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Introduction

In recent years software development has been subject to numerous innovations�
with a focus on reuse and increasing productivity� A shift is noticeable from soft�
ware engineering as a discipline concerned with the construction of hand�crafted�
single systems� to an industry centred around the production of software compo�
nents� aimed at building systems much like product lines� Software engineering
techniques have not been able to keep up with this rapid evolution� Amongst others
object�orientation has failed to deliver much of its promises� while formal techniques
do not succeed in getting widely adopted� The classical waterfall model does not
serve the new paradigm well� while new iterative process models have not yet reached
an adequate level of maturity� The central tenet of this dissertation is that evolution
is at the heart of reuse� Evolution is crucial because reusable components have a
long life span� because good reuse can only be achieved after a component has been
reused and adapted several times and 	nally� because it is simply not conceivable
to predict all possible uses of a component upon its conception� Current software
engineering techniques focus too much on passive support as separation of concerns�
separation of interface and implementation and formal speci	cations� Tools actively
supporting software engineers in issues as traceability and change management are
completely lacking� This dissertation introduces reuse contracts as structured doc�
umentation to support the evolution of reusable components�

The study of di�erent approaches to reuse reveals that there is a general un�
derstanding that reusable systems � be it libraries of reusable components� object�
oriented frameworks or componentware approaches � should mainly be used in a
pre�de	ned way� the basic structures should not be violated� Black�box frameworks
where di�erent variations of the components must be plugged into a general de�
sign are but the one example� Similarly� formal approaches to reuse often focus on
behavioural subtyping� meaning that specialisations of components in a framework
should always be substitutable for their basic component� Such approaches su�er
from a lack of �exibility� First� allowing customisations that respect the original
design only is based on the assumption that all possible reuses can be anticipated�
Practice has proven it unfeasible� however� to develop reusable applications that
comply with all the requirements of a large user community and that keep on doing
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so as time � and requirements � evolve� Second� such approaches do not take the in�
trinsic evolutionary nature of reusable systems into account� Reusable components
tend to evolve after they have been developed and reused� Changes to components
might be necessary to 	x �aws in the requirements or when the requirements them�
selves evolve� More importantly� iterations over reusable components are inherent
to their development� Therefore� managing the impact of changes on existing appli�
cations is crucial when components change�

So in order to get more �exible reusable systems� reusers should be allowed to
make changes that were not foreseen� On the other hand� reuse should be disciplined
enough to allow support on updating applications when the reusable components
they are built on evolve�

Current approaches do not adequately address these needs� On the one hand�
reuse approaches stress the need to address reuse in a systematic fashion� but they
are often too coercive in allowing only reuse in prede	ned ways� On the other hand�
object�oriented approaches to reuse as inheritance are much more �exible� but they
lack discipline and formal underpinnings� Another important observation is that
systematic reuse is concerned primarily with reuse of higher�level life cycle artifacts
�Fra���� As a consequence� the operational part� which is often the most extensive
and the most complex component� is generally the result of a one�shot development
e�ort� Object�oriented approaches as frameworks or design patterns often focus on
lower�level artifacts� However� object�oriented methodologies as UML do not have
an adequate notation for reuse and fall short in addressing notions of evolution and
iteration� They still mainly focus on static descriptions of single systems� without
adequate notations for families of systems and traceability between di�erent varia�
tions� Therefore� we argue that a new approach for disciplined reuse� establishing
a vocabulary� notation and methodology is required� Establishing such a new dis�
cipline� that guides developers in writing at least partway reusable software is an
immensely complex task� This work represents the 	rst stage in such an undertaking�

Let us start by setting up some criteria we deem crucial in such a methodology�
A 	rst concern is that we want to develop practical models� that are close to the
actual code and are applicable in di�erent stages of the life cycle� With a practical
approach we imply models that are automatically processable and are a good basis
for tools�

In order to reuse a system in ways di�erent from what was foreseen� a general
understanding of its structure and behaviour is essential� With structure we imply
a description of how di�erent parts in a system are arranged� By behaviour we
mean a description of the way in which a system functions or operates� While most
approaches to evolution focus on declarative behaviour� i�e�� what a system does� we
focus on operational behaviour� i�e�� how it is achieved� We thus follow the spirit of
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recent research e�orts such as Lamping�s specialisation interfaces �Lam�
�� Holland�s
interaction contracts �Hol��� and Lieberherr�s adaptive programming �Lie�
�� We do
however concentrate on documenting dependencies to which the compliance of code
can be checked automatically�

A second important issue� when accepting the premises that evolution is at the
heart of reuse� is impact analysis� The ability to perform impact analysis is key
to numerous unsolved problems in software engineering� In the iterative develop�
ment of frameworks and component systems� the ability to upgrade applications
with new versions of the frameworks or components is paramount to gain a return
on investment� In order to be able to upgrade applications it is crucial to be able
to assess the impact of changes to components on the applications� When building
applications from existing components� another unsolved problem is how to decide
which components work together correctly� It is equally important there to be able
to assess the impact of replacing one component with a slightly di�erent version�
Similarly� problems occur when applications are partially automatically generated�
When adapting the input and re�generating code one needs to assess where the man�
ually added code might cease to work with the newly generated code� Currently� no
active support exists for any of these tasks� The work presented in this dissertation
is a 	rst e�ort towards a general approach for impact analysis that can assist in all
of these problems�

The key to the solution is the observation that when reusing or adapting a
system� developers make assumptions about how di�erent parts of the system co�
operate� When changes are made to part of a system� �some of� these assumptions
might be broken� As currently these assumptions are always implicit� it is not pos�
sible to check whether they are respected upon change� Therefore� we suggest to
make these assumptions explicit� This forms the basis for a structured approach to
change propagation and impact analysis� The explicit documentation of assump�
tions implies that not only the component provider should provide adequate infor�
mation about the components he delivers� but the reuser should also document the
assumptions he relies on� This is the basis of a contract between provider and reuser�

This dissertation introduces reuse contracts for this purpose� Reuse contracts
augment conventional interfaces with documentation of structural dependencies in a
system� For example� information is added about which system components are ac�
quainted and which operations rely on which other operations� This provides reusers
with crucial information about the operational behaviour of a system� Moreover�
this information can be retrieved statically� which makes automated support and
the development of tools much easier�

Reuse contract interfaces can only be composed or adapted by means of certain
prede	ned reuse operators� Reuse operators enable reusers to explicitly document
the assumptions they make about the components they reuse and thus what parts
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of the interface they rely on� This makes their applications more robust to change�
since explicitly documenting these assumptions allows verifying whether these as�
sumptions are broken when changes are made� Similarly� explicitly documenting
where the general design is not respected helps in assessing where co�operation with
this part might cause problems�

Note that� as opposed to other methods� documenting assumptions is the basis of
con�ict detection rather than con�ict avoidance� On the one hand� reusers can reuse
components in any way they want� This accounts for the �exibility in our approach�
On the other hand� they have to document the way they reuse components in a
disciplined way� This accounts for the support for change propagation and impact
analysis�

The work in this dissertation is part of a larger research e�ort aiming to establish
a full��edged methodology for disciplined reuse� Several researchers are involved
covering various topics such as formalisation� tool support etc� This work establishes
a blue�print for these di�erent approaches by establishing an initial methodology� a
partway formalisation and proof of concept on the basis of a number of non�trivial
experiments�


