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Introduction

In recent years software development has been subject to numerous innovations,
with a focus on reuse and increasing productivity. A shift is noticeable from soft-
ware engineering as a discipline concerned with the construction of hand-crafted,
single systems, to an industry centred around the production of software compo-
nents, aimed at building systems much like product lines. Software engineering
techniques have not been able to keep up with this rapid evolution. Amongst others
object-orientation has failed to deliver much of its promises, while formal techniques
do not succeed in getting widely adopted. The classical waterfall model does not
serve the new paradigm well, while new iterative process models have not yet reached
an adequate level of maturity. The central tenet of this dissertation is that evolution
is at the heart of reuse. Evolution is crucial because reusable components have a,
long life span, because good reuse can only be achieved after a component has been
reused and adapted several times and finally, because it is simply not conceivable
to predict all possible uses of a component upon its conception. Current software
engineering techniques focus too much on passive support as separation of concerns,
separation of interface and implementation and formal specifications. Tools actively
supporting software engineers in issues as traceability and change management are
completely lacking. This dissertation introduces reuse contracts as structured doc-
umentation to support the evolution of reusable components.

The study of different approaches to reuse reveals that there is a general un-
derstanding that reusable systems — be it libraries of reusable components, object-
oriented frameworks or componentware approaches — should mainly be used in a
pre-defined way: the basic structures should not be violated. Black-box frameworks
where different variations of the components must be plugged into a general de-
sign are but the one example. Similarly, formal approaches to reuse often focus on
behavioural subtyping, meaning that specialisations of components in a framework
should always be substitutable for their basic component. Such approaches suffer
from a lack of flexibility. First, allowing customisations that respect the original
design only is based on the assumption that all possible reuses can be anticipated.
Practice has proven it unfeasible, however, to develop reusable applications that
comply with all the requirements of a large user community and that keep on doing
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so as time - and requirements - evolve. Second, such approaches do not take the in-
trinsic evolutionary nature of reusable systems into account. Reusable components
tend to evolve after they have been developed and reused. Changes to components
might be necessary to fix flaws in the requirements or when the requirements them-
selves evolve. More importantly, iterations over reusable components are inherent
to their development. Therefore, managing the impact of changes on existing appli-
cations is crucial when components change.

So in order to get more flexible reusable systems, reusers should be allowed to
make changes that were not foreseen. On the other hand, reuse should be disciplined
enough to allow support on updating applications when the reusable components
they are built on evolve.

Current approaches do not adequately address these needs. On the one hand,
reuse approaches stress the need to address reuse in a systematic fashion, but they
are often too coercive in allowing only reuse in predefined ways. On the other hand,
object-oriented approaches to reuse as inheritance are much more flexible, but they
lack discipline and formal underpinnings. Another important observation is that
systematic reuse is concerned primarily with reuse of higher-level life cycle artifacts
[Fra94]. As a consequence, the operational part, which is often the most extensive
and the most complex component, is generally the result of a one-shot development
effort. Object-oriented approaches as frameworks or design patterns often focus on
lower-level artifacts. However, object-oriented methodologies as UML do not have
an adequate notation for reuse and fall short in addressing notions of evolution and
iteration. They still mainly focus on static descriptions of single systems, without
adequate notations for families of systems and traceability between different varia-
tions. Therefore, we argue that a new approach for disciplined reuse, establishing
a vocabulary, notation and methodology is required. Establishing such a new dis-
cipline, that guides developers in writing at least partway reusable software is an
immensely complex task. This work represents the first stage in such an undertaking.

Let us start by setting up some criteria we deem crucial in such a methodology.
A first concern is that we want to develop practical models, that are close to the
actual code and are applicable in different stages of the life cycle. With a practical
approach we imply models that are automatically processable and are a good basis
for tools.

In order to reuse a system in ways different from what was foreseen, a general
understanding of its structure and behaviour is essential. With structure we imply
a description of how different parts in a system are arranged. By behaviour we
mean a description of the way in which a system functions or operates. While most
approaches to evolution focus on declarative behaviour, i.e., what a system does, we
focus on operational behaviour, i.e., how it is achieved. We thus follow the spirit of
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recent research efforts such as Lamping’s specialisation interfaces [Lam93], Holland’s
interaction contracts [Hol92] and Lieberherr’s adaptive programming [Lie95]. We do
however concentrate on documenting dependencies to which the compliance of code
can be checked automatically.

A second important issue, when accepting the premises that evolution is at the
heart of reuse, is impact analysis. The ability to perform impact analysis is key
to numerous unsolved problems in software engineering. In the iterative develop-
ment of frameworks and component systems, the ability to upgrade applications
with new versions of the frameworks or components is paramount to gain a return
on investment. In order to be able to upgrade applications it is crucial to be able
to assess the impact of changes to components on the applications. When building
applications from existing components, another unsolved problem is how to decide
which components work together correctly. It is equally important there to be able
to assess the impact of replacing one component with a slightly different version.
Similarly, problems occur when applications are partially automatically generated.
When adapting the input and re-generating code one needs to assess where the man-
ually added code might cease to work with the newly generated code. Currently, no
active support exists for any of these tasks. The work presented in this dissertation
is a first effort towards a general approach for impact analysis that can assist in all
of these problems.

The key to the solution is the observation that when reusing or adapting a
system, developers make assumptions about how different parts of the system co-
operate. When changes are made to part of a system, (some of) these assumptions
might be broken. As currently these assumptions are always implicit, it is not pos-
sible to check whether they are respected upon change. Therefore, we suggest to
make these assumptions ezplicit. This forms the basis for a structured approach to
change propagation and impact analysis. The explicit documentation of assump-
tions implies that not only the component provider should provide adequate infor-
mation about the components he delivers, but the reuser should also document the
assumptions he relies on. This is the basis of a contract between provider and reuser.

This dissertation introduces reuse contracts for this purpose. Reuse contracts
augment conventional interfaces with documentation of structural dependencies in a
system. For example, information is added about which system components are ac-
quainted and which operations rely on which other operations. This provides reusers
with crucial information about the operational behaviour of a system. Moreover,
this information can be retrieved statically, which makes automated support and
the development of tools much easier.

Reuse contract interfaces can only be composed or adapted by means of certain
predefined reuse operators. Reuse operators enable reusers to explicitly document
the assumptions they make about the components they reuse and thus what parts
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of the interface they rely on. This makes their applications more robust to change,
since explicitly documenting these assumptions allows verifying whether these as-
sumptions are broken when changes are made. Similarly, explicitly documenting
where the general design is not respected helps in assessing where co-operation with
this part might cause problems.

Note that, as opposed to other methods, documenting assumptions is the basis of
conflict detection rather than conflict avoidance. On the one hand, reusers can reuse
components in any way they want. This accounts for the flexibility in our approach.
On the other hand, they have to document the way they reuse components in a
disciplined way. This accounts for the support for change propagation and impact
analysis.

The work in this dissertation is part of a larger research effort aiming to establish
a full-fledged methodology for disciplined reuse. Several researchers are involved
covering various topics such as formalisation, tool support etc. This work establishes
a blue-print for these different approaches by establishing an initial methodology, a
partway formalisation and proof of concept on the basis of a number of non-trivial
experiments.



