Chapter 5

Reuse Contracts for the UML

Until now, reuse contracts were handled as a fairly abstract way of expressing the
structure of a software system. We started by representing reuse contracts on such
an abstract level because we believe that the reuse contract approach is scalable
and can be applied to different composition mechanisms. While we get back to this
scalability issue in the conclusions, as a proof of usability in this chapter we apply
reuse contracts to the field of object-oriented class libraries and frameworks. This
demonstrates more clearly the concepts and allows for concrete experiments demon-
strating how reuse contracts can be applied and how they can help in evolution and
composition. Such experiments are discussed in chapters 6 and 7 .

Since we do not see reuse contracts as an entirely new methodology, but rather
as an enhancement to existing methodologies, we do not start from scratch but
integrate reuse contracts in the Unified Modelling Language (UML)[BRJ97]. The
question is then where reuse contracts fit in. The UML presents seven different kinds
of diagrams to describe different aspects of an object-oriented software system. Two
of those seem immediately relevant: static structure diagrams (i.e., what is usually
called class diagrams) and collaboration diagrams. The first concentrates on how
different classes are combined structurally, while the second describes the collabora-
tion between different acquainted objects. As we feel reuse contracts can be useful
on both levels, we handle both in this chapter. We call these particular versions of
reuse contracts multi-class reuse contracts and collaboration reuse contracts.

While these two diagrams are the most obvious, we by no means feel they are
the only ones that should be considered. Sequence diagrams are closely related to
collaboration diagrams and could be an obvious next step. [MS96] describes how the
reuse contract principles can be applied to OMT’s state diagrams [RBP*91], which
are very similar to UML’s. In a later stage we would like to study applying reuse
contracts to notions as diverse as use case diagrams (following Ivar Jacobson’s use
cases [JCJO92]), or implementation diagrams that describe the general architecture

128

Reuse Contracts for the UML

of a system at a higher level, but this is future work!. Let us now focus on static
structure and collaboration diagrams.

5.1 Basic Static Structure Diagrams

Static structure diagrams in UML are similar to class diagrams in other object-
oriented methodologies. Classes are depicted by rectangles which are divided in
three parts: one for the name of the class, one for the attributes and one for the
operations. Associations between classes are depicted by lines and inheritance by a
hollow triangle. Multiplicity constraints and an aggregation sign can be added along
the bindings. We do not discuss the entire notation here, but instead introduce new
modelling elements as we need them. We start by deciding how reuse contracts
can be mapped on a subset of UML static structure diagrams and then proceed
by discussing how additional features of these diagrams can be added to this basic
mapping. We do not integrate all model elements of UML, but rather focus on
features that are crucial to documenting reusable components.

It is clear that participants should map to classes, operations to methods, ac-
quaintance relationships to associations and acquaintance names to role names?.
Only one item of our basic reuse contract notation is left, operation invocation. In
object-oriented systems this naturally maps to message passing. In the UML, mes-
sage passing is not modelled on the level of classes in static structure diagrams, but
only between objects in sequence and collaboration diagrams. We feel however that
it is useful to be able to model general message passing sequences between classes.
This need becomes apparent, for example, in books describing design patterns, where
often small tags with code fragments are attached to associations [GHJV94]. Its use-
fulness also becomes clear in an experiment we describe in the following chapter. We
therefore extend the notation of static structure diagrams with message passing. We
denote it the same way as in original reuse contracts, along UML associations.

As an example of multi-class reuse contracts we use the Model-View- Controller
framework (MVC) from VisualWorks throughout this chapter, as it is well known
and is often named as the first mini-framework?. Figure 5.1 illustrates the MVC
at the highest level of abstraction, i.e. the classes Model, View and Controller.
At that level the way they are connected is specified, plus some basic behaviour.
First, it is specified that when a Model receives the method changed:with: it sends
the message update:with:from: to each of its dependents®. Second, the method

!See chapter 8 for an in-depth discussion of future work.

>Throughout this chapter we use the UML vocabulary to denote items from object-oriented
languages, except for the use of the term method instead of operation, to stress the difference with
the basic definitions.

3Note that we use the Smalltalk syntax in these examples, i.e. names of methods with colons to
denote their arguments. We ignore the arguments here, their inclusion is an extension to the basic
model. We just distinguish different method names by means of this notation.

“Both for the method changed:with: and update:with:from: different versions with fewer

5.1 Basic Static Structure Diagrams

129

activate on Controller invokes hasControl on itself. This is denoted between
braces in the client interface, as we have denoted intra-participant behaviour before.
We get back to self sends later. While this contract is quite rudimentary and does
not specify much behaviour it already gives us a general view. We know, for instance,

that every View has a Controller and vice versa’.

MV CContract
changed:with:
date:with:f : .
Model {update: with:from:} > View
dependents
changed:with: model update:with:from:
model view
Controller
activate (controller
{hasControl }
deactivate
hasControl

Figure 5.1: Model-View-Controller

Now that we have decided which subset of static structure diagrams reuse con-
tracts can be mapped to, we can reconsider the definition of reuse contracts. In
order to obtain multi-class reuse contracts, we start by taking the original definition
and replace all occurrences of the word ‘participant’ by ‘class’ and all occurrences
of the word ‘operation’ by ‘method’.

Definition 5.1 (Multi-class Reuse Contract) A multi-class reuse contract
is a set of class descriptions, each with

1. a unique name;
2. an acquaintance clause;

3. an interface.

Definition 5.2 (Acquaintance Clause) An acquaintance clause is a set of
acquaintance relationships a.c, associating an acquaintance name a with a class
name c.

arguments exist, but these are propagated to these two versions, therefore we only discuss these
basic two here.

5For Views that have no particular interactions an instance of the class NoController is attached
to it.

130

Reuse Contracts for the UML

We again further define the form of interfaces.

Definition 5.3 (Interface) An interface consists of a set of methods each con-
sisting of

1. a method name that is unique within this interface,
2. a specialisation clause.

Finally, we again define specialisation clauses.

Definition 5.4 (Specialisation Clause) A specialisation clause is a set of
method invocations a.m, associating an acquaintance name ¢ with a method name
m.

The MVCContract is then denoted as follows:

MVCContract =

{ (Model,
{ dependents.View },
{ (changed:with:, {dependents.update:with:from:}) }
),

(View,

{ model.Model, controller.Controller },
{ (update:with:from:, {}) }

),

(Controller,

{ model.Model, view.View },

{ (activate, {self.hasControl}),
(deactivate, {}),
(hasControl, {}) }

}

The reuse contract contains three class descriptions, named Model, View and
Controller. The first has only one element in its acquaintance clause, the other
two acquaintance clauses have two elements. The first two class descriptions only
have one element in their interface, the last has three elements in it: activate,
deactivate and hasControl. While deactivate and hasControl have an empty
specialisation clause, activate invokes hasControl on self. In the same way as
we adapted the basic definitions, we can redefine well-formedness, as well as the
operators as described in chapter 2.

5.2 Integrating the Operators

131

5.2 Integrating the Operators

As an example of the result of applying an operator consider figure 5.2. While
figure 5.1 describes general MVC behaviour, different refinements and extensions
of the contract can be used to describe different specialisations. Different kinds
of views with their associated kind of controller are already present in the Visu-
alWorks class library. Figure 5.2 describes the example of BasicButtonView and
BasicButtonController.

BasicButtoncontract is an extending refinement of MVCContract

changed:with:

Model {update:with:from:} BasicButton View
depende'nts (Wev)
changed: with: | model update: with:from
takeFocus

loseFocus

model Siew
%‘tivate{takeFocus}
BasicButtonController

deactivate{loseFocus}
(Controller) controller
activate{hasControl
deactivate
hasControl

Figure 5.2: MVC for BasicButtonView and BasicButtonController

BasicButtonControlleris a special kind of Controller, that sends the message
takeFocus to its view when it gets activated and the message loseFocus when
it gets deactivated. As the methods activate and deactivate already exist on
Controller and activate’s specialisation clause is preserved, this new contract is
a participant refinement of the original one. Because the methods takeFocus and
loseFocus are added to View it is also a participant extension. In fact, as the only
methods that are added are called through the refinement we can decide that the
BasicButtonContract is an extending refinement of the MVCContract.

Now how can the relationship between two models as expressed through the reuse
operators be integrated in UML? UML recognises the need to describe a system at
different levels of granularity and therefore introduces a refinement relationship.
‘The refinement relationship represents the fuller specification of something that has
been already specified at o certain level of detail. It is a commitment to certain
choices consistent with the more general specification, but not required with it. It
is a relationship between two descriptions of the same thing at different levels of
abstraction’ [BRJ97]. So refinement in UML shows a relationship between two dif-

132 Reuse Contracts for the UML

ferent views of something. This is exactly what our reuse operators do, only at a
finer level of detail!

According to [BRJ97] refinement can include, amongst others, the following kinds
of relationships:

e Realisation: relation between a type and a class that realises it;
e Design trace: relation between an analysis class and a design class;

e Levelling of detail: relation between a high-level construct at a coarse granu-
larity and a lower level construct at a finer granularity, such as a collaboration
at two levels of detail;

e Implementation: relation between a construct and its implementation at a
lower virtual layer, such as the implementation of a type as a collaboration of
lower-level objects.

e Optimisation: relation between a straightforward implementation of a con-
struct and a more efficient but more obscure implementation that accomplishes
the same effect.

In the MVC example and the Gateway and Set examples of chapter 1 the reuse
operators were used to model levelling of detail and optimisation, but we will see
further on that reuse operators can also be used to model different kinds of relation-
ships.

So how do we integrate reuse operators into the notation of UML static structure
diagrams? A refinement link can be depicted by a dashed generalisation symbol, i.e.
a dashed line with a hollow triangular arrowhead at the end connected to the most
general element. It can be either visible within one model, or an invisible hyperlink
between models supported by a tool. Furthermore, a refinement relationship in UML
can have a specification of how the more detailed version maps into the more abstract
version. This can be denoted by a stereotype® and a note that is attached to the link
connecting both constructs. Instead of attaching just any note to this link, we attach
a stereotype describing the kind of reuse operator and possibly a note describing the
reuse modifier. Figure 5.3 shows how MVCContract and BasicButtonContract can
be depicted this way. Note that we again use the notation where ‘+’ and ‘-’ signs
denote what is added and omitted.

While this notation is very useful, we do not always repeat entire contracts to
model changes to particular classes. In object-oriented software engineering variabil-
ity is most often achieved through inheritance. In UML this is called generalisation

5In the UML stereotypes represent a built-in extensibility mechanism. The general representation
of a stereotype is to place the name of the stereotype between matched guillemets, as in <foo>.
The stereotype string can be placed above or in front of the name of the model element being
described. Stereotypes can be used, for example, to group methods of one class into subgroups or
to characterise different kinds of classes, or kinds of relationships between model elements..

5.3 Impact of Inheritance on the Conflicts

133

MVCContract
changed:with:
Model {update:with:from:} View
dependents
changed:with: model update:with:from:
model view
Controller
activate controller
{hasControl}
deactivate
hasControl

4k << Extending Refinement >>

: +View.takeFocus

I | +View.loseFocus

I | Controller.activate{+view.takeFocus}

: Controller.deactivate{+view.loseFocus}
|

|

BasicButtoncontract is an extending refinement of MVCContract

changed:with:
Model {update:with:from:} BasicBu.tmnView
n (View)
changed: with: model update:with:from
takeFocus
loseFocus
model View
%ivate{takeFocus}
BasicButtonController deactivate{loseFocus}
(Controller) controller
activate{hasControl}
deactivate
hasControl

Figure 5.3: Contract Refinement

and it is depicted by a hollow triangle. We also adopt the UML notation for gen-
eralisation and add the operator name next to the hollow triangle, as depicted in

figure 5.4. The acquaintances to which message sends are added are denoted by
their names.

5.3 Impact of Inheritance on the Conflicts

The introduction of inheritance, and more particularly of late binding, also sheds a
new light on some of the conflicts. Take, for example, method capture’. This conflict
occurs when a method is invoked after one modification, while another modification
adapted this method unaware of the extra invocation. Until now, we considered

"In this and the following chapters we use the terms method capture, inconsistent methods, etc.
instead of operation capture and inconsistent operations.

134

Reuse Contracts for the UML

Controller

activate{hasControl
deactivate
hasControl

Refinement
activate{+view.takeFocus}
deactivate{+view.loseFocus}

BasicButtonController

activate{hasControl
deactivate
hasControl

Figure 5.4: Refinement of Controller

method capture to occur with calls between different participants. Now consider the
situation where a subclass overrides a certain method and afterwards the superclass
is adapted to add an invocation to this method. Late binding will cause method
capture to occur.

coarsening ..
Set addAll [-add] | OptimisedSet
ESSA[li”] —_— add [... |
addAll [...]
[..add ...]
refinement refinement
add [+count] add [+count]
CountableSet Inconsistent
add o
[Operations

count |

count

Figure 5.5: Inconsistent Methods on Set

An example of inconsistent methods through inheritance was already given in
chapter 1, concerning the Set and CountableSet. The example is repeated in fig-
ure 5.5. The inheritor performs a refinement by overriding add to invoke count,
assuming that this will also influence its inherited method addA1l. The coarsening
performed to achieve an optimisation of Set broke this assumption, with as result
that in the inheritor the behaviour of add and addA11 is no longer consistent. Here
we just considered one class and its inheritor, but the depth of inheritance hierarchies
and the layered definition of methods makes similar problems hard to detect. This
example shows how any change to a method in a superclass that adds or removes

5.4 Integrating Late Binding

135

method calls might lead to method capture, respectively inconsistent methods.

In general, the rules for conflict detection as given in chapter 3 can be used to
detect problems with parent class exchange, i.e., possible problems that can occur
in subclasses when changes are made to a superclass. When all steps going from
one class to its subclasses are documented by means of reuse operators, we can
express the changes made to the superclass with reuse operators as well and apply
the rules. In the above example, the subclass performs a refinement and the parent
class exchange expresses a participant coarsening, which leads to the inconsistent
methods conflict. Note that some of the operators can never be expressed through
inheritance. Participant cancellation, for example, is not allowed in statically typed
languages as C++ and Java. In Smalltalk it can be simulated by the convention of
invoking the method shouldNotImplement.

While the conflict detection rules can thus be applied to the case of parent class
exchange, some particularities of object-oriented languages and software engineering
deserve special attention.

5.4 Integrating Late Binding

While the above example already demonstrates to some extent how the reuse op-
erators can assist in clarifying the structure of a framework, it also shows some of
the shortcomings. Actually, the original specialisation clause of both activate and
deactivate is preserved on BasicButtonController because a super send is per-
formed. In the original definition of reuse contracts nothing was said about self and
super sends. Moreover, self sends were added above in the graphical notation, but
not in the formal definition. We will therefore now elaborate on the basic definition
and enhance it to model self and super sends.

5.4.1 Self Sends

First, until now we have not really incorporated the use of self sends. We therefore
add a special section to specialisation clauses to express self sends.

Definition 5.5 (Specialisation Clause Revisited) A specialisation clause is
a set of method invocations a.m , where ¢ is an acquaintance name or the keyword
self and m is a method name.

As mentioned before, we graphically depict self sends by adding the methods
that are invoked between braces to method signatures in the interface of a class, as
depicted in figure 5.6. This figure shows how on class Model the different versions
of the method changed propagate behaviour to each other.

We already mentioned in chapter 2 that it is possible for an acquaintance name
to refer to the participant it is defined on. This kind of binding can be represented by
a loop. We then argued that operations along such a loop represent intra-participant

136

Reuse Contracts for the UML

Model

changed {changed:}
changed: {changed: with:}
changed: with:

Figure 5.6: The Representation of Self Sends

behaviour. One might think that this could be used to represent self sends, but an
association between a class and itself could be used for all kinds of acquaintance
relationships between two instances of the same class. These two instances need
not necessarily be the same. Take for example the class VisualPart (a superclass
of View), which is used to group different parts of a visual representation together.
A VisualPart consists of other VisualParts and when an instance of VisualPart
receives the method update:with:from:, it passes it on to the VisualParts it
contains. This is depicted in figure 5.7.

container .
update:with:from:

VisualPart {update:with:from:}

update: with: from:

Figure 5.7: Message Sends between Instances of the Same Class

5.4.2 Super Sends: Specialisation

Motivation

We also want to include the possibility to perform super sends. We do not
want to extend the definition of a specialisation clause to incorporate this notion
explicitly, because each participant in a reuse contract should be self-contained,
without needing knowledge of its superclasses to judge well-formedness or to detect
conflicts. Therefore, the specialisation clause of a method performing a super send
will contain all method names of the specialisation clause of the method it overrides,
plus the names of any new methods it may call.

Until now a specialisation clause of a refinement modifier needed to repeat the
entire specialisation clause of the operation it was adapting, in order to ensure that
the design was respected. When using a super send this is no longer necessary,
as a super send always respects the method that is adapted by invoking it. We

5.4 Integrating Late Binding

137

therefore introduce an extra refinement operator that differs only slightly from par-
ticipant refinement: specialisation. The only difference is that while in participant
refinement the modifier’s specialisation clauses needed to be supersets of the original
ones, for specialisation the modifier’s specialisation clauses only include the new in-
vocations. The example of BasicButtonView and BasicButtonController already
demonstrated the usefulness of this operator.

Definition and Properties

Definition 5.6 (Specialisation Modifier) A specialisation modifier is a reuse
modifier with modifier tag “specialisation” and a modifier description containing
couples (c,int) each consisting of a class name ¢ and an interface int.

The applicability of the modifier is stated in the following definition. Note that
the last clause again repeats part of the well-formedness definition.

Definition 5.7 (Specialisable) A reuse contract R is specialisable by a special-
isation modifier My, if for each couple (c,int) in Mj),:
1. cis a class name in R ;

2. for each method name m in int: m appears in class ¢ in R and m’s specialisation
clause is disjoint from the specialisation clause of m in ¢ in R ;

3. for each method invocation a.m in a specialisation clause in int :

(a) a is an acquaintance name in the acquaintance clause of ¢ ;

(b) m is the name of a method in the interface of the class a refers to.

Note that while the modifiers of specialisation contain only the newly added
invocations, in the resulting reuse contract we want to sum up the entire special-
isation clause. Our motivation for this is to obtain well-formed reuse contracts.
Specialisation of contracts can then be defined as follows.

Definition 5.8 (Specialisation) If a reuse contract R is specialisable by a modifier
M, then the reuse contract Ry, is the specialisation of R by Mj,, where:

1. R, contains all class descriptions of R that are not mentioned in Mgy;
2. for each (c,int) in Myy: Ry contains a class description

(a) with name ¢ and the same acquaintance clause as ¢ in R ;
(b) that contains all methods of ¢ in R not mentioned in int ;

(c) that contains all methods of int with as specialisation clause the union
of the specialisation clause of this method on R and the specialisation
clause of this method in int .

138 Reuse Contracts for the UML

The following property can be proven about these definitions.

Property 5.1 A specialisation of a well-formed reuse contract is well-formed.

Proof

The well-formedness definition imposes 3 constraints.
1. WF1 is not influenced by specialisation;

2. WF2 is preserved by the fact that the specialisation clauses on R,,, partially
refer to class names that were already present and further by the third clause
of the refinability definition;

3. WF3 is preserved by the fact that the specialisation clauses on R,,, partially
refer to method names that were already present and further by the fourth
clause of the refinability definition.

Example

We will not give abstract illustrations of the operators in this chapter. Since
they are all fairly straightforward, we immediately give an example. An exam-
ple of specialisation was already given in section 5.1 with BasicButtonView and
BasicButtonController, as depicted in figure 5.8.

Controller

activate{hasControl }
deactivate
hasControl

Specialisation
activate{+view.takeFocus}
deactivate{+view.loseFocus}

BasicButtonController

activate{hasControl
deactivate
hasControl

Figure 5.8: An Example of Specialisation

Note that in this definition we only consider super sends of the same method.
Performing a super send from one method to another is considered bad design,
therefore we do not include the possibility to model this through reuse contracts.

5.5 Abstract Classes and Methods

139

Impact on the conflicts

As specialisation is very closely related to participant refinement it is logical
that the conflicts that can occur during specialisation closely resemble those that
can occur during participant refinement. Table 5.1 compares the conflicts that can
be caused by the two operators.

‘ H part. refinement ‘ specialisation

part. extension - -

cont. extension - -

part. cancellation|| dang. method reference dang. method reference

cont. cancellation|| dang. participant reference | dang. participant reference

part. refinement || method invocation, incon- | unanticipated recursion,
sistent methods, regular | regular method capture
method capture

cont. refinement || - -

part. coarsening || method invocation, incon- | unanticipated recursion,
sistent methods, regular | regular method capture
method capture

cont. coarsening || dang. acquaintance refer- | dang. acquaintance refer-
ence ence

Table 5.1: Conflicts with Specialisation

The only difference is that while participant refinement can cause method invo-
cation conflicts in combination with another participant refinement or coarsening,
this conflict does not occur with specialisation. Remember that method invocation
conflicts occur when both modifications add or remove method invocations from the
specialisation clause of the same method. This can cause inconsistencies. This does
not occur with specialisation, because the super call in the refined method auto-
matically incorporates all changes that could possibly be made to the original reuse
contract through a participant refinement or coarsening of the methods it adapts.

5.5 Abstract Classes and Methods

Until now we have not made a distinction between concrete and abstract methods.
The use of abstract classes and methods is, however, a prominent object-oriented
reuse technique. An abstract class is a class that contains a number of abstract meth-
ods, i.e. methods without an implementation. Template methods invoke abstract
methods or other template methods in their implementation. Finally, there are
concrete methods, which have a full implementation, that does not invoke abstract
methods. Template methods describe the core behaviour of the class. Subclasses
only need to override the abstract methods to give them an implementation, or some

140

Reuse Contracts for the UML

concrete methods to adapt their behaviour, but they inherit the core behaviour by
means of the template methods. The overriding of abstract methods with concrete
versions is thus a very important operation. We therefore extend our model with
the notion of abstract and concrete methods and with an extra operator, participant
concretisation and its inverse, participant abstraction.

UML provides the possibility to associate certain properties with operations.
One of the possibilities is to distinguish abstract methods from concrete ones by
representing the abstract methods in italics. As an example, consider ValueModel,
one of the subclasses of Model, which represents all kinds of models holding a certain
value. It has two abstract methods, setValue: and value to mutate and access
this value, and a template method value: that relies on setValue: to mutate and
sends the message changed: to itself to notify its dependents that its value has
changed. The methods setValue: and value need to be overridden in subclasses
of ValueModel to provide an implementation suited to the particular kind of value.
This abstract class is depicted according to the UML notation for abstract classes
as shown in figure 5.9.

ValueModel

setValue:

value

value: {setValue: , changed:}
changed:

Figure 5.9: An Abstract Class

5.5.1 Extension of the Model

To extend reuse contracts with information about abstract and concrete methods,
we need to attach an extra annotation, abstract or concrete, to each method in
the interfaces. We therefore extend our definition of interfaces (see page 130) as
follows.

Definition 5.9 (Interface Revisited) An interface consists of a set of methods
each consisting of

1. a method name that is unique within this interface,
2. an annotation abstract or concrete,
3. a specialisation clause.

We do not need to adapt the definitions of reuse contract and specialisation
clause. Reuse contracts still contain class descriptions consisting of a name, an

5.5 Abstract Classes and Methods

141

acquaintance clause and an interface. Only now the interfaces are slightly changed.
Specialisation clauses do not need to repeat the annotation of the methods they
contain. This information can be found in the concerning interfaces.

Note that we do allow abstract methods to have a specialisation clause, although
they do not have an implementation. This might seem awkward, but we want to
keep this possibility open, because, for example, during the design one might want
to express that a certain method should definitely call some other method, without
already giving an implementation. In a lot of examples, however, the specialisation
clauses of abstract methods will simply be empty.

The definition of well-formedness does not need to be adapted either. Since
nothing changes the uniqueness of the names of methods, i.e. it is not allowed to
have a concrete and an abstract method with the same name in one interface, and
since abstract methods are allowed to have specialisation clauses the well-formedness
definition does not require any extra constraints.

The definitions of the operators can also be preserved to a very large extent. The
only changes that need to be made are the addition of considerations concerning the
annotation. For example, when adding a new method through a participant exten-
sion this new method should also have an annotation. In participant refinement,
when a method is refined, the definition should not only state that all methods in
the refinement modifier should have the same name as in the base contract, but also
that they should have the same abstractness annotation. This will be necessary to
detect certain conflicts, just as it was necessary to repeat other redundant informa-
tion in modifiers. Because the changes to the definitions are straightforward, we will
skip the adapted definitions here.

5.5.2 A New Operator: Participant Concretisation

Motivation

Now that we have extended the model with the extra information, we will in-
troduce an extra operator: participant concretisation and its inverse, participant ab-
straction. As mentioned before, an important action in customising reusable classes
is the overriding of abstract methods with concrete ones. This is exactly what par-
ticipant concretisation represents. Intuitively, R, is a participant concretisation of
R if any number of abstract methods from one or more class descriptions in R is
‘overridden’ by concrete methods in R,..

Definition and Properties

Definition 5.10 (Participant Concretisation Modifier) A participant con-
cretisation modifier is a reuse modifier with modifier tag “participant concretisa-
tion” and a modifier description containing couples (¢, int) each consisting of a class
name ¢ and an interface int , in which all methods have the annotation concrete.

142 Reuse Contracts for the UML

The applicability of the modifier is stated in the following definition.

Definition 5.11 (Participant Concretisable) A reuse contract R is participant
concretisable by a participant concretisation modifier M, for each pair (c,int):

1. cis a class name in R ;
2. for each method m in int :

(a) m has the same name as an abstract method in ¢ in R ;
(b) m has the same specialisation clause as the corresponding method in ¢ in
R.

Note that again we include more information in the reuse modifier than would
seem necessary at first. We repeat information on specialisation clauses to be able
to detect certain interface conflicts (see below) and we include information on the
annotations to be complete.

Definition 5.12 (Participant Concretisation) If a reuse contract R is partici-
pant concretisable by a modifier M., then the reuse contract R, is the participant
concretisation of R by M,., where:

1. R,. contains all class descriptions of R that are not mentioned in M,,;
2. for each pair (c,int) in M.: Ry, contains a class description

(a) with name ¢ and the same acquaintance clause as ¢ in R ;
(b) that contains all methods of ¢ in R not mentioned in int ;

(c) that contains all methods of int .

Following property can again be proven about these definitions.

Property 5.2 A participant concretisation of a well-formed reuse contract is well-
formed.

Proof

As we discussed above, the introduction of the annotations abstract and concrete
does not influence well-formedness. As this annotation is the only item that is
changed through participant concretisation, well-formedness will not be affected by
it.

5.5 Abstract Classes and Methods

143

Example

As an example of a concretisation® consider the subclass ValueHolder of Value-
Model. In ValueHolders the value is simply stored in an instance variable. The class
concretises the methods value and setValue: accordingly. This is depicted in figure
5.10.

ValueModel

setValue:

value

value: {setValue: ,changed:}
changed:

Part. Concretisation
setValue:
value

ValueHolder

setValue:

value

value: {setValue: ,changed:}
changed:

Figure 5.10: Participant Concretisation

Short-Hand Notations

We make a distinction between complete and partial concretisations. A complete
concretisation concretises all abstract methods in a contract, thereby resulting in
the representation of a set of instantiatable classes. A partial concretisation leaves
some abstract methods, requiring subsequent concretisations.

Notation 5.1 A participant concretisation modifier M., represents a complete
participant concretisation of R if

for each class ¢ in R that has at least one abstract method: a pair (c,int) exists in
M,. and all abstract methods of ¢ in R are mentioned in int .

Notation 5.2 A participant concretisation modifier M,,. represents a partial par-
ticipant concretisation of R if

a class ¢ in R exists that has at least one abstract method and either ¢ is not men-
tioned in M, or a pair (c,int) exists in M. and not all abstract methods of ¢ on R
are mentioned in int .

8We will often use the names concretisation and abstraction without the prefix participant when
no confusion is possible.

144

Reuse Contracts for the UML

Furthermore, we need the classical short-hand notation as before for the rules
on change propagation.

Notation 5.3 A participant concretisation modifier M,,. represents a participant
concretisation of m on c if

a class ¢ and a method m exist such that (c,int) is an element of M. and m is an
element of int .

Other

The opposite of participant concretisation is called participant abstraction. We
will not give a complete definition of this operator as its definition would be exactly
the same of that of participant concretisation, only with occurrences of the word
concrete replaced with abstract and vice versa.

Definition 5.13 (Participant Abstraction) R, is a participant abstraction
of R iff R is a participant concretisation of R,

Impact on the conflicts

The introduction of concretisation and abstraction introduces new possible con-
flicts and also sheds a different light on certain already existing conflicts. We start
with the new conflicts.

Annotation Conflicts

As a new element is added to the interface, new interface conflicts are possible.
Annotation conflicts occur when two modifications both make the same abstract
method concrete, or vice versa. As the annotations of methods can only be altered
through concretisation and abstraction, annotation conflicts can only occur when
both modifications perform a concretisation, or when both modifications perform an
abstraction. This is a new kind of interface conflict, as it concerns a clash between
the new piece of information added to the interface.

Rule 5.1 (Annotation Conflict) An annotation conflict occurs when a method
name m and a class name c exist such that both M; and M, represent participant
concretisations or participant abstractions of m on p .

Note that, as with method invocation conflicts, both concretisation and its in-
verse abstraction are given. Again, because of the applicability definition the only
possible situation are where both modifiers perform the same operator.

The solution to this conflict is to either remove one of the modifications, thereby
accepting the concretisation (and according implementation) offered by the other

5.5 Abstract Classes and Methods

145

one. When this is not desirable, M; can be turned into a refinement or coarsening
thereby adapting the concretisation (and according implementation) offered by M;
to this user’s needs. When refining, the design offered by M is fully accepted and
extended; when coarsening, the design offered by M; is more or less breached.

Mixed Method Interface Conflicts

A second new kind of interface conflicts are mixed method interface conflicts. This
problem occurs when a method is on the one hand concretised and on the other hand
refined or coarsened. After the refinement or coarsening, the concretisation is no
longer valid: in the case of refinement because the specialisation clause was extended,
in the case of coarsening because the specialisation clause was narrowed. Note that
it is in order to detect this conflict that we added information on the specialisation
clauses in the concretisation modifier. Conflicts also occur in the inverse order. In
that case the refinement or coarsening is no longer valid after the concretisation,
because the refinement or coarsening is defined for an abstract method. There is an
essential difference between refining an abstract and a concrete method, because in
the first case no implementation will be associated with the modifier, while in the
second case an implementation will be there. Mixed method interface conflicts can
thus occur when one modification is a concretisation and the other a refinement or
coarsening.

Rule 5.2 (Mixed Method Interface Conflict) A mixed method interface
conflict occurs when a method name m and a class name ¢ exist such that M;
represents a participant concretisation of m on ¢ and Ms represents a participant
refinement or a participant coarsening of m on c .

Note that consecutively adding new information to the interfaces will lead to
different kinds of mixed conflicts.

Incomplete Implementation

It is possible for one modifier to perform a complete concretisation, therefore leading
to the believe that the result is an instantiatable class, while another modification
adds new abstract methods. We call this last new conflict the incomplete implemen-
tation conflict. Since this occurs when abstract methods are added, this can only
occur after a combination of a participant extension or abstraction and a participant
concretisation.

To be able to detect this conflict that we added the definitions on complete and
partial concretisations above. Using these definitions we can state the following rule.

Rule 5.3 (Incomplete Implementation Conflict) An incomplete implemen-
tation conflict occurs when

146 Reuse Contracts for the UML

e M represents a complete participant concretisation of R;

e M, represents a participant abstraction of R or a participant extension by a
method m , where m is abstract;

Note that this is the second conflict, after unanticipated recursion, that cannot
be detected by solely looking at the modifiers. We need to take the base reuse
contract into consideration to know whether the concretisation is complete or not.
This could be avoided by introducing two different operators partial concretisation
and complete concretisation and thus let the user better document his assumptions.
This brings us back to the trade-off between flexibility and the possibility to detect
conflicts we discussed in chapter 3. Here, we chose not to make operators too fine-
grained.

Method Capture and Inconsistent Methods

Earlier on, method capture and inconsistent methods were described to occur when
one modification was a participant refinement, respectively a participant coarsening
and the other either one of these. The idea behind it was the addition or removal
of a method call by the first modifier of a method that was adapted in some way by
the second modifier. Since concretisation and abstraction also adapt a method in
some way these operators can also lead to method capture, respectively inconsistent
methods.

Interface Inconsistency Conflicts

The same line of thought can be followed concerning interface inconsistency conflicts.
These conflicts all occur when in one modifier a reference is made to an item that
is removed by the other modifier. When a method is concretised or abstracted, it is
possible that another modifier removes either a method it invokes, the acquaintance
relationship along which it invokes it or even the very class it is defined on (and
thus also the method itself). This leads to respectively dangling method, dangling
acquaintance and dangling participant conflicts.

Summary

Table 5.2 gives an overview of all conflicts that can occur with concretisation and
abstraction.

5.5 Abstract Classes and Methods

147

H participant concretisation

participant abstraction

part. extension incomplete implementa- | -
tion
cont. extension - -
part. cancellation dang. method reference dang. method reference
cont. cancellation dang. participant reference | dang. participant reference
part. refinement mixed method interface, | mixed method interface,
regular method capture regular method capture
cont. refinement - -
part. coarsening mixed method interface, | mixed method interface,
inconsistent methods inconsistent methods
cont. coarsening dang. acquaintance refer- | dang. acquaintance refer-
ence ence
part. concretisation | annotation incomplete implementa-
tion
part. abstraction incomplete implementa- | annotation
tion

Table 5.2: Conflicts with Participant Concretisation and Abstraction

5.5.3 A Combined Operator: Layered Concretisation

Motivation

As we stated before, abstract methods are allowed to have specialisation clauses,
but in a lot of cases these will simply be empty. Concretising a method will therefore
very often go together with additions to the specialisation clause. This will also
often be accompanied by the introduction of auxiliary methods. We will therefore
introduce a new combined operator that is a combination of concretisation and
extending refinement: layered concretisation.

Definition and Properties

As in the previous chapter, all we have to do in order to introduce a new combined
operator, is to define the structure of the combined modifier.

Definition 5.14 (Layered Concretisation Modifier) A layered concretisa-
tion modifier is a combined reuse modifier with modifier tag “layered concretisa-
tion” and a modifier description containing a sequence (M., M.,), where:

1. M, is a participant concretisation modifier and M., is a participant extending
refinement modifier;

2. the methods refined by M., are a subset of the methods concretised by M,;

148

Reuse Contracts for the UML

Note that we speak of a subset, but this need not be strict. In other words, we
are also allowing to refine every method that is concretised.

Definition 5.15 (Layered Concretisation) R, is a layered concretisation of
R by M if

1. M is a layered concretisation modifier;
2. M is applicable to R ;

3. Ry is the result of applying M to R

Example

We used the class ValueHolder as an example of a concretisation: values were
simply stored in an instance variable and no extra behaviour was necessary. There
are however other subclasses of ValueModel that have a more complicated be-
haviour. Take, for example, the class ProtocolAdapter. This class also concretises
the methods value and setValue:, but it also adds two extra method invocations
to setValue:’s specialisation clause. It are invocations of two methods newly added
to ProtocolAdapter, namely target and setValueUsingTarget:to:?. Figure 5.11
depicts this layered concretisation.

Impact on Conflicts

The set of conflicts that can occur after the application of layered concretisation
is the union of those of its parts.

5.6 Implementing Reuse Contracts

We will not introduce any other features of UML static structure diagrams here.
We have shown how to integrate some of the most important features; other elabo-
rations are future work. We will see in chapters 6 and 7 that this model is already
rich enough to be very useful in a lot of situations.

Instead, now that participants, acquaintance relationships, etc. are mapped on
tangible software items, we can discuss what it means for a software system to
implement a certain reuse contract, or what it means for a reuse contract to model
a software system.

A multi-class reuse contract is implemented by a set of classes. Each class com-
plies to one class description in the contract. To correctly implement a class descrip-
tion a class has to comply to a number of criteria. This is stated by the definition
below.

°It also adds an extra call to value, namely to the message valueUsingSubject:, which already
exists on ValueModel. We omitted this in order not to clutter the example.

5.6 Implementing Reuse Contracts

149

ValueModel
setValue:
value
value: {setValue: , changed:}
changed:
AN Part. Concretisation
setValue:
value
Extending Refinement
+ target
+ setValueUsingTarget:to:
setValue {+ target,
+ setValueUsingTarget:to:}
Protocol Adapter

setValue: {target,
setValueUsingTarget:to: }

value

value: {setValue: , changed:}

changed:

target

setValueUsingTarget:to:

Figure 5.11: Layered Concretisation

Definition 5.16 (Reuse Contract Implementation) A class description c is
implemented by a class c;, if

1. ¢imp provides an implementation for all concrete methods that appear in the
client interface of c ;

2. cimp provides a signature, but no implementation for all abstract methods that
appear in the client interface of ¢ ;

3. for every concrete method m in the client interface of ¢ :

for every method invocation a.n in the specialisation clause of m , where a
refers to a class (with implemented by dj,):

(a) a method named n exists on djyp;

(b) if the implementation of m in ¢, does not contain a super send:
the implementation of m in ¢, sends the method n to djy,yp.

(c) if the implementation of m in ¢;,, contains a super send:

the implementation of m in c;p, or in its superclass sends the method n
to dimp (possibly again through a super call).

150

Reuse Contracts for the UML

Note that this is a very generic definition that needs to be tuned to specific
languages. For example, clause 2 specifies that for all abstract methods a signa-
ture without an implementation should be provided. In Java or C++ this can be
achieved by explicitly declaring the method to be respectively abstract or pure vir-
tual. In Smalltalk this is not possible, but there is a convention to use the body
“self subclassResponsibility”.

Similarly, in clause 3 we assume to know to which classes acquaintance relation-
ships refer. This is known, for example, in statically typed languages as Java and
C++ in the case where the acquaintance relationship is represented by an instance
variable or an argument. In dynamically typed languages or for other kinds of ac-
quaintance relationships this is not always so clear and extra assistance from the
user, providing explicit mappings for acquaintance relationships might be necessary.
Moreover, we say m sends the method n to djpp. It is obviously not as simple as
that. The message needs to be sent along the right acquaintance relationship to the
right instance. Again, user assistance might be required.

We will discuss a first experiment of checking compliance of Java code with reuse
contracts in chapter 7.

5.7 Collaboration Diagrams

As announced at the beginning of this chapter, we will now consider collaboration
diagrams. In the UML the convention is taken that for all type-instance pairs,
for example classes and objects, associations and links, parameters and values, the
type and the instance are modelled by the same geometric symbol. For classes and
objects this is a rectangle. The designator strings (instance name, colon, type name)
of instance elements are underlined. The basic notation of collaboration diagrams is
thus the notation as adopted in chapter 2 with the possibility to include type names,
here class names.

An example of a collaboration diagram with different objects of the same class is
given in figure 5.12. This reuse contract depicts how composite visual structures can
be represented. A CompositePart can refer to different Views or other visual items
through Wrappers. Behaviour such as releasing is propagated from the composite
through the wrappers to the subparts.

It was already mentioned in the UML specifications that one of the possible
uses of the refinement relationships would be to express the connection between ‘a
high-level construct at a coarse granularity and o lower level construct at a finer
granularity, such as a collaboration at two levels of detail’. 1t is useful to apply
all operators defined so far on static structure diagrams on collaboration diagrams.
We thus again want to make an instantiation of reuse contracts, now dedicated to
collaboration diagrams. We will not repeat all the definitions again, we will just
focus on the important adaptations.

A first extension to the model is the possibility to include types. We therefore

5.7 Collaboration Diagrams

151

CompositePartContract
lease { rel Astbart: Yiew
release release { release,)
iy Comp: {release} wrapperl: | removeDependent} release
CompositePart Wiapper {releaseController}
release IstWr release myComp * | removeDependent
releaseController
release
{release} release { release, 2ndPart: View
wrapper2: removeDependent} release
Winpper {releaseController}
2ndWr | release myComp | emoveDependent
releaseController

Figure 5.12: A Collaboration Diagram

need to extend the definition of basic reuse contracts.

Definition 5.17 (Collaboration Reuse Contract) A collaboration reuse con-
tract is a set of object descriptions, each with

1. a name that is unique within this object description, with optionally an asso-
ciated type name;

2. an acquaintance clause;
3. an interface.

We will not repeat the definitions of acquaintance clause, interface and speciali-
sation clause here, as these are again straightforward. Note that in UML usually no
interface is attached to object representations. It is however already mentioned in
[BRJ97] that for special reasons a compartment containing operations is permissible.

We now need to perform some extra checks in the well-formedness definition to
ensure that different objects of the same class do not give contradictory information
about the interfaces of this class. For example, different occurrences of the same
method need to have the same abstractness annotation. Furthermore, we take the
option that all occurrences of the same method either have the same or an empty
specialisation clause. For example, in the CompositePartContract both occurrences
of release on View had the same specialisation clause, as well as both occurrences
of release on Wrapper. It is not always necessary to repeat the specialisation clause,
therefore we leave the option open to have empty specialisation clauses as well. More
sophisticated rules could be developed, but for now we opt for this simpler solution.

152 Reuse Contracts for the UML

Definition 5.18 (Well Formedness) A collaboration reuse contract R is well-
formed if for every object description o

1. for each acquaintance relationship a.q in the acquaintance clause of o : an
object with name ¢ exists in R (WF1);

2. for each method invocation a.m in a specialisation clause in o :

(a) a is an acquaintance name in the acquaintance clause of o (WF2);
(b) m is the name of a method of the object referred to by a (WF3).

3. for every method name m , occurring in the client interface of different object
descriptions with the same type name (WF4):,

(a) all non-empty specialisation clauses of these methods are identical;

(b) the abstractness annotation attached to these methods is equal on all
occurrences.

The operators as discussed before can be preserved, but again in the modifier
and applicability definitions extra conditions need to be added to ensure the newly
introduced well-formedness constraints. For example, on concretisation one needs to
ensure that all occurrences of the same method are concretised simultaneously and
on participant refinement, one needs to ensure that there will not be two different
occurrences of the same method with a different non-empty specialisation clause.

We will not elaborate on all possible extensions to this basic collaboration dia-
gram model, but will focus on one important aspect that is also prominent in UML’s
collaboration diagrams: different kinds of acquaintance relationships.

5.8 Acquaintance Relationships

Until now we have acted as if all acquaintances were life-time, i.e., when a class or
object is acquainted to another class or object in a contract, we pretend it always
is. A distinction should be made between acquaintance relationships that are life-
time and volatile relationships. In object-oriented systems life-time relationships
will generally be implemented by instance variables. The relationship with self is
also life-time. Volatile relationships can be modelled by method arguments or local
or global variables.

In collaboration diagrams in UML five ‘implementation stereotypes’ are distin-
guished:

1. <association>> this is the default in UML;
2. <parameter> a procedure parameter;

3. Klocal>> a local variable of a procedure;

5.8 Acquaintance Relationships

153

4. Lglobal>> a global variable;

5. < self> the link of an object with itself.

These stereotypes can be denoted along the acquaintance relationships. We add
an extra stereotype <result>>>, to depict that an object is acquainted with another
object that was the result of one of its methods. The fact that a method returns a
result will be depicted by a dashed line.

5.8.1 Extension of the Model

We again have to extend our original definition to include the possibility to add
implementation stereotypes along acquaintance relationships. We therefore adapt
the definition of acquaintance clauses.

Definition 5.19 (Acquaintance Clause) An acquaintance clause is a set of
acquaintance relationships a.o.s, associating an acquaintance name o with an object
name o , and optionally an implementation stereotype s.

We follow the same convention as UML, namely that when no implementation
stereotype is included, we consider the acquaintance relationship to be an associa-
tion. Note that we need to attach a method name to some implementation stereo-
types, because it is not sufficient to know only the stereotype, we also need to know
from which method a participant is a parameter, variable or result. We therefore
have to define what kinds of stereotypes are included in the model.

Definition 5.20 (Implementation Stereotype) An implementation stereo-
type is either one of the keywords: association, global or sel f or a pair (keyword, m)
where keyword is either parameter, local or result and m a method name.

We again have to add an extra clause to the well-formedness definition, to en-
sure that when an acquaintance relationship has the implementation stereotype
L parameter>>, Klocal>> or Kresult>> attached to it, the method name it concerns
is present on the participant.

Definition 5.21 (Well-Formedness) A collaboration reuse contract R is well-
formed if for every object description

(WF1) ... (WF4)

(WF5) for every object o : for every a.p.s in its acquaintance clause, where s is a
pair (keyword, m): a method m is part of the interface of o .

154

Reuse Contracts for the UML

The inclusion of this information could allow us to define well-formedness even
more precisely. Until now, it was allowed to send a message to another participant
as long as there was an acquaintance relationship and as long as the called message
was part of the client interface of the receiving participant. This could be further
restricted. For example, when we know that an acquaintance relationship has the
stereotype <parameter>>, we know that this acquaintance relationship is only ac-
cessible from within the method of which it is an argument. We could therefore
add an extra constraint to the definition of well-formedness. In order to do that we
would however need to take sequences of method invocations into account'®. We
will not do this here, because that would lead us too far. We will see further on that
even this rather minimal model allows to express a lot.

Since we do not add these extra constraints, the operators are also not so much
affected by this extension of the model. The context operators are again affected,
because they need to take the possibility to add implementation stereotypes into
account. We do however add one extra operator: context concretisation.

5.8.2 A New Operator: Context Concretisation

Motivation

In a first description of a design one can leave out specifications on what kind
of acquaintance relationship a binding represents. In a second stage, one needs
to make decisions about this and add implementation stereotypes. As this gives
a more concrete representation of the collaboration, we call the addition of the
implementation stereotypes context concretisation.

Definition and Properties

Definition 5.22 (Context Concretisation Modifier) A context concretisa-
tion modifier is a reuse modifier with modifier tag “context concretisation” and
a modifier description containing pairs (o,acq) each consisting of an object name
o and an acquaintance clause, where each acquaintance relationship in acqg has an
associated implementation stereotype.

Definition 5.23 (Context Concretisable) The context of a collaboration reuse
contract R is concretisable by a context concretisation modifier M, if for each
pair (o, acq), for each a.p.s in acq:

1. a.p also occurs in the acquaintance clause of o in R , but without an associated
implementation stereotype;

2. if s is a pair (keyword, m): a method m is part of the interface of 0 in R .

10Because a method to an acquaintance representing a result can only be sent after the method
of which it is a result has been invoked.

5.9 Conclusion

155

Definition 5.24 (Context Concretisation) If the context of a collaboration reuse
contract R is concretisable by a modifier M., then the collaboration reuse contract
R is the context concretisation of R by M.. where:

1. R.c contains all object descriptions of R that are not mentioned in M,;
2. for each pair (0, acq) in M,.: R.. contains an object description

(a) with name o and the same interface as o in R ;

(b) with an acquaintance clause that contains the union of acq and all ac-
quaintance relationships of the acquaintance clause of 0 on R that are
not mentioned in acgq.

Context concretisation also preserves well-formedness.

Property 5.3 A context concretisation of a well-formed collaboration reuse contract
1s well-formed.

Proof

The well-formedness definition now has 5 clauses. WF1 to WF4 are not affected by
this operator. WF5 is preserved by the second clause in the context concretisability
definition.

5.8.3 Implementing Collaboration Reuse Contracts

In section 5.6 we discussed what it means for a software system to implement a
multi-class reuse contract. A simple mapping was defined between classes and class
descriptions. Here a similar definition can be given, only now a class should not
only comply to the specifications concerning one object, but to those on all objects
of the same class.

One could try to go a step further here and also try to check the existence of
the right kind of acquaintance relationships. Whether this is checkable and how is
however strongly language-dependent, so we will not give a general definition here.

5.9 Conclusion

We will not continue with the integrating of reuse contracts in UML here, but rather
go on with a number of experiments. We applied the basic reuse contracts model to
the field of object-oriented class libraries and frameworks by integrating it in UML
for two purposes. First, the two instances of reuse contracts presented here — multi-
class reuse contracts and collaboration reuse contracts — allow us to apply reuse
contracts to object-oriented systems, examples of which are given in the following
chapters. Second, the approach followed in this chapter could also be followed to
apply the basic model to other application areas. The steps that need to be taken
are:

156

Reuse Contracts for the UML

1. Map the items from reuse contracts to features in the application area. Investi-
gate how this influences well-formedness, the reuse operators and the conflicts.
For example, in our case the presence of late binding shed a new light on some
conflicts.

2. Add additional features from the application area to the model. We added,
among others, information about abstract and concrete methods.

3. Adapt the existing model, the well-formedness and operator definitions to cope
with the features added in step 2. For example, after adding information about
abstract and concrete methods the definition of participant refinement needed
to be adapted to take this information into account.

4. Introduce additional operators to cope with the features added in step 2 and
optionally provide additional combined operators. Each basic modelling el-
ement corresponds to a number of operators. For example, we introduced
participant concretisation and abstraction.

The new operators should be defined in the same way as the basic operators
(modifier, applicability and result definitions and well-formedness property).
Consequently, they can again be composed with other operators, in order to
form coarser-grained ones. We thus introduced layered concretisation.

5. Investigate how the new operators of step 4 influence the conflicts and detect
what possible new conflicts could arise. For example, method capture can also
occur after participant concretisation and the new annotation conflict was

identified.

In this chapter we integrated two diagrams from UML in the reuse contract
notation. We did not consider all possible features of these diagrams, but concen-
trated on a number of crucial elements. We could, for example, have introduced
other method annotations as private/protected/public, static, final, ... next to the
annotation abstract/concrete to methods as we did here. We chose to incorporate
the annotation abstract/concrete because the use of abstract methods is important
to achieve reuse in object-oriented systems. It is however possible to repeat the same
exercise with other annotations.

[Cor97] discusses the incorporation of the visibility annotations of Java in reuse
contracts. This requires a considerable adaptation of the well-formedness definition,
because subclasses cannot rely on private methods of their superclass. It also in-
fluences the operators, because it is not possible to override a method with a more
private one and therefore some refinements are illegal. Based on this observation
one can see how the use of private methods can be used to prevent, for example,
method capture. We will not go into details concerning these other annotations here.
We feel the introduction of the annotation abstract/concrete has demonstrated the
feasibility of extending the model.

5.9 Conclusion

157

Note that the integration of extra features from the UML diagrams into our
basic model required some adaptations to the basic model. Extra features cannot
always be added orthogonally. On the one hand, a reason for this can be found
in the complexity of the object-oriented model itself. On the other hand, further
research might enable us to make the basic model more orthogonal in order facilitate
extensions.

Next to method annotations, further elaborations to the model could be per-
formed by further exploiting the typing information, by adding arguments and result
types, by adding information on the order in which methods are invoked, etc. We
will shortly touch these issues in the section on future work in chapter 8, but we will
not introduce any more features here. Instead, in the next two chapters we take a
look at how reuse contracts can be used in various phases of the software life cycle.

