v Vrije Universiteit Brussel

FACULTEIT VAN DE WETENSCHAPPEN
Vakgroep Informatica
Programming Technology Lab

Ambient-Oriented Programming

Ph.D. Dissertation

Jessie Dedecker

Promotors: Prof. Dr. Theo D’Hondt and Dr. Wolfgang De Meuter

23 May 2006

Abstract

As a result of the computing technology that becomes ever smaller and cheaper
it is now possible to integrate it into everyday material objects. This advanced
integration of technology allows the underlying computer to disappear into the
fabric of life so that by manipulating material objects we are transparently in-
teracting with the underlying integrated technology. The invention of wireless
communication technology enables these disappearing integrated computers to
cooperate with one another so that they can derive context about its environ-
ment. The advantage is that users can be supported more naturally and trans-
parently to achieve their goals. This vision is often referred to as “Ambient
Intelligence” (Aml).

The research presented in this dissertation deals with the problem of software
development for these invisible computers from the perspective of distributed
systems. Developing software for such systems is difficult because of inescapable
characteristics exhibited by the hardware. For example, as a consequence of the
use of wireless communication media connections can break at any point in time
due to interference in the environment and the mobility of material objects. To
address these hardware phenomena at the software level we propose a new pro-
gramming paradigm called “Ambient-Oriented Programming” (AmOP). This
programming paradigm is derived from the most important hardware phenom-
ena.

The next step in this dissertation is to gain insight in the structure of AmOP
applications. Although the definition of a paradigm is a first step towards this
goal, it is insufficient to derive the structure of AmOP applications. To gain
insight in the structure of AmOP applications it was necessary to experiment
with new language features. The definition and experimentation with new lan-
guage features is necessary for three reasons: 1) it supports the developer to
capture the consequences of the hardware phenomena in the code. 2) without
proper language features the integration of the AmOP paradigm with the ob-
ject paradigm leads to complex program structures. 3) at this point there is not
enough experience in building applications that enable Aml scenarios.

To support experiments with language features we build an AmOP pro-
gramming language. The first step towards such a programming language is
the choice of a concurrency and distribution model, which we defined as a for-
mal extension of the actor model. This formal model serves as a base for the
concurrency and distribution model of an AmOP kernel language, called Ambi-
entTalk. AmbientTalk is a little reflectively extensible language that supports
experimentation with new language features. New language features are de-
fined in AmbientTalk itself out of semantic building blocks, which are shaped
by the AmOP paradigm. These semantic building blocks are used to extend

iv

AmbientTalk with existing and new language features. These language fea-
tures support the developer in addressing the inescapable consequences of the
hardware phenomena.

Acknowledgements

This dissertation would not have been what it is today without the tremendous
support that I have received from my colleagues, friends and family.

I would like to thank Theo D’Hondt not only for inspiring me to do research
but also for providing me with the means to do it. Besides having sparked my
interests for research Theo also introduced to the EMOOSE master program,
which has both enriched me from an intellectual and social perspective.

A BIG thank you also goes to Wolfgang De Meuter for being there during
each step towards this dissertation and for providing me with all those useful
comments, tips and “pep talk” at the right moments.

I thank the members of my thesis committee, Prof. Cristina Videira Lopes,
Prof. Wouter Joosen, Prof. Viviane Jonckers and Prof. Bernard Manderick, for
comments on the first version of the text.

Two other people I am greatly indebted to are Tom Van Cutsem and Stijn
Mostinckx. Tom helped me with some of the implementations of the experi-
ments, meticulously checked all technical details and provided me with useful
comments on how to improve the readability. Stijn proofread some of the tech-
nical chapters and generously took over my teaching responsibilities while I was
writing. Wolfgang, Tom and Stijn not only helped me enormously while I was
writing but were also my partners in crime during the last couple of years. 1
look forward to continue working with them in the future.

I also thank Werner Van Belle with whom I developed the formal actor
extensions in this dissertation. Werner also helped me with finding a focus
in the first year, which was very important in order to finish this dissertation
within the time constraints of my funding.

Thanks also to all the people who helped in improving the quality and clarity
of my writing by proofreading and commenting on preliminary versions of this
dissertation. Wolfgang De Meuter, Tom Van Cutsem, Pascal Costanza and Stijn
Mostinckx have helped a lot me to improve the quality of the text.

Peter Ebaert and Elisa Gonzalez Boix also deserve special mentioning. Pe-
ter took care of my responsibilities concerning the EMOOSE program while I
was writing. Elisa started developing a concurrency extension for Pico during
her training at PROG. This extension was employed in the prototype used to
conduct the experiments in this dissertation.

I also thank the other members of our lab for providing me with useful
comments at my research meetings and for enduring me at all those moments 1
was (unreasonably?) stressed: Andy Kellens, Brecht Desmet, Coen De Roover,
Dirk Deridder, Dirk van Deun, Ellen Van Paesschen, Isabel Michiels, Johan
Brichau, Johan Fabry, Jorge Vallejos Vargas, Kris Gybels, Linda Dasseville,
Sofie Goderis, Thomas Cleenewerck.

vi

Thanks to my friends Tim Dobbelaere, Bram Bruneel, Henk Brouckxon, Lies
Van Doren, Sebastidan Gonzalez, Agustina Marfa Cibran, Boris Mejias, Werner
Van Belle, Antoon Goderis, Michael Vernaillen, Bert Schiettecatte and Frank
van der Kleij for supporting me during the years towards this dissertation.

I want to thank the secretaries, Lydie Seghers, Brigitte Beyens and Simonne
De Schrijver for helping me out with all the administrative issues. Also thanks to
Philippe Debroey, who made a professional graphical design of the AmbientTalk
logo.

Thanks to my girlfriend Ellen Degreef for her enormous support and for
enduring me for the last couple of months, when I was mainly concerned with
my dissertation. Another big thank you goes to my parents, who have always
supported me and my interest in technology long before I went to university.

Finally, I wish to thank everyone for having had the opportunity to write
this dissertation.

Contents

1 Introduction

1.1 Research Context and Motivation
1.1.1 A Futuristic Scenario.
1.1.2 What is the Problem?
1.1.3 Research Goals
1.2 The Thesis o i i i e e e e e e e
1.3 Problem Statements
1.4 Research Approach
1.4.1 An Experimental Approach
1.4.2 Languages vs. Middleware
1.4.3 Implicit vs. Explicit Distribution
1.4.4 Language Design Choices
1.5 Contributions Lo
1.5.1 AmOP Paradigm
1.5.2 The Ambient Actor Model
1.5.3 Language Experimentation Laboratory
1.5.4 AmOP Language Constructs
1.6 Roadmap

Software Platforms for Mobile Distributed Systems
2.1 Imtroduction L
2.2 Types of Mobile Distributed Systems
2.3 Hardware Phenomena,
2.4 Concurrency and Distribution
2.4.1 Definitions
2.4.2 Denoting Parallel Units in Programming Languages
2.4.3 Design Issues in Communication
2.4.4 Corollaries of Mobile Distribution
2.5 Objects vs. Concurrency and Distribution
2.5.1 The Library Approach
2.5.2 The Integrative Approach
2.5.3 The Reflective Approach
2.5.4 Discussion Lo
2.6 Distributed Programming Languages
2.6.1 Actor Based Concurrent Languages (ABCL)

2.6.2 Argus
2.6.3 E ...
264 Salsa.

0 O O UL U i W=

viii CONTENTS
26.5 mesC e 39
2.6.6 SUMMATYo e e e e 41

2.7 Middlewareo 41
2.7.1 RPC-Based Middleware 42
2.7.2 Publish-Subscribe Middleware 45
2.7.3 Tuple Space Based Middleware 46
2.7.4 Data Sharing-Oriented Middleware 48
275 SUMMATY . . . v v v e e e e e e 52

2.8 Conclusion e 52

3 Ambient-Oriented Programming 55

3.1 Imtroduction 55

3.2 Classless Object System 55

3.3 Non-Blocking Communication 57

3.4 Reified Communication Traces 58

3.5 Reified Environmental Context 60

3.6 Software Platforms Revisited 60
3.6.1 Distributed Languages, 60
3.6.2 Middleware 62

3.7 Discussion L e 63

3.8 Conclusion e e 64

4 The Ambient Actor Model 67

4.1 Introduction 67

4.2 Actors 68
4.2.1 The Actor Programming Language 68
4.2.2 Actor Systems 71

4.3 Evaluation of Actors for Ambient-Oriented Programming 71
4.3.1 Evaluation #1: The Object Model 71
4.3.2 Evaluation #2: Non-Blocking Actor Communication . . . 72
4.3.3 Evaluation #3: Reified Communication Traces 72
4.3.4 Evaluation #4: Reified Environmental Context 73
4.3.5 Summary 74

4.4 Evaluation of the ActorSpace Model 75

4.5 The Ambient Actor Model 76
4.5.1 Simple Ambient Actor Language 7
4.5.2 Messages and Mailbox Associations 78
4.5.3 Actor Configurations 79
4.5.4 Operational Semantics of Actor Configurations 80
4.5.5 Concurrency Issues with Mailboxes 85
4.5.6 Summary and Discussion L. 86

4.6 Exampleso 87
4.6.1 Pattern-Based Communication 88
4.6.2 Meeting Scheduler L. 89
4.6.3 Discussion L Lo e 93

4.7 Conclusion e 94

CONTENTS ix

5 A Kernel Language for Ambient-Oriented Programming 95
5.1 Imtroduction 95
5.2 Design Rationale Lo oo 96

5.2.1 Reconciling Mutable State with Concurrency 96
5.2.2 Double-Layered Object Model 97
5.2.3 Active Objects as the Unit of Distribution 98
5.3 The Passive Object Layer 99
5.3.1 History and Design Rationale 99
5.3.2 Parameter Passing Semantics 101
5.3.3 Objects as First-class Dictionaries 104
5.3.4 Mixin-Based Inheritance00 105
5.3.5 On Late-Binding Polymorphism and First-Class Methods 108
5.3.6 Cloning Objects, 110
5.3.7 SUmMmaryt e e 111
5.4 The Active Object Layer 112
5.4.1 Active Objects as Actors 112
5.4.2 Message Passing Semantics 114
5.4.3 First-Class Messages 116
5.4.4 First-Class Mailboxes 117
5.4.5 Example: Friend Finder Application 119
5.5 Conclusion 120

6 AmbientTalk and Metalinguistic Abstraction 123
6.1 Introduction. 123
6.2 General Structure. oo 124
6.3 The Passive Object Layer 126

6.3.1 Passive Objects oL 126
6.3.2 Parameter Passing Semantics and Method Invocations . . 126
6.3.3 Mixin-Based Inheritance 129
6.3.4 On Late-Binding and First-Class Methods 130
6.3.5 Cloning Objects 132
6.4 The Active Object Layer 133
6.4.1 Actor Creation 134
6.4.2 Structure of a Metacircular Actor. 134
6.4.3 Mailbox Observers 136
6.4.4 Processing Messages 137
6.4.5 Message Delivery o oL 139
6.4.6 Asynchronous Message Passing 139
6.4.7 Reified Environmental Context 140
6.4.8 Concurrency Issues oL 141
6.5 Reflection 143
6.5.1 Reification and Absorption of Messages 143
6.5.2 Reification and Absorption of Actor Communication . . . 145
6.5.3 Mailboxes in the Context of Reflection 146
6.5.4 Discussion 148
6.6 Composition of Metaprograms 149
6.6.1 Implementing Language Constructs using Meta-Mixins . . 149
6.6.2 Scoped Reflection. 151
6.7 Conclusion e e 154

X CONTENTS

7 AmbientTalk at Work: Ambient-Oriented Language Constructs159

7.1 Introduction. 159
7.2 Synchronization and Coordination 160
721 Guards 160
7.2.2 Token-passing continuations 162
7.2.3 Futures 166
7.2.4 Combining Language Constructs 170
7.2.5 Evaluation for AmOP 171

7.3 Ambient References 172
7.3.1 Design Spaces 172
7.3.2 Implementation Lo, 174
7.3.3 Discussion e 174
7.3.4 Evaluation for AmOP 177

7.4 Customized Message Delivery 177
7.4.1 Nested Due Blocks 178
7.4.2 TImplementation L. 178
7.4.3 Evaluation for AmOP 181

7.5 Case Study: AmbientChat 181
7.5.1 BlueChat, 182
7.5.2 BlueChat Evaluation 186
7.5.3 AmbientChat 189
7.5.4 AmbientChat Evaluation 190
7.5.5 Discussion L Lo 193
7.5.6 SUmMmMary e 194

7.6 Conclusion e 195
8 Advanced Experiments in Ambient-Oriented Programming 197
8.1 Imtroduction. Lo o 197
8.2 Group Communication 198
8.2.1 Extensional Group Communication 198
8.2.2 Multi-Futures oL 199
8.2.3 Implementation oo 200
8.2.4 Discussion e 201
8.2.5 Evaluation for AmOP 203

8.3 Virtual Time 203
8.3.1 Imtroduction 204
8.3.2 TImplementation 205
8.3.3 Global Virtual Time 208
8.3.4 Discussiono e 211
8.3.5 Evaluation for AmOP 212

8.4 Weak Replication 0. 212
8.4.1 Introduction o o 212
8.4.2 The Anti-Entropy Protocol 213
8.4.3 Experiment: A Unification of Anti-Entropy and Time Warp216
8.4.4 Interactions with Replicated Objects 216
8.4.5 On the Dynamics of the System 219
8.4.6 Implementation Lo 219
8.4.7 Discussion e 223
8.4.8 Evaluation for AmOP 224

8.5 Support for Tentative Data 225

CONTENTS xi
8.5.1 Introduction oL, 225

8.5.2 Implementation L. 226

8.5.3 Evaluation for AmOP 226

8.6 Summary 228

9 Conclusion 229
9.1 Imtroduction 229
9.2 Summary and Contributions 229
9.2.1 Restrictions of Existing Software Platforms 229

9.2.2 Ambient-Oriented Programming 230

9.2.3 An AmOP Concurrency and Distribution Model 231

9.24 An AmOP Language: AmbientTalk 231

9.2.5 AmbientTalk as a Language Laboratory 232

9.2.6 Experiments with Language Constructs 232

9.2.7 Conclusion e 233

9.3 Limitations and Future Work 233
9.3.1 AmbientTalk’s Shortcomings 234

9.3.2 Language Constructs 234

9.3.3 Integration of Language Constructs 235

9.3.4 Efficient Implementation 235

9.3.5 Security 236

A Code Listing of Metacircular AmbientTalk 237
A1 Scanner 238
A2 Parser e e e 244
A.3 Abstract Grammar 249
A.4 Ambient Actor Behavior oL 261
A5 Native Methods 267

B Code Listing of BlueChat 275
B.1 NETLayer e 277
B.2 EndPointo 284
B.3 Sender 286
B4 Readero 288
B.5 ChatPacket e 290
B.6 BTListener 291

C Code Listing of AmbientChat 293
C.1 Ambient Sensor 295
C.2 AmbientChat 296

xii CONTENTS

List of Figures

3.1 Dependencies Created due to Blocking Communication 58

3.2 Synchronous Communication vs. Asynchronous Communication
vs. Non-Blocking Communication 59

3.3 Hardware Phenomena inducing AmOP Characteristics 61

4.1 Conceptual Representation of Actors 69

4.2 State Chart of Agenda Behavior 90

5.1 Resulting object-tree from the evaluation of containerP.makeList () .makeStack()
(left) and containerP.makeStack() .makeList () (right) 107

5.2 Differences in the Environments between (a) Pic% and (b) Scheme110

5.3 Memory Layout of Counter Object and its Clone 111

5.4 Active Objects Conceptual Model. Two active objects containing
a graph of passive objects. None of the passive objects are shared,

but the each active objects shares a references to the other. . . . 114
6.1 Connections between the different AmbientTalk perspectives. . . 124
6.2 Abstract Grammar of the Metacircular Interpreter 156
6.3 Structure of metaActorBehavior 157
7.1 Behavior of Token-Passing Continuations 165
7.2 Behavior of Non-Blocking Futures 169

7.3 Token-Passing Continuations Expressed with nested when-statements171

8.1 Determining when a multi-future has been completely resolved. . 203

xiv LIST OF FIGURES

List of Tables

2.1
2.2
2.3
24

3.1
3.2

5.1
5.2
5.3

5.4
9.5
5.6

5.7
5.8
5.9

5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11

Bounded Buffer in ABCL 32
Component Sampling Sensor Readings and Sending Results . . . 40
Summary: Evaluation of Distributed Languages 41
Summary: Evaluation of Middleware 53

Evaluation of Distributed Languages based on AmOP Criteria . 61

Evaluation of Middleware based on AmOP Criteria 62
QuickSort in Scheme (left) and in Pico (right) 100
Summary of the Picosyntax 101
Example Counter object in Pic% (left) and the resulting environ-

ment (right) L 105
Mixins used to Structure Collections Hierarchy 106
Example: extension from the outside - a protected counter 107

Example: (a) stealing the credit card number from a payment
object and (b) prevent this by overriding the extend method in

the payment object Lo 108
Object Generator function returning Counter Objects in Scheme 109
Summary of the Pic% syntax 112
Implementation of a counter actor using updateable state (left)

and using the become operation (right) 115
Summary of AmbientTalk syntax 116
Message Prototype Object L. 117
Mailbox Prototype Object 118
Implementation of a FriendFinder 120
Attribute Lookup in a dictionary. 127
Invoking a Message oo oo 127
Application of a Closure 128
Evaluation of the different Types of Formal Parameters Lists in

AmbientTalk 129
Closures are Created at Lookup-Time 131
Functions, not Closures are Stored in a Dictionary 132
Clones oo o 133
Metacircular Implementation of an Actor Address 135
Implementation of Synchronous Observers based on Closures . . 136
Code Corresponding to Processing Messages 138

Code Corresponding to Message Delivery 139

xvi LIST OF TABLES

6.12 Asynchronous Message Passing 140
6.13 Code Corresponding to Discovery in metaActorBehavior 141
6.14 Absorption of a Message in the Metacircular AmbientTalk 144
6.15 Bounded Buffer 148
6.16 Language Mixin for EnabledSets 150
6.17 Bounded Buffer Redesigned with Mixins 150
6.18 Message Scope Mixin (left) and an Acknowledgment Mixin based

on Message Scope (right) 153
6.19 Example: Mixin using Language Construct Based Scope 154
6.20 Summary of the different Reflective Scopes 154
7.1 Language Mixin introducing Guards 161
7.2 Language Mixin for token-passing continuations 164
7.3 Implementation of Non-Blocking Futures in AmbientTalk 168
7.4 Implementation of the futuresMixin. 168
7.5 Implementation of Ambient References 175
7.6 Implementation of alternative Ambient Reference Design Spaces 176
7.7 Implementation of the dueMixin 180
7.8 Implementation of the expiryCheckMixin 181
7.9 Implementation of the Callback Methods associated with Device

Discovery e 185

7.10 Inner class DoServiceDiscovery initiates the Discovery of Services186
7.11 Implementation of the Callback Methods associated with Service

Discovery 187
7.12 NETLayer.run method accepts incoming connections 188
7.13 Instant Messenger Application in AmbientTalk 191
7.14 Ambient Sensor 192
7.15 Comparison of Lines of Code AmbientChat vs. BlueChat 194
7.16 Evaluation of the Language Constructs 196
8.1 Implementation of multiFutureMessageMixin 202
8.2 Implementation of Multi-Futures 202
8.3 Implementation of the reversibleMessageMixin 205
8.4 Decision Table for Processing Messages 206
8.5 Implementation of the process method in the reverseMixin . . 209
8.6 Implementation of the rollback method in the reverseMixin . 210
8.7 Implementation of the MOP in the reverseMixin 211
8.8 Anti-Entropy Protocol oL 214
8.9 Implementation of the bayouMessageMixin 220
8.10 Skeleton of the replicaMixin 220

8.11 Implementation of the antiEntropy method in replicaMixin. . 221
8.12 Implementation of the different state-update methods in replicaMixin222

8.13 Implementation of the masterMixin method in replicaMixin. . 222
8.14 Implementation of the slaveMixin method in replicaMixin . . 223
8.15 Implementation of the extended future 227
8.16 Implementation of the tentative future observer 227
8.17 Implementation of the tentativeFuturesMixin 227

Bl Legend 276

LIST OF TABLES

Cl Legend oo i

xviii LIST OF TABLES

Chapter 1

Introduction

Although computing technology is currently omnipresent in the modern world,
it has not become invisible at all. Today, people to a large extent have to interact
with their computer in order to get certain tasks done. Ubiquitous computing is
a vision, postulated by Mark Weiser |]: computing technology will become
invisible as it is integrated into the fabric of everyday life. This vision has been
termed Ambient Intelligence by the European Council’s IST Advisory Group
[]. Weiser explains the invisibility of a computer by making the analogy
to text. A world without text is unthinkable in our modern society. Text allows
ideas, which were previously perhaps mere thoughts in the brain of a single
person, to be made persistent accurately such that knowledge and culture can
survive time. Today, text has become ubiquitous: from books to the internet
and from traffic signs to button labels on a remote control. For most people the
act of reading text has become oblivious, because in modern societies it is learnt
from childhood on. As a result people are no longer consciously aware of text
such that, in a sense, text has become invisible to people. According to Weiser
computing technology is about to make the same leap. The first signs of this
transition are already present in many current-day products. Television sets and
video recorders have become fully digital even though the user can still interact
with them in much the same way as when they were analog. Contemporary cars
have an enormous amount of electronics embedded in them and many of these
are invisible to the driver. These electronics can change the parameters of the
engine to adapt itself to current driving conditions or even send a self-performed
check to the car dealer. The dealer can analyze these results and invite the
driver for maintenance of his car should that be necessary. Although these
examples are somewhat modest they show that the user is no longer confronted
with the technology embedded in the products. Nevertheless, when considering
the last example it shows that interaction of devices can further make certain
processes transparent. Indeed, before, the driver had to be consciously aware of
the maintenance schedule of his car whereas because of the interaction of his car
with his dealer this is now automatically taken care of. This is a first example
how oblivious interactions between material objects can lead to further making
technology invisible.

The vision postulated by Mark Weiser has nowadays become technically
feasible because of continuous and recent developments in technology.

2 Introduction

Miniaturization of Hardware Over the past decades we have seen that
hardware became ever smaller. This miniaturization of hardware is necessary
in order to embed computing technology into everyday objects. Also on the
level of power consumption a lot of progress has been made. Perhaps this trend
becomes most concrete when we compare the autonomy of contemporary cellular
phones to those of a decade ago. Phones nowadays have a battery autonomy of
up to almost two weeks compared to only a few hours initially, whereas their
functionality has increased. New battery technologies based on hydrogen fuel
cells with an even larger capacity are making their way into the market.

Wireless Communication The advent of wireless communication technol-
ogy (such as WiFi, Bluetooth, 802.15.x and others) signifies a big step towards
the realization of this vision, because it enables material objects to interact au-
tonomously with one another. Furthermore, the fact that these objects need not
be connected via a wire also adds to the invisibility of technology for its users
because their mobility is not hampered. Wireless communication also enables
objects to detect other objects that are located in their immediate proximity.
As noted by Weiser this single ability allows software to distill facts about its
environment that it was previously unable to do. For example, suppose a meet-
ing is ongoing in a meeting room. The cellular phones of the participants of this
meeting could detect that they are in the same room, because the meeting room,
which is equipped with wireless communication technology, can spontaneously
interact with the cellular phones. Also, the video projector which is turned
on to accommodate the audio-visual aspects of the meeting indicates that a
meeting is ongoing. Due to the fact that the cellular phone can spontaneously
interact with the meeting room and the video projector allows it to adapt its
configuration such that incoming calls do not disturb the meeting. Note that
such intelligent adaptations do not necessarily rely on artificial intelligence tech-
niques. They simply result from the spontaneous interaction that is enabled by
wireless communication technology.

1.1 Research Context and Motivation

Before we dive into the research context of this dissertation we make the vision
of ambient intelligence and ubiquitous computing more concrete by giving a
concrete scenario in which the vision has been realized. Next we explain the
problems associated with the realization of this vision and set the research goals
for this dissertation.

1.1.1 A Futuristic Scenario

It is the year 2020 on a sunny monday at 05:30 in the morning. Theo is still
in a deep sleep. His first appointment for the day is at 10:30 in the morning
but his family has the habit to start the day with a good breakfast sitting all
together. For this reason the digital alarm clock consults the agenda of all
the family members and calculates that Theo’s daughter Maja has the earliest
appointment. She needs to be at school at eight in the morning and the route
planner indicates based on the traffic predictions over the past year that she
needs half an hour to reach school in time. Based on this information the digital

1.1 Research Context and Motivation 3

alarm clock decides that it is time to wake up all family members such that they
can have breakfast together. The digital alarm clock opens the curtains of all
the bedroom windows such that the sunlight gently starts to wake up all the
family members and the coffee machine automatically starts making coffee. Half
an hour later, at six in the morning, the digital alarm clock notices, through
interaction with the mattress, that Theo is still in bed in spite of the opened
curtains. As a result it starts to play Theo’s favorite songs to further wake him
up. Five minutes later Theo arrives in the kitchen and joins his family at the
table. Theo’s daughter, Maja, takes the last box of corn flakes from the pantry
and eats the last flakes that are in the box. They are talking about the things
they did together during the past weekend and their plans for the day. Theo
reads the newspaper with his cup of coffee and scans through the television
program section. He circles the programs that interest him with his ball pen.
The ball pen communicates the selections to his digital media manager that
automatically schedules the programs for recording.

After breakfast Theo cleans up the kitchen table while everyone else goes on
to prepare themselves for the day. Theo throws the empty box of corn flakes in
the garbage can. The garbage can notifies the other objects in its environment
of this event. The pantry, which is responsible for stocking the corn flakes,
notices that it no longer holds any stock of corn flakes and decides to place it
in the family’s electronic shopping cart.

Later on this morning Theo drives to his first appointment of the day and
drives past a super market. His electronic shopping cart notices this and com-
municates with the super market. Coincidentally there is a sale for corn flakes:
three bags plus one for free. The shopping cart consults the agenda of Theo
and checks with his car’s GPS system and discovers that Theo is scheduled to
arrive half an our early at his first appointment, so it decides to notify Theo of
this bargain. However, Theo has made other plans for the day and presses a
button on his PDA to have the corn flakes delivered at home and he continues
his way.

1.1.2 What is the Problem?

The scenario above illustrates what a world where ubiquitous computing has
been realized could look like. Many of the hardware problems associated with
the realization of this vision have already been solved. In fact, the hardware
components to realize most of the ubiquitous computing scenarios are already
available on the market today. Nevertheless, very few ready-made products
based on this vision are available to consumers.

It is our conjecture that such scenarios have not been realized because
although the hardware technology is available the software technology

is actually incapable to manage the complexity of the dynamics of ubiquitous
computing.

This lack of support today is witnessed by the numerous recent and fu-
ture workshops on this topic in the year 2005 and 2006 only: “Smart Object
Systems” |], “Object Technology for Ambient Intelligence” | ,

], “Building Software for Pervasive Computing.” |], “Software
Engineering of Pervasive Services” |] and others. These workshops also

4 Introduction

underline that the existing object-oriented paradigm, which is currently the
most successful paradigm for building large software systems, does not provide
sufficient support to construct these systems.

Much of the emerging behavior in ubiquitous computing scenarios results
from the cooperation between devices. These devices can cooperate because they
are surrounded by what is sometimes referred to as a mobile network. A mobile
network emerges from a set of devices that communicate over wireless commu-
nication media. This type of network has several properties that distinguish it
from other types of networks. The most important ones are that connections
are volatile (because the communication range of wireless technology is limited)
and that the network is open (because devices can appear and disappear unex-
pectedly). This puts extra burden on software developers. Although low-level
system software and networking libraries providing uniform interfaces to the
wireless technologies (such as JXTA |] and M2MI |]) have matured,
developing application software for mobile networks still remains difficult. One
of the main reasons for this is that traditional programming languages capture
failing remote communication using a classic exception handling mechanism.
This results in application code polluted with exception handling code because
failures are the rule rather than the exception in mobile networks. The above
conjecture can thus be reformulated by stating that contemporary programming
languages lack the abstractions to deal with mobile hardware characteristics.

1.1.3 Research Goals

Observations like this justify the need for a new Ambient-Oriented Program-
ming paradigm (AmOP for short) that supports programming languages that
explicitly incorporate potential network failures in the very heart of their basic
computational steps. Although a paradigm is a first necessary step towards
the supporting the design and development of AmOP applications it does not
necessarily give insight into how such applications are built and how different
concerns should be expressed. Similarly, design patterns for the object paradigm
were only captured decades after the paradigm was invented. What is more,
the range of possible applications is broad and it is not yet clear what types
of applications will be built based on the new hardware. However, it is only
when good software technology becomes available that advanced applications
will be developed. Hence, we are faced with a chicken and egg problem. As a
consequence the goal of our research is threefold:

e First, we want to come up with AmOP language features that give pro-
grammers expressive abstractions that allow them to deal with the char-
acteristics of mobile networks.

e Second, we want to gain insight in the structure of AmOP applications.

e Third, we want to distill the fundamental semantic building blocks that
are at the scientific heart of AmOP language features in the same way
that current continuations are at the heart of control flow instructions
and environments are the essence of scoping mechanisms.

These three research goals allow us to bootstrap this cycle and address the
software technology problem we are faced with.

1.2 The Thesis 5

1.2 The Thesis

This dissertation demonstrates that languages supporting the “Ambient-Oriented
Programming” paradigm can better support the development of AmOP appli-
cations by providing language features to address specific issues arising from the
hardware used to construct Aml scenarios. These language features reconcile
object-oriented programming methodology with the ambient-oriented program-
ming paradigm.

The thesis is validated with the following results:

1. The definition of a collection of language features constructed based on the
defining characteristics of the paradigm. Some of these language features
transpose well-acknowledged concepts to deal with distributed issues into
an Aml-context and support an object-oriented programming style.

2. A study of the use of language features in a concrete application. This
application is compared both qualitative (in terms of how issues are dealt
with) and quantitative (in terms of lines of code) to a similar application
written in a language not based on the paradigm.

1.3 Problem Statements

Above, we already stressed that much of the emerging behavior of ubiquitous
computing systems result from cooperation of devices that reside in each oth-
ers ambient. However, before devices can cooperate they need to discover one
another in their ambient. Once they have discovered one another a connection
between devices can be established and devices can communicate. Communi-
cation between devices enables cooperation, such that each of these devices can
interact and respond to events that occur in the ambient. However, interactions
and events in the ambient are concurrent because they result from events in the
“real world”.

This exposition led us to define four problems that will have to be addressed
in order to work towards our research goals. These problems are further elabo-
rated below:

e Problem #1: Object Model for AmOP

Since our approach will be based on the paradigm of object-oriented pro-
gramming we will have to come up with an object system that supports
the development of AmOP applications. Current mainstream program-
ming languages are all based on class-based object systems. In this dis-
sertation we will argue that classes are both conceptually and technically
a source of problems. Furthermore, we will argue that classless languages
do not suffer from these problems.

e Problem #2: Concurrency Control for AmOP
Another major issue is concurrency control for AmOP applications. AmOP
applications will collaborate and cooperate with other AmOP applications
that are in the ambient of the device. These devices are often embedded
into the “fabric of everyday life” and as a consequence they will interact
with the world. The world is inherently concurrent and in order to ade-
quately support these interactions AmOP applications will need to deal

6 Introduction

with the concurrency that results from it. Traditionally concurrency con-
trol is most often expressed such that inconsistent states are prevented.
Such an approach is often classified as pessimistic concurrency control.
The antipode, optimistic concurrency control, is to allow inconsistencies
to occur and afterwards to repair the inconsistent state should that be nec-
essary. In |] it is determined that mobile computing applications need
support for optimistic concurrency control. However, current approaches
that support optimistic concurrency control are rarely object-bas