
Chapter �

Reuse Contracts for the UML

Until now� reuse contracts were handled as a fairly abstract way of expressing the
structure of a software system� We started by representing reuse contracts on such
an abstract level because we believe that the reuse contract approach is scalable
and can be applied to di�erent composition mechanisms� While we get back to this
scalability issue in the conclusions� as a proof of usability in this chapter we apply
reuse contracts to the �eld of object�oriented class libraries and frameworks� This
demonstrates more clearly the concepts and allows for concrete experiments demon�
strating how reuse contracts can be applied and how they can help in evolution and
composition� Such experiments are discussed in chapters � and � �

Since we do not see reuse contracts as an entirely new methodology� but rather
as an enhancement to existing methodologies� we do not start from scratch but
integrate reuse contracts in the Uni�ed Modelling Language �UML�	BRJ
��� The
question is then where reuse contracts �t in� The UML presents seven di�erent kinds
of diagrams to describe di�erent aspects of an object�oriented software system� Two
of those seem immediately relevant� static structure diagrams �i�e�� what is usually
called class diagrams� and collaboration diagrams� The �rst concentrates on how
di�erent classes are combined structurally� while the second describes the collabora�
tion between di�erent acquainted objects� As we feel reuse contracts can be useful
on both levels� we handle both in this chapter� We call these particular versions of
reuse contracts multi�class reuse contracts and collaboration reuse contracts�

While these two diagrams are the most obvious� we by no means feel they are
the only ones that should be considered� Sequence diagrams are closely related to
collaboration diagrams and could be an obvious next step� 	MS
�� describes how the
reuse contract principles can be applied to OMT
s state diagrams 	RBP�
��� which
are very similar to UML
s� In a later stage we would like to study applying reuse
contracts to notions as diverse as use case diagrams �following Ivar Jacobson
s use
cases 	JCJO
���� or implementation diagrams that describe the general architecture

��� Reuse Contracts for the UML

of a system at a higher level� but this is future work�� Let us now focus on static
structure and collaboration diagrams�

��� Basic Static Structure Diagrams

Static structure diagrams in UML are similar to class diagrams in other object�
oriented methodologies� Classes are depicted by rectangles which are divided in
three parts� one for the name of the class� one for the attributes and one for the
operations� Associations between classes are depicted by lines and inheritance by a
hollow triangle� Multiplicity constraints and an aggregation sign can be added along
the bindings� We do not discuss the entire notation here� but instead introduce new
modelling elements as we need them� We start by deciding how reuse contracts
can be mapped on a subset of UML static structure diagrams and then proceed
by discussing how additional features of these diagrams can be added to this basic
mapping� We do not integrate all model elements of UML� but rather focus on
features that are crucial to documenting reusable components�

It is clear that participants should map to classes� operations to methods� ac�
quaintance relationships to associations and acquaintance names to role names��
Only one item of our basic reuse contract notation is left� operation invocation� In
object�oriented systems this naturally maps to message passing� In the UML� mes�
sage passing is not modelled on the level of classes in static structure diagrams� but
only between objects in sequence and collaboration diagrams� We feel however that
it is useful to be able to model general message passing sequences between classes�
This need becomes apparent� for example� in books describing design patterns� where
often small tags with code fragments are attached to associations 	GHJV
��� Its use�
fulness also becomes clear in an experiment we describe in the following chapter� We
therefore extend the notation of static structure diagrams with message passing� We
denote it the same way as in original reuse contracts� along UML associations�

As an example of multi�class reuse contracts we use the Model�View� Controller
framework �MVC� from VisualWorks throughout this chapter� as it is well known
and is often named as the �rst mini�framework�� Figure ��� illustrates the MVC
at the highest level of abstraction� i�e� the classes Model� View and Controller�
At that level the way they are connected is speci�ed� plus some basic behaviour�
First� it is speci�ed that when a Model receives the method changed�with� it sends
the message update�with�from� to each of its dependents�� Second� the method

�See chapter � for an in�depth discussion of future work�
�Throughout this chapter we use the UML vocabulary to denote items from object�oriented

languages� except for the use of the term method instead of operation� to stress the di�erence with

the basic de�nitions�
�Note that we use the Smalltalk syntax in these examples� i�e� names of methods with colons to

denote their arguments� We ignore the arguments here� their inclusion is an extension to the basic

model� We just distinguish di�erent method names by means of this notation�
�Both for the method changed�with� and update�with�from� di�erent versions with fewer

��� Basic Static Structure Diagrams ���

activate on Controller invokes hasControl on itself� This is denoted between
braces in the client interface� as we have denoted intra�participant behaviour before�
We get back to self sends later� While this contract is quite rudimentary and does
not specify much behaviour it already gives us a general view� We know� for instance�
that every View has a Controller and vice versa��

changed:with:
{update:with:from:}

changed:with:

Model View

activate
 {hasControl}
deactivate
hasControl

Controller

dependents

model

controller

viewmodel

MVCContract

update:with:from:

Figure ���� Model�View�Controller

Now that we have decided which subset of static structure diagrams reuse con�
tracts can be mapped to� we can reconsider the de�nition of reuse contracts� In
order to obtain multi�class reuse contracts� we start by taking the original de�nition
and replace all occurrences of the word �participant
 by �class
 and all occurrences
of the word �operation
 by �method
�

De�nition ��� �Multi�class Reuse Contract	 A multi�class reuse contract

is a set of class descriptions� each with

�� a unique name�

�� an acquaintance clause�

�� an interface�

De�nition ��� �Acquaintance Clause	 An acquaintance clause is a set of
acquaintance relationships a�c� associating an acquaintance name a with a class
name c�

arguments exist� but these are propagated to these two versions� therefore we only discuss these

basic two here�
�For Views that have no particular interactions an instance of the class NoController is attached

to it�

�
� Reuse Contracts for the UML

We again further de�ne the form of interfaces�

De�nition ��
 �Interface	 An interface consists of a set of methods each con�
sisting of

�� a method name that is unique within this interface�

�� a specialisation clause�

Finally� we again de�ne specialisation clauses�

De�nition ��� �Specialisation Clause	 A specialisation clause is a set of
method invocations a�m� associating an acquaintance name a with a method name
m�

The MVCContract is then denoted as follows�

MVCContract �

� � Model�

� dependents�View ��

� �changed�with�� �dependents�update�with�from��� �

��

� View�

� model�Model� controller�Controller ��

� �update�with�from�� ��� �

��

� Controller�

� model�Model� view�View ��

� �activate� �self�hasControl���

�deactivate� ����

�hasControl� ��� �

�

�

The reuse contract contains three class descriptions� named Model� View and
Controller� The �rst has only one element in its acquaintance clause� the other
two acquaintance clauses have two elements� The �rst two class descriptions only
have one element in their interface� the last has three elements in it� activate�
deactivate and hasControl� While deactivate and hasControl have an empty
specialisation clause� activate invokes hasControl on self� In the same way as
we adapted the basic de�nitions� we can rede�ne well�formedness� as well as the
operators as described in chapter ��

��� Integrating the Operators �
�

��� Integrating the Operators

As an example of the result of applying an operator consider �gure ���� While
�gure ��� describes general MVC behaviour� di�erent re�nements and extensions
of the contract can be used to describe di�erent specialisations� Di�erent kinds
of views with their associated kind of controller are already present in the Visu�
alWorks class library� Figure ��� describes the example of BasicButtonView and
BasicButtonController�

BasicButtoncontract is an extending refinement of MVCContract

changed: with:

Model

changed:with:
{update:with:from:}

activate{takeFocus}
deactivate{loseFocus}

update:with:from
takeFocus
loseFocus

BasicButtonView
(View)

activate{hasControl}
deactivate
hasControl

BasicButtonController
(Controller)

dependents

model

controller

viewmodel

Figure ���� MVC for BasicButtonView and BasicButtonController

BasicButtonController is a special kind of Controller� that sends the message
takeFocus to its view when it gets activated and the message loseFocus when
it gets deactivated� As the methods activate and deactivate already exist on
Controller and activate
s specialisation clause is preserved� this new contract is
a participant re�nement of the original one� Because the methods takeFocus and
loseFocus are added to View it is also a participant extension� In fact� as the only
methods that are added are called through the re�nement we can decide that the
BasicButtonContract is an extending re�nement of the MVCContract�

Now how can the relationship between two models as expressed through the reuse
operators be integrated in UML� UML recognises the need to describe a system at
di�erent levels of granularity and therefore introduces a re�nement relationship�
�The re�nement relationship represents the fuller speci�cation of something that has

been already speci�ed at a certain level of detail� It is a commitment to certain

choices consistent with the more general speci�cation� but not required with it� It

is a relationship between two descriptions of the same thing at di�erent levels of

abstraction
 	BRJ
��� So re�nement in UML shows a relationship between two dif�

�
� Reuse Contracts for the UML

ferent views of something� This is exactly what our reuse operators do� only at a
�ner level of detail�

According to 	BRJ
�� re�nement can include� amongst others� the following kinds
of relationships�

� Realisation� relation between a type and a class that realises it�

� Design trace� relation between an analysis class and a design class�

� Levelling of detail� relation between a high�level construct at a coarse granu�
larity and a lower level construct at a �ner granularity� such as a collaboration
at two levels of detail�

� Implementation� relation between a construct and its implementation at a
lower virtual layer� such as the implementation of a type as a collaboration of
lower�level objects�

� Optimisation� relation between a straightforward implementation of a con�
struct and a more e�cient but more obscure implementation that accomplishes
the same e�ect�

In the MVC example and the Gateway and Set examples of chapter � the reuse
operators were used to model levelling of detail and optimisation� but we will see
further on that reuse operators can also be used to model di�erent kinds of relation�
ships�

So how do we integrate reuse operators into the notation of UML static structure
diagrams� A re�nement link can be depicted by a dashed generalisation symbol� i�e�
a dashed line with a hollow triangular arrowhead at the end connected to the most
general element� It can be either visible within one model� or an invisible hyperlink
between models supported by a tool� Furthermore� a re�nement relationship in UML
can have a speci�cation of how the more detailed version maps into the more abstract
version� This can be denoted by a stereotype� and a note that is attached to the link
connecting both constructs� Instead of attaching just any note to this link� we attach
a stereotype describing the kind of reuse operator and possibly a note describing the
reuse modi�er� Figure ��� shows how MVCContract and BasicButtonContract can
be depicted this way� Note that we again use the notation where ��
 and ��
 signs
denote what is added and omitted�

While this notation is very useful� we do not always repeat entire contracts to
model changes to particular classes� In object�oriented software engineering variabil�
ity is most often achieved through inheritance� In UML this is called generalisation

�In the UML stereotypes represent a built�in extensibility mechanism� The general representation

of a stereotype is to place the name of the stereotype between matched guillemets� as in �foo��

The stereotype string can be placed above or in front of the name of the model element being

described� Stereotypes can be used� for example� to group methods of one class into subgroups or

to characterise di�erent kinds of classes� or kinds of relationships between model elements��

��
 Impact of Inheritance on the Con
icts �

+View.takeFocus
+View.loseFocus
Controller.activate{+view.takeFocus}
Controller.deactivate{+view.loseFocus}

<< Extending Refinement >>

changed:with:
{update:with:from:}

changed:with:

Model View

activate
 {hasControl}
deactivate
hasControl

Controller

dependents

model

controller

viewmodel

MVCContract

update:with:from:

BasicButtoncontract is an extending refinement of MVCContract

changed: with:

Model

changed:with:
{update:with:from:}

activate{takeFocus}
deactivate{loseFocus}

update:with:from
takeFocus
loseFocus

BasicButtonView
(View)

activate{hasControl}
deactivate
hasControl

BasicButtonController
(Controller)

dependents

model

controller

viewmodel

Figure ���� Contract Re�nement

and it is depicted by a hollow triangle� We also adopt the UML notation for gen�
eralisation and add the operator name next to the hollow triangle� as depicted in
�gure ���� The acquaintances to which message sends are added are denoted by
their names�

��� Impact of Inheritance on the Con�icts

The introduction of inheritance� and more particularly of late binding� also sheds a
new light on some of the con�icts� Take� for example� method capture�� This con�ict
occurs when a method is invoked after one modi�cation� while another modi�cation
adapted this method unaware of the extra invocation� Until now� we considered

�In this and the following chapters we use the terms method capture� inconsistent methods� etc�

instead of operation capture and inconsistent operations�

�
� Reuse Contracts for the UML

activate{hasControl}
deactivate
hasControl

Controller

BasicButtonController

Refinement
 activate{+view.takeFocus}
 deactivate{+view.loseFocus}

activate{hasControl}
deactivate
hasControl

Figure ���� Re�nement of Controller

method capture to occur with calls between di�erent participants� Now consider the
situation where a subclass overrides a certain method and afterwards the superclass
is adapted to add an invocation to this method� Late binding will cause method
capture to occur�

add [...]
addAll
 [... add ...]

Set

CountableSet CountableSet

add [...]
addAll [...]

OptimisedSet

refinement
 add [+count]

coarsening
 addAll [-add]

refinement
 add [+count]

add
 [....
 count]
count

add
 [....
 count]
count

Inconsistent
Operations

Figure ���� Inconsistent Methods on Set

An example of inconsistent methods through inheritance was already given in
chapter �� concerning the Set and CountableSet� The example is repeated in �g�
ure ���� The inheritor performs a re�nement by overriding add to invoke count�
assuming that this will also in�uence its inherited method addAll� The coarsening
performed to achieve an optimisation of Set broke this assumption� with as result
that in the inheritor the behaviour of add and addAll is no longer consistent� Here
we just considered one class and its inheritor� but the depth of inheritance hierarchies
and the layered de�nition of methods makes similar problems hard to detect� This
example shows how any change to a method in a superclass that adds or removes

��� Integrating Late Binding �
�

method calls might lead to method capture� respectively inconsistent methods�
In general� the rules for con�ict detection as given in chapter � can be used to

detect problems with parent class exchange� i�e�� possible problems that can occur
in subclasses when changes are made to a superclass� When all steps going from
one class to its subclasses are documented by means of reuse operators� we can
express the changes made to the superclass with reuse operators as well and apply
the rules� In the above example� the subclass performs a re�nement and the parent
class exchange expresses a participant coarsening� which leads to the inconsistent
methods con�ict� Note that some of the operators can never be expressed through
inheritance� Participant cancellation� for example� is not allowed in statically typed
languages as C�� and Java� In Smalltalk it can be simulated by the convention of
invoking the method shouldNotImplement�

While the con�ict detection rules can thus be applied to the case of parent class
exchange� some particularities of object�oriented languages and software engineering
deserve special attention�

��� Integrating Late Binding

While the above example already demonstrates to some extent how the reuse op�
erators can assist in clarifying the structure of a framework� it also shows some of
the shortcomings� Actually� the original specialisation clause of both activate and
deactivate is preserved on BasicButtonController because a super send is per�
formed� In the original de�nition of reuse contracts nothing was said about self and
super sends� Moreover� self sends were added above in the graphical notation� but
not in the formal de�nition� We will therefore now elaborate on the basic de�nition
and enhance it to model self and super sends�

����� Self Sends

First� until now we have not really incorporated the use of self sends� We therefore
add a special section to specialisation clauses to express self sends�

De�nition ��� �Specialisation Clause Revisited	 A specialisation clause is
a set of method invocations a�m � where a is an acquaintance name or the keyword
self and m is a method name�

As mentioned before� we graphically depict self sends by adding the methods
that are invoked between braces to method signatures in the interface of a class� as
depicted in �gure ���� This �gure shows how on class Model the di�erent versions
of the method changed propagate behaviour to each other�

We already mentioned in chapter � that it is possible for an acquaintance name
to refer to the participant it is de�ned on� This kind of binding can be represented by
a loop� We then argued that operations along such a loop represent intra�participant

�
� Reuse Contracts for the UML

changed {changed:}
changed: {changed: with:}
changed: with:

Model

Figure ���� The Representation of Self Sends

behaviour� One might think that this could be used to represent self sends� but an
association between a class and itself could be used for all kinds of acquaintance
relationships between two instances of the same class� These two instances need
not necessarily be the same� Take for example the class VisualPart �a superclass
of View�� which is used to group di�erent parts of a visual representation together�
A VisualPart consists of other VisualParts and when an instance of VisualPart
receives the method update�with�from�� it passes it on to the VisualParts it
contains� This is depicted in �gure ����

update:with:from:
{update:with:from:}

update: with: from:

VisualPart

container

Figure ���� Message Sends between Instances of the Same Class

����� Super Sends� Specialisation

Motivation

We also want to include the possibility to perform super sends� We do not
want to extend the de�nition of a specialisation clause to incorporate this notion
explicitly� because each participant in a reuse contract should be self�contained�
without needing knowledge of its superclasses to judge well�formedness or to detect
con�icts� Therefore� the specialisation clause of a method performing a super send
will contain all method names of the specialisation clause of the method it overrides�
plus the names of any new methods it may call�

Until now a specialisation clause of a re�nement modi�er needed to repeat the
entire specialisation clause of the operation it was adapting� in order to ensure that
the design was respected� When using a super send this is no longer necessary�
as a super send always respects the method that is adapted by invoking it� We

��� Integrating Late Binding �
�

therefore introduce an extra re�nement operator that di�ers only slightly from par�
ticipant re�nement� specialisation� The only di�erence is that while in participant
re�nement the modi�er
s specialisation clauses needed to be supersets of the original
ones� for specialisation the modi�er
s specialisation clauses only include the new in�
vocations� The example of BasicButtonView and BasicButtonController already
demonstrated the usefulness of this operator�

De�nition and Properties

De�nition ��� �Specialisation Modi�er	 A specialisation modi�er is a reuse
modi�er with modi�er tag �specialisation� and a modi�er description containing
couples �c� int� each consisting of a class name c and an interface int�

The applicability of the modi�er is stated in the following de�nition� Note that
the last clause again repeats part of the well�formedness de�nition�

De�nition ��� �Specialisable	 A reuse contract R is specialisable by a special�
isation modi�er Msp if for each couple �c� int� in Msp�

�� c is a class name in R �

�� for each method namem in int� m appears in class c in R andm
s specialisation
clause is disjoint from the specialisation clause of m in c in R �

�� for each method invocation a�m in a specialisation clause in int �

�a� a is an acquaintance name in the acquaintance clause of c �

�b� m is the name of a method in the interface of the class a refers to�

Note that while the modi�ers of specialisation contain only the newly added
invocations� in the resulting reuse contract we want to sum up the entire special�
isation clause� Our motivation for this is to obtain well�formed reuse contracts�
Specialisation of contracts can then be de�ned as follows�

De�nition ��� �Specialisation	 If a reuse contract R is specialisable by a modi�er
Msp� then the reuse contract Rsp is the specialisation of R by Msp� where�

�� Rsp contains all class descriptions of R that are not mentioned in Msp�

�� for each �c� int� in Msp� Rsp contains a class description

�a� with name c and the same acquaintance clause as c in R �

�b� that contains all methods of c in R not mentioned in int �

�c� that contains all methods of int with as specialisation clause the union
of the specialisation clause of this method on R and the specialisation
clause of this method in int �

�
� Reuse Contracts for the UML

The following property can be proven about these de�nitions�

Property ��� A specialisation of a well�formed reuse contract is well�formed�

Proof

The well�formedness de�nition imposes � constraints�

�� WF� is not in�uenced by specialisation�

�� WF� is preserved by the fact that the specialisation clauses on Rmr partially
refer to class names that were already present and further by the third clause
of the re�nability de�nition�

�� WF� is preserved by the fact that the specialisation clauses on Rmr partially
refer to method names that were already present and further by the fourth
clause of the re�nability de�nition�

Example

We will not give abstract illustrations of the operators in this chapter� Since
they are all fairly straightforward� we immediately give an example� An exam�
ple of specialisation was already given in section ��� with BasicButtonView and
BasicButtonController� as depicted in �gure ����

activate{hasControl}
deactivate
hasControl

Controller

BasicButtonController

Specialisation
 activate{+view.takeFocus}
 deactivate{+view.loseFocus}

activate{hasControl}
deactivate
hasControl

Figure ���� An Example of Specialisation

Note that in this de�nition we only consider super sends of the same method�
Performing a super send from one method to another is considered bad design�
therefore we do not include the possibility to model this through reuse contracts�

��� Abstract Classes and Methods �
�

Impact on the con
icts

As specialisation is very closely related to participant re�nement it is logical
that the con�icts that can occur during specialisation closely resemble those that
can occur during participant re�nement� Table ��� compares the con�icts that can
be caused by the two operators�

part� re�nement specialisation

part� extension � �

cont� extension � �

part� cancellation dang�method reference dang�method reference

cont� cancellation dang� participant reference dang� participant reference

part� re�nement method invocation� incon�
sistent methods� regular
method capture

unanticipated recursion�
regular method capture

cont� re�nement � �

part� coarsening method invocation� incon�
sistent methods� regular
method capture

unanticipated recursion�
regular method capture

cont� coarsening dang� acquaintance refer�
ence

dang� acquaintance refer�
ence

Table ���� Con�icts with Specialisation

The only di�erence is that while participant re�nement can cause method invo�
cation con�icts in combination with another participant re�nement or coarsening�
this con�ict does not occur with specialisation� Remember that method invocation
con�icts occur when both modi�cations add or remove method invocations from the
specialisation clause of the same method� This can cause inconsistencies� This does
not occur with specialisation� because the super call in the re�ned method auto�
matically incorporates all changes that could possibly be made to the original reuse
contract through a participant re�nement or coarsening of the methods it adapts�

��� Abstract Classes and Methods

Until now we have not made a distinction between concrete and abstract methods�
The use of abstract classes and methods is� however� a prominent object�oriented
reuse technique� An abstract class is a class that contains a number of abstract meth�
ods� i�e� methods without an implementation� Template methods invoke abstract
methods or other template methods in their implementation� Finally� there are
concrete methods� which have a full implementation� that does not invoke abstract
methods� Template methods describe the core behaviour of the class� Subclasses
only need to override the abstract methods to give them an implementation� or some

��� Reuse Contracts for the UML

concrete methods to adapt their behaviour� but they inherit the core behaviour by
means of the template methods� The overriding of abstract methods with concrete
versions is thus a very important operation� We therefore extend our model with
the notion of abstract and concrete methods and with an extra operator� participant
concretisation and its inverse� participant abstraction�

UML provides the possibility to associate certain properties with operations�
One of the possibilities is to distinguish abstract methods from concrete ones by
representing the abstract methods in italics� As an example� consider ValueModel�
one of the subclasses of Model� which represents all kinds of models holding a certain
value� It has two abstract methods� setValue� and value to mutate and access
this value� and a template method value� that relies on setValue� to mutate and
sends the message changed� to itself to notify its dependents that its value has
changed� The methods setValue� and value need to be overridden in subclasses
of ValueModel to provide an implementation suited to the particular kind of value�
This abstract class is depicted according to the UML notation for abstract classes
as shown in �gure ��
�

setValue:
value
value: {setValue: , changed:}
changed:

ValueModel

Figure ��
� An Abstract Class

����� Extension of the Model

To extend reuse contracts with information about abstract and concrete methods�
we need to attach an extra annotation� abstract or concrete� to each method in
the interfaces� We therefore extend our de�nition of interfaces �see page ���� as
follows�

De�nition ��� �Interface Revisited	 An interface consists of a set of methods
each consisting of

�� a method name that is unique within this interface�

�� an annotation abstract or concrete�

�� a specialisation clause�

We do not need to adapt the de�nitions of reuse contract and specialisation
clause� Reuse contracts still contain class descriptions consisting of a name� an

��� Abstract Classes and Methods ���

acquaintance clause and an interface� Only now the interfaces are slightly changed�
Specialisation clauses do not need to repeat the annotation of the methods they
contain� This information can be found in the concerning interfaces�

Note that we do allow abstract methods to have a specialisation clause� although
they do not have an implementation� This might seem awkward� but we want to
keep this possibility open� because� for example� during the design one might want
to express that a certain method should de�nitely call some other method� without
already giving an implementation� In a lot of examples� however� the specialisation
clauses of abstract methods will simply be empty�

The de�nition of well�formedness does not need to be adapted either� Since
nothing changes the uniqueness of the names of methods� i�e� it is not allowed to
have a concrete and an abstract method with the same name in one interface� and
since abstract methods are allowed to have specialisation clauses the well�formedness
de�nition does not require any extra constraints�

The de�nitions of the operators can also be preserved to a very large extent� The
only changes that need to be made are the addition of considerations concerning the
annotation� For example� when adding a new method through a participant exten�
sion this new method should also have an annotation� In participant re�nement�
when a method is re�ned� the de�nition should not only state that all methods in
the re�nement modi�er should have the same name as in the base contract� but also
that they should have the same abstractness annotation� This will be necessary to
detect certain con�icts� just as it was necessary to repeat other redundant informa�
tion in modi�ers� Because the changes to the de�nitions are straightforward� we will
skip the adapted de�nitions here�

����� A New Operator� Participant Concretisation

Motivation

Now that we have extended the model with the extra information� we will in�
troduce an extra operator� participant concretisation and its inverse� participant ab�
straction� As mentioned before� an important action in customising reusable classes
is the overriding of abstract methods with concrete ones� This is exactly what par�
ticipant concretisation represents� Intuitively� Rpc is a participant concretisation of
R if any number of abstract methods from one or more class descriptions in R is
�overridden
 by concrete methods in Rpc�

De�nition and Properties

De�nition ���� �Participant Concretisation Modi�er	 A participant con�

cretisation modi�er is a reuse modi�er with modi�er tag �participant concretisa�
tion� and a modi�er description containing couples �c� int� each consisting of a class
name c and an interface int � in which all methods have the annotation concrete�

��� Reuse Contracts for the UML

The applicability of the modi�er is stated in the following de�nition�

De�nition ���� �Participant Concretisable	A reuse contract R is participant
concretisable by a participant concretisation modi�er Mpc for each pair �c� int��

�� c is a class name in R �

�� for each method m in int �

�a� m has the same name as an abstract method in c in R �

�b� m has the same specialisation clause as the corresponding method in c in
R �

Note that again we include more information in the reuse modi�er than would
seem necessary at �rst� We repeat information on specialisation clauses to be able
to detect certain interface con�icts �see below� and we include information on the
annotations to be complete�

De�nition ���� �Participant Concretisation	 If a reuse contract R is partici�
pant concretisable by a modi�erMpc� then the reuse contract Rpc is the participant
concretisation of R by Mpc� where�

�� Rpc contains all class descriptions of R that are not mentioned in Mpc�

�� for each pair �c� int� in Mpc� Rpc contains a class description

�a� with name c and the same acquaintance clause as c in R �

�b� that contains all methods of c in R not mentioned in int �

�c� that contains all methods of int �

Following property can again be proven about these de�nitions�

Property ��� A participant concretisation of a well�formed reuse contract is well�

formed�

Proof

As we discussed above� the introduction of the annotations abstract and concrete

does not in�uence well�formedness� As this annotation is the only item that is
changed through participant concretisation� well�formedness will not be a�ected by
it�

��� Abstract Classes and Methods ��

Example

As an example of a concretisation� consider the subclass ValueHolder of Value�
Model� In ValueHolders the value is simply stored in an instance variable� The class
concretises the methods value and setValue� accordingly� This is depicted in �gure
�����

Part. Concretisation
 setValue:
 value

setValue:
value
value: {setValue: ,changed:}
changed:

ValueModel

setValue:
value
value: {setValue: ,changed:}
changed:

ValueHolder

Figure ����� Participant Concretisation

Short�Hand Notations

We make a distinction between complete and partial concretisations� A complete

concretisation concretises all abstract methods in a contract� thereby resulting in
the representation of a set of instantiatable classes� A partial concretisation leaves
some abstract methods� requiring subsequent concretisations�

Notation ��� A participant concretisation modi�er Mcc represents a complete

participant concretisation of R if
for each class c in R that has at least one abstract method� a pair �c� int� exists in
Mcc and all abstract methods of c in R are mentioned in int �

Notation ��� A participant concretisation modi�er Mpc represents a partial par�
ticipant concretisation of R if
a class c in R exists that has at least one abstract method and either c is not men�
tioned in Mpc or a pair �c� int� exists in Mcc and not all abstract methods of c on R

are mentioned in int �

�We will often use the names concretisation and abstraction without the pre�x participant when

no confusion is possible�

��� Reuse Contracts for the UML

Furthermore� we need the classical short�hand notation as before for the rules
on change propagation�

Notation ��
 A participant concretisation modi�er Mpc represents a participant
concretisation of m on c if
a class c and a method m exist such that �c� int� is an element of Mpc and m is an
element of int �

Other

The opposite of participant concretisation is called participant abstraction� We
will not give a complete de�nition of this operator as its de�nition would be exactly
the same of that of participant concretisation� only with occurrences of the word
concrete replaced with abstract and vice versa�

De�nition ���
 �Participant Abstraction	 Rpa is a participant abstraction
of R i� R is a participant concretisation of Rpa

Impact on the con
icts

The introduction of concretisation and abstraction introduces new possible con�
�icts and also sheds a di�erent light on certain already existing con�icts� We start
with the new con�icts�

Annotation Con
icts

As a new element is added to the interface� new interface con�icts are possible�
Annotation con�icts occur when two modi�cations both make the same abstract
method concrete� or vice versa� As the annotations of methods can only be altered
through concretisation and abstraction� annotation con�icts can only occur when
both modi�cations perform a concretisation� or when both modi�cations perform an
abstraction� This is a new kind of interface con�ict� as it concerns a clash between
the new piece of information added to the interface�

Rule ��� �Annotation Con
ict	 An annotation con
ict occurs when a method
name m and a class name c exist such that both M� and M� represent participant
concretisations or participant abstractions of m on p �

Note that� as with method invocation con�icts� both concretisation and its in�
verse abstraction are given� Again� because of the applicability de�nition the only
possible situation are where both modi�ers perform the same operator�

The solution to this con�ict is to either remove one of the modi�cations� thereby
accepting the concretisation �and according implementation� o�ered by the other

��� Abstract Classes and Methods ���

one� When this is not desirable� M� can be turned into a re�nement or coarsening
thereby adapting the concretisation �and according implementation� o�ered by M�

to this user
s needs� When re�ning� the design o�ered by M� is fully accepted and
extended� when coarsening� the design o�ered by M� is more or less breached�

Mixed Method Interface Con
icts

A second new kind of interface con�icts are mixed method interface con�icts� This
problem occurs when a method is on the one hand concretised and on the other hand
re�ned or coarsened� After the re�nement or coarsening� the concretisation is no
longer valid� in the case of re�nement because the specialisation clause was extended�
in the case of coarsening because the specialisation clause was narrowed� Note that
it is in order to detect this con�ict that we added information on the specialisation
clauses in the concretisation modi�er� Con�icts also occur in the inverse order� In
that case the re�nement or coarsening is no longer valid after the concretisation�
because the re�nement or coarsening is de�ned for an abstract method� There is an
essential di�erence between re�ning an abstract and a concrete method� because in
the �rst case no implementation will be associated with the modi�er� while in the
second case an implementation will be there� Mixed method interface con�icts can
thus occur when one modi�cation is a concretisation and the other a re�nement or
coarsening�

Rule ��� �Mixed Method Interface Con
ict	 A mixed method interface

con
ict occurs when a method name m and a class name c exist such that M�

represents a participant concretisation of m on c and M� represents a participant
re�nement or a participant coarsening of m on c �

Note that consecutively adding new information to the interfaces will lead to
di�erent kinds of mixed con�icts�

Incomplete Implementation

It is possible for one modi�er to perform a complete concretisation� therefore leading
to the believe that the result is an instantiatable class� while another modi�cation
adds new abstract methods� We call this last new con�ict the incomplete implemen�

tation con�ict� Since this occurs when abstract methods are added� this can only
occur after a combination of a participant extension or abstraction and a participant
concretisation�

To be able to detect this con�ict that we added the de�nitions on complete and
partial concretisations above� Using these de�nitions we can state the following rule�

Rule ��
 �Incomplete Implementation Con
ict	An incomplete implemen�
tation con
ict occurs when

��� Reuse Contracts for the UML

� M� represents a complete participant concretisation of R�

� M� represents a participant abstraction of R or a participant extension by a
method m � where m is abstract�

Note that this is the second con�ict� after unanticipated recursion� that cannot
be detected by solely looking at the modi�ers� We need to take the base reuse
contract into consideration to know whether the concretisation is complete or not�
This could be avoided by introducing two di�erent operators partial concretisation
and complete concretisation and thus let the user better document his assumptions�
This brings us back to the trade�o� between �exibility and the possibility to detect
con�icts we discussed in chapter �� Here� we chose not to make operators too �ne�
grained�

Method Capture and Inconsistent Methods

Earlier on� method capture and inconsistent methods were described to occur when
one modi�cation was a participant re�nement� respectively a participant coarsening
and the other either one of these� The idea behind it was the addition or removal
of a method call by the �rst modi�er of a method that was adapted in some way by
the second modi�er� Since concretisation and abstraction also adapt a method in
some way these operators can also lead to method capture� respectively inconsistent
methods�

Interface Inconsistency Con
icts

The same line of thought can be followed concerning interface inconsistency con�icts�
These con�icts all occur when in one modi�er a reference is made to an item that
is removed by the other modi�er� When a method is concretised or abstracted� it is
possible that another modi�er removes either a method it invokes� the acquaintance
relationship along which it invokes it or even the very class it is de�ned on �and
thus also the method itself�� This leads to respectively dangling method� dangling
acquaintance and dangling participant con�icts�

Summary

Table ��� gives an overview of all con�icts that can occur with concretisation and
abstraction�

��� Abstract Classes and Methods ���

participant concretisation participant abstraction

part� extension incomplete implementa�
tion

�

cont� extension � �

part� cancellation dang�method reference dang�method reference

cont� cancellation dang� participant reference dang� participant reference

part� re�nement mixed method interface�
regular method capture

mixed method interface�
regular method capture

cont� re�nement � �

part� coarsening mixed method interface�
inconsistent methods

mixed method interface�
inconsistent methods

cont� coarsening dang� acquaintance refer�
ence

dang� acquaintance refer�
ence

part� concretisation annotation incomplete implementa�
tion

part� abstraction incomplete implementa�
tion

annotation

Table ���� Con�icts with Participant Concretisation and Abstraction

����� A Combined Operator� Layered Concretisation

Motivation

As we stated before� abstract methods are allowed to have specialisation clauses�
but in a lot of cases these will simply be empty� Concretising a method will therefore
very often go together with additions to the specialisation clause� This will also
often be accompanied by the introduction of auxiliary methods� We will therefore
introduce a new combined operator that is a combination of concretisation and
extending re�nement� layered concretisation�

De�nition and Properties

As in the previous chapter� all we have to do in order to introduce a new combined
operator� is to de�ne the structure of the combined modi�er�

De�nition ���� �Layered Concretisation Modi�er	 A layered concretisa�

tion modi�er is a combined reuse modi�er with modi�er tag �layered concretisa�
tion� and a modi�er description containing a sequence �Mc�Mer�� where�

�� Mc is a participant concretisation modi�er and Mer is a participant extending
re�nement modi�er�

�� the methods re�ned by Mer are a subset of the methods concretised by Mc�

��� Reuse Contracts for the UML

Note that we speak of a subset� but this need not be strict� In other words� we
are also allowing to re�ne every method that is concretised�

De�nition ���� �Layered Concretisation	 Rlc is a layered concretisation of
R by M if

�� M is a layered concretisation modi�er�

�� M is applicable to R �

�� Rlc is the result of applying M to R

Example

We used the class ValueHolder as an example of a concretisation� values were
simply stored in an instance variable and no extra behaviour was necessary� There
are however other subclasses of ValueModel that have a more complicated be�
haviour� Take� for example� the class ProtocolAdapter� This class also concretises
the methods value and setValue�� but it also adds two extra method invocations
to setValue�
s specialisation clause� It are invocations of two methods newly added
to ProtocolAdapter� namely target and setValueUsingTarget�to�	� Figure ����
depicts this layered concretisation�

Impact on Con
icts

The set of con�icts that can occur after the application of layered concretisation
is the union of those of its parts�

��� Implementing Reuse Contracts

We will not introduce any other features of UML static structure diagrams here�
We have shown how to integrate some of the most important features� other elabo�
rations are future work� We will see in chapters � and � that this model is already
rich enough to be very useful in a lot of situations�

Instead� now that participants� acquaintance relationships� etc� are mapped on
tangible software items� we can discuss what it means for a software system to
implement a certain reuse contract� or what it means for a reuse contract to model
a software system�

A multi�class reuse contract is implemented by a set of classes� Each class com�
plies to one class description in the contract� To correctly implement a class descrip�
tion a class has to comply to a number of criteria� This is stated by the de�nition
below�

�It also adds an extra call to value� namely to the message valueUsingSubject�� which already

exists on ValueModel� We omitted this in order not to clutter the example�

��� Implementing Reuse Contracts ���

Part. Concretisation
 setValue:
 value

Extending Refinement
 + target
 + setValueUsingTarget:to:
 setValue {+ target,
 + setValueUsingTarget:to:}

setValue:
value
value: {setValue: , changed:}
changed:

ValueModel

setValue: {target,
 setValueUsingTarget:to:}
value
value: {setValue: , changed:}
changed:
target
setValueUsingTarget:to:

ProtocolAdapter

Figure ����� Layered Concretisation

De�nition ���� �Reuse Contract Implementation	 A class description c is

implemented by a class cimp if

�� cimp provides an implementation for all concrete methods that appear in the
client interface of c �

�� cimp provides a signature� but no implementation for all abstract methods that
appear in the client interface of c �

�� for every concrete method m in the client interface of c �

for every method invocation a�n in the specialisation clause of m � where a

refers to a class ��with i�mplemented by dimp��

�a� a method named n exists on dimp�

�b� if the implementation of m in cimp does not contain a super send�

the implementation of m in cimp sends the method n to dimp�

�c� if the implementation of m in cimp contains a super send�

the implementation of m in cimp or in its superclass sends the method n

to dimp �possibly again through a super call��

��� Reuse Contracts for the UML

Note that this is a very generic de�nition that needs to be tuned to speci�c
languages� For example� clause � speci�es that for all abstract methods a signa�
ture without an implementation should be provided� In Java or C�� this can be
achieved by explicitly declaring the method to be respectively abstract or pure vir�
tual� In Smalltalk this is not possible� but there is a convention to use the body
�self subclassResponsibility��

Similarly� in clause � we assume to know to which classes acquaintance relation�
ships refer� This is known� for example� in statically typed languages as Java and
C�� in the case where the acquaintance relationship is represented by an instance
variable or an argument� In dynamically typed languages or for other kinds of ac�
quaintance relationships this is not always so clear and extra assistance from the
user� providing explicit mappings for acquaintance relationships might be necessary�
Moreover� we say m sends the method n to dimp� It is obviously not as simple as
that� The message needs to be sent along the right acquaintance relationship to the
right instance� Again� user assistance might be required�

We will discuss a �rst experiment of checking compliance of Java code with reuse
contracts in chapter ��

��� Collaboration Diagrams

As announced at the beginning of this chapter� we will now consider collaboration
diagrams� In the UML the convention is taken that for all type�instance pairs�
for example classes and objects� associations and links� parameters and values� the
type and the instance are modelled by the same geometric symbol� For classes and
objects this is a rectangle� The designator strings �instance name� colon� type name�
of instance elements are underlined� The basic notation of collaboration diagrams is
thus the notation as adopted in chapter � with the possibility to include type names�
here class names�

An example of a collaboration diagram with di�erent objects of the same class is
given in �gure ����� This reuse contract depicts how composite visual structures can
be represented� A CompositePart can refer to di�erent Views or other visual items
through Wrappers� Behaviour such as releasing is propagated from the composite
through the wrappers to the subparts�

It was already mentioned in the UML speci�cations that one of the possible
uses of the re�nement relationships would be to express the connection between �a
high�level construct at a coarse granularity and a lower level construct at a �ner

granularity� such as a collaboration at two levels of detail
� It is useful to apply
all operators de�ned so far on static structure diagrams on collaboration diagrams�
We thus again want to make an instantiation of reuse contracts� now dedicated to
collaboration diagrams� We will not repeat all the de�nitions again� we will just
focus on the important adaptations�

A �rst extension to the model is the possibility to include types� We therefore

��� Collaboration Diagrams ���

release

myComp:
CompositePart

release
{release}

release { release,
removeDependent}

release

wrapper1:
Wrapper

release
 {releaseController}
removeDependent
releaseController

1stPart: View

1stWr myComp

release
{release} release { release,

removeDependent}

release

wrapper2:
Wrapper

release
 {releaseController}
removeDependent
releaseController

2ndPart: View

2ndWr myComp

CompositePartContract

Figure ����� A Collaboration Diagram

need to extend the de�nition of basic reuse contracts�

De�nition ���� �Collaboration Reuse Contract	A collaboration reuse con�

tract is a set of object descriptions� each with

�� a name that is unique within this object description� with optionally an asso�
ciated type name�

�� an acquaintance clause�

�� an interface�

We will not repeat the de�nitions of acquaintance clause� interface and speciali�
sation clause here� as these are again straightforward� Note that in UML usually no
interface is attached to object representations� It is however already mentioned in
	BRJ
�� that for special reasons a compartment containing operations is permissible�

We now need to perform some extra checks in the well�formedness de�nition to
ensure that di�erent objects of the same class do not give contradictory information
about the interfaces of this class� For example� di�erent occurrences of the same
method need to have the same abstractness annotation� Furthermore� we take the
option that all occurrences of the same method either have the same or an empty
specialisation clause� For example� in the CompositePartContractboth occurrences
of release on View had the same specialisation clause� as well as both occurrences
of release on Wrapper� It is not always necessary to repeat the specialisation clause�
therefore we leave the option open to have empty specialisation clauses as well� More
sophisticated rules could be developed� but for now we opt for this simpler solution�

��� Reuse Contracts for the UML

De�nition ���� �Well Formedness	 A collaboration reuse contract R is well�
formed if for every object description o

�� for each acquaintance relationship a�q in the acquaintance clause of o � an
object with name q exists in R �WF���

�� for each method invocation a�m in a specialisation clause in o �

�a� a is an acquaintance name in the acquaintance clause of o �WF���

�b� m is the name of a method of the object referred to by a �WF���

�� for every method name m � occurring in the client interface of di�erent object
descriptions with the same type name �WF����

�a� all non�empty specialisation clauses of these methods are identical�

�b� the abstractness annotation attached to these methods is equal on all
occurrences�

The operators as discussed before can be preserved� but again in the modi�er
and applicability de�nitions extra conditions need to be added to ensure the newly
introduced well�formedness constraints� For example� on concretisation one needs to
ensure that all occurrences of the same method are concretised simultaneously and
on participant re�nement� one needs to ensure that there will not be two di�erent
occurrences of the same method with a di�erent non�empty specialisation clause�

We will not elaborate on all possible extensions to this basic collaboration dia�
gram model� but will focus on one important aspect that is also prominent in UML
s
collaboration diagrams� di�erent kinds of acquaintance relationships�

��	 Acquaintance Relationships

Until now we have acted as if all acquaintances were life�time� i�e�� when a class or
object is acquainted to another class or object in a contract� we pretend it always
is� A distinction should be made between acquaintance relationships that are life�
time and volatile relationships� In object�oriented systems life�time relationships
will generally be implemented by instance variables� The relationship with self is
also life�time� Volatile relationships can be modelled by method arguments or local
or global variables�

In collaboration diagrams in UML �ve �implementation stereotypes
 are distin�
guished�

�� �association� this is the default in UML�

�� �parameter� a procedure parameter�

�� �local� a local variable of a procedure�

��� Acquaintance Relationships ��

�� �global� a global variable�

�� �self� the link of an object with itself�

These stereotypes can be denoted along the acquaintance relationships� We add
an extra stereotype �result�� to depict that an object is acquainted with another
object that was the result of one of its methods� The fact that a method returns a
result will be depicted by a dashed line�

����� Extension of the Model

We again have to extend our original de�nition to include the possibility to add
implementation stereotypes along acquaintance relationships� We therefore adapt
the de�nition of acquaintance clauses�

De�nition ���� �Acquaintance Clause	 An acquaintance clause is a set of
acquaintance relationships a�o�s� associating an acquaintance name a with an object
name o � and optionally an implementation stereotype s�

We follow the same convention as UML� namely that when no implementation
stereotype is included� we consider the acquaintance relationship to be an associa�
tion� Note that we need to attach a method name to some implementation stereo�
types� because it is not su�cient to know only the stereotype� we also need to know
from which method a participant is a parameter� variable or result� We therefore
have to de�ne what kinds of stereotypes are included in the model�

De�nition ���� �Implementation Stereotype	 An implementation stereo�

type is either one of the keywords� association� global or self or a pair �keyword�m�
where keyword is either parameter� local or result and m a method name�

We again have to add an extra clause to the well�formedness de�nition� to en�
sure that when an acquaintance relationship has the implementation stereotype
�parameter�� �local� or�result� attached to it� the method name it concerns
is present on the participant�

De�nition ���� �Well�Formedness	 A collaboration reuse contract R is well�
formed if for every object description

�WF�	 � � � �WF�	

�WF�	 for every object o � for every a�p�s in its acquaintance clause� where s is a
pair �keyword�m�� a method m is part of the interface of o �

��� Reuse Contracts for the UML

The inclusion of this information could allow us to de�ne well�formedness even
more precisely� Until now� it was allowed to send a message to another participant
as long as there was an acquaintance relationship and as long as the called message
was part of the client interface of the receiving participant� This could be further
restricted� For example� when we know that an acquaintance relationship has the
stereotype �parameter�� we know that this acquaintance relationship is only ac�
cessible from within the method of which it is an argument� We could therefore
add an extra constraint to the de�nition of well�formedness� In order to do that we
would however need to take sequences of method invocations into account�
� We
will not do this here� because that would lead us too far� We will see further on that
even this rather minimal model allows to express a lot�

Since we do not add these extra constraints� the operators are also not so much
a�ected by this extension of the model� The context operators are again a�ected�
because they need to take the possibility to add implementation stereotypes into
account� We do however add one extra operator� context concretisation�

����� A New Operator� Context Concretisation

Motivation

In a �rst description of a design one can leave out speci�cations on what kind
of acquaintance relationship a binding represents� In a second stage� one needs
to make decisions about this and add implementation stereotypes� As this gives
a more concrete representation of the collaboration� we call the addition of the
implementation stereotypes context concretisation�

De�nition and Properties

De�nition ���� �Context Concretisation Modi�er	 A context concretisa�

tion modi�er is a reuse modi�er with modi�er tag �context concretisation� and
a modi�er description containing pairs �o� acq� each consisting of an object name
o and an acquaintance clause� where each acquaintance relationship in acq has an
associated implementation stereotype�

De�nition ���
 �Context Concretisable	 The context of a collaboration reuse
contract R is concretisable by a context concretisation modi�er Mcc if for each
pair �o� acq�� for each a�p�s in acq�

�� a�p also occurs in the acquaintance clause of o in R � but without an associated
implementation stereotype�

�� if s is a pair �keyword�m�� a method m is part of the interface of o in R �

�	Because a method to an acquaintance representing a result can only be sent after the method

of which it is a result has been invoked�

��� Conclusion ���

De�nition ���� �Context Concretisation	 If the context of a collaboration reuse
contract R is concretisable by a modi�er Mcc� then the collaboration reuse contract
Rcc is the context concretisation of R by Mcc where�

�� Rcc contains all object descriptions of R that are not mentioned in Mcc�

�� for each pair �o� acq� in Mcc� Rcc contains an object description

�a� with name o and the same interface as o in R �

�b� with an acquaintance clause that contains the union of acq and all ac�
quaintance relationships of the acquaintance clause of o on R that are
not mentioned in acq�

Context concretisation also preserves well�formedness�

Property ��
 A context concretisation of a well�formed collaboration reuse contract

is well�formed�

Proof

The well�formedness de�nition now has � clauses� WF� to WF� are not a�ected by
this operator� WF� is preserved by the second clause in the context concretisability
de�nition�

����� Implementing Collaboration Reuse Contracts

In section ��� we discussed what it means for a software system to implement a
multi�class reuse contract� A simple mapping was de�ned between classes and class
descriptions� Here a similar de�nition can be given� only now a class should not
only comply to the speci�cations concerning one object� but to those on all objects
of the same class�

One could try to go a step further here and also try to check the existence of
the right kind of acquaintance relationships� Whether this is checkable and how is
however strongly language�dependent� so we will not give a general de�nition here�

��
 Conclusion

We will not continue with the integrating of reuse contracts in UML here� but rather
go on with a number of experiments� We applied the basic reuse contracts model to
the �eld of object�oriented class libraries and frameworks by integrating it in UML
for two purposes� First� the two instances of reuse contracts presented here � multi�
class reuse contracts and collaboration reuse contracts � allow us to apply reuse
contracts to object�oriented systems� examples of which are given in the following
chapters� Second� the approach followed in this chapter could also be followed to
apply the basic model to other application areas� The steps that need to be taken
are�

��� Reuse Contracts for the UML

�� Map the items from reuse contracts to features in the application area� Investi�
gate how this in�uences well�formedness� the reuse operators and the con�icts�
For example� in our case the presence of late binding shed a new light on some
con�icts�

�� Add additional features from the application area to the model� We added�
among others� information about abstract and concrete methods�

�� Adapt the existing model� the well�formedness and operator de�nitions to cope
with the features added in step �� For example� after adding information about
abstract and concrete methods the de�nition of participant re�nement needed
to be adapted to take this information into account�

�� Introduce additional operators to cope with the features added in step � and
optionally provide additional combined operators� Each basic modelling el�
ement corresponds to a number of operators� For example� we introduced
participant concretisation and abstraction�

The new operators should be de�ned in the same way as the basic operators
�modi�er� applicability and result de�nitions and well�formedness property��
Consequently� they can again be composed with other operators� in order to
form coarser�grained ones� We thus introduced layered concretisation�

�� Investigate how the new operators of step � in�uence the con�icts and detect
what possible new con�icts could arise� For example� method capture can also
occur after participant concretisation and the new annotation con�ict was
identi�ed�

In this chapter we integrated two diagrams from UML in the reuse contract
notation� We did not consider all possible features of these diagrams� but concen�
trated on a number of crucial elements� We could� for example� have introduced
other method annotations as private�protected�public� static� �nal� � � � next to the
annotation abstract�concrete to methods as we did here� We chose to incorporate
the annotation abstract�concrete because the use of abstract methods is important
to achieve reuse in object�oriented systems� It is however possible to repeat the same
exercise with other annotations�

	Cor
�� discusses the incorporation of the visibility annotations of Java in reuse
contracts� This requires a considerable adaptation of the well�formedness de�nition�
because subclasses cannot rely on private methods of their superclass� It also in�
�uences the operators� because it is not possible to override a method with a more
private one and therefore some re�nements are illegal� Based on this observation
one can see how the use of private methods can be used to prevent� for example�
method capture� We will not go into details concerning these other annotations here�
We feel the introduction of the annotation abstract�concrete has demonstrated the
feasibility of extending the model�

��� Conclusion ���

Note that the integration of extra features from the UML diagrams into our
basic model required some adaptations to the basic model� Extra features cannot
always be added orthogonally� On the one hand� a reason for this can be found
in the complexity of the object�oriented model itself� On the other hand� further
research might enable us to make the basic model more orthogonal in order facilitate
extensions�

Next to method annotations� further elaborations to the model could be per�
formed by further exploiting the typing information� by adding arguments and result
types� by adding information on the order in which methods are invoked� etc� We
will shortly touch these issues in the section on future work in chapter �� but we will
not introduce any more features here� Instead� in the next two chapters we take a
look at how reuse contracts can be used in various phases of the software life cycle�

