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Chapter 1

Introduction

The topic of this dissertation is the instantiation and evolution of object-oriented frameworks. We
propose to document important information about the framework’s design explicitly and formally,
to allow tools to use this information in an active way to support developers while performing
their task. Such support includes providing high-level automated transformations to instantiate
and evolve a framework correctly, detecting and avoiding design drift within the framework’s im-
plementation and assessing the impact of evolution on the framework and its existing instances.

1.1 Thesis Statement

Object-oriented frameworks are often touted for leveraging the promise of large-scale reuse [Fis87].
Traditional class libraries and toolkits only allow reuse of individual classes and methods. Frame-
works, on the other hand, allow reuse of the design of a framework and enable developers to
construct applications by providing application-specific code at predefined places. As such, ap-
plications can be developed much faster and with minimal effort [FS97]. Moreover, they are less
prone to errors and look more consistent to the end user, since they are based on the same ”core”
implementation [MB99, MN96].

While it is widely acknowledged that such framework-based development has some important
advantages, it also suffers from a number of important problems:

• building a concrete application, and thereby reusing the design of the framework, is a difficult
task. The developer responsible should have a good understanding of the inner workings of
the framework and of its design to construct an application with the desired behavior that
fits into this design. Due to missing, inappropriate or outdated framework documentation,
such information is not always available [BD99, Ret91, BGK98].

• frameworks are subject to evolution, just like any other software system, due to new or
changing user requirements and bug fixes [DH98, RJ96, JR91]. Such evolution may change
the design of the framework, upon which applications depend. As a result, these applications
may not adhere to the new design, and may no longer exhibit the desired behavior.

• frameworks are developed, maintained and instantiated by a team of developers. Developers
may thus make changes to the framework independently of one another. Naturally, all such
changes should be merged into one single version. However, changes made by one developer
may rely on assumptions that are broken by changes made by another developer. When
merging such conflicting changes, the resulting version of the framework will be inconsistent
and may contain errors [Men02].

In this dissertation, we will tackle the above problems and seek to alleviate them, by providing
automated support for framework-based development. This is expressed in our thesis statement:
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Thesis. Elaborate automated tool support for framework-based software development can be
provided by explicitly documenting a framework’s design in a formal way.

Framework-based software development includes many different activities, the most important
of which are implementing, evolving and instantiating the framework. In this dissertation, we
mainly focus on the evolution and instantiation activities. We do acknowledge the fact that
implementing a framework is an inherently difficult task. However, implementing a high-quality
framework is an iterative process, which inevitably requires a number of successive evolutions.
Therefore, evolving a framework necessarily forms part of implementing it. On the other hand,
instantiation and evolution of a framework is far from trivial as well, and the problems associated
with such activities are specific to the framework-based software development process. Moreover,
the amount of time spent instantiating and evolving a framework is far greater than the time
spent implementing it [Som96]. These are thus the activities that would benefit the most from
automated support.

The support for framework-based development we envision includes (semi-)automatic instanti-
ation and evolution of the framework, where a developer is guided interactively by a tool while he
performs the necessary changes. The guidance we offer for these activities ranges from pointing
out which changes a developer needs to make, automatically updating parts of the documentation,
notifying him when he violates the intended design of the framework or its applications, assessing
the impact of a particular change and detecting possible conflicting changes.

The design information that we rely upon for our approach should be used in an active way.
A tool should be able to use this information to provide specialized guidance and should have
access to the source code of the framework to check the information, reason about and manipulate
it, as appropriate. An absolute prerequisite for enabling such tool support is that the provided
information is specified in a formal way and allows us to define exactly and precisely what the effect
of a particular change upon the implementation is. This ensures the information is specified in
an unambiguous, accurate and concise manner. Furthermore, the information should be specified
explicitly, since it is often impossible to extract it automatically or it is simply not available in
the implementation.

As is stated explicitly in our thesis statement, our approach to support framework-based de-
velopment relies on information about the design of the framework. Such information includes the
responsibilities, relationships and collaborations between class hierarchies, classes and methods,
as well as information about the specific ways in which the design can be reused, extended and
changed.

1.2 Scope of the Dissertation

Because our thesis statement is quite general, it would be impossible to prove it entirely in this
dissertation. Therefore, we will incorporate some restrictions in order to reduce the scope of the
dissertation.

First of all, frameworks are subject to anticipated as well as unanticipated evolution. Therefore,
any approach that supports framework-based software development should support both kinds of
evolution. In the first part of this dissertation, we will focus on supporting anticipated evolution
only. In later chapters, we will suggest how support for a particular kind of unanticipated evolution
can be supplied as well, by incorporating refactorings into our approach. Studying how full-fledged
support for unanticipated evolution can be provided based on our approach is considered future
work, however.

Second, we will first analyze how we can exploit design information for supporting framework-
based development. Other sources of information, such as architectural and domain knowledge,
could be useful as well for this purpose, but will not be considered initially. This is motivated
by the fact that using architectural knowledge to support evolution has already been studied
elsewhere [Men00, Flo00, Min97, MNS95], and that we believe that domain-specific knowledge
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can only be used to complement generally applicable knowledge, and not instead of it.
Last, we restrict ourselves to the domain of object-oriented application frameworks at first. The

techniques and tools presented in this dissertation should however be applicable in other domains
as well, such as product line architectures [Bos00] and component-oriented programming [Szy97],
for example. An in-depth discussion and assessment regarding this issue is outside the scope of
this dissertation however, and can be considered future work.

1.3 Approach and Contributions of the Dissertation

1.3.1 Approach

The approach we will take to prove our thesis is the following.
We will construct an environment that allows a developer to document a framework’s design

by means of the design patterns it uses. While we could employ other high-level descriptions
of the framework, we selected design patterns for several reasons: they are generally applicable,
well-documented, well-understood and commonly used. The environment will use design pattern
information in an active way, to

• check the conformance of the framework’s implementation to its intended design

• provide high-level transformations that perform changes to the framework (semi-)automati-
cally and guide a developer when instantiating or evolving the framework

• assess the impact of these transformations on the framework itself and its derived applications

Furthermore, the environment will make sure that this documentation is kept up to date
automatically. To achieve all this, the environment will be integrated into a standard development
environment and use the technique of declarative meta programming [DV98, Men00, Wuy01]. As
such, it has access to the framework’s source code and can reason about and manipulate this code
and its documentation as necessary.

As an underlying basis for this environment, we will use a formal model that allows us to
describe design patterns in an unambiguous, accurate and concise manner. The model will be
based upon an advanced abstraction of design patterns, called metapatterns [Pre95, Pre97, Pre94],
to ensure its scalability and manageability. Transformations will be defined upon this model, that
perform changes to the implementation of these design patterns, and thus to the framework’s
design, while at the same time, they ensure the appropriate design constraints remain satisfied
and the documentation is up to date. These transformations can be combined to form higher-level
transformations that correspond to typical evolution and instantiation transformations applied to
a framework. Based on this formal model and associated transformations, we will formally define
change propagation and software merging algorithms. These enable us to assess the impact of the
transformations on the framework and its existing instances, detect possible merge conflicts and
suggest ways in which these can be resolved.

We want to stress that the main focus of our dissertation lies in the area of language engineering
as opposed to the software engineering area. To support various aspects of the software engineering
process, a suitable environment with a solid formal basis is an absolute prerequisite. This is
exactly what we will focus on first. Only when we have such an environment at our disposal
will we be able to focus fully on the software engineering aspects. Note that by no means our
focus on language engineering implies that we will introduce a new programming language or
add new language features to an existing programming language. First of all, introducing a new
programming language would prohibit the use of our approach on already existing frameworks.
Second, introducing new language features into an existing programming language would restrict
the kind of information we can use to that exposed by those features, and would thus sacrifice
flexibility.
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1.3.2 Contributions

The main contributions of this dissertation can be divided into two major groups.
The scientific/fundamental contributions are the following:

• we provide a formal framework for the definition of fundamental metapatterns, that allows us
to define all of Pree’s metapatterns [Pre95], as well as a number of other useful metapatterns
in a formal way. As metapatterns are an abstraction of design patterns, this formal definition
at the same time serves as a basis to define design patterns formally.

• for each of these fundamental metapatterns, we explicitly define their associated constraints,
which allow us to check whether the actual framework implementation conforms to its in-
tended design, and vice versa.

• we identify a small set of primitive transformations that can be applied to these fundamental
metapatterns. Much like refactorings, these primitive transformations can be combined to
form higher-level transformations, that can be used to instantiate and evolve a framework.

• we define change propagation and software merging algorithms, that are based on the formal
metapattern model and its associated transformations, and that can be used to assess the
impact of a particular change upon the framework and its existing instances.

Additionally, we also provide a number of practical contributions:

• we present an environment in which this formal model is implemented, that provides elab-
orate support for framework-based development based on this model and that is integrated
into a standard development environment.

• we show how a declarative meta-programming environment can be used to implement so-
phisticated tools and techniques that support various software development activities.

• we identify previously undocumented design problems in HotDraw, a popular and well-known
framework that we used to perform our experiments.

1.4 Research Context

The research reported upon in this dissertation forms part of a larger research effort conducted at
the Programming Technology Lab. The main goal of this research is to build sophisticated tools
and techniques that support the software development process in all of its aspects.

Several people involved in this research use the emerging technique of declarative meta pro-
gramming to build state-of-the-art programming environments:

• In his dissertation on ”Type-Oriented Logic Meta Programming” [DV98], Kris De Volder
proposes to use a logic meta-programming language (called TyRuBa) to extend the expres-
siveness of current type systems. He advocates the active usage of types, to enable conditional
implementation of methods and automatic positioning of abstract code, for example. His
approach is based on representing a program in terms of high-level descriptions and low-
level pieces of Java source code. An intelligent code generator assembles all descriptions and
generates appropriate Java code automatically. As it turned out, the approach was general
enough to describe aspect-oriented programming as well [DV99].

• Kim Mens uses the declarative meta-programming approach in his dissertation [Men00] to
verify the conformance of an implementation to its intended architecture automatically. He
achieves this by taking advantage of the powerful features of a logic programming language,
to define an expressive architectural language for declaring architectures and their mapping
onto implementation artifacts. Based on this high-level architecture language, he defines a
conformance checking algorithm and provides a prototype implementation for it.
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• In Roel Wuyts’ dissertation [Wuy01], declarative meta programming is used to support
the co-evolution of design and implementation. He defines design as an abstraction of the
implementation and expresses design as a logic program. By integrating the logic meta-
programming language into a standard development environment, he is able to implement
a synchronization framework that keeps the design and the implementation of a system
synchronized automatically.

• Johan Brichau builds upon the work of Kris De Volder, and uses declarative meta-program-
ming to tackle the problem of aspect combination in aspect-oriented programming [Bri00].
Aspects are described as a logic program, together with a specification of how different as-
pects can be combined. Code generators are then defined that make use of such specifications
to effectively weave different aspects into the source code of a system.

The technique of declarative meta programming has also been used to reason about the (static)
structure of object-oriented programs [Wuy98], and to define architectural transformations that
allow significant optimization of object-oriented programs [TDM99]. As we will show in this
dissertation, declarative meta programming can also be used to implement an environment that
supports framework-based development. The technique of declarative meta programming, and
the specific reason why it is very well suited for our purposes, will be discussed in more detail in
Chapter 6.

Other people have exploited other interesting techniques:

• In [Luc97], Carine Lucas introduced reuse contracts as structured documentation to support
the evolution of reusable components. Reuse contracts document structural dependencies
between components in an object-oriented system. This provides reusers of these components
with crucial information about their operational behavior. Furthermore, reuse contracts can
only be composed or adapted by means of certain predefined reuse operators. These enable
reusers to explicitly document the assumptions they make about the components they reuse.
As a result, applications are more robust to change, since the documentation allows us to
verify whether these assumptions are broken when changes are made. Similarly, explicitly
documenting where the general design of an application is not respected helps in assessing
where co-operation with this part might cause problems.

• Koen De Hondt’s dissertation [DH98] introduced the notion of software classification as an
approach to architectural recovery in evolving object-oriented systems. He defines a clas-
sification as a grouping of related source code artifacts (although classifications can also
contain other classifications). A classification may be assembled manually by a developer,
or may have been computed automatically (based on method tagging, for example). Once
such classifications become explicit in the software development environment, they can be
exploited in subsequent software development activities. Applications of software classifica-
tion are expressing multiple views on software, recovery of collaboration and reuse contracts
and management of changes, for example.

• In his dissertation [Men99], Tom Mens introduced a domain-independent definition of the
reuse contract approach, and illustrated how it can be used to provide support for software
merging. He proposes to represent software artifacts by graphs, and evolution by means of
graph rewriting. By relying on the formal properties of graph rewriting, such as the notion of
parallel dependence, he can formally define which pairs of modification operations (formally
represented as graph productions) yield an evolution conflict.

1.5 Outline of the Dissertation

In Chapter 2 we introduce the notions of object-oriented frameworks, design patterns and meta-
patterns. Readers familiar with these topics can safely skip the corresponding sections. We also
provide an overview of related work on the topic of the dissertation.
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In Chapter 3, we will study a small-scale framework that we implemented and that serves
as a proof of concept throughout the dissertation. We will discuss the design patterns that this
framework uses and show that they expose important and valuable information. Moreover, we will
illustrate that evolving even such a small framework is far from straightforward, and explain the
various problems that a developer is faced with. At the same time, we will discuss how information
about design patterns can facilitate this task.

In Chapter 4, we summarize the problems associated with framework-based development we
want to tackle, based on the discussion in Chapter 3. We propose an approach to overcome these
problems, that uses design patterns as an explicit documentation technique and metapatterns as
a basis to ensure the scalability and extensibility of our approach.

In Chapter 5, we provide a formal definition for metapatterns, that allows us to describe ac-
curately and precisely a metapattern’s participants, its relations and collaborations, as well as
the constraints it imposes upon the implementation. Furthermore, we formally define transfor-
mations that automatically make changes to these metapatterns, while at the same time ensuring
the metapattern constraints remain satisfied. Together, the metapattern descriptions and the
transformations allow us to define how changes propagate through the framework.

In Chapter 6, we show how this formal model can be integrated into an environment that
supports framework-based development and how it can be used in practice. We will illustrate
how the example Scheme framework can be documented explicitly by means of the design pattern
instances it uses, and how such information allows us to provide support for instantiating as well
as evolving the framework.

In Chapter 7, we illustrate how support for software merging can be provided by means of the
metapattern transformations and refactorings. We will formally define the conditions that give
rise to merge conflicts when the transformations and/or the refactorings are applied in parallel.
This not only allows us to detect such conflicts, but also enables us to state how such conflicts can
possibly be resolved.

In Chapter 8, we perform some initial experiments on a real-world framework in order to
validate our approach. We will document the HotDraw framework, and show how support is
provided for its instantiation. We will also consider how the HotDraw framework evolved and
discuss how this impacted its derived applications. Our choice for HotDraw is motivated by
the fact that we need a controlled setting in which to perform some preliminary analysis of the
strengths and weaknesses of our approach. Only in a later stadium will we be able to validate
on industrial case studies. Nonetheless, despite the fact that HotDraw is a widely used, well
studied and extensively documented framework, we will show that the developers responsible for
its evolution failed to notice various design conflicts and inconsistencies, that can be identified by
our approach.

In Chapter 9, we summarize the contributions and conclusions of this dissertation and discuss
some interesting issues that remain to be investigated.
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Chapter 2

Preliminaries

In this chapter, we provide some background information on the topic of this dissertation and dis-
cuss some work that is related to it. We first introduce the notion of (object-oriented) frameworks
and design patterns. Then, we present an overview of related work in the area of documentation,
instantiation and evolution of object-oriented frameworks and we discuss metapatterns.

2.1 Framework Terminology

This section introduces the terminology that will be used throughout the rest of the dissertation.
We will clarify what we mean by a framework, its design, instantiation and evolution and dis-
tinguish between the different developers that work with a framework. Readers that are already
familiar with those concepts can safely skip this section.

2.1.1 Definition of a Framework

Frameworks have been gaining widespread acceptance in the last decade and are still increasing
in popularity. To understand why this is the case, we should first define what a framework is.
Many definitions of the concept of a framework have been proposed in the literature [JF88, JR91,
Tal94, Szy98, Bra98], and each one is equally valid. For the purpose of this dissertation, we use
the definition found in [JF88]:

Definition 1 (Framework) A framework is a set of classes that embodies an abstract and re-
usable design for solutions to a family of related problems in a particular domain.

This definition clearly states that frameworks are specific to a particular domain. Over the
years, many different frameworks have been developed for a myriad of domains, including graphi-
cal user interface frameworks [WGM89, WRS90, Gol00], graph-based editors [Bra95] and network
servers [Mic96], to mention only a few. A good framework captures important knowledge about the
domain with the specific intent of reusing this knowledge across different applications. This reuse
is achieved by carefully analyzing the domain and identifying the parts that are common to all
applications and the parts that differ. The common parts are referred to as the commonalities of
the applications, while the differing parts are called the variabilities. A framework captures these
commonalities and thus allows applications to reuse the common parts. Additionally, the frame-
work specifically provides support for the variabilities, by defining hooks that allow applications
to provide their own specific behavior.

Furthermore, the definition states that a framework offers a particular design that is abstract
and that can be reused by many different applications. This is an important consideration, as
it means that frameworks allow reuse beyond the implementation level. As a result, we can
develop an application without the need to design it from scratch, which is a significant advantage:
applications can be developed much faster, are less prone to errors and look more consistent to
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the end user, since they are all based on the same “core” implementation. This is exactly what
makes framework-based development so attractive.

2.1.2 Definition of Design

The design of a framework is defined in the following way [GHJV94]:

Definition 2 (Framework Design) The design of a framework contains its partitioning into
classes and objects, the key responsibilities of these classes, their interfaces, the structural and
behavioral relationships between them and the overall thread of control.

In fact, the design translates the commonalities and variabilities of the domain into so-called
frozen spots and hot spots respectively [Pre95]. The frozen spots implement those parts of the
framework that are fixed and need not be changed by specific applications. The hot spots on the
other hand, define those parts where particular applications can specify their own implementation
in order to tailor the framework to their specific needs. Typically, hot spots are implemented by
abstract classes and abstract methods. An abstract class captures an important concept of the
domain and defines the appropriate interface for it. It defers the implementation of application-
specific behavior to the appropriate subclasses by providing the necessary abstract methods but
may also implement default behavior if this is possible.

The design also predefines the structural and behavioral relationships between the classes
present in the framework. The former are concerned with the mutual relation between specific
classes. They specify for example whether inheritance, aggregation or a combination of both
should be used. The behavioral relationships are more concerned with the runtime behavior of the
application. They focus on the way objects of specific classes should be composed, for example.

Furthermore, the design captures the overall thread of control of an application by specifying
how the (abstract) classes interact and collaborate based on the interfaces they provide. Applica-
tions can provide their own specific behavior by deriving concrete classes from the abstract classes
and overriding the key (abstract) methods, thereby filling in the hot spots. These application-
specific methods will eventually get called by the framework when the application is running.
Observe the pronounced contrast with applications built using a class library. The methods that
are provided by the class library are called by the application code, whereas in this case, the
methods of the application code are called by the framework. Frameworks thus achieve what is
called inversion of control, which is often referred to as the Hollywood Principle: “Don’t call us,
we’ll call you” [PC95].

2.1.3 Instantiation of a Framework

A framework only offers an abstract design for an application. In order to build a concrete
application, the design (and the corresponding implementation) needs to be completed first. This
activity is called instantiating the framework:

Definition 3 (Framework Instantiation) Deriving an application from an existing framework
is called instantiating (or specializing) that framework. A concrete application derived from a
given framework is called an instance, an instantiation or a specialization of that framework.

A framework is instantiated by providing it with the required application-specific behavior.
Typically, this behavior is added to the framework by filling in the appropriate hot spots. Most
of the time, this boils down to deriving concrete classes from the appropriate abstract classes
and overriding their abstract methods. The structural and behavioral relationships defined by
the framework and the overall thread of control can thus be reused. As such, building a concrete
application through a framework requires a minimum of effort, which is one of the important
advantages of framework-based development.

Note that the design of an application is dictated by the framework from which the application
is derived, since it is the design of the framework that is actually reused. When instantiating
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a framework, care should thus be taken that the application does not break the design of the
framework, since this can possibly result in code duplication, inconsistencies or unwanted behavior.
Thus the framework actually constrains the design of the application.

2.1.4 Evolution of a Framework

As a framework is reused to build concrete applications, certain shortcomings in its design may
be discovered. For example, the design may not be suited to allow certain extensions easily, or
it may not incorporate the appropriate abstractions needed by most applications in the domain.
Moreover, new requirements may need to be incorporated into the framework and it may turn out
that the design of the framework obstructs a smooth integration. To cope with these situations,
the design of the frameworks should be adapted. This activity is called evolving the framework:

Definition 4 (Framework Evolution) Each change that is made to the framework’s design is
considered an evolution of that framework.

Evolving a framework is a difficult task. Care should be taken that important relationships and
collaborations between classes and methods that should be preserved, remain intact. Furthermore,
applications derived from the framework make assumptions about the framework’s design, since
they build on the abstract classes and methods of the framework. If the design is changed, these
assumptions may no longer be valid. Evolving a framework will thus have an impact on all
applications derived from it. This impact has to be assessed and the necessary changes to the
applications need to be applied as well. Observe also that changes to the design of the framework
inevitable require changes to the implementation as well, since design is merely an abstraction of
the implementation [Wuy01]. Not every change to the implementation is a change to the design
however. For example, changing the name of a temporary variable can hardly be called a change
to the design of a framework, and is thus not considered as an evolution of it.

We can distinguish between two different types of evolution: anticipated and unanticipated
evolution. As its name suggests, anticipated evolution occurs when the original developer of a
framework has anticipated the changes a framework may be subject to, and has made special
provisions so that these changes can be integrated smoothly into the existing design. Conversely,
unanticipated evolution occurs whenever the changes that should be applied to a framework were
not foreseen by its original developers. Such changes are thus hard to integrate into the existing
design, and often require preparatory changes first.

A developer can evolve a framework by hand or with the help of a tool that guides him
while performing his task [RBJ97, FMvW97, O’C01]. We will refer to the former approach as
manual evolution, while we will consider the latter approach supported evolution. When evolving
a framework manually, it is the developer’s responsibility to make sure the appropriate design
constraints are still adhered to after the changes. If this is not the case, the framework’s design
may deteriorate. After a couple of such erroneous changes, the framework’s implementation drifts
away further from the intended design. This phenomenon is referred to as design drift [vGB01].
Moreover, the developer should also be able to assess the impact of his changes on the existing
framework instances. With supported evolution, the developer uses a tool that helps him to make
the appropriate changes. The tool may supervise the developer to make sure he does not violate
particular design constraints, can provide parts of the necessary implementation automatically
and can point out where framework instances may be impacted, for example. In this way, the risk
of design drift is alleviated to a large extent.

An important thing to observe is that our definition of evolution allows instantiation to be
seen as a special kind of evolution. When instantiating a framework, its design is changed be-
cause classes and methods are added to its implementation. Furthermore, both instantiation and
evolution should ensure that the appropriate design constraints are preserved. The main differ-
ence between evolution and instantiation is that the latter operation does not change any of the
framework’s design constraints, whereas the former does.
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Figure 2.1: Merging parallel changes

2.1.5 Software Merging

A framework is a large and complex software artifact, which is often developed by a whole team of
developers. This can give rise to a situation where two (or more) developers evolve the framework
at the same time, independently of one another.The result is that two versions of the framework
exist, each one incorporating only one particular evolution. Such a situation should be avoided, as
it leads to a proliferation of different versions of the framework that can quickly become unman-
ageable [CDHSV97]. To overcome this problem, the different versions of the framework should be
merged into one single version (see Figure 2.1) [SLMD96, Men99, Men02].

Software merging is a time-consuming, complicated and error-prone process, because many
interconnected elements are involved and because merging depends on both the syntax and the
semantics of these elements. Moreover, merge conflicts may occur, due to the fact that parallel
changes may involve the same artifact.

Definition 5 (Merge Conflict) A merge conflict occurs when two (or more) changes are applied
in parallel, and one change breaks the assumptions made by other changes

To help a developer in merging different versions of the software and detecting possible merge
conflicts, a number of different merge algorithms exist [Men02]:

Textual merging With textual merging, software artifacts that should be merged are considered
as mere text and are compared to one another. The most common approach is to use line-
based merging, which detects common text lines in parallel modifications, as well as text
lines that have been inserted, deleted, modified or moved.

Syntactic merging also takes the syntax of software artifacts into account. A merge tool that
uses syntactic merging will only report conflicts when the merged result is not syntactically
correct with respect to the programming language’s syntax. Such conflicts are normally
detected by an ordinary compiler

Semantic merging approaches detect conflicts when the merged result is syntactically correct,
but behaves in unforeseen ways. Such behavioral conflicts can only be detected by taking
into account the run-time semantics of the code.

Structural merging arise when one of the changes to a software artifact is a restructuring (or a
refactoring) and the merge algorithm cannot decide in which way the merged result should
be structured.

Moreover, we can distinguish between state-based and change-based merge techniques that
can be used to detect syntactic, semantic of structural merge conflicts. With state-based merging,
only the information in the original version and/or its revisions is considered during the merge.
In contrast, change-based merging additionally uses information about the precise changes that
were performed during evolution of the software. Operation-based merging is a particular flavor
of change-based merging, that models changes as explicit operations or transformations. These
evolution operations can be arbitrarily complex,. With operation-based merging, we do not need
to compare the parallel versions of a software artifact entirely, since it suffices to compare only the
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evolution operations that have been applied to obtain each of the versions. For certain combina-
tions of operations, conflicts can be reported. Operation-based merging is general in the sense that
it can be used for detecting syntactic, structural and even some semantic conflicts. In Chapter 7,
we will elaborate on the issue of software merging in more detail.

2.1.6 Framework Developers

Framework development typically includes two separate activities: developing/evolving the frame-
work and instantiating it. Although both activities can be performed by the same developers, we
prefer to distinguish between two kinds of developers: framework developers and application de-
velopers:

Definition 6 (Framework Developers) The framework developer designs and implements the
framework and creates the skeleton for the applications that are built upon the framework. The
application developer instantiates the framework to build concrete applications.

The framework developer is responsible for designing and implementing the framework. There-
for, the framework developer is often an expert in the domain for which the framework is built,
since he needs to be able to identify the appropriate commonalities and variabilities. Furthermore,
a framework developer should possess excellent programming skills, to ensure a flexible, exten-
sible and reusable design. Framework developers are often also responsible for documenting the
framework and explaining how it should be instantiated. They have intimate knowledge of the
framework and its internal workings, and should communicate this information to the application
developers. Due to this fact, they are also in charge of evolving the framework, when required.

An application developer builds concrete applications by instantiating the framework, by fill-
ing in the appropriate hot spots with the application-specific behavior. Application developers
typically don’t need to be experts in the domain, as they can just reuse the framework and the
knowledge incorporated in it. Furthermore, instantiating the framework only requires informa-
tion about the specific hot spots, so an application developer typically has little knowledge of
the internal workings of the framework. As a consequence, they are normally not responsible for
evolving it. However, they do need to be able to evolve their applications appropriately in order
to resolve conflicts due to the evolution of the framework itself. In practice, however, application
developers often also evolve the framework, since they know the functionality that is missing and
may want to incorporate it themselves. However, since they lack the appropriate knowledge, the
risk of introducing errors and inconsistencies in the framework design and implementation is very
high.

2.2 Introduction to Design Patterns

One of the major contributions of a framework is its abstract and reusable design. Formulating
such a design is a very hard task. The framework developer needs to identify the classes that
need to be defined, their individual responsibilities, the mutual relationships between them, the
interface each of them needs to implement and the way their instances collaborate. Furthermore, in
order to achieve the required level of reusability, the developer also needs to recognize which parts
of the framework could possibly be reused across different applications and needs to implement
these parts as flexible as possible. It is clear that this is not at all straightforward.

Successful designs do exist, however, and much can be learned from them. The particular
problems the design addresses and the specific solutions it offers should be studied so as to build
a library of tricks and techniques for solving related problems. In fact, this is what distinguishes
experienced software developers from inexperienced ones: due to the knowledge they acquired over
time, experienced software developers are often able to implement a good solution for a particular
problem by adapting a solution already applied for a similar problem.

In recent years, much attention has been paid to studying good designs with the particular
aim of building a library of flexible and reusable solutions for a range of problems that frequently
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occur when designing software. This resulted in design pattern catalogs [GHJV94, BMR+96,
CS95, MM97, Lea96, ABW98], that are put together by experienced developers with the aim of
communicating successful and flexible designs for problems that occur over and over again. In
the remainder of this section, we first present a brief overview of design patterns in general (for
a more detailed discussion, we refer to [GHJV94]). In the remainder of the dissertation, we will
make use of design patterns to document the design of an existing framework, and show how the
information they convey can be used to provide support for framework-based development.

2.2.1 Defining and Describing Design Patterns

A pattern, in the broadest sense of the word, describes a successful and reusable solution for a
problem in a particular context that appears over and over again [Ale79]. A design pattern, which
is a particular flavor of a pattern, then forms a description of communicating objects and classes
that are customized to solve a general design problem in a particular context [GHJV94]. It focuses
on the relationships between classes and the way their objects interact in order to achieve a certain
behavior in a reusable and flexible way. A design pattern instance is a particular occurrence of a
design pattern in a software system, just as an object is a particular instance of a class.

A design pattern generally consists of four essential elements:

• The pattern name is used to identify the design pattern. Naming a design pattern allows us to
talk about a design at a higher level of abstraction and enables us to define a common design
vocabulary. As such, it makes it easier to communicate the design and its particular benefits
and trade-offs to the developers. This is important with respect to the documentation, for
example.

• The problem describes the specific circumstances under which the design pattern should be
applied. It explains the problem and the context in which it occurs in detail. This can be
done by providing simple examples as an illustration or by including a list of conditions that
should be met before the design pattern can be applied.

• The solution describes the solution the design pattern proposes to solve the given problem.
It does this in terms of classes and methods, their mutual relationships, responsibilities and
collaborations. The solution does not describe a concrete design, let alone an implemen-
tation, since it must be applicable in many different circumstances. It only describes a
template for the specific design and implementation.

• The consequences are the particular benefits and trade-offs that result when applying the
design pattern. This is an important factor to consider when looking for a particular design
pattern and considering various design alternatives. Often, the consequences will involve the
space and time trade-offs of the design pattern, as well as specific language and implementa-
tion issues. The consequences also include the impact of the design pattern on the flexibility,
reusability and extensibility of the design.

Design patterns are documented in design pattern catalogs [GHJV94, BMR+96, CS95, MM97,
Lea96, ABW98], of which [GHJV94] is probably the most well-known. These catalogs each
describe the design patterns in a consistent format, which includes various sections that provide
detailed information on the essential elements presented above. An important property of this
format is that it does not only focus on the problem the design pattern tries to solve. This
would only capture the end result of the design process, as a description of the classes and their
relationships. To be able to fully understand, communicate and reuse the design, it must also
describe the various decisions, alternatives and trade-offs that led to it. The format therefore
consists of the following sections:

Pattern Name and Classification The name of the design pattern under consideration.

Also Known As This section lists the other names by which this design pattern also goes, if
there are any such names.
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Intent The intent briefly describes the specific purpose of the design pattern and provides an
answer to the question which design problem the design pattern addresses.

Motivation The motivation section often contains a concrete example of the design problem and
shows how the class and object structures in the design pattern can solve it.

Applicability The applicability section lists the circumstances in which the design pattern can
be applied and provides hints on how to recognize these situations.

Structure This section consists of a graphical representation of the participants of the pattern
and the relationships between them.

Participants A list of the classes, objects and methods that participate in the design pattern,
together with a description of their primary responsibilities.

Collaborations A description of how the participants of the design pattern collaborate to carry
out their responsibilities and achieve a certain behavior.

Implementation The implementation section explains which techniques and language features
can be used to implement the design pattern’s solution. If there are any language-specific
issues, they are also addressed.

Sample Code This section contains sample code fragments that show how a design pattern’s
solution could be implemented in a particular programming language.

Consequences This section discusses the various trade-offs and results of using the design pattern
and explains how the design pattern makes the design more flexible and reusable.

Known Uses This section contains examples of the use of the design pattern in real-world sys-
tems.

Related Patterns This section discusses other design patterns that can possibly also be used to
solve the given problem and explains the primary differences between them. It also mentions
how this design pattern can be combined with other design patterns.

As can be seen, a lot of useful and important information is conveyed within this template. It
describes under which circumstances the design pattern can be used to solve a particular problem
and it mentions the particular advantages and disadvantages of using the design pattern, in order
to allow estimating its costs and benefits. The solution is described in terms of classes and their
objects, their specific roles, relationships and collaborations and the distribution of responsibilities
amongst them. Some of this information is expressed in natural language (the Intent, Motivation
and Applicability sections, for example), while other information is presented in a more formal
way (such as in the Structure, Participants and Sample Code sections).

2.2.2 Design Pattern Benefits

Design patterns can help in solving many of the problems developers face when designing software.
In the following paragraphs, we will shed a light on how they achieve this.

• Design patterns define a common vocabulary among developers. Naming a design pattern
allows developers to communicate the design of a framework at a higher level of abstraction.
Developers can talk about a design with other developers and in the documentation, without
bothering about the specific implementation details. Having a common vocabulary makes it
easier to think about designs and to communicate them and their benefits and trade-offs to
others.
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• Design patterns help in identifying abstractions and the objects that capture them. In order for
a framework to be successful, it has to provide the appropriate abstractions for its domain, so
that they can be reused by applications. Identifying these abstractions, defining the classes
that represent them, together with their respective responsibilities is thus an important task
of a framework developer. This is not at all trivial, since many factors come into play: the
flexibility, efficiency, reusability, etc of the classes has to be determined. Often, an object-
oriented framework is modelled after the real world, and objects found during the analysis
phase are translated into design. Not all objects do have a counterpart in the real world,
however. Design patterns help in identifying such less obvious abstractions and the objects
that can capture them.

• Design patterns help to determine the right granularity for objects. Objects can vary greatly
in size and number. Low-level entities, such as arrays, as well as high-level entities, such
as complete applications, can be represented by an object. It is the developer’s task to
determine the appropriate granularity. Design patterns can help here, by describing how
to represent complete subsystems as objects, how to support huge numbers of objects at
the finest granularities, how to decompose objects into smaller ones and how to distribute
responsibilities appropriately.

• Design patterns help in defining appropriate interfaces. The framework developer is respon-
sible for defining the appropriate interface for an object. A good interface is the key to
flexibility and reuse, since late binding depends upon it: objects with the same interface
can be substituted for one another. Design patterns help defining interfaces by identifying
key elements and the kinds of data that get sent across an interface. They also specify
relationships between different interfaces, require classes to have the same interface or place
constraints on the interfaces of some classes.

• Design patterns help in specifying actual object implementations. They explain the circum-
stances under which class inheritance should be used instead of interface inheritance, for
example. They promote programming to an interface instead of an actual implementation,
which makes a framework independent of the concrete objects it uses and reduces imple-
mentation dependencies. Furthermore, they show how important object-oriented features,
such as inheritance, late binding and polymorphism, and powerful tricks and techniques,
such as object composition and delegation, can be used to implement flexible and reusable
frameworks.

• Design patterns help to implement frameworks that are designed for change. Each design
pattern lets some aspect of a framework vary independently of other aspects, which makes
the framework more robust towards a particular change. In other words, design patterns
help in implementing the hot spots of a framework in a flexible and extensible way. This
helps in avoiding major redesigns in the future by ensuring that a framework can change in
specific and predefined ways.

Besides these benefits, the information conveyed within a design pattern description can also
be used to document the design of a framework and communicate it to other developers [BJ94,
Joh92, LK94, MDE97]. This will be shown in Chapter 3.

2.2.3 Design Pattern Pitfalls

Obviously, design patterns not only offer advantages, but also exhibit some important disadvan-
tages

• Design pattern can complicate the design. Design patterns achieve flexibility by introducing
extra abstractions and indirections. These may make the resulting design harder to under-
stand at first glance, since these abstractions and indirections may not be obvious from the
start. Carefully documenting the design patterns that are used in a framework is thus crucial
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for understanding its design, especially for novice developers that may not yet be familiar
with the concept of design patterns.

• Design patterns may induce overdesign. Exactly because of the popularity of design patterns
and their alleged benefits, developers may be tempted to overdesign a framework. They
may apply design patterns in places where their flexibility is not strictly needed, thereby
contributing to a more complicated design. This is acknowledged in [GHJV94], where it is
stated that one should design to be as flexible as needed, not as flexible as possible.

• Design patterns may influence performance. Because design patterns introduce extra ab-
stractions and indirections, the implementation they lead to is often less efficient than a
more straightforward implementation [TDM99, SLCM00]. Performance is already an issue
in object-oriented programming languages, since late binding and polymorphism are respon-
sible for the fact that compilers can not apply traditional optimization techniques (such as
inlining) [Cha92]. Adding more flexibility through extra indirections clearly only aggravates
this situation.

• [AC98] argues that the common design vocabulary defined by design patterns easily becomes
unmanageable given the current increase in the number of design patterns. Furthermore,
because so many design patterns keep being discovered in so many domains, it will become
harder to identify the design pattern that can or should be used to solve a particular problem.
This may dissuade developers from using design patterns.

• Design patterns suffer from traceability and implementation overhead problems [Bos98]. On a
more technical level, design patterns suffer from what is called the traceability problem. The
application of a particular design pattern is often obfuscated, since a developer is required to
implement the design pattern over multiple classes and methods, because the programming
language does not support a corresponding concept. A conceptual entity at the design level
is thus scattered over multiple places in the implementation. Furthermore, while design
patterns ensure a flexible and reusable implementation, the implementation of these design
patterns itself is not at all reusable. Due to a lack of powerful environments that support
working with and manipulating design patterns, the developer is forced to implement several
classes and methods with trivial behavior over and over again. This problem is known as
the implementation overhead problem.

• Design patterns have no formal basis. The increase in the number of design patterns, and
the fact that design patterns have no formal basis at all, makes it hard to provide appro-
priate tool support, as is acknowledged in [EHY98, EGY96, EGHY99, Ede00, TN01]. Such
tool support is needed, however, in order to assist developers in using design patterns and
profiting maximally from their undeniable benefits. Tool support for automatic code gen-
eration [BFVY96, DV01], retrofitting design patterns in an existing design [TB95, TB99,
RBJ97], choosing the appropriate design pattern, and so on, will become indispensable.

2.2.4 Conclusion

From the above discussion, a number of important issues can be concluded. First of all, design
patterns expose important information about the design of a framework.They identify the key
classes and methods of the framework, and thereby clarify the particular relationships, collabo-
rations and interactions between them. Second, design patterns specify how a framework can be
evolved. They implement the hot spots and the frozen spots of the framework, and in this way
define how and where the framework can be extended. Third, design patterns provide hints for
the actual implementation of classes and methods. The relationships and interactions defined by
a design pattern show how classes should be related, which other classes a class should use and
how a method should call other methods to implement the appropriate behavior. Fourth, due to
a lack of a formal model for design patterns, providing tool support is difficult, as is using design
patterns as a documentation aid.
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2.3 Related Work

Related work is situated in the areas of framework documentation techniques, tools that support
the instantiation and evolution of a framework, and design pattern formalization.

2.3.1 Framework Documentation Techniques

Since documenting a framework in an adequate way is an inherently difficult task, several ap-
proaches to framework documentation exist. Most framework-documentation techniques focus on
the application developer, since he must implement the concrete applications and should reuse
the framework. We can distinguish between those approaches to documentation that merely try
to document the framework, and those that try to use the documentation in an active way to
support the developer working with the framework. We will discuss approaches of the latter kind
in other sections, and will restrict ourselves to passive documentation techniques here. Moreover,
we do not aim to give a complete overview of the domain of framework documentation techniques.
Rather, we highlight some of the more interesting approaches.

Several authors advocate the use of patterns as a form of framework documentation. In [Joh92],
Johnson proposes to use patterns to describe the purpose of a framework, learn application de-
velopers to use a framework without knowing the internal details and teach many of the design
details embodied in a framework. He validates this approach by defining a number of such patterns
for the HotDraw framework [Bra95]. [MCK97] builds upon this approach and uses a combination
of catalog patterns, application patterns and design patterns to document a framework. Catalog
patterns document a framework’s application domain, main features and scope, whereas applica-
tion patterns corresponds to Johnsons notion of patterns to document a framework, and design
patterns provide detailed information about the design of the framework. Similarly, [LK94] also
uses Johnsons patterns (which are termed motifs in their approach) in combination with design
patterns and formal contracts [HHG90]. Again, the emphasis of this approach is on document-
ing how to use a framework. [OQC97] promotes the principle of documenting by designing by
using design patterns. The idea is that design pattern related activities, such as searching for
the appropriate design pattern and fitting it into the source code, produce parts of the design
documentation. Such documentation shows the path that was followed from the initial problem
to the actual solution, and discusses the advantages and disadvantages of the resulting design.

In [FPR00], Pree presents an extension to the Unified Modeling Language (UML) which sup-
ports working with object-oriented frameworks. The general goal is to make the intentions of the
framework developer more clear by explicitly representing framework variabilities (the hotspots of
the framework) and their instantiation restrictions in the various UML diagrams. This is achieved
by using stereotypes to introduce tagged values. For example, methods can be marked with a
tagged value {variable} to indicate that their implementation can vary depending on the frame-
work instantiation. Classes can be marked with a tagged value {extensible} which denotes that
their interface may be extended during instantiation.

[BGK98] introduces the concept of reuse cases to document the way a framework can be
instantiated. A reuse case is actually a specialized use case [JCJO92]. Such a use case describes
a subset of a system functionality in terms of the interactions between the system and a set of
users. A reuse case, on the other hand, describes a well-defined way of reusing a framework. A
reuse case has a name that uniquely identifies it, a purpose that captures the effect of executing
the reuse case in the context of the framework, the roles of the actors in the reuse case (such
as framework developer, application developer, etc.) and the scenario that presents the actual
steps involved in reusing the framework. Additionally, there may be cross-references to further
information, including other reuse cases, architectures, design patterns, contracts and source code.

In [GM95], the authors argue that applications should be build in a top-down fashion as opposed
to the traditional bottom-up way. Instead of assembling fine-grained components, application
developers should try to understand and adapt so-called exemplars. An exemplar is an executable
visual model consisting of instances of concrete classes together with an explicit representation of
their collaborations. For each abstract class in the framework, at least one of its concrete classes
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has to be present in the exemplar. Since even large frameworks have only a limited number of
abstract classes, a small number of instances already suffice for creating an exemplar. Exemplars
are provided by framework developers, and are explored interactively by application developers in
order to understand the relationships and responsibilities of classes in the framework. To build an
application, the application developer chooses a particular exemplar and modifies it to his specific
needs.

In summary, besides the fact that these documentation techniques do not allow the information
to be used actively by a supporting tool, they exhibit a number of other disadvantages. First of
all, the information is not expressed in a formal way, but only in natural language. This makes
it inherently ambiguous since it is up to the reader of the documentation to interpret it. Second,
the documentation is not updated automatically when the framework or its applications evolve.
Since a framework is subject to constant evolution, this is quite cumbersome and the cause of why
documentation is often outdated.

2.3.2 Tool Support for Framework Instantiation

To support the task of an application developer, several tools have been developed that provide
active guidance for instantiating a framework. We will discuss a number of these tools in the
following subsections.

Specialization Patterns

In [HHK+01a, HHK+01b], the authors show how the hot spots of a framework can be documented
by means of specialization patterns. A specialization pattern is a specification of a recurring
program structure that can be instantiated in several contexts. It consists of roles that are
played by structural elements of the framework, and various properties associated with these roles.
Structural elements can be classes, methods or variables, so there are class roles, method roles and
field roles. For each kind of role, there is a set of properties that can be associated with the role.
For a class role, for example, there is an inheritance property that specifies the required inheritance
relationship for each associated class. These properties are called constraints, since they specify
requirements for the static structure of the program elements. Furthermore, a distinction is made
between framework roles, that are bound to framework source code entities, and application roles,
that are bound to application-specific source code entities. When a framework developer has
specified the hot spots of the framework as specialization patterns, pattern initialization takes
place, a process that instantiates the patterns and binds their framework roles to framework
source code entities. All other roles are left for the application developer to bind. Based on these
unbound roles, a task list will be generated that contains the tasks an application developer has
to perform. This task list is inherently dynamic: as a task is completed, new tasks can be added
to the list. Changes that are made by the developer performing a task are monitored and their
validity is checked against the constraints specified in the patterns. Possible violations result in
the generation of refactoring tasks. In this way, the proper use of the framework is constantly
validated and supervised by the tool.

Currently, specialization patterns are mainly intended to be used as an underlying basis for
tools that support framework instantiation. Although they contain important information about
the design of a framework, their current incarnation does not easily allow them to be used for
documentation purposes. They do not expose information about the design rationale, for exam-
ple, and it is not clear if information about bound framework and application roles is stored, in
which form it is stored, and whether it is available for querying and browsing. Moreover, special-
ization patterns can not be used to support framework evolution, as they only allow to extend
a framework with classes and methods, but do not include actions that remove or change exist-
ing elements. A forteriori, specialization patterns can not be used to support software merging.
Another major shortcoming of the approach is that it ignores the fact that a framework consists
of many specialization patterns, that are related: one element may fulfill a particular role in a
multitude of specialization patterns. Such ’relationships’ between specialization patterns are not
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explicit however, and a developer is thus forced to bind the element to each role separately and
explicitly. This leaves room for errors, of course, which might result in incorrect applications being
instantiated. An improvement would thus consist of automatically deriving which specialization
patterns are related and how this affects the binding of elements to roles.

Smartbooks

In [OC00, OCS99], an environment is introduced to automatically guide an application developer
when instantiating a framework, based on a combination of user-task modeling and least commit-
ment planning methods. The environment is build around a planner that, given the functionality
the application developer wants, automatically produces an instantiation plan. This plan is a set
of tasks that must be executed in order to obtain the desired functionality. The input for the
planner is a set of rules that are provided by the framework developer and describe the necessary
steps to obtain the desired functionality. Such rules actually consist of a list of preconditions and
a postcondition and represent an instantiation task. This task is executed whenever the precon-
ditions hold and results in a satisfaction of the postcondition. The planner thus always tries to
satisfy the preconditions of a rule for which the postconditions are goals. The planner is integrated
in an environment that allows the framework developer to document the framework by means of
instantiation rules (together with traditional design information) that describe the functionality
that can be implemented using the framework and how this functionality is related with the frame-
work components (e.g. the source code). The environment then shows all functionalities provided
by the framework to the application developer, who can select the appropriate functionality for his
specific purposes. This results in the generation of an instantiation plan, containing the various
tasks that the application developer should carry out. Because the environment is integrated in
a standard development environment, and because the information is provided in a formal and
executable medium (resembling a logic programming language), some tasks can be performed
automatically, whereas others must be executed manually by the application developer.

Reasoning With Design Knowledge

In [DMDGD01], Demeuter et al introduce a knowledge-based system that incorporates knowledge
about the design of the framework and the specific ways in which it can be reused. They show
how this system can be used to interactively guide the application developer, thereby enhancing
the quality of the applications he derives from the framework. The knowledge-based system is
integrated within a standard development environment, and interacts with the developer, similar
to a programming wizard. The control over the reuse process is in turn with the system and with
the developer. The developer can turn to the system for help, and the system reacts by providing
him with a number of possible reuse recipes. The developer then performs the necessary steps
to execute the recipe. When the developer has made some changes, the system can again take
control and provide him with further instructions. The system remembers the specific steps of
the recipe that the developer already performed and those that he did not. It can thus adapt its
advice to the concrete situation the developer is in.

The knowledge-based system that is used in this approach is a general system with some
specific extensions to integrate it into the development environment. It can be provided with
rule sets that describe how to extend the framework, e.g. which classes need to be subclassed
and which methods need to be overridden. Such rules are specified in an intuitive Scheme-like
programming language. Different rule sets have to be provided for different frameworks, but the
knowledge-based system can be reused, thanks to its generality.

2.3.3 Tool Support for Framework Evolution

Refactoring

When evolving an object-oriented framework, it is good practice to first improve its existing
design and only in a later phase extending it. The main motivation is that this should allow the
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desired extensions to be integrated more smoothly. Hence refactorings can be used to support
unanticipated evolution. In that case, they are applied as a preparatory step, to change the design
of the framework in order to allow for a smoother integration of the other changes. Moreover,
splitting the evolution into a redesign and an extension phase allows the developer to validate
the new design separate from the forthcoming extensions. If it is guaranteed that the redesign
phase preserves the overall behavior of the framework, then errors can only be introduced in the
extension phase which is the only portion of the framework that should be validated. Preserving
the behavior of a framework while at the same time altering its design can best be achieved by
automating the transformations that should be applied. Such automated transformations that
preserve the behavior are called refactorings [Opd92, Rob99, Fow99, Tic01].

In his doctoral dissertation, Opdyke was the first to coin the term refactoring [Opd92]. He
identified a number of low-level refactorings for the C++ programming language (such as adding
a new class or removing a formal parameter from a method), and provided a formal elaboration of
the conditions under which these refactorings preserve the behavior of the framework. Basically,
a refactoring transformation can only be applied if the framework’s implementation satisfies a
number of preconditions. For example, adding a new class to the framework requires that this
class does not already exist. Opdyke also showed how higher-level refactorings can be defined by
combining the lower-level ones. Such higher-level refactorings are also guaranteed to preserve the
behavior, since they are composed of lower-level refactorings, that preserve the behavior. Examples
of high-level refactorings are introducing abstract classes into the framework [OR93] and turning
inheritance relationships into aggregation relationships [JO93].

Based on Opdyke’s ideas, tool support for refactoring in the Smalltalk programming language
was provided by means of the Refactoring Browser [RBJ97]. This browser is tightly integrated
with the Smalltalk development environment and provides functionality similar to a standard
browser. Additionally, it allows a developer to select a particular refactoring transformation, and
automatically applies it after checking its preconditions. Besides implementing those refactorings
defined by Opdyke that are applicable to the Smalltalk programming language, some extra refac-
torings are incorporated as well, such as move method across object boundary and extract code as
method.

Fragment Model

[FMvW97, Mei96, vW96, Gru97] introduces a tool that provides extensive support for working
with design patterns, both when developing new frameworks and evolving existing ones. The
tool incorporates three integrated views on the framework that each operate on a different level of
abstraction: the code view (classes, methods, etc. . . ), the design view (abstraction of the code plus
additional information) and instances of design patterns in the framework. Each view supports
operations particular to its level of abstraction. On the design pattern level, a developer can
instantiate design patterns, on the design level he can split classes into a hierarchy and on the
code level he can provide methods with an implementation, for example. Assistance for working
with design patterns is provided in three ways. The environment provides code generation facilities
for design pattern instances, it can integrate design pattern instances into already existing code
by binding program elements to roles in a design pattern and it can check whether design pattern
instances still meet the invariants governing the design patterns and report errors if this is not
the case. The tool is thus mainly useful for supporting anticipated evolution, since it relies on
information about the design patterns and support predefined operations on them.

To achieve this kind of support, the fragment model is used. A fragment represents a particu-
lar design element, which can range from single classes and methods to complete design patterns.
Fragments have roles, that contain references to other fragments, and can have behavior associ-
ated with them, for checking constraints or implementing design pattern specific operations, for
example. These design pattern-specific operations are used to evolve design pattern instances in
predefined ways at a high-level of abstraction. They automatically clone instances of existing
fragments and bind them to the appropriate roles. Operations are provided for adding a concrete
factory class to an instance of the Abstract Factory design pattern and for adding a new composite
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method to an instance of the Composite design pattern, for example. The operations themselves
are implemented in the Smalltalk programming language. Constraints are also pieces of Smalltalk
code that implement boolean checks and that can use a number of predefined inquiry operators to
get to the properties of the fragment they are working on. The constraints are validated whenever
an editing operation (as provided by the fragment) has modified the fragment, or whenever vali-
dation is triggered by another fragment. When inconsistencies are detected, exceptions are raised.
The system includes several possible exception handlers (of which only one can be active at any
given moment). The exception handler is responsible to implement the action that needs to be
taken. Several types are implemented that allow the developer to ignore, discard, warn, repair or
choose between different options when differences between the fragment and the implementation
are encountered.

Reuse Contracts

Reuse contracts are a methodology for identifying possible evolution conflicts caused by different
developers evolving the same software artifact in parallel. Originally, reuse contracts were devel-
oped to deal with evolution of classes at the implementation level [CDHSV97, SLMD96]. Later
the focus shifted to the design level, by looking at evolution of class collaborations [Luc97]. In
both domains, the approach is general enough to support anticipated as well as unanticipated
evolution.

The approach consists of documenting the design of the framework by means of reuse contracts,
and its evolution by means of reuse operators.. A reuse contract is a description of an interface and
documents the protocol between classes. A reuse contract is subject to different reuse operators,
that represent the different ways in which the contract, and thus the interface, can evolve. Ex-
amples of such operators are refinement, extension and coarsening. Together, reuse contracts and
reuse operators document that part of the design of a framework that is relevant to an application
developer. Moreover, they document the assumptions made by application developers about the
way the framework is reused. This documentation facilitates the task of these developers, by
indicating how much work is necessary to update previously built applications, where and how to
test and how to adjust these applications.

When a framework’s design and evolution is documented by means of reuse contracts and reuse
operators, an operation-based merge conflict detection algorithm can be defined. By storing all
possible operations in a merge matrix, the operations that have been applied can be mutually
compared, and it can be derived whether they lead to an inconsistency. Different kind of such
conflicts can be detected, such as naming conflicts, that are due to two developers introducing
an artifact with the same name, or method capture conflicts, that arise due to the fact that a
developer extends a superclass’ interface with a new method, that is already present in one of
the superclass’ subclasses. These methods that were already present now accidently override the
newly added method, which may not be what was intended.

The reuse contract approach was applied to a number of other domains as well: to document
the evolution of UML interaction diagrams [MLS99] and even at the level of requirements analy-
sis [DH98], for example. Clearly, this shows that the approach is applicable to a broad domain,
and as such, a domain-independent definition of the reuse contract approach was defined by Mens
in [Men99]. In this approach, software artifacts are represented by graphs, and evolution is repre-
sented by means of graph rewriting. Type graphs are used to specify domain-specific constraints
that have to be satisfied by all graphs in a particular domain. By relying on the formal properties
of graph rewriting, such as the notion of parallel dependence, one can formally define which pairs
of modification operations (formally represented as graph productions) yield an evolution conflict.

Miscellaneous

Feather uses a variant of the reuse contract approach [Fea89]. Instead of mutually comparing the
operations, they are analyzed to determine what changes to specification properties they induce,
and this information is used instead. Conflicts can then be detected by comparing all possible
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changes to specification properties. This makes it easier to introduce new modification operations.
One only needs to determine how the newly introduced operations can be decomposed in terms
of changes to specification properties.

As an alternative to merge matrices, as used by the reuse contracts approach and the approach
of Feather, conflicts sets are used by Edwards [Edw97] to group together potentially conflicting
combinations of operations based on the application-supplied semantics. Depending on the kind
of application, the kinds of operations and associated merge conflicts can differ dramatically.
Conflicts sets correspond to the types of conflicts that may exist in an application. As such, they
are statically defined, in the sense that they remain fixed as long as the application semantics
does not change. Operations that belong to the same conflict set may potentially cause conflicts
when merged together. Any given operation may simultaneously participate in multiple conflict
sets. Conflict sets address scalability, since they restrict the number of operations that we must
consider when searching for conflicts.

Horwitz, Prins and Reps [HPR89] were the first to develop a powerful algorithm for merging
program versions without semantic conflicts, based on the semantics of a very simple assignment-
based programming language. The merge algorithm uses the underlying representation of program
dependence graphs, and uses the notion of program slicing to find potential merge conflicts. De-
spite its power, the algorithm poses a number of limitations, the most important being that it is
restricted to a particular programming language, that is extremely simple compared to current-day
programming languages.

2.3.4 Formal Models for Design Patterns

LePUS

LePUS [EHY98, EGY96, EGHY99] (LanguagE for Patterns Uniform Specification) is a formal
specification language that can be used to specify the static structure of a design pattern accurately,
completely and concisely, in a language- and implementation-independent way. The language was
conceived out of the observations that current object notations are inadequate for specifying design
patterns and that the detailed verbal descriptions that are used are often imprecise, ambiguous
and vague. Moreover, formally defining design patterns is a prerequisite for allowing tool support.

A specification of a design pattern in LePUS unambiguously defines its specific constructs and
relations and the constraints it imposes upon an implementation. Such specification includes a
list of participants (classes and functions) and a list of relations (such as inherits, invokes, etc.)
that hold between these participants. Sets of classes and functions of any dimension are allowed,
and the relations easily extend to participants of higher dimensions as well. Moreover, additional
abstractions, such as class hierarchies, function clans (functions with identical signature that are
implemented throughout a class hierarchy) and tribes (sets of clans with respect to a common class
set), are also provided since they form such important concepts in object-oriented programming
languages.

As a concrete example of how LePUS can be used to specify design patterns, consider the
graphical specification of the Strategy design pattern in Figure 2.2. The corresponding formula is:

∃context, client ∈ C;
operations ∈ F ;
Algorithms,Configure− Context ∈ 2F ;
Strategies ∈ H : clan(operation, context)∧
clan(Algorithm, Strategies)∧
tribe(Configure− Context, client)∧
Invocation→(operation, Configure− Context)∧
Invocation↔(Algorithms, context)∧
Argument− 1→(Algorithms, context)∧
Creation→H(Configure− Context, Strategies)∧
Assignment→H(context, Configure− Context, Strategies)∧
Reference− to− Single↔(context, Strategies)
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Figure 2.2: Specification of the Strategy design pattern in LePUS

where C is the set of all classes, F the set of all functions and H the set of class hierarchies.
LePUS was used to formally define most of the design pattern in [GHJV94]. It was observed

that many of the behavioral aspects of design patterns can be expressed, although the focus of
the language was on static relations. No difficulties were found in describing behavioral design
patterns, for example. Additionally, based upon these definitions, a tools was built that is able to
recognize design patterns in a particular software implementation, and that can introduce a design
pattern into this implementation. This is difficult to achieve without a precise formal definition.

DPDOC

[CH00b, CH00a] presents a prototype of a tool that makes it easy and safe for developers to use
design patterns and automatically maintain up to date documentation of the framework based
on these design patterns. The tool supports design pattern visibility and rule checking. Design
pattern visibility is supported by modeling the design patterns by a grammar with syntactic and
context-sensitive rules, which formally specify the various roles and rules of the design pattern.
As an example, in the Decorator design pattern, there are Component, Decorator and decorated
component roles, while a rule is used to express the constraint that a decorated component role
should occur within a Decorator role. By formulating a design pattern by means of a grammar, it
is actually reified into an explicit language construct. Furthermore, by using reference attributes,
which support the easy specification of non-local dependencies, design pattern instances can be
connected to the source code that implements them. It thus becomes possible for a developer to see
which design patterns are used in the code and what roles are played by the different source code
artifacts. Moreover, the documentation does not become outdated when the program is changed,
since references of attributes to source code can even be automatically computed to some extent.
Evidently, all this can be used to tackle the traceability problem associated with design patterns,
since tools can be built upon this technique that allows easy browsing of all available information.
Automatic rule checking is used to check whether a particular design pattern is used correctly.
Because the design patterns are modelled using a grammar and references to the appropriate
source code artifacts are present, checking that the constraints of a design pattern are abided by
thus amounts to perform checks in a way similar to how a compiler performs compile-time checks.
The authors also propose a tool, called DPDOC, that unifies the techniques presented above with
the development environment.

Contracts

Contracts [HHG90, Hol92] are a means to document behavioral compositions in an object-oriented
framework. A behavioral composition is defined as a group of related objects that work together to
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perform a particular task or maintain a certain invariant. Design patterns define such behavioral
compositions, and can thus be documented by means of contracts.

A contract formally defines the behavioral composition of a set of communicating participants.
To this extent, it formally specifies the following aspect of such a composition:

1. a contract identifies the participants in the composition and their so-called contractual obli-
gations. A contractual obligation consists of both type obligations and causal obligations.
The former describe the variables and methods a participant must define, while the latter
specify an ordered sequence of actions that a participant must perform, upon the receipt of
a particular message. It is thus through these causal obligations that contracts capture the
behavioral dependencies between objects and their methods.

2. a contract defines the invariants that participants in the behavioral composition cooperate
to maintain and the actions that should be performed to resatisfy this invariant should it
become false. An example of such an invariant is that a View in the Model-View-Controller
paradigm [KP88] should always reflect the state of the Model.

3. It specifies preconditions on participants to establish the contract and the methods which
need to be called at runtime to instantiate the contract.

Two important operations are defined on contracts: refinement and inclusion. Both can be
used to express complex behavior in terms of simpler behavior. The refinement operation allows to
specialize the contractual obligations and invariants of a contract. A contract is refined by either
specializing the type of a participant or derive a new invariant which implies the old. As such, a
refined contract defines a more specialized behavioral composition. The inclusion operation allows
contracts to be composed from simpler contracts. Its intent is to describe the behavior of some of
the participants in a behavioral composition in terms of simpler compositions. This is achieved by
including subcontracts in the definition of a contract. A subcontract imposes additional obligations
on participants, over and above those defined in the contract.

Contracts are only an abstract specification of a behavioral composition. Concrete classes of
a framework should be mapped onto the participants of a contract. This is achieved through
conformance declarations. Such declarations are actually specifications of how a class supports
the role of a participant in a contract, by means of the variables and the methods that it defines.
Besides being part of the contract approach, conformance declarations also form an important
part of the documentation of a framework. They can be used to factor a large class interface,
consisting of a large number of methods, into meaningful related subsets.

Discussion

Most of the tools that were discussed above either focus on the documentation of the framework,
its instantiation or its evolution. None of them provides support for all these activities in an
integrated fashion. This is largely due to the fact that these tools are not based on an appropriate
model of the framework, that incorporates all necessary information and that allows us to use and
manipulate this information in an active way. A tool that supports documentation, instantiation
as well as evolution of a framework, should use an adequate formal model of the framework, at
the appropriate level of granularity. Several such models are proposed in literature, as we have
discussed.

2.3.5 Metapatterns

Many design patterns serve a completely different purpose, but share the same underlying structure
and only differ in some implementation details, such as the specific method invocations that occur.
Consider for example an instance of the State design pattern [GHJV94], as depicted in Figure 2.3,
and compare it with the instance of the Strategy design pattern [GHJV94] in Figure 2.4. As
can be seen, the structure of both instances is very similar. Each one defines an association
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Figure 2.3: Structure of the State design pattern
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Figure 2.4: Structure of the Strategy design pattern

relationship between a class and a class hierarchy. In these particular cases, the Context class
refers to the State hierarchy or to the Strategy hierarchy. Moreover, both Context classes provide
method definitions that use the association relationship to call methods in the hierarchies. For
example, the request method calls the handle method, and the contextInterface method calls
the algorithmInterface method. The methods that are called are defined as abstract methods
in the root of the class hierarchy, and are provided with a concrete implementation in the leaf
classes of that hierarchy.

The only way in which these two structures differ, is in the specific interactions between the
methods. The Collaborations section of the State design pattern includes a detailed discussion as
to which state succeeds another one, under which conditions and how this should be implemented
by the methods. Such information is not included in the Strategy design pattern, since it serves a
completely different purpose.

Many other examples of design patterns that share similar structures can be found. An in-
stance of the Abstract Factory design pattern can be considered as a collection of instances of the
Factory Method design pattern, for example. An abstraction of design patterns, based on their
structure, the relationships and the collaborations, is thus possible. Metapatterns provide such an
abstraction [Pre95, Pre94, Pre97].

Metapattern Definition

The definition of metapatterns is based on a distinction between template and hook methods and
the corresponding template and hook classes.

Template methods are concrete methods that define the control flow of an algorithm and pro-
vide an implementation in terms of some other methods. These other methods are the hook
methods, and can either be abstract methods, regular methods that provide a default implemen-
tation or a template method in their turn. The distinction between a template method and a hook
method clearly depends upon the point of view. A method m is a hook method if it is called by
another method, which then acts as the template method. At the same time, the method m can
be a template method as well, as it may call other methods itself.

The classes that implement template methods and hook method are called template and hook
classes, respectively. A template class is parameterized by a hook class, since a template class
should contain a reference to a hook class, in order for the template methods to be able to call
the appropriate hook methods. Template and hook methods may be defined in the same class as
well. In that case, the class acts as a template and a hook class at the same time.
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Hook classes are typically abstract, since they contain the hook methods which may be abstract.
As such, hook classes need to be subclassed in order to override the hook methods. Template
classes on the other hand, typically do not need subclasses, as the template methods need not be
overridden in general. A class may contain both template methods and hook methods at the same
time.

Metapatterns predefine particular combinations of template classes and hook classes. Two
aspects influence these combinations:

1. The cardinality of the association relationship between the template class and the hook class.
An object of the template class may refer to exactly one object of the hook class, or it may
refer to multiple objects of this class.

2. The hierarchical relationship between the template class and the hook class. The template
class and the hook class may be unified into one class, or they may or may not be related
via an inheritance relation.

As an example, in the 1:1 Connection metapattern (see Figure 2.5), the template class T and
the hook class H are not related via inheritance, and an object of the template class refer to exactly
one object of the hook class. In the 1:N Recursive Connection metapattern, on the other hand,
the template class T is a subclass of the hook class H, and objects of the former class refer to
a multitude of objects of the latter class. The Unification, 1:1 Recursive Unification and 1:N
Recursive Unification metapatterns are examples of metapatterns where the template and the
hook class are unified into one single class.

Note that it does not follow immediately from Figure 2.5 that the template and hook class
in the 1:1 Connection and the 1:N Connection metapatterns are not related via an inheritance
link. Implicitly, however, there is no inheritance relation between them. If there was, the resulting
structure would look exactly like the structure of the the 1:1 Recursive Connection and the 1:N
Recursive Connection metapatterns, respectively.

Just as a design pattern instance is a particular occurrence of a design pattern, a metapattern
instance is a specific occurrence of a particular metapattern.

Application of Metapatterns

As a concrete example of how metapatterns are an abstraction of design patterns, consider Fig-
ure 2.6, which illustrates how the State and Strategy design patterns can both be mapped onto
the 1:1 Connection metapattern. In both cases, the Context class of the design pattern struc-
ture plays the role of the template class in the metapattern structure. Similarly, the State and
Strategy classes are mapped onto the hook class. Methods in the design pattern structure are
also mapped in a similar way onto methods in the metapattern structure. For example, both
the request and the contextInterface methods are mapped onto the template method of the
metapattern structure, whereas the handle and the algorithmInterface methods are mapped
onto the hook method in this structure.

Discussion

Since metapatterns are only an abstraction of design patterns, they do not include each and every
detail. In fact, metapatterns only contain the information conveyed within the Structure and
the Participants sections of a design pattern template description. Metapatterns also contain
information about the specific collaborations between participants, although not in as much de-
tail as design patterns. They do not contain information about the Applicability, Trade-offs or
Consequences however.

In general, it is difficult to prove that metapatterns do form a suitable abstraction of design
patterns. It is not known, for example, if all design pattern structures can be described by
means of metapatterns. In [Pre95], an existing real-world framework is adequately and extensively
documented by means of the metapatterns, which shows the applicability of the approach. In
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subsequent chapters, we will show how several widely-used design patterns can be mapped onto
metapatterns and how metapatterns are useful as a basis for providing tool support for framework-
based development.
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Chapter 3

The Scheme Framework Example

In this chapter, we will explicitly document the implementation of a small-scale framework for
building Scheme interpreters by means of the design patterns that it uses. Moreover, we will
present an example of how this framework can be evolved, and how the information exposed by
the design patterns can be used for this purpose. All issues addressed in this chapter, will be used
in subsequent chapters to present the problem statement of the dissertation and to illustrate our
approach to support framework-based development.

3.1 Introduction

The framework we present in this chapter is a framework for building Scheme interpreters [AS85,
Dyb96, FMK96]. It was implemented in the context of this dissertation in order to experiment
with different flavors of declarative meta-programming languages. The framework allows us to
implement and experiment with different Scheme variants. In addition, it is used as a means to
clarify the problem statement of the dissertation. To this extent, we present an example of how
the framework can evolve, explain the difficulties that arise when doing so and discuss how having
appropriate information at our disposal can help to alleviate these problems. Furthermore the
framework is used in various other places in the dissertation as an example of how the approach
we propose can be used in practice. Note however, that we will validate our approach on another
framework, that we did not implement ourselves, in Chapter 8.

The framework is implemented in Squeak [IKM+97], a Smalltalk dialect. It consists of 108
classes and 608 methods in total. Of these 608 methods, there are only 384 methods that actually
implement important behavior, all other methods are initialization methods, accessor methods,
and so on. As such, the framework is relatively small and is ideally suited as a case study for
performing some initial experiments.

The remainder of this chapter is organized as follows. First, we will present a very short
introduction to the Scheme programming language for readers that are not familiar with it. Then,
we will explain the global architecture of a Scheme interpreter as implemented by the framework,
which at the same time explains the implementation of the framework itself to some extent.
Following the approach taken by Johnson and Beck [Joh92, BJ94], a detailed description of this
implementation follows, by means of an explanation of the different design patterns that are used
in the framework. The next part of this chapter provides an example of how the framework can
be evolved, and explains the various difficulties that arise.

3.2 Introduction to the Scheme Programming Language

In the following subsections, we will provide a very short introduction to the Scheme language, so
that readers not familiar with it are able to understand the discussions in subsequent sections and
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chapters. For an in-depth discussion of the language, and all of its variants, we refer the reader
to Abelson and Sussman’s excellent introduction to the Scheme programming language [AS85].

3.2.1 The Language

Scheme is a simple, yet very expressive and powerful programming language, with very simple
syntax and well-defined semantics [IEE95].

A Scheme program consists of a number of expressions that are evaluated by the Scheme in-
terpreter. The language defines a number of evaluation rules that define how these expressions
should be evaluated. In comparison with other programming languages, Scheme has only a lim-
ited number of evaluation rules, which for the most part explains its simplicity. Like any other
programming language, Scheme has a number of primitive expressions, such as numbers, symbols,
strings and so on. These are accompanied by a number of primitive procedures, built into the lan-
guage, that can be used to manipulate the expressions. Examples are the procedures for arithmetic
and string manipulation, or the various input-output procedures. Additionally, Scheme defines a
number of special forms, for defining variables (define, let, let*, . . . ), conditional statements (if,
cond, case, . . . ), for defining procedures (lambda, letrec, . . . ), and so on. Each of these special
forms has a different format, and consequently has a different evaluation rule as well. Besides
primitive procedures and special forms, Scheme allows developers to define their own procedures
as well. Such procedures are called user-defined procedures. They allow a developer to attach a
name to a number of expressions and refer to those expressions as a unit. As such, user-defined
procedures form a powerful abstraction technique.

3.2.2 Scheme Variations

Different variations on the standard Scheme interpreter can be considered.
A standard Scheme interpreter uses an applicative-order evaluation model. In such a model, a

procedure is applied to a number of arguments by first evaluating these arguments, then fetching
the procedure’s body and evaluating it with each formal parameter replaced by the corresponding
argument. The normal-order evaluation model is an alternative model that does not evaluate
the operands of a compound expression until their values are actually needed. Instead, it first
substitutes procedure bodies until it obtains an expression involving only primitive operators and
then performs the evaluation.

Ordinary Scheme interpreters are statically scoped, which means that the value of a variable
is computed with respect to the environment in which the expression containing the variable
was defined. A dynamically-scoped interpreter, on the other hand, will compute the value of an
expression based on the environment in which the expression is evaluated.

The framework has specific provisions that allow us to experiment with all these different vari-
ants of a Scheme interpreter. We can construct a standard, statically-scoped interpreter that uses
applicative-order evaluation, for example, or we can implement a dynamically-scoped interpreter
with a normal-order evaluation model. Many other variations are possible, since the framework is
quite extensible.

3.3 Architecture of the Scheme Framework

The interpreter implemented by our framework consists of three distinct phases, as depicted in
Figure 3.1: the parsing phase, the analysis phase and the evaluation phase. The primary rea-
son why we explicitly separate the analysis phase from the evaluation phase is to optimize the
execution time of a program. The analysis and evaluation could be done simultaneously, but an
expression that needs to be evaluated many times will then be analyzed just as many times, which
is completely unnecessary and decreases performance [AS85].

The job of the parser is to parse a Scheme expression and convert it to an abstract syntax
tree. The parser will only detect syntactical errors (such as improper balance of parentheses), and
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Figure 3.1: Architecture of the Scheme interpreter

does not check the well-formedness of the expression. Some well-formedness checks are needed,
however, in order to ensure that special forms are used correctly. To this extent, an analysis phase
follows the parsing phase.

The input for the analyzer consists of the abstract syntax tree constructed by the parser,
and the output is a closure object that can be evaluated. During analysis, it is checked which
kind of expression we are dealing with (a special form or a user-defined procedure) and whether
this expression has the appropriate form. This is achieved by using a converter, which splits
the expression in its appropriate subexpressions. For example, an if expression is split into a
condition, a consequent and an alternate part.

If the expression is well-formed, it is transformed into a closure object and passed on to the
evaluator. This evaluator will simply evaluate the closure according to the evaluation rules of the
Scheme language and will return the corresponding value. Using such a closure object achieves
the required separation of analysis and evaluation. If an expression needs to be evaluated many
times, it will be analyzed once and transformed into a closure object which will be executed as
many times as needed.

This architecture of a Scheme interpreter is reflected in the implementation as well. The
parser, implemented by the SchemeParser class, uses classes from the ScExpression hierarchy to
construct an abstract syntax tree corresponding to a particular expression. These classes provide
an analyze method, that implements the analysis phase by checking the well formedness of the
tree. Checking the well-formedness is implemented by using an appropriate converter object
from the SchemeConverter hierarchy, which is responsible for breaking down an expression into
its constituent parts, if this is possible. After analysis, a closure object corresponding to the
expression object is returned. This object is in fact an instance of a specific subclass of the
Closure class, which implements the evaluation algorithm by defining an eval: method.

3.4 Design Patterns in the Scheme Framework

The framework for the Scheme interpreter is implemented by using a number of design patterns
so as to ensure its flexibility and reusability. In this section, we will discuss these design patterns,
their instances in the framework, and the rationale behind their use. This helps to understand
the implementation of the framework and provides extensive and detailed information about its
design. Later on, we will use this information when we provide an example of how the framework
can be evolved and when we discuss the problem statement of the dissertation and the particular
solution we propose.

3.4.1 The Abstract Factory design pattern

General Discussion

The Abstract Factory design pattern is used to make a framework, or any object-oriented software
system in general, independent of the concrete classes that it uses. To this extent, it provides an
interface for creating a family of related or dependent objects without specifying their concrete
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Figure 3.2: ASTFactory instance of the Abstract Factory design pattern

classes. Objects of these classes can only be created through this interface. Furthermore, this
interface is implemented by an abstract class (which we will call the factory class), and all concrete
subclasses of this class provide a concrete implementation for the interface by specifying the
concrete classes that will be instantiated.

Using the Abstract Factory design pattern has several benefits. For one, it makes an application
independent of the concrete classes that it uses. The application can manipulate objects using
their abstract interfaces, but does not need to know the concrete objects that are created. Second,
the pattern makes it easy to switch between different sets of objects. The factory class and its
subclasses are the one and only spot in the application where objects are created. Defining a new
subclass of the factory class and using an object of this new class ensures that another set of objects
is used throughout the whole application. Third, the pattern ensures consistency among objects.
When an object of a certain family is used, it is important not to mix objects and consistently
use the other objects of that family as well. The Abstract Factory design pattern enforces this in
a straightforward way.

The Abstract Factory design pattern in the Scheme Framework

The Scheme framework uses only one instance of the Abstract Factory design pattern, which we will
call the ASTFactory instance and which is depicted in Figure 3.2. It shows how the SchemeParser
class uses a factory class SchemeASTFactory that implements an interface to create ScExpression
objects. Using the design pattern in this way allows us to switch between different expression
objects should this be necessary. The classes in the ScExpression hierarchy implement an analysis
algorithm. If we would like to experiment with a different algorithm, we can easily do so. We
define a new family of ScExpression classes and create a new subclass of the SchemeASTFactory
that instantiates objects of these classes. Then, we tell the application to use this factory instead
of the standard DefaultSchemeASTFactory.

3.4.2 The Chain of Responsibility design pattern

General Discussion

The Chain of Responsibility design pattern is used to decouple the sender of a message from its
receiver by giving more than one object a chance to handle the request. This is useful when the
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sender knows the set of objects that may be able to handle a request, but does not known which
specific object is able to do so. The solution this design pattern offers consists of chaining this set
of objects to each other, and passing the request along the chain until an object handles it. The
first object in the chain receives the request and decides whether it can handle it. If this is the
case, it does so, but if it is not, it passes the request on to the next object in the chain, which acts
likewise.

This design pattern offers two particular advantages. First, it reduces the coupling between
different classes of the framework. Neither the receiver, nor the sender of the request need to know
about each other. As such, objects do not need a reference to all candidate receivers, but only
keep a reference to their successor in the chain. Second, it ensures the flexibility because extra
handlers can be added easily and without making any changes to the sender of the request.

The Chain of Responsibility design pattern in the Scheme Framework

The Chain of Responsibility design pattern is used in the Scheme framework for analyzing Sc-
ConsExpression objects. Such an object may represent either a simple function call or a call to
one of the various Scheme special forms. The analyzer needs to convert such an object into a
closure object that can be evaluated. In order to do so, it needs to know the kind of object that
it is dealing with and, if it is a call to a special form, check its well formedness.

Instead of implementing this kind of behavior with a conditional statement, we use the Special-
FormHandler instance of the Chain of Responsibility design pattern. When a ScConsExpression
object receives an analyze message, it forwards this message to a predefined chain of handlers. The
framework defines a handler for each of the special forms that is used in our Scheme interpreter.
We have a separate handler for a define, lambda and let special form, for example.

The analyze: method in a specific handler object simply checks whether this object can
handle the ScConsExpression object passed along. If so, it calls the handle: message, which
will instantiate the appropriate closure object after having checked the well formedness of the
expression. If the object can not handle the ScConsExpression object, it simply forwards it to
the next handler in the chain by calling the analyze: method of that handler.

To avoid falling off the end of the chain, the last handler is the ApplicationHandler, which
has no successor. This reflects the fact that, if a request is passed along the chain and no handler
of a special form can handle it, we simply regard the ScConsExpression object as a call to an
ordinary function.
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3.4.3 The Factory Method design pattern

General Discussion

The Factory Method design pattern defines an interface for creating an object, but lets subclasses
decide which concrete class to instantiate. This is useful because often, two classes need to
collaborate and the one class knows when to instantiate the other, but it cannot anticipate which
specific class it needs to instantiate. Using the Factory Method design pattern, we define an
abstract method that is responsible for creating the appropriate object and consistently call this
method when such an object is needed. As such, we create a hook for subclasses that can override
this factory method and instantiate an object of the appropriate class.

The specific benefits of the Factory Method design pattern are the following. First, it provides
a hook for subclasses, which allows an abstract class to implement certain behavior regardless of
the concrete objects that are used. Subclasses only need to override the factory method and create
a different object in order to change this behavior. Second, the pattern can be used to connect
parallel class hierarchies. This is useful when objects delegate some of their responsibilities to
other objects, and only some specific combinations of these objects are allowed. This often results
in two parallel class hierarchies (as can be seen in Figure 3.4 for example) and the factory method
acts as the bridge between the two.

The Factory Method and Abstract Factory design patterns may seem very similar. Both design
patterns deal with the process of object instantiation. In fact, the Abstract Factory design pattern
is often implemented with factory methods. The major difference between the two design patterns,
is that the Abstract Factory design pattern can be used to ensure that a family of related objects is
created, and that it provides a framework with a single spot in which objects are created, so that
it becomes easy to switch between different object families. The Factory Method design pattern
on the other hand is mostly used to connect two parallel class hierarchies and is often combined
with the Template Method design pattern to factor out common behavior and provide hooks for
subclasses.

The Factory Method design pattern in the Scheme Framework

The Factory Method design pattern is used four times in the Scheme framework.
First of all, the ExpressionClosureCreation instance connects the ScExpression and the Clo-

sure hierarchies (see Figure 3.4). A Closure object closely resembles the structure of the abstract
syntax tree represented by an ScExpression object: for each concrete ScExpression class, a corre-
sponding Closure class exists. As a consequence, each concrete class in the ScExpression hierar-
chy is associated with a concrete class in the Closure hierarchy via a factory method newClosure.
This method is defined as an abstract method in the ScExpression class, and is overridden in all
of its concrete subclasses, where it creates the appropriate Closure object.

The second and the third instance of the Factory Method design pattern are located in the
SpecialFormHandler hierarchy. Similar to the use in the ScExpression hierarchy, the Special-
FormClosureCreation instance is used in the SpecialFormHandler hierarchy to connect the vari-
ous handler classes to their corresponding Closure classes by means of a newClosure method, as
depicted in Figure 3.5.

If we are dealing with a Scheme special form, we first need to check the well formedness of the
expression before we can transform it into the appropriate closure object. To this extent, we use
the classes from the SchemeConverter hierarchy. Once again, each specific handler class needs
an appropriate SchemeConverter class. Thus, we use a SpecialFormConverterCreation instance
of the Factory Method design pattern to connect the two parallel hierarchies, as can be seen in
Figure 3.6.

The last occurrence of the Factory Method design pattern, the EnvironmentCreation instance,
is located in the hierarchy that represents the environments used for the evaluation process (see
Figure 3.7). The RootEnvironment class defines a factory method newEnvironment, that returns a
NormalEnvironment instance. The method is called whenever a procedure call occurs (see [AS85]
for a detailed explanation of environments). Note that the implementation in this instance of
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the design pattern deviates from the “standard” implementation of the Factory Method design
pattern. First of all, the factory method returns instances of classes from the same hierarchy in
which the method is defined. Second, the factory method in the root of the class hierarchy (the
RootEnvironment class) provides a default implementation and is never overridden in any of the
concrete leaf classes of the hierarchy. This is due to the fact that, every time the method is called,
a new instance of the same class, the NormalEnvironment class, has to be allocated.

3.4.4 The Composite design pattern

General Discussion

The Composite design pattern is used to compose objects into tree structures to represent part-
whole hierarchies. It allows us to treat individual objects and compositions of objects in a uniform
way. This is achieved by defining an abstract class that implements an appropriate interface for
all objects in the composition. All subclasses of this abstract class represent the leaf classes of
the composition, except one, which represents the composite object and contains a collection of
references to other objects. Typically, the leaf classes provide their own concrete implementation
for the interface defined by the abstract class, while the composite class implements the interface
by iterating over the objects it contains and simply forwarding the message.

Using the Composite design pattern offers some important advantages. First of all, it allows us
to represent and build compositions of objects that can be manipulated in an easy and straight-
forward way. Second, it greatly simplifies client code that has to deal with both individual and
composite objects. Those objects have the same interface, which allows them to define the action
that should be performed in response to a certain message in an appropriate way (e.g. composite
objects iterate over their elements and forward the message).
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The Composite design pattern in the Scheme Framework

Two instances of the Composite design pattern can be found in the Scheme framework.
The ScExpression hierarchy uses a CompositeExpression instance, where the ScSequence-

Expression represents a composite object that is part of an abstract syntax tree (Figure 3.8).
Such an object is created by the parser when the body of a user-defined procedure consists of
multiple expressions, for example. Two important operations are defined on this instance of the
pattern: printOn: is used to print a textual representation of the receiver on a given stream,
and analyze is used to transform an expression object into a closure object. The implementation
of these operations in the ScSequenceExpression class resembles the standard implementation
of a composite method in that it iterates over the objects contained within the composite object
and simply forwards the message onto these objects. For example, the printOn: method in the
ScSequenceExpression class looks as follows (in Smalltalk syntax):

printOn: aStream
self expressions do: [:expr | expr printOn: aStream ]

As every class in the ScExpression hierarchy is associated with a class in the Closure hi-
erarchy, the ScSequenceExpression class has a SequenceClosure counterpart, which represents
a composite closure object (see Figure 3.9, which depicts the CompositeClosure instance). Such
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an object thus consists of other closure objects. The interface defined for this instance consists
of only two methods: printOn:, which again prints a textual representation of the receiver onto
a given stream, and nodeDo:value: which is part of the implementation of the Visitor design
pattern (see Section 3.4.5). The printOn: method is once again implemented in the standard
way in the SequenceClosure class. The nodeDo:value: method on the other hand provides its
own implementation and does not follow the template implementation dictated by the Composite
design pattern.

3.4.5 The Visitor design pattern

General Discussion

The Visitor design pattern allows us to represent an operation that is to be performed on the
elements of an object structure and to define new operations without changing the classes of the
elements on which they operate. This is useful when many distinct and unrelated operations need
to be performed upon objects in a structure and defining all these operations in the classes of
these objects would pollute their interface. The underlying idea of the Visitor design pattern is
to separate the operations from the elements upon which they will be performed. To do so, a
separate visitor hierarchy is defined for representing the operations, and a specific visit method is
introduced in the element classes to enable collaboration between the two hierarchies. A concrete
element “accepts” a visitor object, sends it a message that is specific for this element and passes
itself as an argument. The visitor object will then perform the operation for that specific element
as a reaction to the message.

Using the Visitor design pattern has some particular advantages over implementing an oper-
ation in the element classes. First of all, it makes adding new operations easy. This simply boils
down to defining a new subclass in the visitor hierarchy and passing an instance of this subclass to
the visit method of the first object of the object structure. There is no need to make any changes
to the element classes that make up the object structure. Second, each operation is represented
by a concrete visitor, which means that the behavior implemented by that operation is not spread
over the different element classes, but that it is localized in one place.

The Visitor design pattern in the Scheme Framework

The Visitor design pattern is used in the Scheme framework for implementing operations on the
ScExpression hierarchy. Each concrete class in this hierarchy implements a nodeDo: method, that
calls the appropriate method of the AbstractASTEnumerator class, as is depicted in Figure 3.10.
At the moment, only one such operation is actually provided by the framework. The Scheme-
ToSmalltalkConverter visitor writes a Smalltalk representation of a Scheme expression onto a
stream. This is used to serialize Scheme expressions, so that we can define methods in an ordinary
Smalltalk class that consists of Scheme functions. The representation that is used is actually
Smalltalk code that builds the abstract syntax tree of the Scheme expression and evaluates it.

We can however easily imagine that other operations need to be defined on the abstract syntax
tree. For one, the printOn: and analyze methods are also candidates to be implemented via
the Visitor design pattern, because they are implemented by all of the concrete leaf classes of
the ScExpression hierarchy. In case of printOn:, the specific reason we do not implement it by
means of a visitor class is because it would seriously degrade performance. Indeed, the printOn:
method is part of the standard Smalltalk framework, and is used many times, so using a visitor
mechanism is very costly. The analyze method on the other hand is also not implemented by
means of a Visitor class, because it is spread over two separate hierarchies, the ScExpression
and SpecialFormHandler hierarchies, and the latter does not use the Visitor design pattern. It
is thus impossible to centralize the behavior of the analysis algorithm in one class, so it remains
spread over the different classes.

Another instance of the Visitor design pattern, the ClosureVisitor instance, appears in the
Closure hierarchy (see Figure 3.11). This hierarchy defines a nodeDo:value: method, that is
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Figure 3.10: ASTVisitor instance of the Visitor design pattern

overridden in each concrete leaf class and calls the appropriate method of the ClosureVisitor
hierarchy. This hierarchy contains a number of concrete visitors. The SimpleEvalClosureVisitor
class implements the evaluation rules of the Scheme language and is thus used to evaluated the
various closure objects, for example.

It is interesting to note that the classes in the Closure hierarchy and the nodeDo:value:
method they implement, participate in both Composite and Visitor design pattern instances.
This is a perfect illustration of how design pattern instances can overlap, when they contain the
same participants.

3.4.6 The Strategy design pattern

General Discussion

The purpose of the Strategy design pattern is to define a family of algorithms, encapsulate each
one in a separate class and make them interchangeable. This way, clients can be parameterized
by a specific strategy object and thus need not be changed when they want to use a different
algorithm.

The Strategy design pattern offers many benefits. For one, it encapsulates each algorithm in
a separate class, thereby making it more explicit. Inheritance can then be used to capture the
commonalities between these algorithms in a common superclass and reusing them in the specific
subclasses. Furthermore, capturing related algorithms into a hierarchy makes them interchange-
able for clients. Also, by encapsulating the algorithm and using inheritance, polymorphism and
delegation, the Strategy design pattern can often be used to avoid writing conditional statements.

The Strategy design pattern in the Scheme Framework

The Strategy design pattern is used two times in the Scheme framework. First of all, the Ap-
plyStrategy instance represents the various evaluation models that exist for the Scheme language
(Section 3.2.2). This particular instance of the design pattern is depicted in Figure 3.12. The
ApplyStrategy class is an abstract class that defines only one method: apply:onOperands:-
inEnvironment:. This method is overridden in all concrete subclasses of ApplyStrategy. In
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the ApplicativeApplyStrategy and NormalApplyStrategy classes, this method implements the
applicative order and normal order evaluation models respectively, while in the EvaluatedArgu-
mentsApplyStrategy it is used to apply a procedure on operands that are already evaluated. This
is often needed to implement meta-procedures, such as eval and apply, for example.

The second instance of the Strategy design pattern, the ScopingStrategy instance, is used for
implementing static and dynamic scoping. Figure 3.13 shows how the ScopingStrategy class
implements an abstract method bindFormals:toOperands:callingEnvironment:. This method
is overridden in the two leaf classes of the hierarchy, StaticScopingStrategy and Dynamic-
ScopingStrategy, to implement static and dynamic scope algorithms respectively. The method
is called by the apply:onOperands:inEnvironment: method of the FunctionApplyStrategy
hierarchy, whenever a procedure call is evaluated.

3.4.7 The Template Method design pattern

General Discussion

The Template Method design pattern is used to define a skeleton of an algorithm in a method,
while some specific steps of the algorithm are deferred to the subclasses. These subclasses can
change the specific parts of the behavior of the algorithm without changing its overall structure.
This is achieved by defining a specific method, called the template method, that calls certain other
(possibly abstract) methods of the same class. Subclasses are allowed to override these methods,
while the template method should preferably never be overridden.

The Template Method design pattern is often used to avoid code duplication, by factoring out
code common to a number of subclasses in an abstract superclass. The commonalities of the
methods in the subclasses are captured in the template method, which is defined in an abstract
class and which calls some specific abstract methods. These abstract methods represent the vari-
abilities of the method and are overridden in the various subclasses to provide the subclass-specific
behavior. Template methods are thus a fundamental technique for code reuse. Furthermore, using
the Template Method design pattern leads to an inverted control structure, as the parent class calls
the methods of a subclass and not the other way around. The Template Method design pattern
can also be used to control subclass extension. Defining a template method that calls some specific
other (abstract) methods at certain points, only permits extensions at exactly these points.

The Template Method design pattern in the Scheme Framework

The Template Method design pattern appears two times in the Scheme framework.
The first usage of this pattern is in the SpecialFormHandler hierarchy. Figure 3.14 depicts

the SpecialFormHandlerTM instance. The analyze: method of the SpecialFormHandler class
is a template method. Its responsibility is to check whether a certain handler object is capa-
ble of analyzing the expression that is passed to it and take appropriate action based on this
decision. This behavior is implemented by first sending the message canHandle: to the object
itself. canHandle: is an abstract method in the class SpecialFormHandler, as this class can not
decide which of its subclasses is able to analyze the expression. Each concrete handler subclass
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of SpecialFormHandler will thus have to override the canHandle: method. If it turns out the
handler can analyze the expression, canHandle: will return true and analyze: will proceed to
call the handle: method, which will check the well-formedness of the expression and return the
appropriate Closure object. Once again, the SpecialFormHandler class itself can not know how
the well formedness of the expression can be checked and which closure object should be returned.
This can only be decided in the specific subclasses of this class. Thus, handle: is declared abstract
in the SpecialFormHandler class and is overridden by all its concrete subclasses.

If the handler is not able to analyze the expression, the canHandle: method will return false
and the analyze: method will call the cantHandle: method. This method is again declared
abstract in the SpecialFormHandler class, and is overridden only in the ApplicationHandler
and SpecialFormHandlerWithSuccessor classes. In the latter case, this method simply forwards
the analyze: method to the next handler in the chain. The implementation of the cantHandle:
method in the ApplicationHandler class simply raises an error, as this is not possible since this
handler can analyze any expression.

The second occurrence of the Template Method design pattern is in the SchemeConverter
hierarchy, where the ConverterTM instance is used. (Figure 3.15). When a specific Converter
object is instantiated, it is initialized by calling the forExpression: method. This method is
a template method which calls the convert method on the receiver. The latter is an abstract
method that is overridden by all concrete subclasses and that does the actual conversion of the
expression, i.e. it breaks the expression into the appropriate subexpressions.
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3.4.8 The Singleton design pattern

General Discussion

The Singleton design pattern is used to ensure that only one instance of a specific class can
be used by an application. Furthermore, it provides a unique access point for that instance.
This is achieved by making the class itself responsible for keeping track of its instance. The class
implements a class method, that is called whenever an instance of the class is needed. The method
simply checks whether an instance of the class already exists. It this is not the case, it creates
one, and returns it. If an instance already exists, it is simply returned immediately.

The Singleton design pattern offers the advantage that it controls how and when clients of a
class access its instances. It allows to reduce the space requirements of an application by ensuring
that no more than one instance of a class is created. If the need arises, however, the Singleton
design pattern can easily be adapted to allow for a number of instances to be created. Furthermore,
the design pattern provides a unique access point for the instance of a class, but it avoids using a
global variable to do so. As such, the name space of a program is not polluted with unnecessary
global variables.

The Singleton design pattern in the Scheme framework

The Singleton design pattern is used three times in the Scheme framework. The SchemeASTFac-
tory, ScopingStrategy and RootEnvironment classes all need to be instantiated exactly one
time. An instance of the Abstract Factory design pattern is usually combined with an instance
of the Singleton design pattern [GHJV94], as an abstract factory does not contain state and does
only needs to be instantiated once. Thus, the SchemeASTFactory is implemented as a singleton.
Since the ScopingStrategy class also does not contain state, it uses the Singleton design pattern
as well. The RootEnvironment class, on the other hand, does contain state. Since there can
only be one global environment in the Scheme system, however, this class can also be instantiated
only once. The NormalEnvironment subclass of RootEnvironment, however, can and needs to be
instantiated many times, since each time a procedure is called, a new environment object has to
be created.

3.4.9 Summary

In this section, we explained the purpose of a number of important and widely used design patterns,
and documented their occurrences in the Scheme framework. In this way, we explained the design
and, up to a certain extent, the implementation of the Scheme framework. In the next section,
we will show how the information conveyed within the design patterns can be used to guide a
developer when evolving the Scheme framework.

We wish to point out that the documentation of the design and implementation of the frame-
work by means of design patterns proves to be very accurate. 94 % of all classes present in the
framework participate in one or more design pattern instance. This is of course due to the fact
that all important class hierarchies of the framework participate in at least one design pattern
instance. Likewise, 76 % of all methods in the framework play a role in one or more design pattern
instances. This last number does not take into account trivial methods, such as initialization or
accessor methods, with no really interesting behavior. Documenting the framework by means of
design patterns thus covers a large amount of the important classes and methods of the framework.
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3.5 Evolving the Scheme Framework: Adding a New Spe-
cial Form

3.5.1 Introduction

The Scheme interpreter as implemented by the framework only supports a subset of the special
forms that are defined by the Scheme language. In this section: we will show how a cond special
form can be added to the framework. This special form represents a conditional with multiple
branches, as opposed to the if special form already present in the framework that has only one
condition, one consequent and one alternate branch. This example serves to explain the difficulties
that arise when evolving a framework in detail, which allows us to clarify the problem statement
of this dissertation and elaborate on the specific solution we propose to alleviate it in the next
chapter. Note that the original framework developers designed the framework in such a way that
new special forms can be added easily. We are thus dealing here with an example of anticipated
evolution of the framework.

As we will see, evolving a framework requires being able to identify the part of the framework
that needs to be changed, inferring which changes are necessary and assessing the impact of these
changes on other parts of the framework. We will show that high-level knowledge about the global
architecture of a framework can already help in identifying those parts of the framework that will
need changes. However, the kind of information this architectural view offers is far from sufficient
to identify the particular changes that should be made to the identified parts. This is due to the
fact that the information about the architecture is too high level. In order to be able to evolve
the framework correctly, lower-level information about the specific relationships and interactions
in the framework and the responsibilities of individual classes and methods is necessary.

3.5.2 Consulting the Global Architecture

By consulting the global architecture of the framework (see Figure 3.1 and Section 3.3), we can
already infer some important information. The parser should not be extended. The syntax, and
thus the abstract syntax tree, of a cond special form is similar to the syntax of other special forms
and user-defined procedures. Such expressions can already be parsed and an appropriate abstract
syntax tree can be constructed for them. The analyzer, however, will need to be adapted. It is the
analyzer’s duty to check the well-formedness of an expression and convert it into an appropriate
Closure object that can be evaluated. For special forms, this behavior is implemented by the
various classes in the SpecialFormHandler hierarchy. A new CondHandler class, corresponding
to the cond special form, should thus be added to this hierarchy. To check the well-formedness
of an expression, the CondHandler class makes use of an appropriate converter object. As such,
a new class, CondConverter, should be added to the SchemeConverter hierarchy that is respon-
sible for breaking down a cond expression into its constituent parts. Furthermore, a new class,
CondClosure, that represents a cond expression should be added to the Closure hierarchy as well.
This class is involved in the evaluation process, and the appropriate evaluation rules for a cond
expression should be implemented on it.

Although it is clear that valuable information can be deduced from a high-level architectural
description of the framework, this information is far from sufficient. We only know that a number
of classes has to be added to some particular class hierarchies. This reveals nothing however about
the specific ways in which these classes interact and collaborate. We do not know which methods
need to be implemented by these classes, or which methods they need to override. Furthermore,
even if this would be known, we have no information about how these methods should behave.
Which other methods do they need to call, for example? Moreover, the architecture reveals little
or no information that can be used to assess the impact of a particular change on the rest of the
framework. The architecture presents knowledge about how the different parts of the framework
are related, but this knowledge is too coarse grained. It only allows us to identify the related parts
of the framework, which may need changes simply because they are related, but it remains difficult
to identify what these changes are. To overcome all these problems, more detailed information
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Figure 3.16: Design Patterns in which the SpecialFormHandler hierarchy participates

about the framework is needed. In the following sections, we will show how the design patterns
that are present in the framework can help in inferring the necessary information.

3.5.3 Consulting the Design Patterns

From the discussion on design patterns presented in the previous section, we know that all
special forms are explicitly represented in the Scheme framework as a subclass of the Spe-
cialFormHandlerWithSuccessor class. As such, we introduce a new subclass CondHandler of
this class. We will now discuss which methods this class should define and which other classes it
should use to implement its behavior. In concreto, when adding, removing or changing a particular
source code entity, we will always consider the design patterns in which this entity participates. We
will check whether the proposed evolution results in an implementation that conforms to the rules
of these design patterns, and if not, perform additional changes that make sure the implementation
again adheres to these rules.

Changes to the CondHandler class

When adding a class to a hierarchy, we should first consider its place in that hierarchy, e.g. we
should determine which class should be its superclass and which classes should be its subclasses.
In this particular case, the CondHandler class is a concrete class and should thus be added as a
leaf class to the SpecialFormHandler hierarchy. Additionally, we should consider which methods
the new class should implement. Since the CondHandler class is a concrete class, it is clear that
it should provide a concrete implementation for all abstract methods defined in the hierarchy. If
we do not consider the additional information provided by design patterns, we can not provide
an appropriate implementation for these methods automatically. These are thus the only changes
that we can identify.

If we do consider the various design pattern instances in which the CondHandler class plays a
role, we can identify more changes, and even infer the appropriate implementation for a number of
methods. The CondHandler class forms part of the SpecialFormHandler hierarchy, which plays
a role in three different patterns (Figure 3.16).

First of all, all concrete subclasses of the SpecialFormHandlerWithSuccessor class play the
role of concrete handler classes in the SpecialFormHandler design pattern instance (Section 3.4.2).
As such, these classes should all implement the interface for handling requests. In this particu-
lar case, this behavior is implemented by one method, the analyze: method, which should be
implemented by all concrete handlers, and thus by the CondHandler class.
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Second, all concrete subclasses of the SpecialFormHandlerWithSuccessor class play a role in
the SpecialFormClosureCreation design pattern instance (Section 3.4.3). Each concrete handler
class is associated with a concrete Closure class via the newClosure factory method. Thus, the
CondHandler class should implement this method. In this particular case, we can even provide
an implementation for this method automatically: it should simply instantiate a class from the
Closure hierarchy that can handle a cond expression and return the resulting object. Such a
class does not yet exist, as the cond special form is just introduced into the framework. A new
CondClosure class thus has to be added to the Closure hierarchy.

Furthermore, the CondHandler class also plays a role in the SpecialFormConverterCreation
instance of the Factory Method design pattern. Each concrete handler class is associated with
a concrete converter class through the newConverter factory method. As a consequence, this
method should be implemented by the CondHandler class. Once again, we can provide an imple-
mentation for this method: its responsibility is to return an instance of the appropriate object
of the SchemeConverter hierarchy. Since no converter class for a cond expression is originally
defined in the framework, it should be added. The SchemeConverter hierarchy is thus extended
with a CondConverter class.

Third, the CondHandler class plays a role in the Template Method design pattern (Sec-
tion 3.4.7). The analyze: method defined in the SpecialFormHandler abstract class relies
on three other abstract methods: canHandle:, handle: and cantHandle:. These three methods
need to be defined by all concrete handler classes, which should provide the appropriate implemen-
tation. The CondHandler class only needs to implement two of these methods: canHandle: and
handle:. The cantHandle: method is implemented by the SpecialFormHandlerWithSuccessor
class and provides the default behavior of forwarding the request to the next handler in the chain.

Figure 3.17 shows the result when all these changes have been applied to the CondHandler
class. Note how a CondClosure and a CondConverter class have been added to the Closure and
SchemeConverter class hierarchies. These classes do not yet contain an implementation for the
methods that they should define. Determining which methods should be added will be discussed
next.

Changes to the CondClosure class

As was discussed in the previous section, when implementing the newClosure method, a new
CondClosure class should be added to the Closure hierarchy. When adding this class, we should
check whether it plays a role in any of the design patterns used by the framework. If so, we should
check that it adheres to the constraints imposed by these design patterns in order to ensure its
correct behavior.

As it turns out, the CondClosure class plays a role in the CompositeClosure design pattern
instance used in the Closure hierarchy (Section 3.4.4). As such, it should all implement the
composite methods defined by this design pattern instance. The CondClosure class should thus
provide a concrete implementation for the printOn: and the nodeDo:value: methods, as these
are the only composite methods present in that design pattern instance.

Furthermore, since the Closure hierarchy also participates in the ClosureVisitor instance,
other changes are mandatory. Each concrete subclass in the Closure hierarchy has an associated
method in the ClosureVisitor hierarchy, and so should the new CondClosure class. Thus, a new
doCondClosure: method is introduced in the ClosureVisitor class, and a concrete implementa-
tion is provided for all of its subclasses.

Figure 3.18 shows the changes that have been applied to the Closure and ClosureVisitor
hierarchies.

Changes to the CondConverter class

Based on a similar reasoning as above, the addition of a newConverter method to the CondHandler
class required adding a new CondConverter class to the SchemeConverter hierarchy. Once again,
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we should check if there are any design patterns in which this class plays a role in order to ensure
that it adheres to the constraints imposed by these patterns.

The SchemeConverter hierarchy plays a role only in the ConverterTM design pattern instance
(Section 3.4.7). All concrete subclasses of the SchemeConverter class should thus override this
method and provide it with the appropriate implementation. Since the CondConverter class is
such a concrete subclass, it should define and implement a convert method. Figure 3.19 shows
the result after changing the SchemeConverter hierarchy.

Discussion

As can be observed, information about the design pattern instances used in the framework is of
great help in performing the evolution correctly. Without this information, we would only be
able to add the CondHandler class to the appropriate hierarchy, and we would only know that
all abstract methods defined by the hierarchy should be overridden in that particular class. We
would not be able to infer what the implementation of these methods should look like, nor could
we know which other classes should be used to implement the appropriate behavior.

By considering the design pattern instances in which the SpecialFormHandler hierarchy par-
ticipates, we can infer much more information. We were able to provide the newClosure and
newConverter methods with a concrete implementation, because we explicitly knew they par-
ticipated in an instance of the Factory Method design pattern. Moreover, we were able to infer
that two new classes should be added in response to adding these methods: a CondConverter
class to the SchemeConverter hierarchy and a CondClosure class to the Closure hierarchy. By
examining the design pattern instances in which these classes participate, we were able to identify
which methods these classes in their turn needed.

Figure 3.20 shows all changes that have been applied to add the cond special form.
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Chapter 4

Problem Statement & Proposed
Solution of the Dissertation

In this chapter, we will first elaborate upon the problem that we want to tackle in this dissertation.
This discussion will be based upon generalizations of the example evolution presented in the previous
chapter. Afterwards, we will explain the specific solution we propose to solve the problems identified
before.

4.1 Problem Statement

4.1.1 Identification and Propagation of Changes

When evolving a framework, we should first of all identify which changes should be made to its
design and implementation. To identify the changes that are necessary, we should first know which
parts of the framework should be changed (change propagation), and afterwards derive the specific
changes that those parts should undergo (change identification).

Change Propagation

Evolution will bring about various changes to the existing design of the framework. Classes,
methods and variables may be added or removed, relationships between classes changed, class
hierarchies reorganized or method implementations adapted. When performing such changes,
their impact should be assessed, so as to ensure that the framework still adheres to the intended
design and exhibits the appropriate behavior. Often, this will require that a particular change
be followed by a number of additional changes. As such, one simple change may propagate
through the whole framework, a phenomenon that is known as the ripple effect [YCM78]. A
good example of the ripple effect in the evolution example presented in Chapter 3 was when the
SpecialFormHandler hierarchy was extended with a new class, which in turn required to extend
the Closure and SchemeConverter class hierarchies.

Due to incomplete, inappropriate or outdated documentation, it is quite cumbersome to identify
those parts of a framework that are affected by a particular change, since it is not clear how different
parts are related.

Change Identification

While change propagation mainly deals with identifying the parts of a framework that are subject
to a particular change, change identification tries to infer the specific kind of changes that should
be applied to those parts. This requires us to track down the individual classes and methods that
should be changed and determine which specific changes should be applied to them.
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Adding a new class to a particular class hierarchy, for instance, requires us to infer where in that
hierarchy we should place this class. We should decide which class should become the superclass
of the new class, and which classes should be the subclasses. Furthermore, we should discover
which other classes the new class should use in order to implement the appropriate collaborations.
Also, we should determine which methods of the new class’ superclass should be overridden, and,
conversely, which methods should not be overridden. All methods that we override should be
provided with an appropriate implementation, which means that we should find out which other
methods they need to call. Clearly, this requires detailed knowledge about the responsibilities of
the classes and methods involved and the specific collaborations and interactions between them.

For example, while we may have identified that the SpecialFormHandler, Closure and
SchemeConverter hierarchies need to be changed, we still need to know how they should be
changed. When we introduced a new CondHandler class in the SpecialFormHandler class hier-
archy, we first found out that it should be added as a subclass of the SpecialFormHandlerWith-
Successor class, and that it should have no subclasses. Then, we figured out that classes in this
class hierarchy collaborate with classes in the Closure and SchemeConverter hierarchy. As those
hierarchies did not define the appropriate classes with which the CondHandler class should collab-
orate, we extended the hierarchies with a CondClosure and a CondConverter class respectively.
Furthermore, we provided implementations for the newClosure and newConverter methods in
the CondHandler class, that returned new instances of the corresponding classes, and we defined
the appropriate methods in the CondClosure and CondConverter classes.

4.1.2 Avoiding Design Drift

When instantiating a framework, care should be taken that the resulting application does not vio-
late the design dictated by the framework. Even when evolving the framework, which may change
the design, the developer should make sure to preserve the appropriate design constraints [vGB01].
When this is not the case, subsequent versions of the framework and its applications may suffer
from the problem of design drift, as was explained in Section 2.1.4. In order not to violate the
intended design, the developer should be able to identify the affected parts correctly, and should
know all changes that should be made to those parts. Even when using a change propagation
and identification algorithm, this is not as straightforward as it may seem. Such algorithms are
never 100 % accurate, and appropriate documentation that could be consulted is often lacking,
incomplete or outdated [BD99, BGK98, Bro90]. It may thus come as no surprise that it is easy
to introduce errors and inconsistencies into the framework, or its applications.

Simply making sure that the documentation always reflects the current state of the implemen-
tation does not suffice to solve the above mentioned problems. It is still up to the developer to
read and interpret this documentation, and implement the required changes correctly. What is
needed is a way to explicitly document the design constraints, so that they can be used actively
to check for inconsistencies. This requires that these constraints can be expressed in a formal way,
and that they are causally linked to the implementation of the framework, so that they can be
checked automatically.

A particular example of a design constraint in the Scheme framework is that each subclass
of the SpecialFormHandler class should use a corresponding class of the Closure hierarchy.
This constraint forced us to extend the SpecialFormHandler class with a CondHandler class,
and also add a CondClosure class to the Closure hierarchy. Such constraints are rarely explicitly
documented, or perhaps only in natural language narrative. This prohibits their use in a supporting
tool.

4.1.3 Support for Software Merging

Frameworks are evolved manually, most of the time, due to the lack of appropriate development en-
vironments that support the evolution process. As such, the various changes that are made to the
framework and its implementation are not explicitly documented. This makes it difficult to pro-
vide automated support for software merging, since most approaches for detecting possible merge
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conflicts are based on mutually comparing the various changes that have been applied [Men02].
In the reuse contract approach (see Section 2.3.3, experiments were conducted to recover

changes after the facts. However, only lower-level changes could be detected, such as changes in
method implementations, for example. Most of these lower-level changes are however the result of
applying a more high-level change. Unfortunately, it is near to impossible to group automatically a
number of lower-level changes into a higher-level change that reveals the intention of the evolution.
In the example evolution presented in the previous chapter, several low-level changes have been
applied: classes were added and a number of methods were defined in those classes. It is however
impossible to infer automatically that the printOn: method was added to the CondClosure class
because we wanted to add a new special form to the framework, for example.

Even when using an environment that supports evolution, such as the Refactoring Browser,
providing support for software merging is not that straightforward. The Refactoring Browser does
not explicitly log the refactorings that are applied, so they cannot be used by a merge conflict
detection algorithm. We can easily imagine that the browser is extended so that the refactorings
are logged, however. While in theory this would allow us to define a conflict detection algorithm,
the scalability of the approach would prohibit practical usage. Many refactorings exist [Fow99],
and mutually comparing such a high number of refactorings is quite cumbersome. Furthermore,
most refactorings are not formally defined, with the exception of those in [Opd92, Rob99, Tic01].
This makes it extremely difficult to define the conditions under which refactorings applied in
parallel give rise to merge conflicts.

To motivate the need for software merging, consider the following two evolutions of the
Scheme framework that are applied in parallel. One developer decides to implement the printOn:
method, defined in the ScExpression hierarchy, as a visitor (see Figure 4.1). He introduces a new
PrintOnVisitor class, as a subclass of the AbstractASTEnumerator class, and defines the appro-
priate methods in this class. Those methods copy the implementation of the various printOn:
methods defined in subclasses of ScExpression. Additionally, he changes the implementation
of the printOn: method in the ScExpression class itself so that it uses the new visitor and
removes all implementations on the subclasses. At the same time, another developer decides to
extend the ScExpression hierarchy, and introduces a ScQuoteExpression class that represents
quoted expressions (see Figure 4.2). Among the methods that this new class should implement
are the printOn: method and a nodeDo: method. The developer provides the first method with
the appropriate implementation that prints a textual representation of the object. The second
method should call a specific method in the AbstractASTEnumerator hierarchy, which requires
defining a new method in this hierarchy, doQuoteExpression:. The developer provides the appro-
priate implementation for this method in all concrete subclasses of the AbstractASTEnumerator
hierarchy.

Both evolutions of the framework should be merged into a single version. Figure 4.3 shows
the merge results. Clearly, a number of merge conflicts occur. First of all, the PrintOnVisitor
class does not provide an implementation for the doQuoteExpression: method. Second, the
ScQuoteExpression class still contains an implementation for the printOn: method, which it
should not. Rather, it should reuse the implementation of printOn: defined in the ScExpression
class. Because it does not do so, a runtime error will occur if we try to ask a ScQuoteEpression
object for its textual representation, since it will not use the appropriate visitor object.

The first merge conflict can easily be detected by an ordinary compiler, since the PrintOnVi-
sitor class is a concrete subclass of the AbstractASTEnumerator class, and should thus override
all abstract methods of that class. The second merge conflict, however, is not intercepted by an
ordinary compiler, and can only be detected by mutually comparing the different evolutions that
were applied.

4.2 Solution Proposed By The Dissertation

To alleviate the problems of change propagation and identification, design drift and software
merging, we propose to use design patterns as a means to document explicitly a framework’s
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Figure 4.1: Implementing the printOn: method with the Visitor design pattern
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design, its instantiation and evolution, and use this information in an active way. In this section,
we will explain how design patterns provide exactly the kind of knowledge we require and show
how this information can be employed for our purposes.

4.2.1 Explicit Design Documentation

It has already been shown that design patterns can be used to document a framework [BJ94, Pre94,
Sch95]. Moreover, research also shows that maintenance tasks on a framework are completed faster
and introduce fewer errors if the design pattern occurrences are explicitly documented [PU98].
Therefore, we firmly believe that design patterns convey exactly the kind of information that we
are looking for. We attribute this to the following properties held by design patterns:

• Design patterns offer information about particular parts of the design and the structure of
the framework at a level above the implementation level. Instead of focusing on individual
classes and methods, they concentrate on the relationships between different classes, their
respective interfaces, how their instances collaborate and the specific method interactions
that implement such collaboration.

• Design patterns are used to implement the hot spots and frozen spots of a framework. In this
way, they document the specific ways in which a framework can be extended, and provide
information about the extensions that are more difficult to achieve. As such, they allow
to identify the changes that are necessary to the design of a framework to incorporate a
particular evolution, up to a certain extent.

This information is exactly what we are looking for when evolving a framework, be it for
identifying the classes and methods that need to be changed, the specific changes that they should
undergo or how these changes should be implemented and propagated. Design patterns and their
instances help to understand the overall structure and the rationale behind a particular design,
and thus provide insight on how it can and should be evolved.
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4.2.2 Explicitly Representing Instantiation and Evolution

In order to be able to define a merge conflict detection algorithm , the particular changes that
are applied to a framework should be explicitly logged. Moreover, we want to report possible
problems at a high-level of detail, so that information about the intent of a change is available
and it becomes easier for a developer to identify the cause and the solution for a particular
conflict. In our approach, we will instantiate and evolve a framework by means of design pattern
transformations and refactorings. Furthermore, we will explicitly document the application of
these high-level transformations, which enables us to define a merge conflict detection algorithm.

High-Level design pattern transformations

Although refactorings already provide high-level transformations, we want to take this one step
further. While it is acknowledged in the literature that design patterns can be introduced by
using refactorings [RBJ97, TB95, O’C01], those refactorings themselves fail to employ information
conveyed by design pattern instances. Since a design pattern specifies how a particular aspect of
a design can be extended, it implicitly defines a design pattern transformation, which specifies the
changes that are necessary to implement such extension and which can be applied on its instances.
Refactorings can be combined to form design pattern transformations that can be used to evolve
design pattern instances in such a way that their constraints are not violated (similar to the design
pattern transformations provided by Florijn [FMvW97] and [MT01]).

When such a design pattern transformation adds a class to a particular class hierarchy, for
example, it will consult the documentation to check the design pattern instances in which this
class will participate. Based on this information, it can derive which methods this class should
implement, and under some circumstances even generate an implementation for these methods
automatically. For example, a Composite design pattern defines a transformation that adds a
new leaf class to a class hierarchy that participates in an instance of that design pattern. Besides
adding the class to the hierarchy, this transformation also specifies that all method participants of
the design pattern instance should be defined by the class. As an example, Figure 4.4 shows how
an addLeaf design pattern transformation is applied to the CompositeExpression design pattern
instance of the Scheme framework, to introduce a ScQuoteExpression class. Note how this class
provides implementations for the printOn: and analyze methods, since this is required by the
design pattern constraints.

A design pattern transformation defined by a design pattern thus adds a participant to an
instance of that design pattern, or removes a participant from such an instance. At the same
time, it performs additional changes to the implementation, that are necessary to ensure that the
design pattern’s constraints are still satisfied. We will explicitly define such design pattern trans-
formations for each design pattern, so that a developer can use them just as he uses refactorings
in the Refactoring Browser. Note that we could have considered other transformations on design
patterns as well, such as transformations that refine or coarsen method participants. While it
would be straightforward to add such transformations, this can be considered future work.

It follows from the fact that design pattern transformations are only capable of adding or re-
moving participants, that they can not be used to replace a design pattern instance by another
instance, or to internally reorganize the structure of a design pattern instance. For example, no
design pattern transformations exist that change the inheritance relationships between classes, or
shifts method implementations up or down the class hierarchy. As such, design pattern transfor-
mations are mostly useful to support anticipated evolution. To support unanticipated evolution
as well, refactorings should be incorporated, since these are generally applicable program trans-
formations. Clearly, since instantiation can be seen as a special kind of anticipated evolution (see
Section 2.1.4), design pattern transformations are able to support it as well. In short, design
pattern transformations can be used to support anticipated evolution as well as instantiation, but
do not support unanticipated evolution.

Furthermore, much in the same way that a combination of design pattern instances describes
a framework’s complete design, a combination of design pattern transformations can define a
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Figure 4.4: An addLeaf design pattern transformation performed on the CompositeClosure Com-
posite design pattern instance
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framework instantiation or framework evolution transformation. Such framework-specific trans-
formations are high-level operations that implement a complete instantiation or evolution of the
framework. As a concrete example, we can define an addSpecialForm framework-specific evolution
transformation for the Scheme framework. A developer can use this operation to add a new spe-
cial form to the framework’s implementation automatically. The addSpecialForm transformation
itself is defined in terms of the appropriate design pattern transformations, that add the necessary
participants to the appropriate design pattern instances.

4.2.3 Formal Design Constraints

To alleviate design drift as much as possible, to guide a developer when manually evolving a frame-
work and to support unanticipated evolution up to a certain extent, we will explicitly document
the design constraints of the framework. Design patterns can also be used for this purpose [MT01].

A design pattern constrains the implementation of a framework. Participants in a design
pattern instance should adhere to the specific relationships, collaborations and interactions defined
by the design pattern. When a new class is added to the framework, for example, it will participate
in one or more design pattern instances, since every important class hierarchy is a participant in
one or more of those instances. If the constraints of the design pattern are explicitly documented,
we can use them actively to verify that a developer provided a correct implementation of the class
and its methods, according to the rules of the design pattern. If this is not the case, we can warn
him of this fact, so that he can take appropriate action.

In order to allow tool support for automatically verifying whether a framework’s implemen-
tation satisfies the necessary constraints, it is absolutely necessary that these constraints can be
formally specified. This in turn requires a formal description of the design pattern for which these
constraints hold. In Chapter 5 we will provide such a formal model, which includes a formal
definition of an abstraction of design patterns (metapatterns) and their associated constraints. It
is important to note that constraints are associated with design patterns, and hold for all of the
design pattern instances. As such, we only need to specify these constraints once for each design
pattern, and we can reuse them in any other framework.

As an example, we can formally and explicitly document the constraint that each subclass
of the SpecialFormHandler class hierarchy should have a corresponding class in the Closure
hierarchy, by specifying that those two hierarchies participate in an instance of the Factory
Method design pattern. One of the constraints of this design pattern is that each subclass of
the SpecialFormHandler class should implement the newClosure method, which should instan-
tiate a specific subclass of the Closure hierarchy. By means of the formal specification of this
constraint, we can detect if a developer forgets to implement this method, or if he does not provide
it with the correct behavior and does not instantiate an appropriate subclass.

Explicit design constraints are also a means to provide limited support for unanticipated evo-
lution. As already explained, no design pattern transformations exist that allow a developer to
internally reorganize a design pattern instance, as such changes are impossible to anticipate be-
forehand. Reorganizing a class hierarchy, changing inheritance relationships and moving method
implementations around thus remains a manual task. Luckily, the design pattern constraints re-
main useful after such changes have been applied, to verify whether a design pattern instance
is still correct with respect to the appropriate design rules. E.g. the constraints can be used
to check whether the inheritance relationships are still valid, classes implement the appropriate
methods, and so on. The support for unanticipated evolution provided by these constraints is
limited, however, since a developer can entirely destroy a design pattern instance, or can replace
it with another one, which would render the constraints useless.

Merge Conflict Detection

Explicitly documenting the design pattern transformations and refactorings that are applied to
a framework allows us to define an operation-based merge conflict detection algorithm, as shown
in [MT01]. Because we know the individual transformations that have been applied, we can
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compare them one by one, and define the conditions under which they give rise to a merge conflict
when applied in parallel.

Consider the example presented in Section 4.1.3, where an addLeaf design pattern transforma-
tion was applied to the CompositeExpression instance of the Composite design pattern. This oper-
ation adds a new leaf class participant, ScQuoteExpression, to the ScExpression class hierarchy.
At the same time, another developer applies an addConcreteVisitor design pattern transformation
and a pullUpMethod refactoring to the ExpressionVisitor instance of the Visitor design pattern.
The intent here is to assemble the printing behavior scattered over the different classes in the
ScExpression hierarchy into one single class, the PrintVisitor class.

We already saw that merging both evolutions into one single version leads to a number of merge
conflicts. We can detect these by comparing the design pattern transformations and refactorings
that are applied, and deducing the conditions under which they give rise to a conflict if applied in
parallel.

Figure 4.5 shows the merge conflict that arises because two design pattern transformations are
applied in parallel: the addConcreteVisitor and the addConcreteElement design pattern transfor-
mations. The former adds a new visitor class to the AbstractASTEnumerator hierarchy, whereas
as a result of the latter a new doQuoteExpression: method is added to that same hierarchy. This
results in a merge conflict where the newly introduced visitor class does not implement the newly
introduced method.

Figure 4.6 illustrates how applying a refactoring and a design pattern transformation in parallel
may lead to a merge conflict. An addLeaf design pattern transformation is applied to a instance
of the Composite design pattern, while at the same time a pullUpMethod refactoring is applied
that changes the internal structure of that same instance. As a result, in the merged version, the
newly introduced leaf class does not conform to the new structure of the class hierarchy.

As we will show in Chapter 7, we can provide a basis for detecting possible merge conflicts due
to parallel refactorings or design pattern transformations, by identifying and formally defining the
conditions under which they influence one another.

4.2.4 Support for Change Propagation

Design patterns can also provide help to propagate a particular change through the framework
and infer its impact on the rest of the framework in this way. This is due to the fact that:

• design pattern instances cover a substantial amount of the frameworks classes and methods.
They can thus be used as a basis for implementing a change propagation algorithm that
defines how a change to one particular part of a framework, represented by a design pattern
instance, propagates to the other parts, represented by other instances.

• design pattern instances can, and most likely will, overlap, since classes and methods can
participate in more than one instance. An example of such an overlapping was shown in
Section 3.4.5, where instances of the Visitor and Composite design patterns mostly consist
of the same participants. Figure 4.7 depicts this situation.

A design pattern transformation applied on a design pattern instance will make sure that the
constraints of the corresponding design pattern remain satisfied. However, this does not neces-
sarily mean that the constraints of overlapping design patterns are satisfied as well. Additional
transformations may be required on those overlapping instances, in order for the implementation
to be conform with the design pattern’s constraints.

Consider again the example of the overlapping of the Visitor and Composite design pattern
instances. If we apply an addLeaf design pattern transformation on the instance of the Com-
posite design pattern, to extend the ScExpression hierarchy with a new ScQuoteExpression
class, we should apply an addVisitorMethod design pattern transformation on the instance of the
Visitor design pattern as well, in order to introduce the doQuoteExpression: method in the
AbstractASTEnumerator hierarchy.

70



addConcreteVisitor merged result

ScConsExpression ScSequenceExpression
nodeDo: nodeDo:

ScExpression
nodeDo:

PrintOnVisitor

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

SchemeToSmalltalkConverter

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

AbstractASTEnumerator

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

ScConsExpression ScSequenceExpression
nodeDo: nodeDo:

ScExpression
nodeDo:

SchemeToSmalltalkConverter

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

AbstractASTEnumerator

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

ScConsExpression ScSequenceExpression
nodeDo: nodeDo:

ScExpression
nodeDo:

SchemeToSmalltalkConverter

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:
doQuoteExpression:

AbstractASTEnumerator

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:
doQuoteExpression:

ScQuoteExpression
nodeDo:

ScConsExpression ScSequenceExpression
nodeDo: nodeDo:

ScExpression
nodeDo:

SchemeToSmalltalkConverter

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:
doQuoteExpression:

AbstractASTEnumerator

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:
doQuoteExpression:

ScQuoteExpression
nodeDo:

PrintOnVisitor

doBlockExpression:
doCodeExpression:
doConsExpression:
doEmptyListExpression:
doExtraArgumentExpression:
doIdentifierExpression:
doSequenceExpression:

addConcreteElement

Figure 4.5: Merge conflict when applying a addConcreteVisitor design pattern transformation in
parallel with an addLeaf design pattern transformation

In Chapter 5, we will show how we can detect overlapping of design pattern (or more specifically,
metapattern) instances, and determine the conditions under which design pattern transformations
give rise to additional design pattern transformations on overlapping instances. As such, we can
implement a change propagation algorithm, based on information about design patterns and the
design pattern transformations defined on them.
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4.3 Approach of the Dissertation

4.3.1 The Metapattern Approach

Tool support involving design patterns first of all requires a formal definition of those design
patterns. Without a decent formalism, such patterns can only be described by means of natu-
ral language, informal design diagrams and sample code templates. This makes them inherently
ambiguous and prohibits automated tool support. Several formal models were discussed in Sec-
tion 2.3.4. The approach of [EHY98] appeals most to us, as it provides a simple and concise formal
model, that can be expressed in a declarative way.

Second, the kind of tool support we want to provide for framework-based development requires
a suitable abstraction of design patterns, due to the following reasons:

• we want to represent instantiation and evolution by means of high-level design pattern-
specific transformations. Since many design patterns exist, and new ones keep being discov-
ered, many such transformations would need to be defined and the tool would have to be
updated constantly.

• our merge conflict detection algorithm is operation-based, and mutually compares the trans-
formations that have been applied. This is quite cumbersome given the multitude of trans-
formations. The fact that new transformations need to be integrated often would even
jeopardize the scalability of our approach.

• our change propagation algorithm will be defined in terms of overlapping of design pattern
instances. Without an abstraction, we should consider how each design pattern can overlap
with each other design pattern. The large number of design patterns would clearly make
this approach unmanageable, especially if new design patterns need to be integrated often.

A decent abstraction is thus clearly indispensable. Furthermore, instantiation and evolution
activities require information about the structure and the collaborations between classes and meth-
ods, and involves changing these aspects. A suitable abstraction should convey such information.

Metapatterns [Pre95, Pre94, Pre97] provide exactly the kind of abstraction of design patterns
we are looking for. As was discussed in Section 2.3.5, metapatterns classify design patterns into
a small set of categories, according to their Structure, Participants and Collaborations. Such
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properties convey exactly the information we are looking for and can easily be defined formally,
whereas other properties of design patterns (such as the Applicability and Trade-offs) are harder
to formalize. Moreover, the small number of possible metapatterns ensures the scalability and
manageability of our approach. Only a small number of transformations would need to be defined,
which avoids the need to constantly update tools when new design patterns (and thus new design
pattern-specific transformations) are discovered, and which greatly simplifies the definition of an
operation-based merge conflict detection algorithm. Likewise, the number of possible ways in
which such a limited set of metapatterns can overlap is quite small, which reduces the complexity
of our change propagation algorithm.

The fact that metapatterns are an abstraction of design patterns naturally indicates that some
information conveyed by a design pattern is lost. Many important properties of design patterns,
such as Intent and Applicability, are not considered by metapatterns. This should not be a serious
hindrance however. We merely use metapatterns as a basis for providing automated tool support
for framework-based development. By no means do we exclude the use of design patterns for other
purposes, such as documenting the framework and explaining the rationale behind some specific
design decisions. Furthermore, it should be noted that not all design patterns can be captured
in full detail as a combination of metapatterns. Rather, metapatterns are capable of expressing a
significantly large part of the available design patterns, and are therefore nevertheless very useful
as an abstraction.

Differences with Existing Metapatterns

The formal definition of metapattern we will provide in Chapter 5 differs slightly from the original
definition presented by Pree [Pre95] in a number of ways:

• In the original definition, metapatterns consist of four participants: template and hook
classes and template and hook methods defined in those template and hook classes (see
Section 2.3.5). In our definition, we explicitly include class hierarchies, by introducing the
concepts of template and hook hierarchies. The original definition already mentions that
the hook class participant should be subclassed in order to override the appropriate hook
method participants. In essence, the hook class participant in the original definition is thus
similar to the hook hierarchy participant in our definition. A template hierarchy participant
is however not considered in the original definition.

• Originally, seven different types of metapatterns are defined (see Section 2.3.5). Due to the
fact that we introduce template hierarchy participants, we are able to define two new types:
the 1:1 Hierarchy Connection and the 1:1 Hierarchy Creation metapatterns. Just like the
different types of metapatterns that were already defined, these two new metapatterns allow
us to capture important structures in a framework’s implementation and form an appropriate
abstraction for a number of design patterns. The definition of these new metapatterns and
a discussion of their usefulness will be shown in later sections.

• While Pree merely presented a detailed discussion of the existing metapatterns in [Pre95], we
provide a complete framework for metapatterns that is formally underpinned. This frame-
work permits to define metapatterns that vary from the originally defined metapatterns in
a number of ways, and should be easy to extend in a straightforward way with new meta-
patterns should the need arise. The framework is based on five fundamental metapatterns,
that form the basis for all other metapatterns that exist.

In Chapter 5, we will first present a formal definition for the five fundamental metapatterns,
and afterwards define the existing metapatterns in terms of the fundamental metapatterns. More-
over, the formal definition of a fundamental metapattern will be accompanied by a definition
of the metapattern-specific transformations that can be applied upon its instances. Just like
metapatterns form the basis for a formal definition of design patterns, these metapattern-specific
transformations form the basis for formally defining design pattern-specific transformations.
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Figure 4.8: Our approach for supporting framework-based development

4.3.2 General Overview of the Approach

Figure 4.8 shows the approach we propose to build an environment for supporting framework-
based development. The approach consists of three levels: the framework, design pattern and
metapattern level. The information at the framework and design pattern level is always translated
to the metapattern level, where the interesting work is performed. It is at this level that changes
are made to the implementation, that the documentation is updated automatically and that the
design constraints are verified. The resulting information is then again promoted to the higher
levels of the approach. We will now highlight some of the most important features in more detail.

Framework Level

At the framework level, the framework developer is responsible for documenting a framework’s
design by means of the design pattern instances occurring in it, and for defining appropriate
framework instantiation and evolution transformations. The design pattern documentation can
be browsed by application developers or other framework developers to understand the inner
workings of the framework, and they can use the framework transformations to instantiate or
evolve the framework in a predefined way. These high-level operations guide them in performing
their task by interacting with them and generating appropriate skeleton code that can be edited
later on.

We have chosen a non-invasive approach to documenting design pattern instances, since anno-
tations are provided in a separate environment. Another option would consist of making design
patterns first class entities in the programming language itself [Bos98]. Such would however pro-
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hibit the use of our approach on already existing frameworks, since no existing and widely-used
programming language supports design patterns as first class entities. Moreover, it would sacrifice
the flexibility of our approach, since we would be tied to design pattern information only, whereas
in a non-invasive approach, other kinds of information could be used as well. Last, we would be
forced to abandon the metapattern abstraction, since the programming language would support
design patterns, and not metapatterns, since the former contain much more information and are
far more familiar to developers. As such, the scalability and manageability of such an approach
can not be guaranteed.

Design Pattern Level

At the design pattern level, the supporting environment provides design pattern-specific transfor-
mations, that can also be used by application or framework developers. These transformations
are defined on the various design patterns, and apply changes to their instances. As such, these
operations are independent of a particular framework, just as refactorings, and thus need to be
implemented only once and can be provided as a library that can be reused.

A framework developer or an application developer simply uses the design pattern-specific
transformations, and need not worry about their internal implementation. The framework-specific
transformations that are defined for a framework, however, should be implemented by the frame-
work developer. When defining such transformations, he should specify how these are to be
translated into design pattern-specific transformations on the appropriate instances. This trans-
lation depends on the specific framework and the specific design pattern instances occurring in
it. Therefore, the translation needs to be specified once per framework-specific transformation.
Nonetheless, whenever another developer invokes such an operation, the supporting environment
will be able to take care of the translation automatically, based on the specifications provided by
the framework developer.

Metapattern Level

As explained above, tools based on design patterns should use a suitable abstraction to ensure
scalability and manageability. To this extent, we use metapatterns as an abstraction of design
patterns, and we include a metapattern level in our approach. It is at this level of the approach
that the interesting work is performed. Design information is present in terms of metapattern
instances and the specification of these instances is automatically derived from the specification
of the design pattern instances at the design pattern level. Since this translation is fixed and
independent of a particular framework, the environment includes a library that specifies how this
should be achieved for each design pattern-metapattern(s) combination.

Just as design patterns define design pattern-specific transformations, metapatterns define
metapattern-specific transformations. These are implemented at the metapattern level, perform
the actual changes to the implementation of the framework, and automatically update the doc-
umentation appropriately. The design pattern-specific transformations, provided at the design
pattern level, are automatically translated into appropriate metapattern-specific transformations
by the environment, based on translation information provided in a library. This library contains
the implementation of the metapattern-specific transformations, as well as a specification of how
the design pattern-specific transformations should be mapped onto them. This library is reusable,
since metapattern–specific transformations are independent of a particular framework, as is the
translation from design pattern-specific transformations to metapattern-specific transformations.

Besides the metapattern-specific transformations, the metapatterns also define the constraints
that a framework’s design should satisfy. It is thus also at the metapattern level that the design
constraints of a framework are specified and that the implementation is verified according to
these constraints. The specification of design constraints is thus also independent of a particular
framework. Therefore, these constraints should also be implemented only once and included in a
reusable library.
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To summarize, the only responsibilities of a framework developer are providing a specifica-
tion of the design pattern instances used in the framework, and implementing the appropriate
framework-specific transformations. He should not implement design pattern- and metapattern-
specific transformations, as these are provided in a library and can be reused. Moreover, the
translation algorithms that map design pattern instances onto metapattern instances and vice
versa and the algorithms that map design pattern-specific transformations to metapattern-specific
transformations are also implemented only once and can be reused by the environment across
different frameworks.

We would like to stress once again that one of the major goals of the dissertation is to prove
that an environment for supporting framework-based development can be constructed, based on
the approach sketched above. Clearly, this requires us to first test the feasibility of the approach,
discover its strengths and weaknesses and fine-tune it where possible. Our main focus in this
dissertation thus lies in dealing with language-engineering issues first, as opposed to mere software
engineering issues. As we have explained above, however, this does by no means imply that we
will construct a new programming language or extend an existing one.
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Chapter 5

A Formal Model for Metapatterns

In this chapter, we define a formal model for representing information about a framework’s design.
This model is based upon metapatterns, and formally defines the various existing metapatterns as
well as the corresponding metapattern-specific transformations. Furthermore, we will also define
the conditions under which metapattern instances overlap and show how this affects their opera-
tions.

5.1 Introduction

As was explained in Section 4.3.1, we will use metapatterns as an abstraction of design patterns to
ensure the scalability and manageability of our approach to support framework-based development.
In this chapter, we will define a formal framework that can be used to formalize the metapatterns
defined by Pree [Pre95], as well as other metapatterns that may exist. This formal definition of
metapatterns is largely similar to the formal definition of design patterns in LePUS [EHY98].

The formal framework is based on the definition of five fundamental metapatterns, which will
be given first, together with a definition of the metapattern-specific transformations. These trans-
formations form the basis of the design pattern-specific and framework-specific transformations
that can be used to instantiate and evolve a framework. Afterwards, we will show how existing
metapatterns can be defined in terms of these fundamental metapatterns. Furthermore, we will
define a change propagation algorithm based on the metapattern-specific transformations and on
the different ways in which metapattern instances can overlap.

5.2 Preliminaries

5.2.1 Notation

In the remainder of this chapter, metapatterns will be presented both textually and graphically.
The textual representation serves as the formal definition, while the graphical representation is
used to provide an intuitive corresponding picture.

In the textual representation, a single class will be denoted with a capital letter (such as T
or C ). A variable is represented by a small letter v, while a small letter m represents a method.
Furthermore, we will use subscripts in order to distinguish between different methods. Curly braces
are used to denote a set of methods ({m1,m2,m3} represents a set containing three methods, for
example). In case of a singleton set with only one method, we will omit the curly braces (e.g. we
use m for representing the set {m}). Furthermore, each method will be preceded by a class that
shows where that method is defined. For example, C :: {h1, h2} means that the class C defines two
methods h1 and h2. When it is not explicitly known which or how many methods are contained
in the set, we can use C :: M , where M represents a set of methods. Note that there can be no
confusion between a symbol denoting a class or a symbol denoting a set of methods although both
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a single method
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a class hierarchy

usesSingle
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creates
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*

Figure 5.1: Graphical Notation Symbols for metapatterns

are represented with a capital letter: a set of methods is always preceded by the class in which
these methods are defined.

The graphical notation symbols that are used are depicted in Figure 5.1. For each participant
of a metapattern, a corresponding graphical symbol is defined, as is the case for (most of) the
relations that can hold between these participants. These relations will be defined in Section 5.2.2.

5.2.2 General Definition of a Metapattern

A metapattern is defined as follows:

Definition 7 A metapattern is a tuple 〈P,R〉, where P is a set of participants and R is a set of
relations (or constraints) that hold between these participants.

The set of participants P contains the classes, methods and variables that make up the struc-
ture of the metapattern. More specifically, a participant can either be a single class, a hierarchy
of classes (see Section 5.2.3), a single method, a set of methods or a variable. Moreover, each par-
ticipant is tagged with the specific role it fulfills in the metapattern instance (for example, a class
hierarchy H that plays the role of hookHierarchy participant is denoted by hookhierarchy(H)).

The relations (or constraints) part R of a metapattern description specifies how the different
participants of that metapattern are related and how they interact with each other. These relations
should be adhered to at all times in order to preserve a correct metapattern structure. The
definition of all the relations that can hold between two participants can be found in Tables 5.1,
5.2 and 5.3. In these definition, we consider C as the set of all classes defined in the framework,
M as the set of all methods and V as the set of all variables defined by those classes. This
includes instance and class variables, as well as formal parameters that are passed to methods.
Local or temporary variables are not considered, as they do not form part of the structure of a
metapattern. A brief description of each of these relations follows. We should point out that most
of these relations are not completely formally specified. Rather, an intuitive definition is given
in natural language. However, they can be formally defined as well, since they can be mapped
in a straightforward way onto the basic concepts underlying any object-oriented programming
language (e.g. message sending, method definition, etc.). Such formal definitions are outside the
scope of this dissertation, however.

understandsMessage ⊆ C×M This relation specifies that a certain class C understands a certain
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message m. This means that the class C itself, or one of its superclasses, provides a concrete
implementation for the corresponding method (that was not cancelled).

definesMethod ⊆ C×M A class C defines a method m if it declares this method in its interface.
The method may be an abstract method, or may provide an implementation.

definesVariable ⊆ C × V × {variable, formal} A class C defines a variable v if this variable is
defined as an instance or a class variable in the class, or if it is passed as a formal parameter
to one of the methods of the class.

creates ⊆ M×C This relation holds between a method and a class and signifies that the method
creates an instance of that class and returns it.

usesSingle ⊆ C×C. This relation can hold between two class participants and specifies that an
instance of the first class refers to exactly one instance of the second class.

usesMultiple ⊆ C × C The usesMultiple relation holds between two class participants and in-
dicates the fact that an instance of one class can refer to many instances of another class.
The relation does not specify how many instances can be referred to.

inherits ⊆ C×C This relation holds between two classes and reflects the fact that the first class
is a direct subclass of the second class. A transitive variant of this relation exists, inherits?,
which also specifies that a class C1 is a descendant of another class C2, but which does not
require that class to be a direct subclass.

invokes ⊆ M ×M This relation holds between two methods and specifies that the first method
directly calls the second. Note that this relation is a static relation, which means that it is
not guaranteed that the first method actually calls the second at run-time. For instance,
if the call occurs inside the true branch of a conditional statement which always returns
false, the call will never occur at runtime. This does not concern us however, since we are
merely interested in static information, which is sufficient for achieving the kind of evolution
support we envision.

There are two variants of the invokes relation. The invokesr relation specifies that a method
calls itself recursively. The invokes↔ relation indicates that a method calls one and only
one other method and each method can only be called by exactly one other method.

Although we presented a discussion of the relations as if they only hold for single participants, a
number of these relations is also defined for sets of participants. For example, the understandsMes-
sage relation holds between a class and a method, but can also hold between a set of classes and
a method or between a class and a set of methods. Such relations then simply state that each
class in this set implements the given method or all methods are implemented by the single class,
respectively. A similar definition with universal quantification is given for all other relations that
can hold between primitive participants or sets of participants, except for the invokes relation.
(see Tables 5.1, 5.2 and 5.3). The definition of the invokes relation for sets of methods uses an
existential quantifier (see Table 5.2). This is because all methods in the set M1 should not call
all methods in the set M2, but should call at least one of those methods. Furthermore, not every
method in the set M2 should be called by a method in M1.

In the graphical notation for metapatterns (see Figure 5.1), we have symbols for all but three
relations. For one, the understandsMessage and definesMethod relationships have no explicit
graphical representation. Instead, these relationships are specified graphically by means of over-
lapping symbols. A method symbol occurring inside a class symbol, for example, means that the
class defines the method. Second, the recursive variant of the invokes relationship, invokes? has
no graphical counterpart, as it is obvious from the figure if a method invokes itself recursively on
another instance. We should note that recursive methods on the same instance are not consid-
ered, as these do not occur in any kind of metapattern. The model can however be extended in a
straightforward way to allow such recursive methods.
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uses ⊆ C× C× {single,multiple}
uses(C1, C2, single) = usesSingle(C1, C2)
uses(C1, C2,multiple) = usesMultiple(C1, C2)

usesSingle ⊆ C× C
usesSingle(C1, C2) = class C1 references a single instance of class C2

usesMultiple ⊆ C× C
usesMultiple(C1, C2) = class C1 references a number of instances of class C2

inherits ⊆ P(C)× C
inherits({C1}, C2) = class C1 inherits directly from class C2

inherits(C, C2) = ∀C1 ∈ C : inherits(C1, C2)

inherits? ⊆ P(C)× C
inherits?({C1}, C2) = inherits({C1}, C2)
inherits?({C1}, C2) = ∃C3 ∈ C : inherits({C1}, C3), inherits?({C3}, C2)
inherits?(C, C2) = ∀C1 ∈ C : inherits?({C1}, C2)

Table 5.1: Primitive relations between classes

invokes ⊆ P(M)× P(M)× {self, v}
invokes({m1}, {m2}, self) = method m1 invokes method m2 on the same instance
invokes({m1}, {m2}, v) = method m1 invokes method m2 via the variable v
invokes(M, {m2}, x) = ∀m1 ∈ M : invokes(m1,m2, x)
invokes({m1},M, x) = ∀m2 ∈M : invokes({m1}, {m2}, x)
invokes(M1,M2) = ∀m1 ∈M1,∃m2 ∈M2 : invokes({m1}, {m2}, x)

invokesr ⊆ P(M)× P(M)× {self, v}
invokesr(M1,M2, x) = invokes(M1,M2, x),M1 ∩M2 6= ∅

invokes↔ ⊆ P(M)× P(M)× {self, v}
invokes↔(M1,M2, x) = ∀m1 ∈M1,∃!m2 ∈M2 : invokes({m1}, {m2}, x),

∀m2 ∈M2,∃!m1 ∈M1 : invokes({m1}, {m2}, x)

Table 5.2: Primitive relations between methods
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understandsMessage ⊆ P(C)× P(M)
understandsMessage({C}, {m}) = class C understands message m

(maybe indirectly)
understandsMessage(C, {m}) = ∀C ∈ C : understandsMessage({C}, {m})
understandsMessage({C},M) = ∀m ∈M : understandsMessage({C}, {m})
understandsMessage(C,M) = ∀C ∈ C,∀m ∈M : understandsMessage({C}, {m})

definesMethod ⊆ P(C)× P(M)
definesMethod({C}, {m}) = class C defines method m
definesMethod(C, {m}) = ∀C ∈ C : definesMethod(C,m)
definesMethod({C},M) = ∀m ∈ M : definesMethod({C}, {m})
definesMethod(C,M) = ∀C ∈ C,∀m ∈ M : definesMethod({C}, {m})

definesV ariable ⊆ P(C)× V× {variable, formal}
definesV ariable({C}, v, variable) = class C defines variable v as an instance variable
definesV ariable(C, v, variable) = ∀C ∈ C : definesV ariable({C}, v, variable)
definesV ariable({C}, v, formal) = class C defines v as a formal parameter

in one of its methods
definesV ariable(C, v, formal) = ∀C ∈ C : definesV ariable({C}, v, formal)

creates ⊆ P(M)× P(C)
creates : ({m1}, {C1}) = method m1 creates an instance of class C1

creates : (M, C) = ∀m ∈M,∃!C ∈ C : creates({m}, {C})

Table 5.3: Primitive relations between classes, methods and variables
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root ⊆ H → C : H → C where C is the maximal element
of H for the inherits relation

leafs ⊆ H → P(C) : H → {C1, C2, . . . , Cn} where Ci is a minimal element of H
for the inherits∗ relation

hierarchy ⊆ C → H : C → H where H is the class hierarchy
generated by C

Table 5.4: Preliminary definitions

5.2.3 Class Hierarchies

Besides classes, methods and variables, an important part of a framework consists of the different
class hierarchies that it defines. Since this is such an important concept, we want to include it in
our descriptions of metapatterns and in the formal model.

We define the set of all class hierarchies of the framework as H, which is a subset of P(C),
where P stands for the powerset, or the set of all subsets, and C is the set of all classes defined in
the framework. If C is a class in the framework, we will use hierarchy(C) to denote the hierarchy
of classes generated by C, i.e. class C together with all its direct and indirect descendants. A
class hierarchy H ∈ H always defines an inherits ⊆ C×C relation which forms a partial order. It
has a unique maximal element root(H) and a set of minimal elements leafs(H) (see Table 5.4).
Intuitively, the maximal element of a class hierarchy corresponds to the root of that hierarchy,
while the set of minimal elements corresponds to the set of leaf classes of the hierarchy. Note that
leaf classes are not required to be direct subclasses of the root class.

A hierarchy of classes will be denoted textually by a H symbol. A class hierarchy implementing
a set of methods will be represented by a hierarchy symbol preceding that set: H :: M. As already
mentioned, in the case of a class, C :: M means that all methods included in the set M are
implemented by the class C. In the case of class hierarchies, however, H :: M does not mean that
each class in the hierarchy H implements all methods in the set M. Instead, it means that all
methods of M are defined in the root of the class hierarchy as methods that are either abstract
or that provide a default implementation, and a concrete implementation exists for these methods
in each leaf class of the hierarchy, i.e. each leaf class ”understands” these methods. This does
not necessarily mean that that leaf class actually provides that implementation, however. It could
just as well be defined in one of the leaf class’s superclasses. More specifically:

H :: M⇔ definesMethod({root(H)},M) and understandsMessage(leafs(H),M)

Graphically, a hierarchy will be represented by means of a large triangle symbol (see Figure 5.1).
Furthermore, since the understandsMessage and definesMethod relations are not explicitly repre-
sented graphically, a symbol denoting a single method (or a set of methods) appearing inside a
hierarchy symbol means that the root of that hierarchy defines the method(s), and each concrete
leaf class of the hierarchy provides a concrete implementation.

5.3 Formal Definition of Fundamental Metapatterns

In this section, we will provide the basis for the formal definition of metapatterns and their asso-
ciated transformations. As we will see, these transformations can be defined completely in terms
of the participants of a metapattern. Since many of the metapatterns defined by Pree [Pre95]
have the same participants, we are able to provide a meaningful extra abstraction by means of five
fundamental metapatterns. The definition of a fundamental metapattern is highly parameterized,
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so as to make it as generic as possible. In a later section, we will see how such generic defini-
tions allow us to formally define all of Pree’s metapatterns, as well as a number of other useful
metapatterns that are not defined by Pree.

Because these fundamental metapatterns are parameterized, it is difficult to represent them
graphically. We will thus not provide graphical illustrations of the fundamental metapatterns in
this section, but we will do so for the existing metapatterns in later sections. We also note that
the names of the fundamental metapatterns are generalizations of the names of the metapatterns
defined by Pree.

5.3.1 The Unification Fundamental Metapattern

Definition

The Unification fundamental metapattern consists of three participants: a hierarchy H, a set of
template methods H :: Mt and a set of hook methods H :: Mh. The template class and the
hook class of this metapattern are one and the same class: the root class of the hierarchy H. This
class implements all of the template methods H :: Mt, each of which calls one or more of the
hook methods from H :: Mh. These hook methods are defined by the root of the hierarchy and
are provided with a concrete implementation for all concrete leaf classes of the hierarchy. Recall
that the definition of invokes specifies that each templateMethod participant should call at least
one hookMethod participant, and that not every hookMethod participant should be called by a
templateMethod participant. The metapattern can thus be defined formally as follows:

unificationFundamentalMP (H,H :: Mt,H :: Mh) with

participants :
hookhierarchy(H)
templatemethods(H :: Mt)
hookmethods(H :: Mh)

constraints :
understandsMessage(root(H),H :: Mt)
definesMethod(root(H),H :: Mh)
understandsMessage(leafs(H),H :: Mh)
invokes(H :: Mt,H :: Mh, self)

Transformations

We can define six transformations on this metapattern:

• The addHookClass operation takes a class C as an argument and adds this class to the leafs
of the hook hierarchy H (C ∈ leafs(H)). Before this operation was applied, the class C was
not part of the hook hierarchy (C 6∈ H). The removeHookClass operation also takes a class
C that is part of the hookHierarchy participant (C ∈ leafs(H)) and removes this class from
the leafs of the hook hierarchy (C 6∈ H).

• The addHookMethod operation has a method m, that is not part of the hookMethod partic-
ipant (m 6∈ H :: Mh), and adds this method to the set of hook methods (m ∈ H :: Mh). Its
removeHookMethod counterpart removes its argument m from the same set of hook methods
((m 6∈ H :: Mh). Before this operation was applied m formed part of this set (m ∈ H :: Mh).

• The addTemplateMethod operation is similar to the addHookMethod operation, except that
it adds its argument m to the set of template methods of the metapattern (m ∈ H :: Mt).
The removeTemplateMethod on the other hand removes its argument m from the set of
template methods (m 6∈ H :: Mt.
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As can be seen, these transformations are entirely expressed in terms of operations on the meta-
pattern’s participants. Each operation either adds or removes a specific entity from a particular
participant. Moreover, it can be observed that the transformations are completely orthogonal.
The operations that add a particular entity are each defined on a different participant of the
metapattern, as are the operations that remove an entity. Consequently, the operations will never
interfere with each other.

Also note that there are no addTemplateClass and removeTemplateClass operations defined
on the Unification pattern. It makes little sense to define an addTemplateClass operation, as it is
the specific definition of this metapattern that it only contains one template class (which happens
to be unified with the root of the hook hierarchy). For the same reason, we can not define a
removeTemplateClass operation, as this would destroy this instance of the metapattern.

An important issue we want to stress is that the transformations should make sure that the
metapattern constraints remain satisfied at all times. For example, when an addHookClass trans-
formation adds a class to the leafs of the hookHierarchy participant, it should ensure that this
class understands all hookMethod participants, since this is required by the constraints of the
metapattern. This is possible, since we know the kind of metapattern a transformation is applied
to, and we know the constraints of this metapattern. In a practical setting, the transforma-
tion will not only be responsible for adding a class to a hierarchy, but must also ensure that
the class understands the appropriate methods. Similarly, since the constraints specify that each
templateMethod participant should call at least one hookMethod participant, applying an addTem-
plateMethod transformation will automatically invoke an addHookMethod transformation, if a new
hookMethod participant should be added.

5.3.2 The Connection Fundamental Metapattern

Definition

The Connection fundamental metapattern has five participants: a template class T, a hook hi-
erarchy H, a set of template methods T :: Mt, a set of hook methods H :: Mh and a reference
variable v. This variable is defined in the templateClass participant, and can hold a reference to a
single instance of a leaf class of the hook hierarchy H, or to a number of instances of such classes.
Furthermore, the templateClass participant implements a number of template methods T :: Mt.
Each of these template methods uses the object referenced by the variable v to call one or more
hook methods. These hook methods H :: Mh are defined by the root of the hook hierarchy H,
and a concrete implementation is present in the hierarchy for all its leafs. Formally:

connectionFundamentalMP (T,H, T :: Mt,H :: Mh, v,Multiplicity, Association) with

participants :
referencevariable(v)
templateclass(T )
hookhierarchy(H)
templatemethods(T :: Mt)
hookmethods(H :: Mh)

constraints :
understandsMessage(T, T :: Mt)
definesMethod(root(H),H :: Mh)
definesV ariable(T, V,Association)
understandsMessage(leafs(H),H :: Mh)
uses(T, root(H),Multiplicity)
invokes(T :: Mt,H :: Mh, v)

As can be seen, the definition of this fundamental metapattern is parameterized with a Mul-
tiplicity and an Association parameter. This provides the definition with a degree of flexibility
that allows it to be used as a basis for the definition of a number of similar metapatterns. The
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Multiplicity parameter can have two values assigned, single and multiple, and specifies in this
way whether an instance of the templateClass participant refers to a single object of a hookClass
participant, or to any number of such objects. The Association parameter, on the other hand,
is used to determine whether the reference held by the templateClass participant is through an
instance variable or through a formal parameter. As such, it can also accept two values: variable
and formal.

The reference held by the templateClass participant is used by all templateMethod participants
to call hook methods on objects of classes in the hookHierarchy participant. If this reference is
defined by means of an instance variable in the templateClass participant, all template methods of
that class have access to it. However, the reference can also be passed as a formal parameter. In
that case, it should be possible to pass this reference as an argument each time a templateMethod
participant is called. As such, each templateMethod participant should thus provide an appropriate
formal parameter.

Transformations

Like for the Unification metapattern, six operations can be defined for the Connection metapat-
tern.

• The addHookClass and removeHookClass operations respectively add and remove a class C
to and from the leafs of the hookHierarchy participant H of this pattern (C ∈ leafs(H) or
C 6∈ H).

• The addHookMethod operation adds a method m to the set of hook methods Mh, while its
counterpart, the removeHookMethod operation, removes a method m from this set (m ∈ H ::
Mh or m 6∈ H :: Mh).

• The addTemplateMethod and removeTemplateMethod operations respectively add and re-
move a template method m to and from the set of template methods Mt of this pattern
(m ∈ T :: Mt or m 6∈ T :: Mt).

Additionally, there are no addTemplateClass or removeTemplateClass operations defined for
this metapattern. Like for the Unification metapattern, it makes little sense to define such opera-
tions, as instances of this metapattern should always contain exactly one templateClass participant.

Furthermore, the transformations should make sure the entity they add or remove from the
metapattern instance satisfies all constraints defined by the metapattern, as was explained in
Section 5.3.1.

5.3.3 The Recursion Fundamental Metapattern

Definition

The Recursion fundamental metapattern consists of five participants: a template class T, a hook
hierarchy H, a reference variable v, a set of template methods T :: Mh defined in class T and a
set of hook methods H :: Mh defined on the hierarchy H. Actually, for all methods included in
the set T :: Mh, there is a method in the set H :: Mh with the same signature, which is why the
two sets have the same name.

In this metapattern, an instance of the template class T can either refer to exactly one in-
stance or to a number of instances of leaf classes of the hook hierarchy H. Such instances are
referenced through the variable v, that is defined in the templateClass participant. This template-
Class participant is itself included in the hook hierarchy H, either as the root class or as a concrete
leaf class. Furthermore, the root of the hook hierarchy H defines all hook methods as abstract
methods, and all leaf classes provide a concrete implementation for these methods. Although it
follows immediately that this also means that the class T provides a concrete implementation
of these methods, we explicitly include this relation in the formal definition of the metapattern.
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Additionally, the definition uses the invokesr relation to denote the fact that the templateMethod
participants recursively call the hookMethod participants.

recursionFundamentalMP (T,H, T :: Mh,H :: Mh, v,Multiplicity, Association) with

participants :
referencevariable(v)
templateclass(T )
hookhierarchy(H)
templatemethods(T :: Mh)
hookmethods(H :: Mh)

constraints :
definesMethod(root(H),H :: Mh)
definesV ariable(T, V,Association)
understandsMessage(leafs(H),H :: Mh)
inherits?(T, root(H))
understandsMessage(T, T :: Mh)
uses(T, root(H),Multiplicity)
invokesr(T :: Mh,H :: Mh, v).

Transformations

The following transformations that are defined on this metapattern:

• the addHookClass and removeHookClass operations are used to add or remove a class C
respectively to and from the hookHierarchy participant of this pattern (C ∈ leafs(H) and
C 6∈ H).

• the addHookMethod operation adds a hook method m to the set of hook methods H :: Mh

defined by the metapattern. Since the same set of methods is included twice as a participant
of this pattern (once for the template class T and once for the hook hierarchy H), we need
to add the method m to the two sets (m ∈ H :: Mh and m ∈ T :: Mh).

• the same holds for the removeHookMethod and removeTemplateMethod operations: they
remove a method m from the set of hook methods in the template class T and from the
same set of methods defined on the hierarchy H (m 6∈ H :: Mh and m 6∈ T :: Mh).

Again, we do not provide addTemplateClass or removeTemplateClass operations, because they
make no sense for this particular metapattern.

5.3.4 The Hierarchy Fundamental Metapattern

Definition

The Hierarchy fundamental metapattern also consists of five participants: two hierarchies H1 and
H2, a single template method H1 :: t, a number of hook methods H2 :: Mh and a reference
variable v. The root of the first hierarchy defines a template method t, which is overridden by
each concrete leaf class of this hierarchy. Likewise, the root of the second hierarchy defines the
hook methods H2 :: Mh, which are provided with a concrete implementation for all leaf classes
of the hierarchy. Furthermore, instances of classes in the first hierarchy can refer to instances of
classes in the second hierarchy through the reference variable v. This can be achieved by defining
an instance variable in the root of the hierarchy, which should be accessible to all leaf classes.
Alternatively, the reference can be passed as an argument to the templateMethod participant as
well. Each template method defined in the hierarchy H1 calls a different hook method defined on
the hierarchy H2. This is reflected by means of the invokes↔ relationship between the template
method and the hook methods.
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hierarchyFundamentalMP (H1,H2,H1 :: t,H2 :: Mh, v,Multiplicity, Association) with

participants :
referencevariable(v)
templatehierarchy(H1)
hookhierarchy(H2)
templatemethods(H1 :: t)
hookmethods(H2 :: Mh)

constraints :
definesMethod(root(H1),H1 :: t)
definesV ariable(leafs(H1), V, Association)
understandsMessage(leafs(H1),H1 :: t)
definesMethod(root(H2),H2 :: Mh)
understandsMessage(leafs(H2),H2 :: Mh)
uses(root(H1), root(H2),Multiplicity)
invokes↔(H1 :: t,H2 :: Mh, v)

Transformations

The transformations defined on this metapattern are the following:

• the addHookClass and addTemplateClass operations add a class C to the leafs of the hook
hierarchy and the templateHierarchy participant respectively (C ∈ leafs(H2) and C ∈
leafs(H1)).

• the removeHookClass and removeTemplateClass do exactly the opposite and remove a class C
from the leafs of the hook hierarchy and the templateHierarchy participant of the metapattern
(C 6∈ H2 and C 6∈ H1).

• the addHookMethod and removeHookMethod operations add and remove, a method m to
and from the set of methods H2 :: Mh defined by the metapattern (m ∈ H2 :: Mh and
m 6∈ H2 :: Mh).

In this particular metapattern, there is no addTemplateMethod or removeTemplateMethod op-
eration. The definition of the metapattern states that it has only one templateMethod participant
t. As such, adding another template method is not possible, as there would then be two tem-
plateMethod participants. For the same reason, a removeTemplateMethod operation does not
make much sense for this metapattern, as it would destroy its structure and the result would no
longer adhere to the constraints imposed by the metapattern.

5.3.5 The Creation Fundamental Metapattern

Definition

The Creation fundamental metapattern consists of three participants: two hierarchies H1 and H2

and a single template method t. This method is defined in the root of the first hierarchy, and is
provided with a concrete implementation in all of its leaf classes. For each of these leaf classes, the
template method creates an instance of a different leaf class of the second hierarchy, as indicated
by the creates↔ relation:

creationFundamentalMP (H1,H2,H1 :: t) with

participants :
templatehierarchy(H1)
hookhierarchy(H2)
templatemethods(H1 :: t)
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constraints :
definesMethod(root(H1),H1 :: t)
understandsMessage(leafs(H1),H1 :: t)
creates↔(H1 :: t, leafs(H2))

Transformations

These are the transformations that are applicable to this metapattern:

• the addHookClass operation adds a class C to the leafs of the hookHierarchy participant of
the metapattern (C ∈ leafs(H2)). Likewise, the addTemplateClass operation adds a class
C to the leafs of the templateHierarchy participant (C ∈ leafs(H1)).

• the removeHookClass operation removes a given class C from the leafs of the hook hierarchy
(C 6∈ H2), while the removeTemplateClass does the same for the leafs of the template
hierarchy (C 6∈ H1).

A similar reasoning as for the Hierarchy metapattern shows that it is not possible to define
an addTemplateMethod or removeTemplateMethod operation on this metapattern. Furthermore,
we do not even define addHookMethod or removeHookMethod operations, as the the metapattern
does not contain any hookMethod participants.

5.3.6 Overview of Transformations on Metapatterns

An overview of the different transformations and the types of metapatterns on which they are
applicable is presented in Table 5.5. As can be seen, when an operation that adds a particular
entity to an instance is defined on a metapattern, the corresponding operation that removes such
an entity is also defined. We can also observe that the addHookClass and removeHookClass opera-
tions are applicable on each type of metapattern, since all types have a hookHierarchy participant.
The addTemplateClass and removeTemplateClass operations, on the other hand, are only appli-
cable on the Hierarchy and Creation fundamental metapatterns, since these are the only ones
that have a templateHierarchy participant and all other types of metapatterns must have exactly
one templateClass participant. Furthermore, since the Creation fundamental metapatterns is the
only metapattern not to include hookMethod participants, it is the only metapattern on which
no addHookMethod and removeHookMethod operations are defined. Last, the addTemplateMethod
and removeTemplateMethod operations are only defined on the Unification, Connection and Re-
cursion fundamental metapatterns, since the definition of the other metapatterns explicitly states
that they only contain one templateMethod participant.

5.4 The Existing Metapatterns

In this section, we will present the formal definition of the Unification, 1:N Recursive Connection,
1:1 Hierarchy Connection and 1:1 Hierarchy Creation metapatterns defined by Pree [Pre95]. We
refer to the appendix for a definition of all other metapatterns defined by Pree that are not
considered here.

We will use the following template structure for our discussion. The Definition part will provide
the formal definition of the metapattern in terms of one of the fundamental metapatterns, as well as
an intuitive description of this definition in natural language. The next part will show the typical
structure of a templateMethod participant in the particular metapattern under consideration. The
structure is always more or less fixed for each type of metapattern, in that we know that a template
method will always call one or more hook methods. Furthermore, we also know that the template
method uses the referenceVariable participant of a metapattern (if it exists) as a receiver to send
the hook messages to. Consequently, we can use the metapattern description in a clever way
to generate skeleton code for template methods automatically. The last part of the discussion
contains an example of a design pattern that uses the structure of the particular metapattern, and
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MP1 MP2 MP3 MP4 MP5

addHookClass
√ √ √ √ √

addTemplateClass × × ×
√ √

addHookMethod
√ √ √ √

×
addTemplateMethod

√ √ √
× ×

removeHookClass
√ √ √ √ √

removeTemplateClass × × ×
√ √

removeHookMethod
√ √ √ √

×
removeTemplateMethod

√ √ √
× ×

MP1 = Unification fundamental metapattern, MP2 = Connection fundamental metapattern
MP3 = Recursion fundamental metapattern, MP4 = Hierarchy fundamental metapattern

MP5 = Creation fundamental metapattern

Table 5.5: Overview of Transformations on Metapatterns

h

t

Figure 5.2: The Unification metapattern

shows how this design pattern instance can be described by means of our formal model. Where
possible, we will use an example design pattern from our Scheme framework, as these have already
been explained in detail in Chapter 3.

5.4.1 The Unification Metapattern

Definition

The Unification metapattern is depicted graphically in Figure 5.2. It consists of a number of hook-
Method participants that are defined in a hierarchy participant, and a number of templateMethod
participants that are defined in the root class of that hierarchy participant. As such, this metap-
attern can be defined in terms of the Unification fundamental metapattern and is defined formally
as follows:

unificationMetapattern(H,H :: Mt,H :: Mh)
::=

unificationFundamentalMP (H,H :: Mt,H :: Mh)

Structure of the template methods

The template methods of this metapattern each have the same structure (shown below as Smalltalk
code):

t

...

91



SpecialFormHandler

analyze:
handle:
canHandle:
cantHandle:

ApplicationHandler

handle:
canHandle:
cantHandle:

SpecialFormHandlerWith
Successor

cantHandle:

LetHandlerLambdaHandler

handle:
canHandle:

handle:
canHandle:

Figure 5.3: Example Design Pattern for the Unification metapattern

self h1.

...

self h2.

...

where t is an element of the set of template methods defined by the metapattern, and is
defined in the root of the hierarchy H. h1 and h2 are elements of the set of hook methods of this
metapattern, are defined in the root of H and have a concrete implementation in all leaf classes
of H. Note that the template method t uses self as the receiver of the h1 and h2 messages,
since this is required by the invokes relation of the Unification fundamental metapattern (see
Section 5.3.1).

Example Design Pattern

A design pattern whose structure can be captured by this particular metapattern is the Template
Method design pattern. As a concrete example, consider the particular instance of the Template
Method design pattern from the Scheme framework depicted in Figure 5.3. The hierarchy depicted
in this figure represents the hookHierarchy participant of the metapattern. The analyze: method
defined in the SpecialFormHandler class plays the role of the templateMethod participant, and is
the only template method occurring in this particular instance. It calls the handle:, canHandle:
and cantHandle: methods, which represent the hookMethod participants.

Formally, we can represent this particular pattern instance as follows:

hookhierarchy(hierarchy(SpecialFormHandler))
templatemethods(SpecialFormHandler :: analyze :)
hookmethods(hierarchy(SpecialFormHandler) :: {handle :, cantHandle :,

canHandle :})

An alternative way to specify the hookHierarchy participant would be:

hookhierarchy({SpecialFormHandler,ApplicationHandler,
SpecialFormHandlerWithSuccessor, LambdaHandler, LetHandler, . . .}

But, as explained in Section 5.2.3, we can use the shorthand notation

hierarchy(SpecialFormHandler)
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Figure 5.4: The 1:N Recursive Connection metapattern

which is much more convenient. In a similar vein, the hook method participants could be
specified as follows:

hookmethods({SpecialFormHandler :: handle :,
SpecialFormHandler :: canHandle :, SpecialFormHandler :: cantHandle :,
ApplicationHandler :: handle :, ApplicationHandler :: canHandle,
ApplicationHandler :: cantHandle, . . .})

which we can denote instead as follows:

hookmethods({SpecialFormHandler,ApplicationHandler,
LetHandler, . . .} :: {handle :, canHandle :, cantHandle :})

from which the obvious shorthand notation can be derived easily:

hookmethods(hierarchy(SpecialFormHandler) :: {handle :, cantHandle :,
canHandle :})

5.4.2 The 1:N Recursive Connection Metapattern

Definition

The 1:N Recursive Connection metapattern (see Figure 5.4) is defined in terms of the Recursion
fundamental metapattern, and consists of five participants: a template class T, a hook hierarchy
H, a reference variable v, a set of hook methods Mh defined in class T and a set of hook methods
Mh defined on the hierarchy H. The class T itself is also part of the hierarchy H.

In this metapattern, an instance of the template class T refers to multiple instances of a class
in the hook hierarchy H, which is denoted by the multiple annotation in the definition. The
reference to an object of the hook hierarchy is via the reference variable v, which is defined as an
instance variable in the templateClass participant. This is denoted by the variable annotation in
the definition, which thus looks as follows:

oneToManyRecursiveConnectionMetapattern(T,H, T :: Mh,H :: Mh, V )
::=

recursionFundamentalMP (T,H, T :: Mh,H :: Mh, V, multiple, variable)

Structure of the template methods

The structure of template methods in the template class T looks as follows:

h

...

v do: [ :hookobject | hookobject h ].

...
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ScExpression

printOn:
analyze

ScSequenceExpressionScConsExpression

printOn:
analyze

ScBlockExpressionScCodeExpression

ScSmalltalkExpression

expressions*

printOn:
analyze

printOn:
analyze

printOn:
analyze

Figure 5.5: Example Design Pattern for the 1:N Recursive Connection metapattern

where the v object contains a collection of all hook objects an instance of the template class T
refers to, and h is an element of the set of template (or hook) methods, defined in the hookHierarchy
participant.

Example Design Pattern

The Composite design pattern serves as an example of a design pattern that uses the structure of
this metapattern. Consider the particular instance of this design pattern in Figure 5.5 that appears
in the Scheme framework. The ScSequenceExpression represents the templateClass participant
of the metapattern, while the ScExpression hierarchy itself represent the hookHierarchy partic-
ipant. This hierarchy defines two methods, printOn: and analyze. The methods defined in
the ScSequenceExpression class are the templateMethod participants of the metapattern, while
the implementation of these methods in other classes of the hierarchy corresponds to the hook-
Method participants. The referenceVariable participant of the metapattern is represented by the
expressions instance variable defined in the ScSequenceExpression class.

The formal description of this particular instance is the following:

hookhierarchy(hierarchy(ScExpression))
hookmethods(hierarchy(ScExpression) :: {analyze :, printOn :})
templateclass(ScSequenceExpression)
templatemethods(ScSequenceExpression :: {analyze :, printOn :})
referencevariable(expressions)

5.4.3 The 1:1 Hierarchy Connection Metapattern

Definition

The 1:1 Hierarchy Connection pattern, as depicted in Figure 5.6, is defined in terms of the Hierar-
chy fundamental design pattern. It consists of two hierarchy participants, a single templateMethod
participant, a number of hookMethod participants and a referenceVariable participant. Each leaf
class in the first hierarchy refers to a single instance of a class in the second hierarchy through this
reference variable. In this particular metapattern, this reference is passed as a formal parameter
to the templateMethod participant. The formal definition is thus the following:

oneToOneHierarchyConnectionMetapattern(H1,H2,H1 :: t,H2 :: Mh, V )
::=

hierarchyFundamentalMP (H1,H2,H1 :: t,H2 :: Mh, V, single, formal)
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t h

Figure 5.6: The 1:1 Hierarchy Connection metapattern

Structure of the template methods

The typical structure of the template method t looks as follows:

t: v

...

v h

...

where t is the template method defined in the templateHierarchy participant, v is the reference
the template hierarchy holds to an object of the hook hierarchy and h is a member of the hook
methods defined by the hookHierarchy participant. The implementation of the template method
of other classes in the template hierarchy is similar, except for the fact that it calls another hook
method.

Example Design Pattern

The Visitor design pattern uses the structure of this metapattern to implement its behavior.
Consider the instance of this design pattern presented in Chapter 3 and depicted in Figure 5.7.
In this instance, the ScExpression hierarchy plays the role of the templateHierarchy participant
of the metapattern, while the AbstractASTEnumerator hierarchy corresponds to the hookHier-
archy participant. The templateMethod participant of the metapattern is represented by the
nodeDo: method, that is defined on the ScExpression hierarchy and all methods defined in the
AbstractASTEnumerator hierarchy (such as doBlockExpression:, doCodeExpression: and so
on) are hookMethod participants. The argument that is passed to the nodeDo: method corresponds
to the reference variable of the metapattern, as it is used to connect the two hierarchies.

This instance can be formally specified in our model as follows:

hookhierarchy(hierarchy(AbstractASTEnumerator))
hookmethods(hierarchy(AbstractASTEnumerator) :: {doBlockExpression :,

doCodeExpression : ...})
templatehierarchy(hierarchy(ScExpression))
templatemethods(hierarchy(ScExpression) :: nodeDo :)
referencevariable(aV isitor)

5.4.4 The 1:1 Hierarchy Creation Metapattern

Definition

The 1:1 Hierarchy Creation metapattern, as shown in Figure 5.8, consists of three participants: two
hierarchies and a template method. This metapattern corresponds to the Creation fundamental
metapattern, and can be formally defined as follows:
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doCodeExpression:
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Figure 5.7: Example Design Pattern for the 1:1 Hierarchy Connection metapattern

t

Figure 5.8: The 1:1 Hierarchy Creation metapattern
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oneToOneHierarchyCreationMetapattern(H1,H2,H1 :: t)
::=

creationFundamentalMP (H1,H2,H1 :: t)

Structure of the template methods

The structure of the template method of this metapattern looks as follows:

t

^H2LeafClass new

The template method t is defined as an abstract method in the templateHierarchy participant
of the metapattern, and is provided with a concrete implementation for all leaf classes of that
hierarchy. This implementation instantiates a concrete class of the hookHierarchy participant (the
H2LeafClass class in the example), and returns it. Furthermore, these concrete methods each
have a structure similar to the one above, except that they instantiate an object of a different
class of the second hierarchy each time.

Example Design Pattern

The Factory Method design pattern is an example of a design pattern that uses the structure of
this metapattern. One particular instance of this design pattern was presented in Chapter 3 and is
depicted in Figure 5.9. In this instance, the ScExpression hierarchy represents the templateHier-
archy participant of the metapattern, and the Closure hierarchy corresponds to the hookHierarchy
participant. Furthermore, the newClosure method that is defined on the ScExpression hierarchy
plays the role of the templateMethod participant, as it is responsible for creating the appropriate
object from the Closure hierarchy.

We can represent this particular instance formally in the following way:

hookhierarchy(hierarchy(Closure))
templatehierarchy(hierarchy(ScExpression))
templatemethods(hierarchy(ScExpression) :: newClosure)

5.5 Overlapping of Metapatterns

A framework will inevitably use many instances of the presented fundamental metapatterns in its
implementation. Furthermore, whereas the fundamental metapatterns do not overlap themselves,
their instances will, since classes and methods in the framework can participate in more than
one metapattern instance or in more than one design pattern instance. As metapattern-specific
transformations are defined in terms of operations on the metapattern’s participants, we should
consider what happens when an operation is applied on a participant that already plays a role
in another metapattern instance. In this section, we will define a change propagation strategy,
based upon the metapattern-specific transformations and the possible ways in which metapattern
instances can overlap.

5.5.1 An Illustrating Example

In Section 4.2.4, we presented a first example of overlapping design pattern instances. An instance
of the Visitor and the Composite design pattern overlapped, because the Closure hierarchy par-
ticipates in both instances. As another example, consider the situation depicted in Figure 5.10. It
shows how instances of the Composite and Factory Method design patterns overlap. These design
patterns correspond to the Recursion and Creation fundamental metapatterns. The overlapping
is due to the fact that the ScExpression class hierarchy participates in both instances: it is a

97



Closure

ConsClosure SmalltalkClosure

BlockClosure CodeClosure

ScExpression

ScBlockExpressionScCodeExpression

ScConsExpression ScSmalltalkExpression

newClosure

newClosure

newClosure newClosure

Figure 5.9: Example Design Pattern for the 1:1 Hierarchy Creation metapattern

hookHierarchy participant in the Recursion metapattern instance, while it is a templateHierarchy
participant in the Creation metapattern instance.

Consider now what happens when we apply an addHookClass transformation to the Recur-
sion metapattern instance, to introduce a new ScQuoteExpression class into the ScExpression
hierarchy. This operation will add the class to the leafs of the hookHierarchy participant, while ad-
ditionally, it should make sure that this class adheres to the metapattern’s constraints. Therefore
the class should implement all hookMethod participants of this instance of the Recursion funda-
mental metapattern. In this case, there are two such participants: the printOn: and analyze
methods.

While the constraints of the Recursion fundamental metapattern are satisfied, those of the
Creation fundamental metapattern are not. Since the ScExpression class hierarchy partici-
pates in the Creation metapattern instance as a templateHierarchy participant, the newly added
ScQuoteExpression should be added to the leafs of that participant and it should implement
all templateMethod participants, as well. Thus, an addTemplateClass transformation should be
applied on the Creation metapattern instance, which will take care of these issues.

We learn from this example that, whenever two metapattern instances overlap and we apply
a transformation to one of these instances, we should consider the effect on the overlapping in-
stance. When a transformation is applied to one metapattern instance, it will make sure that this
metapattern’s constraints are satisfied. It does not take into account the constraints of overlap-
ping metapattern instances, however. To satisfy the constraints of the overlapping metapattern
instances as well, additional transformation should be applied on them. What we need is a way to
propagate a particular transformation that has been applied to one metapattern instance to all its
overlapping instances. In what follows, we will define such a change propagation strategy, by con-
sidering the different ways in which metapattern instances can overlap and how transformations
applied to one metapattern instance will give rise to transformations on overlapping instances.
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Figure 5.10: Instances of the Recursion and Creation fundamental metapatterns overlap
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Note that, conceptually, both an addHookClass and an addTemplateClass transformation
should be applied to the Recursion and Creation metapattern instances in the above example.
This is required by our model, since the operations ensure that the ScQuoteExpression class is
added as a participant to the appropriate metapattern instance and that it satisfies the desired con-
straints. In practice, however, applying both transformations would add the ScQuoteExpression
class twice to the implementation, which is not what is expected. Therefore, when using the
model in practice, we should ensure that the class is only added once, as we will explain in the
next chapter. For the sake of the discussion in this chapter, however, we can safely ignore this
technical difficulty. Note that the same holds for all other transformations.

5.5.2 Approach

We will first define the conditions under which a metapattern instance a overlaps with a meta-
pattern instance b. We will define such overlapping in terms of the class and class hierarchy
participants of the involved metapattern instances only. In this way, the conditions for overlap-
ping become independent of the specific kind of metapatterns. As a result, when new metapatterns
are added to the formal model, these conditions will not have to be changed. To simplify matters
somewhat, we will extend the inherits relation to work for class hierarchies as well.

inherits?
h ⊆ H×H

inherits?
h(H1,H2) = inherits?(root(H1), root(H2))

inherits?
h({C},H) = inherits?(C, root(H))

Afterwards, we will consider the conditions under which a transformation applied to metapat-
tern instance a will give rise to a transformation on the overlapping metapattern instance b. This
in essence defines our change propagation algorithm. Due to their orthogonality, transformations
that add a particular participant to a metapattern instance will never give rise to a transforma-
tion that removes a particular participant. Likewise, transformations involving class participants
will never require transformations involving method participants. Therefore, we will consider
transformations involving class participants separately from those involving method participants.

In the specification of the conditions for overlapping, we will need to be able to distinguish
between transformations applied on different metapattern instances, as well as the different partic-
ipants of those different instances. To this extent, we will use subscripts. For example, to denote
an addHookClass transformation that is applied on an instance a, addHookClassa will be used.
Similarly, to describe the hookHierarchy participant of metapattern instance a, Hh,a will be used,
while the templateHierarchy participant of metapattern instance b will be denoted by Ht,b.

5.5.3 Definition of Overlapping Conditions

There are many different ways in which two metapattern instances can overlap. In this section,
we will consider these different ways and define the conditions when an overlapping may occur.

First of all, observe that only the Connection fundamental metapattern contains a single class
participant (see Section 5.3.2). All other fundamental metapatterns contain class hierarchy par-
ticipants. If we first consider only those fundamental metapatterns, and since we know that class
hierarchies can overlap in only four different ways, we can define the conditions under which a
metapattern instance a (of the Unification, Recursion, Hierarchy or Creation fundamental meta-
pattern) overlaps with a metapattern instance b (of those same fundamental metapatterns):

Overlapping Condition 1 a class hierarchy is a hookHierarchy participant in instances a and
b at the same time. The hookHierarchy participant of instance a may also be a part of the
hookHierarchy participant of instance b. Formally: inherits∗h(Hh,a,Hh,b).
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Overlapping Condition 2 a class hierarchy is a hookHierarchy participant in instance a, while
at the same time it is a templateHierarchy participant in instance b, or it forms part of that
hierarchy. Formally: inherits∗h(Hh,a,Ht,b).

Overlapping Condition 3 a class hierarchy is a templateHierarchy participant in instance a,
and at the same time it is a hookHierarchy participant in instance b, or it forms part of that
hierarchy. Formally: inherits∗h(Ht,a,Hh,b).

Overlapping Condition 4 a class hierarchy is a templateHierarchy participant in instances a
and b at the same time. The templateHierarchy participant of instance a may also be a part
of the templateHierarchy participant of instance b. Formally: inherits∗h(Ht,a,Ht,b).

These are the only conditions under which metapattern instances overlap by means of their class
hierarchy participants. What remains is defining the conditions for overlapping of the Connection
fundamental metapattern with the other metapatterns. Clearly, overlappings that involve the
hookHierarchy participant of this fundamental metapattern are already covered by the above
conditions. The only remaining ways of overlapping involve the templateClass participant. There
are three different ways in which this participant can participate in two metapattern instances at
once: an instance a of any kind of fundamental metapattern overlaps with an instance b of the
Connection fundamental metapattern if:

Overlapping Condition 5 the class is a templateClass participant in instances a and b at the
same time. Formally: Ta = Tb. In this case, instance a is an instance of the Connection
fundamental metapattern, as well.

Overlapping Condition 6 a class hierarchy is a hookHierarchy participant in instance a, while
the templateClass participant in instance b forms part of that hierarchy. Formally, this is
expressed as follows: inherits∗h({Tb},Hh,a).

Overlapping Condition 7 similarly, a class hierarchy is a templateHierarchy participant in in-
stance a, while the templateClass participant in instance b is part of that hierarchy. Formally:
inherits∗h({Tb},Ht,a).

Note that these conditions specify how an instance of any kind of fundamental metapattern
overlaps with an instance of the Connection fundamental metapattern, via the templateClass par-
ticipant , but not vice versa. There are no interesting ways in which an instance of the Connection
fundamental metapattern overlaps with an instance of any other fundamental metapattern through
this participant. This is due to the specific nature of the templateClass participant: it is a single
class and it contains only template methods. The only way that metapattern instances can overlap
through a single class participant, is if this class participates in both instances. Therefore, an in-
stance a of the Connection fundamental metapattern can only overlap with an instance b through
the templateClass participant, if b is an instance of the Connection fundamental metapattern
as well. Moreover, the only transformations that involve the templateClass participant are the
addTemplateMethod and removeTemplateMethod operations. These two operations will however
never require additional operations on overlapping metapattern instances, as we will discuss in the
next section.

As an illustration of how these conditions can be used to detect overlappings of metapattern
instances, consider the metapattern instances of Figure 5.10. These overlap according to Over-
lapping Condition 2. The ScExpression class hierarchy is a hookHierarchy participant in the
Recursion metapattern instance and at the same time a templateHierarchy participant in the Cre-
ation metapattern instance. Note that these two instances also overlap according to Overlapping
Condition 7, because the ScExpression hierarchy is a templateHierarchy participant in the Cre-
ation metapattern instance, and it contains the ScSequenceExpression templateClass participant
of the Recursion metapattern instance. This does not necessarily have to be the case, however.
It occurs here because the templateClass participant in an instance of the Recursion fundamental
metapattern resides in the hookHierarchy participant of that instance as well.
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the Creation fundamental metapattern
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addHookClassa(C) ⇒ addHookClassb(C) if
inherits∗h(Hh,a,Hh,b)

addHookClassa(C) ⇒ addTemplateClassb(C) if
inherits∗h(Hh,a,Ht,b)

addTemplateClassa(C) ⇒ addHookClassb(C) if
inherits∗h(Ht,a,Hh,b)

addTemplateClassa(C) ⇒ addTemplateClassb(C) if
inherits∗h(Ht,a,Ht,b)

removeHookClassa(C) ⇒ removeHookClassb(C) if
inherits∗h(Hh,a,Hh,b)

removeHookClassa(C) ⇒ removeTemplateClassb(C) if
inherits∗h(Hh,a,Ht,b)

removeTemplateClassa(C) ⇒ removeHookClassb(C) if
inherits∗h(Ht,a,Hh,b)

removeTemplateClassa(C) ⇒ removeTemplateClassb(C) if
inherits∗h(Ht,a,Ht,b)

Table 5.6: Transformations involving class participants

Figure 5.11 shows another example of how instances of the Recursion and Creation can overlap.
This time, however, the Creation metapattern instance overlaps with the Recursion metapattern
instance, according to Overlapping Condition 3. This example illustrates that two hierarchy
participants need not necessarily be equal. In this case, the SpecialFormHandler hierarchy is a
hookHierarchy participant in an instance of the Recursion fundamental metapattern, whereas the
SpecialFormHandlerWithSuccessor hierarchy is a templateHierarchy participant in an instance
of the Creation fundamental metapattern. Since the SpecialFormHandlerWithSuccessor class
is a descendant of the SpecialFormHandler class, the two hierarchies, and thus the metapattern
instances that contain them overlap.

5.5.4 Influence of Overlapping on Transformations

Based on the different ways in which (the class and class hierarchies of) metapattern instances
overlap, we can derive how a transformation on metapattern instance a propagates to a metapat-
tern instance b. We first consider only those transformations that add or remove a class participant
from a metapattern instance. In the next section, we also consider those operations that involve
method participants.

Transformations Involving Class Participants

The first part of Table 5.6 shows when addHookClass and addTemplateClass operations on in-
stance a gives rise to addHookClass and addTemplateClass transformations on instance b. The
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second part defines in a similar way how removeHookClass and removeTemplateClass operations
on instance a may require removeHookClass and removeTemplateClass operations on instance b.

An addHookClass transformation on instance a will require an addHookClass transforma-
tion on instance b, if Overlapping Condition 1 is satisfied This is denoted by means of the
inherits∗h(Hh,a,Hh,b) condition. If Overlapping Condition 2 is satisfied, then an addHookClass
on instance a will give rise to an addTemplateClass on instance b. Based on similar reasonings,
we can derive how all other transformations influence one another.

Observe that only overlapping conditions 1 to 4 are used. Overlapping conditions 5 to 7
specify when an instance of any kind of fundamental metapattern overlaps with an instance of the
Connection fundamental metapattern, via its templateClass participant. Under such conditions,
a transformation involving class participants on the former instance will never give rise to a
transformation on the latter instance, since the Connection fundamental metapattern does not
define addTemplateClass or removeTemplateClass operations.

Transformations Involving Method Participants

Just as we did for class participants, we can define how transformations involving method partic-
ipants propagate to overlapping metapattern instances (see Table 5.7).

A first important observation is that we do not consider how addHookMethod and addTem-
plateMethod transformations influence one another. This is simply because they don’t. When we
add a new method participant to a particular metapattern instance, we should not automatically
add it to all overlapping instances as well. A method participant need not necessarily be included
in all overlapping metapattern instances, since it is perfectly well possible that it participates in
one metapattern instance, while it does not participate in any other instances. If the developer
wants to include it as a participant in other instances as well, he should explicitly invoke the
appropriate transformation on those instances.

Second, a removeHookMethod or removeTemplateMethod transformation on an instance a will
only require an additional transformation on an overlapping metapattern instance b, if the method
participant that is removed from instance a is also a method participant in instance b. This is
included as an extra condition in all conditions, as can be seen in Table 5.7.

Third, the removeTemplateMethod transformation is only defined for the Unification, Connec-
tion and Recursion fundamental metapatterns. This is the reason why the condition under which
a removeTemplateMethod operation on instance a gives rise to a similar operation on instance b
does not involve class hierarchies, but only templateClass participants.

Last, a removeTemplateMethod transformation will never give rise to an removeHookMethod
transformation. This is due to the specific nature of these operations and the participants upon
which they are applied. A templateMethod participant is never overridden in the Unification,
Connection or Recursion fundamental metapatterns. A hookMethod participant, on the other, is
implemented across the hookHierarchy participant (e.g. the root of the hook hierarchy defines
the method, and specific subclasses in the hierarchy provide a concrete implementation for all
the leaf classes of the hierarchy). Therefore, the intent of the removeTemplateMethod operation
is to remove a single method from a single class, whereas the removeHookMethod operation will
remove a method from an entire class hierarchy (e.g. it will remove the method from all classes in
the hierarchy that implement it). Clearly, when a removeTemplateMethod operation is applied, it
should thus not invoke a removeHookMethod operation on overlapping metapattern instances, as
it is not the intent to remove all these method implementations.

The reverse can occur, however, a removeHookMethod operation can invoke a removeTem-
plateMethod operation on overlapping metapattern instances, as a method can be a hookMethod
participant in one metapattern instance and a templateMethod participant in another, overlapping
one.
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removeHookMethoda(m) ⇒ removeHookMethodb(m) if
inherits∗h(Hh,b,Hh,a),m ∈ Hh,b :: Mh

removeHookMethoda(m) ⇒ removeTemplateMethodb(m) if
inherits∗h({Tb},Hh,a),m ∈ Tb :: Mt

removeTemplateMethoda(c) ⇒ removeTemplateMethodb(m) if
Ta = Tb,m ∈ Tb :: Mt

Table 5.7: Transformations involving method participants

5.6 Summary

In this chapter, we defined a formal framework for the definition of metapatterns. This frame-
work provides a definition of five fundamental metapatterns, in terms of their participants and
associated constraints. together with metapattern-specific transformations that can be applied
on their instances. Furthermore, we formally specified the conditions under which instances of
those fundamental metapatterns overlap, and showed how this allowed us to propagate changes.
Please note that in subsequent chapters, we will use the term ”metapattern” whenever we refer
to ”fundamental metapattern”.
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Chapter 6

Implementing the Metapattern
Model Using Declarative Meta
Programming

In the previous chapter, we presented a formal model for metapatterns and defined metapattern-
specific transformations that can be applied on their instances. We also specified the conditions
under which metapattern instances overlap and showed how this influences the application of trans-
formations. In this chapter, we will show how this theoretical model can be implemented and used
in practice to support framework-based development.

6.1 Introduction

The previous chapter presented a theoretical model for metapatterns and definitions of appropriate
transformations that can be applied on their instances. In order to prove that a significant part of
the structure of a framework can indeed be documented in this model, and that the model exposes
important information for the instantiation and evolution of the framework, we need to test it in
a practical setting. In this chapter, we will discuss how this formal model can be integrated into a
standard development environment and in this way enables us to provide support for framework-
based development.

We will first introduce the declarative meta-programming environment we will use to imple-
ment the model, Then, we will illustrate how a framework developer can document the design
pattern instances that he uses. We will show how this information can be used by our supporting
environment to detect possible design drift when evolving the framework manually. Further-
more, the environment enables supported evolution, by means of predefined framework and design
pattern transformations that use the available information to apply changes to the framework’s
implementation in a semi-automatic manner.

The next part of this chapter contains an elaborate discussion of the implementation of the
supporting environment. It shows how we use a declarative meta-programming environment to
automatically translate design pattern instance specifications into metapattern instance speci-
fications, and vice versa, and to implement metapattern constraints and metapattern-specific
transformations.

6.2 Approach

Developers are more familiar with design patterns then they are with metapatterns, as this is
what they use to develop software and what is documented in the different catalogs [GHJV94,
ABW98, Lea96, MM97, CS95, BMR+96]. Furthermore, specifying information in terms of design
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patterns is more concise, since a single design pattern instance may be mapped onto multiple
metapattern instances, as we will see later on. Therefore, we will allow a developer to document
a frameworks design by documenting the design pattern instances the framework uses. However,
a tool that supports framework-based development needs to use information about metapattern
instances. This information can be automatically derived from the design pattern information,
however, which is what our supporting environment will be able to achieve, as was discussed in
Section 4.3, and will be shown in Section 6.5.1.

A similar reasoning holds for the transformations that our theoretical model defines: according
to our formal model, these transformations are defined for metapattern instances, while a devel-
oper is more familiar with design pattern-specific transformations, or even framework-specific
transformations. Again, such framework- and design pattern-specific transformations can be de-
fined and used by the developers and will be translated into metapattern-specific transformations
automatically by our supporting environment. How this is achieved is shown in Section 6.5.3.

Another important aspect of the approach we propose is that the developer should provide
design information manually as opposed to automatic extraction of such information. Our main
motivation for this choice is that such extraction appears to be very difficult [CMO97]. Since a
design pattern does not impose a particular implementation, but merely suggests a template, there
are many different ways to implement it. Design pattern instances whose implementation deviates
slightly from the standard template implementation may thus not be recognized by extraction
tools. Furthermore, many design patterns have a similar structure, and differ mostly in some
semantic aspect. We already saw in Section 2.3.5 that the structure of the State and Strategy
design pattern look very similar. A tool can thus not automatically infer which of the two design
patterns the developer intended to use. This is however extremely important since the design
pattern determines the transformations that are applicable. Additionally, exploring a framework
and inspecting each class and each method in detail in order to detect some pattern is a very time-
consuming process. It is much easier and faster to simply check whether a particular specification
is correct, as a tool performing such a task already knows where it should look and what it is
looking for, and does not need to consider various design pattern specific implementation details.

Since we rely on the developer to provide design pattern instance specifications, we should take
into account that errors may occur in this specification. Using the constraints defined by metap-
atterns however, we can detect possible inconsistencies. We can assess whether the specification
is correct with respect to the implementation, and vice versa, check whether the implementation
adheres to the specification as well.

6.3 A Declarative Meta-Programming Environment

6.3.1 Introduction

Declarative meta programming (DMP) is a technique, developed at the Programming Technology
Lab, that uses a declarative programming language at the meta level to reason about and ma-
nipulate programs in some underlying base language. The goal of this effort is to build state of
the art software tools and environments that support the software development and maintenance
process in all of its aspects.

The declarative nature of DMP allows us to specify all sorts of information about a framework
in a simple concise and intuitive way. Furthermore, declarative programming focuses on what a
program is supposed to do, rather on how it achieves this task. Building supporting tools thus
becomes a lot easier.

DMP is a meta-programming approach, since the tools are at the meta level with respect to
the source code they want to reason about or manipulate. The flexibility of a meta-programming
approach allows us to build many different kinds of tools, that all belong to one of the following
categories:

• verification of source code to some higher-level description (for example, conformance check-
ing to coding conventions [MMW01], to design models [Wuy98] or to architectural descrip-
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tions [Men00])

• extraction of information from source code (for example, visualization, software understand-
ing, browsing, generation of higher-level models or documentation, measurements, quality
control and so on)

• transformation of source code (for example, refactoring, translation, re-engineering, evolu-
tion [MT01], optimization [TDM99] and so on)

• generation of source code [DV98, Wuy01]

A concrete DMP environment has an explicit link to the source code, which greatly facilitates
all these activities. Information can be extracted easily and is always up to date. Existing code
can be transformed in a relatively straightforward way and new code can be added easily. This
clearly provides a major advantage over approaches that work with an external code repository.

One of the major advantages of using a DMP approach is that it offers us a turing complete
programming language. We need the full computational power of a real programming language
to implement the metapattern-specific transformations and the associated change propagation
algorithm. This algorithm recursively computes the transformations that have to be applied,
based on how metapattern instances overlap and which transformations are applied on those
instances.

Many different flavors of DMP exist, depending upon both the base language and the met-
alanguage that are used. Most research in the area of DMP has been conducted using a logic
programming language (SOUL) at the meta level, and a standard object-oriented programming
language (Smalltalk) at the base level. We will discuss this setup in more detail in the following
sections.

In the next section, we will provide a short overview of some specific details of the SOUL
programming language, such as its specific syntax. In the remainder of this chapter, we will pro-
vide various examples of how the SOUL logic language can be used to describe design pattern
instances, define design pattern constraints, transform design pattern specifications into meta-
pattern specifications and implement the framework-, design pattern- and metapattern-specific
transformations.

For more information about SOUL, and an extensive discussion of its code generation features
and meta-programming capabilities, we refer to [DV98] and [Wuy01].

6.3.2 SOUL

SOUL is a logic programming language that closely resembles Prolog [DEDC96]. It allows us to
assert logic facts, that represent information that is always true in a particular domain, and logic
rules, that are used to derive new facts from existing ones. SOUL’s syntax differs from Prolog’s
in a number of ways:

• logic variables are preceded by a question mark (such as ?x) and need not start with a capital
letter as in Prolog. This is due to the fact that SOUL is used to reason about (Smalltalk)
programs, where class names are allowed to start with a capital for example, and we want
to avoid the confusion between such names and variable names.

• lists are delimited by less-than (”<”) and greater-than (”>”) symbols, rather then square
brackets as in Prolog. The reason is that SOUL uses square brackets to represent Smalltalk
terms and clauses, which we will explain shortly.

Besides these small syntactic differences, SOUL has a number of distinguishing features not
present in a typical Prolog implementation, most notably the quoted code terms, Smalltalk terms
and Smalltalk clauses.
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Quoted code terms

Quoted code terms are special logic terms delimited by curly braces (”{” and ”}”). They are
mainly used to specify source code patterns, that can be parameterized by logic variables. These
variables are substituted for a string representation of their actual values before interpretation.

As an example, consider the following logic program:

addNewClass(CondHandler,SpecialFormHandlerWithSuccessor).

generateAddClassCode({ ?super subclass: #?className }) if
addNewClass(?className,?super),
class(?super)

If we fire the query if generateAddClassCode(?x), the variable ?super will be bound to the sym-
bol SpecialFormHandlerWithSuccessor, and the ?className variable will be bound to the
CondHandler symbol. These values are substituted for their corresponding variables in the
quoted code term, and the variable ?x in the original query will thus be bound to the string-
like structure SpecialFormHandlerWithSuccessor subclass: #CondHandler. We can now ex-
ecute this code from within SOUL to actually generate the CondHandler class as a subclass of
class SpecialFormHandlerWithSuccessor in the implementation.

Smalltalk terms

Another important construct provided by SOUL is the Smalltalk term. A Smalltalk term is a
logic term that can contain any Smalltalk expression. Such expressions are delimited by square
brackets (”[” and ”]”) and are evaluated each time the logic interpreter unifies them with another
term. As an example, consider the following logic program:

test([Array]).
if test(?x)

When launching the query, the variable ?x is unified with the smalltalk term [Array]. As a
result, the Smalltalk interpreter will be called to evaluate the expression Array, which results in
the class object Array being returned 1. As can be seen a Smalltalk term is a logic term containing
a Smalltalk expression that is evaluated in Smalltalk upon unification, and returns the result to
the SOUL environment. This result, a smalltalk object, is wrapped so that it can be used inside
the SOUL environment. Smalltalk terms thus allow to refer to Smalltalk objects in the logic
programming environment.

Smalltalk clauses

Smalltalk clauses are based on exactly the same idea as Smalltalk terms: they are delimited by
square brackets and can contain an arbitrary Smalltalk expression, that can be parameterized by
logic variables. The only difference is that a Smalltalk clause is expected to be used as a predicate.
Hence, it is evaluated whenever it is encountered and is expected to return a boolean value.
Smalltalk clauses enable the SOUL environment to access the underlying Smalltalk environment,
and perform whatever computation at that level.

As an example, consider the following logic program:

write(?string) if [ Transcript show: ?string. true ].
if write([’Hello World’])

Launching the query will print ”Hello World” on the transcript. Note how the Smalltalk clause
[ Transcript show: ?string. true ] is parameterized by the logic variable ?string, that
will get bound during unification, and that it returns true as a value. [’Hello World’] is another
example of a Smalltalk term whose value is computed when it is unified with the ?string variable.

1Note that classes are first-class entities in Smalltalk, so they can be treated as any other object.
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6.4 Support for Framework-based Development

6.4.1 Specification of Design Pattern Instances

Design pattern instances are described by using the technique of role modeling. Each design
pattern defines a number of roles, that identify the responsibilities of the classes, methods and
variables that make up the design pattern instance. These classes, methods and variables are the
participants that implement the desired behavior for a specific design pattern instance. By using
role modeling, all participants of a design pattern instance are mapped onto the roles defined by
the corresponding design pattern.

The mapping of roles onto participants is specified in terms of two logic predicates: the pat-
ternInstance/2 and role/3 predicates 2. The first predicate is used to identify an instance of a
particular design pattern, while the second predicate is used to specify the actual mapping of roles
onto participants.

In what follows, we will show how a developer should/can document three design patterns that
are used in the Scheme framework of Chapter 3. The approach is of course general enough to cover
any design pattern instance that should be documented. For each of these three design patterns,
we will first identify the roles they define. Then, we will determine the source code entities that
participate in the design pattern instances, and show how these are mapped onto the roles of the
design pattern.

Specification of the Composite Design Pattern

The Composite design pattern has the following roles:

component The root class of the hierarchy that defines the leaf and composite participant classes
of the design pattern. It defines the interface for all objects in the composition.

composite The class that represents composite objects in the composition. The composite par-
ticipant should always be a (possibly indirect) subclass of the component participant.

leaf The classes that represent leaf objects in the composition. These classes are concrete sub-
classes of the component participant as well.

compositeMethod The methods that constitute the interface for objects in the composition.
These methods are defined by the component participant and are overridden (if necessary)
by the leaf and the composite participants. In the former case, they implement behavior for
the primitive objects in the composition, while in the latter case they implement behavior
for components having children.

compositeVariable The instance variable(s) defined in the composite participant that holds
references to all objects in a composition.

A specification of a Composite design pattern instance should include all these roles and should
specify which classes, methods and variables correspond to which roles. As a concrete example,
consider the CompositeExpression design pattern instance occurring in the Scheme framework (as
discussed in Section 3.4.4 and depicted in Figure 3.8). Figure 6.1 graphically depicts the mapping.

The patternInstance/2 predicate is used in the following way to specify that CompositeExpres-
sion is an instance of the Composite design pattern:

patternInstance(CompositeExpression,compositeDP).

2Note that it is standard practice to append a number to the name of logic predicates indicating the number of
arguments of the predicate. This is used to distinguish predicates with the same name but a different number of
arguments.
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role(CompositeExpression,component,ScExpression).
role(CompositeExpression,composite,ScSequenceExpression).
role(CompositeExpression,leaf,ScConsExpression).
role(CompositeExpression,leaf,ScEmptyListExpression).
role(CompositeExpression,leaf,ScExtraArgumentExpression).
role(CompositeExpression,leaf,ScIdentifierExpression).
role(CompositeExpression,leaf,ScBlockExpression).
role(CompositeExpression,leaf,ScCodeExpression)
role(CompositeExpression,compositeMethod,analyze).
role(CompositeExpression,compositeMethod,printOn:).
role(CompositeExpression,compositeVariable,expressions).

Composite:CompositeExpression

ScExpression

printOn:
analyze

printOn:
analyze

ScConsExpression ScSequenceExpression

printOn:
analyze

expressions

Figure 6.1: Mapping the roles of the Composite design pattern onto the participants of the Com-
positeExpression instance

The first argument of this predicate indicates the name of the design pattern instance. This
name should be unique amongst all other design pattern instances occurring in the framework, as
it is used as a key for identifying and assembling all of the instance’s participants. The second
argument denotes the design pattern of which this is an instance.

The role/3 predicate maps the various roles of the Composite design pattern to the classes,
methods and variables that implement the design pattern instance. The ScExpression class,
for example, is mapped onto the component role and the ScSequenceExpression class to the
composite role. The role/3 predicate uses the unique name assigned to the design pattern instance
to indicate which instance the role belongs to. By means of this name, the complete description
of the design pattern can be assembled.

Specification of the Factory Method Design Pattern

Just as we did for the Composite design pattern, we first describe the five roles present in the
Factory Method design pattern:

abstractCreator This class corresponds to the root of a class hierarchy, in which all concreteClass
participants are concrete leaf classes. It implements the factoryMethod participant as an
abstract method.

concreteCreator The concreteCreator role is played by all concrete classes in the class hierar-
chy defined by the abstractCreator participant. All concreteCreator participants provide a
concrete implementation for the factoryMethod participant.

abstractProduct This class is the root of the hierarchy that contains the classes that are in-
stantiated by the factoryMethod method.

concreteProduct The concreteProduct role is played by the concrete classes of the hierarchy
defined by the abstractProduct participant. concreteProduct classes are instantiated by the
factoryMethod methods defined in the concreteCreator classes.
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role(SpecialFormClosureCreation,abstractCreator,SpecialFormHandler).
role(SpecialFormClosureCreation,concreteCreator,<ApplicationHandler,ApplicationClosure>).
role(SpecialFormClosureCreation,concreteCreator,<IfHandler,IfClosure>).
...
role(SpecialFormClosureCreation,abstractProduct,Closure).
role(SpecialFormClosureCreation,concreteProduct,ApplicationClosure).
role(SpecialFormClosureCreation,concreteProduct,IfClosure).
...
role(SpecialFormClosureCreation,factoryMethod,newClosure).

Factory Method:SpecialFormClosureCreation

SpecialFormHandlerWith
SuccessornewClosure

newClosure

SpecialFormHandler

newClosure

ApplicationHandler

Closure

IfHandler

ApplicationClosure IfClosure

Figure 6.2: Mapping the roles of the Factory Method design pattern onto the participants of the
SpecialFormClosureCreation instance

factoryMethod The factoryMethod participant is the method that instantiates and returns a
concreteProduct object. The method is defined by the abstractCreator participant and is
provided with subclass-specific behavior in all concreteCreator participants, if necessary.

Several instances of the Factory Method design pattern were identified in the Scheme frame-
work (Section 3.4.3). The specification of the SpecialFormClosureCreation instance is depicted
graphically in Figure 6.2 and the instance is specified as follows:

patternInstance(SpecialFormClosureCreation,factoryMethodDP).

Again, the name defined by the patternInstance/2 predicate is unique amongst all other design
pattern instances and is used by the role facts. The role/3 predicate is used to map the five roles
of the Factory Method design pattern to the particular implementation artifacts that constitute
the design pattern instance. The SpecialFormHandler class is the root of a hierarchy, and is
thus mapped onto the abstractCreator role. All concrete classes of this hierarchy are mapped onto
concreteCreator roles, and the newClosure method is mapped onto the factoryMethod role.

One particular important aspect of this specification that deserves special attention is the
mapping for the concreteCreator role. It differs from the rest of the specification in that it not only
maps the concreteCreator role onto a particular class, but that it also includes the concreteProduct
class that it creates. For example, the following fact:

role(SpecialFormClosureCreation,concreteCreator,<IfHandler,IfClosure>)
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states that the IfHandler concreteCreator participant instantiates and returns the IfClosure
concreteProduct participant. The reason why we specifically include this information in the spec-
ification is that factoryMethod participants are defined in all concreteCreator participants, and
each instantiate a different concreteProduct participant. This is useful information that should be
included in the specification.

Specification of the Abstract Factory Design Pattern

As a last example, we will show how an instance of the Abstract Factory design pattern can be
described in our environment. This design pattern has four roles:

abstractFactory The abstractFactory participant is the root of a class hierarchy and defines an
interface for creating a family of related objects.

concreteFactory The concreteFactory participants are concrete subclasses of the abstractFactory
participant and provide a concrete implementation for the interface defined by the latter.

abstractFactoryMethod The abstractFactoryMethod participants are all the methods that are
defined by the abstractFactory participant and that make up the interface for creating prod-
uct objects.

abstractProduct The abstractProduct participants are the root classes of the class hierarchies
that contain the concreteProduct participants. An abstractProduct participant is associated
with each abstractFactoryMethod participant.

concreteProduct The concreteProduct participants are all classes that are instantiated by con-
creteFactory participants.

Only one instance of the Abstract Factory design pattern is present in the Scheme framework:
the ASTFactory instance (see Section 3.4.1 for a description and Figure 3.2 for the structure of
the instance). The specification of this instance can be found in Figure 6.3. The name of the
instance is defined by using the patternInstance/2 predicate as follows:

patternInstance(ASTFactory,abstractFactoryDP).

The SchemeASTFactory is mapped onto the abstractFactory role, the DefaultSchemeAST-
Factory to the concreteFactory role and seven abstractFactoryMethod participants are defined.
Note how the specification of an abstractProduct role also includes the abstractFactoryMethod
participant that is associated with it. This denotes the fact that the newBlockExpression:
abstractFactoryMethod participant should instantiate a product from the ScBlockExpression
hierarchy, for example.

Furthermore, the specification for a concreteProduct participant also includes the concreteFac-
tory and abstractFactoryMethod participants that are associated with it. For example, the first
of these facts states that the newBlockExpression: method in the DefaultSchemeASTFactory
class creates an instance of the ScBlockExpression class.

Observe also that in this specification the classes in the ScExpression hierarchy play the role of
abstractProduct and concreteProduct participant at the same time. When a new concreteFactory
participant is added, the set of concreteProduct participants will be extended and will contain
other classes as well. Moreover, the ScExpression class itself forms no part of the specification.
The Abstract Factory design pattern does not require all abstractProduct participants to share a
common superclass. Since it is the case here, this instance can be considered as a variable of the
Abstract Factory design pattern.
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role(ASTFactory,abstractFactory,SchemeASTFactory).
role(ASTFactory,concreteFactory,DefaultSchemeASTFactory)
role(ASTFactory,abstractFactoryMethod,newBlockExpression:).
role(ASTFactory,abstractFactoryMethod,newCodeExpression:).
role(ASTFactory,abstractFactoryMethod,newEmptyListExpression).
role(ASTFactory,abstractFactoryMethod,newExtraArgumentExpression:).
role(ASTFactory,abstractFactoryMethod,newConsExpression:cdr:).
role(ASTFactory,abstractFactoryMethod,newIdentifierExpression:).
role(ASTFactory,abstractFactoryMethod,newSequenceExpression:).
role(ASTFactory,abstractProduct,<ScBlockExpression,newBlockExpression:>).
role(ASTFactory,abstractProduct,<ScCodeExpression,newCodeExpression:>).
role(ASTFactory,abstractProduct,<ScConsExpression,newConsExpression:cdr:>).
role(ASTFactory,abstractProduct,<ScEmptyListExpression,newEmptyListExpression>).
role(ASTFactory,abstractProduct,<ScExtraArgumentExpression,newExtraArgumentExpression:>).
role(ASTFactory,abstractProduct,<ScIdentifierkExpression,newIdentifierExpression:>).
role(ASTFactory,abstractProduct,<ScSequenceExpression,newSequenceExpression:>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newBlockExpression:,ScBlockExpression>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newCodeExpression:,ScCodeExpression>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newConsExpression:cdr:,ScConsExpression>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newEmptyListExpression,ScEmptyListExpression>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newExtraArgumentExpression:,ScExtraArgumentExpression>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newIdentifierExpression:,ScIdentifierExpression>).
role(ASTFactory,concreteProduct,<DefaultSchemeASTFactory,newSequenceExpression:,ScSequenceExpression>)

Abstract Factory:ASTFactory

SchemeASTFactory

DefaultSchemeASTFactory

newConsExpession:cdr:
newIdentifierExpression:

ScExpression

ScConsExpression ScIdentifierExpression

newConsExpession:cdr:
newIdentifierExpression:

Figure 6.3: Mapping the roles of the Abstract Factory design pattern onto the participants of the
ASTFactory instance

6.4.2 An Example of Manual Evolution

The evolution example presented in Chapter 3 was the addition of a cond special form to the
Scheme framework. When performing this evolution by hand, a developer can accidently introduce
a number of errors, due to a lack of adequate documentation and insufficient knowledge about the
specific design of the framework.

As was explained in Chapter 3, a new CondHandler class, which is responsible for handling cond
expressions, should be added to the SpecialFormHandlerWithSuccessor hierarchy. Figure 6.4
shows the different design pattern instance specifications in which the SpecialFormHandler hier-
archy, and thus also the CondHandler class, participates. Now suppose that a developer correctly
adds the CondHandler class as a subclass of the SpecialFormHandlerWithSuccessor class. Since
this class participates in a number of design pattern instances, it should be registered as a new
participant and it should implement the necessary methods in order not to violate the constraints
of those design patterns and guarantee the correct behavior of the new special form.

If the developer is not aware that the particular design patterns of Figure 6.4 are used, he may
forget to implement some of these methods. Furthermore, because some of the methods, most
notably the newConverter and newClosure methods, are responsible for instantiating specific
classes, additional classes may need to be added to other class hierarchies as well. If the developer
does not apply these changes, Scheme interpreters built using the framework will produce runtime
errors if a cond special form is used, since the implementation of the special form is not correct.

Such errors in the evolution can be detected by verifying whether the constraints of the design
patterns that are affected by that particular change are still satisfied after the change. More
specifically, if a developer adds a particular class to a hierarchy, our supporting environment should
check the constraints of each design pattern in which this hierarchy participates. The constraints
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SpecialFormHandler

IfHandler LetHandler

role(SpecialFormConverterCreation,abstractCreator,
SpecialFormHandlerWithSuccessor).

role(SpecialFormConverterCreation,conreteCreator,IfHandler).
...
role(SpecialFormConverterCreation,factoryMethod,newConverter).

Factory Method:SpecialFormConverterCreation role(SpecialFormHandler,abstractHandler,SpecialFormHandler).
role(SpecialFormHandler,conreteHandler,IfHandler).
...
role(SpecialFormHandler,handleMethod,handle:).
role(SpecialFormHandler,handleMethod,canHandle:).
role(SpecialFormHandler,handleMethod,cantHandle:).

CoR:SpecialFormHandler

role(SpecialFormClosureCreation,abstractCreator,SpecialFormHandler).
role(SpecialFormClosureCreation,conreteCreator,IfHandler).
...
role(SpecialFormClosureCreation,factoryMethod,newClosure).

Factory Method:SpecialFormClosureCreation

SpecialFormHandler
WithSuccessor

Figure 6.4: Design pattern instances in which the SpecialFormHandler hierarchy participates

of the design pattern are those that are associated with the corresponding metapattern(s). The
implementation of these constraints will be discussed in a later section. In this case, the constraints
of the Chain of Responsibility, the Template Method and the Factory Method design patterns,
which correspond to the constraints of the Recursion, Unification and the Creation metapatterns,
should be checked.

First of all, our environment checks whether the specification of the involved design pattern
instances is still correct with respect to the implementation, If the developer correctly added the
new classes to the framework, but did not register them as participants in the design pattern
instances, the environment will detect this and notify him. For example, it will detect that the
CondHandler class should be registered as a concreteHandler participant in the SpecialFormHan-
dler design pattern instance, and as a concreteCreator in the SpecialFormClosureCreation and
SpecialFormConverterCreation instances of the Factory Method design pattern. Similarly, it will
detect that the CondClosure class should be registered as a leaf and concreteElement participant
in the CompositeClosure and ClosureVisitor design pattern instances (see Figure 6.5) , and that
the CondConverter class should be registered as a concreteClass participant in the ConverterTem-
plateMethod design pattern instance (Figure 6.6).

Second, once the classes have been registered as participants in the appropriate design pat-
tern instances, the environment consults the instance’s specifications to identify the methods
these classes should implement. Then, it checks the implementation to verify whether the newly
added classes effectively implement these methods. For example, if the developer did not provide
the CondHandler class with an implementation for the handle:, canHandle: and cantHandle:
method participants of the SpecialFormHandler design pattern instance, the environment noti-
fies him and he should then implement them. For the newClosure and newConverter method
participants, the environment is even able to check whether their implementation satisfies the
constraints of the Factory Method design pattern: the first method should return an instance
of a subclass of the Closure class, while the second should return an instance of a subclass of
the SchemeConverter class. If these methods do not instantiate and return such an object, the
environment reports this to the developer who can then take appropriate action.
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role(CompositeClosure,component,Closure).
role(CompositeClosure,composite,SequenceClosure).
role(CompositeClosure,leaf,IfClosure).
...
role(CompositeClosure,compositeMethod,printOn:).

Composite:CompositeClosure

Closure

IfClosure LetClosure

role(ClosureVisitor,abstractElement,Closure).
role(ClosureVisitor,concreteElement,IfClosure).
role(ClosureVisitor,concreteElement,LetClosure).
...
role(ClosureVisitor,acceptMethod,nodeDo:value:).
role(ClosureVisitor,abstractVisitor,ClosureVisitor).
role(ClosureVisitor,concreteVisitor,SimpleEvalClosureVisitor).

Visitor:ClosureVisitor

Figure 6.5: Design pattern instances in which the Closure hierarchy participates

SchemeConverter

IfConverter LetConverter

role(ConverterTM,abstractClass,SchemeConverter).
role(ConverterTM,concreteClass;IfConverter).
...
role(ConverterTM,templateMethod,forExpression:).
role(ConverterTM,hookMethod,convert).

Template Method:ConverterTM

Figure 6.6: Design pattern instances in which the SchemeConverter hierarchy participates
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A developer should continue making changes to the framework as long as the environment
reports possible conflicts.

This example clearly illustrates that information about the design pattern instances used in a
framework is valuable for a developer that evolves that framework. First of all, the mere fact that
such documentation is present, provides a developer with important information about the design
of the framework. Since he is aware of the different design patterns that are used in the framework,
he will presumably introduce less errors when manually evolving it. Second, the documentation
is used in an active way by the supporting environment to verify whether the implementation
satisfies the constraints of the design patterns. If this is not the case, the developer is notified of
the observed inconsistencies and should then take appropriate action.

It is important to note that there are two possible sources of inconsistencies: the environment
either detects that the specification of a design pattern instance is not correct (for example, a class
is not registered as a participant, but should be) or that the implementation does not conform
to the specification (for example, a class does not define the required methods). Obviously, it
is important to detect the latter kind of inconsistencies and report them to the developer, as
they can lead to runtime errors. However, it is equally as important to detect the former kind of
inconsistencies. Since our approach for supporting framework-based development is based upon
documentation of design patterns, we should make sure that their specification is correct. If this is
not the case, our environment will not be able to detect possible constraint violations. As we saw
in the example, the environment is able to check whether a class implements the required methods,
only if this class is registered as the appropriate participant in the corresponding design pattern
instance. Moreover, supported evolution is also based on documentation of design patterns, which
thus also requires correctness of the specification.

6.4.3 An Example of Supported Evolution

Instead of manually evolving a framework, a developer can also use the high-level transformations
to achieve a more disciplined form of evolution. The transformations are defined so as to guide the
developer when implementing the necessary changes, in order to guarantee that no constraints are
violated. They thereby generate a skeleton implementation that can be finished further by the de-
veloper. Furthermore, the transformations are implemented in such a way that they automatically
update the design pattern instance specification to include the new participants. In what follows,
we will again consider the example of adding a cond special form to the Scheme framework and
show how our supporting environment can guide a developer while performing this task.

The addSpecialForm transformation is defined so that it first asks the developer for a handler
class that should be able to handle the new special form. The developer is presented with a dialog
in which he can specify the name of that class 3:

Name of concrete handler for the cond special form = CondHandler

The CondHandler class is now added automatically to the implementation as a subclass of the
SpecialFormHandlerWithSuccessor class. Then, the addSpecialForm transformation consults
the description of all design patterns in which this newly added class plays a role and continues
its operation. It derives that the new class is a concreteHandler participant in a Chain of Respon-
sibility design pattern instance and that it should thus implement all handleMethod participants
of this instance (see Figure 6.4). It registers this class as such a participant in the design pat-
tern instance specification and presents the developer with dialogs in which he has to specify an
implementation for the handle:, cantHandle: and canHandle: methods:

Implementation for the handle: method in the CondHandler class = ...

Implementation for the cantHandle: method in the CondHandler class = ...

3Note that we provide a graphical user interface for our supported evolution environment, and that a developer
will normally use this interface for evolving the framework. Furthermore, the interface is closely integrated with
the standard development environment in order to provide appropriate browsing facilities on existing code. For the
sake of discussion, we present these dialogs in a textual form here.
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Implementation for the canHandle: method in the CondHandler class = ...

These methods are then added to the CondHandler class automatically.
The environment detects that the CondHandler class also participates in the SpecialForm-

ClosureCreation instance of the Factory Method design pattern as a concreteCreator participant.
This is due to the fact that the SpecialFormHandler design pattern instance overlaps with the Spe-
cialFormClosureCreation instance, according to the definition of overlapping given in Section 5.5.
The CondHandler class is thus registered as a concreteCreator participant in that design pattern
instance. Each such participant should implement the factoryMethod participant, in this case, a
newClosure method. This method should instantiate an object from a particular class, so the
environment prompts the developer which class the CondHandler class should instantiate:

Name of concrete Closure class instantiated by the CondHandler class = CondClosure

Suppose that the developer specifies that the concrete closure class is CondClosure. Since this
class does not yet exist in the framework, it is automatically added. The environment adds it as
a subclass of the Closure class, since the specification of the SpecialFormClosureCreation design
pattern instance specifies that this class is an abstractProduct participant of which all concreteCre-
ator classes should inherit. Furthermore, the CondHandler class is automatically provided with
a skeleton implementation for the newClosure method, that instantiates a CondClosure object.
This implementation look as follows:

CondHandler>>newClosure

^CondClosure new

Likewise, the environment also derives that the CondHandler class participates as a concrete-
Creator participant in the SpecialFormConverterCreation instance of the Factory Method design
pattern, and it thus registers this class a such a participant in the design pattern instance specifi-
cation. This time, the class should implement a newConverter method which should instantiate
a class from the SchemeConverter hierarchy. The environment thus again consults the developer:

Name of concrete Converter class instantiated by the CondHandler class = CondConverter

The environment also adds the CondConverter class to the framework automatically, and
it derives from the documentation that it should be a subclass of the SchemeConverter class.
Moreover, the newConverter method is defined in the CondHandler class that instantiates an
object of the CondConverter class:

CondHandler>>newConverter

^CondConverter new

Since the addSpecialForm added two new classes to the framework, the environment should
again check whether these classes participate in a design pattern instance. As it turns out, the
CondClosure class participates in the CompositeClosure instance of the Composite design pattern
as a leaf participant (see Figure 6.5). It should thus provide an implementation for all compos-
iteMethod participants. In this case, there are two such participants, and the environment prompts
the developer to provide a concrete implementation for them:

Implementation for the printOn: method in the CondClosure class = ...

Implementation for the nodeDo:value: method in the CondClosure class = ...

Furthermore, it also plays the role of concreteElement participant in the ClosureVisitor in-
stance of the Visitor design pattern. With each such participant, a corresponding visitMethod
participant is associated. Since the CondClosure class is a new class, the environment asks the
developer for the name of the method that should be introduced in the ClosureVisitor hierarchy,
and then asks him to provide an implementation for this method for all concrete visitor classes:
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Name of the visit method participant for the CondClosure class = doCondClosure:

Implementation for the doCondClosure: method in the ClosureVisitor class = ...

Implementation for the doCondClosure: method in the SimpleEvalClosureVisitor class = ...

The CondConverter class participates in the ConverterTM instance of the Template Method
design pattern (see Figure 6.6). It plays the role of a concreteClass, which should implement all
hookMethod participants. In this instance, there is only one such method, the convert method,
for which the environment asks an implementation:

Implementation for the convert method in the CondConverter class = ...

As no more new classes are added, the addSpecialForm transformation finishes its execution.
At this point, the implementation of the framework does not contain any constraint violation
conflicts, since the transformation made sure that all design pattern instances are implemented
and specified correctly. It should be noted that the implementation of the new special form is not
yet finished. While the most important classes and methods are defined and provided with the
appropriate behavior, it may be necessary to further finish the implementation. For example, when
being asked to provide an implementation for the handle: method participant, a developer may
have specified an implementation that calls additional helper methods. If these methods do not
yet exist in the framework, they are not added automatically by our environment. The developer
should thus add them manually. Note that this is not a restriction of our approach, however. The
environment could check whether all necessary methods are already present in the framework, and
if not, continue prompting the developer to provide the appropriate implementation for them.

6.5 Implementation

The previous section demonstrated the support for framework-based development provided by our
environment. In this section, we will discuss how such support can be implemented. In Chapter 4,
Figure 4.8, we already explained the different steps that are involved: implementation of metap-
attern specific transformations (Section 6.5.5), translation of framework-specific transformations
into design pattern-specific transformations, who in turn are translated into metapattern-specific
transformations (Section 6.5.3) and translation of design pattern instance specifications into meta-
pattern instance specifications (Section 6.5.1), and vice versa (Section 6.5.4).

6.5.1 Translation of Design Pattern Instances to Metapattern Instances

In this section, we will explain how our declarative meta-programming environment automatically
translates a design pattern instance specification into the corresponding metapattern instance
specification(s). Such a mapping can be defined for any design pattern-metapattern combination,
but due to space restrictions, we only consider the three example design pattern instances presented
in Section 6.4.1.

Translation of the Composite design pattern

The Composite design pattern is an instance of the Recursion metapattern, defined in Section 5.3.3.
In order to translate the design pattern description into a metapattern description, the roles of
the Composite design pattern need to be mapped onto the roles of the Recursion metapattern.
In this particular case, the mapping is quite straightforward: each design pattern role is mapped
onto a corresponding metapattern role, as can be seen in Figure 6.7. In this figure, design pattern
and metapattern roles are represented by rounded rectangles, while participants are represented
by means of small circles.

We should note that in the formal model of Chapter 5, metapatterns were defined in terms of
hierarchy participants, such as hookHierarchy and templateHierarchy participants. The specifica-
tion of a metapattern instance should be more precise, and therefore models such participants by
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Figure 6.7: Mapping of roles from the Composite design pattern onto roles of the Recursion
metapattern.

means of the appropriate root and leaf participants. A hookHierarchy participant of a Recursion
metapattern, for example, is specified by means of hookRoot and hookLeaf participants. The for-
mer represents the root of the hookHierarchy participant, while the latter represents all its concrete
leaf classes. Note that we could have chosen to simply specify the root participant of a hierarchy,
and let our environment automatically derive the leaf participants (e.g. all concrete subclasses of
the root participant). However, the complete specification of a metapattern instance would then
have to be calculated every time it is needed, and this could be a very time-consuming process.
Moreover, as we saw in Section 6.4.2, the environment detects and notifies a developer when he
accidently forgets to register a class as a particular participant in a design pattern instance. This
makes the developer aware of the fact that the class participates in a design pattern instance. If
participants are calculated automatically, this additional benefit would disappear.

Similar to the description of a design pattern instance (Section 6.4.1), a metapattern instance’s
description is specified in terms of the mpPatternInstance/2 and mpRole/3 predicates. The trans-
lation is implemented by using logic rules that convert patternInstance and role facts into appropri-
ate mpPatternInstance and mpRole facts. These logic rules are implemented once for each design
pattern-metapattern combination, and are provided in a library with our supporting environment.
The translation is thus performed completely automatically without any developer intervention.

For example, to define an instance of the Recursion metapattern that corresponds to a Com-
posite design pattern instance, we can use the following rule:

mpPatternInstance(?instance,recursionMP) if
patternInstance(?instance,compositeDP).

which states that each instance of the Composite design pattern defines an instance of the
Recursion metapattern. As can be seen, we simply use the unique name of the design pattern in-
stance to identify the metapattern instance. This is allowed because this name is unique amongst
all metapattern instances. When a design pattern instance is mapped onto multiple metapattern
instances, this simple approach can not be applied, since the name of all these metapattern in-
stances would then not be unique. We will show how we overcome this problem when illustrating
how our environment translates instances of the Abstract Factory design pattern.

Likewise, we can easily translate information specified by the role/3 predicate into the appro-
priate mpRole/3 facts:
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Figure 6.8: Mapping of roles from the Factory Method design pattern onto roles of the Creation
metapattern.

mpRole(?instance,?role,?participant) if
patternInstance(?instance,compositeDP),
mpRoleCompositeDP(?instance,?role,?participant).

mpRoleCompositeDP(?instance,templateClass,?class) if
role(?instance,composite,?class).

mpRoleCompositeDP(?instance,hookRoot,?class) if
role(?instance,component,?class).

mpRoleCompositeDP(?instance,hookLeaf,?class) if
role(?instance,leaf,?class).

mpRoleCompositeDP(?instance,hookMethod,?selector) if
role(?instance,compositeMethod,?selector).

mpRoleCompositeDP(?instance,templateMethod,?selector) if
role(?instance,compositeMethod,?selector).

mpRoleCompositeDP(?instance,referenceVariable,?variable) if
role(?instance,compositeVariable,?variable)

As can be observed, an instance of the Composite design pattern is translated in a straight-
forward way into an instance of the Recursion metapattern. The mpRoleCompositeDP rules map
the composite design pattern role onto a templateClass metapattern role, for example, while the
leaf design pattern role is mapped onto the hookLeaf metapattern role.

Translation of the Factory Method design pattern

The Factory Method design pattern can be mapped in a straightforward way onto a Creation
metapattern. This mapping takes the form as depicted in Figure 6.8.

An instance of the Factory Method design pattern automatically defines an instance of the
Creation metapattern, as follows:
mpPatternInstance(?instance,creationMP) if

patternInstance(?instance,factoryMethodDP).

Once again, we simply share the name between the design pattern instance and the metapattern
instance, since it remains unique for all metapattern instances.

The mapping of design pattern roles to metapattern roles is implemented by the following
rules, which translate the role/3 predicate into the mpRole/3 predicate:
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mpRole(?instance,?role,?participant) if
patternInstance(?instance,factoryMethodDP),
mpRoleFactoryMethodDP(?instance,?role,?participant).

mpRoleFactoryMethodDP(?instance,hookLeaf,?class) if
role(?instance,concreteProduct,?class)

mpRoleFactoryMethodDP(?instance,hookRoot,?class) if
role(?instance,abstractProduct,?class)

mpRoleFactoryMethodDP(?instance,templateRoot,?class) if
role(?instance,abstractCreator,?class)

mpRoleFactoryMethodDP(?instance,templateLeaf,?class) if
role(?instance,concreteCreator,?class)

mpRoleFactoryMethodDP(?instance,templateMethod,?selector) if
role(?instance,factoryMethod,?selector).

mpRole(?instance,creates,?tclass,?hclass) if
patternInstance(?instance,factoryMethodDP),
role(?instance,concreteCreator,<?tclass,?hclass>),

The concreteProduct design pattern role is mapped onto a hookLeaf metapattern role, for
example. Observe that in the description of the metapattern instance, extra information is in-
cluded by means of a mpRole/4 predicate. In a description of a Factory Method design pattern
instance, the concreteCreator role includes extra information about the particular concreteProd-
uct participant that is instantiated by the concrete creator class. For example, a specification
of the SpecialFormHandlerClosureCreation instance includes the following fact, to denote that a
IfHandler concreteCreator participant instantiates a IfClosure concreteProduct participant (see
Section 6.4.1):

role(SpecialFormClosureCreation,concreteCreator,<IfHandler,IfClosure>)

The specification of the metapattern instance, corresponding to the SpecialFormClosureCre-
ation instance, would use the mpRole/4 predicate to ensure that such important information does
not get lost during the translation:

mpRole(SpecialFormClosureCreation,templateLeaf,IfHandler).
mpRole(SpecialFormClosureCreation,creates,IfHandler,IfClosure)

One could argue that we could have equally well used the mpRole/3 predicate in the same
way as the role/3 predicate to specify the concreteCreator role in the metapattern description, as
follows:

mpRole(SpecialFormClosureCreation,templateLeaf,<IfHandler,IfClosure>)

The specific reason we decided to use multiple predicates, however, is to preserve consistency
between the mpRole/3 predicates. First of all, consistency greatly facilitates reasoning about a
specification, as we don’t need to take into account different forms of one and the same predicate.
Second, different design patterns have different roles, and can use the role/3 predicate in any
which way they want to describe these roles accurately. Two different design patterns can be
mapped onto one and the same metapattern however. In order to ensure that this can be done in
a consistent way, we should agree on a standard use of the mpRole/3 predicate, that is used in a
metapattern instance description.

For example, the composite participant of an instance of the Composite design pattern is
specified as follows:

role(CompositeExpression,composite,ScSequenceExpression)

and is mapped onto the templateLeaf participant of the Recursion metapattern:

mpRole(CompositeExpression,templateLeaf,ScSequenceExpression)

Similarly, a concreteCreator participant in an instance of the Factory Method design pattern
is specified as follows:
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Figure 6.9: Mapping of roles from the Abstract Factory design pattern onto roles of the Factory
Method design pattern

role(ExpressionClosureCreation,concreteCreator,<ScSequenceExpression,SequenceClosure>)

and would then be mapped onto a templateLeaf participant of an instance of the Creation
metapattern as follows:

mpRole(ExpressionClosureCreation,templateLeaf,<ScSequenceExpression,SequenceClosure>)

As can be seen, the specification of a templateLeaf participant has a different format depending
on the kind of metapattern that we are dealing with. When reasoning about such specifications,
we are thus obliged to take such differences into account, which would make the reasoning process
much more difficult. When a transformation adds a method participant, for example, it should
gather all class participants to which an implementation of this method should be added. If the
specification of these class participants differs depending on the metapattern, we should implement
the transformation for each particular metapattern, so that it takes these differences into account.
If we use a standard format, however, we can simplify the implementation of the transformations.
Therefore, we will make use of extra predicates whenever this is required to preserve important
information.

Translation of the Abstract Factory design pattern

While the Composite and Factory Method design patterns could be mapped easily onto appropriate
metapatterns, this is not the case for the Abstract Factory design pattern. There is no immediately
suitable metapattern candidate that has roles corresponding to those of the design pattern. We
can however see an instance of the Abstract Factory design pattern as a collection of instances of
the Factory Method design pattern. Instances of the latter design pattern can be mapped easily on
instances of the Creation metapattern. As shown in Figure 6.9, an instance of the Abstract Factory
design pattern is thus mapped onto several instances of the Factory Method design pattern.

Conceptually, the ASTFactory design pattern instance as described in Section 6.4.1 can be
translated into a number of Factory Method design pattern instances as follows:

patternInstance(ASTFactory1,factoryMethodDP).
role(ASTFactory1,abstractProduct,ScConsExpression).
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role(ASTFactory1,concreteProduct,ScConsExpression).
role(ASTFactory1,abstractCreator,SchemeASTFactory).
role(ASTFactory1,concreteCreator,DefaultSchemeASTFactory).
role(ASTFactory1,factoryMethod,newConsExpression:cdr:).

patternInstance(ASTFactory2, factoryMethodDP).
role(ASTFactory2,abstractProduct,ScCodeExpression).
role(ASTFactory2,concreteProduct,ScCodeExpression).
role(ASTFactory2,abstractCreator,SchemeASTFactory).
role(ASTFactory2,concreteCreator,DefaultSchemeASTFactory).
role(ASTFactory2,factoryMethod,newCodeExpression:).

..

As can be seen, a new instance of the Factory Method design pattern is defined for each ab-
stractFactoryMethod role in a Abstract Factory design pattern instance. Each of these design
pattern instances has a unique name (ASTFactory1, ASTFactory2, . . . ), which is generated auto-
matically. Additionally, the mapping of Abstract Factory design patterns roles to Factory Method
design pattern roles is done in the following way (as can be seen in Figure 6.9):

• The abstractFactory role of the Abstract Factory design pattern instance is mapped onto the
abstractCreator role in each Factory Method design pattern instance.

• Similarly, the concreteFactory role of the Abstract Factory design pattern instance is mapped
onto the concreteCreator role in each Factory Method metapattern instance.

• Each abstractFactoryMethod participant in the Abstract Factory design pattern instance is
mapped onto a factoryMethod participant in the appropriate Factory Method metapattern
instance.

• Each abstractProduct participant in the Abstract Factory design pattern instance is mapped
to an abstractProduct participant in the appropriate Factory Method metapattern instance.

• Each concreteProduct participant in the Abstract Factory design pattern instance is mapped
to a concreteProduct participant in the appropriate Factory Method metapattern instance.

The result is that each Factory Method design pattern instance contains the same abstractCre-
ator and concreteCreator participants, but contains different factoryMethod, abstractProduct and
concreteProduct participants.

The logic rules that implement this translation are actually very similar to those implementing
a design pattern instance to metapattern instance translation. First of all, a number of Factory
Method design pattern instances are defined based on the definition of an Abstract Factory design
pattern instance as follows:

patternInstance(?newInstance,factoryMethodDP) if
patternInstance(?instance,abstractFactoryDP),
generateNewInstance(?instance,?newInstance)

The generateNewInstance/2 predicate is responsible for generating a unique name for each
Factory Method instance, based on the name of the Abstract Factory instance. The algorithm we
use for generating this new name makes sure that the original name of the design pattern instance
can easily be recovered. The Abstract Factory design pattern specification can then be translated
into the appropriate Factory Method design pattern specifications by means of the following rules:

role(?newInstance,abstractProduct,?class) if
patternInstance(?instance,abstractFactoryDP),
role(?instance,abstractProduct,<?class,?selector>),
generateNewInstance(?instance,?selector,?newInstance).

role(?newInstance,abstractCreator,?class) if
patternInstance(?instance,abstractFactoryDP),
role(?instance,abstractFactory,?class),
generateNewInstance(?instance,?newInstance)

role(?newInstance,concreteCreator,?class) if
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patternInstance(?instance,abstractFactoryDP),
role(?instance,concreteFactory,?class),
generateNewInstance(?instance,?newInstance).

role(?newInstance,factoryMethod,?selector) if
patternInstance(?instance,abstractFactoryDP),
role(?instance,abstractFactoryMethod,?selector),
generateNewInstance(?instance,?selector,?newInstance).

role(?newInstance,concreteProduct,<?factory,?class>) if
patternInstance(?instance,abstractFactoryDP),
role(?instance,concreteProduct,<?factory,?selector,?class>),
generateNewInstance(?instance,?selector,?newInstance).

Note that the specification of a concreteProduct participant in a Factory Method design pattern
only contains the concreteCreator participant that is responsible for creating it, and not the specific
method that actually creates it, as is the case for instances of the Abstract Factory design pattern.
Instances of the Factory Method design pattern contain only one factoryMethod participant, as
opposed to instances of the Abstract Factory design pattern. This sole participant is already
included in the Factory Method design pattern specification via the factoryMethod role, so it can
safely be omitted from the concreteProduct specification.

6.5.2 Defining Metapattern Constraints

By using the declarative meta-programming environment we can define the constraints associated
with metapatterns as logic rules. These check whether the implementation of the framework con-
forms to the specification of the metapattern instances, or vice versa, check that the specification
is correct with respect to the implementation. This allows us to verify whether a developer spec-
ified a particular design pattern correctly, and also provides support for (anticipated as well as
unanticipated) evolution by checking whether the appropriate constraints still hold after a number
of changes have been applied.

In this section, we provide several examples of how constraints defined by metapatterns are
specified in the declarative meta-programming environment. We first define some general con-
straints, that hold for most of the metapatterns. Later on, we will also define constraints that are
specific to particular metapatterns. To do so, we use the three examples design patterns (or their
corresponding metapatterns) presented earlier.

General Constraints

Verifying correctness of a template/hook hierarchy specification Each metapattern has
at least one hierarchy participant: the hookHierarchy participant. Some metapatterns, most
notably the Creation and Hierarchy metapatterns, even have an additional templateHierarchy
participant. In a metapattern instance specification, such hierarchies are described in terms of the
hookRoot, hookLeaf, templateRoot and templateLeaf roles respectively as we saw earlier.

In order to verify whether a metapattern instance description conforms to the actual source
code, we need to check whether the hierarchy participants are specified correctly. In concreto,
this means that the classes registered as leaf participants should exist in the implementation and
should be subclasses of the appropriate root participant. If this is not the case, we regard them as
incorrectly specified leaf participants. A constraint that checks whether the leaf participants of a
particular metapattern instance are indeed subclasses of the root participant looks as follows, for
example:

leafButNoSubclass(?instance,?rootRole,?leafRole, ?violators) if
[1] mpRole(?instance,?rootRole,?root),
[2] findall(incorrectLeafParticipant(?leaf,?root),
[3] and(mpRole(?instance,?leafRole,?leaf),
[4] not(inheritsStar(?leaf,?root))),

?violators).

This rule first fetches the class that is registered as the root participant of the class hierarchy
(line 1). Then, it gathers all classes that are registered as leaf participants but do no inherit
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(maybe indirectly) from the root participant (line 3 and 4). Such classes are included in a list,
held by the variable ?violators and are reported to be incorrect leaf participants (line 2). The
inheritsStar/2 predicate actually implements the inherits? relation, defined in Chapter 5. It
makes use of Smalltalk clauses to consult the implementation of the framework and to verify
whether the leaf class participant is actually a descendant of the root class participant.

A correct specification of a class hierarchy not only means that all leaf participants are effec-
tively subclasses of the root participant, but also requires that each concrete subclass of the root
participant is registered as a leaf participant. This constraint can be checked by the following rule:

concreteSubclassButNoLeaf(?instance,?rootRole,?leafRole,?violators) if
[1] mpRole(?instance,?rootRole,?root),
[2] findall(shouldBeLeafParticipant(?cClass),
[3] and(concreteSubclass(?root,?cClass),
[4] candidateLeaf(?instance,?cClass),
[5] not(mpRole(?instance,?leafRole,?cClass))),

?violators)

It first fetches the root participant of the metapattern instance (line 1), and then gathers all
concrete subclasses of this participant that are candidate leaf classes but not registered as such
(lines 3, 4 and 5). A class that conforms to these conditions is reported to be a class that should
be registered as a leaf participant in the metapattern instance (line 2).

The candidateLeaf/2 predicate is used to check whether a certain class is a candidate for being
a leaf participant or not. Normally, all concrete classes in a class hierarchy are candidate leaf
participants, except when we are dealing with a Recursion metapattern instance. In that case,
the class that is registered as the templateClass participant is a concrete class in the hierarchy,
but may not be registered as a leaf participant.

We can use the two constraints defined above to define a predicate correctHierarchy/2 that
checks whether a specific hierarchy is correctly specified as follows:

correctHierarchy(?instance,?rootRole,?leafRole,?violators) if
leafButNoSubclass(?instance,?rootRole,?leafRole,?v1),
concreteSubclassButNoLeaf(?instance,?rootRole,?leafRole,?v2),
append(?v1,?v2,?violators).

Verifying correctness of method participant implementors. Another example of a generic
constraint that must hold for several metapatterns is the following. A number of metapatterns
define method participants that should be implemented throughout a particular hierarchy partic-
ipant. For example, all hookMethod participants of a Unification metapattern instance should be
implemented by the hookHierarchy participant. According to the definition of the metapatterns,
this means that a method participant should be defined in the root of that hierarchy, and that
each leaf participant should understand that method. This constraint is expressed by the following
rules:

notDefinedByRoot(?instance,?rootRole,?methodRole,?violators) if
[1] mpRole(?instance,?rootRole,?root),

findall(notDefinedByRoot(?root,?selector),
[2] and(mpRole(?instance,?methodRole,?selector),
[3] not(definesMethod(?root,?selector))),
[4] ?violators).

notUnderstoodByLeaf(?instance,?leafRole,?methodRole,?violators) if
findall(?v1,

and(mpRole(?instance,?leafRole,?leaf),
findall(notUnderstoodByLeaf(?leaf,?selector),

and(mpRole(?instance,?methodRole,?selector),
not(understandsMessage(?leaf,?selector))),

?v1)),
?v2),

flatten(?v2, ?violators)

The notDefinedByRoot/4 rule fetches the root class of the class hierarchy participant in a
metapattern instance (line 1), and checks whether all method participants are defined by that root
class (line 2 and 3). Those method participants that violate this rule are reported and maintained
in a list (line 4). The notUnderstoodByLeaf/4 rule does something similar and checks whether all
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leaf participants can understand all required method participants. Those leaf participants that
do not understand particular method participants are again registered in a list. Note that the
definesMethod/2 and understandsMessage/2 predicates actually implement the definesMethod
and understandsMessage relations defined in Chapter 5. These predicates are defined in terms
of Smalltalk clauses that consult the implementation to check whether a class actually defines a
certain method or understands a particular message.

The general version of this constraint can thus be implemented by the correctMethods/5 pred-
icate as follows:

correctMethods(?instance,?rootRole,?leafRole,?methodRole,?violators) if
notDefinedByRoot(?instance,?rootRole,?methodRole,?v1),
notUnderstoodByLeaf(?instance,?leafRole,?methodRole,?v2),
append(?v1,?v2,?violators).

In the following sections, we will show how the above predicates are used in conjunction with
other constraints to specify the constraints of some particular metapatterns.

Constraints for the Recursion metapattern

The Recursion metapattern (Section 6.5.1) has only one hierarchy participant: the hookHierarchy
participant. The constraints of this metapattern specify that each hookMethod participant should
be implemented across this hierarchy. Furthermore, a constraint that is specific to this metapattern
is that the templateClass participant should be present in the hookHierarchy participant. The
general constraint that should hold for the Recursion metapattern is specified by the following
rule:

patternConstraint(?instance,?violators) if
mpPatternInstance(?instance,recursionMP),
correctHierarchy(?instance,hookRoot,hookLeaf,?v1),
correctMethods(?instance,hookRoot,hookLeaf,hookMethod,?v2),
templateClassInHookHierarchy(?instance,?v3),
templateClassDefinesTemplateMethods(?instance,?v4),
recursiveTemplateMethods(?instance,?v5),
append(?v1,?v2,?v3,?v4,?v5,?violators)

The correctHierarchy/4 predicate is passed the hookRoot and hookLeaf specific roles as argu-
ments, in order to specify that the hookHierarchy participant should be checked. Similarly, the
hookRoot, hookLeaf en hookMethod roles are passed as arguments to the correctMethod/5 predi-
cate to check whether the hookMethod participants are implemented correctly in the hookHierarchy
participant. The templateClassInHookHierarchy/2 predicate is responsible for checking that the
templateClass participant actually is a class in the hookHierarchy participant, while the tem-
plateClassDefinesTemplateMethods/2 and the recursiveTemplateMethods/2 predicates are used to
verify whether the templateClass participant defines all templateMethod participants and whether
the templateMethod participants call themselves recursively.

Constraints for the Creation metapattern

A specification of the Abstract Factory design pattern is translated into a specification of several
Factory Method design pattern instances, which are in turn translated into Creation metapattern
instances. The Creation metapattern has two hierarchy participants: a hookHierarchy participant
and a templateHierarchy participant. As such, it should be checked whether the specification of
both these hierarchies is correct, which is achieved by calling the correctHierarchy/4 predicate
twice: once with arguments hookRoot and hookLeaf roles, and once with arguments templateRoot
and templateLeaf roles. Furthermore, the templateMethod participant of a Creation metapattern
instance should be implemented in the appropriate way across the templateHierarchy participant.
This is achieved by calling the correctMethods/5 with the appropriate arguments. The constraint
specification for the Creation metapattern thus looks as follows:

patternConstraint(?instance, ?violators) if
mpPatternInstance(?instance,creationMP),
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incorrectLeafParticipant a leaf participant is not a subclass of the
root participant

shouldBeLeafParticipant a subclass of the root participant is not
registered as a leaf participant

templateClassP tcptNotInHookHierarchy a templateClass participant is not part of the
hookHierarchy participant

notUnderstoodByLeaf a leaf participant does not understand some
method participant

notDefinedByRoot a root participant does not define some method
participant

noCallToHookMethod a templateMethod participant does not call a
hookMethod participant

noClassCreation a templateMethod participant does not
instantiate a class

noHookClassCreation a templateMethod participant does not
instantiate a hookLeaf participant

notImplementedByTemplateClass a templateClass participant does not define a
templateMethod participant

nonRecursiveTemplateMethod a templateMethod participant does not call itself
recursively

Table 6.1: Constraint Violation Conflicts

correctHierarchy(?instance,hookRoot,hookLeaf,?v1),
correctHierarchy(?instance,templateRoot,templateLeaf,?v2),
correctMethods(?instance,templateRoot,templateLeaf,templateMethod,?v3),
templateMethodsInstantiateHookClassParticipants(?instance,?v4),
append(?v1,?v2,?v3,?v4,?violators)

As it name suggests, the templateMethodsInstantiateHookClassParticipants/2 predicate is used
to verify whether each implementation of the templateMethod participant instantiates a class that
is registered as a hookLeaf participant in the same metapattern instance.

Discussion

In the above sections, we only defined the constraints for the Recursion and Creation metapatterns.
Naturally, the constraints for the Unification, Connection and Hierarchy metapatterns can be
defined in a similar way. Table 6.1 contains a list of the constraint violation conflicts that can be
detected, by means ot the constraints of all metapatterns. Some of these conflicts can occur for
any kind of metapattern (the notUnderstoodByLeaf conflict, for example), while other conflicts
are specific to a particular metapattern (the noHookClassCreation conflict can only occur for the
Creation metapattern). Moreover, the metapattern-specific constraints can be used as a basis
for defining design pattern-specific constraints as well, much like the general constraints are used
to define metapattern-specific ones. These design pattern-specific constraints can include more
restrictions on the method bodies, for example.

6.5.3 Translation of Framework-Specific Transformations to Metapat-
tern-Specific Transformations

As was discussed in Section 4.3 and depicted in Figure 4.8, the high-level transformations that are
defined for the Scheme framework, such as the addSpecialForm transformations, should be trans-
lated automatically into lower-level transformations in order to be able to apply them. Therefore,
framework-specific transformations are automatically translated into design pattern-specific trans-
formations first. In turn, these design pattern-specific transformations are further translated into
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more abstract metapattern-specific transformations that perform the actual changes. In the fol-
lowing sections, we will explain how a framework developer can specify how the addSpecialForm
framework-specific transformation is translated into an appropriate metapattern-specific trans-
formation, which will add the necessary classes and methods to the framework and update the
documentation.

Framework-Specific Transformations

The addSpecialForm transformation is defined specifically for the Scheme framework and is re-
sponsible for making changes to the framework that add a new special form. A developer invokes
this transformation via the user interface of the development environment. The environment will
prompt him to specify the name of the special form that he wants to add and will assert the
following fact into the logic repository:

operation(SchemeFramework,addSpecialForm,cond)

The operation/3 predicate is used to represent information about the transformations that
are applied to the implementation. The first argument identifies the framework to which the
transformation is applied, the second argument identifies the name of the transformation, while
the third argument includes its arguments. As we will see in Chapter 7, explicitly logging the
transformations in this way enables us to provide support for software merging.

Design Pattern-Specific Transformations

Framework-specific transformations are translated into design pattern-specific transformations
that operate on design pattern instances occurring in the framework.

Recall from Chapter 3 that special forms in the Scheme framework are represented by classes
in the SpecialFormHandler hierarchy. Adding a new special form thus requires extending this
hierarchy with a new class. The addSpecialForm framework-specific transformation should thus
be translated into a design pattern-specific transformation that adds a new class to this hierarchy.
As can be observed from Figure 6.4, the SpecialFormHandler hierarchy participates in a number
of design pattern instances. The addSpecialForm framework-specific transformation can thus
be translated into a design pattern-specific transformation of any of the corresponding design
patterns. In this particular case, the framework developer that implemented the addSpecialForm
transformation opted to translate it into an addConcreteHandler design pattern transformation
on the Chain of Responsibility design pattern:

operation(SpecialFormHandler,addConcreteHandler,<?class,SpecialFormHandlerWithSuccessor>) if
operation(SchemeFramework,addSpecialForm,?name),
askUser(’Name of concrete handler for the ?name special form’, ?class)

This rule translates the addSpecialForm framework-specific transformation into an addCon-
creteHandler design pattern-specific transformation on the SpecialFormHandler instance. Once
again, the operation/3 predicate is used to explicitly log the fact that this transformation is being
applied, and which contains the information necessary to perform the transformation. In this case,
the askUser/2 predicate is used to consult the developer and ask him to specify a name for the
class that will represent the cond special form, and the class should be added as a subclass of the
SpecialFormHandlerWithSuccessor.

Other framework-specific transformations, such as the addNewExpressionType transformation,
can be translated into the appropriate design pattern-specific transformations in a similar way.
Note that it is not necessarily always the case that one framework-specific transformation is trans-
lated into one design pattern-specific transformation. It is perfectly well possible that two or more
design pattern-specific transformations are required. This can be easily achieved, however, by
simply specifying two or more logic rules, as appropriate.
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Metapattern-Specific Transformations

Design pattern-specific transformations in their turn are translated into metapattern-specific trans-
formations that actually make the necessary changes to the implementation. For example, the
Chain of Responsibility design pattern is an instance of the Unification metapattern. As such, the
addConcreteHandler transformation that is defined for the Chain of Responsibility design pattern
is defined in terms of the addHookClass transformation on the Unification metapattern as follows:

mpOperation(?instance,addHookClass,<?class,?superclass>) if
patternInstance(?instance,chainOfResponsibilityDP),
operation(?instance,addConcreteHandler,<?class,?superclass>)

Just like for the translation of framework-specific transformations to design pattern-specific
transformations, it is not necessarily the case that a design pattern-specific transformation is
translated into a single metapattern-specific transformation. Furthermore, observe that the above
rule does not explicitly mention the Unification metapattern. However, the patternInstance/3
predicate is mapped onto a mpPatternInstance/3 predicate, which includes this information (see
Section 6.5.1), and thus it is ensured that the addConcreteHandler transformation on the Chain of
Responsibility design pattern is mapped onto an addHookClass transformation on the Unification
metapattern..

Note that in the formal model of Chapter 5, the addHookClass transformation only has one
argument, a class C. In practice, we should also specify the class from which this class should
be derived. To this extent, the addHookClass transformation above has an extra argument that
specifies that superclass.

6.5.4 Translation of Metapattern Instances to Design Pattern Instances

The transformations of metapattern instances are implemented in such a way that they automat-
ically update the metapattern instance specification to include the new participants or remove
obsolete ones. After the transformations have been performed, this updated specification needs
to be translated back into a corresponding design pattern instance specification. Since design
pattern instance participants in most cases are not mapped exactly onto metapattern instance
participants, this translation is not as straightforward as it may seem. The purpose of this section
is thus to show how this reverse mapping can be implemented. We will do this by means of the
three example design pattern instances that we already used earlier in this chapter. Once again,
other mappings can be specified in a similar way.

Translation of the Composite design pattern

As shown in Section 6.5.1, each participant of the Composite design pattern can be mapped onto a
similar participant of the Recursion metapattern. Therefore, the reverse mapping is also straight-
forward, as is depicted in Figure 6.10, which represents the situation where a removeHookMethod
and an addHookClass transformation have been performed. In the figure, the original participants
of the metapattern instance that are not influenced by the evolution are represented by shaded
circles, the participant that is crossed is the participant that is removed by the removeHookMethod
transformation, while the participant in black is added by the addHookClass transformation.

This mapping is implemented by the following logic rules, which map mpRole facts onto role
facts:

role(?instance,leaf,?class) if
patternInstance(?instance, compositeDP),
addedRole(?instance,hookLeaf,?class),
not(removedRole(?instance,hookLeaf,?class)).

role(?instance,compositeMethod,?selector) if
patternInstance(?instance, compositeDP),
addedRole(?instance,hookMethod,?selector),
not(removedRole(?instance,hookMethod,?selector))
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Figure 6.10: Mapping an instance of the Recursion metapattern onto an instance of the Composite
design pattern.

These rules make use of the addedRole/3 and removedRole/3 predicates to construct an up-
dated Composite design pattern specification. As we will see in Section 6.5.5, these predicates
are asserted by the transformations to specify that a particular participant has been added or
removed.

Note that, as was the case for the rules implementing the design pattern instance to metapattern
instance mapping, these rules only need to be specified once and are provided as a library with
our supporting environment.

Translation of the Factory Method design pattern

Figure 6.11 shows an instance of the Creation metapattern upon which an addTemplateClass and
a corresponding addHookClass transformation has been applied to, and shows how this instance
is mapped onto an instance of the Factory Method design pattern. What is not shown in this
picture is how this mapping ensures that a specification of the concreteCreator role contains all
necessary information. The rules that implement this mapping reveal this in more detail:
role(?instance,concreteCreator,<?creator,?product>) if

addedRole(?instance,templateLeaf,?creator),
addedCreates(?instance,?creator,?product),
patternInstance(?instance, factoryMethodDP).

role(?instance, concreteProduct, ?product) if
addedRole(?instance,hookLeaf,?product),
patternInstance(?instance, factoryMethodDP)

Like was the case for the mapping of the Recursion metapattern to the Composite design
pattern, these rules make use of the addedRole/3 and removedRole/3 predicates to determine
which participants were added and/or removed. Furthermore, the first rule searches the logic
database for addedCreates/3 facts to make sure the specification of a concreteCreator participant
includes the concreteProduct participant it creates.

Translation of the Abstract Factory design pattern

An instance of the Abstract Factory is mapped onto multiple instances of the Factory Method
design pattern, which are then translated into appropriate Creation metapattern instances, as was
shown in Section 6.5.1.
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Figure 6.11: Mapping of a Creation metapattern instance to a Factory Method design pattern
instance

Figure 6.12 shows the reverse mapping after an addAbstractFactoryMethod transformation has
been applied. This transformation actually requires introducing a new instance of the Factory
Method design pattern, as illustrated by the figure.

Recreating an updated instance of the Abstract Factory design pattern from all the Factory
Method instances is implemented as follows:

role(?instance,concreteProduct,<?factory,?selector,?class>) if
role(?fmInstance,concreteProduct,?class),
role(?fmInstance,concreteCreator,?factory),
role(?fmInstance,factoryMethod,?selector),
patternInstance(?fmInstance, factoryMethodDP)
extractOldInstance(?fmInstance,?instance),
patternInstance(?instance, abstractFactoryDP).

role(?instance, abstractFactoryMethod, ?selector) if
role(?fmInstance,factoryMethod,?selector),
patternInstance(?fmInstance,factoryMethodDP),
extractOldInstance(?fmInstance,?instance),
patternInstance(?instance, abstractFactoryDP)

Introducing a new abstractFactoryMethod participant requires adding an abstract method to
the abstractFactory participant and concrete methods to the concreteFactory participants. With
each concrete factory class and factory method, a concreteProduct participant is associated, since
a factory method in a concrete factory class instantiates an object of this concrete product. The
specification of the concreteProduct role includes all this information, which can be gathered by
looking for appropriate concreteCreator and factoryMethod facts that are included in the specifi-
cation of a Factory Method design pattern.

Other transformations that are defined for the Abstract Factory design pattern, such as the
addConcreteFactory or removeFactoryMethod transformations, are handled in a similar way.

6.5.5 Implementation of Metapattern-Specific Transformations

In this section, we will explain how the transformations on metapatterns are actually implemented
in the declarative meta-programming environment and how they perform their task. This task
consists of adding the appropriate participants to the implementation of the metapattern instance,
updating the specification of the instance with the new information, checking if additional trans-
formations on related metapatterns are necessary and performing those transformations if so. In
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Figure 6.12: Adding an abstractFactoryMethod participant to the Abstract Factory design pattern

this section, we will only present the implementation of an addHookClass transformation. This
transformation is applicable on all metapatterns defined in Chapter 5, and thanks to the fact that
each metapattern instance specification has a similar form (as was discussed in Section 6.5.1), we
only need to provide a single implementation, which is applicable for all kinds of metapatterns.
Other metapattern-specific transformations, such as addTemplateClass or addHookMethod are im-
plemented in a similar way, although these sometimes need to be tuned for the specific kind of
metapattern upon which they are applied.

As was already explained, the addHookClass transformation has only one argument in our
formal model: the class C that should be added as a hookLeaf participant. In practice, we also
need to specify a superclass for this class C. Therefore, the addHookClass transformation requires
two arguments: a class C and a class S from which C will be derived.

The transformation is implemented in three different phases

1. In the first phase, a new class participant is added to the implementation as a subclass of
the specified superclass, and the metapattern instance specification is updated to include
the new hookLeaf participant.

2. In the second phase, the new class participant is updated so that it implements all necessary
methods. This actually consists of two steps.

(a) First, the metapattern instance specification is consulted and a concrete method is
added to the class for each hookMethod participant of the instance.

(b) Second, all overlapping metapattern instances in which the newly added class will
participate are determined. This is achieved by checking the enabling conditions for
overlapping, as defined in Chapter 5. Then, the specification of the overlapping meta-
patterns is consulted and a concrete method is added to the class for each method
participant of the overlapping metapattern instance that the class should implement.

3. In the third phase, additional transformations are performed on related metapattern in-
stances. Such additional transformations may be necessary because new classes and meth-
ods have been added in the previous phases, and this may require other transformations
so as to complete the implementation and make the metapattern instance conform with its
constraints. In the evolution example presented in Chapter 3, additional transformations
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were necessary to add a printOn: method on a CondClosure class and a convert method
to a CondConverter class, for example.

These different phases are each implemented by a number of logic rules that depend on one
another. In what follows, we will explain the implementation of these logic rules in more detail.

The evolve/3 predicate

The evolve/3 predicate is used to generate code for a specific transformation, such as addHook-
Class. It is responsible for implementing the three phases mentioned above:

evolve(?instance,addHookClass,{ ?addClassCode ?updateClassCode ?evolvePatternsCode }) if
[1] mpOperation(?instance,addHookClass,<?leaf,?super>),
[2] addClassParticipant(?instance,?leaf,?super,?addClassCode),
[3] evolveHookClass(?instance,?leaf,?updateClassCode),
[4] evolveOverlappingPatterns(?instance,?evolvePatternsCode),
[5] assert(addedRole(?instance,hookLeaf,?leaf))

On line 3, the addClassParticipant/4 is called, which will generate code that adds the class
held by the ?leaf variable as a subclass of the class held by the ?super variable.

For example, in Figure 6.13, the specification of the SpecialFormHandler metapattern instance
is consulted (in particular, the facts that are in italics are used), so that the new CondHandler
class can be added to the implementation as a subclass of the SpecialFormHandlerWithSuccessor
class and can be registered as a new participant in the metapattern description (this is denoted
by bold facts in the figure).

The predicates evolveHookClass/3 and evolveOverlappingPatterns/3 used at lines 4 and 5 are
used to implement phases 2 and 3 of the transformation. The implementation of these predicates is
explained in detail in the following sections. Line 6 adds an addedRole/3 fact to the logic repository,
to assert that a new leaf class has been added to the specified design pattern instance. This is
necessary to be able to implement the mapping from metapattern to design pattern instances, as
discussed in Section 6.5.4.

Recall that SOUL provides quoted code terms, delimited by { and }, that can be used to hold
code. In the implementation of the transformations, we used these terms to generate Smalltalk ex-
pressions, that will later on be evaluated and that add the appropriate code to the implementation
of the framework. For example, if we execute the following query:

if evolve(SpecialFormHandler,addHookClass,?code)

the ?code variable will contain a chunk of Smalltalk expressions, that look as follows:

{ SpecialFormHandlerWithSuccessor
subclass: #CondHandler
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Scheme-Handlers’.

(Smalltalk at: #CondHandler) compile: ’handle: anObject ... ’ classified: ’generated methods’.
(Smalltalk at: #CondHandler) compile: ’cantHandle: anObject ...’ classified: ’generated methods’.
...
Closure

subclass: #CondClosure
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Scheme-Closures’.

(Smalltalk at: #CondClosure) compile: ’printOn: anObject ... ’ classified: ’generated methods’.
... }

When these Smalltalk expressions are executed, the CondHandler and CondClosure classes
will be added to the appropriate class hierarchies, and the appropriate methods will be defined
in them. The developer can then fine-tune this code as necessary, by adding instance or class
variables, or moving methods to their appropriate categories, for example.
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Figure 6.13: The addClassParticipant/4 adds a hookLeaf participant CondHandler to metapattern
instance SpecialFormHandler
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The evolveHookClass/3 predicate

The evolveHookClass/3 predicate is responsible for implementing phase 2 of the addHookClass
transformation. As such, its task is to update the class that was added to the implementation in
phase 1 by defining the appropriate methods in it. The predicate is implemented as follows:

evolveHookClass(?instance,?leaf,?code) if
findall(?c,

updateHookClassParticipant(?instance,?leaf,?c),
?allCode),

appendCode(?allCode,?code).

It uses the findall/3 predicate to accumulate all the code generated by the updateHookClass-
Participant/3 predicate. There are a number of different rules that implement the updateHook-
ClassParticipant/3 predicate, since there are two different ways in which a hookLeaf participant
must be updated, corresponding to steps 2a and 2b in the above explanation.

The first and simplest form of updating a hookLeaf participant that is added to a metapattern
instance is consulting that metapattern instance’s specification and determining which hookMethod
participants should be implemented by the class. The updateHookLeafParticipant/3 thus assembles
all hookMethod participants of a metapattern instance ?instance (through the findall/3 predicate),
and generates code that defines all these methods in the newly added class (by invoking the
addMethodParticipants/3 predicate):

updateHookClassParticipant(?instance,?leaf,?code) if
updateHookLeafParticipant(?instance,?leaf,?code).

updateHookLeafParticipant(?instance,?leaf,?code) if
findall(?selector,mpRole(?instance,hookMethod,?selector),?selectors),
addMethodParticipants(?selectors,?leaf,?code)

As a concrete example, consider Figure 6.14. It depicts the situation where a CondHandler class
is added to the SpecialFormHandler metapattern instance and the specification of this instance
is consulted to see which methods need to be added to this class. As it turns out, this instance
has three hookMethod participants: handle:, canHandle: and cantHandle: methods. Thus an
event will be triggered that asks the developer to provide an implementation for these methods.
Then, these implementations will be added to the class.

Another task of the evolveHookClass/3 predicate is to detect overlapping metapattern instances
and make sure the appropriate method participants of these instances are also defined in the newly
added class. To this extent, two additional updateHookClassParticipant rules are defined:

updateHookClassParticipant(?instance1,?leaf,?code) if
overlap(?instance1,?instance2,hookRoot,hookRoot),
registerNewParticipant(?instance2,hookLeaf,?leaf),
updateHookLeafParticipant(?instance2,?leaf,?code).

updateHookClassParticipant(?instance1,?leaf,?code) if
[1] overlap(?instance1,?instance2,hookRoot,templateRoot),
[2] registerNewParticipant(?instance2,templateLeaf,?leaf),
[3] updateTemplateLeafParticipant(?instance1,?instance2,?leaf,?code).

The first rule handles the case where a hookHierarchy participant in one metapattern instance
is also a hookHierarchy participant in another metapattern instance, or forms a subhierarchy (this
corresponds to Overlapping Condition 1 in Section 5.5.3). This is determined by means of the
overlap/4 predicate. In the running example of the CondHandler class, this situation does not
occur.

The second rule handles the case where a hookHierarchy participant of one metapattern in-
stance is a templateHierarchy participant in another metapattern instance, or a subhierarchy of
that participant (this corresponds to Overlapping Condition 2 in Section 5.5.3). If this situation
occurs, the templateMethod participant of the second metapattern instance should be added to
the newly added class. This is achieved by calling the updateTemplateLeafParticipant/4 predicate
(line 3), which is implemented by two logic rules:
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Figure 6.14: All hookMethod participants of instance SpecialFormHandler are added to the
CondHandler class
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updateTemplateLeafParticipant(?instance1,?instance2,?leaf,?code) if
mpPatternInstance(?instance2,hierarchyMP),
mpRole(?instance2,templateMethod,?selector),
addMethodParticipant(?leaf,?selector,?code),
registerAddHookMethod(?instance1,hookLeaf,?leaf,?selector,?instance2).

updateTemplateLeafParticipant(?instance1,?instance2,?leaf,?code) if
mpPatternInstance(?instance2,creationMP),
mpRole(?instance2,templateMethod,?selector),
addMethodParticipant(?leaf,?selector,?code),
registerAddHookClass(?instance1,hookLeaf,?leaf,?selector,?instance2)

Both rules consult the metapattern instance specification to retrieve the templateMethod par-
ticipant, and generate code that adds this method to the newly added class. This is however not
the only thing these transformations perform. As we have seen in Chapter 5, when adding a tem-
plateClass participant to a metapattern instance, this always requires additional transformations
to be performed on this instance. In the case of a Hierarchy metapattern instance, an additional
addHookMethod transformation may be necessary, while in the case of a Creation metapattern
instance, an addHookClass transformation may be needed. This is the reason why there are two
rules that implement the updateTemplateLeafParticipant/4 predicate: one is specific for the Hi-
erarchy metapattern and one for the Creation metapattern. The registerAddHookMethod and
registerAddHookClass predicates are responsible for registering that such extra transformations
need to be performed.

addMethodParticipants

SpecialFormHandle
rWithSuccessor

newConverter

IfHandler LetHandler CondHandler

newConverter newConverter newConverter

operation(SpecialFormConverterCreation,addHookClass,CondClosure).

evolve SpecialFormConverterCreation

mpRole(SpecialFormConverterCreation,templateRoot,SpecialFormHandlerWithSuccessor).
mpRole(SpecialFormConverterCreation,hookLeaf,IfHandler).
mpRole(SpecialFormConverterCreation,hookLeaf,LetHandler).
mpRole(SpecialFormConverterCreation,hookLeaf,CondHandler).
mpRole(SpecialFormConverterCreation,templateMethod,newConverter).
Creation:SpecialFormConverterCreation

mpRole(SpecialFormConverterCreation,templateRoot,SpecialFormHandlerWithSuccessor).
mpRole(SpecialFormConverterCreation,hookLeaf,IfHandler).
mpRole(SpecialFormConverterCreation,hookLeaf,LetHandler).
mpRole(SpecialFormConverterCreation,templateMethod,newConverter).

Creation:SpecialFormConverterCreation

IfHandler LetHandler

newConverter newConverter

SpecialFormHandler
WithSuccessor

newConverter

Figure 6.15: The templateMethod participant of metapattern instance SpecialFormConverterCre-
ation, which overlaps with instance SpecialFormHandler, is added to the CondHandler class

As a concrete example, consider the situation depicted in Figure 6.15. The addHookClass trans-
formation determines that the SpecialFormConverterCreation metapattern instance overlaps with
the SpecialFormHandler metapattern instance according to Overlapping Condition 2. Therefore,
the templateMethod participant of the SpecialFormConverterCreation instance, the newConverter
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method, should be added to the newly added CondHandler class. Since the SpecialFormConvert-
erCreation instance is an instance of the Creation metapattern, its templateMethod participant
should instantiate a specific class. The development environment thus consults the developer who
determines that the newConverter method should return an object of the CondConverter class.
Since this class does not yet exist in the implementation, an additional addHookClass transforma-
tion is required on the SpecialFormConverterCreation metapattern instance.

A similar situation occurs for the SpecialFormClosureCreation metapattern instance (see Fig-
ure 6.16), where a newClosure template method is added to the CondHandler class, which should
return an object of the CondClosure class. This latter class should be added to the implementation
via an additional addHookClass transformation on the SpecialFormClosureCreation instance.

The overlap/4 predicate, which is used to determine whether two metapattern instances over-
lap, implements the overlapping conditions defined in Section 5.5.3.

One particular situation that we did not address here is when the SpecialFormHandler metap-
attern instance overlaps with an instance of the Hierarchy metapattern. This would require us to
add the templateMethod participant of the latter instance to the CondHandler class, and register
that an additional addHookMethod transformation is required, to add a hookMethod participant
that corresponds to the newly added templateLeaf participant. This is not much different from
the overlappings presented above, however, and the implementation for such situation would be
similar to the one above.

The evolveOverlappingPatterns/2 predicate

As we have seen in the previous section, the updateTemplateLeafParticipant/4 predicate asserts
a number of facts to the logic database that specify that additional transformations are neces-
sary. For example, facts were added to assert the need for an extra addHookClass transformation
on the SpecialFormClosureCreation and SpecialFormConverterCreation instances of the Creation
metapattern. Based on these facts, the evolveOverlappingPatterns/2 predicate will perform these
transformations one after the other.

In the case of our example, two extra transformations will thus be applied:

• an addHookClass transformation on the SpecialFormConverterCreation instance, which will
add a CondConverter class as a hookLeaf participant.

• an addHookClass transformation on the SpecialFormClosureCreation instance, which adds a
CondClosure class as a hookLeaf participant.

In their turn, these transformations will make sure these classes are actually added to the
implementation and that they define the appropriate methods. For example, a printOn: and
nodeDo:value: method will be defined for the CondClosure class, since this class participates in
the CompositeClosure metapattern instance, in which this method is a hookMethod participant (see
Figure 6.5). After these transformations have been performed, no more additional transformations
are required, so the process stops and the evolution is finished.

6.6 Conclusion

In this chapter, we have shown how an environment that supports framework-based development
can be built, based on the model defined in Chapter 5. We illustrated how this environment
provides support for the specification of design pattern instances, and for manual as well as
supported evolution. In the second part of the chapter, we explained how the approach put forward
in Chapter 4 was used to implement the environment. We showed how design pattern instances can
be translated into metapattern instances, and vice versa, how metapattern-specific transformations
can be implemented in a declarative meta-programming environment, how framework-specific and
design pattern-specific transformations can be defined and how metapattern constraints can be
specified. We illustrated the main features of the approach and the environment by means of
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addMethodParticipants

mpRole(SpecialFormClosureCreation,templateRoot,SpecialFormHandler).
mpRole(SpecialFormClosureCreation,templateLeaf,IfHandler).
mpRole(SpecialFormClosureCreation,templateLeaf,LetHandler).
mpRole(SpecialFormClosureCreation,templateLeaf,CondHandler).
mpRole(SpecialFormClosureCreation,templateMethod,newClosure).

Creation:SpecialFormClosureCreation

operation(SpecialFormClosureCreation,addHookClass,
CondClosure).

evolve SpecialFormClosureCreation

mpRole(SpecialFormClosureCreation,templateRoot,SpecialFormHandler).
mpRole(SpecialFormClosureCreation,templateLeaf,IfHandler).
mpRole(SpecialFormClosureCreation,templateLeaf,LetHandler).
mpRole(SpecialFormClosureCreation,templateMethod,newClosure).

Creation:SpecialFormClosureCreation

IfHandler LetHandler

newClosure newClosure
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WithSuccessor

SpecialFormHandler
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Figure 6.16: The templateMethod participant of instance SpecialFormClosureCreation, which over-
laps with instance SpecialFormHandler, is added to the CondHandler class
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the Scheme framework. In Chapter 8, we will present a discussion of the results obtained when
performing experiments on a real-world case study.
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Chapter 7

Support for Software Merging

In previous chapters, we focused on support for framework-based development by means of enforce-
able design constraints and automated high-level transformations. Besides being of great value for
developers that evolve or instantiate a framework, this kind of support also allows us to provide sup-
port for the process of software merging. In this chapter, we will elaborate on this issue. We show
how different merge conflicts, that are due to developers modifying the framework simultaneously,
can be detected and consider the different ways in which they can be resolved.

7.1 Introduction

When different developers evolve the same version of framework independently of one another,
different versions of the framework are created, each one incorporating a different change. All
these versions need to be merged into one single version again, that incorporates all changes. This
situation is depicted in Figure 7.1. Merging different versions of a framework (or any software
system in general) can give rise to various merge conflicts. This is due to the fact that developers
rely on particular assumptions about the framework when evolving it. Because the framework is
modified in parallel, some of these assumptions may no longer be valid.

Because we represent instantiation and evolution in terms of transformations on design pat-
terns, and because we encourage developers to use high-level transformations, we can provide
elaborate support for software merging. This support includes automatically detecting and re-
porting possible merge conflicts. Moreover, because evolution is expressed at a high-level, the
reported conflicts and proposed solutions are also reported at a high level. As such, it becomes
easier to identify the particular reasons for a certain conflict, because the intentions and the as-
sumptions of the different evolutions are made explicit. This also makes it easier to resolve the
conflict in the appropriate way.

v1

v1'

v1''

v2
merge ?

Figure 7.1: Merging parallel changes
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7.2 Approach

The approach we propose to detect possible merge conflicts is an operation-based merge algorithm
that is an extension of similar techniques proposed by [Men99, Luc97, SLMD96], and can be
considered an extension of it. In our approach, changes are applied to a framework by using
high-level transformations. By carefully analyzing these transformations, we can automatically
infer the conditions under which two of them influence one another when applied in parallel, and
hence give rise to a merge conflict. Besides identifying these conflicts, in some cases we can even
specify the actions that should be taken in order to resolve them.

We will construct a conflict table to compare metapattern-specific transformations and iden-
tify the conditions that give rise to a conflict when these are applied in parallel. This ensures
that the approach remains scalable, as there are only a limited number of metapattern-specific
transformations. Furthermore, these transformations are the basis for both design pattern-specific
and framework-specific transformations. As such, a developer can still use these more intuitive
and high-level transformations, and will still get reports of possible conflicts.

Besides the metapattern-specific transformations, we will also consider other transformations
that can be applied to a framework. Metapattern-specific transformations only deal with the meta-
pattern instances in the framework and are mainly useful for supporting anticipated evoluition.
Many other high-level transformations can be applied that do not influence the metapattern in-
stances, but do change the design of the framework and can thus be used to support unanticipated
evolution as well. Such transformations are called refactorings, and will be included in our conflict
tables as well.

Naturally, we can not detect each and every possible merge conflict. Only when the evolution
(and instantiation) of the framework can be expressed as a series of metapattern-specific transfor-
mations or refactorings will we be able to detect such conflicts. When two developers manually
evolve the framework at the same time, conflicts can be introduced but will remain undetected by
our approach.

7.2.1 Considered Refactorings

Many possible refactorings exist, and the more important and widely used ones are gathered in
a catalog [Fow99]. In order not to sacrifice the scalability of the approach, we will not consider
each and every possible refactoring. Instead, we will consider the low-level refactorings defined
in [Opd92, Rob99, Tic01]. These refactorings are formally defined, so we know their effect upon
the implementation, and can be combined to form higher-level refactorings [Opd92, OR93, JO93]
that can be used to evolve a framework in many different ways.

What follows is a list of these low-level refactorings.

• addClass(className, superclass, subclasses): this refactoring adds a new class named class-
Name as a subclass of class superclass. Furthermore, it changes the superclass of all classes
included in the subclasses list to the new className class.

• renameClass(class, newName): the renameClass refactoring renames the class class to
newName. All references to the old name are automatically updated as well.

• removeClass(class): this refactoring removes the class class from the framework. This is
only possible when no references to this class exist (the class may not have any subclasses,
for example).

• addMethod(class, selector, body): this refactorings adds a method selector to the class
class and provides an implementation body for it. This is only allowed if this method does
not override a method in the class’ superclass, and it is not implemented by any of the class’
subclasses.

• renameMethod(class, selector, newName): this refactoring renames the method selector
to newName in the class class. It also updates all references to the original selector and
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all overriding methods. We assume that this refactoring is applied to the highest class in
the class hierarchy that defines the method. In other words, the method does not override
a method of any superclass of class class.

• removeMethod(class, selector): this refactoring removes the method selector from the class
class. No references to selector may exist in the framework, meaning that the operation
is prohibited when other methods call this method, override it, or are overridden by it.

• pullUpMethod(class, selector): this refactoring removes the method selector, defined by
subclasses of class class, in the class hierarchy and defines it in class class itself. The
method’s implementation in all subclasses is removed.

• pushDownMethod(class, selector): this refactoring performs the opposite operation of the
pullUpMethod refactoring: it pushes a method selector down in the class hierarchy, and
defines it in all direct subclasses of class class.

• moveMethod(class, selector, destClass, newSelector): this refactoring moves the method
selector from class class to the class destClass. At the same time, this method is
renamed to newSelector, and is replaced in the old class by an implementation that simply
forwards the call to the new method.

• addParameter(class,selector,name): this refactorings adds an extra parameter with name
name to method selector in class class. At the same time, the parameter is added to all
methods that override this method and all call sites are updated with a default value as the
extra parameter. Like for the renameMethod refactoring, we require that this refactoring is
applied with respect to the highest class in the class hierarchy that defines the method. The
method in class class does not override a method in a superclass of class class.

• removeParameter(class,selector,name): this refactorings removes the parameter name from
the method selector in class class. At the same time, the parameter is removed from all
overriding methods and the call sites are updated so that they no longer use the parameter.
Like for the addParameter refactoring, we require that this refactoring is applied to the
highest class in the class hierarchy that defines the method.

• addVariable(class, varName, initClass): this refactoring adds an instance variable varName
to the class class and initializes it with an object of class initClass.

• removeVariable(class, varName): this refactoring removes the variable varName from the
class class.

• renameVariable(class, varName, newName): this refactoring renames the variable varName
of class class to newName.

• pullUpVariable(class, varName): this refactoring removes the variable varName from all
subclasses of class class and defines the variable in class itself.

• pushDownVariable(class, varName): this refactoring removes the variable varName from
class class and defines it in all of its direct subclasses. This is only allowed when the class
class does not contain any references to the variable.

• moveVariable(class, varName, destClass): this refactoring moves the variable varName from
class class to the class of variable destVarName. This is only possible when there exists a
one to one relation between these two classes.
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7.2.2 Conflict Categories

We can classify the different kinds of merge conflicts that we can detect into four different cate-
gories:

naming merge conflicts occur when two transformations introduce a class or a method with
the same name or when one transformation renames an existing class or method and another
transformation adds a class or method with the same name.

constraint violation merge conflicts are all conflicts that can be detected by checking the
constraints of the metapattern instances occurring in the framework. Remember from Chap-
ter 5 that we specifically introduced metapattern-specific transformations to avoid introduc-
ing constraint violation conflicts. Applying one single such transformation will thus never
give rise to a constraint violation conflict, but when applying many such transformations in
parallel, such conflicts can occur again, as we will demonstrate.

structural merge conflicts signal structural inconsistencies in the design of the framework.
A class may still override a method that has already been removed from its superclass, for
example, or similar participants in a design pattern instance are implemented in a completely
different way. While structural conflicts do not affect the behavior of the framework, it is
important to detect the inconsistencies in the design. Otherwise, the framework may drift
away further from the intended design after a couple of iterations.

behavioral merge conflicts are conflicts that cause the framework to behave in unforeseen and
unpredictable ways. Whereas the structure and the design of the framework may appear
correct, a behavioral conflict signals a possible error in the behavior of some methods. Al-
though such conflicts are situated at the method level, they can be caused by design level
transformations, as we will see.

7.3 Merge Conflicts due to Parallel Application of Meta-
pattern-Specific Transformations

In this section, we will start by mutually comparing the metapattern-specific transformations
defined in Chapter 5, define the conditions under which merge conflicts can arise when they are
applied in parallel and determine possible ways of resolving these conflicts.

Eight different metapattern-specific transformations exist for the five fundamental metap-
atterns we identified: addHookClass (aHC), addTemplateClass (aTC), addHookMethod (aHM),
addTemplateMethod (aTM), removeHookClass (rHC), removeTemplateClass (rTC), removeHook-
Method (rHM) and removeTemplateMethod (rTM). Remember that not all of these transforma-
tions are applicable on all five fundamental metapatterns. This does not concern us here: we
assume that a metapattern-specific transformation is applied on the appropriate metapattern in-
stance.

We will compile a conflict table that allows us to compare such transformations one by one.
In order to keep this table compact, we will represent the eight transformations listed above
as only four transformations: addLeaf, removeLeaf, addMethod and removeMethod. An addLeaf
transformation thus represents either an addHookClass or an addTemplateClass transformation,
and similarly for the other operations. This has no influence on the applicability or completeness
of our approach. The conflict tables can easily be expanded when information about the specific
transformations is necessary. In the discussions that follow, this is not strictly necessary, however.

For each merge conflict that we identify, we will formally define the conditions under which
it occurs. An example of such a conflict will be provided, in order to explain it more clearly. In
these examples, we will use design pattern-specific transformations although conflicts are detected
by comparing metapattern-specific transformations. Since the former transformations can be
translated into the latter, this is no problem however. Furthermore, we will always consider
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addLeafb addMethodb removeLeafb removeMethodb

addLeafa NM C − OM
addMethoda C NM − −
removeLeafa − − − −

removeMethoda OM − − −

NM = naming conflict, C = constraint violation conflict
OM = obsolete method conflict

Table 7.1: Comparing Metapattern-Specific Transformations

transformations applied to one particular metapattern instance. Strictly speaking this is not
absolutely required. If transformations are applied on overlapping metapattern instances, they
can give rise to the same merge conflict. The formal definition of the conflict will take this into
account, whereas the examples don’t, for the sake of clarity and simplicity.

7.3.1 Conflict Table

Table 7.1 relates the different metapattern-specific transformations. Those on the left are all
applied on a metapattern instance a, while those at the top are applied on a metapattern instance
b (which may or may not be the same instance). An entry in the table defines the kind of merge
conflict that occurs whenever the conditions for that conflict are satisfied. Only three different
kinds of conflicts can occur: naming, constraint violation and obsolete method merge conflicts. In
the following sections, we will discuss these conflicts in more detail and provide a formal definition
that includes the conditions under which they occur.

7.3.2 Naming Merge Conflicts

Naming conflicts occur when two developers independently introduce an artifact, such as a class
or a method, with the same name. A framework can not contain two classes with the same name.
Likewise, a naming conflict involving methods can only occur when two developers add a method
with the same name to the same class. It is allowed to introduce methods with the same name in
different classes, of course, as this does not pose an problems when merging the different versions.

Example Conflict

addComposite
Method

addCompositeMethod

ScExpression

ScSequenceExpressionScConsExpression

expressions*

merged result

ScExpression

ScSequenceExpressionScConsExpression

expressions*

analyze analyze

analyze

ScExpression

ScSequenceExpressionScConsExpression

expressions*

analyze analyze

analyze

ScExpression

ScSequenceExpressionScConsExpression

expressions*

analyze
analyze

analyze
analyze

analyze
analyze

Figure 7.2: A naming merge conflict
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As an example of a naming merge conflict, consider the situation depicted in Figure 7.2. Two
developers simulteanously and independently from one another introduce an analyze method
in the same class hierarchy by means of an addCompositeMethod transformation. The merged
result in the figure shows how the classes contain two methods with the same name. In practice,
however, this is not possible, since classes can not contain two method definitions with the same
name. Most likely, when merging, the effect of the transformation that is applied first will be
undone by applying the second transformation.

Note that, although two developers introduce a method with the same name, it is not guar-
anteed that this method actually serves the same purpose. It may wel be that one analyze
method’s responsibility is to translate the expression into a closure object (as explained in Chap-
ter 3), whereas the other method’s responsibility is to analyze whether the abstract syntax tree
representing the expression is well-formed. In the former case, the conflict can be resolved by sim-
ply choosing one of the two implementations. In the latter case, however, one of the two methods
should be renamed.

Formal Definition

Table 7.2 contains a formal definition of the conditions under which naming merge conflicts occur
when adding class participants to a metapattern instance. Table 7.3 contains a formal definition
of the conditions that give rise to a naming conflict involving method participants. The ‖ operator
denotes that the two transformations are applied in parallel.

As can be seen from these definitions, a naming merge conflict involving methods occurs when
a method participant with the same name is added to instance a and an instance b at the same
time, and these instances overlap (e.g. instance a overlaps with instance b, or vice versa). This
overlapping is specified in terms of the inherits∗h relation that was defined in Chapter 5. Note that
in these definitions, an addMethod transformation actually represents either an addHookMethod
or an addTemplateMethod transformation. As such, the conditions in Table 7.3 actually cover all
four possible combinations of both these transformations. Also note that the notation Ha actually
denotes the hookHierarchy participant of metapattern instance a when an addHookMethod trans-
formation is involved, but denotes the templateHierarchy participant when an addTemplateMethod
operation is involved. The kind of transformation that is applied actually determines which hier-
archy participant is involved.

We should note that the occurrence of naming merge conflicts depends upon the particular
programming language that is used. In a programming language with namespaces (such as Java,
for example), it is allowed to introduce classes with the same name, as long as they reside in a
different namespace. It is not allowed to have classes with the same name in the same namespace.
Furthermore, some programming languages also allow method overloading (C++ and Java, for
example). This means that methods with the same name may be defined in the same class, as
long as their number of arguments differ. If we require that the transformations always work with
the fully qualified class name (e.g. the name takes into account the namespace of the class) and
the signature of the method (e.g. we do not only consider the method name, but also the different
types of its arguments), the conditions for naming merge conflicts are still correct and independent
of the particular programming language that is used.

Discussion

Although naming conflicts are very basic conflicts, there is no automatic way for resolving them.
It is impossible to infer automatically whether the two artifacts that are introduced actually serve
the same purpose. For example, when two classes with the same name are introduced, it is not
necessarily the case that they represent the same thing.

The only valid solution to a naming conflict is thus to consult the original developers that
introduced both artifacts. They should look into the situation and decide to either use one of both
classes if they do represent the same thing or perform a renaming operation when they don’t.
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addLeafa(leafName1) ‖ addLeafb(leafName2) ⇒
namingConflict(leafName1)

if
leafName1 = leafName2

Table 7.2: Condition giving rise to a naming conflict when adding class participants in parallel

addMethoda(m1) ‖ addMethodb(m2) ⇒
namingConflict(m1)

if
m1 = m2∧

(inherits∗h(Ha,Hb)∨
inherits∗h(Hb,Ha))

Table 7.3: Conditions giving rise to a naming conflict when adding method participants in parallel

7.3.3 Constraint Violation Merge Conflicts

Even though we introduced transformations to help a developer in avoiding constraint violation
conflicts, such conflicts can still arise when different developers apply such transformations in
parallel.

Example Conflict

Context

request
request:

State

handle
handle:

ConcreteStateA

handle
handle:

ConcreteStateB

handle
handle:

state

state handle: arg

Context

request

State

handle

ConcreteStateA

handle

ConcreteStateB

handle

state

state handle

Context

request

State

handle
state

state handle

ConcreteStateA

handle

ConcreteStateB

handle

ConcreteStateC

handle

Context

request
request:

State

handle
handle:

state

ConcreteStateA

handle
handle:

ConcreteStateB

handle
handle:

ConcreteStateC

handle

addConcreteState

addStateMethod merged result

Figure 7.3: A constraint violation merge conflict

Figure 7.3 contains an example of a constraint violation merge conflict. An instance of the State
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addLeafa(leafName) ‖ addMethodb(selector) ⇒
constraintV iolationConflict(leafName, selector)

if
inherits∗h(Ha,Hb)

Table 7.4: Condition giving rise to a constraint violation merge conflict

design pattern is evolved in two different ways. One developer evolves it by applying the State spe-
cific addConcreteState transformation to add a new concreteState participant, ConcreteStateC
to the design pattern instance. Independently, another developer uses the addStateMethod trans-
formation, that is also specific to the State design pattern, to add a new state-specific method,
handle:, to the same instance.

When merging these two particular versions of the State design pattern, a constraint violation
merge conflict arises: the newly added class ConcreteStateC does not provide an implementation
for the newly added method handle:, since the class did not yet exist in the version where the
addStateMethod transformation was applied.

Formal Definition

Table 7.4 contains the formal definition of the condition that gives rise to a constraint violation
merge conflict. As can be seen, such a conflict occurs when one developer adds a class partici-
pant to a particular metapattern instance, and another developer simultaneously adds a method
participant to the same instance or to an overlapping instance.

Observe that only overlapping conditions 1 to 4 of Section 5.5.3 are considered in the definition.
Overlapping conditions 5 to 7 deal with overlapping of an instance of any kind of metapattern with
an instance of the Connection metapattern, via the latter’s templateClass participant. The Con-
nection metapattern does not define an addTemplateClass transformation, and its templateMethod
participant is not overridden in subclasses. As such constraint violation merge conflicts can only
occur if the hookHierarchy participant of such metapattern instances is involved, and this is covered
by overlapping conditions 1 to 4.

The particular constraint violation conflict that occurs is a notUnderstoodByLeaf conflict, that
arises when a selector is registered as a method participant in some metapattern instance, but is
not understood by a class that is a leaf participant of that instance (see Chapter 6).

Discussion

As opposed to naming merge conflicts, constraint violation merge conflicts can be resolved au-
tomatically, by simply imposing a strict order on the application of the transformations. First,
all transformations that add method participants should be applied, and only afterwards those
transformations that add class participants are allowed. In the example above, if we would first
apply the addStateMethod transformation, followed by the addConcreteState transformation, the
handle: method would be registered as a stateMethod participant in the instance of the State
design pattern, and thus the developer would be forced to provide an implementation for it in the
ConcreteStateC class.

7.3.4 Obsolete Method Merge Conflicts

Example Conflict

Figure 7.4 contains an example of an obsolete method merge conflict. Once again, an instance
of the State design pattern evolves in two different ways. The first evolution again performs an
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Figure 7.4: An obsolete method merge conflict

addLeafa(leafName) ‖ removeMethodb(selector) ⇒
obsoleteMethodConflict(leafName, selector)

if
inherits∗h(Ha,Hb) ∧ definesMethod(class(leafName), selector)

Table 7.5: Conditions giving rise to an obsolete method merge conflict

addConcreteState transformation, which adds a new ConcreteStateC concreteState class partic-
ipant to the instance. This time, the second transformation, removeStateMethod, removes the
stateMethod participant handle: from the instance. As a result, in the version of the design
pattern instance incorporating the two evolutions, the newly introduced concreteState class par-
ticipant ConcreteStateC still contains a stateMethod participant, that was removed from all other
concreteState participants by the removeStateMethod transformation.

Formal Definition

A formal definition of the condition that gives rise to an obsolete method merge conflict can
be found in Table 7.5. Such conflicts occur when one developer adds a class participant to a
particular metapattern instance, while another developer removes a method from the instance or
an overlapping instance at the same time.

The overlapping of metapattern instances is again specified by means of the inherits∗h rela-
tionship. As was the case for constraint violation merge conflicts, obsolete method merge conflicts
only need overlapping conditions 1 to 4 (see Section 7.3.3).

Discussion

Obsolete method merge conflicts are structural merge conflicts. Obviously, the fact that a class
implements a method that is never called, does not mean that the intended design of the framework

151



is violated. Most likely, the framework will still behave as intended. However, the conflict should
be reported, because obsolete methods pollute the interface of a class, and nothing prevents
developers to use such methods in the future if they so desire. This clearly is not what is intended,
since the aim actually was to remove this method.

To resolve an obsolete method merge conflict, it suffices again to impose an order on the appli-
cation of transformations. This time, the transformations that add class participants should be ap-
plied before any transformation that removes method participants. In the case of our example, this
would mean that the addConcreteState transformation is applied before the removeStateMethod
transformation. Doing so, the ConcreteStateC class will also be subject to the removeStateMethod
transformation, which will thus remove the handle: method.

7.3.5 Summary

Merge conflicts arise due to the parallel application of transformations on overlapping metapat-
tern instances. We identified three different kinds of conflicts: naming, constraint violation and
obsolete method merge conflicts. Naming merge conflicts can not be resolved automatically, and
the developers should be consulted in order to solve the problem. Both constraint violation and
obsolete method merge conflicts can be resolved by imposing an order on the transformations.
First, those transformations that add method participants should be applied, then, transforma-
tions that add class participants and afterwards those that remove method participants. In this
way, the merged version of the framework will incorporate all changes and will not contain merge
conflicts of those kinds.

7.4 Merge Conflicts due to Parallel Application of Meta-
pattern transformations and Refactorings

Now that we have defined the merge conflicts that can occur when applying metapattern trans-
formations in parallel, in this section, we will identify the conflicts that occur when applying a
metapattern transformation and a refactoring in parallel, and define the conditions under which
this gives rise to merge conflicts. We will only present a detailed discussion of some of the conflicts
in this chapter, and refer to the appendix for the definition of all conflicts not discussed here.

It is important to note that we will not mutually compare refactorings in order to discover
when their parallel application will lead to a merge conflict. We will only compare refactorings
to metapattern-specific transformations. While our approach is general enough for comparing
refactorings as well, we believe this is beyond the scope of this dissertation. Furthermore, Roberts
already analyzed the dependencies between refactorings in his doctoral dissertation [Rob99]. This
allows him to detect conflicts between a group of refactorings that are applied, which is a first
step towards support for software merging based on refactorings.

It should be noted that some of the refactorings bear resemblance to some of the metapattern
transformations. For example, both the addClass refactoring and the addHookClass transfor-
mation add a particular class to the framework. However, the transformations perform some
additional changes as well: they register the participant they add, or unregister the participant
they remove, and make sure other changes are performed, as needed, to ensure no constraint vi-
olation conflicts occur. In what follows, we will assume that if a particular refactoring is applied,
it is the intention of the developer to effectively apply this refactoring, and not to apply some
evolution transformation.

7.4.1 Conflict Table

Table 7.6 compares the metapattern transformations (at the top of the table) to the refactorings
(on the left side of the table). Whenever two transformations applied in parallel may give rise
to a merge conflict, the table entry contains the kind of conflict that occurs. As can be seen, we
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addLeafa addMethoda removeLeafa removeMethoda

addClass N/PIC − − −
renameClass N − − −
removeClass − − − −
addMethod − N RM −

renameMethod − N − −
removeMethod − − − −
moveMethod − N MD MO
pullUpMethod OM − OG −

pushDownMethod MA − − −
addParameter MP − − −

removeParameter OP − − −
addV ariable − − RM −

renameV ariable − − − −
removeV ariable − − − −
moveV ariable − − MD −
pullUpV ariable OV − − −

pushDownV ariable V A − − −

N = naming merge conflict, OG = overly general method merge conflict
MA = method absence merge conflict, VA = variable absence merge conflict
OV = orphan variable merge conflict , OM = orphan method merge conflict

RM = remove merge conflict, MD = missing destination merge conflict
MO = missing origin merge conflict, MP = missing parameter merge conflict

OP = obsolete parameter merge conflict, PIC = possible incorrect superclass merge conflict

Table 7.6: Comparing Metapattern transformations and Refactorings

identified twelve possible merge conflicts. We will only discuss four of these conflicts in detail here.
We refer to the appendix for a discussion of the remaining conflicts.

7.4.2 Possible Incorrect Superclass Merge Conflicts

Example Conflict

A concrete example of a possible incorrect superclass merge conflict is depicted in Figure 7.5. The
upper left hand part of the figure shows the situation where all handler classes in the Scheme
framework simply inherit from the SpecialFormHandler class. This design does not take into
account the difference between the ApplicationHandler class and all other classes: the former
class does not have a successor, while all others do. To improve the design, one developer decides
to insert a new SpecialFormHandlerWithSuccessor class into the hierarchy, as a subclass of all
classes except the ApplicationHandler class. The resulting design is depicted in the upper right
side of the figure. At the same time however, another developer decides to add a new CondHandler
leaf class to the same class hierarchy, by means of an addConcreteHandler transformation. The
result is depicted in the lower left part of the figure.

When merging both versions, a possible incorrect superclass merge conflict occurs, because the
CondHandler class should really be a subclass of the new SpecialFormHandlerWithSuccessor
class, instead of subclassing SpecialFormHandler directly.

Formal Definition

Table 7.7 shows the condition that gives rise to a possible incorrect superclass merge conflict. As
can be seen, such a conflict is caused by applying an addClass refactoring in parallel with an
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Figure 7.5: A possible incorrect superclass merge conflict

addClass(className, superclass, subclasses) ‖ addLeafa(leafName) ⇒
possibleIncorrectSuperclass(className, leafName)

if
inherits∗h({superclass},Ha)

Table 7.7: Condition giving rise to a possible incorrect superclass merge conflict

addTemplateClass or addHookClass transformation (represented by an addLeaf transformation).
The addClass refactoring can insert a class anywhere into a class hierarchy, thereby redefining the
superclass of already existing subclasses to the newly introduced class. When at the same time a
second new class is added to the same class hierarchy, it may well be that this second class should
be a subclass of the first class as well.

Discussion

A possible incorrect superclass merge conflict is a structural merge conflict. If such a conflict
occurs, similar classes are implemented in a different ways: classes that were already present in
the framework become subclasses of the class introduced by the addClass refactoring, whereas
only the class that is added by the transformation is not a subclass of that class, but should
presumably be.

Resolving this kind of conflict automatically is not possible. First of all, we can not automati-
cally decide whether the class added by the transformation should be a subclass of the class added
by the refactoring. This is something which only the developers responsible for the changes can
decide. Second, simply imposing an order on the transformations will not automatically resolve
the conflict. Clearly, the addLeaf transformation must be applied first, to add the new class to
the class hierarchy participant of the metapattern instance. Afterwards, the addClass refactoring
can be applied. However, the class added by the transformation is not included in the arguments
of the refactoring. Therefore, it will not be a subclass of the class introduced by the refactoring,
and the conflict still remains to be solved.
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7.4.3 Overly General Method Merge Conflicts

Some methods of a class, such as template methods, provide a default implementation for an
algorithm, and are supposed to be reused by the different subclasses of the class. The behavior
of such a method must thus be appropriate for all subclasses. As we will see, when applying
particular transformations, the behavior of this method may take into account many more classes
than it should. In that case, we say the method is overly general.

Example Conflict
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handle:
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Figure 7.6: An overly general method merge conflict

A particular example of an overly general method merge conflict is depicted in Figure 7.6. It is
taken from the Scheme framework discussed in Chapter 3, in particular, the Chain of Responsibility
design pattern instance that occurs in it.

One developer decides to apply a removeConcreteHandler transformation, to remove the
CondHandler class as a concreteHandler participant from the design pattern instance. At the
same time, another developer decides to apply the pullUpMethod refactoring, to pull up the
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pullUpMethod(class, selector) ‖ removeLeafa(leafName) ⇒
overlyGeneralMethodConflict(class, selector)

if
inherits∗(class(leafName), class) ∧ definesMethod(class(leafName), selector)

Table 7.8: Conditions giving rise to an overly general method merge conflict

cantHandle: method from the subclasses of class SpecialFormHandlerWithSuccessor. In doing
so, this method should be generalized, so that it implements the appropriate behavior for all the
subclasses. This generalization will take into account that the implementation should work for the
CondHandler class as well. However, since another developer removed this class, in the merged
version of the software, this is not strictly necessary. The implementation of the cantHandle: in
the merged version could be overly general, and should thus be inspected and changed as needed.

Formal Definition

The formal definition of the condition that lead to an overly general method merge conflict is
contained in Table 7.8. Such a conflict occurs when the pullUpMethod refactoring is applied in
unison with a metapattern transformation that removes a class participant from a metapattern
instance. Only if the class participant that is removed and the class to which the method is pulled
up are related via inheritance, the conflict occurs. More specifically, the class participant that is
removed should be a (possible indirect) subclass of the class to which the method is pulled up.
This is reflected in the condition by making use of the inherits∗ relation.

Discussion

Overly general method merge conflicts are classified as behavioral merge conflicts. The conflict
occurs because the behavior of the method that is pulled up may have to be adapted, to reflect the
new situation where there are less subclasses than originally anticipated. Clearly, this concerns
the behavior of the framework, and not its structure.

Overly general method merge conflicts can not easily be resolved in an automatic manner. It
is difficult to assess automatically how general the method that is pulled up is, and if it effec-
tively contains behavior that takes into account the class that was removed, and that should be
removed. The developer should thus have a look at the implementation and decide whether it
needs adaptation or not.

7.4.4 Method/Variable Absence Merge Conflicts

Example Conflict

Figure 7.7 shows an example of a variable absence merge conflict. An instance of the Composite
design pattern in the Scheme framework is evolved in two ways. One developer decides to push
the lineNumber instance variable down the ScExpression class hierarchy by using the pushDown-
Variable transformation. At the same time, another developer applies the addLeaf transformation,
that is specific to the Composite design pattern, and adds a class ScQuoteExpression as a leaf
participant to the instance. In the merged result, we observe the the class that was added by the
second developer does not contain the lineNumber variable.
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Figure 7.7: A variable absence merge conflict

pushDownMethod(class, selector) ‖ addLeafa(leafName) ⇒
methodAbsenceConflict(leafName, selector)

if
class = root(Ha)

Table 7.9: Condition giving rise to a method absence merge conflict

Formal Definition

A method absence merge conflict occurs when a pushDownMethod is applied in parallel with an
addHookClass or an addTemplateClass transformation (see Table 7.9). In the case of an addHook-
Class transformation, applied to a metapattern instance a, the conflict occurs when the class from
which the method is pushed down acts as the root of the hookHierarchy participant of instance a.
Similarly, in case of an addTemplateClass transformation, the conflict arises whenever the class
from which the method is pushed down is the root of the templateHierarchy participant of instance
a. Both participants are conveniently denoted as root(Ha).

In a similar way, Table 7.10 defines the condition that gives rise to a variable absence merge
conflict. The only difference compared with the method absence merge conflict is that a push-
DownVariable refactoring operation is performed, as opposed to a pushDownMethod refactoring.

Discussion

The method absence merge conflict is a structural conflict, as is the variable absence merge conflict.
The parallel application of the specific refactoring (pushDownMethod or pushDownVariable) and
the transformation (addHookClass or addTemplateClass) leads to a situation in which similar
artifacts are implemented in an inconsistent way. The example presented in the previous section
clearly showed that all leaf participants in the CompositeExpression instance of the Composite
design pattern define a variable lineNumber, except the ScQuoteExpression class. This can be
considered an inconsistency in the design, which is why we classify such conflicts as structural
conflicts.
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pushDownV ariable(class, variable) ‖ addLeafa(leafName) ⇒
variableAbsenceConflict(leafName, variable)

if
class = root(Ha)

Table 7.10: Condition giving rise to a variable absence merge conflict

Method absence or variable absence merge conflicts are caused because a new class is introduced
into a class hierarchy, while at the same time this class hierarchy is reorganized in some or other
way. Clearly, if we first add the new class to the hierarchy and only then reorganize it, the new
class will take part in the reorganization, and the conflict will disappear. These kind of merge
conflicts can thus again be resolved by imposing an order on the application of the transformations.
First, the addLeaf transformation should be applied, and only afterwards the pushDownMethod
or pushDownVariable refactoring. In the case of our example, this ordering would ensure that the
lineNumber variable would also be pushed down to the ScQuoteExpression class.

Note that we could have considered a method absence merge conflict as a constraint violation
conflicts instead of as a structural merge conflict, but only if the method that is pushed down in
the class hierarchy participates in a design pattern instance, which need not necessarily be the
case, However, if this was the case, a notUnderstoodByLeaf constraint violation conflict would
be reported: a class registered as a leaf participant in some design pattern instance would not
implement a method registered as a method participant in that same instance. A variable absence
merge conflict can not be considered a constraint violation conflict, since design patterns (or
metapatterns) do not define constraints involving instance variables.

Since we want to report method absence merge conflicts under all circumstances, and a refac-
toring can push down a method that does not participate in a design pattern instance, we consider
this conflict to be a structural conflict instead of a constraint violation conflict.

7.4.5 Missing/Obsolete Parameter Merge Conflicts

Example Conflict
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merged result
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QuoteClosure
nodeDo:value:

Closure
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SequenceClosureIfClosure
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nodeDo:

QuoteClosure
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Figure 7.8: An obsolete parameter merge conflict

158



addParameter(class, selector, name) ‖ addLeafa(leafName) ⇒
missingParameter(class, selector)

if
inherits∗(class(leafName), class),∧selector ∈Ma∧

implements(class(leafName), selector)

removeParameter(class, selector, name) ‖ addLeafa(leafName) ⇒
obsoleteParameter(class, selector)

if
inherits∗(class(leafName), class) ∧ selector ∈Ma∧

implements(class(leafName), selector)

Table 7.11: Conditions giving rise to a missing parameter or an obsolete parameter merge conflict

Figure 7.8 shows an example of an obsolete parameter merge conflict. In this particular case, it
is caused because one developer decides to remove a parameter that is passed to the nodeDo:value:
method in the Closure class hierarchy. At the same time, another developer applies an addLeaf
transformation and thus extends the same class hierarchy with a new QuoteClosure class. The
transformation will make sure that the newly added class adds all necessary methods, and will
thus ask the developer to provide an implementation for the nodeDo:value: method to be defined
in the QuoteClosure class.

The end result of merging both changes is shown in the lower right part of the figure. Clearly,
the QuoteClosure class contains a method nodeDo:value:, whereas all other classes residing in
the same class hierarchy implement an nodeDo: method, without the extra parameter.

Note that such conflicts can not be detected by an ordinary compiler, since it does not know that
the nodeDo:value: and nodeDo: methods are actually related and have the same responsibilities.

Formal Definition

Whenever a addParameter refactoring is applied in parallel with an addHookClass or addTem-
plateClass transformation, a missing parameter merge conflict can arise. If, for example, the
addParameter adds a parameter to a hookMethod participant in a metapattern instance, and a
new hookLeaf participant is added to that hierarchy that implements that method participant,
the conflict occurs. The reason is that the new hookLeaf participant implements a hookMethod
participant with the old signature, which lacks the particular parameter that is added by the ad-
dParameter refactoring. Such conflict also occurs when a parameter is added to a templateMethod
participant and a templateLeaf participant is added.

The obsolete parameter merge conflict is similar to the missing parameter merge conflict, except
that it occurs whenever a removeParameter refactoring is applied in unison with an addHookClass
or addTemplateClass transformation.

The formal definition of the conditions that give rise to both conflicts are listed in Table 7.11.
Note that an addParameter or removeParameter refactoring is always applied to the highest class
in the class hierarchy that defines the method (as was discussed in Section 7.2.1). Therefore,
the conditions do not include the case where this class resides in the hook or template hierarchy
participant of the metapattern instance, as this is not possible.

Discussion

Both missing parameter and obsolete parameter merge conflicts are structural merge conflicts.
The resulting design of the merged version of the framework clearly contains inconsistencies. In
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the example presented above, all Closure classes implement a nodeDo: method, whereas only the
QuoteClosure class implements a nodeDo:value: method and does not implement a nodeDo:
method. Clearly, this is a structural inconsistency in the design.

Missing parameter as well as obsolete parameter merge conflicts can be resolved if we imply a
strict order on the transformations. First, the transformation that adds a class to the framework
should be applied. This class will then provide an implementation for all appropriate methods
with the appropriate signature. Then, the addParameter or removeParameter refactoring can be
applied, which will change the signature of the involved method. In this way, the signature of this
method in the newly added class will also be changed and the conflict will disappear.

7.5 Summary

In this chapter, we have shown how merge conflicts due to the parallel application of metapattern-
specific transformations and refactorings can be detected and resolved. A total of 15 important
merge conflicts were defined, based on mutually comparing the metapattern-specific transfor-
mations and refactorings that were applied in parallel. We classified these conflicts into four
categories: naming, constraint violation, structural and behavioral merge conflicts. We observed
that structural and constraint violation merge conflicts can be resolved by imposing an order on
the application of the transformations and refactorings. Naming and behavioral merge conflicts
on the other hand are harder to resolve automatically. In the case of a naming merge conflict, it
is clear that automatically renaming an entity is not a good option. Behavioral merge conflicts
concern the behavior of methods, and our model does not include the necessary information for
resolving them.
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Chapter 8

Validation

In this chapter, we will perform experiments on a real-world framework to validate the claims made
in previous chapters. We will discuss how our formal model and the high-level transformations
that it defines can be used in practice and allows us to provide valuable support for framework-based
development. The concrete framework we use to validate our approach is HotDraw, a popular and
successful object-oriented framework.

8.1 Introduction

Up until now, we illustrated the main ideas of our approach using the Scheme framework. This
framework was perfectly well suited as a proof of concept, since it was relatively small and we
developed it ourselves and thus knew all its nitty-gritty details. In order to validate our approach
and the claims we put forward in previous chapters, we should consider performing experiments
on a real-world framework.

HotDraw [Bra95] is a small-scale framework in the domain of structured drawing editors. It
is a very popular, successful and well-documented framework, that is considered as the reference
example of how framework-based development can leverage its touted benefits. Not surprisingly,
numerous applications have been derived from the HotDraw framework, amongst others class
diagrams editors, music composition editors and blueprint editors. Many different versions of the
HotDraw framework exist, for many different programming languages (VisualWorks Smalltalk,
Squeak, Java, . . . ).

We choose HotDraw as a case to perform some initial experiments, exactly because we focus
on language engineering issues first, as opposed to mere software engineering issues. As such,
we require a controlled setting to allows us to experiment with our environment that supports
framework-based development. This controlled setting ensures that we can assess the strengths
and weaknesses and that we can further extend and fine tune our environment as appropriate.
This would be much harder, or even impossible, with a large, complex and mostly undocumented
industrial framework, that is subject to various changes and evolutions during our experiments.

8.1.1 Approach

For the purpose of studying evolution, we will consider versions 4.0 and 4.5 of the HotDraw
framework, implemented in VisualWorks Smalltalk. The former version was developed in 1996,
and evolved into the latter in 1999. We will first show how version 4.0 can be documented by
means of design patterns and illustrate how this documentation can be used actively to derive a
concrete application from the framework, that fits into the framework’s design and adheres to all
appropriate design constraints. Then, we will use the design pattern constraints to verify whether
the implementation of the framework corresponds to its intended design. As it turns out, various
design flaws and inconsistencies will be detected, that were not identified by the original developers
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of the framework. Afterwards, we will discuss the specific transformations and refactorings that
were (assumedly) applied to evolve version 4.0 into version 4.5, and assess how these changes
impact the framework itself, as well as its existing customizations. Once again, we will observe
that some conflicts that are reported by our environment remained unnoticed to the developers.

It is important to note that we actually simulate how version 4.0 was evolved into version
4.5. Unfortunately, there is no explicit and detailed documentation available about this process.
We do not know which changes were applied manually, and which changes were applied through
refactorings. Moreover, since framework- and design pattern-specific transformations were not
available at the time the framework was evolved, most certainly, these have not been used. Many
of the changes that we identified can be expressed as design pattern-specific transformations or
refactorings, however, as we will illustrate. Additionally, version 4.5 of the HotDraw framework
is correct, e.g. instances have been derived which exhibit the appropriate behavior. As such,
presumably there are no behavioral merge conflicts between the two versions of the framework,
only structural inconsistencies and constraint violations. This does not mean that our techniques
are not valuable, however. Without any decent support, detecting and resolving such conflicts is
a time-consuming and error-prone process. Proof is that our techniques reported conflicts, that
remained undetected by the original framework developers.

8.2 Overview of the HotDraw framework

This section presents an overview of the design and implementation of the HotDraw framework.
We will not provide an in-depth discussion. Rather, we first present a general high-level overview of
the framework and how it evolved, and afterwards discuss the design pattern instances it uses. For
a more detailed discussion about the framework, we refer to John Brant’s Masters Thesis [Bra95].

8.2.1 General Overview

Each version of HotDraw comes with an implementation of the framework itself, as well as a
number of example applications that show how the framework can be used. In version 4.0, the
framework consists of 79 classes, whereas the sample applications contain 35 additional classes.
Version 4.5 only contains 39 classes, and the sample applications amount to 30 classes. These
numbers indicate that the framework itself has evolved considerably, since only half of the classes
remain in the latest version. The size of the example instances more or less remained stable.

At the global level, we can identify two reasons for the simplification of the framework. First of
all, version 4.0 uses the SkyBlue and ColbaltBlue general constraint solver packages to implement
constraints between figures in a drawing. In version 4.5, this package is removed entirely and
the internal Smalltalk dependency mechanism is used instead. Second, HotDraw uses tools to
manipulate figures, and the architecture of these tools has been simplified drastically between the
two versions of the framework. Together, these two changes are largely responsible for the decrease
in number of classes.

HotDraw has a number of important class hierarchies: the Figure, Drawing, DrawingEditor
and Command hierarchies. Every application derived from the HotDraw framework consists of a
drawing (or possibly a number of drawings), which contains a number of figures. A figure is a
visual element that can be drawn on the screen, such as a rectangle, a circle or an ellipse. The
Figure hierarchy is the most important and most complex hierarchy of the HotDraw framework.
This is due to the fact that HotDraw comes with a large number of predefined figure classes, which
are all subclasses of the abstract Figure class. The Drawing class hierarchy is a subhierarchy of the
Figure hierarchy and contains the various kinds of drawings that applications define. Typically,
an application provides its own subclass of the Drawing class to represent its particular kind
of drawing. The DrawingEditor class plays the role of the view in the Model-View-Controller
paradigm. It opens the window for a specific application and is responsible for composing the
views in that window. Each application should have a specific drawing editor which contains
the particular drawing that can be edited, together with a list of tools that can be used to
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manipulate the drawing and the figures in it. The Command class hierarchy defines a number of
classes that each implement a particular action that can be performed upon a drawing or a figure.
A number of readily available commands are already provided, such as the ConnectionCommand
and BackspaceCommand, but applications can easily define their own specific commands.

8.2.2 Design Patterns in the HotDraw framework

The Template Method design pattern

The HotDraw framework uses three instances of the Template Method design pattern: the fig-
ureTM, cachedFigureTM and drawingEditorTM instances.

role(figureTM,abstractClass,Figure).
role(figureTM,concreteClass,EllipseFigure).
role(figureTM,concreteClass,ArcFigure).
...
role(figureTM,templateMethod,<bottomCenter,<cornerVariable,originVariable>>).
role(figureTM,templateMethod,<translateTo:,<translateBy:>>).
role(figureTM,templateMethod,<align:with:,<translateBy:>>).
...
role(figureTM,hookMethod,originVariable).
role(figureTM,hookMethod,cornerVariable).
role(figureTM,hookMethod,translateBy:).
...

Template Method:figureTM

TextFigure
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originVariable
displayShapeOn:
extent
translateBy:
variablesDo:

FixedTextFigure
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variablesDo:

variablesDo:
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origin
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variablesDo:

ArcFigure
variablesDo:
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RectangleFigure
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translateBy:
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translateBy:
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translateBy:
variablesDo:
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originVariable
displayShapeOn:
extent
origin
translateBy:
variablesDo:

CachedFigure

GroupFigure
displayShapeOn:

Figure

cornerVariable
bottomCenter
originVariable
boundingBox
extent
displayBox
origin
align:with:
translateTo:
translateBy:
variables
variablesDo:

ContainerFigure

cornerVariable
originVariable
displayShapeOn:
extent
origin
translateBy:
variablesDo:

CompositeFigure
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origin
translateBy:

Handle
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origin
variablesDo:

Figure 8.1: The figureTM instance of the Template Method design pattern

In the figureTM instance, whose (formal) specification is depicted in Figure 8.1, the hookMethod
participants are methods that deal with constraints (the variablesDo: method), displaying the
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role(cachedFigureTM,abstractClass,CachedFigure).
role(cachedFigureTM,concreteClass,GroupFigure).
role(cachedFigureTM,concreteClass,ImageFigure).
role(cachedFigureTM,templateMethod,<displayOn:,<fillCache>>).
role(cachedFigureTM,hookMethod,fillCache).

Template Method:cachedFigureTM

CachedFigure

displayOn:
fillCache

Figure

ImageFigure
fillCache

GroupFigure
fillCache

Figure 8.2: The cachedFigureTM instance of the Template Method design pattern

role(drawingEditorTM,abstractClass,DrawingEditor).
role(drawingEditorTM,templateMethod,<initialize,<defaultTools>>).
role(drawingEditorTM,hookMethod,defaultTools).

Template Method:drawingEditorTM

DrawingEditor

defaultTools
initialize

Figure 8.3: The drawingEditorTM instance of the Template Method design pattern

figure on a mask’s graphics context (the displayShapeOn: method), moving the figure (the
translateBy: method) and computing the bounds of the figure (the extent and origin meth-
ods). As can be seen, not all subclasses of the Figure class override all of these hookmethod
participants. This is no problem, as the implementation of most of these methods in the Figure
class provides a default behavior. A number of templateMethod participants are also defined in
the Figure class, that each call the appropriate hookMethod participants.

The specification of the cachedFigureTM instance is depicted in Figure 8.2. The CachedFigure
class, which resides in the Figure hierarchy, represents complex figures. By keeping a reference
to the pixmap of their display in a local cache, it can be ensured that such figures display much
faster. To implement this kind of behavior, the displayOn: method of the CachedFigure class
relies on an abstract fillCache method, that is responsible for filling the cache. This method
needs to be overridden by concrete subclasses that need to provide their own behavior.

The drawingEditorTM instance, whose specification is depicted in Figure 8.3, is used to enable
each application to provide its own kind of tools. The DrawingEditor class holds the list of
tools that are defined for a particular drawing. Each kind of drawing may need different kinds
of tools, and thus the DrawingEditor class defines a method defaultTools that returns a list of
tools appropriate for the drawing that is manipulated. Subclasses of the DrawingEditor class can
override this method to register additional tools, if this is required.
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role(drawingFM,abstractCreator,Drawing).
role(drawingFM,conreteCreator,Drawing).
role(drawingFM,abstractProduct,DrawingEditor).
role(drawingFM,conreteProduct,DrawingEditor).
role(drawingFM,factoryMethod,edit).

Factory Method:drawingFM

Drawing
edit

DrawingEditor

Figure 8.4: The drawingFM instance of the Factory Method design pattern

The Factory Method design pattern

Two instances of the Factory Method design pattern can be found in the framework: the draw-
ingFM and drawingEditorFM instances.

The drawingFM instance is used to connect the Drawing hierarchy with the DrawingEditor
hierarchy. Each application defines its own Drawing and DrawingEditor classes, and a drawing
object should be opened in the appropriate drawing editor. Therefore, each Drawing class de-
fines an edit method, that instantiates and opens the corresponding DrawingEditor class. The
specification of this design pattern instance is depicted in Figure 8.4.

Conversely, each DrawingEditor class has an associated Drawing class. When a new drawing
editor is opened, it should thus contain an instance of the appropriate drawing object. Therefore,
the DrawingEditor class implements a drawingClass method that returns the class of the drawing
that should be instantiated. This method should be overridden by all concrete subclasses of the
DrawingEditor class. Figure 8.5 shows the specification of this instance.

Note that the edit and the drawingClass methods are actually related. The implementation
of the edit method in the class returned by the drawingClass method should instantiate an
instance of the class that defines that drawingClass method. This is a constraint that should
hold at all times, but it can not be expressed by means of a design pattern constraint. As such,
violations of this constraint will not be detected by our environment. Note that it is possible to
express this constraint in our environment, since it is open to extensions. However, as opposed to
the metapattern constraints, this constraint is specific to the HotDraw framework. It should thus
be added by the framework developers, and it can not be reused in other frameworks.

The Command design pattern

There are two instances of the Command design pattern: the readerCommand and the drawingEd-
itorCommand instances, which are depicted in Figure 8.6 and 8.7. In the former instance, a
Command object is told by a Reader object to perform its action, by sending it the effect method.
Each subclass of the Command class can override this method in order to provide the appropriate
behavior. The latter instance is used to allow a command to be undone, by invoking its unexecute
method. This method can be overridden in subclasses of Command as well.

Note how their is a lot of duplication in the specification of both design pattern instances. This
is due to the fact that the Command class hierarchy needs to be specified twice, since it participates in
both instances. This problem can be alleviated to some extent. We currently require a developer to
provide the complete specification manually. The environment could provide some help, however,
and prompt him for the root of the class hierarchy that needs to be specified. It would then
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role(drawingEditorFM,abstractCreator,DrawingEditor).
role(drawingEditorFM,conreteCreator,DrawingEditor).
role(drawingEditorFM,abstractProduct,Drawing).
role(drawingEditorFM,conreteProduct,Drawing).
role(drawingEditorFM,factoryMethod,drawingClass).

Factory Method:drawingEditorFM

DrawingEditor
drawingClass

Drawing

Figure 8.5: The drawingEditorFM instance of the Factory Method design pattern

Command

effect

MouseCommand

CloneFigureCommand

ConnectionCommand

DrawingCommand

effect

TextCommand

BackspaceCommandTextFigureCommand

CompositeTextCommand

effect

role(readerCommand,command,Command).
role(readerCommand,concreteCommand,CloneFigureCommand).
role(readerCommand,concreteCommand,ConnectionCommand).
role(readerCommand,concreteCommand,DrawingCommand).
role(readerCommand,concreteCommand,TextFigureCommand).
role(readerCommand,concreteCommand,BackspaceCommand).
role(readerCommand,concreteCommand,CompositeTextCommand).
role(readerCommand,invoker,Reader).
role(readerCommand,commandMethod,effect).

Command:readerCommand

Reader
effect

command

effect

Figure 8.6: The readerCommand instance of the Command design pattern
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Command

unexecute

DrawingEditor
undo

lastCommandExecuted

MouseCommand
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Figure 8.7: The drawingEditorCommand instance of the Command design pattern

compute the specification automatically based on this information. This is possible since full
access to the source code of the framework is provided. The result of this computation can then
be presented to the developer, who can accept it as is, or can modify it as needed.

The Composite design pattern

Three instances of the Composite design pattern are used in the framework: compositeCommand,
compositeTextCommand and compositeFigure.

The Command class hierarchy contains mouse commands and text commands. The former are
responsible for manipulating figure objects with the mouse, whereas the latter are used for manipu-
lating text figures. Mouse commands are implemented by the MouseCommand class hierarchy, while
text commands reside in the TextCommand hierarchy. Both class hierarchies use an instance of the
Composite design pattern (as can be seen from the specifications shown in Figures 8.8 and 8.9) to
allow us to define more complex commands by combining simpler ones. A MouseCommand object
should implement the initialize: and moveTo: methods, which are responsible for the initial-
ization of the command and for taking appropriate action when the mouse (and thus the figure
upon which the command acts) is moved. A text command should also implement an initialization
method (initialize in that case) and a keyboardEvent: method, that determines what should
be done when the user uses the keyboard.

The compositeFigure instance of the Composite design pattern is used in the Figure class hier-
archy, as depicted in Figure 8.10. The ContainerFigure class is an abstract class that represents
a figure that can contain any number of other figures, and that can be manipulated as a whole.
Different concrete subclasses of this class exist, in the framework (the Drawing class, for exam-
ple) as well as in concrete applications (the PERTEvent class, for instance). The interface of this
instance of the design pattern contains the following methods: the translateBy:, displayOn:,
displayShapeOn:, extent, origin, figureAt: and figuresIn: methods. These have a stan-
dard implementation in the ContainerFigure class, and are overridden in the many concrete
subclasses of the Figure hierarchy.

Note again how there is a lot of duplication in the specification of the compositeFigure instance
and that of the figureTM instance. Once again, this is due to the fact the same classes and methods
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Composite:CompositeCommand

Figure 8.8: The compositeCommand instance of the Composite design pattern
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Figure 8.9: The compositeTextCommand instance of the Composite design pattern

participate in these instances.

The Proxy design pattern

The LayeredContainerFigure class hierarchy uses an instance of the Proxy design pattern, whose
specification is shown in Figure 8.11. Figures in a drawing are not stored in a Drawing object.
Instead, such an object maintains a reference ot a ConstraintDrawing object, that contains those
figures together with their associated constraints. Methods in the Drawing class’ interface simply
delegate to the appropriate method of the ConstraintDrawing class.

The Model-View-Controller design pattern

The Model-View-Controller design pattern is used to separate the model from the way it is rep-
resented to the user (the view) and from the way in which the user controls it (the controller). In
the mvcDrawing instance that is used in the framework (depicted in Figure 8.12), the Drawing
class represents the model, the DrawingView class the view and the DrawingController class the
controller. An instance of the DrawingView class maintains a reference to a Drawing object and
its displayModelOn:clipped: method uses this reference to call the displayOn: method that
effectively displays the drawing on the screen. A DrawingController object receives mouse and
keyboard events and translates these into messages that the model object understands. Upon
receipt of these messages, the model takes appropriate action and updates its views appropriately
(the damageRegion, repairDamage and update:with:from: methods) .

8.2.3 Discussion

Since % of the classes in the HotDraw framework participates in one or more design pattern
instances, and since each class hierarchy is documented by means of these design pattern instance
specifications, we can conclude that the documentation of the framework’s design by means of
design patterns is quite accurate. As such, if those hierarchies are extended with a new class,
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Figure 8.10: The compositeFigure instance of the Composite design pattern

the documentation provides useful information about where the new class should be placed in the
hierarchy and which methods it should at least implement. This will be illustrated in detail in
Section 8.3.2.

The design pattern instances capture most of the important relationships between class hierar-
chies, classes and methods in the framework. As such, the design pattern constraints can be used
to detect when these relationships are not adhered to after changes have been applied manually.
Furthermore, our change propagation algorithm will be very effective, since it is entirely based
upon the explicit documentation of these relationships.

As we have illustrated, some relationships can not be documented by means of design patterns,
however. This can be due to an inferior design choice of the developers, or to the fact that no
design pattern exists that can be used to model the specific relationship. For example, there
exists a relationship between the Drawing and the Figure class (as shown in Figure 8.13), because
a drawing object is responsible for displaying a figure’s handles. There is no design pattern
that can describe this particular relationship, however. Thus, no support will be provided to
check the correctness of this relationship after changes have been applied manually, nor will the
transformations automatically make sure that the developer keeps this relationship satisfied. Since
our supporting environment is extensible, a framework developer could add framework-specific
constraints and could define appropriate ad hoc transformations.

We also observed that some of the design pattern specifications contained a lot of duplication.
This occurs in particular when a large class hierarchy (such as the Figure hierarchy) participates in
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Proxy:containerProxy

Figure 8.11: The containerProxy instance of the Proxy design pattern

role(mvcDrawing,model;Drawing).
role(mvcDrawing,view,DrawingView).
role(mvcDrawing,controller,DrawingController).
role(mvcDrawing,modelMethod,stepIn:).
role(mvcDrawing,modelMethod,displayOn:).
role(mvcDrawing,viewMethod,<step,<stepIn:>>)
role(mvcDrawing,viewMethod,<displayModelOn:clipped:,<displayOn:>>).
role(mvcDrawing,controllerMethod,<controlActivity,<step>>).
role(mvcDrawing,controllerMethod,<processMenuAt:localPoint:centered:,<repairDamage>>).
role(mvcDrawing,updateMethod,repairDamage).
role(mvcDrawing,updateMethod,update:with:from:).
role(mvcDrawing,changeMethod,<damageRegion,<update:with:from:>>).
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Figure 8.12: The mvcDrawing instance of the Model-View-Controller design pattern
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Figure 8.13: Relationship between the Drawing and the Figure classes

many design pattern instances simultaneously. Such duplication is hard to avoid without changing
our formal model. However, by extending the environment, the overhead of specifying design
pattern instances can be lessened. Based on a small amount of basic information, the environment
could compute a specification automatically, and could present the result to the developer for
inspection. This developer can then either accept the specification as is or can modify it as
needed.

8.3 Support for Framework Instantiation

Now that we have seen which design patterns are used in the HotDraw framework and how they can
be documented, we will show how this information helps us when deriving a concrete application.
We will first explain the framework-specific instantiation transformations that exist. Afterwards,
we will illustrate how these framework-specific instantiation transformations can be used to help
a developer when instantiating the framework, and thereby show how they are defined in terms
of design pattern-specific transformations.

8.3.1 Framework Instantiation Transformations

A typical application derived from the HotDraw framework should provide subclasses for the
DrawingEditor and Drawing classes. Furthermore, if the application uses specialized figures,
these should be defined as subclasses of the Figure class, or one of its subclasses. In that case,
corresponding tools that instantiate and manipulate such figures should be provided as well. This
boils down to providing appropriate subclasses of the MouseCommand and TextCommand classes.
Thus, the following framework-specific instantiation transformations would be useful for an appli-
cation developer, to guide him through the instantiation process and make sure he ends up with
a correct instance.

addFigure(FigureClass, Superclass) adds a new class FigureClass as a subclass of the class
Superclass. This Superclass class should reside in the Figure class hierarchy.

addCachedFigure(FigureClass, Superclass) adds a new class FigureClass as a subclass of
the Superclass class. This superclass should be a subclass of the CachedFigure class, or
that class itself.

addCompositeFigure(FigureClass) adds a new class FigureClass as a subclass of the Compo-
siteFigure class.

addDrawing(DrawingClass) adds a new class DrawingClass as a subclass of the Drawing class.
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Figure 8.14: Adding the IconDrawingEditor class

addDrawingEditor(DrawingEditorClass) adds a new class DrawingEditorClass as a subclass
of the class DrawingEditor.

addMouseCommand(MouseCommandClass,Superclass) adds a new class MouseCommandClass as
a subclass of the given Superclass class, which should reside in the MouseCommand class
hierarchy.

addTextCommand(TextCommandClass,Superclass) adds a new class TextCommandClass as a sub-
class of the given Superclass class. This Superclass class should reside in the TextCommand
class hierarchy.

These framework-specific instantiation transformations are defined by a framework developer,
who should also specify how they are to be mapped onto the appropriate design pattern-specific
transformations. For example, the addCachedFigure transformation is mapped onto an addCon-
creteClass transformation that operates on the cachedFigureTM instance of the Template Method
design pattern. Remember from Section 4.3 that, when a framework-specific transformation is
applied, this is translated automatically into a design pattern-specific transformation, which in
turn is translated into a metapattern-specific transformation that performs the actual changes to
the source code.

8.3.2 Deriving an Instance

In this section, we will show how the VisualCreation instance, that is provided as a sample appli-
cation with the HotDraw framework, can be derived by using the framework-specific instantiation
transformations. This instance implements a graphical editor that allows a user to easily build
and integrate new tools for the specific instance of the HotDraw framework that he wants to im-
plement. In what follows, we will show how our supporting environment interactively guides the
application developer while he implements the application.

Adding a new drawing editor

To add the IconDrawingEditor class as a subclass of DrawingEditor, the application developer
invokes the addDrawingEditor framework-specific instantiation transformation. This transforma-
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tion will require the developer to provide an implementation for two important methods that the
new class should override: the defaultTools and the drawingClass methods.

Figure 8.14 shows how the environment first translates the addDrawingEditor framework in-
stantiation transformation into an addConcreteCreator design pattern-specific transformation on
the drawingEditorFM instance (step 1). This transformation registers the IconDrawingEditor
class as a concreteCreator participant in the design pattern instance and asks the developer to pro-
vide an implementation for the drawingClass method. Afterwards, the environment searches for
all overlapping design pattern instances and invokes the appropriate design pattern-specific trans-
formation upon them (step 2). In this case, the drawingEditorFM instances overlaps only with
the drawingEditorTM instance. As such, an addConcreteClass design pattern-specific transforma-
tion is applied to this instance, which registers the IconDrawingEditor class as a concreteClass
participant in the design pattern instance, and asks the developer to provide an implementation
for the defaultTools method participant, which is then added to the IconDrawingEditor class.

Adding a new drawing

A specific drawing editor class is always associated with a particular drawing class. As such,
the application developer instantiating the VisualCreation instance could also use the addDrawing
framework-specific instantiation transformation to add a IconDrawing class. However, he does not
have do to so explicitly, because the DrawingEditor and Drawing class hierarchies are connected
via the drawingEditorFM design pattern instance (see Section 8.2.2). The addConcreteCreator
transformation that was applied to this instance will automatically invoke an addConcreteProduct
transformation, since each concreteCreator participant should be associated with a concreteProduct
participant (this is a constraint imposed by the Factory Method design pattern).

In this particular case, the addConcreteProduct transformation will ask the developer for the
specific drawing class that corresponds to the IconDrawingEditor and that should be returned by
the drawingClass factory method. The result is that a new class IconDrawing class is added to
the instance as a subclass of the Drawing class, and that this class is added as a concreteProduct
participant in the design pattern instance (see Figure 8.15).

In order to know which methods this new class should implement, our supporting environment
checks in which design pattern instances the Drawing class participates. As it turns out, this class
is a concreteCreator participant in the drawingFM instance, a concreteModel participant in the
mvcDrawing instance, a concreteClass participant in the figureTM instance and a leaf participant
in the compositeFigure instance. The appropriate transformations are thus applied on these in-
stances (see Figure 8.15), and the environment asks the developer to provide an implementation
for the appropriate method participants (those method participants are underlined and in italics in
Figure 8.15). The IconDrawing class should only define the edit method, for the implementation
of all other methods, it relies on its superclasses. This is a deficiency in our approach: the environ-
ment asks the developer to provide an implementation for 16 methods, whereas he only needs to
specify one. This is due to the fact that the transformations assume that a leaf participant should
always implement all appropriate method participants. Especially with large class hierarchies that
participate in many design pattern instances, this turns out to be a rather simplistic view. The
problem can only be alleviated by adopting a more realistic approach, where, a developer can
specify which parts of the hierarchy need to implement which method participants, for example.
This requires some extensions to the formal model however, which is considered future work.

Note that, the drawingProxy design pattern instance does not overlap with the drawingEdi-
torFM instance, although the Drawing class participates in both instances. None of the overlap-
ping conditions of Section 5.5.3 are satisfied, however.

Adding new figures

The VisualCreation application introduces six new types of figures. Three of these figures are
subclasses of the CachedFigure class, and as such are added to the instance by means of the

174



2

1

addConcreteModel
(IconDrawing)

role(mvcDrawing,model;Drawing).
role(mvcDrawing,view,DrawingView).
role(mvcDrawing,controller,DrawingController).
role(mvcDrawing,modelMethod,stepIn:).
role(mvcDrawing,modelMethod,displayOn:).
...

MVC:mvcDrawing
role(mvcDrawing,model;Drawing).
role(mvcDrawing,concreteModel,IconDrawing).
role(mvcDrawing,view,DrawingView).
role(mvcDrawing,controller,DrawingController).
role(mvcDrawing,modelMethod,stepIn:).
role(mvcDrawing,modelMethod,displayOn:).
...

MVC:mvcDrawing

role(figureTM,abstractClass,Figure).
role(figureTM,concreteClass,EllipseFigure).
...
role(figureTM,hookMethod,originVariable).
role(figureTM,hookMethod,cornerVariable).
role(figureTM,hookMethod,translateBy:).
...

Template Method:figureTM

role(figureTM,abstractClass,Figure).
role(figureTM,concreteClass,EllipseFigure).
role(figureTM,concreteClass,IconDrawing).
...
role(figureTM,hookMethod,originVariable).
role(figureTM,hookMethod,cornerVariable).
role(figureTM,hookMethod,translateBy:).
...

Template Method:figureTM

addConcreteClass
(IconDrawing)

role(drawingFM,abstractCreator,Drawing).
role(drawingFM,conreteCreator,Drawing).
role(drawingFM,abstractProduct,DrawingEditor).
role(drawingFM,conreteProduct,DrawingEditor).
role(drawingFM,factoryMethod,edit).

Factory Method:drawingFM

role(drawingFM,abstractCreator,Drawing).
role(drawingFM,conreteCreator,Drawing).
role(drawingFM),concreteCreator,IconDrawing).
role(drawingFM,abstractProduct,DrawingEditor).
role(drawingFM,conreteProduct,DrawingEditor).
role(drawingFM,factoryMethod,edit).

Factory Method:drawingFM

addConcreteCreator
(IconDrawing)

4

Drawing

stepIn:
figureAt:
figuresIn:

Figure

ContainerFigure

LayeredContainerFigure
displayOn:

extent
origin
translateBy:
displayShapeOn:

Drawing

IconDrawing
edit

stepIn:
figureAt:
figuresIn:

Figure

ContainerFigure

LayeredContainerFigure
displayOn:

extent
origin
translateBy:
displayShapeOn:

role(compositeFigure,component,Figure).
role(compositeFigure,composite,ContainerFigure).
role(compositeFigure,leaf,ManhattanLineFigure).
...
role(compositeFigure,compositeMethod,translateBy:).
role(compositeFigure,compositeMethod,displayOn:).
role(compositeFigure,compositeMethod,displayShapeOn:).
role(compositeFigure,compositeMethod,extent).
role(compositeFigure,compositeMethod,origin).
role(compositeFigure,compositeMethod,figureAt:).
role(compositeFigure,compositeMethod,figuresIn:).

Composite:compositeFigure

role(compositeFigure,component,Figure).
role(compositeFigure,composite,ContainerFigure).
role(compositeFigure,leaf,ManhattanLineFigure).
...
role(compositeFigure,leaf,IconDrawing).
role(compositeFigure,compositeMethod,translateBy:).
role(compositeFigure,compositeMethod,displayOn:).
role(compositeFigure,compositeMethod,displayShapeOn:).
role(compositeFigure,compositeMethod,extent).
role(compositeFigure,compositeMethod,origin).
role(compositeFigure,compositeMethod,figureAt:).
role(compositeFigure,compositeMethod,figuresIn:).

Composite:compositeFigure

addLeaf
(IconDrawing)

3

addConcreteProduct
(IconDrawing)

role(drawingEditorFM,abstractCreator,DrawingEditor).
role(drawingEditorFM,conreteCreator,DrawingEditor).
role(drawingEditorFM,abstractProduct,Drawing).
role(drawingEditorFM,conreteProduct,Drawing).
role(drawingEditorFM,factoryMethod,drawingClass).

Factory Method:drawingEditorFM

role(drawingEditorFM,abstractCreator,DrawingEditor).
role(drawingEditorFM,conreteCreator,DrawingEditor).
role(drawingEditorFM,abstractProduct,Drawing).
role(drawingEditorFM,conreteProduct,Drawing).
role(drawingEditorFM,conreteProduct,IconDrawing).
role(drawingEditorFM,factoryMethod,drawingClass).

Factory Method:drawingEditorFM

addConcreteProduct
(IconDrawing)

5

Figure 8.15: Adding a new drawing class
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addCachedFigure instantiation transformation. The other three figures are subclasses of the
RectangleFigure and are thus added by applying the addFigure instantiation transformation.
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Figure 8.16: Adding a new figure class

As can be seen in Figure 8.16, the addFigure framework instantiation transformation is trans-
lated into an addConcreteClass design pattern-specific transformation that operates on the fig-
ureTM instance. This will add IconSquares as a subclass of Rectangle, and afterwards add
MaskFigure and IconFigure as subclasses of IconSquares. It will also register these three new
classes as concreteClass participants in the design pattern instance.

Afterwards, the supporting environment considers all design pattern instances that overlap
with the figureTM instance. In this case, there is only one such instance: the compositeFigure
instance. The addConcreteClass transformation will thus give rise to an addLeaf transformation
on this instance, and as a result, the three new classes will be registered as leaf participants in it.

While applying these design pattern-specific transformations, not only are the three classes
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registered as participants in the appropriate instances, the application developer is also asked
to provide an implementation for the method participants occurring in those instances. For the
IconSquares class, he only provides an implementation for the displayOn: method and relies on
the implementation in the superclasses for all other methods. The MaskFigure and IconFigure
class do not need to define additional methods.

1

2
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Figure 8.17: Adding a new cached figure class

Figure 8.17 shows how the addCachedFigure framework instantiation transformation is applied
to introduce the IconFigure, MaskIconFigure and CursorIconFigure classes as subclasses of
the CachedFigure class. This framework instantiation transformation is translated into an ad-
dConcreteClass design pattern-specific transformation that operates on the cachedFigureTM in-
stance. It adds the three classes as concreteClass participants to the instance, and asks the devel-
oper to provide an implementation for the fillCache method participant. The IconFigure and
MaskIconFigure classes provide an appropriate implementation, whereas the CursorIconFigure
class can simply use the implementation provided by the IconFigure class and does not need to
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provide one of its own.
Furthermore, the cachedFigureTM design pattern instance overlaps with a number of other

design pattern instances. As such, applying an addConcreteClass transformation gives rise to a
number of other transformations on these overlapping instances. As can be seen in Figure 8.17, an
addConcreteClass transformation is applied upon the figureTM Template Method design pattern
instance, and an addLeaf transformation is applied on the compositeFigure instance. All these
transformations register the three new classes as the appropriate participants in the design pattern
instances, and consult the developer to provide an implementation for the required methods. As
it turns out, the implementation of all methods in the superclasses (CachedFigure and Figure)
is already appropriate for the new classes, and no additional methods need to be defined in the
new classes.

Once again, in both cases, the environment asks the developer for an implementation for a large
number of methods (13 and 14 methods respectively), while he only provides one implementation
for such method in each case.

Adding a new mouse command

New mouse commands are added to an instance of the framework by means of the addMouseCom-
mand framework instantiation transformation. This transformation is translated into an addLeaf
design pattern-specific transformation on the Composite design pattern, as can be seen from Fig-
ure 8.18. An IconFigureCommand is thus added as a leaf participant to the compositeCommand
instance, and is added as a subclass of the MouseCommand class in the implementation. Further-
more, all leaf participants of the compositeCommand instance should implement the effect,
unexecute, initialize: and moveTo: method participants, so the developer is asked to pro-
vide an implementation for them. While the initialize: and moveTo: methods do receive an
appropriate implementation, the developer decides not to provide a concrete implementation for
the effect and unexecute methods, but rather relies on the implementation of these methods in
the Command superclass.

Next, the supporting environment considers all design pattern instances that overlap with the
compositeCommand instance and determines that this is the case for the readerCommand and
drawingEditorCommand instances of the Command design pattern. A addConcreteCommand
transformation is thus applied upon these instances, which adds the IconFigureCommand as a
concreteCommand participant. Concrete commands should provide an implementation for the
method participants of these instances, in this case, the effect and unexecute methods. Since
the developer already stated that these methods should not be overridden in the new command
class, the transformation finishes.

Observe that the environment asks the developer twice for an implementation of the effect and
unexecute methods. This is because those methods participate in two design pattern instances at
once. This is again due to the simplistic implementation of the transformations: they do not take
overlapping of design pattern instances into account when prompting the developer for method
implementations. This can easily be changed. The environment could compute all methods that
a class should implement beforehand, by considering overlapping instances, remove all duplicates
and only then prompt the developer.

8.3.3 Discussion

Our approach to support framework instantiation can be seen as an ”active cookbook” ap-
proach [PPSS95]. The instantiation transformations use the documentation in an active way
to guide a developer when instantiating the framework. After he has invoked all of these instan-
tiation transformations, the implementation of the VisualCreation instance contains a definition
of all required classes, except one, the ToolBuilder class. This should come as no surprise. All
important class hierarchies participate in one or more design pattern instances, and this allows a
developer to use appropriate design pattern-specific transformations that add the required classes.
The ToolBuilder class is an application-specific class, that does not rely on any framework class,
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Figure 8.18: Adding a new mouse command class

does not participate in a design pattern instance and should thus be added manually. Also note
how the design pattern-specific transformations make sure the specifications are kept up to date
automatically.

Moreover, the classes added by the transformations already contain the appropriate method
implementations for nearly all important methods they should define. Only some classes still
require implementations for the menu and handles methods. The reason why our environment
did not prompt the developer to implement these methods is that they do not participate in any
design pattern instance. Naturally, other, class and application specific methods need to be added
to finish the implementation of the classes. While we only showed how the environment guides
an application developer in deriving the VisualCreation instance, the results can be generalized
to other instances as well.

We can also observe that the only design pattern specific transformations that are used by an
application developer are those that add class participants. This seems reasonable. In normal
circumstances, an application is not allowed to remove classes from the framework, as this would
have an impact on all other existing applications. For the very same reason, applications can
not add or remove methods from the framework. In some specific cases, however, applications
are allowed to change the framework. Embedded systems, for example, have to deal with limited
resources, and may therefore want to reduce the overall size of an application by removing dead
code and features of the framework that are not used, Typically, such applications work with a
copy of the framework, which they can change without affecting other applications.
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Although the framework and design pattern specific transformations can guide a developer, he
still needs to be familiar with the design and the implementation of the framework to some extent.
He should be able to identify where a class should be added in a class hierarchy, or which methods
need an implementation and which methods can rely on an implementation in superclasses. This
is no different from the situation where there is no guidance, however. Furthermore, the transfor-
mations do point him to the class hierarchies and method implementations that he should look
at.

One particular impediment to our approach is that a developer is often asked to provide an
implementation for method participants when this is not strictly necessary. This is caused by a
deep class hierarchy with a large interface, many methods of which participate in a (number of)
design pattern instance(s). Leaf classes of such deep hierarchies often only need to implement
a small part of this interface, as most of its methods are already implemented at other levels
of the hierarchy. In the case of the VisualCreation instance, this problem frequently occurred
because the Drawing hierarchy is a subhierarchy of the Figure hierarchy, and therefore, all design
pattern instances involving the latter hierarchy overlap with those instances involving the former.
Subclasses of the Drawing class should normally only override method participants of a design
pattern instance containing the Drawing hierarchy. If there was a way to represent such information
in our model, this problem could be alleviated. At present, this is not possible however and
resolving this issue remains future work.

A similar problem occurs because methods often participate in two (or more) overlapping design
pattern instances. As a result, the environment will ask the developer for an implementation for
those methods multiple times. This problem is due to the current, and naive, implementation of
the transformations, however. It could be avoided if this implementation was changed so as to
take such overlappings into account.

One particular important question that we did not address is whether the order in which
transformations are applied matters. Since transformations on overlapping instances are invoked
automatically, the developers is relieved from doing so explicitly and hence can not accidently
forget to invoke one. It remains an open question whether we can compute an optimal order for
the transformations, so that explicit developer intervention is reduced to a minimum.

8.4 Support for Framework Evolution

Besides being useful for framework instantiation, documentation based on design pattern speci-
fications is also of great value when evolving the framework. In this section, we will elaborate
upon this in more detail. We will first show how design drift can be avoided up to a certain ex-
tent, by checking design pattern constraints. Afterwards, we will show how the impact of specific
evolutions on the framework itself and on its instances can be assessed.

8.4.1 Avoiding Design Drift

By checking the constraints associated with the design patterns used in the HotDraw framework,
we are able to check whether its implementation actually adheres to the intended design. Con-
straint violation conflicts will be reported if the implementation is not conform with the design. In
spite of the fact that HotDraw has been studied extensively, is well documented and has been used
many times, we will see that it still contains some design flaws and inconsistencies that remained
unnoticed and that our approach is able to detect these.

Constraint checking is especially useful when the framework is evolved manually, to ensure
that a developer does not accidently break the design. In this particular case, there is no explicit
information about how the first version of HotDraw was evolved in the second, nor what was done
manually and what was done via automated transformations such as refactorings. By comparing
the designs of both versions, we were able to infer which transformations and refactorings could
have been applied. There is no way in which we can reconstruct the specific lower-level changes
that were applied to the implementation manually, however. Furthermore, many design pattern
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constraints are used to verify whether the design pattern specifications remain correct after a
number of changes have been applied manually. They check whether a developer (un)registered
the appropriate participants, for example. Such errors do not occur, because we documented the
design patterns ourselves, and we can not consider manual evolution in our experiments.

Despite all these problems, we can still use the constraints to detect design inconsistencies
”after the facts”, as we will see in the following sections.

Conflicts in the framework’s implementation

78 constraint violation conflicts are detected in the implementation of the framework. All of
them occur because classes that are registered as leaf participants in a design pattern instance
do not provide a concrete implementation for a particular method participant. They are thus not
understood by leaf constraint violation conflicts.

This large number is partly due to the naive implementation of our constraints. Not understood
by leaf constraint violation conflicts are reported with respect to the specific leaf participant that
does not define a particular method participant. In many cases however, this conflict is reported
for a number of classes that all share a common superclass. This suggests that it is in fact the
particular subhierarchy that does not define the method, and as such, it suffices to report the
conflict only once with respect to the common superclass. For example, 20 reported conflicts
are due to the Handle, TentativePositionHandle, ConstraintHandle, CommandHandle and
IndexPositionHandle classes that do not implement the cornerVariable, originVariable,
displayShapeOn: and translateBy: methods. If we report this conflict with respect to the
Handle class only, which is the common superclass of all the other classes, we would get only four
reported conflicts, one for each method that is not understood.

Another reason why so many conflicts are reported is because design pattern instances overlap
and the implementation of the constraints does not take this into account. Conflicts that are
reported for a class and method combination in a particular design pattern instance, are also
reported for the same class and method combination in another design pattern instance, if the two
instances overlap and the class and method participate in both instances. For example, 9 conflicts
are reported for the readerCommand and drawingEditorCommand design pattern instances, since
several classes in the Command class hierarchy do not understand the effect and unexecute meth-
ods. The Command hierarchy participates in the CompositeCommand and CompositeTextCommand
design pattern instances as well, as do the effect and unexecute methods (see Section 8.2.2).
All conflicts that are reported for the readerCommand and drawingEditorCommand instances are
thus also reported for either the CompositeCommand or the CompositeTextCommand instances.
Of the 26 reported conflicts in the Command class hierarchy, only 17 are actually different.

When we change the implementation of the constraints to take the above considerations into
account, the number of reported conflicts is considerably reduced from 78 to 34:

• 14 of these conflicts are considered to be real not understood by leaf conflicts. These occur
because several concrete classes in the Figure hierarchy do not provide an implementation for
the cornerVariable or originVariable methods, which are abstract methods in the Figure
class. In Java, this would have been detected by the compiler, whereas in Smalltalk, this
is not the case. A compiler can not always detect such conflicts however. For example, the
TextFigureCommand class does not implement the unexecute and thus inherits the default
do-nothing behavior defined in the Command class itself. This is clearly a bug, because when
we add a text figure to a drawing, we will not be able to undo that action.

• 4 of the reported conflicts are not not understood by leaf conflicts, but do point at a flaw
in the design. The initialize method that is defined in the TextCommand hierarchy, is
never overridden in any of its concrete classes, except in the CompositeTextCommand class.
This class is actually the Composite participant in an instance of the Composite design
pattern. The implementation of the initialize method in this class thus simply contains
a default implementation that forwards the message to the components contained within
the class. The initialize method does thus not implement any real behavior and serves
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no particular purpose. Similarly, the effect method that is defined in the Command class
is never overridden in any subclass of the TextCommand class, except once again in the
CompositeTextCommand, where it contains a default implementation. The question may
thus be raised whether this method should be pushed down, so that it only exists in the
MouseCommand hierarchy, where it does fit some purpose.

The 16 remaining conflicts are false positives, that occur because a particular leaf class relies
on the default implementation of a method provided by another class higher up in the hierarchy.

Conflicts in the framework’s instances

Constraint violation conflicts are also reported for the framework’s instances. When considering
the 7 instances that are provided with the framework, 14 not understood by leaf conflicts are
detected. Of these, 5 of these conflicts are real not understood by leaf conflicts where a class does
not define a method that it should. One conflict is due to a bad design: the Drawing class provides a
stepIn: method, which should only be overridden by subclasses when they want to be animated.
Since not every framework instance provides animation, this method is not always overridden.
Consequently, the IconDrawing does not override this method, which results in an unnecessary
conflict being reported. In the new version of the framework, a new class AnimatedDrawing is
introduced, which contains all animation-specific behavior. The conflict will thus disappear in the
new version.

The 8 remaining conflicts are once again false positives.

Summary

To summarize, approximately 60% (24 out of 41) of the reported constraint violation conflicts
pointed at real flaws in the design of the framework, or in the implementation of the applications.
This is quite surprising. We would expect that a framework that has been studied extensively, is
very well documented and has been used many times, contained only very few such inconsistencies.

The remaining 40% of the detected conflicts were false positives. These conflicts often occur
in deeply nested class hierarchies, where a leaf class relies on one of its superclasses to provide
an implementation for a method, instead of defining that method itself. This problem is actually
related to the problem of deep class hierarchies identified in Section 8.3.3, where it was argumented
that it can not be easily avoided without incorporating extra information into the formal model.

The amount of false positives reported may provide a misleading picture, however. The design
pattern constraints are mainly intended to be used in an interactive way when evolving a framework
manually. In this case, we only checked the constraints after the facts. Most certainly, when version
4.0 of the framework was evolved into version 4.5, the developers inspected the code by hand and
detected and fixed many conflicts. This is a time consuming process, however that can certainly
benefit greatly from the automation we provide. Furthermore, the process is also error prone.
Proof of this is the fact that we still discovered flaws in the design. In this light, we believe our
results are still quite satisfactory and would show even better results if used interactively.

We do not have any indication about the time needed for the constraint checking process itself.
This is exactly because the constraints were not used in an interactive manner. We can only note
that checking all constraints is very time intensive. Therefore, when using the constraints in an
interactive manner, we should only check those constraints that may be affected by a particular
change. These are the constraints that are local to the place where a change has been applied, e.g.
only the constraints that are associated with the design pattern instance that may be affected by
the change. This may still take up quite some time, however, and more experiments are needed
to determine if interactive use is feasible in practice.

8.4.2 Evolving the Framework

It has already been shown in numerous publications that refactorings can be used to evolve/im-
prove the structure of a framework [Fow99, O’C01, Opd92, RBJ97, OCN99, OR93, JO93, TB95].
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Since design pattern-specific transformations are nothing more then high-level refactorings, it is
clear that they can be used for this purpose as well. Rather then presenting a detailed discussion
of the refactorings and design pattern-specific transformations that have been applied to evolve
the HotDraw framework, we will merely present a short overview of them, together with a short
explanation.

Design Pattern-Specific Transformations and Refactorings

Design pattern-specific transformations are applied to the design pattern instances that occur in
the framework. The transformations that we identified were all applied on only two instances: the
figureTM and the drawingEditorTM instances.

The following transformations were applied on the figureTM instance, to change the frame-
work’s implementation and update the documentation accordingly:

• addConcreteClass(RoundedRectangleFigure,RectangleFigure): introduces the RoundedRect-
angleFigure class in the framework, since it is used by many different applications.

• removeConcreteClass(ManhattanLineFigure) removes the ManhattanLineFigure class from
the framework, as it is too application specific and should therefore not be part of the
framework.

• removeHookMethod(cornerVariable), removeHookMethod(originVariable) and removeHook-
Method(variablesDo:): these methods formed part of the implementation of the constraint
system, that is removed from the framework and replaced with the Smalltalk dependency
mechanism.

• addTemplateMethod(preferredBounds,computePreferredBounds): the preferredBounds me-
thod is an abstract method in the VisualComponent class, and was not overridden in the
Figure hierarchy, as it should have been. Therefore, it is now implemented by the Figure
class and relies on the computePreferredBounds hook method.

Similarly, the following transformations were applied on the drawingEditorTM instance:

• addTemplateMethod(postBuildWith, windowName): this transformation was applied to in-
troduce a windowName method in all subclasses of the DrawingEditor class. This method is
responsible for returning the name of the window.

• removeHookMethod(defaultTools) and addHookMethod(toolNames): as the implementation
of the tools changed, the defaultTools method became obsolete and was replaced by a
toolNames method.

Note that the last two transformations do not model the evolution that took place adequately
and completely. The initialize method originally called the defaultTools method, and should
now call the toolNames method instead. The above transformations do not reflect this. What
is needed are refineTemplateMethod(initialize, toolNames) and coarsenTemplateMethod(initialize,
defaultTools) transformations, that actually change the implementation of the initialize method
appropriately. Such transformations are not included in our approach, however, and can thus only
be applied manually.

Besides design pattern-specific transformations, ordinary refactorings were also applied to the
framework. These refactorings mainly serve to restructure class hierarchies. The Figure class
hierarchy, for example, was restructured by means of the following refactorings:

• addParameter(Figure, menu, menuAt:): this refactoring is applied to provide the menu
method with an extra parameter that is passed the current location of the mouse pointer.
In this way, the menu can be displayed right next to this pointer.
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• pullUpMethod(Figure,translateBy:), pullUpMethod(Figure,origin) and pullUpMethod(Figure,
extent): the implementation of these methods in the Figure hierarchy contained a lot of code
duplication. Therefore, these methods were pulled up in the class hierarchy and the common
behavior was factored out.

• renameMethod(Figure, displayShapeOn:, displayFigureOn: ): this refactoring is applied be-
cause displayFigureOn: is a more appropriate name for the method.

The Drawing class hierarchy has actually only undergone one single change. In the original
version of the framework, the Drawing class contained a stepIn: method, that could be overridden
by subclasses to provide animation. However, only a small part of the applications need this
functionality. Therefore, the new version of the framework includes an AnimatedDrawing class,
that should be subclassed by applications that want to provide animation. In order to apply this
change, the following refactorings were performed:

• addClass(AnimatedDrawing, Drawing): this refactorings adds the class AnimatedDrawing as
a subclass of class Drawing. The idea is to separate all animation behavior into a separate
class.

• removeParameter(Drawing,stepIn:,step): this refactoring removes the parameter from the
stepIn: method, as all drawings that include animation use the same bounding box in
which this animation occurs.

• pushDownMethod(Drawing, step): this refactoring pushes the step method down to the
AnimatedDrawing class, where it belongs.

It should be noted that these refactorings do not update the design pattern specifications,
even if this could be necessary. If the refactorings only reorganize the classes in a hierarchy,
this is normally not a problem. Typically, leaf classes will remain leaf classes, and the root of
the hierarchy will also remain. If the refactorings involve methods that participate in a design
pattern instance, however, it could well be that the design pattern instance’s specification will no
longer reflect the current implementation. After a pullUpMethod refactoring has been applied, for
example, the method involved should no longer be registered as a hookMethod participant, as it
now contains a template implementation suited for all subclasses, and is no longer overridden.

In theory, the correctness of the specification can be examined by checking the constraints
of the design patterns in which the arguments of the refactoring participate. Further research is
needed in to validate this claim in practice, however.

Miscellaneous changes

Besides all changes mentioned above, a number of other important changes have been applied to
the framework as well:

• Various classes have been subject to a renaming operation. The ToolPaletteController
and ToolPaletteView classes have been renamed to ToolbarController and ToolbarView,
the class IndexPositionHandle has been renamed to IndexedTrackHandle, for example.

• The superclass of the RectangleFigure class was changed from the PolylineFigure class
to the Figure.class. Similarly, the PERTEventFigure class has become a subclass of the
ViewAdapterFigure class instead of the CompositeFigure class.

• The ContainerFigure class hierarchy is reorganized completely. The functionality of the
ContainerFigure, LayeredContainerFigure, CompositeFigure and GroupFigure class
is merged into one single CompositeFigure class.

• The Command and Reader class hierarchies have been removed from the framework altogether.
These hierarchies were mainly used for implementing tools, and since the Tool class has
changed drastically between version 4.0 and 4.5 of the framework, they became obsolete.
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With the exception of the renaming operations, neither of these changes can be expressed as
refactorings or transformations. Obviously, this prohibits us from detecting some important merge
conflicts, as we wil see later on.

8.4.3 Assessing the Impact on Existing Applications

In this section, the impact of the evolutions of the framework on its existing instances will be
assessed. By mutually comparing the transformations that have been applied to evolve the frame-
work with the transformations that have been used to construct the VisualCreation instance, 16
merge conflicts have been reported: 9 constraint violation merge conflicts, 2 obsolete method merge
conflicts, 3 missing parameter merge conflicts and 1 method absence merge conflict. We will now
discuss these conflicts in more detail, except the missing parameter merge conflict, which will be
discussed in the next section.

Obsolete Method Merge Conflicts

Obsolete method merge conflicts were discussed in Section 7.3.4 and are caused when one transfor-
mation removes a method participant, while another transformation adds a new class participant
at the same time. Two such conflicts occur in the VisualCreation instance as a result of the evolu-
tion of the framework. The IconFigure class provides an implementation for the variablesDo:
method, which is actually removed from the framework by the removeHookMethod transformation.
This situation is depicted in Figure 8.19. A similar conflict occurs because the VisualCreation in-
stance introduces a new IconDrawingEditor class as a subclass of the DrawingEditor class, and
thereby provides an implementation for the defaultTools method. This method was removed
from the DrawingEditor class by means of a removeHookMethod transformation as well. As such,
the defaultTools method in the IconDrawingEditor becomes useless, as it will never get called.

Note that it is not always the case that an obsolete method merge conflict arises due to the fact
that new figure classes are added while at the same time methods are removed from the Figure
class hierarchy. For example, the originVariable and cornerVariable methods are removed
by means of a removeHookMethod design pattern-specific transformation, but the figure classes
that are introduced for the VisualCreation application do not provide an implementation for these
methods. Therefore, these classes do not contain any obsolete methods, and an obsolete method
merge conflict is thus not reported.

Constraint Violation Merge Conflicts

The conditions that give rise to a constraint violation merge conflict were introduced in Sec-
tion 7.3.3. During the evolution of the HotDraw framework, a new method windowName was
introduced into the DrawingEditor class, that should return the name of the window for the
application. Since this method was not present in the original version of the framework, the class
IconDrawingEditor that was introduced in the VisualCreation application does not provide an
implementation for it. This situation is depicted in Figure 8.20.

A similar situation occurs in the Figure hierarchy, where the evolved version of the frame-
work introduces a computePreferredBounds method that should be overridden by concrete sub-
classes. Since this method was not present in the original version of the framework, all figures that
are introduced by the VisualCreation instance (the IconSquares, CursorFigure, MaskFigure,
IconFigure, CursorIconFigure and MaskIconFigure classes) do not provide an implementa-
tion for this method. Therefore, a constraint violation merge conflict is reported with respect to
these classes, and the application developer should consider whether the introduced figures should
provide an implementation or not.

Possible Incorrect Superclass Merge Conflicts

A possible incorrect superclass merge conflict occurs whenever a new class is introduced in the
middle of a class hierarchy while at the same time a concrete class is added as a leaf of that
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hierarchy (see Section 7.4.2).
In the case of the HotDraw framework, one particular evolution of it introduced a new Ani-

matedDrawing class as a subclass of the Drawing class, with the specific intent of isolating all
animation behavior in this new class. However, the VisualCreation instance of the framework
introduces a new concrete subclass IconDrawing of the Drawing class. Thus, a possible incorrect
superclass merge conflict is reported (see Figure 8.21), and the application developer should con-
sider whether the IconDrawing class should remain a subclass of Drawing or whether it should
be changed to AnimatedDrawing. Since the IconDrawing does not provide animation, it should
remain to be a subclass of Drawing in this case. In those applications that do provide animation,
the AnimatedDrawing class should become the new superclass, however.

Method Absence Merge Conflicts

The conditions for a method absence merge conflict were defined in Section 7.4.4. In the case of the
HotDraw framework and its VisualCreation instance, such a conflict occurs because the instance
introduces a new IconDrawing as a subclass of Drawing. During evolution of the framework,
however, the step method was pushed down from the class Drawing to all of its concrete subclasses.
Since IconDrawing is such a concrete subclass, but is not part of the framework, it did not
participate in the pushDownMethod refactoring and hence did not receive an implementation for
the step method (see Figure 8.22).

This particular occurrence of the method absence merge conflict is not a real conflict. The
pushDownMethod refactoring was applied to move the step method from the Drawing class to its
AnimatedDrawing subclass. Both classes are framework classes and the step method is a frame-
work method. The IconDrawing is an application-specific class, and should thus not participate
in a pushDownMethod refactoring involving a framework method. Neither the refactorings, nor
our merge conflict detection algorithm takes this consideration into account, however.

8.4.4 Assessing the Impact on the Framework

The framework itself also contains some merge conflicts as a result of its evolution. Our merge
conflict detection algorithm reports 6 conflicts: 3 obsolete method merge conflicts, 1 constraint
violation merge conflict, 1 overly general method conflict and 1 missing parameter merge conflict.

Obsolete Method and Constraint Violation Merge Conflicts

An obsolete method merge conflict occurs in the framework itself because one evolution intro-
duces a new RoundedRectangleFigure class, while another evolution removes the variablesDo:
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Figure 8.22: A method absence merge conflict

method from the Figure hierarchy. Likewise, a constraint violation merge conflict occurs because
a new computePreferredBounds method is introduced into the Figure hierarchy, and the new
RoundedRectangleFigure does not provide an implementation for it.

Missing Parameter Merge Conflicts

A missing parameter merge conflict occurs whenever an addParameter refactoring adds a param-
eter to a method participating in a design pattern instance, while at the same time this instance
is extended with a new class participant (see Section 7.4.5). This new class participant will im-
plement the method without the extra parameter.

This situation occurs when evolving the HotDraw framework: an addConcreteClass transfor-
mation is applied on the figureTM design pattern instance to add a new RoundedRectangleFigure
class. This class provides an implementation of the menu method, that participates in the design
pattern instance. At the same time, however, an addParameter refactoring is applied, to provide
the menu method with an extra parameter, indicating the position where the menu should be dis-
played. When these two evolution steps are merged into one version, a missing parameter conflict
occurs, as is depicted in Figure 8.23.

Overly General Method Conflicts

An overly general method merge conflict occurs whenever one particular evolution applies a pullUp-
Method refactoring, while another evolution removes a particular class that implements the method
to be pulled up (see Section 7.4.3).

A particular example of such a conflict in the HotDraw framework is depicted in Figure 8.24.
One developer pulls up the translateBy: method, that is implemented by various classes in the
Figure hierarchy, to the Figure class itself. At the same time, another developer removes the
ManhattanLineFigure class from the framework. Since this class provides an implementation for
the translateBy: method, the implementation of this method in the Figure class may take this
into account, while this is no longer necessary. Therefore, a overly general method merge conflict
is reported, and both developers should look into the situation in order to correct the problem.

Note that the combination of the pullUpMethod refactoring and the removal of a class does not
always lead to a overly general method merge conflict. The origin and extent methods, for exam-
ple, are also pulled up to the Figure class, whereas at the same time, the ManhattanLineFigure
class is removed. However, since this latter class did not provide an implementation for those
two methods, the implementation of the origin and extent methods in the Figure class will be
correct.
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8.4.5 Undetected Conflicts

As was explained in Section 8.4.2, some evolutions of the framework can not be expressed as
refactorings or design pattern-specific transformations. Under these circumstances, some merge
conflicts remain undetected. We identified two such conflicts, which are discussed next.

Change of superclass

The superclass of the RectangleFigure class was changed from the PolylineFigure class to the
Figure class. This may create conflicts in the framework or in its instances.

In the VisualCreation instance, for example, an addFigure transformation was applied to add
an IconSquares class as a subclass of RectangleFigure. In combination with the change of
superclass, this leads to a conflict: it is not clear whether IconSquares should remain a subclass
of RectangleFigure, or whether it now should subclass PolylineFigure directly instead. This
depends upon which behavior the IconSquares should inherit from either of these two classes.
This can only be decided by the developers responsible for the evolutions and therefore, a conflict
should be reported. However, because the change can not be expressed as a refactoring, this
conflict can not be detected and will thus not be reported.

Class Hierarchy Reorganization

In the new version of the framework, the functionality of the ContainerFigure, LayeredContai-
nerFigure, CompositeFigure and GroupFigure classes was merged into one single Composite-
Figure class. While this restructuring is an important change of the design of the framework, it
can not be expressed by the refactorings incorporated in our approach. Presumably, this change
is a combination of manual changes and a number of transformations and refactorings. We were
not able to reconstruct these changes, so no conclusions can be drawn.

This change may however give rise to merge conflicts, in the framework, as well as in it’s
instances. For example, the PERTChart instance of the framework provides a PERTEvent class
as a subclass of the original CompositeFigure class. Since this latter class now contains more
behavior than its original version, the question should be raised whether the PERTEvent class
should still be a subclass of the new CompositeFigure class. If we were able to report a possible
merge conflict, we could point out this fact to the developers who could then take appropriate
actions.

8.4.6 Discussion

In total, 22 merge conflicts were detected by our merge conflict detection algorithm, both in the
framework as in the considered instance. These conflicts were based solely upon the refactorings
and the design pattern-specific transformations discussed in Section 8.4.2 and the instantiation
transformations of Section 8.3.2.

All except one conflict (the method absence merge conflict) were real conflicts that had to be
resolved in order for the framework’s design to be correct and consistent. The specific reason
why the method absence conflict was reported is that the refactorings and the merge conflict
detection algorithm do not distinguish between framework-specific and application-specific classes
and methods. This issue should be considered further, as it may occur under other circumstances
as well.

Of the 22 reported conflicts, only one conflict was a behavioral merge conflict: the overly gen-
eral method merge conflict. Naming conflicts could not occur, of course, since both versions of the
framework were correct and we merely simulated how transformations were applied in parallel.
This is not the typical situation however, but is due to the fact that we simulated how the frame-
work evolved. Presumably, many more behavioral conflicts and perhaps some naming conflicts
were present in version 4.5 of the framework, but have been detected and removed manually by
the developers. Just like we argumented for the constraint checking (see Section 8.4.1), this is
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a time-consuming and error-prone process, for which automated support is quite valuable and
feasible. It remains to be studied however how the approach behaves under interactive use.

A number of important conflicts remained undetected. This was due to the fact that it was
impossible to express some particular evolutions of the framework by means of refactorings or
design pattern-specific transformations. Since our merge conflict detection algorithm is entirely
based upon comparing such transformations, it is no surprise that those conflicts were not detected.
An approach to merge conflict detection that is based upon manual changes (such as [Luc97]) will
also have a hard time detecting these conflicts, however, and will certainly not be able to report
them at a high-level. To overcome such problems, we can incorporate more refactorings into
the environment, which would enable us to represent more evolutions in terms of such high-level
transformations. At the same time, however, this would influence the scalability of our merge
conflict detection approach. This problem can thus only be alleviated if a suitable abstraction for
refactorings is introduced, something which has not yet been achieved, and is certainly beyond
the scope of this dissertation.

While we only considered one application derived from the framework, it is clear that other
applications will be impacted as well. The results obtained from the above experiments leave us
confident that the appropriate merge conflicts will be reported for these instances as well.

8.5 Conclusion

In this chapter, we have tested our supporting environment on a real-world framework. By using
the environment for documenting design pattern instances, instantiating and evolving the frame-
work, we were able to identify the strengths and weaknesses of our approach and were able to
propose ways of alleviating them. Besides showing the feasibility of such an approach, we also
proved the usefulness and necessity of an environment that support framework-based develop-
ment. Many important design flaws, inconsistencies and merge conflicts were detected, both in
the framework itself as in the example instance. All this despite of the fact that the HotDraw
framework has been used many times and was studied extensively by many people. These results
confirm our believe that we have established a first step towards an environment that supports
framework-based development, and we are quite confident that the results can be generalized to
large scale frameworks as well.
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Chapter 9

Conclusion and Future Work

This chapter first summarizes the dissertation, and then presents our conclusions. Furthermore,
we will discuss issues that remain to be solved and extensions that can be made to the approach.

9.1 Summary

The thesis statement we put forward at the beginning of this dissertation was the following:

Thesis. Elaborate automated tool support for framework-based software development can be
provided by explicitly documenting a framework’s design in a formal way.

In the rest of the dissertation, we have tried to prove this thesis.
To document the design of a framework, we used information about design patterns and their

instances. This was motivated by the fact that design patterns are generally applicable, well-
documented, well-understood, commonly used and that they expose useful information about the
role and responsibilities of important classes and methods of a framework. Such information proved
valuable when instantiating and/or evolving the framework. We implemented an environment that
uses such information to actively support developers when they perform such tasks. The kind
of support ranged from verifying the framework’s design constraints, to automatically generate
skeleton code for applications and detecting conflicting changes that were applied by different
developers.

To be able to provide such elaborate automated support, a solid formal basis was required.
Therefore, we first defined a (quasi-)formal model for metapatterns. Such metapatterns form
an abstraction for many different design patterns, and can be formalized. They can thus be
used as a basis for a formal definition of (the structure, participants and collaborations of) those
design patterns. This formal model included the definition of five fundamental metapatterns,
the constraints that these impose upon the framework’s implementation, as well as high-level
transformations that can be applied upon their instances, that change their implementation and
update their documentation (semi-)automatically.

Based on the formal model and its associated transformations, we defined a change propa-
gation strategy. This was achieved by first identifying the possible ways in which instances of
the five fundamental metapatterns can overlap, and then determining the conditions under which
transformations applied on one metapattern instance give rise to transformations on overlapping
metapattern instances. Moreover, because the high-level transformations explicitly represent the
kind of changes that are applied to a framework, we were capable of defining an operation-based
merge conflict detection strategy. This allowed us to detect merge conflicts at a high level of
abstraction, and suggest possible resolutions.

We integrated this formal model into a declarative meta-programming environment, and pro-
vided implementations for the metapattern constraints, transformations, change propagation and
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merge conflict detection algorithms. In this way, we were able to show how support for framework-
based development could be achieved in practice, based on our theoretic foundations. We illus-
trated how design pattern instances could be explicitly documented, and how this enables the
environment to guide a developer when evolving or instantiating a framework. At the same time,
the environment also ensures that the design pattern documentation remains up to date at all
times. Such support is possible thanks to the fact that the environment can be programmed,
so that it can automatically translate design pattern instance specifications into the appropriate
metapattern instance specifications, and that it allows us to define framework-specific and design
pattern-specific transformation in terms of the built-in metapattern-specific transformations.

Finally, we used this environment to document the design and the evolution of the HotDraw
framework, This allowed us to test our approach in a practical setting, assess its usefulness and
detect possible shortcomings. The (preliminary) results we obtained in this way were quite sat-
isfying. The environment is able to guide a developer in constructing a correct instance of the
framework, by generating a template application that needs to be filled in. Furthermore, it au-
tomatically detects various design flaws and inconsistencies in the framework’s implementation,
despite the fact that we considered a stable version of the framework, that has already been studied
and reused many times. We also showed how the high-level transformations can be used to evolve
the framework, and how this allowed us to assess the impact of these evolutions on the framework
itself, as well as on its existing instances. The environment detected several important merge
conflicts and pointed out the places in the framework and its instance were developer attention is
required to resolve those conflicts.

9.2 Conclusions

Our approach to support framework-based development was validated on two different frame-
works: the Scheme framework, presented in Chapter 3 and the HotDraw framework, presented in
Chapter 8. We used the Scheme framework as a proof-of-concept throughout the dissertation, to
illustrate the approach, present various explanatory examples and fine tune the approach whenever
necessary. As a side effect, the usefulness of the approach was illustrated as well. The HotDraw
framework, on the other hand, was used as a case study to effectively prove our claims and validate
the approach. It was selected for two specific reasons. First, we required a controlled environment,
in which we could study the evolution of two stable versions of a framework. Second, the HotDraw
framework is widely recognized as a high-quality framework, that is well documented, has been
reused many times and has been studied extensively. Studying and summarizing the results we
obtained, we feel we can safely draw the following conclusions.

The most important conclusion of this dissertation is that building an environment that sup-
ports framework-based development, based upon a formal annotation of a framework’s design, is
both feasible and valuable. Our experiments clearly show that evolving and instantiating even
a small-scale framework is a complex and difficult task. Automated support for checking design
constraints, performing non-trivial changes and assessing the impact of particular changes is thus
undoubtably necessary and valuable.

Explicitly expressing a framework’s design constraints by means of metapattern constraints
turns out to be very useful when the framework is evolved manually. As our experiments indicate,
such constraints can be used to tackle the problem of design erosion. The supporting environment
is able to check whether the framework’s implementation still respects the appropriate constraints
after a number of changes have been applied manually. Several constraint violations were identified
in the framework’s implementation and a number of design flaws and inconsistencies were detected,
that apparently remained unnoticed by the framework developers. These are quite surprising
results, given the fact that we only considered stable releases of the HotDraw framework, that
have been studied extensively by many different people over the years.

We provided evidence that high-level transformations are valuable for automatically instanti-
ating and evolving a framework. Framework-specific transformations help a developer to derive a
correct instance from a framework, by guiding him through the process, pointing out the classes
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and methods that have to be added and generating code automatically whenever possible. They
thereby actually achieve the kind of support that is proposed by active cookbooks [PPSS95]. De-
sign pattern-specific transformations can be considered as higher-level refactorings and therefore
help a developer to evolve a framework in a more straightforward way at a higher level of abstrac-
tion. Our experiments showed however that such design pattern-specific transformations are only
useful for dealing with anticipated evolution. A number of changes to which a framework is sub-
ject deals with internally reorganizing a class hierarchy, something which can not be achieved by
applying a design pattern transformation. To alleviate this problem, we also included refactorings
into our approach, thus showing that support for unanticipated evolution can also be provided to
a certain extent.

The high-level transformations also enable us to reason about the evolution and instantiation of
a framework at a high level of abstraction. We have illustrated how support for software merging,
and in particular merge conflict detection, can be supplied, based on such transformations. Besides
showing that such support is possible, our experiments also proved that it can be used in practice,
and enabled us to automatically assess the impact of particular evolutions on the framework, as
well as on existing applications. The supporting environment detected various merge conflicts in
the HotDraw framework, and proposed adequate ways of resolving them.

We also extensively demonstrated that documenting a framework’s design by means of design
patterns is accurate and concise, and reveals significant information. All important class hierar-
chies and methods of both frameworks are covered (and thus documented) by the design pattern
instances occurring in them. Furthermore, documentation based on design patterns explicitly
describes the specific roles and responsibilities of the classes and methods involved. Such crucial
and important information can be used by tools, as we have illustrated, but will also be of great
value for a developer trying to understand the design and the inner workings of the framework.
We believe the framework understanding process can be significantly improved by incorporating
tools that allow developers to browse through this information in various ways. We do not have
any hard evidence of this fact, however, as this was not the specific focus of this dissertation.

Our initial belief that metapatterns do indeed form a suitable abstraction of design patterns
for the purposes of this dissertation was also confirmed. Due to the use of metapatterns, the
scalability and manageability of our approach was ensured, without sacrificing its overall usefulness
and practical applicability. Of course, we recognize that such an abstraction is only useful for
specific kinds of tools, that deal with the structure, participants and collaborations of design
patterns. Other tools that support working with design patterns, such as those that help a
developer in identifying the design pattern to use, will not benefit as much from the metapattern
abstraction, since metapatterns do not contain the appropriate information. We can imagine that
other abstractions for those kinds of tools will emerge.

9.3 Achievements

In this section, we elaborate upon the artifacts that were produced in the context of this disserta-
tion.

The most important artifact that was produced is the formal framework for the definition of
metapatterns. This framework provides general, parameterized formal definitions for five fun-
damental metapatterns. These definitions can be used as a basis to provide formal definitions
of Pree’s metapatterns, as well as formal definitions of (some aspects of) design patterns. The
framework is the most primitive building block of our approach, since without it, the scalability
and manageability of the approach can not be guaranteed.

This formal model also includes a definition of metapattern-specific transformations, that can
be used to construct design pattern-specific transformations, and a definition of metapattern
instance overlappings. This enabled us to define change propagation and merge conflict detection
algorithms. These algorithms can be used to detect the impact of a particular change upon the
framework and its existing applications.

Based on this model and the derived algorithms, another important artifact was developed: we
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have built a prototype of an environment that is able to support framework-based development.
Thanks to the use of metapatterns, this environment is scalable and general, and can be used for
any kind of framework. We integrated this environment into a standard development environment
by using SOUL, a declarative meta-programming language.

Other useful artifacts were produced during our case-study: we documented the complete
design of the HotDraw framework by means of design patterns, we provided framework-specific
transformations that implement an active cookbook for this framework and we identified places
in the framework that could be improved.

9.4 Limitations and Boundaries of the Approach

The approach to support framework-based software development we have proposed in this disserta-
tion naturally has some limitations, not in the least because we took into account some important
restrictions from the start. We will discuss the most important of these limitations and restrictions
in more detail in the following sections.

9.4.1 Fully Supporting Unanticipated Evolution

As we have mentioned, design pattern-specific transformations can only be used to support antic-
ipated evolution. This is due to the fact that, unlike refactorings, these transformations are not
generally applicable, but rather rely on a specific design of the framework to be able to perform
the needed changes. Consequently, such design pattern transformations are very well suited to
support instantiation of the framework, where a design is simply reused, but are much less useful
for reorganizing that design, for example.

In order to overcome this issue to some extent, and show that our approach is general enough
to include unanticipated evolution as well, we incorporated refactorings in Chapter 7. We did
not achieve full integration of these refactorings into our formal model of Chapter 5, however.
Therefore, we can not claim that we are able to fully support unanticipated evolution. For example,
refactorings could be used to reorganize participants in a design pattern instance, could destroy
that instance altogether or could replace it with an instance of another design pattern. At present,
we do not support such changes, meaning that these changes are not reflected in the design pattern
instance documentation, which may thus become incorrect. The only solution to this problem
consists of incorporating refactorings into the formal model, so that their effect upon a design
pattern instance is defined in a precise manner. However, fully integrating all refactorings into
the model is far from trivial, and would undoubtably increase the complexity of the model. This
should be considered future work.

Other approaches to support unanticipated evolution, such as reuse contracts [Luc97, Men99]
and intentional software views [MMW02], could also be considered. Since our approach bears much
resemblance to the reuse contract approach, and can be considered an extension of it, integrating
both approaches would be straightforward. The kind of support for unanticipated evolution offered
by the reuse contract approach is rather low level, compared to the kind of support offered by
refactorings, however. Integrating intentional software views into our approach would be much
harder, since these are a completely different way to support evolution.

9.4.2 Other Software Development Processes

Frameworks are not the only way in which flexible and reusable software can be developed. Other
software development processes exist, such as component-oriented software development [Szy97]
and product line engineering [Bos00]. The question can be raised to which extent our approach is
applicable in such domains.

In the component-oriented software development process, applications are constructed by
reusing off-the-shelf components and combining them in a suitable way by writing appropriate
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glue code. In this way, component-oriented software development closely resembles software de-
velopment using black-box frameworks [RJ96]. Both development methods clearly face entirely
different problems then a (white-box) framework-based development method. Application devel-
opers no longer have to consider the internal design and implementation details of the components,
since they are not allowed to change them. Rather, they are concerned with picking the appropri-
ate components for their purposes, and they should know how different components can be glued
together. This requires information about the external behavior of the components, as well as
information about the interfaces required and provided by these components. It is clear that the
approach we have presented in this dissertation can not be used for such purposes, since it deals
with entirely different information, and provides no support for gluing components together.

In product line engineering, applications (termed products) are implemented by means of a
product line. A product line consists of a product-line architecture and a set of components imple-
menting that architecture. A product is constructed by deriving a product architecture from the
product-line architecture and subsequently instantiating and configuring the components, extend-
ing them with product-specific code where necessary. As can be seen, product line engineering
differs from component-oriented programming in that the components in the product line archi-
tecture are not black-box, since they can be adapted by the application developer. Very often,
these components take the form of small object-oriented frameworks. For these reasons, we believe
our approach can be valuable in this domain as well. Since object-oriented frameworks are used to
implement the components, it is clear that our approach can support customization of these com-
ponents. Moreover, by slightly adapting our approach and incorporating extra information, such
as e.g. architectural information, it should be possible to support deriving a product architecture
from the product-line architecture as well. This issue should however be investigated further, and
can be considered future work.

9.4.3 Other Information

Another restriction we considered throughout the dissertation, was to use only information about
a framework’s design. Consequently, we could only express the instantiation and evolution of a
framework in terms of how its design was reused or how it changed over time. Other sources of
information are available, however, and if we use them, such restrictions would not be present. We
have two options in considering other kinds of information: we could use lower-level or higher-level
information. In what follows we will elaborate upon these issues.

Information below the Design Level

Information at the level below the design level can consist of coding conventions, programming
idioms [Cop92] and best practice patterns [Bec96], for example. Such information is closer to the
implementation level, but still provides some extra abstraction. It is thus much more detailed
than design information. This has the advantage that it can be used to provide extra support.
For example, we can easily imagine that coding conventions and best practice patterns can be
used to automatically generate appropriate method bodies, something a developer now has to
specify manually. The disadvantage of such detailed information is that it does expose many more
details. This means that such information could easily become unmanageable, could endanger the
scalability of the approach and could make it language dependent.

Information above the Design Level

Information at a level above the design level includes architectural information and domain knowl-
edge, for example.

Architectural information. A software architecture describes the overall structure of a
framework (or any software system in general), abstracting away all implementation details and
focusing only on a few concepts of interest and their mutual relationships. Architectural informa-
tion thus includes descriptions of the various conceptual parts of the framework (e.g. the classes
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and methods that conceptually belong together), as well as how these parts are related and col-
laborate to achieve certain behavior. As has been shown in [Men00, Flo00, Min97] and [MNS95],
tools can be build that use such information to support various aspects of the software development
process. Most certainly, the results obtained can be used to support framework-based development
as well. For example, it is possible to check the conformance of a framework’s implementation to
its intended architecture, after this implementation has evolved in a number of ways. However, we
believe that, due to the high-level nature of architectural information, it is impossible to provide
the kind of advanced support offered in this dissertation, such as semi-automatic guidance of in-
stantiation and evolution or detecting possible merge conflicts. This requires much more detailed
information, as we have illustrated throughout this dissertation. Still, we believe it is worthwhile
to investigate how the architectural information can complement the design information, and to
find out if significantly more, or improved, support could be provided by incorporating such extra
information.

Domain knowledge. Since frameworks are specific to a particular domain, it could be worth-
while to investigate how domain knowledge can be exploited to provide support for framework-
based development. For example, as we have observed during our validation, several classes in
the Figure class hierarchy do not need to override key methods (such as the extent, origin,
cornerVariable and originVariable methods, for example). Nevertheless, our change propa-
gation algorithm prompts the developer for an implementation every time a new class is added to
this hierarchy. Classes in this hierarchy represent mathematical figures, however, and the methods
implement mathematical properties and formulas. Since the hierarchy already includes all ”basic”
figures, such as RectangleFigure and EllipseFigure, these methods never need to be overridden
again. Clearly, if we incorporate domain knowledge into our approach, such information can be
made explicit, and this would enable us to refine our change propagation algorithm. Since domain
knowledge, just like architectural information, is rather high level, we believe it can only be used
as a complement to design information, for our specific purposes.

9.5 Future Work

Besides the issues discussed in the previous section, the approach we proposed in this dissertation
can be extended and improved upon in various other ways.

Overhead of design pattern instance specification. As our experiments have shown,
there is a slight overhead associated with the specification of design pattern instances. First, a
design pattern instance may involve many different participants, that each need to be specified
individually. Second, whenever such large instances overlap, the duplication that arises in their
specifications may be an impediment. We already explained that this problem can be alleviated,
by providing an appropriate interface that computes a design pattern specification automatically
and presents the result to the developer for inspection. For example, the developer may only
need to specify the root of a class hierarchy and the interface would be able to compute all leafs
automatically. Moreover, many tools exist today that help a developer in introducing design
pattern instances into the implementation. Such tools can be easily adapted so that they not only
generate the appropriate code for the instance, but also generate the corresponding specification
automatically.

Simplistic implementation of the metapattern-specific transformations. As our ex-
periments have shown, the current implementation of the metapattern-specific transformations is
too simplistic if used in a realistic setting. This implementation assumes that all newly added leaf
classes should implement all appropriate method participants. As we have observed, this is often
too strict a constraint when deep class hierarchies are involved. When a class is added deep down
in such hierarchies, it can often rely on method implementations provided by its superclasses.
It remains to be investigated how this issue can be dealt with. Presumably, more information
as to which methods should always be overridden and which methods may be inherited should
be included into the model in order to resolve the issue. As we have explained above, domain
knowledge may help to prevent this problem.
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Metapattern constraints. We identified a number of constraint violation conflicts that
can occur when a developer manually evolves a framework. Such constraint violation conflicts
were established upon the constraints that are associated with a particular metapattern. We did
not show however that these conflicts are complete with respect to the metapattern constraints,
e.g., that we effectively captured all constraint violation conflicts that can occur, based on the
metapattern constraints. This remains to be proven.

Moreover, much in the same way that metapattern-specific transformations can be used to
define design pattern-specific transformations, metapattern constraints can be used as a basis to
define design pattern constraints. Since design patterns exhibit more information than metapat-
terns about specific relationships and collaborations, design pattern constraints could presumably
detect more constraint violation conflicts. This in turn allows the environment to detect more
constraint violation conflicts and thus supply more support for a developer.

Furthermore, the definition, and corresponding implementation, of many metapattern con-
straints is quite naive. As our experiments have shown, unimportant, or even faulty, constraint
violation conflicts are reported when deeply nested class hierarchies are used. This is mainly due
to the fact that the definition of the constraints is too coarse grained. They do not allow, for
example, that leaf classes reuse the (default) implementation of a method defined in the root class
of a hierarchy. It remains an open question whether these constraints can be fine tuned, so that
they allow such reuse, while at the same time they can detect whenever a method is not over-
ridden but actually should be. Actually, this problem is related to the problem associated with
the transformations mentioned above. The extra information that we proposed to introduce into
the model there, can also be used in this case to provide a more realistic implementation for the
metapattern constraints.

Extensions to the model. The model we defined for metapatterns forms an important basis
for our approach. Several remarks about and extensions and improvements to this model are
possible:

• The model is only quasi-formal, in the sense that many definitions (such as those for the
relations that can hold between participants) are only given in natural language. A complete
model would also define these relations in a formal way. Such formal definitions are feasible,
however, since the relations mainly deal with important constructs that occur in every object-
oriented programming language. This was not the focus of our dissertation however.

• The metapattern-specific transformations only add or remove participants to and from
metapattern instances. Other useful transformations are imaginable, such as a refineTem-
plateMethod and coarsenTemplateMethod, for example. The main motivation for adding such
transformations is that many more evolutions could be expressed as high-level transforma-
tions, This would not only improve the interactive support for instantiation and evolution,
but would also result in many more merge conflicts that can be detected. The price that has
to be paid is that the model would become more complex: more transformations would need
to be defined, and the impact of many more transformations on overlapping metapattern
instances should be assessed. Furthermore, formal definitions for many more merge conflicts
would have to be provided.

• We have not provided formal proofs that the overlapping conditions for metapatterns are
complete, that the metapattern-specific transformations are indeed orthogonal and that
those transformations are independent from the actual metapatterns. We have only provided
informal discussions and relied on the reader’s common sense. These issues thus remain to
be investigated.

Scalability of the merge conflict detection algorithm. Although we used metapatterns
and metapattern-specific transformations to ensure the scalability of the merge conflict detection
algorithm, the approach can still be improved upon. Our operation-based merge conflict approach
as it is now is entirely based upon the particular operations that are allowed, e.g. the metapattern-
specific transformations and the refactorings. This makes the approach less scalable if more
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metapattern-specific transformations are included in the model, or if more refactorings need to
be incorporated. In those cases, we need to compare them to all existing transformations and
refactorings and define when their parallel application induces a conflict. Although we believe this
situation will not happen frequently, it is possible to define a merge conflict detection algorithm
independently of the transformations and refactorings that are allowed. This can be achieved by
first determining the assumptions upon which each individual transformation or refactoring relies
and then considering how one transformation or refactoring breaks the assumptions of another
one. Under such circumstances, a merge conflict can be reported. Whenever a new transformation
or refactoring should be introduced, it then suffices to define the assumptions upon which it relies
and which assumptions it may break, in order to incorporate it into the merge conflict detection
algorithm.

Language independence. One particular issue we did not explicitly address is language
independence. All of our experiments were performed on frameworks that were implemented in the
Smalltalk programming language. In principle, the results we obtained should be generalizable to
any other object-oriented programming language. Design patterns (and metapatterns) are mostly
language independent, since only their implementation is specified in a particular programming
language. The structure, participants and, to some extent, the collaborations of a particular design
pattern instance are similar in many different programming languages. Moreover, the relations
present in our formal model are present as basic constructs in any object-oriented programming
language. We can thus describe a framework’s design by means of design patterns, irrespective
of the programming language in which it is implemented. As for the transformations, it would
appear as if they are specific to a particular programming language, since they generate the actual
code that updates the implementation. However, these transformations are easy to generalize as
well, since they merely manipulate classes and methods, and they mostly rely on the developer for
the actual method implementations. It would thus be easy to reimplement the transformations in
a more generic way, so that they generate code in the appropriate language.

Validation on industrial cases. As we have stressed many times, the major focus of this
dissertation was on language engineering issues. We mainly concentrated on showing the feasibility
of building an environment that can support framework-based development. This required us to
work in a controlled setting, where stable versions of a framework were available for study. As
a result, industrial frameworks were ruled out initially. Nevertheless, the results we obtained
strongly indicate that the support we are able to provide is valuable. The logical next step is thus
to further test our approach on industrial frameworks. Naturally, this requires that our supporting
environment is integrated into a standard development environment, much like the Refactoring
Browser. We are currently working on a prototype of such a browser, that extends the Refactoring
Browser with design pattern-specific transformations and that includes constraint checking and
merge conflict detection algorithms. This environment will also allow us to test our approach in an
interactive way, during evolution and instantiation. As was already explained, in this dissertation
we only considered the evolutions that were applied in retrospect.
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Appendix A

Formal Definition of Pree’s
Metapatterns

In Chapter 5, we already provided formal definitions for the Unification and 1:N Recursive Con-
nection metapatterns in terms of the fundamental metapatterns. We will now show how the other
metapatterns identified by Pree in [Pre95] can be formally defined.

A.1 The 1:1 Connection Metapattern

Definition

The 1:1 Connection metapattern, as depicted in Figure A.1, can be defined by means of the
Connection fundamental metapattern. As such, it has five participants: a template class T, a
hook hierarchy H, a set of template methods Mt, a set of hook methods Mh and a reference
variable v. In this particular metapattern, the templateClass participant refers to exactly one
instance of a concrete hook class from the hook hierarchy H, which is denoted by the single
annotation in the definition. The reference is held by means of the reference variable v, which is
defined as an instance variable in the templateClass participant. This is the reason for the variable
annotation in the definition. The complete definition for the 1:1 Connection metapattern thus
looks as follows:

oneToOneConnectionMetapattern(T,H, T :: Mt,H :: Mh, V )
::=

connectionFundamentalMP (T,H, T :: Mt,H :: Mh, V, single, variable)

t h

Figure A.1: The 1:1 Connection metapattern
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ScUserDefinedProcedure strategy ApplyStrategy
apply:onActuals:inEnvironment:

ApplicativeApplyStrategy
apply:onActuals:inEnvironment:

EvaluatedArgumentsApplyStrategy
apply:onActuals:inEnvironment:

NormalApplyStrategy
apply:onActuals:inEnvironment:

Figure A.2: Example Design Pattern for the 1:1 Connection metapattern

A.1.1 Structure of the template methods

The typical structure of a template method defined for this pattern looks as follows:

t

...

v h1.

...

v h2.

...

where the method t is a member of the templateMethod participants defined by this pattern
and v is the variable participant that holds the reference from the template class to an object
of the hook hierarchy. Both of these participants are defined in the templateClass participant of
the metapattern. The h1 and h2 methods are members of the hook methods of this metapattern
and are defined in the root of the hookHierarchy participant, while provided with a concrete
implementation for all leaf classes of that hierarchy.

A.1.2 Example Design Pattern

The Strategy design pattern is a prototypical example of a design pattern that uses this meta-
pattern as its underlying structure. Figure A.2 shows an instance of this design pattern in the
Scheme framework. The ApplyStrategy hierarchy represents the hookHierarchy participant H of
the metapattern, the ScUserDefinedProcedure class corresponds to the templateClass partici-
pant, while the apply:onActuals:inEnvironment: method is the only hookMethod participant.
Observe that there is no templatemethods participant, since the design pattern instance does not
contain any such participants.

We can express this instance of the Strategy design pattern in a formal way as follows:

hookhierarchy(hierarchy(ApplyStrategy))
templatemethods({})
templateclass(ScUserDefinedProcedure)
hookmethods(hierarchy(ApplyStrategy) :: apply : onActuals : inEnvironment :)
referencevariable(strategy)

A.2 The 1:N Connection Metapattern

Definition

The 1:N Connection metapattern (see Figure A.3) differs from the 1:1 Connection pattern only in
the number of references to objects of the hook hierarchy. As such, it can also be defined in terms of
the Connection fundamental metapattern. In the 1:N Connection metapattern, the template class
T refers to multiple instances of classes in the hook hierarchy H through the reference variable v.
This is denoted in the definition by means of the multiple annotation. The reference variable is
defined in the template class participant as an instance variable once again, which is the reason
for the variable annotation. The formal definition of this metapattern is thus:
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t h
*

Figure A.3: The 1:N Connection metapattern

oneToManyConnectionMetapattern(T,H, T :: Mt,H :: Mh, V )
::=

connectionFundamentalMP (T,H, T :: Mt,H :: Mh, V, multiple, variable)

A.2.1 Structure of the template methods

In this particular metapattern, the template methods typically iterate over the collection of hook
objects contained in the variable v, and call the appropriate hook methods on each of them. In
Smalltalk, such template methods might look as follows:

t

...

v do: [ :hookobject | hookobject h1. hookobject h2: 1 ]

...

where the method t is defined in the template class participant and belongs to the set of
template methods. The v object, which is also defined in the template class participant, contains
a collection of all hook objects that an instance of the template class T refers to. The h1 and h2:
methods, defined in the hook hierarchy participant, belong to the set of hook methods Mh.

A.2.2 Example Design Pattern

The Observer design pattern is the prototypical example of a design pattern that uses this metapat-
tern as its underlying structure. A typical instance of this design pattern is depicted in Figure A.4.
The Subject class, which plays the role of the template class participant of the metapattern,
holds a reference to a number of Observer objects, through the instance variable observers.
This instance variable represents the reference variable participant of the metapattern, while the
Observer hierarchy represents the hook hierarchy participant. Whenever the state of a subject
changes, the notify method is called, which notifies all the observers by sending them the update
message. The notify method of the Subject class represents the template method participant
of the metapattern, while the update method of the Observer hierarchy plays the role of hook
method participant. Concrete observer classes override this update method in order to update
themselves appropriately upon state changes.

In our formal model, we can express this instance of the Observer design pattern as follows:

hookhierarchy(hierarchy(Observer))
templatemethods(Subject :: notify)
templateclass(Subject)
hookmethods(hierarchy(Observer) :: update)
referencevariable(observers)
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Figure A.4: Example Design Pattern for the 1:N Connection metapattern

h h

Figure A.5: The 1:1 Recursive Connection metapattern

A.3 The 1:1 Recursive Connection Metapattern

Definition

The 1:1 Recursive Connection metapattern (see Figure A.5) is defined in terms of the Recursion
fundamental metapattern, and consists of five participants: a template class T, a hook hierarchy
H, a reference variable v, a set of hook methods Mh defined in class T and a set of hook methods
Mh defined on the hierarchy H. The class T itself is also part of the hierarchy H.

In this metapattern, the template class T refers to exactly one instance of a class in the hook
hierarchy H, which is denoted by the single annotation in the definition. The reference to an
object of the hook hierarchy is via the reference variable v, which is defined as an instance variable
in the template class participant. This is denoted by the variable annotation in the definition,
which thus looks as follows:

oneToOneRecursiveConnectionMetapattern(T,H, T :: Mh,H :: Mh, V )
::=

recursionFundamentalMP (T,H, T :: Mh,H :: Mh, V, single, variable)

A.3.1 Structure of the template methods

The typical implementation of a template method for this metapattern looks as follows:

h

...

v h

...

which shows that the template method h, defined in class T, recursively calls the hook method
h, defined in the hierarchy H. This is formally specified by the invokesr relation in the definition
of the Recursion fundamental metapattern.
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Figure A.6: Example Design Pattern for the 1:1 Recursive Connection metapattern

h

Figure A.7: The 1:1 Recursive Unification metapattern

A.3.2 Example Design Pattern

An example of a design pattern that uses this structure is the Decorator design pattern, as de-
picted in Figure A.6. The role of the template class participant of the metapattern is played by the
Decorator participant, while the hook hierarchy participant is represented by the Component hier-
archy. The operation method defined on the Decorator class plays the role of template method
participant, while the same method defined on the Component class, and overridden in the various
leaf classes (such as the ConcreteComponent class), plays the role of hook method participant.
The reference variable participant of the metapattern is represented by the component instance
variable defined in the Decorator class.

This instance of the Decorator design pattern can be expressed formally as follows:

hookhierarchy(hierarchy(Component))
templatemethods(Component :: operation)
templateclass(Decorator)
hookmethods(hierarchy(Component) :: operation)
referencevariable(component)
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Figure A.8: Example Design Pattern for the 1:1 Recursive Unification metapattern

A.4 The 1:1 Recursive Unification Metapattern

Definition

In the 1:1 Recursive Unification metapattern (see Figure A.7) the template class T and the root of
the hierarchy H are unified into one class. This is reflected by the fact that this metapattern only
has three participants: the hook hierarchy H, a reference variable v and a set of hook methods
H :: Mh. The root of this hook hierarchy contains a single reference to itself through the v
variable, which is defined as an instance variable in the root of the hierarchy H. Consequently,
this pattern can be defined as follows formally:

oneToOneRecursiveUnificationMetapattern(H,H :: Mh, V )
::=

recursionFundamentalMP (root(H),H, root(H) :: Mh,H :: Mh, V, single, variable)

A.4.1 Structure of the template methods

A template method in this metapattern has the following form:

h

...

v isNil ifFalse: [ v h ]

...

A template method h thus calls itself recursively using the reference present in the root of the
hook hierarchy, if this reference exists.

A.4.2 Example Design Pattern

The structure of this metapattern is used, for example, in the Chain of Responsibility design pat-
tern. Consider the example instance of this design pattern as presented in Chapter 3 and depicted
in Figure A.8. The SpecialFormHandler hierarchy represents the hookHierarchy participant of
the metapattern. There is only one hookMethod participant in this design pattern instance, namely
the analyze: method that is defined on this hierarchy. The successor instance variable of the
SpecialFormHandler class corresponds to the referenceVariable participant.

Formally, we can express this instance as follows:

hookhierarchy(hierarchy(SpecialFormHandler))
hookmethods(hierarchy(SpecialFormHandler) :: analyze :)
referencevariable(successor)
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Figure A.9: The 1:N Recursive Unification metapattern

A.5 The 1:N Recursive Unification Metapattern

A.5.1 Definition

Just like the 1:1 Recursive Unification pattern is a degenerate version of the 1:1 Recursive Con-
nection pattern, the 1:N Recursive Unification pattern (see Figure A.9) is a degenerate version of
the 1:N Recursive Connection pattern. It unifies the template class T and the root of the hook
hierarchy H into one class. This class holds a reference to a number of instances of classes of its
own hierarchy through the reference variable v, that it defines as an instance variable. Formally:

oneToManyRecursiveUnificationMetapattern(H,H :: Mh, V )
::=

recursionFundamentalMP (root(H),H, root(H) :: Mh,H :: Mh, V, multiple, variable)

A.5.2 Structure of the template methods

The template methods of this metapattern use the reference variable to call themselves recursively:

h

...

v do: [ :hookobject | hookobject h ].

...

where h is a member of the set of hook methods, and the v object contains the collection of
references to instances of the hook hierarchy.

A.5.3 Example Design Pattern

This metapattern can be used as the underlying structure for a variant of the Observer design
pattern, where the Subject and the Observer classes are unified into one class. This is how many
Smalltalk dialects implement the MVC paradigm, for example. The class Object, which is the
superclass of all classes in the Smalltalk language, holds a reference to a number of objects in order
to be able to update them when state changes occur. Object and all of its subclasses thus form
the hook hierarchy participant of this metapattern. The Object class defines an instance variable
dependents, that holds all observers and thus corresponds to the reference variable participant.
The hook method participant is represented by the notify: method, also defined on the Object
class, while the template method participants are all methods that change the state of an object
and call the notify: method accordingly.
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Appendix B

Discussion of the Remaining
Merge Conflicts

As mentioned in Chapter 7, we can detect 12 possible merge conflicts due to the parallel application
of metapattern-specific transformations and refactorings. We only discussed five of these conflicts
in that chapter. Here, we discuss the remaining seven conflicts.

B.1 Naming Merge Conflicts

As was discussed in Section 7.3.2, naming conflicts arise when developers independently introduce
a class or a method with the same name. Refactoring operations that rename a particular artifact,
such as renameClass and renameMethod may also cause name clashes, and can thus also provoke
a naming conflict.

B.1.1 Example Conflict

Figure B.1 shows an example of a naming merge conflict that is due to the parallel application of
a moveMethod refactoring and an addHookMethod evolution operation. The refactoring moves a
method analyze: from some class to the CondHandler class, while at the same time, an analyze:
method is added as a hookMethod participant to the SpecialFormHandler hierarchy, and thus to
the CondHandler class. In the merged result, the CondHandler class thus defines two analyze:
methods.

B.1.2 Formal Definition

Table B.1 contains formal definitions of the conditions that give rise to a naming merge conflict
involving classes. As can be seen, such a conflict occurs when two classes with the same name are
introduced, or a class is renamed while at the same time a class with the same name is introduced.

Similarly, Table B.2 lists the conditions that lead to a naming merge conflict when introducing,
renaming or moving methods. The moveMethod refactoring moves a method from one class to
another, and may thus give rise to a naming merge conflict if the destination class already defines a
method with the same name. Since a moveClass refactoring did not exist, this particular condition
was not present for classes.

B.1.3 Discussion

As was already explained previously, naming merge conflicts can not be resolved in an automatic
way, since it is difficult to know when similarly named artifacts actually represent the same concept.
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addClass(className, superclass, subclasses) ‖ addLeafa(leafName) ⇒
namingConflict(className)

if
className = leafName

renameClass(class, newName) ‖ addLeafa(leafName) ⇒
namingConflict(leafName)

if
newName = leafName

Table B.1: Conditions giving rise to a naming merge conflict when adding or renaming classes

addMethod(class,m1, body) ‖ addMethoda(m2) ⇒
namingConflict(m1)

if
m1 = m2 ∧ (inherits∗h({class},Ha) ∨ inherits∗h(Ha, {class})

renameMethod(class,m1,m2) ‖ addMethoda(m3) ⇒
namingConflict(m3)

if
m2 = m3 ∧ (inherits∗h({class},Ha) ∨ inherits∗h(Ha, {class})

moveMethod(class,m1, destClass,m2) ‖ addMethoda(m3) ⇒
namingConflict(m3)

if
m2 = m3 ∧ (inherits∗h({destClass},Ha) ∨ inherits∗h(Ha, {destClass})

Table B.2: Conditions giving rise to a naming merge conflict when adding, renaming or moving
methods
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Figure B.1: A naming merge conflict

Therefore, the only way to solve such conflicts is by consulting the developers that performed the
evolutions, who should look into the problem and resolve it appropriately.

B.2 Orphan Method/Variable Merge Conflicts

Example Conflict

Figure B.2 depicts a particular occurrence of an orphan method merge conflict. Again, an instance
of the Composite design pattern in the Scheme framework is evolved in two different ways at the
same time. One evolution consists of adding a particular new expression to the ScExpression
hierarchy by applying an addLeaf evolution operation. This operation is specific to the Composite
design pattern and adds a new leaf class participant (ScQuoteExpression in this case) to the
instance. The other evolution consist of pulling up the printOn: method by means of a pullUp-
Method refactoring. The rationale behind this refactoring is to remove the printOn: method from
all subclasses, implement it as a concrete method in the ScExpression class, and use a Visitor
design pattern to implement the appropriate behavior.

The end result of the merge process shows that the newly added ScQuoteExpression class
does still contain an implementation for the printOn: method. Since it was the intent of the
pullUpMethod refactoring to pull this method up in the class hierarchy, this situation is probably
not satisfactory. Furthermore, since the printOn: method in class ScExpression is a generaliza-
tion of all methods implemented previously in the subclasses, it should be checked whether it is
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Figure B.2: An orphan method merge conflict

pullUpMethod(class, selector) ‖ addLeafa(leafName) ⇒
orphanMethodConflict(leafName, selector)

if
class = root(Ha)

Table B.3: Conditions giving rise to an orphan method merge conflict

general enough to cover the new ScQuoteExpression class as well.

B.2.1 Formal Definition

The formal definition of the conditions which lead to an orphan method merge conflict are listed
in Table B.3. Such a conflict arises when a pullUpMethod refactoring operation is performed on a
particular class hierarchy, while at the same time, this hierarchy is extended with a new class, by
means of an addHookClass or an addTemplateClass evolution operation. Formally, the condition
specifies that the hierarchy to which the refactoring is applied should be a hierarchy participant
in a design pattern (or metapattern) instance to which the evolution operation is applied. Under
these conditions, the newly added class will provide an implementation for a method that it should
actually inherit from its superclass.

Similar to the orphan method merge conflict, an orphan variable merge conflict arises when
the hierarchy to which an addHookClass or addTemplateClass operation is performed is subject to
a pullUpVariable refactoring. The conditions that need to be satisfied for a orphan variable merge
conflict to occur are the same as those for the orphan method merge conflict, as can be seen from
Table B.4.
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pullUpV ariable(class, variable) ‖ addLeafa(leafName) ⇒
orphanV ariableConflict(leafName, variable)

if
class = root(Ha)

Table B.4: Conditions giving rise to an orphan variable merge conflict

B.2.2 Discussion

Orphan method and orphan variable merge conflicts are classified as structural merge conflicts.
Clearly, when merging the two versions of the framework, the resulting structure lacks uniformity,
because one particular entity differs from all other entities. In the example presented above,
the ScQuoteExpression class contains an implementation for the eval: method, while all other
leaf class participants of the Composite design pattern instance inherit this implementation from
the ScExpression superclass. Presumably, the ScQuoteExpression class should also inherit this
behavior.

As all other structural conflicts that we encountered thus far, the orphan method and orphan
variable merge conflicts can be resolved by enforcing an order on the application of the evolu-
tions. Those operations that add participants should have precedence over those operations that
merely change an already existing structure. Concretely, if in the presented example, the addLeaf
evolution operation on the Composite design pattern instance is applied before the pullUpMethod
refactoring, the conflict will not occur. Under these circumstances, the refactoring will pull up the
implementation of the eval: method from the ScQuoteExpression class as well.

B.3 Missing Origin/Destination Merge Conflicts

Refactoring operations that move a method or a variable between classes may give rise to two
different kinds of conflicts: missing origin and missing destination merge conflicts. This duality
stems from the fact that moving a method involves two different classes, which can both be subject
to changes by other evolution operations, as we will see.

B.3.1 Example Conflict

Figure B.3 shows the situation where one developer moves a method method to a CondHandler
class, while another developer performs a removeConcreteHandler evolution operation on the
instance of the Chain of Responsibility design pattern, and consequently removes the CondHandler
class. Clearly, this results in a conflict in the merged version, since the destination class to which
the method should have been moved is now missing from the implementation.

Figure B.4 contains an example of a missing origin merge conflict. In this figure, a devel-
oper manipulates an instance of the Composite design pattern, by applying a removeCompos-
iteMethod operation to remove the analyze method. At the same time, another developer moves
the analyze method of the ScConsExpression class to the SpecialFormHandler class by means
of a moveMethod refactoring. This operation is performed while introducing an instance of the
Chain of Responsibility design pattern, that is used in the ScConsExpression class, to avoid a
large conditional statement that handles all possible special forms.

When merging both evolutions, the analyze: method of the SpecialFormHandler class is no
longer called from within the ScConsExpression, which is not what was intended. This prevents
the special forms of the Scheme language from being evaluated.
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Figure B.3: A missing destination merge conflict

B.3.2 Formal Definition

Table B.5 defines the conditions that give rise to a missing destination merge conflict. Such
conflicts are caused by a refactoring that moves a method or a variable, while at the same time,
the class to which this method or variable is moved is removed (by means of a removeHookClass
or a removeTemplateClass evolution operation).

In Table B.6, the conditions are specified that lead to a missing origin merge conflict. Such
a conflict does not exist for variables, only for methods. It is caused by applying a moveMethod
refactoring which moves a particular method to another class, and may provide the original method
in the origin class with a default behavior that forwards the method to the destination class. When
this original method is removed by means of a removeHookMethod or removeTemplateMethod
evolution operation the conflict occurs. Formally, the conditions state that the conflict occurs
whenever the origin class from which a method is moved is part of a class hierarchy to which
a removeMethod evolution operation is applied, and the method that is moved is equal to the
method that is removed.

Note that, strictly speaking, this combination of evolution operations will not always lead to a
conflict in practice. If the moveMethod refactoring is applied and there is no need for a forwarding
method, the original method may be removed by the refactoring itself. Therefore, when another
evolution is applied in parallel that also removes this original method, the merged result will be
correct, even though a warning will be issued.
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Figure B.4: A missing origin merge conflict

B.3.3 Discussion

Both missing destination and missing origin merge conflicts are classified as behavioral conflicts.
In the latter case, this is obvious. The structure resulting from merging the two versions of
the framework is correct with respect to the intended design structure, but does not exhibit the
appropriate behavior: the method that is moved is no longer called, so the framework will probably
not behave as intended. A missing destination merge conflict will most probably be detected by a
compiler, since a method calls another method that does no longer exist. As such, it even becomes
impossible to construct a correct version of the framework that incorporates both changes.

A missing destination merge conflict can not be automatically resolved. By imposing an order
on the application of the evolutions, the conflict can be avoided however. When we first apply the
removeConcreteHandler, the moveMethod refactoring will not be allowed, since its preconditions
will detect that the CondHandler class no longer exists, and will report this as an error. Although

moveMethod(class,m1, destClass,m2) ‖ removeLeafa(leafName) ⇒
missingDestinationConflict(leafName, m2)

if
class(leafName) = destClass

moveV ariable(class, varName, destClass) ‖ removeLeafa(leafName) ⇒
missingDestinationConflict(leafName, varName)

if
class(leafName) = destClass

Table B.5: Conditions giving rise to a missing destination merge conflict
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moveMethod(class,m1, destClass,m2) ‖ removeMethoda(m3) ⇒
missingOriginConflict(destClass, m2)

if
class ∈ Ha ∧m1 = m3

Table B.6: Conditions giving rise to a missing origin merge conflict

the conflict will be prevented in this way, it is not actually solved. The mere fact that the
moveMethod refactoring was applied by one of the developers means that it was actually the
intent to move this method to the desired class. The developer thus had some specific goal in
mind when performing this operation. The fact that this class does no longer exist does not change
this goal, so the situation should be reconsidered and the appropriate solution should be found by
the developer.

A missing origin merge conflict can not be resolved by means of imposing an order on the
application of the evolution either. The developers responsible for the evolutions should be warned
and should look into the situation and come up with an appropriate solution.

B.4 Remove Merge Conflicts

B.4.1 Example Conflict

addMethod

removeConcreteHandler

SpecialFormHandler

LetHandlerLambdaHandler

ApplicationHandler SpecialFormHandlerWith
Successor

successor

SpecialFormHandler

LetHandlerLambdaHandler

ApplicationHandler SpecialFormHandlerWith
Successor

successor

CondHandler
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ApplicationHandler SpecialFormHandlerWith
Successor

successor
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SpecialFormHandler
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ApplicationHandler SpecialFormHandlerWith
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merged result

Figure B.5: A remove merge conflict
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addMethod(class, selector, body) ‖ removeLeafa(leafName) ⇒
removeConflict(class, selector)

if
class = class(leafName)

Table B.7: Conditions giving rise to a remove merge conflict

addV ariable(class, varName, initClass) ‖ removeLeafa(leafName) ⇒
removeConflict(class, varName)

if
class = class(leafName)

Table B.8: Conditions giving rise to a remove merge conflict

Consider the situation shown in Figure B.5. The first evolution that is applied is a addMethod
refactoring operation that adds a method method to the CondHandler class. The second evolution
removes the CondHandler class from the instance of the Chain of Responsibility design pattern by
means of an removeConcreteHandler evolution operation. The version of this class hierarchy that
results from merging both evolutions appears correct, except from the fact that the method that
was added by the first evolution is not included. Since it was the specific intent of the developer
to include this method, this may not be what is desired, so a conflict should be reported.

B.4.2 Formal Definition

The formal definitions of the conditions that give rise to a remove merge conflict are listed in Ta-
ble B.7. As can be seen, such conflicts arise when a method is added to a particular class by means
of an addMethod refactoring, while at the same time, this class is removed by a removeHookClass
or removeTemplateClass evolution operation. Similarly, the same conditions can be defined for
a remove merge conflict involving variables. In this case, an addVariable refactoring is applied
instead of an addMethod refactoring, while the class to which the variable is added is removed by
means of a removeHookClass or removeTemplateClass evolution operation. The conditions are in
fact the same, as can be seen in Table B.8.

B.4.3 Discussion

Remove merge conflicts are another kind of behavioral conflicts. Clearly, the structure resulting
from merging both evolutions is correct with respect to the design structure, and no design pattern
(or metapattern) constraints are violated. It remains an open question whether the framework
will behave as intended, however. Presumably, there are no references to the method, since it was
just introduced. However, the developer who introduced the new method did so with a specific
goal in mind. Even though the framework may behave as intended, we should still notify the
developer to ensure that he takes appropriate action to achieve his specific goal in another way.

Once again, a remove merge conflict can be avoided, but not resolved, if the order of the
evolution operations is taken into account. If the removeConcreteHandler operation is applied
before the addMethod refactoring in the example, the latter’s preconditions will not be satisfied,
and the operation will thus not be allowed. However, since this is not what was intended, the
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conflict is not actually resolved. Therefore, the developers responsible for the two evolutions should
be consulted and should decide how the problem can be resolved in the appropriate way.
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