
Chapter �

Conclusion

��� Summary

In this dissertation reuse contracts were introduced as an extended interface descrip�
tion mechanism� allowing structured documentation of reusable components� Reuse
contracts assist software engineers in understanding how a component can be reused
and in managing the evolution of components� Reuse contracts are based on the
observation that a more structured communication between reusable components
and reusers is crucial to enable disciplined reuse� This is achieved by letting reusers
document the assumptions they make about the components they reuse� which al�
lows to check whether these assumptions are broken on evolution�

We introduced a basic reuse contract notation for describing reusable compo�
nents that consist of several interacting participants� Eight basic reuse operators
were given that allow modelling all possible changes to a reuse contract� These reuse
operators enable expressing the assumptions di�erent components make about each
other� They thus help structure complex systems and form the basis for a mech�
anism for managing change propagation� A number of rules were set up to detect
possible con�icts during change and to assist developers in assessing where and how
to test and how to adjust applications� Because the basic operators were too �ne
grained to model real systems naturally� a structure was set up that allows operators
to be combined into coarser�grained ones� A number of useful combinations were
presented� but more importantly� it was demonstrated how combined operators can
be constructed�

While the work in this dissertation focussed on a reuse contract model for soft�
ware systems composed of co�operating participants� the working method followed
here can be repeated for other systems� The following steps need to be taken�

�� Find an adequate interface representation and de�ne well�formedness�



��� Conclusion

	� Distinguish a complete set of basic reuse operators� Provide modi�er� appli�
cability and result de�nitions for each operator and prove that the modi�er
preserves well�formedness�


� Set up a model for change propagation by de�ning rules to detect di�erent
con�icts�

�� Elaborate by declaring combined operators and adding model features�

While the basic reuse contracts were described on a relatively abstract level�
they were integrated in the UML to demonstrate their practical use� While the two
versions of reuse contracts representing respectively class and object combinations
allowed concrete experiments to be executed� their introduction also demonstrated
how the basic reuse contract model can easily be extended to incorporate domain�
speci�c features�

�� Map the concepts from reuse contracts to features in the application area�
Investigate how this in�uences well�formedness and the reuse operators�

	� Add additional features from the application area to the model�


� Adapt the existing model and the well�formedness and operator de�nitions to
cope with the features added in step 	�

�� Introduce additional operators to cope with the features added in step 	 and
optionally provide additional combined operators�

�� Investigate how the new operators of step � in�uence the con�icts and detect
what possible new con�icts can arise�

Finally� through some experiments we demonstrated how reuse contracts can be
used to assist in the software development process� Based on reuse contracts� tools
can be constructed that support developers in tasks as diverse as customisation�
evolution of components� quality assessment� program restructuring� � � � One exper�
iment demonstrated how reuse contract speci�cations can be instrumental in the
iterative development of a reusable design�

��� Evaluation and Future Work

Reuse contracts as presented in this dissertation are a �rst� but important� step on
the long road towards disciplined reuse� Let us evaluate the claims made in chapter
one� There we declared�

� Reuse contracts can be used as structured documentation of reusable com�
ponents and generally assist a software engineer in adapting components to
particular needs�



��� Evaluation and Future Work ���

� Reuse contracts encourage disciplined reuse without being too coercive and
provide a vocabulary and notation to discuss reuse� They do this through
simple models that are easy to learn and intuitive in use�

� On evolution� reuse contracts assist in assessing how much work is necessary
to update previously built applications� where and how to test and how to
adjust these applications�

The �rst and second claim were a
rmed in chapter �� We demonstrated there
how reuse contracts help in managing evolving designs� One of the great bene�ts of
reuse contracts is the simplicity of its models� This makes reuse contracts easy and
intuitive to use by developers� which stimulates the deployment of disciplined reuse�
It also makes the construction of tools rather straightforward� The drawback of this
simplicity is that reuse contracts can only help us that much� As became clear in
the ATS experiment as well as in other examples� the current model falls short in
describing features as return values� typing� and so on� Section ��	�� discusses the
usefulness and feasibility of some possible extensions�

The third claim above was also addressed by the ATS experiment in chapter
� and by the tools� The ATS case demonstrated how reuse contracts can assist
in evolution while chapter � discussed tools that can assist in assessing designs and
keeping code and design consistent� Section ��	�	 discusses some other possible uses�

Finally� besides the above elaborations� more work needs to be done on the model
described in this dissertation on a theoretical as well as a practical level� This is
discussed in section ��	�
�

����� Possible Extensions

A large range of possible extensions to the current model are conceivable� They can
be divided in two categories� extensions and adaptations of the current model and
applications of the reuse contracts model to other areas that require a partially or
completely new model�

Including Other Information

Private� Protected� Public A �rst straightforward extension of the current
model is the addition of method annotations as the keywords private� protected
and public� �Cor��� discusses the incorporation of reuse contracts in Java and the
in�uence of these keywords on the change propagation model� The addition of those
keywords is comparable to the addition of the keywords abstract and concrete in
this dissertation� Extra operators can be introduced as well� What is interesting
here is the in�uence on the con�icts� For example� declaring a method to be private
prevents it from being captured�



��� Conclusion

�Cor��� also discussed the keywords �nal and static� Extensions as these are
straightforward� because these are static properties to which compliance can easily
be veri�ed and of which the in�uence on inheritance and evolution are well�known�

Typing Information Another obvious extension is the incorporation of type in�
formation� In this dissertation methods were identi�ed by a name� it is straight�
forward to extend names to method signatures� This was also done in the work on
Java �Cor����

Order� Branches and Loops In the modelling of object�oriented frameworks
we noted that in describing object interactions� information on possible branches
and loops or on the order in which methods are invoked can be useful� A notation
could be conceived where specialisation clauses are not just sets of methods� but
expressions including information on order and branches� Such a notation could
be based on regular expressions or �nite state machines� Compliance of the code
to such expressions could still be checked statically if they are restricted to order�
conditionals and loops� A bigger problem is de�ning the reuse operators on such
expressions� When is one expression a re�nement of the other� One rapidly runs
into tractability problems when trying to answer such questions�

Result Values In the air time sales framework we also had problems to model
the situation in which a method returned true on the superclass and false on one
of the subclasses� In some speci�c cases checking this statically is possible�� but
generally we cannot include information on return values� Therefore we suggested
introducing an extra operation rede�nition� to express that something has changed
in the code� but we cannot tell what� This conservative approach prevents us from
giving more information about what kinds of con�icts might arise� but preserves us
from needing data��ow analysis�

Dynamicity Similar problems might arise when further investigating dynamicity�
for example� participant bindings changing at run�time or a dynamic number of
participants� In chapter � we introduced implementation stereotypes in collabora�
tion reuse contracts to denote the kind of binding� We mentioned there that extra
well�formedness constraints could be introduced� For example� when we know that
an acquaintance relationship has the stereotype �parameter�� we know that this
acquaintance relationship is only accessible from within the method of which it is
an argument� UML also dinstinguishes dynamicity of participant bindings through
implementation stereotypes �new�� �destroyed� and �transient�� More ex�
periments are necessary to detect how much of this information can be checked� A
lot will obviously depend on whether the language is statically typed or not�

�For example� in the air time sales framework� where the bodies literally showed ��return

true�� and ��return false���



��� Evaluation and Future Work ���

Applying the Model to Other Areas

We expressed the basic reuse contract model in an abstract way� because we be�
lieve it can be applied to di�erent kinds of component systems� However� further
research is necessary in order to validate this claim� While we have applied the
model to class and object combinations� we need to apply it to analysis models� ar�
chitectural descriptions� component systems containing larger�grained components�
� � � Two interesting candidates are architecture description languages �ADLs� and
interface de�nition languages �IDLs�� Some adjustments might be needed to enable
the application of our model to these languages�

Architecture Description Languages While in this dissertation we focused on
components consisting of a number of classes� the same approach can be very use�
ful on higher�level descriptions as provided by Architecture Description Languages
�ADLs�� Two di�erent approaches are imaginable�

� In the �rst approach architecture descriptions are used as the extended in�
terfaces in this dissertation and operators are de�ned on them� That way the
relationship between di�erent architectures can be expressed and the evolution
of architectures can be monitored�

� Another approach could be to use a form of reuse contracts as connectors�
This is related to other approaches that make interaction protocols between
components explicit as separate entities next to the basic objects �such ap�
proaches were discussed in section ��
���� Using reuse contracts in such way
is a rather di�erent approach �e�g�� should operators then be de�ned on reuse
contracts alone or also on the components they connect �� and requires more
extensive research�

Interface De�nition Languages As Interface De�nition Languages �IDLs� pro�
vide language neutral and totally declarative descriptions of components in order to
achieve language and platform�independent composition� they immediately arise as
an ideal candidate on which to apply reuse contracts� Interface de�nitions specify
the operations an object is prepared to perform� the input and output parameters
they require� and exceptions that may be generated along the way� An extension
of single class reuse contracts could therefore be made that incorporates� amongst
others� exception handling and parameter speci�cations as in� out or inout� IDL
also allows methods to be speci�ed as oneway or not� This brings us to the subject
of distribution�

Speci�c Areas In general� special �avours of reuse contracts can be conceived for
di�erent areas as distribution� error handling� � � � For example� in a way similar to
the addition of keywords specifying abstractness or visibility� keywords specifying



�	� Conclusion

synchronisation or locking could be added� Investigating how these di�erent areas
could be integrated in the basic model in an orthogonal way is a key area for future
research�

State Diagrams In addition to the application of the model presented in this
dissertation to related areas� we are convinced that the general principles of the
reuse contract approach� i�e�� a structural interface description with a complete set
of basic reuse operators on top of which extensions can be built� is applicable to a
much larger range of models� One experiment with state diagrams already proved
to be promising �MS���� There as well a notation for state diagrams was chosen�
operators were de�ned on this notation and rules for change propagation were set
up�

����� Other Uses

As became clear from the discussion in chapter �� handling evolution of components
is not the only inhibitor for systematic reuse� Other problems as how to handle
complex object interactions and achieve separation of concerns� how to do e�ort
estimations and how to measure reuse are equally important� This section discusses
some domains where reuse contracts can also prove useful� The topics are ordered
in increasing degree of complexity�

Ameliorating Design� Quality Assessment Currently reuse contracts are used
to assist in modelling evolution of designs� but it is still up to the designer to decide
what design choices are made� The information provided by reuse contracts could
be used to decide on where the coupling between components is too high or the
operators could assist in assessing the quality of template methods� If a template
method is re�ned a number of times� possibly partially with the same invocations�
this gives hints on how to ameliorate the design of the framework�

Metrics This is closely related to the topic of software metrics� The kinds of
operators that appear often in customisations indicate how much the general design
is respected or relaxed� Metrics could be set up based on this observation that
indicate the reusability of a system�

E
ort Estimation In the same vein� such metrics combined with the possibility
to specify how a system can be customised might be useful to do e�ort estimations�
One of the very hard problems in software engineering is estimating how long a
project will take� This is crucial to the software business as underestimating means
losses� while overestimating implies asking too high a price� possibly missing out on
assignments� Classic measurement techniques based on the waterfall model fall short
where object�oriented systems are concerned� A combination of metrics� the ability



��� Evaluation and Future Work �		

to assess impact analysis and the speci�cation of possible customisations could prove
helpful here as well�

����� Ameliorations to the Model

Besides elaborations on the work presented here� more work needs to be done on
re�ning and tuning the current model�

The Reuse Contracts Model First work needs to be done on the theoretical
level� A more rigourous� complete model of reuse contracts is crucial� The current
notation� for example� is limited with respect to the detection of con�icts that involve
the transitive closure of specialisation clauses� Furthermore� the trade�o� between
the ability to detect more con�icts and the �exibility of the reuse modi�ers must
be investigated further� Consider� for example� the suggestion to have two distinct
operators for complete and partial participant concretisation instead of just the one�
This trade�o� is driven by the amount and the kind of information that is included
in reuse modi�ers� More research is necessary to establish a model where the kind of
information that is included in modi�ers is more generic� thus allowing the users to
document their assumptions in a more �exible fashion� Similarly� when discussing
the modelling of design patterns� we felt the need to have a more generic way of
expressing reuse contracts�

Case Studies Second� more experimental research is needed� studying the role of
reuse contracts in large� multi�person software developments� While small experi�
ments are convincing with respect to the usefulness of the reuse contract approach�
larger case studies are needed in order to test the scalability of the approach and to
assess how reuse contracts can be extended and �ne�tuned�

Since reuse contracts are designed to be used in di�erent stages of the software
process� di�erent kinds of case studies are useful� A few possibilities are�

�� Documenting an existing framework with reuse contracts and expressing the
customisation guidelines through reuse operators� It should then be measured
how much this documentation aids customisers�

	� Documenting a system with reuse contracts and see how the rules assist soft�
ware engineers when the system evolves�


� Using extractors to document and evaluate existing systems and see how this
can be used as a basis for re�engineering�

�� Experimenting with the quality assessment criteria and heuristics suggested in
chapter ��



�	� Conclusion

Tools In order to perform larger case studies� tool support is absolutely crucial�
The prototype of the extractor tool� the extension of the interface construct in
Java and the restricted experiments on clustering and design assessment carried out
on top of the extractor demonstrate how the reuse contract approach can lead to
interesting results�

These experiments need to be extended to multi�class and collaboration con�
tracts� Reuse contracts can be incorporated in an existing case tool� More inter�
active extractors must be developed and a repository must be created to store all
extracted and otherwise provided information� On top of this a system can be built
to assist in change propagation� based on the rules provided in this thesis� This
system can automatically perform the kinds of veri�cations we performed manually
in our experiment with the air time sales framework� Other elaborations� such as
the design assessment tool� �t well into such an approach�

Methodology The long term goal of the combined research e�orts described
above is a full��edged methodology for disciplined reuse� with a focus on evolu�
tion� To achieve this goal� software process studies are needed to better understand
the role of reuse contracts in di�erent phases� This is again related to carrying out
case studies�

��� Main Contribution

The main contribution of this dissertation is its presentation of a general approach
to disciplined reuse� based on well�documented communication between reusable
components and their reusers� Reuse contracts provide a vocabulary and notation
to discuss disciplined reuse� using simple models that are easy to learn and intuitive
in use� Reuse contracts assist software engineers in understanding the structure and
operational behaviour of software� in adapting components to particular needs and
in estimating and managing the impact of changes on evolution�



Appendix A

Con�ict Detection Rules

This appendix repeats the tables representing which con�icts can be caused by which
operators� The tables were introduced in chapters 
 and ��

participant
extension

context ex�
tension

participant
ref��coars�

context
ref��coars

participant
extension

operation
name

no con�icts no con�icts no con�icts

context ex�
tension

� participant
name

no con�icts no con�icts

participant
ref��coars

� � operation
invocation

no con�icts

context
ref��coars

� � � acquaintance
relationship

Table A��� Interface Con�icts

context cancella�
tion

participant can�
cellation

context coarsen�
ing

any operator ex�
cept context exten�
sion

dangling partici�
pant reference

� �

part� cancellation
part� re�nement
part� coarsening

� dangling opera�
tion reference

�

part� extension
part� re�nement
part� coarsening

� � dangling acquain�
tance reference

Table A�	� Dangling Reference Con�icts



�	� Con�ict Detection Rules

part� extension part� re�nement part� coarsening

part� extension accidental oper�
ation capture�
unanticipated
recursion

no con�icts no con�icts

part� re�nement � regular operation
capture� unantici�
pated recursion

regular operation
capture� inconsis�
tent operations

part� coarsening � � inconsistent oper�
ations

Table A�
� Con�icts concerning the Calling Structure

The con�icts that can be caused by extension� re�nement� extending re�nement
and connected extension are the union of all con�icts that can be caused by their
composing operators�

The set of con�icts that can be caused by factorisation is the union of all con�icts
that can be caused by participant re�nement� participant coarsening and participant
extension� except for inconsistent operations�

part� re�nement specialisation

part� extension � �

cont� extension � �

part� cancellation dang� operation reference dang� operation reference

cont� cancellation dang� participant reference dang� participant reference

part� re�nement operation invocation� unan�
ticipated recursion� regular
operation capture

unanticipated recursion� reg�
ular operation capture

cont� re�nement � �

part� coarsening operation invocation� incon�
sistent operations� regular
operation capture

inconsistent operations� reg�
ular operation capture

cont� coarsening dang� acquaintance reference dang� acquaintance reference

Table A��� Con�icts with Specialisation

The set of con�icts that can be caused by layered concretisation is the union of all
con�icts that can be caused by participant re�nement and participant concretisation�



�	


participant concretisation participant abstraction

part� extension incomplete implementation �

cont� extension � �

part� cancellation dang� operation reference dang� operation reference

cont� cancellation dang� participant reference dang� participant reference

part� re�nement mixed method interface�
regular method capture

mixed method interface�
regular method capture

cont� re�nement � �

part� coarsening mixed method interface� in�
consistent methods

mixed method interface� in�
consistent methods

cont� coarsening dang� acquaintance refer�
ence

dang� acquaintance refer�
ence

part� concretisation annotation incomplete implementation

part� abstraction incomplete implementation annotation

Table A��� Con�icts with Participant Concretisation and Abstraction





Bibliography

�AWB��
� M� Aksit� K� Wakita� J� Bosch� L� Bergmans� and A� Yonezawa� Ab�
stracting object interactions using composition �lters� In Object�based
Distributed Processing� R� Guerraoui� O� Nierstrasz� M� Riveill �eds��
LNCS ��	� pages ��	����� Springer�Verlag� ���
�

�Boo�
� G� Booch� Object�Oriented Analysis and Design with Applications� �Sec�
ond Edition�� Benjamin�Cummings� Redwood City� CA� ���
�

�BRJ��� G� Booch� J� Rumbaugh� and I� Jacobson� Uni�ed Method Language
���� Technical report� Rational� �����

�CAB���� D� Coleman� P� Arnold� S� Bdo�� H� Gilchrist� F� Hayes� and P� Jere�
maes� Object�Oriented Development
 the Fusion Method� Prentice Hall�
Englewood Cli�s� NJ� �����

�Cas��� E� Casais� Automatic reorganization of object�oriented hierarchies� a
case study� Object Oriented Systems� ��������� �����

�CHSV��� W� Codenie� K� De Hondt� P� Steyaert� and A� Vercammen� Evolving
custom�made applications into domain�speci�c frameworks� Communi�
cations of the ACM� October �����

�Cor��� G� Cornelis� Reuse contracts as module system in statically typed object�
oriented languages� Graduation report� Vrije Universiteit Brussel� Bel�
gium� May �����

�CP��� S� Cotter and M� Potel� Inside Taligent Technology� Addison�Wesley�
�����

�CS��� J� Coplien and D� Smith� editors� Pattern Languages of Program Design�
Addison�Wesley Publishing Company� �����

�CY��� P� Coad and E� Yourdon� Object�Oriented Analysis� Yourdon Press� 	nd
edition� �����



�	� Bibliography

�DDN���� S� Demeyer� S� Ducasse� R� Nebbe� O� Nierstrasz� and T� Richner� Using
restructuring transformations to reengineer object�oriented systems� a
position paper on the FAMOOS project� Technical report� Software
Composition Group� University of Berne� Switzerland� �����

�Dem��� S� Demeyer� Zypher� Tailorability as a Link from Object�Oriented Soft�
ware Engineering to Open Hypermedia� PhD thesis� Vrije Universiteit
Brussel� Departement Informatica� �����

�DR��� R� Johnson B� Opdyke D� Roberts� J� Brant� An automated refactoring
tool� In Proceedings of ICAST ���� Chicago� IL� April �����

�DR��� S� Ducasse and T� Richner� Connectors as First�Class Objects in FLO�
FAMOOS project position paper� Technical report� Software Composi�
tion Group� University of Berne� Switzerland� �����

�FCDR��� I�R� Forman� M�H� Conner� S�H� Danforth� and L�K� Raper� Release�
to�Release Binary Compatibility in SOM� In Proceedings OOPSLA ��
�
ACM SIGPLAN Notices� pages �	���
�� ACM Press� �����

�Fra��� W� Frakes� Systematic software reuse� a paradigm shift� In Third Inter�
national Conference on Software Reuse� Advances in Software Reusabil�
ity� pages 	�
� IEEE Computer Society Press� �����

�GHJV��� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns�
Addisson�Wesley� �����

�Gla��� M� Glandrup� Extending C�� using the concepts of composition �lters�
Master�s thesis� University of Twente� November �����

�GR��� A� Goldberg and K� Rubin� Succeeding with Objects
 Decision Frame�
works for Project Management� Addisson�Wesley� �����

�GS�
� D� Garlan and M� Shaw� An introduction to software architecture� In
Advances in Software Engineering and Knowledge Engineering� V� Am�
briola and G� Tortora �eds��� volume I� World Scienti�c Publishing� ���
�

�GS��� D� Garlan and M� Shaw� Software Architecture
 Perspectives on an
Emerging Discipline� PrenticeHall� �����

�Hal��� A� Hall� Using formal methods to develop an ATC information system�
IEEE Software� �
�	�������� March �����

�HHG��� R� Helm� I�M� Holland� and D� Gangopadhyay� Contracts� Spec�
ifying behavioral compositions in object�oriented systems� In
ECOOP�OOPSLA��� Proceedings� ACM Press� �����



Bibliography �	�

�Hol�	� I� Holland� The Design and Representation of Object�Oriented Compo�
nents� PhD thesis� Northeastern University� ���	�

�HS��� W�L� H�ursch and L�M� Seiter� Automating the evolution of object�
oriented systems� Technical Report NU�CCS������� College of Computer
Science� Northeastern University� Boston� MA� April �����

�JCJO�	� I� Jacobson� M� Christerson� P� Jonsson� and G� Overgaard� Object�
Oriented Software Engineering � A Use Case Driven Approach�
Addisson�Wesley� ���	�

�JF��� R�E� Johnson and B� Foote� Designing reusable classes� Journal of
Object�Oriented Programming� ��	�� February �����

�JGJ��� I� Jacobson� M�L� Griss� and P� Jonsson� Software Reuse
 Architecture�
Process and Organization for Business Success� Addisson�Wesley� �����

�Joh�	� R�E� Johnson� Documenting frameworks using patterns� In Proceed�
ings OOPSLA ���� ACM SIGPLAN Notices� pages �
���� October ���	�
Published as Proceedings OOPSLA ��	� ACM SIGPLAN Notices� vol�
ume 	�� number ���

�Jon��� C�B� Jones� Systematic Software Development Using VDM� International
Series in Computer Science� Prentice Hall� Englewood Cli�s� N�J�� 	nd
edition� �����

�KC��a� P� Kogut and P� Clements� Features of architecture representation lan�
guages� Technical Report CMU�SEI����TR�tbd� Software Engineering
Institute� Carnegie Mellon University� Pittsburgh� Pennsylvania� �����

�KC��b� P� Kogut and P� Clements� The software architecture renaissance�
STSC�s Crosstalk Newsletter� October �����

�KdRB��� G� Kiczales� J� des Rivieres� and D� Bobrow� The Art of the Metaobject
Protocol� MIT Press� �����

�KKS��� N� Klarlund� J� Koistinen� and M� Schwartzbach� Formal design con�
straints� In Proceedings OOPSLA ���� ACM SIGPLAN Notices� pages

���
�
� �����

�KL�	� G� Kiczales and J� Lamping� Issues in the design and documentation of
class libraries� In Proceedings OOPSLA ���� ACM SIGPLAN Notices�
pages �
������ October ���	� Published as Proceedings OOPSLA ��	�
ACM SIGPLAN Notices� volume 	�� number ���

�Koe��� A� Koenig� Patterns and antipatterns� Journal of Object�Oriented Pro�
gramming� March �����



��� Bibliography

�KP��� G�E� Krasner and S�T� Pope� A cookbook for using the Model�View�
Controller user interface paradigm in Smalltalk���� Journal of Object�
Oriented Programming� ��
�� �����

�KY��� N� Krol and D� Yockelson� CI Labs OpenDoc White Paper� Technical
report� CILabs� �����

�Lal��� W�R� Lalonde� Designing families of data types using exemplars� Trans�
actions on Programming Languages and Systems� ���	�� �����

�Lam�
� J� Lamping� Typing the specialization interface� In Proceedings OOPSLA
���� ACM SIGPLAN Notices� pages 	���	��� oct ���
� Published as
Proceedings OOPSLA ��
� ACM SIGPLAN Notices� volume 	�� number
���

�Lea��� G� T� Leavens� Larch�C�� reference manual� version ���� Technical
Report Available in ftp���ftp�cs�iastate�edu�pub�larchc���lcpp�ps�gz�
Iowa State University� �����

�LH��� K� Lieberherr and I� Holland� Assuring good style for object�oriented
programs� IEEE Software� pages 
����� September �����

�Lie��� K� Lieberherr� Adaptive Object�Oriented Software� the Demeter Method
with Propagation Patterns� PWS Publishing Company� �����

�Lie��� K� Lieberherr� Private communication� �����

�Lin��� R�C� Linger� Cleanroom process model� IEEE Software� ���	��������
March �����

�LRD���� K� Lee� M� Rissman� R� D�Ippolito� C� Plinta� and R� Van Scoy� An OOD
Paradigm for �ight simulators� Technical Report CMU�SEI����TR�
��
Software Engineering Institute� Carnegie Mellon University� Pittsburgh�
Pennsylvania� September �����

�Mey��� B� Meyer� Object�Oriented Software Construction� International Series
in Computer Science� C�A�R� Hoare� Series Editor� Prentice Hall� �����

�Mez��� M� Mezini� Maintaining the consistency of class libraries during their
evolution� In Proceedings OOPSLA ���� ACM SIGPLAN Notices� �����

�Moo��� I� Moore� Automatic inheritance hierarchy restructuring and method
refactoring� In Proceedings OOPSLA ���� ACM SIGPLAN Notices�
pages 	
��	��� �����

�MS��� T� Mens and P� Steyaert� Incremental design of layered state diagrams�
Technical Report vub�prog�tr�������ps�Z� Vrije Universiteit Brussel� Bel�
gium� �����



Bibliography ��	

�MSW��� T� Murer� D� Sherer� and A� Wurtz� Improving component interoper�
ability� In Special Issues in Object�Oriented Programming� Workshop
Reader on the 	�th European Conference on Object�Oriented Program�
ming �ECOOP ����� ed� Max Muhlhauser� pages �������� dpunkt Verlag�
�����

�Nei��� J�M� Neighbors� An assessment of reuse technology after ten years� In
Third International Conference on Software Reuse� Advances in Software
Reusability� pages ���
� IEEE Computer Society Press� �����

�NT��� O� Nierstrasz and D� Tsichritzis� Object�Oriented Software Composition�
Prentice Hall� �����

�OB��� A� Olafsson and D� Bryan� On the need for �required interfaces� of com�
ponents� In Special Issues in Object�Oriented Programming� Workshop
Reader on the 	�th European Conference on Object�Oriented Program�
ming �ECOOP ����� ed� Max Muhlhauser� pages �������� dpunkt Verlag�
�����

�Obj��� ObjectWindows for C�� User�s Guide� �����

�OH��� R� Orfali and D� Harkey� Client�Server Programming with Java and
Corba� John�Wiley and Sons� Inc�� �����

�Opd�	� W�F� Opdyke� Refactoring Object�Oriented Frameworks� PhD thesis�
University of Illinois at Urbana�Champaign� ���	�

�Pan��� C� Pancake� Object roundtable� the promise and the cost of object tech�
nology� A �ve�year forecast� Communications of the ACM� 
������
	����
October �����

�PDe��� R� Prieto�Diaz and G� Arango �eds��� Domain Analysis and Software
Systems Modeling� IEEE Computer Society Press� �����

�Pin��� X� Pintado� Gluons and the cooperation between software compo�
nents� In Object�Oriented Software Composition� O� Nierstrasz and D�
Tsichritzis �eds��� �����

�Pre��� W� Pree� Design Patterns for Object�Oriented Software Development�
Addisson�Wesley� �����

�RBP���� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen�
Object�Oriented Modeling and Design� Prentice Hall� �����

�RG�	� K� Rubin and A� Goldberg� Object behaviour analysis� Communications
of the ACM� Special Issue on Object�Oriented Methodologies� September
���	�



��� Bibliography

�Sie��� J� Siegel� CORBA Fundamentals and Programming� John Wiley and
Sons� Inc�� �����

�Spi��� J� Spivey� An introduction to Z and formal speci�cations� Software
Engineering Journal� January �����

�Str��� B� Stroustrup� The C�� Programming Language� Addison�Wesley�
Reading� Mass�� �����

�Sun��� Sun Microsystems� JavaSoft� JavaBeans 	�� API Speci�cation� �����

�SW��� R�J� Stroud and Z� Wu� Using metaobject protocols to satisfy non�
functional requirements� In Advances in Object�Oriented Metalevel Ar�
chitectures and Re�ection� C� Zimmerman �eds��� �����

�Tur��� Turbo Vision for C�� User�s Guide� Tutorials� Class Library reference�
�����

�VCK��� J� Vlissides� J� Coplien� and J� Kerth� editors� Pattern Languages of
Program Design �� Addison�Wesley Publishing Company� �����

�vDM��� W� van Dijck and J� Mordhorst� Composition �lters in Smalltalk� Grad�
uation report� HIO Enschede� The Netherlands� May �����

�VV��� A� Vercammen and W� Verachtert� Psi� From custom developed appli�
cation to domain speci�c framework� In In Addendum to the proceedings
of OOPSLA ���� �����

�WBW��� R� Wirfs�Brock and B� Wilkerson� Object�oriented design� A responsi�
bility driven approach� In Proceedings OOPSLA ���� ACM SIGPLAN
Notices� pages ������ October ����� Published as Proceedings OOPSLA
���� ACM SIGPLAN Notices�

�WGM��� A� Weinand� E� Gamma� and R� Marty� Design and implementation of
ET�� � a seamless object�oriented application framework� Structured
Programming� ���	�� �����

�Wil��� J�D� Williams� Managing iteration in OO projects� IEEE Software� pages

���
� September �����

�You��� E� Yourdon� Object�Oriented System Design
 An Integrated Approach�
Yourdon Press Computing Systems� Prentice Hall� �����


