RSIT
V\\\}E 5/76,9

N
1,
& N
SRag 129

S
Vincere

VRIJE UNIVERSITEIT BRUSSEL
FACULTEIT WETENSCHAPPEN - DEPARTEMENT INFORMATICA

Documenting Reuse and Evolution
with Reuse Contracts

Carine Lucas
September 1997

Promotor: Prof. Dr. Theo D’Hondt
Co-promotor: Dr. Patrick Steyaert

Proefschrift ingediend met het oog op het
behalen van de graad van Doctor in de
Wetenschappen

Contents

Acknowledgements 1
Introduction 3
1 Issues in Reuse and Composition 7
1.1 Conflicts with Evolving Components 7
1.1.1 AnExample 7

1.1.2 An Overview of Possible Conflicts 11

1.2 The Evolution to Component Software 16
1.2.1 Benefits and Inhibitors 16

1.2.2 Systematic Reuse: a Paradigm Shift 17

1.2.3 Kinds of Component Systems 17

1.2.4 The Development of Reusable Components 19

1.2.5 Relationship with Reuse Contracts 20

1.3 Object-Oriented Reuse 21
1.3.1 Polymorphism, Protocols and Inheritance 21

1.3.2 Abstract Classes and Template Methods 21

1.3.3 Frameworks L 22

1.3.4 Object-Oriented Methodologies 24

1.3.5 Language Extensions 25

1.3.6 Relationship with Reuse Contracts 26

1.4 Documenting Reusable Components 27
1.4.1 Specialisation Interfaces 27

1.4.2 Contractual Interfaces 28

1.4.3 Documenting Frameworks 28

1.4.4 Cookbooks L 29

1.45 Design Patterns 0oL 29

1.4.6 Interaction Contracts 30

1.4.7 Interface Definition Languages 31

1.4.8 Architecture Description Languages 31

1.4.9 Relationship with Reuse Contracts 32

1.5 Evolution of Reusable Components 32

ii Contents
1.5.1 Binary Compatibility 33

1.5.2 Refactoring and Restructuring 33

1.5.3 Programming by Contract and Formal Methods 34

1.5.4 Consistency of Class Libraries 34

1.5.5 Relationship with Reuse Contracts 35

1.6 Our Approach: Reuse Contracts 35
1.6.1 Summary: the Problems 35
1.6.2 Another Example. o0 36

1.6.3 Reuse Contracts 37
1.6.4 Structure of the Dissertation 40

2 Basic Reuse Contracts 41
2.1 Definition of Reuse Contracts 41
2.1.1 Participants 41
2.1.2 Acquaintance Clauses 42
2.1.3 Client Interface 0oL 43
2.1.4 The Specialisation Interface 44
2.1.5, The ATM Example 45
2.1.6 Well-Formedness 47

2.2 Operators on Reuse Contracts 48
2.2.1 Participant Extension 50
2.2.2 Context Extension 55
2.2.3 Participant Cancellation 58
2.2.4 Context Cancellation, 61
2.2.5 Participant Refinement 64
2.2.6 Context Refinement 68
2.2.7 Participant Coarsening 71
2.2.8 Context Coarsening 74
2.2.9 Summary e e e 7

3 Managing Evolution and Composition 79
3.1 Evolution and Composition of Basic Modifiers 79
3.2 Imterface Conflicts 81
3.2.1 Operation Name Conflicts 81
3.2.2 Participant Name Conflicts 82
3.2.3 Operation Invocation Conflicts 82
3.2.4 Acquaintance Relationship Conflicts 84
3.2.5 Summary of Interface Conflicts 84

3.3 Dangling Reference Conflicts 84
3.3.1 Dangling Operation Reference 85
3.3.2 Dangling Participant Reference 85
3.3.3 Dangling Acquaintance Reference 86

3.3.4 Summary of Dangling Reference Conflicts 86

Contents

iii

3.4

3.5

3.6

Conflicts Concerning the Calling Structure.
3.4.1 Operation Capture oL
3.4.2 Inconsistent Operations
3.4.3 Unanticipated Recursion
3.4.4 Summary of Conflicts about the Calling Structure
Evaluation
3.5.1 Alternative Rules
3.5.2 Other Possible Conflicts
Evolution of Chains of Adaptations
3.6.1 Chain vs. Single Modifier
3.6.2 Annihilation of Conflicts,
3.6.3 Dependence of Modifiers
3.6.4 Transitive Closure Conflicts
3.6.5 Summary: Single Modifier versus Chain of Modifiers
3.6.6 Conflicts between Two Chains of Modifiers
3.6.7 Conclusion e

4 Combined Operators

4.1

4.2
4.3
4.4
4.5
4.6
4.7

Composition of Modifiers
4.1.1 Applicability
4.1.2 Definition and Properties
4.1.3 Discussion e e e
Extension and Refinement o000
Connected Extensiono o000
Extending Refinement L.
Factorisation
Renaming
Summary e e e e e e

5 Reuse Contracts for the UML

5.1
5.2
9.3
0.4

9.5

5.6
5.7
5.8

Basic Static Structure Diagrams
Integrating the Operators
Impact of Inheritance on the Conflicts
Integrating Late Binding oo
54.1 SelfSendso oL
5.4.2 Super Sends: Specialisationo
Abstract Classes and Methods
5.5.1 Extension of the Model
5.5.2 A New Operator: Participant Concretisation
5.5.3 A Combined Operator: Layered Concretisation
Implementing Reuse Contracts
Collaboration Diagrams
Acquaintance Relationships o000

87
87
89
91
93
93
93
95
96
97
98
101
102
104
104
105

107
107
107
108
109
109
110
114
116
124
125

iv Contents
5.8.1 Extension of the Model 153
5.8.2 A New Operator: Context Concretisation 154
5.8.3 Implementing Collaboration Reuse Contracts 155

5.9 Conclusion e 155
6 Evolution of a Reusable Design 159
6.1 Background: Broadcast Planning 159
6.2 The Case: Air-Time Sales 159
6.3 A First Design: Block Spot Spaces 161
6.4 A Second Design: Gross Rating Points 163
6.5 Generalisationo 164
6.6 Expressing Specialisations through Reuse Operators 165
6.7 Evolution 165
6.7.1 A Combined System, 165
6.7.2 Introducing Clash Codes 172
6.7.3 Optimisation 174

6.8 Conclusion 175
6.9 Acknowledgements oL Lo oo 176
7 Reuse Contracts at Work 177
7.1 Extraction 178
7.2 Compliance Checking L. 182
7.3 A Drawing Tool 185
7.4 Documentation 185
7.4.1 Dependencies between System Parts 185
7.4.2 Assistance of the Software Engineer 185
7.4.3 Layering of Design, 186
7.4.4 Core Methods versus Peripheral Methods 188
7.4.5 Layering of Class Hierarchies 190
T4.6 VIeWS oo e 191

7.5 Design Guidelines and Quality Assessment 192
7.5.1 Well-formed Reuse Contracts 192
7.5.2 Assessments Based on the Contracts and Operators 193
7.5.3 Existing Design Guidelines 195
7.5.4 Tools for Quality Assessment 197

7.6 Enforcing Design L. 197
7.7 Evolution and Incremental Development 200
7.7.1 Consistency Checking and Conflict Detection 200
7.7.2 Traceability o oo 201

7.8 Re-engineering and Reverse Engineering 202
7.8.1 Extraction. o 202
7.8.2 Refactoring 202

7.9 Conclusion 202

Contents

7.10 Acknowledgements

8 Conclusion
8.1 Summary e e e e
8.2 Evaluation and Future Work
8.2.1 Possible Extensions
8.2.2 Other Uses
8.2.3 Ameliorations to the Model
8.3 Main Contribution L L

A Conflict Detection Rules

Bibliography

205
205
206
207
210
211
212

213

217

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

Packet Handlingina LAN 8
Introducing Gateways Lo 9
Introducing Visitor Packets 9
Combining Gateways and Visitorpackets 10
Broken Assumptions e 11
Example of an Interface Conflict 12
Dangling Reference Conflicts 13
Regular Operation Capture 14
Accidental Operation Capture 14
Inconsistent Operations 15
Unanticipated Recursion 16
Evolution of Set o 37
Broken Assumptions 38
Inconsistent Operationson Set 40
Two Acquainted Participants 42
A Participant’s Client Interface 43
Part of the Protocol between Two Participants 44
The ATM Reuse Contract 46
An Example Participant Extension o1
Participant Extension 53
An Example Context Extension 56
Context Extension oo 57
An Example Participant Cancellation 59
Participant Cancellation 60
An Example Context Cancellation 61
Context Cancellation oL 63
An Example Participant Refinement 64
Participant Refinemento o000 67
An Example Context Refinement 68
Context Refinement oo oo 70
An Example Participant Coarsening 71

