
Chapter �

Evolution of a Reusable Design

In order to make the possible uses of reuse contracts more tangible� in this chapter
we describe how reuse contracts were used to develop� specify and assess a reusable
design in an industrial context�

��� Background� Broadcast Planning

The design that was to be set up was part of a bigger system assisting in the planning
of television broadcasting �VV���� �CHSV���� A framework for broadcast planning
already exists� It integrates a whole range of aspects� going from seasonal plan�
ning to daily planning� as well as video tape management� programme information
management and downloading information to speci�c transmission hardware� The
framework also aims at improving the quality of work by automating work 	ow and
reducing administrative overhead�

The framework was developed by a small software company� While the project
originally started with a custom�made application� the framework was developed in
order to be able to cope with rapidly evolving market opportunities� Television sta�
tions are faced with rapidly evolving hardware
e�g� digital video broadcasting� and
rapid evolution of their products
e�g� interactive TV�� Another good example was
when the original client of the custom�made application opened a second channel�
announcing this news to its IT department only one month before the start of the
channel�

��� The Case� Air�Time Sales

In the original framework commercial blocks are treated as units� They can be
placed� removed and rescheduled� but nothing is said about the commercials that
are part of each block� This is logical� because the rationale behind planning com�
mercials is completely di�erent from the rationale behind planning TV programmes�

��� Evolution of a Reusable Design

Moreover� both tasks are carried out by di�erent departments� Therefore� a new
framework needs to be designed� the
air�time sales�
ATS� framework� This frame�
work needs to handle planning of commercials� contracts with advertisers and pricing
schemes� Furthermore� air time sales does not only concern commercials� but also
sponsoring of programmes� tv sales� etc� In this chapter� we only discuss a small
fraction of this framework� planning of commercials�

For a large part� the ATS�framework works independently from the broadcast
planning system� but there is also interaction between the two� For example� when
a commercial block is moved� deleted or shortened in the general broadcast system�
this has repercussions on the commercials that were planned in it� In the other
direction� when not enough commercials are found to �ll up a commercial block�
this has to be noti�ed to the broadcast planning application� This application then
has to �ll up the remaining time with trailers or move the following programme
forward�

AirTime CommercialBlockATSPlanner

BlockDistribution

Spot

AllocationAdvertiser Alloc_State

Option Booking

*

*

* *

*

Figure ���� Overview of the Air�Time Sales System

The way commercials are planned is quite diverse for di�erent TV stations� The
main structure of such systems is however equal� it is depicted in �gure ����� An
advertiser can take an option on air time� this is called an allocation� Air time is

�Note that we again use the UML notation� Hence the asterisks to indicate multiplicity zero or

more�

��� A First Design� Block Spot Spaces ���

the item being sold here� How air time is expressed can be very diverse� advertisers
can ask for commercials at particular places in the planning or for a set of spots
planned according to a recurring pattern
e�g�� every day after the news�� etc� After
di�erent advertisers have taken options� the planner tries to map these requirements
onto actual commercial blocks� When air time is scheduled� the option becomes a
booking� a contract can be attached to it� etc� This is depicted by the State design
pattern used for the allocations made by advertisers� We will not discuss this part
further� since we are most interested in the actual planning�

The heart of the system is the ATSPlanner� This planner forms a mapping be�
tween CommercialBlocks and BlockDistributions� CommercialBlock is a class
from the general broadcast planning application and thus forms the link between
both applications� BlockDistributions are containers that store which commer�
cials are planned and in what sequence� Therefore a number of Spots is attached to
a BlockDistribution� While an AirTime is an abstract description of one or more
spots� a Spot is a planned commercial�

An ATSPlanner has a number of interesting tasks� The �rst is to map the air
time options to actual commercials� by creating spots in spot distributions� Other
behaviour is triggered by the general broadcast planning application� This applica�
tion can� for example� ask to delete a commercial block� to make it shorter or to
move it� How these requests are handled is of course dependent on the kind of air
time allocation� We discuss two major cases here� block spot spaces and gross rating
points� Moreover� we focus on two basic functionalities� planning of commercials
and deletion of commercial blocks� The designs presented below are simpli�ed� but
su�ce to express the use of reuse contracts�

��� A First Design� Block Spot Spaces

A �rst way of expressing the desired air time is rather basic� An advertiser can take
an option on a
block spot space�� i�e�� a slot in a particular commercial block� The
TV station releases weekly plannings describing the programmes and the commercial
blocks they have planned� The price of a spot is dependent on its length and on
the block the spot is placed in� Commercial blocks right before or after programmes
with high viewing �gures are more expensive� Based on this information� advertisers
can decide where they want to plan commercials� For example� a commercial for a
new CD could be planned before or after a music programme�

A reuse contract for the block spot space approach is depicted in �gure ����
The structure is part of the general structure from �gure ���� The classes AirTime�
ATSPlanner and BlockDistribution are replaced here by speci�c versions for the
block spot space approach� respectively BlockSpotSpace� BSSPlanner and BSSDi�

stribution� Let us look at two main behaviours of the BSSPlanner as discussed
above� planning and deletion�

A planner can receive the message planAirTime� with a particular air time as

��� Evolution of a Reusable Design

CommercialBlock

BSSPlanner

BSSDistribution

BlockSpotSpace

deleteBlock:
planAirTime:

deleteBlock:{noDelete}

planAirTime:{resolve:}

isEmpty
delete
placeSpot
 {freePos}
freePos

deleteBlock{isEmpty, delete}

resolve:{placeSpot:}

placeSpot:{noSpace,
 validSol:in:}

resolve:
validSol:in:
 {checkSol}
checkSol
noSpace

noDelete

at

at

planner

planner

distr

distr

Figure ���� Block Spot Spaces

argument�� This message expresses the request to make a spot in a distribution
for the air time that has been given as argument� As a reaction the planner sends
the message resolve� to the air time� This message has the planner as argument�
because the receiver might need to ask the planner for additional information� As a

block spot space��allocation knows exactly in which commercial block it wants to
be placed� it sends a message placeSpot� to the distribution associated with this
block� The distribution �rst checks whether it has a space left for the commercial
through freePos� When it does not �nd a free space it sends the message noSpace
to the block spot space�� Otherwise it sends the message validSol�in� to the block
spot space to check whether the spot it has found is a valid solution� This check is
necessary because block spot space allocations might put extra requirements on their
request� Di�erent systems might express constraints di�erently� Possible variations
are position constraints
e�g�� �rst commercial in a block�� timing constraints
e�g��
start within x seconds after the start of the commercial block� or pricing constraints

e�g�� the price of this block should not exceed x�� We make abstraction of these
constraints here and represent them with a call to the message checkSol�

Deletion behaviour is straightforward� The policy is that blocks that were already

�As this design was set up to be implemented in Smalltalk� we use Smalltalk syntax here�
�Note that in a real system one would not send a message noSpace� but this would be signalled

through the value of the return type� Because we cannot express this with reuse contracts � for

now � we use this notation throughout this chapter�

��� A Second Design� Gross Rating Points ���

made public and which spots have been appointed to cannot be deleted� Therefore�
when receiving the message delete a BSSPlanner checks whether the associated
distribution is empty� If so� it sends the message delete to the distribution� if not�
it sends the message noDelete back to CommercialBlock�

��� A Second Design� Gross Rating Points

A completely di�erent strategy for air time sales uses so called
gross rating points�

GRPs�� Gross rating points are a way to express a desired target audience� An
example is that with a certain commercial the advertisers want to reach at least
��� of all males between �� and �� years of age� Instead of having advertisers take
options on particular commercial blocks� they take options referring to these
gross
rating points�� It is then up to the broadcast company to distribute the commercials
as well as possible� such that the desired audience is reached� The advertisers agree
to a certain price for a certain GRP� When� after broadcasting the commercials�
viewing �gures show that the desired GRP was not reached� the broadcast company
has to provide compensation� usually by broadcasting it again for free� Obviously�
this working method has a large in	uence on the implementation of the planning
and deletion behaviour� A reuse contract for this version is depicted in �gure ����

CommercialBlock

GRP_Planner

GRP_Distribution

GRP_AirTime deleteBlock:
planAirTime:
distrWithGRP:

planAirTime:{resolve:}

delete
freePos
placeSpot:{freePos}

deleteBlock{delete}

resolve:{placeSpot:}

delete{reschedule:}
placeSpot:{noSpace}

resolve:
reschedule:
noSpace

resolve:{distrWithGRP}

at

at

planner
planner

distr

distr

Figure ���� Gross Rating Points

As with block spot spaces� when receiving the message planAirTime� a GRP Plan�

ner sends the message resolve� to the air time� A GRP Airtime however �rst
asks the planner to return all distributions with a minimum value on a certain
GRP category through the message distrWithGRP� and then enumerates over these

��� Evolution of a Reusable Design

distributions� asking them to place a spot until the desired GRPs are reached� When
asked to place a spot a GRP Distribution checks whether there is a free position left
through freePos� If there is space left the distribution places the spot� otherwise
it returns noSpace� It does not need to check the validity of the position where
the spot has been placed� as the only requirement of the allocation is to reach the
required GRPs and one distribution has a �xed GRP per target group�

Opposed to block spot spaces� deletion of commercial blocks containing spots for
GRP Airtimes is possible� If spots were already placed� they can be rescheduled in
other commercial blocks amounting for the same GRPs� Therefore� when receiving
the message deleteBlock� a GRP Planner sends the message delete to the associ�
ated distribution� If it is not empty� this distribution sends the message reschedule
to all a�ected air times before destroying itself�

��� Generalisation

Although there are quite some di�erences between the two approaches� there are also
some similarities� It seems logical therefore to abstract these similarities in abstract
classes� ATSPlanner� AirTime and BlockDistribution� We can then regard as
specialisations the two cases we have so far� A reuse contract of the shared behaviour
is depicted in �gure ����

CommercialBlock

planAirTime:{resolve:} ATSPlanner

BlockDistribution

deleteBlock:
planAirTime:

delete
placeSpot:
 {freePos}
freePos

resolve:{placeSpot:}

placeSpot:{noSpace}

AirTime

resolve:
noSpace at

at
planner

planner

distr

distr

deleteBlock:
 {delete}

Figure ���� Generalised Air Time Sales Behaviour

The methods that have a di�erent implementation in both cases are made ab�
stract here� planAirTime� is a concrete method because all it does in both cases
is send the message resolve� to its argument� Note that although resolve� is

��� Expressing Specialisations through Reuse Operators ���

abstract in both cases it sends placeSpot� to the distribution� This is an example
of an abstract method with a non�empty specialisation clause� The abstract method
placeSpot� calling freePos and the abstract method deleteBlock� calling delete
are such examples as well�

��� Expressing Specialisations through Reuse Opera�

tors

Now that we have a general reuse contract we can express how the speci�c cases are
derived from the general one by means of reuse operators� Two approaches can be
taken to do this� The �rst is to take the entire general reuse contract and make two
specialisations of this contract� The second is to consider the three hierarchies one
by one� Both approaches demonstrate the di�erences and both cases can be useful�
depending on what you want to emphasise�

Figure ��� demonstrates the �rst approach for the GRP case� It demonstrates
how the GRPContract is derived from the ATSContract with the UML notation for
re�nement� Three operators are used�� The combined operator layered concretisa�
tion and the two basic operators extension and concretisation� In the modi�er� the
name of the class is used every time to indicate on which class a change is made� The
notation of the specialisation clauses shows along which acquaintance relationships
invocations are added�

The other approach is taken in �gures ��� through ���� Figure ��� depicts di�er�
ent air times� Both kinds concretise resolve�� In the case of GRPs this is a layered
concretisation� because simultaneously a re�nement is performed� Both kinds of air
time also add some new behaviour through an extension�

Figure ��� depicts di�erent planners� As planAirTime� was already concrete
and the implementation is the same in both cases� nothing has to be done for this
piece of behaviour� Both cases concretise deleteBlock�� BSSPlanner �rst checks
whether the block is empty� GRP Planner does not� An extra method distrWithGRP

is added to GRP Planner to return all distributions with a certain GRP�

Figure ��� depicts di�erent distributions� Both cases concretise placeSpot� and
delete� partially with layered concretisations adding some behaviour� BSSDistri�
bution also adds an extra method isEmpty�

��	 Evolution

����� A Combined System

Now imagine wanting to have a system where both kinds of options are o�ered to
advertisers� In some cases they might really want to have a spot in a particular

�We left out the renaming for reasons of brevity

��� Evolution of a Reusable Design

GRPContract

CommercialBlock

GRP_Planner
(ATSPlanner)

GRP_Distribution
(BlockDistribution)

GRP_AirTime
(AirTime) deleteBlock:

planAirTime:
distrWithGRP:

planAirTime:{resolve:}

delete
freePos
placeSpot:{freePos}

deleteBlock{delete}

resolve:{placeSpot:}

delete{reschedule:}
placeSpot:{noSpace}

resolve:
reschedule:
noSpace

resolve:{distrWithGRP}

at

at

planner

planner

distr

distr

ATSContract

CommercialBlock

planAirTime:{resolve:} ATSPlanner

BlockDistribution

deleteBlock:
planAirTime:

delete
placeSpot:
 {freePos}
freePos

resolve:{placeSpot:}

placeSpot:{noSpace}

AirTime

resolve:
noSpace at

at
planner

planner

distr

distr

deleteBlock:
 {delete}

BlockDistribution.placeSpot:
ATSPlanner.deleteBlock:

<< Concretisation >>

BlockDistribution.delete
 {+at.reschedule}
AirTime.resolve:
 {+ planner.distrWithGRP:}

<< Layered Concretisation >>

ATSPlanner.distrWithGRP:
AirTime.reschedule

<< Extension >>

Figure ���� Specialising the Air Time Sales Contract

��	 Evolution ��	

AirTime

resolve:
noSpace

Concretisation
 resolve:
Extension
 validSol:in:
 {checkSol}
 checkSol

Layered Concretisation
 resolve:
 {+ planner.distrWithGRP:}
Extension
 reschedule:

GRP_AirTime

resolve:
reschedule:

BlockSpotSpace

resolve:
validSol:in:
 {checkSol}
checkSol

Figure ���� Specialising Air Time

ATSPlanner

deleteBlock:
planAirTime:

BSSPlanner GRP_Planner

deleteBlock:
planAirTime:

deleteBlock:
planAirTime:
distrWithGRP:

Layered Concretisation
 deleteBlock:
 {+distr.isEmpty}

Concretisation
 deleteBlock:
Extension
 distrWithGRP:

Figure ���� Specialising Planner

��
 Evolution of a Reusable Design

BlockDistribution

delete:
placeSpot:
 {freePos}
freePos

BSSDistribution GRP_Distribution

isEmpty,
delete,
placeSpot:
freePos

delete,
freePos,
placeSpot:

Layered Concretisation
 placeSpot:
 {+at.validSol:in:}
Concretisation
 delete
Extension
 isEmpty

Concretisation
 placeSpot:
Layered Concretisation
 delete
 {+at.reschedule}

Figure ���� Specialising Block Distribution

distribution� for example� during the break of a sports event� In other campaigns
they might want to reach a certain audience regardless of how this is achieved�
We thus want to keep having di�erent kinds of air time� but want a planner and
distribution that can handle both� This is depicted in �gure ���� where a new kind of
planner and distribution are introduced� that communicate with the general AirTime
class�

By looking at �gures ��� and ��� we can easily detect where the two cases di�er�
Except for the addition of the method distrWithGRP�� no distinction is made on
the planner classes concerning the actual planning� Only the deletion behaviour is
slightly di�erent� While the GRP Planner just deletes a distribution� the BSSPlanner
�rst checks whether the distribution is empty or not� As the behaviour depends on
the kind of air time� it seems logical to shift this test to the distribution class
and let it query the air time� Therefore we introduce a method deleteBlock on
CombinedDistribution that asks all of its scheduled air times whether they are
reschedulable� If they all are� they are asked to reschedule themselves and the
distribution is deleted� If at least one of them is not reschedulable deleteBlock on
Distribution reports this to deleteBlock� on Planner which again noti�es the
general planning application that deletion was denied� Note that this does require
the addition of a method reschedulable on all air times� It can be added to the
super class AirTime� where as a general rule it should return false�

A similar scenario repeats itself concerning the di�erent behaviour of placeSpot�
on both kinds of distributions� While for GRP AirTimes it only checks whether it

��	 Evolution ���

CommercialBlock

planAirTime:{resolve:}

placeSpot:{validSol:in:,noSpace}
deleteBlock:{reschedulable,reschedule}

CombinedPlanner

deleteBlock:
planAirTime:
distrWithGRP:

CombinedDistribution

deleteBlock{delete}
delete
placeSpot:{freePos}
freePos

AirTime

resolve:
reschedulable
reschedule
validSol:in:
noSpace

resolve:{placeSpot:}

deleteBlock:
{deleteBlock}

deleteBlock:
{noDelete}

at

at

planner

planner

distr

distr

Figure ���� A Combined System

has a free spot� for BSSAirTimes it also asks whether the suggested solution is valid�
We can solve this by always letting the combined distribution send the message
validSol�in� to its air times and by always letting validSol�in� return true for
GRP AirTimes� We therefore add a method validSol�in� to AirTime� This is all
depicted in �gure ����

While for planning and distribution new classes were introduced� the introduction
of the combined system also requires some changes to the class AirTime� As two
specialisations of AirTime� BlockSpotSpace and GRP AirTime already exist� the
changes to AirTime could cause con	icts on the specialisations� The problem is
depicted in �gure �����

However� now that we have documented by means of reuse operators how these
specialisations are derived from AirTime� it is easy to verify whether con	icts will
occur� We therefore use the tables representing the con	ict detection rules as devel�
oped in chapters � through �� These tables are repeated in appendix A� Note that
the tables do not express that in the situations they depict a con	ict will always
occur� They express which con	icts possibly occur through which combinations of
operators� The corresponding rules then need to be applied to see whether there
actually is a con	ict in a particular case� So all we need to do here is express each
change to the class AirTime by means of one or more reuse operators and then check
these operators against the operators representing the specialisations�

We represent this checking in tables ��� and ���� Three changes were made to
the class AirTime� three times an extension with a new method� In these tables the

�	� Evolution of a Reusable Design

New Version
AirTime

resolve:
noSpace
...

GRP_AirTime

resolve:
reschedule:

BlockSpotSpace

resolve:
validSol:in:
 {checkSol}
checkSol

AirTime

resolve:
noSpace
XXX

GRP_AirTime

resolve:
reschedule:

BlockSpotSpace

resolve:
validSol:in:
 {checkSol}
checkSol

?????

Figure ����� Evolution of Air Time

columns depict changes to the parent class� while the rows show the di�erences be�
tween the parent class and its di�erent subclasses� To verify whether con	icts might
arise� the di�erent operators are then compared according to the rules of chapters �
to ��

We investigate the consequences of the addition of validSol�in� to AirTime in
table ���� In this case� the rules signal a problem�

Original Air Time New version�

Extension with validSol�in�

BlockSpotSpace�

Concretisation of resolve� and method name con�ict

Extension by validSol�in�

GRP Airtime�

Layered concretisation of resolve�

and Extension by reschedule

no con�icts

Table ���� Adding validSol�in� to AirTime

A method named validSol�in� already exists on BSSAirTime� which gives
rise to a method name con	ict� As the method on AirTime only returns true� the
problem can be solved by turning the extension between AirTime and BSSAirTime

into a re�nement
as part of an extending re�nement�� as is depicted in �gure �����

We now investigate the consequences of the addition of reschedulable and
reschedule in table ���� Again we get a method name con	ict� because a method
reschedule� is also introduced by GRP AirTime� Again this method returns false
on the superclass and is overridden on the subclass� We can however not take

��	 Evolution �	�

AirTime

resolve:
noSpace
reschedulable
reschedule
validSol:in:

Extending Refinement
 validSol:in:
 {+checkSol}
 checkSol
Concretisation
 resolve:

Layered Concretisation
 resolve:
 {+ planner. distrWithGRP}
Extension
 reschedule

GRP_AirTime

resolve:
reschedule

BlockSpotSpace

resolve:
validSol:in:
checkSol

Figure ����� Revision of Air Times

the same approach and turn the extension into a re�nement as no calls are added

probably there are some calls� but these are not mentioned in this design�� Here
the current expressiveness of the reuse operators falls short a little� One approach
is to use empty re�nements�� another to introduce an extra operator� rede�nition�
The re�nement of the operators is future work�

The addition of reschedulable does not cause any con	icts to the existing
specialisations of AirTime� which is logical since a completely new method is added
that does not interact with the other methods� Note that we also have to override
the same method on GRP AirTime to return true� We then get the same kind of
empty re�nement as for reschedule�

Original Air Time New version�

Extension by reschedulable

and reschedule�

BlockSpotSpace�

Concretisation of resolve� and no con�icts

Extension by validSol�in�

GRP Airtime�

Layered concretisation of resolve�

and Extension by reschedule

method name con�ict

Table ���� Adding reschedulable to AirTime

�Note that this is allowed� as specialisation clauses are sets and thus can be empty�

�	� Evolution of a Reusable Design

����� Introducing Clash Codes

Let us now see how to introduce new behaviour� One factor we have not considered
yet in the air time sales system is the use of clash codes� Clash codes are associated
with the products in each commercial� Some of these products
clash� and should
therefore not be broadcasted in the same commercial block� A simple example is that
a commercial for washing powder and one for softener should never be advertised in
the same block�

In order to add checking of clash code violations we re�ne the implementa�
tion of validSol�in� on AirTime� The method now checks whether the product
that it advertises does not clash with any of the other products in commercials in
the distribution� This is achieved by invoking the method checkClashes� with
the distribution as argument� Apart from the adaptation of AirTime� this change
also requires all distributions to invoke validSol�in� when placing a spot� Until
now only BSSDistribution and CombinedDistribution performed this invocation�
GRP Distribution did not� We thus add a call to validSol�in� to the speciali�
sation clause of placeSpot� on the super class Distribution� The new version of
the general behaviour is depicted in �gure ����� Notice that the changes to AirTime
as discussed in section ����� were also added�

AirTime

CommercialBlock

planAirTime:{resolve:}

placeSpot:{validSol:in:,noSpace}

ATSPlanner

BlockDistribution

deleteBlock:
planAirTime:

resolve:
reschedulable
reschedule
validSol:in:
 {checkClashes:}
checkClashes
noSpace

resolve:{placeSpot:}

at

at

planner

planner

distr

distr

deleteBlock:
 {delete}

delete
placeSpot:
 {freePos}
freePos

Figure ����� Introducing Clash Codes

We now again investigate the consequences of the changes on the existing special�
isations� We start with the Distribution hierarchy� The only thing that changed
on the superclass was the extra call to validSol�in� by placeSpot�� As table
��� demonstrates� the rules notify us that in two of the three specialisations of

��	 Evolution �	�

Distribution an operation invocation con	ict occurs� because these specialisations
assume they are performing a re�nement by adding an invocation to validSol�in���
while this invocation already exists on the superclass� Note that to keep the table
concise� we only show the relevant operators�

Original Distribution New version�

Re�nement of placeSpot�
with validSol�in�

BSSDistribution�

Layered Concretisation of placeSpot�
with validSol�in�

operation invocation con�ict

GRP Distribution�

Concretisation of placeSpot� no con�ict

CombinedDistribution�

Layered Concretisation of placeSpot�
with validSol�in�

operation invocation con�ict

Table ���� Clash Code Behaviour on Distribution

Since there is no di�erence between the implementation of placeSpot� on
Distribution and those in the subclasses� the solution is to simply omit the re�ne�
ments between Distribution and its two specialisations� In a di�erent situation�
the re�nement might need to be adapted to add less invocations or else turned into
a specialisation�

While we �rst detected the con	icts in the Distribution hierarchy� we now
verify whether any con	icts due to the introduction of clash codes might occur on
AirTime� Two changes have been made� First� the method validSol�in� is re�ned
on the superclass AirTime to invoke checkClashes�� Second� there is an extra call
to validSol�in� by placeSpot�� The operators in table ��� reveal two con	icts� a
method capture and an operation invocation con	ict�

The operation invocation con	ict occurs because the re�nement of validSol�in�
on BlockSpotSpace does not repeat the invocation of checkClashes�� The corre�
sponding method will not call checkClashes� which might lead to errors� This prob�
lem can be solved by adapting the implementation of validSol�in� on BlockSpot�

Space to �rst perform a super call� thus changing the re�nement between AirTime

and BlockSpotSpace into a specialisation�

The method capture is not really a con	ict� It just signals that the call of
validSol�in� on AirTime by Distribution will also lead to an invocation of the
version of validSol�in� of BlockSpotSpace� which in this case is desirable� Note
that the signalling of a con	ict does not always need to cause an actual con	ict�

�The re�nement is part of the layered concretisation�

�	� Evolution of a Reusable Design

Original Air Time New version� New version�

Re�nement of Re�nement of
validSol�in� with
checkClashes�

placeSpot� on Distribu�
tion with validSol�in�

on at

BlockSpotSpace�

Re�nement of validSol�in�
with checkSol

operation invocation

con�ict

method capture

GRP Airtime�

Layered concretisation no con�icts no con�icts

of resolve� and Extension
by reschedule

Table ���� Clash Code Behaviour on AirTime

The signalling helps however in assessing where changes propagate�

����� Optimisation

As a last example of evolution� now that we have a number of working systems we
might want to see where the performance can be improved� One possible place to
improve performance is the checking of clash codes as seen from the distributions�
Currently� every time a spot is placed its air time is asked to check whether it does
not clash with the other spots in the distribution� It would be better to ask a
spot what its clash code is and store this in the distribution� This information can
then also be used for other checks and behaviours� for example� to verify that some
articles are not advertised before � PM� Every time a spot is added� the distribution
can then run a check itself and it no longer needs to ask the air time whether it
provides a valid solution� The new design is depicted in �gure �����

Looking at the operators we see that this leads to inconsistent methods as de�
picted in table ���� While the change on Distribution represents a coarsening and
omits the call to validSol�in� on AirTime� one of the specialisations of AirTime
re�nes this method relying on the fact that it is called by Distribution whenever
a spot is placed�

So if we do make this optimisation for clash code checking we need to ensure
that the rest of the checking is still performed� We should therefore not remove
the call to validSol�in� by placeSpot�� but coarsen validSol�in� on AirTime

so that it no longer checks clash codes� but is still invoked on BlockSpotSpaces to
check constraints� As table ��� shows� this coarsening does not cause con	icts on
the specialisations of AirTime� because BlockSpotSpace is a specialisation and thus
incorporates changes to the superclass without problems�

��
 Conclusion �	�

AirTime

CommercialBlock

planAirTime:{resolve:}

placeSpot:{clashCode,noSpace}

ATSPlanner

BlockDistribution

deleteBlock:
planAirTime:

resolve:
reschedulable
reschedule
validSol:in:
clashCode
checkClashes
noSpace

resolve:{placeSpot:}

at

at

planner

planner

distr

distr

deleteBlock:
 {delete}

delete
placeSpot:
 {freePos, checkDistr}
freePos
checkDistr

Figure ����� Optimising Distributions

Original Air Time New version�

Coarsening of placeSpot� on Distribu�
tion dereferencing validSol�in� on at

BlockSpotSpace�

Specialisation of validSol�in�

with checkSol

inconsistent methods

GRP Airtime�

Layered concretisation of resolve� no con�icts

Table ���� Optimisation of ATSContract � change �

The changes made to Distribution in this optimisation� i�e�� the addition of
checkDistr� the invocation of checkDistr by placeSpot� and the invocation of
clashCode by placeSpot� do not cause any con	icts� Neither does the addition of
clashCode on AirTime� The veri�cation of these changes can again be performed
by checking the tables� but is left to the reader�

��
 Conclusion

Although we only discussed part of the design of this framework� this chapter has
demonstrated how reuse contracts can be helpful in the design and evolution of
reusable systems� Reuse contracts help in reasoning about frameworks� they help
in assessing which compositions will exhibit desired behaviour and they help during

�	� Evolution of a Reusable Design

Original Air Time New version�

Coarsening of validSol�in�
dereferencing checkClashes�

BlockSpotSpace�

Specialisation of validSol�in�

with checkSol

no con�icts

GRP Airtime�

Layered concretisation of resolve� no con�icts

Table ���� Optimisation of ATSContract � change �

evolution by signalling places where changes might cause con	icts�
While this experiment demonstrated the usefulness of reuse contracts� regarding

its expressive power it also showed some of its weak points� We missed� for exam�
ple� the possibility to express return types and conditionals� We can express that
a method is overridden when the exact same methods are invoked by an empty re�
�nement� but maybe it is better to introduce an extra operator� called rede�nition�
This was� for example� the case with the methods returning false by default on a
root class� which are overridden to return true on subclasses� The extension and
re�nement of the current notation to increase its expressiveness is future work�

It is also clear that in order to use reuse contracts on larger systems� tool as�
sistance is an absolute necessity� Here we detected con	icts by manually checking
all operator combinations� but this rapidly becomes infeasible when the size of the
system increases� Therefore� the next chapter discusses how tools can be built to
assist in this process�

��� Acknowledgements

I thank Wim Codenie� Wilfried Verachtert and Wouter Roose from OOPartners� as
well as Tom Mens and Patrick Steyaert for their assistance in this experiment�

