
FACULTEIT VAN DE WETENSCHAPPEN
Vakgroep Informatica
Programming Technology Lab

Ambient-Oriented Programming

Ph.D. Dissertation

Jessie Dedecker

Promotors: Prof. Dr. Theo D’Hondt and Dr. Wolfgang De Meuter

23 May 2006

ii

Abstract

As a result of the computing technology that becomes ever smaller and cheaper
it is now possible to integrate it into everyday material objects. This advanced
integration of technology allows the underlying computer to disappear into the
fabric of life so that by manipulating material objects we are transparently in-
teracting with the underlying integrated technology. The invention of wireless
communication technology enables these disappearing integrated computers to
cooperate with one another so that they can derive context about its environ-
ment. The advantage is that users can be supported more naturally and trans-
parently to achieve their goals. This vision is often referred to as “Ambient
Intelligence” (AmI).

The research presented in this dissertation deals with the problem of software
development for these invisible computers from the perspective of distributed
systems. Developing software for such systems is difficult because of inescapable
characteristics exhibited by the hardware. For example, as a consequence of the
use of wireless communication media connections can break at any point in time
due to interference in the environment and the mobility of material objects. To
address these hardware phenomena at the software level we propose a new pro-
gramming paradigm called “Ambient-Oriented Programming” (AmOP). This
programming paradigm is derived from the most important hardware phenom-
ena.

The next step in this dissertation is to gain insight in the structure of AmOP
applications. Although the definition of a paradigm is a first step towards this
goal, it is insufficient to derive the structure of AmOP applications. To gain
insight in the structure of AmOP applications it was necessary to experiment
with new language features. The definition and experimentation with new lan-
guage features is necessary for three reasons: 1) it supports the developer to
capture the consequences of the hardware phenomena in the code. 2) without
proper language features the integration of the AmOP paradigm with the ob-
ject paradigm leads to complex program structures. 3) at this point there is not
enough experience in building applications that enable AmI scenarios.

To support experiments with language features we build an AmOP pro-
gramming language. The first step towards such a programming language is
the choice of a concurrency and distribution model, which we defined as a for-
mal extension of the actor model. This formal model serves as a base for the
concurrency and distribution model of an AmOP kernel language, called Ambi-
entTalk. AmbientTalk is a little reflectively extensible language that supports
experimentation with new language features. New language features are de-
fined in AmbientTalk itself out of semantic building blocks, which are shaped
by the AmOP paradigm. These semantic building blocks are used to extend

iv

AmbientTalk with existing and new language features. These language fea-
tures support the developer in addressing the inescapable consequences of the
hardware phenomena.

Acknowledgements

This dissertation would not have been what it is today without the tremendous
support that I have received from my colleagues, friends and family.

I would like to thank Theo D’Hondt not only for inspiring me to do research
but also for providing me with the means to do it. Besides having sparked my
interests for research Theo also introduced to the EMOOSE master program,
which has both enriched me from an intellectual and social perspective.

A BIG thank you also goes to Wolfgang De Meuter for being there during
each step towards this dissertation and for providing me with all those useful
comments, tips and “pep talk” at the right moments.

I thank the members of my thesis committee, Prof. Cristina Videira Lopes,
Prof. Wouter Joosen, Prof. Viviane Jonckers and Prof. Bernard Manderick, for
comments on the first version of the text.

Two other people I am greatly indebted to are Tom Van Cutsem and Stijn
Mostinckx. Tom helped me with some of the implementations of the experi-
ments, meticulously checked all technical details and provided me with useful
comments on how to improve the readability. Stijn proofread some of the tech-
nical chapters and generously took over my teaching responsibilities while I was
writing. Wolfgang, Tom and Stijn not only helped me enormously while I was
writing but were also my partners in crime during the last couple of years. I
look forward to continue working with them in the future.

I also thank Werner Van Belle with whom I developed the formal actor
extensions in this dissertation. Werner also helped me with finding a focus
in the first year, which was very important in order to finish this dissertation
within the time constraints of my funding.

Thanks also to all the people who helped in improving the quality and clarity
of my writing by proofreading and commenting on preliminary versions of this
dissertation. Wolfgang De Meuter, Tom Van Cutsem, Pascal Costanza and Stijn
Mostinckx have helped a lot me to improve the quality of the text.

Peter Ebaert and Elisa Gonzalez Boix also deserve special mentioning. Pe-
ter took care of my responsibilities concerning the EMOOSE program while I
was writing. Elisa started developing a concurrency extension for Pico during
her training at PROG. This extension was employed in the prototype used to
conduct the experiments in this dissertation.

I also thank the other members of our lab for providing me with useful
comments at my research meetings and for enduring me at all those moments I
was (unreasonably?) stressed: Andy Kellens, Brecht Desmet, Coen De Roover,
Dirk Deridder, Dirk van Deun, Ellen Van Paesschen, Isabel Michiels, Johan
Brichau, Johan Fabry, Jorge Vallejos Vargas, Kris Gybels, Linda Dasseville,
Sofie Goderis, Thomas Cleenewerck.

vi

Thanks to my friends Tim Dobbelaere, Bram Bruneel, Henk Brouckxon, Lies
Van Doren, Sebastián González, Agustina Maŕıa Cibrán, Boris Mejias, Werner
Van Belle, Antoon Goderis, Michael Vernaillen, Bert Schiettecatte and Frank
van der Kleij for supporting me during the years towards this dissertation.

I want to thank the secretaries, Lydie Seghers, Brigitte Beyens and Simonne
De Schrijver for helping me out with all the administrative issues. Also thanks to
Philippe Debroey, who made a professional graphical design of the AmbientTalk
logo.

Thanks to my girlfriend Ellen Degreef for her enormous support and for
enduring me for the last couple of months, when I was mainly concerned with
my dissertation. Another big thank you goes to my parents, who have always
supported me and my interest in technology long before I went to university.

Finally, I wish to thank everyone for having had the opportunity to write
this dissertation.

Contents

1 Introduction 1
1.1 Research Context and Motivation 2

1.1.1 A Futuristic Scenario . 2
1.1.2 What is the Problem? . 3
1.1.3 Research Goals . 4

1.2 The Thesis . 5
1.3 Problem Statements . 5
1.4 Research Approach . 6

1.4.1 An Experimental Approach 6
1.4.2 Languages vs. Middleware 7
1.4.3 Implicit vs. Explicit Distribution 8
1.4.4 Language Design Choices 9

1.5 Contributions . 11
1.5.1 AmOP Paradigm . 11
1.5.2 The Ambient Actor Model 11
1.5.3 Language Experimentation Laboratory 11
1.5.4 AmOP Language Constructs 12

1.6 Roadmap . 12

2 Software Platforms for Mobile Distributed Systems 15
2.1 Introduction . 15
2.2 Types of Mobile Distributed Systems 16
2.3 Hardware Phenomena . 18
2.4 Concurrency and Distribution . 19

2.4.1 Definitions . 19
2.4.2 Denoting Parallel Units in Programming Languages . . . 22
2.4.3 Design Issues in Communication 23
2.4.4 Corollaries of Mobile Distribution 24

2.5 Objects vs. Concurrency and Distribution 26
2.5.1 The Library Approach . 27
2.5.2 The Integrative Approach 27
2.5.3 The Reflective Approach 30
2.5.4 Discussion . 30

2.6 Distributed Programming Languages 31
2.6.1 Actor Based Concurrent Languages (ABCL) 32
2.6.2 Argus . 34
2.6.3 E . 36
2.6.4 Salsa . 38

viii CONTENTS

2.6.5 nesC . 39
2.6.6 Summary . 41

2.7 Middleware . 41
2.7.1 RPC-Based Middleware 42
2.7.2 Publish-Subscribe Middleware 45
2.7.3 Tuple Space Based Middleware 46
2.7.4 Data Sharing-Oriented Middleware 48
2.7.5 Summary . 52

2.8 Conclusion . 52

3 Ambient-Oriented Programming 55
3.1 Introduction . 55
3.2 Classless Object System . 55
3.3 Non-Blocking Communication . 57
3.4 Reified Communication Traces 58
3.5 Reified Environmental Context 60
3.6 Software Platforms Revisited . 60

3.6.1 Distributed Languages . 60
3.6.2 Middleware . 62

3.7 Discussion . 63
3.8 Conclusion . 64

4 The Ambient Actor Model 67
4.1 Introduction . 67
4.2 Actors . 68

4.2.1 The Actor Programming Language 68
4.2.2 Actor Systems . 71

4.3 Evaluation of Actors for Ambient-Oriented Programming 71
4.3.1 Evaluation #1: The Object Model 71
4.3.2 Evaluation #2: Non-Blocking Actor Communication . . . 72
4.3.3 Evaluation #3: Reified Communication Traces 72
4.3.4 Evaluation #4: Reified Environmental Context 73
4.3.5 Summary . 74

4.4 Evaluation of the ActorSpace Model 75
4.5 The Ambient Actor Model . 76

4.5.1 Simple Ambient Actor Language 77
4.5.2 Messages and Mailbox Associations 78
4.5.3 Actor Configurations . 79
4.5.4 Operational Semantics of Actor Configurations 80
4.5.5 Concurrency Issues with Mailboxes 85
4.5.6 Summary and Discussion 86

4.6 Examples . 87
4.6.1 Pattern-Based Communication 88
4.6.2 Meeting Scheduler . 89
4.6.3 Discussion . 93

4.7 Conclusion . 94

CONTENTS ix

5 A Kernel Language for Ambient-Oriented Programming 95
5.1 Introduction . 95
5.2 Design Rationale . 96

5.2.1 Reconciling Mutable State with Concurrency 96
5.2.2 Double-Layered Object Model 97
5.2.3 Active Objects as the Unit of Distribution 98

5.3 The Passive Object Layer . 99
5.3.1 History and Design Rationale 99
5.3.2 Parameter Passing Semantics 101
5.3.3 Objects as First-class Dictionaries 104
5.3.4 Mixin-Based Inheritance 105
5.3.5 On Late-Binding Polymorphism and First-Class Methods 108
5.3.6 Cloning Objects . 110
5.3.7 Summary . 111

5.4 The Active Object Layer . 112
5.4.1 Active Objects as Actors 112
5.4.2 Message Passing Semantics 114
5.4.3 First-Class Messages . 116
5.4.4 First-Class Mailboxes . 117
5.4.5 Example: Friend Finder Application 119

5.5 Conclusion . 120

6 AmbientTalk and Metalinguistic Abstraction 123
6.1 Introduction . 123
6.2 General Structure . 124
6.3 The Passive Object Layer . 126

6.3.1 Passive Objects . 126
6.3.2 Parameter Passing Semantics and Method Invocations . . 126
6.3.3 Mixin-Based Inheritance 129
6.3.4 On Late-Binding and First-Class Methods 130
6.3.5 Cloning Objects . 132

6.4 The Active Object Layer . 133
6.4.1 Actor Creation . 134
6.4.2 Structure of a Metacircular Actor 134
6.4.3 Mailbox Observers . 136
6.4.4 Processing Messages . 137
6.4.5 Message Delivery . 139
6.4.6 Asynchronous Message Passing 139
6.4.7 Reified Environmental Context 140
6.4.8 Concurrency Issues . 141

6.5 Reflection . 143
6.5.1 Reification and Absorption of Messages 143
6.5.2 Reification and Absorption of Actor Communication . . . 145
6.5.3 Mailboxes in the Context of Reflection 146
6.5.4 Discussion . 148

6.6 Composition of Metaprograms 149
6.6.1 Implementing Language Constructs using Meta-Mixins . . 149
6.6.2 Scoped Reflection . 151

6.7 Conclusion . 154

x CONTENTS

7 AmbientTalk at Work: Ambient-Oriented Language Constructs159
7.1 Introduction . 159
7.2 Synchronization and Coordination 160

7.2.1 Guards . 160
7.2.2 Token-passing continuations 162
7.2.3 Futures . 166
7.2.4 Combining Language Constructs 170
7.2.5 Evaluation for AmOP . 171

7.3 Ambient References . 172
7.3.1 Design Spaces . 172
7.3.2 Implementation . 174
7.3.3 Discussion . 174
7.3.4 Evaluation for AmOP . 177

7.4 Customized Message Delivery . 177
7.4.1 Nested Due Blocks . 178
7.4.2 Implementation . 178
7.4.3 Evaluation for AmOP . 181

7.5 Case Study: AmbientChat . 181
7.5.1 BlueChat . 182
7.5.2 BlueChat Evaluation . 186
7.5.3 AmbientChat . 189
7.5.4 AmbientChat Evaluation 190
7.5.5 Discussion . 193
7.5.6 Summary . 194

7.6 Conclusion . 195

8 Advanced Experiments in Ambient-Oriented Programming 197
8.1 Introduction . 197
8.2 Group Communication . 198

8.2.1 Extensional Group Communication 198
8.2.2 Multi-Futures . 199
8.2.3 Implementation . 200
8.2.4 Discussion . 201
8.2.5 Evaluation for AmOP . 203

8.3 Virtual Time . 203
8.3.1 Introduction . 204
8.3.2 Implementation . 205
8.3.3 Global Virtual Time . 208
8.3.4 Discussion . 211
8.3.5 Evaluation for AmOP . 212

8.4 Weak Replication . 212
8.4.1 Introduction . 212
8.4.2 The Anti-Entropy Protocol 213
8.4.3 Experiment: A Unification of Anti-Entropy and Time Warp216
8.4.4 Interactions with Replicated Objects 216
8.4.5 On the Dynamics of the System 219
8.4.6 Implementation . 219
8.4.7 Discussion . 223
8.4.8 Evaluation for AmOP . 224

8.5 Support for Tentative Data . 225

CONTENTS xi

8.5.1 Introduction . 225
8.5.2 Implementation . 226
8.5.3 Evaluation for AmOP . 226

8.6 Summary . 228

9 Conclusion 229
9.1 Introduction . 229
9.2 Summary and Contributions . 229

9.2.1 Restrictions of Existing Software Platforms 229
9.2.2 Ambient-Oriented Programming 230
9.2.3 An AmOP Concurrency and Distribution Model 231
9.2.4 An AmOP Language: AmbientTalk 231
9.2.5 AmbientTalk as a Language Laboratory 232
9.2.6 Experiments with Language Constructs 232
9.2.7 Conclusion . 233

9.3 Limitations and Future Work . 233
9.3.1 AmbientTalk’s Shortcomings 234
9.3.2 Language Constructs . 234
9.3.3 Integration of Language Constructs 235
9.3.4 Efficient Implementation 235
9.3.5 Security . 236

A Code Listing of Metacircular AmbientTalk 237
A.1 Scanner . 238
A.2 Parser . 244
A.3 Abstract Grammar . 249
A.4 Ambient Actor Behavior . 261
A.5 Native Methods . 267

B Code Listing of BlueChat 275
B.1 NETLayer . 277
B.2 EndPoint . 284
B.3 Sender . 286
B.4 Reader . 288
B.5 ChatPacket . 290
B.6 BTListener . 291

C Code Listing of AmbientChat 293
C.1 Ambient Sensor . 295
C.2 AmbientChat . 296

xii CONTENTS

List of Figures

3.1 Dependencies Created due to Blocking Communication 58
3.2 Synchronous Communication vs. Asynchronous Communication

vs. Non-Blocking Communication 59
3.3 Hardware Phenomena inducing AmOP Characteristics 61

4.1 Conceptual Representation of Actors 69
4.2 State Chart of Agenda Behavior 90

5.1 Resulting object-tree from the evaluation of containerP.makeList().makeStack()
(left) and containerP.makeStack().makeList() (right) 107

5.2 Differences in the Environments between (a) Pic% and (b) Scheme110
5.3 Memory Layout of Counter Object and its Clone 111
5.4 Active Objects Conceptual Model. Two active objects containing

a graph of passive objects. None of the passive objects are shared,
but the each active objects shares a references to the other. . . . 114

6.1 Connections between the different AmbientTalk perspectives . . . 124
6.2 Abstract Grammar of the Metacircular Interpreter 156
6.3 Structure of metaActorBehavior 157

7.1 Behavior of Token-Passing Continuations 165
7.2 Behavior of Non-Blocking Futures 169
7.3 Token-Passing Continuations Expressed with nested when-statements171

8.1 Determining when a multi-future has been completely resolved. . 203

xiv LIST OF FIGURES

List of Tables

2.1 Bounded Buffer in ABCL . 32
2.2 Component Sampling Sensor Readings and Sending Results . . . 40
2.3 Summary: Evaluation of Distributed Languages 41
2.4 Summary: Evaluation of Middleware 53

3.1 Evaluation of Distributed Languages based on AmOP Criteria . 61
3.2 Evaluation of Middleware based on AmOP Criteria 62

5.1 QuickSort in Scheme (left) and in Pico (right) 100
5.2 Summary of the Pico syntax . 101
5.3 Example Counter object in Pic% (left) and the resulting environ-

ment (right) . 105
5.4 Mixins used to Structure Collections Hierarchy 106
5.5 Example: extension from the outside - a protected counter 107
5.6 Example: (a) stealing the credit card number from a payment

object and (b) prevent this by overriding the extend method in
the payment object . 108

5.7 Object Generator function returning Counter Objects in Scheme 109
5.8 Summary of the Pic% syntax . 112
5.9 Implementation of a counter actor using updateable state (left)

and using the become operation (right) 115
5.10 Summary of AmbientTalk syntax 116
5.11 Message Prototype Object . 117
5.12 Mailbox Prototype Object . 118
5.13 Implementation of a FriendFinder 120

6.1 Attribute Lookup in a dictionary. 127
6.2 Invoking a Message . 127
6.3 Application of a Closure . 128
6.4 Evaluation of the different Types of Formal Parameters Lists in

AmbientTalk . 129
6.5 Closures are Created at Lookup-Time 131
6.6 Functions, not Closures are Stored in a Dictionary 132
6.7 Clones . 133
6.8 Metacircular Implementation of an Actor Address 135
6.9 Implementation of Synchronous Observers based on Closures . . 136
6.10 Code Corresponding to Processing Messages 138
6.11 Code Corresponding to Message Delivery 139

xvi LIST OF TABLES

6.12 Asynchronous Message Passing 140
6.13 Code Corresponding to Discovery in metaActorBehavior 141
6.14 Absorption of a Message in the Metacircular AmbientTalk 144
6.15 Bounded Buffer . 148
6.16 Language Mixin for EnabledSets 150
6.17 Bounded Buffer Redesigned with Mixins 150
6.18 Message Scope Mixin (left) and an Acknowledgment Mixin based

on Message Scope (right) . 153
6.19 Example: Mixin using Language Construct Based Scope 154
6.20 Summary of the different Reflective Scopes 154

7.1 Language Mixin introducing Guards 161
7.2 Language Mixin for token-passing continuations 164
7.3 Implementation of Non-Blocking Futures in AmbientTalk 168
7.4 Implementation of the futuresMixin 168
7.5 Implementation of Ambient References 175
7.6 Implementation of alternative Ambient Reference Design Spaces 176
7.7 Implementation of the dueMixin 180
7.8 Implementation of the expiryCheckMixin 181
7.9 Implementation of the Callback Methods associated with Device

Discovery . 185
7.10 Inner class DoServiceDiscovery initiates the Discovery of Services186
7.11 Implementation of the Callback Methods associated with Service

Discovery . 187
7.12 NETLayer.run method accepts incoming connections 188
7.13 Instant Messenger Application in AmbientTalk 191
7.14 Ambient Sensor . 192
7.15 Comparison of Lines of Code AmbientChat vs. BlueChat 194
7.16 Evaluation of the Language Constructs 196

8.1 Implementation of multiFutureMessageMixin 202
8.2 Implementation of Multi-Futures 202
8.3 Implementation of the reversibleMessageMixin 205
8.4 Decision Table for Processing Messages 206
8.5 Implementation of the process method in the reverseMixin . . 209
8.6 Implementation of the rollback method in the reverseMixin . 210
8.7 Implementation of the MOP in the reverseMixin 211
8.8 Anti-Entropy Protocol . 214
8.9 Implementation of the bayouMessageMixin 220
8.10 Skeleton of the replicaMixin . 220
8.11 Implementation of the antiEntropy method in replicaMixin . . 221
8.12 Implementation of the different state-update methods in replicaMixin222
8.13 Implementation of the masterMixin method in replicaMixin . . 222
8.14 Implementation of the slaveMixin method in replicaMixin . . 223
8.15 Implementation of the extended future 227
8.16 Implementation of the tentative future observer 227
8.17 Implementation of the tentativeFuturesMixin 227

B.1 Legend . 276

LIST OF TABLES xvii

C.1 Legend . 294

xviii LIST OF TABLES

Chapter 1

Introduction

Although computing technology is currently omnipresent in the modern world,
it has not become invisible at all. Today, people to a large extent have to interact
with their computer in order to get certain tasks done. Ubiquitous computing is
a vision, postulated by Mark Weiser [Wei91]: computing technology will become
invisible as it is integrated into the fabric of everyday life. This vision has been
termed Ambient Intelligence by the European Council’s IST Advisory Group
[IST03]. Weiser explains the invisibility of a computer by making the analogy
to text. A world without text is unthinkable in our modern society. Text allows
ideas, which were previously perhaps mere thoughts in the brain of a single
person, to be made persistent accurately such that knowledge and culture can
survive time. Today, text has become ubiquitous: from books to the internet
and from traffic signs to button labels on a remote control. For most people the
act of reading text has become oblivious, because in modern societies it is learnt
from childhood on. As a result people are no longer consciously aware of text
such that, in a sense, text has become invisible to people. According to Weiser
computing technology is about to make the same leap. The first signs of this
transition are already present in many current-day products. Television sets and
video recorders have become fully digital even though the user can still interact
with them in much the same way as when they were analog. Contemporary cars
have an enormous amount of electronics embedded in them and many of these
are invisible to the driver. These electronics can change the parameters of the
engine to adapt itself to current driving conditions or even send a self-performed
check to the car dealer. The dealer can analyze these results and invite the
driver for maintenance of his car should that be necessary. Although these
examples are somewhat modest they show that the user is no longer confronted
with the technology embedded in the products. Nevertheless, when considering
the last example it shows that interaction of devices can further make certain
processes transparent. Indeed, before, the driver had to be consciously aware of
the maintenance schedule of his car whereas because of the interaction of his car
with his dealer this is now automatically taken care of. This is a first example
how oblivious interactions between material objects can lead to further making
technology invisible.

The vision postulated by Mark Weiser has nowadays become technically
feasible because of continuous and recent developments in technology.

2 Introduction

Miniaturization of Hardware Over the past decades we have seen that
hardware became ever smaller. This miniaturization of hardware is necessary
in order to embed computing technology into everyday objects. Also on the
level of power consumption a lot of progress has been made. Perhaps this trend
becomes most concrete when we compare the autonomy of contemporary cellular
phones to those of a decade ago. Phones nowadays have a battery autonomy of
up to almost two weeks compared to only a few hours initially, whereas their
functionality has increased. New battery technologies based on hydrogen fuel
cells with an even larger capacity are making their way into the market.

Wireless Communication The advent of wireless communication technol-
ogy (such as WiFi, Bluetooth, 802.15.x and others) signifies a big step towards
the realization of this vision, because it enables material objects to interact au-
tonomously with one another. Furthermore, the fact that these objects need not
be connected via a wire also adds to the invisibility of technology for its users
because their mobility is not hampered. Wireless communication also enables
objects to detect other objects that are located in their immediate proximity.
As noted by Weiser this single ability allows software to distill facts about its
environment that it was previously unable to do. For example, suppose a meet-
ing is ongoing in a meeting room. The cellular phones of the participants of this
meeting could detect that they are in the same room, because the meeting room,
which is equipped with wireless communication technology, can spontaneously
interact with the cellular phones. Also, the video projector which is turned
on to accommodate the audio-visual aspects of the meeting indicates that a
meeting is ongoing. Due to the fact that the cellular phone can spontaneously
interact with the meeting room and the video projector allows it to adapt its
configuration such that incoming calls do not disturb the meeting. Note that
such intelligent adaptations do not necessarily rely on artificial intelligence tech-
niques. They simply result from the spontaneous interaction that is enabled by
wireless communication technology.

1.1 Research Context and Motivation

Before we dive into the research context of this dissertation we make the vision
of ambient intelligence and ubiquitous computing more concrete by giving a
concrete scenario in which the vision has been realized. Next we explain the
problems associated with the realization of this vision and set the research goals
for this dissertation.

1.1.1 A Futuristic Scenario

It is the year 2020 on a sunny monday at 05:30 in the morning. Theo is still
in a deep sleep. His first appointment for the day is at 10:30 in the morning
but his family has the habit to start the day with a good breakfast sitting all
together. For this reason the digital alarm clock consults the agenda of all
the family members and calculates that Theo’s daughter Maja has the earliest
appointment. She needs to be at school at eight in the morning and the route
planner indicates based on the traffic predictions over the past year that she
needs half an hour to reach school in time. Based on this information the digital

1.1 Research Context and Motivation 3

alarm clock decides that it is time to wake up all family members such that they
can have breakfast together. The digital alarm clock opens the curtains of all
the bedroom windows such that the sunlight gently starts to wake up all the
family members and the coffee machine automatically starts making coffee. Half
an hour later, at six in the morning, the digital alarm clock notices, through
interaction with the mattress, that Theo is still in bed in spite of the opened
curtains. As a result it starts to play Theo’s favorite songs to further wake him
up. Five minutes later Theo arrives in the kitchen and joins his family at the
table. Theo’s daughter, Maja, takes the last box of corn flakes from the pantry
and eats the last flakes that are in the box. They are talking about the things
they did together during the past weekend and their plans for the day. Theo
reads the newspaper with his cup of coffee and scans through the television
program section. He circles the programs that interest him with his ball pen.
The ball pen communicates the selections to his digital media manager that
automatically schedules the programs for recording.

After breakfast Theo cleans up the kitchen table while everyone else goes on
to prepare themselves for the day. Theo throws the empty box of corn flakes in
the garbage can. The garbage can notifies the other objects in its environment
of this event. The pantry, which is responsible for stocking the corn flakes,
notices that it no longer holds any stock of corn flakes and decides to place it
in the family’s electronic shopping cart.

Later on this morning Theo drives to his first appointment of the day and
drives past a super market. His electronic shopping cart notices this and com-
municates with the super market. Coincidentally there is a sale for corn flakes:
three bags plus one for free. The shopping cart consults the agenda of Theo
and checks with his car’s GPS system and discovers that Theo is scheduled to
arrive half an our early at his first appointment, so it decides to notify Theo of
this bargain. However, Theo has made other plans for the day and presses a
button on his PDA to have the corn flakes delivered at home and he continues
his way.

1.1.2 What is the Problem?

The scenario above illustrates what a world where ubiquitous computing has
been realized could look like. Many of the hardware problems associated with
the realization of this vision have already been solved. In fact, the hardware
components to realize most of the ubiquitous computing scenarios are already
available on the market today. Nevertheless, very few ready-made products
based on this vision are available to consumers.

It is our conjecture that such scenarios have not been realized because
although the hardware technology is available the software technology
is actually incapable to manage the complexity of the dynamics of ubiquitous
computing.

This lack of support today is witnessed by the numerous recent and fu-
ture workshops on this topic in the year 2005 and 2006 only: “Smart Object
Systems” [KLM+05], “Object Technology for Ambient Intelligence” [MCCH05,
MCMT06], “Building Software for Pervasive Computing.” [LSC+05], “Software
Engineering of Pervasive Services” [CSM+06] and others. These workshops also

4 Introduction

underline that the existing object-oriented paradigm, which is currently the
most successful paradigm for building large software systems, does not provide
sufficient support to construct these systems.

Much of the emerging behavior in ubiquitous computing scenarios results
from the cooperation between devices. These devices can cooperate because they
are surrounded by what is sometimes referred to as a mobile network. A mobile
network emerges from a set of devices that communicate over wireless commu-
nication media. This type of network has several properties that distinguish it
from other types of networks. The most important ones are that connections
are volatile (because the communication range of wireless technology is limited)
and that the network is open (because devices can appear and disappear unex-
pectedly). This puts extra burden on software developers. Although low-level
system software and networking libraries providing uniform interfaces to the
wireless technologies (such as JXTA [Gon02] and M2MI [KB02]) have matured,
developing application software for mobile networks still remains difficult. One
of the main reasons for this is that traditional programming languages capture
failing remote communication using a classic exception handling mechanism.
This results in application code polluted with exception handling code because
failures are the rule rather than the exception in mobile networks. The above
conjecture can thus be reformulated by stating that contemporary programming
languages lack the abstractions to deal with mobile hardware characteristics.

1.1.3 Research Goals

Observations like this justify the need for a new Ambient-Oriented Program-
ming paradigm (AmOP for short) that supports programming languages that
explicitly incorporate potential network failures in the very heart of their basic
computational steps. Although a paradigm is a first necessary step towards
the supporting the design and development of AmOP applications it does not
necessarily give insight into how such applications are built and how different
concerns should be expressed. Similarly, design patterns for the object paradigm
were only captured decades after the paradigm was invented. What is more,
the range of possible applications is broad and it is not yet clear what types
of applications will be built based on the new hardware. However, it is only
when good software technology becomes available that advanced applications
will be developed. Hence, we are faced with a chicken and egg problem. As a
consequence the goal of our research is threefold:

• First, we want to come up with AmOP language features that give pro-
grammers expressive abstractions that allow them to deal with the char-
acteristics of mobile networks.

• Second, we want to gain insight in the structure of AmOP applications.

• Third, we want to distill the fundamental semantic building blocks that
are at the scientific heart of AmOP language features in the same way
that current continuations are at the heart of control flow instructions
and environments are the essence of scoping mechanisms.

These three research goals allow us to bootstrap this cycle and address the
software technology problem we are faced with.

1.2 The Thesis 5

1.2 The Thesis

This dissertation demonstrates that languages supporting the “Ambient-Oriented
Programming” paradigm can better support the development of AmOP appli-
cations by providing language features to address specific issues arising from the
hardware used to construct AmI scenarios. These language features reconcile
object-oriented programming methodology with the ambient-oriented program-
ming paradigm.

The thesis is validated with the following results:

1. The definition of a collection of language features constructed based on the
defining characteristics of the paradigm. Some of these language features
transpose well-acknowledged concepts to deal with distributed issues into
an AmI-context and support an object-oriented programming style.

2. A study of the use of language features in a concrete application. This
application is compared both qualitative (in terms of how issues are dealt
with) and quantitative (in terms of lines of code) to a similar application
written in a language not based on the paradigm.

1.3 Problem Statements

Above, we already stressed that much of the emerging behavior of ubiquitous
computing systems result from cooperation of devices that reside in each oth-
ers ambient. However, before devices can cooperate they need to discover one
another in their ambient. Once they have discovered one another a connection
between devices can be established and devices can communicate. Communi-
cation between devices enables cooperation, such that each of these devices can
interact and respond to events that occur in the ambient. However, interactions
and events in the ambient are concurrent because they result from events in the
“real world”.

This exposition led us to define four problems that will have to be addressed
in order to work towards our research goals. These problems are further elabo-
rated below:

• Problem #1: Object Model for AmOP
Since our approach will be based on the paradigm of object-oriented pro-
gramming we will have to come up with an object system that supports
the development of AmOP applications. Current mainstream program-
ming languages are all based on class-based object systems. In this dis-
sertation we will argue that classes are both conceptually and technically
a source of problems. Furthermore, we will argue that classless languages
do not suffer from these problems.

• Problem #2: Concurrency Control for AmOP
Another major issue is concurrency control for AmOP applications. AmOP
applications will collaborate and cooperate with other AmOP applications
that are in the ambient of the device. These devices are often embedded
into the “fabric of everyday life” and as a consequence they will interact
with the world. The world is inherently concurrent and in order to ade-
quately support these interactions AmOP applications will need to deal

6 Introduction

with the concurrency that results from it. Traditionally concurrency con-
trol is most often expressed such that inconsistent states are prevented.
Such an approach is often classified as pessimistic concurrency control.
The antipode, optimistic concurrency control, is to allow inconsistencies
to occur and afterwards to repair the inconsistent state should that be nec-
essary. In [Sat96] it is determined that mobile computing applications need
support for optimistic concurrency control. However, current approaches
that support optimistic concurrency control are rarely object-based.

• Problem #3: Communication Mechanisms for AmOP
We already stated that volatile connections are a fundamental character-
istic that result from wireless communication. An obvious problem is that
we will have to devise a communication mechanism that is able to cope
with the volatility that results from the use of wireless communication me-
dia. A problem related to this is what is called the “graceful degradation”
of a system [FRBAM05] . What is meant by this is that resources that are
suddenly no longer available should not hamper the full system. Instead
the system should be able to continue to work in spite of the resource
no longer available, albeit perhaps in a degraded form. An issue directly
related to the graceful degradation of a system is the ability to deal with
disconnectedness. Groups of devices can become isolated from other de-
vices resulting in network partitions. These network partitions can result
in conflicts after these groups of devices regain their connectivity. Hence,
support is needed to resolve such conflicts.

• Problem #4: Ambient Resource Management for AmOP
Much of the potential of ubiquitous computing is realized by the poten-
tial to cooperate with devices in the ambient. However, the ambient is a
volatile concept because computing technology is integrated in all kinds of
objects such as clothes, furniture and cars. Hence, many of these are sub-
ject to frequent movement and a result the devices in the ambient change
continuously. As a result AmOP applications need to deal with this con-
stant change of available resources. A problem related to this is that appli-
cations should support “self-configurability” [FRBAM05]. Hence, AmOP
applications should be able to autonomously react to changes in the ambi-
ent and be able to reconfigure themselves based on the available resources.

1.4 Research Approach

During the course of this dissertation we had to make a number of choices with
regard to the development of a number of experiments. This section motivates
these choices and explains how we have approached the problems described
above.

1.4.1 An Experimental Approach

As very limited experience exists in writing AmOP applications, it is hard to
come up with AmOP language features based on software engineering require-
ments. Therefore, our research starts from the hardware phenomena that fun-
damentally distinguish mobile from stationary networks. These phenomena are

1.4 Research Approach 7

based on the properties of the hardware that is used to run AmOP applications.
They form the basis from which we distill a number of fundamental character-
istics that define the AmOP paradigm, thereby addressing the third goal of our
research.

Based on the abstract characteristics of this new paradigm we will design
and develop a concrete prototype. This prototype will allow us to develop
concrete AmOP applications and gain insight into their structure. Nevertheless,
one could argue that the structure of AmOP applications will depend on the
applications themselves. Although this is certainly true to a certain extent we
will find that much of the structure of the applications also results from the
AmOP paradigm itself. What is more, the AmOP paradigm is based on the
properties exhibited by the hardware components, on which the majority of the
AmOP applications are built, such that part of the structure will return in many
AmOP applications. Hence, by the development and experimentation with this
first prototype of the paradigm we address the second goal of our research.

In order to address our first research goal, namely the development of suitable
language features for the AmOP paradigm, we based our research on two sources
of information. A first source was the experience we have built thus far based on
the implementation of some AmOP applications. A second source of information
was the structure and goals found in the current state of the art. In the state of
the art we have found many interesting abstractions to resolve specific problems.
Hence, we have based the design and development of the AmOP programming
abstractions based on these two sources of experience.

What is more, the design and development of object-oriented versions of
these abstractions found in the current state of the art also served as a validation
of the expressiveness of the AmOP paradigm and its first concrete prototype.
Furthermore, some of the abstractions we designed and developed were used in
a concrete experiment we conducted.

1.4.2 Languages vs. Middleware

In the design and development of a system that is to support distributed pro-
gramming a first choice one has to make is to make the abstractions available
as a programming language or as middleware. Today most researchers have
conducted their experiments based on middleware. Middleware is often said to
have the advantage that it is easily usable in a “real world” setting such that
the results from research can more easily be adopted. Although this is true to
a certain extent there are a number of limitations associated with a middleware
approach:

• Bal et al. [BST89] described a number of reasons why the language ap-
proach is better than a library approach. Languages are often better
at expressing concerns that relate to concurrency and distribution. They
note that expressing complex synchronization constraints in many libraries
requires multiple lines of code compared to a single line of code in a dis-
tributed language. Readability is another advantage that is somewhat
related to the improved expressiveness. Finally, they note that the fact
that languages offer higher-level abstractions is probably the most impor-
tant reason. However, since the time Bal et al. [BST89] surveyed the state
of the art some issues have somewhat been alleviated through the use of

8 Introduction

reflection and advanced preprocessor techniques. Nevertheless, these tech-
niques are currently not well supported by mainstream languages and do
not resolve all of the issues. For example, interactions can occur with
existing language features.

• More recently, Varela and Agha [VA01] came to a similar conclusion. They
noted that a programming language had the following advantages:

– Semantic Constraints: distributed languages are better at enforc-
ing properties of the underlying model for concurrency and distribu-
tion, because they have total control over the execution of a program.
Hence, distributed languages are often better because they can pre-
serve and promote the paradigm supported by the language.

– API Evolution: in a distributed language important concepts of
the supported paradigm are aligned with language concepts such that
they eliminate the reliance on an API for using these paradigm con-
cepts in the language. This alignment of concepts often ensure that
programmers cannot incorrectly use the concurrency and distribution
APIs. What is more, local changes made to the underlying model of
the programming language often need not affect the existing code of
applications already written in the language.

– Programmability This point refers to the increased expressiveness
and readability of languages. They also note that in a library it is
often necessary to follow a specific protocol which is implicitly defined
by the API in order to perform primitive operations. An example of
such a protocol is that a stream of data must be opened before data
can be read or written and must be closed after all data has been
read or written. Such conventions are often not enforced and as a
result there is a need for permanent semantic translation, which is
unnatural for programmers.

The advantages described above are all from the developer’s point of view.
What is more, it is our conjecture that the language based approach offers
more scientific potential from a research perspective. The reason is that the
language-based approach is not constrained with respect to the expressiveness
of the underlying language. Although current mainstream languages have cer-
tainly benefited from research over the past decades, such as the introduction
of automatic memory management, they still impose a number of restrictions.
For example, Java does not support closures and it is only recently that C#
has introduced support for them. These and other constraints fence off the
possibilities and can limit the design and introduction of new abstractions.

1.4.3 Implicit vs. Explicit Distribution

In the past many approaches towards distributed programming models were
based on the fact that distribution should be transparent for the application at
hand. Jim Waldo et al. wrote a paper [WWWK96] on the reasons why such a
goal does not scale to the problems that are encountered in distributed systems.
Vogels et al. came to a similar conclusion [VRB99] and adjusted their research
goals accordingly. The main reasons for the need for explicit distribution is

1.4 Research Approach 9

that distributed systems have a number of properties that distinguishes them
from local computation. The important ones are that distributed systems are
subject to a communication latency that varies based on the type of network
used and on the load of the network. Second, distributed systems have a different
model of memory access based on low-level message sending rather than local
memory access. Finally, distributed systems can be concurrent and subject
to partial failure. These properties distinguish a local computational model
from a distributed computational model. Merging the models by making local
computation follow the model of distributed computing makes local programs
unnecessarily complex, whereas making the model of distributed computing
follow the local computation model requires ignoring the distributed properties
such failing nodes.

In the context of mobile networks, where failing connections are the rule
rather than the exception, one will soon run into the issues that are described
in these papers. For this reason we have chosen to make the concerns of dis-
tribution explicit with respect to the application. As noted by Jim Waldo et
al. [WWWK96] a better approach is to accept that there are irreconcilable dif-
ferences between local and distributed computing, and to be conscious of those
differences at all stages of the design and implementation of distributed applica-
tions. This choice was taken into consideration throughout the whole research
process: from the definition of the paradigm to the conception of the distributed
language. For example, one such place is the syntax of the language that makes
potentially distributed calls explicit. The fact that distribution is made explicit
does not mean that one has to continuously deal with all intricacies of distri-
bution. Hence, the art is to find abstractions that allow one to manage the
complexity of distribution concerns without losing the ability to deal with the
consequences of their presence.

1.4.4 Language Design Choices

Several methodologies exist for designing a language. Richard Gabriel distin-
guished between the MIT/Stanford approach and the New Jersey approach in
his paper [Gab91] often referred to as “Worse is Better”. He characterizes the
MIT/Stanford approach as follows:

The essence of this style can be captured by the phrase “the right
thing.” To such a designer it is important to get all of the following
characteristics right:

• Simplicity: the design must be simple, both in implementation
and interface. It is more important for the interface to be simple
than the implementation.

• Correctness: the design must be correct in all observable as-
pects. Incorrectness is simply not allowed.

• Consistency: the design must not be inconsistent. A design is
allowed to be slightly less simple and less complete to avoid
inconsistency. Consistency is as important as correctness.

• Completeness: the design must cover as many important situ-
ations as is practical. All reasonably expected cases must be

10 Introduction

covered. Simplicity is not allowed to overly reduce complete-
ness.

Richard Gabriel characterized the New Jersey approach as follows:

The worse-is-better philosophy is only slightly different:

• Simplicity: the design must be simple, both in implementation
and interface. It is more important for the implementation to
be simple than the interface. Simplicity is the most important
consideration in a design.

• Correctness: the design must be correct in all observable as-
pects. It is slightly better to be simple than correct.

• Consistency: the design must not be overly inconsistent. Con-
sistency can be sacrificed for simplicity in some cases, but it is
better to drop those parts of the design that deal with less com-
mon circumstances than to introduce either implementational
complexity or inconsistency.

• Completeness: the design must cover as many important situ-
ations as is practical. All reasonably expected cases should be
covered. Completeness can be sacrificed in favor of any other
quality. In fact, completeness must sacrificed whenever imple-
mentation simplicity is jeopardized. Consistency can be sacri-
ficed to achieve completeness if simplicity is retained; especially
worthless is consistency of interface.

He further argues in his paper that the MIT/Stanford approach is the right
design philosophy, but that the New Jersey philosophy has certain properties
that make it more popular. In essence, it boils down to the fact that a language
designed according to the MIT/Stanford approach takes too long to conceive.
This is in contrast to the New Jersey approach that has a shorter development
cycle. The past has proven that developers and users do not want to wait for “the
right thing”. Nevertheless, since this paper Richard Gabriel has written several
follow-up papers [Gab00] where he reconsiders his point of view multiple times.
In the last paper of the series he gave up and wrote “Decide for yourselves.”

In the conception of the programming language we have tried to adhere to
the MIT/Stanford design approach, which is the reason why we have decided to
build a language from the ground up instead of extending an existing language.
Unfortunately the result cannot yet fully be classified as a language with the
properties of the MIT/Stanford approach. However, in retrospect it is not such a
surprise because the language was primarily conceived as a language laboratory
to facilitate experimentation with language constructs for AmOP applications.
It is only after we have identified the correct abstractions and gained sufficient
experience in building AmOP applications that we will be able to build that
kind of language.

Our approach started from the design philosophy of little languages [Ben86].
We have designed and implemented a small kernel language, called Ambi-
entTalk, that facilitates the AmOP paradigm. AmbientTalk formed the basis
for further experimentation with language features. At that point we crossed
over to the philosophy to let AmbientTalk grow [GLS98]. This was facilitated

1.5 Contributions 11

by opening up the implementation of the kernel language through a reflective in-
terface. Hence, AmbientTalk was conceived as a reflectively extensible language
kernel with semantic building blocks that turned it into a language laboratory
so as to allow us to investigate the language features that populate the AmOP
paradigm.

1.5 Contributions

In this section, we summarize the major contributions of this thesis:

1.5.1 AmOP Paradigm

One of the major contributions is to promote the AmOP paradigm for program-
ming mobile distributed systems. The AmOP paradigm defines a set of criteria
for concurrent distributed object-oriented languages such that they can better
support the hardware phenomena exhibited by mobile distributed systems.

The AmOP paradigm is defined by a set of four defining characteristics for
concurrent distributed languages. Each of these individual AmOP characteris-
tics are not entirely new. For example, one of them, non-blocking communica-
tion primitives, is exhibited by some event-driven systems. However, to the best
of our knowledge no programming language or middleware exists that combines
the four characteristics in a single coherent platform. The combination is impor-
tant because, as discussed in chapter 3, each of these individual characteristics
are necessary to reduce the complexity of the software and address the issues
induced by the hardware phenomena used to construct AmI scenarios.

1.5.2 The Ambient Actor Model

Another contribution made by this dissertation is the formal extension of the
actor model. The actor model is one of the first true concurrency models created
for the object paradigm. It is the basis for today’s state of the art concurrency
and distribution models. The ambient actor model extends the actor model
such that it supports the AmOP paradigm with the introduction of first-class
mailboxes. These first-class mailboxes are part of semantic building blocks used
to construct different language features to better support AmOP applications.

1.5.3 Language Experimentation Laboratory

In this dissertation we have defined and specified a reflectively extensible lan-
guage kernel based on the ambient actor model that enables experiments with
AmOP language features. We argue that reflection is a suitable implementation
mechanism for experimental AmOP language features. Reflection allows one to
define the language constructs within the language that is being extended. This
has the advantage that the technical overhead to implement and experiment
with language constructs is minimized. What is more, the native implemen-
tation of the language that is implemented can be reduced to a small kernel
language with a minimum of concepts. This not only reduces the complexity of
the native implementation but also results in a language with uniform seman-
tics. Another advantage of this approach is that the language constructs can
more easily be adapted to fit the needs of the application.

12 Introduction

1.5.4 AmOP Language Constructs

Although some of the language constructs proposed in this dissertation are heav-
ily inspired by language constructs found in other languages, some of them are
entirely new. Ambient references promote the use of object references to address
ambient resources and thereby unify communication with service discovery. The
language construct due allows one customize the delivery of messages based on
application-specific needs.

In addition to the basic language constructs we also propose language con-
structs to address advanced issues when building mobile distributed systems.
The group communication abstractions allow for the coordination of multiple
concurrent tasks in a setting of mobile distributed systems. Perhaps the most
innovative language construct is the use of reversible computation to enable
weak replication at the object level.

These language constructs not only demonstrate the potential of the AmOP
paradigm, they also illustrate that the AmOP paradigm can be reconciled with
an object-oriented style for programming and structuring AmOP applications.

1.6 Roadmap

In section 1.4.1 we have described how we will work towards the research goals
we have set in section 1.1.3. The overall outline of this dissertation matches
that description:

• Chapter 2 starts by considering two types of distributed systems that can
be built from the hardware components used to construct ubiquitous com-
puting scenarios. Based on the properties of these hardware components
we distill the fundamental hardware phenomena and these are used to
evaluate distributed programming languages and middleware specifically
designed for mobile distributed systems.

• Chapter 3 considers these hardware phenomena again and uses them as
the yardstick for the design criteria to craft a new AmOP paradigm that
supports the development of AmOP applications. Furthermore, we con-
sider the problems we observed in the state of the art again with respect
to their support for the AmOP paradigm.

• Chapter 4 considers the actor model in the context of the AmOP paradigm.
We will come to conclude that the actor model does not support the AmOP
paradigm but nevertheless satisfies a number of properties that are also
found in the AmOP paradigm. Based on these observations an exten-
sion of the operational semantics of the actor model is proposed to align
the actor model with the AmOP paradigm. The extension is then used
to express a first application in the paradigm. Finally, we will come to
conclude that the direct applicability of the extension is limited because
the applications are expressed in the lowest-level building blocks of the
paradigm.

• In chapter 5 we consider the operational semantics as a low-level kind of
instruction set that complies with the AmOP paradigm but which lacks
sufficient support to express high-level AmOP programming abstractions

1.6 Roadmap 13

and applications. Based on this observation we design and informally
describe a full-fledged high-level ambient-oriented language, called Ambi-
entTalk, based on this low-level instruction set. Although this language is
already higher-level than the operational model there are still some limi-
tations with respect to the extensibility and support to develop high-level
programming abstractions.

• In chapter 6 we define AmbientTalk’s exact semantics based on a metacir-
cular definition. This metacircular definition is then used as a basis to
open up parts of the native AmbientTalk implementation. More partic-
ularly we use it to specify AmbientTalk’s reflective hooks on its model
of concurrency and distribution. This renders AmbientTalk as a reflec-
tively extensible language kernel. We also further investigate a number of
engineering principles to define metaprograms in AmbientTalk.

• At this point in the dissertation we have arrived at a language that is
expressive enough to capture and modularize programming abstractions
for AmOP applications. In chapter 7 we exploit this expressiveness and
start to capture additional programming abstractions as language features.
As such we create a set of language abstractions that allow us to structure
AmOP applications in the AmOP paradigm. Finally, we apply some of
these abstractions in the context of an application and compare the results
to a similar application written in Java.

• In chapter 8 we further demonstrate the expressive power of AmbientTalk
and discuss the implementation of a number of language constructs rang-
ing from group communication to support for reversible computations in
the context of mobile networks.

• Chapter 9 summarizes and presents our conclusions found in this disser-
tation. It also discusses future work generated by this dissertation.

14 Introduction

Chapter 2

Software Platforms for
Mobile Distributed Systems

2.1 Introduction

Much of the emerging behavior in ubiquitous computing scenarios results from
the cooperation between devices. These devices can cooperate because they are
surrounded by what is sometimes referred to as a mobile network . A mobile
network emerges from a set of devices that communicate over wireless commu-
nication media. The systems that result from such a hardware constellation
are called mobile distributed systems. A mobile distributed system explicitly
supports mobile computing . Mobile computing concerns the computation that
is carried out in mobile devices. Mobile computing should not be confused with
mobile computation, which concerns the mobility of code between devices. In
this dissertation we focus on mobile computing.

In the next section we consider the characteristics of two types of such mobile
distributed systems. These two types of mobile distributed systems are com-
posed of the same type of hardware components. From the properties of these
hardware components we identify important phenomena in section 2.3. These
phenomena are fundamental because of their consequences to the concepts of
concurrency and distribution. These concepts and their impact on aspects that
need to be considered when developing concurrent and distributed software in
the context of mobile distributed systems are discussed in section 2.4. In sec-
tion 2.5 we review how the object-oriented paradigm can be used to model and
structure concurrent and distributed applications based on these concepts. This
paradigm has proven its merit with respect to dealing with distribution (and its
induced concurrency) because it successfully aligns encapsulated objects with
concurrently running distributed software entities [BGL98].

The remainder of this chapter will be spent at the evaluation of distributed
programming platforms in the context of mobile distributed systems. One of
the evaluation criteria is how they integrate with the object-oriented paradigm.
For this reason we have made an explicit distinction between object-oriented
distributed languages and middleware. Object-oriented distributed languages,
discussed in section 2.6, are designed to unify concurrency and distribution
concepts with the object-oriented paradigm. On the other hand, middleware

16 Software Platforms for Mobile Distributed Systems

platforms, which are discussed in section 2.7, do not necessarily integrate well
with the object-oriented paradigm. In these sections we will come to conclude
that the distributed language approaches integrate well with the object-oriented
paradigm, but do not support all the hardware phenomena. On the other hand,
middleware approaches do not integrate well with the object paradigm, but
provide better support to deal with the hardware phenomena.

2.2 Types of Mobile Distributed Systems

In this section we examine the commonalities and the differences of fixed and
mobile distributed systems by means of a conceptual framework developed by
Mascolo et al. [MCE02].

A general definition that encompasses both types of distributed systems is
given by Coulouris et al. [CDK05]:

Definition 1 (Distributed System) A distributed system consists of hard-
ware and software components located at networked computers that communicate
and coordinate their actions only by message passing1.

From this definition we can zoom in on three facets of distributed systems:

• Type of Device: In the definition above the term “networked computer”
can refer to a fixed device or a mobile device. Fixed devices range from
desktop computers and server racks to electronics embedded in stationary
objects such as a washing machine. On the other hand, mobile devices
can vary between laptops, PDAs, mobile phones and other electronics
embedded into mobile items, such as a wrist watch.

• Type of Network Connection: The word “communication” refers to
the network infrastructure and this is the basis for another difference be-
tween fixed and mobile of distributed systems. On the one hand, in fixed
distributed systems computers are often connected via permanent links.
These links are often high-bandwidth and supported by redundant infras-
tructure such that connections are relatively stable. Hence, disconnections
are either caused by scheduled maintenance or unforeseen failures. On the
other hand, mobile distributed systems are usually connected via a wireless
communication link over wireless technologies such as Bluetooth, Wireless
Fidelity and GPRS. These wireless technologies are prone to disconnec-
tions due to the limited communication range of these technologies. When
users move about with their mobile devices they leave and enter the com-
munication range of other devices in the environment, but even when two
wirelessly communicating devices are stationary the link can be broken due
to a radio occlusion caused by the environment, such as a car that passes
in between the two communicating devices. The communication range is
often further reduced by the limitations of the power source. The general
rule is: the less power is available for the wireless link the smaller the
communication range of the wireless link. Of course there are other issues
that can greatly influence the quality of the wireless link such as the type

1The term “message passing” refers to the transmission of message packets at the hardware
level.

2.2 Types of Mobile Distributed Systems 17

of antenna that is used. Nevertheless, even with the latest state of the art
of hardware and the best infrastructure to support wireless connections
we can conclude that disconnections occur frequently. An example of this
is the quality of conversations over a mobile phone, which are at times
problematic even though there are a great number of antennas posted
throughout many cities nowadays. Another source for disconnections are
caused by the use of a finite power source in a mobile device. When a
battery of a mobile device is discharged then the device stops functioning
and active connections are lost or wireless links may be manually or auto-
matically turned off to conserve battery power. From this we can conclude
that mobile distributed systems are intermittently connected as opposed
to fixed distributed systems that usually have permanent links.

• Type of Execution Context: Another facet that is maybe less explicit
in the definition above is the execution context of a distributed system.
With the term “execution context” we refer to the context information
that can influence the behavior of an application. Typically in fixed dis-
tributed systems the execution context is more static than with the mo-
bile variants. For example, the quality of a connection can depend on
the environment in which mobile devices communicate while the quality
of a connection in a fixed distributed system is often continuously sta-
ble. Another important type of execution context that is influenced by
the location of mobile devices is the availability of services. In mobile
distributed systems the availability of services often coincides with the lo-
cation of the mobile device, whereas in a fixed distributed system services
are often continuously available for an application.

Ubiquitous computing scenarios entail that computing technology is embedded
in all types of devices, ranging from washing machines and refrigerators to cars,
clothes and wrist watches. It is clear however, that most of the cooperation
between these devices will occur over wireless communication media. Wireless
communication media has one important advantage over fixed communication
media. Namely, wireless communication media makes the users oblivious to the
computing technology in the face of mobility.

Based on this conceptual framework of distributed systems we can further
distinguish between two types of different mobile distributed systems [MCE02]:

• Nomadic distributed systems have a mix of fixed and mobile characteris-
tics. A nomadic distributed system is built out of fixed and mobile devices
that interact and cooperate via infrastructure. This infrastructure can be
composed of wireless access points that are themselves connected via a
fixed network. An example of such a distributed system is a mobile phone
network, where each phone connects to an antenna and the different an-
tennas are connected via cables. As users move about with their mobile
phone the connection is transparently carried over from one antenna to
another.

• Ad-hoc mobile distributed systems consist of a set of mostly mobile de-
vices that are connected via extremely variable quality links and execute
in dynamic environments. For example, mobile devices can be completely
isolated from other devices and groups of communicating mobile devices

18 Software Platforms for Mobile Distributed Systems

may spontaneously emerge in the environment. Ad-hoc mobile distributed
systems further distinguish themselves from their nomadic variants in that
there is no infrastructure that supports the communication between de-
vices. Such a network that emerges due to the mobility of the mobile hosts
is often called a mobile ad-hoc network .

Both types of mobile distributed systems, discussed above, can be used to
realize ubiquitous computing scenarios. For example, nomadic distributed sys-
tems can be useful to realize ubiquitous computing scenarios in the context of
a restricted environment such as an office space or at home. Nevertheless, the
vision of ubiquitous computing is not a delimited concept that starts in a re-
stricted environment and stops when you leave it. For this reason ad-hoc mobile
distributed systems are needed to further support the scenarios that continue
outside of restricted environments such that no assumptions on the available
infrastructure can be made.

2.3 Hardware Phenomena

In this dissertation we focus on the concurrency and distribution aspects that
arise when developing a distributed application for distributed systems within
the range of the nomadic and ad-hoc variants. To distill the important issues
that arise we examine the important phenomena that manifest from the hard-
ware that is used to construct these types of distributed systems.

With the current state of commercial technology, mobile devices are often
characterised by having scarcer resources (such as lower CPU speed, smaller
memory and limited battery) than traditional hardware. However, we cannot
help but notice that in the last couple of years, mobile devices and full-fledged
computers like laptops are blending more and more. That is why we do not con-
sider these restrictions as fundamental to software development as we consider
the following phenomena to be:

• Volatile Connections: Two processes that perform a meaningful task to-
gether on two cooperating devices cannot assume a stable connection. The
limited communication range of the wireless technology combined with the
fact that users can move out of range can result in broken connections at
any point in time. However, upon re-establishing a broken connection,
users typically expect the task to resume. In other words, they expect the
task to be performed in the presence of a volatile connection.

• Ambient Resources: If a user moves with his mobile device, remote re-
sources become dynamically (un)available in the environment because the
availability and location of a resource may depend on the location of the
device. This is in contrast with fixed networks in which references to re-
mote resources are obtained based on the explicit a priori knowledge of
the availability of the resource. In the context of mobile networks, the
resources are said to be ambient.

• Autonomy : Most distributed applications today are developed using the
client-server approach. The server often plays the role of a “higher au-
thority” which coordinates interactions between the clients. In mobile

2.4 Concurrency and Distribution 19

networks, and especially in mobile ad hoc networks, a connection to such
a “higher authority” is not always available. Every device acts as an
autonomous computing unit.

• Natural Concurrency : In theory, distribution and concurrency are two
different phenomena. For instance in a client-server setup, a client might
explicitly wait for the results of a request to the server in order to resume
its computation. But since waiting undermines the autonomy of a device,
we conclude that concurrency is a natural phenomenon in software running
on mobile networks.

These four hardware phenomena are very important because they are inextri-
cable consequences of the hardware components that are used to build such
mobile distributed systems. Hence, we will use these hardware phenomena as
our guiding principle for the design of the new paradigm we discuss in the next
chapter and for the evaluation of the state of the art discussed further on in this
chapter.

2.4 Concurrency and Distribution

Although concurrency and distribution are theoretically not the same, the im-
plementation of a distributed system is almost always concurrent. As a conse-
quence a good concurrency model is the foundation of a model for distribution.

In their book “A Theory of Distributed Objects” [CH05] Caromel and Henrio
distilled important aspects to consider for parallel and distributed languages
and frameworks. In this section we review these aspects in the light of mobile
distributed systems and the subsequent hardware phenomena we have discussed
in the previous two sections. In the light of these hardware phenomena we will
find that these aspects can no longer be sufficiently addressed with traditional
methodologies. This insight is important because it influences design decisions
of the distributed languages and middleware that are discussed in the subsequent
sections.

2.4.1 Definitions

This section gives definitions of the main concepts that need to be modeled by
parallel and distributed languages. The first definition is about the real world.
The world consists a number of activities that are occurring at the same time.

Definition 2 (Parallelism) Execution of several activities or processes at the
same time.

Parallelism is often introduced into a program for two reasons:

1. A first reason for using parallelism in programs is to increase the efficiency
of programs. If a certain task can be divided over multiple processors,
then that task can be completed faster than when it would run a single
processor.

2. Secondly, it can be used as a modeling technique. Sometimes the program
needs to deal with inherently parallel concepts. This is sometimes the case

20 Software Platforms for Mobile Distributed Systems

when a program is a simulation of the real world, for example simulations
are sometimes made to measure the congestion rate of roads on arterial
roads. Another example is when an application has to interface with the
real world by means of sensors and actuators. In that case the application
needs to respond to events, which are possibly occurring at the same time.

Applications developed for mobile networks will typically fall into the second
category. Since such applications typically interact with the physical world,
through their wireless and possibly other sensor interfaces, they have to deal
with the inherent parallel nature of the ambient in which they run.

The second definition, concurrency, is a consequence of parallelism: when
multiple activities manipulate a resource at the same time.

Definition 3 (Concurrency) Simultaneous access to a physical or logical re-
source.

Concurrent access to a resource can render it in an inconsistent state. For
example, if two people would simultaneously enter a sentence on the same type-
writer then the result will be inconsistent and unreadable and contain a mixture
of characters of the two sentences that were entered on the keyboard. Note that
the words “inconsistent” and “unreadable” are with respect to the two original
sentences that were input by the two people. If the two people were asked to
enter a number of independent characters simultaneously onto the typewriter,
then the sequence of characters is still readable in spite of the fact that they
will be mingled. Hence, what is important is that consistency of state depends
on the semantics of the program.

Many of the concepts that are introduced in a parallel or distributed lan-
guages deal with concurrent access must allow the developer to specify what is
consistent state and depending on the semantics the correct level of interleaving
accesses of parallel activities has to be enforced.

The next definition is about distribution from a software perspective:

Definition 4 (Distribution) Multiple address spaces.

Middleware and distributed languages need to introduce a means to address
data that exists in another memory space. Multiple address spaces also means
that at the lowest level no data can be shared by parallel activities. This is
in contrast to symmetric multiprocessors (SMP) where a number of processors
work directly on the same memory. When dealing with multiple address spaces
messages have to be exchanged over the network to access data in another
address space.

When working with multiple address spaces a distinction can be made be-
tween two types of distributed systems:

Definition 5 (Synchronous systems) A synchronous distributed system has
been defined [HT94] as one where the following bounds are known:

• the time to execute each step of a process has known lower and upper
bounds;

• each message transmitted over a channel is received within a known bounded
time;

2.4 Concurrency and Distribution 21

• each process has a local clock whose drift rate from real time has a known
bound.

The definition above matches best with a distributed system where complete
control can be retained over the hardware that is used in its setup, for example in
a local area network. In a local area network computers are typically connected
directly to one another, the type of computers and processor speeds that are
connected and the type of network connection is known. However, although such
a setup would allow one to make good estimations of the different boundaries
it would still not be accurate. For example, the workload of the computers and
the network usage could cause congestion such that boundaries are eventually
exceeded. Another cause for the boundaries to be exceeded is the occurrence
of network partitions. Network partitions can prevent messages from arriving
within a bounded time. Nevertheless, distributed programs sometimes assume
a totally controlled world where the boundaries are known and guaranteed in
order to make the software requirements simpler.

Completely opposite to synchronous systems are asynchronous systems:

Definition 6 (Asynchronous systems) An asynchronous distributed system
cannot set any boundaries, hence

• there is no boundary on the execution speed of a process;

• there is no boundary on the time it takes for a certain message to arrive
at its destination;

• the drift rate of a local clock is arbitrary.

As we explained above a synchronous system can sometimes be assumed in
certain settings. However this is no longer possible in the context of open
networks, such as mobile networks or the Internet. First, in an open network
we have to deal with heterogeneous hardware for which the specifications are
not known. Hence, various execution speeds are attained. Second, the type
of the network implies that no estimations for boundaries can be made. For
example, in a mobile network the delivery of messages can be directly linked to
the (unpredictable!) mobility of the user carrying the mobile device. Finally, the
drift rate of the clocks in the different mobile devices cannot be predicted since
synchronization of clocks implies communication which itself is unpredictable.

Note that although distribution and concurrency are typically associated
with one another distribution does not always imply concurrency. This can
be illustrated through the following example. A client application in a client-
server model typically makes a single connection to a server and when it sends
requests to the server it waits until these requests are answered. Hence, although
the overall distributed system may execute in a concurrent fashion the clients
themselves are not necessarily concurrent. While concurrent accesses to shared
resources give rise to data consistency issues in a program, distribution gives
rise to another set of problems, more particularly the need to deal with indepen-
dent failures. A failure of a machine or communication link implies that parts
of the program continue to run while other parts may become (temporarily)
unavailable for communication.

Now that we have discussed the important concepts that are encountered in
distributed systems we can discuss how they can be dealt with at the software
level.

22 Software Platforms for Mobile Distributed Systems

2.4.2 Denoting Parallel Units in Programming Languages

A first important concept that we find in software is the ability to spawn parallel
activities. A parallel activity is expressed as a parallel unit. Such a unit can
range from a process to the level of expressions [BST89].

Processes and Threads

Processes are perhaps the most frequently used unit of parallel activity. Many
operating systems run each program in a separate process. Processes have their
own state and data, hence no memory is shared between processes. Within
such a process it is possible to create multiple threads. In contrast to processes,
threads can share memory and allow for more fine-grained parallel activity.
In most mainstream languages threads are created dynamically and terminate
when the top-level procedure they are executing returns. However, often some
functionality is provided to abort a thread such that it terminates before this
top-level procedure has returned.

Objects

There are several options to introduce parallel activity onto objects. In a se-
quential object-oriented programming language objects interact via message
passing. An object sends a message to itself or another object and waits until
the receiving object has processed the message and returns control back to the
sender. This is often paired with a value that is returned to the sender. From
this metaphor Bal et al. [BST89] distill four different options to map parallelism
onto an object:

1. attach a thread to an object and the object can be active without having
received a message.

2. allow the object to continue its execution after it has sent the message. In
other words, an object sends a message and continues its execution without
waiting for the receiver to have completed processing the message.

3. instead of sending the message to a single destination the message can be
sent to multiple objects that each process the message in parallel. The
sender waits until the different receivers have finished executing the mes-
sage.

4. the receiving object continues executing after it has returned control to
the sender.

Making a choice between these options involves a number of considerations. For
example, the first option does not integrate well with the paradigm of object-
orientation since objects are no longer solely activated by means of message pass-
ing. These and other integration considerations are discussed in section 2.5.2.

Expression and Statements

The most fine-grained unit of parallelism is expressed at the level of expressions
and statements. For example, in Occam it is possible to declare the paral-
lel execution of a number of statements using the PAR keyword. As noted in

2.4 Concurrency and Distribution 23

[BST89], parallelism at the level of statements or expressions is easy to under-
stand and use but difficult to maintain in large applications, because it is more
fine-grained.

2.4.3 Design Issues in Communication

After having discussed the different ways of introducing parallelism in program-
ming languages we can now turn our attention to the way one logically dis-
tributed parallel unit communicates with another by message sending. There
are four important characteristics [BST89] that must be considered for the com-
munication between parallel units in the context of distributed systems. These
characteristics are further discussed below.

Characteristic #1: Addressing Parallel Units

A first consideration is how to address distributed parallel units. Addressing
a parallel unit can be either direct or indirect. A parallel unit is addressed
directly when its communication partner addresses it explicitly. An example of
this explicit addressing are remote object references, where an object is directly
referred to by another object. On the other hand, indirect addressing of a
parallel unit occurs when its sender does not refer to it directly, but instead
refers to an abstract intermediary communication partner that in its turn refers
to the parallel unit that needs to be addressed. Note that indirect addressing
offers greater flexibility and a higher level of abstraction that can be useful to
deal with the ever-changing environment in which mobile devices are used.

Characteristic #2: Implicit vs. Explicit Communication

Once a parallel unit can be addressed it is possible to communicate with it. A
parallel unit sends a message that is received by another parallel unit. Sending
a message is usually always explicit in the code, but receiving a message can be
either implicit or explicit. For example, when a method is invoked on a remote
object in Java RMI, then this method invocation is implicitly accepted. The
object does not have to accept the message explicitly. Occam is a language
where messages are accepted explicitly. In Occam syntax is provided such that
a process can explicitly listen to a channel for a message.

Characteristic #3: Communication Timing

Another important decision is whether to use synchronous or asynchronous com-
munication between parallel units.

Definition 7 (Synchronous Communication) The sender and the receiver
both synchronize at every message.

Asynchronous communication is often defined from the perspective of the
sender [BST89]:

Definition 8 (Asynchronous Communication) The sender does not wait
for the receiver to be ready to accept its message.

24 Software Platforms for Mobile Distributed Systems

The decision on which type of communication that should be used is not binary,
it can be seen as a continuum between synchronous and asynchronous commu-
nication. Caromel and Henrio distill a number of these points in the continuum
[CH05]:

• Asynchronous communication with rendez-vous: The sender of a
message blocks until it has received an acknowledgment from the receiver
that is has been received. However, the sender does not wait until the
message has been processed.

• Asynchronous communication with FIFO order: The sender of a
message is guaranteed that the messages it sent to a receiver are received
in the order it has sent them.

• Asynchronous communication without order guarantee: Messages
sent by a parallel unit can be received in any order, irrespective of the order
in which the messages were sent. An example of a low level messaging
protocol with such semantics is UDP.

The latter two types of asynchronous communication match well with inherently
asynchronous distributed systems such as the ones found in mobile distributed
systems, because they allow one to abstract from unavailable devices such that
the autonomous nature of devices is not hampered. This is further discussed in
section 3.3.

Characteristic #4:Reliability

There are several degrees of reliability that can be guaranteed when communi-
cating. For example, on the one end when communicating using UDP there are
no delivery guarantees made to the sender of a message. If a message is lost in
transit it will never arrive at its destination. On the other hand, the sender of a
message can continuously retry sending a message until it receives an acknowl-
edgment that the message has been received. Between these two extrema there
are approaches that provide some fault tolerance to a limited extent. An exam-
ple of this is the TCP/IP protocol, which is frequently used for connections over
the internet. In any case, there is no single strategy that is suitable for all dis-
tributed applications. However, in the case of mobile distributed systems, where
volatile connections are the rule rather than the exception care must be taken
in making the correct choice. Note that the degree of reliability is independent
from the communication timing. On the one hand, synchronous communication
can be made reliable by blocking the sender and meanwhile retrying to send
the message. On the other hand asynchronous communication can be made re-
liable by transparently resending a message until an acknowledgment has been
received.

2.4.4 Corollaries of Mobile Distribution

Above, we have discussed fundamental concepts found in distributed systems
and how these concepts can be translated into programming language concepts.
We can now revisit the consequences of these choices in the context of mobile
distribution.

2.4 Concurrency and Distribution 25

Non-Deterministic Interactions

Non-deterministic interactions are a distinct characteristic of distributed sys-
tems and are a consequence of the use of multiple independent machines (which
have their own internal clock and speed) that are acting on a shared resource.
An important insight is that the type of communication determines to a large
extend the degree of non-determinism that can occur. For example, suppose a
distributed bounded buffer object. The buffer is accessed by a single producer
and multiple consumers. This example can be used to compare synchronous
communication with and without an explicit receive statement. One problem is
what happens if the buffer is empty. In the case of an explicit receive statement
in Occam for example, the buffer can execute a statement: writer?element.
In this case the buffer object will wait explicitly until the writer has sent an
element. In the case of a communication model without an explicit receive
statement methods of the buffer object are executed in the order they are re-
ceived. This order is dependent on the internal clock of the consumers and the
producer and the quality and speed of the connection, which are variable and
cannot be predicted. Hence, the former communication type is more determin-
istic than the latter. However, when comparing synchronous communication to
non-blocking communication we find that the latter form introduces even more
non-determinism. The extra degree of non-determinism is caused by the fact
that computation is continued immediately after sending a message irrespective
of whether the message has been accepted. Non-determinism can be reduced
by introducing synchronization mechanisms in the concurrency model such that
the program can maintain a consistent state.

Asynchronous communication decouples the sender from the receiver and
therefore behaves better with respect to the autonomous nature of devices in
a mobile distributed system. In the next chapter we will discuss criteria that
reconcile the consequences of this non-determinism with the autonomous nature
of devices.

Partial Failures

As explained in sections 2.2 and 2.3, volatile connections are inextricably asso-
ciated with wireless communication media. Also, mobile devices can fail tem-
porarily due to batteries that are drained. Failures are generally a hard problem
in the context of distributed computation. In a distributed system a component
(network link or device) can fail while the other components in the system are
unaffected and continue their computation, hence the name partial failures. In
a distributed system a failure generally cannot be detected accurately. Failures
are nowadays most often detected based on timeouts. The problem is that time-
outs are only an estimation. Latencies of messages can vary based on the load
of the network and the machine, such that a message that is considered to be
lost because no reply has been received within a certain time interval could still
be processed and return the reply too late. It is also possible that a message has
been received by a node, but that the link failed just before a reply can be sent.
This makes it generally impossible for a sender to determine whether a message
that is considered to be lost has actually been received. As a consequence, when
such failures are dealt with by sending messages twice it is possible that mes-
sages are received multiple times. It is also generally impossible for the sender

26 Software Platforms for Mobile Distributed Systems

to determine which component has failed. Either the device or the network link
could have failed.

Current mainstream distributed models, such as the ones found in CORBA
or other remote method invocations schemes deal with such partial failures by
propagating exceptions. However, in mobile networks volatile connections are
the common rule rather than the exception. As a consequence programming
mobile distributed systems in such models is hard.

A number of conceptual solutions have been developed to deal with failures
in distributed systems. The most important ones are (distributed) transactions
and replication. A transaction guarantees the atomic execution of a set of ac-
tions in the face of failures. Atomic execution means that either all actions
are serially executed or none of them at all. Another solution to deal with
partial failures is replication. Replication is used to ensure the availability of
services in a network by duplicating them on multiple machines in the network
such that when a machine or network link fails the service remains available on
other nodes. Hence, replicated services try to hide network failures. Other tech-
niques are more application specific. For example, when a device coordinating
distributed computations fails a new coordinator could be elected. Although
these techniques have proven useful in the context of fixed distributed systems,
the protocols associated with these techniques generally do not scale to mobile
distributed systems. This is mainly because these protocols typically rely on
centralized coordination and expect failures to be rare and of short duration. An
example is the 2-phase-commit protocol [CDK05] used to support distributed
transactions. In the 2-phase commit protocol there is a coordinator that asks all
participants in a distributed transaction if they are able to commit the actions
associated to the distributed transaction. The participants in the transaction
answer “Yes” or “No”. If the coordinator receives a “Yes” from all participants
then it sends a commit instruction to all participants. If any one of the par-
ticipants answers “No” then the coordinator sends an abort instruction to all
participants to all other participants. The result is that the transaction is either
committed as a whole or not at all. Note that this scheme only works because
a participant that answered “Yes”, cannot change this decision until it receives
either a “commit” or “abort” message from the coordinator. Hence, if the con-
nection between the coordinator and the participants fails after a number of
participants voted “Yes”, then these participants cannot perform any operation
that would render its vote invalid. In a fixed distributed system, where failures
are exceptional and systems can be closely monitored for failures, such problems
can be solved in an acceptable timeframe. This is in contrast to the failures en-
countered in mobile distributed systems that are due to volatile connections.
Volatile connections are common and the time to restore a connection can be
directly related to the mobility of a user.

2.5 Objects vs. Concurrency and Distribution

Above we have discussed how concurrency and distribution concepts can gener-
ally be addressed in software. We have also discussed the consequences of these
choices in the context of mobile distributed systems. Now that we have done this
we can turn to a specific paradigm to express concurrency and distribution. The
object-oriented programming paradigm provides a good foundation for dealing

2.5 Objects vs. Concurrency and Distribution 27

with distribution and concurrency, because it successfully aligns encapsulated
objects with concurrently running distributed software entities [BGL98]. How-
ever, there are a number of different approaches how distribution and concur-
rency issues can be expressed in the paradigm. Briot et al. [BGL98] make
a distinction between the library, the integrative and the reflective approach.
These approaches are discussed in the following subsections.

2.5.1 The Library Approach

Distribution and concurrency primitives are encapsulated and are modeled using
the object-based techniques. Using aggregation and inheritance the primitives
can then be integrated in the application. In this approach is that two kinds
of objects are used. One kind is used to express the solutions to the issues
associated with the concurrency and distribution, while another kind is used to
model the domain concepts in the program. Both kinds of objects sometimes
need to be mixed to implement the correct solution. An example of this is the
Thread class found in many libraries for introducing concurrency in an object-
oriented language. Concurrent objects, which often implement domain concepts,
need to inherit from this class and implement the run method. This example
illustrates how concurrency and domain concepts are composed together based
on the inheritance relationship. The composition of two different kinds of objects
generally results in two problems. A first problem with this approach is that
the distinction between domain objects and objects that deal with concurrency
and distribution issues is obfuscated. A second problem with this approach is
that the library, as in the example above, sometimes enforces a structure onto
objects that model domain concepts such that modularizing domain concepts
can become impossible. A direct consequence of this is that the extensibility
of the different kinds of objects becomes more difficult after they have been
composed.

2.5.2 The Integrative Approach

In section 2.4.2 we have already discussed different approaches to introduce
concurrency into the object model. In this subsection these approaches are con-
sidered again from an integration perspective. The integrative approach aims
to align concurrency and distribution concepts with the object paradigm. The
integration is achieved by merging some of the concurrency and distribution
concepts with the concepts found in the object paradigm. This approach alle-
viates some of the problems found in the library approach. First, since major
concurrency and distribution aspects are merged with concepts of the object
paradigm the programmer has to deal with less concepts. This enhances the
understandability of the concurrency and distribution aspects of the program.
Second, there is less need to manage the concurrency and distribution aspects
of a program, provided the object paradigm is aligned intuitively with the con-
currency and distribution concepts. The three main dimensions along which
concepts can be merged are discussed below.

28 Software Platforms for Mobile Distributed Systems

Object and Process

The integration of an object with a process leads to the notion of an active
object. The two concepts can be unified because both can be regarded [Mey93]
as an encapsulated unit that can communicate with others. An object can have
none, one or multiple processes associated with it. An object that does not have
any process associated with it is sometimes called a passive object. The number
of processes associated with an object gives rise to different types of object-level
concurrency:

• Serial or atomic: only one message is computed at a time.

• Quasi-concurrent: multiple object activations within an object can exist
at a single point in time. Nevertheless, at most one activation can be
executing at a time. The other activations must be suspended at that
time.

• Concurrent: multiple unsuspended activations can be present at a single
point in time. However, certain restrictions on the concurrency may exist.
These restrictions are necessary to maintain a consistent state.

• Fully concurrent: is the same as concurrent objects but without any con-
currency restrictions. Fully concurrent object models are functional by
nature so that state does not change during a method execution and no
inconsistent state can occur.

An important issue with regard to the different types of object-level concurrency
is maintaining a consistent state. Quasi-concurrent and concurrent objects are
susceptible to race conditions at the level of individual instructions within a
method, because concurrent object activations within the same object can re-
sult in a non-deterministic interleaving of instructions. On the other hand,
serial and fully concurrent object models cannot have race conditions at the
level instructions of a method. Nevertheless, as shown by Briot and Yonezawa
[BY87] in the case of serial objects race conditions can still occur at the level of
interactions. They give the example of a counter object with set and get meth-
ods. Clients want to increment and decrement the counter using these methods.
Due to the non-deterministic interleaving of the get and set methods updates
can get lost. Suppose the counter is initialized at zero and two clients want to
increment the counter by one. Consider the following schedule: both clients re-
quest the state of the counter and in both cases the result returned will be zero.
Next, both clients update the state of the counter and set it to the result of the
get invocation incremented by one. The resulting state of the counter is one.
Hence, one counter update can be lost due to the non-deterministic interleaving
of messages.

Now that we have discussed the different levels of concurrency that can ex-
ist within an object we can turn to how concurrency can be initiated in the
object paradigm. There are two approaches objects can be activated: reactive
vs. autonomous activation. In the case of reactivity object activation coincides
with method invocation. A message is sent to an object and the object is acti-
vated by this message. In the case of autonomy an explicit process is associated
with a concurrent object. The object starts running from the moment it is cre-
ated, with little or no regard to external events. The object paradigm naturally

2.5 Objects vs. Concurrency and Distribution 29

matches better with reactive object activation, but autonomous activation usu-
ally gives more fine-grained control over the concurrency issues. For example,
autonomous activation offers constructs that allow an object to explicitly receive
messages, whereas reactive object models are often based on implicit message
acceptance (both were discussed in sections 2.4.3 and 2.4.4). Hence, when inte-
grating processes and objects a choice has to be made whether the active object
preserves the reactivity principle or whether an autonomous object system is
adopted.

Object Activation and Synchronization

A second type of integration merges the method invocation and process syn-
chronization concepts. Merging both concepts gives rise to the notion of a syn-
chronized object. When multiple processes are executing in parallel and working
on shared resources there is a need to synchronize parts of a program such that
it exhibits the correct semantics and prevent that the concurrent accesses lead
to an inconsistent state. There are two levels at which synchronization can be
integrated with concepts from the object paradigm:

Message Passing Level Synchronization In a sequential object oriented
language the sender of a message waits for the receiver to execute the message
and return the result of the method invocation. This same mechanism can be
used to introduce synchronization between active objects and is also known as
synchronous message passing. An active object can send a message to another
active object and wait until that object has processed the message and sent back
the return value. Message passing forms a natural means to synchronize two
concurrently executing objects such that the resulting semantics remains close
to sequential semantics. However, in a mobile distributed system, where the
latency of messages sent between objects can be high such semantics can harm
the autonomous nature of devices. A variant that hides the latency of objects is
asynchronous message passing. In this case the sending active object does not
wait until the message it sent is actually delivered or even processed. An issue
that complicates the use of asynchronous message passing are return values.
After all, when an active object does not wait until the callee has processed the
result it cannot return the result. Typically callbacks are used to process the
return values of asynchronous messages, but methods that are used as a call-
back clutter the code since for each different context in which an asynchronous
message is used a callback method needs to be implemented. Another disadvan-
tage of callback methods is that they break the flow of a typical object-oriented
program and harm the readability and understandability of the program. To
overcome this problem a linguistic abstraction, called futures or promises, have
been proposed [LS88] and implemented in a number of programming languages.

Object Level Synchronization Sometimes more explicit synchronization
control is needed that cannot be expressed solely at the message passing level.
The necessary degree of control over the synchronization is related to the degree
of object-level concurrency:

• Intra-Object synchronization: when multiple object activations within one
method can be active at a single point in time there is a need to ensure the

30 Software Platforms for Mobile Distributed Systems

consistency of the internal state of the object. Usually, there is a need to
specify which methods need to be executed in a mutually exclusive fashion.
Note that in a serial active object all methods are mutually exclusive by
definition. Although such a serial active object might be considered less
expressive, because it restricts the degree of parallelism, it has the benefit
that it eliminates inconsistent states that result from concurrent accesses
to the internal state of an object.

• Behavioral synchronization: it may be possible that an object, depending
on its current state, is temporarily unable to perform methods that are
part of its interface. A typical example is a queue that when empty cannot
execute an enqueue method invocation until a dequeue method is executed.

• Inter-Object synchronization: sometimes synchronization is necessary be-
tween a set of objects to perform a certain task. An example of such a
more global synchronization is that of a distributed transaction where a
hierarchy of objects are involved to atomically perform tasks. An example
of this type of synchronization is a banking application where one account
must be credited while a number of other accounts must be debited atom-
ically. More complex synchronization schemes are needed to achieve such
synchronization.

The integrative approach minimizes the number of concepts by integrating and
unifying concepts of distribution and concurrency. This approach has the advan-
tage that the aspects of distribution and concurrency are more naturally dealt
with and are easier to master. However, the integrative approach lacks adapt-
ability and flexibility of the concurrency and distribution concepts offered by
the library approach. In other words, the concurrency and distribution concepts
cannot always be adapted to the requirements of the applications.

2.5.3 The Reflective Approach

Thus far we have discussed the library and integrative approach. The reflective
approach provides a bridge between both approaches. Briot et al. [BGL98] have
noted that the library approach has the advantage that it allows developers to
structure distribution and concurrency into reusable concepts that can be mod-
ified thanks to the different extensibility and reusability mechanisms offered by
object-oriented techniques. This in effect gives a high degree of flexibility which
allows the customization of distribution and concurrency to new contexts. A
middle ground between both approaches is the reflective approach. The reflec-
tive approach can be regarded as a bridge between the library and integrative
approach. The idea is to integrate libraries into the programming language via
a meta-object protocol (MOP). A MOP allows modifications to the concepts of
the object paradigm. In other words, by using the MOP of a language we can
unify concurrency and distribution concepts with the language and still have
the flexibility offered by the library approach [BGL98].

2.5.4 Discussion

Not much experience exists regarding the development of mobile distributed
systems, and where it is even more difficult to foresee the type of applications

2.6 Distributed Programming Languages 31

that will be developed in the future by means of this hardware constellation,
it might be too early to come up with a language that provides the necessary
language abstractions immediately out of the box. On the other hand, the inte-
grative approach is more attractive than the library approach because the focus
is more on finding the right language abstractions and therefore this approach
provides more insight in the nature of how mobile distributed systems are pro-
grammed. An integrative approach aims at reducing the number of concepts
that need to be mastered by the application developer such that we can focus
on finding a minimal set of building blocks. These benefits of the integrative
approach correspond well with the goals we have set in section 1.1.3.

These benefits also support our choice, which was discussed section 1.4.2, for
a language-based as opposed to a middleware based approach. The language-
based approach corresponds best to the integrative approach, because the focus
is on concept integration, whereas middleware approaches lean more towards
the library approach and do not necessarily consider the integration aspect.
However, since the necessary programming abstractions for programming mobile
distributed systems have not yet been well established we will opt for a language
that can be extended reflectively.

In the remainder of this chapter we will discuss some of the existing dis-
tributed technologies in the light of programming mobile distributed systems.
In the light of the difference between both approaches we make a distinction
between distributed programming languages and middleware technologies.

2.6 Distributed Programming Languages

Distributed programming languages usually fall into the category of the integra-
tive approach, which was described above. Although the integrative approach
seems most rewarding with respect to new insights how applications for mobile
distributed systems should be developed we have found that, to the best of our
knowledge, no distributed language has been designed to specifically deal with
the hardware phenomena exhibited by the components to construct mobile dis-
tributed systems in section 2.3. We will therefore discuss existing object-oriented
distributed programming languages with respect to these phenomena. Existing
distributed languages can be categorised as languages designed for local area
networks and languages that have been designed for open networks, such as the
internet.

Mobile networks are inherently open due to ambient resources that can ap-
pear and disappear unheraldedly in the ambient of a device. Therefore languages
for open networks might have interesting properties with respect to program-
ming languages for mobile distributed systems. Below we will review two such
languages, E and Salsa. Besides these two languages we also review Argus,
because it is a language specifically designed to deal with partial failures. In
mobile distributed systems partial failures occur frequently due to the volatile
connections. However, before we review these languages we first discuss ABCL
because it tries to reconcile an object-based concurrency model with mutable
state.

32 Software Platforms for Mobile Distributed Systems

[object Buffer
(state declare-the-storage-for-buffer)
(script

=> [:put aProduct] ; aProduct is a pattern variable
(if the-storage-is-full
then (select ; waits for a [:get] message

(=> [:get]
remove-a-product-from-the-storage-and-return-it))

store-a-Product)
=> [:get]

(if the-storage-is-empty
then (select ; waits for a [:put] message

(=> [:put aProduct]
send-aProduct-to-the-object-which-sent-[:get]-message))

else remove-a-product-from-the-storage-and-return-it))]

Table 2.1: Bounded Buffer in ABCL

2.6.1 Actor Based Concurrent Languages (ABCL)

ABCL is a set of object-based languages [YBS86, TMY94] that were initially
designed for parallelism and in a later stage also for distribution. Table 2.1
shows the implementation of a bounded buffer for product items written in
ABCL. An object is composed of a list of state variables and a script. The
script defines the messages that are accepted by the Buffer object. Based on
the select statement an object can change the messages it accepts and provide
a different behavior when it receives a message. For example, when a get
message is received by the buffer when it is empty the buffer will only accept a
put message and the behavior for that put message is to immediately send the
product to the sender of the original get message.

In ABCL objects are active entities that can be in one of the following states:

• dormant: this is the case when no method activations in the active ob-
ject are present. This state occurs when the object has processed all the
messages in its queue.

• waiting: an object can be in a waiting state when it is waiting for a
particular set of messages to arrive. For example, when the buffer is empty
and the queue object receives a get message then the object has to wait
until it receives a put message before it can proceed with the get message.
To specify such an explicit wait ABCL introduced the select statement
which allows the specification of the messages an object is waiting for.

• busy: an object in a busy state when it is processing a message. In ABCL
only one message can be processed at a time. However the processing
of a message may be interrupted based on the express message passing
mechanism, discussed below.

In ABCL different types of message passing mechanisms are introduced from
which a developer can choose. There are two aspects of message sending in
ABCL. The first aspect is the delivery mode of the message. A distinction is
made between ordinary and express mode messages. Ordinary mode messages
can be preempted by express messages. When an ordinary message is being
processed and an express message arrives then that process is preempted and
the express message is processed. When an express message is processed and one
or more express messages arrive then these express messages are processed in

2.6 Distributed Programming Languages 33

the order of arrival. When no express messages remain to be processed then the
ordinary messages are further processed in the order of arrival. Hence, ABCL
features quasi-concurrent active objects. The second aspect is the message type
that needs to be chosen:

• “past” type messages are sent without waiting for the message to be pro-
cessed by the receiver. This type of message passing does not return a
value.

• “now” type messages are sent and the receiver explicitly waits until the
message is processed. A value is returned to the sender of the message
after it is processed.

• “future” type messages are a combination of past type and now type mes-
sages. This type of message passing immediately, that is without waiting
for the message to be processed, returns a “future” value. Such a “future”
value can be queried for the result and if the result is available, then the
result is returned, otherwise the active object that queried for the result
is blocked until the result becomes available.

The “now” and “future” type message passing can be reduced to “past” type
message passing combined with the use of a select statement. The “now” type
message passing is based on the select statement. After the sender sent a “now”
type message it invokes the select statement to receive the reply message such
that the object ends up in a waiting state. When the receiver has processed the
message and returns the result this result is sent back to the sender such that
the sender will return back to a busy state and can process the result. “Future”
type message passing is reduced to “past” type by means of a future object that
is passed along with the message to the receiver. The receiver sends the result
to the future object that is queried by the sender. The sender can query the
future object for the result with the next-value operation. When the future
object has not yet received the result the sender blocks until the result has been
received. In the other case the result is immediately returned.

Evaluation

Evaluating ABCL/1 with respect to the hardware phenomena we discussed in
section 2.3 we obtain the following results.

Volatile Connections The ABCL language family was foremost conceived
for supporting parallelism. Although some ABCL languages support remote
invocations their behavior with respect to failures is not defined to the best of
our knowledge.

Ambient Resources Since the focus of ABCL was to support parallelism no
mechanism to support ambient resources is introduced.

Natural Concurrency In ABCL each object is associated with a process
and objects process messages in the context of that process as explained above.
A consistent state is maintained through the use of the select statement and
the definition of atomic blocks. Code in an atomic block cannot be interrupted
by any type of message.

34 Software Platforms for Mobile Distributed Systems

Autonomy ABCL languages do not have any concepts that inherently re-
quire a client-server setup. However, the select statement which brings an
object into a waiting state can result in dependencies between objects. This
is especially the case when considering now and future type messages. A now
type message results in an object waiting explicitly for an object to return its
value. Hence, if a connection breaks while an object is waiting for a result then
that object has two options. It can wait until the connection is restored or
it can consider the remote invocation as failed. In the former case the object
cannot process any other messages while it is waiting for the connection to be
restored, thereby harming the autonomy. The latter case results in very com-
plex software, because with each remote method invocation one has to assume
that the invocation can fail. Note that dependencies increase as the call graph
grows. Future type message passing suffers from similar problems when a future
is queried for its result when it has not yet been resolved.

2.6.2 Argus

Argus [Lis92, LS88] is a distributed programming language designed to cope
with failures of computer nodes and the network. These failures were captured
by augmenting the sequential language CLU with distributed objects that sup-
port transactional semantics. In Argus a distinction is made between local ob-
jects and guardian objects. Guardian objects are remote objects that have one
or more processes and can be remotely created and moved around. Guardian
objects are interacted with by invoking handler operations, which are similar
to methods. Handler invocations are served by the guardian object’s internal
processes. The state of a guardian object is composed of a set of local objects
and references to guardian objects. These objects can be annotated with the
keyword stable to specify that they are recoverable. Such objects are recovered
from stable storage after a crash of a computer node. Other objects, which were
not annotated with the stable keyword typically contain volatile data that can
be reconstructed from stable objects or that can be discarded.

Argus also allows atomic data types to be specified. Objects instantiated
from such atomic data types, henceforth called atomic objects, differ from other
objects in the way operations are handled. Each operation on an atomic object
is accompanied by a lock. A distinction is made between read and write locks.
Multiple processes can have a read lock at the same time on an atomic object,
but a write lock is exclusive. An exclusive lock ensures that no other processes
can have a (read or write) lock at that time. The distinction between these two
types of locks has the advantage that more parallelism is allowed on the resources
while the consistency of the state is maintained. Another difference between
atomic and regular objects is that operation invocations on atomic objects can
have transactional semantics. This is the case when the operation invocation
is annotated by the action keyword. In that case state changes are done on
a copy of the state of an atomic object. Also, other operations invoked in the
control flow of such an invocation may have (nested) transactional semantics. It
is only when control is successfully returned to the top level (that is, no aborting
exceptions or returns have occurred in the control flow) that all changes made
to the objects are committed. The use of such atomic actions is illustrated with
the following code:
% for a transfer it does the following

2.6 Distributed Programming Languages 35

% find out accounts and amounts from user and store in local variables to, from and amt
enter topaction % start a new transaction

t: branch := get-branch(to)
f: branch := get-branch(from)
coenter % start a nested transaction

action f.withdraw(from, amt)
action t.deposit(to, amt)

end except others: abort exit problem end % all exceptions cause abort of topaction
end % topaction
except when problem: % tell user that transfer failed
end % except
% tell user that transfer succeeded

This is the code of a transactional bank transfer in a distributed bank ap-
plication where an amount is withdrawn from one account and deposited on
another one, where both accounts may reside on a different branch. The trans-
actional semantics ensure that either both operations are completed successfully
or no changes are made at all to the accounts.

Argus supports both synchronous and asynchronous remote method invo-
cations. Asynchronous remote method invocations are introduced into the lan-
guage through the introduction of a port concept. Each port corresponds to an
operation that can be remotely invoked. A receiving entity defines a number
of ports, which are associated with an operation that can be called by a client.
Ports can be grouped together such that calls to ports in the same group are
sequenced. A stream is associated per client object that interacts with such
a port group. A stream has several purposes. First, it ensures that messages
arrive in the correct sequencing order. Second, it ensures that messages are
executed at most once. Finally, a stream is also buffered such that multiple
messages can be sent without waiting for them to be processed. Hence, streams
enable asynchronous method invocations in Argus.

Argus introduces promises as a programming abstraction to deal with return
values in the context of asynchronous method invocations. A promise is a built-
in programming abstraction that serves as a proxy for the value that will be
returned as a result of the asynchronous remote method invocation in the future.
A promise is initially in a blocked state when it is returned as the result of an
asynchronous method invocation. Once, the result is computed the promise is
resolved with this result and the promise ready state. The promise remains in
this state once it is resolved and it also never changes this result afterwards.
The result that is represented by this promise has to be retrieved explicitly by
means of the claim operation. If the state of a promise is blocked when the
claim operation is performed then the caller is blocked until the promise is
resolved with the result or when the promise is resolved with an exception. In
the case of a ready state the result is returned immediately.

Evaluation

Evaluating Argus with respect to the hardware phenomena we discussed in
section 2.3 we obtain the following results.

Volatile Connections Argus provides several abstractions to deal with com-
munication failures. First, there are atomic actions which provide an all-or-
nothing semantics for remote method invocations in the presence of failures. As
explained in section 2.4.4 the underlying two phase commit protocol to support
such atomic actions is not feasible in a context of volatile connections, because

36 Software Platforms for Mobile Distributed Systems

communication failures are common and are not guaranteed to be resolved in a
reasonable amount of time.

On a lower level, the notion of streams also introduces some resilience to
failures. In the case of a failure the system will retry to deliver the messages
placed on a stream with the guarantee that a message is executed at most
once. However, at a not further specified point in time the system will give
up and break the stream. A distinction is made between synchronous and
asynchronous breaks. In the former case the connection is broken between
two method invocations, whereas in the latter case the connection is broken
at the moment a message was being processed. It is important to make the
distinction between both type of broken connections because the former implies
that all messages prior to the broken connection have been properly handled.
In the latter case the system remains in a non-deterministic state because it is
generally impossible for the sender to determine the current state of the receiver.

Ambient Resources Argus was conceived in the context of managed net-
works where network nodes do not need to be discovered because they are
added manually. As such Argus does not provide for a means to discover new
acquaintances in the network.

Natural Concurrency Argus’s concurrency model is based on fine-grained
locking mechanisms that make a distinction between read and write locks. This
distinction allows more parallelism than locking mechanisms that do not make
the distinction, while maintaining a consistent state. However, the distinction
between both types of locks is also a cause for deadlocks. Preventing these
deadlocks forces one to meticulously determine for all operations whether their
order could induce a possible (distributed) deadlock. Distributed deadlocks are
extremely hard to resolve in mobile distributed systems since not all parties are
necessarily available for communication.

Autonomy Argus was intended to support mainly reliable client-server ap-
plications such as illustrated by the banking application. In the case of atomic
actions the nodes are dependent on the coordinator of the transaction as a result
of the two phase commit protocol. What is more, atomic actions can be nested
such that all nodes in the control flow of a transaction become dependent on
the coordinator of the transaction. The synchronous and asynchronous remote
method invocations suffer the same problems as now and future type message
passing found in the language ABCL.

2.6.3 E

E [MTS05] is an object-oriented language inspired by the actor model of con-
currency. The language was designed for secure peer-to-peer scripting in open
networks such as the internet. In E the unit of concurrency and distribution is
a vat. A vat conceptually consists of a thread of control, an input queue and a
state consisting of objects. Each of these objects can be referenced from objects
allocated in other vats. Hence, E’s object model does not differentiate between
the representation of local and distributed objects. Instead it differentiates in
the type of references. Objects allocated in the same vat refer to one another by

2.6 Distributed Programming Languages 37

means of near references, whereas eventual references are used to refer objects
that were allocated in another vat. The type of reference defines what type
invocations are supported. A near reference can carry both synchronous and
asynchronous method invocations, whereas an eventual reference can carry only
asynchronous method invocations. Asynchronous method invocations arrive in
the input queue of a vat and are processed one at a time such that no race
conditions can occur.

E introduces a programming abstraction, called promises, to deal with the
results from asynchronous method invocations. These promises are inspired by
the promises found in the language Argus, but differ from them in a profound
manner. Retrieving the result of a promise occurs through the use of the when
construct, as illustrated by the following example [Mil04]:

def temperaturePromise := carPromise <- getEngineTemperature()
when (temperaturePromise) -> done(temperature) {

println(‘The temperature of the car engine is: $temperature‘)
} catch e {

println(‘Could not get engine temperature, error: $e‘)
}
println("execution of the when-catch waits for resolution of the " +

"promise, but the program moves on immediately to this println")

The example above shows how the method getEngineTemperature is asyn-
chronously invoked (using the <- operator) on carPromise and how the resulting
promise is assigned to the variable temperaturePromise. The when construct
is subsequently used to retrieve the actual temperature from the promise. This
construct differs from the claim construct found in Argus in that the when
construct will not stop the control flow should the promise be unresolved. The
control flow immediately moves, irrespective of whether the promise has al-
ready been resolved. Afterwards, when the promise is resolved with the result
the code block is scheduled for execution in the vat’s queue and temperature
will be bound to the result of the asynchronous method invocation. Another
difference with promises as found in Argus is that methods can be invoked
asynchronously on promises. This is called promise pipelining. The result of
this operation is another promise that is eventually resolved after the receiving
promise is resolved.

Evaluation

Evaluating E with respect to the hardware phenomena we discussed in sec-
tion 2.3 we obtain the following results.

Volatile Connections A broken connection breaks the eventual reference
and all subsequent invocations on this reference result in exceptions. Hence,
broken connections are handled as exceptions. As a consequence E does not
support volatile connections because they have to be dealt with as exceptions.

Ambient Resources Although E was conceived as a distributed language for
open networks. E does not explicitly support mobile distributed systems and
does not offer facilities to discover ambient resources.

38 Software Platforms for Mobile Distributed Systems

Natural Concurrency E’s concurrency model is partially based on the actor
model, which is discussed in detail in chapter 4. State consistency is preserved,
because within a vat a single thread processes messages for all objects such
that race conditions on the internal state of an object cannot exist. Further
synchronization between asynchronous method invocations is achieved through
the reification of promises, which can be manually resolved.

Autonomy E was conceived as a scripting language for peer-to-peer interac-
tions between nodes in an open network. As a result the underlying protocols of
the language were designed specifically so that no client-server setup is assumed.
Also, the careful design of the promises found in the language ensure that the
abstractions which deal with the results of asynchronous method invocations do
not create dependencies between vats that could harm the autonomy.

2.6.4 Salsa

The language Salsa [VA01] is a contemporary language that was designed to sup-
port dynamically reconfigurable networks such as Internet and mobile comput-
ing environments. Salsa supports these networks by means of universal names,
mobile active objects and abstractions to support the coordination of interac-
tions. All interactions between active objects occur via asynchronous message
passing and their coordination is supported by means of linguistic abstractions
for message-based continuations. More particularly the language offers support
for token-passing continuations, join continuations and first-class continuations.
All of these abstractions are illustrated in the following example:

behavior Fibonacci {
int n;
Fibonacci(int n) { this.n = n; }
int add(int numbers[]) { return numbers[0] +numbers[1]; }
int compute() {

if (n == 0) return 0;
else if (n <= 2) return 1;
else {

Fibonacci fib1 = new Fibonacci(n-1);
Fibonacci fib2 = new Fibonacci(n-2);
join(fib1<-compute(), fib2<-compute())

@ add @ currentContinuation;
}

}

void act(String args[]) {
n = Integer.parseInt(args[0]);
compute() @ standardOutput<-println;

}
}

The example above calculates the fibonacci recursively through asynchronous
message passing. A continuation is specified by the “@”-symbol. Hence, in the
code above the continuation of both asynchronous invocations fib1<-compute()
and fib2<-compute() is the asynchronous invocation add, which is automati-
cally passed the combined results of both invocations. Finally, the continuation
of the asynchronous invocation add is the current continuation of the method
in which the computation takes place. In this case it is continuation of the
method compute. The first time compute is invoked asynchronously (in the
act method) currentContinuation will refer to the println on the standard

2.6 Distributed Programming Languages 39

output. Subsequent recursive compute invocations will have their current con-
tinuation referring to the continuation that computes the previous recursive
asynchronous invocation and so forth until the recursion ends.

Evaluation

Evaluating Salsa with respect to the hardware phenomena we discussed in sec-
tion 2.3 we obtain the following results.

Volatile Connections Broken connections are not explicitly considered in
Salsa. However, Salsa is based on the actor model which assumes that messages
are eventually delivered. The assumption of eventual delivery is unattainable
in the case of mobile networks, because the location of the devices can deter-
mine whether a connection will ever be restored. Hence, the failure model does
not consider fatal disconnections. Nevertheless, the model of eventual deliv-
ery allows one to hide broken connections such that they are not treated as
exceptions.

Ambient Resources Salsa introduces the concept of universal actor names.
These names are maintained and associated with a naming server. Naming
servers have two purposes. First, they are used to retrieve a remote reference to
an active object. Secondly, they are used to retrieve the logical location of an
actor. Nevertheless, naming servers cannot be used to detect ambient resources.

Natural Concurrency In Salsa an active object processes one message at a
time. As a consequence no race conditions on the internal state of an active
object can occur. Through the linguistic abstractions for continuation-style
message passing different coordination patterns can be expressed. However, to
the best of our knowledge behavioral synchronization cannot be expressed in
the language.

Autonomy In Salsa, similar to E, all remote communication is asynchronous.
The different continuation passing styles support the coordination problems that
result from them and prevent that dependencies between active objects occur as
a result asynchronous message passing. Hence, the communication mechanisms
featured in Salsa do not harm the autonomy of devices in the presence of volatile
connections.

2.6.5 nesC

nesC [GLvB+03] is a component-based dialect of C that is designed for pro-
gramming wireless sensor networks. Wireless sensor networks are composed
of a group of sensor-nodes which communicate via a wireless communication
link. Each sensor-node collects certain information in its environment and this
information is aggregated at certain nodes in the network.

nesC features an event-based concurrency model based on tasks and events.
Tasks are asynchronously executed and do not preempt one another. For this
reason it is important that tasks are not computationally intensive and should
be short. nesC introduces the keyword post to schedule a task for execution.

40 Software Platforms for Mobile Distributed Systems

module SurgeM {
provides interface StdControl;
uses interface ADC;
uses interface Timer;
uses interface Send;

}
implementation {

bool busy;
norace uint16_t sensorReading;

task void sendData() {
// send sensorReading
adcPacket.data = sensorReading;
call Send.send(

&adcPacket, sizeof adcPacket.data);
return SUCCESS;

}

event result_t Timer.fired() {
bool localBusy;
atomic {

localBusy = busy;
busy = TRUE;

}
if (!localBusy)

call ADC.getData();
return SUCCESS;

}

event result_t
ADC.dataReady(uint16_t data) {

sensorReading = data;
post sendData();
return SUCCESS;

}
...
}

Table 2.2: Component Sampling Sensor Readings and Sending Results

Events are also asynchronously executed, using the signal keyword, but can
preempt other events or tasks. Race conditions that result from the concurrency
can be addressed with atomic blocks.

A nesC program consists of component definitions (consisting of interfaces
and their implementations) and component configurations. The language fea-
tures bidirectional interfaces: consisting of commands and events/tasks. These
elements of the interface are to be linked to functions. A component that imple-
ments the interface provides an implementation for the commands. Components
using the interface provide an implementation for the events or tasks. The events
or task implementations are actually callback functions for asynchronously re-
turned results (either as a task or an event). An example component implemen-
tation is shown in table 2.2.

The issue of limited resources of the different sensor nodes is addressed in
nesC by prohibiting many dynamic features such as late binding and dynamic
resource allocation. This restriction has the advantage that compile-time anal-
ysis can be performed to detect concurrency issues and code optimization can
be performed by inlining functions. The disadvantage of this restriction is that
the software cannot be easily adapted to cope with changes in the environment.

Evaluation

Evaluating nesC with respect to the hardware phenomena we discussed in sec-
tion 2.3 we obtain the following results.

Volatile Connections nesC offers a number of different low-level communi-
cation components. These components deal with broken connections as excep-
tions. As a result the developer always has to deal with them explicitly in the
code.

Ambient Resources A broadcasting component allows sensor nodes to de-
tect other sensor nodes. The broadcasting component can be used to detect

2.7 Middleware 41

Language Volatile Ambient Autonomy Natural
Connections Resources Concurrency

ABCL ∅ ∅ ∅ √

Argus by exception ∅ ∅ √

E by exception ∅ √ √

Salsa Limited ∅ √
No behavioral sync.

nesC by exception Partial Partial
√

Table 2.3: Summary: Evaluation of Distributed Languages

ambient resources in the environment. However, no immediate support is of-
fered to detect the disappearance from resources in the environment.

Natural Concurrency The concurrency model of nesC is based on events.
Similar to ABCL there is made a distinction between two types of asynchronous
events: pre-empted and non-preempted events2. nesC has the advantage that
it can offer compile-time analysis of programs to detect possible inconsisten-
cies that occur from this concurrency. Based on the concurrency primitives
introduced in nesC high-level concurrency abstractions can be implemented.

Autonomy All remote communication asynchronously returns a result thanks
to the use of events and tasks to perform low-level communication between com-
ponents. However, the concurrency primitives can imply a blocking operation
such that dependencies between devices can be created as a result of a blocking
operation in an atomic block. Nevertheless, the default mode of operation does
not imply blocking calls.

2.6.6 Summary

In this section we have discussed five distributed programming languages and
evaluated them with respect to the hardware characteristics we distilled in sec-
tion 2.3. Table 2.3 shows the summary of these evaluations. None of these
fully support ambient resources or volatile connections. nesC has the best over-
all support for dealing with the different hardware phenomena. nesC offers
a high-level component-based composition mechanism but unfortunately the
distributed properties of the language are low-level. For example, there is no
high-level mechanism such as remote method invocations to invoke services on
remote components. The high-level languages designed for open networks do
not harm the autonomy of devices. In chapter 3 we shall see that this is a
consequence of certain characteristics of their concurrency model.

2.7 Middleware

An alternative to distributed languages is middleware. Over the past few years
a lot of research [MCE02] has been conducted in middleware for nomadic and ad
hoc distributed systems. This bulk of research can be categorized into several
groups. In this section we discuss the properties of each middleware category
with respect to the hardware phenomena we distilled in section 2.3.

2ABCL introduces ordinary and express messages.

42 Software Platforms for Mobile Distributed Systems

2.7.1 RPC-Based Middleware

Alice [HCC99] and DOLMEN [RB99] are attempts to make CORBA feasible
for supporting nomadic distributed systems. These attempts focus mainly on
making heavyweight ORBs suitable for the lightweight devices and on improving
the resilience of the IIOP protocol to failing communication. Other approaches
adapt the RPC protocol by supporting queuing of RPCs [JTK97] or enabling
rebinding of resources [SBBK95]. These approaches work well when connections
are lost for a short time, but do not address disconnections over longer periods
of time.

Alice

Alice [HCC99] is an extension of the CORBA architecture. The middleware fo-
cusses on low level issues such as address translation support when a mobile host
is used from one subnet to another and the IP address needs to change. Some of
these issues have already been resolved in the new IPv6 standard, but Alice was
made to support backwards compatibility with the IPv4 protocol. Furthermore,
Alice does not support autonomous devices because it assumes an infrastruc-
ture that provides mobility gateways at certain locations in the mobile network.
Hence, Alice cannot be used to construct ad-hoc mobile distributed systems.
Furthermore, a distinction between clients and servers is made. Nevertheless,
both servers as well as clients can run on mobile devices. Volatile connections
are supported by the clients, which try to reconnect until a succesful connection
can be made. During that time the client is blocked, such that it becomes un-
responsive to other events. Mobility of devices is supported through a handoff
procedure. Such a handoff procedure, which is requested by the mobile host
to the mobility gateway, involves creating a tunnel from the previous mobility
gateway to the new mobility gateway so that requests and replies are properly
forwarded to and from the servers the client was interacting with. Mobility of
servers is supported through a mechanism called swizzling of the object refer-
ences. The difficulty of supporting mobile servers in IPv4 lies in dealing with the
new network address that is associated with the mobility. There, a mechanism
of callbacks is used between the mobile host and the mobility gateways. Mobile
hosts that run a server application register a callback to the mobility layer and
are notified when their mobility gateway address has changed. At that point
the old mobility gateway is contacted such that the address associated with the
object reference of the server gets changed to the new mobility gateway. The
process of swizzling is similar to forwarding addresses that are used to support
the logical mobility of objects in languages such as Emerald [JLHB88].

Rover

Rover [JdLT+95] makes a distinction between mobile-transparent and mobile-
aware applications. Mobile-transparent applications try to hide the conse-
quences of the mobility for the application, whereas mobile-aware applications
do not hide mobility for the program such that it can intervene appropriately.
Rover makes a clear distinction between clients and servers. Clients run on
mobile devices, while servers run on stationary devices. Clients can communi-
cate with servers, but clients cannot interact independently with one another.
This harms the autonomous nature of devices and the reliance on infrastructure

2.7 Middleware 43

makes it only suitable for building nomadic distributed systems. Communica-
tion between objects occurs through one of the following mechanisms:

• Relocatable dynamic objects (RDO) are objects which can be dynamically
loaded onto a client from the server or vice-versa. The advantage of RDOs
is that latencies of the network can be hidden and that in the event of a
disconnection the object is still available. An RDO always resides on a
server that maintains the primary copy. When the RDO is loaded onto a
client then a secondary copy is made. Finally, this copy can be tentatively
exported back to the server where the updates of that object need to
be reconciled with the primary copy. RDOs also serve the purpose of
relocating computation to another device. For example, if a mobile device
has to perform a resource intensive operation it can export its RDO to a
server and have the computation performed there.

• Queued Remote Procedure Calls (QRPC) enables non-blocking remote
procedure calls between RDOs that reside on a client and a server. Thus
direct communication is only possible between a mobile and stationary
device. The queued remote procedure calls are directly inspired on the
stream based approach found in Argus.

Rover differs from other RPC based middleware because it approaches the dis-
connectedness that results from volatile connections by means of replication.
As such, a replicated object can reside on the mobile device and applications
can interact with the object without the need for remote communication. How-
ever, as explained in section 2.4.4, traditional replication strategies do not scale
in the context of volatile connections. The Rover middleware does not define
how the replication of RDOs should be handled such that one has to devise an
application-specific replication strategy for each object. However, support for
this is offered by logging the operations on objects. Section 2.7.4 discusses other
middleware to support replication in the presence of volatile connections.

Java Intelligent Network Infrastructure (JINI)

Jini [Wal01] is a service lookup mechanism that was especially designed for ad-
hoc networks. In Jini an ad-hoc network consists of a number of Jini lookup
services, services and clients. Services register themselves with the Jini lookup
service and client find these services by contacting the Jini lookup service. The
Jini lookup service differs regular naming services in that it can be automatically
found in a network. That is clients and services need not be configured with
the network address of the Jini lookup service. Instead they can automatically
discover the service in the network. Another difference with regular naming
services is that services can be found based on the type of a service rather
than the name of a service. In Jini the type of a service is identified with a
Java interface. Communication with Jini services is based on the paradigm
of synchronous remote method invocations. However, the Jini lookup service
provides the stubs to the clients of a service. If the client does not already
have a stub to access the service then it is automatically downloaded onto the
client. The advantage of this mechanism is that the underlying remote method
invocation protocol can be customized based on the properties of the client.

44 Software Platforms for Mobile Distributed Systems

Jini introduces the concept of leasing to deal with unanticipated disappear-
ance of devices in the network. Leasing means that relationships between en-
tities in the network have a predetermined finite duration. Hence, instead of
creating a relationship between entities in the network until their connection is
broken the entities have to agree on a finite duration by which they guarantee
to sustain the relationship. After the lease expires the resources associated with
the relationship can be cleaned up. Before the lease expires it is possible for the
two entities to agree to extend the lease for a new finite duration.

Evaluation

Evaluating RPC-based middleware with respect to the hardware phenomena we
discussed in section 2.3 we obtain the following results.

Volatile Connections Most RPC based middleware that was designed to
support mobile computing tries to support volatile connections through buffered
RPC methods. This approach is similar to the buffered streams found in Argus.
Such a mode of communication is resilient to connections that are lost for a
short time, but do not address broken connections over longer periods of time.
Rover differs from other approaches in that it supports broken connections over
longer periods of time because it enables offline QRPC requests to be placed
in a first-class log. This log can be manipulated based on the needs of the
application. Besides the logging of QRPC requests Rover RDO mechanism
allows offline objects to be available on a mobile device such that disconnected
mobile devices can continue to function. These mechanisms allow applications to
deal with volatile connections. The concept of leases introduced in Jini resolves
the important issue that resources are held for an indefinite amount of time
but do not solve the fact that failed communication is handled by means of
exceptions.

Ambient Resources Of the RPC based middleware solutions Jini is the only
technology that allows the detection of ambient resources in the environment.
Disappearing resources are detected by means of expired leases.

Natural Concurrency In general no explicit constructs were described to
deal with the concurrency that results from mobile devices interacting with one
another. Most RPC based models usually have a concurrency model based
on explicit threads. However, the RDO communication mechanism offered by
the Rover toolkit takes into account that conflicts can occur when a secondary
copy is copied back to the server. These conflicts result from the inherent
concurrency: two mobile devices can independently interact with their copy
of an RDO object such that the interactions lead to conflicts. Rover offers a
framework such that the application can resolve these conflicts manually based
on the logs of the operations.

Autonomy Many of the RPC-based middleware solutions, such as Alice and
Rover are based on a client-server structure such that mobile devices are often
dependent on an infrastructure of servers. For example, in Rover all interactions
between devices must occur through a server such that mobile devices cannot

2.7 Middleware 45

directly interact with one another. What is more, the queued RPC requests
create dependencies between devices such that the autonomy of devices can be
harmed in the face of volatile connections. Unfortunately the setup of Jini is
such that each ad-hoc network needs to have a dedicated lookup service in the
ambient which can harm the autonomy of devices.

2.7.2 Publish-Subscribe Middleware

A more recent branch of middleware for mobile computing is based on the
publish-subscribe paradigm [EFGK03]. The publish-subscribe model aims to
decouple the different components in a network. A component can subscribe
itself to a remote dispatcher such that published events are delivered to the
component. The type of published events the component receives depends on
its subscription parameters. The type of these parameters depend on the publish
subscribe system and can be based on the type of the event that is published
or more advanced filter patterns.

Much of the research effort has been based on making them in large networks.
Scalability has been achieved by structuring dispatchers in a tree based setup.
Published events are then routed based on this tree to deliver the events to their
subscribers. The problem with this approach is that a tree based structure for
the dispatchers does not scale in the face of unanticipated mobility, because their
topology is static. In other words, the approaches do not support sufficient re-
configurability of the topology of the network. Current research [CJ02, CCW03,
CNP00, MC02] investigates other mechanisms for structuring the dispatchers
such to support a reconfigurable topology without loosing scalability [CMP05].
Another problem is that although the interaction model of publish subscribe
systems decouples the components middleware the programming model requires
callbacks to handle results, which can clutter the code and make programs less
understandable.

Evaluation

Evaluating publish/subscribe based middleware with respect to the hardware
phenomena we discussed in section 2.3 we obtain the following results.

Volatile Connections Traditional publish/subscribe systems offer a variety
of message delivery semantics that can deal with failing connections. However,
to the best of our knowledge these semantics have not yet been thoroughly
investigated in the context of volatile connections.

Ambient Resources Some publish subscribe systems, such as STEAM [MC02],
offer abstractions to discover ambient resources. In STEAM an abstraction
based on proximity groups [KCM+01]. This abstraction allows components to
discover one another when they are located in the same geographical location.

Natural Concurrency In publish/subscribe systems concurrency results from
broadcasted events that are received by multiple components. These compo-
nents process these events concurrently. Hence, concurrency results from a
single component that publishes new content that is subsequently concurrently

46 Software Platforms for Mobile Distributed Systems

processed by the different components. Nevertheless, depending on the pub-
lish/subscribe system itself other, more concurrent, approaches are possible. For
example, an individual component could process different events concurrently.

Autonomy Publish/subscribe systems decouple interactions of components
by means of a dispatcher. The decoupling of interactions is positive in the face
of volatile connections because dependencies between interacting devices are
avoided. Nevertheless, the need for a dispatching service can create dependen-
cies between devices. Most approaches are based on a dispatcher organization
such that a device actually relies on that organization, potentially harming its
autonomy. However, in STEAM [MC02] this restriction is alleviated by sub-
scribing to event types rather than event systems. This entails that all events
are received from all applications in the proximity. However, events are only
consumed when they match the event type. Hence, STEAM supports the au-
tonomous nature of devices.

2.7.3 Tuple Space Based Middleware

In the past few years middleware has been proposed [MPR01, DFWB98, MZ04,
FMDE04] for mobile computing that is based on Linda tuple spaces [Gel85].
A tuple space acts as an intermediate data structure in which processes can
publish and query tuples to communicate asynchronously with one another.
Most research on tuple spaces for mobile computing consists of distributing
the tuple space over a set of devices. Although tuple spaces are an interesting
communication paradigm for mobile computing, the paradigm does not integrate
well with the object-oriented paradigm because communication is achieved by
putting and querying data in a tuple-space as opposed to sending messages to
objects.

Linda in a Mobile Environment

Linda in mobile environments (Lime) [MPR01] is middleware to support both
logical and physical mobility of agents and hosts respectively. Each agent is
equipped with its own interface tuple space (ITS). Access to the ITS is based
on the primitives introduced by Linda. Tuples can be added and selected from
the tuple space by the agents using the operations out and in. Furthermore,
an operation rd is provided to read the tuples from the tuple space. The in
and rd operations are blocking, that is to say that the process will wait until a
tuple that matches a pattern is found. Pattern matching is based on templates
that contain actual and formal parameters. Actual parameters contain values,
whereas formal parameters act as wild cards when they are unbound. Lime also
provides non-blocking variants of the in and rd statements. In the case tuple
space contains a matching tuple then that tuple is returned. In the other case
no tuple is returned. These non-blocking variants prevent that dependencies
between distributed applications are created. However, to prevent such depen-
dencies the application is required to poll the tuple space frequently such that
resources are waisted. To avoid the need for polling an application can also
register reactions. These reactions are discussed in the last paragraph.

The individual ITSes of each agent are transiently shared with the ITSes of
other mobile devices that are currently in the communication range. Sharing

2.7 Middleware 47

of ITSes occurs transparently and agents can access the contents of all tuple
spaces by querying their ITS. Transient sharing of tuple spaces is supported
by an atomic join and disjoin operation that is automatically performed by the
Lime middleware. A join is performed in the case an ITS becomes available
in the communication range of other ITSes. A disjoin operation is performed
when a mobile device disappears from the ambient of a device (i.e. when it is
no longer in the communication range). The contents of the tuple spaces that
were hosted by the device that disappeared are no longer perceived as part of
the remaining agents their ITSes after the disjoin operations completed.

Lime also introduces the notion of agent locations, which are addresses for
each individual agent that owns an ITS. A tuple is marked with two such loca-
tions, a current location and a destination location. The current location points
to the address of the agent that added the tuple its ITS. The destination loca-
tion determines the final destination of a tuple. When a destination location
is added to an out operation then the corresponding tuple will be atomically
moved from the ITS of the agent that added the tuple to the ITS of the agent
whose location was given as an argument. This happens when the two devices
are in one another’s communication range. The operations in and rd take the
current and destination location as additional parameters such that they can be
used in the matching process of tuples in the space.

Agents can react to changes in their context by subscribing reactions to
the ITS. A reaction is composed of an action and a pattern. The action is
executed when the corresponding pattern is found in the tuple space. After
each operation on the tuple space a reaction that has a matching pattern is
selected non-deterministically and this process repeats until no more reactions
with a matching pattern exist.

Tuples on the Air

Tuples on the air (TOTA) middleware [MZ04] has a different approach to dis-
tribute the tuple space over multiple nodes. As opposed to Lime, individual
tuple spaces are not joined into a shared data structure. Instead tuples are
empowered with the ability to autonomously move from one tuple space to an-
other. A tuple can only move to neighboring tuple spaces. Two tuple spaces
are neighbors of one another when the two devices that host them are in the
communication range of one another. Hence, a tuple space can have multiple
neighbors depending on the devices in communication range of a device. Each
tuple has a propagation rule that is used to decide if a tuple should propagate
to its neighbors. At the moment a tuple arrives at the tuple space it can decide
to enter the tuple space. If it decides to enter the tuple space then the tuple is
stored and the propagation rule is triggered. At the moment a tuple enters it
is also given the opportunity to subscribe to events in its current tuple space.
Through this mechanism a tuple can react to events after it has entered the
tuple space.

Each mobile device runs its own local tuple space and applications can insert
propagating tuples in the tuple space. Furthermore, an agent can also subscribe
events to its local tuple space such that it can react to changes made to the tuple
space by other components of the application and tuples that propagated to the
agent’s local tuple space. Based on the subscription of such events together
with the insertion of autonomously propagating tuples, an agent can launch

48 Software Platforms for Mobile Distributed Systems

queries over a peer-to-peer mobile network of autonomous devices. The results
of these queries have to propagate back to the initiator of the query. Such result
propagation is based on the same propagation mechanism offered by TOTA.

Evaluation

Evaluating tuple space based middleware with respect to the hardware phenom-
ena we discussed in section 2.3 we obtain the following results.

Volatile Connections Both Lime and TOTA were designed specifically for
mobile (ad-hoc) networks and have considered broken connections in their so-
lution. In Lime the global virtual data space adapts based on the individual
ITSes that are available in the communication range of the devices. As de-
scribed above an ITS is atomically joined and disjoined with the other ITSes in
its communication range. Such guaranteed atomic operations generally require
a two phase commit protocol. As discussed in section 2.4.4 two phase commit
protocols do not scale in the context of volatile connections.

In TOTA tuples are stored each time they enter a tuple space. It is neces-
sary to clean up the tuple spaces after the result of a query has been received.
However, no such mechanisms are described to remove tuples. Such mechanisms
would require communication and it is not clear how tuples can be removed if
a tuple space suddenly becomes disconnected.

Ambient Resources Both Lime and TOTA are able to discover tuple spaces
in their ambient and provide event-based mechanisms to take advantage of am-
bient resources.

Natural Concurrency Tuple space based middleware solutions are based on
the coordination primitives offered by Linda [Gel85]. Most of these solutions ex-
tend these primitives with asynchronous variants and allow asynchronous events
to be subscribed to the tuple space.

Autonomy Although Linda was originally designed from a centralized tuple
space perspective, many of the extensions manage to distribute the tuple space.
However, in the case of Lime this distribution is associated with the introduc-
tion of atomic join and disjoin operations which can create dependencies that
harm the autonomy of a device. Nevertheless, other approaches such as in the
TOTA middleware do not suffer from this problem. Also, the introduction of
asynchronous primitives to interact with tuple space prevents that dependencies
between devices are created.

2.7.4 Data Sharing-Oriented Middleware

Data sharing-oriented middleware tries to maximize the autonomy of mobile
devices. Thus far we have seen two approaches that are based on shared data
structures as a means for communication between devices. First, in Lime a
shared tuple space composed of each agent its individual ITS is maintained.
This shared data structure is then used as a form of communication between
the agents. However, keeping such a data structure consistent requires atomic

2.7 Middleware 49

operations which do not scale due to the volatile connections characteristic.
Second, Rover introduced the concept of a relocatable dynamic object (RDO)
as a shared data structure. A RDO can be copied from a server onto a mobile
device and the mobile device can autonomously interact with the copy. When
the RDO is copied back to the server then conflicts can arise as a result of
changes made by other devices that manipulated their copy of the RDO and
copied it back to server afterwards. Hence, RDOs allow a form of replicated
objects.

Other approaches, such as Coda [SKK+90], Bayou, [TPST98], Rover [JTK97]
and XMiddle [ZCME02] are based on a similar replica mechanism. Sharing of
resources is achieved by introducing weak replica management facilities in the
middleware. Weak replicas do not guarantee that all replicas are atomically
synchronized such that no two-phase commit protocol is required. As a conse-
quence, synchronization of weak replicas can also lead to a series of conflicts.
These conflicts are application-specific and must be resolved at the application
level. Hence, the increased autonomy of devices comes at the cost of more
complex applications.

Bayou

Bayou [TPST98] middleware provides replicated weakly consistent SQL-based
data storage engines. These data storage engines, which can run on mobile de-
vices, are synchronized with one another based on a special anti-entropy protocol
[PST+97a]. This protocol is designed such that databases can synchronize with
one another sporadically when connectivity is possible between them. Further-
more, the protocol also supports incremental synchronization of the database.
Incremental synchronization ensures that if a connection breaks while a database
is being synchronized that the synchronization process can resume when con-
nectivity is reestablished. The advantage is that the synchronization process
does not need to be repeated. Moreover, the synchronization can be resumed
by another replica.

Weak replication can result in conflicts when two conflicting updates are
performed on the same data elements. Bayou provides an API such that appli-
cation specific conflict resolution strategies can be devised. More particularly
updates to the database, which are called bayou writes, are more than simple
SQL statements that update the database. A bayou write contains application-
specific meta-data that specifies how conflicts should be solved. An example of
a bayou write for a meeting scheduler is shown below:

Bayou_Write(
update = {insert, Meetings, 12/18/95, 10:00am, 60min, Project Meeting: Kevin},
dependency_check = {

query = SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 11:00am AND end > 10:00am,

expected_result = EMPTY },
mergeproc = {

alternates = {12/18/95, 12:00pm};
newupdate = {};
FOREACH a IN alternates {

check if there would be a conflict
IF (NOT EMPTY (

SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))

CONTINUE;
no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, Project Meeting: Kevin};

50 Software Platforms for Mobile Distributed Systems

BREAK;
}
IF (newupdate = {}) # no alternate is acceptable

newupdate = {insert, ErrorLog, 12/18/95, 10:00am, 60min, Project Meeting: Kevin};
RETURN newupdate;

}
)

Each Bayou write contains a dependency check rule that is executed when the
write is applied to a replicated database. Based on this rule the storage engine
decides when a write causes a conflict in the database. The merge procedure
contains an algorithm that tries to resolve the conflict in the database. In this
case the procedure tries to find an alternate schedule for the meeting. The anti-
entropy protocol ensures that, in the long run, all replicas of a database will
converge to the same state. This protocol is further discussed in section 8.4.

Another issue with weak replication arises when applications consult a repli-
cated database and read data that is changed afterwards as the result of a
conflict. For this reason Bayou’s API allows to make a distinction between
tentative and committed data. The former is data that can change as a conse-
quence of a conflict, whereas the latter is guaranteed to remain stable. Hence,
it is up to the application developer to choose the type of data he wants to
read from the database such that he can deal with both types of data explicitly.
Note that due to the anti-entropy protocol all tentative writes will eventually
be committed.

XMiddle

XMiddle [ZCME02] is middleware that enables weak replication of data that is
stored in a tree-based XML representation. A host can define a set of access
points to the data such that other devices can link with these points and read
the associated data. Such an access point actually addresses a branch in the
tree representation of the data and the host. When two hosts are in the com-
munication range of one another then hosts can create links to remote branches
that were defined as access points. The concept of linking to a tree is similar to
the mounting of a remote disk in a distributed operating systems.

The host that defined the access point is called the owner of the branch
and only the owner of a branch can define access points on its tree. On the
other hand the host that links to the branch is called a peer. Immediately
after a peer creates a link to a branch it is downloaded to the peer its device.
Although the peer is not the owner of the branch it is able to freely read and
modify the branch. If two hosts, either the owner and a peer or two peers, are
in the communication range of one another they can reconcile shared branches.
To determine if they share common branches both the owner maintains a list
of all peers that created a link to its access point and the peer that created
a link remembers the owner from which the branch was downloaded. Based
on this information together with the path to shared branches two hosts can
determine if they share a common tree and synchronize one another once they
can communicate. Synchronization of branches always occurs pair-wise. In
other words, in a synchronization process two hosts are involved.

An elaborate version mechanism of branches together with a host-to-host
reconciliation protocol is used to synchronize hosts. The reconciliation protocol
is composed of an application-independent and an application-specific part. The

2.7 Middleware 51

former part is responsible for updating the corresponding branches that have
been modified while two hosts independently modified them. The modifications
that need to be reconciled are selected based on the versioning mechanism. Due
to the independent manipulation of trees by hosts it is possible that conflicts
occur. The example given by Mascolo et al. [ZCME02] is that of a shared
shopping basket to which different members of the family can add their weekly
purchases. In the case duplicate items are added to the shopping cart a conflict
arises that can only be solved in an application-specific manner. Such conflicts
are solved by adding a conflict resolution algorithm, called a resolutor, to the
trees. Possible resolutors are add, last, random, first, greatest. An example
XML tree of such a shopping cart data structure is shown below:

<basket>
<order>

<product> Milk</product>
<quantity>

<howmuch>2</howmuch>
<resolutor> add </resolutor>

</quantity>
</order>
<order>

<product> Apple</product>
<quantity>

<howmuch>3</howmuch>
<resolutor> add </resolutor>

</quantity>
</order>

</basket>

When two conflicting branches are merged and the two branches have the
same resolutor, for example add, then that resolutor is chosen and the conflict is
resolved by adding the quantity of the two orders. In the case the two branches
have a different resolutor then the resolutor with the highest priority is chosen.
The priority of resolutors is determined by the order by which they were defined.
Although the middleware does provide resolutors for resolving conflicts, it does
not specify how clients that potentially read parts of the conflicting branches
have to deal with the conflicts. Hence, there is no notion of tentative data.

Evaluation

Evaluating data-sharing oriented middleware with respect to the hardware phe-
nomena we discussed in section 2.3 we obtain the following results.

Volatile Connections The replication mechanisms are designed specifically
to achieve a high availability of data in the face of volatile connections. The
synchronization protocols of these mechanisms are adapted such that there is
no need for a two-phase commit protocol.

Ambient Resources Some of the middleware approaches explicitly consider
the automatic initiation of the synchronization protocol when replicas are de-
tected in the ambient. However, to the best of our knowledge this detection
is transparent for the application. The focus of these middleware approaches
rather lays with the synchronization and reconciliation protocols used in the
middleware.

52 Software Platforms for Mobile Distributed Systems

Natural Concurrency Shared data sources can be concurrently updated
by each autonomous device in the network. This fact together with the weak
synchronization protocols of the replicas results in possible conflicts. Such an
approach is comparable to optimistic database transaction protocols where no
locks are taken and if an inconsistent state is detected when the transaction is
committed then the transaction is rolled back. Such an approach is in contrast
with the other concurrency approaches we discussed so far because it does not
prevent inconsistent states. In other words, the concurrent nature of the de-
vices is fully exploited such with possible inconsistent states as result. These
inconsistent states are then resolved with conflict resolution strategies. Hence,
natural concurrency is dealt with using optimistic concurrency mechanisms.

Autonomy The replication strategies supported by the middleware we dis-
cussed above are specifically designed to maintain the autonomous nature of the
devices. Moreover, the replication of data ensures that a device maintains its au-
tonomy even when it is completely disconnected from other devices. As a result
devices can continue their operations even when certain resources have become
unavailable for communication. These replication strategies can be regarded
as the summum bonum of autonomy for devices. Nevertheless, the increased
autonomy for devices comes at the cost of more complex programs because they
have to deal with inconsistent states and the tentative data that results from
accessing inconsistent states.

2.7.5 Summary

Table 2.4 summarizes the evaluations we have made for the different types of
middleware. The RPC based middleware solutions each address important in-
dividual issues with respect to dealing with the hardware phenomena. Unfor-
tunately, none of them offers support for dealing with the combined hardware
phenomena we have discussed in section 2.3. The other types of middleware
solution offer better support, but often do not take all hardware phenomena
sufficiently into account. Moreover, these middleware solutions do not match
very well with the object-oriented paradigm. In these approaches components
do not interact based on the paradigm of method invocation. Instead interac-
tions occur based on an alternative form. In the tuple space based approach
interaction of processes occurs through the medium of a tuple space. In pub-
lish/subscribe based middleware interactions are based on event subscription
and the data-oriented middleware is based on data resources that are not mod-
eled with objects. Hence, even though the object paradigm is considered to
provide a good foundation to construct distributed systems [BGL98], as dis-
cussed in section 2.5, it does not seem to be applied in the context of these
middleware approaches. Hence, the aim is to reconcile the better support for
the hardware phenomena found in the middleware approaches with the object-
oriented programming paradigm.

2.8 Conclusion

In this chapter we have discussed two different types of mobile distributed sys-
tems and distilled four phenomena that are exhibited by the hardware compo-

2.8 Conclusion 53

Type Volatile Ambient Autonomy Natural
Connections Resources Concurrency

RPC Some Jini ∅ √

Pub./Sub. ?
√ √ √

Tuplespace Some
√ √ √

Data-Oriented
√ ∅ √

Conflict Resolution

Table 2.4: Summary: Evaluation of Middleware

nents used to compose mobile distributed systems. Next, we have discussed
some software issues that arise when developing distributed systems and con-
sidered how the object paradigm can help to structure and develop concurrent
and distributed software.

There have been a number of proposals for distributed languages that ex-
plicitly support open networks. Nevertheless, the current state of the art in
distributed languages does not address all the important characteristics that
are encountered when developing a nomadic or ad hoc mobile distributed sys-
tem. On the other hand, middleware approaches offer better, although often
incomplete, support to deal with these inherent hardware phenomena of mobile
distributed systems. Unfortunately, these approaches do not match well with
the object oriented paradigm.

Observations like this justify the need for a new Ambient-Oriented Program-
ming paradigm (AmOP for short) that consists of programming languages that
explicitly incorporate support for dealing with the observed hardware phenom-
ena in the very heart of their basic computational steps. This is the topic of the
following chapter.

54 Software Platforms for Mobile Distributed Systems

Chapter 3

Ambient-Oriented
Programming

3.1 Introduction

In the same way that referential transparency can be regarded as a defining
property for pure functional programming, this section presents a collection
of language design characteristics that define the boundaries of the ambient-
oriented programming (AmOP) paradigm [DVM+05]. These characteristics are
directly derived from the hardware phenomena we discussed in section 2.3.

The object-oriented paradigm provides good foundations to deal with distri-
bution and its induced concurrency because it successfully aligns encapsulated
objects with concurrently running distributed software entities [BGL98]. There-
fore, our most basic research assumption is that ambient-oriented programming
languages necessarily are concurrent distributed object-oriented programming
languages. However, ambient-oriented programming languages differ from con-
ventional distributed concurrent object-oriented programming languages in at
least one of the following four ways. These four differences are explained in each
of the subsequent sections.

3.2 Classless Object System

Any distributed application must at some point copy objects over the network
to be useful. To “prove” this point consider a hypothetical application where
all objects are passed as remote references over the network. A remote reference
to an object is used to send messages over the network. All arguments of the
remote method invocation would then be passed as a remote reference such
that the value referred to by a remote reference could never be accessed locally.
Hence, as a consequence parameter passing in the context of remote messages,
at least some objects are to be copied back and forth between remote hosts.

Since an object in a class-based programming language cannot exist with-
out its class, this copying of objects implies that classes have to be copied as
well. However, a class is – by definition – an entity that is conceptually shared
by all its instances. From a conceptual point of view there is only one sin-

56 Ambient-Oriented Programming

gle version of the class on the network, containing the shared class variables
and method implementations. Hence, copying classes over the network causes
state consistency problems because objects residing on different machines can
independently update (due to the inherent autonomous behavior of devices) a
class variable of “their” copy of the class. Moreover, a device might upgrade
to a new version of a class thereby “updating” its methods. These are both
classical distributed state consistency problems and solving them requires repli-
cation machinery. However, in our hardware context consisting of autonomous
devices that are connected in a volatile fashion, solving this problem poses some
fundamental paradigmatic problems.

By definition, classes impose a sharing relation upon all their instances. This
relation is established at object creation time and remains implicit throughout
the lifetime of all its instances. However, because of independent class updates
performed by autonomous disconnected devices, two instances of the same class
can unexpectedly exhibit different behaviour. In other words, the implicit rela-
tion suddenly becomes explicitly detectable. Existing class-based languages do
not offer programmers the means to deal with this phenomenon since classes
are usually not fully reified in the language. For instance, the instance-of link
between classes and objects is usually not made explicit in the language pre-
cluding transmitted objects from changing their class to a more suitable version
upon arrival. Worse, upon detecting inconsistent versions of the same class,
no application-independent rule exists to prefer one class over the other. This
is witnessed by the data-oriented sharing mechanisms we considered in sec-
tion 2.7.4. These sharing mechanisms all need application-specific methods to
deal with conflicts that arose from independent updates. Hence, in class-based
languages the classes are a shared resource that induces conflicts when they
are synchronized. To allow programmers to specify how such conflicts are to
be resolved, the only viable solution is to fully reify classes and the instance-of
relation. However, this is easier said than done. Even in the absence of wire-
less distribution, languages like Smalltalk and CLOS already illustrate that a
serious reification of classes and their relation to objects results in extremely
complex meta machinery. Hence, from a technical point of view class-based
languages induce an extra level of complexity that is placed on the shoulder of
the programmer.

Conceptually, a class is a resource, shared across the network by all its
instances, that is potentially updated at run-time. However, as discussed above
due to volatile connections run-time updates cannot be applied to all devices
at the same time. As a consequence of the resulting independent updates the
sharing relationship between the class and its instances is (partially) broken.
Hence, from a conceptual point of view the concept of a class is broken.

A much simpler solution consists of getting rid of classes and the sharing
relation they impose on objects altogether. This is the paradigm defined by
prototype-based languages like Self [US87]. In these languages objects are con-
ceptually entirely idiosyncratic such that the above problems do not arise. Shar-
ing relations between different prototypes can still be established (such as e.g.
traits [UCCH91]) but the point is that these have to be explicitly encoded by
the programmer at all times. Surely, a runtime environment can optimise things
by sharing properties between different objects. However such a sharing is not
part of the language definition and can never be detected by objects. Hence, in
a classless object model it never occurs that implicit sharing relationships be-

3.3 Non-Blocking Communication 57

tween objects become perceptible at the level of the application without having
the mechanisms to deal with them explicitly. For these reasons, we have de-
cided to select classless object models for ambient-oriented programming. Note
that this confirms the design of the object models found in many existing dis-
tributed programming languages such as Emerald [JLHB88], Obliq [Car95] and
dSelf [TK02], which all feature classless object models.

3.3 Non-Blocking Communication

The fact that every hardware device is an autonomous computational entity
(inducing natural concurrency) combined with the fact that connections are
volatile, implies the necessity for non-blocking communication primitives. While
evaluating distributed languages and middleware in sections 2.6 and 2.7 we have
found that blocking communication primitives can create dependencies between
devices, thereby harming the autonomous nature of the devices. This is illus-
trated by figure 3.1. The figure shows four remote objects, o1-o4 communicating
with one another based on synchronous remote method invocations. To prevent
inconsistent states that could result from the concurrency locks are taken and
released with each time the objects process a message. This is the behavior
exhibited by Java-like concurrency mechanisms when a method is annotated
with synchronized. With each remote method invocation a dependency is cre-
ated. For example, o3 depends on the result of o4 at the moment it sends msg3.
The number of dependencies increases with the size of the remote call stack.
o1 ends up depending on o2, o3 and o4 because the dependencies are transi-
tive. If a the connection between o3 and o4 breaks after o4 received msg3 but
before it returned a result then all objects that are part of that call trace are
blocked. What is worse, these objects were locked to avoid race conditions such
that these objects are unavailable. These objects can only become available
again when the connection between o3 and o4 has been restored – or – when a
“communication exception” is thrown. However, by throwing a communication
exception the code would become cluttered with exception handling code. The
other option is that the object waits until the connection has been restored.
However, the time needed to restore a connection is often unbounded because
the ability to restore the connection can depend on the location of the mobile
devices on which the objects reside. In a ubiquitous computing scenario the
user is not always aware of the current communication of the devices and as a
result he will not necessarily return to his previous location.

A consequence of the dependencies created due to blocking communication
is that it is a potential source for (distributed) deadlocks [VA98]. Deadlocks and
distributed deadlocks in local networks are not considered to be that harmful,
since the cause of the deadlock can relatively easily be debugged with contem-
porary remote debugging environments. However, in mobile networks, not all
parties are necessarily available for communication making the resolution of
deadlocks as hard as resolving race conditions.

The root cause of the problem is that the use of locks, which must be used
to avoid race conditions on the internal state of an object, interferes with the
remote communication mechanisms. An important consideration when design-
ing a concurrency model for a language that is to run on mobile networks, is
that the communication mechanism should minimize the duration resources are

58 Ambient-Oriented Programming

o1 o2

msg1

return

Synchronous
Message

Processing Blocked on Receive
Waiting for Result

Ready to Accept
Messages

o3

msg2

return

o4

msg3
return

msg0

return

lock(o1)

unlock(o1)

lock(o2)

unlock(o2)

lock(o3)

unlock(o3)

lock(o4)

unlock(o4)

[Legend]

Figure 3.1: Dependencies Created due to Blocking Communication

locked. This is very important, because the extremely high latency of com-
munication (over volatile connections) in mobile networks would diminish the
availability of resources. Indeed, having blocking communication primitives
would imply a program or device to block upon encountering unstable connec-
tions or temporary unavailability of another device. This has previously been
remarked on several occasions [MCE02, CNP00, MPR01]. We thus conclude
that an ambient-oriented concurrency model is a concurrency model without
blocking communication primitives.

Quite often, the issue of non-blocking communication is confused with asyn-
chronous message sending. Asynchronous message sending implies that the send
operation is non-blocking, but tells us nothing about the (possibly implicit) re-
ceive operation. A typical example of asynchronous send operations combined
with blocking “receive” operations is found in the tuple-space based middleware
(discussed in section 2.7.3), which provide explicit, blocking receive operations
on the tuple-space. Other examples are the next-value and claim operations
to access futures found in ABCL/1 [YBS86] and Argus [Lis92], which were both
discussed in section 2.6. Figure 3.2 shows the differences between these com-
munication mechanisms. The figure illustrates that asynchronous systems with
a blocking receive operation become prone to the dependency problem as soon
as they invoke such a blocking receive operation.

3.4 Reified Communication Traces

Non-blocking communication (both send and receive) combined with the auton-
omy of the communicating devices implies that they will have to foresee some
form of handshaking given the fact that these devices are performing a mean-
ingful task together. Since the communication is non-blocking, both senders
and receivers will continue their execution irrespective of what happened after
a message send. This means that the parties might end up in a state that is
no longer consistent with the semantics of whatever the task it is that they

3.4 Reified Communication Traces 59

sender receiver

msg

sender receiver

msg

return return

sender receiver

msg

return

Synchronous
Communication

Asynchronous
Communication

Non-Blocking
Communication

Synchronous
Message
Async Message

Processing

Blocked Receive
Waiting for Result

Ready to Accept
Messages

[Legend]

Figure 3.2: Synchronous Communication vs. Asynchronous Communication vs.
Non-Blocking Communication

are solving. Whenever such an inconsistency is detected, the parties must be
able to restore their state to whatever previous consistent state they were in,
such that they can decide what to do based on that final consistent state they
agreed upon. Examples of the latter could be overruling one of the two compu-
tations or deciding together on a new state with which both parties can resume
their computation. Therefore, a programming language in the ambient-oriented
paradigm has to provide us with reversibility provisions giving programmers a
way to manipulate their execution state based on an explicit representation (i.e.
a reification) of the communication details that led to the inconsistent state.
This explicit representation will allow them to take the appropriate actions to
reverse (part of) the computation. Notice that any implicit way to prevent
the communicating parties from ending up in an inconsistent state implies that
communication primitives are blocking, which was precluded above. Having an
explicitly reified representation of whatever communication that happened, al-
lows a device to properly recover from an inconsistency by reversing part of its
computation.

A second argument in favor of reified communication traces is the following.
Several degrees of message delivery guarantees can be associated with non-
blocking communication. For example, in the many-to-many invocations library
[KB02], where all communication occurs via asynchronous messages, there are
no delivery guarantees. When a message is sent and there is no process listening
for messages, the message is lost. Such communication paradigm is lightweight
with respect to the usage of resources and is suitable when no delivery guarantees
are to be met. On the other end of the spectrum there is the actor model, where
all asynchronous messages that are sent must eventually be received [Agh86].
Such an approach is perhaps feasible when there are abundant resources, but
in the context of mobile computing, where devices have scarce resources, it is
clear that such an approach is not practicable. This shows that there is no
single “right” message delivery guarantee policy because a tradeoff will have
to be made based on the requirements of the application and on the available

60 Ambient-Oriented Programming

resources. Programming languages belonging to the ambient-oriented paradigm
should make this tradeoff possible instead of imposing a single strategy. Explicit
control over the communication traces allows one to make the tradeoff between
different delivery guarantees.

3.5 Reified Environmental Context

The fact that hardware devices are autonomous, combined with the fact that
resources are dynamically detected as the devices are roaming means that all
devices potentially have the same capabilities to interact with each other di-
rectly without relying on a third party. This is in contrast to client-server
communication models where clients usually interact through the mediation of
a server (such as is the case with chat servers or white boards). The fact that
communicating parties do not need an explicit reference to each other (whether
directly or indirectly through a server) requires what is known as distributed
naming [Gel85]. For example, in tuple-space based middleware this property
is achieved, because a process can publish data in a tuple space, which can
then be consulted by the other processes based on a pattern-matching basis.
Another example is many-to-many invocations [KB02], where broadcasts to all
objects implementing a certain interface can be expressed. Distributed naming
is especially important in the context of ad hoc distributed systems, because
it provides a mechanism to communicate without knowing the address of an
ambient resource. Ambient resources can be perceived by AmOP applications
if the environmental context of the device is reified. A reified environmental
context allows AmOP applications to detect when ambient resources appear
and disappear in the environment and can also entail the reification of other
useful environmental context such as the signal strength of a wireless connec-
tion. It is important that this reification preserves the autonomous nature of
the devices. Hence, AmOP programs should be able to self-sufficiently reify the
environmental context.

We are not arguing that all ambient-oriented applications have to rely on
a reified environmental context. It is perfectly possible that a programmer (or
even a suite of running processes) sets up a server for the purposes of a certain
application. However, an ambient-oriented programming language should allow
applications to rely on reified environmental context should this be required. In
other words, the acquaintances of an object must be dynamically manageable.
We will also refer to this property as ambient acquaintance management .

3.6 Software Platforms Revisited

Based on the AmOP criteria we distilled above we can revisit the evaluation of
the software platforms we evaluated in the previous chapter.

3.6.1 Distributed Languages

In section 2.6 we evaluated distributed languages with respect to the hardware
phenomena from section 2.3. We concluded that distributed languages in gen-
eral do not support ambient resources and volatile connections. However, the
languages designed for open networks had a concurrency model that preserved

3.6 Software Platforms Revisited 61

Volatile Connection

Autonomous Concurrent
Devices

Ambient Resources

Classless Object System

Non-Blocking Communication

Reified Communication Traces

Reified Environmental Context

imposes
[Legend]

Figure 3.3: Hardware Phenomena inducing AmOP Characteristics

Language Classless Non-Blocking Reified Reified
Object Model Communication Comm. Traces Environment

ABCL
√ ∅ ∅ ∅

Argus ∅ ∅ ∅ ∅
E

√ √ ∅ ∅
Salsa ∅ √ ∅ ∅
nesC N/A

√ ∅ √

Table 3.1: Evaluation of Distributed Languages based on AmOP Criteria

the autonomy of the devices. Below, we revisit this evaluation of distributed
languages in the context of the AmOP criteria. The results are summarized in
table 3.1.

Classless Object Model

Of the languages we evaluated, ABCL and E are based on a classless object
model. Argus is an extension of the CLU language which features a class-based
object model. The Salsa language is implemented as a pre-compiler for Java
and inherits Java’s object model.

Non-Blocking Communication

Both ABCL and Argus feature asynchronous method invocations. These in-
vocations result in futures and promises, respectively, that are proxies for the
return-values. These proxies can be queried for the result they represent. In
the case of ABCL such a query is done based on the next-value operation and
in Argus a claim operation is introduced. Both these operations block if the
future or promise has not been resolved. Hence, these operations introduce a
blocking “receive” primitive in the language.

E also features asynchronous method invocations that result in promises.
However, instead of introducing a claim operation to get the result that the
promise represents a when operation has been introduced. This when operation
schedules a closure in the queue that is invoked when the promise is resolved.
Hence, E fulfills the non-blocking communication criterion.

62 Ambient-Oriented Programming

Type Classless Non-Blocking Reified Reified
Object Model Communication Comm. Traces Environment

RPC ∅ ∅ Some Some
Pub./Sub. ∅ √

Some Partial
√

Tuplespace ∅ √
Partial

√

Data-Oriented ∅ √
Some Partial ∅

Table 3.2: Evaluation of Middleware based on AmOP Criteria

Salsa introduced linguistic abstractions for dealing with the results of asyn-
chronous method invocations based on different continuation passing style. These
continuation passing style messages prevent the introduction of blocking “re-
ceive” operations such that Salsa fulfills the non-blocking communication crite-
rion.

Reified Communication Traces

To the best of our knowledge no distributed language reifies the object’s com-
munication trace.

Reified Environmental Context

In the distributed languages we have reviewed only nesC can provide a reification
of the environmental context using the broadcast component.

3.6.2 Middleware

In section 2.7 we evaluated middleware for mobile computing with respect to
the hardware phenomena from section 2.3. We concluded that the middleware
approaches better support the hardware phenomena than distributed languages,
but do not reconcile well with the object-oriented paradigm. Below, we revisit
the evaluation of middleware in the context of the AmOP criteria. The results
are summarized in table 3.2.

Classless Object Model

None of the middleware approaches we discussed are based on classless object
models.

Non-Blocking Communication

The RPC-based approaches are mostly based on asynchronous communication
but with a blocking “receive” operation. The publish/subscribe paradigm fea-
tures interactions based on subscribed event notifications. This interaction style
is an inherent form of asynchronous communication. Publish/subscribe based
middleware usually do not introduce a blocking “receive” operation. In tuple-
space based middleware communication is expressed in the form of reads and
writes to the tuple space. Linda [Gel85], on which all tuple space middle-
ware is based, features a blocking “read” operation. However, the tuple space
middleware designed for mobile computing often introduce non-blocking “read”
operations in the form of events that are subscribed on the tuple space. The

3.7 Discussion 63

data-oriented middleware approaches are based on replicated data structures.
Hence, these data structures reside on the same device as the application such
that interactions can occur through local communication and do not rely on
blocking remote communication.

Reified Communication Traces

In tuple space based approaches, discussed in section 2.7.3, the tuple space
can be regarded as a partially reified communication trace. For example, in
Lime [MPR01] the tuple space contains tuples that are moved upon connection
from one tuple space to another. An agent can thus consult its own tuple
space and make changes after the communication occurred. In most other tuple
space based approaches similar actions can be undertaken. Hence, through the
access to the tuple space it is possible to change the delivery semantics between
multiple tuple spaces. In the RPC-based approaches, Rover introduces logging
of remote communication [JdLT+95] to support customized strategies for the
reconciliation of RDO objects copied onto a client. In Bayou [TPST98], the
notion of explicit write-logs is introduced to enable synchronization of different
replicas.

Reified Environmental Context

The RPC-based middleware is mostly designed for nomadic distributed systems.
The only exception is Jini which has been designed for ad-hoc distributed sys-
tems and reifies the environmental context. In STEAM [MC02], which is a pub-
lish/subscribe middleware, introduces the notion of proximity groups to enable
communication based on the geographical location of devices. These proximity
groups can be regarded as a reified environmental context. Both Lime [MPR01]
and TOTA [MZ04] expose the environmental context to the applications. In
Lime this is done through a dedicated tuple-space, called LimeSystem, that is
maintained by the system. The system continuously updates this tuple space
with the other tuple spaces that are in the communication range. In TOTA
changes in the ambient can be monitored by subscribing to an event. In the
data-sharing oriented middleware the environment is not explicitly exposed to
the application. However, in XMiddle [ZCME02] the synchronization and rec-
onciliation process of data trees starts automatically when a device with shared
data appears in the communication range of another device. Nevertheless, to
the best of our knowledge this information is not made explicitly available to
the application.

3.7 Discussion

An important consequence of each of these AmOP characteristics is that they
influence the structure of the software. For example, the requirement of non-
blocking communication primitives leads to the use of event-handlers. It is
widely acknowledged that event-handlers induce complex program structures
because they obfuscate the control flow of an application. The reason is that
event-driven approaches need to emulate an object-oriented programming style
manually. I.e. “calling” a method on an object has to be done by emitting
an event. The “return” value of this method invocation has to be returned

64 Ambient-Oriented Programming

by the object by emitting another event with the result. This emulation of an
object-oriented programming style forces the developer to manually encode a
continuation passing style which results in a complex program structure. For
this reason it is necessary to come up with language features that allow us to
reconcile the AmOP paradigm with an object-oriented programming methodol-
ogy.

The distributed languages based on the actor model, Salsa and E, show that
language constructs can be used to reduce complexity that emerges as a conse-
quence of non-blocking communication primitives. This is further discussed in
chapter 7.

3.8 Conclusion

In section 2.3 we have considered important phenomena based on the hardware
components used to construct mobile distributed systems. After having ana-
lyzed the implications of these hardware phenomena on the design of program-
ming languages and middleware in sections 2.6 and 2.7, we have distilled the
above four characteristics. We will henceforth refer to programming languages
that adhere to them as Ambient-oriented Programming Languages. Surely, it is
impossible to prove that these are strictly necessary characteristics for writing
the applications we target. After all, AmOP does not transcend Turing equiv-
alence. However, we do claim that an AmOP language will greatly enhance
the construction of such applications because their distribution characteristics
are designed with respect to the hardware phenomena presented in section 2.3.
AmOP languages incorporate transient disconnections and evolving acquain-
tance relationships in the heart of their computational model.

The connections between the hardware phenomena and the characteristics
are illustrated by figure 3.3. The figure shows that there is a strong coupling
between volatile connections and autonomous concurrent devices on the one
hand and the first three AmOP characteristics on the other hand. Dealing
with ambient resources in this hardware context leads to the need for a reified
environmental context.

Based on tables 3.1 and 3.2 we conclude that the state of the art in dis-
tributed languages does not conform to all characteristics of AmOP. On the
one hand, languages such as Argus and ABCL do not support the non-blocking
communication characteristic. On the other hand, languages for open networks
based on the actor model usually have the non-blocking communication char-
acteristic, but do not allow for a reified environmental context and are not
equipped with reversibility provisions. The nesC language does have some sup-
port for reified environmental context but does not allow for high-level non-
blocking communication between components. In the middleware approaches
we have found a number of approaches, especially those based on tuple spaces,
that come close to support the hardware phenomena, but unfortunately these
approaches do not match well with the object paradigm.

At this point in the dissertation it is useful to take a step back and state the
plan for the remaining chapters of this dissertation based on the conclusions in
this chapter:

• In the next chapter we will consider an extension of the actor model in
the context of AmOP. We have chosen for the actor model because it

3.8 Conclusion 65

is the concurrency and distribution model that influenced both E and
Salsa, which both supported the non-blocking communication criterion.
Moreover, the model is specifically conceived in the context of the object-
oriented programming paradigm. However, the actor model needs to be
extended to support the remaining AmOP criteria. This exercise together
with the results from this chapter address the third research goal we set
in section 1.1.3.

• In chapter 5 we informally discuss the semantics of a language, called
AmbientTalk, which is based on this extended actor model and there-
fore supports the AmOP criteria. AmbientTalk allows us to write our
first AmOP applications such that we can gain insight in the structure of
AmOP applications. This chapter addresses the second research goal we
set in section 1.1.3. Based on these insights we can identify a number of
limitations with respect to the structure of AmOP applications.

• In chapter 6 we address two issues with respect to AmbientTalk. First,
thus far we have only defined AmbientTalk informally. We define the
semantics of AmbientTalk through the implementation of a metacircular
version of AmbientTalk. Based on this version of AmbientTalk we are also
able to define reflective hooks in the language such that we can address
the limitations we found in the previous chapter.

• In chapter 7 we address the first research goal of this dissertation (dis-
cussed in section 1.1.3). We use the reflective hooks, defined in the pre-
vious chapter, to extend AmbientTalk with language features such that
AmOP applications can be better structured. These language features will
focus on addressing the hardware phenomena we discussed in section 2.3.
What is more, these language features are all based on the AmOP cri-
teria we distilled in this chapter and therefore serve as a validation. We
then create an AmOP application and structure it based on some of the
language features we introduced. We further discuss a similar application
written in Java and make a comparative analysis between both applica-
tions.

• In chapter 8 we further show the expressive power of AmbientTalk by dis-
cussing the implementation of a number of advanced language constructs.
These language constructs are based on the AmOP criteria and allow
us to address some specific issues encountered while developing advanced
AmOP applications.

66 Ambient-Oriented Programming

Chapter 4

The Ambient Actor Model

This chapter presents the ambient actor model, a basic computational model for
concurrency and distribution, that adheres to the AmOP criteria that we have
argued for in the previous chapter. This model is embedded in the programming
kernel we present in the next chapter that is then further used in the remainder
of this dissertation to show that the criteria underlie the language constructs
that facilitate the development of ambient-oriented software.

4.1 Introduction

The goal of this chapter is to develop a suitable model for concurrency and
distribution for AmOP applications. While evaluating the state of the art in
chapter 2 we have encountered three well developed models. In the camp of the
distributed languages (discussed in section 2.6) we have encountered the ABCL
and the actor model and in the camp of the middleware we have encountered
the tuple spaces paradigm (discussed in section 2.7.3). Other approaches were
based on a thread based model for concurrency and communication primitives
to support distribution. Of these models the ABCL and actor model best sup-
ported the object-oriented paradigm. The reason we make an explicit distinction
between the ABCL and actor model is that, although the name suggests other-
wise, the ABCL language is in fact an extension of the actor model. Indeed, the
authors [YBS86] note that although the roots of ABCL lie in the actor model
the resulting concurrency model differs from the actor model. This difference,
which was notable in the conclusion of the evaluation of the distributed lan-
guages, is that the languages E and Salsa naturally supported the autonomous
nature of the hardware as opposed to the ABCL language family. Hence, the
languages based on the pure actor model did not suffer from this limitation.

For this reason we further assess the actor model that was developed by
Hewitt [Hew77] in the late seventies and later further developed by Agha [Agh86,
AH88]. It was only in the late nineties that Agha et. al published a description
of the operational semantics [AMST97] of an actor system. In this chapter we
will rely on this operational semantics, because it gives a clear specification
about what lies at the heart of the actor model.

In the next section we will give an overview of the actor paradigm as an
extension of a functional model based on the λ-calculus. The actor model ex-

68 The Ambient Actor Model

tends such a functional model and introduces a number of basic operators that
upgrade it to an object-oriented model for parallel and distributed computation.

The actor model is designed for open distributed networks, such as the inter-
net, where communication partners are sometimes unavailable for a short period
of time. However, in a mobile network communication can be interrupted for
a longer period or even indefinitely. In section 4.3 we evaluate the actor model
in the context of mobile distributed systems by analyzing it against the AmOP
criteria that we argued for in the previous chapter. Based on these criteria we
will come to conclude that the actor model already partially adheres to some
of these criteria. This conclusions also indicates that the actor model can be
extended such that it fully conforms to the AmOP criteria.

Nevertheless, in section 4.4 we first consider a proper extension of the actor
model, called actorspaces, that supports a form of distributed naming. As dis-
cussed in section 3.5 distributed naming is a useful abstraction to address actors
based on a specification rather than an explicit reference to an actor. However,
we will come to conclude that the distributed naming scheme of the actorspace
model does not provide the necessary flexibility and autonomy needed in the
context of mobile distributed systems.

After this observation we turn back to the actor model in section 4.5 and
extend the operational semantics of the actor model. Afterwards we discuss how
the extensions translate back to the context of the AmOP criteria. In section 4.6
we show the use of the extensions in the actor model and develop a first AmOP
application based on the extensions.

4.2 Actors

The Actor programming language [Agh90] was designed for use in open dis-
tributed network environments (i.e. the internet). A distributed application is
modelled with actors that are distributed throughout the network. Communica-
tion between actors occurs solely with asynchronous message passing. Figure 4.1
shows the conceptual representation of an actor. Each actor has a behavior as-
sociated with it. The behavior defines how an actor handles incoming messages.
Incoming messages are handled by the actor its own thread of control. An ac-
tor is fully encapsulated and can only be addressed by other actors through its
mailbox. In other words if an actor sends a message to another actor or itself
it always places a message in this mailbox. A message is transparently and
non-deterministically selected from the mailbox and processed according to the
actor its behavior. Fairness is assumed such that all messages are eventually
processed.

An actor-based programming environment consists of two elements: 1) an
actor programming language that provides the necessary constructs for express-
ing the concurrent and distributed computation - and 2) an actor system that
provides the run-time environment of actors and communication infrastructure.
Both elements are discussed below.

4.2.1 The Actor Programming Language

The semantics of the actor programming language [AMST97] is defined as an
extension of the operational semantics of a simple functional language. In the

4.2 Actors 69

ThreadObject

Actor

mailbox

messageInternal variables

actor Faculty {
 int n;

 int compute() {
 if (n == 1)
 return 1;
 else
 return n * new Faculty(n -1)-
>compute();
 }
 void act() {
 new Faculty(6)->compute();
 }
}

Methods

Figure 4.1: Conceptual Representation of Actors

semantics functions are used to model the behavior of an actor. Such a function
takes one parameter, a message, and based on this parameter a number of
expressions are evaluated. In the operational semantics of the actor language the
functional language is conceptualized by the untyped lambda calculus [Mog89].
That functional language is extended with three actor primitives to support
programming in a distributed environment:

• New actors can be created using the letactor primitive. The letactor
primitive takes one argument, a function that is the initial behavior of
that actor and returns the mail address of an actor.

• Messages are sent to known actors using the send primitive. The send
primitive takes two arguments, the recipient’s actor address and a message.
Such a message can contain the address of other actors.

• An actor can modify its own behavior using the become primitive. The
become primitive takes one argument, a function that is the new behavior
of the actor. There is no shared data between actors.

These primitives are illustrated by the example shown below, which is an
implementation of an ML reference cell expressed in the actor language defined
by the operational semantics. This cell example also illustrates how the become
operator can be used to model state.

Bcell = rec(λb.λc.λm.
if(get?(m),

seq(become(b(c)), send(cust(m), c)),
if(set?(m),

become(b(contents(m))),
become(b(c)))))

In the λ-calculus functions are first-class entities and do not necessarily have
a name. Such anonymous functions are of the form λa.exp where a is an argu-
ment and exp is the body of the function. The last expression that is evaluated

70 The Ambient Actor Model

determines the return-value of the function. In the λ-calculus functions take
only one argument at a time. Multiple arguments are simulated by currying.
This is the process where one function returns another function that takes one
argument and this process is repeated for all arguments.

The function Bcell describes the behavior of a cell actor. The function call
to rec calculates the fixed-point of a function [MT91] and calls the λ-expression
with that fixed-point as its argument. Hence, Bcell refers to a function which
takes two arguments c and m as its arguments and where b has been bound to
the fixed point in the lexical environment of that function. The argument c
refers to the contents of the cell and the variable m refers to the message that
an actor receives.

The cell-behavior responds to two kinds of messages, get- and set-messages.
The get-messages are responded to in two steps: first, the become operation is
used to define the replacement behavior of the actor. The replacement behavior
is defined with a recursive call through the fixed-point and the contents of the
cell remains unchanged. Hence, the replacement behavior of the actor will refer
to a function that takes one argument m that has b bound to the fix-point and
c bound to the original contents of the cell. Next, the contents of the cell is
sent to the customer of the message. The set-messages are responded to by
changing the function to a new one with the variable c bound to the contents
found in the message m.

The become is placed before send to handle get-messages is because this
order of the statements influences the degree of concurrency. Once the become
operation has been performed the actor can process its next message while the
expressions that follow the become are executed concurrently. The become oper-
ation dynamically creates a new anonymous1 actor which executes the following
expressions, in this case the send, while the current actor processes its next mes-
sage in the context of its new behavior. Accordingly the actor model supports
intra-object concurrency. What is more, this intra-object concurrency does not
lead to race conditions on the internal state of an actor. The main reason for
this is that the state change (achieved by installing another function using the
become operation) of an actor occurs in a single operation, because naturally
the functional language does not include assignments. Hence, only a become
can change the state of an actor.

The function which describes the behaviour of the cell can now be used to
initialize the actor:

letactor(a := Bcell(0))e where
e = seq(send(a, mkset(3)), send(a, mkset(4)), send(a, mkget(a)))

The letactor primitive binds a new cell actor to the variable a and the expres-
sion e is evaluated in this context. The set-messages are created using mkset
and similarly get-messages are created using mkget. The actor model does not
define the order in which messages are consumed and accordingly, the response
to the get-message will depending on the order of the messages be 0, 3 or 4.

1An anonymous actor is an actor whose address is not known by any other actor in the
system.

4.3 Evaluation of Actors for Ambient-Oriented Programming 71

4.2.2 Actor Systems

The actor language relies on an actor system to support the parallelism and com-
munication between actors. An actor system hosts multiple actor objects. These
actor object may concurrently process messages from one another, irrespective
of their individual states. Conceptually, an actor system can be modelled as a
message set and the behavior of the actors running on the system. This message
set contains two types of messages: 1) messages received, but not yet processed
and 2) messages sent, but not yet transmitted. Both types are discussed below:

• A message, whose target address is that of an actor running in the actor
system, is taken from the message set and passed as an argument to the
function that is assigned to the target actor address. When the message
set is empty the system waits for a new message to arrive. As explained
above, an actor can handle the next message from the moment it has
performed the become operation.

• When a message is sent then the message is put in the message set. When
the target actor address of the message is that of an actor running on
another actor system then the message is transparently transferred to the
message set of that actor system. The operational semantics of the actor
language do not define any order in which the messages from the message
set are processed2, but it assumes fairness so that no starvation can occur.

4.3 Evaluation of Actors for Ambient-Oriented
Programming

In this section we evaluate the actor model against the AmOP criteria we have
set for ambient-oriented programming languages in the previous chapter. We
discuss why the concepts of concurrency and distribution found in the actor
model are a good starting point to build an ambient-oriented programming
language. Next to that we also pinpoint a number of limitations in the context
of mobile distributed systems.

4.3.1 Evaluation #1: The Object Model

In the example above we have seen that state in the actor model was modeled
as a λ-function. These λ-function are better known as closures. Both terms
are interchangeably used in the rest of this chapter. A closure consists of a
pair of pointers, one pointer refers to the code of the function and another
pointer refers to the lexical environment of the function. Nested closures can
be used to model and create objects, because their lexical environments can
serve as a representation to encapsulate state. A closure will have a pointer to
a lexical environment extended with the formal parameters bound to the actual
parameters. In the cell example above the contents of the cell is encapsulated
in the lexical environment of the closure that takes m as an argument. The
behavior of an actor can be represented by a closure that takes a message as
its argument and acts as a dispatch function. The state of the actor is then
encapsulated in the lexical environment pointed to by that closure.

2Hence, the name message set as opposed to message queue

72 The Ambient Actor Model

Despite the ability to model objects naturally with closures, one could still
argue that the actor model lacks a true object model because one still has to
manually encode one’s own dispatch function. Nevertheless, this is a problem
that can be easily alleviated by means of syntactic sugar as illustrated by the
language E [Mil04], which models its objects with closures. What is more, the
resulting object model relates more to an object-based model than a class-based
model [Dic92]. The reason that closures form a good basis for a class-less object
model is that they hold both the object state and behavior. Classes, on the
other hand, only hold the behavior of the object. In the actor model objects are
created by invoking a closure that returns a closure that takes a message as its
argument. The former closure can be regarded as an object generator function
which creates objects.

Remember from section 3.2 that a classless object model was argued for as
a required property of ambient-oriented programming languages, because it in-
duces less sharing problems when objects are copied back and forth over the
network. In the actor model a more conservative approach is chosen: the actor
model explicitly states that no expressions containing closures can be communi-
cated. In other words, since objects are represented as closures with a dispatch-
function we cannot copy objects over a network. Agha et al. [AMST97] argue
that this is not a serious limitation, because the actor address can be communi-
cated instead and by sending messages to this actor address we can access the
lambda-abstraction. Nevertheless, an actor address is merely a reference to an
actor rather than a copy of the actor. Hence, if the actor referred to by the ac-
tor address is temporarily unavailable for communication we do not have access
to the state and behavior referred to by the closure. However, contemporary
languages based on the actor model, such as Salsa [VA01] and E [MTS05], have
shown that this limitation can be omitted in practice.

4.3.2 Evaluation #2: Non-Blocking Actor Communica-
tion

In the actor model communication amongst actors only occurs by means of
the send primitive. Hence, no implicit communication occurs such as through
shared data. This send operation is non-blocking and this is a requirement of the
ambient oriented programming paradigm to preserve the autonomy of a mobile
device as explained in the previous chapter. Next to the non-blocking send
primitive there is also a requirement for a non-blocking receive primitive. In the
actor model there is no receive primitive available in the language. That is, a
program cannot be written such that the control flow of the actor is blocked until
a specific message is received from another actor. Thus, once an actor starts
processing a message it will finish executing that message without waiting for
the availability of other actors that are communicated with.

4.3.3 Evaluation #3: Reified Communication Traces

The actor model was designed for open distributed networks, where communi-
cation partners are sometimes unavailable for a short period of time. In the
actor model delivery guarantees are achieved through the use of message sets:
messages sent to actors running on an actor system that is unavailable are kept

4.3 Evaluation of Actors for Ambient-Oriented Programming 73

in the message set until the actor system becomes available again for communi-
cation. The actor model has useful properties in the context of mobile (ad-hoc)
networks, because of these message sets. Each actor system has its own message
set that contains the messages sent, but not yet transmitted to another actor
system and the messages received, but not yet processed. Message sets have
two favorable properties with respect to this type of networks:

• Each actor system is equipped with its own message set. An actor system
is therefore self-sufficient and does not rely on a general server infrastruc-
ture from the environment for its communication.

• A message set enables transparent asynchronous communication in inter-
mittently connected environments, because a message is transparently and
automatically transferred from the message set of the sender to the mes-
sage set of the receiver whenever communication is possible. Hence, the
connection between two actor systems is automatically restored after it
was broken. This is important because it permits transparent communi-
cation in networks where failures are common rather than the exception,
whereas many other asynchronous protocols put the burden of expressing
delivery guarantees on the developer.

These message sets can be regarded as a part of the communication traces
of such an actor. Unfortunately, in the actor model these communication traces
are not first class entities. As a result, one cannot intervene in the commu-
nication process of an actor and only a single delivery strategy is employed,
namely eventual delivery of messages. In other words, its communication layer
is based on the assumption that connections between actor systems will always
be restored after they are broken. Such an assumption is attainable in an open
distributed network such as the internet, but considering mobile networks it is
impossible to attain, because connections often break but are not necessarily
restored due to the unpredictable mobility of the devices. This mobility results
from the devices their autonomous concurrent nature and the fact that resources
coincide with the immediate ambient in which the device is located, as discussed
in section 2.3.

Reified communication traces would allow one to build abstractions with
different delivery strategies. What is more, as argued in section 3.4, reified
communication traces are also needed to provide programming abstractions to
deal with possible conflicts that result from volatile connections. The actor
model does not provide any constructs or abstractions to deal with these conflicts
such that they would need to be solved in an ad-hoc manner.

4.3.4 Evaluation #4: Reified Environmental Context

Another criterion of ambient-oriented programming languages is that the envi-
ronmental context of mobile devices should be reified so that abstractions can
be introduced to deal with the continuously changing ambient resources used
by a mobile device. In the actor model all resources that can be shared are
modeled as actors and actors are referred to by actor addresses. Actors can
only communicate with one another if they have an actor mail address. Miller
et al. [Mil04] noted that in capability secure languages, such as the actor model,
actors can only make acquaintance with one another in four modes:

74 The Ambient Actor Model

• Connectivity by Introduction: a message sent to an actor can contain the
address of another actor.

• Connectivity by Parenthood: when an actor creates another actor using
the letactor primitive, then the creating actor has the address of the
new actor.

• Connectivity by Endowment: when a new actor is initialized with the
address of another actor.

• Connectivity by Initial Conditions: when an actor system is initialized for
the very first time, then there is a bootstrapping phase needed so that the
very first actor can be created and such that it has the necessary actor
references in order to initialize properly so that the other connectivity
rules can be applied.

The rules above identify a limitation: the actor model does not provide a means
for an actor to independently get a reference to a remote actor in its direct
ambient. In other words, if two devices move in the communication range of
one another then there is no rule that permits one actor running on a device
to get a reference to another actor running on the other machine, unless both
actors would have a reference to a third party that could act as a middleman.
Such a middleman could be a naming server or name registry which is used
in middleware approaches, such as Java RMI and CORBA. However, such a
middleman would imply that infrastructure always needs to be present in the
ambient. This would not only conflict with the autonomy of mobile devices as
explained in section 2.3 but the actor address of the software running on that
infrastructure would need to be bootstrapped in all mobile devices.

4.3.5 Summary

We have evaluated the actor model with respect to the criteria set by ambient-
oriented programming paradigm and have uncovered a number of limitations
that make it either impossible to use the current actor model in mobile (ad-
hoc) networks or difficult to program in the actor language. The limitations are
summarized below:

• The actor model does not allow closures (which are used to represent
objects) to be communicated over the network. This limitations intro-
duces practical problems, but are overcome in contemporary distributed
programming languages based on the actor model.

• The actor model does not define how actor addresses can be resolved.
Actors need to know their available communication partners, especially
because they change frequently when the user arrives at a new location.
We need an abstract way to reference the set of actors in that ambient
that are available for communication. Currently, the actors have no means
to find each other when mobile devices are in the communication range of
one another such that ambient resources cannot be detected.

• The model does not support volatile connections with disconnections over
a longer period. The actor model assumes that messages sent will eventu-

4.4 Evaluation of the ActorSpace Model 75

ally be received. In a mobile network this precondition cannot be guaran-
teed anymore. There is a need for more explicit control over the delivery
of messages. Moreover, conflicts that arise due to the disconnectivity of
actors have to be dealt with in an ad-hoc manner.

Despite these limitations the actor model adheres to the non-blocking commu-
nication criterion. What is more, the actor model matches well with the object
paradigm, which was one of our basic research assumptions for the AmOP crite-
ria. Moreover, the object model featured in the actor model is based on objects
rather than classes. These are unique traits compared to the other models for
concurrency and distribution we have encountered while evaluating the state
of the art (sections 2.6 and 2.7). Hence, although the actor model does not
completely support the AmOP paradigm we believe it provides a solid start-
ing point to extend it such that the missing criteria, namely the reification of
communication traces and environmental context, are supported too.

4.4 Evaluation of the ActorSpace Model

An extension of the actor model, named actorspaces, was proposed by Agha
and Callsen [AC93] and defines how actors can be resolved in a distributed
namespace. As discussed in section 3.5 distributed naming is a useful abstraction
to address actors based on a specification rather than an explicit reference to
an actor.

Actorspaces introduce a form of distributed naming into the actor paradigm.
The actorspace model extends the actor model with three new concepts:

• Attributes: In the actorspace model, actors can be addressed by their
actor address or by attributes. Attributes are patterns which provide an
abstract specification of an actor. In contrast to an actor address, which is
associated with exactly one actor, patterns can denote a group of actors;
namely all actors which fulfill the abstract specification determined by the
attributes.

• ActorSpaces: An actorspace is a computationally passive entity that de-
termines the scope in which the pattern matching of attributes occurs.
Actors and actorspaces can be made (in)visible in the context of an ac-
torspace. Hence, the entities (actors and actorspaces) that are matched
by a pattern, which is parameterized with an actorspace, will be limited
to the entities that reside in that actorspace.

• Capabilities: The model of security is based on capabilities [Lev84]. A ca-
pability is an unforgeable key which can be created dynamically, compared
and communicated over the network by actors. The correct capability is
needed to change properties with respect to the distributed naming of an
actor or actorspace.

These concepts are introduced in the programming language by introduc-
ing new primitives and changing existing ones. They are summarized below:
create-space takes a capability as an argument and creates an actorspace and
returns an address for this actorspace. make-visible and make-invisible are
used to add and remove actors and actorspaces to an actorspace. There is also

76 The Ambient Actor Model

a primitive change-attributes that can change the attributes to actors and
actorspaces. The send primitive in the actorspace model differs from the stan-
dard actor model in that it can not only take an actor address as an argument,
but also a pattern expression of the form pattern@space. When multiple ac-
tors in the actorspace match the pattern, then one actor is non-deterministically
chosen. Besides send, another communication primitive broadcast has been
introduced. This primitive takes a pattern as its argument, but the difference is
that the message is sent to all actors in an actorspace that match the pattern.
No global or partial order is assumed on both message sending primitives.

Some of the primitives we have discussed above involve the use of capabil-
ities. Capabilities can be associated with both actorspaces and actors in the
model and actors need to have the correct capability in order to manipulate
the naming properties (using the primitives make-visible, make-invisible
and change-attributes) of these entities. In the actorspace model a number
of actors play the role of a manager , which regulate the naming properties of
actorspaces.

Although the actorspace model introduces an interesting model to deal with
distributed naming problems of the actor model, there are a number of limita-
tions that make the concepts introduced in the actorspace model impossible to
use in the context of mobile distributed systems. The problems originate from
the fact that mobile distributed systems typically involve network partitions
as a result of the volatile connections (discussed in section 2.3). For exam-
ple, suppose a number of actors are contained in an actorspace but some of
these actors run on mobile devices that are currently not in the communication
range. Hence, the actorspace is partitioned and it is undefined what happens
when messages are sent to the actors in that actorspace. Also, it is not clear on
which device the data structure that holds the configuration of the actorspace
should be placed. When the node that maintains that data structure is not
in the communication range at the moment a send or broadcast operation is
performed, then the semantics is undefined. Another point where semantics of
the operations of the actorspace model is not clear is when managers change
the configuration of an actorspace in the face of such a network partition. Note
that replication of the actorspace’s datastructure is not feasible, because an
actorspace can be manipulated at runtime and keeping the replicas up-to-date
and provide consistent access does not scale and leads to inconsistencies.

The main problem is that the tuple space model was not designed for network
partitions, which result from volatile connections. Based on this evaluation we
have decided to step back to the standard actor model and extend it such that
it adheres to all AmOP criteria.

4.5 The Ambient Actor Model

In this section we introduce the ambient actor model , an extension of the op-
erational semantics and the syntax of the standard actor model such that the
limitations, pointed out in the previous sections of the actor model and the ac-
torspace model, are resolved. We will refrain from giving all the definitions of
the standard actor model, which can be found in [AMST97]. We will however
repeat definitions that we adapted to extend the operational semantics of the
actor model or when they are essential to understanding the extensions.

4.5 The Ambient Actor Model 77

The main addition to the actor model is the introduction of explicit mail-
boxes [DV04] for each actor. A number of mailboxes are used within the model
to guarantee communication between local and remote actors. These are the
inbox, which keeps track of incoming messages, the outbox, which keeps track
of messages that should be delivered, the sent- and the rcvbox which keep
track of, respectively, which messages have been sent and which messages have
been processed by an actor. In this section we show that the introduction of
these four first-class mailboxes addresses the reification of the communication
traces, which was one of the missing AmOP criteria we identified in section 4.3.
We will show that through the manipulation of these mailboxes actors are able
to adapt their delivery strategy based on the needs of the AmOP application.
What is more, actors can use the mailboxes to determine their communication
state and as such implement customized schemes based on this state.

Aside from these mailboxes four other mailboxes are introduced to reify
the environmental context of actors. This type of reification is the last missing
AmOP criterion we identified in section 4.3. Actors are usually interested in spe-
cific resources from the ambient and in the (dis)appearance of these resources.
For this reason, two mailboxes provided and required are added. These mail-
boxes contain the names of services that are provided to and required from
the ambient by an actor, respectively. These names of services determine what
part of the environment is reified. The environment is reified through the in-
troduction of the joined and disjoined mailboxes. These two mailboxes are
transparently updated by the actor system and contain the actor addresses of
ambient resources that have appeared and disappeared, respectively, from the
ambient of a device. As such they reveal the environmental context to the
actors.

4.5.1 Simple Ambient Actor Language

The ambient actor language is an extension of the call-by-value lambda calculus
that contains standard actor primitives send, become and letactor, which
are discussed in section 4.2.1. However, similar to the standard actor model
the letactor primitive has been decomposed into two primitives newadr and
initbeh. The former creates a new actor address and the latter initialized the
behavior for this actor address. Next to the standard actor primitives we add a
number of primitives to manipulate mailboxes:

• messages(e) returns the set of messages of mailbox e.

• add(mbxName, e) adds a message e to the mailbox with name mbxName.
A message added to a mailbox that does not exist creates the mailbox.

• delete(mbxName, e) deletes a message e from the mailbox with name
mbxName

In the following subsections we define the operational semantics of these opera-
tions as an extension of the standard actor model. These operational semantics
are defined as transitions of configurations.

78 The Ambient Actor Model

4.5.2 Messages and Mailbox Associations

In this part we define a number of sets related to the representation of messages
and mailboxes in the ambient actor model. We take as given countable sets At
(atoms) and X (variables including actor mail addresses).

Definition 9 (V E) : The set of values, V, the set of expressions E, and, the
set of actor states, As are defined inductively:

V = At ∪ X ∪ λX.E ∪ pr(V, V)
E = V ∪ app(E, E) ∪ Fn(En) where Fn(En) is all arity-n primitives.
As = (?X) ∪ (V) ∪ [E]

Say Y is a set then Pω[Y] is the set of finite subsets of Y. Mω[Y] is the set of
finite multi-sets with elements in Y. Y0

f→ Y1 is the set of finite maps from Y0

to Y1. Dom(f) be the domain of f .
A message is represented as a nested pair of value expressions, this is in

contrast with the message representation as defined in [AMST97] (where a mes-
sage was denoted with < b⇐cv >). By representing the messages as a pair of
values the message becomes a first class value in the actor language. This will
prove useful to manipulate the mailboxes. Another difference with the standard
actor model is that the message includes the sending actor (called the source).
To make a clear distinction in the definitions between messages and other pair
values, we will identify a pair that is used as a message with b

a⇐cv.

Definition 10 (Messages (M))

M = {pr(a, pr(b, cv)) ∈ V | a, b, cv ∈ V}

A message is a nested pair (pr) of:

• a, the actor address of the source actor.

• b, the actor address of the target actor.

• cv, a communicable value, constructed from atoms and actor addresses,
but not containing closures.

In the spirit of dynamic typing (as in [AMST97]) we do not restrict the target
of the message to the set of actor addresses, the correctness is checked in the
rules that define the operational semantics.

In the ambient actor model a message can be associated with multiple mail-
boxes. To denote these mailbox associations in the actor model we introduce
the following set:

Definition 11 (Mailbox Associations (mB))

mB = {β ∈ X f→ (S f→ V) | ct ∈ V, a ∈ X,mbx ∈ S}

S is the set of identifiers for mailboxes, S ⊂ At. The set of mailbox associations
is a mapping from an actor mail address to a mapping of the names of its
mailboxes to their contents. To increase the readability, mappings of β will
be written as < ct | mbxa > with a ∈ Dom(β) and β(a) = δ. Furthermore,

4.5 The Ambient Actor Model 79

mbx ∈ Dom(δ) and δ(mbx) = ct. ct ∈ V denotes the content associated with
mailbox mbxa. The name of the mailbox is written as the identifier mbx ∈ S,
subscripted with the actor address a ∈ X to which the mailbox belongs. E.g.,
inboxb denotes the inbox of actor b. Typically, messages are associated with a
mailbox, but other value types can also be associated with a mailbox.

4.5.3 Actor Configurations

The operational semantics of the model itself is based on actor-configurations
and reduction rules defined on these configurations. Conceptually, an actor
configuration can be perceived as the runtime state of an actor system (discussed
in section 4.2.2). Such an actor system runs on any computational device, such
as a mobile phone or desktop.

Definition 12 (Actor Configurations (K))〈〈
α | µ

〉〉ρ

χ

where ρ, χ ∈ Pω[X], α ∈ X f→ As, and µ ∈ Mω[mB]

An actor configuration contains:

• the state of the actors in a configuration is given by an actor map α. Such
an actor map is a finite map from actor addresses to actor states. Each
actor state is one of

– (?a) uninitialized actor state created by an actor with address a

– (b) actor state ready to accept a message where b is its behavior
represented by a closure

– [e] actor in a busy state executing expression e. e is either a value
expression or a reduction context R filled with a redex r (written as
R[r]). The reduction context is used to describe internal transitions
while a message is being evaluated by the λ-function associated with
the behavior. The current expression that is evaluated is decomposed
into a reduction context with a unique hole. For the formal elabo-
ration on reduction contexts we refer to the standard actor model
[AMST97]. Suffice it to say that here that R in the following def-
initions ranges over the reduction contexts. The redexes that are
not actor-specific expressions, namely the purely functional fragment
of the language, are inherited from the operational semantics of the
standard actor model. The redexes related to the actor operations
are newadr(), init(a, e), become(v), send(v0, v1), add(mbx, ct),
delete(mbx, ct) and messages(mbx).

Each mapping of an actor address to an actor state is subscripted by their
actor address. E.g. (?a)c denotes an uninitialized actor c that was created
by actor a.

• µ, a multi-set of mailbox associations.

• ρ, receptionists, the actor addresses from this configuration that are ac-
cessible from other actor configurations

80 The Ambient Actor Model

• χ, external actors, the addresses of actors from other actor configurations
that can be accessed from this actor configuration.

It is required that all actor configurations satisfy the following well-formedness
constraints (A=Dom(α)):

1. ρ ⊆ A and A ∩ χ = ∅,

2. if α(a) = (?a′), then a′ ∈ A,

3. if a ∈ A, then FV(α(a)) ⊆ A ∪ χ,

4. if < ct | mbxa >∈ µ, then a ∈ A

5. if < ct | mbxa >∈ µ then FV(ct) ⊆ A ∪ χ

FV(e) is the set of all free variables encountered in an expression e as defined
by Agha et al [AMST97].

The fourth constraint is a new constraint and denotes that each mailbox in
an actor configuration should be owned by an actor from the actor configuration.

4.5.4 Operational Semantics of Actor Configurations

Now that we have defined the necessary sets involved in the formalization of
the operational semantics of the ambient actor model we can define the actual
operational semantics. The operational semantics are defined as reduction rules
on actor configurations. Conceptually, such a rule can be regarded as an eval-
uation step of an actor system. Each rule contains a label l that consists of a
tag indicating its name and a set of parameters. In all cases, except for the
i/o transitions (with tags local, in, out, ack, join, disjoin), the first parameter
names the focus actor of the transition.

As in the paper of Agha et al. [AMST97] we use the following notation for
maps: if the mapping α′(a) = (b) and if α differs from α′ in that a is omitted
from its domain then we write α′ as α, (b)a such that the focus is on the state
of actor a. We follow the same convention for other maps with actor addresses
in their domain, such as mailbox associations.

In our model the transitions (7→) are extended with an environmental con-
text set τ . The set τ contains the actor configurations that are available (in
the communication range of the actor configuration on which the transition is
defined) while the reduction is performed. The introduction of this set is impor-
tant to reify the notion of environmental context in our extended model. Below
we explain and discuss the different rules.

Definition 13 (7→
τ
) τ ∈ Mω[K]

< fun :a>

e
λ7→Dom(α)∪{a} e′ ⇒

〈〈
α, [e]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [e′]a | µ

〉〉ρ

χ

< new :a, a′>〈〈
α, [R[newadr()]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[a′]]a, (?a)a′ | µ

〉〉ρ

χ
a′fresh

< init :a, a′>

4.5 The Ambient Actor Model 81

〈〈
α, [R[init(a′, v)]]a, (?a)a′ | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a, va′ | µ

〉〉ρ

χ

< become :a, a′>〈〈
α, [R[become(v)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, va | µ

〉〉ρ

χ

< send :a,m>〈〈
α, [R[send(v0, v1)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a | µ,m

〉〉ρ

χ

with m =< v0
a⇐v1 | outboxa >

< local :m>〈〈
α | µ, m

〉〉ρ

χ
7→
τ

〈〈
α | µ,M

〉〉ρ

χ

with m =< b
a⇐cv | outboxa >

and M = {< b
a⇐cv | sentboxa >,< b

a⇐cv | inboxb >}
if a, b ∈ Dom(α) and x = a ∨ b then @α(x) = [g] with g ∈ As

< out :m>〈〈
α | µ, m

〉〉ρ

χ
7→
τ

〈〈
α | µ

〉〉ρ∪{a}∪(FV (cv)∩Dom(α))

χ

with m =< b
a⇐cv | outboxa > if b ∈ χ, a ∈ Dom(α) and

@α(a) = [g] with g ∈ As

< in :m>〈〈
α | µ

〉〉ρ

χ
7→
τ

〈〈
α | µ,m

〉〉ρ

χ∪{a}∪(FV (cv)−Dom(α))

with m =< b
a⇐cv | inboxb >, b ∈ ρ and FV (cv) ∩Dom(α) ⊆ ρ,

if @α(b) = [g] with g ∈ As

< ack :m>〈〈
α | µ

〉〉ρ

χ
7→
τ

〈〈
α | µ,m

〉〉ρ

χ

with m =< b
a⇐cv | sentboxa >, FV (cv) ∩Dom(α) ⊆ ρ,

if b ∈ χ, a ∈ Dom(α) and @α(a) = [g] with g ∈ As

< rcv :a,m>〈〈
α, (v)a | µ,m

〉〉ρ

χ
7→
τ

〈〈
α, [app(v, a

b⇐cv)]a | µ,m′〉〉ρ

χ

with m =< a
b⇐cv | inboxa > and m′ =< a

b⇐cv | rcvboxa >

< messages :a,mbx>〈〈
α, [R[messages(mbx)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[(ct1, . . . , ctn)]] | µ

〉〉ρ

χ

with cti ∈ {ct | < ct | mbxa >∈ µ}

< add :a,mbx, ct>〈〈
α, [R[add(mbx, ct)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a | µ,m

〉〉ρ

χ

with m =< ct | mbxa >

82 The Ambient Actor Model

< delete :a,mbx, ct>〈〈
α, [R[delete(mbx, ct)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a | µ′

〉〉ρ

χ

with µ′ = µ\{< ct | mbxa >}

< join >〈〈
α0 | µ0

〉〉ρ0

χ0
7→
τ

〈〈
α0 | µ0,M

〉〉ρ0

χ0∪{a}

if ∃κ ∈ τ with κ =
〈〈
α1 | µ1

〉〉ρ1

χ1
and @α0(b) = [g] with g ∈ As and

M = {< pr(a, cv) | joinedb >,< b
b⇐join | inboxb > | < cv | requiredb >∈

µ0∧ < cv | provideda >∈ µ1}

< disjoin >〈〈
α0 | µ0

〉〉ρ0

χ0
7→
τ

〈〈
α0 | µ0\T,M

〉〉ρ0

χ0

if @κ ∈ τ with κ =
〈〈
α1 | µ1

〉〉ρ1

χ1
and @α0(b) = [g] with g ∈ As and

M = {< pr(a, cv) | disjoinedb >,< b
b⇐disjoin | inboxb > |

< pr(a, cv) | joinedb >∈ µ0 ∧ a ∈ Dom(α1)}
T = {< pr(a, cv) | joinedb > | < pr(a, cv) | joinedb >∈ µ0 ∧ a ∈ Dom(α1)}

Basic Actor Operations

The first three reduction rules below remain unchanged with regard to the actor
model. The become on the other hand had to be modified to ensure correct
semantics with respect to the first-class mailboxes.

• The < fun > rule above delegates the purely functional expressions used
in the actor program to the functional redexes. The functional redex
contains reduction rules for function calls, cons-cell manipulation, branch-
testing, type-testing and equality. For the exact definition of these reduc-
tion rules we refer the reader to [AMST97].

• The semantics of the letactor primitive is formalized by two rules, <
new > and < init >. The < new > rule is used to create a new actor
with address a’. The new actor is not initialized after this reduction. We
say that a variable is fresh with respect to a context of use if it does not
occur free or bound in any syntactic entity. The new uninitialized actor
is denoted with (?a)a′ .

• With the < init > rule a new actor is initialized with behavior v. Only
the actor that created the actor a’ can initialize it.

• With the < become > rule the actor can change its state and behavior,
similar to the become rule in the standard actor model. However, in the
rule defined by Agha et al. [AMST97] the expressions evaluated after a
become will be further reduced in the context of a new anonymous actor.
It is this anonymous actor that introduces the intra-object concurrency in
the actor model.

In the changes we have made, this remaining expression is not further re-
duced, changing its semantics similar to a break instruction found in many

4.5 The Ambient Actor Model 83

programming languages. The reason we removed intra-object concurrency
is to ensure mailbox manipulations have correct semantics. Indeed, if the
remaining expression is reduced in the context of an anonymous actor and
mailboxes would be manipulated then the mailboxes of the anonymous ac-
tor would be manipulated instead of the actor that started to process the
message. This would lead to awkward semantics. An alternative to this
solution would be to let an anonymous actor manipulate the mailboxes
of the actor that spawned it. However, this would introduce race condi-
tions on the mailboxes. The topic of safe access to mailboxes is further
discussed below in section 4.5.5.

Part of the parallelism found in the actor model stems from the asyn-
chronous message passing that is used as we explained in section 2.4.4.
In fact, many contemporary implementations of programming languages
based on the actor model have made a similar tradeoff. In languages such
as Salsa [VA01] and E [Mil04] the become operation has been replaced by
assignments that are used throughout a method body. In these languages
the intra-object concurrency has also been removed to ensure that no race
conditions occur on the internal state of the actor. It is true that remov-
ing the intra-object concurrency reduces the massive parallelism that was
found in the actor model, but we do not believe that the change influences
the workability of the actor model for mobile networks.

Communication Rules

The remainder of the rules have been adapted to include the notion of mailboxes:

• The < send > rule mildly differs from the send rule found in the actor
model. The new rule reduces the send operation to placing the message
in the outbox of the actor in which the send operation is reduced.

• < local > is a new rule that was added to model local communication
between actors. If the message can be delivered locally (within the same
actor configuration), it is placed both in the target its inbox, and the
sentbox of the sender. The rule is defined such that communication can
only occur when the two actors involved in the communication are not
in a busy state. Similar conditions are also specified for the other i/o-
transitions. These conditions are necessary to preserve the model from
race conditions. This will be discussed in section 4.5.5.

• < out > The out reduction rule is used at the sending side for messages
that cannot be delivered locally, to transmit a message to another actor
configuration. Similar to the original model, the set of receptionists is
expanded with the local actor addresses that were communicated in the
message. The outgoing message is removed from the outbox.

• < in > an actor configuration receives a message from an external actor
that runs on another actor system. In this situation, the message is placed
in the inbox of the target actor.

• < ack > an actor configuration receives an acknowledgment for a message
it send and places that message in the sentbox of the sending actor. This
allows the actor to verify which messages have actually been sent.

84 The Ambient Actor Model

• < rcv > When a message is available in the inbox of an actor, it can be
received by the actor and when it is processed by the actor, it is moved to
the rcv mailbox. As a result, an actor has a history of the messages that
it processed. This proves to be useful for determining the communication
state of an actor as is shown in the examples in section 4.6.

Mailbox Manipulation

< messages >,< add >,< delete > Some reduction rules have been added to
manipulate and inspect the mailboxes from within the actor language. With the
< messages > rule one can access the content of a mailbox. The < add > rule
creates a mailbox when it does not exist, if the mailbox exists, the content will
be added to the mailbox. The < delete > rule delete a message from a mailbox,
when the last message of a mailbox has been removed, the mailbox itself is
removed. The above reduction rules allow actors to manage mailboxes explicitly.
Note that there is no rule in which a message automatically disappears from
the system. This means that memory management will have to be handled
manually by the programmer. This is because it depends on the semantics of
the program whether a message has become irrelevant to the program. For
example, when a certain task has completed and its associated messages are not
relevant anymore.

Handling Environmental Contexts

AmOP applications need to have access to the reified environmental context
(discussed in section 3.5) so that they can address ambient resources (discussed
in section 2.3). The reification of the environmental context is supported with
two reduction rules: < join > and < disjoin >. When two devices are in
the communication range of one another, their actor systems will automatically
“join”. They disjoin when they leave each others communication range. Actors
are usually interested in a specific resource from the ambient and are only inter-
ested in the (dis)appearance of these resources. To this end, four extra mailboxes
have been added for each actor: provided, required, joined and disjoined.
The mailboxes provided and required are used to let an actor specify an ab-
stract description of what kind of behavior it provides or requires, this abstract
description is called a pattern. The pattern is specified in the model as a com-
municable value. When a pattern in the provided and required mailboxes of
different actors match, then the actor that required the pattern will be notified.
This notification happens through the use of the joined and disjoined mail-
boxes. Thus, the joined and disjoined mailboxes keep track of the relevant
actors, specified through the use of the provided and required mailboxes, that
are in communication range. This mechanism is defined in the model through
the < join > and < disjoin > rules:

• < join > when two actor configurations come in the communication range
of one another then every actor b that requires a certain pattern cv, which
has become available in another actor configuration κ that is in commu-
nication range, will be informed of this by receiving a “join” message in
its inbox. Also, for every matching pair of required-provided patterns,
the corresponding joined mailbox is updated. In the joined mailbox, a
special kind of message is stored, called a resolution. A resolution contains

4.5 The Ambient Actor Model 85

a) the pattern (cv) that has been matched and b) a provider actor a who
provides the service represented by the pattern. Hence, the resolutions
found in the mailbox of an actor specify the actor addresses of ambient
resources that matched the pattern.

• The < disjoin > rule specifies the semantics of two actor configurations
that leave each others communication range. Every actor that is aware
of another joined actor that has left the communication range, will be
informed of the disjoin. Once an actor is informed the corresponding
resolution is removed from the joined mailbox. Actors that have removed
the matching messages from their joined mailbox will not be informed.

The join and disjoin operations are not the inverse of one another. After joining
and disjoining two actor configurations, the state of the involved actor config-
urations is not necessarily the same as before the join operation. This is due
to the fact that for every join or disjoin a number of messages are sent, which
might influence the behavior of the involved actors.

4.5.5 Concurrency Issues with Mailboxes

When scrutinizing the ambient actor model, one has to investigate whether
if there are concurrency issues involved with the reification of the mailboxes.
For example, a possible race condition is an actor that deletes a message from
its outbox at the moment it is transferred to the target actor its inbox. The
operational semantics of the ambient actor model exhibit two mailbox properties
that are important to avoid race conditions on the mailboxes of an actor.

1. Mailbox Privacy
Each mailbox has a unique name within an actor. A mailbox is associated
with exactly one actor and an actor cannot communicate a reference to
one of its mailboxes.3 Hence, mailboxes are never shared among multiple
actors. This is called the mailbox privacy property.

2. Serial Mailbox Access
In the ambient actor model a mailbox is manipulated by two different en-
tities: the actor owning the mailbox and the actor system which updates
mailboxes when communication events occur, for example when a message
is transmitted. The operational semantics of the ambient actor model is
defined in such a way that the manipulation of mailboxes by these two
entities cannot occur concurrently. Indeed, the rules where the actor sys-
tem manipulates mailboxes as a result of a communication event have the
explicit condition that the actor whose mailboxes are being manipulated
is not in a busy state. Hence, while an actor is processing a message its
mailboxes can only be changed by itself, not by the actor system. Mes-
sages that the actor system cannot send at that time remain in the out
mailboxes of the corresponding actors until they can be transmitted. The
characteristic that only one entity can manipulate a mailbox at a time is
called the serial mailbox access property.

3However, it is possible to communicate the name of a mailbox, but this name refers to
the local mailbox of the receiving actor and not to the mailbox of the sending actor.

86 The Ambient Actor Model

Both the mailbox privacy and the serial mailbox access properties are important
in the context of implementations based on this model, because they preserve
the encapsulation of the actors and avoid race conditions on mailboxes. These
properties will have to be guaranteed by concrete implementations of the model.

4.5.6 Summary and Discussion

In section 4.3 we have discussed the actor model in the context of the ambient-
oriented programming characteristics defined in chapter 3 and, although the
model provides non-blocking communication primitives, we concluded that the
model lacks reified communication traces and reified environmental context . The
lack of support for these two AmOP criteria induced that actors are unaware
of the (dis)appearance of ambient resources and that the actor model could
not support volatile connections sufficiently. The ambient actor model resolves
these restrictions with the introduction of explicit mailboxes. The use of such
mailboxes is twofold: making the communication state of an actor explicit and
allowing for ambient acquaintance management . Both uses are detailed below.

Communication State

When scrutinising the communication structure of the actor model, we can
distinguish between four types of messages. The first type of messages are those
an actor received but still needs to process. A second type of messages are
those the actor has sent but that have not yet been transmitted. Third, there
are messages that an actor has received and processed. Finally, there are the
messages that an actor has sent and transmitted. Together, these four types of
messages describe the complete communication trace of an actor over time.

In contrast to the standard actor model, where every actor merely has an
implicit message set for accumulating incoming and outgoing messages, the
ambient actor model allows clear distinction of these four types of messages by
introducing four explicit mailboxes. The messages of the first type are put in
the mailbox inbox, the second type of messages are put in the mailbox outbox.
If an actor receives a message, then that message will be put in the mailbox
inbox, waiting to be processed by that actor. When a message is sent by an
actor it is put in its mailbox outbox, waiting to be transmitted to the recipient
of that message. Both mailboxes inbox and outbox are implicitly present in
the actor model and enable the non-blocking communication primitives, which
are a necessary characteristic for the ambient-oriented programming paradigm
as argued in section 3.3.

In addition to the mailboxes inbox and outbox there are two more mail-
boxes, rcvbox and sentbox, for the third and fourth type of messages respec-
tively. In the ambient actor model, when a message is processed it is moved
from the mailbox inbox to the mailbox rcvbox and when a message is actu-
ally transmitted to another actor, then the message is moved from the mailbox
outbox to the mailbox sentbox.

Conceptually, the mailboxes rcvbox and sentbox allow one to have a peek
in the past of the communication history of an actor. Note that the mailboxes
inbox and outbox of the actor represent its continuation, because these two
mailboxes contain the messages it will process and transmit in the future. Hence,
through the introduction of these four explicit mailboxes we have a gate to the

4.6 Examples 87

past and the future of the actor’s state of communication, which enables the
reified communication traces that were argued in section 3.4.

The ambient actor model provides explicit control over the communication
state of an actor through mailbox manipulations. Apart from the four mail-
boxes that control the state of communication, every actor can create custom
mailboxes. Messages can reside in multiple mailboxes at the same time. The
status of the delivery of a message can be monitored and altered by accessing
the appropriate mailbox. For example, by removing a message from the mailbox
out we can stop the message from being delivered. Hence, by giving access to
the mailboxes, first-class continuations are attained. The mailboxes in and out
not only allow one to have a peek in the future computation and communica-
tion of the actor, but even to manipulate it. For example, we could remove a
message from the mailbox in and thereby prevent it from being processed by
the actor.

Ambient Acquaintance Management

In section 3.5 we argued that a form of ambient acquaintance management
should be possible in ambient-oriented programming languages. In the AAM,
distributed naming is available via a pattern-based lookup mechanism. A pat-
tern is an abstract description of a set of actors and is specified by a communi-
cable value. An actor that wants to search for certain other actors in its ambient
places a corresponding pattern in its mailbox required. Conversely, when an
actor wants to make itself available for other actors it places a pattern with a
description of itself in its mailbox provided. In the former case the actor is
said to require a pattern, while in the latter case the actor is said to provide
a pattern. Multiple patterns can be added to a mailbox such that an actor
can require or provide multiple patterns simultaneously. A pattern can also be
removed from either mailboxes at any time when the actor no longer requires
or provides a certain pattern.

When two or more actors enter one another’s communication range and
have a corresponding pattern in their mailboxes, the mailbox joined of the
actor that required the pattern is updated with a resolution. Such a resolution
is a pair consisting of the pattern and a reference to the actor who provided
the pattern. Conversely, when two actors with a corresponding pattern in their
mailboxes are pulled out of communication range, the resolution is moved from
the mailbox joined to the mailbox disjoined. This mechanism allows actors
not only to detect new resources in its ambient, but also to detect when actors
have disappeared from the ambient. Through this mechanism an actor can
manage the acquaintances it encounters in its ambient, which is a characteristic
required for ambient-oriented programming languages as discussed in section 3.5

4.6 Examples

Now that we have defined the operational semantics of the ambient actor model
we show that it is useful in the context of mobile networks by means of two
examples. The examples are defined with actor code based on the semantics of
the ambient actor model from the previous section. The first example shows
how anonymous communication can be expressed. In the second example we

88 The Ambient Actor Model

elaborate on a meeting scheduler application for use in a mobile ad-hoc network.
In the examples below we use the convention that functions prefixed with mk

create the respective messages and functions that end with a “?” are predicates.
For example, mkPrint is a function that creates the print message and print?
is a function that returns true if its argument is a print message.

4.6.1 Pattern-Based Communication

In section 3.5 we discuss that distributed naming is a good abstraction to com-
municate with resources in the ambient for which the address is unknown. For
example, an actor that wants to print a file on a printer first needs to locate
a suitable printer in the ambient and then communicate with it. With a dis-
tributed naming scheme both actions can be abstracted in a single communica-
tion instruction psend that allows an actor to be named based on its properties
rather than on a specific address. Below is the definition of an actor using the
psend abstraction to print a file from the moment it comes into communication
range of an actor that provides a printing service.

BCustomer = λfile.λm.
seq(psend(’printer@300dpi, mkPrint(file)),

become(handleJoin))

In the ambient actor model the addresses of ambient resources can be re-
trieved based on the pattern through the mailboxes that reify the environmental
context. Hence, an actor can be described using a pattern that embeds the type
information [KB02] or more semantic information about the service. We de-
fine a new communication primitive psend that takes two parameters: a service
description pattern of the required actor and the message that is to be sent.

psend = λpattern.λmsg.
seq(add(’required, pattern),

add(’pending, msg))

We add the description pattern of the required actor to the required mailbox.
This way the actor will be notified when the actor configuration joins with
another actor configuration providing this pattern. The message that is to be
communicated is placed in a custom mailbox pending. Hence, the pending
mailbox can be regarded is a special outbox for messages that have a pattern
as destination instead of an actor address.

The handleJoin definition listens for join messages that indicate that the
joined mailbox has been changed. In such an event it runs through the reso-
lutions in the joined mailbox. Each time a pattern that corresponds with the
target of the messages in pending mailbox is found, the message is sent to the
provider of the pattern and removed from the pending mailbox.

handleJoin = λmsg.
if(join?(msg),

for-each(λresolution.
for-each(λpmsg.

if(eq?(target(pmsg), pattern(resolution)),
seq(send(provider(resolution), pmsg),

delete(’pending, pmsg))),

4.6 Examples 89

messages(’pending)),
messages(’joined)))

This first example has shown that the ambient actor model contains the
necessary primitives that can be used to build more complex distributed naming
schemes. The distributed naming scheme is realized through an abstraction
that unifies message sending with the discovery of services such that actors can
send messages based on a pattern specification rather than their explicit mail
address. This abstraction is implemented based on the mailboxes that reify the
environmental context and confirms the need for this AmOP criterion.

4.6.2 Meeting Scheduler

Suppose we have a calendar application (running on a mobile device such as
a PDA or mobile phone) that helps us to schedule and remind us of appoint-
ments with a group of acquaintances. Each mobile device executes the agenda
application and a request for a meeting can be initiated at any point in time,
irrespective of whether the agenda applications of the acquaintances are avail-
able for communication. This kind of behavior is necessary to support the
autonomous mobility of the users and the fact that some mobile devices may
not be available due to volatile connections. For that reason, the application
has to deal with volatile connections and the application may not rely on a
central server architecture, which are two hardware phenomena we discussed in
section 2.3. We assume that the mobile devices at some point in time will be in
the communication range of one another.

The agenda application schedules a meeting in two steps.

1. It tries to make a reservation in the agenda of the participants of the
meeting.

2. It confirms the reservation in the agenda of each participant if all individ-
ual reservations were successfully reserved.

If the reservation fails at some point, then all individual reservations that were
made on other agendas are removed. Each agenda application comprises two
actors that are described below.

Agenda Actor

Each agenda is initialized with the e-mail address of the agenda’s owner. The
e-mail address is combined with the type information of the application to form
a pattern, which is returned by the mkPattern function, and uniquely identifies
the agendas. This pattern is added to the provided mailbox such that the
presence of each individual agenda of the participants can be detected in the
ambient.

BInitAgenda = λemail.λm.
seq(add(’provided, mkPattern(email)),

become(BFreeAgenda())))

For the sake of the argument, we have chosen to represent the agenda as a
single slot that is available for meetings. The slot has three states: FreeSlot,

90 The Ambient Actor Model

free Slot reserved
Slot

confirmed
Slot

reserve confirm

free

Figure 4.2: State Chart of Agenda Behavior

ReservedSlot and ConfirmedSlot. A slot understands three messages, free,
reserve and confirm and corresponding to the message it receives the slot
moves into another state:

• free: when this message is received and the slot is in a reserved state
then it becomes available for reservation. This message is used to undo a
reservation.

• reserve: when the state of the slot is free and this message is received
then the slot moves to the reserved state.

• confirm: when the state of the slot is reserved and a confirm message is
received then the slot moves to the confirmed state.

The state chart for the agenda’s behavior is shown in figure 4.2. Note that we
did not consider erroneous state transitions which should notify the sender of
the message. The code below shows the implementation of the slot behaviors.

BFreeSlot = rec(λb.λm.
if(free?(m),

become(b))
if(reserve?(m),

seq(send(sender(m), mkReserveAnswer(session(m), #true)),
become(BReservedSlot(session(m))))))

BReservedSlot = rec(λb.λid.λm.
if(and(free?(m), eq?(id, session(m))),

become(BFreeSlot()))
if(reserve?(m),

seq(send(sender(m), mkReserveAnswer(session(m), #false)),
become(b(id))))

if(and(confirm?(m), eq?(id, session(m))),
become(BConfirmedSlot(id))))

BConfirmedSlot = rec(λb.λid.λm.
if(reserve?(m),

seq(send(sender(m), mkReserveAnswer(session(m), #false)),
become(b(id)))))

4.6 Examples 91

Each reserved and confirmed state has a session id that is used to determine
to whom the slot has been assigned. The slot only evolves into the corresponding
state if the message contains the right session id.

Scheduler Actor

Each agenda application comes with a scheduler agent. This agent is responsible
for contacting the agenda actors to schedule the meeting. In the actor definitions
of the scheduler implementation below we use four helper functions:

• a filter function that uses a predicate to filter elements in a list4

filter = rec(λb.λpredicate.λlist.
if(empty?(list),

emptyList,
if(predicate(car(list)),

cons(car(list), b(predicate, cdr(list))),
b(predicate, cdr(list)))))

• a map function that returns a transformed list and takes two parameters:
a function that transforms elements and a list that is to be transformed
is defined as in standard Scheme implementations [AS96].

• msend that allows sending a message to a list of actor addresses or actors
described with pattern descriptions (such as in the previous example)

msend = λtargets.λm.
for-each(λtarget.

if(actorAddress?(target),
send(target, m),
psend(target, m)),

targets)

• madd that allows adding a list of messages to a mailbox

madd = λmbx.λitems.for-each(λitem.add(mbx,item), items)

• mdelete that allows to delete a list of messages from a mailbox

mdelete = λmbx.λitems.for-each(λitem.delete(mbx,item), items)

The scheduling agent behavior is initialized as BInitScheduleAgent. The sched-
uler agent has an id that is used to identify its session.

BInitScheduleAgent = rec(λb.λid.λm.
if(schedule?(m),

seq(msend(participants(m), mkReserve(id)),
become(BReserveScheduleAgent

(id, participants(m), sender(m)))))

4In the code below we use LISP terminology for our function related to lists. A pair is
created with the function cons. The function car returns the first element of the pair, while
the cdr function returns the second element. A list of elements is represented as a nesting of
pairs. e.g. (1, 2, 3) is represented as (1, (2, (3, ’())))

92 The Ambient Actor Model

The schedule agent can be requested to schedule a meeting with a group of
participants by sending it the message schedule. This message contains the
unique patterns (created with mkPattern) that identify the agenda of each
participant. These patterns are retrieved from the message with the function
participants. When such a request is received the agent sends out reserve
messages to the agenda actors of the participants and the scheduler evolves into
the BReserveScheduleAgent state.

BReserveScheduleAgent = rec(λb.λid.λparticipants.λcustomer.λm.
if(and(reserveAnswer?(m), eq?(id, session(m))),

if(success?(m),
if(eq?(map(sender,

filter(reserveAnswer?, messages(’rcvbox)))),
participants),

seq(msend(participants,mkConfirm(id)),
become(BConfirmScheduleAgent

(id, participants, customer)))),
seq(msend(map(destination,

filter(reserve?, messages(’sentbox)))),
mkFree(id)),

mdelete(’outbox,
filter(reserve?, messages(’outbox))),

send(customer, mkFailed()),
become(BInitScheduleAgent(id+1))))),

seq(handleJoin(m),
become(b(id, participants, customer)))))

When handling a reserveAnswer message we make use of the mailboxes
introduced in our model:

• If the reservation was successful the rcvbox is checked to determine if
the scheduling agent has received an answer from all the participants
their agendas. Thanks to the reification of the communication traces
by the mailboxes there is no need to manually maintain the progress of
the meeting scheduler. If all agendas are successfully reserved, then the
ScheduleAgent actor sends confirm messages to all agendas.

• If an individual reservation request fails then the scheduler agent has to
free up the slots of the reservations that were successful. The sentbox can
be used to track to which agenda actors the scheduler agent has already
sent reservation request. These actors are sent a free message so that
they can undo their reservation. Furthermore, the scheduler agent deletes
the reservation messages from the outbox and thereby undoes the com-
munication before it occurred. Next, the scheduler agent also notifies the
customer actor that sent the schedule message that the meeting could
not be scheduled by sending it a failed message.

BConfirmScheduleAgent = rec(λb.λid.λparticipants.λcustomer.λm.
if(and(disjoin?(m),

eq?(map(sender, filter(confirm?, messages(’sentbox)))),
participants))

4.6 Examples 93

seq(send(customer, mkSucceeded()),
become(BInitScheduleAgent(id+1))),

seq(handleJoin(m),
become(b(id, participants, customer)))))

Each time the ScheduleAgent actor disjoins from an agenda actor it checks
to see if all confirm messages were sent out, again using the sentbox. If all
confirm messages were sent, then the customer actor that sent the schedule
is notified with a succeeded message.

The second example has shown that the mailboxes, which reified the commu-
nication traces, introduced in the ambient actor model contain primitives that
allow the scheduler agent to deal with the autonomous and concurrent nature
of the devices. Indeed, the scheduler agent consults and manipulates its outbox
and sentbox to keep pace with the communication status of the different mes-
sages. Note that the implementation above relies on the eventual delivery of
messages. More advanced delivery policies can be devised for this application
based on the manipulation of mailboxes. For example, a broken connection
between applications could be intercepted with a disjoin message and unsent
reservation requests could be reversed by removing them from the outbox.

4.6.3 Discussion

These two examples demonstrate that, through the support of the AmOP cri-
teria, the ambient actor model can deal with the hardware phenomena, which
were discussed in section 2.3. However, some of the implementation details
indicate that the object model lacks expressiveness. Unfortunately, this lack
of expressiveness is inherited from the “object model” of the standard actor
model, which we discussed in section 4.3.1. This lack of expressiveness leads to
complex code. For example, an actor that uses of the psend abstraction must
also manually incorporate the handleJoin in its behavior such that it under-
stands the join messages and can handle them accordingly. In the code, the
reserveScheduleAgent and the ConfirmScheduleAgent behaviors both had to
embed this handler. Hence, if abstractions and behaviors become more advanced
then the complexity for embedding them also grows. This complicates the in-
troduction of high-level language abstractions that can deal with the hardware
phenomena, one of the research goals we set in section 1.1.3.

The introduction of such language abstractions is necessary because the ma-
nipulation of mailboxes is low-level. In many respects first-class mailboxes can
be regarded as a representation of first-class continuations for the actor model.
In sequential languages first-class continuations can be used to implement many
high-level abstractions, such as exception handling systems and coroutines.
However, unlike most of these high-level abstractions, first-class continuations
themselves are cumbersome to use and sometimes difficult to understand. The
same observation also holds true for the use of first-class mailboxes. In other
words, instead of programming an AmOP application with mailboxes we want
to program with high-level abstractions.

Putting the ambient actor model in perspective, it could be regarded as
a specification of a low level language for ambient-oriented programming lan-
guages.

94 The Ambient Actor Model

4.7 Conclusion

In this chapter we extended the operational semantics of the actor model in
order to deal with three problems associated with mobile (ad-hoc) networks:

1. How to deal with ambient resources?
To handle this problem we introduced reduction rules join and disjoin
that specify what happens when devices come in communication range of
one another.

2. How to deal with volatile connections?
This problem is handled with the introduction of the inbox, rcvbox,
outbox and sentbox mailboxes that allow one to track and intervene in
the communication between different devices.

3. How to deal with the naturally concurrent and autonomous nature of the
interactions?
This is handled through the manipulation of mailboxes that reify the com-
munication traces and through the manipulation of custom mailboxes.

These three problems are handled with the introduction of a single concept in
the actor language, namely mailboxes. These mailboxes realize the different
AmOP criteria we have distilled in chapter 3 and allowed us to express small
examples of code in the formalism that deal with the hardware phenomena we
discussed in section 2.3. However, these examples have also shown that the
underlying object model lacks expressiveness such that we have come to regard
the instruction set found in the ambient actor model as a low level language for
ambient-oriented programming languages.

Chapter 5

A Kernel Language for
Ambient-Oriented
Programming

In the previous chapter we have extended the formal actor model such that it
fulfills the ambient-oriented programming characteristics, which we proposed in
chapter 3. Unfortunately, the proposed extension of the actor model inherits the
low-level nature of the actor model that hampers the introduction of high-level
language features that deal with the issues in mobile distributed systems, which
is the first research goal we have set in section 1.1.3. Therefore, to overcome
this limitation this chapter presents a new language, which is based on the
ambient actor model, but provides a richer object model and explicit syntax
to better support the implementation of AmOP programming abstractions and
applications.

5.1 Introduction

Finding high-level abstractions that facilitate the development of software for
mobile networks is difficult because there is little engineering experience about
the development of these types of applications. Therefore, the next step is not
to design a full-fledged fixed high-level ambient-oriented programming language
but instead the goal is to create an extensible ambient-oriented kernel language.
A kernel will facilitate experimentation with language features for developing
software for mobile networks.

In the previous chapter we have extended the standard actor model such that
it can deal with the hardware phenomena, which we discussed in section 2.3. The
issues that arise from these phenomena are addressed through the introduction
of first-class mailboxes in the standard actor model, which made the ambient
actor model support the AmOP criteria (discussed in chapter 3). However, we
concluded that the simple ambient actor language defined by the operational
semantics was too low-level to introduce high-level language features, which is a
requirement to support our experimental approach (discussed in section 1.4.1).

In this chapter we will make a first step in the direction of a language that

96 A Kernel Language for Ambient-Oriented Programming

supports the introduction of high-level language features by defining an exten-
sible kernel language, called AmbientTalk [DVM+06]. The goal of the Ambi-
entTalk kernel is to incarnate the concurrency and distribution model specified
by the ambient actor model as an expressive object-oriented language. In the
next section we detail the design decisions we have made for this language.
These decisions are regarding the integration of concurrency and distribution
into the language. One of the decisions we make is to chose for a double-layered
object model, which makes a distinction between passive and active objects.
The former object layer, which supports the definition of sequential objects, is
detailed in section 5.3. The latter object layer captures both concurrency and
distribution aspects and is discussed in section 5.4.

5.2 Design Rationale

In the design of AmbientTalk’s object model we have made a number of deci-
sions about the integration of concurrency and distribution aspects. The most
important decisions are that we have chosen to reconcile mutable state with con-
currency. Hence, we have replaced the actor model’s functionally inspired object
system for an object system with mutable state. Another important decision
is that we have chosen for a double-layered object system that makes a dis-
tinction between passive and active objects. Active objects are AmbientTalk’s
incarnation of actor objects described by the ambient actor model. Finally, we
have further chosen active objects as the unit of distribution. These choices are
elucidated below.

5.2.1 Reconciling Mutable State with Concurrency

The model of concurrency of AmbientTalk resembles that of ABCL/1 [YBS86] in
that it tries to reconcile the imperative style of programming with concurrency.
An imperative programming style combined with concurrency can cause race
conditions on the data that is shared among multiple processes. Such a style of
concurrent programming is often associated with a threads. In such a thread-
based model of concurrency it is necessary to preserve the consistency of shared
data through the use of locks. Locks allow one to define delimited regions that
can be accessed by only one thread at a time. Thread based models have the
disadvantage that shared data is mostly implicitly defined such that it is hard
to determine where locks have to be placed. If such a place is missed then race
conditions can occur. However, race conditions are hard to debug because of
the non-deterministic nature of concurrency. On the other hand there is the
functional way of dealing with concurrency. In a pure functional language data
consistency is a non-issue, because a purely functional program does not change
the state of a program. Such programs can be made parallel based on the data-
flow of the program. This extremum is impractical because most programs need
some form of mutable state.

The actor model [AMST97] reconciles mutable state with a concurrent func-
tional style of programming. As we have seen in the previous chapter, the actor
model does not feature an assignment operator. Instead it relies on the become
operation, which allows an object to change its behavior and state in one single
operation. The become operation not only changes the behavior and state of

5.2 Design Rationale 97

an actor, but also introduces parallelism. Indeed, the new behavior of the actor
starts processing the next message concurrently with the expressions succeed-
ing the become operation in the context of the old state of an actor. This is an
important distinctive characteristic, because the become operation introduces
intra-object concurrency without the negative consequences of race conditions
on the internal state of an actor. The reason that there are no race condition
issues on the internal state of an actor is that there is exactly one become oper-
ation executed when a message is processed. Hence, only one process at a time
can change the behavior and state of an actor at a time thereby precluding race
conditions on the state of an actor. Unfortunately, the consistency is preserved
at the cost of an non-intuitive programming style. The reason for this is that
only one state-change is allowed for each message that is processed, which forces
one to reorder statements such that all the state changes can be embedded in
one operation.

ABCL/1, which used the actor model as a starting base for its design, rein-
troduced assignments in its object model for concurrency. An active object in
ABLC/1 has a single thread of execution and a queue containing messages. The
thread continuously processes messages, one at a time, until there are no more
messages in the queue or until no appropriate message can be found. Although
this model tries to reconcile mutable state with concurrent objects it does not
succeed in precluding race conditions on the internal data. The reason for this
is that the processing of ordinary messages can be preempted by express mode
messages. Such potential race conditions have to be prevented by placing a
group of statements that should not be preempted in an atomic block.

AmbientTalk also reintroduces the assignments in its object model. However,
as opposed to ABCL/1 when a message is processed it always runs to its end
before any other message is processed. Languages and middleware based on
asynchronous sequential processes (ASP) [CHS04, CH05], which is based on the
wait-by-necessity scheme [Car89], also process at most one single message at a
time. This scheme is based on the transparent use of futures in a distributed
setting. If an active object needs access to a future and the future has not been
resolved then the active object waits until the future is resolved or an exception
is thrown. As a consequence, an active object can be interrupted such that it
cannot process another message meanwhile. Hence, ASP-based models conflict
with the non-blocking communication criterion of the AmOP paradigm, which
was discussed in section 3.3.

Languages such as Salsa [VA01] and E [MTS05, Mil04] also reintroduced
assignments in their object model. However, these languages differ from ASP
based languages in that active objects cannot be interrupted and always finish
executing to their end without being interleaved or interrupted by other active
objects. AmbientTalk shares these properties with these two languages.

5.2.2 Double-Layered Object Model

In AmbientTalk we have chosen for a double-layered object model. This double-
layered object model distinguishes between passive objects and active objects.
Active objects encapsulate a graph of passive objects. The behavior of the active
object is defined by the passive object that is pointed to by the active object.

To avoid having every single object to be equipped with heavyweight con-
currency machinery and having every single message to be thought of as a

98 A Kernel Language for Ambient-Oriented Programming

concurrent one, an object model that distinguishes between active and pas-
sive (i.e. ordinary) objects is adopted. This allows programmers to deal with
concurrency only when strictly necessary (i.e. when considering semantically
concurrent and/or distributed tasks). Since passive objects are not equipped
with an execution thread, the “current thread” runs from the sender into the
receiver, thereby implementing synchronous message passing. However, it is
important to ensure that a passive object is never shared by two different ac-
tive ones because this easily leads to race conditions. For this reason we have
declared the containment principle:

A passive object is contained within exactly one active object.

This principle avoids passive objects from being shared among active objects,
thereby removing the source for race conditions on the internal state of objects.
Implementing the containment principle implies changing the semantics of some
evaluation rules. In principle, each time a passive object is passed from the
context of one active object to another e.g. as arguments of a message, the
passive object needs to be deeply copied up until references to active objects.
The active objects themselves need not be copied because their semantics can
deal with being shared among multiple other objects. We refer to this realization
of the containment principle as the call-by-deep-copy argument passing.

5.2.3 Active Objects as the Unit of Distribution

We have considered active objects as the unit of concurrency in AmbientTalk.
As noted by Briot et al. [BGL98] objects are also a suitable candidate as a
unit for distribution. An object typically encapsulates both data and methods
together. The consequence of this is that resources allocated and accessed by a
method are typically local to the computation, which is a good property in the
context of distribution, because it increases the availability of these resources.
Another advantage of objects in the context of distribution is that the message
passing paradigm to invoke methods on an object aligns well with distributed
protocols. What’s more, the object reference to which a message is sent abstracts
the location of the object. In AmbientTalk, we use active objects both as the
unit of concurrency and distribution because the non-blocking communication
characteristic introduces concurrency as discussed in section 2.4.4. Hence, in
the case of AmbientTalk distribution automatically implies concurrency. Since
active objects are designed to deal with concurrency, they are a good candi-
date as the unit of distribution. What is more, the call-by-deep-copy parameter
passing semantics which enforces the containment principle above can easily be
transposed to the context of distribution, because marshaling1 and unmarshal-
ing objects either locally or remotely corresponds to a deep copy; when active
objects themselves are marshaled as remote references, similar to the marshal-
ing semantics of network objects defined by Birrell et al. [BNOW93]. Hence,
the equivalent parameter passing semantics of a call-by-deep-copy emerges in
the case of remote messaging between active objects.

AmbientTalk applications are thus conceived as suites of active objects de-
ployed on autonomous devices. Several active objects can run on a device and

1In Java this is called serialization of objects, but we use the term marshaling to avoid
confusion with serialization in the context of concurrency

5.3 The Passive Object Layer 99

every active object contains a graph of passive objects. Objects in this graph
can refer to active objects that may reside on any device. In other words, Ambi-
entTalk’s remote object references are always references to active objects. The
rationale of this design is that synchronous messages (as sent to passive ob-
jects) cannot be reconciled with the non-blocking communication characteristic
presented in section 3.3.

AmbientTalk does not know the concept of proxies on the programming
language level. An active object a1 can ‘simply’ refer to another active object a2

that resides on a different machine. If both machines move out of one another’s
communication range and the connection is (temporarily) lost, a1 conceptually
remains referring to a2 and can keep on sending messages as if nothing went
wrong. Such messages are accumulated in a1 and will be transparently delivered
after the connection has been re-established. Hence, AmbientTalk’s default
delivery policy strives for eventual delivery of messages. The mechanism that
takes care of this transparency is explained in section 5.4.4. First we discuss
both layers of AmbientTalk’s object model in technical detail.

5.3 The Passive Object Layer

Remember from section 3.2 that the first requirement for the object model
of ambient-oriented programming languages is that it is classless. In a classless
model objects are self-sufficient and do not have an implicit sharing relationship
with their class. In section 3.2 it was explained that this simplifies the issues
that arise in the context of mobile distributed systems.

The object model of AmbientTalk is based on the object model used in Pic%
[DDD03]. In this section we discuss this object model.

5.3.1 History and Design Rationale

Pic% is an extension of the language Pico, both languages were designed and
conceived by Theo D’Hondt and in a later stage also codesigned by Wolfgang
De Meuter. Both these languages are used in an educational and research
context. Many of the design principles of Pico were borrowed from the language
Scheme [AS96], that is to say that simplicity of the design of the language was a
foremost concern. Next to the design principles, Pico also borrowed a number of
concepts found in Scheme, such as a dynamic type system, first-class abstract
grammar, continuations, closures and an interactive interpreter. Concerning
the implementation, a Pico system also features a tail-recursive interpreter and
a garbage collector to automatically reclaim memory that is no longer in use.
However, Pico also differs from Scheme in a number of profound ways:

• Syntax: a common criticism against Scheme is that its prefix syntax is hard
to read. For cultural reasons most people seem to read and understand
infix expressions better, probably because mathematical expressions are
also written using infix notation. Although Pico features infix operators,
the goal was still to make its syntax as minimal and regular as possible.
We have experienced in our courses and by writing and reading many
programs in Pico that giving it a more conventional syntax it enhances
the readability.

100 A Kernel Language for Ambient-Oriented Programming

(define (QuickSort V Low High)
(if (< Low High)

(letrec ((Left Low)
(Right High)
(Pivot
(vector-ref V

(quotient (+ Left Right) 2)))
(Save 0))

(do ((stop #f (> Left Right))) (stop)
(do () ((>= (vector-ref V Left) Pivot))

(set! Left (+ Left 1)))
(do () ((<= (vector-ref V Right) Pivot))

(set! Right (- Right 1)))
(if (<= Left Right)

(begin
(set! Save (vector-ref V Left))
(vector-set! V Left

(vector-ref V Right))
(vector-set! V Right Save)
(set! Left (+ Left 1))
(set! Right (- Right 1)))))

(QuickSort V Low Right)
(QuickSort V Left High))))

QuickSort(V, Low, High):
{ if(Low < High, {

Left: Low;
Right: High;
Pivot: V[(Left + Right) // 2];
Save: 0;
until(Left > Right,
{ while(V[Left] < Pivot,

Left:= Left+1);
while(V[Right] > Pivot,

Right:= Right-1);
if(Left <= Right,
{ Save:= V[Left];

V[Left]:= V[Right];
V[Right]:= Save;
Left:= Left+1;
Right:= Right-1 }) });

QuickSort(V, Low, Right);
QuickSort(V, Left, High) }) }

Table 5.1: QuickSort in Scheme (left) and in Pico (right)

• Tables: in Scheme a distinction is made between lists and vectors, while
in Pico indexable tables are used to represent both datastructures. Also,
in Scheme the abstract grammar is made first-class by using lists, whereas
Pico uses tables. I.e. a Scheme program is reified as a nested list, whereas
a Pico program is reified as a nested table structure.

• No Special Forms: in the implementation of Scheme some special-forms
have been introduced, because some language constructs such as control
structures need argument evaluation rules that differ from the standard
eager evaluation rules. In Pico there is no need for special forms. In-
stead Pico has richer parameter passing semantics, this is explained in
section 5.3.2.

Table 5.1 shows an implementation of the quicksort algorithm in both Scheme
and Pico to illustrate the differences in syntax. In Pico variable declarations
are made using the “:” token as opposed to the define special form of Scheme.
Similar to Scheme both values and functions are defined using the same no-
tation. Another similarity with Scheme is that functions are first-class values
in Pico. In Pico assignments are denoted using “:=” as opposed to a number
of special forms used in Scheme, such as set! and vector-set!. Referencing
a value in a table is based on square bracket notation, while in Scheme func-
tions such as vector-ref and vector-set! are used. Blocks of expressions are
grouped together in Pico in a begin function, similar to the begin function in
Scheme. However, Pico also provides syntactic sugar based on commonly used
curly braces to group expressions. The expressions are separated using semi-
colons. The final expression in such a group is the return value of the evaluation
of the block. The syntax rules of Pico are summarized in table 5.2.

5.3 The Passive Object Layer 101

kind of name invocations table invocations function invocations
invocation: name name[e1] name(e1, ... ,en)
reference name name[e] name(e1, ... ,en)
definition name: e name[e1]: e2 name(e1, ... ,en): e
assignment name:= e name[e1]:= e2 name(e1, ... ,en):= e

Table 5.2: Summary of the Pico syntax

5.3.2 Parameter Passing Semantics

Pico has rich parameter binding semantics that is inherited in Pic%. More
particularly Pico supports variable sized argument lists and call-by-function
arguments. Both types of parameter binding semantics are discussed below.

Variable Sized Argument Lists

As already mentioned above, Pico can be considered as Scheme with a more
intuitive canonical syntax. In Scheme the abstract grammar is represented
as a nested list of elements and the list of formal parameters is also repre-
sented as a list. In fact, in Scheme one can rewrite the anonymous function
(lambda (x y) (+ x y)) as (lambda r (+ (car r) (cadr r))). In the lat-
ter expression, the r will be bound to the list of arguments used to apply this
function. As such, Scheme supports variable sized argument lists in the def-
inition of a function. Also, when calling the function a variable sized actual
arguments list can be used. This is realized through the native function apply,
that takes the function as a first argument and a variable list of actual argu-
ments. For example, (apply (lambda r (+ (car r) (cadr r))) ’(1 2 3))
returns three.

Both variable arguments in the definition and application of functions are
also supported in Pico. However, instead of binding the actual arguments to a
list they are bound to a table, which is called call-by-table parameter passing.
Tables are indexable data structures similar to vectors in Scheme. Tables are
supported by common syntax based on square brackets, which is summarized
in table 5.2. Tables play a prominent role in Pico because all structured data
types are based on them. In fact, one could say that tables are to Pico what lists
are to Scheme, because the abstract grammar of Pico expressions is represented
as tables similar to how lists are used to represent the abstract grammar of
Scheme.

In Pico both function definition and application of variable sized arguments
have a uniform syntax.

f@arg: size(arg)

This function definition defines a function f with a variable arguments list
that will be accumulated in the table arg. size returns the size of a table.
Hence, this function will simply return the number of actual arguments that
were supplied upon function invocation and f(0,1,2) will return three. The
following shows how begin was implemented in Pico:

begin@args: args[size(args)]

102 A Kernel Language for Ambient-Oriented Programming

Pico’s actual argument evaluation rules will evaluate each expression one by
one in the order from left to right. Finally, the last expression is returned as
the result of this expression according to the semantics of grouped expressions
explained above. The curly brace notation to sequence expressions, used in
table 5.1 is syntactic sugar for this implementation. As illustrated by the two
examples above, curly braces need not be used if the function body only has
one expression.

Analogous to Scheme’s apply it is also possible to invoke a function with
a variable sized table using the notation f@arg. This expression invokes the
function f with a table of actual arguments bound to arg.

Call-by-Function Parameters

One of the key features that makes Pico an extensible language is its elabo-
rate parameter passing techniques [DDD04]. The variety of parameter passing
techniques make that Pico does not need special forms for its control struc-
tures. What is more, through the parameter passing techniques of Pico it is
possible to implement control structures in the language, such that they do no
have to be embedded in the evaluator2 as special forms. The reason why control
structures usually cannot be implemented in the language itself is because all ar-
guments passed to control structures are usually all eagerly evaluated. That is,
a function-call is usually evaluated as: 1) search for the appropriate function in
the scope; 2) if the function has been found, then evaluate the actual arguments
of the function-call one by one and bind them in an extended lexical scope to the
formal arguments of the function and 3) apply the body of the function to the
extended lexical environment. For example, when myif would be implemented
as a regular procedure, then using the evaluation-rules of most programming
language, the expression myif(true, 0, 1/0) would always throw a division
by zero exception. In Pico the evaluation rules of the actual arguments of a
function-call are determined by the type of formal parameter that is used when
the function was declared. This is best illustrated by the example shown below,
which implements the if -control structure by means of church booleans3:

{
true(then, else()):then;
false(then(), else):else;
myif(cond, then(), else()):cond(then(), else());

myif(true, 0, 1/0)
}

The function true takes two arguments: then and else(), the former is
evaluated eagerly, while the latter is evaluated lazily. then is bound in the
extended lexical environment to the the evaluation of the actual argument,
while else is bound as a (first-class) function that has no formal arguments to
its body that was provided as an actual argument, e.g. else():{ 1/0 } for the
myif function call. The lexical scope of the newly bound function is the scope
of the caller of the function. Hence, this form of parameter passing introduces
a restricted form of dynamic scope. The former type of argument binding is

2In reality, many of the standard control structures are implemented as native functions
in the Pico implementation for performance reasons.

3In fact, booleans are implemented based on these semantics in the native implementation
of Pico.

5.3 The Passive Object Layer 103

known as call-by-value, the latter type of argument binding has been called
call-by-function. The evaluation rules of the actual arguments of false are the
inverse.

Another example where the call-by-function parameter passing rules are used
is the function zero shown below which calculates the zero of an arbitrary
function passed as an argument within the range of a and b and up to a precision
epsilon:

zero(a, b, f(x), epsilon):{
c: (a+b)/2;
if(abs(f(c)) < epsilon,

c,
if(f(a)*f(c) < 0,

zero(a, c, f(x), epsilon),
zero(c, b, f(x), epsilon))) }

The formal parameters a, b and epsilon are call-by-value parameters.
The formal parameter f is a call-by-function parameter which takes one ar-
gument x. This argument x is not bound in the scope of the body of the
function zero. It is in fact the formal parameter of the function f. Calling
zero(-1,1,x*2-5,0.001) thus binds the formal parameter f to f(x):x*2-5
and it is this function f which is visible in the body of zero.

In languages such as Smalltalk [GR83] and Self [US87] control structures
have also been implemented in the language itself using block structures instead.
The difference between the call-by-function and blocks is that with blocks the
expression that is to be lazily evaluated has to be manually embedded in a
block structure by the caller. In both Smalltalk and Self square brackets are
used for this purpose. Both approaches have advantages and disadvantages: in
the call-by-function approach users of a function do not have to think of the
special syntax needed for the special evaluation semantics, while in the block
approach the semantics of the evaluation rules is more explicit – at the cost of
explicit syntax. Nevertheless, when the call-by-function is parameterized, then
the caller needs to be aware of the names of the formal parameters, whereas in
a block context one can define its own names for the formal parameters.

Another approach that allows the implementation of special forms are macros.
However, a macro language is often a different language than the base language
such that it becomes less intuitive to use special forms.

Combining Call-by-function and Call-by-table

It is also possible to combine call-by-table and call-by-function. The resulting
semantics of this type of parameter passing is that a function takes a variable
sized actual parameter list, the elements of which are all arguments evaluated
lazily and bound to a table of functions. This combination of parameter-passing
is called call-by-function-table. An example of such a function definition is shown
below:

f@g(x): for(i:1,i<=size(g),i:=i+1,g[i](2))

This function definition accepts a variable number of functions of one param-
eter x. It loops over the function-table and evaluates all functions with actual
argument 2. Finally, the result of the evaluation of the last argument will be
returned, since it is the last expression evaluated by the for-loop. Hence, calling
f(x, 2*x, 3*x) yields 6.

104 A Kernel Language for Ambient-Oriented Programming

5.3.3 Objects as First-class Dictionaries

In Pic% objects are modeled as first-class lexical environments [GJL87, QR96].
Their representation is called a dictionary . Lexical environments are similar
to those found in Scheme and Pico. Pic% provides richer lexical environments
than Pico and Scheme because it makes a distinction between variables and
constants. In the syntax constants are declared using “::”, while variables are
defined using “:”. Internally, a dictionary is represented as a pair of linked
lists, one containing bindings of variables and the other bindings of constants.
Table 5.3 shows the implementation of a generator4 function for counter ob-
jects. The makeCounter function declares two methods decr and incr and
returns a new object by calling the native function capture, which returns the
current dictionary. The formal parameter n of makeCounter is also in this dic-
tionary as a variable definition, because it is part of the lexical environment
when makeCounter is invoked.

The dictionary returned by the invocation of makeCounter(3) is shown on
the right of table 5.3. In this case the variable counterP points to that dic-
tionary, which contains two constants incr and decr and one variable n. This
dictionary is linked to the root dictionary that contains a list of constants, con-
taining the makeCounter function and the built-in native functions of Pic% such
as if, and one variable counterP. The dictionary to which the new object is
linked determines from which the object inherits and this gives rise to a model
of mixin-based inheritance, which is discussed in the next subsection. Never-
theless, we can already state that this root object is the topmost object from
which all other objects inherit.

In Pic% an attribute is selected using the dot-notation receiver.attr. The
attribute is looked up only in the constant part of a dictionary, starting from the
head of the chain. When the method is not found in the first dictionary, then the
constant part of the next dictionary is searched. This process is repeated recur-
sively until a corresponding attribute is found or the root dictionary is reached.
In the latter case a lookup exception is thrown. An attribute can also be se-
lected using a receiver-less expression attr, it is then executed in the context
of the current receiver. However, the lookup process is different because both
the constants and variables are searched. The constants are searched before the
variables and in the case no constant or variable matches the next dictionary
is searched, recursively until the root object has been reached. This difference
in attribute lookup between both a receiver-less and receiver-ful expression il-
lustrates how Pic% aligns definitions and declarations with the visibility rules.
The former conform to what is in some language known as protected attributes,
while the latter conforms to public attributes. How late-binding polymorphism
is realized in Pic% is discussed below in section 5.3.5. Pic% also has a native
method this() which returns the current receiver. However, note the differ-
ence in lookup semantics between this().attr and attr. Indeed, the former
expression will perform the lookup only in the public (constant) part of the
interface, whereas the latter will perform a lookup in the protected (constant
and variables) part of the interface. Hence, only the latter can be used to access
protected attributes.

4Such a generator is actually a mixin method, further discussed in section 5.3.4

5.3 The Passive Object Layer 105

{
makeCounter(n)::{

decr()::n:=n-1;
incr()::n:=n+1;
get()::n;
capture()

};
counterP: makeCounter(3)

}

incr

decr

n makeCounter

until

counterP

...

...

...

......

...

Reference Nil

[Legend]

if ...

Table 5.3: Example Counter object in Pic% (left) and the resulting environment
(right)

5.3.4 Mixin-Based Inheritance

In a prototype-based language (PBL) sharing is achieved through delegation
[Lie86], sometimes called object-based inheritance. Delegation allows objects to
flexibly share data and code based on the sender of the message whereas in a
class-based language (CBL) there is only one sharing strategy: code and data
is shared between objects of the same class. Much of the dynamic nature of
PBLs stems from the fact that delegation-based PBLs allow one to change the
inheritance pointer of an object at run-time, whereas inheritance links in CBLs
are usually immutable at runtime.

Usually, the subclass relationship influences the visibility rules of the object’s
interface. For example, the protected keyword found in most mainstream CBLs
such as C++, Java and C# give the privilege to subclasses to access certain
implementation details that have been annotated with this keyword, while these
implementation details are not visible for regular method invocations. Other
languages, such as Smalltalk, grant this privilege to subclasses by default. Such
special privileges allow subclasses to break the encapsulation of their parents as
was noted by Snyder [Sny86]. However, the consequences of this observation are
confined, because the subclass relationship is static and fixed at compile-time
and as a result the encapsulation can only be broken by a well-defined set of
classes. Unfortunately, if we translate the consequences of the encapsulation
problems in the perspective of PBLs with delegation-based inheritance then the
repercussions are worse because the delegation-relationship is dynamic and as
a result it becomes impossible to delimit the places where encapsulation has
been broken. The encapsulation problem is not only important from a software
engineering point of view, but it also has consequences from a security point of
view [DTM+05]. Indeed, when objects can break the encapsulation they can
get access to privileged information. Consider an object which is responsible
for paying the bill and therefore holds a reference to a credit card number.
Obviously, if one can break the encapsulation of that object the credit card

106 A Kernel Language for Ambient-Oriented Programming

makeContainer()::{
makeVector()::{

v: [];
siz: 0;
addFront(el)::{ ... };
addBack(el)::{ ... };
removeFront(el)::{ ... };
removeBack(el)::{ ... };
isEmpty()::{ ... };
isFull()::{ ... };
contains(el)::{ ... };
iterate(code(el))::{ ... };
map(transformer(el)::{ ... };
remove(index)::{ ... };
get(index)::{ ... };
capture()

};
makeList()::{

lst: [];
siz: 0;
addFront(el)::{ ... };
addBack(el)::{ ... };
removeFront(el)::{ ... };
removeBack(el)::{ ... };

isEmpty()::{ ... };
isFull()::{ ... };
contains(el)::{ ... };
iterate(code(el))::{ ... };
map(transformer(el)::{ ... };
capture()

};
makeQueue()::{

pop()::this().removeFront();
push(el)::this().addBack(el);
capture()

};
makeStack()::{

pop()::this().removeFront();
push(el)::this().addFront(el);
capture()

};
capture()

};

containerP: root.makeContainer();
vectorP: containerP.makeVector();
listP: containerP.makeList();
stackOnVectorP: vectorP.makeStack();
stackOnListP: listP.makeStack()

Table 5.4: Mixins used to Structure Collections Hierarchy

number can be used by any other object.
To address this problem Steyaert and De Meuter proposed [SM95] an object-

based variation of mixins [BC90]. In the approach, child-objects are created by
calling a mixin method on the parent object. Upon invocation of a mixin method
on an object, an extension of that object, with the behavior defined in the mixin
method, is returned. Mixin methods delimit the encapsulation problem, because
it is the object that declares the mixin method who determines its children and
therefore prescribes what objects have access to its implementation details.

Table 5.4 shows an example where mixins are applied to a small collection
hierarchy. In the example a makeContainer method declared in the root object
which returns an object containing four mixin methods makeVector, makeList,
makeQueue and makeStack. Both makeVector and makeList implement a uni-
form interface to access the contents of the container with the exception that a
vector implements two extra methods remove and get to randomly access its
contents. The two mixin methods makeQueue and makeStack have the same
interface, but with a different implementation. Using nested mixin methods
we can now create multiple linearized combinations of object hierarchies. The
order of the object inheritance hierarchy depends on the order in which the
mixin methods have been invoked. For example, figure 5.1 shows the result-
ing object-tree from the evaluation of containerP.makeList().makeStack()
and containerP.makeStack().makeList(). Both expressions form hierarchies
composed of the same objects but the stack and list objects are linked in a
different order. Also note that it is possible to reuse the queue and stack imple-
mentations on both list and vector objects, similar to the reuse of mixin classes
as proposed by Bracha and Cook [BC90].

A drawback of the mixin-based approach for inheritance is that the definition
of child objects is nested in the definition of parent objects. As a consequence
child objects cannot be defined outside the parent object, which we refer to as

5.3 The Passive Object Layer 107

<<root>>

...
until
if
makeContainer

<<a list>>
lst
siz
addFront
addBack
removeFront
removeBack
...

<<a stack>>

push
pop

<<a list>>
lst
siz
addFront
addBack
removeFront
removeBack
...

<<a stack>>

push
pop

<<a container>>

makeVector
makeList
makeQueue
makeStack

Figure 5.1: Resulting object-tree from the evalua-
tion of containerP.makeList().makeStack() (left) and
containerP.makeStack().makeList() (right)

protectedCounter: counterP.extend({
limit: 3;
incr()::{

if(n=limit,error("overflow"), .incr()) };
decr()::{

if(n= -limit,error("underflow"), .decr()) };
capture()

});

Table 5.5: Example: extension from the outside - a protected counter

extension from the outside. For this reason the root object contains a native
method extend which takes an object definition as its argument and extends the
receiver with the object definition. An example of an extension from the outside
on the counter prototype from table 5.3 is shown in table 5.5. The extension
overrides two methods incr and decr in which the upper- and lowerbound is
checked before delegating to the parent object via a super-send.

In Pic% the syntax of a supercall is a dot followed by the method invocation,
for example .incr() is the super-call for the incr method. Pic% also features a
native super function which returns the parent of the object in which the current
evaluation takes place. However, super().incr() has a different semantics
than .incr(). Using the former syntax the this will be rebound to the parent
object because it’s a normal message send, while using the latter syntax this
will not be rebound and refer to the object that received the method invocation.
A more detailed discussion on the late-binding polymorphism of Pic% follows
in the next subsection.

A limitation of extensions from the outside is that they are not reusable. In-

108 A Kernel Language for Ambient-Oriented Programming

a)
stealCreditCardNumber(aPaymentObject)::{

aPaymentObject.extend({
getCreditCardNumber()::{

creditCardNumber };
capture()

}).getCreditCardNumber()
}

b)
makePaymentObject(creditCardNumber)::{

pay(aTransaction)::{ ... };
extend(anExtension)::

error("cannot extend this object");
capture()

}

Table 5.6: Example: (a) stealing the credit card number from a payment object
and (b) prevent this by overriding the extend method in the payment object

deed, a mixin method can be applied to all objects that understand the method,
while an extension from the outside is applied to one object and cannot imme-
diately be applied to other objects. However, reusability can be obtained by
creating a method which takes one argument, the object to be extended and
invoke the extend method on the receiver with the extension code as its argu-
ment. Another, perhaps more severe, drawback is that this mechanism opens
up the internals of the object to any other object. Indeed, any object can make
an extension from an arbitrary object so that the extension opens up the imple-
mentation details of the object as noted by Steyaert and De Meuter [SM95]. An
example of this is shown by table 5.6a. However, because extend is a method it
can be overridden to throw an error, thereby preventing other objects to extend
from the outside. This is illustrated by the example shown in table 5.6b.

5.3.5 On Late-Binding Polymorphism and First-Class Meth-
ods

As briefly mentioned in the introduction, Pico features first-class closures, simi-
lar to Scheme. First-class closures are sometimes also called first-class functions,
but a closure is more than a pointer to the function definition. A closure is a pair
with a pointer to the function definition and a pointer to the lexical scope which
captures the undefined variables in the function definition. Without the lexical
scope, first-class functions would be dynamically scoped. Hence, in Pico and
Scheme closures are essential to introduce correct semantics for their first-class
functions. In section 4.3.1 we have explained that first-class closures formed an
important element to emulate an object system for the actor model. Likewise,
closures also play an important role in Scheme and Pico to emulate an object
system. However, in Pic% closures are not used to emulate objects through a
dispatch function, since dictionaries are used to represent objects. Nevertheless,
in Pic% (first-class) closures play an important role in the semantics of the ob-
ject model, but there are some subtile differences between closures in Pic% and
closures in other languages [DD03]. In Pico and Scheme, closures are created at
function definition-time, whereas they are created at method invocation time in
Pic%. As a result, the environment of Pic% objects contains functions instead
of closures. This is illustrated by figure 5.2, which shows an environment of a
counter object in Pic% (created with the code shown in table 5.3) and in Scheme
(created with the code shown in table 5.7). The former environment contains
a direct reference to the functions, whereas the latter environment contains a
reference to the closures. This is shown in the figure for the decr method in

5.3 The Passive Object Layer 109

(define (makeCounter n)
(define (decr)

(set! n (- n 1)))
(define (incr)

(set! n (+ n 1)))
(define (get) n)
(define (dispatch m)

(cond ((eq? m ’incr) incr)
((eq? m ’decr) decr)
((eq? m ’get) get)
(else (display "Error - unknown message."))))

dispatch)

Table 5.7: Object Generator function returning Counter Objects in Scheme

both languages.

In Pic% closures are created at invocation-time. Thus when a function is
selected from a dictionary through an invocation, that function is wrapped in a
closure and the lexical scope will refer to the dictionary from which the method
was originally selected. For example, the expression counterP.get will return
a closure with the lexical scope pointer directed at the counterP dictionary
and the function pointer directed at the get function. Note that the expres-
sion (counterP ’get) in Scheme would return an equivalent closure. However,
in the face of object-based inheritance the closure semantics in Scheme would
no longer provide the semantics of late-binding. Indeed, in Scheme the lexi-
cal pointer of the closure would always point to environment in which it was
embedded, while in Pic% the lexical pointer will point to the original receiver
of the invocation. For example, considering the protectedCounter extension
from table 5.5, the evaluation of protectedCounter.get will result in a closure
the lexical pointer of which refers to the dictionary protectedCounter while
its function pointer will refer to the get function found in the dictionary of
counterP. Hence, when the closure is applied to its arguments it will be ex-
ecuted in the context of the protectedCounter dictionary and therefore have
late-binding semantics.

The scheme of the closures that are created at invocation-time has three
advantages. First, it enables late-binding semantics for object-based inheritance
built by the mixin methods as explained above. Secondly, the methods are
reentrant across object-hierarchies, because the dictionary (containing methods)
does not contain references to a closure, but to functions. Hence, in the case of
inheritance the same function will be always wrapped in a closure referring to
the dynamic receiver of the message. As a result the function is reentrant and
does not have to be duplicated when it is reused in the context of inheritance.
Finally, the closures can be regarded as first-class methods, because closures
can be passed around and are executed in the context of the object from which
they were selected [DD03]. Below we show that the object model of Pic% also
supports reentrancy of methods in the context of object copies.

110 A Kernel Language for Ambient-Oriented Programming

incr

decr

n ...

...

FUN

TXT decr TBL []

TBL

APL

TXT -

REF TXT n

NBR 1

incr

decr

n ...

...

FUN

TXT decr TBL []

TBL

APL

TXT -

REF TXT n

NBR 1

CLO

<root dict>

<root dict>

(a)

(b)

get ...

get ...

dispatch ...

FUN: Function
TXT : Text
TBL : Table
REF : Reference
NBR : Integer

[Legend]

Figure 5.2: Differences in the Environments between (a) Pic% and (b) Scheme

5.3.6 Cloning Objects

A characteristic shared by all PBLs is that they support cloning objects. Indeed,
the prototype-based paradigm is based on creating a prototypical object for a
concept in the solution domain of an application. That prototype then serves
to create other similar objects by copying the prototype and changing that copy
to fit the needs of the application. There are two concerns when copying an
object. First, one needs to specify how much of the object graph should be
copied along. Second, after the clone is created it often needs to be adapted
and properly initialized.

In Pic% the first concern is addressed by means of a universal semantics for
cloning. When an object is cloned then the variable bindings are deep copied,
while the constants are shallow copied. Figure 5.3 shows the memory layout for
counterP and a clone of this object. This universal semantics together with the
closure semantics, explained above, renders public methods reentrant entities,
because they are declared as constants.

Two native cloning methods clone and copy, which are available in the
root object, have been provided based on this semantics. The native method
clone has been introduced in the language and allows one to express how much
of the delegation hierarchy is to be copied when an object is cloned. clone
takes a reference to an object as its argument and the cloning operation starts
from the object to be copied, walks through each ancestor of the object and
matches the argument against that ancestor, starting with the direct parent.
If they do not match then that ancestor is cloned along according to the prin-

5.3 The Passive Object Layer 111

ciples explained in the previous paragraph. The cloning operation stops when
the argument matches with an ancestor and the matching ancestor becomes the
parent of the current object that has been cloned. Hence, the mechanism allows
one to clone objects up until a specific ancestor. That ancestor is then shared
by the object that was cloned and the clone itself. For example, invoking the
method clone(root) on protectedCounter (whose code was shown in table 5.5
on page 107) creates a clone from protectedCounter that shares the root ob-
ject with its clone. protectedCounter.clone(counterP) would create another
clone of the protectedCounter that shares the counter prototype. Hence, in
the latter case both copies of the clone would share the variable n found in
counterP and operations on protectedCounter and its clone would be visible
for one another. Another native method copy takes an initialization expression
as its argument. It creates a clone of its receiver and the initialization expression
is then executed in the context of the clone, enabling the clone to be properly
initialized. For example, protectedCounter.copy(n:=2) creates a clone of the
protected counter object and initializes its state variable n to two. Cloning an
object is initiated by method invocation, similar to the extend method, such
that the encapsulation of objects can also be preserved by overriding the copy
method.

Both cloning methods could be unified in a single native method, which
takes two arguments, the ancestor and an initialization expression. However,
the current implementation of AmbientTalk does not contain such native.

incr
decr

n ...

...
...

Reference Nil

[Legend]

get ...

n ...

<<root dict>>

counterP

counterP.clone()

exp evaluation of <exp>

Figure 5.3: Memory Layout of Counter Object and its Clone

5.3.7 Summary

Pic% extends Pico with prototype-based object-oriented concepts. The syn-
tax extensions to Pico are summarized in table 5.8. We have shown that in
the Pic% object system, on which AmbientTalk has been built, supports three
mechanisms for creating new objects. First, there are mixin methods that can
be used to dynamically construct object hierarchies at run-time without forfeit-
ing the encapsulation of other objects. Hence, mixin methods reconcile object
encapsulation with the dynamic object hierarchies that are typically found in
PBLs that support delegation as a mechanism for sharing data and methods.

112 A Kernel Language for Ambient-Oriented Programming

kind of name invocations table invocations method invocations
invocation: name name[e1] name(e1, ... ,en)
definition name: e name[e1]: e2 name(e1, ... ,en): e
assignment name:= e name[e1]:= e2 name(e1, ... ,en):= e
receiver-less inv inv[e1, ... ,en] inv(e1, ... ,en)
declaration name:: e name[e1]:: e2 name(e1, ... ,en):: e
super sends .name .name[e1, ...] .name(e1, ...)
qualification e.inv e.inv[e1, ...] e.inv(e1, ...)

Table 5.8: Summary of the Pic% syntax

Secondly, we have extension from the outside that allows objects to be extended
at run-time with custom behavior. However, extension from the outside has the
drawback that it breaks the encapsulation of an object. It is therefore possi-
ble to override this method such that the encapsulation of the object can be
preserved. A third mechanism for creating new objects is to clone an existing
object. We have explained two such cloning mechanisms.

5.4 The Active Object Layer

The active object layer of AmbientTalk is based on the ambient actor model we
introduced in the previous chapter. We have seen that the ambient actor model
was missing a true object system, it had to be emulated through the use of
closures. Another conclusion of the ambient actor model was that, although the
extensions fulfill the ambient-oriented paradigm, it could be regarded as a “low
level language” for ambient-oriented programming languages. In this section we
will integrate the passive object layer of Pic%, explained in the previous section,
with the ambient actor model to resolve the former observation. The latter one
is addressed in the following chapters.

5.4.1 Active Objects as Actors

In AmbientTalk, active objects are modeled following the principles of the actor
model. Throughout the remainder of this text we will use the terms active
object and actors on the one hand and the terms passive object and object on
the other hand, interchangeably in the context of AmbientTalk. An active object
conceptually consists of its behavior, which is implemented by a passive object,
a set of mailboxes and a thread of execution. Figure 5.4 shows a conceptual
drawing of two active objects containing a graph of passive objects obeying the
containment principle explained above. An actor is created using the actor
method, which is part of the interface of the root object. This method takes
a passive object as its argument and returns the mail address of a new active
object with a deep copy of that passive object as its behavior. A deep copy of
that object is taken to comply to the containment principle introduced above,
otherwise a passive object is shared between the created active object and its
creator. Since both active objects conceptually have a thread of execution,
they could otherwise potentially update shared state, with race conditions as a
consequence.

5.4 The Active Object Layer 113

Table 5.9 shows two implementations of the behavior of a counter active
object. The implementation on the left creates the passive behavior of the
counter object by creating an extension from the outside of the root object. The
object has one variable n, for representing the value of the counter. Besides the
state, a number of methods have been implemented by the object: new returns
a modified clone of the counter object; increment and decrement update the
state of the object; get method sends the value of the counter to customer
and finally the init method initializes the passive object in its context as an
actor. Note that the new method initializes the passive object, whereas the init
initializes the active object. As a convention, the name of passive objects that
are used for the behavior of active objects usually ends in Behavior. After the
definition of the actor’s behavior the actor is created using the actor method.
The actor is then sent an increment and decrement message. Finally, the state
of the counter is retrieved by the sending the callback message get. Its argument
thisActor() denotes the current actor’s mail address. The implementation in
the right hand side column of table 5.9 uses the become method to change the
behavior of the counter. This method takes a new behavior as its argument
and does not return a result. Unlike the actor method, this method does not
take a deep copy of the object that was passed as its argument. This is not
necessary, because the object does not change from the context of one active
object to another. Obeying the semantics of the become operation in the ambient
actor model, introduced in the previous chapter, this method does not introduce
parallel activity. However, unlike the ambient actor model the become method
does not interrupt the control flow. In other words, the expressions following
the become method will be executed. It might seem that the become method
is redundant, because we can update the state of an active object using the
assignment operator. However, the become has several uses:

• First, it complements the assignment in that it allows one to write in a
functional style. Such a use of the become can be used to easily implement
the state pattern [GHJV94].

• Another use for the become method, that is not expressible by assignments,
is changing the interface of an active object. Changing an interface of an
active object may seem odd at first, but it is useful in the context of adapt-
ability to new environments. As mobile devices roam from one network to
another they might need to interact with software components providing
the same services, but that provide a different interface to interact with
and might also require a different interface.

• Finally, the become can also be used to express behavioral synchronization.
Namely, when a message is received by an actor for which the behavior of
that actor does not define an implementation then that message is stored.
Hence, when an actor changes its behavior and its replaced behavior con-
tains an implementation then the actor can process that message. Using
this simple mode of delaying messages until a behavior for consuming these
messages is found can be used for synchronizing the interactions between
actors. This is a first very rudimentary synchronization mechanism, but
in section 7.2 we will introduce more advanced synchronization schemes.

114 A Kernel Language for Ambient-Oriented Programming

a passive obj
slot1
slot2()

a passive obj
slot1
slot2()

a passive obj
slot1
slot2
slot3()
slot4()

...

...

...

...

slot3() ...

a passive obj
slot1
slot2() ...
slot3() ...

a passive obj
slot1()
slot2()

a passive obj
slot1
slot2()

a passive obj
slot1
slot2
slot3()
slot4()

...

...

...

...

a passive obj
slot1
slot2() ...
slot3() ...

slot3() ...

slot5() ...

Figure 5.4: Active Objects Conceptual Model. Two active objects containing a
graph of passive objects. None of the passive objects are shared, but the each
active objects shares a references to the other.

5.4.2 Message Passing Semantics

In AmbientTalk message passing syntax is different from the method invocation
syntax introduced above. The code shown in table 5.9 uses the #-notation for
sending a message to an actor. Although they apparently both seem to do the
same thing, that is requesting an object to perform a certain task, there are
good reasons to distinguish between them:

• First, a message is sent asynchronously, whereas a method invocation
is handled synchronously. In the latter case regular method invocation
semantics applies, while in the former case no value is returned. Hence, in
the default behavior of AmbientTalk one has to utilize callback methods to
process results of asynchronous message sends. In chapter 7 we will extend
the kernel to introduce the notion of futures [Hal85, LS88] to represent
the results of an asynchronous invocation. Nevertheless, these futures are
not fully transparent and need to be handled explicitly.

• Second, the arguments that are passed as parameters of an asynchronous
invocation will potentially cross the context of one active object to an-
other. Hence, to preserve the containment principle these messages and
the associated arguments are passed via a call-by-deep-copy as opposed to
call-by-value in the case of a method invocation.

• Another, third reason is that asynchronous invocations not only cross the
border of active objects, but may also cross the border of a device. There-
fore, at these places in the code one needs to be aware of the consequences
of remote communication, such as failed communication.

5.4 The Active Object Layer 115

counterBehavior: root.extend({
n: 0;
new(aNumber)::{ copy(n:=aNumber) };
increment()::{ n:=n+1 };
decrement()::{ n:=n-1 };
get(customer):: { customer#result(n) };
init()::{ display("initialized actor") }

});

mycounter: actor(counterBehavior.new(5));
mycounter#increment();
mycounter#decrement();
mycounter#get(thisActor())

counterBehavior: root.extend({
n: 0;
new(aNumber)::{ copy(n:=aNumber) };
increment()::{

become(counter.new(n+1)) };
decrement()::{

become(counter.new(n-1)) };
get(customer):: { customer#result(n) };
init()::{ display("initialized actor") }

});

mycounter: actor(counterBehavior.new(5));
mycounter#increment();
mycounter#decrement();
mycounter#get(thisActor())

Table 5.9: Implementation of a counter actor using updateable state (left) and
using the become operation (right)

The arguments above illustrate why it is a good idea to differentiate in syntax
between both modes of communication. This is in contrast to other middleware
and programming languages, such as ProActive [ACG00] and ChitChat [De 04],
where the difference between the two types of communication has been made
oblivious. The arguments also amount to the fact that keeping the distribution
transparent for the programmer is in many cases impossible in the context of
mobile networks.

A difference between message passing and method invocation we have dis-
cussed above is that actual parameters are call-by-deep-copy as opposed to call-
by-value. However, method invocation in Pic% features another type of param-
eter passing, namely call-by-function as discussed in section 5.3.2. It depends on
the definition of the method’s formal parameters if its arguments are bound as
call-by-value or call-by-function. Transposing call-by-function in the context of
message passing has a number of consequences. First, the manner in which the
arguments are bound and eagerly or lazily evaluated depends on the method
definition and thus on the side of the callee, while the actual arguments are
evaluated at the side of the caller. The actual arguments are either evaluated
immediately or lazily depending on whether the formal argument prescribes
call-by-value or call-by-function. However, in the case of message passing the
caller and callee do not necessarily reside on the same device and if at message
send-time, the recipient actor is not available then the active object would have
to postpone the call until it can access the method definition on the side of the
callee. However, postponing a call would imply blocking communication and
therefore violate the non-blocking communication characteristic we advocated
in section 3.3. Nevertheless, this problem could be resolved by embedding the
interface definitions of an active object in the remote references so that the ac-
tive object at the side of the caller could determine the evaluation semantics of
the arguments. However, such a choice would also imply that introducing the
become operation is impossible because this operation potentially changes the
interface of the active object at run-time. Even if one would make this tradeoff,
not all problems are solved. Namely, the function that is created as a result of
call-by-function parameters has its lexical environment bound to the side of the

116 A Kernel Language for Ambient-Oriented Programming

kind of name invocations table invocations method invocations
invocation: name name[e1] name(e1, ... ,en)
definition name: e name[e1]: e2 name(e1, ... ,en): e
assignment name:= e name[e1]:= e2 name(e1, ... ,en):= e
receiver-less inv inv[e1, ... ,en] inv(e1, ... ,en)
declaration name:: e name[e1]:: e2 name(e1, ... ,en):: e
super sends .name .name[e1, ...] .name(e1, ...)
qualification e.inv e.inv[e1, ...] e.inv(e1, ...)
asynchronous e#inv - e#inv(e1, ...)

Table 5.10: Summary of AmbientTalk syntax

caller. Hence, if the callee invokes the function then it is executed in its lexical
context of its caller. As a result, when the caller and callee reside on different
machines and they cannot communicate such a call would have to block until
the caller is available so that the lexical environment can be accessed. Again,
this would imply violating the non-blocking communication characteristic. Al-
ternatively, a copy of the lexical environment could be passed along so that no
such availability problems arise. However, this would imply that the internal
state of the caller is transferred to the callee posing security and performance
issues. Moreover, changes that occur in the context of invoking the call-by-
function parameters would imply that the copy of the lexical environment is
changed and not the lexical environment of the caller. As a result the call-by-
function parameter passing would have a different semantics for message passing
than for method invocation. For all these reasons, message passing semantics
does not support call-by-function parameters and call-by-function is restricted
to synchronous method invocation.

In section 5.3.5 we discussed the representation and syntax for first-class
methods. A method can be reified by merely selecting it from an object through
the dot-operator. In a similar vein syntax is provided to reify messages. A
message is reified by selecting it through the #-operator. Hence, anActor#m
will reify the message m with anActor as its target. Table 5.10 completes the
syntax summary of AmbientTalk.

5.4.3 First-Class Messages

Messages are represented as passive objects that are clones from the message
prototype, shown in table 5.11. This prototype object contains methods to ma-
nipulate the contents of a message. A message contains the following attributes:

• source refers to the actor that created the message

• target is the recipient of the message

• name is the name of the method that is to be invoked when this message
is processed

• argList refers to the list of arguments used to invoke the associated
method

5.4 The Active Object Layer 117

message::root.extend({
source : void;
target : void;
name : void;
argList: void;

new(aSource, aTarget, aName, anArgList)::copy({
source:=aSource;
target:=aTarget;
name:=aName;
argList:=anArgList;

});

getSource()::source;
getTarget()::target;
getName()::name;
getArgs()::argList;

setSource(aSource)::source:=aSource;
setTarget(aTarget)::target:=aTarget;
setName(aName)::name:=aName;
setArgs(anArgList)::argList:=anArgList;

});

Table 5.11: Message Prototype Object

Next to these attributes the message contains methods to read and write these
attributes. The absorption and reification of the first-class messages in the
AmbientTalk interpreter is further detailed in section 6.5.1.

5.4.4 First-Class Mailboxes

Eight native first-class mailboxes were introduced in the ambient actor model
for the reification of the communication traces and the reification of the envi-
ronmental context discussed in sections 3.4 and 3.5, respectively. The different
mailboxes from the ambient actor model are directly adopted in the Ambi-
entTalk kernel. These mailboxes are built into the kernel through the native
methods add, delete and messages to change and retrieve the contents
of mailboxes, much in the spirit of the operations to manipulate mailboxes in
the ambient actor model. Based on these native methods, a mailbox has been
represented as a passive object, shown in table 5.12. Each of the native mail-
boxes are bound by default in an active object using the names inbox, outbox,
sentbox, rcvbox, providedbox, requiredbox, joinbox and disjoinbox.

AmbientTalk introduces the concept of mailbox observers. An observer mon-
itors changes made to a mailbox, more particularly adding and deleting contents
to a mailbox. Observers are registered to a mailbox using the method methods
addAddObserver and addDeleteObserver. The former method registers an ob-
server that is notified when contents is added to the mailbox, whereas the latter
method registers an observer that is notified when contents is deleted from a
mailbox.

Mailbox observers enable active objects to monitor changes in the communi-
cation process. An alternative to monitor changes in the communication process
would be to open up the implementation of the mailbox natives and the under-
lying low-level communication process, such as in CoDa [McA95]. However, this

118 A Kernel Language for Ambient-Oriented Programming

mailbox::root.extend({
name: "in";

new(aName)::copy({ name:=aName });

add(el)::__add(name, el);
get(nr)::__messages(name)[nr];
delete(el)::__delete(name, el);
length()::size(__messages(name));

asVector()::{
tbl: messages(name);
vector.newWithTable(tbl)

};

iterate(it(el))::
{ t: it; this().asVector().iterate(t(el)) };

...
});

Table 5.12: Mailbox Prototype Object

alternative could allow one to design an alternative communication process that
no longer supports the AmOP criteria, i.e. introduce blocking communication
primitives in AmbientTalk. In contrast, the use of mailbox observers restrict
changes to the low-level communication protocol, but still allow one to monitor
and change the high-level communication protocols between actors.

Observers are modeled after the observer design pattern [GHJV94]. How-
ever, there are two differences as to how the observer pattern is implemented:

• First, active objects are observers as opposed to passive objects. Active
objects are notified by means of asynchronous method invocations rather
than synchronous method invocations. As explained in section 4.5.5, there
are two different processes that manipulate mailboxes, the actor system
and the active object that owns the mailbox. Note that the method ac-
tivation mode (synchronous method invocation vs. message passing) for
observer notifications determines the process that will execute the observer
code: if the observer is notified using a synchronous method invocation,
then the code would sometimes be executed by the communication sched-
uler. For example, if the actor system receives a message and places it in
the inbox, then the actor system would synchronously notify such that the
observers would be executed by the process of the actor system. On the
other hand, in the case the message passing mechanism is used to invoke
the observer it is the active object that will process the observation.

Hence, the choice of the process that will execute the observer depends
on the method activation of an observer. Using the process of an active
object seems to be the most intuitive, because it is an active object that
registers its observers onto its mailboxes. What is more, the registered
observers may perform operations that are identified with an active ob-
ject such as sending messages or changing its state. Hence, in the case
of synchronous method activations two different processes (the active ob-
ject and the communication scheduler) could concurrently manipulate the
same state such that race conditions can occur.

5.4 The Active Object Layer 119

• A second difference with the standard observer pattern is that instead of
registering observer objects, first-class messages are registered. When a
mailbox is changed and a first-class message is associated with that event
then that first-class message is sent. The recipient of that message deter-
mines the active object that acts as the observer. Subscribing messages
instead of active objects increases the flexibility of the observer pattern,
because the interface of the observer object does not need to be fixed with
respect to the protocol of the design pattern. First-class message that are
registered as mailbox observers are henceforth called observer messages.

Observing mailboxes in an asynchronous fashion involves a special scheduling
policy of the observation messages to ensure that they are processed before all
other messages. Processing the observer messages before all other messages has
the advantage that an object can respond to the event in a timely fashion. For
example, suppose an observer watches for additions to the inbox of an active
object. If a message msg is placed in the inbox then the observer message is
scheduled before all other messages and thus also the message msg. This system
is more expressive because it enables intervention before the message msg is pro-
cessed. For example, if the action associated with this mailbox observer would
be to remove the message msg from the inbox then msg will never be processed.
If the mailbox observer would not be scheduled before other messages then it
would be processed after msg has already been processed such that removing it
from inbox would be impossible. For this reason mailbox observers are sched-
uled with priority. Scheduling with priority entails that observer messages are
placed in the inbox before all other messages such that they are processed be-
fore all other messages. Hence, if a mailbox is changed then observer messages
associated to this change will be the first messages processed after the current
message has finished executing.

5.4.5 Example: Friend Finder Application

To put everything we have explained above together and to illustrate the use of
first-class mailboxes and mailbox observers we discuss the implementation of a
friend finder application in the AmbientTalk kernel. Several such applications
have already been developed for cellular phones equipped with a bluetooth in-
terface. The purpose of this application is to help people with similar interests
find one another when they are in each others vicinity. For example, two people
with matching interests sitting in the same railroad carriage would have their
mobile phones notifying them by playing a tune. Both FriendFinder applica-
tions could use different matching criteria. For example, one may have more
stringent criteria and require two matching hobbies instead of one. In that case
only one device would make a sound and one would not be able to find the
other. Hence, both mobile phones need to play a tune.

A proof of concept implementation of an active object epitomizing such an
application can be found in table 5.13. The friendFinderBehavior object has
two variables myAge and myHobbies representing the age and the list of inter-
ests of the owner. Furthermore, there is a constant ageRange that defines the
range of age that will match as a friend. The most interesting methods are
match, which checks the matching criteria and notifies the owner when in the
case of a match, and the init method which adds the <friendfinder> pattern

120 A Kernel Language for Ambient-Oriented Programming

friendFinderBehavior :: root.extend({
myAge : 18;
myHobbies : vector.new();
ageRange :: 2;

new(anAge)::copy({
myAge:=anAge;
myHobbies:=vector.new() });

match(age, hobbies)::{
if(and(abs(age - myAge) <= ageRange,

hasMatchingHobbies(hobbies)),
friendFinderUI#notify()) };

addHobby(aHobby)::{
myHobbies.add(aHobby) };

hasMatchingHobbies(hobbies)::{
myHobbies.detect(hobbies.contains(el))

};

init()::{
providedbox.add("<friendfinder>");
requiredbox.add("<friendfinder>");

joinbox.addAddObserver(
thisActor()#onJoined);

disjoinbox.addAddObserver(
thisActor()#onDisjoined)

};

onJoined(aResolution)::{
ff: provider(aResolution);
ff#match(myAge, myHobbies)

};

onDisjoined(aResolution)::{
toDelete: outbox.asVector().select({
dissolvedFF: provider(aResolution);
el.getTarget() = dissolvedFF });

toDelete.iterate({ outbox.delete(el) });
... other mailboxes emptied too ...

}
}));

makeFriendFinder(age)::
actor(friendFinderBehavior.new(age));

Table 5.13: Implementation of a FriendFinder

both to the requiredbox and providedbox mailbox. This pattern is distinct
from other applications such that friend finder applications can detect one an-
other in the ambient. init also subscribes two mailbox observers onJoined
and onDisjoined on the joinbox and disjoinbox respectively. Hence, two
FriendFinder objects that are running on different mobile devices and that are
in the communication range of one another will have their joinbox updated.
Similarly, when the two devices are moved out of the communication range of
one another their disjoinbox will be updated. This is according to the oper-
ational semantics defined and discussed in the previous chapter. The mailbox
observer onJoined, which is received when the joinbox is updated will send
a match message with the information of the owner to the FriendFinder ob-
ject in the communication range. The FriendFinder object running on the
other device will do the same. In the case of a match the friend finder will
notify the user interface, which will in turn start playing a tune. The mailbox
observer onDisjoined cleans up communication traces of mobile devices that
disappeared. Cleaning up the communication traces is necessary, because in
this particular application chances are slim that a message that is still in the
outbox will be delivered at a later time.

5.5 Conclusion

In this chapter we have discussed how the AmbientTalk programming language
realizes the operational semantics of the ambient actor model. Furthermore,
we have also elaborated on the design decisions of both the sequential and
distributed object model. The distributed object model of AmbientTalk extends
Pic%’s sequential object model by introducing active objects and asynchronous

5.5 Conclusion 121

invocations.
We illustrated the use of AmbientTalk’s object model by means of a number

of examples. In retrospect, if we look at these examples then we can conclude
that although they are expressed in a more high-level object model, fundamen-
tally they still have the same problems that we discussed for examples based
on the operational semantics in the previous chapter. In other words, although
AmbientTalk its object model is more expressive it still lacks the necessary ex-
pressiveness with regard to the concurrent and distributed aspects we typically
encounter in regular distributed programs. This is for example illustrated by
the need for callbacks to process results of requests sent to active objects.

Another open problem at this point in the dissertation is that although the
semantics of the ambient actor model were well defined as an extension of the
actor model in the previous chapter, the semantics of AmbientTalk were only
described informally. In the next chapter we address both issues.

122 A Kernel Language for Ambient-Oriented Programming

Chapter 6

AmbientTalk and
Metalinguistic Abstraction

6.1 Introduction

A metacircular evaluator is an evaluator written in the same language it eval-
uates. The study of a metacircular evaluator has several advantages. First, a
metacircular interpreter gives the precise semantics of the language. Secondly,
a metacircular interpreter is a good experimentation platform for studying and
experimenting with new language features, because a metacircular interpreter
is often less complex than its native counterpart. The fact that a metacircular
implementation is often less complex than its native counterpart takes us to
a third advantage: it is often easier to study the semantics, because it is less
complex, yet it still holds the essence. Thirdly, the essence of meta circularity is
that one has to understand precisely one program written in a programming lan-
guage in order to understand all programs written in that language because that
program defines the semantics of the language. However, there are also some
practical disadvantages. First, a metacircular interpreter cannot bootstrap the
interpreter. One needs a native implementation of the interpreter before the
metacircular one can be used. Second, a metacircular interpreter is often a lot
less efficient that its native counterpart.

The goal of this chapter is twofold. First, we want to establish the exact
semantics of the kernel language AmbientTalk. We have discussed the overall
design decisions and the semantics of the language informally in the previous
chapter. By discussing the metacircular interpreter we establish a more exact se-
mantics. However, we will not discuss all aspects of the metacircular interpreter.
Instead we will give an overview of the general structure and highlight some of
the important aspects. Nevertheless the code listing of the full interpreter can
be found in appendix A. A second goal is to use the metacircular interpreter
as a means to explain how language constructs are added to the language. As
mentioned above, a metacircular interpreter is an excellent means to experiment
with new language constructs in a language. However, although the metacircu-
lar interpreter we discuss in this chapter runs properly we have not used it as a
vehicle to experiment with language constructs because of performance issues.
We wanted to be able to use AmbientTalk on small devices and still be able to

124 AmbientTalk and Metalinguistic Abstraction

experiment and use language constructs on these devices. Therefore, we have
placed reflective hooks in the native implementation of AmbientTalk to recon-
cile these requirements. Based on the metacircular interpreter we can identify
these reflective hooks and explain how they behave.

This chapter is structured as follows. In the next section, we consider the
general structure of the metacircular interpreter. in section 6.3 we discuss the
interpretation of the passive object layer, followed by the discussion of the active
object layer in section 6.4. Finally, section 6.5 deals with the introduction of
the reflective hooks in the interpreter to enable experimentation with language
constructs.

6.2 General Structure

The AmbientTalk interpreter is no different from most interpreters [AS96] and
consists of a read-eval-print cycle. This cycle reads a text, converts it to a
stream of tokens, which are matched to AmbientTalk’s concrete grammar and
converted to the abstract grammar specification by the parser. Evaluation of
the abstract grammar is based on the reciprocity of evaluation and application,
also a common pattern found in many interpreters based on a paradigm where
processes are explicitly invoked in the program, such as functional-, procedural-
or object-oriented style of computation. Note that in the remainder of this
chapter we will have to refer to AmbientTalk from three different perspectives.
First, we will talk about AmbientTalk as the implementation language for our
metacircular evaluator. Second, we will refer to the metacircular implementation
of AmbientTalk. Third, we will refer to AmbientTalk as the language that is
being interpreted by the metacircular implementation. In the remainder of this
chapter we will refer to the first as the native AmbientTalk, the second as
the metacircular AmbientTalk and the third as the base AmbientTalk to avoid
confusion. The relation between these different levels is shown in figure 6.1. The
“circularity” stems from the fact that the semantics of the base AmbientTalk is
identical to this of the native AmbientTalk.

Native AmbientTalk = Implementation Language

Metacircular AmbientTalk = Metacircular Implementation

Base AmbientTalk = Language that is Interpreted

interprets

interprets
semantics

determined by

semantics
determined by

Figure 6.1: Connections between the different AmbientTalk perspectives

Since we implement the AmbientTalk evaluator in AmbientTalk and Ambi-
entTalk features a prototype-based object model, it is a logical choice to rep-
resent the components of the metacircular evaluator in terms of objects and
methods. The former are used to encapsulate the abstract grammar entities
and the latter define how these entities are evaluated and applied to one an-
other. An overview of all abstract grammar entities can be found in figure 6.2 on

6.2 General Structure 125

page 156. The figure shows the hierarchy of objects that is created using nested
mixin methods starting from the AbstractGrammar() mixin method. Mixin
methods are drawn as a rectangular box, which is subdivided in two boxes. The
upper part of the box contains the name of the mixin method with its formal
parameters and the methods defined in the mixin method are placed in the
lower part box. The AbstractGrammar() mixin method defines the protocol of
the evaluation process through a number of abstract methods. The most part
of this protocol is parameterized with an argument e. This is the context (or
environment) of the evaluation process, represented as objects created from the
agContext mixin, in which the expression is to be evaluated. This context of
an evaluation consists of four objects:

1. cur refers to the current dictionary in which the evaluation takes place.
As explained in section 5.3.3 a dictionary is AmbientTalk’s first-class rep-
resentation of a lexical environment that are used to represent objects.
Dictionaries are represented as agObject objects. Receiver-less invoca-
tions are looked up in this dictionary.

2. ths refers to the dictionary of the original receiver of the invocation that
is currently evaluated. (i.e. it points to the object returned by this())

3. sup refers to the lexical parent dictionary of the invocation that is cur-
rently evaluated. A super send starts resolving these identifiers in this
dictionary.

4. thsActor refers to the metaActorBehavior of the actor in which the cur-
rent evaluation takes place and which is used to implement the reflective
hooks. In the evaluation process it is used to retrieve the current actor
its mail address, returned by thisActor(). An actor mail address is en-
capsulated in an agActor object. The metaActorBehavior itself is not
shown in the structure, because it is not an abstract grammar entity. It
is part of the behavior of the actor system itself and is further discussed
in section 6.4.

In the structure of the abstract grammar entities we can distinguish between
two types because an evaluator is a mapping from abstract syntax to “values”:

• syntactical entities: these are internal representations of the abstract syn-
tax tree nodes of AmbientTalk. They are represented by the mixin meth-
ods shown on the right hand side of the AbstractGrammar() mixin in
figure 6.2. The most notable ones are the mixin methods agReference,
agTabulation and agApplication. These mixins correspond to the columns
of the syntax summary in table 5.10 on page 116, whereas the methods of
these mixins correspond to the rows and implement the different evalua-
tion rules.

• The runtime value entities are nested mixin methods of agValue(), which
are self-evaluating abstract grammar components. The most interest-
ing mixins are agObject, a representation for dictionaries; agFunction,
agClosure, agNative and agNativeClosure, the representations of first-
class (native) methods and finally, agActor, agActorMessage, agActorBehavior,
agMailbox representations of the respective entities from the active object
layer.

126 AmbientTalk and Metalinguistic Abstraction

Now that we have given an overview of the structure and its important entities
we can further discuss the double-layered object system in the next two sections.

6.3 The Passive Object Layer

In this section we discuss the semantics of the passive object layer. The structure
of this section mirrors that of section 5.3, but we discuss the different topics from
the perspective of its metacircular implementation.

6.3.1 Passive Objects

In section 5.3.3 we have seen that objects in AmbientTalk are represented as
first-class environments, also called dictionaries. These dictionaries are rep-
resented as objects created from the mixin method agObject, which is shown
in table 6.1. An object contains two linked lists of bindings (represented by
agBinding objects), one for constants (cst) and the other for variables (var),
and a pointer (nxt) to the next dictionary. Several methods are defined to
search and manipulate these dictionaries. Because we have not focussed on effi-
ciency, these lookup methods are rudimentary linear searches. That is to say, no
optimization techniques, such as lexical addressing, have been implemented. As
explained in section 5.3.3, an attribute is selected from an object using the dot-
notation. In the metacircular evaluator this is evaluated by the syncmessage
method in the different abstract grammar representations. The different im-
plementations of this method, in agReference, agApplication and agTable,
correspond to the different modes of qualifications summarized in table 5.10 on
page 116, are shown in table 6.2. All implementations invoke lookupConstant
on an agObject. This corresponds to the alignment of definitions and dec-
larations with the visibility rules of an object that we have explained before.
Indeed, as explained in section 5.3.3 a declaration corresponds to a public at-
tribute whereas a definition corresponds to a protected attribute. Protected
methods are invoked without the dot-notation in the context of an object and
as a result such invocations are evaluated by the method eval in agReference,
agTabulation or agApplication. This method, also shown in table 6.2, looks
up the reference through a call to lookupAny on the dictionary, which in turn
searches both constants and variables bindings corresponding to the visibility
rules of a protected attribute.

6.3.2 Parameter Passing Semantics and Method Invoca-
tions

As discussed in section 5.3.2, AmbientTalk’s methods feature three types of
formal parameter lists: regular formal parameter table, variable argument lists
(which we called call-by-table) and lazily evaluated variable argument lists (which
we called call-by-function-table). These parameter binding semantics are re-
alized in the metacircular implementation through an implementation of the
method call in three abstract grammar entities: agTable and agReference
and agApplication. These entities are, in the capacity as parameter bindings,
representations in the abstract grammar of the concrete syntax for the different

6.3 The Passive Object Layer 127

agObject(cst,var,nxt) :: {
...
containsConstant(nam, ths, e) :: { ... };

lookupConstant(nam, ths, e) :: { ... };

lookupAny(nam, ths, e) :: {
found: if ((v:cst.lookup(nam, ths,this(), e))~void,

var.lookup(nam,ths,this(), e),
v);

if(found~void,
if(nxt~void,

Error("Could not find variable: ", nam.getTxt()),
nxt.lookupAny(nam, ths, e)),

found) };

setVariable(nam, v) :: { ... };

addVariable(nam, v) :: { var := agBindingP.cloneMe(nam, v, var); this() };
addConstant(nam, v) :: { cst := agBindingP.cloneMe(nam, v, cst); this() };

addFrame() :: this().cloneMe(agVoidP, agVoidP, this());
...
capture() ‘<- agObject‘

};

Table 6.1: Attribute Lookup in a dictionary.

agReference(name) :: {
...
eval(e) :: { v: e.cur.lookupAny(name, e.ths, e); v };
syncmessage(dct, e) :: { dct.lookupConstant(name, dct, e) };
supersend(e) :: e.sup.lookupAny(name, e.ths, e);
...
capture() ‘<- agReference‘

};

agApplication(expr, args) :: {
...
eval(e) :: expr.eval(e).apply(args, e);
syncmessage(dct, e)::

dct.lookupConstant(expr.getName(), dct, e).apply(args,e);
supersend(e) ::

e.sup.lookupAny(expr.getName(), e.ths, e).apply(args, e);
...
capture() ‘<- agApplication‘

};

agTabulation(expr, idx) :: {
...
eval(e) :: expr.eval(e).get(idx.getTbl().eval(e).getMetaValue());
syncmessage(dct, e) ::

dct.lookupConstant(expr.getName(), dct, e).get(
idx.getTbl().eval(e).getMetaValue());

supersend(e) ::
e.sup.lookupAny(expr.getName(), e.ths, e).get(

idx.getTbl().eval(e).getMetaValue());
...
capture() ‘<- agTabulation‘

};

Table 6.2: Invoking a Message

128 AmbientTalk and Metalinguistic Abstraction

agClosure(fun, env) :: {
...
apply(args, e) :: {

callframe : env.cur.addFrame();
if(!args.isTable(),

{ args := args.eval(e);
if(!args.isTable(),

Error("Invalid actual arguments: "+args.print(e))) });
fun.getPars().call(callframe,args,e);
newE : agContext(callframe, env.ths, env.cur.parent(), e.thsActor);
fun.getBody().eval(newE) };

...
};

Table 6.3: Application of a Closure

formal parameter lists that can be used to define the method. Hence, a particu-
lar agTable corresponds to a table of the formal parameters, i.e. [a, b(), c]
in the method declaration m(a, b(), c)::..., which can in its turn contain
call-by-value and call-by-function formal parameters; agReference corresponds
to the reference args in m@args::...; and finally agApplication corresponds
to the application blocks() in m@blocks()::....

The method call is invoked in the apply method defined in agClosure,
which is shown in table 6.3. The method extends the current lexical environment
env of the closure and checks if the actual arguments list is a table. This is done
to distinguish between the method invocations of the form m(a1, ..., an) and
m@args, which were also discussed in section 5.3.2. In the latter case the actual
arguments are not a table, but an expression that evaluated to a table. Hence,
this expression is first evaluated to a table. An error is thrown when the result
is not a table. Subsequently, call is invoked on the formal parameter list of
the function to bind the actual to the formal parameters and finally the body
of the method is evaluated in the context of the new lexical context.

Now that we have discussed the semantics of a closure application, we can
further detail the binding semantics of the formal parameter lists defined by the
call. The different metacircular implementations of abstract grammar objects
that deal with parameter binding semantics are shown in table 6.4 and are
discussed below:

• The implementation of call in agTable loops over the table of formal
parameters and calls the bind method on each formal parameter. The
formal parameters in the table are either agReference or agApplication
abstract grammar entities. The former its implementation of the bind
method corresponds to a call-by-value binding and will bind the evalua-
tion of the actual argument to the name of the formal parameter in the
lexical environment of the function-call. The latter its bind implemen-
tation corresponds to a call-by-function formal parameter and therefore
the actual argument is not evaluated but is used as the body of a newly
created function with the formal parameter as its signature. This function
is wrapped in a closure pointing to the lexical environment of the caller.
Finally, this closure is used to extend the current lexical environment.

• call in agReference creates a new table evaluatedActs that contains
all evaluated actual arguments. This table is bound to the name of the

6.3 The Passive Object Layer 129

agTable(tbl) :: {
...
call(dct,actuals,e) :: {

actT : actuals.getTable();
forT : this().getTable();
if (size(actT)!=size(forT), Error("non-matching argument list"));
for(i:1,i<=size(forT),i:=i+1, forT[i].bind(dct,actT[i],e))

};
...

};

agReference(name) :: {
...
call(dct,actuals,e) :: {

actT: actuals.getTable();
i:0;
evaluatedActs[size(actT)]: actT[i:=i+1].eval(e);
dct.addVariable(name, agTableP.cloneMe(evaluatedActs)) };

bind(dct,act,e) :: { dct.addVariable(name,act.eval(e)) };
...

};

agApplication(expr, args) :: {
...
call(dct,actuals,e) :: {

actT: actuals.getTable();
i:0;
closures[size(actT)]: agClosureP.cloneMe(

agFunctionP.cloneMe(expr,args,actT[i:=i+1]),
e);

dct.addVariable(expr.getName(), agTableP.cloneMe(closures)) };

bind(dct, act, e) :: {
dct.addVariable(expr.getName(),

agClosureP.cloneMe(agFunctionP.cloneMe(expr,args,act),e)) };

...
};

Table 6.4: Evaluation of the different Types of Formal Parameters Lists in
AmbientTalk

reference used to extend the current lexical environment.

• the implementation of call in agApplication creates a new table con-
taining closures of functions that each have their body corresponding to
the unevaluated actual arguments of the function-call. This table is used
to extend the current lexical environment.

6.3.3 Mixin-Based Inheritance

In section 5.3.4 we have discussed the use of mixin methods as the model for
introducing flexible delegation hierarchies that restrict the encapsulation prob-
lems resulting from inheritance. A mixin method is characterized by a call to
the capture method as its last expression. As explained, this method returns
the current dictionary, which represents the extension of the object onto which
the mixin method was invoked. This is reflected in the implementation of the
capture native:

captureNative(args, e) :: e.cur;

130 AmbientTalk and Metalinguistic Abstraction

This dictionary is a proper extension of the current receiver as dictated by
the method invocation semantics. That is to say, the next pointer (nxt) of the
current dictionary, represented as an agObject) will point to the receiver of the
mixin method. This is the result of invoking the mixin method itself. Such an
invocation extends the receiver’s dictionary with a new dictionary to represent
the call frame for the invocation. This semantics is reflected in the metacircular
implementation on the agClosure.apply method shown in table 6.3. This
semantics also clearly shows that there is a unification between call frames
and objects. That is to say a call frame is nothing more than an object that
delegates to its receiver. Notice that such a semantics for method invocations
is also present in the implementation of Self [US87].

Delegation is reflected in the metacircular implementation in the supersend
methods, shown in table 6.2. These methods retrieve the parent object, to
whom has to be delegated, from the context parameter e.sup and search for
the attributes accordingly in both constant and variable bindings, corresponding
to the semantics of protected attributes.

6.3.4 On Late-Binding and First-Class Methods

In section 5.3.5 we discussed the role of closures in the object model of Ambi-
entTalk. Two of the important points was that when closures are created at
lookup-time they support late-binding and can be used to represent first-class
methods. In the metacircular implementation this semantics is reflected in ta-
ble 6.5 in agBinding.lookup, which wraps the value resulting from the lookup
into a closure with the current evaluation context. Remember from section 6.2
that the context consists of a pointer to the current dictionary, a pointer to the
current receiver, a pointer to the lexical parent and the current actor. In this
case the context of the new closure will have its current dictionary pointing to
the object in which the attribute was found and it is also at this point that we
set the lexical parent to the parent of the dictionary in which the attribute was
found. Note that a method is wrapped with the context that consists of four
environment pointers, as opposed to most functional languages where a function
body is wrapped in a single lexical environment. The default implementation
of the method wrap, implemented in the AbstractGrammar mixin method, is to
return itself because wrapping only methods need to be wrapped in the context
they are found. Hence, both the agFunction and agNative mixin methods
override this method and return a closure respectively.

In section 5.3.5 we discussed that this scheme of creating closures at lookup-
time has three advantages. We can now revisit these in the context of the
metacircular implementation:

• A first advantage was that such a scheme enables late-binding polymor-
phism in the object model. This is reflected in agBinding.lookup where
the ths variable is part of the context when an entity is wrapped. Hence,
when a closure is applied it will have its this pointing to the correct re-
ceiver object in which this closure has been found. This pointer is changed
when a closure with a different this pointer is applied. I.e. when an ex-
pression of the form o.m(...) is evaluated. This is reflected in table 6.2
in the implementations of the method syncmessage where the second ar-
gument of dct.lookupConstant(..., dct, ...), which determines the

6.3 The Passive Object Layer 131

agBinding(nam,val,nxt) :: {
...
lookup(n, ths, myDct, e) :: {

if(n.getTxt()=nam.getTxt(),
val.wrap(agValueP.agContext(myDct,

ths,
myDct.parent(),
e.thsActor)),

nxt.lookup(n, ths, myDct, e)) };
...
capture() ‘<- agBinding‘

};

agFunction(nam, pars, body) :: {
...
wrap(e) :: agClosureP.cloneMe(this(), e);
...
capture() ‘<- agFunction‘

};

agNative(nat, nam) :: {
...
wrap(e) :: agNativeClosureP.cloneMe(this(), e);
...
capture() ‘<- agNative‘

};

AbstractGrammar() :: {
...
wrap(e) :: this();
...
capture() ‘<- AbstractGrammar‘

};

Table 6.5: Closures are Created at Lookup-Time

new ths pointer, is changed to the new receiver dct. This is in contrast
to the lookup in the implementations of supersend, where the second ar-
gument of the lookup e.sup.lookupAny(..., e.ths, ...) refers to the
current ths pointer.

• A second advantage is that reentrancy of methods in the context of object-
based inheritance results from the creating closures at lookup-time rather
than definition-time. At method definition-time agFunction objects are
stored in the dictionary, which is shown in table 6.6. Indeed, the methods
define, declare and assign store a clone of the agFunctionP prototype
object in memory. Since agFunction objects are contextless they can be
wrapped in different closures and be used in the context of a child or
parent object. As a result the agFunction object needs to be allocated
only once.

• The third advantage is that such closures enable first-class methods. Since
agClosure is a first-class entity, it can be passed around. When the
closure object is applied its body is evaluated in the context in which it
was wrapped. In other words, in the context of the object from which it
had been selected.

132 AmbientTalk and Metalinguistic Abstraction

agApplication(expr, args) :: {
...
define(exp, e) :: { e.cur.addVariable(expr.getName(),

v:agFunctionP.cloneMe(expr, args, exp));
v.wrap(e) };

declare(exp,e) :: { e.cur.addConstant(expr.getName(),
v:agFunctionP.cloneMe(expr, args, exp));

v.wrap(e) };
assign(exp, e) :: { e.cur.setVariable(expr.getName(),

v:agFunctionP.cloneMe(expr, args, exp));
v.wrap(e) };

...
capture() ‘<- agApplication‘

};

Table 6.6: Functions, not Closures are Stored in a Dictionary

6.3.5 Cloning Objects

All the mixin methods that represent the abstract grammar are used to create
prototypical objects. By convention, we have suffixed these prototypes with P.
For example, agClosureP is the prototype object for a closure. These proto-
typical objects are then used throughout the metacircular implementation to
create other objects by cloning them. This convention also ensures that be-
havior is reentrant such that is can be shared between all clones, because of
the cloning semantics we explained in section 5.3.6. In that section we have
discussed two native cloning methods clone and copy that rely on this seman-
tics. This cloning semantics is reflected in the metacircular implementations
of the method picoClone. It is shown in table 6.7. The implementation of
agObject.picoClone returns a clone of the current dictionary with a reference
to the constant bindings (cst), a shallow copy of the variables bindings (var)
and the ancestors of that dictionary are recursively cloned until the dictionary
upTo is encountered in the chain. The agObject.picoClone method reflects
the cloning semantics of dictionaries, namely that declarations are reentrant
and shared between cloned objects, since clones share the constant bindings,
while a shallow copy of the variable bindings is taken. This semantics was dis-
cussed in detail in section 5.3.6 and illustrated by figure 5.3 on page 111. Hence,
reentrancy doesn’t occur because behavior is explicitly structured in modules or
classes but rather results naturally from the semantics of cloning. This is in con-
trast to class-based languages, where behavior has been factored out in classes
and as a consequence these classes are used as the basis to achieve reentrant
behavior.

An advantage of reentrant behavior is that it can be shared between object
such that less space is consumed to represent objects. In Self space-efficienct
representations of objects are achieved through the use of maps [CUL89]. These
maps rely on the fact that objects are often created by cloning them from
another object as opposed to creating them ex-nihilo. Cloned objects have the
same behavior and this behavior is factorized what is called a map. A map is
an immutable structure that contains offsets for mutable data value slots and
a map structure is shared between object that resulted from the clone. Self
objects are internally represented as an array with a pointer to the map and the
values are stored at each offset in that array. Maps are maintained internally

6.4 The Active Object Layer 133

agVoid() :: {
...
picoClone@args :: this();
...
capture() ‘<- agVoid‘

};

agBinding(nam,val,nxt) :: {
...
picoClone() :: cloneMe(nam,val,nxt.picoClone());
...
capture() ‘<- agBinding‘

};

agObject(cst,var,nxt) :: {
...
picoClone(upTo) ::

this().cloneMe(cst,
var.picoClone(),
if(this()~upTo,

nxt,
nxt.picoClone(upTo)));

...
capture() ‘<- agObject‘

};

Table 6.7: Clones

and are not visible at the language level. Hence, the semantics of maps in Self
are similar to the reentrancy rules found in AmbientTalk its object model. Both
object models have in common that reentrancy results from sharing constants
and reentrancy naturally results from programming with prototypes. However,
the internal representation of objects in Self is more efficient than AmbientTalk’s
object model because a map determines offsets for each slot such that an object
can be represented as an array structure rather than a map structure. Hence,
the slot names do not need to be stored in each object.

6.4 The Active Object Layer

Now that we have explained the most important aspects of AmbientTalk’s pas-
sive object layer we can turn our attention to the semantics of the active object
layer. Active objects are both the unit of concurrency and distribution as dis-
cussed in section 5.4. Hence, the straightforward choice to introduce parallelism
in the metacircular implementation is to use native active objects. However, we
could have designed the metacircular implementation in continuation passing
style and use continuations to write our own scheduler and model active objects
as different continuations. We opted for the former option, because this choice
has several benefits:

• First, the option allows us to discover the semantics of true metacircularity
in the context concurrency and distribution. A metacircular implementa-
tion in this context brings us to the question: “How can we express the
ambient actor model in the model itself?”.

• Secondly, a metacircular implementation allows us to demonstrate a sense
of completeness with regard to the model of concurrency and distribution.

134 AmbientTalk and Metalinguistic Abstraction

• Thirdly, since the model is expressed within itself it will allow us to ab-
stract away from several technical issues and concentrate on the core se-
mantics of the model.

Introducing the notion of actors in the metacircular implementation involves
the representation of an actor system, as explained in section 4.2.2. The func-
tionality of an actor system can be distilled from the ambient actor model we
discussed in section 4.5, where an actor configuration was a formal representa-
tion for an actor system. The reduction rules on such an actor configuration
specified the behavior of the actor system. From these reduction rules we can
distill the main functionality of an actor system: actor creation and initializa-
tion, communication, actor address management, message evaluation and reifi-
cation of both environment and communication. This functionality has to be
present in the metacircular implementation and are explained in the following
subsections.

Metacircularity gives a certain degree of freedom to choose what function-
ality we make explicit and for what functionality we will rely on the native
AmbientTalk. For example, actor address management can be realized by main-
taining lists of receptionists and external actors manually or we can rely on the
metacircular implementation do this for us – in the passive object layer we also
implicitly made such design choices. For example, the memory management
in the metacircular implementation of the passive object layer relies on the
garbage collector of the native implementation. Another example is that we
did not make explicit the intrinsic details how methods invoke other methods
and return values. An evaluator written in continuation-passing style provides
more insight in these issues. For the metacircular implementation of the active
object layer we made the design decision to take maximum advantage of the
mechanisms for concurrency and distribution present in AmbientTalk, because
it allows us to demonstrate the expressiveness of the model. The disadvantage
of this choice is that such an implementation does not include all intrinsic details
of the model up to the level of a realistic implementation. However, the most
important details were already discussed as part of the operational semantics in
section 4.5.

6.4.1 Actor Creation

Metacircular actors are represented as native actors that are initialized with
a metaActorBehavior. Such a metaActorBehavior is in turn initialized with
a metacircular passive object that determines the behavior of the base actor.
The initialization of a metacircular actor is shown in table 6.8. The method
actorNative determines the metacircular semantics for the method actor, used
to create an actor in base AmbientTalk. This method evaluates its first argu-
ment, which is an expression that returns a metacircular passive object, and uses
this object to initialize a new agActor object. This object represents a base
actor mail address and is represented by a native actor mail address that was
obtained from creating a native actor with metaActorBehavior as its behavior.

6.4.2 Structure of a Metacircular Actor

The metaActorBehavior object lies at the heart of the metacircular semantics
of AmbientTalk’s active object layer. Its structure is illustrated in figure 6.3 on

6.4 The Active Object Layer 135

actorNative(args, e) :: {
actorBehaviour: args.getTbl()[1].eval(e);
agActorP.cloneMe(actorBehavior)

};

agActor(act) :: {
getAct() :: act;
setAct(anAct) :: act := anAct;
cloneMe(anActorBehaviour) :: {

act: actor(metaActorBehavior.new(anActorBehaviour));
c: this().clone(root);
c.setAct(act);
act#initialize(c);
c };

isActor() :: true;
getMetaValue() :: act;
print(e) :: printBrackets(text(act));
capture() ‘<- agActor‘

};

Table 6.8: Metacircular Implementation of an Actor Address

page 157 and shows its most important attributes:

• a reference to a metacircular behavior actorBehavior

• a map of mailboxes mailboxes

• a map mbxObservers that contains the mailbox observers for each mailbox

• the message that is being evaluated currentMessage

• the default evaluation context for messages processed by this actor context

• the metacircular representation for a base actor mail address of this actor
self

The mailboxes prefixed by meta are the mailboxes of the native actor. Next
to these value attributes metaActorBehavior also contains a number of meth-
ods. The most important are executeMessage, which evaluates a metacircular
message; receiveMessage, which corresponds to accepting the delivery of a
metacircular message; processNextMessage, processes the next message in the
mailbox.

An important part of the semantics of AmbientTalk’s active object layer
is determined by the semantics of the metacircular mailboxes, which realize
and reify both the communication and the ambient of active objects. These
mailboxes are represented in the code as agMailbox objects, shown in table 6.9.
Metacircular mailboxes are not directly implemented in terms of the native mail-
boxes, because we want to make their semantics explicit. Instead, metacircular
mailboxes are represented in terms of a vector. Nevertheless, metacircular mail-
boxes are linked to the native mailboxes through the use of the observer design
pattern [GHJV94]. The metacircular mailbox is the subject to which the ob-
servers subscribe. However, in this realization of the design pattern the observers
are not objects, implementing a notify method. Instead the observers are con-
ceived as AmbientTalk’s closures. There are two types of changes that can be
observed. The first type of change is the addition of items to a mailbox and the

136 AmbientTalk and Metalinguistic Abstraction

agMailbox(contents, addObservers, deleteObservers) :: {
...
add(element) :: {

contents.add(element);
addObservers.iterate({ el(element) }) };

delete(nr) :: {
element: contents.delete(nr);
deleteObservers.iterate({ el(element) }) };

remove(element) :: {
v: contents.remove(element);
if(v, deleteObservers.iterate({ el(element) }));
v

};
addSyncAddObserver(notify(el)) :: { addObservers.add(notify) };
addSyncDeleteObserver(notify(el)) :: { deleteObservers.add(notify) };
...
capture() ‘<- agMailbox‘

};

Table 6.9: Implementation of Synchronous Observers based on Closures

second is the deletion of items from a mailbox. The former type of observers
are subscribed to with agMailbox.addSyncAddObserver whereas the latter are
subscribed to with agMailbox.addSyncDeleteObserver; each method has a
call-by-function formal parameter el. Their implementation adds the closure
bound to this parameter to the vectors addObservers or deleteObservers.
These vectors of closures are iterated over and each closure is invoked whenever
an element is added or deleted from a mailbox, respectively. Using this scheme
mailboxes can be flexibly linked the metacircular mailboxes to the native mail-
boxes. These links are touched upon in the remainder of this section.

6.4.3 Mailbox Observers

Note the similarities and the differences between the mailbox observers we in-
troduced at the native AmbientTalk in section 5.4.4 and the mailbox observers
at the metacircular level. Both are a flexible realization of the observer design
pattern, whereby one can subscribe first-class messages in the former case and
closures in the latter case, such that the observers do not need to implement
a fixed interface. The main difference between both is that mailbox observers
at the native AmbientTalk are asynchronously invoked as opposed to the mail-
box observers in the metacircular implementation which are synchronously in-
voked. The latter are synchronously invoked because they serve as a link that
continuously synchronizes between the native mailboxes and the metacircular
mailboxes. Synchronization between native and metacircular mailboxes ensures
that, without having to implement metacircular mailboxes directly in terms of
native mailboxes, the semantics of the metacircular mailboxes are translated to
the semantics of the native mailboxes. For example, a message added to the
outbox at the base AmbientTalk is to be translated to a message that is added
to the outbox at the native AmbientTalk and this synchronous implementation
of the observer design pattern realizes this. An asynchronous link between both
types of mailboxes could result in incorrect semantics due to race conditions.
This is illustrated by the following scenario. Consider that a message is re-
moved from the outbox in a method executed by an actor running in the base

6.4 The Active Object Layer 137

AmbientTalk. In the case of an asynchronous link between the native and the
metacircular mailboxes, the message would be removed from the native mail-
box after the base method has completed its execution. This is the case because
an asynchronously invoked mailbox observer would remove the corresponding
metacircular message from the native outbox after the method completed its
execution. However, even though this first-class message is scheduled with pri-
ority (as explained in section 5.4.4) it can still be overrun by the communication
process and as a result the message could be transmitted before it is deleted from
the native mailbox. Therefore, it is important that metacircular mailboxes are
fully synchronized with native mailboxes. Nevertheless, the mailbox observers
that are reified in the base AmbientTalk are asynchronous as they were de-
fined in section 5.4.4. To avoid confusion we will refer to the observers based
on closures as synchronous mailbox observers, whereas the observers based on
messages are called asynchronous mailbox observers.

The different synchronization links between the metacircular and the native
mailboxes are explained throughout the remainder of this section. To avoid con-
fusion the identifiers of the metacircular mailboxes are prefixed by meta. For
example, if we write metaInbox then we refer to the metacircular implementa-
tion of the inbox. inbox refers to the inbox in the native AmbientTalk.

6.4.4 Processing Messages

The code related to message processing in the metaActorBehavior is shown in
table 6.10. The method initialize subscribes a synchronous mailbox observer
to the metaInbox. This observer asynchronously invokes processNextMessage.
That method searches in the metaInbox for the first message that has a corre-
sponding method implementation in actorBehavior. If such a message is found
then the method process, defined in actorBehavior, is invoked with that mes-
sage as its argument. Finally, if a message was found another processNextMessage
is sent asynchronously. Such a recursive asynchronous message ensures that all
messages that have a corresponding behavior are eventually executed by the
active object. It is the incarnation of the perpetually running thread that ev-
ery actor contains. The recursion stops when there are no more messages in
the mailbox that have a corresponding method in the metacircular behavior
and at that point the actor goes into a sleep state. There are two places in
the code that will induce a transition to an active state again. First, when a
new message is delivered then the method receiveMessage is activated and
that method adds the metacircular message to the metaInbox and thereby trig-
gers the synchronous mailbox observer that invokes the processNextMessage
method. Second, the behavior can be replaced at the language level by means
of the become method. This method has been implemented in the metacircu-
lar interpreter in terms of setActorBehavior. When this method is invoked
then processNextMessage is also asynchronously invoked because the mailbox
might contain messages that can be executed by this new behavior. Hence, this
mechanism can be used to express conditional synchronization as explained in
section 5.4.1.

138 AmbientTalk and Metalinguistic Abstraction

metaActorBehavior::root.extend({
...
setActorBehavior(anActorBehavior) :: {

actorBehavior:=anActorBehavior;
thisActor()#processNextMessage() };

processNextMessage() :: {
msgToProcessId: metaInbox.findFirst(

actorBehavior.containsConstant(
el.agActorMessage(context).getName(), actorBehavior, context));

if(not(is_void(msgToProcessId)), {
currentMessage:=metaInbox.get(msgToProcessId);
metaInbox.delete(msgToProcessId);
actorBehavior.agActorBehavior(context).process(currentMessage);
thisActor()#processNextMessage()

})
};

initialize(anAgActor) :: {
self:=anAgActor;
...
metaInbox.addSyncAddObserver({

thisActor()#processNextMessage() });
...

};

receiveMessage(aMsg) :: {
metaInbox.add(aMsg)

};
...

});

Table 6.10: Code Corresponding to Processing Messages

6.4 The Active Object Layer 139

metaActorBehavior::root.extend({
...
initialize(anAgActor) :: {

self:=anAgActor;
...
metaOutbox.addSyncAddObserver({

el.agActorMessage(context).getTarget().getAct()#receiveMessage(el)
});
metaOutbox.addSyncDeleteObserver({

msg: el;
idx: outbox.asVector().findFirst({

and(el.getName()="receiveMessage", el.getArgs()[1]=msg) });
if(not(is_void(idx)), outbox.delete(outbox.get(idx)))

});
sentbox.addAddObserver(thisActor()#onSentMsg);
...

};

onSentMsg(msg) :: {
if(msg.getName()="receiveMessage", {

metaMsg : msg.getArgs()[1];
metaOutbox.remove(metaMsg);
metaSentbox.add(metaMsg) })

};
...

});

Table 6.11: Code Corresponding to Message Delivery

6.4.5 Message Delivery

The metacircular code concerned with the asynchronous message delivery is
shown in table 6.11. In the initialization of the metaActorBehavior, two
synchronous observers are registered on the metaOutbox. One observer sends
an asynchronous receiveMessage to the destination of the message that was
added. Hence, a message sent in the base AmbientTalk results in a message
in the metaOutbox, that in turn results in an asynchronous message sent at
the native AmbientTalk. The other synchronous mailbox observer that is reg-
istered on the metaOutbox acts on a message that is deleted. In that case the
native message receiveMessage is searched for in the outbox and is deleted
if it is found. There are two ways in which a message can be deleted from
an outbox. First, it can be deleted by manipulating the first-class mailbox in
the base AmbientTalk. Second, a message is deleted from an outbox when an
acknowledgment of the reception of the message has been received, as specified
by the operational semantics of the ambient actor model we defined in sec-
tion 4.5.4. This acknowledgment is intercepted in the native AmbientTalk by
subscribing an asynchronous mailbox observer onSentMsg for additions on the
sentbox. The method onSentMsg moves the messages for which it received an
acknowledgment from the metaOutbox to the metaSentbox.

6.4.6 Asynchronous Message Passing

In section 5.4.2 we introduced explicit syntax for asynchronous message passing
and message selection based on the #-operator. Both abstract grammar entities
related to the evaluation of message passing and selection expressions are shown
in table 6.12. The method agReference.asyncmessage represents the seman-

140 AmbientTalk and Metalinguistic Abstraction

agReference(name) :: {
...
‘evaluate exp#name‘
asyncmessage(anActor, e) ::

‘return message(e.thsActor.getAddress(), anActor, name)‘
actorBehavior: e.cur.agActorBehavior(e);
agActorBehavior.createMessage(

e.thsActor.getAddress(), anActor, name, agVoidP) ;
...
capture() ‘<- agReference‘

};

agApplication(expr, args) :: {
...
‘anActor#name(args[1], ... args[n])‘
asyncmessage(anActor, e) ::

‘invoke send(aMsg)‘
actorBehavior: e.cur.agActorBehavior(e);
aMsg: actorBehavior.createMessage(

e.thsActor.getAddress(), anActor, expr.getName(), args);
actorBehavior.send(aMsg) ;

...
capture() ‘<- agApplication‘

};

Table 6.12: Asynchronous Message Passing

tics for message selection and returns a metacircular message with the address
of the current actor as its source. agApplication.asyncmessage represents the
semantics for asynchronous message passing; it creates a metacircular message
and invokes the method send with that message as its argument. This method
will add the message to the metaOutbox of the current actor, which will in turn
trigger the synchronous observer for additions on that mailbox that sends a
native asynchronous message as explained above.

6.4.7 Reified Environmental Context

Reification of the environmental context in the metacircular implementation is
achieved by a discovery actor, which is shared by all metacircular actors run-
ning in the same native AmbientTalk interpreter. In the metaActorBehavior
of these actors there are a number of synchronous observers subscribed to the
metaProvidedbox and metaRequiredbox, which are shown in table 6.13. These
observers continuously update the discovery actor with information about
what patterns are required and provided by actors running in the base Am-
bientTalk. If a matching pattern has been found by the discovery actor then
it sends a joinOn message to the native actor representing the base actor that
required the pattern. Similarly, if a pattern is no longer available the discovery
actor sends a disjoinOn message to the native actor that represents the base
actor that was previously joined.

The discovery actor provides and requires the same pattern AmbientTalk
such that these actors can discover one another when they are in each oth-
ers communication range. The discovery actor maintains a global structure
that contains what patterns local actors provide and require. When another
discovery actor is detected in its ambient then it transmits all the required
patterns of its local base actors. The other discovery actors can then match

6.4 The Active Object Layer 141

metaActorBehavior::root.extend({
...
initialize(anAgActor) :: {

...
metaRequiredbox.addSyncAddObserver({

discovery#addRequiredPattern(self, el) });
metaRequiredbox.addSyncDeleteObserver({

discovery#removeRequiredPattern(self, el) });
metaProvidedbox.addSyncAddObserver({

discovery#addProvidedPattern(self, el) });
metaProvidedbox.addSyncDeleteObserver({

discovery#removeProvidedPattern(self, el) });
...

};

‘callback message for discovery actor‘
joinOn(aPattern, providerActor) :: {

idx: metaRequiredbox.findFirst(aPattern.getTxt() = el.getTxt());
if(not(is_void(idx)), {

metaJoinbox.add(agTableP.cloneMe([providerActor, aPattern])) })
};

‘callback message for discovery actor‘
disjoinOn(aPattern, providerActor) :: {
idx: metaJoinbox.findFirst({

and(el.isTable(),
el.getTbl()[1].getAct() = providerActor.getAct(),
el.getTbl()[2].getTxt() = aPattern.getTxt()) });

if(not(is_void(idx)), {
resolution: metaJoinbox.delete(idx);
metaDisjoinbox.add(resolution) })

};
...

});

Table 6.13: Code Corresponding to Discovery in metaActorBehavior

these patterns and send the mail addresses of base actors that provide matching
patterns. Since both discovery actors discover one another (because they both
require and provide the “AmbientTalk” pattern) the same protocol is executed
at both actors concurrently.

6.4.8 Concurrency Issues

In the previous chapters we have discussed three properties (discussed in sec-
tions 4.5.5 and 5.2.2) to avoid concurrency issues. We will now briefly discuss
how these design principles are realized in the context of the metacircular Am-
bientTalk implementation:

• Mailbox Privacy states that mailboxes cannot be shared between actors.
In the metacircular implementation this property is guaranteed, because
metacircular actors are represented as native actors and mailboxes are
implemented as passive objects. As a consequence of the containment
principle, passive objects and thus mailboxes, are never shared between
actors.

• Serial mailbox access states that a mailbox can only be manipulated by an
actor or (exclusive) the actor system at the same time. The actor system
manipulates mailboxes as a result of communication events such as the

142 AmbientTalk and Metalinguistic Abstraction

transmission of a message. In the metacircular implementation presented
above we have not made the transmission of messages entirely explicit.
Indeed, there is no explicit communication component in the metacircular
implementation. Instead actors communicate directly with one another
via the native AmbientTalk interpreter. As a result the serial mailbox
access property is inherited from the native AmbientTalk.

• the Containment principle states that no passive object can be shared by
active objects. We have explained in section 5.2.2 that the containment
principle was implemented at the native level through call-by-deep-copy
parameter passing. Each time a parameter is passed over the boundaries
of an active object it is deeply copied. In the previous chapter we have
seen that there are two places where a parameter crosses an active object
boundary. First, a new actor is created with a passive object to initialize
the actor’s behavior. This passive object is passed as call-by-deep-copy to
prevent sharing between the newly created object and its creator. Sec-
ond, when an asynchronous message is sent from one actor to another the
message has to be deeply copied. Both actor creation and asynchronous
message passing are translated to a native actor that is created and a
native message that is sent. As a result, we can rely on the containment
principle of the native AmbientTalk implementation.

Hence, in the metacircular implementation the properties all, either directly
or indirectly, a result from the properties of the native AmbientTalk imple-
mentation. Note however, that this is a result from the design choice to take
maximum advantage of the concurrency and distribution properties of the na-
tive AmbientTalk we made at the beginning of this section. For example, had
we chosen to more explicitly represent the communication layer of AmbientTalk
and encapsulated that layer into a hypothetical separate actor (henceforth called
the communication layer actor) then the serial mailbox access property would
not be inherited from the base-level AmbientTalk implementation. In that case
all metacircular actor communication would be relayed through the communi-
cation layer actor. As a result, such a communication layer actor would have
an internal representation for the outboxes of all actors. However, each base
actor also has an internal representation of their outbox local to that actor.
Since mailboxes are represented as passive objects they cannot be shared be-
tween a metacircular implementation of a base actor and the communication
layer actor. As a result two copies of that mailbox would exist and would need
to be consistently synchronized with one another each time they are manipu-
lated. In the current metacircular implementation of AmbientTalk presented
here we used synchronous mailbox observers (introduced in section 6.4.3) to
synchronize native and metacircular mailboxes. However, with the introduction
of a communication layer actor native and metacircular mailboxes would not
always be local to the same actor anymore. Hence, similar race conditions to
the ones explained in section 6.4.3 could occur. As a consequence, special care
for the design of the mailbox synchronization protocol between the metacircular
actors and the communication layer actor should be taken in order to preserve
the serial mailbox access property, because both concurrently manipulate their
representation of the same mailbox.

6.5 Reflection 143

6.5 Reflection

In the previous chapter we have discussed the core of the AmbientTalk kernel
and we have come to the conclusion that although the kernel implements the
ambient actor model from the previous chapter it does not provide abstractions
sufficient to structure application for mobile networks. In this section we will
explore reflection as a means to define such abstractions. Reflection was ex-
plored in the context of object-orientation by Pattie Maes [Mae87] in the late
eighties, but since then it has also been used as tool to structure concurrent
and distributed applications [CM93, McA95, MMY96]. This section extends
AmbientTalk with reflective operators. We have modeled reflection as a reifica-
tion of implementation data structures at the metacircular level that are made
available in the base AmbientTalk and absorbing base-level AmbientTalk ob-
jects back into the interpreter. This methodology of introducing reflection into
a language was first proposed Smith [Smi82, Smi84].

AmbientTalk reifies part of its active object layer with the goal to serve as
a language laboratory for facilitating experiments with ambient-oriented lan-
guage constructs. We have chosen not to reify the passive object layer, because
we want to focus on language constructs that deal with the coordination and
interaction of actors. In the previous section we have discussed part of the se-
mantics of AmbientTalk’s active object layer in the form of the metacircular
implementation. In this section we further detail this semantics in the same
spirit, that is by means of an implementation in AmbientTalk. However, the
semantics explained in this section is the parts that are reified and can be re-
flected on in the base AmbientTalk. The active object layer mainly consists of
a protocol that defines how asynchronous messages are sent between two actors
(that might reside on different machines). This protocol is also present in the
metacircular implementation, explained in the previous section. Each stage in
this protocol between the two interpreters is reified in the meta-object protocol
(MOP) and is further discussed below. However, before we discuss this we detail
how messages are reified and absorbed in the interpreter.

6.5.1 Reification and Absorption of Messages

In the metacircular implementation we have seen that a message is implemented
as an agActorMessage object. Figure 6.2 shows that agActorMessage is in
fact an object extension of an agObject. This reveals that a message is rep-
resented in the base AmbientTalk as an object. Indeed, the base-level repre-
sentation of such a message prototype was shown in table 5.11 on page 117.
Both message and agActorMessage have the same interface. The implemen-
tation of the agActorMessage object is shown in table 6.14. The implemen-
tation shows that agActorMessage is a wrapper that makes the base-level
message object available in the metacircular AmbientTalk. For example, calling
agActorMessage.getSource at the metacircular level will result in a msg.getSource
call at the base-level if msg is the base-level message object delegated to by
agActorMessage.

144 AmbientTalk and Metalinguistic Abstraction

AbstractGrammar()::{
...
agValue()::{

...
agObject::{

...
agActorMessage(context)::{

sourceMethodName:: agTextP.cloneMe("getSource");
targetMethodName:: agTextP.cloneMe("getTarget");
nameMethodName :: agTextP.cloneMe("getName");
argsMethodName :: agTextP.cloneMe("getArgs");
setArgsMethodName :: agTextP.cloneMe("setArgs");

setContext(aContext) :: { context:=aContext };
getContext() :: { context };

getSource() :: {
closure: this().lookupConstant(sourceMethodName, super(), context);
closure.apply(agTableP, context)

};

getTarget() :: {
closure: this().lookupConstant(targetMethodName, super(), context);
closure.apply(agTableP, context)

};

getName() :: {
closure: this().lookupConstant(nameMethodName, super(), context);
closure.apply(agTableP, context)

};

getArgs() :: {
closure: this().lookupConstant(argsMethodName, super(), context);
closure.apply(agTableP, context)

};

setArgs(anArgsList) :: {
closure: this().lookupConstant(setArgsMethodName, super(), context);
closure.apply(agTableP.cloneMe([anArgsList]), context)

};

capture() ‘<- agActorMessage‘
};
...

}
...

}
...

}

Table 6.14: Absorption of a Message in the Metacircular AmbientTalk

6.5 Reflection 145

6.5.2 Reification and Absorption of Actor Communication

An actor deals with messages in three ways: first, it must be able to create
messages; secondly it must be able to send messages and finally an actor must
process messages it received. These three actions have been reified in the base
AmbientTalk using a similar scheme as for the reification of messages. In fig-
ure 6.2 we see that agActorBehavior is an object extension of an agObject.
The former represents a wrapper for metacircular passive objects that are used
as a behavior for an active object, similar to how agActorMessage objects are
wrappers for base-level message objects. Such base-level passive objects have
an implementation for the methods createMessage, send and process. Their
use and default implementations are discussed below.

Message Creation

In section 6.4.6 we have discussed two instances in the metacircular imple-
mentation where messages are created by an actor. This was reflected in the
metacircular code in table 6.12. Both the evaluation of a message selection
expression (act#m) and a message passing expression (act#m(a1, ..., an))
results in a message object that is created by calling createMessage on an
agActorBehavior object. The default implementation for createMessage, in-
cluded in the root object, is shown below.

createMessage(src, target, name, args)::message.new(src, target, name, args)

This method can be regarded as a factory for messages, sent by an active
object. The method is looked up in the passive object that defines the be-
havior of that actor. Hence, it is possible to override this method in an actor
behavior such that another implementation of a message is returned and used
as part of the communication process. This is a common technique which will
be used frequently for supporting the introduction of ambient-oriented language
constructs.

Message Sending

The second part of the communication process that has been reified in the base
AmbientTalk is message sending. This was also discussed in section 6.4.6 as part
of the metacircular implementation of message passing, defined in the method
asyncmessage of the agApplication mixin (code shown in table 6.12). A mes-
sage is sent by means of a call to the method send defined in agActorBehavior.
The default behaviour of message sending between actors is defined by the fol-
lowing method defined in the root object:

send(msg)::{
outbox.add(msg);
void

}

An expression of the form anActor#msg(a1, ..., an) is evaluated in terms of
a call to the meta-level method send. For example, the expression
mycounter#increment() is translated by the AmbientTalk interpreter to the
call send(createMessage(thisActor(), mycounter, "increment", []).

As illustrated below, it is possible to override the default behaviour by re-
defining the method send in the actor behavior. The example above displays

146 AmbientTalk and Metalinguistic Abstraction

“before send” and “after send”, respectively before and after sending the mes-
sage.

send(msg)::{
display("before send", eoln);
.send(msg);
display("after send", eoln)

}

Message Processing

Messages are processed at the metacircular level in metaActorBehavior by
the method processNextMessage, shown in table 6.10. processNextMessage
checks if the current actor behavior has a method definition for messages in its
inbox and if it is the case the process method is invoked on the agActorBehavior
wrapper. The default behaviour of an actor for processing a message is defined
by the following method in the root object in the base AmbientTalk:

process(message)::{
execute(message)

}

The method execute is part of the root object. It invokes the method associ-
ated with the name of the message in the behaviour of the actor.

The process method can be overridden just like the send method. Note that
the reflective operators send and process are aligned with the communication
mechanisms of the AAM. The send and process methods are implemented in
terms of the mailboxes outbox and inbox respectively. This is important in
the context of the preservation of the non-blocking characteristic of the AmOP
paradigm, which is discussed in the next section.

6.5.3 Mailboxes in the Context of Reflection

In section 5.4.4 we have discussed the design of first-class mailboxes in the ker-
nel and the use of mailbox observers to monitor changes. We will now consider
the use of first-class mailboxes again in the context of reflection. A metapro-
gram based on mailboxes consist of two types of actions, namely reification and
reflection of communication events.

Reification

Reification of communication events is achieved through the use of mailbox
observers. More particularly, we can use of mailbox observers to observe both
additions and deletions to mailboxes. Depending on the mailboxes that are
observed we can place hooks to intercept different communication events of the
actor system. To illustrate this, suppose that the methods onIncomingMsg and
onProcessedMsg are subscribed as mailbox observers for additions to the inbox
and rcvbox respectively.

onIncomingMsg(msg)::{ display("received ", msgName(msg), eoln) };
onProcessedMsg(msg)::{ display("processed ", msgName(msg), eoln) }

Since mailbox observers are scheduled with priority (discussed in section 5.4.4),
the onIncomingMsg method will be executed before the message it observed
is executed. As a result, these mailbox observers enable metaprograms that

6.5 Reflection 147

are based on events of the communication between actors. The notification of
changes in the mailboxes occurs in an asynchronous fashion so that this mech-
anism can be used to write event-based asynchronous metaprograms in the
language as illustrated by the two toy mailbox observers above.

The use of mailbox observers on an inbox is an alternative way to reify
low-level message reception in AmbientTalk’s meta-level interface. Message re-
ception is often introduced in meta-level architectures designed for distribu-
tion and concurrency, such as CodA [McA95] where it is reified by the accept
method. In CodA the accept method is used to intervene in the synchroniza-
tion and transmission of messages at the meta-level and concerns the interaction
between the sender and the receiver. The introduction of an accept method al-
lows a developer to design blocking communication abstractions. For example,
the accept method can be redefined such that a message is executed instead of
being placed in the inbox. This is in contrast to the mailbox observers found
in AmbientTalk. Mailbox observers give the flexibility to intervene in the syn-
chronization and communication process at the meta-level, while precluding the
implementation of blocking communication primitives. The reason for this is
that AmbientTalk’s meta-level interface reifies actor communication through an
asynchronous event based system such that messages are always placed in the
inbox before they are processed. Note that registering a mailbox observer for
additions on the inbox that immediately processes the message is the equivalent
of overriding an accept method that processes the message immediately. How-
ever, since the message is placed in the inbox first the message will be executed
independently of the control flow of the sender.

Reflection

Reflection of the communication events occurs through the direct manipulation
of mailboxes. A mailbox is most frequently manipulated through the methods
add, delete and get, which allow one to add, remove and retrieve elements
respectively. These methods enables metaprograms to intervene in the default
communication process amongst active objects. For example, outbox.delete(msg)
removes a message msg from the outbox, thereby preventing it from being trans-
mitted to another actor. Note that the reflection of the communication events
will never result in race conditions with the actor system, because of the prop-
erties we have discussed in sections 4.5.5 and 6.4.8 in the context of both the
ambient actor model and the metacircular implementation. We will now il-
lustrate the use of both reification and reflection mechanisms to introduce an
alternative behavioral synchronization mechanism.

Example

Consider the implementation of a synchronized bounded buffer in table 6.15,
which is based on enabled-sets that were introduced by Tomlinson and Singh
[TS89]. An enabled-set defines the messages, depending on the state of the
object, that may be processed. For example, an empty buffer (denoted by the
state empty) can process put messages, but no get messages. Conversely, when
there is no more space available for elements, the buffer is full and can only
process get messages and finally, when the buffer is neither full nor empty it is
in the intermediate state and can process all messages. The active enabled-set

148 AmbientTalk and Metalinguistic Abstraction

bufferBehaviour: root.extend({
MAX :: 3;
ptr : 1;
queue[MAX]: void;
enabledSet: vector.new();
delayedMbx: mailbox.new("delayed");
empty : [put, init];
intermediate : [put, get, init];
full : [get, init];

enable(methods)::{
enabledSet:=

vector.newWithTable(methods);
for(i:1, and(i<=delayedMbx.length(),

not(enabled)), i:=i+1, {
msg: delayedMbx.get(i);
if(isEnabled(msg), {

enabled:=true;
delayedMbx.delete(msg);
inbox.add(msg) })

})
};

isEnabled(msg)::
enabledSet.detect({

msg.getName() = getMethodName(el) });

put(el)::{
queue [ptr] := el;
ptr:=ptr +1;
if(ptr >MAX,

enable(full),
enable(intermediate))

};

get(el)::{
ptr:=ptr - 1;
client#result(queue[ptr]);
if(ptr = 1,

enable(empty),
enable(intermediate))

};

onIncomingMsg(msg)::{
if(not(isEnabled(msg)), {

inbox.delete(msg);
delayedMbx.add(msg) })

};

init()::{
inbox.addAddObserver(

thisActor()#onIncomingMsg);
enable(empty) }

})

Table 6.15: Bounded Buffer

can be changed with the method enabled.
The synchronization is handled by the inbox observer for additions named

onIncomingMsg. This observer checks if newly received messages are in the
active enabled-set. If this is not the case then the message is moved from
the inbox to a custom mailbox named delayed. In the other case no action
is undertaken such that the message remains in the inbox and is processed
accordingly. The active enabled-set is changed with the enable method. After
such a change it is possible that messages that were previously delayed can now
be processed. For this reason the enable method iterates over the delayedMbx
mailbox and moves enabled messages back to the inbox such that they are
processed.

6.5.4 Discussion

In the previous subsection, we have considered the use of mailboxes for reifying
and reflecting upon the communication processes in the AmbientTalk kernel.
The same mechanism of mailboxes and mailbox observers can be used for the
reification and reflection on the ambient of the AmbientTalk kernel. In the previ-
ous chapter, we have described how the mailboxes requiredbox, providedbox,
joinbox and disjoinbox are used to reify the environmental context of actors.
However, the reflective capabilities on the reified ambient are less expressive
than the reflective capabilities of the communication process. The reflection
of the communication process makes it possible to intervene and change the
communication process, thus enabling intercession. In contrast, the reification
of the ambient cannot change the environment directly, we can merely observe

6.6 Composition of Metaprograms 149

the environment and act upon these observations. To illustrate the difference,
it is possible to remove a message from the outbox thereby avoiding that it gets
transmitted, while removing a resolution from the joinbox will not remove the
discovered actor from the environment.

When designing a meta-level architecture one needs to be careful to avoid
infinite regression. Consider an active object with an inbox observer for addi-
tions. When a message is received by that active object, then the inbox observer
message is placed in the inbox, this will in turn cause an observer message to be
placed in the inbox and so forth. In all, the observer messages are observing the
observer messages themselves and so forth, which is causing an infinite regres-
sion. To prevent such an infinite regression mailbox observers do not observe
themselves.

6.6 Composition of Metaprograms

Based on the MOP explained in the previous section it is possible to write
metaprograms. However, we have not yet discussed how metaprograms are
composed together. To facilitate composition of metaprograms it is important
that metaprograms can be encapsulated and can be separated from the base-
level [BU04]. When we consider the code shown in table 6.15 again, it is clear
that it does not fulfill these encapsulation and separation properties because
the code of AmbientTalk’s MOP is not contained in separate module and is
tangled with the base-level code. In AmbientTalk we can use mixin methods
for both encapsulation and separation of metaprograms. Table 6.16 shows the
meta-level code of the enabled-set from table 6.15 factored out and encapsulated
in a mixin method. Mixin methods that encapsulate an extension of the MOP
are henceforth called meta-mixins. An important advantage of encapsulation
is information hiding, which enables the interchangeability of modules. Meta-
mixin methods support such interchangeability, for example it is possible to
reuse the bounded buffer, shown in table 6.15 with a different implementation
of an enabled-set mixin on the condition that it supports the same interface,
which is the common rule to enable interchangeability in the object-oriented
paradigm.

Mulet et al. [MMC95] already noticed that the use of mixins could provide
an expressive means for composition of meta-objects. Classic inheritance has the
disadvantage that, when used as a means to compose meta-classes together, they
must fix the order of the inheritance hierarchy. Another disadvantage of classic
inheritance is code duplication if the same code is to be reused in the context
of multiple parent classes. Meta-mixins do not have these disadvantages, they
benefit from the same type of flexibility that is achieved with base-level mixins,
which was discussed in section 5.3.4. Hence, meta-mixins can flexibly choose
the linearization order of different mixins at run-time. This flexibility enables
that the different meta-mixins can be reused in different contexts. Nevertheless,
it is necessary to carefully design the meta-mixins with reuse in mind.

6.6.1 Implementing Language Constructs using Meta-Mixins

Above, we have discussed mixins as the unit of encapsulation for changes to
the meta-layer. However, if we consider the meta-mixin for enabled-sets, shown

150 AmbientTalk and Metalinguistic Abstraction

enabledSetMixin()::{
enabledMethods: vector.new();
delayedMbx : mailbox.new("delayed");

‘public part of language mixin‘
enable(methods)::{

enabledMethods:=
vector.newWithTable(methods);

enabled: false;
for(i:1, and(i<=delayedMbx.length(),

not(enabled)), i:=i+1, {
msg: delayedMbx.get(i);
if(isEnabled(msg), {

enabled:=true;
delayedMbx.delete(msg);
inbox.add(msg) })

})
};

‘private part of language mixin‘
isEnabled(msg)::

enabledMethods.detect({
msg.getName() = getMethodName(el)
});

onIncomingMsg(msg)::{
if(not(isEnabled(msg)), {

inbox.delete(msg);
delayedMbx.add(msg) })

};

capture()
};

Table 6.16: Language Mixin for EnabledSets

bufferBehaviour: root.extend({
MAX :: 3;
ptr : 1;
queue[MAX]: void;

put(el) :: {
display("put", eoln);
queue [ptr] := el;
ptr:=ptr +1

};

get(client) :: {
display("get", eoln);
ptr:=ptr - 1;
client#result(queue[ptr])

};

syncMixin()::{
put(el)::{

.put(el);
if(ptr >MAX,

enable(full),
enable(intermediate))

};

get(el)::{
.get(el);
if(ptr = 1,

enable(empty),
enable(intermediate))

};

empty : [put, init];
intermediate : [put, get, init];
full : [get, init];

init()::{
inbox.addAddObserver(

thisActor()#onIncomingMsg);
enable(empty) };

requires(enabledSetMixin);
capture()

}
});

bb: actor(bufferBehavior
.enabledSetMixin().syncMixin())

Table 6.17: Bounded Buffer Redesigned with Mixins

6.6 Composition of Metaprograms 151

in table 6.16, then we can see that it does not only override the MOP, but
also introduces a method enable that interacts with the behavior defined in
the meta-mixin. Hence, this meta-mixin does not only redefine the MOP but
also provides an interface that is to be used from the base-level to steer the
behavior of the meta-level. In AmbientTalk we consider such meta-mixins as
language constructs, because as opposed to most meta-programs they do not
remain transparent to the base-level. Meta-mixins that are used to introduce
language constructs are called language-mixins. Reflection has been explored
before [MMY96] in the context of adding parallel and distributed language
constructs to an existing language. This mechanism of introducing language
constructs into the AmbientTalk kernel based on reflective modifications is im-
portant because it facilitates easy experimentation with language constructs for
ambient-oriented programming.

6.6.2 Scoped Reflection

When extending the semantics of the kernel through its MOP, it is sometimes
useful to scope the effects of these changes. For example, if we want to employ
reflection for debugging purposes we want to collect only relevant information
with respect to the bug. There are three reasons why scoped reflection is par-
ticularly useful in the context of our research:

• Scoped reflection is useful is the introduction of language constructs through
the MOP. Many language constructs delimit their application scope. For
example, the synchronized keyword in Java delimits a method or block
of statements.

• Scoping the reflection is also interesting from the perspective of integrating
different language concepts. When designing a new language one has to be
careful not to fall into the trap of feature piling, rather before adding a new
concept to a language one has to think if it is possible to unify existing con-
cepts of a language to realize the same semantics of that feature [Hoa73].
To support this unification approach of language design one needs to be
able to experiment with the integration of language concepts. In Ambi-
entTalk new language concepts can be introduced reflectively. Hence, in
AmbientTalk the integration of concepts translates to the integration of
reflective changes. A reduced scope of these changes thus facilitates the
integration of language concepts and their associated language constructs
because their interactions can be more easily anticipated.

• Another advantage for scoping the reflection is that locality permits econ-
omy in the use of computational resources as Hoare also noted in his paper.
Indeed, if a language feature is not used its impact on resources should be
limited or nil.

In this subsection we discuss four different techniques to scope the effects of
metaprograms.

Global and Active Object Scope

The default reflective operators presented in this chapter reside in the root ob-
ject. The reflective operators can be redefined in the same root object (using

152 AmbientTalk and Metalinguistic Abstraction

assignment) or locally overridden in a particular object extension through the
use of mixin methods. In the former case, which as called global scope, the
redefined reflective operators will change the behavior of all newly defined ac-
tors in the system. In the latter case, which is called active object scope, the
redefined reflective operators will only affect the actors defined from that object
extension. Hence, in the former case the changes will be global, while in the
latter case the reflective extensions will be restricted to the active object itself.
However, actors will not be affected by changes to the root object made after
they have been initialized, because actors are initialized with a deep copy of the
passive object to enforce the containment principle explained in section 5.2.2.
Global scope is mainly used to configure AmbientTalk with a particular exten-
sion, which avoids the burden of having to apply the same MOP extensions to
all objects. Active object scope on the other hand allows one to flexibly ex-
periment and configure active objects with a redefined MOP according to their
requirements.

Message Scope

Based on the MOP presented above we can create a design pattern to make
the extensions of the AmbientTalk kernel local to the scope of a single message
sent from one active object to another. The rationale of the design pattern
is to involve messages in the processing semantics. Table 6.18 (left) shows
the code of a meta-mixin based on this principle. This meta-mixin overrides
the createMessage such that it returns an extension of a message object that
contains a method process which takes the behavior of the active object as its
argument and in turn calls execute to execute the method associated to itself.
The mixin also overrides the process method in the active object behavior
to pass on the responsibility of processing the message to the message itself.
Once that we have applied this message-scope mixin to the behaviors of active
objects, it is possible to create extensions of the message scope such that it
contains behavior which will be executed along the control flow of a message. For
example, table 6.18 (right) shows an implementation of such a meta-mixin. This
mixin redefines the process method of the message such that acknowledgments
are sent back to the sender once a message has been processed by its receiver.
Note how both the messageScopeMixin and ackMixin make use of dynamic
object extensions. In the former case the message returned by the super-call
to createMessage is dynamically extended to include the process method and
in the latter case a further extension of such a message is made such that
this process method is redefined to send an acknowledgment message. Hence,
with each call to createMessage in the delegation chain the existing message is
further augmented with behavior so that it finally has all the necessary behavior.

Also note that only the sender (and not the receiving actor) needs to be
extended with the ackMixin. However, both the sending and receiving actor
need to have the messageScopeMixin applied, unless one would initialize the
AmbientTalk kernel with this mixin applied to the root object. Nevertheless,
once the messageScopeMixin is applied to the receiver each message that is
received can individually determine how it should be processed.

6.6 Composition of Metaprograms 153

messageScopeMixin()::{

createMessageScope(aMessage)::{
aMessage.extend({

process(behavior)::{
behavior.execute(this())

}
});

createMessage(src, target,
name, args)::{

createMessageScope(
.createMessage(src,target,

name,args))
};

process(msg)::{
msg.process(this())

};

capture()
}

ackMixin()::{
createMessage(src, target, name, args)::{

.createMessage(src, target, name, args)

.extend({
process(behavior)::{

value: .process(behavior);
getSource()#ack(this());
value

}
})

};

ack(msg)::{
ui#display("message ",

msg.getName(),
" has been received.", eoln)

};

requires(messageScopeMixin);
capture()

}

Table 6.18: Message Scope Mixin (left) and an Acknowledgment Mixin based
on Message Scope (right)

Language Construct-Based Scope

Another type of scoping the reflection is based on the notion of a language
construct. In section 6.6.1 we have discussed that meta-mixins can be used
to define language constructs. These language constructs are represented as
methods that configure the redefined parts of the MOP. When such methods
are combined with the call-by-function parameter passing semantics, explained
in section 5.3.2, we can introduce language constructs that embed an expression
or a group of expressions. An example of such a language construct in Java
is the form synchronized(aLockObj) { ... statements ... }, where the
statements in the block are atomically executed in the context of a specific
lock. To introduce this type of language constructs in AmbientTalk from within
AmbientTalk itself it is useful if part of the MOP behavior can be overridden in
the context of the language construct so that the expressions are evaluated with
respect to the redefined behavior of that MOP.

We illustrate this type of scoping with a simple meta-mixin shown in ta-
ble 6.19. The language-mixin introduces a language construct log, which takes a
call-by-function argument block. This construct overrides both createMessage
and send. Note that both methods are overridden in the context of the log
method and not in the meta-mixin. Finally, the formal parameter block is
invoked in the dynamic scope of the language construct.

This type of scoping can be regarded as a form of local dynamic scoping of
the MOP. The dynamic scope combined with the invocation semantics of Ambi-
entTalk’s object model will cause block to be evaluated in the correct context.
Since block is called with dynamicScope its scope will be the log construct,
instead of the scope of the caller. The log construct its scope will be the context
of its caller, because it was called without a qualification. Remember that invo-
cations without a qualification are invoked in the context of the current scope

154 AmbientTalk and Metalinguistic Abstraction

languageConstructScopeMixin(logger)::{
notifyLogger@strings::{

logger#display@strings
};

log(block())::{

createMessage(s, t, n, a)::{
super().notifyLogger("before createMessage ", n, eoln);
msg: .createMessage(s, t, n, a);
super().notifyLogger("after createMessage ", n, eoln);
msg

};

send(msg)::{
super().notifyLogger("before message sent", eoln);
.send(msg);
super().notifyLogger("after message sent", eoln)

};

‘execute block in the current evaluation context‘
dynamicScope(block)()

};

capture()
}

Table 6.19: Example: Mixin using Language Construct Based Scope

MOP overridden/refined in Scope
root object global
object behavior all actors using that object as behavior
method language construct-based scope

(using local dynamic scoping)
message messaging protocol handling this single message

Table 6.20: Summary of the different Reflective Scopes

as a result of the dynamic closure creation scheme, explained in section 5.3.5.
Hence, block will be called in the scope of the overridden MOP chained to the
the scope of its caller.

The use of the log construct is shown below:

counter: actor(counterBehavior);

log({
counter#increase();
counter#decrease()

})

It illustrates that the scope of the expressions used in the language construct
can still refer to the scope outside of the language construct.

6.7 Conclusion

In this chapter we discussed the semantics of both the passive and active object
layers on the basis of a metacircular implementation. Based on this semantics

6.7 Conclusion 155

we have introduced a MOP into AmbientTalk. The MOP was designed to allow
one to redefine the communication processes of actors. We have discussed two
types of changes to the MOP. First, the methods (createMessage, send and
process) that interface with the AmbientTalk kernel language can be overridden
and redefined. Second, through the use of mailbox observers one can observe
changes made to the mailboxes and act on these changes. Next to the definition
of this MOP we have also discussed how these metaprograms can be introduced
gracefully with respect to some design principles. These design principles can
be applied through the use of meta-mixins. These meta-mixins can be flexibly
composed and allow one to introduce language constructs into the kernel. Next
to the composition possibilities we have also discussed several approaches to
scope the effects of the changes to the MOP. These approaches are summarized
in table 6.20.

The reflective capabilities that we introduced in the AmbientTalk kernel play
a vital role in the remainder of this dissertation. They facilitate experiments
language constructs for ambient-oriented programming and allow them to be
reused in different AmOP applications. In the following chapters we discuss
these experiments with language constructs.

156 AmbientTalk and Metalinguistic Abstraction

ev
al

(e
)

de
fin

e(
ex

p,
 e

)
de

cla
re

(e
xp

, e
)

as
sig

n(
ex

p,
 e

)
sy

nc
m

es
sa

ge
(d

ct
, e

)
as

yn
cm

es
sa

ge
(a

ct
, e

)
su

pe
rs

en
d(

e)
pr

in
t(e

)

ca
ll(

dc
t,a

ct
s,

e)
bi

nd
(d

ct
,a

ct
s,

e)

ag
Re

fe
re

nc
e(

na
m

e)

ev
al

(e
)

de
fin

e(
ex

p,
 e

)
de

cla
re

(e
xp

, e
)

as
sig

n(
ex

p,
 e

)
sy

nc
m

es
sa

ge
(d

ct
, e

)
su

pe
rs

en
d(

e)
pr

in
t(e

)

ag
Ta

bu
la

tio
n(

ex
pr

, i
dx

)

ev
al

(e
)

pr
in

t(e
)

ag
De

fin
iti

on
(in

v,
 e

xp
)

ev
al

(e
)

pr
in

t(e
)

ag
De

cl
ar

at
io

n(
in

v,
 e

xp
)

ev
al

(e
)

pr
in

t(e
)

ag
Sy

nc
M

es
sa

ge
(in

v,
 e

xp
)

ev
al

(e
)

pr
in

t(e
)

ag
As

yn
cM

es
sa

ge
(in

v,
 e

xp
)

ev
al

(e
)

pr
in

t(e
)ag

Su
pe

r(i
nv

)

ev
al

(e
)

pr
in

t(e
)

ag
Va

lu
e(

)
pr

in
t(e

)

lo
ok

up
Co

ns
ta

nt
(n

am
,th

s,
 e

)
co

nt
ai

ns
Co

ns
ta

nt
(n

am
, t

hs
,e

)
lo

ok
up

An
y(

na
m

,th
s,

e)
se

tV
ar

ia
bl

e(
na

m
,th

s)
ad

dV
ar

ia
bl

e(
na

m
,th

s)
ad

dC
on

st
an

t(n
am

,th
s)

lo
ok

up
(n

am
,th

s,
m

yD
ct

,e
)

ge
tM

et
aV

al
ue

()
ch

an
ge

(n
,v

)ag
Vo

id
()

pr
in

t(e
)

lo
ok

up
(n

am
,th

s,
m

yD
ct

,e
)

ch
an

ge
(n

,v
)

ag
Bi

nd
in

g(
na

m
,v

al
,n

xt
)

pr
in

t(e
)

pa
re

nt
()

pi
co

Cl
on

e(
up

to
)

lo
ok

up
Co

ns
ta

nt
(n

am
,th

s,
 e

)
co

nt
ai

ns
Co

ns
ta

nt
(n

am
, t

hs
,e

)
lo

ok
up

An
y(

na
m

,th
s,

e)
se

tV
ar

ia
bl

e(
na

m
,th

s)
ad

dV
ar

ia
bl

e(
na

m
,th

s)
ad

dC
on

st
an

t(n
am

,th
s)

ad
dF

ra
m

e(
)

lo
ok

up
(n

am
,th

s,
m

yD
ct

,e
)

ag
O

bj
ec

t(c
st

,v
ar

,n
xt

)

pr
in

t(e
)

ge
tM

et
aV

al
ue

()

le
ng

th
()

ad
d(

el
em

en
t)

re
m

ov
e(

el
em

en
t)

de
le

te
(n

r)
ge

t(n
r)

se
t(n

r,
va

lu
e)

co
nt

ai
ns

(a
Va

lu
e)

ite
ra

te
(it

(e
l))

se
le

ct
(p

re
d(

el
))

fin
dF

irs
t(p

re
d(

el
))

de
te

ct
(p

re
d(

el
))

m
ap

(m
p(

el
))

ad
dA

dd
O

bs
er

ve
r(n

ot
ify

(e
l))

ad
dD

el
et

eO
bs

er
ve

r(n
ot

ify
(e

l))

ag
M

ai
lb

ox
(c

on
te

nt
s

ad
dO

bs
er

ve
r,

de
le

te
O

bs
er

ve
rs

)

pr
in

t(e
)

ap
pl

y(
ar

gs
, e

)
ge

tM
et

aV
al

ue
()

ag
Na

tiv
eC

lo
su

re
(n

at
, e

nv
)

pr
in

t(e
)

wr
ap

(e
)

ap
pl

y(
ar

gs
, e

)

ag
Fu

nc
tio

n(
na

m
, p

ar
s,

 b
od

y)

pr
in

t(e
)

ap
pl

y(
ar

gs
, e

)

ag
Cl

os
ur

e(
fu

n,
 e

nv
)

pr
in

t(e
)

ca
ll(

dc
t,

ac
tu

al
s,

 e
)

ge
t(i

)
se

t(i
, v

)
ge

tM
et

aV
al

ue
()

ag
Ta

bl
e(

tb
l)

pr
in

t(e
)

ge
tM

et
aV

al
ue

()

ag
Te

xt
(tx

t)
pr

in
t(e

)

ge
tM

et
aV

al
ue

()

ag
Nu

m
be

r(n
um

)
pr

in
t(e

)

ge
tM

et
aV

al
ue

()

ag
Fr

ac
tio

n(
nu

m
)

pr
in

t(e
)

ag
Co

nt
ex

t(c
ur

Dc
t,

th
sD

ct
,

su
pD

ct
, t

hi
sA

ct
or

)

pr
in

t(e
)

ap
pl

y(
ar

gs
, e

)
wr

ap
(e

)
ge

tM
et

aV
al

ue
()

ag
Na

tiv
e(

na
t,

na
m

)

ev
al

(e
)

ap
pl

y(
ar

gs
, e

)

de
fin

e(
ex

p,
 e

)
de

cla
re

(e
xp

, e
)

as
sig

n(
ex

p,
 e

)
sy

nc
m

es
sa

ge
(d

ct
, e

)
as

yn
cm

es
sa

ge
(a

ct
, e

)
su

pe
rs

en
d(

e)
wr

ap
(e

)
pr

in
t(e

)
ge

tM
et

aV
al

ue
()

ca
ll(

dc
t,a

ct
s,

e)
bi

nd
(d

ct
,a

ct
s,

e)

Ab
st

ra
ct

G
ra

m
m

ar
()

ev
al

(e
)

pr
in

t(e
)

ag
As

si
gn

m
en

t(i
nv

, e
xp

)

pr
in

t(e
)

ge
tM

et
aV

al
ue

()

ag
Ac

to
r(a

ct
)

cr
ea

te
M

es
sa

ge
(s

rc
, t

ar
ge

t,
na

m
e,

 a
rg

s)
ge

tS
ou

rc
e(

)
ge

tT
ar

ge
t()

ge
tN

am
e(

)
ge

tA
rg

s(
)

se
tS

ou
rc

e(
an

Ac
to

r)
se

tT
ar

ge
t(a

nA
ct

or
)

se
tN

am
e(

aN
am

e)
se

tA
rg

s(
aT

ab
le

)

ag
Ac

to
rM

es
sa

ge
(c

on
te

xt
)

ev
al

(e
)

de
fin

e(
ex

p,
 e

)
de

cla
re

(e
xp

, e
)

as
sig

n(
ex

p,
 e

)
sy

nc
m

es
sa

ge
(d

ct
, e

)
as

yn
cm

es
sa

ge
(a

ct
, e

)
su

pe
rs

en
d(

e)
pr

in
t(e

)

ca
ll(

dc
t,a

ct
s,

e)
bi

nd
(d

ct
,a

ct
s,

e)

ag
Ap

pl
ic

at
io

n(
ex

pr
, a

rg
s)

cr
ea

te
M

es
sa

ge
(s

rc
, t

ar
ge

t,
na

m
e,

 a
rg

s)
se

nd
(a

M
sg

)
pr

oc
es

s(
aM

sg
)

ag
Ac

to
rB

eh
av

io
r(c

on
te

xt
)

Figure 6.2: Abstract Grammar of the Metacircular Interpreter

6.7 Conclusion 157

m
bx

O
bs

er
ve

rs
m

et
aS

en
tb

ox
m

et
aI

nb
ox

m
et

aO
ut

bo
x

m
et

aR
cv

bo
x

ex
ec

ut
eM

es
sa

ge
(a

M
et

aM
sg

)
re

ce
ive

M
es

sa
ge

(a
M

et
aM

sg
)

pr
oc

es
sN

ex
tM

es
sa

ge
()

in
itia

liz
e(

an
Ag

Ac
to

r)

jo
in

O
n(

aP
at

te
rn

, p
ro

vid
er

Ac
to

r)
di

sjo
in

O
n(

aP
at

te
rn

, p
ro

vid
er

Ac
to

r)
se

nt
(a

M
et

aM
sg

)

m
et

aA
ct

or
Be

ha
vi

or

pr
in

t(e
)

pa
re

nt
()

pi
co

Cl
on

e(
up

to
)

lo
ok

up
Co

ns
ta

nt
(n

am
,th

s,
 e

)
co

nt
ai

ns
Co

ns
ta

nt
(n

am
, t

hs
,e

)
lo

ok
up

An
y(

na
m

,th
s,

e)
se

tV
ar

ia
bl

e(
na

m
,th

s)
ad

dV
ar

ia
bl

e(
na

m
,th

s)
ad

dC
on

st
an

t(n
am

,th
s)

ad
dF

ra
m

e(
)

lo
ok

up
(n

am
,th

s,
m

yD
ct

,e
)

ag
O

bj
ec

t(c
st

,v
ar

,n
xt

)

pr
in

t(e
)

ge
tM

et
aV

al
ue

()

le
ng

th
()

ad
d(

el
em

en
t)

re
m

ov
e(

el
em

en
t)

de
le

te
(n

r)
ge

t(n
r)

se
t(n

r,
va

lu
e)

co
nt

ai
ns

(a
Va

lu
e)

ite
ra

te
(it

(e
l))

se
le

ct
(p

re
d(

el
))

fin
dF

irs
t(p

re
d(

el
))

de
te

ct
(p

re
d(

el
))

m
ap

(m
p(

el
))

ad
dS

yn
cA

dd
O

bs
er

ve
r(n

ot
ify

(e
l))

ad
dS

yn
cD

el
et

eO
bs

er
ve

r(n
ot

ify
(e

l))

ag
M

ai
lb

ox
(c

on
te

nt
s

ad
dO

bs
er

ve
r,

de
le

te
O

bs
er

ve
rs

)

1

8.
.*

ac
to

rB
eh

av
io

r

m
ai

lb
ox

es

pr
in

t(e
)

ag
Co

nt
ex

t(c
ur

Dc
t,

th
sD

ct
,

su
pD

ct
, t

hi
sA

ct
or

)

pr
in

t(e
)

ge
tM

et
aV

al
ue

()

ag
Ac

to
r(a

ct
)

1
se

lf

1

co
nt

ex
t

ge
tS

ou
rc

e(
)

ge
tT

ar
ge

t()
ge

tN
am

e(
)

ge
tA

rg
s(

)
se

tS
ou

rc
e(

an
Ac

to
r)

se
tT

ar
ge

t(a
nA

ct
or

)
se

tN
am

e(
aN

am
e)

se
tA

rg
s(

aT
ab

le
)

ag
Ac

to
rM

es
sa

ge
(c

on
te

xt
)

1

cu
rre

nt
M

es
sa

ge

cr
ea

te
M

es
sa

ge
(s

rc
, t

ar
ge

t,
na

m
e,

 a
rg

s)
se

nd
(m

sg
)

pr
oc

es
s(

m
sg

)

ag
Ac

to
rB

eh
av

io
r(c

on
te

xt
)

Figure 6.3: Structure of metaActorBehavior

158 AmbientTalk and Metalinguistic Abstraction

Chapter 7

AmbientTalk at Work:
Ambient-Oriented
Language Constructs

In the previous chapter we have addressed two aspects of AmbientTalk. First, we
have defined the semantics of AmbientTalk through a metacircular implemen-
tation. Second, we have used this metacircular interpreter to define reflective
hooks that make it possible to define language extensions. The latter step en-
ables the use of AmbientTalk as a language laboratory for mobile distributed
systems. Given this setup, we can now address our first and second research
goal (discussed in section 1.1.3), namely to (1) uncover suitable language con-
structs that deal with the hardware characteristics we defined in section 2.3 and
(2) gain insight in the structure of AmOP applications.

7.1 Introduction

This chapter introduces a number of language constructs to explicitly deal with
the hardware phenomena encountered in mobile distributed systems. We have
adhered to the (functional programming) tradition of modular interpreters to
formulate these features as modular semantic building blocks – called language
mixins – that enhance AmbientTalk’s kernel. This methodology facilitates our
experimental approach and allows us to easily define a new AmbientTalk flavor
composed out of different combinations of language constructs.

The first part of this chapter addresses our research goal to discover language
constructs that deal with the hardware phenomena encountered while construct-
ing mobile distributed systems. In the next section we introduce a number of
synchronization and coordination abstractions to deal with the consequences of
the natural concurrency of the autonomous devices. These constructs are based
on existing synchronization constructs found in the state of the art. In sec-
tion 7.3 we address the ambient resources hardware phenomenon and introduce
special types of distributed object references, called ambient references. These
references encapsulate both the discovery of and communication with ambient
resources. As a result we can more easily structure AmOP applications that rely

160 AmbientTalk at Work: Ambient-Oriented Language Constructs

on ambient resources. Finally, in section 7.4 we present a language construct
to deal with the consequences of long-term disconnections. More particularly
a language construct is defined to specify customized message delivery strate-
gies based on the notion of timeouts. These timeouts can be used to deal with
application-specific issues related to message deadlines.

The second part of this chapter addresses our research goal to gain insight
in the structure of AmOP application. In section 7.5 we discuss two similar
AmOP applications. One application is developed in Java whereas the other
is developed in AmbientTalk using some of the language constructs explored in
this chapter. Subsequently, we compare both applications with respect to their
capabilities to deal with the hardware phenomena discussed in section 2.3.

7.2 Synchronization and Coordination

As discussed in section 2.3, one of the consequences of the autonomy of devices
is that their interactions are naturally concurrent. Concurrency implies a need
for synchronization such that the concurrent actions are meaningful and do not
lead to inconsistencies. This section discusses a number of language constructs
the aim of which is to coordinate the actions of various active objects that are
concurrently performing tasks. Most of the language constructs presented in
this section are based on existing abstractions which have proven their merits
in traditional distributed systems.

7.2.1 Guards

Introduction

In section 6.6 we discussed the language-mixin that introduced the enabled-sets
language construct (table 6.16 on page 150) into AmbientTalk. A problem with
enabled-sets [TS89] is that they do not separate the synchronization concerns
from the behavior. Indeed, the synchronization provided by the enable func-
tion and the conditions are crosscutting the methods get and set in the actor
(table 6.17 on page 150). A more declarative synchronization mechanism is the
use of guards, which were first introduced by Lucco [Luc87] and further studied
by Löhr [Löh92] in the context of Eiffel. A guard associates a boolean expres-
sion to each method and will delay a message upon reception if the associated
expression returns false.

Using guards, a bounded buffer object (shown in table 6.17 on page 150)
can be synchronized with two guard statements. The implementations of these
guards are expressed in the syncMixin.

syncMixin()::{
init()::{

.init();
guard(put, { ptr<=MAX });
guard(get, { ptr > 1 }) };

requires(guardsMixin);
capture()

}

7.2 Synchronization and Coordination 161

guardsMixin()::{
guards: vector.new();
guardedMethods: vector.new();

checkGuards()::{
activated:

vector.newWithVector(guardedMethods);
guards.iterate({

guardedMethod: el[1];
guardCond : el[2];
if(not(guardCond()),

activated.remove(guardedMethod))
});
enable(activated.asTable())

};

guard(method, condition())::{
guards.add([method, condition]);
if(not(guardedMethods

.contains(method)),
guardedMethods.add(method))

};

onProcessedMsg(msg)::{
checkGuards()

};

init()::{
.init();
checkGuards();
rcvbox.addAddObserver(

thisActor()#onProcessedMsg)
};

requires(enabledSetMixin);
capture()

};

Table 7.1: Language Mixin introducing Guards

Implementation in AmbientTalk

Table 7.1 shows the implementation of the guardsMixin, which has been im-
plemented as an extension of the enabledSetMixin, shown in table 6.16 on
page 150. The guard function takes two parameters: the first parameter is the
method that needs to be guarded and the second parameter is a call-by-function
condition for the guard that determines when the method can be activated. The
method is paired with a condition closure in a table, which is added to the
vector guards. Hence, the vector guards maintains a structure of all guards
registered by an actor. guardedMethods maintains a structure of all guarded
methods. The method checkGuards iterates1 over all guard definitions and cre-
ates a vector containing the guards that returned false. Based on this vector
the language construct enable is used to activate the methods whose guard
evaluated to true. All guards are checked after processing a message, this is
achieved by registering an observer for additions to the mailbox rcvbox in the
init method.

Evaluation

Guards can be introduced both in a blocking and non-blocking concurrency
model. Nevertheless, the resulting semantics is different. Consider that a
method is invoked when the guard of that method returns false. In a blocking
concurrency model it is the process of the calling active object that will block
until the guard associated with the method returns true. This is in contrast to
a non-blocking concurrency model where the process of the calling active object
will not be blocked, irrespective of the result of the evaluation of the guard as-
sociated with that method. In that case the message will not be processed until

1The iterate method is defined with a call-by-function argument (discussed in sec-
tion 5.3.2) that is parameterized with el. The expression provided as an argument is executed
by the iterate method for each element in the mailbox, with el bound to that element.

162 AmbientTalk at Work: Ambient-Oriented Language Constructs

the guard associated with that method returns true but the process context in
which the method was invoked does not block. Note that this is also the case for
the enabled-set synchronization mechanism, on which the guards mechanism is
based.

A common evaluation criterion for synchronization schemes is its ability
to deal with the inheritance anomaly problem [MY93]. The problem is that
synchronization code cannot be effectively inherited without non-trivial re-
definitions of the ancestors. In [MY93] it has been shown that traditional
guards abstractions are insufficient to resolve the inheritance anomaly because
the guards are immutably linked to methods. Our solution differs from this
in that guards have been reflectively implemented and as such the guards con-
figuration can be changed at run-time. This enables the developer to adapt
the guards configuration based on the object extensions. It has been shown
[MY90, MY93] that by manipulating the guards at the meta-level the effects of
the inheritance anomaly can be resolved.

The implementation of this language construct is based on the reification of
the communication traces. More particularly it is based on the reification of the
stream of messages in the inbox. This might not be entirely obvious when look-
ing at the code, since no mailboxes are accessed. However, the implementation of
the guardsMixin is based on the implementation of the enabledSetMixin that
has been implemented by moving messages from the inbox to the delayedMbx
when they are to be delayed. This was discussed in section 6.5.3.

7.2.2 Token-passing continuations

Introduction

(One-way) asynchronous message passing in the actor model necessitates exten-
sive use of callback methods to process replies to sent messages. This is illus-
trated by the example introduced in table 5.9 on page 115: when the method
get is invoked, a callback result message is sent along to return the result to
the caller. The use of callbacks complicates the structure of the code and is also
known to be a source of race conditions [BY87].

Token-passing continuations are a programming abstraction, introduced in
the actor language Salsa [VA01], to specify a message sending order based on
the data flow between different actors. The data flow is specified by a sequence
of message-based continuations parameterized by a token, which represents the
return-value of the previous continuation. Its use is illustrated below:

checking<-getBalance() @
savings<-transfer(token) @

standardOutput<-println("transfer completed = ", token);

In the example, there are two actors representing accounts, checking and
savings, and an actor standardOutput for printing. The example transfers the
balance from the checking to the savings account and finally prints the status
of the transaction. <- is used to denote an asynchronous method invocation.
In Salsa, the @-sign defines a partial order on a sequence of messages. The
last message will not be sent before the second message, and that one will not
be sent before the first one. These messages represent the continuations of the
computation, hence the name of the language construct. token is a special
keyword within the scope defined by the previous token-passing continuation.

7.2 Synchronization and Coordination 163

The token actually represents the return value of the previous message send.
Therefore, the first occurrence of token refers to the result of getBalance, while
the second occurrence refers to the result of transfer.

Implementation

In AmbientTalk the example above can be expressed using the tokenPassing
language construct as follows:

tokenPassing(
checking#getBalance(),
savings#transfer(token),
standardOutput#display("transfer completed = ", token, eoln)

)

Table 7.2 shows the implementation of the tokenPassingMixin, which adds
the tokenPassing construct to allow imposing a dataflow order on actor mes-
sages. It is based on the design pattern to introduce the message-based scope,
which has been discussed in section 6.6.2. The mixin introduces a special kind
of tokenMessage extension for message objects. Such a message holds a con-
tinuation message, denoted with cont, and the placeHolder, which is used to
represent unresolved tokens. We have chosen to represent this placeHolder as
an actor for two reasons. First, an actor has a globally unique address, which
cannot be forged. Second, representing the unresolved token as an actor enables
the token to be used as a target address for token-based continuations of the
form:

... @ token <- msg() @ ...

The token-passing continuation language construct is represented by the
method tokenPassing, which takes a variable number of call-by-function argu-
ments exps, parameterized with a formal parameter named token. Both call-
by-function and variable argument lists were discussed in section 5.3.2. The
body of this tokenPassing method reveals that two elements of the MOP are
redefined. First, the createMessage method is redefined such that it creates a
linked list of token messages with first pointing to the first continuation mes-
sage. Second, the send method is overridden such that the active object does
not send the messages evaluated in the context of the tokenPassing method.
After redefining the MOP the method iterates over the expressions in the table
exps and invoke them with the placeHolder as its argument in the dynamic
scope. Hence, each expression in exps will be evaluated in a scope where the
redefined MOP is visible such that all messages sent in this evaluation context
will form a linked list of messages. Finally, the head of the linked list of token
messages, referred to by first, is sent by performing a super-send to the send
method.

The manner in which the token messages are handled is defined in the mes-
sages themselves, because we used the message scope design pattern introduced
in section 6.6.2. The process method defined in tokenMessage calls setToken
on the continuation message after the message has been processed. setToken
replaces the placeHolder in the message with the result after which this con-
tinuation message is forwarded. The same meta-process is repeated until there
are no more continuation messages to be sent.

164 AmbientTalk at Work: Ambient-Oriented Language Constructs

tokenPassingMixin()::{
placeHolder: actor(root.extend({ void }));

tokenMessage(aMsg)::{ msg: aMsg.extend({
cont : void;
placeHolder: void;

isPlaceHolder(anActor)::
anActor=placeHolder;

setPlaceHolder(aPH)::placeHolder:=aPH;
setContinuation(aMsg)::cont:=aMsg;
getContinuation()::cont;
setToken(aResult)::{

if(isPlaceHolder(getTarget()),
setTarget(aResult));

args: getArgs();
for(i: 1, and(not(is_void(args)),

i<=size(args)), i:=i+1,
if(isPlaceHolder(args[i]),

args[i]:=aResult))
};

process(behavior)::{
value: .process(behavior);
if(not(is_void(cont)), {

cont.setToken(value));
behavior.send(cont) });

value
}

});
msg.setPlaceHolder(placeHolder);
msg };

tokenPassing@exps(token)::{
first : void;
msg: void;

createMessage(s, t, n, a)::{
‘constructs a linked list of ‘
‘messages that were sent‘
‘with the continuation‘
‘pointing to the next message.‘
if(is_void(first), {

msg:=tokenMessage(
.createMessage(s, t, n, a));

first:=msg
}, {

next: tokenMessage(
.createMessage(s, t, n, a));

msg.setContinuation(next);
msg:=next

})
};

send(msg)::void;

for(i:1, i<=size(exps), i:=i+1,
dynamicScope(exps[i])(placeHolder));

‘add the first message in the outbox‘
.send(first)

};

requires(messageScopeMixin);
capture()

};

Table 7.2: Language Mixin for token-passing continuations

7.2 Synchronization and Coordination 165

Figure 7.1 shows the messages that are sent as a result of executing the
above expression. The diagram shows that it is the responsibility of the actors
that processes the message to send the continuation message to the next target.

aClient checking

Legend:

<<item>> : continuation
 : async msg

savings standard
Output

getBalance(<<transfer(token, <<display(...)>>)>>)

transfer(43784, <<display(...)>>)>>

display(...)

tokenPassing(
 checking#getBalance(),
 savings#transfer(token),
 standardOutput#display(...))

Figure 7.1: Behavior of Token-Passing Continuations

Evaluation

Token-passing continuations were first introduced in Salsa, which is based on the
actor model and therefore respects the non-blocking communication characteris-
tic. In fact, the token-passing continuations language construct was specifically
designed to express coordination in the context of asynchronous communication
and thereby enhance the expressiveness of this communication model.

Token-passing continuations have a limited expressiveness due to the rigid
use of tokens. The main reason for this limited expressiveness is that the scope of
a token is restricted to the previous continuation. For example, it is impossible
to assign a token to some variable and reuse it in another context such as another
message. If we want to achieve such flexibility we need to introduce a method
that assigns the value represented by the token to the variable.

assignTokenToBalance(aBalance)::{
balance:=aBalance;
balance

};

transferMoney()::{
tokenPassing(

checking#getBalance(),
thisActor()#assignTokenToBalance(token),
checking#withdraw(token),
savings#deposit(balance),
standardOutput#display("transfer completed = ", token, eoln))

)
}

The example above illustrates that such semantics forces us to introduce
the method assignTokenToBalance, which is in fact another callback. Hence,

166 AmbientTalk at Work: Ambient-Oriented Language Constructs

token-passing continuations do not completely eliminate the need for callbacks
and can thus only be used to express a limited number of coordination patterns.

7.2.3 Futures

Introduction

A more flexible manner to express data flow-based distributed computations is
to enrich the language with futures [Hal85, LS88] (also called promises). Futures
are placeholders for the eventual result of an asynchronous call, similar to tokens
but without the scope limitations found in token-passing continuations. A future
is a proxy for the result to be computed. Once the result is computed the future
is said to be resolved. A newly resolved future forwards the messages it received
while it was unresolved to the result. Afterwards it forwards every incoming
message immediately to the result. Futures allow programs to be written that
use asynchronous communication but that still exhibit a control flow similar to
that of code based on synchronous communication:

result: aQueue#pop();
...
result#print()

Futures are a well-established concept that has been incorporated in a variety
of distributed programming languages [KB92, TMY94, Mil04, De 04]. Vari-
ous flavors of futures exist. For instance, consider the case where the print
message is sent to the future represented by the result variable before that
future has been resolved. In some languages the process evaluating this ex-
pression is automatically and transparently suspended until the future has been
resolved with the result of the pop. Other languages, such as Argus [LS88]
and ABCL [YBS86], provide a construct to explicitly wait for the result to be
computed. Such blocking future semantics is in conflict with the non-blocking
communication characteristic of ambient-oriented programming languages that
we advocated in chapter 3, because it is an implicit blocking receive statement.
Hence, although one can write what appears to be sequential programs, these
futures are in fact a potential source for (distributed) deadlocks.

The flavor of futures we integrated in AmbientTalk is based on the promises
of the contemporary distributed language E [MTS05, Mil04], which were explic-
itly designed to support non-blocking communication. In E, when a message is
sent to an unresolved promise, called a, then the process that sent the message
is not blocked. Instead that message is queued at the unresolved promise a and
a new promise b is associated with the enqueued message. This new promise
b is returned as the result of the asynchronous method invocation sent to the
promise a. This process, called promise pipelining [MTS05], is repeated until no
more message are sent. At the moment promise a is resolved then its enqueued
messages are automatically forwarded to the result represented by a. Eventu-
ally the promise b and other promises will become resolved and this process is
repeated until no unresolved promises remain.

Quite often code may depend on the return value of an asynchronous invo-
cation, despite the fact that this cannot be conveniently expressed by sending a
message to the result. The following code excerpt gives such an example:

aFuture: aQueue#isEmpty();
...
if(aFuture, doSomething())

7.2 Synchronization and Coordination 167

The conditional expression can only be evaluated after aFuture has been re-
solved. In concurrency models based on wait-by-necessity [Car89] this is achieved
by blocking the evaluation of the conditional expression until aFuture has been
resolved. An alternative approach is taken in E that introduces a when construct.
This construct allows one to specify a closure that is scheduled for execution
after a given future has been resolved. Note that the when construct does not
block, it will execute its code block asynchronously when the future is resolved.
The example below shows how this construct is used in AmbientTalk. The first
argument of when refers to the future that must be resolved before the closure
can be evaluated. The second argument refers to a block of expressions that are
wrapped in a closure. In the scope of the closure the variable content refers to
the result that was used to resolve aFuture.

aFuture: aQueue#isEmpty();
...
when(aFuture, if(content, doSomething()))

Implementation

The implementation of non-blocking futures is shown in table 7.3. An execution
trace based on this implementation and the queue example from above with non-
blocking futures is shown in figure 7.2. When a message is sent, a future actor
is created and passed along as an attachment to the message. As described
above the future acts as a placeholder for the result of the message. When
the result is computed the future’s resolve method is invoked. This method
iterates over the inbox and forwards its messages to the result. After being
resolved all new incoming messages are forwarded to the result by the observer
method onIncomingMsg.

The futuresMixin, shown in table 7.4, adapts the message handling process
using the messageScopeMixin. The method createMessage is redefined such
that a new future actor aFuture is attached to every message sent. The message
is extended using the futureMessageMixin shown below to be able to store the
mail address of the future actor. The method send is redefined such that this
future actor is returned as the result of the asynchronous call.

As shown below, the process method is refined in the futureMessageMixin
of a message such that the value that results from running the method is sent
to the future actor via resolve message.

futureMessageMixin(future)::{
...
process(behavior)::{

value: .process(behavior);
future#resolve(value);
value

};

capture();
}

The implementation of the when construct is included in futuresMixin,
shown in table 7.4. The first argument of the when method is a future actor.
The second argument is a call-by-function parameter (discussed in section 5.3.2)
that adds the associated closure to a vector whenBlocks. This vector contains
all the blocks registered as a result of invoking the when construct.

168 AmbientTalk at Work: Ambient-Oriented Language Constructs

future:root.extend({
resolved: void;
subscribers: vector.new();

new()::copy({
subscribers:=vector.new();
resolved:=void });

init()::{
inbox.addAddObserver(

thisActor#onIncomingMsg) };

subscribe(anActor)::{
subscribers.add(anActor);
if(is_resolved(resolved), {

anActor#notify(resolved) })
};

resolve(content)::{
subscribers.iterate(

el#notify(content));
resolved:=content;
inbox.asVector().iterate({

msg: el;
forward(msg)

})
};

forward(msg)::{
if(and(is_actor(resolved),

not(containsBehaviour(
msg.getName()))), {

inbox.delete(msg);
msg.setTarget(resolved);
outbox.add(msg) })

};

onIncomingMsg(msg)::{
if(not(containsBehaviour(msg.getName()))

&& is_resolved(resolved), {
forward(msg)

})
}

});

Table 7.3: Implementation of Non-Blocking Futures in AmbientTalk

futuresMixin()::{
whenBlocks: vector.new();
newId : 1;

createMessage@args::{
aFuture: actor(future.new());
msg: .createMessage@args;
msg.futureMessageMixin(aFuture)

};

send(msg)::{
.send(msg);
msg.getFuture()

};

invokeWhen(anId, content)::{
whenBlocks.get(anId)@content

};

when(aFuture, code(content))::{
whenBlocks.add(code);
aFuture#subscribe(

actor(futureObserver.new(newId,
thisActor())));

newId:=newId+1;
void

};

requires(messageScopeMixin);
capture()

}

Table 7.4: Implementation of the futuresMixin

7.2 Synchronization and Coordination 169

aClient aQueue

create
aFuture

pop(<<aFuture>>)

print(<<aFuture2>>) aResultcreate

resolve(aResult)

print(<<aFuture2>>)

Legend:

<<item>> : attachment
 : async msg

aFuture2

create

resolve(aResult2)

aQueue#pop()

result#print()

Figure 7.2: Behavior of Non-Blocking Futures

The when construct spawns a new futureObserver actor which is subscribed
to the future actor. Below is the code that defines the behavior for the observer
that is used to support the when construct:

futureObserver: root.extend({
id: void;
reference: void;
new(anId, aReference)::copy{ id:=anId; reference:=aReference };
notify(content)::reference#invokeWhen(id, [content])

});

The futureObserver actor is initialized with a unique number that corre-
sponds to the index in the whenBlocks vector that needs to be executed and
a reference to the actor that created the futureObserver. Upon notification,
invokeWhen is sent which in turn looks up the closure and executes it with
content bound to the resolved future value. Hence, the when construct is im-
plemented by introducing the observer pattern in the future object shown in
table 7.3 and the futureObserver actors are notified when the future receives
a resolve message.

Evaluation

Non-blocking futures in combination with the when construct allow one to link
an asynchronous message send to the code that is to be executed upon result
propagation. The when construct thus aligns the computational context in which
the message was sent with the one in which its result is handled without resorting
to blocking semantics. Furthermore, AmbientTalk’s non-blocking futures delay
the delivery of received messages until the expected result is ready to receive
them. Delayed messages are stored in the inbox of the actor that represents
a future. This shows that reified communication traces are at the heart of
realigning synchronisation with communication while strictly relying on non-
blocking communication primitives as prescribed by the AmOP paradigm.

170 AmbientTalk at Work: Ambient-Oriented Language Constructs

7.2.4 Combining Language Constructs

In this section we have introduced three language constructs, which were bor-
rowed from existing concurrent and distributed object-oriented languages, to
deal with coordination and synchronization of multiple processes in an expres-
sive manner. Note that actors endowed with different combinations of these
language constructs can coexist in the same system. For example, an actor
based on token-passing continuations can interact with an actor based on the
non-blocking futures. This flexibility originates from the message-based scope,
discussed in section 6.6.2, such that the message itself and not the actor behavior
defines how the message is processed.

It is even possible for the token-passing continuations to coexist with non-
blocking futures in the same actor behavior. At first sight, it might not make
sense to combine futures and token-passing continuations, since the semantics
of token-passing continuations seems to be equally expressible using the futures
language construct based on nested when constructs. The example used in
section 7.2.2 can be rewritten as follows:

tokenPassing(
checking#getBalance(),
savings#transfer(token),
standardOutput#display("transfer completed = ", token, eoln)

)

when(checking#getBalance(), {
when(savings#transfer(content), {

standardOutput#display("transfer completed = ", token, eoln) }) })

Both exhibit the same semantics, but their underlying messaging protocol is
different. The protocol of the rewritten example is shown in figure 7.3 and can
be compared to figure 7.1 on page 1652. It is clear that the version based on
when is less efficient in terms of messages sent over the network. What is more,
in the context of volatile connections the semantics is different. Suppose that
the actors aClient, checking, savings and standardOutput, depicted in the
figures, are running on separate devices, then the when-protocol requires that
aClient must remain connected because it defines the “continuation” of the
protocol, whereas in the protocol of the tokenPassing language construct the
continuations are embedded in the message such that aClient does not have to
remain connected after it sent the message.

The integration of token-passing continuations and non-blocking futures is
not straightforward because both meta-mixin implementations of these language
constructs define how a message is processed. Both language-mixins define
a message processing protocol. However, the message processing protocol of
token-passing continuations is only enabled in the context of the tokenPassing
method due to the MOP that is only overridden in this method based on the
local dynamic scope we discussed in section 6.6.2. Nevertheless, the message
that is sent as a result of the token-passing continuation is to be combined
with the non-blocking futures. Hence, the message processing protocols that
implement the semantics of the token-passing continuations and non-blocking
futures have to be combined. In the code, in tables 7.2 and 7.4, this composition
of both protocols results from the mixin methods that are dynamically applied

2Note that figure 7.3 has been simplified by eliminating the futureObserver and future

actors from the figure.

7.2 Synchronization and Coordination 171

aClient checking

Legend:

<<item>> : attachment
 : async msg

savings standard
Output

getBalance()

transfer(43784)

display(...)

when(checking#getBalance(),{
 when(savings#transfer(content), {
 standardOutput#display(...) }) })

invokeWhen(...)

invokeWhen(...)

Figure 7.3: Token-Passing Continuations Expressed with nested when-
statements

to the message objects in the createMessage method. A message sent in the
context of both non-blocking futures and token-passing continuations will be a
tokenMessage with a futureMessage as its parent that in turn has a message
object as its parent. Each of these objects refines the process method of their
parent such that processing the tokenMessage message will result in invoking
the complete message processing protocol. Nevertheless, the fact that these
language constructs can be combined results from their design and special care
has to be taken during the design phase to make such combinations possible.
Note that not all language constructs can be combined in such a manner. It
might be that language constructs are inherently conflicting with one another
such that their combination is impossible. Hence, the combination of language
concepts and constructs has to be carefully evaluated per case.

7.2.5 Evaluation for AmOP

The language constructs presented in this section above show AmbientTalk’s
capabilities to express synchronization and coordination constraints in the face
of non-blocking communication primitives. Many synchronization constraints
are either expressed through the use of blocking statements such as in the case
of wait-by-necessity [Car89]. In the language constructs above synchronization
constraints are expressed in two different manners: First, in the case of guards
and enabled-sets synchronization is achieved by removing messages that need
to be synchronized from an inbox such that its scheduled execution is delayed.
The use of mailbox observers allow one to intercept messages before they are
processed without introducing a blocking communication primitive in the MOP.
Second, in the case of token-passing continuations and futures the messages
their execution is delayed because they reside in the inbox or outbox of an
intermediary actor. The fact that in both these cases the synchronization is
expressed in terms of mailboxes shows that the reified communication traces of

172 AmbientTalk at Work: Ambient-Oriented Language Constructs

the AmOP paradigm lies at the hart of realigning synchronization constraints
with the use of non-blocking communication primitives.

7.3 Ambient References

In this section we discuss programming language abstractions for addressing
the services located on remote devices in the ambient. As a concrete exam-
ple, consider a printer with a built-in printing service program. When the user
declares that he wants to print a file from his PDA, and he is in close proxim-
ity to the printer, an appropriate service discovery algorithm should bring the
PDAs objects in contact with the printing service. In regular object systems,
acquaintance relations between objects are represented as object references (i.e.
pointers). We therefore seek to explore abstractions for object references which
can denote remote objects on a context-sensitive basis. The goal of such ref-
erences is to both discover remote objects and to become a reference (i.e. a
communication channel) to them. We name such object references ambient
references [VDMD05].

Ambient references are a family of proxy abstractions, which enrich Ambi-
entTalk’s default service discovery mechanisms. These proxies define a suite of
distributed reference abstractions that unify the two concepts service discovery
and communication into a single concept. Ambient references can be thought
of as active object references that sniff the ambient given a textual description.
Once they discover actors fitting that description they become a communica-
tion channel to these actors. What is more, ambient references are resilient to
the effects of volatile connections: upon disconnection ambient references try to
rebind to a (potentially different) actor in the ambient fitting the description.
An ambient reference is a reference to such a service in the ambient of a device.
The use of ambient references is illustrated below:

printer: ambientRef("printer@300dpi");
printer#print(aFile)

ambientRef is parameterized with a pattern that denotes the service re-
quired from the ambient. Subsequently the message print is sent to the ambi-
ent reference. Note that the ambient reference need not be bound to an active
object at the time a message is sent. In accordance with the non-blocking com-
munication characteristic we discussed in section 3.3, the message sent will not
block the sending actor. Which actor the ambientRef binds to, and how it
handles the print message are dependent on the precise semantics used by the
reference. The following section provides an overview of the various options.

7.3.1 Design Spaces

The behavior of an ambient reference is determined by a combination of design
choices along three orthogonal dimensions:

Binding

An ambient reference can discover various suitable active object candidates to
bind with in its ambient. Such a situation gives rise to two possibilities. First, it
can bind to non-deterministically chosen active objects that are available in the

7.3 Ambient References 173

ambient. Such binding semantics has been studied by Black and Immel [BI93] in
the context of replication. Alternatively, the ambient reference can semantically
bind to all active objects available in the ambient. The ambient reference should
then be considered a group communication abstraction. In this case we have
to consider the multiple values returned by group invocations, which is further
discussed in section 8.2.2. Ambient references with the former binding semantics
are called mono ambient references, whereas ambient references with the latter
type of binding semantics are called multi ambient references. Mono ambient
references are useful in AmOP applications that require any ambient resource
that fulfills a certain pattern. The printer scenario above illustrates such a use.
Any printer that is able to print at 300 dpi can fulfill the printing job. On
the other hand, multi ambient references can be used in AmOP applications
that require communication with a group of ambient resources that match a
pattern. For example, in an airport a digital broadcasting system might inform
all passengers of a specific flight that boarding has started.

Re-Binding

When an unbound ambient reference discovers a suitable active object in its
ambient it will bind to that active object. The sturdiness of this binding can
vary. An ambient reference can bind to an active object and remain bound
to that object forever. In that case, if the active object to which it is bound
disappears from the ambient, then the ambient reference will rebind only when
the active object to which it was first bound reappears in the ambient. Such
a type of reference is called a strong ambient reference. This type of ambient
reference is required by applications that require interactions with the exact
same resource. For example, when a batch of print operations need to be
performed by the same printer.

In contrast, the binding of an ambient reference can be weak . Upon discon-
nection a weak ambient reference will rebind with any other matching active
object available in the ambient. Hence, it will rebind based on the naming
information rather than the identity of the active object to which it was first
bound. Weak ambient references are interesting for context-dependent interac-
tions, where the identity of the active object the application communicates with
depends on the ambient of the application. An example of this is a single print
instruction that needs to be performed by any printer in the direct ambient of
a device.

Delivery Guarantees

When a message is sent to an unbound ambient reference, the message can either
be lost or its delivery can be guaranteed. The required semantics depends on the
application. Guaranteeing eventual delivery of messages to ambient resources
is not always useful and can be a waste of resources. For example, if an active
object receives updated information at a high updating frequency then it does
not matter if some messages are lost because the lost information becomes
redundant due to the high frequency. In contrast, guaranteed eventual delivery
of messages is useful in many applications because it enables abstraction over
volatile connections.

174 AmbientTalk at Work: Ambient-Oriented Language Constructs

7.3.2 Implementation

The different dimensions discussed above are reflected in the implementation
of the ambientRefBehavior object, which is shown in table 7.5. This object
reflects a weak multi ambient reference with guaranteed delivery. The init
method registers the pattern that describes the actors to which the ambient
reference will bind and subscribes a number of mailbox observers for additions
on the joinbox, disjoinbox and inbox. These observers form the core imple-
mentation of the ambient references:

• onJoined: When first discovering an actor providing a matching pattern,
all messages that were accumulated in the inbox are sent to that actor.
This is a bootstrap phase such that all messages sent to the ambient
reference while it was unbound are delivered to the first active object that
is found in the ambient. Also note that each message is deleted from the
inbox such that it doesn’t get delivered multiple times. Furthermore, the
reference is also added to the vector refs which maintains all the active
objects in the ambient to which the ambient reference is bound.

• onDisjoined: If an active object that provides a pattern disappears from
the ambient then all the pending messages to that active object are re-
moved from the outbox and that active object’s reference is removed from
the vector refs such that the active object will no longer receive the mes-
sages sent to the ambient reference.

• onIncomingMsg: if the ambient reference receives a message and it is
bound to at least one reference then the message is delivered to all the
references to which it is bound. Finally, the message is deleted from the
inbox.

Based on this implementation of weak multi ambient references we have de-
fined a number of mixin methods to explore the other dimensions, shown in
table 7.6. The strongMixin method overrides the onJoined and onDisjoined
methods such that the vector refs remains invariable. As such all messages are
delivered to the group of active objects independent from their current availabil-
ity in the ambient. A weak ambient reference can be made strong by sending it a
snapshot message. This method uses the become method to change the behav-
ior of the ambient reference based on the strongMixin method. The monoMixin
method restricts the binding of the ambient reference to a single active object
in the ambient. The noDeliveryGuaranteeMixin removes messages from the
inbox even though there is no binding available in the ambient. Based on these
mixin methods we can create different variations of ambient references, as shown
in tables 7.5 and 7.6.

7.3.3 Discussion

The implementation of the different types of ambient references shown above
allows one to easily structure various ambient-oriented applications. This is be-
cause ambient references encapsulate two important aspects of ambient-oriented
applications, discovery and communication, in a single abstraction.

There are many subtle choices that need to be made when implementing
ambient references. For example, the delivery guarantee we have posed on the

7.3 Ambient References 175

ambientRefBehavior :: root.extend({
pattern : void;
refs : vector.new();

new(p) :: copy({ ... });

init() :: {
requiredbox.add(pattern);
joinbox.addAddObserver(

thisActor()#onJoined);
disjoinbox.addAddObserver(

thisActor()#onDisjoined);
inbox.addAddObserver(

thisActor()#onIncomingMsg)
};

onJoined(resolution) :: {
ref: provider(resolution);
refs.add(ref);
toForward: inbox.asVector();
toForward.iterate({

if(not(containsBehaviour(
el.getName())),

{ copiedMsg: el.copy();
copiedMsg.setTarget(ref);
outbox.add(copiedMsg);
inbox.delete(el) })

})
};
onDisjoined(resolution) :: {

ref: provider(resolution);
refs.remove(ref);
outbound : outbox.asVector();
outbound.iterate({

msgTarget : el.getTarget();
if (msgTarget ~ ref, {

outbox.delete(el)
})

});
disjoinbox.delete(resolution)

};

onIncomingMsg(msg) :: {
if(not(refs.length()=0) &

not(containsBehaviour(
msg.getName())), {

refs.iterate({
copiedMsg: msg.copy();
copiedMsg.setTarget(el);
outbox.add(copiedMsg)

});
inbox.delete(msg)

})
};

snapshot()::{ ... };

strongMixin()::{ ... };

monoMixin()::{ ... };

noDeliveryGuaranteeMixin()::{ ... };
capture()

});

WeakMonoAmbientRef(pattern) ::
actor(ambientRefBehavior.new(pattern)

.monoMixin());
WeakMultiAmbientRef(pattern) ::

actor(ambientRefBehavior.new(pattern));
WeakMonoNoDeliveryAmbientRef(pattern) ::

actor(ambientRefBehavior.new(pattern)
.monoMixin()
.noDeliveryGuaranteeMixin());

WeakMultiNoDeliveryAmbientRef(pattern) ::
actor(ambientRefBehavior.new(pattern)

.noDeliveryGuaranteeMixin());

Table 7.5: Implementation of Ambient References

176 AmbientTalk at Work: Ambient-Oriented Language Constructs

ambientRefBehavior :: root.extend({
...
new(p) :: copy({ ... });

init() :: { ... };

onJoined(resolution) :: { ... };
onDisjoined(resolution) :: { ... };
onIncomingMsg(msg) :: { ... };

snapshot()::{
become(this().strongMixin())

};

strongMixin()::{
onJoined(resolution)::void;
onDisjoined(resolution)::void;
capture()

};

noDeliveryGuaranteeMixin()::{
onIncomingMsg(msg) :: {

.onIncomingMsg(msg);
if(refs.length()=0,

inbox.delete(msg))
};
capture()

};
...

...
monoMixin()::{

onJoined(resolution) :: {
if(refs.length()=0, {

.onJoined(resolution) })
};

onDisjoined(resolution) :: {
ref: refs.get(1);
if(provider(resolution) ~ ref, {

outbound : outbox.asVector();
outbound.iterate({

msgTarget : el.getTarget();
if (msgTarget ~ ref, {

inbox.add(el)
})

});
.onDisjoined(resolution);

if (joinbox.length() > 0, {
next: joinbox.asVector().get(1);
onJoined(next) })

})
};

capture()
}

});

Table 7.6: Implementation of alternative Ambient Reference Design Spaces

implementation of weak multi ambient reference ensures that a message will get
delivered to at least one active object in the ambient. This delivery policy could
be strengthened and an ambient reference could try to deliver all messages to
all active objects that get bound to the ambient reference. Also, in the case of
multiple remote actors to bind to an ambient reference could consider secondary
criteria and base its binding choice on them, e.g. an ambient reference could
look for any printer in the ambient and if multiple printers are found then the
ambient reference binds to the printer with the highest resolution. These two
cases show that the work regarding ambient references discussed above is not
complete. Further experiments are needed to discover other useful dimensions
and to properly evaluate the required semantics of the ambient references in
different application scenarios.

Our notion of an ambient reference is very similar to that of a handle in
the many-to-many invocations (M2MI) paradigm [KB02]. M2MI handles use
Java interfaces to name other objects in a loosely coupled fashion and also
employ asynchronous message passing. M2MI distinguishes between unihan-
dles, multihandles and omnihandles. Roughly speaking, unihandles resemble
strong monoambient references, while multi- and omnihandles resemble strong
and weak multi-ambient references respectively. An omnihandle represents all
objects in communication range implementing the handle’s interface. A mes-
sage sent to an omnihandle means “every object out there that implements this
interface, call this method”.

Although M2MI was of great influence to the design of our ambient ref-
erences, there are some important differences. First, M2MI offers no delivery

7.4 Customized Message Delivery 177

guarantees: if a message is sent to an object which is not in communication
range at that time, the message is lost. Hence, message sending and delivery
are not decoupled as is the case with ambient references. The consequence is
that the responsibility of guaranteed message delivery is passed on to the appli-
cation itself. A second difference is that messages sent to M2MI handles do not
return a value, requiring the use of callbacks as explained previously. On the
other hand, ambient references can be combined with the futures language con-
structs we discussed in section 7.2.3 such that no callbacks are needed. Third,
the construction of uni- and multihandles differs from the creation process of
strong ambient references. In M2MI, objects must be explicitly attached to a
handle, i.e. the set denoted by such a handle is explicitly enumerated. Strong
ambient references dynamically discover their set content by taking a snapshot
of a weak reference. In M2MI, there is no notion of such “snapshots”.

7.3.4 Evaluation for AmOP

Ambient References establish and maintain a meaningful connection between
two actors over a volatile connection. The implementation of ambient refer-
ences heavily relies on AmbientTalk’s reified environmental context. The reified
environmental context plays a crucial role to manage the appearance and dis-
appearance of communication partners. The pattern based lookup mechanism
AmbientTalk inherited from the ambient actor model enables one to specify the
type of service that is required from the ambient. Another important AmOP
criterion that enables the implementation of ambient reference are the reified
communication traces. The reification of these communication traces are used
to flush messages accumulated during disconnection and to guarantee the de-
livery of messages. In the event of a disconnection weak ambient references
retract sent messages that have not been delivered by moving them from the
outbox into the inbox such that these messages. As a result, when a weak
ambient reference senses another suitable object and binds to that object then
these messages are delivered to the new object as opposed to the previously
bound object. Hence, access to the outbox enables an active object to “unsent”
undelivered messages.

7.4 Customized Message Delivery

The use of non-blocking communication primitives over volatile connections im-
plies that the time a message is sent does not always coincide with the time that
message is transmitted to the recipient. During this time interval the state of
the application may change, due to the fact that devices are autonomous, such
that it might no longer be necessary to transmit the message. An example of
such a situation is a meeting scheduler which requests to schedule a meeting for
tomorrow, while the message can’t be transmitted until the day after tomorrow.
In such situations the program needs to be notified such that it can take ap-
propriate actions. For this reason we have introduced a new language construct
named due. The situation sketched above can be captured as follows:

scheduleMeeting(anAgenda, meetingTime, meetingName)::{
due(timeout(meetingTime - time() - ONE_HOUR), {

anAgenda#schedule(meetingTime, meetingName)
}, [catch(true, thisActor()#recoverMeeting)])

178 AmbientTalk at Work: Ambient-Oriented Language Constructs

};

recoverMeeting(catchedMsg)::{
meetingName: catchedMsg.getArgs()[2];
stdio#display("Meeting ", meetingName, " could not be scheduled timely.", eoln);

};

The example above shows two methods scheduleMeeting and recoverMeeting
both implemented in an active object responsible for scheduling meetings. The
scheduleMeeting method sends the message schedule to anAgenda in the
scope of the due construct. The first argument of due is an arbitrary expiry
condition that defines when a message is to be considered as obsolete. In this
case the condition is a timeout set one hour before the meeting. The second ar-
gument is the expression evaluated in the context of the due language construct.
The messages sent as a result of evaluating this expression are subject to the
delivery semantics specified by the due construct. The last argument contains a
table of catch statements. These catch clauses define how an expired message
msg should be handled. Each catch statement consists of a condition and an
action in the form of a first-class message. The first-class message associated
with the first condition that returns true is sent upon expiration. In the ex-
ample above there is only one catch statement with a condition that always
returns true. The associated action recoverMeeting is parameterized with the
message that expired. Furthermore, after a message expires it will no longer be
delivered to its recipient.

7.4.1 Nested Due Blocks

It is possible to nest multiple due blocks such that multiple expiry-conditions
can be applied. To illustrate the use we adapted the example above such that the
meeting has multiple participants that are divided into two categories: required
and optional participants. The former must be present at the meeting, whereas
the latter are invited to the meeting but are not vital to the organization of
the meeting. We require the schedule messages sent to the required attendees
to be transmitted one week beforehand. Should one of these messages not be
transmitted within this deadline then then a cancelMeeting message is sent to
abort the meeting. An optional attendee that cannot be contacted is removed
from the participants list by sending a deleteFromParticipantsList. These
extra requirements are expressed as follows using nested due blocks:

scheduleMeeting(participants, optionalAttendees, meetingTime, meetingName)::{
due(timeout(meetingTime - time() - ONE_WEEK), {

due(timeout(meetingTime - time() - ONE_DAY), {
participants.iterate(el#schedule(meetingTime, meetingName))

}, [catch(optionalAttendees.contains(msg.getTarget()),
thisActor()#deleteFromParticipantsList)])

}, [catch(true, thisActor()#cancelMeeting)])
};

7.4.2 Implementation

As explained in section 5.2.3, AmbientTalk’s default delivery policy guarantees
eventual delivery of messages. Messages are stored indefinitely in the outbox
of an actor until they can be delivered. The due language construct alters this
policy by putting an expiration condition on outgoing messages. A due-block
consists of an expiration condition (relative to the time at which a message is

7.4 Customized Message Delivery 179

sent), a ‘body’ closure and a table of catch statements that define the handler
message to be sent upon expiration. When a message sent during the execution
of the body expires, it is removed from the actor’s outbox and the handler
message is sent with the expired message as argument. The implementation of
the due language construct consists of two separate language mixins:

• The DueMixin defines due which stamps all asynchronous messages sent
while executing its body with an expiration deadline and a handler mes-
sage to be sent upon expiration.

• The ExpiryCheckMixin makes an actor regularly check a specified mail-
box in order to remove expired messages and to send their corresponding
handler message.

The reason for separating the dueMixin and the expiryCheckMixin is that
messages often get forwarded through different actors before reaching their des-
tination. A typical example thereof is when actors are referred to indirectly via
an ambient reference as explained in section 7.3: a message sent to an ambient
reference first resides in the inbox of that ambient reference until the ambient
reference can bind to a corresponding actor. After the ambient reference is
bound to that actor the message is forwarded. Hence, a message may expire
in the inbox of the intermediary ambient reference rather than in the outbox
of the actor which originally sent the message. Another example is the future
implementation, which was discussed in section 7.2.3. Such intermediary ac-
tors must therefore be able to detect expired messages even though they do not
use the due construct. Hence, the expiryCheckMixin should be applicable to
ambient references and futures.

The language mixin dueMixin is defined in table 7.7. The dueMixin installs
the due construct in an actor and overrides the way its outgoing messages are
created in order to stamp those messages by extending them with an attribute
sendTime that contains the time the message was sent and a ‘complaint message’
which will determine how to react when the message expires. The overridden
createMessage method first creates a message object origmsg by delegating
to the default implementation. Subsequently, origmsg is extended with the
slots provided that it was invoked in the dynamic context of a due-block (i.e. if
dueBlocks contains the list of catch statements bound to handlers with their
expiration condition expiredCond rather than void). To allow dynamic nesting
of due-blocks, the current values of expiredCond and handlers are saved in a
linked list and are restored upon returning from the due body closure. For each
message that is sent in the due-block the appropriate handler is searched for
with findHandler. This method returns the condition under which the message
will be considered as expired and the associated expiry handler message. The
findhandler method invocation is preceded and proceeded by a boolean that
is flipped. This boolean is used to enable and disable the creation of expirable
messages. This is necessary because in the context of the findhandler method
handler messages are created encapsulated in the catch statements.

What remains to be explained is the expiryCheckMixin, shown in table 7.8,
that registers a first-class message tick with a local clock actor which period-
ically sends this message. Upon notification, the actor examines messages in
aMailbox stamped with a deadline to check whether they have expired. Ex-

180 AmbientTalk at Work: Ambient-Oriented Language Constructs

dueMixin() :: {
dueBlocks : void;
createDueMsg: true;
FIRST :: 1;
NEXT :: 2;

createMessage(src, target, name, args) :: {
origmsg:

.createMessage(src, target, name, args);
if(and(createDueMsg, !is_void(dueBlocks)),

{
createDueMsg:=false;
msgHandler : findHandler(origmsg);
createDueMsg:=true;
if (!is_void(msgHandler), {

extmsg: origmsg.dueMessageMixin();
extmsg

.setExpiryCond(msgHandler[1]);
extmsg.setSendTime(time());
complaintMsg : msgHandler[2];
extmsg.setComplaintMessage(

complaintMsg);
extmsg

},
origmsg)

},
origmsg)

};

due(expiredCond(timeout), block(), catches)::
{

dueBlocks :=
[root.makeDueBlock(expiredCond,catches),

dueBlocks];
block();
dueBlocks := dueBlocks[NEXT]

};

catch(cond(msg), handler(msg))::
root.makeCatchStatement(cond, handler);

findHandler(msg) :: {
findHandlerInDueBlock(handlers) :: {

result : void;
catchStatement : void;
for(i: 1, (i <= size(handlers))

& is_void(result), i:=i+1,{
catchStatement := handlers[i];
if(catchStatement.condition(msg),

{ result :=
catchStatement.handler(msg) })

});
result

};

currentDueBlock : dueBlocks;
result : void;
expiredCond: void;

while(!is_void(currentDueBlock) &
is_void(result), {

result :=
findHandlerInDueBlock(

currentDueBlock[FIRST].localHandlers);
expiredCond :=

currentDueBlock[FIRST].expiredCondition;
currentDueBlock := currentDueBlock[NEXT]

});

if(not(is_void(result)), {
[expiredCond, result]

}, void)
};

capture()
}

Table 7.7: Implementation of the dueMixin

7.5 Case Study: AmbientChat 181

expiryCheckMixin(aMailboxName, aDelay)::{
myNotifier : ticker(aDelay);
aMailbox: mailbox.get(aMailboxName)

‘invoked by myNotifier every aDelay millisec‘
tick()::{

aMailbox.asVector().iterate(
if(el.containsBehaviour("isExpired"),

{ if(el.isExpired(),
{ aMailbox.delete(el);

complaintMsg :
el.getComplaintMessage()

.copy();
complaintMsg.setArgs([el]);
send(complaintMsg) })

}))
};

init() :: {
.init();
rcvbox.addAddObserver(

thisActor#onProcessedMsg);
myNotifier#subscribe(

thisActor()#tick)
};

onProcessedMsg(msg)::{
.onProcessedMsg(msg);
tick()

};

capture()
}

Table 7.8: Implementation of the expiryCheckMixin

pired messages are deleted from aMailbox, which is the mailbox associated to
aMailboxName, and their handler message is sent to the appropriate actor.

7.4.3 Evaluation for AmOP

Due-blocks allow the sender to define, detect and deal with permanent dis-
connections. The due language construct shows that although AmbientTalk’s
default message delivery policy (discussed in section 6.4.5) implements a resum-
able communication model (where disconnections are not necessarily aligned
with failures), one can still cope with permanent failures by reflecting upon an
actor’s communication traces: by having access to an actor’s outgoing message
queue which reifies its outgoing messages yet to be delivered, expired messages
can be cancelled. Hence, the implementation of the due language construct was
made possible due to AmbientTalk’s support for reified communication traces.

7.5 Case Study: AmbientChat

In the previous sections we have discussed language features that deal with
hardware phenomena we discussed in section 2.3. This section discusses the
implementations of two similar chat applications that need to support these
hardware phenomena. One of the applications is written in Java, whereas the
other is written in AmbientTalk and uses some of the language features we
introduced in the previous sections. These two applications allow us to analyze
the differences between both languages.

Although a chat application is a fairly simple program it can be regarded
as a “benchmark” for mobile distributed systems analogous to the use of the
distributed whiteboard that is often used to compare how distributed platforms
deal with recurring issues when modeling a distributed shared state. In the
same way a chat application epitomizes many of the concerns that arise when
developing an AmOP application:

182 AmbientTalk at Work: Ambient-Oriented Language Constructs

• When two chat applications are in the ambient of one another they have
to detect each other before they can communicate.

• Once the chat applications have detected one another they have to be able
to exchange text messages.

• The chat application has to deal with volatile connections. i.e. commu-
nication failures resulting from volatile connections should not render the
application unresponsive to other chat applications whose connection is
not broken.

• Finally, the autonomy of a device requires that it can communicate with
nearby devices without relying on any infrastructure.

In this section we discuss two such chat applications, called BlueChat and Am-
bientChat. The next subsection discusses the implementation of BlueChat.
BlueChat was specifically designed to function on devices connected via a blue-
tooth interface. The implementation of the BlueChat application was published
[Hui04] because many people find it difficult to build such applications using
the current software technology. BlueChat is developed in Java on top of the
J2ME platform. Java is considered to be the prototypical contemporary pro-
gramming language that enables distributed programming for mobile devices.
Other languages such as C#, which are based on the dot-NET platform together
with the Compact Framework, exist but mostly have similar traits to the ones
found in Java. Section 7.5.3 discusses the implementation of AmbientChat.
The differences between these two applications are discussed in section 7.5.5,
which analyzes both applications based on their lines of code and support for
the hardware phenomena (discussed in section 2.3).

7.5.1 BlueChat

BlueChat [Hui04] is a chat application that was designed to function on small
devices using Bluetooth and runs on J2ME compatible virtual machines. The
application was written in Java and uses the Java API for Bluetooth Wireless
Technology (JABWT for short) [Gro02]. The application forms a virtual chat
room with other mobile devices that are in the communication range. Messages
sent are received by all parties that are in the communication range. This is a
small difference in functionality with the AmbientChat application we discussed
below, which was designed to support point-to-point communication. Neverthe-
less, both applications must deal with the same hardware phenomena. Our goal
is to discuss how BlueChat deals with these hardware phenomena. For this
reason we first briefly discuss certain aspects of the implementation below (a
more thorough can discussion can be found elsewhere [Hui04]).

BlueChat Implementation

The core functionality of the application is supported by five classes, whose im-
plementation has been included in appendix B. Conceptually, BlueChat nodes
in the network are represented as EndPoint objects. These objects enqueue
ChatPacket objects that need to be communicated to other nodes in the net-
work. ChatPacket objects encapsulate the low-level protocol of the chat ap-
plication. Each EndPoint object transmits ChatPacket objects through the

7.5 Case Study: AmbientChat 183

support of Reader and Sender objects. Each of these objects is associated
with its own thread and continuously reads and writes data from and to other
EndPoint objects.

NETLayer is a singleton class that provides the core functionality of the chat
application. Its main functions are to discover other devices in the communica-
tion range and provide an interface to facilitate the transmission of text in the
chat. Once a BlueChat application is found then a connection is automatically
established and an EndPoint object is created and maintained in a list in the
NETLayer.

The NETLayer is linked with a graphical user interface based on the model-
view-controller pattern. A message is emitted to the other BlueChat appli-
cations by invoking the method sendString. The graphical user interface is
further updated through the notification of events such as users that enter and
leave the communication range and messages that are received.

To give a taste of the BlueChat code we consider two aspects in more detail.
First, we discuss how ambient resources are detected. Second, we discuss how
communication is set up between devices. These two aspects are detailed below.

BlueChat Discovery

Other BlueChat applications in the ambient are detected through the use of
classes related to discovery in the JABWT API. The discovery occurs in two
phases. The first phase enables the discovery of bluetooth-enabled devices
in the communication range. The second phase enables the discovery of ser-
vices on these devices. The BlueChat discovery process is initiated in the
NETLayer.query() method as shown below:

public void query()
{

try {
agent.startInquiry(DiscoveryAgent.GIAC, new Listener());

}
catch (BluetoothStateException e)
{ ... }

}

This code initiates the discovery of devices by launching an inquiry on a
DiscoveryAgent object, whose implementation is part of the JABWT library.
The first argument defines the discovery mode of this agent. GIAC refers to
devices that are continuously discoverable. The second argument is a Listener
object implemented as an inner class of the NETLayer class. This object pro-
vides an implementation for a DiscoveryListener interface. The implemen-
tations of the methods related to the first discovery phase are shown in ta-
ble 7.9. The deviceDiscovered method gets invoked by the DiscoveryAgent
for each device it discovers in the communication range. The newly discovered
device is added to a list of pending endpoints. The endpoints are still pend-
ing because at this point in the discovery the application does not know if the
device is running a BlueChat application. The method inquiryCompleted is
invoked by the DiscoveryAgent when the inquiry finishes. The implementation
of this method schedules the second discovery phase. DoServiceDiscovery is
another inner class of NETLayer, shown in table 7.10. This class initiates a
search for services through the same DiscoveryAgent for each pending end-
point. The second argument UUID refers to a unique identifier associated with

184 AmbientTalk at Work: Ambient-Oriented Language Constructs

the bluechat application. The third argument refers to the device associated
with the pending endpoint on which the service has to be searched and the last
element refers to another Listener object that contains the callback methods
that correspond to the actions that need to be performed when a BlueChat ap-
plication service is detected. The implementations of these callbacks are shown
in table 7.11. The method servicesDiscovered reveals what services, repre-
sented by ServiceRecord objects, run on the endpoint associated with transId.
These ServiceRecord objects are placed in a map to avoid that a connection
to the same endpoint is initiated twice. This issue is further discussed below.
The method serviceSearchCompleted is invoked when the discovery agent
has completed its search for services on a device. This method iterates over the
map and opens the necessary connections with the BlueChat applications that
were discovered. The streams associated with these connections are handed off
to Sender and Reader objects to send and read data to and from the other
BlueChat applications.

This discovery mechanism was implemented in an asynchronous fashion
based on the observer pattern. Synchronization between callback methods is
done based on a shared lock. A callback that depends on the actions of the
other callback invokes the methods wait such that its process blocks until
the other callbacks signals that it has finished its task using the notifyAll
method. In this case the DoServiceDiscovery process has to wait until the
DiscoveryAgent object has completed its search for services before it can re-
move all pending EndPoint objects.

Communication

We have discussed above that a connection is initiated for each newly discov-
ered BlueChat service. These incoming connections are handled in the NETLayer
class, which runs in a separate thread. The method that accepts these incom-
ing connections is shown in table 7.12. The method starts by opening a server
stream connector to listen for incoming connections. This connector is asso-
ciated with the UUID that uniquely identifies the BlueChat application service
that is embedded in its URL. After the connector has been created it is asso-
ciated with a ServiceRecord object that provides low-level information about
the service. This information was used above to facilitate the search for services
on a device.

After this initialization round the thread goes into an infinite loop to lis-
ten on the connector for incoming connections. For each incoming connection
the application checks if a connection to an endpoint already exists. It needs
to do this because BlueChat applications are running on autonomous devices
and it is possible that multiple BlueChat applications are simultaneously per-
forming a connection with one another. Hence, due to concurrency that re-
sults two endpoints might be created to the same device. Nevertheless, this
approach is not race condition free. Consider that immediately after the exe-
cution of the statement endpt = findEndPointByRemoteDevice(rdev) the
discovery agent (who is running in a separate thread) performs a callback to
serviceSearchCompleted (its implementation was discussed above). This call-
back invocation will also setup the connections. Hence, if the thread of control
is switched back to the previous thread it will also setup connections to the
same endpoint.

7.5 Case Study: AmbientChat 185

public class NETLayer implements Runnable {

...

class Listener implements DiscoveryListener
{

public void deviceDiscovered(RemoteDevice remoteDevice,
DeviceClass deviceClass)

{
...
try
{

EndPoint endpt = new EndPoint(NetLayer.this, remoteDevice, null);
pendingEndPoints.addElement(endpt);

} catch (Exception e) { ... }
}

public void inquiryCompleted(int transId)
{

timer.schedule(new DoServiceDiscovery(), 100);
}

public void servicesDiscovered(int transId, ServiceRecord[] svcRec)
{

...
}

public void serviceSearchCompleted(int transID, int respCode)
{

...
}

} // inner class Listener

...
} // NETLayer class

Table 7.9: Implementation of the Callback Methods associated with Device
Discovery

186 AmbientTalk at Work: Ambient-Oriented Language Constructs

public class NETLayer implements Runnable {

...

class DoServiceDiscovery extends TimerTask
{

public void run()
{

for (int i = 0; i < pendingEndPoints.size(); i++)
{

EndPoint endpt = (EndPoint) pendingEndPoints.elementAt(i);
try {

endpt.transId = agent.searchServices(null,
new UUID[] { uuid },
endpt.remoteDev,
new Listener());

synchronized(lock)
{

try {
lock.wait();

}
catch (InterruptedException ex) { }

}
}
catch (BluetoothStateException e) { ... }

} // for
pendingEndPoints.removeAllElements();
ChatMain.instance.gui_log("", "You can start chatting now");

}
}

}

Table 7.10: Inner class DoServiceDiscovery initiates the Discovery of Services

This race condition illustrates the difficulty that arises when programming
for concurrent autonomous devices without a suitable concurrency strategy, even
in the case of simple programs.

7.5.2 BlueChat Evaluation

In this section we briefly consider how the BlueChat application deals with the
different hardware phenomena we discussed in section 2.3.

Ambient Resources

Ambient resources are detected through the use of a DiscoveryAgent object,
whose implementation is part of the JABWT library. This agent enables ap-
plications to search for other bluetooth-enabled devices in its communication
range. Once devices are found they can be searched for services. As can be
seen in the code in tables 7.9 and 7.10 the reification of the environmental con-
text requires the introduction of inner classes to deal with the events published
by the agent. The code that deals with these events needs to manually main-
tain and establish the different connections with the chat applications. What is
more, these events are asynchronously emitted and Java does not offer the right
abstractions to deal with the coordination between these events. As a result
coordination between events was implemented in an ad-hoc fashion based on
the concurrency primitives offered by Java.

7.5 Case Study: AmbientChat 187

public class NETLayer implements Runnable {

...

class Listener implements DiscoveryListener
{

public void deviceDiscovered(RemoteDevice remoteDevice,
DeviceClass deviceClass)

{
...

}

public void inquiryCompleted(int transId)
{

...
}

public void servicesDiscovered(int transId, ServiceRecord[] svcRec)
{

try {
for (int i=0; i< svcRec.length; i++)
{

Util.printServiceRecord(svcRec[i]);
EndPoint endpt = findEndPointByTransId(transId);
serviceRecordToEndPoint.put(svcRec[i], endpt);

}
}
catch (Exception e) { ... }

}

public void serviceSearchCompleted(int transID, int respCode)
{

...
for (Enumeration records = serviceRecordToEndPoint.keys();

records.hasMoreElements();)
{

try {
ServiceRecord rec = (ServiceRecord) records.nextElement();
String url = rec.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
StreamConnection con = (StreamConnection)Connector.open(url);
EndPoint endpt = (EndPoint) serviceRecordToEndPoint.get(rec);
if (endpt != null)
{

endpt.con = con;
Thread t1 = new Thread(endpt.sender);
t1.start();
Thread t2 = new Thread(endpt.reader);
t2.start();
endPoints.addElement(endpt);
endpt.putString(NetLayer.SIGNAL_HANDSHAKE, localName);

}
} catch (Exception e)
{ ... }

} // for
serviceRecordToEndPoint.clear();
synchronized(lock)
{

lock.notifyAll();
}

}
} // inner class Listener

...
} // NETLayer class

Table 7.11: Implementation of the Callback Methods associated with Service
Discovery

188 AmbientTalk at Work: Ambient-Oriented Language Constructs

public class NETLayer implements Runnable {
...

public void run()
{

StreamConnection c = null;
try
{

server = (StreamConnectionNotifier)Connector.open(
"btspp://localhost:" + uuid.toString() +";name=BlueChatApp");

ServiceRecord rec = localDevice.getRecord(server);
rec.setAttributeValue(0x0008, new DataElement(DataElement.U_INT_1, 0xFF));
Util.printServiceRecord(rec);
rec.setDeviceServiceClasses(

SERVICE_TELEPHONY);
} catch (Exception e)
{

e.printStackTrace();
log(e.getClass().getName()+" "+e.getMessage());

}

while(!done)
{

try {
ChatMain.instance.gui_log("", "Ready to accept connection. Wait...");
c = server.acceptAndOpen();

RemoteDevice rdev = RemoteDevice.getRemoteDevice(c);
EndPoint endpt = findEndPointByRemoteDevice(rdev);
if (endpt != null)
{
} else
{

endpt = new EndPoint(this, rdev, c);
Thread t1 = new Thread(endpt.sender);
t1.start();
Thread t2 = new Thread(endpt.reader);
t2.start();
endPoints.addElement(endpt);

}
}
catch (IOException e) {

e.printStackTrace();
log(e.getClass().getName()+" "+e.getMessage());
if (c != null)

try {
c.close();

}
catch (IOException e2) {

// ignore
}

}
finally {

// nothing to do here
}

} // while !done
} // end run()
...

} // NETLayer

Table 7.12: NETLayer.run method accepts incoming connections

7.5 Case Study: AmbientChat 189

Volatile Connections

The implementation of the BlueChat application makes a distinction between
graceful disconnections and unexpected disconnections. The former case occurs
when the user intentionally exits the chat application. In this case a termination
event is sent to other BlueChat applications which in turn clean up the necessary
resources. In the latter case a BlueChat application unexpectedly becomes
unavailable and the objects associated with the broken connection are removed.
This case is captured through Java’s exception handling mechanisms. BlueChat
offers no other functionality to recover from failures.

Autonomy

The BlueChat application preserves the autonomous nature of the devices and
does not rely on infrastructure. The autonomy is further preserved because
the JABWT library offers a peer-to-peer discovery mechanism. As explained
in section 3.3 the use of blocking communication primitives between shared
components conflicts with the locking mechanisms. This application tries to
avoid these problems by minimizing the use of locks such that resources remain
available and the autonomy is preserved. Nevertheless, this strategy preserves
the autonomy at the cost of race conditions. Race conditions can occur when
multiple Reader objects concurrently update the user interface.

Natural Concurrency

The BlueChat application does not impose much consistency constraints. The
concurrent nature of the BlueChat devices is preserved thanks to the use of
callbacks and threads. However, the race conditions we have found in the code,
of which one was described above, illustrates that even in simple applications
the natural concurrency phenomenon can easily introduce bugs in code based
on a thread based concurrency mechanism.

7.5.3 AmbientChat

AmbientChat is an instant messenger application designed to run on small mo-
bile devices. The application’s functionality is similar to BlueChat, but was
written in AmbientTalk and illustrates the use of two language constructs we
have discussed in this chapter, namely non-blocking futures (section 7.2.3) and
ambient references (section 7.3).

The AmbientChat application consists of two components. An instant mes-
senger component and an ambient sensor component. The complete code for the
instant messenger behavior is shown in table 7.13. Each instant messenger has
a uid that refers to the nickname of the chatter. buddies is a map of nicknames
to other remote instant messenger components. online is a map of remote in-
stant messenger addresses to nicknames. This map contains all current instant
messenger components that are available in the ambient. imSensor refers to the
ambient sensor component that is further discussed below. The init method ini-
tializes an ambient sensor to detect other instant messenger applications in the
ambient. It also publishes two strings in the ambient. The publish method is
implemented as publish(aPattern)::{ providedbox.add(aPattern) } and

190 AmbientTalk at Work: Ambient-Oriented Language Constructs

relies on the mailboxes that reify the environmental context, which were dis-
cussed in section 4.5.4. IMPATTERN refers to a unique string that identifies
applications as instant messenger components. Next to this pattern the compo-
nent also publishes the nickname of the chatter in the ambient. The nickname is
published to support device-independent communication. This feature of Ambi-
entChat is further discussed below. Besides the initialization method there are
a number of methods that make up the protocol of the instant messenger com-
ponent. getUID returns the nickname of the chatter. whoIsOnline shows the
nicknames of the chatters that are available in the ambient. addBuddy makes the
instant messenger application aware of a chat buddy. This is achieved by adding
a weak mono ambient reference to the buddy list3. sendMessageTo allows one
to send a text message to a chat client by means of his nickname. In the case the
chat client was previously unknown to a messenger he is automatically added
to its buddy list. After this text is displayed on the device of the chat client
to whom the text was sent it is also displayed on the instant messenger device
that sent the text message. This is expressed by means of the when language
feature discussed in section 7.2.3. The methods onChatJoined and onChatLeft
make the user aware of other mobile devices that run an instant messenger that
have become available or unavailable for communication, respectively. IMActor
embeds the instant messenger passive object in an active object.

7.5.4 AmbientChat Evaluation

Now that we have described the AmbientChat application we can discuss how
it deals with the different hardware phenomena we discussed in section 2.3.

Ambient Resources

Ambient resources are detected through an AmbientSensor component. The
implementation of this component is shown in table 7.14. An ambient sensor
component is parameterized with a pattern, which identifies the ambient re-
sources it needs to reify, and two first-class messages that are sent when the
ambient sensor detects an ambient resource matching the pattern has become
available or unavailable, respectively. The ambient sensor component is imple-
mented through the use of mailbox observers (discussed in section 5.4.4) on the
joinbox and disjoinbox mailboxes.

Volatile Connections

In AmbientChat volatile connections are dealt with at three different levels of
the application. Each level has its own specific purpose:

• First, when a connection breaks and is restored at a later stage then
the communication is automatically resumed as a result of the default
eventual delivery inherited from the underlying actor model. Hence, if
a user decides to send a text to a buddy that is currently not in the

3Note that by changing this method such that a weak multi ambient reference is added
instead of a weak mono ambient reference such that AmbientChat can send text messages to
a group of chat clients. In that case a weak multi ambient reference denotes a virtual chat
room and is initialized with the name of the chat room. Hence, in that case AmbientChat
features group communication similar to BlueChat.

7.5 Case Study: AmbientChat 191

IMBehaviour :: root.extend({
uid : "anonymous";
buddies : void;
online : void;
imSensor : void;

new(id) :: copy({
uid := id;
buddies := smallmap.new();
online := smallmap.newWithComparator(key1~key2)

});

init() :: {
imSensor := AmbientSensor(IMPATTERN, thisActor()#onChatJoined, thisActor()#onChatLeft);
publish(IMPATTERN);
publish(uid);
stdio#display("Chat started as ",uid, eoln)

};

‘Instant Messaging Protocol‘
getUID() :: { uid };
whoIsOnline() :: { online.getValuesVector().iterate(stdio#display(el," ")) };
addBuddy(buddyId) :: { buddies.put(buddyId, WeakMonoAmbientRef(buddyId)) };
sendMessageTo(buddyId,text) :: {

if (buddies.containsKey(buddyId),
when(buddies.get(buddyId)#receive(uid,text), {

receive(uid, text)
}),
{ stdio#display(buddyId, " added to buddylist",eoln);

addBuddy(buddyId);
sendMessageTo(buddyId, text) })

};
receive(from, text) :: { stdio#display(from,": ",text,eoln) };

onChatJoined(buddy) :: {
stdio#display("InstantMessenger detected in the ambient: ",buddy,eoln);
when (buddy#getUID(), {

stdio#display("buddy online: ",content,eoln);
online.put(buddy, content)

})
};

onChatLeft(buddy) :: {
if (online.containsKey(buddy),

stdio#display("buddy offline: ",online.delete(buddy),eoln))
}

}).futuresMixin();

IMActor(name) :: actor(IMBehaviour.new(name));
jessie: IMActor("Jessie");
jessie#sendMessageTo("Tom","Hi Tom");
jessie#sendMessageTo("Tom","How are you?");

Table 7.13: Instant Messenger Application in AmbientTalk

192 AmbientTalk at Work: Ambient-Oriented Language Constructs

ambientSensorBehaviour :: root.extend({
pattern : void;
onJoinMsg : void;
onDisjoinMsg : void;
new(p,aJoinMsg,aDisjoinMsg) :: copy({

pattern := p;
onJoinMsg := aJoinMsg;
onDisjoinMsg := aDisjoinMsg

});

init() :: {
requiredbox.add(pattern);
joinbox.addAddObserver(thisActor()#onJoined);
disjoinbox.addAddObserver(thisActor()#onDisjoined)

};

onJoined(resolution) :: {
copy: onJoinMsg.copy();
copy.setArgs([provider(resolution)]);
outbox.add(copy)

};

onDisjoined(resolution) :: {
disjoinbox.delete(resolution);
copy: onDisjoinMsg.copy();
copy.setArgs([provider(resolution)]);
outbox.add(copy)

}
});

AmbientSensor(pattern,onJoin,onDisjoin) ::
actor(ambientSensorBehaviour.new(pattern,onJoin,onDisjoin));

Table 7.14: Ambient Sensor

7.5 Case Study: AmbientChat 193

communication range of a device then that message will get automatically
delivered at the moment a connection can be made. The user is aware
when his text is actually transmitted because the text is only displayed
on his instant messenger after it has been displayed on the recipient his
instant messenger.

• The chat application supports offline communication before the users have
made acquaintance. In other words, a user can send a text while he is of-
fline to a buddy that he has never met before, based on his nickname. This
is expressed through the use of weak mono ambient references. If a buddy
is added to the buddy list then a weak mono ambient reference, which
is parameterized with the nickname of the buddy, is added instead of a
direct reference. Messages sent to the buddy are enqueued at the ambient
reference until it detects an instant messenger application with a corre-
sponding nickname. At that point the instant messenger automatically
transfers all the enqueued messages.

This scheme with the ambient references also makes communication device-
independent. Hence, if a user decides to run his instant messenger appli-
cation on another device (i.e. because he lost his previous device is broken
or upgraded to a newer model) then the other instant messenger applica-
tions will be able to communicate with him when he configured his new
device with the same nickname.

• Finally, if a chatter disappears from the ambient this is reported to the
user through the ambient sensor component.

Autonomy

The autonomy of the device is preserved because the instant messenger appli-
cation does not rely on any infrastructure to discover and communicate with
peers. All shared objects interact only through non-blocking communication
primitives. As a result no dependencies, originating from the use of locks, be-
tween actors are generated such that they remain entirely autonomous. More-
over, as opposed to the BlueChat application the autonomy does not come at
the cost of race conditions.

Natural Concurrency

AmbientChat does not impose much consistency constraints, similar to BlueChat.
Natural concurrency of the device is further preserved thanks to the non-blocking
communication primitives. These primitives ensure that methods will always
run to the end even in the face of communication failures. As such the instant
messenger remains available to respond to other instant messenger applications
or the user that is sending a message. Synchronization between AmbientChat
applications is expressed based on the non-blocking futures and the when con-
struct, discussed in section 7.2.3.

7.5.5 Discussion

Both the AmbientChat and BlueChat applications deal with the hardware phe-
nomena we discussed in section 2.3. However, BlueChat’s support to deal with

194 AmbientTalk at Work: Ambient-Oriented Language Constructs

Type AmbientChat BlueChat Factor

Application 22 45 2
Communication 5 210 42
Volatile Connections 3 80 26.7
Concurrency 5 37 7.4
Ambient Resources 43 102 2.4
Unspecified 10 111 11.1

Total 88 585 6.6

Table 7.15: Comparison of Lines of Code AmbientChat vs. BlueChat

volatile connections is limited compared to the support offered by the Ambi-
entChat. What is more, AmbientChat is expressed in 88 lines of code as opposed
to 585 lines for the BlueChat4.

To further compare the differences between both applications we have col-
ored each line of code in each application and attributed each color to a certain
aspect that has be dealt with. The exact colored regions of the code can be
found in appendices B and C. Table 7.15 summarizes the results of this identi-
fication of concerns. The most notable difference is the communication aspect.
In the BlueChat application much of the code deals specifically with the com-
munication between chat applications, whereas in AmbientChat very few lines
of code deal explicitly with this aspect. One reason for this is that many of
the communication aspects themselves are embedded in the AmbientTalk in-
terpreter. What is more, the communication between objects has been aligned
with the object paradigm such that communication is aligned with a simple
asynchronous method invocation. Another noteworthy difference is the number
of lines of code spent on dealing with volatile connections. In AmbientChat this
is minimized thanks to the use of the ambient references and the fact that the
communication is automatically resumed in the case of failures. In BlueChat
volatile connections are more pervasive in the code because they are handled as
exceptions.

7.5.6 Summary

In the second part of this chapter we have compared BlueChat and Ambi-
entChat, two chat applications designed to run on mobile devices. Both ap-
plications are subject to the hardware phenomena, which we described in sec-
tion 2.3, and need to deal with their consequences in the implementation. The
former chat application was written in Java using the JABWT library whereas
the latter was written in AmbientTalk. Even though the AmbientChat code
was a factor of six smaller than the code of BlueChat it provides better support
to deal with volatile connections. Such a comparison based on the number of
lines of code of a single program is not a foolproof scientific way to compare two
languages and draw definite conclusions. Nevertheless the number of lines of
code can be regarded as a “litmus test” to measure the expressiveness of AmOP
programs.

4To remove some of the bias of these result we have removed the documentation and only
considered the code of the core functionality and the concurrent and distributed aspects.

7.6 Conclusion 195

7.6 Conclusion

This chapter has presented five tentative high-level AmOP language features:
guards, token-passing continuations, non-blocking futures, ambient references
and due-blocks. We have adhered to the (functional programming) tradition of
modular interpreters to formulate these features as modular semantic building
blocks – called language mixins – that enhance AmbientTalk’s kernel. Am-
bientTalk’s basic semantic building blocks (consisting of the eight first-class
mailboxes, its mailbox observers and its reflective facilities) have been shown to
be sufficient to implement these abstractions.

What’s more, as discussed in chapter 4 the basic semantic building blocks
make AmbientTalk adhere to the AmOP criteria. Hence, since these language
mixins are constructed from these building blocks they adhere to the characteris-
tics of the ambient-oriented paradigm. Table 7.16 summarizes the dependencies
of the language constructs we defined and the communication characteristics of
the paradigm. Synchronization and coordination constructs rely on the use of
non-blocking communication and the reified communication traces. The com-
bination of both allows one to express synchronization and coordination con-
straints without the introduction of a blocking operator. Ambient references
heavily rely on AmbientTalk’s support for the reified environmental context
criterion in combination with the reified communication traces. Finally, long
term disconnections can be addressed by changing AmbientTalk’s default de-
livery policy. This delivery policy can be customized thanks to AmbientTalk’s
support for the reified communication traces criterion. The characteristic that
objects should be classless is not included in this table, because this is a property
that should be exhibited by the software components of a program as opposed
to the language constructs.

The language constructs offer support to deal with the hardware phenomena
we discussed in section 2.3:

• Volatile Connections
All the language constructs presented in this chapter indirectly support
volatile connections, because they rely on the fact that AmbientTalk’s
default communication strategy is to resume communication after a broken
connection is restored. However, in section 7.4 we introduced the language
constructs due that allows one to deviate from this default strategy, such
that long-term disconnections can be dealt with appropriately.

• Ambient Resources
Ambient references are a first wild proposal that deals with ambient re-
sources which a device encounters in its immediate environment. They
are promising abstractions, because they abstract both from discovery
and communication at the same time such that they can also be used to
deal with volatile connections through a means of intelligent rebinding of
resources. As a resource is no longer available in the ambient of a device,
it can search for a suitable replacement. Experiments have already shown
that there is a need for different flavors of ambient references to deal with
the different contexts in which they will be used. Further experiments are
needed to uncover a taxonomy and make a selection of suitable semantics
for AmOP applications.

196 AmbientTalk at Work: Ambient-Oriented Language Constructs

kind of language name non-blocking reified reified
construct: comm. comm. env.

traces context
Coordination guards Yes Yes No

tokens Yes Yes No
futures Yes Yes No

Ambient Mono / Multi
References Weak Yes Yes Yes

Mono / Multi
Strong Yes Yes No

Long Term
Disconnections Due Yes Yes No

Table 7.16: Evaluation of the Language Constructs

• Device Autonomy
All language constructs presented in this chapter have been designed to
communicate in a peer-to-peer fashion. Hence, the language constructs
can be used to create applications that do not rely on infrastructure. What
is more, all language constructs support the use of non-blocking commu-
nication primitives such that no dependencies are created as a result of
the use of locks as discussed in section 3.3.

• Natural Concurrency
Concurrency results from non-blocking communication between active ob-
jects. In section 7.2 we have discussed a number of abstractions to preserve
consistency of concurrent access to resources.

In the last section of this chapter we validated some of the language constructs
in the context of a chat application. This application replaces the whiteboard
“benchmark” as the prototypical example in the context of mobile distributed
systems. Indeed, the essence of communication between two chat applications
consists of making the corresponding actors get acquainted and in handling
the delivery, processing and result propagation of asynchronously sent messages
between two autonomous actors that are separated by a volatile connection.

Surely, it is impossible to prove that AmbientTalk’s building blocks are nec-
essary and sufficient to cover all future AmOP features. Nevertheless, our anal-
ysis in chapter 3 strongly argues for their necessity and the expressiveness of
our reflective extensions detailed in this chapter forms compelling evidence for
their sufficiency. Thanks to the abstraction barriers offered by these reusable
language constructs, our prototypical chat application counts merely 88 lines
of AmbientTalk code. A chat application with similar goals called BlueChat
implemented in Java using Bluetooth counts no less than 585 lines of code.
BlueChat offers support for the discovery of ambient resources but has no pro-
visions whatsoever to deal with temporarily lost connections.

Chapter 8

Advanced Experiments in
Ambient-Oriented
Programming

8.1 Introduction

This chapter continues the experimentation with language constructs for pro-
gramming mobile distributed systems. However, the language constructs dis-
cussed in this chapter address two advanced themes important to construct
specific types of mobile distributed applications.

First, in the next section we introduce language constructs that are designed
to deal with group communication. Group communication is a useful abstraction
for collaborative AmOP applications. The language mixins discussed in that
section provide support for both intentionally and extensionally defined group
references and introduces abstractions to coordinate the concurrency that is
spawned from these results.

The second theme of this chapter is the employment of optimistic concur-
rency strategies. Optimistic concurrency strategies are important for mobile
distributed systems because they provide advanced support for the autonomous
nature of devices. We have already discussed in section 2.3 that autonomy
implies natural concurrency. Optimistic concurrency strategies increase the au-
tonomy of devices but do so at the cost of possible conflicts. In section 8.3 we
study the concept of virtual time, which was first introduced by Jefferson [Jef85].
A distributed system based on virtual time maximizes concurrency based on an
advanced distributed rollback mechanism, which is called Time Warp. Conflicts
resulting from the concurrency are detected based on the link between time
and causality. In section 8.4 we continue our study of optimistic concurrency
strategies in the context of weak replication. We already noted in section 2.7.4
that weak replication increases the autonomy of devices because a service can
be replicated onto a device such that the replicated service is local to the ap-
plications on that device. However, we noted that the current state of the art
replicates data rather than objects. In this section we address this limitation
and investigate weak replication of objects. We do so by combining Bayou’s

198 Advanced Experiments in Ambient-Oriented Programming

anti-entropy protocol and the Time Warp algorithm. Finally, in section 8.5 we
address the consequence of interactions with weakly replicated objects, namely
the fact that objects have to deal with tentative data. Tentative data results
from the interactions with replicated objects because weakly replicated objects
are not necessarily fully synchronized. To deal with this aspect we extend the
abstraction of non-blocking futures discussed in section 7.2.3.

8.2 Group Communication

Communication with groups of objects is important when considering coopera-
tion in decentralized networks such as mobile networks. In the context of mobile
networks group communication facilitates the discovery of groups of suitable ac-
tive objects. The multi ambient references we discussed in the previous chapter
are one such example. Furthermore, group communication enables decentralized
propagation of events to active objects. For example collaborating distributed
active objects that perform a particular task propagate such events such that
each active object maintains an overview of the progress and can decide on its
following actions.

The pairwise exchange of messages is not the best communication model to
facilitate group communication. In AmbientTalk group communication can be
facilitated by encapsulating the group members in what is called multi refer-
ences. Such a multi reference allows addressing various actors with but a single
message send. Members of the group can be declared in an intentional or ex-
tensional fashion. In the former case the groups are defined based on a common
property. The multi ambient references of section 7.3 are one such example.
They abstract over a group of active objects that provide the same pattern.
In the latter case groups are defined by explicitly enumerating the members.
Since the implementation of multi ambient references already provides us with
an example of an intentional multi reference we first discuss the implementation
of an extensional multi-reference. Next we address the issues that arise when
considering the return values of a message sent to on a multi reference.

8.2.1 Extensional Group Communication

The multi reference is initialized with a table containing all actor addresses to
be encapsulated by this reference, i.e. group(a,b,c). The implementation of
a multi-reference encapsulating an extensionally defined group of active objects
is shown below:

groupBehavior::root.extend({
group : void;

new(aTable)::copy(group:=vector.newWithTable(aTable));
init()::inbox.addAddObserver(thisActor()#onIncomingMsg);
onIncomingMsg(msg)::group.iterate({

copiedMsg: msg.copy();
copiedMsg.setTarget(el);
outbox.add(copiedMsg) })

});

group@list::actor(groupBehaviour.new(list))

Upon receiving a message the group reference forwards all messages it re-
ceives to all encapsulated actor addresses. The group multi reference strongly

8.2 Group Communication 199

resembles a strong multi ambient reference, but the difference is that the former
is created from an extensional enumeration of the members, whereas the strong
multi ambient reference is created by taking a snapshot of an intentionally de-
fined weak multi ambient reference.

8.2.2 Multi-Futures

An important aspect of group communication is to deal with the results returned
by the different asynchronous invocations on multi references. In section 7.2.3
we have introduced futures as an abstraction to deal with results from asyn-
chronous communication. We have seen that such a future is a proxy for the
result returned by an asynchronous invocation. The logical extension of this ab-
straction is to conceive a future as a proxy for the group of values returned by
group communications. Such a future is called a multi-future and may be used
as illustrated below. The following code excerpt describes a personal shopping
assistant that allows one to find the cheapest product in a shopping mall:

findCheapestProduct(shops, aProductName)::{
products : shops#snapshot()#getProduct(aProductName);
prices: products#getPrice();
bestPriceSoFar: void;
bestProductSoFar: void;
whenEach(prices, {

thePrice: content;
if(or(is_void(bestPriceSoFar), thePrice < bestPriceSoFar), {

bestPriceSoFar:=thePrice;
bestProductSoFar:=resolver;
when(bestProductSoFar#getShopName(), {

if(bestPriceSoFar = thePrice, {
stdio#display("[partial result] Lowest Price: ", bestPriceSoFar, " at ",

content, eoln)) }) }) });

whenAll(prices, {
when(bestProductSoFar#getShopName(), {

stdio#display("[final result] Lowest Price: ", bestPrice, " at ",
content, eoln) }) })

}

The shops parameter refers to a weak multi ambient reference to all shops
in the communication range of the shopping assistant. First, the shops in the
communication range are queried for the product based on the name bound to
aProductName. The result of this asynchronous invocation is a multi-future,
which acts as a proxy for all the matching products. Subsequently, the prices
of these products are requested from the products that were returned. This
invocation returns another multi-future denoting the prices of the products.
Upon this multi-future two new types of observers are placed: whenEach is
similar to the when construct introduced above, but the code block is triggered
each time a new result is returned. The code block is parameterized by content
and resolver. The former is similar to the content parameter used in the when
construct and refers to the new value that has been resolved. The latter refers
to the active object that has produced the result. In the example, it is checked
whether the new price bound to content is better than the best price that was
encountered thus far. In that case the resolver parameter, which will refer to
the active object representing the product with the best price, is requested for
the name of the shop. The use of the whenEach construct allows the shopping
assistant to print intermediate results even though not every shop has responded
to the request. This is important in the context of active objects which may not

200 Advanced Experiments in Ambient-Oriented Programming

be available at the moment due to volatile connections. Note that the best price
of the product is not only assigned to the bestPriceSoFar variable, but it is also
stored in a local variable thePrice. This is necessary to prevent race conditions
between the whenEach and the nested when invocation. Since whenEach relies
on the result of the asynchronous invocation getShopName it is possible that a
better price is found while waiting for the result of that invocation.

whenAll is the counterpart of whenEach and the code block is evaluated
after the multi-future has been resolved with all the results. The code block
is parameterized with contents and resolvers, two vectors containing all the
computed values and all the resolvers at the corresponding indices. In the exam-
ple above these parameters are not used because the final best price has already
been computed and is assigned to bestPriceSoFar as a result of the whenEach
statement. Note that whenAll can only be used with multi references that have
a fixed number of members, such as strong multi ambient references and the
group reference introduced above. For multi references where the number of
participants can evolve over time, such as weak multi ambient references, it is
impossible to determine whether a future has been fully resolved, because a
member can be added to the multi reference at any point in time. Hence, when
a participant is added to a multi reference after a future was determined to be
fully resolved a conflict would arise. For this reason whenAll can only be used
in combination with strong multi references that encapsulate a fixed group of
participants such as strong ambient references and extensional groups. In the
example this is addressed by sending the message snapshot to the weak multi
ambient reference bound to shops, which turns it into a strong multi ambient
reference as described in section 7.3. As a result this strong multi ambient refer-
ence will remain invariable with respect to the (un)availability of the references
it points to in the ambient.

8.2.3 Implementation

Table 8.2 shows the implementation of multi-futures in AmbientTalk. The im-
plementation of the multi-future is similar to the implementation of futures we
discussed in section 7.2.3. The difference is that a vector containing the resolved
values is maintained in values, as opposed to a single value in a future. Fur-
thermore, the multi-future implementation also maintains a vector of resolvers
that contains the active objects that resolved the multi-future with a value. It
is important to determine when a future has been resolved with all results be-
cause only then can the whenAll blocks be executed. To determine whether a
multi-future is resolved with all the results one needs to determine how many
times it will be resolved in total. Note that this is not a trivial problem, because
multiple values can be nested. Consider the following example:
mp3players: group(stores#getProduct("ipod"), stores#getProduct("zen"));
prices: mp3players#getPrice()
whenAll(prices, ...)

This example groups the results of two multi-futures resulting from the in-
vocations stores#getProduct("ipod") and stores#getProduct("zen"). De-
termining when the multi-future bound to prices has been resolved with all
the results of the getPrice invocation requires the coordination between the
involved multi references (in this case group and multifuture). This coordina-
tion protocol is implemented based on the use of whenAll as can be seen in the

8.2 Group Communication 201

forward method in multifuture. For each message that is forwarded its old
multi-future is stored in oldFuture and a clone of the message is created with
a new multi-future attached. On each of these multi-futures a block of code
is registered with whenAll such that after each of these attached multi-futures
are resolved with all values the sum of all values is sent to oldFuture with a
complete message.

Figure 8.1 shows the recursion of complete messages over multiple active
objects. The scenario illustrates how the complete calls of aFuture2 and
aFuture3 are accumulated by group(a, b). This multi reference in turn noti-
fies aFuture1 that it is complete with two results.

The recursive implementation is similar for other multi references, such as
group and strong multi ambient references. Note that their implementations
shown previously do not include the recursion for didactic purposes. The re-
cursion ends whenever a message is processed, which can be observed in the
implementation of the multiFutureMessageMixin method shown in table 8.1.
When an active object processes a message then the future associated with that
message will represent a single value. Hence, when that message is processed
the message complete(1) is sent to the multi-future.

The implementation of the multiFuturesMixin, which is the mixin that
adds the whenEach and whenAll methods to an active object, has not been
included because it is similar to the futuresMixin we have shown in table 7.4
on page 168. The implementations of the whenEach and whenAll methods
are similar to the implementation of the when method. The only differences are
that respectively a whenEachSubscribe or a whenAllSubscribe message is sent
as opposed to the subscribe message sent in the when method. Finally, the
createMessage method is changed such that the created message is extended
with the multiFutureMessageMixin as opposed to the futuresMessageMixin,
and a multi-future is assigned to the message rather than a regular future.

Similar to the implementation of regular non-blocking futures, this imple-
mentation of the multi-futures language construct utilizes the message-based
scope (discussed in section 6.6.2). Hence, the multiFuturesMixin method has
to be applied to the active objects that depend on the language construct and the
messageScopeMixin method has to be applied to the receivers of asynchronous
invocations that returned multi-futures. Both mixin methods can of course be
applied to the same active object such that an active object can both utilize the
language construct and be the receiver of such asynchronous invocations.

8.2.4 Discussion

The multi references and multi-futures discussed above introduce non-blocking
group communication. The multi-reference implementations do not preserve the
order of the messages that are forwarded. This design choice was influenced by
the volatile connections characteristic. Consider that an active object is unavail-
able for communication, then if the order were to be preserved the subsequent
messages that need to be forwarded to other members of a multi reference would
be delayed until that active object would be available for communication. This
design choice implies that whenEach blocks can be invoked out of order with
respect to the order of the members of multi references. As a consequence, the
order cannot be used to determine which active object has produced a certain
result. For this reason a block is parameterized not only with the content of the

202 Advanced Experiments in Ambient-Oriented Programming

multiFutureMessageMixin(future)::{
...
process(behavior)::{

v: .process(behavior);
future#resolve(v);
this().getFuture()#complete(1);
v

};
requires(futureMessageMixin);
capture()

};

Table 8.1: Implementation of multiFutureMessageMixin

multifuture::root.extend({
values : vector.new();
resolvers : vector.new();
whenEachSubscribers : vector.new();
whenAllSubscribers : vector.new();
requiredResults : void;
sessions :

smallmap.newWithComparator(key1 ~ key2);

new()::{ ... };

notifyWhenAllSubscribers()::{
if(hasReceivedAllResults(), {

... notify ...
})

};

whenEachSubscribe(anActor)::{ ... };

whenAllSubscribe(anActor)::{ ... };

hasReceivedAllResults():{
and(not(is_void(requiredResults)),

requiredResults = values.length())
};

complete(aTotal)::{
requiredResults:= aTotal;
notifyWhenAllSubscribers()

};

resolve(resolver, content)::{
whenEachSubscribers.iterate({

el#notify(resolver, content)});
values.add(content);
resolvers.add(resolver);
notifyWhenAllSubscribers();
inbox.asVector().iterate({

msg: el;
forward(content, msg)

})
};

forward(anActor, msg)::{
canForward: and(

not(containsBehaviour(msg.getName())),
is_actor(anActor))

if(canForward, {
copiedMsg: msg.clone();
copiedMsg.setTarget(anActor);
oldFuture: msg.getFuture();
newFuture:

actor(multifuture.new()
.futuresMixin());

copiedMsg.setFuture(newFuture);
whenEach(newFuture,

oldFuture#resolve(resolver, content));
whenAll(newFuture, {

info : void;
if(sessions.containsKey(msg),

{ info:= sessions.get(msg) },
{ info:= [0, 0] });

info[TIMES_RESOLVED]:=
info[TIMES_RESOLVED]+1;

info[TOTAL]:=
info[TOTAL] + contents.length();

sessions.put(msg, info);
if(and(hasReceivedAllResults(),

info[TIMES_RESOLVED]
= requiredResults),

{ oldFuture#complete(info[TOTAL]);
sessions.delete(msg) })

});
outbox.add(copiedMsg) })

})
};

init()::{
inbox.addAddObserver(

thisActor()#onIncomingMsg)
};

onIncomingMsg(msg)::{
values.iterate(forward(el, msg))

}

});

Table 8.2: Implementation of Multi-Futures

8.3 Virtual Time 203

aClient group(a, b)

create

aFuture1

m(<<aFuture1>>)

m2(<<aFuture4>>)

a

m(<<aFuture2>>)

complete(1)

Legend:

<<item>> : attribute
 : async msg

result:
 group(a,b)#m()

whenAll(result, ...)

b

m(<<aFuture3>>)

complete(1)

aFuture2

aFuture3create
create

invokeWhenAll([result2])

invokeWhenAll([result1])

complete(2)

invokeWhenAll([result1, result2])

Figure 8.1: Determining when a multi-future has been completely resolved.

result, but also with the active object that resolved the multi future with the
result.

8.2.5 Evaluation for AmOP

The group and multi-futures abstraction presented in this section have a an
implementation similar to the ambient references and the futures presented in
sections 7.3 and 7.2.3. The reified communication traces represented by Ambi-
entTalk’s mailboxes form a good abstraction to buffer incoming messages while
the multi-future is not (fully) resolved. Once the multi-future becomes resolved
with (partial) results these buffers are flushed so that the messages are for-
warded to the results. Forwarding incoming messages is easily expressed thanks
to AmbientTalk’s mailbox observers. We have also demonstrated that these ab-
stractions can be recursively implemented. In other words, the implementation
of the coordination abstractions whenEach and whenAll are used to implement
the behavior of multifuture objects.

8.3 Virtual Time

In the remainder of this chapter we investigate the use of optimistic concur-
rency control strategies in the context of mobile distributed systems. These
concurrency control strategies are important because they best support the au-
tonomous nature of devices and the natural concurrency that results from this

204 Advanced Experiments in Ambient-Oriented Programming

autonomy.

8.3.1 Introduction

In section 7.2 we have presented a number of synchronization constructs for
describing concurrent interactions between active objects. All of these synchro-
nization constructs are based on the notion of synchronized access to the state
(only one message can be processed at a time) and delaying the execution of
blocks of code until a certain condition is fulfilled. An alternative to these syn-
chronization constructs are reversible computations. Reversible computations
differ from traditional synchronization mechanisms in that they do not work on
the basis of delaying the execution of code blocks, but instead rely on rollback
mechanisms for maintaining a consistent state. Rollback mechanisms do not
prevent inconsistent states, but instead thrive on the assumption that the par-
allelism will generally not lead to an inconsistent state. When an inconsistent
state is detected then the computation is reversed to a previous consistent state.

Rollback mechanisms are best known from the context of database transac-
tions where a series of SQL queries are ensured to atomically execute. Based
on a rollback-retry cycle these SQL queries will be executed atomically exactly
one time or not at all, which ensures a consistent state of the database. Argus
[Lis92] transposed this notion of atomic execution of SQL queries to the level of
objects by introducing atomic objects. Atomic objects allow concurrency within
an atomic action and each such action can run atomic subactions in parallel.
When an erroneous state is detected the transaction is aborted. Argus’ notion
of atomic actions are based on an elaborate locking mechanism that is difficult
to uphold in the context of volatile connections as discussed in section 3.3.

A more generalized approach to these rollback mechanisms is Virtual Time
[Jef85]. Virtual Time is a synchronization paradigm, which provides an alter-
native to delaying messages, based on reversible distributed computations. A
Virtual Time system is a distributed system, whose nodes are executing in co-
ordination with an imaginary virtual global clock that ticks virtual time. Each
node has a local virtual clock that can be behind or ahead of the local virtual
clock of other nodes in their distributed system. Virtual time systems have to
adhere to two fundamental semantic rules:

1. The virtual send time of each message must be less than its virtual receive
time.

2. The virtual time of each event in a process must be less than the virtual
time of the next event at that process.

These two rules correspond to Lamport’s clock conditions [Lam78] and ensure
that if an event e2 is a consequence of an event e1 that the virtual time of e1

precedes the virtual time of e2. Hence, the arrow of causality will point towards
future virtual time. Concurrency in Virtual Time results from the fact that two
nodes can concurrently process messages irrespective of their local virtual clocks.
Virtual Time is an optimistic concurrency approach because each individual
local virtual clock of a node ticks time completely unsynchronized from the
other nodes even though conceptually they are synchronized according to the
two fundamental semantic rules. If a message arrives that should have been
processed in the past at time rt (thus rt is strictly smaller than the virtual time

8.3 Virtual Time 205

reversibleMessageMixin()::{
receiveTime: void;
sendTime : void;
id : uid();
negative : false;
setSendTime(aTime)::sendTime:=aTime;
getSendTime()::sendTime;
setReceiveTime(aTime)::

receiveTime:=aTime;

getReceiveTime()::receiveTime;
getID()::id;
setID(anId)::id:=anId;
isPositive()::not(negative);
isNegative()::negative;
setNegative()::negative:=true;
capture()

};

Table 8.3: Implementation of the reversibleMessageMixin

lvt of the node) then the state of the node is rolled back to the state at time rt
and the message is processed. After the message has been processed at time rt,
the messages whose effects have been rolled back are processed in the context
of the new state of the node such that the node ends up again at time lvt. Note
that rolling back entails not only that the local state changes between rt and
lvt are undone but also the messages that are sent during this time period.

8.3.2 Implementation

Time Warp is the name of the distributed algorithm [Jef85] that realizes virtual
time in a distributed system. In Time Warp each message has a virtual send
and virtual receive time. The virtual send time of a message is set to the local
virtual clock of the active object upon sending the message. The virtual receive
time is the time at which the message is supposed to be processed at the target
active object. The virtual receive time can be chosen by the sender, however it
must abide by the first rule. Nodes sort the incoming messages based on their
receive time and process the message with the smallest receive time first. If
the message being processed has a receive time rt which is strictly smaller than
the local virtual clock time lvt of the active object then the active object will
rollback to the receive time of the message so that it can process the message at
its intended receive time. Such a rollback of an active object not only entails that
the previous state of the active object at time rt must be recovered, but also the
communication performed by that active object between rt and lvt should be
reversed. Reversing the communication is based on the notion of antimessages.
For every message there exists an antimessage. The antimessage is exactly the
same as its counterpart message except for its sign. This sign can be either
positive or negative. Conceptually, sending a negative message to an active
object will undo the effects caused by the positive message. The implementation
of a Time Warp message is shown in table 8.3. The implementation adds the
three attributes to a message we discussed above: receiveTime which is the
virtual receive time of the message, sendTime which is the virtual send time of
the message and negative is a boolean that indicates the sign of the message.
Furthermore, another attribute id is added to a message to be able to uniquely
identify each message in the system. Such a unique id is necessary to link
messages to their antimessages because it is possible that two messages with
exactly the same attributes are sent to a process.

206 Advanced Experiments in Ambient-Oriented Programming

Message Sign of Anti-Message Virtual Action
Received msg Found Clock Condition

- nowhere None Do not process the msg
Place msg in rcvbox

+ nowhere msg.ReceiveTime >= Process Message
local virtual clock Place msg in rcvbox

+ nowhere msg.ReceiveTime < Reverse to local clock =
local virtual clock msg.ReceiveTime

Place msg in inbox

+ in rcvbox None Do not process the message
Remove msg and
antimsg from rcvbox

- in rcvbox None Reverse effects of message
Remove msg and
antimsg from rcvbox

+ / - in inbox None Remove msg and
antimsg from inbox

Table 8.4: Decision Table for Processing Messages

Each active object is extended by the reverseMixin with a number of at-
tributes to implement the rollback mechanism featured by Time Warp:

• An active object maintains a local virtual clock clock indicating the vir-
tual receive time of the message that is currently being processed.

• A state queue savedStates maintains a list of reverseBlocks which
contains checkpoint information of the active object’s state to ensure that
its state can be rolled back when a time conflict occurs.

• An input queue containing all messages delivered to the active object. The
messages are stored in ascending order of the virtual receive time attached
to each message by the sender.

• A received queue containing all messages that have been processed by the
active objects in the past. These messages are also sorted in order of the
virtual receive time attached to the message.

• An output queue containing the positive messages that are not yet trans-
mitted to their target. These messages are ordered according to the mes-
sage’s virtual send time.

• A sent queue containing the negative copies of the messages that were com-
municated by the active object, also ordered according to the message’s
virtual send time.

These different message queues are represented in AmbientTalk as the mailboxes
inbox, rcvbox, outbox and sentbox respectively.

Apart from these attributes the reverseMixin includes a number of methods
to support the rollback mechanism:

• The process method, shown in table 8.5, implements a decision tree that
incorporates the notion of antimessages in active objects. The rationale
of this decision tree is that for each incoming message it checks if an
antimessage is already present in the system. If this is the case then based
on the current state of the active object and the message at hand a suitable
rollback action is taken. The semantics of this decision tree is as follows:

8.3 Virtual Time 207

– If no antimessage was found in the inbox, an antimessage is searched
for in the rcvbox:

∗ In the case that no antimessage was found in rcvbox there are
two possibilities:
· The message we are handling has a negative sign. This means

that the negative message has arrived before the positive
one. We do not process the negative message and store the
message in the rcvbox in anticipation of the positive message
that will arrive.

· The message we are processing has a positive sign, in which
case it can be processed if the virtual receive time of the mes-
sage lies in the present or future of the virtual local clock.
Before the message is further processed the local virtual clock
is advanced to the virtual receive time of the message.

If the virtual receive time of the message lies in the past
according to the local virtual clock then a rollback is neces-
sary to the virtual receive time of the message. Otherwise,
the message is placed back in the inbox such that the mes-
sage can be processed at its intended virtual receive time
after the rollback has completed.

∗ If such an antimessage is found in rcvbox there are two possibil-
ities:
· The antimessage that was found has a positive sign, which

means that the message has been processed by the active
object and as a result it will have caused side-effects in the
form of state changes or messages that were sent to other pro-
cesses. In this case the message is deleted from the rcvbox
and a rollback is performed to the virtual receive time of that
message to undo the effects.

· Another possibility is that the antimessage that was found
has a negative sign. In this case the negative message arrived
before the positive one. Hence, since the positive one has not
been processed the two messages annihilate one another.

– An antimessage was found in the inbox. In that is the case the
two messages annihilate one another without any rollback. This is
possible, because in this case the positive message is still in the inbox
and therefore has not been processed and caused side-effects.

The semantics of this decision tree has been summarized in table 8.4.

• The methods related to the actual rollback mechanism are shown in ta-
ble 8.6. The method rollback, which takes a virtual rollback time as an
argument, will rollback the state of the active object to that virtual time
in two steps. First, the active object retrieves the checkpoint state (with
getCheckpoint) that was saved one time step before the virtual time to
which the active object will rollback. Second, the rollback algorithm se-
lects the messages in its rcvbox, that have a virtual receive time after the
virtual time to which the active object has to rollback, and places them

208 Advanced Experiments in Ambient-Oriented Programming

back into the inbox. This will cause the messages that were received after
the rollback time to be processed again once the state of the active object
has been restored. The messages that have a virtual send time past the
rollback time are removed from the outbox, thereby preventing the future
communication of the active object from occurring.

The antimessages of the positive messages that have been transmitted are
collected in AmbientTalk’s sentbox. These negative messages are placed
in the active object its outbox such that the effects induced by the active
object’s communication can be made undone. Finally, the saved state
of the active object is restored. Restoring the state of an active object
is comprised of restoring the providedbox and requiredbox mailboxes
and the state of the passive object that defines the behavior of the active
object. This last step can be conveniently done with the become primitive
that the AmbientTalk kernel inherits from the actor model, discussed in
section 5.4.1.

• Table 8.7 shows the changes that were made to the meta-interface.
onIncomingMsg and onSentMsg are mailbox observers for additions on the
inbox and sentbox respectively and keep their contents sorted by virtual
receive and send time. The createMessage is overridden such that the
reversibleMessageMixin is mixed into each message. The send method
is overridden such that the virtual send time of the message is set to the
local virtual clock of the active object. Furthermore, a virtual receive time
is determined for each message. The actual setting of the virtual receive
time is factored out in the method determineReceiveTime, because it is
the setting of the virtual receive time that essentially determines how the
Time Warp algorithm behaves. The higher the virtual receive time is set
with respect to the local virtual clock, the less chance that a rollback will
occur. As noted by Jefferson [Jef85] there is no single strategy that fits
all applications.

8.3.3 Global Virtual Time

The method checkpoint, shown in table 8.6 is executed in the process method
explained above and takes a deep copy of the passive object that defines the
behavior of the active object. In the implementation a checkpoint is saved after
executing each message. This raises a memory concern. Fortunately, it is not
necessary to save a checkpoint after the execution of each message. Instead it
is possible to save a checkpoint at certain virtual time intervals, because the
rollback algorithm explained above will roll back to the nearest saved state
before rollback time.

Another memory concern is that the sentbox and rcvbox seem to maintain
a communication trace that goes back to the creation of the active object. Also,
even though the number of checkpoints can be reduced by saving the state
at certain time intervals, the queue of saved states only seems to grow over
time. For this reason the Time Warp algorithm includes the notion of a global
virtual time. The global virtual time is defined as the minimum of all local
virtual clocks and the virtual send time of the messages that have been sent
but not yet processed. This global virtual time is also known as the “commit

8.3 Virtual Time 209

process(msg)::{
if(and(isReversibleMsg(msg),

‘reverseIgnoreMsgs are reversible messages that are ignored‘
‘in the process and must not be reversed. These include meta-‘
‘messages used to implement the Time Warp mechanism.‘
!reverseIgnoreMsgs.detect(el.getName() = msg.getName())),

{ ‘find complementary message in the inbox‘
idx: inbox.asVector().findFirst(

isReversibleMsg(el) &
(el.getID() = msg.getID()) &
(el.isNegative() = not(msg.isNegative())));

antiMsg: if(is_void(idx), void, inbox.get(idx));
if(is_void(antiMsg),

{ ‘no antimessage found in the inbox. Check the rcvbox.‘
idx:=rcvbox.asVector().findFirst(

isReversibleMsg(el) &
(el.getID() = msg.getID()) &
(el.isNegative() = not(msg.isNegative())));

antiMsg:=if(is_void(idx), void, rcvbox.get(idx));
if(is_void(antiMsg),

{ ‘no antimessage was found in the inbox and rcvbox‘
if(msg.isNegative(),

{ ‘the negative message arrived before the positive one‘
‘do not process it.‘
rcvbox.add(msg) },

{ ‘check if we can process the message on time‘
if(msg.getReceiveTime() >= clock,

{ ‘the message can be processed on time: ‘
‘execute and advance time‘
clock:=msg.getReceiveTime();
v: .process(msg);
this().checkpoint();
v },

{ ‘message arrives too late, rollback to its virtual ‘
‘receive time‘

inbox.add(msg);
rollback(msg.getReceiveTime()) }) }) },

{ ‘an antimessage was found in the rcvbox‘
if(msg.isPositive(),

{ ‘the message in the rcvbox is the negative message‘
‘so we do not process the positive one‘
rcvbox.delete(antiMsg) },

{ ‘the message in the rcvbox is the positive message‘
‘Hence, we need to rollback‘
rcvbox.delete(antiMsg);
rollback(msg.getReceiveTime()) }) }) },

{ ‘an antimsg in the inbox was found‘
inbox.delete(antiMsg) }) },

{ v: .process(msg);
rcvbox.delete(msg); v }) };

Table 8.5: Implementation of the process method in the reverseMixin

210 Advanced Experiments in Ambient-Oriented Programming

rollback(aClock)::{
if(aClock < clock, {

cp: this().getCheckpoint(aClock);
‘move all processed messages
after cp.clock from the rcvbox into
the inbox‘

rcvbox.asVector().iterate(
if(el.getReceiveTime() > cp.clock,

{ rcvbox.delete(el);
inbox.add(el) }));

‘remove the messages that have not
been transmitted yet.‘

outbox.asVector().iterate(
if(el.getSendTime() > cp.clock,

outbox.delete(el)));
‘move all antimessages after cp.clock
from the sentbox to the outbox‘

sentbox.asVector().iterate(
if(isReversibleMsg(el) &

(el.getSendTime() > cp.clock),
{ sentbox.delete(el);

outbox.add(el) }));
‘sort the outbox such that the
antimessages will be
transmitted first‘

outbox.sort(el.getSendTime());
inbox.sort(el.getReceiveTime());
‘restore to the previous state‘
restoreMailbox(provided,

cp.savedProvided);
restoreMailbox(required,

cp.savedRequired);
become(cp.getSavedState()) })

};

checkpoint()::{
reverseInfo: root.makeReverseBlock(

clock, this().deepCopy(),
provided.asVector(),
required.asVector());

savedStates.add(reverseInfo))
};

‘selects the ReverseBlock that contains
the rollback information for a rollback
to aClock.‘

getCheckpoint(aClock)::{
idx: savedStates.findFirst(

el.clock > aClock);
if(is_void(idx),

idx:=savedStates.length());
if(idx > 1, idx:=idx-1);
savedStates.get(idx)

};

setCommitHorizon(aClock)::{
committedClock:=aClock;
savedStates.iterate(

if(el.clock < (aClock-1),
savedStates.remove(el)));

sentbox.asVector().iterate(
if(isReversibleMsg(el) &

(el.getSendTime() < aClock),
sentbox.delete(el)));

rcvbox.asVector().iterate(
if(el.getReceiveTime() < aClock,

rcvbox.delete(el)))
};

Table 8.6: Implementation of the rollback method in the reverseMixin

8.3 Virtual Time 211

reverseMixin()::{
...
onIncomingMsg(msg)::{

partialMailboxSort(
msg, inbox, el.getReceiveTime())

};

onSentMsg(msg)::{
if(isReversibleMsg(msg) &

msg.isPositive() &
!reverseIgnoreMsgs.detect(

el.getName() = msg.getName()),
‘leave an antimessage in the
sentbox‘
{ msg.setNegative() },
‘sent negative messages leave
no trace‘
{ sentbox.delete(msg) });

partialMailboxSort(
msg, sentbox, el.getSendTime())

};

determineReceiveTime(msg)::{
sendTicker := sendTicker+1;
msg.setReceiveTime(

clock+(sendTicker * step))
};
...

...

send(msg)::{
if(isReversibleMsg(msg),

{ msg.setSendTime(clock);
determineReceiveTime(msg) });

.send(msg)
};

createMessage(s, t, name, s)::{
msg: .createMessage(s, t, name, a);
if(!reverseIgnoreMsgs.detect(

el.getName() = name),
msg.reversibleMessageMixin(),
msg)

};
...

}

Table 8.7: Implementation of the MOP in the reverseMixin

horizon”, because it defines the virtual time that has become stable. In other
words, no active object will request for a rollback to a virtual time before the
global virtual time. Hence, the communication traces and the saved states
that are associated with a virtual time before the global virtual time may be
deleted. The global virtual time is regularly computed by a dedicated active
object that consults all the active objects that have the reverseMixin applied.
Afterwards, the active object informs all active objects of the “commit horizon”
by invoking the setCommitHorizon on all these active objects. This method
setCommitHorizon, which is shown in table 8.6, expunges all the communication
traces and state queues before aClock.

8.3.4 Discussion

Concurrency in Time Warp results from the fact that even though the local
virtual clocks of active objects are conceptually synchronized the active objects
can concurrently execute messages. Two active objects in a Time Warp system
can concurrently execute two messages irrespective of the state of their individ-
ual local virtual clocks under the condition that the two active objects have no
causal relationship. If a causal relationship between active objects is exists and
the corresponding actions conflict with respect to the two conditions of Lamport
then the involved active objects are rolled back to a state where the actions no
longer conflict and the system is resumed from that point on.

The algorithm that determines the global virtual clock requires that all the
active objects in a system can be contacted in order to calculate the lowest

212 Advanced Experiments in Ambient-Oriented Programming

virtual clock. Hence, the concept of a global virtual clock does not scale in
the context of long-lasting network partitions which can occur as a result of
volatile connections in mobile distributed systems. Nevertheless, note that the
other concepts in Time Warp, namely the rollback mechanisms based on local
virtual time, are performed in a peer-to-peer fashion such that they can function
properly in the absence of infrastructure. The only consequence of being unable
to determine the global virtual clock is that it is impossible to determine the
commit horizon raising the memory concern we discussed above.

8.3.5 Evaluation for AmOP

The Time Warp protocol was designed to function in the context of non-blocking
communication. The design of the Time Warp protocol requires fully reified
communication traces in order to implement its extended rollback functionality.
Furthermore, the implementation of Time Warp naturally fits with the native
mailboxes of AmbientTalk. Hence, an incoming message can be easily searched
for its antimessage in the different mailboxes and based on the mailbox type
the appropriate action can be taken. The implementation of this protocol also
demonstrates the usefulness of AmbientTalk’s rcvbox and sentbox. The rcvbox
is useful to determine the scope of the concurrency conflicts. Thanks to these
mailboxes it is easy to decide whether the effects of a message have to be undone
or can simply be cancelled out by removing message and antimessage from the
corresponding mailboxes.

As mentioned above the only concept in the Time Warp protocol that does
not scale in the context of mobile distributed systems is the global virtual time.
This concept is responsible for deciding on a commit horizon such that active
objects can decide which messages can be expunged from the mailboxes. The
process that computes the global virtual time requires access to all active ob-
jects involved in the Time Warp protocol such that the autonomy of devices is
harmed. In the next section we combine Time Warp with another protocol such
that the concept of a global virtual time is unnecessary.

8.4 Weak Replication

In this section we study the use of weak replication. Weak replication is an
important technique for programming mobile distributed systems because it in-
creases the autonomous nature of devices. The autonomy is increased because
services can be replicated onto a mobile device such that the replicated service
is local to the application and remains available, irrespective of the ability to
communicate with other resources e.g. the device providing the original service.
The problem with current weak replication strategies is that they replicate pas-
sive data as opposed to objects. In this section we show how to promote weak
replication to the level of active objects.

8.4.1 Introduction

In section 2.7.4 we have discussed proposals to increase the data’s availability
in the face of disconnections based on weak replication of data. These proposals
deal with raw data as opposed to objects. As a result the replication schemes are

8.4 Weak Replication 213

concerned with replication of data rather than services. In this section we discuss
the implementation of a language mixin to enable weak replication of services.
When designing a replication protocol one can make a distinction between both
active and passive replication [GS97]. With active replication each replicated
service is sent the same message, as opposed to passive replication where only
one designated replica handles each message and subsequently updates all other
replicas. These updates usually convey the raw changes in the state of the
replicated service. Hence, with active replication the services converge to the
same state because they all process the same messages, while passive replication
converges to the same state because the memory is updated by the replica that
handled the message.

An important aspect of replication algorithms is the linearization [GS97] of
updates, which consists of two properties:

• Order the updates that result from multiple client interactions should be
handled by each replica in the same order.

• Atomicity if an update is applied to one replica the update must be
applied to all replicas.

Linearization ensures that clients interacting with replicated services do not
perceive inconsistent states. Linearization is important to ensure convergence
of replicas because the rules state that replicated messages are applied in the
same order at each replica. As a consequence, the changes to the state that
result from processing these messages are applied in the same order such that
the state of all replicas converges.

8.4.2 The Anti-Entropy Protocol

The linearization properties discussed above are important to fully understand
the nature of weak replication algorithms. Weak replication means that replicas
can be out of synchronization with one another. Nevertheless, clients interact
with such replicas and, as a result, these clients can get information that is not
up-to-date with respect to the other replicas. Such information is considered to
be tentative.

The weak replica synchronization algorithm we discuss is based on the anti-
entropy protocol [PST+97b], which was designed in the context of the Bayou
project. The protocol was designed for weak replication of databases. Databases
are synchronized as a consequence of applying (database) memory updates to
replicas. In the synchronization protocol of Bayou a distinction is also made
between tentative and committed updates. A tentative update is a provisional
change made to the database that is to be verified in the future. Committed
updates will result in the same state on all replicas and are final.

In a group of replicas, one replica is always designated as the master whereas
the others are called slaves. When a client updates a slave replica this change
is at first tentative. These tentative updates are continuously distributed to
all other replicas that are available for communication and that have not yet
received the update. When a tentative update is communicated from one slave
to another slave it remains tentative. However, when a tentative update is
communicated to the master replica then the update will be committed by the
master replica. Each update that is committed by the master replica is assigned

214 Advanced Experiments in Ambient-Oriented Programming

anti-entropy(S,R) {
Get R.V and R.CSN from receiving server R
first send all the committed writes that R does not know about
IF R.CSN < S.CSN THEN

w = first committed write that R does not know about
WHILE (w) DO

IF w.accept-stamp <= R.V(w.server-id) THEN
R has the write, but does not know it is committed
SendCommitNotification(R, w.accept-stamp, w.server-id, w.CSN)

ELSE
SendWrite(R, w)

END
w = next committed write in S.write-log

END
END
w = first tentative write
now send all the tentative writes
WHILE (w) DO

IF R.V(w.server-id) <w.accept-stamp THEN
SendWrite(R, w)

w = next write in S.write-log
END

}

Table 8.8: Anti-Entropy Protocol

a monotonically increasing number, called a commit sequence number (CSN),
which determines the order by which the slaves must commit that update. When
a master replica synchronizes a slave replica it sends all the updates in the order
they were committed. Although the master replica has the privilege to be the
first to assign the CSN to a tentative update, it does not preclude slave replicas
to distribute the committed updates to other slave replicas.

In the protocol each update to the database is called a write and these writes
are used to update different replicas. Each write is tagged by three attributes:
a write is assigned a monotonically increasing number, called an accept-stamp,
by the replica that first received the write from a client. Furthermore, this write
is also assigned the server-id of this replica. Hence, both the accept-stamp
and the server-id uniquely identify each write in the system. Finally, the
attribute CSN refers to the commit sequence number assigned by the master
replica. If the write is still tentative then the CSN attribute is set to an infinite
value. Table 8.8 shows the pseudocode (from [PST+97b]) of the anti-entropy
protocol. The protocol describes how a replica R is updated by another replica
S. The replica S first retrieves two pieces of information from the replica R that
it will update:

• The version vector R.V(X) is a map that identifies the largest accept-stamp
of any write known to R that was accepted from a client by a replica X.

• R.CSN is the CSN of the last committed write received by replica R.

The protocol consists of two parts: 1) sending the new committed updates
from S to R and 2) sending the unknown tentative updates from S to R. The
sending replica S can decide which tentative and committed writes are new
to the receiving replica R, based on the version vector R.V and the commit
sequence number R.CSN, respectively. This is done by means of simple number

8.4 Weak Replication 215

comparison: i.e. if R.CSN is smaller than S.CSN, S knows that it holds some
committed writes which R does not. The sending replica iterates over all the
writes it knows, which are stored in what is called a write-log, and compares
the accept-stamp of each write with the version vector R.V it received. If the
committed write’s accept-stamp is smaller than R.V(w) then R already has the
write but has not yet committed it. In that case the complete write does not
have to be transmitted; instead the CSN is sent along with the accept-stamp
and server-id, which both uniquely identify the write, in a commit notification
to the replica R. Otherwise the full write is sent to R.

An analogous check on the version vector is performed to update R with
new tentative writes. This mechanism of sending each new committed and
tentative message to the replica being updated, one by one, makes the protocol
both incremental and peer-to-peer. It is incremental because an interrupted
synchronization process can be resumed at any point in time without having
to restart the synchronization from the beginning. In other words, it can be
restarted based on the last update that was sent to the replica. It is peer-
to-peer because any other replica can initiate and resume the synchronization
with another replica, both for tentative writes as well as for the committed
writes. However, the master replica is needed to promote a tentative write to a
committed write for the very first time.

The master replica is a necessary ingredient to make all replicas consistent,
because it imposes a total order on the committed updates. This order guaran-
tees that committed updates fulfill the linearization property explained above.
As a result committed updates are guaranteed to be applied in the same order
for all replicas such that the effects of a committed update are guaranteed to
converge the replicas to the same state. On the other hand, tentative updates
are applied by replicas in the same order as they were applied by the replica
that received them for the first time from the client. However, this is only a
partial order with respect to all tentative writes applied by different replicas. To
illustrate this, consider tentative writes tiR applied to different replicas, where
R identifies the replica that first accepted the write and i determines the order
in which it was accepted. Consider the following traces in replicas X and Y:

X: t1X t1Y t2X t3X

Y: t1Y t1X t2X t3X
Both execution traces are valid with respect to the partial order. In other words
for all tiRtjR for a particular R, i < j. As a consequence the resulting state of
the replicas can differ from one another. Note that such a trace can occur in
practice. For example, if X synchronizes Y after X has received t1X and Y has
received t1Y from a client.

Committed writes have a globally unique commit sequence number that
defines a total order by which they should be applied to a replica. However, to
ensure convergence of replicas it is important that they apply the committed
writes in the same order on a consistent state. Hence, committed writes must be
applied before any tentative writes such that the committed writes are applied
to the consistent state of the replica. As a result the replica will rollback all
tentative writes to the database before it applies a committed write. Hence, a
replica will always have all committed writes in the front of its write-log.

216 Advanced Experiments in Ambient-Oriented Programming

8.4.3 Experiment: A Unification of Anti-Entropy and Time
Warp

In this experiment the Time Warp protocol and the Bayou anti-entropy protocol
are combined such that messages as opposed to database writes can be repli-
cated. The resulting system supports weak replication of objects rather than
databases. The time warp protocol is useful in the context of the anti-entropy
protocol, because it provides a mechanism to roll back the interactions between
a group of objects. We have argued above that such a rollback is necessary in
weak replicas to undo the effects of tentative updates such that a new committed
update can be applied.

A unification of the time warp protocol with the anti-entropy protocol means
that we have to find an appropriate mapping between the virtual receive time of
a message and the ordering information found in Bayou writes. In Bayou there
is an important distinction between tentative and committed writes. Tentative
writes are not totally ordered, whereas committed writes are totally ordered.
Their total order is determined by their commit sequence number. Therefore, in
the case of committed writes we map the commit sequence number (CSN) onto
the virtual receive time of messages. However, it is important that committed
writes are executed before tentative writes to adhere to the linearization prop-
erty. To ensure that tentative writes are processed after all committed writes
the tentative writes are all assigned an infinite virtual receive time when they
are sent. To ensure that the mutual partial order of the tentative writes them-
selves is maintained we relied on the anti-entropy protocol, which preserves this
order because the tentative writes are transmitted in the order of the write-log.

Another issue to consider is the determination of the commit horizon. We
have discussed in section 8.3.4 that a global virtual time does not scale in the
context of network partitions that result from volatile connections. The commit
sequence numbers found in Bayou can serve as a commit horizon, because a
committed write is definite and is never subject to a rollback. Hence, the commit
sequence number of the last write a replica has executed determines its commit
horizon. As a result, the commit horizon found in each replica will make progress
at its own pace depending on the committed writes that it receives from other
replicas.

8.4.4 Interactions with Replicated Objects

The combination of Time Warp and Bayou’s anti-entropy protocol also affects
the client active objects that interact with the slave replica objects. A slave
replica can interact with client objects by sending message to them. However,
since the slave replica is possibly in a tentative state it is possible that the mes-
sages it sent become invalid in the future. For this reason, when a client active
object is sent a message from a replica active object that is in a tentative state
then the state of that client active object should also be considered as tentative
from that point on. As a result it is necessary to consider the Time Warp pro-
tocol also in the context of client active objects. Hence, next to the virtual time
in the replicas we also have to consider the local virtual clock of the client active
objects. The local virtual clocks of active objects and replicas are influenced
by one another due to the causal interactions with replicas. To understand the
consequences of these causally related interactions it is important to consider

8.4 Weak Replication 217

whether they result from messages that are sent in a committed or tentative
state. In the remainder of this chapter we call messages that are sent in the
context of an active object in a tentative state (thus when the message is sent
the sender’s local virtual clock time = ∞) tentative messages and messages that
are sent in the context of an active object in a committed state (thus when the
message is sent the sender’s local virtual clock time < ∞) are called committed
messages. Based on this distinction we have made a categorization of the differ-
ent possible interactions. In this categorization the term “client active object”
refers to both regular (not replicated) active objects and replica objects because
both types of active objects can act as a client.

• A client active object sends a message to a slave replica.

– If the state of the sender is committed:
The message is processed tentatively (thus with its local virtual clock
= ∞).
Afterwards that message is replicated and will eventually be pro-
cessed by the master replica after which the committed version of
that message will be replicated back to all slave replicas. If the com-
mitted version of that message arrives back at a slave replica that
previously processed this message tentatively then the Time Warp
protocol will reverse the effects of that message. The reason for this
is that the virtual receive time of that committed message will equal
to the CSN (as explained above) and thus the virtual receive time of
that message will be in the past for that slave replica because a CSN
assigned by a replica is always smaller than infinity.

– If the state of the sender is tentative:
The message is processed by the slave replica, but it is not replicated.
The reason for this is that since the sender’s state is tentative it is
unknown whether the message will actually be sent when the state of
the sender gets committed. Replicating the tentative message would
eventually lead to a commit of that message by the master replica.
As the state of the sender gradually evolves to a committed state the
tentative message in the replica will be reversed and sent again in
the context of a committed state. At that point the message will be
replicated such that it eventually gets committed.

• A client active object sends a message to a master replica.

– If the state of the sender is committed:
The message is processed and committed by the master replica and
is replicated to all slave replicas when they synchronize.

– If the state of the sender is tentative:
The message is processed by the master replica, but it is neither
committed nor replicated. The reason is the same as for such an
interaction with a slave replica. The message is processed tentatively
after all committed messages have been processed.

• A (master or slave) replica sends a message to a regular active object.

– If the state of the sender is committed:
The message is processed and committed by the receiver.

218 Advanced Experiments in Ambient-Oriented Programming

– If the state of the sender is tentative:
The message is processed by the receiver and its state is considered
to be tentative from then on.

• A regular object sends a message to a regular active object.

– If the state of the sender is committed:
If the receiver is in a committed state it will process the message and
commit it. Otherwise, the receiver performs a rollback to its commit-
ted state and processes the message in the context of its committed
state. Afterwards the receiver processes the tentative messages (that
were undone by the rollback) again and ends up back into its tenta-
tive state.

– If the state of the sender is tentative:
The message is processed by the receiver and its state is considered
to be tentative from then on.

The rules above naturally fit into the Time Warp protocol if we consider that
an active object is in a tentative state when its local virtual clock is infinite. If
the local virtual clock is infinite and the active object sends a message then the
virtual receive time of that message is set to infinity. If the local virtual clock
of an active object is smaller than infinity then that active object is considered
to be in a committed state. The virtual receive time of a message is not set in
this case. Based on whether the receiver is a regular active object or a replica
object it will be processed differently:

• The receiver is a regular active object and not a replica:
In that case the message is processed based on the last committed local
virtual clock of the receiver. Hence, if the local virtual clock of the receiver
is infinite then conforming to the Time Warp protocol the clock is set to
the past such that the effects of the tentative messages will be temporarily
reversed and the message is processed in a committed context. Afterwards
the tentative messages are automatically processed again.

• If the receiver is a replica the message will be executed with virtual receive
time equal to the commit sequence number when it concerns a message
that was committed by a master replica. Again, if the replica is in a
tentative state when it receives such a message it will be rolled based on
the Time Warp protocol. In the other case, that is when the message does
not have a commit sequence number, it is tentatively executed with an
infinite virtual receive.

Note that with these rules, the local virtual clock of a regular active object
that is in a committed state will always indicate zero and will not increase over
time. Hence, the commit horizon of regular active object is set to zero. On the
other hand, when a replica is in a committed state its local virtual clock will
be set to the commit sequence number of the last message it committed. Both
regular active objects and replicas that are in a tentative state have their local
virtual clock set to infinity.

8.4 Weak Replication 219

8.4.5 On the Dynamics of the System

Active objects get “infected” with tentative messages as a result of direct or in-
direct interactions with replicas. In other words, the tentative messages spread
throughout the system as a result of the causal relationships between active
objects. The tentative messages in the system start to disappear as tentative
messages become committed by the replicas. In the same way as active objects
got “infected” with tentative messages they are now “disinfected” with commit-
ted messages. The dynamics of infection and disinfection of active objects with
tentative messages results from the Time Warp algorithm. On the other hand
the Bayou anti-entropy protocol brings chaos to order and is responsible for the
fact that the global system moves towards a committed state.

8.4.6 Implementation

The bayouMessageMixin, shown in table 8.9, is used to extend messages with
the necessary attributes to accommodate the anti-entropy protocol. The mixin
overrides the method getReceiveTime of the reversibleMessageMixin, which
was shown in table 8.3 on page 205, such that an infinite virtual receive time
is returned when the message is tentative and the commit sequence number
when the message is committed. The changes needed to incorporate the anti-
entropy protocol in an active object are encapsulated in the language mixin
called replicaMixin. Its overall structure is shown in table 8.10. This lan-
guage mixin adds two custom mailboxes named committed and tentative to
the active object that represents the replica. These two mailboxes represent the
write-log of a replica. The committed mailbox contains the committed mes-
sages in the order of their commit sequence number, whereas the tentative
mailbox contains the tentative messages executed by the replica in order they
were received from other replicas and clients. Next to these two mailboxes each
replica has an attribute lastCSN, which refers to the commit sequence number
of the last committed message that was executed by the replica, lastTS, which
refers to the last acceptStamp the replica assigned to a message it received
from a client, and a vector enabledReplicaMsgs, which contains the list of
messages that must be replicated upon synchronizing with another replica. The
replicaMixin requires the reverseMixin explained in section 8.3. Depending
on the role the replica active object has to play, it can be configured as a master
or a slave with the masterMixin and slaveMixin respectively.

Table 8.11 shows the implementation of the antiEntropy method that syn-
chronizes two replicas according to the pseudo-code shown in table 8.8. The
methods that update the state of the replica that is being synchronized are
shown in table 8.12. The message commitNotification is sent when the replica
has already processed the tentative message that is to be committed. The mes-
sage is searched for in the tentative mailbox based on its acceptStamp and
replica server id. After the message has been identified it is removed from the
tentative mailbox. Since the message was already processed when it was ten-
tative it is also present in the rcvbox due to the underlying time warp protocol,
discussed in section 8.3. The message is also removed from the rcvbox and is
placed in the inbox with the newly assigned commit sequence number. As a
result that message will be processed next, because the inbox is ordered on the
virtual receive time. Due to the implementation of the bayouMessageMixin the

220 Advanced Experiments in Ambient-Oriented Programming

bayouMessageMixin()::{
csn : void;
serverId : void;
acceptStamp : void;

setServerId(anId)::serverId:=anId;
setAcceptStamp(anId)::

acceptStamp:=anId;
setCSN(aCSN)::csn:=aCSN;
getCSN()::csn;

getServerId()::serverId;
getAcceptStamp()::acceptId;
‘if it is a tentative bayou ‘
‘message receive time = infinite‘
‘otherwise CSN‘
getReceiveTime()::

if(is_void(csn), infinite, csn);

capture()
};

Table 8.9: Implementation of the bayouMessageMixin

replicaMixin()::{
lastCSN : 0;
lastTS : 0;
versions : smallmap.new();
tentative : mailbox.new("tentative");
committed : mailbox.new("committed");
‘enabledReplicaMsgs contains the list‘
‘of msgs are configured to be ‘
‘replicated.‘
enabledReplicaMsgs : vector.new();

antiEntropy(aReplica)::{ ... };
getReplicaStatus()::

[lastCSN, versions];
commitNotification(ts, aServerId, aCSN)::
{ ... };

getVersion(aVersionVector, aServerId)::
{ ... };

receiveCommitted(msg)::{ ... };
receiveTentative(msg)::{ ... };
processTentative(msg)::{ ... };
processCommitted(msg)::{ ... };

replicateMsg(aMsg)::{
enabledReplicaMsgs.add(aMsg)

};

isBayouMsg(msg)::{
msg.containsBehaviour("getCSN")

};

send(msg)::{ ... };

masterMixin()::{
process(msg)::{ ... };
receiveTentative(msg)::{ ... };

capture()
};

slaveMixin()::{
process(msg)::{ ... };

capture()
};

requires(reverseMixin);
capture()

}

Table 8.10: Skeleton of the replicaMixin

8.4 Weak Replication 221

antiEntropy(aReplica)::{
when(aReplica#getReplicaStatus(), {

theCSN : content[1];
theVersions: content[2];
msg: void;
while(theCSN < lastCSN, {

msg:= committed.get(theCSN+1);
if(msg.getAcceptStamp() <=

getVersion(theVersions,
msg.getServerId()),

{ aReplica#commitNotification(
msg.getAcceptStamp(),
msg.getServerId(),
msg.getCSN());

theCSN:=theCSN+1
},

{ committedMsg: msg.copy();
aReplica#receiveCommitted(

committedMsg);
theCSN:=theCSN+1

})
});
tentativeMsg: void;
tentative.asVector().iterate({

if(getVersion(theVersions,
el.getServerId()) <

el.getAcceptStamp(),
{ tentativeMsg:= el.copy();

aReplica#receiveTentative(
tentativeMsg) }) })

})
};

Table 8.11: Implementation of the antiEntropy method in replicaMixin

virtual receive time of the committed message will return the commit sequence
number and the local virtual clock, which was previously infinite, will cause a
rollback to occur. As a result the newly committed message will be processed
in the order of its commit sequence number. The receiveCommitted method
is based on the same mechanism and is called when committing a previously
unknown message. There are two methods to process the tentative and commit-
ted messages. processTentative, which processes the former type of messages,
places the message in the tentative mailbox and updates the version vector of
the replica accordingly. processCommitted, which processes the latter type of
messages adds the method to committed mailbox and updates the commit hori-
zon. Both methods are called by the masterMixin and slaveMixin methods,
shown in tables 8.13 and 8.14 respectively. In what follows, we discuss them
both in detail.

The Master Mixin The masterMixin overrides the process method, which
is part of AmbientTalk’s MOP. This method first checks whether the message
to be processed should be replicated. If this is not the case or the sender was in
a tentative state (this is the case when the virtual receive time is infinite), the
processing of the message is delegated in the else branch to the default Time
Warp behavior. If the message is to be replicated then the the master replica
first checks whether the message to be processed is a bayouMessageMixin if this
is the case the master replica extends the message with this mixin and sets the
attributes of the message accordingly. Subsequently, the message is processed
via the processCommitted method discussed above.

A tentative message that is sent to the master replica by a slave will be re-
ceived by master replica through the method receiveTentative. This method
assigns a commit sequence number to the message and updates the version
vector. Afterwards it is placed in the inbox as a result of the call to the
receiveCommitted method. Due to the implementation of a bayouMessageMixin
the message will also have that commit sequence number as its virtual receive
time. Hence, if the master replica is in a tentative state (because it received a

222 Advanced Experiments in Ambient-Oriented Programming

commitNotification(
anAcceptStamp, aServerId, aCSN)::

{ idx: tentative.asVector().findFirst(
{ (el.getAcceptStamp() =

anAcceptStamp),
& (el.getServerId() =

aServerId) });
msg: tentative.get(idx);
tentative.delete(msg);
idx:= rcvbox.asVector().findFirst(

{ isBayouMsg(el)
& (msg.getAcceptStamp() =

el.getAcceptStamp())
& (msg.getServerId() =

el.getServerId()) });
if(not(is_void(idx)),

{ msg:= rcvbox.get(idx);
rcvbox.delete(msg);
msg.setCSN(aCSN);
inbox.add(msg) })

};

receiveCommitted(msg)::{
inbox.add(msg)

};

processTentative(msg)::{
tentative.add(msg);
value: .process(msg);
versions.put(msg.getServerId(),

msg.getAcceptStamp());
value

};

processCommitted(msg)::{
committed.add(msg);
value: .process(msg);
this().setCommitHorizon(msg.getCSN());
value

};

Table 8.12: Implementation of the different state-update methods in
replicaMixin

masterMixin()::{
process(msg)::{

if(enabledReplicaMsgs.detect(
el.getName() = msg.getName()) &

‘we do not replicate the message ‘
‘if it is tentative‘
(isReversibleMsg(msg) &

(is_void(msg.getReceiveTime()) |
(msg.getReceiveTime() < infinite))),

{ if(not(isBayouMsg(msg)),
{ msg:=msg.bayouMessageMixin();

msg.setServerId(replicaId);
msg.setAcceptStamp(

lastTS:=lastTS+1);
lastCSN:=lastCSN+1;
msg.setCSN(lastCSN) });

processCommitted(msg)
}, {

.process(msg)
})

};

receiveTentative(msg)::{
lastCSN:=lastCSN+1;
msg.setCSN(lastCSN);
versions.put(msg.getServerId(),

msg.getAcceptStamp());
receiveCommitted(msg)

};

capture()
};

Table 8.13: Implementation of the masterMixin method in replicaMixin

8.4 Weak Replication 223

slaveMixin()::{
process(msg)::{

if(enabledReplicaMsgs.detect(
el.getName() = msg.getName()) &

‘we do not replicate the message‘
‘if it is tentative‘
((isReversibleMsg(msg) &

(is_void(msg.getReceiveTime()) |
(msg.getReceiveTime() < infinite))) |

‘bayou msg is always replicated‘
isBayouMsg(msg)),
{ if(not(isBayouMsg(msg)),

{ msg:=msg.bayouMessageMixin();
msg.setServerId(replicaId);
msg.setAcceptStamp(lastTS:=lastTS+1) });

if(is_void(msg.getCSN()),
{ this().processTentative(msg) },
{ lastCSN:=msg.getCSN();

this().processCommitted(msg) })

}, {
.process(msg)

})
};

receiveTentative(msg)::{
inbox.add(msg)

};

capture()
};

Table 8.14: Implementation of the slaveMixin method in replicaMixin

message from an active object sent in the context of a tentative state) it will
have an infinite local virtual time and the underlying time warp protocol will
initiate a rollback.

The Slave Mixin The slaveMixin also overrides the process method and
performs the same checks as the masterMixin. However, the implementation
differs from the masterMixin in that it will make a distinction between tentative
and committed messages, whereas the master replica will commit independently
of the type of message.

A tentative message that is received by the slave replica is placed in the
inbox. Its virtual receive time will be infinite and it will be executed after all
other messages that have been received with an infinite virtual receive time. This
together with the order in which the anti-entropy method sends the tentative
messages ensures that the tentative messages will be executed in the correct
order.

8.4.7 Discussion

The system resulting from the combination of Bayou’s anti-entropy protocol
and the Time Warp protocol cannot be considered as a traditional virtual time
system, because the two semantic rules set forth by Jefferson [Jef85], which we
discussed in section 8.3, are not necessarily adhered to. More particularly, this
is the case for the first rule that states that the virtual send time of a message
must be less than its virtual receive time. There are two instances in which this
rule can be broken:

1. The first is when the virtual receive time of a message is infinite. This
is the case where the state of the sender is tentative. Hence, the virtual
send time equals the virtual receive time.

224 Advanced Experiments in Ambient-Oriented Programming

2. The second is when no virtual receive time is set, as discussed above. In
this case the virtual receive time depends on the receiver of the message
and its state. Consider that a regular active object, which is in a com-
mitted state, sends a message to the master replica which is also in a
committed state. According to the rules and their realization, both dis-
cussed in section 8.4.4, the virtual receive time will not be set and the
message will be handled in the committed context of the local virtual
clock of the master replica. The local virtual clock of the master replica
is set to the commit sequence number of the last message it processed.
Hence, the local virtual time of the master replica is possibly greater than
the virtual send time of the message, which is zero in the case of a regular
committed active object.

As a result of these violated rules the arrow of causality will not necessarily point
in the direction of future virtual time. Note that with a different set of rules it
might be possible to create a mapping that fulfills these two semantic rules. For
example, by dividing the virtual time into a lower band for committed messages
and a higher band for tentative messages. Within these bands one could assign
virtual receive times that adhere to the semantic rules. Nevertheless, we have
chosen not to take this approach because it could lead to unnecessary rollbacks.
These rollbacks would be caused by the fact that the sender, which generally
has to decide on a virtual receive time, cannot make any estimation about an
appropriate receive time for a message due to the volatile connections.

8.4.8 Evaluation for AmOP

In this section we have demonstrated AmbientTalk’s support for custom mail-
boxes. The implementation of Bayou’s anti-entropy protocol was facilitated
by the introduction of a tentative and committed mailbox to respectively
store the tentative and final communication traces of active objects. What is
more, the implementation of the protocol is conceived as an extension of the
reverseMixin we discussed in the previous section. The necessary rollback se-
mantics, which are required for the implementation of the anti-entropy protocol,
are expressed by moving messages from one mailbox to another. Reversing the
effects of a message is simply expressed by manipulating mailboxes. The grace-
ful composition of both the reverseMixin and the replicaMixin demonstrates
AmbientTalk’s expressive mixin composition mechanism.

This language construct enables weak replication of active objects. Weakly
replicated active objects are available for client active objects even when the
master replica is not available (i.e. due to volatile connections). The rollbacks
that result from tentative messages that are sporadically committed over time
occur automatically. What is more, the changes that result from these rollbacks
are automatically and sporadically propagated over the mobile network as ex-
plained above. Hence, this language construct provides a high-level abstraction
to increase the autonomy of devices even in the face of long-term disconnections.
However, the use of weakly replicated objects also introduces tentative data in
the applications which has to be dealt with explicitly.

8.5 Support for Tentative Data 225

8.5 Support for Tentative Data

8.5.1 Introduction

The distinction between tentative and committed data that results from weak
replication plays an important role in the way clients have to deal with the
information that results from interactions with weak replicas. For example,
tentative data could be shown in a special color in the user interface such that
users know that the information is not final. Likewise, certain irreversible ac-
tions (typically interactions with the real world) should not be executed by the
application based on tentative data. Hence, the distinction between tentative
and committed data sometimes ought to be made explicit for the developer. For
this reason we have extended the non-blocking futures of section 7.2.3 to sup-
port distinguishing between tentative and committed data. Suppose an agenda
application contains weakly replicated calendars of a user’s contacts and the
user wants to schedule a meeting with one of them. After the meeting has been
scheduled a reservation for a room for this meeting has to be made.

meetingName: "Meeting about AmbientTalk";
when(wolfgangCalendar#reserve(tomorrow(), 1400, meetingName), {

if(content,
{ roomManager#reserve(tomorrow(), 1400, meetingName);

stdio#display(meetingName, " has been scheduled.", eoln) },
{ stdio#display(meetingName, " has NOT been scheduled.", eoln) })

});

Suppose that the calendar of Wolfgang is a weak replica that runs on the de-
vice that schedules the meeting. The invocation wolfgangCalendar#reserve(...)
will first resolve the future with a tentative value because the invocation is per-
formed on a slave replica representing Wolfgang’s calendar. Suppose that reser-
vations for the room manager are irreversible, then it is necessary to postpone
this reservation until Wolfgang is guaranteed to be available for the meeting.
We have therefore extended the when-construct of section 7.2.3 such that it also
indicates whether the block of code is executed in the context of tentative or
committed results. This distinction is made with the variable isTentative that
is available in the scope of the block passed to when. Another change in the
semantics of the when construct is that the block can now be executed multiple
times. The block is executed each time the future is resolved with a new value.
The same future can be resolved multiple times as a result of the rollback mech-
anism we described in the previous section. It is only after the future has been
resolved with a committed result that the block will never be executed again.
Based on this extension we are able to adapt the example code as follows:

meetingName: "Meeting about AmbientTalk";
when(wolfgangCalendar#reserve(tomorrow(), 1400, meetingName), {

status: if(isTentative, "[tentative] ", "[committed] ");
if(content,
{ if(not(isTentative), roomManager#reserve(tomorrow(), 1400, meetingName));

stdio#display(status, meetingName, " has been scheduled.", eoln) },
{ stdio#display(status, meetingName, " has NOT been scheduled.", eoln) })

});

This adapted version of the calendar example checks whether the value
bound to content is committed and only then is the room reserved. Another
change in the example is that the output is now prefixed with a tag that indi-
cates whether the data shown on the screen is final or can be changed in the
future.

226 Advanced Experiments in Ambient-Oriented Programming

Next to the extended when-construct we have also added a variation called
whenReverse. This construct has the same semantics of the extended when-
construct, but it takes a third argument that is evaluated before the future is
resolved again with another value. Based on this mechanism we can further
specialize the rollback procedure featured by the Time Warp protocol.

meetingName: "Meeting about AmbientTalk";
whenReverse(wolfCalendar#reserve(tomorrow(), 1400, meetingName), {

‘same as above‘
...

}, {
‘warn user of change‘
stdio#display("Warning: status changed!")

});

The two extensions based on the when-construct allow one to deal with the
tentative data that arises from the use of weakly replicated objects. Note that
this tentative data arises from the autonomous nature of the devices, which was
discussed in section 2.3. Indeed, the autonomy of the devices is supported be-
cause applications can interact with replicas that run on the same device. Since
the replica is local to the application it is always available to the application
such that it does not depend on the availability of another device to have ac-
cess to the replicated service. The replicas themselves also have a high degree
of autonomy thanks to their weak synchronization protocol. However, replicas
must be able to synchronize from time to time in order to commit messages.

8.5.2 Implementation

Table 8.15 shows the extension of the implementation of non-blocking futures
we introduced in section 7.2.3. The tentative future implementation adds an
extra attribute isTentative that indicates whether the future was resolved
with a result in a tentative or committed context. The method resolve is
overridden such that it takes an extra parameter isTentativeResolve that
sets the isTentative attribute. The future observers are also notified along
with the context in which the future was resolved. The future observer, shown
in table 8.16, notifies the active object to invoke the closure subscribed by the
when-construct. However, before doing so we first send an antimessage for the
previous notification such that it is undone by the active object. Note that the
createMessage method is overridden in order for the virtual receive time of
invokeWhen to be set according to the rules we discussed in section 8.4.4.

The tentativeFuturesMixin, shown in table 8.17, extends the futuresMixin.
It overrides the when and invokeWhen methods to deal with the tentative or
committed evaluation context. The when language construct’s call-by-function
argument code has an additional parameter isTentative that indicates the
context in which the future was resolved. whenReverve adds a call-by-function
argument reverse that is evaluated in invokeWhen if the future was previously
resolved with another value.

8.5.3 Evaluation for AmOP

By integrating support for distinguishing between tentative and committed re-
sults into the non-blocking futures of section 7.2.3, we provide a basic mechanism
to deal with conflicts arising from volatile connections and natural concurrency.

8.5 Support for Tentative Data 227

future:=future.extend({
isTentative: void;

subscribe(anActor)::{
subscribers.add(anActor);
if(not(is_void(resolved)) &

not(isTentative),
{ anActor#notify(resolved,

isTentative) })
};

resolve(content, isTentativeResolve)::{
isTentative:=isTentativeResolve;
resolved:=content;
subscribers.iterate(

el#notify(content, isTentative));
inbox.asVector().iterate({

msg: el;
forward(msg)

})
};

capture()
});

Table 8.15: Implementation of the extended future

futureObserver:= root.extend({
id: void;
reference: void;
createMessage(s, t, n, a)::{

msg: .createMessage(s, t, n, a)
.reversibleMessageMixin();

msg.setReceiveTime(
if(isTentative, infinite, void));

msg.setID(uid());
msg

};

new(anId, aReference)::copy({
id:=anId; reference:=aReference });

notify(content, isTentative)::{
if(not(isTentative),

sentbox.asVector().iterate({
sentbox.delete(el);
copiedMsg: el.copy();
copiedMsg.setNegative();
outbox.add(copiedMsg) }));

reference#invokeWhen(
id, content, isTentative) }

});

Table 8.16: Implementation of the tentative future observer

tentativeFuturesMixin()::{
invokeWhen(anId, content, isTentative)::{

whenInfo: whenBlocks.get(anId);
code : whenInfo[1];
reverse : whenInfo[2];
prevContent: whenInfo[3];
isFirstTime: whenInfo[4];
if(not(is_void(reverse)) &

not(isFirstTime),
{ reverse(

prevContent, isTentative) });
v: code(content, isTentative);
whenInfo[3]:=content;
whenInfo[4]:=false;
v

};

createMessage(src, target, name, args)::{
.createMessage(src, target, name, args)

.tentativeFutureMessageMixin()
};

when(aFuture,
code(content, isTentative))::{

whenReverse(aFuture,
code(content, isTentative),
void);

};

whenReverse(
aFuture,
code(content, isTentative),
reverse(content, isTentative))::

{ whenBlocks.add(
[code, reverse, void, true]);

aFuture#subscribe(
actor(futureObserver.new(

newId, thisActor())));
newId:=newId+1;
void };

requires(futuresMixin);
capture()

};

Table 8.17: Implementation of the tentativeFuturesMixin

228 Advanced Experiments in Ambient-Oriented Programming

Whereas this is but a first proposal the described protocol illustrates how the
first-class mailboxes of the paradigm support the implementation of language
constructs that deal with such concurrency conflicts.

Although the first results of experimentation with this language construct
are promising, further research is needed to evaluate this approach in a number
of applications. It has also not been investigated how reversibility interacts with
the other language constructs we proposed in the previous chapter.

8.6 Summary

In this chapter we have further exploited AmbientTalk as a language laboratory
and experimented with language constructs addressing two important themes
to develop mobile distributed systems. The first theme addressed language con-
structs that facilitate group communication and coordination in the context of
volatile connections. The most important abstraction resulting from this exper-
iment is the multi-future, which represents an unordered set of results yielded
by asynchronous group communication. Furthermore, two abstractions were
introduced to coordinate the concurrency spawned by these, possibly recursive,
asynchronous group communications, to wit the whenEach and whenAll con-
structs.

The second theme comprised optimistic concurrency control mechanisms.
Optimistic concurrency control strategies are important techniques for program-
ming mobile distributed systems because they best support the autonomous
nature of devices and the natural concurrency that results from this autonomy.
The most important result was that we were able to enable weak replication at
the level of active objects. This result was achieved thanks to the combination
of two protocols, namely Time Warp and Bayou’s anti-entropy protocol. These
two complex protocols extensively rely on the reified communication traces of
the AmOP paradigm – both were relatively easily implemented thanks to the
extensive use of AmbientTalk’s mailboxes. What is more, the language mixin
that encapsulates Bayou’s anti-entropy protocol was conceived as an extension
of the Time Warp mixin. This demonstrates the flexibility of AmbientTalk’s
mixin methods to compose language mixins together. Finally, we introduced ab-
stractions to deal with tentative data that results from interacting with weakly
replicated objects.

Although the abstractions in this chapter are first rough proposals they all
rely on the AmOP criteria we distilled in chapter 3 and demonstrate the poten-
tial of the AmOP paradigm for programming advanced AmOP applications.

Chapter 9

Conclusion

In the final chapter of this dissertation we take a step back and contemplate our
results. We summarize the work presented in this dissertation and situate our
work in the context of the three research goals we set out in the introduction.
Next, we summarize the contributions made in this dissertation and speculate on
areas that are interesting for future research, some of which is already underway.

9.1 Introduction

In this dissertation we have illustrated that programming languages that support
the Ambient-Oriented Programming paradigm facilitate programming mobile
distributed systems.

The usefulness of the Ambient-Oriented Programming paradigm stems from
the fact that it was shaped by the hardware phenomena induced by mobile dis-
tributed systems. These hardware phenomena distinguish mobile distributed
systems from traditional distributed systems and impose new requirements on
the software applications. The Ambient-Oriented Programming paradigm ad-
dresses these requirements from the perspective of object-oriented software de-
velopment.

9.2 Summary and Contributions

Chapters 2 to 8 present the main body of this dissertation and are summarized
below.

9.2.1 Restrictions of Existing Software Platforms

In chapter 2 we considered the differences between mobile and traditional dis-
tributed systems and from these differences we identified hardware phenomena
that distinguish both types of distributed systems. These hardware phenomena
were discussed through the context of well-established concurrency and distri-
bution concepts.

We discussed three approaches in order to express concurrency and distribu-
tion concepts in the object paradigm. First, in the library approach concurrency
and distribution concepts are modeled with objects so that the typical object

230 Conclusion

composition mechanisms can be used to create the necessary concurrency and
distribution abstractions. Second, the integrative approach aligns concepts of
the object paradigm with concepts of concurrency and distribution. The ad-
vantage of the integrative approach is that the programmer has to deal with
fewer concepts so that concurrency and distribution are more naturally dealt
with. Third, the reflective approach aims to combine the flexibility of the li-
brary approach with the advantages of integration. We found that the integra-
tive approach best matched our goal to unify the requirements of the hardware
phenomena with the object paradigm. The integrative approach consists of ex-
pressing concurrency and distribution in a distributed object oriented language,
whereas the library approach consists of expressing concurrency and distribu-
tion in the form of middleware. The reflective approach can be applied in the
context of both languages and middleware. Hence, to make the explicit dis-
tinction between both the integrative and the library approach we categorized
the state of the art to program mobile distributed systems in languages and
middleware. None of the distributed languages we discussed provides sufficient
support to deal with the hardware phenomena. Nevertheless, we concluded
that the languages designed for open networks best preserve the autonomy of
devices. Some of the middleware we discussed offered sufficient support to deal
with the hardware phenomena. Unfortunately, these approaches did not match
the object paradigm very well. For this reason we defined the Ambient-Oriented
Programming paradigm which defines programming languages for dealing with
the observed hardware phenomena.

9.2.2 Ambient-Oriented Programming

In chapter 3, we took a step back from the problems we encountered in the state
of the art. We distilled four characteristics from the hardware phenomena that
shape the Ambient-Oriented Programming (AmOP) paradigm. This paradigm
starts from a concurrent distributed object-oriented programming language. We
argued that the object model for such a language should be classless because a
classless object model enables one to control explicitly all sharing relationships
between objects. Control over this aspect is necessary because sharing is impor-
tant from two perspectives. First, from a concurrency perspective it is important
in the context of maintaining a consistent state. Second, from a distribution
perspective it is important in the context of failures. The other three criteria
that define the paradigm shape the concurrency and distribution properties of
the object model: first, non-blocking communication preserves the autonomy of
devices in the face of concurrency control techniques. Second, reified communi-
cation traces are required to ensure that objects can maintain a consistent state
in the face of non-blocking communication. Reified communication traces also
enable one to devise customized message delivery guarantees. Third, a reified
environmental context is needed to make objects aware of their direct ambient
so that they can identify ambient resources and sense when ambient resources
have become unavailable.

After we distilled these criteria, we revisited the software platforms from
chapter 2 in the context of the paradigm to further understand their strengths
and weaknesses with respect to programming mobile distributed systems. Dis-
tributed languages designed to support open networks adhere to the non-blocking
communication primitives criterion and are sometimes based on a classless ob-

9.2 Summary and Contributions 231

ject model. However, none of the languages adhere to the reified communication
traces or the reified environmental context criteria. The state of the art in mid-
dleware, especially the tuple space based approaches, best support the AmOP
criteria but are not based on a classless object model and do not match the
object paradigm very well.

9.2.3 An AmOP Concurrency and Distribution Model

The next step in the dissertation is to build a concurrent and distributed lan-
guage that fits the AmOP paradigm. However, before we can proceed with this
step we have to choose a concurrency and distribution model for our language.
For our concurrency and distribution model we rely on the actor model because
of two reasons. First, the model fits the object paradigm well. Second, the model
best matches the AmOP criteria we distilled in chapter 3. Unfortunately, the
actor model does not fulfill all four AmOP criteria. For this reason we pro-
posed an extension of the actor model in chapter 4. This extended actor model,
which we call the ambient actor model, is defined by means of an extension
of the operational semantics of the actor model and introduces the concept of
explicit mailboxes. Explicit mailboxes augment the actor model with reified the
communication traces and environmental context, which were the two AmOP
criteria lacking in the actor model. Afterwards, we wrote a first AmOP appli-
cation expressed in the model. This limited experiment already demonstrated
the usefulness of the first-class mailboxes but also showed us that the language
specified by the model is too low-level to express realistic AmOP applications.
Therefore, the next step was to build a high-level language based on the ambient
actor model.

9.2.4 An AmOP Language: AmbientTalk

In chapter 5, we built a programming language kernel, called AmbientTalk. Am-
bientTalk is based on the ambient actor model but has a more advanced object
system. The object system of the ambient actor model, which was inherited
from the standard actor model, does not support state mutations within an ob-
ject method. To resolve this limitation we were inspired by the ABCL model.
Another important design decision was to choose for a double layered object
system, consisting of a passive and active object layer. The passive object layer
is sequential, whereas the active object layer is concurrent and distributed. This
separation of layers has the advantage that it reduces the mental overhead of
having to think of all objects as potentially concurrent and distributed ones.
The passive object layer was based on Pic%’s object model. Passive objects are
similar to traditional sequential objects that communicate synchronously but
which are created without classes. Instead, objects are created by cloning them
from an existing object or by extending an existing object. Objects can be ex-
tended at run-time using predefined mixin methods or using arbitrarily defined
extensions outside an object. Another distinctive feature of the passive object
layer is its special parameter binding rules. An actual parameter can be bound
lazily to a formal parameter. In that case the formal parameter is bound to a
first-class method. This type of parameter binding proved to be very useful in
the context of extending the language with new language constructs.

232 Conclusion

The active object layer introduces concurrency and distribution based on
the ambient actor model in the language. An active object points to a passive
object that defines its behavior. The message passing semantics defines the
communication rules between active objects. The most important rules are that
communication is always non-blocking and that passive objects that are passed
as arguments are deep-copied up to the level of active objects. Deeply copied
passive objects prevent concurrency problems that result from sharing passive
objects. Hence, only active objects can be shared by other objects. The active
object layer inherits first-class messages and mailboxes from the ambient actor
model but also adds the notion of mailbox observers. Mailbox observers can
monitor changes to the mailboxes. Finally, we further experimented with these
concepts in the context of an AmOP application expressed in AmbientTalk.

9.2.5 AmbientTalk as a Language Laboratory

In order to further explore the potential of the AmOP paradigm we have in-
cluded a meta object protocol (MOP) in AmbientTalk such that it enables
experimentation with expressive programming language abstractions. The pur-
pose of these abstractions is to give developers the means to deal explicitly with
the hardware phenomena exhibited by mobile distributed systems. We formally
defined the MOP in AmbientTalk by means of a metacircular AmbientTalk im-
plementation. The advantages of this approach is that it not only provides a
clear definition of the MOP but also of the AmbientTalk language itself. More-
over, it allows us to demonstrate a sense of paradigmatic completeness of both
the language and the AmOP paradigm. What is more, the semantics of the
MOP are defined in terms of AmbientTalk’s first-class mailboxes such that the
MOP is aligned with the AmOP paradigm.

We have shown that metaprograms can be used to extend AmbientTalk
with new language constructs. These language constructs can be encapsulated
in mixin methods, which we called language mixins.

9.2.6 Experiments with Language Constructs

In chapters 7 and 8 we discussed the implementation of several language con-
structs based on the MOP we specified in chapter 6. We have illustrated for each
of these language constructs how they aid in expressing AmOP applications.
Furthermore, we have shown that they are expressed using AmbientTalk’s MOP
and the extent in which they rely on the properties of the AmOP paradigm.

In the second part of chapter 7 we have put some of these language constructs
to use in a chat application. Such a chat application epitomizes the concerns
that arise when developing an AmOP application. We have compared this
AmbientTalk application to a similar application expressed in Java and found
that the program expressed in AmbientTalk was a factor of six smaller in terms
of lines of code. What is more, the program which was expressed in AmbientTalk
better supports the hardware phenomena exhibited by this mobile distributed
system.

Finally, in chapter 8 we expressed some more advanced language constructs.
More particularly we investigated two topics. First, we discussed group commu-
nication and coordination in the context of mobile distributed systems. These

9.3 Limitations and Future Work 233

abstractions are important in order to gain insight in the structure of collab-
orative applications. The second topic was weak replication in the context of
the object paradigm. Weak replication is an important abstraction in order to
enhance the autonomy of devices but the state of the art only applied it in the
context of passive data. We were able to promote weak replication to the ac-
tive object level by integrating a protocol that enables reversible computations
with a weak replica synchronization protocol. Furthermore, we discussed a pro-
gramming language abstraction that deals with tentative data that arise from
weak replication. These abstractions demonstrate the potential of the AmOP
paradigm and and its ability to structure advanced AmOP applications.

9.2.7 Conclusion

As was explained in chapter 1, the goal of our research is to a) invent expressive
programming language abstractions that facilitate the construction of AmOP
applications, b) obtain a better understanding of the structure of future AmOP
applications and c) get insight in the fundamental semantic building blocks
that lie at the basis of these abstractions in the same vein continuations are
the foundations of control flow and environments are at the heart of scoping
mechanisms.

Since the conception of AmOP applications is currently still in its infancy,
it is hard to do research in a purely demand-driven way. For this reason our
research methodology consisted of pursuing these research goals simultaneously
such that an interplay between these three goals came into existence: the pro-
gramming language abstractions determine the set of semantic building blocks.
However, the power of the set of semantic building blocks determines the extent
of the programming language constructs. These programming language con-
structs in turn heavily determine the structure of AmOP applications. Finally,
when more complex AmOP applications will be developed the need for more
expressive programming language constructs will arise.

Bootstrapping this interplay has been based on the unraveling of the hard-
ware phenomena that fundamentally discriminate mobile devices (connected by
mobile networks) from classic desktop machines (connected by stationary net-
works). Based on this unraveling we have defined a number of semantic building
blocks in the form of an actor model extension. This extension reifies its actor
communication traces and has a continuous explicit causal link with the ambient
that reifies an actor’s environmental context. These semantic building blocks
have been studied at the formal level and have been used in practice to build
a number of initial programming language abstractions. Subsequently these
programming language abstractions were used to structure an AmOP and this
experience gave rise to the development of other programming language abstrac-
tions. Nevertheless, because of the interplay between our research goals there
is room for further research at all three levels. This is the topic of section 9.3.

9.3 Limitations and Future Work

Now that we have presented what we have achieved, it is time to mention what
we did not do. We present a number of directions for future research and
opportunities for improvements.

234 Conclusion

9.3.1 AmbientTalk’s Shortcomings

There are a number of rough edges to the AmbientTalk kernel language that need
further polishing. The most important ones are described. First, AmbientTalk
does not feature a pure object based data model. Data values such as numbers
and tables are not represented as objects but rather as primitive values. As
a result native functions must be introduced to deal with these values such
that they form a special case in the code. A second rough edge that needs
work is AmbientTalk’s MOP. Language constructs are currently composed of
a redefinition of the MOP and public methods that introduce the language
construct in an object. Although the language construct can be encapsulated
in a mixin method, the messages that are sent in the context of the MOP have
the identity of the active object. As a result the interface of an active object
becomes “polluted” with methods that handle these messages as more language
constructs such that name conflicts between meta and base methods can exist.
A possible solution to resolve this problem is the introduction of layers into
an active object. Each layer has its own public interface but is still associated
with the same active object. When sending a message to an active object one
can choose the layer to be addressed. If no specific layer is addressed then the
message is directed to the base behavior of an object, otherwise it is handled
by the specific layer. Each layer could denote a different meta-behavior of the
active object. Nevertheless, research is needed to validate this approach and
compare it to other approaches.

9.3.2 Language Constructs

Some of the language constructs presented in this dissertation are tentative and
need to be further developed and subjected to further experimentation. For
example, in the case of ambient references we noticed that the design dimensions
we proposed are not complete. In order to discover other useful dimensions we
need to further evaluate them in a wider range of AmOP applications. It also
seems that ambient references would benefit from a more expressive discovery
mechanism than the one available in AmbientTalk. Group communication and
weak replication abstractions also show much potential to reduce the complexity
of specific types of AmOP applications. Although both of these abstractions
were experimented with in small AmOP applications further experiments are
needed to validate the expressiveness and their scalability. This is currently
being investigated by a member of our lab.

Another interesting field of future work is to see how transaction manage-
ment in classic distributed systems can be transposed to the AmOP setting in
which devices holding a lock may leave and never return. Reified communication
traces may once again prove useful here, as already exemplified by optimistic
process collaboration approaches such as the Time Warp mechanism [Jef85] we
discussed in section 8.3.

In the model presented so far, no attention was given to exception handling
features. Exception handling mechanisms define a context in which dynami-
cally raised exceptions are to be handled. In an ambient-oriented setting, such
contexts cannot be described using classic try-catch blocks since the processes
making up an ambient-oriented application communicate using non-blocking
communication primitives. This implies that the calling process may have left

9.3 Limitations and Future Work 235

the context of its try block before the exception was propagated by the invoked
process. The exception handling mechanisms in E [MTS05] might be a good
starting point. This is currently being investigated by a member of our lab.

9.3.3 Integration of Language Constructs

As Hoare noted in his paper “Hints on Programming Language Design” [Hoa73]
it is important not to fall into the trap of feature piling when designing a pro-
gramming language. Rather, before adding a new language feature to a language
one has to reflect so as to see whether it is possible to realize the semantics of
that feature by unifying existing concepts. In the AmOP language constructs we
have attempted to do this on several occasions. Namely, in several experiments
we have considered the concept of futures to structure AmOP applications. We
have first introduced futures in AmbientTalk for aligning non-blocking commu-
nication with data-flow computations. We considered futures again as an ab-
straction for the coordination of group communication. In this context futures
were thought of as a set of results rather than a single value. In the context
of weak replication we have thought of futures as a possibly tentative result
that is transparently resolved again with new results until the result becomes
stable and is considered to be definitive. Ultimately, ambient references could
be regarded as the futures of service discovery. In this perspective an ambient
reference represents an active object that is to be discovered in the future. It is
clear that the concept of futures plays a prominent role for structuring AmOP
applications. From an integration perspective it is however not clear how we
can unify these different types of futures into a single concept that has clean and
simple semantics and does not introduce other conflicts. Perhaps a taxonomy
that describes futures from a different perspective can provide further insight
into finding a “unified” future abstraction.

The interactions between language features from a technical perspective also
has to be further investigated. The different forms of scoped reflection and the
use of language mixins to encapsulate language constructs offers some initial
support to control the interactions between language features. However, all in
all it is a difficult exercise to predict how two arbitrary language mixins will
behave when they are composed. The interactions between language constructs
have to be considered per case. Hence, more advanced meta-level techniques are
necessary to unravel the combined semantics of language constructs and resolve
possible conflicts.

9.3.4 Efficient Implementation

A non-recursive prototype implementation of AmbientTalk has been built that
supports experimentation with AmOP language constructs. However, during
the conception of AmbientTalk not much attention was paid to efficient exe-
cution both in time and in space. More insight is required on how to map
AmOP features onto an efficient implementation technology. For instance, new
distributed memory management techniques are required because existing tech-
niques are not intended for use in mobile networks. We predict that automated
distributed memory management systems are unfeasible in this setting because
there is no single strategy to deal with volatile connections. We foresee that
semi-automatic memory management systems are a possible strategy because

236 Conclusion

they allow one to specify application-specific rules to reclaim memory, while
preventing having to think of memory issues for every single object. This is
currently being investigated by a member of our lab. Another example is object
serialization for classless object systems. An advantage of serialization in the
context of a class-based object system is that the identity of a class can be used
to reduce network traffic. In this case the object’s class is transparently rebound
such that the class does not have to be sent along with the object. In the case
of a classless object system this is impossible because there is no notion of a
class. As was discussed in section 5.3.6, at the memory level classless objects
also share behavior between cloned objects but without making these sharing
relationships visible at the language level. These techniques should be trans-
posed to the context of serialization and rebinding. Perhaps the implementation
techniques that introduce the concept of cloning families in Kevo [Tai93] might
be a starting point.

9.3.5 Security

Security is an important concern in the context of open networks that has not
been considered in the context of this dissertation. There are many aspects to
ensure security going from low-level encrypted protocols to high-level concerns
addressed at the language level. At the language level we have discussed how
AmbientTalk’s objects can be protected in the face of inheritance such that
their encapsulation is preserved. Preserving the encapsulation is an important
requirement for all capability-based security models. These capability-based
models have been employed successfully in the context of open distributed sys-
tems [Mil04]. Nevertheless, it is necessary to investigate how these capability-
based models scale in the context of mobile distributed systems.

Appendix A

Code Listing of
Metacircular AmbientTalk

238 Code Listing of Metacircular AmbientTalk

A.1 Scanner

{

AOP_token:: 1;

CAT_token:: 2;

CCL_token:: 3;

CEQ_token:: 4;

COL_token:: 5;

COM_token:: 6;

END_token:: 7;

FRC_token:: 8;

LBC_token:: 9;

LBR_token:: 10;

LPR_token:: 11;

MOP_token:: 12;

NAM_token:: 13;

NBR_token:: 14;

PER_token:: 15;

QUO_token:: 16;

RBC_token:: 17;

RBR_token:: 18;

ROP_token:: 19;

RPR_token:: 20;

SMC_token:: 21;

TXT_token:: 22;

XOP_token:: 23;

SHA_token:: 23;

Scanner() :: {

MSG:: ["additive operator",

"application",

"declaration",

"assignment",

"definition",

"comma",

"end of text",

"fraction",

"left brace",

"left bracket",

"left parenthesis",

"multiplicative operator",

"name",

"number",

"period",

"quotation" ,

"right brace",

"right bracket",

"relational operator",

"right parenthesis",

"semicolon",

"text",

"exponentiation operator",

"sharp"];

SCAN: void;

aop:: 1;

apo:: 2;

bkq:: 3;

cat:: 4;

A.1 Scanner 239

col:: 5;

com:: 6;

dgt:: 7;

eol:: 8;

eql:: 9;

exp:: 10;

ill:: 11;

lbc:: 12;

lbr:: 13;

lpr:: 14;

ltr:: 15;

mns:: 16;

mop:: 17;

nul:: 18;

per:: 19;

pls:: 20;

quo:: 21;

rbc:: 22;

rbr:: 23;

rop:: 24;

rpr:: 25;

smc:: 26;

wsp:: 27;

xop:: 28;

sha:: 29;

NBR:: 29;

NUL:: 0;

ch_tab:: [`nul` ill, ill, ill, ill, ill, ill, ill,

ill, wsp, eol, ill, ill, eol, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

wsp, xop, quo, sha, aop, aop, mop, apo,

lpr, rpr, mop, pls, com, mns, per, mop,

dgt, dgt, dgt, dgt, dgt, dgt, dgt, dgt,

dgt, dgt, col, smc, rop, eql, rop, xop,

cat, ltr, ltr, ltr, ltr, exp, ltr, ltr,

ltr, ltr, ltr, ltr, ltr, ltr, ltr, ltr,

ltr, ltr, ltr, ltr, ltr, ltr, ltr, ltr,

ltr, ltr, ltr, lbr, mop, rbr, xop, ltr,

bkq, ltr, ltr, ltr, ltr, exp, ltr, ltr,

ltr, ltr, ltr, ltr, ltr, ltr, ltr, ltr,

ltr, ltr, ltr, ltr, ltr, ltr, ltr, ltr,

ltr, ltr, ltr, lbc, aop, rbc, rop, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ltr, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

ill, ill, ill, ill, ill, ill, ill, ill,

240 Code Listing of Metacircular AmbientTalk

ill, ill, ill, ill, ill, ill, ill, ill];

INP: void;

SIZ: void;

POS: void;

HLD: void;

CHR: void;

skip_ch()::

CHR:= if((POS:= POS+1) > SIZ,

NUL,

INP[POS]);

get_cat()::

if(CHR = NUL, nul, ch_tab[ord(CHR)]);

next_ch(Tkn)::

{ skip_ch();

Tkn };

freeze()::

HLD:= POS-1;

capture_name(Tkn)::

{ t[POS-HLD-1]: INP[HLD:= HLD+1];

SCAN:= implode(t);

Tkn };

capture_text(Tkn)::

{ t: if(POS-HLD > 2,

v[POS-HLD-2]: INP[HLD:= HLD+1],

[]);

SCAN:= implode(t);

Tkn };

capture_number(Tkn)::

{ t[POS-HLD-1]: INP[HLD:= HLD+1];

SCAN:= number(implode(t));

Tkn };

check(allowed)::

allowed[get_cat()];

mask@list::

{ msk[NBR]: false;

for(k: 1, k <= size(list), k:= k+1,

msk[list[k]]:= true);

msk };

bkq_allowed:: mask(bkq);

col_allowed:: mask(col);

dgt_allowed:: mask(dgt);

eql_allowed:: mask(eql);

exp_allowed:: mask(exp);

nam_allowed:: mask(dgt,exp,ltr);

opr_allowed:: mask(aop,eql,mns,mop,pls,rop,xop);

per_allowed:: mask(per);

quo_allowed:: mask(quo);

qux_allowed:: mask(eol,nul,quo);

sgn_allowed:: mask(mns,pls);

A.1 Scanner 241

operator(Tkn)::

{ freeze();

until(!check(opr_allowed), skip_ch());

capture_name(Tkn) };

exponent()::

{ skip_ch();

if(check(sgn_allowed), skip_ch());

if(!check(dgt_allowed), Error("digit required"));

until(check(!dgt_allowed), skip_ch());

capture_number(FRC_token) };

fraction()::

{ skip_ch();

if(!check(dgt_allowed), Error("digit required"));

until(!check(dgt_allowed), skip_ch());

if(check(exp_allowed),

exponent(),

capture_number(FRC_token)) };

text()::

{ while(!check(qux_allowed), skip_ch());

if(check(quo_allowed),

skip_ch(),

Error("quote required")) };

aop_fun()::

operator(AOP_token);

apo_fun()::

next_ch(QUO_token);

bkq_fun()::

{ skip_ch();

while(!check(bkq_allowed), skip_ch());

skip_ch();

Scan() };

cat_fun()::

next_ch(CAT_token);

col_fun()::

{ skip_ch();

if(check(eql_allowed),

next_ch(CEQ_token),

if(check(col_allowed),

next_ch(CCL_token),

COL_token)) };

com_fun()::

next_ch(COM_token);

dgt_fun()::

{ freeze();

until(!check(dgt_allowed), skip_ch());

if(check(per_allowed),

fraction(),

if(check(exp_allowed),

exponent(),

242 Code Listing of Metacircular AmbientTalk

capture_number(NBR_token))) };

ill_fun()::

{ Error("illegal character");

END_token };

lbc_fun()::

next_ch(LBC_token);

lbr_fun()::

next_ch(LBR_token);

lpr_fun()::

next_ch(LPR_token);

ltr_fun()::

{ freeze();

until(!check(nam_allowed), skip_ch());

capture_name(NAM_token) };

mop_fun()::

operator(MOP_token);

nul_fun()::

next_ch(END_token);

per_fun()::

next_ch(PER_token);

quo_fun()::

{ skip_ch();

freeze();

text();

capture_text(TXT_token) };

rbc_fun()::

next_ch(RBC_token);

rbr_fun()::

next_ch(RBR_token);

rop_fun()::

operator(ROP_token);

rpr_fun()::

next_ch(RPR_token);

smc_fun()::

next_ch(SMC_token);

wsp_fun()::

{ skip_ch();

Scan() };

xop_fun()::

operator(XOP_token);

sha_fun()::

next_ch(SHA_token);

A.1 Scanner 243

fun_tab:: [aop_fun,

apo_fun,

bkq_fun,

cat_fun,

col_fun,

com_fun,

dgt_fun,

wsp_fun,

rop_fun,

ltr_fun,

ill_fun,

lbc_fun,

lbr_fun,

lpr_fun,

ltr_fun,

aop_fun,

mop_fun,

nul_fun,

per_fun,

aop_fun,

quo_fun,

rbc_fun,

rbr_fun,

rop_fun,

rpr_fun,

smc_fun,

wsp_fun,

xop_fun,

sha_fun];

Scan() :: { _SCAN_:= void;

fun_tab[get_cat()]() };

initScan(Str) ::

{ INP := explode(Str);

SIZ := size(INP);

POS := 0;

skip_ch();

void };

getAttribute() :: _SCAN_;

capture() };

SCANNER :: Scanner();

display("scanner installed", eoln) }

244 Code Listing of Metacircular AmbientTalk

A.2 Parser

{

REF(txt) :: agReferenceP.cloneMe(txt);

TXT(str) :: agTextP.cloneMe(str);

FUN(nam,args,bdy) :: agFunctionP.cloneMe(nam,args,bdy);

TAB(tb) :: agTableP.cloneMe(tb);

NBR(n) :: agNumberP.cloneMe(n);

FRC(f) :: agFractionP.cloneMe(f);

VOI() :: agVoidP;

BND(nam,val,nxt) :: agBindingP.cloneMe(nam,val,nxt);

OBJ(cst,var,nxt) :: agObjectP.cloneMe(cst,var,nxt);

APL(nam,arg) :: agApplicationP.cloneMe(nam,arg);

TBL(nam,idx) :: agTabulationP.cloneMe(nam,idx);

MSG(exp,inv) :: agSyncMessageP.cloneMe(exp,inv);

ASY(exp,inv) :: agAsyncMessageP.cloneMe(exp,inv);

SUP(inv) :: agSuperP.cloneMe(inv);

DEF(inv,exp) :: agDefinitionP.cloneMe(inv, exp);

DCL(inv,exp) :: agDeclarationP.cloneMe(inv, exp);

SET(inv,exp) :: agAssignmentP.cloneMe(inv, exp);

QUO(exp) :: agQuoteP.cloneMe(inv, exp);

CLO(fun,env) :: agCloneP.cloneMe(fun, env);

CTX(cur,ths,sup) :: agValueP.agContext(cur,ths,sup);

NAT(idx) :: agNativeP.cloneMe(idx);

Parser():

{ begin_ref:: REF(TXT("begin"));

table_ref:: REF(TXT("table"));

TKN: void;

skip()::

TKN:= _SCANNER_.Scan();

next(Itm)::

{ skip(); Itm };

unexpected@any::

Error("Unexpected " + _SCANNER_._MSG_[TKN]);

expect(Tkn)::

if(TKN = Tkn, skip(), unexpected());

infix(Opr, Tkn)::

{ loop(opr, count):

{ opd: Opr();

if((TKN = Tkn) & (opr = _SCANNER_.getAttribute()),

tab: { skip();

loop(opr, count+1) },

tab[count]: void);

tab[count]:= opd;

tab };

opd: Opr();

while(TKN = Tkn,

{ opr: next(_SCANNER_.getAttribute());

arg: loop(opr, 2);

arg[1]:= opd;

opd:= APL(REF(TXT(opr)), TAB(arg)) });

opd };

list(Sep, Trm)::

{ loop(count):

A.2 Parser 245

{ exp: expression();

if(TKN = Sep,

tab: { skip();

loop(count+1) },

if(TKN = Trm,

next(tab[count]: void),

unexpected()));

tab[count]:= exp;

tab };

TAB(loop(1)) };

identity(Exp)::

Exp;

number()::

NBR(next(_SCANNER_.getAttribute()));

fraction()::

FRC(next(_SCANNER_.getAttribute()));

text()::

TXT(next(_SCANNER_.getAttribute()));

quotation()::

{ skip();

exp: expression();

QUO(exp) };

variable()::

REF(TXT(next(_SCANNER_.getAttribute())));

var_case:: case(NAM_token ++ variable,

AOP_token ++ variable,

MOP_token ++ variable,

ROP_token ++ variable,

XOP_token ++ variable,

void ++ unexpected);

application(Exp)::

APL(next(Exp), if(TKN = RPR_token,

next(_EMPTY_),

list(COM_token, RPR_token)));

apply(Exp)::

APL(next(Exp), operand());

tabulation(Exp)::

TBL(next(Exp), list(COM_token, RBR_token));

qua_case:: case(LPR_token ++ application,

CAT_token ++ apply,

LBR_token ++ tabulation,

void ++ identity);

qualification(Exp)::

{ skip();

cas: var_case(TKN);

ref: cas();

cas:= qua_case(TKN);

MSG(Exp, cas(ref)) };

246 Code Listing of Metacircular AmbientTalk

async(Exp)::

{ skip();

cas: var_case(TKN);

ref: cas();

cas:= qua_case(TKN);

ASY(Exp, cas(ref)) };

void_(Exp)::

void;

inv_case:: case(LPR_token ++ application ,

CAT_token ++ apply ,

LBR_token ++ tabulation ,

PER_token ++ qualification,

SHA_token ++ async ,

void ++ void_);

invocation(Exp)::

{ cas: inv_case(TKN);

exp: cas(Exp);

if(is_void(exp),

Exp,

invocation(exp)) };

name()::

invocation(variable());

begin_()::

{ skip();

arg: list(SMC_token, RBC_token);

exp: APL(begin_ref, arg);

invocation(exp) };

table()::

{ skip();

arg: if(TKN = RBR_token,

next(_EMPTY_),

list(COM_token, RBR_token));

exp: APL(table_ref, arg);

invocation(exp) };

subexpression()::

{ skip();

exp: expression();

expect(RPR_token);

invocation(exp) };

operator: void;

unr_case:: case(NBR_token ++ number ,

FRC_token ++ fraction ,

TXT_token ++ text ,

QUO_token ++ quotation,

AOP_token ++ operator ,

MOP_token ++ operator ,

ROP_token ++ operator ,

XOP_token ++ operator ,

NAM_token ++ name ,

LBC_token ++ begin_);

A.2 Parser 247

unary(Ref)::

{ cas: unr_case(TKN);

exp: cas();

APL(Ref, TAB([exp])) };

opr_case:: case(NBR_token ++ unary ,

FRC_token ++ unary ,

TXT_token ++ unary ,

QUO_token ++ unary ,

AOP_token ++ unary ,

MOP_token ++ unary ,

ROP_token ++ unary ,

XOP_token ++ unary ,

NAM_token ++ unary ,

LBC_token ++ unary ,

void ++ invocation);

operator():=

{ ref: variable();

cas: opr_case(TKN);

cas(ref) };

opd_case:: case(NBR_token ++ number ,

FRC_token ++ fraction ,

TXT_token ++ text ,

QUO_token ++ quotation ,

AOP_token ++ operator ,

MOP_token ++ operator ,

ROP_token ++ operator ,

XOP_token ++ operator ,

NAM_token ++ name ,

LBC_token ++ begin_ ,

LBR_token ++ table ,

LPR_token ++ subexpression,

void ++ unexpected);

operand()::

{ cas: opd_case(TKN);

cas() };

factor()::

infix(operand, XOP_token);

term()::

infix(factor, MOP_token);

comparand()::

infix(term, AOP_token);

operation()::

infix(comparand, ROP_token);

definition(Opr)::

DEF(next(Opr), expression());

declaration(Opr)::

DCL(next(Opr), expression());

assignment(Opr)::

SET(next(Opr), expression());

248 Code Listing of Metacircular AmbientTalk

exp_case:: case(COL_token ++ definition ,

CCL_token ++ declaration,

CEQ_token ++ assignment ,

void ++ identity);

expression()::

{ opr: operation();

cas: exp_case(TKN);

cas(opr) };

Read(Str)::

{ _SCANNER_.initScan(Str);

TKN := _SCANNER_.Scan();

exp: expression();

expect(END_token);

exp };

capture() };

PARSER :: Parser();

display("reader installed", eoln) }

A.3 Abstract Grammar 249

A.3 Abstract Grammar

{

Error@Msg::
{ display("***error*** ");
display@Msg;
continue(_EXIT_, void) };

Map(Fun, Tab)::
{ n:: size(Tab);
k: 0;
tab[n]:: Fun(Tab[k:=k+1]);
tab };

AbstractGrammar() :: {

eval(e) :: void;
apply(args, e) :: Error("cannot apply a ", this().print(e));
define(exp, e) :: Error("cannot define a ", this().print(e));
declare(exp, e) :: Error("cannot declare a ", this().print(e));
assign(exp, e) :: Error("cannot assign a ", this().print(e));
syncmessage(dct, e) ::
Error("illegal sync message expression: ", this().print(e));

asyncmessage(anActor, e) ::
Error("illegal async message expression: ", this().print(e));

supersend(e) :: Error("illegal supersend: ", this().print(e));
wrap(e) :: this();
print(e) :: "AbstractGrammar";
getMetaValue() :: this();

call(dct,acts,e) ::
Error("call: illegal function parameter: ", this().print(e));

bind(dct,act,e) ::
Error("bind: illegal formal parameter: ", this().print(e));

isVoid() :: false;
isFraction() :: false;
isText() :: false;
isTable() :: false;
isNative() :: false;
isBinding() :: false;
isObject() :: false;
isCallFrame():: false;
isFunction() :: false;
isNumber() :: false;
isClosure() :: false;
isActor() :: false;
isMailbox() :: false;

isNumeral() :: this().isNumber()||this().isFraction();
isApplicable() :: this().isClosure();
isDictionary() :: this().isCallFrame()||this().isObject();

printBrackets(val) :: "<"+val+">";

agReference(name) :: {
getName() :: name;
setName(nam) :: name := nam;
cloneMe(nam) :: { c: this().clone(root); c.setName(nam); c};

eval(e) :: { v: e.cur.lookupAny(name, e.ths, e); v };

250 Code Listing of Metacircular AmbientTalk

define(exp, e) :: { e.cur.addVariable(name, v:exp.eval(e)); v };
declare(exp,e) :: { e.cur.addConstant(name, v:exp.eval(e)); v };
assign(exp, e) :: { e.cur.setVariable(name, v:exp.eval(e)); v };
syncmessage(dct, e) :: { dct.lookupConstant(name, dct, e) };
asyncmessage(anActor, e) :: {
`return message(e.thsActor.getAddress(), anActor, name)`
actorBehavior: e.cur.agActorBehavior(e);
actorBehavior.createMessage(
e.thsActor.getAddress(),
anActor,
name,
agTableP) };

supersend(e) :: e.sup.lookupAny(name, e.ths, e);

call(dct,actuals,e) :: {
actT: actuals.getTable();
i:0;
evaluatedActs[size(actT)]: actT[i:=i+1].eval(e);
dct.addVariable(name, agTableP.cloneMe(evaluatedActs))

};

bind(dct,act,e) :: { dct.addVariable(name,act.eval(e)) };

print(e) :: printBrackets("reference "+name.getTxt());
capture() `<- agReference`

};

agApplication(expr, args) :: {
getName() :: expr;
getArgs() :: args;
setName(nam) :: expr := nam;
setArgs(arg) :: args := arg;
cloneMe(nam,arg) :: {

c: this().clone(root);
c.setName(nam); c.setArgs(arg);
c

};

eval(e) :: expr.eval(e).apply(args, e);
define(exp, e) :: {
e.cur.addVariable(
expr.getName(),
v:agFunctionP.cloneMe(expr, args, exp));

v.wrap(e) };
declare(exp,e) :: {
e.cur.addConstant(
expr.getName(),
v:agFunctionP.cloneMe(expr, args, exp));
v.wrap(e) };

assign(exp, e) :: {
e.cur.setVariable(
expr.getName(),
v:agFunctionP.cloneMe(expr, args, exp));

v.wrap(e) };
syncmessage(dct, e)::
dct.lookupConstant(expr.getName(), dct, e).apply(args,e);

asyncmessage(anActor, e) :: {
`invoke send(aMsg)`
actorBehavior: e.cur.agActorBehavior(e);
aMsg: actorBehavior.createMessage(

A.3 Abstract Grammar 251

e.thsActor.getAddress(),
anActor,
expr.getName(),
args);

actorBehavior.send(aMsg) };
supersend(e) ::
e.sup.lookupAny(expr.getName(), e.ths, e).apply(args, e);

call(dct,actuals,e) :: {
actT: actuals.getTable();
i:0;
closures[size(actT)]:
agClosureP.cloneMe(agFunctionP.cloneMe(expr,args,actT[i:=i+1]),e);

dct.addVariable(expr.getName(), agTableP.cloneMe(closures))
};

bind(dct, act, e) ::
dct.addVariable(
expr.getName(),
agClosureP.cloneMe(agFunctionP.cloneMe(expr,args,act),e));

print(e) :: printBrackets("application");
capture() `<- agApplication`

};

agTabulation(expr, idx) :: {
getName() :: expr;
getIdx() :: idx;
setName(nam) :: expr := nam;
setIdx(id) :: idx := id;
cloneMe(nam,id) :: {

c: this().clone(root);
c.setName(nam); c.setIdx(id);
c

};

eval(e) :: expr.eval(e).get(idx.getTbl()[1].eval(e).getMetaValue());
define(exp, e) :: {
tab[idx.getTbl()[1].eval(e).getMetaValue()] : exp.eval(e);
e.cur.addVariable(expr.getName(), v:agTableP.cloneMe(tab)); v };

declare(exp, e) :: {
tab[idx.getTbl()[1].eval(e).getMetaValue()] : exp.eval(e);
e.cur.addConstant(expr.getName(), v:agTableP.cloneMe(tab)); v };

assign(exp, e) :: {
tab: expr.eval(e);
tab.set(idx.getTbl()[1].eval(e).getMetaValue(),v:exp.eval(e)); v };

syncmessage(dct, e) ::
dct.lookupConstant(expr.getName(), dct, e).get(
idx.getTbl()[1].eval(e).getMetaValue());

supersend(e) ::
e.sup.lookupAny(expr.getName(), e.ths, e).get(
idx.getTbl()[1].eval(e).getMetaValue());

print(e) :: printBrackets("tabulation");
capture() `<- agTabulation`

};

agDefinition(inv, exp) :: {
getExp() :: exp;
getInv() :: inv;
setExp(ex) :: exp := ex;

252 Code Listing of Metacircular AmbientTalk

setInv(in) :: inv := in;
cloneMe(in,ex) :: {
c: this().clone(root);
c.setExp(ex); c.setInv(in);
c };

eval(e) :: inv.define(exp,e);
print(e) :: printBrackets("definition");
capture() `<- agDefinition`

};

agDeclaration(inv, exp) :: {
getExp() :: exp;
getInv() :: inv;
setExp(ex) :: exp := ex;
setInv(in) :: inv := in;
cloneMe(in,ex) :: {
c: this().clone(root);
c.setExp(ex); c.setInv(in);
c };

eval(e) :: inv.declare(exp,e);
print(e) :: printBrackets("declaration");
capture() `<- agDeclaration`

};

agAssignment(inv, exp) :: {
getExp() :: exp;
getInv() :: inv;
setExp(ex) :: exp := ex;
setInv(in) :: inv := in;
cloneMe(in,ex) :: {
c: this().clone(root);
c.setExp(ex); c.setInv(in);
c };

eval(e) :: inv.assign(exp,e);
print(e) :: printBrackets("assignment");
capture() `<- agAssignment`

};

agSyncMessage(exp, inv) :: {
getExp() :: exp;
getInv() :: inv;
setExp(ex) :: exp := ex;
setInv(in) :: inv := in;
cloneMe(ex,in) :: {
c: this().clone(root);
c.setExp(ex); c.setInv(in);
c };

eval(e) :: inv.syncmessage(exp.eval(e),e);
print(e) :: printBrackets("sync message");
capture() `<- agSyncMessage`

};

agAsyncMessage(exp, inv) :: {
getExp() :: exp;
getInv() :: inv;
setExp(ex) :: exp := ex;

A.3 Abstract Grammar 253

setInv(in) :: inv := in;
cloneMe(ex,in) :: {
c: this().clone(root);
c.setExp(ex); c.setInv(in);
c };

eval(e) :: inv.asyncmessage(exp.eval(e),e);
print(e) :: printBrackets("async message");
capture() `<- agAsyncMessage`

};

agSuper(inv) :: {
getInv() :: inv;
setInv(in) :: inv := in;
cloneMe(in) :: {
c: this().clone(root);
c.setInv(in);
c };

eval(e) :: inv.supersend(e);
print(e) :: printBrackets("super send");
capture() `<- agSuper`

};

agValue() :: {
eval(e) :: this();
print(e) :: "Value";

agVoid() :: {
print(e) :: "void";
clone(x) :: this();

picoClone@args :: this();

lookupConstant(nam, ths, e) ::
Error("Constant not found: "+nam.getTxt());

containsConstant(nam, ths, e) :: false;
lookupAny(nam, ths, e) ::
Error("Name not found: "+nam.getTxt());

setVariable(nam, ths) ::
Error("Variable not found: "+nam.getTxt());

addVariable(nam, ths) ::
Error("Cannot add variable: "+nam.getTxt());

addConstant(nam, ths) ::
Error("Cannot add constant: "+nam.getTxt());

debug() :: void;

lookup(nam,ths,myDct,e) :: void;
getMetaValue() :: void;
change(n,v) :: void;
isVoid() :: true;

capture() `<- agVoid`
};

agBinding(nam,val,nxt) :: {
getVal() :: val; setVal(v) :: val := v;
getNam() :: nam; setNam(n) :: nam := n;

254 Code Listing of Metacircular AmbientTalk

getNxt() :: nxt; setNxt(n) :: nxt := n;
cloneMe(n,v,ne) :: {

c: this().clone(root);
c.setVal(v); c.setNam(n); c.setNxt(ne);
c };

print(e) :: printBrackets("binding");

picoClone() :: cloneMe(nam,val,nxt.picoClone());
lookup(n, ths, myDct, e) :: {
if(n.getTxt()=nam.getTxt(),

val.wrap(agValueP.agContext(myDct,
ths,
myDct.parent(),
e.thsActor)),

nxt.lookup(n, ths, myDct, e)) };
change(n, v) :: if(n.getTxt()=nam.getTxt(),

val := v,
nxt.change(n,v));

isBinding() :: true;
capture() `<- agBinding`

};

agObject(cst,var,nxt) :: {
getCst() :: cst; setCst(c) :: cst := c;
getVar() :: var; setVar(v) :: var := v;
getNxt() :: nxt; setNxt(n) :: nxt := n;
cloneMe(cs,v,n) :: {

c: this().clone(root);
c.setCst(cs); c.setVar(v); c.setNxt(n);
c };

parent() :: nxt;
picoClone(upTo) ::

this().cloneMe(cst,
var.picoClone(),
if(this()~upTo,

nxt,
nxt.picoClone(upTo)));

containsConstant(nam, ths, e) ::
if((v:cst.lookup(nam, ths, this(), e))!~void,

true,
nxt.containsConstant(nam, ths, e));

lookupConstant(nam, ths, e) ::
if((v:cst.lookup(nam, ths, this(), e))!~void,

v,
nxt.lookupConstant(nam, ths, e));

lookupAny(nam, ths, e) :: {
found: if ((v:cst.lookup(nam, ths,this(), e))~void,

var.lookup(nam,ths,this(), e),
v);

if(found~void,
if(nxt~void,

Error("Could not find variable: ", nam.getTxt()),
nxt.lookupAny(nam, ths, e)),

found) };

setVariable(nam, v) ::

A.3 Abstract Grammar 255

if(var.change(nam,v)~void,
if(nxt~void,

Error("Could not set variable: "+nam),
nxt.setVariable(nam,v)),

v);

addVariable(nam, v) :: {
var := agBindingP.cloneMe(nam, v, var); this() };

addConstant(nam, v) :: {
cst := agBindingP.cloneMe(nam, v, cst); this() };

addFrame() :: this().cloneMe(agVoidP, agVoidP, this());
isObject() :: true;

print(e) :: printBrackets("object");
debug() :: {
`display("constants", eoln);`
`cst.debug();`
display("variables", eoln);
var.debug();
display("NEXT", eoln);
nxt.debug()

};

agActorMessage(context)::{
sourceMethodName:: agTextP.cloneMe("getSource");
targetMethodName:: agTextP.cloneMe("getTarget");
nameMethodName :: agTextP.cloneMe("getName");
argsMethodName :: agTextP.cloneMe("getArgs");
setArgsMethodName :: agTextP.cloneMe("setArgs");

setContext(aContext) :: { context:=aContext };
getContext() :: { context };

getSource() :: {
closure: this().lookupConstant(

sourceMethodName, super(), context);
closure.apply(agTableP, context)

};

getTarget() :: {
closure: this().lookupConstant(

targetMethodName, super(), context);
closure.apply(agTableP, context)

};

getName() :: {
closure: this().lookupConstant(

nameMethodName, super(), context);
closure.apply(agTableP, context)

};

getArgs() :: {
closure: this().lookupConstant(

argsMethodName, super(), context);
closure.apply(agTableP, context)

};

setArgs(anArgsList) :: {
closure: this().lookupConstant(

256 Code Listing of Metacircular AmbientTalk

setArgsMethodName, super(), context);
closure.apply(agTableP.cloneMe([anArgsList]), context)

};

capture() `<- agActorMessage`

};

agActorBehavior(context)::{
sendMethodName:: agTextP.cloneMe("send");
processMethodName:: agTextP.cloneMe("process");
createMethodName:: agTextP.cloneMe("createMessage");

setContext(aContext) :: { context:=aContext };
getContext() :: { context };

createMessage(src, target, name, args) :: {
closure: context.cur.lookupConstant(
createMethodName,
context.cur,
context);

closure.apply(agTableP.cloneMe([src, target, name, args]),
context)

};

send(aMsg) :: {
closure: this().lookupConstant(

sendMethodName, super(), context);
closure.apply(agTableP.cloneMe([aMsg]), context)

};

process(aMsg) :: {
closure: this().lookupConstant(processMethodName, super(), context);
closure.apply(agTableP.cloneMe([aMsg]), context)

};

capture() `<- agActorBehavior`

};

capture() `<- agObject`
};

agActor(act) :: {
getAct() :: act; setAct(anAct) :: act := anAct;
cloneMe(anActorBehavior) :: {

act: actor(metaActorBehavior.new(anActorBehavior));
c: this().clone(root);
c.setAct(act);
act#initialize(c);
c };

isActor() :: true;
getMetaValue() :: act;
print(e) :: printBrackets(text(act));
capture() `<- agActor`

};

agMailbox(contents, addObservers, deleteObservers) :: {
getContents() :: contents;
setContents(aVector) :: contents:=aVector;

A.3 Abstract Grammar 257

setAddObservers(aVector) :: addObservers := aVector;
setDeleteObservers(aVector) :: deleteObservers := aVector;
id: "prototype"; setId(a)::id:=a;
cloneMe(aName) :: {

c: this().clone(root);
c.setContents(vector.new());
c.setAddObservers(vector.new());
c.setDeleteObservers(vector.new());
c.setId(aName);
c };

length() :: contents.length();
add(element) :: {
contents.add(element);
addObservers.iterate({ el(element) }) };

delete(nr) :: {
element: contents.delete(nr);
deleteObservers.iterate({ el(element) }) };

get(nr) :: contents.get(nr);
set(nr, value) :: contents.set(nr, value);
iterate(it(el)) :: contents.iterate(it(el));
select(pred(el)) :: contents.select(pred(el));
findFirst(pred(el)) :: contents.findFirst(pred(el));
detect(pred(el)) :: contents.detect(pred(el));
contains(aValue) :: contents.contains(aValue);
map(mp(el)) :: contents.map(mp(el));
remove(element) :: {
v: contents.remove(element);
if(v, deleteObservers.iterate({ el(element) }));
v

};
addSyncAddObserver(notify(el)) :: { addObservers.add(notify) };
addSyncDeleteObserver(notify(el)) :: deleteObservers.add(notify);

isMailbox() :: true;
getMetaValue() :: contents;
print(e) :: printBrackets("mailbox");
capture() `<- agMailbox`

};

agNative(nat, nam) :: {
getNat() :: nat; setNat(n) :: nat := n;
getNam() :: nam; setNam(n) :: nam := n;
cloneMe(nt, nm) :: {

c: this().clone(root);
c.setNat(nt); c.setNam(nm);
c };

apply(args, e) :: nat(args, e);
wrap(e) :: agNativeClosureP.cloneMe(this(), e);

isNative() :: true;
getMetaValue() ::
if(nam.getTxt() = "true",

true,
if(nam.getTxt() = "false", false, void));

print(e) :: printBrackets("native "+nam.getTxt());
capture() `<- agNative`

};

agNativeClosure(nat, env) :: {
getNat() :: nat; setNat(f) :: nat := f;

258 Code Listing of Metacircular AmbientTalk

getEnv() :: env; setEnv(e) :: env := e;
cloneMe(f,e) :: {

c: this().clone(root);
c.setNat(f); c.setEnv(e);
c };

apply(args, e) :: {
newE : agContext(e.cur, env.ths, e.sup, e.thsActor);
nat.apply(args, newE) };

` isClosure() :: true;`
getMetaValue() :: nat.getMetaValue();
print(e) :: printBrackets("native closure");
capture() `<- agClosure`

};

agFunction(nam, pars, body) :: {
getNam() :: nam; setNam(n) :: nam := n;
getPars() :: pars; setPars(p) :: pars := p;
getBody() :: body; setBody(b) :: body := b;
cloneMe(n,p,b) :: {

c: this().clone(root);
c.setNam(n); c.setPars(p); c.setBody(b);
c };

apply(args, e) :: Error("cannot apply a function directly");
wrap(e) :: agClosureP.cloneMe(this(), e);

isFunction() :: true;
print(e) :: printBrackets("function "+nam.getTxt());
capture() `<- agFunction`

};

agClosure(fun, env) :: {
getFun() :: fun; setFun(f) :: fun := f;
getEnv() :: env; setEnv(e) :: env := e;
cloneMe(f,e) :: {

c: this().clone(root);
c.setFun(f); c.setEnv(e);
c };

apply(args, e) :: {
callframe : env.cur.addFrame();
if(!args.isTable(),

{ args := args.eval(e);
if(!args.isTable(),

Error("Invalid actual arguments: "+args.print(e))) });
fun.getPars().call(callframe,args,e);
newE : agContext(callframe, env.ths, env.cur.parent(), e.thsActor);
fun.getBody().eval(newE) };

isClosure() :: true;
print(e) :: printBrackets("closure");
capture() `<- agClosure`

};

agTable(tbl) :: {
getTbl() :: tbl;
getTable() :: tbl;
setTbl(t) :: tbl := t;
cloneMe(tb) :: {

c: this().clone(root);
c.setTbl(tb);
c };

call(dct,actuals,e) :: {

A.3 Abstract Grammar 259

actT : actuals.getTable();
forT : this().getTable();
if (size(actT)!=size(forT),

Error("non-matching argument list"));
for(i:1,i<=size(forT),i:=i+1,

forT[i].bind(dct,actT[i],e))
};

get(i) :: tbl[i];
set(i,v) :: tbl[i] := v;
isTable() :: true;
getMetaValue() :: tbl;
print(e) :: {
display("[");
for(i:1, i<=size(tbl), i:=i+1, {
display(tbl[i].print(e)); if(i<size(tbl), display(", ")) });

display("]")
};
capture() `<- agTable`

};

agText(txt) :: {
getTxt() :: txt; setTxt(t) :: txt := t;
cloneMe(tx) :: {

c: this().clone(root);
c.setTxt(tx);
c };

isText() :: true;
getMetaValue() :: txt;
print(e) :: txt;
capture() `<- agText`

};

agFraction(frc) :: {
getFrc() :: frc; setFrc(f) :: frc := f;
cloneMe(fr) :: {

c: this().clone(root);
c.setFrc(fr);
c };

isFraction() :: true;
getMetaValue() :: frc;
print(e) :: frc;
capture() `<- agFraction`

};

agNumber(num) :: {
getNum() :: num; setNum(n) :: num := n;
cloneMe(n) :: {

c: this().clone(root);
c.setNum(n);
c };

isNumber() :: true;
getMetaValue() :: num;
print(e) :: num;
capture() `<- agNumber`

};

agContext(curDct,thsDct,supDct, thisActor) :: {
` if(supDct.isVoid(), Error("..."));`
cur :: curDct;

260 Code Listing of Metacircular AmbientTalk

ths :: thsDct;
sup :: supDct;
thsActor :: thisActor;

print(e) :: printBrackets("context");
capture() `<- agContext`

};

capture() `<- agValue`
};

agQuote(exp) :: {
getExp() :: exp; setExp(e) :: exp := e;
cloneMe(e) :: {

c: this().clone(root);
c.setExp(e);
c };

print(e) :: printBrackets("quotation");
capture() `<- agQuote`

};

capture() `<- AbstractGrammar`
};

`prototypes`

agP :: AbstractGrammar();

agValueP :: agP.agValue();
agVoidP :: agValueP.agVoid();
agFractionP :: agValueP.agFraction(0);
agTextP :: agValueP.agText("");
agTableP :: agValueP.agTable([]);
agNumberP :: agValueP.agNumber(0);

agReferenceP :: agP.agReference(agTextP);
agBindingP :: agValueP.agBinding(agTextP, agVoidP, agVoidP);
agObjectP :: agValueP.agObject(agBindingP, agBindingP, agVoidP);

agApplicationP :: agP.agApplication(agReferenceP, agTableP);
agTabulationP :: agP.agTabulation(agReferenceP, agNumberP);
agSyncMessageP :: agP.agSyncMessage(agObjectP, agReferenceP);
agAsyncMessageP :: agP.agAsyncMessage(agObjectP, agReferenceP);
agSuperP :: agP.agSuper(agReferenceP);
agDefinitionP :: agP.agDefinition(agReferenceP, agVoidP);
agDeclarationP :: agP.agDeclaration(agReferenceP, agVoidP);
agAssignmentP :: agP.agAssignment(agReferenceP, agVoidP);
agQuoteP :: agP.agQuote(agVoidP);
agActorP :: agValueP.agActor(agVoidP);
agMailboxP :: agValueP.agMailbox(agVoidP, agVoidP, agVoidP);

agNativeP :: agValueP.agNative(agTextP,void);
agContextP :: agValueP.agContext(agObjectP, agObjectP, agObjectP, agVoidP);
agFunctionP :: agValueP.agFunction(agReferenceP, agTableP, agVoidP);
agClosureP :: agValueP.agClosure(agFunctionP, agContextP);
agNativeClosureP :: agValueP.agNativeClosure(agNativeP, agContextP);
agActorMessageP :: agObjectP.agActorMessage(agContextP);
agActorBehaviorP :: agObjectP.agActorBehavior(agContextP);

A.4 Ambient Actor Behavior 261

A.4 Ambient Actor Behavior

{

metaActorBehavior::object({

actorBehavior : void;

mailboxes : void;

mbxObservers : void;

self : void;

context : void;

metaSentbox : void;

metaInbox : void;

metaOutbox : void;

metaRcvbox : void;

metaRequiredbox: void;

metaProvidedbox: void;

metaDisjoinbox : void;

metaJoinbox : void;

currentMessage : void;

new(anActorBehavior) :: copy({

actorBehavior:=anActorBehavior;

mailboxes:=smallmap.new();

mbxObservers:=smallmap.new().multimapMixin()

});

getMailboxes() :: mailboxes;

getObservers() :: mbxObservers;

getAddress() :: self;

getThisMessage() :: currentMessage;

getActorBehavior() :: actorBehavior;

setActorBehavior(anActorBehavior) :: {

actorBehavior:=anActorBehavior;

thisActor()#processNextMessage() };

executeMessage(aMsg, e) :: {

wrappedMsg: aMsg.agActorMessage(e);

name: wrappedMsg.getName();

args: wrappedMsg.getArgs();

closure: actorBehavior.lookupConstant(name, actorBehavior, e);

closure.apply(args, e)

};

processNextMessage() :: {

msgToProcessId: metaInbox.findFirst(

actorBehavior.containsConstant(

el.agActorMessage(context).getName(),

actorBehavior,

context));

if(not(is_void(msgToProcessId)), {

currentMessage:=metaInbox.get(msgToProcessId);

metaInbox.delete(msgToProcessId);

actorBehavior.agActorBehavior(context).process(currentMessage);

thisActor()#processNextMessage()

})

};

initialize(anAgActor) :: {

self:=anAgActor;

metaInbox:=agMailboxP.cloneMe("in");

mailboxes.put("in", metaInbox);

metaOutbox:=agMailboxP.cloneMe("out");

262 Code Listing of Metacircular AmbientTalk

mailboxes.put("out", metaOutbox);

metaRcvbox:=agMailboxP.cloneMe("rcv");

mailboxes.put("rcv", metaRcvbox);

metaSentbox:=agMailboxP.cloneMe("sent");

mailboxes.put("sent", metaSentbox);

metaProvidedbox:=agMailboxP.cloneMe("provided");

mailboxes.put("provided", metaProvidedbox);

metaRequiredbox:=agMailboxP.cloneMe("required");

mailboxes.put("required", metaRequiredbox);

metaJoinbox:=agMailboxP.cloneMe("joined");

mailboxes.put("joined", metaJoinbox);

metaDisjoinbox:=agMailboxP.cloneMe("disjoined");

mailboxes.put("disjoined", metaDisjoinbox);

context:=agValueP.agContext(actorBehavior,

actorBehavior,

actorBehavior.getNxt(),

this());

agActorBehaviorP.setContext(context);

sentbox.addAddObserver(thisActor()#sent);

metaInbox.addSyncAddObserver({

thisActor()#processNextMessage()

});

metaOutbox.addSyncAddObserver({

el.agActorMessage(context).getTarget().getAct()#receiveMessage(el)

});

metaOutbox.addSyncDeleteObserver({

msg: el;

idx: outbox.asVector().findFirst({

and(el.getName()="receiveMessage", el.getArgs()[1]=msg) });

if(not(is_void(idx)), outbox.delete(outbox.get(idx)))

});

metaRequiredbox.addSyncAddObserver({

discovery#addRequiredPattern(self, el) });

metaRequiredbox.addSyncDeleteObserver({

discovery#removeRequiredPattern(self, el) });

metaProvidedbox.addSyncAddObserver({

discovery#addProvidedPattern(self, el) });

metaProvidedbox.addSyncDeleteObserver({

discovery#removeProvidedPattern(self, el) });

metaInbox.add(

agActorBehaviorP.createMessage(

self, self, agTextP.cloneMe("init"), agTableP));

this().processNextMessage();

`now that we have initialized the actor we can start receiving messages.`

become(this().receiveMixin())

};

setRootActor(anActor)::{

rootActor:=anActor

};

joinOn(aPattern, providerActor) :: {

idx: metaRequiredbox.findFirst(aPattern.getTxt() = el.getTxt());

if(not(is_void(idx)), {

metaJoinbox.add(agTableP.cloneMe([providerActor, aPattern])) })

};

disjoinOn(aPattern, providerActor) :: {

idx: metaJoinbox.findFirst({

and(and(el.isTable(),

A.4 Ambient Actor Behavior 263

el.getTbl()[1].getAct() = providerActor.getAct()),

el.getTbl()[2].getTxt() = aPattern.getTxt()) });

if(not(is_void(idx)), {

resolution: metaJoinbox.delete(idx);

metaDisjoinbox.add(resolution) })

};

receiveMixin() :: {

receiveMessage(aMsg) :: {

metaInbox.add(aMsg)

};

capture()

};

sent(msg) :: {

if(msg.getName()="receiveMessage", {

metaMsg: msg.getArgs()[1];

metaOutbox.remove(metaMsg);

metaSentbox.add(metaMsg) })

};

evaluate(aString) :: {

msg: agActorBehaviorP.createMessage(

rootActor,

rootActor,

agTextP.cloneMe("evaluate"),

agTableP.cloneMe([agTextP.cloneMe(aString)]));

receiveMessage(msg)

}

});

patternInfo(aDevice, aRequirePattern, aProvidePattern,

aRequireActor, aProviderActor) :: {

discovery::aDevice;

requireActor::aRequireActor;

providerActor::aProviderActor;

requirePattern::aRequirePattern;

providePattern::aProvidePattern;

capture()

};

metaDiscoveryBehavior :: object({

requiredPatterns : smallmap.new().multimapMixin();

providedPatterns : smallmap.new().multimapMixin();

`this multimap maps the joined patterns to the actors `

matchedPatternActors : smallmap.new().multimapMixin();

`this multimap holds maps the discovery actors to the joined `

`actors so that if a discovery is no longer available then we`

`can disjoin the joined actors. `

discoveryToJoinedActors : smallmap.new().multimapMixin();

`this multimap contains all patterns that were queried for`

`so that if an actor provides something we can check and `

`notify these actors. `

patternToRequiredDevices: smallmap.new().multimapMixin();

init() :: {

provided.add("AmbientTalkVM");

required.add("AmbientTalkVM");

264 Code Listing of Metacircular AmbientTalk

joinBox.addAddObserver(thisActor#joined);

disjoinBox.addAddObserver(thisActor#disjoined)

};

addRequiredPattern(anActor, aPattern) :: {

requiredPatterns.put(anActor, aPattern);

sendRequiredPatternToJoinedDevices(anActor, aPattern)

};

removeRequiredPattern(anActor, aPattern) :: {

requiredPatterns.deleteItem(anActor, aPattern)

};

addProvidedPattern(anActor, aPattern) :: {

providedPatterns.put(anActor, aPattern);

patternToRequiredDevices.iterate({

if(isMatchingPattern(key, aPattern), value.iterate({

this().sendMatchingPatternNotification(

el.discovery, el.requireActor, anActor, key, aPattern)

}))

})

};

removeProvidedPattern(anActor, aProvidePattern) :: {

providedPatterns.deleteItem(anActor, aProvidePattern);

v: matchedPatternActors.get(aProvidePattern);

if(not(is_void(v)), v.iterate({

el.discovery#disjoinNotification(el.requirePattern, anActor)

}))

};

joined(aResolution) :: {

sendRequiredPatterns(provider(aResolution))

};

disjoined(aResolution) :: {

joinedActors: discoveryToJoinedActors.get(provider(aResolution));

if(not(is_void(joinedActors)), {

joinedActors.iterate({

el.requireActor.getAct()#disjoinOn(

el.requirePattern, el.providerActor)

});

discoveryToJoinedActors.delete(provider(aResolution))

})

};

disjoinNotification(aRequirePattern, anActor) :: {

v: discoveryToJoinedActors.getKey(customer());

toDelete: vector.new();

if(not(is_void(v)), {

v.iterate({

if(and(el.requirePattern = aRequirePattern,

el.providerActor.getAct() = anActor.getAct()),

{

toDelete.add(el);

el.requireActor.getAct()#disjoinOn(

el.pattern, el.providerActor)

}) });

toDelete.iterate(discoveryToJoinedActors.deleteItem(customer(), el))

})

A.4 Ambient Actor Behavior 265

};

matchingPatternNotification(

requireActor, providerActor, aRequirePattern) ::

{

requireActor.getAct()#joinOn(aRequirePattern, providerActor);

discoveryToJoinedActors.put(

customer(),

root.patternInfo(customer(),

aRequirePattern,

void,

requireActor,

providerActor))

};

isMatchingPattern(requiredPattern, providedPattern)::{

and(and(requiredPattern.isText(), providedPattern.isText()),

requiredPattern.getTxt() = providedPattern.getTxt())

};

sendMatchingPatternNotification(

aDevice, requireActor, providerActor,

aRequirePattern, aProvidePattern) ::

{

aDevice#matchingPatternNotification(

requireActor, providerActor, aRequirePattern);

matchedPatternActors.put(

aProvidePattern,

root.patternInfo(

customer(),

aRequirePattern,

aProvidePattern,

requireActor,

providerActor))

};

sendRequiredPatternToJoinedDevices(requireActor, aPattern) :: {

joinBox.asVector().iterate({

provider(el)#queryForRequiredPattern(requireActor, aPattern)

})

};

sendRequiredPatterns(aRuntime) :: {

requiredPatterns.iterate({

value.iterate({

aRuntime#queryForRequiredPattern(key, el)

})

})

};

queryForRequiredPattern(requireActor, aRequirePattern) :: {

patternToRequiredDevices.put(

aRequirePattern,

root.patternInfo(

customer(),

aRequirePattern,

void,

requireActor,

void));

providedPatterns.iterate({

266 Code Listing of Metacircular AmbientTalk

value.iterate({

if(this().isMatchingPattern(aRequirePattern, el), {

this().sendMatchingPatternNotification(

customer(),

requireActor,

key,

aRequirePattern,

el)

})

})

})

}

});

discovery: actor(metaDiscoveryBehavior);

display("ambient actor model installed", eoln)

}

A.5 Native Methods 267

A.5 Native Methods

{
rootObject: agObjectP.clone();

addNative(anObject, aText, aNativeOp)::{
nativeText: agTextP.cloneMe(aText);
anObject.setCst(
agBindingP.cloneMe(nativeText,

agNativeP.cloneMe(aNativeOp, nativeText),
anObject.getCst())) };

addConstant(anObject, aText, aValue)::{
nativeText: agTextP.cloneMe(aText);
anObject.setCst(agBindingP.cloneMe(nativeText,

aValue,
anObject.getCst())) };

native(fun) :: f(args, e) :: {
i: 0;
metaArgs: [];
if(size(args.getTbl()) > 0,

metaArgs:=tmp[size(args.getTbl())]: void);
for(i:=1, i<=size(args.getTbl()), i:=i+1,

metaArgs[i]:=args.getTbl()[i].eval(e).getMetaValue());
value : fun@metaArgs;
result: void;
if(is_number(value), result:=agNumberP.cloneMe(value));
if(is_fraction(value), result:=agNumberP.cloneMe(value));
if(is_text(value), result:=agTextP.cloneMe(value));
if(is_void(value), result:=agVoidP);
if(is_table(value), result:=agTableP.cloneMe(value));
if(value~true, result:=_TRUE_);
if(value~false, result:=_FALSE_);
result };

beginNative(args, e) :: {
i: 0;
for(i:=1, i<= size(args.getTbl()), i:=i+1,
args.getTbl()[i].eval(e))

};

whileNative(args, e) :: {
condition: args.getTbl()[1];
body : args.getTbl()[2];
result : agVoidP;
loop(aBool)::if(aBool,

{ result:=body.eval(e);
loop(condition.eval(e).getMetaValue()) });

loop(condition.eval(e).getMetaValue());
result

};

untilNative(args, e) :: {
condition: args.getTbl()[1];
body : args.getTbl()[2];
result : agVoidP;
loop()::{ result:=body.eval(e);

if(not(condition.eval(e).getMetaValue()), loop()) };
loop(condition.eval(e).getMetaValue());
result

};

268 Code Listing of Metacircular AmbientTalk

forNative(args, e) :: {
init : args.getTbl()[1];
condition: args.getTbl()[2];
incr : args.getTbl()[3];
body : args.getTbl()[4];
result : agVoidP;
init.eval(e);
loop(aBool)::if(aBool,

{ result:=body.eval(e);
incr.eval(e);
loop(condition.eval(e).getMetaValue()) });

loop(condition.eval(e).getMetaValue());
result

};

tabNative(args, e) :: {
result[size(args.getTbl())]: void;
for(i:=1, i<= size(args.getTbl()), i:=i+1,
result[i]:=args.getTbl()[i].eval(e));

agTableP.cloneMe(result)
};

ifNative(args, e) :: {
condition: args.getTbl()[1];
then : args.getTbl()[2];
else : _VOID_;
if(size(args.getTbl()) > 2,

else := args.getTbl()[3]);
result : condition.eval(e);
if(result~_TRUE_, then.eval(e), else.eval(e))

};

readNative(args, e) :: {
aString: args.getTbl()[1].eval(e);
PARSER.Read(aString.getTxt())

};

evalNative(args, e) :: {
anAbstractGrammar: args.getTbl()[1].eval(e);
anAbstractGrammar.eval(e)

};

captureNative(args, e) :: e.cur;

thisNative(args, e) :: e.ths;

superNative(args, e) :: e.sup;

thisActorNative(args, e) :: { v: e.thsActor; v.getAddress() };

is_numberNative(args, e) ::
if(args.getTbl()[1].eval(e).isNumber(), _TRUE_, _FALSE_);

is_fractionNative(args, e) ::
if(args.getTbl()[1].eval(e).isFraction(), _TRUE_, _FALSE_);

is_textNative(args, e) ::
if(args.getTbl()[1].eval(e).isText(), _TRUE_, _FALSE_);

A.5 Native Methods 269

is_tableNative(args, e) ::
if(args.getTbl()[1].eval(e).isTable(), _TRUE_, _FALSE_);

is_voidNative(args, e) ::
if(args.getTbl()[1].eval(e).isVoid(), _TRUE_, _FALSE_);

is_functionNative(args, e) ::
if(args.getTbl()[1].eval(e).isFunction(), _TRUE_, _FALSE_);

is_dictionaryNative(args, e) ::
if(args.getTbl()[1].eval(e).isObject(), _TRUE_, _FALSE_);

is_actorNative(args, e) ::
if(args.getTbl()[1].eval(e).isActor(), _TRUE_, _FALSE_);

displayNative(args, e) :: {
for(i: 1, i<=size(args.getTbl()), i:=i+1,

display(args.getTbl()[i].eval(e).print(e)));
VOID

};

viewNative(args, e) :: {
newObject: e.cur.addFrame();
context: agValueP.agContext(newObject,

e.ths, e.sup, e.thsActor);
args.getTbl()[1].eval(context);
newObject

};

copyNative(args, e) :: {
if(size(args.getTbl()) > 0, {

deepcopy: e.cur.picoClone(agVoidP);
context: agValueP.agContext(deepcopy,

deepcopy.getNxt(),
deepcopy.getNxt().getNxt(),
e.thsActor);

args.getTbl()[1].eval(context);
deepcopy.getNxt() },
e.ths.picoClone(agVoidP))

};

cloneNative(args, e) :: {
upTo: agVoidP;
if(size(args.getTbl()) > 0,

upTo:= args.getTbl()[1].eval(e));
e.ths.picoClone(upTo)

};

loadNative(args, e) :: {
filename: args.getTbl()[1].eval(e);
PARSER.Read(readFile(filename.getTxt())).eval(initContext)

};

actorNative(args, e) :: {
actorBehavior: args.getTbl()[1].eval(e);
agActorP.cloneMe(actorBehavior)

};

270 Code Listing of Metacircular AmbientTalk

addToMbxNative(args, e) :: {
mbxName: args.getTbl()[1].eval(e).getTxt();
msg : args.getTbl()[2].eval(e);
mailbox: e.thsActor.getMailboxes().get(mbxName);
if(is_void(mailbox), {

mailbox:=e.thsActor.getMailboxes().put(
mbxName, agMailboxP.cloneMe(mbxName))});

mailbox.add(msg);
VOID

};

deleteFromMbxNative(args, e) :: {
mbxName: args.getTbl()[1].eval(e).getTxt();
msg : args.getTbl()[2].eval(e);
mailbox: e.thsActor.getMailboxes().get(mbxName);
if(is_void(mailbox),

FALSE,
if(mailbox.remove(msg), _TRUE_, _FALSE_))

};

messagesNative(args, e) :: {
mbxName: args.getTbl()[1].eval(e).getTxt();
mailbox: e.thsActor.getMailboxes().get(mbxName);
if(is_void(mailbox),

agTableP,
agTableP.cloneMe(mailbox.getMetaValue().asTable()))

};

executeNative(args, e) :: {
msg: args.getTbl()[1].eval(e);
e.thsActor.executeMessage(msg, e)

};

becomeNative(args, e) :: {
newBehavior : args.getTbl()[1].eval(e);
e.thsActor.setBehavior(newBehavior);
VOID

};

thisMessageNative(args, e) :: {
e.thsActor.getThisMessage()

};

addAddObserverNative(args, e) :: {
mbxName : args.getTbl()[1].eval(e);
notifyMsg: args.getTbl()[2].eval(e);
mbx : e.thsActor.getMailboxes().get(mbxName.getTxt());
inbox : e.thsActor.getMailboxes().get("in");
notify(observedMsg) :: {
v: e.thsActor.getObservers().get(mbxName.getTxt());
if(and(not(is_void(v)),

not(v.detect({
and(observedMsg.isObject(),

el[1].getName().getTxt() =
observedMsg.agActorMessage(e)
.getName().getTxt())

}))), {
msgToPost: notifyMsg.picoClone(agVoidP);
reifyMsg: msgToPost.agActorMessage(e);
reifyMsg.setArgs(agTableP.cloneMe([observedMsg]));

A.5 Native Methods 271

target: reifyMsg.getTarget().getAct();
if(target = e.thsActor.getAddress().getAct(),

{ inbox.add(msgToPost) },
{ target#receiveMessage(msgToPost) }) })

};
e.thsActor.getObservers().put(
mbxName.getTxt(), [notifyMsg.agActorMessage(e), notify]);

mbx.addSyncAddObserver(notify(el));
VOID

};

addNative(rootObject, "+", native(+));
addNative(rootObject, "-", native(-));
addNative(rootObject, "*", native(*));
addNative(rootObject, "/", native(/));
addNative(rootObject, "^", native(^));
addNative(rootObject, "//", native(//));
addNative(rootObject, "<", native(<));
addNative(rootObject, "<=", native(<=));
addNative(rootObject, ">", native(>));
addNative(rootObject, ">=", native(>=));
addNative(rootObject, "=", native(=));
addNative(rootObject, "!=", native(!=));
addNative(rootObject, "~", native(~));
addNative(rootObject, "!~", native(!~));
addNative(rootObject, "&", native(&));
addNative(rootObject, "|", native(|));
addNative(rootObject, "!", native(!));
addNative(rootObject, "and", native(and));
addNative(rootObject, "or", native(or));
addNative(rootObject, "not", native(not));
addNative(rootObject, "begin", beginNative);
addNative(rootObject, "while", whileNative);
addNative(rootObject, "until", untilNative);
addNative(rootObject, "for", forNative);
addNative(rootObject, "tab", tabNative);
addNative(rootObject, "size", native(size));
addNative(rootObject, "if", ifNative);
addNative(rootObject, "display", displayNative);
addNative(rootObject, "accept", native(accept));
addNative(rootObject, "length", native(length));
addNative(rootObject, "explode", void);
addNative(rootObject, "implode", void);
addNative(rootObject, "this", thisNative);
addNative(rootObject, "super", superNative);
addNative(rootObject, "clone", cloneNative);
addNative(rootObject, "equivalent", native(equivalent));
addNative(rootObject, "abs", native(abs));
addNative(rootObject, "trunc", native(trunc));
addNative(rootObject, "char", void);
addNative(rootObject, "ord", void);
addNative(rootObject, "number", native(number));
addNative(rootObject, "text", native(text));
addNative(rootObject, "random", native(random));
addNative(rootObject, "sin", native(sin));
addNative(rootObject, "cos", native(cos));
addNative(rootObject, "tangent", native(tangent));
addNative(rootObject, "sqrt", native(sqrt));
addNative(rootObject, "exp", native(exp));
addNative(rootObject, "log", native(log));

272 Code Listing of Metacircular AmbientTalk

addNative(rootObject, "arcsin", native(arcsin));
addNative(rootObject, "arccos", native(arccos));
addNative(rootObject, "arctan", native(arctan));
addNative(rootObject, "call", void);
addNative(rootObject, "continue", void);
addNative(rootObject, "capture", captureNative);
addNative(rootObject, "is_void", is_voidNative);
addNative(rootObject, "is_number", is_numberNative);
addNative(rootObject, "is_fraction", is_fractionNative);
addNative(rootObject, "is_text", is_textNative);
addNative(rootObject, "is_table", is_tableNative);
addNative(rootObject, "is_function", is_functionNative);
addNative(rootObject, "is_dictionary", is_dictionaryNative);
addNative(rootObject, "is_environment", void);
addNative(rootObject, "is_continuation", void);
addNative(rootObject, "read", readNative);
addNative(rootObject, "eval", evalNative);
addNative(rootObject, "def", void);
addNative(rootObject, "dcl", void);
addNative(rootObject, "set", void);
addNative(rootObject, "send", void);
addNative(rootObject, "super_send", void);
addNative(rootObject, "time", native(time));
addNative(rootObject, "load", loadNative);
addNative(rootObject, "inspect", native(inspect));
addNative(rootObject, "error", native(error));
addNative(rootObject, "doesNotUnderstand", void);
addNative(rootObject, "readFile", native(readFile));
addNative(rootObject, "table", native(tab));

addNative(rootObject, "execute", executeNative);
addNative(rootObject, "copy", copyNative);
addNative(rootObject, "object", viewNative);
addNative(rootObject, "view", viewNative);
addNative(rootObject, "sleep", void);
addNative(rootObject, "setTimeout", void);
addNative(rootObject, "startNetwork", native(startNetwork));
addNative(rootObject, "stopNetwork", native(stopNetwork));
addNative(rootObject, "actor", actorNative);
addNative(rootObject, "thisActor", thisActorNative);
addNative(rootObject, "become", becomeNative);
addNative(rootObject, "is_actor", is_actorNative);
addNative(rootObject, "messages", messagesNative);
addNative(rootObject, "add", addToMbxNative);
addNative(rootObject, "delete", deleteFromMbxNative);
addNative(rootObject, "thisMessage", thisMessageNative);
addNative(rootObject, "uid", native(uid));
addNative(rootObject, "addAddObserver", addAddObserverNative);
addNative(rootObject, "addDeleteObserver", void);
addNative(rootObject, "removeAddObserver", void);
addNative(rootObject, "removeDeleteObserver", void);

addConstant(rootObject, "true", _TRUE_);
addConstant(rootObject, "false", _FALSE_);
addConstant(rootObject, "void", _VOID_);
addConstant(rootObject, "eoln", _EOLN_);

initContext: agValueP.agContext(rootObject,
rootObject,
rootObject.getNxt(),

A.5 Native Methods 273

agVoidP);

display("loading init.pco ...", eoln);
PARSER.Read(readFile("init.pco")).eval(initContext);

addConstant(rootObject, "root", rootObject);

agActorBehaviorP.setContext(initContext);

rootActor: void;
rootActor:= agActorP.cloneMe(rootObject);
evaluator: rootActor.getAct();
evaluator#setRootActor(rootActor);

display("natives installed", eoln)
}

274 Code Listing of Metacircular AmbientTalk

Appendix B

Code Listing of BlueChat

276 Code Listing of BlueChat

Color Code deals with...
yellow Concurrency
green Ambient Resources
turquoise Communication
purple Application
red Volatile Connections

Table B.1: Legend

B.1 NETLayer 277

B.1 NETLayer

package btchat;

import javax.microedition.io.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import javax.bluetooth.RemoteDevice;
import javax.bluetooth.DeviceClass;
import javax.bluetooth.ServiceRecord;

/**
 * BlueChat example application.
 * Originally published in Java Developer's Journal (volume 9 issue 2).
 * Updated by Ben Hui on www.benhui.net.
 * Copyright: (c) 2003-2004
 * Author: Ben Hui
 *
 * YOU ARE ALLOWED TO USE THIS CODE FOR EDUCATIONAL, PERSONAL TRAINNING,
 * REFERENCE PURPOSE. YOU MAY DISTRIBUTE THIS CODE AS-IS OR MODIFIED FORM.
 * HOWEVER, YOU CANNOT USE THIS CODE FOR COMMERCIAL PURPOSE. THIS INCLUDE,
 * BUT NOT LIMITED TO, PRODUCING COMMERCIAL SOFTWARE, CONSULTANT SERVICE,
 * PROFESSIONAL TRAINNING MATERIAL.
 *
 * This is the main class for handling bluetooth connectivity and
 * device/service discovery process. This class does many things, including
 * - search for bluetooth devices (query())
 * - create a local BlueChat server and register it with bluetooth (run())
 * - search for remote BlueChat services using searchServices()
 * - handle incoming connection request from remote BlueChat
 * - establish connection to remote BlueChat
 *
 * @author Ben Hui
 * @version 1.0
 */
public class NetLayer implements Runnable
{
 public final static int SIGNAL_HANDSHAKE = 0;
 public final static int SIGNAL_MESSAGE = 1;
 public final static int SIGNAL_TERMINATE = 3;
 public final static int SIGNAL_HANDSHAKE_ACK = 4;
 public final static int SIGNAL_TERMINATE_ACK = 5;
 private final static UUID uuid = new UUID("102030405060708090A0B0C0D0E0F010",
false);
 private final static int SERVICE_TELEPHONY = 0x400000;
 LocalDevice localDevice = null;
 DiscoveryAgent agent = null;
 StreamConnectionNotifier server;
 BTListener callback = null;
 boolean done = false;
 String localName = "";
 Vector endPoints = new Vector();
 Vector pendingEndPoints = new Vector();
 Hashtable serviceRecordToEndPoint = new Hashtable();
 Object lock = new Object();
 Timer timer = new Timer();

278 Code Listing of BlueChat

 public NetLayer()
 {
 }

 public void init(String name, BTListener callback)
 {
 try {
 this.localName = name;
 this.callback = callback;
 localDevice = LocalDevice.getLocalDevice(); // obtain reference to sin-
gleton
 localDevice.setDiscoverable(DiscoveryAgent.GIAC); // set Discover mode to
GIAC
 agent = localDevice.getDiscoveryAgent(); // obtain reference to singleton
 Util.printLocalDevice(localDevice);
 Thread thread = new Thread(this);
 thread.start();
 }
 catch (BluetoothStateException e) {
 e.printStackTrace();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void disconnect()
 {
 done = true;
 try {
 server.close();
 }
 catch (IOException ex) {
 }

 for (int i=0; i < endPoints.size(); i++)
 {
 EndPoint endpt = (EndPoint) endPoints.elementAt(i);
 endpt.putString(NetLayer.SIGNAL_TERMINATE, "end");
 endpt.sender.stop();
 endpt.reader.stop();
 }
 }

 public void query()
 {
 try {
 agent.startInquiry(DiscoveryAgent.GIAC, new Listener());
 }
 catch (BluetoothStateException e)
 {
 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());
 }

B.1 NETLayer 279

 }

 public EndPoint findEndPointByRemoteDevice(RemoteDevice rdev)
 {
 for (int i=0; i < endPoints.size(); i++)
 {
 EndPoint endpt = (EndPoint) endPoints.elementAt(i);
 if (endpt.remoteDev.equals(rdev))
 {
 return endpt;
 }
 }
 return null;
 }

 public EndPoint findEndPointByTransId(int id)
 {
 for (int i=0; i < pendingEndPoints.size(); i++)
 {
 EndPoint endpt = (EndPoint) pendingEndPoints.elementAt(i);
 if (endpt.transId == id)
 {
 return endpt;
 }
 }
 return null;
 }

 public void sendString(String s)
 {
 for (int i=0; i < endPoints.size(); i++)
 {
 EndPoint endpt = (EndPoint) endPoints.elementAt(i);
 endpt.putString(NetLayer.SIGNAL_MESSAGE, s);
 }
 }

 public void cleanupRemoteEndPoint(EndPoint endpt)
 {
 endpt.reader.stop();
 endpt.sender.stop();
 endPoints.removeElement(endpt);
 }

 public void run()
 {
 StreamConnection c = null;
 try
 {
 server = (StreamConnectionNotifier)Connector.open(
 "btspp://localhost:" + uuid.toString() +";name=BlueChatApp");

 ServiceRecord rec = localDevice.getRecord(server);

280 Code Listing of BlueChat

 rec.setAttributeValue(0x0008, new DataElement(DataElement.U_INT_1, 0xFF
));
 Util.printServiceRecord(rec);
 rec.setDeviceServiceClasses(
 SERVICE_TELEPHONY);
 } catch (Exception e)
 {
 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());
 }

 while(!done)
 {
 try {
 ChatMain.instance.gui_log("", "Ready to accept connection. Wait...");
 c = server.acceptAndOpen();

 RemoteDevice rdev = RemoteDevice.getRemoteDevice(c);
 EndPoint endpt = findEndPointByRemoteDevice(rdev);
 if (endpt != null)
 {
 } else
 {
 endpt = new EndPoint(this, rdev, c);
 Thread t1 = new Thread(endpt.sender);
 t1.start();
 Thread t2 = new Thread(endpt.reader);
 t2.start();
 endPoints.addElement(endpt);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());
 if (c != null)
 try {
 c.close();
 }
 catch (IOException e2) {
 // ignore
 }
 }
 finally {
 // nothing to do here
 }
 } // while !done
 } // end run()

 public static void log(String s)
 {
 if (ChatMain.isDebug)
 ChatMain.instance.gui_log("N", s);
 }

 class Listener implements DiscoveryListener

B.1 NETLayer 281

 {
 public void deviceDiscovered(RemoteDevice remoteDevice,
 DeviceClass deviceClass)
 {
 try {
 }
 catch (IOException ex) {
 }
 try
 {
 EndPoint endpt = new EndPoint(NetLayer.this, remoteDevice, null);
 pendingEndPoints.addElement(endpt);
 } catch (Exception e)
 {
 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());

 }
 }

 public void inquiryCompleted(int transId)
 {
 timer.schedule(new DoServiceDiscovery(), 100);
 }

 public void servicesDiscovered(int transId, ServiceRecord[] svcRec)
 {
 try {
 for (int i=0; i< svcRec.length; i++)
 {
 Util.printServiceRecord(svcRec[i]);
 EndPoint endpt = findEndPointByTransId(transId);
 serviceRecordToEndPoint.put(svcRec[i], endpt);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 log(e.getClass().getName());
 log(e.getMessage());
 }
 }

 public void serviceSearchCompleted(int transID, int respCode)
 {
 log("invoke serviceSearchCompleted: "+transID);
 if (respCode == SERVICE_SEARCH_COMPLETED)
 log("SERVICE_SEARCH_COMPLETED");
 else if (respCode == SERVICE_SEARCH_TERMINATED)
 log("SERVICE_SEARCH_TERMINATED");
 else if (respCode == SERVICE_SEARCH_ERROR)
 log("SERVICE_SEARCH_ERROR");
 else if (respCode == SERVICE_SEARCH_NO_RECORDS)
 log("SERVICE_SEARCH_NO_RECORDS");
 else if (respCode == SERVICE_SEARCH_DEVICE_NOT_REACHABLE)
 log("SERVICE_SEARCH_DEVICE_NOT_REACHABLE");

282 Code Listing of BlueChat

 for (Enumeration records = serviceRecordToEndPoint.keys(); re-
cords.hasMoreElements();)
 {
 try {
 ServiceRecord rec = (ServiceRecord) records.nextElement();
 String url = rec.getConnectionURL(ServiceRe-
cord.NOAUTHENTICATE_NOENCRYPT, false);
 StreamConnection con = (StreamConnection)Connector.open(url);
 EndPoint endpt = (EndPoint) serviceRecordToEndPoint.get(rec);
 if (endpt != null)
 {
 endpt.con = con;
 Thread t1 = new Thread(endpt.sender);
 t1.start();
 Thread t2 = new Thread(endpt.reader);
 t2.start();
 endPoints.addElement(endpt);
 endpt.putString(NetLayer.SIGNAL_HANDSHAKE, localName);
 }
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 } // for
 serviceRecordToEndPoint.clear();
 synchronized(lock)
 {
 lock.notifyAll();
 }
 }
 } // inner class Listener

 class DoServiceDiscovery extends TimerTask
 {
 public void run()
 {
 for (int i = 0; i < pendingEndPoints.size(); i++)
 {
 EndPoint endpt = (EndPoint) pendingEndPoints.elementAt(i);
 try {
 endpt.transId = agent.searchServices(null,
 new UUID[] { uuid },
 endpt.remoteDev,
 new Listener());
 synchronized(lock)
 {
 try {
 lock.wait();
 }
 catch (InterruptedException ex) {
 }
 }
 }
 catch (BluetoothStateException e) {

B.1 NETLayer 283

 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());

 }
 } // for
 pendingEndPoints.removeAllElements();
 ChatMain.instance.gui_log("", "You can start chatting now");
 }
 }
}

284 Code Listing of BlueChat

B.2 EndPoint

package btchat;
import javax.bluetooth.*;
import javax.microedition.io.*;
import java.io.*;
import java.util.*;

/**
 * BlueChat example application.
 * Originally published in Java Developer's Journal (volume 9 issue 2).
 * Updated by Ben Hui on www.benhui.net.
 * Copyright: (c) 2003-2004
 * Author: Ben Hui
 *
 * YOU ARE ALLOWED TO USE THIS CODE FOR EDUCATIONAL, PERSONAL TRAINNING,
 * REFERENCE PURPOSE. YOU MAY DISTRIBUTE THIS CODE AS-IS OR MODIFIED FORM.
 * HOWEVER, YOU CANNOT USE THIS CODE FOR COMMERCIAL PURPOSE. THIS INCLUDE,
 * BUT NOT LIMITED TO, PRODUCING COMMERCIAL SOFTWARE, CONSULTANT SERVICE,
 * PROFESSIONAL TRAINNING MATERIAL.
 *
 *
 * A EndPoint object represent all the connection attribute of an active
BlueChat node.
 * <p>Description: </p>
 * <p>Copyright: Copyright (c) 2003</p>
 * @author Ben Hui
 * @version 1.0
 */
public class EndPoint
{
 // remote device object
 RemoteDevice remoteDev;
 DeviceClass remoteClass;
 String remoteUrl;
 StreamConnection con;
 int transId = -1; // -1 must be used for default. cannot use 0

 Sender sender;
 Reader reader;

 String localName;
 String remoteName;

 BTListener callback;
 NetLayer btnet;
 Vector msgs = new Vector();

 public EndPoint(NetLayer btnet, RemoteDevice rdev, StreamConnection c)
 {
 this.btnet = btnet;
 remoteDev = rdev;
 try {
 remoteName = rdev.getFriendlyName(false); // this is a temp name
 }
 catch (IOException ex) {

B.2 EndPoint 285

 remoteName = "Unknown";
 }
 localName = btnet.localName;
 callback = btnet.callback;
 con = c;
 sender = new Sender();
 sender.endpt = this;
 reader = new Reader();
 reader.endpt = this;
 }

 public synchronized void putString(int signal, String s)
 {
 msgs.addElement(new ChatPacket(signal, s));
 synchronized(sender)
 {
 sender.notify();
 }
 }

 public synchronized ChatPacket getString()
 {
 if (msgs.size() > 0)
 {
 ChatPacket s = (ChatPacket) msgs.firstElement();
 msgs.removeElementAt(0);
 return s;
 } else
 {
 return null;
 }
 }

 public synchronized boolean peekString()
 {
 return (msgs.size() > 0);
 }

 private static void log(String s)
 {
 System.out.println("EndPoint: "+s);
 }
}

286 Code Listing of BlueChat

B.3 Sender

package btchat;

/**
 * BlueChat example application.
 * Originally published in Java Developer's Journal (volume 9 issue 2).
 * Updated by Ben Hui on www.benhui.net.
 * Copyright: (c) 2003-2004
 * Author: Ben Hui
 *
 * YOU ARE ALLOWED TO USE THIS CODE FOR EDUCATIONAL, PERSONAL TRAINNING,
 * REFERENCE PURPOSE. YOU MAY DISTRIBUTE THIS CODE AS-IS OR MODIFIED FORM.
 * HOWEVER, YOU CANNOT USE THIS CODE FOR COMMERCIAL PURPOSE. THIS INCLUDE,
 * BUT NOT LIMITED TO, PRODUCING COMMERCIAL SOFTWARE, CONSULTANT SERVICE,
 * PROFESSIONAL TRAINNING MATERIAL.
 *
 * Sender thread that send out signal and data to a bluetooth connection.
 * <p>Description: Sender is a Runnable implementation that send signal and
data (String)
 * to connected DataInputStream. Each EndPoint has it own sender thread.</p>
 * <p>Copyright: Copyright (c) 2003</p>
 * @author Ben Hui
 * @version 1.0
 */
import java.io.*;

public class Sender implements Runnable
{
 public EndPoint endpt;
 private boolean done = false;
 public Sender()
 {
 }

 public void stop()
 {
 done = true;
 }

 public void run()
 {
 try
 {
 DataOutputStream dataout = endpt.con.openDataOutputStream();
 while(!done)
 {
 if (! endpt.peekString())
 {
 synchronized (this) {
 this.wait(5000);
 }
 }
 ChatPacket s = endpt.getString();
 if (s != null)
 {
 dataout.writeInt(s.signal);

B.3 Sender 287

 dataout.writeUTF(s.msg);
 dataout.flush();
 }

 if (s != null && s.signal == NetLayer.SIGNAL_TERMINATE)
 {
 stop();
 }
 } // while !done
 dataout.close();
 } catch (Exception e)
 {
 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());
 }
 }
 private static void log(String s)
 {
 System.out.println("Sender: "+s);
 if (ChatMain.isDebug)
 ChatMain.instance.gui_log("S", s);
 }
}

288 Code Listing of BlueChat

B.4 Reader

package btchat;

/**
 * BlueChat example application.
 * Originally published in Java Developer's Journal (volume 9 issue 2).
 * Updated by Ben Hui on www.benhui.net.
 * Copyright: (c) 2003-2004
 * Author: Ben Hui
 *
 * YOU ARE ALLOWED TO USE THIS CODE FOR EDUCATIONAL, PERSONAL TRAINNING,
 * REFERENCE PURPOSE. YOU MAY DISTRIBUTE THIS CODE AS-IS OR MODIFIED FORM.
 * HOWEVER, YOU CANNOT USE THIS CODE FOR COMMERCIAL PURPOSE. THIS INCLUDE,
 * BUT NOT LIMITED TO, PRODUCING COMMERCIAL SOFTWARE, CONSULTANT SERVICE,
 * PROFESSIONAL TRAINNING MATERIAL.
 *
 * Reader thread that read in signal and data from a bluetooth connection.
 * <p>Description: Reader is a Runnable implementation that read in signal and
data (String)
 * from connected DataInputStream. Each EndPoint has it own reader thread.</p>
 * <p>Copyright: Copyright (c) 2003</p>
 * @author Ben Hui
 * @version 1.0
 */
import java.io.*;

public class Reader implements Runnable
{
 public EndPoint endpt;
 private boolean done = false;
 public Reader() {
 }
 public void stop()
 {
 done = true;
 }

 public void run()
 {
 try
 {
 DataInputStream datain = endpt.con.openDataInputStream();
 while (!done)
 {
 int signal = datain.readInt();
 if (signal == NetLayer.SIGNAL_MESSAGE)
 {
 String s = datain.readUTF();
 ChatPacket packet = new ChatPacket(NetLayer.SIGNAL_MESSAGE,
endpt.remoteName, s);
 endpt.callback.handleAction(BTListener.EVENT_RECEIVED, endpt, packet
);
 } else if (signal == NetLayer.SIGNAL_HANDSHAKE)
 {
 String s = datain.readUTF();
 endpt.remoteName = s;

B.4 Reader 289

 endpt.putString(NetLayer.SIGNAL_HANDSHAKE_ACK, endpt.localName);
 endpt.callback.handleAction(BTListener.EVENT_JOIN, endpt, null);
 } else if (signal == NetLayer.SIGNAL_TERMINATE)
 {
 endpt.putString(NetLayer.SIGNAL_TERMINATE_ACK, "end");
 endpt.callback.handleAction(BTListener.EVENT_LEAVE, endpt, null);
 endpt.btnet.cleanupRemoteEndPoint(endpt);
 stop();
 } else if (signal == NetLayer.SIGNAL_HANDSHAKE_ACK)
 {
 String s = datain.readUTF();
 endpt.remoteName = s;
 } else if (signal == NetLayer.SIGNAL_TERMINATE_ACK)
 {
 System.out.println("read in TERMINATE_ACK from "+endpt.remoteName);
 }
 } // while !done

 datain.close();
 } catch (Exception e)
 {
 e.printStackTrace();
 log(e.getClass().getName()+" "+e.getMessage());
 }
 }
 private static void log(String s)
 {
 System.out.println("Reader: "+s);
 if (ChatMain.isDebug)
 ChatMain.instance.gui_log("R", s);
 }
}

290 Code Listing of BlueChat

B.5 ChatPacket

package btchat;

/**
 * BlueChat example application.
 * Originally published in Java Developer's Journal (volume 9 issue 2).
 * Updated by Ben Hui on www.benhui.net.
 * Copyright: (c) 2003-2004
 * Author: Ben Hui
 *
 * YOU ARE ALLOWED TO USE THIS CODE FOR EDUCATIONAL, PERSONAL TRAINNING,
 * REFERENCE PURPOSE. YOU MAY DISTRIBUTE THIS CODE AS-IS OR MODIFIED FORM.
 * HOWEVER, YOU CANNOT USE THIS CODE FOR COMMERCIAL PURPOSE. THIS INCLUDE,
 * BUT NOT LIMITED TO, PRODUCING COMMERCIAL SOFTWARE, CONSULTANT SERVICE,
 * PROFESSIONAL TRAINNING MATERIAL.
 *
 * A holder object for BlueChat network packet data.
 * <p>Description: ChatPacket can represent severl type of message, which is
defined
 * by NetLayer.SIGNAL_XXX enumeration. The common type is SIGNAL_MESSAGE, which
 * hold an user entered message to sent across the virtual chat room.</p>
 * <p>Copyright: Copyright (c) 2003</p>
 * @author Ben Hui
 * @version 1.0
 */

public class ChatPacket
{
 // signal, must be one of NetLayer.SIGNAL_XXX
 public int signal;
 // indicate the nick name of the sender
 public String sender;
 // the message content
 public String msg;

 public ChatPacket(int signal, String msg)
 {
 this.signal = signal;
 this.msg = msg;
 }

 public ChatPacket(int signal, String sender, String msg)
 {
 this.signal = signal;
 this.sender = sender;
 this.msg = msg;
 }

 public ChatPacket()
 {
 }

}

B.6 BTListener 291

B.6 BTListener

package btchat;

/**
 * BlueChat example application.
 * Originally published in Java Developer's Journal (volume 9 issue 2).
 * Updated by Ben Hui on www.benhui.net.
 * Copyright: (c) 2003-2004
 * Author: Ben Hui
 *
 * YOU ARE ALLOWED TO USE THIS CODE FOR EDUCATIONAL, PERSONAL TRAINNING,
 * REFERENCE PURPOSE. YOU MAY DISTRIBUTE THIS CODE AS-IS OR MODIFIED FORM.
 * HOWEVER, YOU CANNOT USE THIS CODE FOR COMMERCIAL PURPOSE. THIS INCLUDE,
 * BUT NOT LIMITED TO, PRODUCING COMMERCIAL SOFTWARE, CONSULTANT SERVICE,
 * PROFESSIONAL TRAINNING MATERIAL.
 *
 * Interface for BlueChat NetLayer callback.
 * <p>Description: Implementation of this interface will handle BlueChat net-
work event.</p>
 * <p>Copyright: Copyright (c) 2003</p>
 * @author Ben Hui
 * @version 1.0
 */
public interface BTListener
{
 public final static String EVENT_JOIN = "join";
 public final static String EVENT_LEAVE = "leave";
 public final static String EVENT_RECEIVED = "received";
 public final static String EVENT_SENT = "sent";
 public void handleAction(String action, Object param1, Object param2);
}

292 Code Listing of BlueChat

Appendix C

Code Listing of
AmbientChat

294 Code Listing of AmbientChat

Color Code deals with...
yellow Concurrency
green Ambient Resources
turquoise Communication
purple Application
red Volatile Connections

Table C.1: Legend

C.1 Ambient Sensor 295

C.1 Ambient Sensor

ambientSensorBehaviour :: object({
 pattern : void;
 onJoin : void;
 onDisjoin : void;
 new(p,onJoinMsg,onDisjoinMsg) :: copy({
 pattern := p;
 onJoin := onJoinMsg;
 onDisjoin := onDisjoinMsg
 });

 init() :: {
 required.add(pattern);
 joinBox.addAddObserver(thisActor()#joined);
 disjoinBox.addAddObserver(thisActor()#disjoined)
 };

 joined(resolution) :: {
 copy: onJoin.copy();
 copy.setArgs([provider(resolution)]);
 outbox.add(copy)
 };

 disjoined(resolution) :: {
 disjoinBox.delete(resolution);
 copy: onDisjoin.copy();
 copy.setArgs([provider(resolution)]);
 outbox.add(copy)
 }
});

AmbientSensor(pattern,onJoin,onDisjoin) ::
 actor(ambientSensorBehaviour.new(pattern,onJoin,onDisjoin));

296 Code Listing of AmbientChat

C.2 AmbientChat

IMBehaviour :: root.extend({
 uid : "anonymous";
 buddies : void;
 online : void;
 imSensor : void;

 new(id) :: copy({
 uid := id;
 buddies := smallmap.new();
 online := smallmap.newWithComparator(key1~key2)
 });

 init() :: {
 imSensor := AmbientSensor(IMPATTERN, thisActor()#onChatJoined, thisAc-
tor()#onChatLeft);
 publish(IMPATTERN);
 publish(uid);
 stdio#display("Chat started as ",uid, eoln)
 };

 getUID() :: { uid };
 whoIsOnline() :: { online.getValuesVector().iterate(stdio#display(el," ")) };
 addBuddy(buddyId) :: { buddies.put(buddyId, WeakMonoAmbientRef(buddyId)) };
 sendMessageTo(buddyId,text) :: {
 if (buddies.containsKey(buddyId),
 when(buddies.get(buddyId)#receive(uid,text), {
 receive(uid, text)
 }),
 { stdio#display(buddyId, " added to buddylist",eoln);
 addBuddy(buddyId);
 sendMessageTo(buddyId, text) })
 };
 receive(from, text) :: { stdio#display(from,": ",text,eoln) };

 onChatJoined(buddy) :: {
 stdio#display("InstantMessenger detected in the ambient: ",buddy,eoln);
 when (buddy#getUID(), {
 stdio#display("buddy online: ",content,eoln);
 online.put(buddy, content)
 })
 };

 onChatLeft(buddy) :: {
 if (online.containsKey(buddy),
 stdio#display("buddy offline: ",online.delete(buddy),eoln))
 }

}).futuresMixin();

IMActor(name) :: actor(IMBehaviour.new(name));

Bibliography

[AC93] Gul Agha and Christian J. Callsen. Actorspace: an open dis-
tributed programming paradigm. In PPOPP ’93: Proceedings of
the fourth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 23–32. ACM Press, 1993.

[ACG00] Isabelle Attali, Denis Caromel, and Romain Guider. A step toward
automatic distribution of java programs. In Fourth International
Conference on Formal methods for open object-based distributed
systems IV, pages 141–161, Norwell, MA, USA, 2000. Kluwer Aca-
demic Publishers.

[Agh86] G. Agha. Actors—A Model of Concurrent Computation for Dis-
tributed Systems. MIT Press, 1986.

[Agh90] Gul Agha. Concurrent object-oriented programming. Communi-
cations of the ACM, 33(9):125–141, 1990.

[AH88] Gul Agha and Carl Hewitt. Concurrent programming using actors.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concur-
rent Programming, Computer Systems Series, pages 37–53. The
MIT Press: Cambridge, MA, USA, 1988.

[AMST97] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Tal-
cott. A foundation for actor computation. Journal of Functional
Programming, 7(1):1–72, 1997.

[AS96] Harold Abelson and Gerald J. Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge, MA, USA,
1996.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In
OOPSLA/ECOOP ’90: Proceedings of the European conference
on object-oriented programming on Object-oriented programming
systems, languages, and applications, pages 303–311, New York,
NY, USA, 1990. ACM Press.

[Ben86] Jon Bentley. Programming pearls: little languages. Commun.
ACM, 29(8):711–721, 1986.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Löhr. Con-
currency and distribution in object-oriented programming. ACM
Computing Surveys, 30(3):291–329, September 1998.

298 BIBLIOGRAPHY

[BI93] Andrew P. Black and Mark P. Immel. Encapsulating plurality.
In ECOOP ’93: Proceedings of the 7th European Conference on
Object-Oriented Programming, pages 57–79, London, UK, 1993.
Springer-Verlag.

[BNOW93] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber.
Network objects. In SOSP ’93: Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages 217–230, New
York, NY, USA, 1993. ACM Press.

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum.
Programming languages for distributed computing systems. ACM
Comput. Surv., 21(3):261–322, 1989.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for
meta-level facilities of object-oriented programming languages. In
OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 331–344, New York, NY, USA, 2004. ACM
Press.

[BY87] Jean-Pierre Briot and Akinori Yonezawa. Inheritance and syn-
chronization in concurrent oop. In European conference on object-
oriented programming on ECOOP ’87, pages 32–40. Springer-
Verlag, 1987.

[Car89] Denis Caromel. Service, asynchrony, and wait-by-necessity.
Journal of Object-Oriented Programming, pages 12–22, Novem-
ber/December 1989.

[Car95] Luca Cardelli. A language with distributed scope. In Confer-
ence Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Fran-
cisco, Calif., pages 286–297, New York, NY, 1995.

[CCW03] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evalua-
tion of a support service for mobile, wireless publish/subscribe ap-
plications. IEEE Trans. Software Engineering, 29(12):1059–1071,
dec 2003.

[CDK05] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
systems (4th ed.): concepts and design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[CH05] Denis Caromel and Ludovic Henrio. A Theory of Distributed Ob-
jects. Springer Verlag, 2005.

[CHS04] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asyn-
chronous and deterministic objects. In Proceedings of the 31st
ACM Symposium on Principles of Programming Languages, pages
123–134. ACM Press, 2004.

BIBLIOGRAPHY 299

[CJ02] Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe
middleware for mobile systems. SIGMOBILE Mob. Comput. Com-
mun. Rev., 6(4):25–33, 2002.

[CM93] Shigeru Chiba and Takashi Masuda. Designing an extensible dis-
tributed language with a meta-level architecture. In ECOOP ’93:
Proceedings of the 7th European Conference on Object-Oriented
Programming, pages 482–501. Springer-Verlag, 1993.

[CMP05] Gianpaolo Cugola, Amy L. Murphy, and Gian Pietro Picco.
Content-based publish-subscribe in a mobile environment. In
A. Corradi and P. Bellavista, editors, Mobile Middleware. CRC
Press, 2005.

[CNP00] G. Cugola, E. Di Nitto, and G. P. Pico. Content-based dispatching
in a mobile environment. In Proceedings of WSDAAL. ACM Press,
2000.

[CSM+06] Pascal Cherrier, Daniel Stern, Holger Mügge, Wolfgang De
Meuter, and Eric Tanter. 1st international workshop on software
engineering of pervasive services, June 2006.

[CUL89] C. Chambers, D. Ungar, and E. Lee. An efficient implementa-
tion of self a dynamically-typed object-oriented language based on
prototypes. In OOPSLA ’89: Conference proceedings on Object-
oriented programming systems, languages and applications, pages
49–70, New York, NY, USA, 1989. ACM Press.

[DD03] Theo D’Hondt and Wolfgang De Meuter. Of first-class methods
and dynamic scope. In Proceedings of LMO Conference, RSTI -
L’objet, pages 137–149, Cachan, France, 2003. RSTI.

[DDD03] Wolfgang De Meuter, Theo D’Hondt, and Jessie Dedecker. Inter-
secting classes and prototypes. In Manfred Broy and Alexandre V.
Zamulin, editors, Ershov Memorial Conference, volume 2890 of
Lecture Notes in Computer Science. Springer, 2003. Perspectives
of Systems Informatics, 5th International Andrei Ershov Memo-
rial Conference, PSI 2003, Akademgorodok, Novosibirsk, Russia,
July 9-12, 2003.

[DDD04] Theo D’Hondt, Wolfgang De Meuter, and Jessie Dedecker. Pico:
Scheme for mere mortals. In 1st European Lisp and Scheme Work-
shop, Oslo, Norway, 2004.

[De 04] Wolfgang De Meuter. Move Considered Harmful: A Language
Design Approach to Mobility and Distribution for Open Networks.
PhD thesis, Vrije Universiteit Brussel, September 2004.

[DFWB98] Nigel Davies, Adrian Friday, Stephen P. Wade, and Gordon S.
Blair. An asynchronous distributed systems platform for hetero-
geneous environments. In Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing distributed applica-
tions, pages 66–73. ACM Press, 1998.

300 BIBLIOGRAPHY

[Dic92] Kenneth Dickey. Scheming with objects. AI Expert, 7(10):24–33,
October 1992.

[DTM+05] Wolfgang De Meuter, Eric Tanter, Stijn Mostinckx, Tom Van
Cutsem, and Jessie Dedecker. Flexible object encapsulation for
ambient-oriented programming. In Proceedings of the Dynamic
Language Symposium - OOPSLA ’05: Companion of the 20th
annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Applications. San Diego, U.S.A.
ACM Press. ACM Press, 2005.

[DV04] Jessie Dedecker and Werner Van Belle. Actors for mobile ad-hoc
networks. In L.T. Yang, M. Guo, G.R. Gao, and N.K. Jha, ed-
itors, Embedded and Ubiquitous Computing, volume 3207 of Lec-
ture Notes in Computer Science, pages 482–494. Springer, 2004.
Embedded and Ubiquitous Computing, International Conference
EUC 2004, Aizu-Wakamatsu City, Japan, August 25-27, 2004.

[DVM+05] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D’Hondt, and Wolfgang De Meuter. Ambient-Oriented Program-
ming. In OOPSLA ’05: Companion of the 20th annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications. San Diego, U.S.A. ACM Press. ACM
Press, 2005.

[DVM+06] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D’Hondt, and Wolfgang De Meuter. Ambient-Oriented Program-
ming in AmbientTalk. In ECOOP 2006: European Conference on
Object-Oriented Programming, Nantes, France, July 2006.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and
Anne-Marie Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[FMDE04] Tore Fjellheim, Stephen Milliner, Marlon Dumas, and Kim Elms.
The 3dma middleware for mobile applications. In L.T. Yang,
M. Guo, G.R. Gao, and N.K. Jha, editors, Embedded and Ubiq-
uitous Computing, volume 3207 of Lecture Notes in Computer
Science, pages 312–323. Springer, 2004. Embedded and Ubiq-
uitous Computing, International Conference EUC 2004, Aizu-
Wakamatsu City, Japan, August 25-27, 2004.

[FRBAM05] Adrian Friday, Manuel Roman, Christian Becker, and Jalal Al-
Muhtadi. Guidelines and open issues in systems support for ubi-
comp: reflections on ubisys 2003 and 2004. Personal Ubiquitous
Computing, 10(1):1–3, 2005.

[Gab91] Richard P. Gabriel. LISP: Good news, bad news, how to win big.
AI Expert, 6(6):30–39, June 1991.

[Gab00] Richard P. Gabriel. Worse is better paper series, January 2000.

BIBLIOGRAPHY 301

[Gel85] David Gelernter. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems, 7(1):80–
112, January 1985.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-Wesley,
1994.

[GJL87] David Gelernter, Suresch Jagannathan, and Thomas London. En-
vironments as first-class objects. In Conference Record of the Four-
teenth Annual ACM Symposium on Principles of Programming
Languages, pages 98–110. ACM, ACM, January 1987.

[GLS98] Jr. Guy L. Steele. Growing a language. In OOPSLA ’98 Ad-
dendum: Addendum to the 1998 proceedings of the conference
on Object-oriented programming, systems, languages, and appli-
cations (Addendum), New York, NY, USA, 1998. ACM Press.

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesc language: A holistic approach
to networked embedded systems. In PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design
and implementation, pages 1–11, New York, NY, USA, 2003. ACM
Press.

[Gon02] Li Gong. JXTA for J2ME extending the reach of wireless
with JXTA technology. Technical report, SUN Microsystems,
http://www.jxta.org/project/www/docs/JXTA4J2ME.pdf, 2002.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language
and its implementation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1983.

[Gro02] JSR Expert Group. Java(tm) apis for bluetooth specification 1.0
final release. Java Specification Request (JSR) 82, March 2002.

[GS97] Rachid Guerraoui and André Schiper. Software-based repli-
cation for fault tolerance. Computer, 30(4):68–74, 1997.

[Hal85] Robert H. Halstead, Jr. Multilisp: a language for concurrent sym-
bolic computation. ACM Trans. Program. Lang. Syst., 7(4):501–
538, 1985.

[HCC99] Mads Haahr, Raymond Cunningham, and Vinny Cahill. Support-
ing CORBA applications in a mobile environment. In Proceed-
ings of the Fifth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom-99), pages 36–47,
N.Y., August 15–20 1999. ACM Press.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing
messages. Artificial Intelligence, 8(3):323–364, June 1977.

302 BIBLIOGRAPHY

[Hoa73] C. A. R. Hoare. Hints on programming language design. Technical
report, Stanford University, Stanford, CA, USA, 1973.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Technical report,
Ithaca, NY, USA, 1994.

[Hui04] Ben Hui. Go wild wirelessly with bluetooth. Java Developer Jour-
nal, 9(2):26–??, 2004.

[IST03] ISTAG. Ambient intelligence: from vision to reality, September
2003. Draft report.

[JdLT+95] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. Gifford,
and M. F. Kaashoek. Rover: a toolkit for mobile information
access. In SOSP ’95: Proceedings of the fifteenth ACM symposium
on Operating systems principles, pages 156–171, New York, NY,
USA, 1995. ACM Press.

[Jef85] David R. Jefferson. Virtual time. ACM Trans. Program. Lang.
Syst., 7(3):404–425, 1985.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black.
Fine-grained mobility in the emerald system. ACM Transactions
on Computer Systems, 6(1):109–133, February 1988.

[JTK97] A. Joseph, J. Tauber, and F. Kaashoek. Mobile computing with
the rover toolkit. IEEE Transactions on Computers, 46(3):337–
352, March 1997.

[KB92] Murat Karaorman and John Bruno. A concurrency mechanism for
sequential eiffel. In Proceedings of the eighth international confer-
ence on Technology of object oriented languages and systems, pages
63–77. Prentice-Hall, Inc., 1992.

[KB02] Alan Kaminsky and Hans-Peter Bischof. Many-to-many invo-
cation: A new object oriented paradigm for ad hoc collabora-
tive systems. 17th Annual ACM Conference on Object Oriented
Programming Systems, Languages, and Applications (OOPSLA
2002), 2002.

[KCM+01] M. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill.
Towards group communication for mobile participants. In Proceed-
ings of the 1st ACM Workshop on Principles of Mobile Computing
(POMC 2001), pages 75–82, 2001.

[KLM+05] Gerd Kortuem, Matthias Lampe, Pedro Jose Marron, Martin Stro-
hbach, and Tsutomu Terada. Workshop on smart object systems,
September 2005.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[Lev84] Henry M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

BIBLIOGRAPHY 303

[Lie86] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In Conference proceedings on
Object-oriented programming systems, languages and applications,
pages 214–223. ACM Press, 1986.

[Lis92] B. Liskov. Distributed programming in argus. In Akkihebbal L.
Ananda and Balasubramaniam Srinivasan, editors, Distributed
Computing Systems: Concepts and Structures, pages 370–382.
IEEE Computer Society Press, Los Alamos, CA, 1992.

[Löh92] Klaus-Peter Löhr. Concurrency annotations. ACM SIGPLAN
Notices, 27(10):327–340, October 1992.

[LS88] B. Liskov and L. Shrira. Promises: linguistic support for effi-
cient asynchronous procedure calls in distributed systems. In Pro-
ceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 260–267. ACM Press,
1988.

[LSC+05] Cristina Lopes, Steffen Schaefer, Siobhan Clarke, Tzilla Elrad,
and Jens Jahnke. Workshop on building software for pervasive
computing, October 2005.

[Luc87] Steven E. Lucco. Parallel programming in a virtual object space.
In OOPSLA ’87: Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 26–34, New
York, NY, USA, 1987. ACM Press.

[Mae87] Pattie Maes. Concepts and experiments in computational reflec-
tion. In Conference proceedings on Object-oriented programming
systems, languages and applications, pages 147–155. ACM Press,
1987.

[MC02] René Meier and Vinny Cahill. Steam: Event-based middleware
for wireless ad hoc network. In ICDCSW ’02: Proceedings of the
22nd International Conference on Distributed Computing Systems,
pages 639–644, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[McA95] J. McAffer. Meta level programming with CodA. In W. Olthoff,
editor, Proceedings of ECOOP’95, Aarhus, Denmark, Lecture
Notes in Computer Science 952, pages 190–214. Springer-Verlag,
Berlin, 1995.

[MCCH05] Holger Mügge, Pascal Cherrier, Pascal Costanza, and Robert
Hirschfeld. Workshop on object technology for ami, July 2005.

[MCE02] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile
computing middleware. In Advanced lectures on networking, vol-
ume 2497, pages 20–58. Springer-Verlag New York, Inc., 2002.

[MCMT06] Holger Mügge, Pascal Cherrier, Wolfgang De Meuter, and Eric
Tanter. Workshop on object technology for ami, July 2006.

304 BIBLIOGRAPHY

[Mey93] Bertrand Meyer. Systematic concurrent object-oriented program-
ming. Commun. ACM, 36(9):56–80, 1993.

[Mil04] Mark Miller. The E programming language, the secure distributed
pure-object platform and p2p scripting language for writing
capability-based smart contracts. 2004. http://www.erights.org.

[MMC95] Philippe Mulet, Jacques Malenfant, and Pierre Cointe. Towards a
methodology for explicit composition of metaobjects. In OOPSLA
’95: Proceedings of the tenth annual conference on Object-oriented
programming systems, languages, and applications, pages 316–330,
New York, NY, USA, 1995. ACM Press.

[MMY96] H. Masuhara, S. Matsuoka, and A. Yonezawa. Implementing paral-
lel language constructs using a reflective objectoriented language.
In Proceedings of Reflection Symposium’96, pages 79–91, April
1996.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Pro-
ceedings of the Fourth Annual Symposium on Logic in computer
science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[MPR01] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman.
Lime: A middleware for physical and logical mobility. In Pro-
ceedings of the The 21st International Conference on Distributed
Computing Systems, page 524. IEEE Computer Society, 2001.

[MT91] Ian Mason and Carolyn Talcott. Equivalence in functional lan-
guages with effects. Journal of Functional Programming, 1(3):287–
328, July 1991.

[MTS05] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Concur-
rency among strangers: Programming in E as plan coordination.
In Symposium on Trustworthy Global Computing, volume 3705 of
LNCS, pages 195–229. Springer, 2005.

[MY90] S. Matsuoka and A. Yonezawa. Metalevel solution to inheritance
anomaly in concurrent object-oriented languages, 1990.

[MY93] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance
anomaly in object-oriented concurrent programming languages.
pages 107–150, 1993.

[MZ04] M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications with tota middleware. In Embedded and
Ubiquitous Computing, pages 263–??? IEEE, 2004. Second IEEE
International Conference on Pervasive Computing and Communi-
cations (PerCom’04), Orlando (FL), U.S.A., March, 2004.

[PST+97a] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible update propagation for weakly consistent
replication. In Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP’16), pages 288–301, Saint-Malo,
France, October 1997.

BIBLIOGRAPHY 305

[PST+97b] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flexible update propagation for
weakly consistent replication. In SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles, pages
288–301, New York, NY, USA, 1997. ACM Press.

[QR96] Christian Queinnec and David De Roure. Sharing code through
first-class environments. In Proceedings of the 1996 ACM SIG-
PLAN International Conference on Functional Programming,
pages 251–261, Philadelphia, Pennsylvania, may 1996.

[RB99] P. Reynolds and R. Brangeon. DOLMEN - service machine devel-
opment for an open long-term mobile and fixed network environ-
ment, February 19 1999.

[Sat96] M. Satyanarayanan. Fundamental challenges in mobile computing.
In PODC ’96: Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing, pages 1–7, New York, NY,
USA, 1996. ACM Press.

[SBBK95] A. Schill, B. Bellmann, W. Bohmak, and S. Kummel. System sup-
port for mobile distributed applications. In SDNE ’95: Proceed-
ings of the 2nd International Workshop on Services in Distributed
and Networked Environments, page 124. IEEE Computer Society,
1995.

[SKK+90] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar,
Maria E. Okasaki, Ellen H. Siegel, and David C. Steere. Coda:
A highly available file system for a distributed workstation envi-
ronment. IEEE Trans. Comput., 39(4):447–459, 1990.

[SM95] Patrick Steyaert and Wolfgang De Meuter. A marriage of class-
and object-based inheritance without unwanted children. In
ECOOP ’95: Proceedings of the 9th European Conference on
Object-Oriented Programming, pages 127–144, London, UK, 1995.
Springer-Verlag.

[Smi82] Brian Cantwell Smith. Reflection and Semantics in a Procedu-
ral Language. PhD thesis, Massachusetts Institute of Technology,
January 1982.

[Smi84] Brian Cantwell Smith. Reflection and semantics in lisp. In POPL
’84: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 23–35, New York,
NY, USA, 1984. ACM Press.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented
programming languages. In OOPLSA ’86: Conference proceedings
on Object-oriented programming systems, languages and applica-
tions, pages 38–45, New York, NY, USA, 1986. ACM Press.

[Tai93] A. Taivalsaari. A Critical View of Inheritance and Reusabil-
ity in Object-Oriented Programming. PhD thesis, University of
Jyväskylä, Finland, 1993.

306 BIBLIOGRAPHY

[TK02] Robert Tolksdorf and Kai Knubben. Programming distributed
systems with the delegation-based object-oriented language dself.
In SAC ’02: Proceedings of the 2002 ACM symposium on Applied
computing, pages 927–931, New York, NY, USA, 2002. ACM Press.

[TMY94] K. Taura, S. Matsuoka, and A. Yonezawa. ABCL/f: A future-
based polymorphic typed concurrent object-oriented language - its
design and implementation. In G. E. Blelloch, K. Mani Chandy,
and S. Jagannathan, editors, Proceedings of DIMACS ’94 Work-
shop, volume 18. Specification of Parallel Algorithms of Series in
Discrete Mathematics and Theoretical Computer Science, pages
275–291. American Mathematical Society, 1994.

[TPST98] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. Theimer.
The case for non-transparent replication: Examples from Bayou.
IEEE Data Engineering Bulletin, 21(4):12–20, dec 1998.

[TS89] C. Tomlinson and V. Singh. Inheritance and synchronization with
enabled-sets. ACM SIGPLAN Notices, 24(10):103–112, October
1989.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle.
Organizing programs without classes. Lisp Symb. Comput.,
4(3):223–242, 1991.

[US87] David Ungar and Randall B. Smith. Self: The power of simplic-
ity. In OOPSLA ’87: Conference proceedings on Object-oriented
programming systems, languages and applications, pages 227–242,
New York, NY, USA, 1987. ACM Press.

[VA98] Carlos A. Varela and Gul A. Agha. What after java? from objects
to actors. In WWW7: Proceedings of the seventh international
conference on World Wide Web 7, pages 573–577. Elsevier Science
Publishers B. V., 1998.

[VA01] Carlos Varela and Gul Agha. Programming dynamically recon-
figurable open systems with salsa. ACM SIGPLAN Notices,
36(12):20–34, 2001.

[VDMD05] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, and Wolfgang
De Meuter. Abstractions for context-aware object references. 2005.

[VRB99] Werner Vogels, Robbert Van Renesse, and Ken Birman. Six mis-
conceptions about reliable distributed computing. In HPDC ’99:
Proceedings of the The Eighth IEEE International Symposium on
High Performance Distributed Computing, page 36, Washington,
DC, USA, 1999. IEEE Computer Society.

[Wal01] Jim Waldo. Constructing ad hoc networks. In NCA ’01: Proceed-
ings of the IEEE International Symposium on Network Computing
and Applications (NCA’01), page 9, Washington, DC, USA, 2001.
IEEE Computer Society.

BIBLIOGRAPHY 307

[Wei91] M. Weiser. The computer for the 21st century. Scientific Ameri-
can, 265(3):66–75, 1991.

[WWWK96] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall.
A note on distributed computing. In Jan Vitek and Christian F.
Tschudin, editors, Mobile Object Systems, volume 1222 of Lecture
Notes in Computer Science, pages 49–64. Springer, 1996.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama.
Object-oriented concurrent programming abcl/1. In Conference
proceedings on Object-oriented programming systems, languages
and applications, pages 258–268. ACM Press, 1986.

[ZCME02] Stefanos Zachariadis, Licia Capra, Cecilia Mascolo, and Wolfgang
Emmerich. XMIDDLE: information sharing middleware for a mo-
bile environment. In Proceedings of the 24th International Con-
ference on Software Engineering (ICSE-02), pages 712–712, New
York, May 19–25 2002. ACM Press.

	Introduction
	Research Context and Motivation
	A Futuristic Scenario
	What is the Problem?
	Research Goals

	The Thesis
	Problem Statements
	Research Approach
	An Experimental Approach
	Languages vs. Middleware
	Implicit vs. Explicit Distribution
	Language Design Choices

	Contributions
	AmOP Paradigm
	The Ambient Actor Model
	Language Experimentation Laboratory
	AmOP Language Constructs

	Roadmap

	Software Platforms for Mobile Distributed Systems
	Introduction
	Types of Mobile Distributed Systems
	Hardware Phenomena
	Concurrency and Distribution
	Definitions
	Denoting Parallel Units in Programming Languages
	Design Issues in Communication
	Corollaries of Mobile Distribution

	Objects vs. Concurrency and Distribution
	The Library Approach
	The Integrative Approach
	The Reflective Approach
	Discussion

	Distributed Programming Languages
	Actor Based Concurrent Languages (ABCL)
	Argus
	E
	Salsa
	nesC
	Summary

	Middleware
	RPC-Based Middleware
	Publish-Subscribe Middleware
	Tuple Space Based Middleware
	Data Sharing-Oriented Middleware
	Summary

	Conclusion

	Ambient-Oriented Programming
	Introduction
	Classless Object System
	Non-Blocking Communication
	Reified Communication Traces
	Reified Environmental Context
	Software Platforms Revisited
	Distributed Languages
	Middleware

	Discussion
	Conclusion

	The Ambient Actor Model
	Introduction
	Actors
	The Actor Programming Language
	Actor Systems

	Evaluation of Actors for Ambient-Oriented Programming
	Evaluation #1: The Object Model
	Evaluation #2: Non-Blocking Actor Communication
	Evaluation #3: Reified Communication Traces
	Evaluation #4: Reified Environmental Context
	Summary

	Evaluation of the ActorSpace Model
	The Ambient Actor Model
	Simple Ambient Actor Language
	Messages and Mailbox Associations
	Actor Configurations
	Operational Semantics of Actor Configurations
	Concurrency Issues with Mailboxes
	Summary and Discussion

	Examples
	Pattern-Based Communication
	Meeting Scheduler
	Discussion

	Conclusion

	A Kernel Language for Ambient-Oriented Programming
	Introduction
	Design Rationale
	Reconciling Mutable State with Concurrency
	Double-Layered Object Model
	Active Objects as the Unit of Distribution

	The Passive Object Layer
	History and Design Rationale
	Parameter Passing Semantics
	Objects as First-class Dictionaries
	Mixin-Based Inheritance
	On Late-Binding Polymorphism and First-Class Methods
	Cloning Objects
	Summary

	The Active Object Layer
	Active Objects as Actors
	Message Passing Semantics
	First-Class Messages
	First-Class Mailboxes
	Example: Friend Finder Application

	Conclusion

	AmbientTalk and Metalinguistic Abstraction
	Introduction
	General Structure
	The Passive Object Layer
	Passive Objects
	Parameter Passing Semantics and Method Invocations
	Mixin-Based Inheritance
	On Late-Binding and First-Class Methods
	Cloning Objects

	The Active Object Layer
	Actor Creation
	Structure of a Metacircular Actor
	Mailbox Observers
	Processing Messages
	Message Delivery
	Asynchronous Message Passing
	Reified Environmental Context
	Concurrency Issues

	Reflection
	Reification and Absorption of Messages
	Reification and Absorption of Actor Communication
	Mailboxes in the Context of Reflection
	Discussion

	Composition of Metaprograms
	Implementing Language Constructs using Meta-Mixins
	Scoped Reflection

	Conclusion

	AmbientTalk at Work: Ambient-Oriented Language Constructs
	Introduction
	Synchronization and Coordination
	Guards
	Token-passing continuations
	Futures
	Combining Language Constructs
	Evaluation for AmOP

	Ambient References
	Design Spaces
	Implementation
	Discussion
	Evaluation for AmOP

	Customized Message Delivery
	Nested Due Blocks
	Implementation
	Evaluation for AmOP

	Case Study: AmbientChat
	BlueChat
	BlueChat Evaluation
	AmbientChat
	AmbientChat Evaluation
	Discussion
	Summary

	Conclusion

	Advanced Experiments in Ambient-Oriented Programming
	Introduction
	Group Communication
	Extensional Group Communication
	Multi-Futures
	Implementation
	Discussion
	Evaluation for AmOP

	Virtual Time
	Introduction
	Implementation
	Global Virtual Time
	Discussion
	Evaluation for AmOP

	Weak Replication
	Introduction
	The Anti-Entropy Protocol
	Experiment: A Unification of Anti-Entropy and Time Warp
	Interactions with Replicated Objects
	On the Dynamics of the System
	Implementation
	Discussion
	Evaluation for AmOP

	Support for Tentative Data
	Introduction
	Implementation
	Evaluation for AmOP

	Summary

	Conclusion
	Introduction
	Summary and Contributions
	Restrictions of Existing Software Platforms
	Ambient-Oriented Programming
	An AmOP Concurrency and Distribution Model
	An AmOP Language: AmbientTalk
	AmbientTalk as a Language Laboratory
	Experiments with Language Constructs
	Conclusion

	Limitations and Future Work
	AmbientTalk's Shortcomings
	Language Constructs
	Integration of Language Constructs
	Efficient Implementation
	Security

	Code Listing of Metacircular AmbientTalk
	Scanner
	Parser
	Abstract Grammar
	Ambient Actor Behavior
	Native Methods

	Code Listing of BlueChat
	NETLayer
	EndPoint
	Sender
	Reader
	ChatPacket
	BTListener

	Code Listing of AmbientChat
	Ambient Sensor
	AmbientChat