Participant Coarsening 73

viii

List of Figures

2.19
2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5

An Example Context Coarsening 74
Context Coarseningo vt vt 76
Base Reuse Contract Exchange 80
An Operation Name Conflict 82
An Operation Invocation Conflict 83
A Dangling Operation Reference 86
Regular Operation Capture 88
Inconsistent Operations, 90
Unanticipated Recursion 91
Indirect Unanticipated Recursion 92
An Acquaintance Relationship Conflict 96
Chain vs. Single Modifier, 97
Transitive Closure Conflict Annihilation 103
Two Chains of Modifiers 105
An Example Connected Extension 112
Connected Extension00 113
An Example Extending Refinement 115
Extending Refinement oL 117
An Example Factorisation 118
Factorisation 120
Annihilating Conflicts through Factorisation 122
An Example of Renaming L. 124
Model-View-Controller 129
MVC for BasicButtonView and BasicButtonController 131
Contract Refinemento Lo oo 133
Refinement of Controller 134
Inconsistent Methodson Set 134
The Representation of Self Sends 136
Message Sends between Instances of the Same Class 136
An Example of Specialisation00 138
An Abstract Class 140
Participant Concretisation 143
Layered Concretisation 149
A Collaboration Diagram 151
Overview of the Air-Time Sales System 160
Block Spot Spaces 162
Gross Rating Points00 oo 163
Generalised Air Time Sales Behaviour 164

Specialising the Air Time Sales Contract 166

List of Figures

ix

6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Specialising Air Time o 167
Specialising Planner 167
Specialising Block Distribution 168
A Combined System 169
Evolution of Air Time 170
Revision of Air Times 171
Introducing Clash Codes 172
Optimising Distributions 175
Reuse Contract Extractor 179
Decomposition into Reuse Operators 180
A Layered Design of Buttons 187
Clustering of the Class Dictionary 189
Spotting Possible Design Flaws 194
Part of the AWT Hierarchy 196
The Decorator Design Pattern. 198
Reuse Contracts for Decorator 199
Generic Structure of Decorator 199

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

Al
A2
A3
A4
A

Basic Operators L 49
Interface Conflicts 85
Dangling Reference Conflicts 87
Conflicts concerning the Calling Structure 94
Dependencies between Modifiers 101
Conflicts with Extension and Refinement 111
Conflicts with Connected Extension 114
Conflicts with Factorisation 123
Conflicts with Specialisation 139
Conflicts with Participant Concretisation and Abstraction 147
Adding validSol:in: to AirTime 170
Adding reschedulable to AirTime 171
Clash Code Behaviour on Distribution 173
Clash Code Behaviour on AirTime 174
Optimisation of ATSContract - change 1 175
Optimisation of ATSContract - change 2 176
Interface Conflicts oL 213
Dangling Reference Conflicts 213
Conflicts concerning the Calling Structure 214
Conflicts with Specialisation 214

Conflicts with Participant Concretisation and Abstraction 215

Acknowledgements

I thank my advisor, prof. Theo D’Hondt for convincing me a PhD was well within
my stride. T highly respect the way he runs the Programming Technology Lab and
is concerned for both his staff and his students. He was always generous with advice
and support at crucial times and provided me with a strict deadline when I needed
one.

I also owe a lot of gratitude to my co-advisor, dr. Patrick Steyaert for starting
up and leading the Reuse Contracts Group, thus providing me with an inspiring and
original subject. He always made time for discussions on the big principles as well
as the technical details and always encouraged me to try and do just a bit better.
He also had a substantial influence on the structure of this text.

I thank Kim Mens, my “partner in crime”. I hope our co-operation will prove to
be as valuable to his research as it was to mine. Kim helped in every stage of this
work. Moreover, he had to share an office with me during these trying times and
passed the test with distinction.

I thank Koen De Hondt, Tom Mens and Roel Wuyts, who — as part of the
Reuse Contracts Group — were instrumental in most of the experiments described
in chapters 6 and 7. They were helpful with a lot of things and did a fair amount of
proof reading of numerous drafts and versions of this dissertation.

I thank the members of my jury: Mehmet Aksit, Viviane Jonckers, Oscar Nier-
strasz and Dirk Vermeir for their feedback on how to improve the text and on in-
teresting research topics to pursue next. A jury this astute is a source of inspiration.

Wim Codenie and Wilfried Verachtert from OOPartners provided the crucial
practitioner’s feedback and were also very helpful in working out the ATS case from
chapter 6.

Wolfgang De Meuter and Serge Demeyer were my two most feared proof readers,
which only goes to say their comments were very valuable. Stephane Ducasse —

Acknowledgements

though we never even met — volunteered to proof read, which was greatly appreci-
ated. Kris De Volder also read parts of this thesis.

Thomas Unger was very helpful and valuable as EXTEX specialist. Thomas and
Wolfgang also helped to relieve some of my educational tasks when time was running
short.

As part of his graduation thesis Gerrit Cornelis extended Java interfaces to incor-
porate reuse contracts and worked out the AWT example, which I use at a number
of places.

I’d like to thank everybody at the Programming Technology Lab and the De-
partment of Computer Science for supporting me in all kinds of ways over the last
few years. Besides those mentioned above, I thank Brigitte Beyens, Niels Boyen,
Jan De Laet, Tom Lenaerts, Wim Lybaert, Lydie Seghers, Marc Van Limberghen,
Mark Willems, and especially Linda Dasseville for the many inspiring conversations.
Thanks for making the Programming Technology Lab not only an inspiring, but also
a fun place to work.

I thank my friends for providing me with the necessary distraction once in a while
and for putting things in perspective. I especially thank Marleen Easton. Though
working in completely different fields, we seemed to share all the same experiences.

I thank my parents not only for giving me the opportunity to study, but for
letting me grow up to believe I can achieve anything I set my mind to. Likewise, I
thank my brother and his family and my grandparents for supporting me in every-
thing I did over the years.

Finally, T thank Kristof. Without his love, patience and support I never would
have finished this.

Carine Lucas
September 1997

Introduction

In recent years software development has been subject to numerous innovations,
with a focus on reuse and increasing productivity. A shift is noticeable from soft-
ware engineering as a discipline concerned with the construction of hand-crafted,
single systems, to an industry centred around the production of software compo-
nents, aimed at building systems much like product lines. Software engineering
techniques have not been able to keep up with this rapid evolution. Amongst others
object-orientation has failed to deliver much of its promises, while formal techniques
do not succeed in getting widely adopted. The classical waterfall model does not
serve the new paradigm well, while new iterative process models have not yet reached
an adequate level of maturity. The central tenet of this dissertation is that evolution
is at the heart of reuse. Evolution is crucial because reusable components have a,
long life span, because good reuse can only be achieved after a component has been
reused and adapted several times and finally, because it is simply not conceivable
to predict all possible uses of a component upon its conception. Current software
engineering techniques focus too much on passive support as separation of concerns,
separation of interface and implementation and formal specifications. Tools actively
supporting software engineers in issues as traceability and change management are
completely lacking. This dissertation introduces reuse contracts as structured doc-
umentation to support the evolution of reusable components.

The study of different approaches to reuse reveals that there is a general un-
derstanding that reusable systems — be it libraries of reusable components, object-
oriented frameworks or componentware approaches — should mainly be used in a
pre-defined way: the basic structures should not be violated. Black-box frameworks
where different variations of the components must be plugged into a general de-
sign are but the one example. Similarly, formal approaches to reuse often focus on
behavioural subtyping, meaning that specialisations of components in a framework
should always be substitutable for their basic component. Such approaches suffer
from a lack of flexibility. First, allowing customisations that respect the original
design only is based on the assumption that all possible reuses can be anticipated.
Practice has proven it unfeasible, however, to develop reusable applications that
comply with all the requirements of a large user community and that keep on doing

Introduction

so as time - and requirements - evolve. Second, such approaches do not take the in-
trinsic evolutionary nature of reusable systems into account. Reusable components
tend to evolve after they have been developed and reused. Changes to components
might be necessary to fix flaws in the requirements or when the requirements them-
selves evolve. More importantly, iterations over reusable components are inherent
to their development. Therefore, managing the impact of changes on existing appli-
cations is crucial when components change.

So in order to get more flexible reusable systems, reusers should be allowed to
make changes that were not foreseen. On the other hand, reuse should be disciplined
enough to allow support on updating applications when the reusable components
they are built on evolve.

Current approaches do not adequately address these needs. On the one hand,
reuse approaches stress the need to address reuse in a systematic fashion, but they
are often too coercive in allowing only reuse in predefined ways. On the other hand,
object-oriented approaches to reuse as inheritance are much more flexible, but they
lack discipline and formal underpinnings. Another important observation is that
systematic reuse is concerned primarily with reuse of higher-level life cycle artifacts
[Fra94]. As a consequence, the operational part, which is often the most extensive
and the most complex component, is generally the result of a one-shot development
effort. Object-oriented approaches as frameworks or design patterns often focus on
lower-level artifacts. However, object-oriented methodologies as UML do not have
an adequate notation for reuse and fall short in addressing notions of evolution and
iteration. They still mainly focus on static descriptions of single systems, without
adequate notations for families of systems and traceability between different varia-
tions. Therefore, we argue that a new approach for disciplined reuse, establishing
a vocabulary, notation and methodology is required. Establishing such a new dis-
cipline, that guides developers in writing at least partway reusable software is an
immensely complex task. This work represents the first stage in such an undertaking.

Let us start by setting up some criteria we deem crucial in such a methodology.
A first concern is that we want to develop practical models, that are close to the
actual code and are applicable in different stages of the life cycle. With a practical
approach we imply models that are automatically processable and are a good basis
for tools.

In order to reuse a system in ways different from what was foreseen, a general
understanding of its structure and behaviour is essential. With structure we imply
a description of how different parts in a system are arranged. By behaviour we
mean a description of the way in which a system functions or operates. While most
approaches to evolution focus on declarative behaviour, i.e., what a system does, we
focus on operational behaviour, i.e., how it is achieved. We thus follow the spirit of

Introduction

recent research efforts such as Lamping’s specialisation interfaces [Lam93], Holland’s
interaction contracts [Hol92] and Lieberherr’s adaptive programming [Lie95]. We do
however concentrate on documenting dependencies to which the compliance of code
can be checked automatically.

A second important issue, when accepting the premises that evolution is at the
heart of reuse, is impact analysis. The ability to perform impact analysis is key
to numerous unsolved problems in software engineering. In the iterative develop-
ment of frameworks and component systems, the ability to upgrade applications
with new versions of the frameworks or components is paramount to gain a return
on investment. In order to be able to upgrade applications it is crucial to be able
to assess the impact of changes to components on the applications. When building
applications from existing components, another unsolved problem is how to decide
which components work together correctly. It is equally important there to be able
to assess the impact of replacing one component with a slightly different version.
Similarly, problems occur when applications are partially automatically generated.
When adapting the input and re-generating code one needs to assess where the man-
ually added code might cease to work with the newly generated code. Currently, no
active support exists for any of these tasks. The work presented in this dissertation
is a first effort towards a general approach for impact analysis that can assist in all
of these problems.

The key to the solution is the observation that when reusing or adapting a
system, developers make assumptions about how different parts of the system co-
operate. When changes are made to part of a system, (some of) these assumptions
might be broken. As currently these assumptions are always implicit, it is not pos-
sible to check whether they are respected upon change. Therefore, we suggest to
make these assumptions ezplicit. This forms the basis for a structured approach to
change propagation and impact analysis. The explicit documentation of assump-
tions implies that not only the component provider should provide adequate infor-
mation about the components he delivers, but the reuser should also document the
assumptions he relies on. This is the basis of a contract between provider and reuser.

This dissertation introduces reuse contracts for this purpose. Reuse contracts
augment conventional interfaces with documentation of structural dependencies in a
system. For example, information is added about which system components are ac-
quainted and which operations rely on which other operations. This provides reusers
with crucial information about the operational behaviour of a system. Moreover,
this information can be retrieved statically, which makes automated support and
the development of tools much easier.

Reuse contract interfaces can only be composed or adapted by means of certain
predefined reuse operators. Reuse operators enable reusers to explicitly document
the assumptions they make about the components they reuse and thus what parts

Introduction

of the interface they rely on. This makes their applications more robust to change,
since explicitly documenting these assumptions allows verifying whether these as-
sumptions are broken when changes are made. Similarly, explicitly documenting
where the general design is not respected helps in assessing where co-operation with
this part might cause problems.

Note that, as opposed to other methods, documenting assumptions is the basis of
conflict detection rather than conflict avoidance. On the one hand, reusers can reuse
components in any way they want. This accounts for the flexibility in our approach.
On the other hand, they have to document the way they reuse components in a
disciplined way. This accounts for the support for change propagation and impact
analysis.

The work in this dissertation is part of a larger research effort aiming to establish
a full-fledged methodology for disciplined reuse. Several researchers are involved
covering various topics such as formalisation, tool support etc. This work establishes
a blue-print for these different approaches by establishing an initial methodology, a
partway formalisation and proof of concept on the basis of a number of non-trivial
experiments.

