
SREVINU

ITEIT

EJI
R
V

BRUS
S
E
L

ECNI
V

RE T
EN

E
B
R
A
S

AI

T
N
EI

C
S

Vrije Universiteit Brussel

Faculteit Wetenschappen � Departement Informatica

Documenting Reuse and Evolution

with Reuse Contracts

Carine Lucas

September ����

Promotor� Prof� Dr� Theo D�Hondt
Co�promotor� Dr� Patrick Steyaert

Proefschrift ingediend met het oog op het

behalen van de graad van Doctor in de

Wetenschappen



Contents

Acknowledgements �

Introduction �

� Issues in Reuse and Composition �

��� Con�icts with Evolving Components � � � � � � � � � � � � � � � � � � �

����� An Example � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� An Overview of Possible Con�icts � � � � � � � � � � � � � � � ��

��� The Evolution to Component Software � � � � � � � � � � � � � � � � � ��

����� Bene	ts and Inhibitors � � � � � � � � � � � � � � � � � � � � � � ��

����� Systematic Reuse� a Paradigm Shift � � � � � � � � � � � � � � ��

����
 Kinds of Component Systems � � � � � � � � � � � � � � � � � � ��

����� The Development of Reusable Components � � � � � � � � � � ��

����
 Relationship with Reuse Contracts � � � � � � � � � � � � � � � ��

��
 Object�Oriented Reuse � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
�� Polymorphism� Protocols and Inheritance � � � � � � � � � � � ��

��
�� Abstract Classes and Template Methods � � � � � � � � � � � � ��

��
�
 Frameworks � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
�� Object�Oriented Methodologies � � � � � � � � � � � � � � � � � ��

��
�
 Language Extensions � � � � � � � � � � � � � � � � � � � � � � � �


��
�� Relationship with Reuse Contracts � � � � � � � � � � � � � � � ��

��� Documenting Reusable Components � � � � � � � � � � � � � � � � � � ��

����� Specialisation Interfaces � � � � � � � � � � � � � � � � � � � � � ��

����� Contractual Interfaces � � � � � � � � � � � � � � � � � � � � � � ��

����
 Documenting Frameworks � � � � � � � � � � � � � � � � � � � � ��

����� Cookbooks � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����
 Design Patterns � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Interaction Contracts � � � � � � � � � � � � � � � � � � � � � � 
�

����� Interface De	nition Languages � � � � � � � � � � � � � � � � � 
�

����� Architecture Description Languages � � � � � � � � � � � � � � 
�

����� Relationship with Reuse Contracts � � � � � � � � � � � � � � � 
�

��
 Evolution of Reusable Components � � � � � � � � � � � � � � � � � � � 
�



ii Contents

��
�� Binary Compatibility � � � � � � � � � � � � � � � � � � � � � � 


��
�� Refactoring and Restructuring � � � � � � � � � � � � � � � � � 


��
�
 Programming by Contract and Formal Methods � � � � � � � 
�
��
�� Consistency of Class Libraries � � � � � � � � � � � � � � � � � � 
�
��
�
 Relationship with Reuse Contracts � � � � � � � � � � � � � � � 



��� Our Approach� Reuse Contracts � � � � � � � � � � � � � � � � � � � � 


����� Summary� the Problems � � � � � � � � � � � � � � � � � � � � � 


����� Another Example � � � � � � � � � � � � � � � � � � � � � � � � � 
�
����
 Reuse Contracts � � � � � � � � � � � � � � � � � � � � � � � � � 
�
����� Structure of the Dissertation � � � � � � � � � � � � � � � � � � ��

� Basic Reuse Contracts ��

��� De	nition of Reuse Contracts � � � � � � � � � � � � � � � � � � � � � � ��
����� Participants � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Acquaintance Clauses � � � � � � � � � � � � � � � � � � � � � � ��
����
 Client Interface � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� The Specialisation Interface � � � � � � � � � � � � � � � � � � � ��
����
 The ATM Example � � � � � � � � � � � � � � � � � � � � � � � � �

����� Well�Formedness � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Operators on Reuse Contracts � � � � � � � � � � � � � � � � � � � � � � ��
����� Participant Extension � � � � � � � � � � � � � � � � � � � � � � 
�
����� Context Extension � � � � � � � � � � � � � � � � � � � � � � � � 



����
 Participant Cancellation � � � � � � � � � � � � � � � � � � � � � 
�
����� Context Cancellation � � � � � � � � � � � � � � � � � � � � � � � ��
����
 Participant Re	nement � � � � � � � � � � � � � � � � � � � � � ��
����� Context Re	nement � � � � � � � � � � � � � � � � � � � � � � � ��
����� Participant Coarsening � � � � � � � � � � � � � � � � � � � � � � ��
����� Context Coarsening � � � � � � � � � � � � � � � � � � � � � � � ��
����� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Managing Evolution and Composition ��


�� Evolution and Composition of Basic Modi	ers � � � � � � � � � � � � � ��

�� Interface Con�icts � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


���� Operation Name Con�icts � � � � � � � � � � � � � � � � � � � � ��

���� Participant Name Con�icts � � � � � � � � � � � � � � � � � � � ��

���
 Operation Invocation Con�icts � � � � � � � � � � � � � � � � � ��

���� Acquaintance Relationship Con�icts � � � � � � � � � � � � � � ��

���
 Summary of Interface Con�icts � � � � � � � � � � � � � � � � � ��


�
 Dangling Reference Con�icts � � � � � � � � � � � � � � � � � � � � � � ��

�
�� Dangling Operation Reference � � � � � � � � � � � � � � � � � �


�
�� Dangling Participant Reference � � � � � � � � � � � � � � � � � �


�
�
 Dangling Acquaintance Reference � � � � � � � � � � � � � � � � ��

�
�� Summary of Dangling Reference Con�icts � � � � � � � � � � � ��



Contents iii


�� Con�icts Concerning the Calling Structure � � � � � � � � � � � � � � � ��

���� Operation Capture � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Inconsistent Operations � � � � � � � � � � � � � � � � � � � � � ��

���
 Unanticipated Recursion � � � � � � � � � � � � � � � � � � � � � ��

���� Summary of Con�icts about the Calling Structure � � � � � � �



�
 Evaluation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�
�� Alternative Rules � � � � � � � � � � � � � � � � � � � � � � � � � �


�
�� Other Possible Con�icts � � � � � � � � � � � � � � � � � � � � � �



�� Evolution of Chains of Adaptations � � � � � � � � � � � � � � � � � � � ��

���� Chain vs� Single Modi	er � � � � � � � � � � � � � � � � � � � � ��

���� Annihilation of Con�icts � � � � � � � � � � � � � � � � � � � � � ��

���
 Dependence of Modi	ers � � � � � � � � � � � � � � � � � � � � � ���

���� Transitive Closure Con�icts � � � � � � � � � � � � � � � � � � � ���

���
 Summary� Single Modi	er versus Chain of Modi	ers � � � � � ���

���� Con�icts between Two Chains of Modi	ers � � � � � � � � � � ���

���� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


� Combined Operators ���

��� Composition of Modi	ers � � � � � � � � � � � � � � � � � � � � � � � � ���
����� Applicability � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����� De	nition and Properties � � � � � � � � � � � � � � � � � � � � ���
����
 Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Extension and Re	nement � � � � � � � � � � � � � � � � � � � � � � � � ���
��
 Connected Extension � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Extending Re	nement � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��
 Factorisation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Renaming � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


� Reuse Contracts for the UML ���


�� Basic Static Structure Diagrams � � � � � � � � � � � � � � � � � � � � ���

�� Integrating the Operators � � � � � � � � � � � � � � � � � � � � � � � � �
�

�
 Impact of Inheritance on the Con�icts � � � � � � � � � � � � � � � � � �



�� Integrating Late Binding � � � � � � � � � � � � � � � � � � � � � � � � � �




���� Self Sends � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



���� Super Sends� Specialisation � � � � � � � � � � � � � � � � � � � �
�


�
 Abstract Classes and Methods � � � � � � � � � � � � � � � � � � � � � �
�

�
�� Extension of the Model � � � � � � � � � � � � � � � � � � � � � ���

�
�� A New Operator� Participant Concretisation � � � � � � � � � ���

�
�
 A Combined Operator� Layered Concretisation � � � � � � � � ���


�� Implementing Reuse Contracts � � � � � � � � � � � � � � � � � � � � � ���

�� Collaboration Diagrams � � � � � � � � � � � � � � � � � � � � � � � � � �
�

�� Acquaintance Relationships � � � � � � � � � � � � � � � � � � � � � � � �
�



iv Contents


���� Extension of the Model � � � � � � � � � � � � � � � � � � � � � �



���� A New Operator� Context Concretisation � � � � � � � � � � � �
�

���
 Implementing Collaboration Reuse Contracts � � � � � � � � � �




�� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



� Evolution of a Reusable Design ���

��� Background� Broadcast Planning � � � � � � � � � � � � � � � � � � � � �
�
��� The Case� Air�Time Sales � � � � � � � � � � � � � � � � � � � � � � � � �
�
��
 A First Design� Block Spot Spaces � � � � � � � � � � � � � � � � � � � ���
��� A Second Design� Gross Rating Points � � � � � � � � � � � � � � � � � ��

��
 Generalisation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Expressing Specialisations through Reuse Operators � � � � � � � � � ��

��� Evolution � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


����� A Combined System � � � � � � � � � � � � � � � � � � � � � � � ��

����� Introducing Clash Codes � � � � � � � � � � � � � � � � � � � � � ���
����
 Optimisation � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Acknowledgements � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Reuse Contracts at Work ���

��� Extraction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Compliance Checking � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��
 A Drawing Tool � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


��� Documentation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Dependencies between System Parts � � � � � � � � � � � � � � ��

����� Assistance of the Software Engineer � � � � � � � � � � � � � � ��

����
 Layering of Design � � � � � � � � � � � � � � � � � � � � � � � � ���
����� Core Methods versus Peripheral Methods � � � � � � � � � � � ���
����
 Layering of Class Hierarchies � � � � � � � � � � � � � � � � � � ���
����� Views � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��
 Design Guidelines and Quality Assessment � � � � � � � � � � � � � � � ���
��
�� Well�formed Reuse Contracts � � � � � � � � � � � � � � � � � � ���
��
�� Assessments Based on the Contracts and Operators � � � � � ��

��
�
 Existing Design Guidelines � � � � � � � � � � � � � � � � � � � ��

��
�� Tools for Quality Assessment � � � � � � � � � � � � � � � � � � ���

��� Enforcing Design � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Evolution and Incremental Development � � � � � � � � � � � � � � � � ���

����� Consistency Checking and Con�ict Detection � � � � � � � � � ���
����� Traceability � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Re�engineering and Reverse Engineering � � � � � � � � � � � � � � � � ���
����� Extraction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����� Refactoring � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���



Contents v

���� Acknowledgements � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	 Conclusion ���

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Evaluation and Future Work � � � � � � � � � � � � � � � � � � � � � � ���

����� Possible Extensions � � � � � � � � � � � � � � � � � � � � � � � � ���
����� Other Uses � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����
 Ameliorations to the Model � � � � � � � � � � � � � � � � � � � ���

��
 Main Contribution � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A Con
ict Detection Rules ���

Bibliography ���





List of Figures

��� Packet Handling in a LAN � � � � � � � � � � � � � � � � � � � � � � � � �

��� Introducing Gateways � � � � � � � � � � � � � � � � � � � � � � � � � � �
��
 Introducing Visitor Packets � � � � � � � � � � � � � � � � � � � � � � � �
��� Combining Gateways and Visitorpackets � � � � � � � � � � � � � � � � ��
��
 Broken Assumptions � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Example of an Interface Con�ict � � � � � � � � � � � � � � � � � � � � ��
��� Dangling Reference Con�icts � � � � � � � � � � � � � � � � � � � � � � �

��� Regular Operation Capture � � � � � � � � � � � � � � � � � � � � � � � ��
��� Accidental Operation Capture � � � � � � � � � � � � � � � � � � � � � � ��

���� Inconsistent Operations � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Unanticipated Recursion � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Evolution of Set � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
���
 Broken Assumptions � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

���� Inconsistent Operations on Set � � � � � � � � � � � � � � � � � � � � � ��

��� Two Acquainted Participants � � � � � � � � � � � � � � � � � � � � � � ��
��� A Participant�s Client Interface � � � � � � � � � � � � � � � � � � � � � �


��
 Part of the Protocol between Two Participants � � � � � � � � � � � � ��
��� The ATM Reuse Contract � � � � � � � � � � � � � � � � � � � � � � � � ��
��
 An Example Participant Extension � � � � � � � � � � � � � � � � � � � 
�
��� Participant Extension � � � � � � � � � � � � � � � � � � � � � � � � � � 



��� An Example Context Extension � � � � � � � � � � � � � � � � � � � � � 
�
��� Context Extension � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� An Example Participant Cancellation � � � � � � � � � � � � � � � � � 
�
���� Participant Cancellation � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� An Example Context Cancellation � � � � � � � � � � � � � � � � � � � ��
���� Context Cancellation � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���
 An Example Participant Re	nement � � � � � � � � � � � � � � � � � � ��
���� Participant Re	nement � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���
 An Example Context Re	nement � � � � � � � � � � � � � � � � � � � � ��
���� Context Re	nement � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� An Example Participant Coarsening � � � � � � � � � � � � � � � � � � ��
���� Participant Coarsening � � � � � � � � � � � � � � � � � � � � � � � � � � �




viii List of Figures

���� An Example Context Coarsening � � � � � � � � � � � � � � � � � � � � ��

���� Context Coarsening � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Base Reuse Contract Exchange � � � � � � � � � � � � � � � � � � � � � ��


�� An Operation Name Con�ict � � � � � � � � � � � � � � � � � � � � � � ��


�
 An Operation Invocation Con�ict � � � � � � � � � � � � � � � � � � � � �



�� A Dangling Operation Reference � � � � � � � � � � � � � � � � � � � � ��


�
 Regular Operation Capture � � � � � � � � � � � � � � � � � � � � � � � ��


�� Inconsistent Operations � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Unanticipated Recursion � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Indirect Unanticipated Recursion � � � � � � � � � � � � � � � � � � � � ��


�� An Acquaintance Relationship Con�ict � � � � � � � � � � � � � � � � � ��


��� Chain vs� Single Modi	er � � � � � � � � � � � � � � � � � � � � � � � � ��


��� Transitive Closure Con�ict Annihilation � � � � � � � � � � � � � � � � ��



��� Two Chains of Modi	ers � � � � � � � � � � � � � � � � � � � � � � � � � ��


��� An Example Connected Extension � � � � � � � � � � � � � � � � � � � ���

��� Connected Extension � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


��
 An Example Extending Re	nement � � � � � � � � � � � � � � � � � � � ��


��� Extending Re	nement � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��
 An Example Factorisation � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Factorisation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Annihilating Con�icts through Factorisation � � � � � � � � � � � � � � ���

��� An Example of Renaming � � � � � � � � � � � � � � � � � � � � � � � � ���


�� Model�View�Controller � � � � � � � � � � � � � � � � � � � � � � � � � � ���


�� MVC for BasicButtonView and BasicButtonController � � � � � � � � �
�


�
 Contract Re	nement � � � � � � � � � � � � � � � � � � � � � � � � � � � �




�� Re	nement of Controller � � � � � � � � � � � � � � � � � � � � � � � � � �
�


�
 Inconsistent Methods on Set � � � � � � � � � � � � � � � � � � � � � � � �
�


�� The Representation of Self Sends � � � � � � � � � � � � � � � � � � � � �
�


�� Message Sends between Instances of the Same Class � � � � � � � � � �
�


�� An Example of Specialisation � � � � � � � � � � � � � � � � � � � � � � �
�


�� An Abstract Class � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���


��� Participant Concretisation � � � � � � � � � � � � � � � � � � � � � � � � ��



��� Layered Concretisation � � � � � � � � � � � � � � � � � � � � � � � � � � ���


��� A Collaboration Diagram � � � � � � � � � � � � � � � � � � � � � � � � �
�

��� Overview of the Air�Time Sales System � � � � � � � � � � � � � � � � ���

��� Block Spot Spaces � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��
 Gross Rating Points � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


��� Generalised Air Time Sales Behaviour � � � � � � � � � � � � � � � � � ���

��
 Specialising the Air Time Sales Contract � � � � � � � � � � � � � � � � ���



List of Figures ix

��� Specialising Air Time � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Specialising Planner � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Specialising Block Distribution � � � � � � � � � � � � � � � � � � � � � ���
��� A Combined System � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
���� Evolution of Air Time � � � � � � � � � � � � � � � � � � � � � � � � � � ���
���� Revision of Air Times � � � � � � � � � � � � � � � � � � � � � � � � � � ���
���� Introducing Clash Codes � � � � � � � � � � � � � � � � � � � � � � � � � ���
���
 Optimising Distributions � � � � � � � � � � � � � � � � � � � � � � � � � ��


��� Reuse Contract Extractor � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Decomposition into Reuse Operators � � � � � � � � � � � � � � � � � � ���
��
 A Layered Design of Buttons � � � � � � � � � � � � � � � � � � � � � � ���
��� Clustering of the Class Dictionary � � � � � � � � � � � � � � � � � � � ���
��
 Spotting Possible Design Flaws � � � � � � � � � � � � � � � � � � � � � ���
��� Part of the AWT Hierarchy � � � � � � � � � � � � � � � � � � � � � � � ���
��� The Decorator Design Pattern � � � � � � � � � � � � � � � � � � � � � � ���
��� Reuse Contracts for Decorator � � � � � � � � � � � � � � � � � � � � � ���
��� Generic Structure of Decorator � � � � � � � � � � � � � � � � � � � � � ���





List of Tables

��� Basic Operators � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Interface Con�icts � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�� Dangling Reference Con�icts � � � � � � � � � � � � � � � � � � � � � � ��

�
 Con�icts concerning the Calling Structure � � � � � � � � � � � � � � � ��

�� Dependencies between Modi	ers � � � � � � � � � � � � � � � � � � � � ���

��� Con�icts with Extension and Re	nement � � � � � � � � � � � � � � � ���
��� Con�icts with Connected Extension � � � � � � � � � � � � � � � � � � ���
��
 Con�icts with Factorisation � � � � � � � � � � � � � � � � � � � � � � � ��



�� Con�icts with Specialisation � � � � � � � � � � � � � � � � � � � � � � � �
�

�� Con�icts with Participant Concretisation and Abstraction � � � � � � ���

��� Adding validSol�in� to AirTime � � � � � � � � � � � � � � � � � � � ���
��� Adding reschedulable to AirTime � � � � � � � � � � � � � � � � � � � ���
��
 Clash Code Behaviour on Distribution � � � � � � � � � � � � � � � � ��

��� Clash Code Behaviour on AirTime � � � � � � � � � � � � � � � � � � � ���
��
 Optimisation of ATSContract � change � � � � � � � � � � � � � � � � � ��

��� Optimisation of ATSContract � change � � � � � � � � � � � � � � � � � ���

A�� Interface Con�icts � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� Dangling Reference Con�icts � � � � � � � � � � � � � � � � � � � � � � ��

A�
 Con�icts concerning the Calling Structure � � � � � � � � � � � � � � � ���
A�� Con�icts with Specialisation � � � � � � � � � � � � � � � � � � � � � � � ���
A�
 Con�icts with Participant Concretisation and Abstraction � � � � � � ��






Acknowledgements

I thank my advisor� prof� Theo D�Hondt for convincing me a PhD was well within
my stride� I highly respect the way he runs the Programming Technology Lab and
is concerned for both his sta� and his students� He was always generous with advice
and support at crucial times and provided me with a strict deadline when I needed
one�

I also owe a lot of gratitude to my co�advisor� dr� Patrick Steyaert for starting
up and leading the Reuse Contracts Group� thus providing me with an inspiring and
original subject� He always made time for discussions on the big principles as well
as the technical details and always encouraged me to try and do just a bit better�
He also had a substantial in�uence on the structure of this text�

I thank Kim Mens� my �partner in crime�� I hope our co�operation will prove to
be as valuable to his research as it was to mine� Kim helped in every stage of this
work� Moreover� he had to share an o�ce with me during these trying times and
passed the test with distinction�

I thank Koen De Hondt� Tom Mens and Roel Wuyts� who � as part of the
Reuse Contracts Group � were instrumental in most of the experiments described
in chapters � and �� They were helpful with a lot of things and did a fair amount of
proof reading of numerous drafts and versions of this dissertation�

I thank the members of my jury� Mehmet Aksit� Viviane Jonckers� Oscar Nier�
strasz and Dirk Vermeir for their feedback on how to improve the text and on in�
teresting research topics to pursue next� A jury this astute is a source of inspiration�

Wim Codenie and Wilfried Verachtert from OOPartners provided the crucial
practitioner�s feedback and were also very helpful in working out the ATS case from
chapter ��

Wolfgang De Meuter and Serge Demeyer were my two most feared proof readers�
which only goes to say their comments were very valuable� Stephane Ducasse �



� Acknowledgements

though we never even met � volunteered to proof read� which was greatly appreci�
ated� Kris De Volder also read parts of this thesis�

Thomas Unger was very helpful and valuable as LATEX specialist� Thomas and
Wolfgang also helped to relieve some of my educational tasks when time was running
short�

As part of his graduation thesis Gerrit Cornelis extended Java interfaces to incor�
porate reuse contracts and worked out the AWT example� which I use at a number
of places�

I�d like to thank everybody at the Programming Technology Lab and the De�
partment of Computer Science for supporting me in all kinds of ways over the last
few years� Besides those mentioned above� I thank Brigitte Beyens� Niels Boyen�
Jan De Laet� Tom Lenaerts� Wim Lybaert� Lydie Seghers� Marc Van Limberghen�
Mark Willems� and especially Linda Dasseville for the many inspiring conversations�
Thanks for making the Programming Technology Lab not only an inspiring� but also
a fun place to work�

I thank my friends for providing me with the necessary distraction once in a while
and for putting things in perspective� I especially thank Marleen Easton� Though
working in completely di�erent 	elds� we seemed to share all the same experiences�

I thank my parents not only for giving me the opportunity to study� but for
letting me grow up to believe I can achieve anything I set my mind to� Likewise� I
thank my brother and his family and my grandparents for supporting me in every�
thing I did over the years�

Finally� I thank Kristof� Without his love� patience and support I never would
have 	nished this�

Carine Lucas
September ����



Introduction

In recent years software development has been subject to numerous innovations�
with a focus on reuse and increasing productivity� A shift is noticeable from soft�
ware engineering as a discipline concerned with the construction of hand�crafted�
single systems� to an industry centred around the production of software compo�
nents� aimed at building systems much like product lines� Software engineering
techniques have not been able to keep up with this rapid evolution� Amongst others
object�orientation has failed to deliver much of its promises� while formal techniques
do not succeed in getting widely adopted� The classical waterfall model does not
serve the new paradigm well� while new iterative process models have not yet reached
an adequate level of maturity� The central tenet of this dissertation is that evolution
is at the heart of reuse� Evolution is crucial because reusable components have a
long life span� because good reuse can only be achieved after a component has been
reused and adapted several times and 	nally� because it is simply not conceivable
to predict all possible uses of a component upon its conception� Current software
engineering techniques focus too much on passive support as separation of concerns�
separation of interface and implementation and formal speci	cations� Tools actively
supporting software engineers in issues as traceability and change management are
completely lacking� This dissertation introduces reuse contracts as structured doc�
umentation to support the evolution of reusable components�

The study of di�erent approaches to reuse reveals that there is a general un�
derstanding that reusable systems � be it libraries of reusable components� object�
oriented frameworks or componentware approaches � should mainly be used in a
pre�de	ned way� the basic structures should not be violated� Black�box frameworks
where di�erent variations of the components must be plugged into a general de�
sign are but the one example� Similarly� formal approaches to reuse often focus on
behavioural subtyping� meaning that specialisations of components in a framework
should always be substitutable for their basic component� Such approaches su�er
from a lack of �exibility� First� allowing customisations that respect the original
design only is based on the assumption that all possible reuses can be anticipated�
Practice has proven it unfeasible� however� to develop reusable applications that
comply with all the requirements of a large user community and that keep on doing



� Introduction

so as time � and requirements � evolve� Second� such approaches do not take the in�
trinsic evolutionary nature of reusable systems into account� Reusable components
tend to evolve after they have been developed and reused� Changes to components
might be necessary to 	x �aws in the requirements or when the requirements them�
selves evolve� More importantly� iterations over reusable components are inherent
to their development� Therefore� managing the impact of changes on existing appli�
cations is crucial when components change�

So in order to get more �exible reusable systems� reusers should be allowed to
make changes that were not foreseen� On the other hand� reuse should be disciplined
enough to allow support on updating applications when the reusable components
they are built on evolve�

Current approaches do not adequately address these needs� On the one hand�
reuse approaches stress the need to address reuse in a systematic fashion� but they
are often too coercive in allowing only reuse in prede	ned ways� On the other hand�
object�oriented approaches to reuse as inheritance are much more �exible� but they
lack discipline and formal underpinnings� Another important observation is that
systematic reuse is concerned primarily with reuse of higher�level life cycle artifacts
�Fra���� As a consequence� the operational part� which is often the most extensive
and the most complex component� is generally the result of a one�shot development
e�ort� Object�oriented approaches as frameworks or design patterns often focus on
lower�level artifacts� However� object�oriented methodologies as UML do not have
an adequate notation for reuse and fall short in addressing notions of evolution and
iteration� They still mainly focus on static descriptions of single systems� without
adequate notations for families of systems and traceability between di�erent varia�
tions� Therefore� we argue that a new approach for disciplined reuse� establishing
a vocabulary� notation and methodology is required� Establishing such a new dis�
cipline� that guides developers in writing at least partway reusable software is an
immensely complex task� This work represents the 	rst stage in such an undertaking�

Let us start by setting up some criteria we deem crucial in such a methodology�
A 	rst concern is that we want to develop practical models� that are close to the
actual code and are applicable in di�erent stages of the life cycle� With a practical
approach we imply models that are automatically processable and are a good basis
for tools�

In order to reuse a system in ways di�erent from what was foreseen� a general
understanding of its structure and behaviour is essential� With structure we imply
a description of how di�erent parts in a system are arranged� By behaviour we
mean a description of the way in which a system functions or operates� While most
approaches to evolution focus on declarative behaviour� i�e�� what a system does� we
focus on operational behaviour� i�e�� how it is achieved� We thus follow the spirit of



Introduction �

recent research e�orts such as Lamping�s specialisation interfaces �Lam�
�� Holland�s
interaction contracts �Hol��� and Lieberherr�s adaptive programming �Lie�
�� We do
however concentrate on documenting dependencies to which the compliance of code
can be checked automatically�

A second important issue� when accepting the premises that evolution is at the
heart of reuse� is impact analysis� The ability to perform impact analysis is key
to numerous unsolved problems in software engineering� In the iterative develop�
ment of frameworks and component systems� the ability to upgrade applications
with new versions of the frameworks or components is paramount to gain a return
on investment� In order to be able to upgrade applications it is crucial to be able
to assess the impact of changes to components on the applications� When building
applications from existing components� another unsolved problem is how to decide
which components work together correctly� It is equally important there to be able
to assess the impact of replacing one component with a slightly di�erent version�
Similarly� problems occur when applications are partially automatically generated�
When adapting the input and re�generating code one needs to assess where the man�
ually added code might cease to work with the newly generated code� Currently� no
active support exists for any of these tasks� The work presented in this dissertation
is a 	rst e�ort towards a general approach for impact analysis that can assist in all
of these problems�

The key to the solution is the observation that when reusing or adapting a
system� developers make assumptions about how di�erent parts of the system co�
operate� When changes are made to part of a system� �some of� these assumptions
might be broken� As currently these assumptions are always implicit� it is not pos�
sible to check whether they are respected upon change� Therefore� we suggest to
make these assumptions explicit� This forms the basis for a structured approach to
change propagation and impact analysis� The explicit documentation of assump�
tions implies that not only the component provider should provide adequate infor�
mation about the components he delivers� but the reuser should also document the
assumptions he relies on� This is the basis of a contract between provider and reuser�

This dissertation introduces reuse contracts for this purpose� Reuse contracts
augment conventional interfaces with documentation of structural dependencies in a
system� For example� information is added about which system components are ac�
quainted and which operations rely on which other operations� This provides reusers
with crucial information about the operational behaviour of a system� Moreover�
this information can be retrieved statically� which makes automated support and
the development of tools much easier�

Reuse contract interfaces can only be composed or adapted by means of certain
prede	ned reuse operators� Reuse operators enable reusers to explicitly document
the assumptions they make about the components they reuse and thus what parts



� Introduction

of the interface they rely on� This makes their applications more robust to change�
since explicitly documenting these assumptions allows verifying whether these as�
sumptions are broken when changes are made� Similarly� explicitly documenting
where the general design is not respected helps in assessing where co�operation with
this part might cause problems�

Note that� as opposed to other methods� documenting assumptions is the basis of
con�ict detection rather than con�ict avoidance� On the one hand� reusers can reuse
components in any way they want� This accounts for the �exibility in our approach�
On the other hand� they have to document the way they reuse components in a
disciplined way� This accounts for the support for change propagation and impact
analysis�

The work in this dissertation is part of a larger research e�ort aiming to establish
a full��edged methodology for disciplined reuse� Several researchers are involved
covering various topics such as formalisation� tool support etc� This work establishes
a blue�print for these di�erent approaches by establishing an initial methodology� a
partway formalisation and proof of concept on the basis of a number of non�trivial
experiments�


