the only operation invocations added to specialisation clauses through the
connected extension.

e Finally, clause 5 ensures that the behaviour after the factorisation is the same
as before. It specifies that the operation invocations added to an operation m
through the refinement should refer to operations with the same behaviour as
what m exhibited before the coarsening. In the example, name;; now invokes
namesy, which invokes names;, the same operation namei; invoked before.

Impact on Conflicts

As always, the set of conflicts that can be caused through a factorisation is the
union of the conflicts caused through its sub-operators. However, one case deserves
some extra attention.

2Which is always possible, because the combined reuse modifiers can always be decomposed in
their submodifiers.

122

Combined Operators

Operation Capture and Inconsistent Operations Operation capture occurs
when an operation invocation of m is added to a specialisation clause by one modi-
fier and this same operation m is added or changed by another modifier. Similarly,
inconsistent operations occur when an operation invocation of m is removed from a
specialisation clause by one modifier and this same operation m is added or changed
by another modifier. The first conflict thus appears after refinement, the second
after coarsening. One would therefore expect both conflicts to appear after a fac-
torisation. This is depicted in figure 4.7 in a simplified case, where there is only one
participant and the factorisation thus only affects intra-participant behaviour. The
notation m{n} in the client interface is a short-hand notation for the same operation
invocation attached to an acquaintance relationship of a participant with itself (i.e.,
intra-participant communication).

conn. ext. coarsening refinement

m {n} +x{n} [m{n} m{-n} |'m{} m {+ x} m {x}
—> | x {n} — > | x {n} > x {n}
P4
l refinement # operation = /

n {+z} capture inconsistent
operations
m {n}
n {z}

Figure 4.7: Annihilating Conflicts through Factorisation

Upon closer examination, it is obvious that there is an intuitive difference. When
an operation invocation is removed from a specialisation clause through a factorisa-
tion, it is always added to another specialisation clause with the result that it re-
mains within the transitive closure of the operation it was originally removed from.
Therefore, one does not get true inconsistent operations. Therefore, we include the
following rule.

Rule 4.1 (Inconsistent Operations Annihilation) The conflict of inconsis-
tent operations that can be caused through a participant coarsening is annihi-
lated, when this participant coarsening is part of a factorisation.

One could argue that because the conflict does not occur due to the fact that
the removed invocation is still in the transitive closure, this conflict should be au-
tomatically annihilated when considering chains of modifiers as discussed in section
3.6. We feel however that annihilating all such coarsenings might also remove in-
consistent operation conflicts that the user would like to be aware of. By explicitly
declaring the coarsening to be part of the factorisation, however, the user explicitly
expresses that the conflict can be neglected.

4.5 Factorisation

123

Note that operation capture is still possible, because if another modifier adapts
one of the operations that was moved through the factorisation, this might still cause
a problem.

Overview Table 4.3 gives an overview of the possible conflicts on factorisation.
This table is again built by taking the union of the relevant parts of tables 3.1, 3.2
and 3.3 from chapter 3, only now we have left out inconsistent operations for the
reasons explained above. Note that we do not have an extra column for refinement
as all conflicts caused by refinement are already part of the set of conflicts caused
by connected extension.

Factorisation

participant connected | participant coarsening
extension

part. ext. operation name, acci- | -
dental operation cap-
ture, unanticipated re-
cursion

cont. ext. - -

part. canc. dangling operation ref- | dangling operation ref-
erence erence

cont. canc. dangling participant | dangling participant
reference reference

part. ref. operation invocation, | operation invocation,
unanticipated recur- | regular operation capt.
sion, regular operation
capture

cont. ref. - -

part.coars. | operation invocation, | operation invocation
unanticipated recur-
sion, regular operation
capture

cont. coars. | dangling acquaintance | dangling acquaintance
reference reference

Table 4.3: Conflicts with Factorisation

124

Combined Operators

4.6 Renaming

Motivation

The final combined operator we introduce is renaming. This operator will usu-
ally be applied to give inferred participants a different name from the participant
they were derived from. Even without changing a participant’s interface one might
at some point want to rename a participant. Therefore, we make this a distinct
operator.

ATMContract
: Consortium
ATM checkCard{verifyAccount}
checkCard > verifyAccount
theATM theCons

EuroATMContract is a participant extension and a
renaming of ATMContract

EuroATM X
(ATM) checkCard{verifyAccount}| Consortinm
checkCard > verifyAccount
checkEuroCard | theATM theCons

Figure 4.8: An Example of Renaming

Figure 4.8 shows a simultaneous renaming and participant extension. It adapts
the ATMContract in order to handle ATMs that also handle Eurocards. While apply-
ing the participant extension only would result in a contract where the participant
ATM still had the same name, here we also adapt the name. We adopt the convention
to write the name of the participant that was renamed between braces below the
new name, when this is useful as a clarification.

Renaming might seem to be a very straightforward operator, but it takes some
work to define how it is built up from other modifiers. The reason for this is that
we actually have to remove a participant with one name and then re-introduce a
participant with another name and the exact same acquaintance clause and interface.
We also have to change the names of all references to the renamed participant in
acquaintance clauses on other participants.

We do not give a full definition here as that would lead us into too much tedious
detail, but we use this operator (and the adopted notation) further on in examples.

4.7 Summary

125

4.7 Summary

We have shown how combined operators can be defined based on the basic operators
of chapter 2 and defined some often recurring combinations. We did by no means
give all possible useful combinations here, but it is clear from the examples that
with the basic definitions of section 4.1 it is easy to define new combinations.

The conflicts that can be caused by these combined operators are most often the
union of the conflicts that can be caused by the basic modifiers that they are made
up from. It was shown in chapter 3 that conflicts can sometimes disappear when
there are annihilating modifiers in a chain. It would of course make not much sense
to take up such a sequence in a combined modifier. Still, sometimes conflicts can
be ignored because of the meaning of the combined operator. Such an example was
given with inconsistent operations caused by a participant coarsening that is part
of a factorisation.

