
Chapter �

Combined Operators

The operators that were introduced in chapter � are too rudimentary to model a real

software system� Therefore we need a means of combining these primitive operators

into more complex ones� Experiments show that some combinations appear so often

that it is useful to explicitly introduce an operator for them� In this chapter we

�rst provide some general de�nitions on how to combine operators and then de�ne

a number of combined operators� extension� re�nement� connected extension� ex�

tending re�nement and factorisation� These are not the only useful combinations�

others can be de�ned at will�

��� Composition of Modi�ers

����� Applicability

To enable a more legible formulation of the rules we �rst introduce one extra de��

nition� with two new expressions�

De�nition ��� �Single Modi�er Applicability � Result Of� A reuse modi�er

M is applicable to a reuse contract R and R� is the result of applying M to R

in any of the following cases�

�� M is a participant extension modi�er� R is participant extendible with M and

R� is the participant extension of R with M �

�� M is a context extension modi�er� the context of R is extendible with M and

R� is the context extension of R with M �

�� M is a participant cancellation modi�er� R is participant cancellable with M

and R� is the participant cancellation of R with M �

	� M is a context cancellation modi�er� the context of R is cancellable with M

and R� is the context cancellation of R with M �

��� Combined Operators

� M is a participant re�nement modi�er� R is participant re�nable with M and
R� is the participant re�nement of R with M �

�� M is a context re�nement modi�er� the context of R is re�nable with M and

R� is the context re�nement of R with M �

�� M is a participant coarsening modi�er� R is participant coarsenable with M

and R� is the participant coarsening of R with M �

� M is a context coarsening modi�er� the context of R is coarsenable with M

and R� is the context coarsening of R with M �

����� De�nition and Properties

Based on the above de�nition we can now de�ne in general how a sequence of

modi�ers can be composed� A reuse modi�er of a combined operator again has a

modi�er tag� The modi�er description has the form of a sequence of other reuse

modi�ers� We use the terminology �sequence� here� because the order in which the

modi�ers are combined is usually important�

De�nition ��	 �Combined Reuse Modi�er� A combined reuse modi�er

consists of a modi�er tag and a sequence of reuse modi�ers�

Note that this de�nition implies that reuse modi�ers can be nested�

We can now de�ne applicability of combined modi�ers�

De�nition ��
 �Combined Modi�er Applicability � Result Of� A combined

modi�er M � �tag� �M�� � � � �Mn�� is applicable to a reuse contract R� if

�i � Mi is applicable to Ri��� with Ri as result

Rn is then called the result of applying M to R��

For sequences of length one� this de�nition reduces to the de�nition of applica�

bility of section 	�����

No well�formedness checks are needed in de�nition 	��� because well�formedness

is checked in the applicability of each of the composing modi�ers� The following

property can be proven in this regard�

Property ��� If R is a well�formed reuse contract� M is a combined reuse modi�er

and Rr is the result of applying M to R� then Rr is well�formed

Proof

This property follows immediately from the de�nition� as Rr is the result of

applying a sequence of modi�ers that are all applicable to the intermediary reuse

contracts� As applicability of all primitive operators preserves well�formedness of

the resulting reuse contract� all these intermediary reuse contracts are well�formed�
with as a special case Rr�

��	 Extension and Re�nement ���

����� Discussion

It was demonstrated in the previous chapter that in most cases con�icts that occur

due to one modi�er in a chain also represent a con�ict in the combined operator�

A number of exceptions were formulated� where one modi�er annihilates the e�ects

�and thus the possible con�icts� of another modi�er� Here� we will also see an

example of a situation where the e�ects caused by two or more composing modi�ers

are not annihilated at the level of the combined operator� but the con�icts they

cause can be neglected because of the meaning of the combined operator� Therefore
we add a section on the �Impact on the Con�icts� to every de�nition of a combined

operator�

The opposite situation� where at the level of the combined operator extra con�

�icts arise that do not correspond to lower level con�icts� does not occur� The

reason for this is that the combined operators do not impose any extra constraints

on the original reuse contract they are applied to� The de�nitions of the combined

operators only impose constraints on how the combining operators relate to each

other� When these constraints are broken� the combination simply no longer forms

the intended combined operator�

Because the applicability of the composing modi�ers is expressed straightfor�

wardly by means of the applicability de�nition for sequences of modi�ers� no extra
applicability constraints are needed for the combined operators� Therefore� for each

combined operator we only state a de�nition of the combined modi�er and the def�

inition of the operator� Moreover� this latter de�nition always has the same form

and is thus very straightforward� Furthermore� as we have proven the preservation

of well�formedness above for the general case� we do not need to prove it for each

operator separately�

��� Extension and Re�nement

Motivation

The simplest combined operator is a combination of a number of operators of the

same kind� We thus de�ne extension as a combination of participant and context

extensions and re�nement as a combination of participant and context re�nements�

De�nition and Properties

As the structure of the combined modi�ers representing extension and re�nement

is very simple� we immediately de�ne the operators�

De�nition ��� �Extension� Re is an extension of R with M � ��extension��

�M�� � � � �Mn�� if

�� M�� � � � �Mn are participant extension and context extension modi�ers�

��� Combined Operators

�� M is applicable to R �

�� Re is the result of applying M to R �

Re�nement can be de�ned in a completely similar fashion�

De�nition ��� �Re�nement� Rr is a re�nement of R with M � ��re�nement��

�M�� � � � �Mn�� if

�� M�� � � � �Mn are participant re�nement and context re�nement modi�ers�

�� M is applicable to R �

�� Rr is the result of applying M to R

Completely similar de�nitions can also be given for coarsening and cancellation�

Note that because an extension also includes context extensions� some of the

participant extensions above can be performed on participants that are newly intro�
duced by one of these context extensions� Similarly� participant re�nements can be

performed on acquaintance relationships added through context re�nements� Note�

however� that for this to be possible the context modi�er has to precede the partic�

ipant modi�er in the sequence�

Impact on Conicts

No con�icts are annihilated by these combinations� so the con�icts that can

occur after the application of extension is the union of those that can appear after
participant extension and those that can appear after context extension� The same

holds for re�nement� Table 	�� gives an overview of the possible con�icts� This

table is made by taking the union of the relevant parts of tables ���� ��� and ���

from chapter �� Note that to detect unanticipated recursion� the rules discussed in

chapter � considering transitive closure should be used�

Note that� unless explicitly mentioned otherwise� when in the following sections

we de�ne operators combined from extensions� re�nements and coarsenings� we im�

ply the general operators� i�e�� the combinations of participant and context exten�

sions� re�nements and coarsenings� This is possible� because combined modi�ers are

allowed to be nested� In the examples� we sometimes show only one level�

��� Connected Extension

Motivation

In the basic operators the extension is self�contained� i�e�� the newly added op�

erations only contain operations added by the same extension in their specialisation
clause� Of course� one also wants to be able to add references to already existing

��
 Connected Extension ���

Extension Re�nement
part� ext� cont� ext� part� ref� cont� ref�

part� ext� oper� name�

acc� oper� capt��

unant� recursion

� � �

cont� ext� � part� name � �

part� canc� � � dang� oper� ref� �

cont� canc� dang� part� ref� � dang� part� ref� dang� part�

ref�

part� ref� � � oper� invoc��

unant� recursion�

reg� oper� capt�

�

cont� ref� � � � acq� rel�

part� coars� � � oper� invoc��

unant� recursion�

reg� oper� capt�

�

cont� coars� dang� acq� ref� � dang� acq� ref� acq� rel�

Table 	��� Con�icts with Extension and Re�nement

operations to the specialisation clauses of the newly added operations� This can
be achieved by �rst performing an extension and then a re�nement that augments

the specialisation clauses of the newly added operations with operations from the

original contract only� In a similar vein� one can �rst perform a context extension

adding new participants and then a context re�nement connecting those newly added

participants to participants from the original contract� This is called a connected

extension�

An example of a connected extension on the context level is given in �gure 	���

A participant Bank is added through an extension and an acquaintance relationship

between this new participant and the already existing participant Consortium is

added through a context re�nement� Note the direction of the acquaintance rela�

tionship� from the newly added participant to the existing one� The other direction
would not imply a connected extension�

De�nition and Properties

De�nition ��� �Connected Extension Modi�er�A connected extension mo�
di�er is a combined reuse modi�er with modi�er tag �connected extension� and a

modi�er description containing a sequence �Me�Mr�� where�

�� Me is an extension modi�er and Mr a re�nement modi�er�

�� �a� Mr only adds operation invocations to the specialisation clauses of oper�
ations that were added by Me�

��	 Combined Operators

theCons theConstheATM

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard
{verifyAccount}

BankATMContract is a connected extension of ATMContract

theConstheATM

ATM

checkCard

Consortium

verifyAccount

checkCard{verifyAccount}

ATMContract

Figure 	��� An Example Connected Extension

�b� Mr only adds acquaintance relationships to the acquaintance clauses of

participants that were added by Me�

�� �a� for each a�m added to a specialisation clause of an operation in the inter�
face of p by Mr� m is not in the interface of p in Me�

�b� for each a�q added to an acquaintance clause of a participant p by Mr� q

is not in Me�

Clause � ensures that the re�nements are only applied to newly added items�

while � ensures that the re�nements only add dependencies on items that already

existed�

De�nition ��� �Connected Extension� Rce is a connected extension of R by

M if

�� M is a connected extension modi�er�

�� M is applicable to R �

�� Rce is the result of applying M to R

Illustration

Figure 	�� illustrates a connected extension� First� an extension is performed

adding a new participant� pcpt�� and a new operation on pcpt�� name��� Note that

this is an example of an extension on both participant and context level� Then a re�
�nement is performed� again on both levels� that re�nes these two newly added items�

��
 Connected Extension ��

E
xt

en
si

on Extension Modifier

pcpt1 {+name12}
+pcpt3

R
ef

in
em

en
t

Refinement Modifier

pcpt1 { name12 (+ a2.name21)}
pcpt3 {+ a2.pcpt2}

name11

pcpt1
name21

pcpt2

Reuse Contract 1

a2

name12{name21}

Reuse Contract 3

name21

pcpt2

pcpt3

a2

name11
name12

pcpt1

a2

Reuse Contract 2

name11
name12

pcpt1
name21

pcpt2

pcpt3

a2

Figure 	��� Connected Extension

��� Combined Operators

The specialisation clause of name�� is augmented with an invocation of name�� on
pcpt� and the acquaintance clause of pcpt� is augmented� with an acquaintance

name a� referring to pcpt��

Note that� as stated by clauses � and � of the connected extendibility de�nition�

only items added through the extensions are re�ned �pcpt� and name��� and the

re�nement only adds dependencies on items already existing in the original contract

�pcpt� and name����

Impact on Conicts

The con�icts that can occur after the application of connected extension are the

sum of those that appear after extension and re�nement separately� Table 	�� gives

an overview of the possible con�icts� This table is again constructed by taking the

union of the relevant parts of tables ���� ��� and ��� from chapter ��

Connected Extension

part� ext� part� ref� cont� ext� cont� ref�

part� ext� oper� name�

acc� oper� capt��

unant� recursion

� � �

cont� ext� � � part� name �

part� canc� � dang� oper� ref� � �

cont� canc� dang� part� ref� dang� part� ref� � dang� part�

ref�

part� ref� � oper� invoc��
unant� recursion�

reg� op� capt�

� �

cont� ref� � � � acq� rel�

part� coars� � oper� invoc��

unant� recursion�

reg� oper� capt�

� �

cont� coars� dang� acq� ref� dang� acq� ref� � acq� rel�

Table 	��� Con�icts with Connected Extension

��� Extending Re�nement

Motivation

Currently� a re�nement can only extend specialisation and acquaintance clauses

with references to operation and participant names that already exist on the base
reuse contract� Sometimes one wants to simultaneously add extra operations or

��� Extending Re�nement ���

participants that can be referred to in the re�nement� One thus wants to add an
extending part to the re�nement� We call this an extending re�nement�

theConstheATM

ATM

checkCard
trActRequest

Consortium

ver ifyAccount
processTrAct

checkCard{ver ifyAccount}
trActRequest{processTrAct}

TrActATMContr act2 is an extending refinement of
TrActATMContract1

theConstheATM

ATM

checkCard
trActRequest

Consortium

ver ifyAccount

checkCard{ver ifyAccount}

TrActATMContract1

Figure 	��� An Example Extending Re�nement

Figure 	�� shows an extending re�nement on the participant level� The operation

trActRequest on ATM is re�ned with an invocation of processTrAct on Consortium�

Using the same reuse operator this operation processTrAct is added to Consortium�

De�nition and Properties

De�nition ��� �Extending Re�nement Modi�er� An extending re�nement

modi�er is a combined reuse modi�er with modi�er tag �extending re�nement� and

a modi�er description containing a sequence �Me�Mr�� where�

�� Mr is a re�nement modi�er and Me is an extension modi�er�

�� �a� for all operation invocations a�m � added to specialisation clauses by Mr�

with a referring to q � m is added to q by Me�

�b� for all acquaintance relationships a�q � added to acquaintance clauses by

Mr� q is added to R by Me�

�� �a� for all operations m added to q by Me� an operation invocation a�m �

where a refers to q is added to a specialisation clause by Mr�

�b� for all participants q added by Me� an acquaintance relationship a�q � is

added to an acquaintance clause by Mr�

��� Combined Operators

Clause � ensures that the re�nements only add dependencies on items that al�
ready existed in the original contract� while clause � ensures that all items that are

added are referred to by the re�nement�

De�nition ��� �Extending Re�nement� Rer is an extending re�nement of

R by M if

�� M is an extending re�nement modi�er�

�� M is applicable to R �

�� Rer is the result of applying M to R �

Illustration

Figure 	�	 illustrates an extending re�nement� First� a new participant and

operation are added through an extension� Second� a participant and an operation
that already existed in the original contract are re�ned� As demanded by clause �

these re�nements only add dependencies on the items added by the extension� Note

that� as required by clause � of the extending re�nement de�nition� all items added

through the extension are referred to by the re�nement� Otherwise� this would just

be a basic extension�

Also note that extension has to be applied �rst� for extending re�nement as well

as for connected extension� otherwise the intermediary contract would not be well�

formed� However� in the �rst case the re�nement re�nes operations that were added

through the extension� while in the second case the re�nement re�nes operations

that already existed before the extension�

Impact on Conicts

The con�icts that can occur after the application of extending re�nement are the

union of those of its parts� They are thus the same set of con�icts as for connected
extension� only they appear within di�erent parts� They were already depicted in

table 	���

��� Factorisation

Motivation

The third combined operator we discuss is called factorisation� Note that we do

not mean factoring out common behaviour here� Intuitively� with factorisation we

mean factoring out some part of the behaviour of one operation into an intermediary

operation� This is achieved by replacing an operation name in a specialisation clause

by another operation name� the specialisation clause of which in turn contains the
originally removed operation� The net result is that the same operations that were

��� Factorisation ���

E
xt

en
si

on Extension Modifier

pcpt2 {+name22}
+ pcpt3

R
ef

in
em

en
t

Refinement Modifier

pcpt1 { name11 (+ a2. name22)}
pcpt2 { +a3.pcpt3}

name11

pcpt1
name21

pcpt2

Reuse Contract 1

a2

Reuse Contract 2

pcpt3

name21
name22

pcpt2

name11

pcpt1
a2

name11{name22}

Reuse Contract 3

pcpt3 a3

name21
name22

pcpt2

name11

pcpt1
a2

Figure 	�	� Extending Re�nement

��� Combined Operators

originally invoked are still invoked� but now through an extra indirection� This
indirection can be added to the same participant� as well as to another participant�

We only de�ne factorisation on participant level here� A similar operator can be

constructed at context level� but that would lead us too far for what we want to do

here� Note that contrary to the other operators� factorisation does not really alter

the behaviour of a system� It just makes the design more modular� and often better

adaptable�

theBank theConstheBanktheATM

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard
{verifyCard}

verifyCard
{verifyAccount}

BankATMContract is a factorisation of ATMContract

theBank theConstheBanktheATM

ATM

checkCard

Consortium

verifyAccount

Bank

verifyCard

checkCard {verifyAccount}

ATMContract

theConstheATM

theConstheATM

Figure 	�
� An Example Factorisation

Figure 	�
 shows an example of a factorisation� It is a factorisation because the

invocation of verifyAccount on Consortium by checkCard on ATM now transits

through verifyCard on Bank� Note that factorisation does not necessarily have to

pass over another participant� It can also go via intra�participant invocations�

De�nition and Properties

De�nition ���� �Factorisation Modi�er� A factorisation modi�er is a com�

bined reuse modi�er with modi�er tag �factorisation� and a modi�er description
containing the sequence �Mce�Mc�Mr�� where�

�� Mce is a participant connected extension modi�er� Mc a participant coarsening

modi�er and Mr a participant re�ning modi�er�

�� the set of operations that are coarsened by Mc is equal to the set of operations
that are re�ned by Mr�

��� Factorisation ���

�� for all operation invocations a�m � removed from specialisation clauses by Mc�
with a referring to q � operation invocations b�m are added by Mce� with b

referring q ��

	� for all operation invocations b�m � with b referring q � added by Mce� an
operation invocation a�m � where a refers to q is removed from a specialisation

clause by Mc�

� for each operation invocation a�n added to the specialisation clause of an op�

eration m by Mr� n is an operation in Mce� which holds all operation names
in its specialisation clause that were removed from the specialisation clause of

m by Mc�

Factorisation can then be de�ned as follows�

De�nition ���� �Factorisation� Rf is a factorisation of R by M if

�� M is a factorisation modi�er�

�� M is applicable to R �

�� Rf is the result of applying M to R �

Illustration

Figure 	�� illustrates a factorisation� Comparing reuse contracts � and 	 in the

�gure allows to see the result of a factorisation� The communication between pcpt�

and pcpt�� i�e�� the invocation of name�� of name��� is preserved� but now it goes

through an intermediary participant pcpt� and an intermediary operation name���
This result is achieved in three steps� First� a connected extension adds the

intermediary operation and the operation invocation that is copied from participant

pcpt�� Second� through a coarsening� the behaviour that pcpt� has copied from

pcpt� �i�e�� the invocation of name�� on pcpt�� is removed from pcpt��� Third and

last� through a re�nement� a new operation invocation is added to pcpt� to invoke

the operation that has taken over its behaviour� It thus re�establishes the original

behaviour through an indirection�

Note that the same result could be achieved by �rst applying the coarsening

and then the re�ning extension� Even other combinations are imaginable with� for

example� a pure participant extension and a re�nement that adds the behaviour it
adds now� as well as the re�ning part of the connected extension� The only require�

ment is that for applicability reasons the re�nement should be performed after the

�connected� extension� We chose the given combination because we �nd it more

intuitive� The combination used to de�ne factorisation is not so important� because

�Note that a and b can be identical as well as di�erent�

�	� Combined Operators

a2

C
on

ne
ct

ed
E

xt
en

si
on Connected Extension Modifier

+ pcpt3. name31 {a2.name21}

C
oa

rs
en

in
g

Coarsening Modifier

pcpt1.name11 {-a2.name21}

R
ef

in
em

en
t

Refinement Modifier

pcpt1.name11 {+a3.name31}

name11

pcpt1
name21

pcpt2name11{name21}

Reuse Contract 1

a2

name31{name21}

Reuse Contract 3

name11

pcpt1
name21

pcpt2

name31

pcpt3

a2

name11{name31} name31{name21}

Reuse Contract 4

name11

pcpt1
name21

pcpt2

name31

pcpt3a3

a2

name31{name21}

Reuse Contract 2

name11

pcpt1
name21

pcpt2name11{name21}

name31

pcpt3

a2

pcpt3

a2
a3

a2

a3

a2

a3

Figure 	��� Factorisation

��� Factorisation �	�

it is always possible to transform one combination into another one and there is no
di�erence in the detected con�icts� What matters is that the �nal result is the same�

Note that the de�nition of this operator uses the fact that combined operators can

be nested� It could of course have been done with basic operators only�� but the

fact that combined operators can be nested allow for a more intuitive de�nition�

Let us now take a closer look at the de�nition� The �rst clause is straightforward�

Clauses � to
 put restrictions on the way the di�erent sub�operators �t together�

with as a goal to perform a factorisation and nothing else� One does� for example�

not want the re�nement to re�ne any other operations� than those that are strictly

necessary for the factorisation�

� Clause � speci�es that only those operations the specialisation clauses of which

are coarsened should be re�ned� The reason for this is that the re�nement

should only be used to re�ne operations from which behaviour was removed

�through the coarsening�� in order to invoke the same behaviour through an
intermediary operation� In the example this is correct as both the coarsening

and re�nement a�ect only name���

� Clause � speci�es that the operation invocations that were removed through

the coarsening should be added through the re�ning part of the connected

extension� In other words� the intermediary operation should only have the

behaviour that was removed from the original participant and nothing else�

In the example� name�� is removed from a specialisation clause through the

coarsening and added to a specialisation clause through the connected exten�

sion�

� Furthermore� clause 	 requires the operation invocations added in clause �
are the only operation invocations added to specialisation clauses through the

connected extension�

� Finally� clause
 ensures that the behaviour after the factorisation is the same

as before� It speci�es that the operation invocations added to an operation m

through the re�nement should refer to operations with the same behaviour as

what m exhibited before the coarsening� In the example� name�� now invokes

name��� which invokes name��� the same operation name�� invoked before�

Impact on Conicts

As always� the set of con�icts that can be caused through a factorisation is the

union of the con�icts caused through its sub�operators� However� one case deserves

some extra attention�

�Which is always possible� because the combined reuse modi�ers can always be decomposed in

their submodi�ers�

�		 Combined Operators

Operation Capture and Inconsistent Operations Operation capture occurs
when an operation invocation of m is added to a specialisation clause by one modi�

�er and this same operation m is added or changed by another modi�er� Similarly�

inconsistent operations occur when an operation invocation of m is removed from a

specialisation clause by one modi�er and this same operation m is added or changed

by another modi�er� The �rst con�ict thus appears after re�nement� the second

after coarsening� One would therefore expect both con�icts to appear after a fac�

torisation� This is depicted in �gure 	�� in a simpli�ed case� where there is only one

participant and the factorisation thus only a�ects intra�participant behaviour� The

notation mfng in the client interface is a short�hand notation for the same operation

invocation attached to an acquaintance relationship of a participant with itself �i�e��

intra�participant communication��

m {n}

m {n}
n {z}

m {n}
x {n}

m {}
x {n}

m {x}
x {n}

conn. ext.
+ x {n}

refinement
m {+ x}

coarsening
 m {- n}

refinement
n {+z} inconsistent

operations

operation
capture

Figure 	��� Annihilating Con�icts through Factorisation

Upon closer examination� it is obvious that there is an intuitive di�erence� When

an operation invocation is removed from a specialisation clause through a factorisa�

tion� it is always added to another specialisation clause with the result that it re�
mains within the transitive closure of the operation it was originally removed from�

Therefore� one does not get true inconsistent operations� Therefore� we include the

following rule�

Rule ��� �Inconsistent Operations Annihilation� The con�ict of inconsis�

tent operations that can be caused through a participant coarsening is annihi�

lated� when this participant coarsening is part of a factorisation�

One could argue that because the con�ict does not occur due to the fact that

the removed invocation is still in the transitive closure� this con�ict should be au�

tomatically annihilated when considering chains of modi�ers as discussed in section

���� We feel however that annihilating all such coarsenings might also remove in�

consistent operation con�icts that the user would like to be aware of� By explicitly

declaring the coarsening to be part of the factorisation� however� the user explicitly
expresses that the con�ict can be neglected�

��� Factorisation �	

Note that operation capture is still possible� because if another modi�er adapts
one of the operations that was moved through the factorisation� this might still cause

a problem�

Overview Table 	�� gives an overview of the possible con�icts on factorisation�

This table is again built by taking the union of the relevant parts of tables ���� ���

and ��� from chapter �� only now we have left out inconsistent operations for the

reasons explained above� Note that we do not have an extra column for re�nement

as all con�icts caused by re�nement are already part of the set of con�icts caused

by connected extension�

Factorisation

participant connected
extension

participant coarsening

part� ext� operation name� acci�

dental operation cap�

ture� unanticipated re�

cursion

�

cont� ext� � �

part� canc� dangling operation ref�
erence

dangling operation ref�
erence

cont� canc� dangling participant

reference

dangling participant

reference

part� ref� operation invocation�

unanticipated recur�

sion� regular operation

capture

operation invocation�

regular operation capt�

cont� ref� � �

part� coars� operation invocation�

unanticipated recur�

sion� regular operation

capture

operation invocation

cont� coars� dangling acquaintance

reference

dangling acquaintance

reference

Table 	��� Con�icts with Factorisation

�	� Combined Operators

��� Renaming

Motivation

The �nal combined operator we introduce is renaming� This operator will usu�

ally be applied to give inferred participants a di�erent name from the participant

they were derived from� Even without changing a participant�s interface one might

at some point want to rename a participant� Therefore� we make this a distinct

operator�

theConstheATM

EuroATM
(ATM)

checkCard
checkEuroCard

Consortium

ver ifyAccount

checkCard{ver ifyAccount}

EuroATMContract is a participant extension and a
renaming of ATMContract

theConstheATM

ATM

checkCard

Consortium

ver ifyAccount

checkCard{ver ifyAccount}

ATMContract

Figure 	�� An Example of Renaming

Figure 	� shows a simultaneous renaming and participant extension� It adapts

the ATMContract in order to handle ATMs that also handle Eurocards� While apply�

ing the participant extension only would result in a contract where the participant

ATM still had the same name� here we also adapt the name� We adopt the convention

to write the name of the participant that was renamed between braces below the

new name� when this is useful as a clari�cation�

Renaming might seem to be a very straightforward operator� but it takes some

work to de�ne how it is built up from other modi�ers� The reason for this is that

we actually have to remove a participant with one name and then re�introduce a
participant with another name and the exact same acquaintance clause and interface�

We also have to change the names of all references to the renamed participant in

acquaintance clauses on other participants�

We do not give a full de�nition here as that would lead us into too much tedious
detail� but we use this operator �and the adopted notation� further on in examples�

��� Summary �	�

��� Summary

We have shown how combined operators can be de�ned based on the basic operators

of chapter � and de�ned some often recurring combinations� We did by no means

give all possible useful combinations here� but it is clear from the examples that

with the basic de�nitions of section 	�� it is easy to de�ne new combinations�

The con�icts that can be caused by these combined operators are most often the

union of the con�icts that can be caused by the basic modi�ers that they are made

up from� It was shown in chapter � that con�icts can sometimes disappear when

there are annihilating modi�ers in a chain� It would of course make not much sense

to take up such a sequence in a combined modi�er� Still� sometimes con�icts can

be ignored because of the meaning of the combined operator� Such an example was

given with inconsistent operations caused by a participant coarsening that is part
of a factorisation�

