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Nederlandstalige samenvatting

Als één van de technieken om de intrinsieke complexiteit van software systemen te trotseren
introduceren programmeurs (bewust of onbewust) structurele broncode regulariteiten in een
systeem. Deze regulariteiten beschrijven de verschillende eigenschappen waar de broncode
van het systeem moet aan voldoen zoals bijvoorbeeld het correct gebruik van naam- en codeer-
conventies, bepaalde afhankelijkheden in het ontwerp van het systeem, evenals het consistent
gebruik van een wederkerend sjabloon in de implementatie van een bepaald concept.

Dit gebruik van regulariteiten heeft als doel het begrip van de broncode te vergemakke-
lijken, de communicatie van de intentie van een programmeur met de andere teamleden te
bevorderen, een bepaalde beproefde oplossing te introduceren, enzovoort. Alhoewel regulari-
teiten in causaal verband staan met de broncode van een systeem is deze causale band echter
impliciet en niet ondersteund door de programmeertaal. Als gevolg kan de evolutie van de
broncode of de regulariteiten ervoor zorgen dat beide artefacten niet meer gesynchroniseerd
zijn. Deze asynchronisatie kan dan ook leiden tot inconsistenties en fouten in de implemen-
tatie van een systeem.

In deze doctoraatsverhandeling stellen we het model van intensional views en constraints
voor als een oplossing om het bovenstaande probleem te verhelpen. Dit model biedt pro-
grammeurs een conceptueel raamwerk om de diverse regulariteiten in een systeem expliciet
te documenteren en eventuele afwijkingen tussen deze documentatie en de broncode te iden-
tificeren. Onze techniek berust op het gebruik van een classificatie-mechanisme (intensional
views) om de entiteiten in de broncode te groeperen die bijdragen tot de implementatie van
een bepaald concept in het systeem. De effectieve regulariteiten die deze concepten in de
broncode reguleren worden gedocumenteerd door middel van verifieerbare intensional con-
straints te declareren over bovengenoemde intensional views.

Vanuit een methodologisch standpunt benaderen we de ontwikkeling van software vanuit
een andere invalshoek door deze gedocumenteerde regulariteiten op te nemen als een integraal
onderdeel van het ontwikkelingsproces. Als ondersteuning om de causaliteit tussen regula-
riteiten en broncode te behouden stellen we dan ook voor om de documentatie gecreëerd
met intensional views en constraints te co-ontwerpen en co-evolueren met de broncode in
het systeem. In plaats van de implementatie en de documentatie als twee afzonderlijke en-
titeiten te beschouwen resulteert deze methodologie in de gezamenlijke ontwikkeling van
beide artefacten zodat deze op elkaar kunnen afgestemd worden en afwijkingen zo snel mo-
gelijk geı̈dentificeerd kunnen worden gedurende het ontwikkelen.

Ter validatie van ons onderzoek voorzien we het IntensiVE ontwikkelingshulpmiddel.
Dit hulpmiddel is een concrete implementatie van het model van intensional views voor de
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VisualWorks Smalltalk omgeving en maakt het mogelijk om verifieerbare documentatie te
creëren voor regulariteiten in Smalltalk en Java programma’s. Eén van de peilers tijdens de
ontwikkeling van deze tool was de integratie met de omliggende ontwikkelingsomgeving om
een doorgedreven ondersteuning voor onze methodologie te voorzien.

Verder illustreren we in deze verhandeling hoe de bekomen resultaten kunnen aangewend
worden voor het verhelpen van het fragiele pointcut probleem, een significant evolutiepro-
bleem binnen het onderzoeksdomein van aspect-gericht programmeren. Dit probleem, dat
gerelateerd is aan het behouden van de causaliteit tussen regulariteiten en broncode, wordt
veroorzaakt door een sterke koppeling tussen zogenaamde pointcutexpressies en de struc-
tuur van de broncode van een systeem. We bieden een uitbreiding van het model van inten-
sional views aan, namelijk model-gebaseerde pointcuts, die het mogelijk maakt om point-
cutexpressies los te koppelen van de broncode van het systeem en uit te drukken in termen
van een conceptueel model, geconstrueerd door middel van intensional views en intensional
constraints. Op deze manier kunnen we ondersteuning aanbieden op het niveau van dit con-
ceptueel model om de evolutieconflicten die resulteren in de fragiliteit van de pointcut op te
vangen en te verhelpen.
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Chapter 1

Introduction

One of the techniques developers use to deal with the inherent complexity of software systems
is to systematically introduce regularities in the source code of a system. These regularities
express different conventions, idioms and patterns that are used to communicate the devel-
opers’ design intent or to regulate the implementation of a particular concern by relying on
a proven solution. However, since these regularities are neither explicitly documented in the
source code nor are they first-class entities of the development process, the causal connection
between the regularities and the implementation can be severed during development. Conse-
quently, changes to either the regularities or the source code can result in mismatches which
might lead to an inconsistent or incorrect implementation. In this dissertation we advance an
approach that emphasizes this causality between regularities and source code by turning regu-
larities into an integral and explicit part of the development process. We attain this integration
by offering a formalism and a methodology which enables the co-design and co-evolution of
regularities and the source code by making the regularities and the causal connection with
the implementation explicit and verifiable. Furthermore, our approach strives at maintaining
this causal link throughout the development cycle.

1.1 Research context

The term “design regularity” denominates a broad range of properties concerning the struc-
ture of the source code of a program. Perhaps the simplest and most common of such struc-
tural source-code regularities1 are naming schemes and coding conventions. For example,
a widely accepted naming convention in Java is prefixing the name of all getter methods
with the string “get”. Similarly, developers make rigorous use of programming language id-
ioms [Cop92, Bec97], such as the implementation template for a “double-dispatch protocol”
or the prototypical implementation of reference counting in C++, as a means of implementing
particular recurring concepts in the source code.

1We use both terms “design regularities” and “structural source-code regularities” as synonyms throughout
this dissertation. However, the former term reflects the use of regularities as verifiable design documentation
while the latter term has the connotation of the technical use of regularities.

1
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At a higher level of abstraction, developers use regularities such as object-oriented de-
sign patterns [GHJV95], design heuristics [Rie96] and architectural patterns [BMR+96] to
introduce well-known, proven solutions for given implementation problems. Furthermore,
anti-patterns [BMT99, BMMM98] and bad smells [FBB+99] are used to identify and to re-
solve often-recurring programming or design mistakes.

Developers consciously or unconsciously introduce a proliferation of such regularities
into the source code as a means to deal with the intrinsic complexity of large software sys-
tems [Bro87]. These regularities serve as a governing principle [Min91] to regulate how
particular domain-specific, application-specific or implementation-specific concerns are re-
flected in the implementation. In other words, these regularities are introduced with the goal
of capturing a developer’s design intent [HH06].

A first reason for introducing such regularities is to convey this intent between developers.
A developer wants to make concepts that are implicit in the implementation clear to other de-
velopers. To achieve this communication, the developer will try to introduce a kind of “code
pattern” in the source code that characterizes this concept and makes it explicit. For example,
a developer can use intention-revealing names or a specific idiom when implementing a cer-
tain concept. Second, the meticulous application of these design regularities aids in obtaining
more uniform source code. By adhering to the regularities that govern a system, stylistic con-
formance is obtained throughout the source code. This results in the source code becoming
more comprehensible and maintainable. Third, developers often introduce regularities such
as idioms and design patterns to provide a proven, recurrent solution for a particular problem
in the implementation or design of a system.

Furthermore the correct functioning of the system can sometimes depend on whether or
not developers correctly adhere to certain regularities in the implementation. For example,
object-oriented frameworks [JF88] can impose a number of regularities that instantiations of
the framework must adhere to in order to function correctly. One example of such a regu-
larity – as described by Johnson [Joh92] - stems from the HotDraw framework [Bra92] for
graphical editors. Without going into detail, when a developer customizes this framework by
creating a new composite figure, the developer must provide an initialize method that adds
the components of the composite to the figure.

Analogously, aspect-oriented programming (AOP)[KLM+97] relies on compliance of the
source code with certain regularities that govern that system. Aspect-orientation offers novel
language constructs for modularizing so-called crosscutting concerns [TOHS99a], i.e. con-
cerns that do not align with the decomposition of the system. An aspects consist of an advice,
that implements the crosscutting behavior and a pointcut description that selects the events
during the execution of a program which this advice is invoked at. To select these events, such
pointcuts rely heavily on how a certain concept in the source code is structured [KMBG06].
Consequently, if a developer deviates from the regularities that govern this concept, this can
lead to erratic behavior of the aspects [KS04, SG05].

The above examples illustrate some of the applications of regularities. Independently of
whether these regularities are used to communicate a developer’s design intent, to improve
comprehensibility of the source code, as a recurrent solution to a particular implementation
problem or to compensate for the lack of proper abstraction mechanisms, regularities encode
knowledge about how certain concepts are assumed to be implemented. Consequently, these



1.2. PROBLEM STATEMENT 3

regularities are causally linked with how the concepts are actually manifested in the source
code. To obtain a consistent implementation of these regularities, it is important that this
causal connection between the regularities and the source code is maintained during develop-
ment.

1.2 Problem statement

Maintaining the causality between regularities and source code is not a trivial task. The
different regularities that govern a system are only implicitly available in the source code.
Consequently, it is not guaranteed that when changes are made to the source code of a system
or when regularities that govern the system are altered, that the regularities and the imple-
mentation remain synchronized. In other words, during the development process of a system
the causal connection between regularities and source code can be severed.

While developers can alleviate this problem by manually maintaining the regularities in a
system, this tends to be quite tedious and error-prone. It requires a developer to meticulously
adhere to the multitude of regularities that govern a system. Upon evolution of a system a de-
veloper needs to ensure that the different regularities remain respected in the implementation
or that changes in the regularities are correctly propagated in the source code.

Consequently, there is a need for approaches that support these regularities during the de-
velopment of a system. Such an approach must provide facilities for turning the regularities
that are implicitly present throughout the implementation of a system explicit to the develop-
ers. Furthermore, this approach must also turn the causal link between the regularities and the
source code explicit and provide a means to maintain this causality upon evolution. In order
to sustain this causal link, the approach must make it possible to verify the validity of the reg-
ularities with respect to the source code and provide support for resolving any discrepancies
that result from evolution of the system (i.e. of the source code or its regularities).

In literature, we can find a substantial body of research that has been devoted to alle-
viating the aforementioned problem. Although a proliferation of approaches exists, we can
distinguish between three different categories:

• Code checkers: Approaches such as Lint [Joh79], LCLint [EGHYM94], CheckStyle
[Che06], FindBugs [HP04], and many others offer tool support for detecting a wide
range of frequently-made errors, bad coding style, violations of platform-specific re-
quirements and so on. While these tools offer a convenient way to verify such regulari-
ties, they are designed to support a particular kind of regularity. Consequently, they are
less suited for supporting e.g. domain-specific or application-specific regularities;

• Meta-programming systems: Meta-programming systems such as for example SOUL
[Wuy01], CCEL [DMR92] and Law-governed systems [Min96] offer developers a ded-
icated language for expressing meta-programs that reason about the source code of a
system. These languages can be applied to implement “checkers” that verify the consis-
tency of particular regularities with respect to the source code. While these languages
are sufficiently generic to implement checkers for a wide variety of regularities, these
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meta-programs are often created in an ad-hoc fashion and do not explicitly document
the regularities;

• Architectural and design conformance checkers: Architectural and design confor-
mance checkers provide a dedicated means to express a high-level description of a
software system (i.e. design patterns, architectural patterns, . . . ) and identify discrep-
ancies between this description and the implementation of a system. Examples of such
approaches are Reflexion Models [MNS95], Ptidej [Gu2] and virtual software classifi-
cations [Men00]. Similarly to code checkers, these approach emphasize the support for
particular kinds of regularities only.

1.3 Research goal

In this dissertation, we advance a novel approach for maintaining the causal link between reg-
ularities and the implementation of a system. Our approach aims at maintaining this causality
by turning the implicit regularities into an integral, first-class part of the development pro-
cess. We attain this integration by supporting the co-design and co-evolution of regularities
and source code:

• co-design: The term co-design stems from engineering where the design of an arti-
fact is often subject to multiple perspectives and the design process needs to take all
of these perspectives equally into account. A typical example of co-design is the de-
velopment of mobile phones, in which both the perspective of hardware and software
must be considered. The hardware and software are not independently developed, but
the development of both artifacts is tightly coupled and causally connected. Co-design
between the regularities and the source code implies that we do not consider the regu-
larities subordinate to the source code but rather treat them as equal to this source code.
We propose a scheme in which the regularities are turned into an explicit entity of the
development process and this entity is developed in unison with the source code;

• co-evolution: Evolution of the system can result in changes to both the regularities and
the source code. Upon evolution, it is imperative that these changes do not break the
causality between both artifacts. Similar to co-design, we cannot consider the evolution
of either regularities or source code in isolation. Instead, regularities and source code
must co-evolve [DDMW00], i.e. evolve simultaneously. Changes to the system can
result in an interplay between regularities and source code in which both have to be
updated.

Our approach realizes this support for regularities by:

• Introducing a formalism for documenting regularities. This formalism is sufficiently
expressive to create verifiable documentation for a wide range of different kinds of
regularities. As such, this documentation serves as a means to make the regularities
and the causal connection with the source code explicit;
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• Proposing a lightweight methodology that complements our formalism. This methodol-
ogy presents a set of guidelines that offer a structured way of documenting regularities
using our formalism. Furthermore, the methodology incorporates the co-design of reg-
ularities and source code in the development cycle by describing a process in which
the documented regularities and the source code are developed and refined in unison.
Analogously, our methodology supports the co-evolution of regularities and implemen-
tation by advocating a test-often philosophy in which infringements of the causal link
between regularities and source code are identified and resolved early on during the
development process.

1.4 Blueprint of our approach

In what follows, we give a brief overview of our approach. First, we explain the conceptual
contribution of our work, namely co-designing and co-evolving regularities and source code
as a means to maintain the causal link between both artifacts. Second, we discuss the model
of intensional views, the formalism we propose as a means for creating explicit, verifiable
documentation of regularities. This model provides a technical platform for supporting co-
design and co-evolution. Third, we briefly discuss our lightweight methodology. Fourth, we
provide a description of IntensiVE – the concrete instantiation of our model of intensional
views and constraints – and relate how this tool suite supports our methodology. We conclude
this section by discussing how an extension of the approach we propose in this dissertation
can serve as a means to deal with the fragile pointcut problem, one of the open evolution
problems within aspect-oriented programming.

1.4.1 Co-design and co-evolution of regularities and source code

At a conceptual level, our approach advances a new metaphor for developing software that
is focussed around the concepts of co-design and co-evolution as a means to maintain the
causality between regularities and source code. To this end, we aim at incorporating first-
class, explicit documentation of the different regularities that govern a system into the devel-
opment process. This active documentation provides a verifiable representation of the causal
link between the regularities that are present in a system and the actual manifestation of these
regularities in the source code of the system. By co-designing and co-evolving this documen-
tation with the actual implementation of the system, both artifacts can be tailored towards
each other throughout the development process.

By supporting co-design and co-evolution during the development or evolution of the
system, our approach takes into account that changes to the source code can also impact the
documented regularities and vice versa. Since the causal link between these regularities and
the source code is explicit and verifiable, this causal link can aid in maintaining consistency
between regularities and source code whenever changes are made to the system. For instance,
if the source code of the system is altered, the active documentation can be used to verify
whether these changes respect the different regularities governing that part of the system.
Analogously, if the documented regularities are changed, this active link can aid in updating
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the source code in order to correctly reflect these changed regularities. As such, this interplay
between designing and evolving regularities and source code in unison supports maintaining
the causality between both artifacts.

The nature of this documented and verifiable causal link can be both descriptive as well
as prescriptive. During the earlier phases of the implementation cycle, the documented reg-
ularities as well as the source code can be subjective to quite a lot of changes. In such a
situation we envision a descriptive use of the documented causal link. During the develop-
ment, both the documentation as well as the source code are updated and geared towards each
other as a means to iteratively refine the source code and the documented regularities. Over
time, as the documentation for the different regularities becomes more stable, this documen-
tation can be used in a prescriptive way. Upon the application of changes to the source code,
the documentation serves to verify that these changes do not violate any of the documented
regularities.

1.4.2 Intensional views and constraints

As a technical means to express the causal link between regularities and source code, we
propose the model of intensional views and constraints. This model lies at the core of our
approach and offers a means for creating verifiable and explicit documentation for regularities.
The formalism of intensional views and constraints makes an explicit distinction between the
implementation of a certain concept that is governed by a set of regularities and the actual
regularities themselves.

Intensional views In our approach, we document the source-code entities implementing a
concept which a regularity is applicable to using an intensional view. Such an intensional
view offers a classification mechanism that groups the source-code entities that belong to the
implementation of that concept. An intensional view can consist of a set of classes, methods,
variables, packages, and so on. For example, if a developer wishes to document the naming
convention that in Java “getter methods”, i.e. methods that provide access to a field, should be
prefixed “get-”, an intensional view getter methods must be created that groups these getter
methods.

A key characteristic of intensional views is that the set of source-code entities belonging
to the view is not specified by manually enumerating these entities. Instead, an intensional
view is defined by means of an executable description which, upon execution, yields the set
of source-code entities that belong to the intensional view. For example, a possible executable
description for the getter methods intensional view we discussed above is to retrieve all meth-
ods that consist of a single expression that returns the value of a field, which is a prototypical
implementation of a getter method.

This means of defining an intensional view is an enabling factor for supporting evolution
of the regularities and the source code. When the system evolves, the executable description
makes it possible to automatically classify source-code entities that belong to a particular
intensional view. For instance, if a getter method would be added to the system that adheres to
the executable description, this method would be classified by the getter methods intensional
view without having to update this intensional view manually.



1.4. BLUEPRINT OF OUR APPROACH 7

Intensional constraints While an intensional view creates explicit documentation for the
concept which a regularity is applicable to, this actual regularity is captured by means of in-
tensional constraints. Such intensional constraints can be imposed on one or more intensional
views and implement a verifiable condition that is applicable to the entities belonging to an
intensional view. To illustrate this concept, consider again the example of the naming scheme
for getter methods. In order to document that the name of all these accessor methods should
be prefixed “get-”, we impose an intensional constraint over the intensional view that states
that for all methods in the getter methods view, the name of the method must be prefixed with
the string “get”.

Supporting the causal link between regularities and source code Intensional views and
constraints provide a sufficiently expressive medium for documenting various kinds of regu-
larities ranging from naming and coding conventions over programming idioms to regularities
at a higher level of abstraction such as the interactions between different class hierarchies, and
so on. Our formalism aids in maintaining the causal link between regularities and source code
by explicitly documenting both the source-code entities that are governed by a regularity as
well as the actual regularity itself. Furthermore, we provide active documentation of the
causal link: our documentation is expressed in terms of the actual source-code entities in the
system. Moreover, the documentation we create is verifiable with respect to the source code.
Due to the descriptive definition of intensional views, this causal link can also be verified
whenever the system evolves.

1.4.3 Lightweight methodology

We complement our formalism of intensional views and constraints with a lightweight
methodology. This methodology proposes a number of practical guidelines concerning the
definition of intensional views and the selection and implementation of the correct kind of in-
tensional constraints offered by our formalism. Furthermore, the methodology also describes
how the documentation created using intensional views and constraints can be integrated into
the development process to support the co-design and co-evolution of the regularities and the
source code.

Our methodology supports the co-design of regularities and source code by describing a
step-wise, iterative process for refining the documented regularities and the implementation of
a system. A developer documents the regularities that govern a system using intensional views
and constraints, thus making them explicit and verifiable. By iterating between the verification
of this explicit documentation and the gradual refinement of both the regularities and the
source code, the regularities and source code are simultaneously developed. Consequently,
the causal link between regularities and source code is turned into an integral part of the
development cycle.

Our methodology proposes a test-often philosophy to support the co-evolution of the doc-
umented regularities and the source code, i.e. to maintain the causal link between both arti-
facts. The verification of the causal link between regularities and source becomes a part of the
standard testing cycle of the developer. The goal of this test-driven verification is to identify
discrepancies between regularities and source code as soon as possible at development time.
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When discrepancies are detected, a developer harmonizes the regularities and the implemen-
tation by studying the source code related to the discrepancies as well as the documented
regularities and refining them in unison.

1.4.4 IntensiVE

As a concrete instantiation of the model of intensional views and constraints we have de-
veloped the Intensional Views Environment, or IntensiVE for short. This research proto-
type is devised as an extension to the Cincom VisualWorks Smalltalk development environ-
ment [Cin07]. The tool suite consists of a number of sub-tools that enable the definition and
manipulation of intensional views and constraints over Smalltalk and Java programs. Our tool
suite supports Smalltalk and the declarative meta-programming language SOUL [Wuy01] as
the languages which can be used to specify the executable description of intensional views.
Furthermore, IntensiVE provides support for verifying the intensional views and constraints
with the source code and provides detailed feedback concerning discrepancies.

IntensiVE was devised with support for co-design and co-evolution in mind. This support
is obtained by tightly integrating the tool suite with the surrounding development environ-
ment. The intensional views and constraints defined on a system are first-class entities in the
development environment that can be accessed by other tools in the environment. Further-
more, in order to stimulate the co-design of the regularities and the source code, IntensiVE’s
tight integration with the development environment makes it possible to browse and adapt the
source code related to the entities belonging to intensional views as well as entities that are
reported as discrepancies directly from within the tool suite.

The IntensiVE tool suite supports the test-often philosophy proposed in our methodology
by integrating with the unit testing framework of VisualWorks. Consequently, the set of
intensional views and constraints can be verified simultaneously with the unit tests that are
defined on a system. The documented regularities can thus be considered structural regularity
tests. The combination of this test-driven verification and the aforementioned integration of
IntensiVE with the VisualWorks development environment results in the tool suite supporting
the co-evolution of the regularities and the source code.

1.4.5 Model-based pointcuts

The fragile pointcut problem, one of the open evolution problems within the field of aspect-
oriented programming, presents a particular instantiation of the problem of maintaining
causality between regularities and source code. The quantification mechanism employed
by aspect-oriented pointcut languages introduces a tight coupling between pointcut expres-
sions and how the source code of a base program is structured [KMBG06]. Consequently,
seemingly safe modifications to the base program can result in erratic behavior of the aspects
imposed on this program [KS04, SG05].

We propose to alleviate this fragile pointcut problem by means of model-based pointcuts.
This model-based pointcut mechanism strives to decouple the actual pointcut definition from
the implementation structure of the concepts in the source code which the pointcut relies on
as well as to render the causal link between these concepts and the implementation structure
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explicit and verifiable. As such, these model-based pointcuts can be considered to be a par-
ticular instantiation of the general scheme of co-design and co-evolution we propose in this
dissertation. By designing and evolving the explicit assumptions pointcut developers make
about the base program in unison with the source code of this base program we alleviate the
fragile pointcut problem.

These model-based pointcuts are also supported by our formalism of intensional views
and constraints and the IntensiVE tool suite. In particular, we provide an extension of the
CARMA pointcut language [GB03] in which pointcuts can be expressed in terms of inten-
sional views representing different concepts in the implementation of the base program. By
imposing intensional constraints over these views, this instantiation of model-based pointcuts
renders the causal link between the source code and the concepts explicit and verifiable and
aids in maintain causality upon evolution of the source code.

1.5 Contributions

This dissertation presents the following main contributions:

• An approach that supports the causal link between regularities and source code by con-
sidering the regularities an integral part of the development process and supporting the
co-design and co-evolution of regularities and implementation;

• The model of intensional views and constraints as a formalism that offers a structured
way of documenting a wide variety of regularities that govern application-specific,
implementation-specific or domain-specific concepts. This documentation renders both
the regularities as well as the causal link with the implementation explicit and verifi-
able;

• A lightweight methodology that complements the model of intensional views and that
describes a set of guidelines for documenting regularities using our formalism. This
methodology advocates the co-design and co-evolution of regularities and source code;

• The IntensiVE tool suite that provides a concrete instantiation of our model of inten-
sional views. By integrating tightly with the surrounding development environment and
with the unit testing framework, this prototype tool suite puts our model and method-
ology into practice;

• The approach we advance in this dissertation is sufficiently general to support other
evolution problems related to maintaining causality between regularities and source
code. As a concrete example of this generality, we offer model-based pointcuts as a
technique to alleviate the fragile pointcut problem, one of the open evolution problems
within aspect-oriented research.

1.6 Overview of the dissertation

This dissertation is structured as follows:
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Chapter 2 We start this dissertation by taking an in-depth look at the concept of structural
source-code regularities and discuss a number of properties that characterize these regular-
ities. In this chapter we also provide a literature study of related work by surveying other
approaches that support the documentation and verification of structural source-code regular-
ities.

Chapter 3 In this chapter we introduce our model of intensional views and constraints as
a formalism that can be used to create verifiable documentation of regularities. We introduce
this contribution independently of any implementation language by providing a formal spec-
ification – inspired by relational tuple calculus – of the different concepts that are part of our
model.

Chapter 4 After having introduced our formal model of intensional views and constraints,
we present one concrete instantiation of our model, namely the IntensiVE tool suite. This
is our research prototype that is implemented in VisualWorks Smalltalk and that tightly inte-
grates with this development environment. In chapter 4 we also introduce our methodology.
This methodology describes how the formalism of intensional views and our tool suite can be
put into practice and how they support co-design and co-evolution of regularities and source
code. We conclude this chapter by providing a comparison of our work with the approaches
we discussed in Chapter 2.

Chapter 5 As a validation the expressiveness of our approach, we demonstrate how our
methodology and tool suite can be applied in order to create verifiable documentation of a
wide variety of regularities. In particular, we document the various regularities underlying
the implementation of nine concrete instantiations of object-oriented design patterns.

Chapter 6 We perform an experiment in which, following our methodology, we document
the regularities underlying the implementation of three software systems in order to demon-
strate how our approach supports the co-design and co-evolution of regularities and the source
code. We assess the impact of evolution on these three systems and discuss how our approach
aids in maintaining the causality between the regularities and the source code.

Chapter 7 Our approach is sufficiently general to support other problems within software
evolution. We demonstrate the applicability of our approach for alleviating one such evolution
problem, namely the fragile pointcut problem. We introduce an extension to aspect-oriented
programming, namely model-based pointcuts, that builds on our model of intensional views
and the IntensiVE tool suite to alleviate the fragile pointcut problem.

Chapter 8 To conclude this dissertation we discuss some of the limitations of our approach
and implementation and hint at how we can overcome these limitations. We also propose a
number of directions of future research.



Chapter 2

Existence and support for structural
source-code regularities

This chapter consists of three parts:

• In Section 2.1 we characterize the concept of structural source-code regularities. We
provide a definition for such regularities, discuss a number of their properties and pro-
pose an initial taxonomy of the different kinds of regularities. We conclude this section
with an overview of the requirements that an approach for supporting the use of struc-
tural source-code regularities throughout the development process must fulfill;

• Section 2.2 discusses some related approaches that propose the use of a classification
mechanism to group conceptually related software entities. Since a similar use of a
classification mechanism lies at the heart of our approach, we give an overview of these
approaches;

• We finish this preliminary chapter in Section 2.3 with an overview of the state of the
art in approaches which support the use of structural source-code regularities in the
development process.

The goals of this chapter are two-fold. The first goal is to establish a common terminology
which will be used throughout this dissertation. The second goal is to provide an overview of
existing literature related to our work, such that we can position us in the domain.

2.1 Structural Source-code Regularities

Structural source-code regularities is a general term that encompasses the different conven-
tions and patterns that govern the source code of a system. Structural source-code regularities
range from low-level conventions like naming conventions and coding conventions, over the
idiomatic implementation of certain concepts to patterns at the design or architectural level
of a software system. For example, conventions like e.g. “all classes in the hierarchy of class
Command must have a name starting with prefix Command”, “accessor methods must all be

11
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implemented according to the same implementation idiom”, “the entities in the presentation
layer are not allowed to refer to entities in the database layer” are considered to be struc-
tural source-code regularities. In what follows we give a more precise definition of the term
along with a number of examples. Moreover, we discuss a number of properties of structural
source-code regularities.

2.1.1 Definition

In this section we informally define the concept of structural source-code regularities. The
concept of regularities in software is not novel. Minsky defines a regularity in his work on
law-governed architecture [Min96] as:

“any global property of a system; that is, a property that holds true for every
part of the system, or for some significant and well defined subset of its parts ”.

This definition of a regularity is quite general and encompasses numerous properties which
should be upheld in a software system. Such regularities are not limited to invariants in the
source code of a system but can also dictate how objects must interact at run-time, how dif-
ferent threads need to be synchronized and so on. Regularities are also not limited to the
implementation but can also exist in artifacts at different stages of the development process,
can express interactions between artifacts at those different stages or can even guide the de-
velopment process itself by governing how the system may be changed by a developer.

Following his definition, Minsky requires a regularity to be a quantified property over
the software system. For instance, according to this definition, the property ‘class B must
implement a method named x’ is not a regularity, because it is limited to a single artifact in
the software. As such, it does not fulfill the property of being valid for a ‘significant’ subset
of the system, i.e. it does not make a quantified statement about the system. However, ‘all
subclasses of class Bmust implement a method named x’ is considered to be a regularity since
it is quantified over a significant and well-defined subset of the system, namely the property
must hold for all subclasses of a class B.

Minsky’s definition of a regularity serves as an informal, intuitive way to describe regu-
larities. However it leaves room for discussion whether certain properties are considered to
be a regularity or not. Especially quantifying when a part of the system is significant enough
such that a property is considered to be a regularity heavily depends on an observer of the
system. Moreover, this definition suggests that regularities need to be upheld at any given
moment in time. In practice however, this does not always seem feasible as regularities often
are violated while a developer is changing the system, or they may even evolve themselves as
the system evolves. As such, we feel that the definition is too restrictive in this regard.

Although remaining informal as well, in our work we take a more pragmatic stance when
defining regularities. In particular, we focus throughout this dissertation on a specific kind of
regularities, namely structural source-code regularities. We define a structural source-code
regularity as:

Definition 1. “any decidable property of the structure of the source code of a software system
which must remain true after evolution of the system”.
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A structural source-code regularity is a predicate over the source code of a system ex-
pressing an evolution invariant on the structure of that source code. Note that in our definition
we define structural regularities as properties of the structure of the source code of a certain
system. As such, we do not limit ourselves to reasoning about the source code at a lexical
level (e.g. a string representation of the code), but rather assume the presence of a structured
representation of the source code, for instance of the form of an abstract syntax tree, which
we define invariants over.

In a sense, our definition of regularities is more general than Minsky’s. First of all, we do
not restrict the scope of regularities to properties which hold only for an entire system or a –
by the developer deemed significant – subset of the system. We do not require a regularity
to be quantified over the entire system. Although the majority of the regularities we discuss
throughout this dissertation are applicable to a large part of the system, we do not wish to
exclude regularities which are local to a very small part of the source code.

Second, our definition explicitly takes evolution of the software system into account. We
do not require that a regularity is valid at all times. For instance, during the process of
changing the source code of a system, not all structural source-code regularities necessarily
have to remain true. However, we state that regularities must be upheld after an evolution of
the system, i.e. after a set of changes to the source code has been applied.

Note that we take a broad view of evolution. We do not restrict evolution to small changes
to the source code of a system such as for instance the application of a refactoring, but we
also consider more intrusive alterations of the system to be covered by the term evolution.
Moreover, evolution of a software system is not limited to changes in the source code of a
system. Over time, the other artifacts associated with a software system can also evolve. For
instance, the documentation of the system might also have to be updated due to changes in
the requirements, the design, the structural source-code regularities, and so on.

Structural source-code regularities is a broad term that captures a large number of proper-
ties of the source code ranging from coding conventions, naming conventions and program-
ming idioms over dependencies between entities in the implementation of design patterns to
high-level regularities at an architectural level. In general, structural source-code regularities
express a constraint which is applicable to part of the source code of a system and which
governs how that part of the source code is structured. As such, they describe in a broad sense
the conventions which the developers of a system must adhere to.

2.1.2 Properties of structural source-code regularities

In this section we discuss a number of properties of structural source-code regularities. While
it is by no means our goal to provide a complete overview of every kind of regularity, we
focus on a number of dimensions in the problem space of structural source-code regularities.
We illustrate these properties by means of a number of examples of structural source-code
regularities or of groups of regularities.
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Scope of structural source-code regularities

The scope of a structural source-code regularity is the extent in the source code which the
regularity is applicable to. This can range from global regularities which are applicable to the
entire system, to local regularities which are restricted to e.g. a single class hierarchy or a
small group of software entities.

• Global: such regularities describe a constraint which is system-wide. It must be re-
spected by all entities of a certain kind, such as for instance all classes, all meth-
ods, and so on, in the source code. Examples of global structural source-code reg-
ularities can typically be found in domains like best practice patterns [Bec97], anti-
patterns [BMT99, BMMM98], design heuristics [Rie96] and bad smells [FBB+99].
One example of a global structural source-code regularity is that in C++ programs, de-
velopers indicate a private field by prefixing it with an underscore. This property is
applicable to all private fields in the software system and is thus considered a global
regularity;

• Medium: Certain regularities are not applicable to the entire system but rather apply
to a large part of a system and stretch across a number of class hierarchies or modules.
One group of regularities which have a medium scope are the regularities which arise
from the use of design patterns. For instance, the Visitor design pattern [GHJV95] is
governed by a number of regularities which dictate how entities from two different class
hierarchies must interact;

• Local: local structural source-code regularities are confined to a single class hierarchy
or a small set of source-code entities. For example, a regularity which expresses that all
methods in a certain class hierarchy must be implemented using a certain programming
idiom, is considered to be local.

The scope of a regularity is not an ideal criterion to discriminate between multiple kinds
of structural source-code regularities. First of all, it heavily depends on a developer’s inter-
pretation of how to decide whether a certain regularity is considered to be global or local.
Second, not all instances of one particular kind of structural source-code regularities share
the same scope. As an example, consider naming conventions: while there exist naming con-
ventions which are applicable to the entire system, naming conventions are also often used to
regulate the usage of e.g. method names in a single class hierarchy or a single module.

The scope of structural source-code regularities however learns us that regularities are
inherently crosscutting. In general, structural source-code regularities describe a constraint
over multiple artifacts in the source code, often orthogonal to the decomposition of a system.

Abstraction level in the implementation

Another property of structural source-code regularities is that they are generally prevalent at
a particular abstraction level in the implementation. Similar to the work of Buschmann et
al. [BMR+96] on pattern-oriented software architecture, we distinguish between three ab-
straction levels which regularities can occur at:
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• architectural level: regularities which express how the different subsystems of a sys-
tem are related or may interact. One example of such a regularity is that of a layered
architecture, in which an entity X in one layer can only communicate with an entity Y
if Y is in a layer directly above or below the layer of X;

• design level: regularities which encode how the different entities within a subsystem
should interact. Typical examples of such regularities are the different conventions and
dependencies underlying the implementation of design patterns;

• language level: low-level regularities expressing a regularity in a particular part of a
subsystem. Examples of these regularities are programming idioms such as the correct
use of a double dispatch protocol, accessors for fields, . . .

While the above abstraction levels are often associated with other software artifacts such
as for instance UML diagrams which express the design of a system or the description of
the architecture of a system using an architectural description language, we restrict ourselves
solely to the source code of a system. As such, the abstraction level of a structural source-
code regularity expresses the level of abstraction at which a regularity manifests itself in the
source code of a system.

Although it might seem at first sight that the scope of a regularity and its abstraction-level
are correlated, this is not always the case. While regularities at the architectural level tend
to be global, this does not imply that structural regularities at the language level are local.
For instance, naming conventions, which are typically found at the language level, can de-
scribe a constraint which is globally applicable as well as dictate how program entities in a
specific class hierarchy should be named. Similarly, regularities expressing the use of pro-
gramming idioms can govern a global property (e.g. all field accesses must happen using a
getter method) as well as specify the usage of a specific instantiation of an idiom (e.g. all
“accept methods” in an instantiation of the Visitor design pattern [GHJV95] must be imple-
mented by a double dispatch protocol).

Applicability of structural source-code regularities

Structural source-code regularities can be characterized according to their applicability. While
certain regularities are quite universal and can be applied to almost any software system, there
also exist regularities the applicability of which is limited to a given development team or one
specific application or domain.

• Environment-specific regularities: group constraints which are applicable to a
wide range of software systems, independent of a single development team or the
application-domain of the system. They generally encode knowledge concerning fre-
quently occurring errors, language idioms, and so on. While they are not always appli-
cable, their applicability is generally restricted to a certain implementation language,
programming paradigm or implementation platform;

• Team-specific regularities: these regularities express the coding conventions and nam-
ing conventions used by a specific developer or team of developers;
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• Application-specific regularities: describe the dependencies, conventions, inheritance
constraints, . . . typical for a singular system or a particular application domain. Such
regularities describe the constraints which must be adhered to when implementing an
application-specific or domain-specific concern in a certain software system. For in-
stance, a set of regularities which express that in a graphical framework the actions for
drawing figures need to be implemented by means of the Command design pattern, are
considered to be application-specific regularities.

Note that the applicability of a regularity is strongly correlated with how often it is reused
throughout different software projects. Environment-specific regularities often only depend
on the implementation language used in a project or the platform which the application must
run on. Therefore, throughout numerous projects, often the same set of structural source-code
regularities will occur. Team-specific regularities represent the coding style and good practice
patterns a team of software developers should adhere to. As such, they too are often reusable
over multiple projects. Structural source-code regularities which dictate how certain concerns
in a specific application should be structured or how they relate, encode knowledge which
usually is not portable to other projects.

Note however that even application-specific regularities often share large similarities
throughout different software systems. Although the same instance of a regularity is not
applicable to two software systems, these similarities between structural source-code regular-
ities can lie at the basis of a kind of “pattern language” which describes how certain types of
regularities can be documented.

2.1.3 Taxonomy of structural source-code regularities based on functionality

The properties of structural source-code regularities we discussed in the section above pro-
vide a characterization of the different kinds of regularities. In this section we discuss a
taxonomy of structural source-code regularities found in literature based on the function the
regularities serve in the development process. This taxonomy was presented by Chowdhurry
et al. [CM93] and was later also adopted by Bokowski [Bok99]. Although in their work they
use the term constraints over source code, this taxonomy is equally applicable to structural
source-code regularities.

This taxonomy divides regularities into three categories: stylistic regularities, implemen-
tation regularities and design-level regularities:

• stylistic regularities: this category encompasses all regularities which are concerned
with the use of names in the system or any other constraint that is semantics-neutral and
governs a syntactical property of the source code. Such regularities are used to make
programs more readable by enforcing a uniform look and coding style;

• implementation regularities: this category consists of regularities which are used to
detect infractions against frequently occurring bugs, pitfalls and programming errors.
For instance, the regularity that all classes in Smalltalk which implement the = oper-
ation must also understand a message hash, is an implementation regularity. Other
examples of implementation regularities are for instance the constraints which must be
adhered to for an application to run in a specific environment;
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• design-level regularities: rules governing the correct use of class hierarchies, compo-
nents, frameworks, design patterns, . . .

Design-level regularities are further subdivided into coding conventions, inheritance con-
straints and usage constraints:

• coding conventions: regularities which structurally ease readability and maintainabil-
ity of the source code. For instance, a possible coding convention in Smalltalk is that
all accesses to instance variables must occur via a getter method;

• inheritance constraints: these regularities express contracts between a class and its
subclasses. E.g. a constraint like “all subclasses of ClassA must override a method
methodA”;

• usage constraints: such regularities express how certain classes or collections of
classes are to be used. E.g. in an instantiation of the Factory design pattern [GHJV95]
all clients must use the factory to create a product.

2.1.4 Importance of regularities in the software development process

In his seminal paper “No silver bullet” [Bro87], Brooks states that software development is
inherently hard due to the complex nature of software systems and the lack of unified engi-
neering principles which are prevalent throughout other engineering disciplines. As Minsky
observed [Min96], the proper and meticulous use of regularities in software systems can be
considered as a kind of engineering principle which aids in dealing with the complexity of
software engineering.

Regularities can be considered to be a kind of pattern which is present in the source code
of a system and which describes how a certain concept, functionality or concern in the system
is represented in the source code. One motivation for introducing such regularities in the
source code is to improve the communication of the intention of one developer to another.
Rigorous use of naming conventions and other stylistic regularities to create a uniform coding
style makes the source code of the system more readable [Bec97]. When a certain concern
is characterized by a number of regularities, and these regularities are upheld throughout the
implementation of the concern, it becomes easier for a developer to identify and understand
the implementation of the concern in the source code.

However, as we discussed earlier, not all regularities are stylistic in nature. During the
development of a software system, certain constraints, or regularities, must be upheld in or-
der for the system to behave properly. Especially in libraries, frameworks, . . . it is imperative
that certain regularities are not violated in order for the system not to show incorrect behav-
ior [Bok99, Min91]. For instance, in a framework, certain usage constraints and inheritance
regularities govern the correct instantiation of the framework. If these regularities are not
upheld, an instantiation of the framework might behave erratically. Similarly, certain devel-
opment platforms like J2EE impose different regularities to be respected in software systems
in order to prevent erratic behavior at runtime [EMS+04].

With the advent of aspect-oriented software development, this need for consistent use of
regularities becomes even more important. Due to the nature of the quantification mechanisms
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employed by pointcut languages, developers of aspect-oriented programs often rely on the fact
that certain concepts in the system are characterized by stylistic or structural constraints. For
instance, an aspect developer who wishes to capture the concept of a getter-method might as-
sume that all getter-methods are implemented by the Java convention in which the name of the
method starts with the prefix get-. In such cases, the proper functioning of the application
relies on this naming convention. If a developer does not respect such a stylistic regularity,
this can have an impact on the software behaving correctly. This fragility of aspect-oriented
programs with respect to seemingly safe modifications of the base program has been dubbed
the fragile pointcut problem [KS04, SG05, KMBG06].

2.1.5 Supporting structural source-code regularities during software develop-
ment

A major drawback of regularities is that they are not an integral part of the programming
language. Although programming languages impose a number of constraints on programs by
means of syntax and semantics, the majority of regularities are only implicitly present in the
implementation. While structural source-code regularities can appear in the source code in
an ad-hoc way, i.e. developers unknowingly introduce them as a means to make their source
code more readable, often teams of developers regulate the use of certain conventions and
constraints which need to be upheld in the implementation.

However, due to their crosscutting nature and the fact that development environments typ-
ically do not provide support for documenting and enforcing them, over time the consistency
and coherent use of structural source-code regularities can diminish. Changes in the source
code can result in the regularity no longer being respected. This can lead to source code be-
coming more difficult to read and bugs being introduced if the violated regularities have an
impact on the correct functioning of the system.

It is thus important that correct and meticulous use of structural source-code regularities
is supported during the development of the system. An approach for maintaining the causal
connection between regularities and source code must support the following functionality:

• Explicit documentation: A key part of supporting structural source-code regularities
lies in their being explicitly documented. This documentation makes it possible to
make the implicitly-available regularities in the source code explicit to developers and
turns the regularities into first-class artifacts in the development process. This explicit
documentation serves as a means to communicate the different structural source-code
regularities underlying a system between different developers;

• Verification of regularities: Although documenting the regularities aids in making
developers aware of their existence, this alone does not suffice to ensure that the regu-
larities are properly adhered to throughout the implementation. In addition, support is
needed to verify the validity of the implementation of a system with respect to struc-
tural source-code regularities. For an approach to be able to support the verification of
regularities imposes a number of requirements:
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– Connection with source code: A causal link must exist between the documen-
tation of regularities and the implementation. Documentation must be expressed
in terms of actual source-code entities like classes, methods, fields, and so on. If
such a link does not exist between the documentation and the source code, it is not
possible to verify the consistency of the documentation with respect to the source
code;

– Verifiability: Since the documentation of regularities needs to be verifiable, a
natural language description of the regularities does not suffice. What’s more,
the medium used to express the regularities must be rich enough to capture a wide
range of regularities. Preferably, the same approach can be used to capture naming
conventions and coding conventions as well as programming idioms, architectural
regularities, design dependencies, . . . ;

• Support for co-design and co-evolution: The terms co-design and co-
evolution [DDMW00] has been used in literature to indicate the situation in which a
number of (software) artifacts coexist that are causally linked and in which changes
to one of the artifacts have as a direct result that the other artifacts might need to be
updated as well in order to keep all of the artifacts synchronized. In other words, the
development and evolution of any particular artifact cannot be considered in isolation
from the other artifacts.

In the case of supporting structural source-code regularities during the development
process, we encounter a similar situation. The regularities that govern the implementa-
tion of a system are causally linked to the source code of that system. While the regu-
larities express how certain concepts in the source code are supposed to be structured,
the source code contains the actual manifestation of these regularities. Consequently,
this causal link must be maintained during the development of the system.

First of all, the documentation and verification of the regularities must not be limited
to a single version of the system. During evolution, it must remain possible to verify
the validity of the documentation of the structural source-code regularities with respect
to the new implementation of the system. In other words, it must be possible to ver-
ify whether or not the source-code entities that where added or modified during the
evolution step respect the documented regularities.

Conversely, not only the implementation of the system evolves over time. As we have
mentioned earlier, changes in the requirements, execution environment, design, con-
ventions and so on can have as consequence that the structural source-code regularities
that govern a system are altered. As such, an approach for supporting structural source-
code regularities must be able to deal with evolving regularities as well.

In order to deal with this interplay between the documentation of structural source-code
regularities on the one hand and the implementation of a system on the other hand, an
approach must thus provide support for co-design and co-evolution between the two.
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2.2 Software classifications

One of the cornerstones of our approach is the use of a software classification mechanism in
order to group a set of conceptually related source-code entities which are characterized by a
number of structural source-code regularities. The idea of using a classification mechanism to
model groups of related entities is certainly not novel. In literature, various approaches exist
which employ classifications in order to document different types of concerns in source code.

In the following sections we give an overview of some of the software classification mod-
els that have been proposed in literature. In Chapter 4, we will revisit these classification
models and provide a comparison with the classification model we use in the approach we
advance in this dissertation.

2.2.1 (Virtual) software classifications

In his PhD dissertation [DH98], Koen De Hondt introduced the notion of software classifi-
cations as a means to create online documentation of software artifacts in order to provide
support for software evolution. Software classifications provide a lightweight and conceptu-
ally simple approach: a software classification is defined as a collection of software entities.
For instance, applied to an object-oriented programming language, a software classification
can contain a number of classes, fields, methods, and so on. In De Hondt’s work, these soft-
ware classifications are used to capture the extent of important concerns in the source code.
For a developer who needs to change the software, these classifications can be used as a means
to browse the implementation of a concern that needs to be altered.

The classifications in De Hondt’s work can be specified in two ways. A first way is by
explicitly enumerating software artifacts belonging to the classification. For the second way,
De Hondt introduced the notion of a virtual software classification. A user does not enumerate
the artifacts belonging to the classification in order to define this kind of classification, but
rather provides an executable description (i.e. a query over the source code). Upon execution
of this description, the elements belonging to the virtual software classification are calculated.

Wuyts provided tool support for this classification model of De Hondt by means of the
StarBrowser [Wuy02, WD04]. StarBrowser is an extension to the Cincom VisualWorks
Smalltalk environment and enables the classification of Smalltalk objects. These classifica-
tions can be created either by manually dragging and dropping elements into a classification,
or by means of a specification written using a Smalltalk program or a SOUL [Wuy01] logic
query.

Kim Mens extended the concept of virtual software classification in his PhD the-
sis [Men00], in which classifications lie at the heart of an approach to co-evolve an archi-
tectural description with the source code of a system using logic meta programming. Mens’s
approach differentiates between an architectural description language and an architectural
mapping language. The description language describes the high-level concepts which make
up the architecture of the system and the relations between these concepts. In order to specify
the concepts in the architecture, constructs for ports, filters and links are also provided. In the
architectural mapping language, virtual software classifications are created which relate the
concepts from the architectural description to the implementation of the system and which
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allow keeping this architectural description synchronized with the source code of the system.

2.2.2 Concern Manipulation Environment

The Concern Manipulation Environment (CME) [HOST05a, HOST05b, CHK+05, TCH+04]
is a tool suite implemented as part of the Eclipse [IBM] development environment. The
goal of the CME is to provide an environment for supporting aspect-oriented software devel-
opment [KLM+97]. In CME, concerns are treated as first-class entities and are accessible
throughout the entire software development cycle. The ConMan [HOST05a] component of
the CME offers a classification model bearing similarities to the classification models dis-
cussed above. While in our work we will focus on the classification of source-code entities,
the CME approach takes a broader view and allows the classification of artifacts from all cy-
cles of the software development process. The classification model of the CME distinguishes
between the following concepts:

• Concern space: top-level part of the model containing concerns, relationships, soft-
ware artifacts, constraints, . . . ;

• Concern: the traditional notion of a concern. Concerns can be specified both by a
query and by an enumeration;

• Concern context: specialization of a concern which relations and constraints can be
attached to;

• Relationship: relationships represent other concern model elements which a certain
concern model element is related to. E.g. for a class C, the relationships can include
all classes which refer to C, all classes which extend C, and so on;

• Constraint: a constraint groups together a number of constrained elements.

2.2.3 Cosmos

Sutton and Rouvellou proposed Cosmos [SR02], an approach with a similar goal as the Con-
cern Manipulation Environment, namely the documentation and manipulation of concerns in
order to provide support for a multi-dimensional separation of concerns [TOHS99a] through-
out the development process. They propose an elaborated classification schema consisting of
“logical” and “physical” concerns. While logical concerns represent concepts of interest in a
system, physical concerns represent the actual software artifacts which logical concerns apply
to.

Cosmos contains five kinds of logical concerns, which aid in creating a structured repre-
sentation of the different concerns in a software system:

• classifications: represent high-level concepts in the system and consist of a number of
Cosmos classes. For instance, concerns such as functionality, state, configurability are
considered to be classifications;
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• classes: classes are used to group other concerns and consist of other classes or in-
stances. A class belongs to a classification. For instance, core functionality, internal-
consistency functionality, and so on are all classes belonging to the functionality clas-
sification;

• instances: these are the leaf concerns which do not classify any other concerns. For
instance, in a graphical editor a number of examples of instances belonging to the core
functionality class are drawing of figures, moving of figures, positioning, . . . ;

• properties: properties are concerns which characterize other concerns. Examples of
properties are concurrency, synchronization, and so on;

• topics: these are arbitrary collections of concerns which generality cut across the entire
set of classifications, such as for instance logging, caching, . . . .

These logical concerns classify “physical” concerns such as instances (specific source code
entities such as e.g. classes, methods, . . . ), collections (groups of physical concerns) and
attributes (particular properties of instances and collections which are deemed interesting in
logical concerns). Cosmos not only makes different concerns in the software explicit, but
also provides support for declaring how the different concerns are related. Moreover, Cosmos
contains the notion of predicates, which are used to keep the concern schema created with
Cosmos internally consistent.

2.2.4 Concern graphs

Robillard and Murphy present an approach to document concerns in software using a mech-
anism called Concern Graphs [RM02] which classifies a concern by storing the structure of
that concern. A Concern Graph is a graph consisting of three kinds of vertices, namely classes,
fields and methods. The edges in the graph represent common relations between vertices such
as calls, reads, declares, and so on. A developer constructs a concern graph by querying the
source code for a source-code artifact which (partially) implements the concern, and then
by iteratively extending the concern graph with other source-code artifacts which also take
part in the implementation of the concern, until the full extent of the concern is captured by
the graph. To support the use of concern graphs, the Feature Exploration and Analysis tool
(FEAT) [RM03] is provided which extends the Eclipse development environment and which
provides support for displaying and browsing concern graphs. Moreover, FEAT also supports
the construction of concern graphs by providing a developer query facilities which can be
used for browsing the set of source-code artifacts that is related to a given artifact. This way,
the combination of querying the source code and inspecting the results of the query is used to
iteratively construct a concern graph.

Concern graphs offer an interesting approach in that they provide a methodology in which
classifications are constructed using a combination of querying the source code and enumerat-
ing related source-code artifacts. In more recent work, Robillard extended [Rob06] the model
of concern graphs with a mechanism which compares the source-code artifacts belonging to a
concern graph after evolution with the artifacts belonging to the same graph before evolution.
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By defining a number of heuristics, he proposes to use this information as a means to detect
errors made during the evolution process.

Closely related to concern graphs, Robillard reports on ConcernMapper [RWW05], a
simple Eclipse plugin which allows for the extensional creation of classifications by means
of dragging and dropping source code entities into those classifications. The goal of this tool
is to complement the relation-based classifications of FEAT with a mechanism to document
concerns extensionally without having to reason about the structure of the implementation of
the concern.

2.2.5 Conceptual Modules

Baniassad and Murphy presented Conceptual Modules [BM98], a classification mechanism
used to support various kinds of reengineering tasks. A conceptual module consists of a name,
representing a concept in the source code of a software system which is documented by the
conceptual module, and a number of lines of source code which implement the documented
concept. From these lines of code, a representation of the concept is derived in terms of:

• input variables: variables which are defined external to the lines of code belonging to
the conceptual module, but which are used within the module;

• local variables: variables which are used and/or defined only from within the lines of
code belonging to the module;

• output variables: variables which are defined in the conceptual module, and used
external to it;

• calls to procedures: the procedures which are called from within the source code
belonging to the conceptual module.

In addition to providing an interface for accessing the information which is associated with a
conceptual module, a query language is provided which can be used to verify whether, either
directly or indirectly, two conceptual modules use the same variables, whether two conceptual
modules overlap or whether one conceptual module is contained within another.

Conceptual modules are a highly specialized classification mechanism which can be used
to identify how the implementation of different concepts in the source code of a system in-
teract. While this technique offers a limited amount of information concerning the entities in
the conceptual modules, a number of case studies have been performed using this technique
which show its aptness for supporting reengineering tasks.

2.2.6 Mylar

Mylar [KM05a] by Kersten et al. is an extension to the Eclipse Java Development Tools (JDT)
and the AspectJ Development Tools (AJDT). Both JDT as well as AJDT make use of nested
classifications in order to provide a developer means for navigating the source code of a piece
of software. For instance, each package in a Java program is visualized by a classification
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containing the classes belonging to the package. In turn, these classes are also represented by
a classification containing the methods of a class.

Kersten et al. remarked that when the size of a program increases, the amount of informa-
tion belonging to these classifications can become overwhelming to a developer. To alleviate
this problem, they propose the use of a degree-of-interest (DOI) model which limits the scope
of the entities visible in the classifications to those related with the current task of the devel-
oper. This DOI model attributes an interest value to each element of a classification: if an
element is selected or edited, the interest value will increase; over time, if the element is no
longer selected or no changes to it are made, the interest value of the element will gradually
decay. Only the elements with an interest value above a certain threshold will be shown in the
editor.

While Mylar is implemented as an Eclipse plugin, the idea behind this technique is com-
plementary with almost all classification mechanisms discussed above. The use of a degree-
of-interest model to highlight only relevant entities in the visualization of a classification can
be considered an important factor in improving the scalability of classification mechanisms.

2.2.7 Summary

In the previous sections we gave a brief overview of a number of approaches which use a par-
ticular classification mechanism to support a task during the software development process.
While these approaches do not target the specific problem of supporting structural source-
code regularities throughout the implementation of a software system, they have proven in
the past to be a valuable technique for creating different kinds of documentation. As such, we
will also employ a classification mechanism in our approach to document groups of related
source-code entities. While some approaches such as CME and Cosmos provide an elabo-
rated scheme for documenting and managing concerns in general in a system, approaches
such as Conceptual Modules offer a more dedicated, task-specific usage of a classification
mechanism. This results in that classification mechanisms we discussed above often differing
in the constructs they offer to a developer.

However, all of the approaches we discussed share the following commonalities. Re-
gardless of the complexity and extent of the constructs they offer, the core idea behind these
approaches is to use classification mechanisms in order to group software artifacts which are
deemed related for performing some task. Furthermore, we see that there are two ways in
which the classifications can be specified. Either a developer manually enumerates the el-
ements belonging to a classification. This mode of defining a classification is also called
extensional; or the classification is defined by means of a query, which upon execution yields
the artifacts belonging to a classification. Such a means of specifying a classification is often
dubbed intensional. While the former way of defining a classification has as an advantage
that this can be done by e.g. simply dragging and dropping certain artifacts in a classification,
the latter way, namely intensionally defining a classification, offers the benefit of being more
robust with respect to evolution. Whenever the underlying set of software artifacts changes,
the artifacts belonging to a classification can be recomputed by the query defining the classi-
fication.



2.3. SUPPORT FOR STRUCTURAL SOURCE-CODE REGULARITIES 25

2.3 Support for structural source-code regularities

In this section, we give an overview of the state of the art in tools, methodologies and tech-
niques which provide the documentation and/or verification of structural regularities in the
source code of systems. We divide this section in three major parts. In Section 2.3.1 we take
a look at a group of tools which check for infringements of good coding style, programming
idioms, and so on. Section 2.3.2 describes a number of approaches which provide a developer
with a language in which constraints can be imposed over the system. The third part (Sec-
tion 2.3.3) of this section consists of a description of a number of approaches which verify
conformance of high-level architectural views of the system with respect to the source code.

2.3.1 Code checkers

A first group of approaches we discuss are code checkers. These approaches check for vi-
olations of particular programming idioms (e.g. correct implementation of comparison of
objects), frequently occurring bugs (e.g. use of a variable before it is initialized), coding style
infringements (e.g. improper use of names) and so on.

Lint

Historically, Lint [Joh79] is one of the first code style checkers. It consists of a fixed set of
rules which can be applied to a C [KR88] program and which inform a developer of often-
occurring problems in the source code of that program. More specifically, Lint informs the
user of unused variables and functions, the use of variables before they are set, unreachable
portions of a program, improper use of return values of functions, advanced type errors, in-
correct use of type casts, “strange” constructions, deprecated syntax and statements for which
the semantics are different dependent on the compiler which is used. Lint offers a lightweight
approach in detecting these problems: instead of using a complex, computation-intensive
analysis of the C program, it makes use of a number of approximations and heuristics to de-
tect violations. As such, it provides a conservative estimate of possible violations of the Lint
rules in the source code of a program.

LCLint

Evans et al. propose LCLint [EGHYM94], a Lint-like approach based on the
Larch [GHG+93] formal specification languages and tool suite. Similar to Lint, the goal
of their approach is to find common bugs in C code. However, in order to refine the anal-
ysis of the program, they propose an approach in which the typical C header files (.h) are
substituted with .lcl files in which variables and functions can be annotated in order to
provide additional information which can be used by the checker. For example, by explicitly
specifying that a given structure in a program is an abstract, unmutable data type, additional
checks can be performed to guarantee that all clients of that type use the proper functions to
modify that data type. In addition to checking the proper use of abstract types, LCLint is able
to detect occurrences of unauthorized usage of global variables, undocumented modifications
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of the state of the arguments of a function and missing initializations for actual parameters or
use of uninitialized formal parameters.

FindBugs

FindBugs [HP04] is an open-source tool which strives to find possible bugs in Java code. It
is based on the assumption that certain code idioms are likely to be an error. Based on this
assumption, it detects a whole range of possible bugs such as the absence of a required super
send in implementors of the Cloneable interface, suspicious use of the equals() method
to compare incomparable objects, the invariant that objects implementing equals() should
also implement hashCode(), and so on.

Code style checkers

CheckStyle [Che06] is an open-source tool which checks for a large number of violations on
proper Java coding style. Amongst others, CheckStyle finds inconsistencies with respect to
standard Java naming conventions, use of white space, size violations, duplicate code, bad
smells, . . . . While the set of rules which are checked by CheckStyle is fixed, the tool offers
to a developer the possibility to tweak the parameters of each of the rules.

Similarly, PMD [PMD06] is another tool which checks Java code for unused fields, empty
blocks in if, while, try-catch, . . . statements, unused method parameters, and so on. On top
of the pre-specified set of rules, developers can specify custom rules using the XPath [CD99]
query language.

Pattern-Lint

Sefika et al. present Pattern-Lint [SSC96], a tool for checking conformance of the imple-
mentation of design patterns and a number of architectural styles such as client-server and
pipe-filter. A developer selects a certain pattern in the tool and provides the mapping of the
roles of the pattern to elements in the source code of the program. Pattern-Lint will then re-
port on any inconsistencies between the pattern and the implementation using both a static as
well as a dynamic analysis.

P3

The P3 (Practical Preprocessor for Programming conventions) system [DC03] is a preproces-
sor for Java that checks class files for 60 different code and design conventions. Amongst
others, P3 checks for violations of syntactical constraints such as the use of public variables,
uniform location of line breaks and braces, and so on. Particular for P3 is the fact that the sys-
tem is not restricted to detecting the violations. After the detection, it makes use of a neural
network in order to provide an ordered set of (semi-automated) corrective actions in order to
rectify violated constraints in the source code. The system also provides a scripting language
which allows the detectable violations to be customized.
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Summary

The code checkers presented above can be classified into two groups. A first group consists
of approaches such as Lint, LCLint and FindBugs whose primary goal is to detect a number
of infringements of implementation regularities in source code. Such regularities check for
common mistakes, violations of environment constraints, language idioms, and so on. The
second group, which CheckStyle, PMD and P3 belong to do not focus on finding bugs but
rather aim at finding entities in the source code which exhibit a “bad coding style”, i.e. stylistic
regularities.

These approaches share the disadvantage that they do not provide explicit documentation
for the different structural source-code regularities present in a software system. Although
they provide support for verifying a set of rules defining a number of regularities, this set is
often internal to the associated tool and is thus less suitable as a means of documentation of
a given system. Furthermore, with the exception of PMD and FindBugs, these tools offer
a limited, non-customizable set of rules. Although these sets of rules are considered to be
generally applicable and allow the verification of a range of system-wide constraints, they
can only be used to support specific kinds of structural source-code regularities. For instance,
these approaches are not suited for documenting and verifying regularities which are specific
to one particular domain or application. Finally, while these techniques support evolution by
making it possible to verify the set of rules with respect to evolved versions of a software
system, they do not support the evolution of the regularities themselves. Since for most ap-
proaches the set of rules is not easily accessible nor mutable, the support these approaches
offer for co-design and co-evolution is seriously hampered.

By no means is the list of code checkers we discussed above complete. There exists a
proliferation of tools and approaches both from the open-source community as well as com-
mercial products that offer functionality comparable to the approaches we discussed. For
example, tools such as Decor [MGL06], iPlasma [MMM+05], RevJava [Flo02] and the Soft-
ware Source Code Static Quality Analysis [M S07] tool apply metrics to a software system to
detect design defects, bad smells, and so on. Lint4J [JUt07] provides a set of Lint-like rules
for Java programs.

2.3.2 Meta-programming approaches

In this section we describe a number of approaches which offer a developer language support
for expressing regularities in terms of the source code of a system. Regularities can be de-
clared using these approaches as constraints which are imposed on the source code and which
can be verified with respect to this source code.

Query-based approaches

The Smalltalk Open Unification Language (SOUL) [Wuy01] is an implementation of a
Prolog-like [DEDC96] language on top of the Smalltalk [GR89] object-oriented language.
Wuyts et al. have shown that the declarative paradigm is well-suited for reasoning about
source code in general and for implementing support for verifying source-code regularities in
particular [MMW01, WM06]. To this end, SOUL offers a tight, symbiotic integration with
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1 drawViolations(?class) if
2 subclassOf(?class,[Figure]),
3 not(methodWithNameInClass(?method, draw, ?class))

Figure 2.1: Example of a SOUL query

the underlying Smalltalk language such that during evaluation of logic queries, Smalltalk
code can also be executed. Moreover, a library of logic predicates named LiCoR is provided
that offers a complete reification of Smalltalk programs complemented with predicates for
reasoning over the code.

An example of a SOUL program is shown in Figure 2.1. This program implements the
design constraint that in a graphical editor all subclasses of the class Figure must override
a method draw. The constraint consists of a rule drawViolations. The head of the rule
contains the logic variable ?class (variables in SOUL are indicated by a question mark).
In line 2, a first condition is imposed which requires the variable ?class to be bound to
subclasses of the class Figure (the brackets around Figure are used to execute Smalltalk
code, as such the actual Figure class from Smalltalk is bound to the variable ?class).
Line 3 further restricts the bindings of ?class to those classes which do not implement a
method named draw. When executing the drawViolations rule, the variable ?class
will be bound to all classes in the Figure hierarchy which do not implement draw, i.e. the
set of classes which violate the constraint we wished to express.

Using SOUL, or other declarative meta-programming languages such as Tyruba [De 98],
JQuery [JD03] and CodeQuest [HVd06], it is possible to implement meta-programs express-
ing a whole range of verifiable structural regularities.

CCEL

1 // All subclasses of class Figure must override a method called draw
2 DrawConstraint(
3 Class P | (P.name() == "Figure");
4 Class C | (C.is_descendant(P));
5 MemberFunction P::function | (function.name() == "draw");
6

7 Assert([MemberFunction C:function2;|function2.redefines(function)]);
8 )

Figure 2.2: Example of a CCEL constraint

The C++ Constraint Expression Language (CCEL) [DMR92] is a meta-language for
C++ [Str86]. The goal of CCEL is to provide developers with a meta-language for imple-
menting checkers for design, implementation and stylistic constraints, similar to our goal
of verifying structural source-code regularities. CCEL adopts an object-oriented model rep-
resenting C++ programs and offers a constraint language capable of expressing predicate
logic-like constraints. An example of a CCEL constraint is shown in Figure 2.2. This con-
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straint is the CCEL version of the constraint we described in the section above, namely that
all subclasses of the class Figure must override a method draw. Lines 3 and 4 create two
new variables P and C which are respectively bound to a class with name Figure and the
subclasses of this class. Line 5 binds a variable function to a method with name draw im-
plemented in the class bound to variable P (i.e. the class Figure). Variables in CCEL are
typed and can be of the type ‘Class’, ‘Field’ or ‘MemberFunction’. The part after the ‘’|’ in
lines 3–5 provides a number of conditions which bindings of the variable need to fulfill. In
CCEL, variables are universally quantified by default. Line 7 shows the assertion which must
be true in order to have the constraint upheld. In the example, this assertion states that there
should exist a binding for a variable function2 of type ‘MemberFunction’ such that this bind-
ing redefines the method bound to variable function. Note that the use of brackets indicates
that the variable function2 is existentially qualified.

At a technical level, the implementation of CCEL suffers from a number of limitations.
For instance, not the entire source code of a C++ program is reified at the level of the model in
terms of which a developer can write constraints. More specifically, CCEL does not support
reasoning about the internals of methods. Moreover, the constraints in CCEL are not first-
class entities. It is not possible to refer from within one constraint to another constraint, nor
does CCEL provide a modularization mechanism for constraints. As a consequence, multiple
constraints over the same source-code entities require a developer to repeat parts of the code
implementing the constraint. E.g. if we wish to write a new constraint over all the subclasses
of Figure, this would require us to repeat lines 3 and 4 in our new constraint.

SCL

1 for F: subclasses(class("Figure")) holds
2 method("draw", F)

Figure 2.3: Example of a SCL constraint

Hou and Hoover present SCL (Structural Constraint Language) [HH06]. Similar to sup-
porting structural source-code regularities, the goal of SCL is to provide a means for enforcing
the non-functional design intent of a developer (such as for instance coding style, design pat-
terns, idioms, and so on) in the source code of a system. Using SCL, developers impose
their design intent as constraints on a representation of a program. SCL offers a specification
language based on first-order predicate logic complemented with a set of predicates for rea-
soning about source code. An object-oriented program is represented as a graph in which the
nodes are source-code entities (classes, methods, fields, . . . ); the edges connecting two nodes
represent the relations between the source-code entities (such as calling relations, and so on).
The library of predicates for reasoning about source code offers a reification of these relations
between source-code entities. Hou et al. provide two implementations of SCL, respectively
supporting the C++ and Java languages.

Figure 2.3 illustrates an example of a SCL constraint. This constraint expresses the SCL
variant of the example constraint we discussed for SOUL and CCEL, namely it verifies that
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all subclasses of the class Figure override a method draw. Line 1 retrieves all subclasses
of the class Figure and binds these subclasses to the variable F. The constraint expresses
that for all these subclasses it must hold that they contain a method named draw (line 2).

Attribute Extension

1 addTo ClassDecl {
2 syn boolean isFigureSubclass =
3 (superClassBinding() =/= null and
4 (superClassBinding().globalName() = "Figure" or
5 superClassBinding().isFigureSubclass));
6

7 eq DeclList.isFigureSubclass = isFigureSubclass;
8 }
9

10 addTo DeclList {
11 error string missingDrawMethod =
12 if isFigureSubclass and not implementsDrawMethod
13 then "Subclass of Figure does not implement draw"
14 else "";
15 }

Figure 2.4: Example of an Attribute Extension check

In her work on Attribute Extension [Hed97a] Görel Hedin focusses on the verifica-
tion of conventions which underly object-oriented libraries, frameworks and design pat-
terns [Hed97b]. She proposes a technique that extends the parser of a language such that
checks for conventions, which are verified at compile-time, can be implemented. As such,
Attribute Extension allows for extending the name and type analysis for a programming lan-
guage, in a way that application-specific constraints can be verified. Attribute Extension
consists of the following four components:

• Base grammar interface: an object-oriented representation of a context-free grammar
of the base language which the checks are defined over;

• Extension grammar: an attribute grammar which extends the production rules from
the base grammar interface with attribute declarations and equations. These extensions
can respectively be used to propagate information throughout the parse tree of a pro-
gram or to calculate properties of single program entities;

• Attribute comments: an annotation mechanism that makes it possible to attach addi-
tional semantical or contextual information to program entities from within the source
code of the underlying base program;

• Error attributes: these implement the actual checks.
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Figure 2.4 shows an example of an Attribute Extension check. Similar to the example we
used in the previous sections, we wish to express that subclasses of Figure should implement
a method draw. Lines 1–8 of the example extend the class definition nodes in the base
grammar with information about subclasses of Figure. Lines 2–5 introduce an attribute
isFigureSubclass which is true if the class itself or one of its superclasses is the Figure class.
Line 7 propagates the result of this synthesized attribute to the declarations of the class. Lines
10–14 show a second extension of the grammar. This time declaration lists are extended with
an error attribute missingDrawMethod which is triggered if the isFigureSubclass attribute is
true and the implementsDrawMethod attribute is false. For reasons of brevity we did not
include the implementation of the implementsDrawMethod attribute in our example.

Although attribute extension is expressive enough to implement checkers for a wide range
of regularities, it can often be tedious to implement a constraint verifying a regularity. At-
tribute extension offers an extensible meta-model that extends the parser of a program with a
means to specify constraints over the source code of a program. However, due to the cross-
cutting nature of certain regularities, the fact that the constraints defined using Attribute Ex-
tension align with an abstract syntax tree of a program make this approach a less suitable
candidate for documenting structural source-code regularities.

Law-governed architecture

1 sent(P, transferAmount(A), T) :-
2 positive(A)@P,
3 do(addAmount(A)@T),
4 do(removeAmount(A)@P).

Figure 2.5: Example of a law-governed system

Naftaly Minsky proposes Law-governed architecture (LGA) [Min96, MP97, Min91,
MP00] as a technique to enforce regularities in software. He does not limit himself to struc-
tural regularities in the source code of a system but also considers regularities which need to
be adhered to at run-time. LGA imposes a law over the software system, i.e. a global and
explicit set of rules which are enforced by the environment that manages a software project.
Laws in LGA can be used to regulate different kinds of regularities: it has been used to en-
force the architectural regularities underlying multi-tier architecture, to ensure encapsulation,
and so on. Also, rules can be specified which express how the law of the system itself can
evolve, how the system needs to be configured. LGA rules can even be used to manage the
actual development process (e.g. by allowing developers only access to the modules they are
implementing).

Figure 2.5 shows an example of a rule in law-governed system. LGA uses a Prolog-
like language which rules are defined in that state the laws which need to be adhered to in
a system. In general, rules can be permission-based by e.g. stating which interactions are
allowed or prohibition-based by declaring interactions which are not allowable in the system.
Our example shows a rule governing the correct behavior in a banking system. The rule
expresses that, in order for a banktransfer from a bankaccount P to an account T to be legal,
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a positive amount (line 2) A needs to be added to account T (line 3) and be subtracted from
account P (line 4).

Rules in LGA can also trigger actions, redirect message sends, omit message sends, in-
voke error messages and so on. As such, the law of the system is not a kind of passive,
verifiable documentation but rather is part of the implementation of a system. While our
example shows a run-time constraint, LGA also offers a (limited) set of logic primitives to
reason about more structural relations in software.

IRC

1 public class SystemOutChecker implements IRC {
2 ByteCodePointcut pc = new BytecodePointcut(
3 new AndFilter(
4 FieldAccessDeclaringClassFilter.create("java.lang.System"),
5 new OrFilter(
6 FieldAccessNameFilter.create("out"),
7 FieldAccessNameFilter.create("err"))));
8 public List check(ClassFile cf){
9 List inst = pointcut.getInstructions(cf);

10 return IRStatus.create(instrs, RESTRICTION,
11 DESCRIPTION, IRStatus.ERROR);
12 } }

Figure 2.6: Example of an IRC check

Eichberg et al. propose, IRC (Implementation Restriction Checker) [EMS+04], a plat-
form for implementing checkers that enforce system-wide properties. IRC starts from the
observation that checking system-wide properties can be considered to be crosscutting con-
cerns. As such Eichberg makes use of aspect-oriented technology [KLM+97]. In particular
the BAT framework [BE], which provides AOP-facilities at the level of Java bytecode, is used.

An example of a check implemented using IRC is shown in Figure 2.6 (example adopted
from [EMS+04]). A check in IRC is a class (in our example SystemOutChecker) which
implements the interface IRC. Each checking class must implement a method check which,
given a class file, returns a list of violations (these are instances of IRStatus). In our
example, this is reflected in lines 8–11. The actual violations are found using a BAT point-
cut (lines 2–7). The pointcut in our example selects all the byte code instructions referring
to java.lang.System (line 4). This set of instructions is further reduced to those who
either access the field out or the field err (lines 6 and 7). The result of the check in Fig-
ure 2.6 is thus that a warning is generated for all locations which access out or err on
Java.lang.System.

While IRC is able to express a wide range of regularities, it does not offer a structured
approach for documenting and verifying those regularities. Each check is a separate Java
program which uses the IRC framework in which the explicit set of violations is captured
using a BAT pointcut. While this shows numerous similarities with the SOUL language we
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discussed above, the declarative nature of the latter renders it more expressive in order to
reason about software. Due to the fact that it is based on aspect-oriented technology, IRC
is however able to enforce dynamic regularities by weaving in checks which are verified at
run-time.

CoffeeStrainer

1 public abstract class Figure {
2 public void draw() {
3 /* body of draw */
4 }
5 /*
6 private AUserType getFigureClass() {
7 return Naming.getClass("Figure");
8 }
9 private AMethod getDrawInClass(AUserType class) {

10 return Naming.getInstanceMethod(class, "draw", new AType[0]);
11 }
12 private boolean overrides(AMethod m1, AMethod m2) {
13 if (m1==null) return false;
14 if (m1.getOverriddenMethod()==m2) return true;
15 else return overrides(m1.getOverriddenMethod(), m2);
16 }
17 public boolean checkCorrectlyOverridden(AUserType c) {
18 rationale = "all subclasses of Figure must override draw";
19 return implies(c.getSuperclass()==getFigureClass(),
20 overrides(getDrawInClass(c), getDrawInClass(getExample()))
21 )
22 }
23 */
24 }
25

Figure 2.7: Example of a CoffeeStrainer constraint

Bokowski proposes CoffeeStrainer [Bok99], a system for statically checking user-
specified constraints on Java programs. Rather than providing a new constraint language,
CoffeeStrainer uses Java in order to define constraints. CoffeeStrainer provides the imple-
mentor of a constraint with a reification of Java AST trees which is accessible from within the
Java code.

An example of a CoffeeStrainer constraint is shown in Figure 2.7. This constraint im-
plements the design regularity that all subclasses of Figure must override a method named
draw. Note that in CoffeeStrainer, the constraints are implemented as a comment in the class
over which they impose a constraint. Lines 6–11 implement two auxiliary methods which re-
spectively return the class Figure and a method named draw for a given class. Lines 12–16
implement a predicate that checks whether a method m1 overrides a method m2. Lines 17–22
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implement the actual constraint. The constraint is a rationale which describes the constraint
and a condition which expresses if a class c has the Figure class as its superclass. This
implies that c implements a method draw which overrides the method with the same name
in the Figure class.

MJ

1 sm lockunlock {
2 state decl anyobject v;
3

4 start:
5 { v."lock"(...) } ==> v.locked;
6

7 v.locked:
8 { v."unlock"(...) } ==> v.stop
9 | \$end_of_path\$ ==> {

10 /* error */ };
11 }

Figure 2.8: Example of a MJ checker for locking/unlocking

MJ [BE03] is an innovative meta-compilation approach for implementing bug-checkers
in Java. The result of an MJ check is a compiler extension which can be applied to user code
in order to flag violations of certain rules. MJ offers support for checking regularities based
on a static data-flow analysis. A check in MJ is written down as a state machine. If this state
machine reaches an inconsistency, this inconsistency is flagged.

Figure 2.8 shows an example of a check in MJ, adopted from [BE03]. This check verifies
whether within a software system, a call to a lock method is always paired with a call to
unlock. The state machine lockunlock found in Figure 2.8 consists of two states: start and
v.locked. Line 2 declares a state variable v of type anyobject. The state machine starts out
in the start state. If in a procedure a call of a message lock occurs, then v.locked becomes
the current state. If in this state, an unlock message occurs, the state machine stops and the
regularity is not violated (line 8). If however the data-flow exits the current procedure before
unlock was sent, an error is raised (line 9).

While MJ is able to express a variety of regularities which depend on data-flow, it does
not provide support for other kinds of regularities like naming conventions, inheritance regu-
larities, and so on.

Summary

The sections above presented an overview of a number of examples of meta-programming ap-
proaches. The greatest common denominator of these approaches is that they offer language
facilities that allow exploring and reasoning about the source-code of a system. Depending on
the expressiveness of the provided language, and the richness of the underlying representation
of the software over which the language reasons, these approaches can be used to document
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a wide variety of structural (and sometimes even more dynamic) regularities and verify con-
formance of these regularities with the source code. Such regularities are documented by
creating a meta-program that analyzes the source code of a system, and retrieves the set of
source-code artifacts that violate that particular regularity.

While these meta-languages provide an excellent technical platform on which one can
graft an approach for documenting and verifying structural source-code regularities, such
languages by themselves do not enable the documentation of the regularities, nor do they
aid in incorporating these documented regularities in the development process. Although the
different structural source-code regularities can be verified by means of a meta-program, such
a meta-program does not provide structured and explicit documentation for this regularity.

In Section 2.1.5 we also specified the requirement that an approach for aiding the con-
sistent use of structural source-code regularities during the development process must sup-
port the co-design and co-evolution of the documentation and the implementation in order
not to deal only with changes in the implementation, but also with changes in the regulari-
ties. While, with the exception of law-governed architecture that supports co-evolution, none
of these meta-programming approaches we discussed in the above sections directly support
such a methodology, this does not mean that they fundamentally inhibit the co-design and
co-evolution of the documented regularities and the implementation of a system. As we have
discussed above, these meta-languages offer a developer a means to implement checkers for
structural source-code regularities. While some of these checkers enforce the documented
regularities (e.g. IRC, Attribute Extension), it is not unthinkable to incorporate these lan-
guages in an approach for supporting structural source-code regularities as facilities used to
reason about source code.

2.3.3 Architectural conformance checkers

In this section we discuss a number of approaches which check conformance of a specification
of the architecture of a system with the underlying implementation. While the domain of
these approaches is broader than verifying structural source-code regularities, a number of
such regularities typically occur at an architectural level. As such, we include these kinds of
approaches in our discussion.

Reflexion Models

Murphy et al. present Reflexion Models [MNS95] as an approach to compare a high-level
model of a software system with the actual implementation. A developer using reflexion
models starts out by creating a high-level model of interest of a system. This model consists
of the different modules of which the system is composed and the dependencies (i.e. the
calling relations that should occur) between these modules. At the same time, a source-code
model is extracted from the system. To this end, the developer needs to declare extensionally
how the modules from the high-level model map onto sets of entities from the source-code of
the system. Based on this high-level model and the source model, the approach then calculates
a reflexion model that highlights the discrepancies between the high-level, conceptual model
and the source code.
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This technique provides facilities for verifying one particular kind of architectural source-
code regularity. More specificly, it allows for the verification of regularities that express how
certain modules should interact. This is achieved by comparing a high-level description of
the different modules in the system and their interactions with the actual implementation of
the system.

Tool support for design patterns

Florijn et al. present an approach and corresponding tool [FMv97] for supporting design
patterns [GHJV95] in object-oriented languages. While their approach focusses on providing
tool support for documenting, composing and generating instances of design patterns, it also
makes it possible to express the relationships between the different roles of a design pattern.
Moreover, the conformance of the implementation of a pattern to the prototype of the pattern
can be verified. When inconsistencies are encountered, their approach even provides support
for automatically resolving these inconsistencies.

Florijn’s approach is based on the notion of fragments: a representation of a design el-
ement together with a number of roles which are associated with a fragment. Instances of
a pattern are described by means of a fragment graph which relates the different roles of
a design pattern to concrete classes, methods, and so on in the implementation. Moreover,
the graph also contains information about how the different source-code entities are related
(hierarchical information, usage relations, and so on). Both the prototypical structure and
the common parts of the behavior of a design pattern are represented by a fragment graph.
A particular instance of a design pattern contains a parent role which associates it with the
prototype of the pattern. To detect inconsistencies in the implementation of a design pattern,
constraints are imposed on the fragment graph which express how the different roles of the
pattern are related and should interact.

Ptidej

Guéhéneuc et al. propose Ptidej (Pattern Trace Identification, Detection and Enhancement in
Java) [Gu2, GAA01]. This approach aims at supporting the correct use of design patterns in
a system. To this end, Ptidej allows for the identification of design patterns and the detection
and resolution of inconsistencies between the patterns and the implementation.

Ptidej encompasses a number of components:

• Meta-model: a fully reified meta-model is used to formalize the actual design patterns
and the relations which exist between the components of the design patterns. The same
meta-model is used to describe the concrete architecture of the system. Ptidej provides
support for visualizing these meta-models, thus making it possible for a developer to
extract the design of a system;

• Caffeine: Caffeine [GDN02] is a dynamic analysis tool for Java which can be used to
augment the static information in the meta-model with more detailed information about
the actual interactions between the different entities in the system;
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• Explanation-based constraint solver: In order to detect instances of a design pattern
and infractions against the correct implementation of that pattern, a description of the
various components of a design pattern and the interactions between these components
is transformed into a constraint satisfaction problem.

By solving this constraint satisfaction problem with respect to the actual architecture
of the system, instances of a design pattern can be detected. Moreover, the constraint
solver reports on any constraints which need to be relaxed in order to find a solution to
the constraint satisfaction problem. These relaxed constraints can be an indication of
an inconsistency between a design pattern and an implementation of that pattern;

• Program transformations: For each of the constraints in the constraint satisfaction
problem, a transformation rule is associated which can be used to automatically rectify
the inconsistency in the implementation with respect to a particular design pattern.

In Ptidej, the (abstract) design pattern is encoded in the meta-model. This representation
of the pattern is then used to detect instances of the design pattern in the implementation
and possible defects in the pattern’s implementation. As such, the actual design pattern is
documented explicitly, but the instances of the pattern are documented implicitly.

Two-tier programming

Eden et al. propose two-tier programming (TTP) [EKF03], a conceptual framework for pre-
venting architectural drift and architectural erosion. Their solution is based on providing, on
top of the implementation of a system, a causally connected second level which represents
the architecture of a system. Using TTP a system consists of:

• first-order tier: The actual implementation of the system;

• second-order tier: A high-level representation of architectural concepts and depen-
dencies;

• association mapping: Linking the high-level concepts in the second-order tier to enti-
ties in the first-order tier.

In [EKF03], a concrete instantiation is shown of a two-tier program, in which an implementa-
tion of the template method design pattern [GHJV95] in C++ is considered the first-order tier.
For the second-order tier, a formal specification of the template method pattern is provided in
LePUS [EH99, Ede02], a modeling language for object-oriented architectures. Moreover, a
mapping is specified which associates entities from the C++ program to the different roles of
the design pattern.

TTP prevents architectural drift by not allowing a developer to simultaneously changing
both the first-order as well as the second-order tier. This way, support is offered for co-
evolving the specification of the architecture in the second-order tier with the implementation
in the first-order tier. After changes in one tier are made, it is checked whether the two tiers
remain consistent. If not, the developer can synchronize both tiers.
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Virtual Software Classifications

In Section 2.2.1 we already discussed the technique of virtual software classifications and in
particular we took a look at the classification mechanism underlying this technique. Mens
et al. [MWD99, Men00] describe how virtual software classifications can be used to specify
the architecture of a software system at a high level and how this specification can be used
to prevent the architecture from drifting from the implementation. They apply the Turing-
complete logic programming language SOUL in order to describe the components in the
architecture and their inter-relations. Each component in the architecture aligns to a virtual
classification, which is defined by a SOUL query. Predicates are used to express relations
between two classifications, i.e. architectural components. Since the architecture is expressed
in terms of the implementation, it is possible to verify conformance between the architecture
and the source code, thus aiding in co-evolving both artifacts.

Summary

The architectural conformance checkers we discussed above share as a commonality that they
all document a part of the structure of a system at a higher level of abstraction. Whether they
provide a description of the different modules in the system and their interactions, or of the
different design patterns that are used in a system, the structural source-code regularities that
can be codified using these techniques all manifest themselves in the source code at the design
or architectural level. This allows these techniques to provide specialized support for some
particular kind of regularity. For instance, techniques such as Ptidej and the work of Florijn
are not only able to detect infringements against the regularities underlying a design pattern,
but also provide automated support to resolve such infringements.

These architectural conformance checkers, and especially two-tier programming and vir-
tual software classification, propose a methodology in which co-evolution of the documenta-
tion of the regularities and the implementation is supported. While these approaches only fo-
cus on supporting a specialized kind of structural source-code regularities, they offer support
for situations in which upon evolution not only the implementation but also the regularities
need to be adapted.

2.4 Conclusion

In this chapter we introduced the common terminology concerning structural source-code reg-
ularities which we will use throughout this dissertation. We discussed some of the properties
of regularities and gave an overview of software classification mechanisms. Furthermore, we
provided a survey of the different kinds of approaches that support verifying the validity of
structural source-code regularities with respect to the source code of a system. Although a
fairly large body of research exists, and we by no means claim to provide a complete overview
of this work, we can distinguish between three kinds of approaches:

• Code checkers: these tools provide a reusable set of generally applicable constraints
which can be used to detect common errors, bad style, etc, in the source code of a
system;
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• Meta-programming approaches: these approaches provide a language which reasons
about a program and allows for the specification of verifiable constraints over this pro-
gram;

• Architectural conformance checkers: this category encompasses a number of ap-
proaches which verify the validity of a high-level description of a program with the
implementation.

In the next two chapters we propose a novel technique that supports the documentation
and verification of structural source-code regularities and integrates the regularities into the
development process. While in Chapter 3 we approach our model of intensional views from
a conceptual angle, Chapter 4 introduces IntensiVE, our tool suite that provides a concrete
instantiation of the model of intensional views. Our approach both complements and advances
the state of the art by:

• Offering a generic approach for documenting regularities: The approach we will
introduce in the next chapter does not focus on supporting a specific kind of regularity
but rather aims at providing a general platform for documenting structural source-code
regularities. Consequently, our approach supports the documentation of naming con-
ventions, stylistic constraints, design requirements, language idioms and so on.

While such an approach comes at the cost that it does not provide the specialized sup-
port some of the existing work offers, such as e.g. the automatic resolution of conflicts
in the implementation of design patterns or the optimized analysis performed by code
checkers, our approach however does offer the advantage that a single medium and tool
suite can be used to document and verify a multitude of different kinds of regularities;

• Providing a structured means for documenting regularities: Our approach offers a
structured means for creating verifiable documentation of structural source-code regu-
larities. In our methodology, we put forward a number of guidelines that describe how
the different concepts in our formalism can be used to document structural source-code
regularities. Moreover, the documentation created using our approach results in a first-
class representation of the documented regularities as well as the source-code entities
to which the regularities are applicable, thus making them explicit to the developer;

• Actively supporting co-design and co-evolution: Our approach and methodology
have been tailored to actively support the co-design and co-evolution of the structural
source-code regularities and the implementation of a system. Both our formalism as
well as our methodology have been tailored to support this integration of regularities
into the development process. Consequently, our approach supports simultaneous de-
velopment and evolution of documented regularities and source code while maintaining
the causal connection between both.
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Chapter 3

Intensional Views Model

In this chapter we introduce the model of Intensional Views and Intensional Constraints. We
take a look at the model from a conceptual perspective and provide definitions for the concepts
in our model using a formalism inspired by relational tuple calculus [Cod70]. For an actual
implementation of our model, we defer to Chapter 4, where we describe IntensiVE, the tool
suite that supports the model of intensional views and constraints.

The motivation behind approaching this matter from a more theoretical viewpoint is two-
fold. First off, expressing the concepts behind intensional views and intensional constraints
using a formalism allows us to introduce the model independently from the underlying soft-
ware model over which it reasons, the implementation language of the tool suite and the
query language which lies at the heart of our approach. As such, we can abstract away from
implementation details and technicalities and focus on the conceptual framework our model
offers. Second, the formal specification of the model enables us unambiguously to describe
the concepts underlying intensional views. Moreover, this specification highlights a number
of requirements which concrete implementations of the model must adhere to. These require-
ments lie at the basis of some of the design decisions we will discuss in chapter 4.

3.1 Concepts of Intensional Views

Before we give a formal definition of our model of intensional views, we introduce the impor-
tant concepts of our model by means of an example. This example will be used as a running
example throughout this chapter.

Figure 3.1 shows the UML diagram of the implementation of a small banking system.
This system consists of two class hierarchies: Account and Card. An Account has two
fields named owner and balance together with accessor methods for retrieving the con-
tents of a field (getOwner(), getBalance()), mutator methods for altering the contents
of a field (setOwner(..), setBalance(..)), and a method for transferring money
from one account to another. In our system, there are two types of concrete accounts namely
CheckingAccount and SavingsAccount. We have two kinds of cards in our example:
BankCard and CreditCard, which are associated with a CheckingAccount. Similar
to the implementation of accounts, for each of the fields of our classes there exists an ac-

41
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getOwner()
setOwner(..)
getBalance()
setBalance(..)
transferAmountTo()
makePersistent()

owner
balance

Account

calculateInterest()
gettInterestRate()
setInterestRate(..)
makePersistent()

interestRate
SavingsAccount

getCards()
setCards(..)
makePersistent()

cards
CheckingAccount

public Int getBalance()
{
    return balance;
}

getAccount()
setAccount(..)
makePersistent()

account
Card

payAmount()
BankCard

getLimit()
setLimit(..)
chargeAmount(..)

limit
CreditCard

public void setBalance(int a)
{
    balance := a;
    makePersistent();
}

Figure 3.1: Running example: banking system

cessor and a mutator method. What’s more, all classes in our system understand a message
makePersistent() which writes the state of an object to the database.

The implementation of an accessor and a mutator method in a Java-like syntax is shown
in Figure 3.1. These methods follow a number of conventions. The accessor method
getBalance() follows the naming convention that all accessor methods’ names start with
the prefix get-. Moreover, each accessor methods consists of a single statement which re-
turns the value of the field. For mutator methods (such as setBalance(..)), a similar
naming convention is used. Such methods start with a prefix set-. Since we want to make
all changes to the state of objects persistent, each mutator method must also include a call to
the makePersistent() method.

Our model of intensional views contains two kinds of concepts:

• Intensional Views: intensional views are sets of source code entities (classes, methods,
fields, . . . ) which conceptually belong together. Rather than specifying them by explic-
itly enumerating the entities belonging to the view, the view is defined by means of an
intension, an executable query which, upon evaluation, results in the entities belonging
to the view;

• Constraints: in order to document the structural source-code regularities governing
source code, our model provides constructs for defining different kinds of constraints
(unary constraints, binary relations, n-ary relations) which can be imposed on the in-
tensional views that are defined over the source code of a system.

We illustrate these concepts by declaring a number of intensional views and constraints on
our running example (Figure 3.2) and show how these intensional views map to the software
entities from the banking system (Figure 3.3).
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Accounts

Cards

Accessors

Mutators

Persistence

invokes

follow idiom

follow idiom

all accesses to fields via

naming convention

naming convention

Figure 3.2: Example intensional views and constraints on banking system.

getLimit()
setLimit(..)
chargeAmount(..)

limit
CreditCard

setLimit(..)

getCards()
setCards(..)
makePersistent()

cards
CheckingAccount

setCards(..)calculateInterest()
gettInterestRate()
setInterestRate(..)
makePersistent()

interestRate
SavingsAccount

setInterestRate(..)

getOwner()
setOwner(..)
getBalance()
setBalance(..)
transferAmountTo()
makePersistent()

owner
balance

Account

getAccount()
setAccount(..)
makePersistent()

account
Card

payAmount()
BankCard

getOwner()

getBalance()

getAccount()

getInterestRate()
getCards()

getLimit()

setOwner(..)

setBalance(..)

setAccount(..)

makePersistent()

makePersistent()
makePersistent()

makePersistent()

Figure 3.3: Mapping of the intensional views and constraints onto the running example. The
colors match those of the intensional views shown in Figure 3.2.
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We define five intensional views on our banking system:

• Accounts: this intensional view groups all subclasses of Account;

• Cards: contains all subclasses of Card;

• Accessors: this intensional view captures all accessor methods by e.g. grouping all
methods starting with “get-”;

• Mutators: all methods which alter the value of a field, i.e. all methods starting with
the prefix “set-”;

• Persistence: all methods which save the state of an object to the database.

Note that these intensional views align with domain concerns of the system (the Accounts
and Card views) as well as with more implementation-oriented concerns such as accessors,
mutators and persistence. The example also contains a number of structural source-code
regularities which we express by means of constraints over the intensional views:

• In addition to the convention that accessor and mutator methods respectively start with
the prefix “get-” or “set-”, these methods are also characterized by an implementation
idiom. Accessor methods consist of a single statement which returns the value of the
field; mutator methods must contain an assignment to a field;

• Moreover, accessor and mutator methods also have to respect a naming convention
which states that the name of the field they are accessing/mutating is part of the method
name. This regularity and the regularity above are documented using unary constraints.
Such constraints impose a condition which is applicable to the entities belonging to a
single intensional view;

• In order for the system to be in a consistent state, all changes to the state must be
followed by a call to the persistence mechanism which registers the changes in the
database. To express such a design requirement, our model contains the notion of
binary relations. For instance, in the example we have a binary relation which expresses
that all entities belonging to the Mutators intensional view must contain a call to an
entity in the Persistence view.

3.2 Notations and conventions

We start the formal specification of the model of intensional views by presenting the notations
and conventions which we will be using throughout this chapter.

3.2.1 Representation of concepts

The concepts we introduce in this chapter are represented by a tuple grouping the different
components of the concepts, together with a number of domain constraints, well-formedness
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Concept: Function fun
Components: Domain constraints:

fun = (f, V ar, body) f ∈ Identifier

V ar ⊆ V ariables

body ∈ MathExpr

Well-formedness constraints: Shortcuts for selector functions:

variables(body) ⊆ V ar funf = f

funvar = V ar

funbody = body

Figure 3.4: Example of our representation of concepts, applied to mathematical functions

criteria and auxiliary functions. To illustrate our notation, consider the concept of a ‘math-
ematical function’ (e.g. f(x, y) = x2 + y). Such a function consists of three components
namely the function symbol f , a set of variables {x, y}, and the function body x2 + y. Fig-
ure 3.4 shows how this concept of a mathematical function is expressed using our notation. It
consists of five parts:

• Concept: The name of the concept we are defining (in the example a Function fun);

• Components: A tuple containing the components which the concept consists of. In our
example we have a tuple named fun containing a function symbol f , a set of variables
V ar and a function body body;

• Domain constraints: Constraints which indicate which domain the components of the
concept belong to. In our example we require f to be an identifier, V ar a subset of the
domain of all variables and body an element of the set of mathematical expressions;

• Well-formedness constraints: Additional constraints an instance of the concept needs
to adhere to in order to be a valid instance. For instance, for a function to be valid we
require that all variables in the function body are part of V ar;

• Shortcuts for selector functions: A number of auxiliary functions which take an in-
stance of the concept as input and return one of the components. E.g. the function
funbody returns the function body component of a function fun.

3.2.2 Representation of a population using tuples

The population of an intensional view – i.e. the entities which belong to a view – are repre-
sented by means of n-tuples. Each n-tuple consists of n artifacts which belong together and
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{(class: Account, method: getOwner, field: owner),
(class: Account, method: getBalance, field: balance),
(class: SavingsAccount, method: getInterestRate, field: interestRate),
(class: CheckingAccount, method: getCards, field: cards),
(class: Card, method: getAccount, field: account),
(class: CreditCard, method: getlimit, field: limit)}

Figure 3.5: The set of tuples belonging to the accessor methods view

describe an element of a view. For instance, a number of examples of 2-tuples are:

(“Harry”, 2500)
(“Frank”, 1900)
(“Sally”, 2300)

These tuples represent for example an association of the name of a person with the salary of
that person. In classic set-theory, the order in which the artifacts appear in a tuple is impor-
tant. For instance, the tuple (“Harry”, 250) is different from the tuple (250, “Harry”). In
order to improve readability of the tuples, we opt to use “named” n-tuples which contain tags
mapping a certain attribute of a tuple to a value, similar to the way the population of databases
are often described. In this notation, we can express our example 2-tuples as follows:

(name:“Harry”, salary:2500)
(name:“Frank”, salary:1900)
(name:“Sally”, salary:2300)

Using this notation, the order of the artifacts in the tuples no longer important. For instance,
the first tuple (name:“Harry”, salary:2500) and the tuple (salary:2500, name:“Harry”)
are considered to be identical.

3.3 Intensional Views

In this section we introduce the model of intensional views. We start the section by introduc-
ing two concepts which lie at the heart of intensional views, namely the notions of intension
and extension of a view.

3.3.1 The extension of an intensional view

At the heart of our model lies the concept of an intensional view. In a spirit similar to the
software classification mechanisms which we discussed in Chapter 2, such as for instance
the Concern Manipulation Environment (CME) by Harrison et al. [HOST05a] or the work
of Koen De Hondt [DH98], intensional views are a classification mechanism which group
related software entities such classes, methods, variables, packages, etc.

The model of intensional views is independent of the underlying (representation of the)
software entities that are classified by intensional views. As such, an intensional view can
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group any number of classes, variables, methods, signatures, sequence diagrams, objects,
and so on which are conceptually related. These software entities are represented by an n-
tuple. The set of all n-tuples that belong to an intensional view is called the extension of that
intensional view.

For example, in our running example we encountered an intensional view named Ac-
cessors which groups a representation of all accessor methods in the banking system. Each
accessor method is represented by a 3-tuple that combines the class, the method and the name
of the field that the method is accessing. Applied to the running example, the set of all tuples
for the accessor methods view is shown in Figure 3.5.

Each 3-tuple consists of a mapping from an attribute name (‘class’, ‘method’ or ‘field’)
to a software entity. For instance, the first tuple we see in Figure 3.5 associates the attribute
‘class’ to the Account class 1, the attribute ‘method’ to a method named getOwner and
the property ‘field’ to the value owner.

Definition 1. More formally, we say that if we denote the (finite) universe of all software
entities in a particular software system as U ; the set of all attribute names as A, we can then
define an n-tuple t with attributes A over the universe U as the following function:

tA : A 7→ U

This function tA is a partial function that maps a particular attribute to a value of the
universe U if this attribute is part of A. For extracting the value for a certain attribute a from
a tuple tA, we utilize the following notation:t.attribute.

For example, suppose we have the tuple t1 = (name:“Harry”, salary:2500), then
t1.name = “Harry” and t1.salary = 2500. Moreover, we define the arity of an n-tuple t
as arity(t) = n.

We thus require from each n-tuple that it associates with every attribute a that is part of
the attributes A of the tuple a value from the universe U ; for all other attributes, such an
association does not exist.

Definition 2. We denote the set of all n-tuples with attributes A as TA.

Definition 3. We define the extension Ext of an intensional view with respect to a set of
attributes A as a subset of all possible tuples with attributes A.

ExtA ⊆ 2TA

3.3.2 The intension an intensional view

Now that we have defined what the extension of an intensional view – the set of tuples be-
longing to that view– looks like, we are going to take a look at how to specify such a set in our
model. Mathematically, there are two ways of specifying a set: extensionally or intensionally.

1Depending on the underlying representation of the software entities, the association of an attribute may be
the actual software entity or an identifier representing that entity
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A set is defined extensionally by explicitly enumerating all elements in the set. For example,
we can define the set E of all even numbers extensionally as follows:

E = {0, 2, 4, 6, 8, . . .}

However, the same set can also be specified intensionally by means of a description:

E = {2x | x ∈ N}

In our model we opted for the latter approach. The set of tuples belonging to an intensional
view is specified by means of an intension: an executable query which, upon evaluation,
yields the tuples belonging to that view, i.e. the extension of the intensional view. Since the
model of intensional views is independent of the underlying query language used to define
the intension, we will not go into more detail about the query language here. In Chapter 4
we take a look at a number of query languages which our implementation of the intensional
views model supports. However, our model does impose a number of requirements on the
query language used to specify the intension.

Definition 4. A query qA can be considered to be a predicate that, from the set of all possible
tuples with attributes A, selects a subset for which a certain condition holds. We denote the
set of all queries that verify a condition for a tuple with attributes A as QA. As such, we
specify:

QA = TA → Boolean

In what follows, we assume the existence of a function evalA that given as input a query
qA will result in all the tuples from TA for which the query holds. The goal of this function
is to provide a means to evaluate the intension of an intensional view and obtaining the set of
n-tuples that are captured by this intension. While the actual semantics of this function evalA
depend on the underlying query language used to specify the intension qA, we can intuitively
define this function as:

Definition 5. We define this function evalA as:

evalA : QA → 2TA : q → {t ∈ TA|q(t)}

When evaluating this function for a particular intension q, it will restrict the set of all
possible tuples with attributes A to those which the intension q holds for. For a particular
instantiation of the model of intensional views using a concrete query language, an evalA
function must be provided that reflects the semantics of this query language. We repeat that
we deliberately do not define the actual semantics of this evalA function, because we are only
formalizing the model of intensional views, and this model is independent of the actual query
language being used (e.g. we can use a query language based on predicate logic, on regular
expressions, etc.). However we impose the requirement on such query languages namely that
the evaluation of queries in the chosen query language satisfies the definition given above.
For that reason, in the examples that follow, we express the queries in natural language. In
Chapter 4 we give examples of queries written in a Prolog-like query language.

To illustrate such an intension of an intensional view, consider the following example:
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Concept: Intensional View V
Components: Domain constraints:

V = (Attr, query, Parents, Incl, Excl) Attr ⊆ A
query ∈ QAttr

Parents ⊆ V
Incl, Excl ⊆ TAttr

Well-formedness constraints: Shortcuts for selector functions:

V /∈ Parents

Incl ∩ eval(V ) = ∅
Excl ⊆ eval(V )

VAttr = Attr

Vquery = query

VParents = Parents

VIncl = Incl

VExcl = Excl

Figure 3.6: Definition of intensional view V

Example 1.

A = {class,method,field}
q = “the method starts with the prefix get-, is

implemented in a specific class, and returns the value of a specific field′′

This example shows a possible intension (in natural language) which can be used to define
the set of tuples belonging to the Accessors intensional view. Suppose we have an evaluation
function evalA for such a natural language query, then the result of applying that evalA func-
tion to the above intension will result in the set of tuples (this set is shown in Figure 3.5)
which associates each of the attributes (‘class’, ‘method’ and ‘field’) to a corresponding soft-
ware entity.

3.3.3 Definition of an intensional view

Now that we have introduced the notions of extension and intension of an intensional view,
we can give a definition of the concept intensional view. Note that this definition focusses on
defining the form of an intensional view. In a later section we will discuss the semantics of
such a view. We present the concept of an intensional view in a top-down manner: we first
introduce the concept as a whole and will then go into detail about the parts of the definition
and the rationale behind these parts.
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With V the set of all intensional views, the definition of an intensional view V can be
found in Figure 3.6. In our definition, an intensional view V consists of five components:

• Attr: a set of attributes;

• query: a query, i.e. an intension, that is part of QAttr;

• Parents: a set of parent views;

• Incl: a set of tuples which are to be explicitly included in the extension of an inten-
sional view;

• Excl: a set of tuples which are to be explicitly excluded from the extension of an
intensional view.

In the previous sections we already discussed the relation between a set of attributes Attr
and an n-tuple and how a query query can be used as an intensional way to define the set of
tuples belonging to a view V . In what follows, we highlight the three other components of an
intensional view, namely the set of parent views Parents and the sets Incl and Excl which
serve to explicitly document deviations from the intension of an intensional view.

Parent views of an intensional view

The model of intensional views provides support for declaring a set of parent views Parents
for a given view V . The rationale behind appointing a number of parent views to an in-
tensional view is two-fold. First, parent views provide a kind of scoping mechanism for
restricting the number of software entities which an intensional view is applicable to. Second,
the use of parent views makes it possible to make intensional views more reusable: if an in-
tensional view encodes an abstract description of a concern which is applicable to numerous
software systems, this view can be reused in a different context by altering the set of parent
views of the intensional view.

As can be seen in the domain constraints of our definition of an intensional view, we
require this set Parents to be a subset of all intensional views V . According to our well-
formedness constraints, a intensional view cannot be part of its own parent views, as this
would result in a circular definition when defining the semantics of an intensional view later
on.

Explicit deviations from an intension

The Incl and Excl components of an intensional view serve as a means to document explicit
deviations from the intension of a view. Although the majority of software entities belonging
to an intensional view exactly match the intension, the intension of the view is in some cases
either too general or too specific. As a result, the extension of the view does not contain the
expected set of tuples.

• If the intension is too specific, there are certain tuples which should belong to the ex-
tension of the view but which are not calculated by evaluating the intension. These can
be explicitly included in the extension of the view by specifying them in the Incl set;
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• If the intension is too generic, evaluating the intension of the view results in a number of
tuples which should not be part of the extension of the view. A developer can explicitly
exclude them from the extension of an intensional view by specifying such tuples in the
Excl set.

We illustrate these deviations from an intension by the following example. Suppose the class
CreditCard from our example system implements the following two methods:

1 public Integer getTotalThisMonth()
2 {
3 total := ... //calculate the total amount used this month
4 return total;
5 }
6

7 public Int retrieveIDnumber()
8 {
9 return IDnumber;

10 }

The first method, getTotalThisMonth, computes the total amount of purchases already
made with the credit card this month and returns this amount. If we execute the intension
of the Accessors intensional view, a tuple representing this method will be part of the
extension of the view, since the method follows the naming convention that all methods with
as prefix “get-” are an accessor method. However, this method is not an accessor method
since it does not return the value of a field and should thus not be included in the extension of
the Accessors view. To document this exceptional case, a developer can add it explicitly
to the Excl set.

The second method, retrieveIDnumber presents an example of where the intension
of the Accessors view is too specific. This method is conceptually an accessor method,
since it returns the value of the IDnumber field. However, the developer who implemented
this method did not respect the coding convention and used the prefix “retrieve-” instead
of “get-”. As such, it is not captured by the intension of the view and thus not part of the
extension of the view. To explicitly include this deviation in the intensional view, a developer
can add a tuple representing the retrieveIDnumber method to the Incl set.

As specified in the domain constraints of our definition of an intensional view, both the
Incl set as well as the Excl set are a subset of all possible tuples (TAttr). We also impose
a number of additional well-formedness constraints. We require that the entities which are
part of the Incl set, and which are thus included in the extension of a view are not already
calculated by the intension of the view. We enforce this by requiring that the intersection of
Incl with the tuples captured by the intension is empty. The function eval(V ) which we use
to calculate the set of tuples captured by the intension is discussed in the next section. A
similar well-formedness constraint is imposed on the Excl set: tuples belonging to this set
must be part of the set of tuples calculated by the intension.

At first sight, these well-formedness constraints might seem redundant. The extension of
an intensional view is a set of tuples, thus including a specific tuple that already was present
in this set does not alter the elements of the set. Likewise, excluding a tuple that was not
present in the extension to begin with does not pose any problems. However, we include these
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well-formedness constraints since they allow us to identify an interesting evolution conflict.
Suppose we have an intensional view V that is defined on a system. In this intensional view,
the tuple t1 is documented as a belonging to the Incl set. If now upon evolution, the tuple
t1 becomes part of the set of tuples calculated by the query of the intensional view V , it
is interesting to know that changes to the system resulted in that a tuple that used to be a
deviation from the general rule is now captured by that general rule.

Example of an intensional view

We conclude our section describing the definition of an intensional view by means of an
example. We can now give a definition of the Accessors intensional view, as we have
described above, in the notation we introduced in this section.

Example 2.

Accessors = (Attr, query, Parents, Incl, Excl) where

Attr = {‘class’, ‘method’, ‘field’} ,

query = “the method starts with the prefix get-, is

implemented in a specific class, and returns the value of a specific field′′,
Parents = {Accounts},
Incl = {(class:CreditCard, method:retrieveIDnumber, field:IDnumber)},
Excl = {(class:CreditCard, method:getTotalThisMonth, field:total)}

The above notation describes the intensional view Accessors with three attributes namely
‘class’, ‘method’, and ‘field’. The intension query of the intensional view captures the nam-
ing convention that the method name of all accessor methods must start with a prefix “get-”.
Furthermore, we provide a single parent view Accounts for the Accessors view and document
the two deviations to the intension of the view which we already described in the section
above.

3.3.4 Semantics of an intensional view

In the section above we defined the structure of an intensional view. In this section we take a
look at the semantics of such an intensional view. We define the semantics of an intensional
view by means of a function extension(V ), which for a given view V computes the set of
tuples that belong to the extension of this view. This extension function is not limited to
evaluating the intension of an intensional view but also has to take the parent views of an
intensional view and the deviations to the intension into account.

Before we define the extension function, we first introduce a function eval(V ) which
evaluates the intension of an intensional view V in the correct scope (i.e. taking the parent
views of V into account). Notice that this eval function is the one we also used in the well-
formedness constraints of the Incl and Excl sets in Section 3.3.3.

We illustrate the semantics of parent views by means of an example. Consider the Acces-
sors intensional view which we encountered earlier. If there are no parent views specified for
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this view, it is scoped over the entire system. As such, the extension of Accessors is the one
specified in Figure 3.5. If however, we are only interested in grouping the accessor methods
implemented on classes in the Account hierarchy, we select the Accounts intensional view
as the parent view of the Accessors view. Suppose the Accounts view contains the following
2-tuples:

{(class: Account, method: getOwner)
(class: Account, method: getBalance)
(class: Account, method: setOwner)
(class: Account, method: setBalance)
(class: Account, method: transferAmount)
(class: Account, method: makePersistent)
(class: SavingsAccount, method: getInterestRate)
(class: SavingsAccount, method: setInterestRate)
(class: SavingsAccount, method: calculateInterest)
(class: SavingsAccount, method: makePersistent)
(class: CheckingAccount, method: setCards)
(class: CheckingAccount, method: getCards)
(class: CheckingAccount, method: makePersistent) }

These tuples group all pairs of classes and methods which belong to a class in the Account
hierarchy. By considering the Accounts view as the parent view of the Accessors view, we
no longer obtain the set of tuples as shown in Figure 3.5 but rather only select the accessor
methods in the Account hierarchy:

{(class: Account, method: getOwner, field: owner),
(class: Account, method: getBalance, field: balance),
(class: SavingsAccount, method: getInterestRate, field: interestRate),
(class: CheckingAccount, method: getCards, field: cards)}

The tuples in the extensions of the parent views serve as a sort of filter2 for the tuples in
the extension of an intensional view. Much like a select statement in tuple calculus, only
tuples are considered to be part of the extension of a view if there exists a tuple in all of the
parent views such that, for all the attributes the intensional view and its parent views have
in common, the tuples in the parent view and the tuples in the extension of the intensional
view associate the common attributes with identical values. For instance in our example, the
tuples of the Accessors view have two attributes in common with the tuples belonging to the
Accounts view, namely ‘class’ and ‘method’. We thus restrict the tuples belonging to the
Accessors view to those tuples t for which there exists a tuple t′ in the Accounts intensional
view such that t.class = t′.class and t.method = t′.method.

We formalize these semantics by defining the function eval(V ) as:

2Although parent views can intuitively be interpreted as filters on the tuples of an intensional view, this is not
necessarily the way they need to be implemented.
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Definition 6.

eval(V ) =


{t| t ∈ evalVAttr

(Vquery)
∧ ∀ parent ∈ VParents :
(∃ t′ ∈ extension(parent) :

(∀ a ∈ (VAttr ∩ parentAttr) :
t.a = t′.a))}

The result of eval(V ) consists of all tuples t which are obtained by evaluating the inten-
sion Vquery of V , but for which in the extension of each of the parent views VParents there
exists a tuple t′ such that, for all attributes which are shared by the view V and the parent view
parent, the value associated by both the tuple t as well as the tuple t′ is the same. Note that,
if the intensional view V does not have any parent views, the result of eval(V ) will equal the
set of tuples obtained by evaluating the intension Vquery.

Based on the eval(V ) function which returns the set of tuples computed by executing the
intension of a view V with respect to the parent views of that view, we can now provide a
definition for the extension(V ) function.

Definition 7.

extension(V ) = (eval(V ) ∪ VIncl) \ VExcl

The extension(V ) function returns the set of tuples calculated by the eval(V ) function
while including all the tuples belonging to the Incl set of V . Moreover, all tuples belonging
to the Excl set are omitted from the result.

Notice that in the definition of the eval(V ) function, in the second case we use this
extension(V ) function to calculate the set of tuples belonging to the extension of the parent
views of an intensional view V . This extension(V ) function is used rather than recursively
calling the eval(V ) function, since it also takes the Incl and Excl sets of the parent views
into account. The eval(V ) and extension(V ) functions are mutually recursive: in order to
calculate the extension of an intensional view, the eval(V ) function is invoked which on its
turn uses the extension(V ) function to retrieve the set of tuples belonging to the parent views
of the intensional view. This recursive process is repeated until the top-most view in the hier-
archy is reached, in which case there are no parent views that need to be taken into account
and the set of tuples can be calculated by evaluating the intension of this top-most view.

If we apply the extension(V ) function to the Accessors intensional view which we de-
fined in the previous section, we get as a result:

extension(Accessors)=
{(class: Account, method: getOwner, field: owner),
(class: Account, method: getBalance, field: balance),
(class: SavingsAccount, method: getInterestRate, field: interestRate),
(class: CheckingAccount, method: getCards, field: cards)}
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Concept: Unary constraint U
Components: Domain constraints:

U = (view, quant, pred, Incl, Excl) view ∈ V
quant ∈ QuantA

pred ∈ PredA

Incl, Excl ⊆ TA

where A = viewAttr

Well-formedness constraints: Shortcuts for selector functions:

Incl, Excl ⊆ extension(view)
@t ∈ Incl : pred(t)
∀t ∈ Excl : pred(t)

Uview = view

Uquant = quant

Upred = pred

UIncl = Incl

UExcl = Excl

Figure 3.7: Definition of a unary constraint U

3.4 Constraints on intensional views

As we have discussed in the beginning of this chapter, our model consists of two types of
entities: intensional views and constraints over these intensional views. In this section, we
introduce the different kinds of constraints which can be imposed on an intensional view.
More concretely, we present unary constraints, binary relations and n-ary relations.

3.4.1 Unary intensional constraints

Definition of a unary constraint

A unary intensional constraint is a constraint imposed on a single intensional view. In our
running example we already encountered a number of examples of regularities which can be
expressed using a unary intensional constraint. For instance, we mentioned the regularity that
all accessor methods must contain the name of the field they are accessing. As an illustration
of this regularity, we require for instance that the accessor method for the cards variable
contains the string “cards” in its name.
More formally, this constraint expresses that:

∀ t ∈ extension(Accessors) : methodNameContains(t.method, t.field)

where methodNameContains is a predicate verifying whether a method name contains a
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specific string. The definition of a unary constraint U can be found in Figure 3.7. We define
the set of all unary constraints as C1. A unary constraint U consists of five components:

• view: the intensional view which the unary constraint applies to;

• quant: a quantifier (e.g. ∀, ∃, @) which selects the extent of the tuples in the view v
which the condition needs to apply to;

• pred: a unary predicate expressing a condition over a tuple;

• Incl: a set of tuples for which we explicitly assert that the condition holds;

• Excl: a set of tuples for which we explicitly assert that the condition does not hold.

Quantifier quant The quantifier quant quantifies the range of tuples in the extension of the
view which the condition must hold for. For instance, we can require that the constraint holds
for all tuples in the intensional view, for none, for exactly one, and so on. Mathematically, we
present a quantifier quant as a function taking as input a set of tuples T and a unary predicate
pred that expresses a condition over the tuples. The quantifier returns a boolean depending
on whether or not the condition holds for the quantified set of tuples.

Definition 8. We thus get:

QuantA = 2TA × PredA → Boolean

where A ⊆ A

Notice that both the set of tuples serving as input to the quantifier and the predicate of the
quantifier are restricted to the same set of attributes A.

Although certainly not exhaustive, the list of quantifiers we support in our model and the
condition which they must fulfill in order to yield true is:

Definition 9 (Predefined quantifiers).

∀(T, p) ⇐⇒ ∀ t ∈ T : p(t)
∃(T, p) ⇐⇒ ∃ t ∈ T : p(t)
∃!(T, p) ⇐⇒ ∃! t ∈ T : p(t)
@(T, p) ⇐⇒ @ t ∈ T : p(t)

few(T, p) ⇐⇒ |{t|t ∈ T ∧ p(t)}| ≤ 0.25|T |
some(T, p) ⇐⇒ 0.25|T | ≤ |{t|t ∈ T ∧ p(t)}| ≤ 0.50|T |
many(T, p) ⇐⇒ 0.50|T | ≤ |{t|t ∈ T ∧ p(t)}| ≤ 0.75|T |
most(T, p) ⇐⇒ |{t|t ∈ T ∧ p(t)}| ≥ 0.75|T |

The first four quantifiers are a literal translation of the quantifiers used in classic tuple
calculus and their implementation in our model as a function serves to translate their seman-
tics to the model of intensional constraints. The last four quantifiers provide a more “fuzzy”
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means to quantify over the tuples of a view for which a constraint must hold. The few quan-
tifier holds if the predicate p is true for at most 25% of the set of tuples T ; some holds if the
predicate is true for between 25% and 50% of the tuples; many holds if the predicate holds
for between 50% and 75% of the tuples; most holds if the constraint holds for at least 75%
of the tuples.

Strictly speaking, we would have to define all the above quantifiers dependent on the set of
attributes A. For example, the forall quantifier applicable to a set of tuples with as attributes
A would be denoted ∀A. Since the definition of the quantifiers however remains identical,
independent of the set of attributes A, we omit this prefix A.

Unary predicate pred The unary predicate pred expresses the condition which must be
satisfied by all tuples with as attributes A, quantified by quantifier quant. Similar to our
definition of intensional views, we do not focus here any concrete language in which the
predicate is expressed. Instead, we explain the requirements such a predicate pred must
satisfy. We require a predicate pred to be a function taking one tuple with attributes A as an
argument and returning a boolean, depending on whether the predicate holds for that tuple:

Definition 10. We denote the set of all unary predicates over tuples with as attributes A as
PredA:

Pred = TA → Boolean

In Chapter 4 we take a look at actual languages for expressing the predicates used when
imposing constraints over intensional views.

Exceptions on unary constraints Incl and Excl Similarly to the concept of deviations
we introduced in intensional views, it is possible to explicitly assert exceptions on unary
constraints. To this end, our model of unary constraints contains the Incl and Excl sets.
The Incl set contains a number of tuples the constraints explicitly holds for. Excl is used to
specify a set of tuples which the constraint does not hold for.

The Incl and Excl sets impose a number of well-formedness constraints. Both sets must
contain tuples which are part of the extension of the intensional view view. Moreover, the
predicate pred must not hold for any tuple t in Incl. If this predicate pred would already
hold for the tuple t, then it would be redundant to assert that the constraint holds explicitly
for t. Similarly, the predicate pred must hold for all tuples which belong to Excl. Were this
not the case, it would not make sense to explicitly assert that the relation does not hold for t.

Example Using the above definition of a unary intensional constraint, we can now revisit
our example constraint U , expressing that the names of all accessor methods must contain the
name of the field they are accessing:
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Example 3.

U = (view, quant, pred, Incl, Excl) where

view = Accessors,

quant = ∀,
pred : t → methodNameContains(t.method, t.field),

Incl, Excl = ∅

Semantics of a unary intensional constraint

The semantics we associate with the definition of a unary constraint U consists of a number
of functions that verify conformance of the constraint with the tuples which belong to the
extension of the intensional view which the constraint is imposed over. More precisely, we
specify two functions:

• consistent(U): this predicate verifies whether or not the constraint holds for all of the
tuples of the extension of the intensional view, taking the quantifier and the deviations
to the constraint into account;

• discrepancies(U): returns the set of tuples for which the constraint does not hold.

The consistent(U) predicate checks whether the relation is upheld. We define this pred-
icate as:

Definition 11. For a unary constraint U ∈ C1:
Let A = (Uview)Attr

then

consistent(U) ⇐⇒ Uquant(extension(Uview), p)
where p : TA → Boolean : (Upred(t) ∨ t ∈ UIncl) ∧ t /∈ UExcl

This predicate requires a bit of an explanation. The notion of consistency of a unary
constraint is based on the fact that quantifiers are functions that take two arguments, namely
a set of tuples and a constraint. The quantifier returns a boolean depending on whether the
constraint holds for the correct quantity of tuples as specified by the quantifier. We use this
definition of quantifiers in the consistent(U) function by applying the quantifier to the tuples
in the extension of the intensional view which the constraint is imposed on. The condition
p that is verified for the tuples of the extension of the intensional view expresses that for each
tuple t either the predicate Upred of the unary constraint must hold or the tuple t must be
explicitly declared as an exception which the relation holds for (tuple t must thus be part of
UIncl). Moreover, tuple t must not be explicitly excluded from the relation, so it must not be
part of UExcl.

While the consistent(U) function can give us an answer whether the unary constraint
U is violated or not, it does not provide any information concerning the tuples for which the
constraint does not hold. In order to retrieve this set of discrepancies, we specify a function
discrepancies(U) which, given a unary intensional constraint U returns the set of tuples
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extension

constraint

discrepancies

Figure 3.8: Inconsistencies of a unary intensional constraint

which the constraint does not hold for. The intuition behind this function is shown in Fig-
ure 3.8. This figure shows a Venn diagram containing two sets. The first set represents the
tuples belonging to the extension of the view on which the constraint is imposed; the second
set contains the tuples for which the the unary constraint U holds. The intersection of both
sets contains all tuples of the extension for which the constraint is satisfied. However, all
tuples which belong to the extension of the view, but which are not covered by the constraint,
are considered discrepancies.

We define discrepancies(U) as:

Definition 12. For a unary constraint U ∈ C1:

discrepancies(U) =


{t ∈ extension(Uview)|

(Upred(t) ∨ t ∈ UIncl) ∧ t /∈ UExcl} if Uquant = @

{t ∈ extension(Uview)|
(¬(Upred(t)) ∧ t /∈ UIncl) ∨ t ∈ UExcl} otherwise

This function discriminates between two cases. The first case occurs when the quantifier
used in the constraint is @. In such case, the constraint describes a restriction by specifying
a condition which must be false for all of the tuples in the intensional view. Thus, the tuples
which the condition does hold for, are considered to be discrepancies between the constraint
and the intensional view. Otherwise, the discrepancies are congruent with the situation as
depicted in Figure 3.8. In that case, all tuples which are part of the extension of the view, but
which the predicate Upred does not hold for, are considered to be discrepancies between the
constraint and the view. For both cases, when calculating this set of discrepancies we also
have to take the exceptions to the constraint into account.

Note that identifying the violations of the constraint involves the expert knowledge of the
developer. In order to illustrate this, suppose we define a unary constraint with as quantifier
∀. In this case it is clear that all tuples for which the predicate of the constraint does not
hold are to be considered violations. However, if we specify a constraint with as quantifier
most, not necessarily all discrepancies are violations of the constraint. Since it is not possible
to automatically identify the violations of the constraint in this case, the developer needs to
inspect the set of discrepancies.
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Concept: Binary intensional relation B
Components: Domain constraints:

B = (view1, view2,

quant1, quant2,

pred, Incl, Excl)

view1, view2 ∈ V
quant1 ∈ QuantA1 ; quant2 ∈ QuantA2

pred ∈ PredA1×A2

Incl, Excl ∈ (TA1 ∪ { })× (TA2 ∪ { })
where A1 = view1Attr

;A2 = view2Attr

Well-formedness constraints: Shortcuts for selector functions:

Incl, Excl ⊆
(ext(view1) ∪ { })× (ext(view2) ∪ { })

∀ (t1, t2) ∈ Excl : p(t1, t2) if t1, t2 6=
@ (t1, t2) ∈ Incl : p(t1, t2) if t1, t2 6=

Bview1 = view1;Bview2 = view2

Bquant1 = quant1;Bquant2 = quant2

Bpred = pred

BIncl = Incl;BExcl = Excl

Figure 3.9: Definition of intensional binary relations B

3.4.2 Binary intensional relations

Definition of a binary intensional relation

In Section 3.1 we introduced, in addition to the examples of unary constraints, also an example
of a constraint which expresses a binary relation between two intensional views. We described
a constraint between the Mutators and the Persistence views which requires that all mutator
methods contain a call to a persistence method. More formally, this design regularity requires
the following condition R to be true:

R = ∀ t1 ∈ Mutators :
∃ t2 ∈ Persistence :

containsCall(t1, t2)

where containsCall(t1, t2) is a binary predicate which checks whether the value of the
method attribute of a tuple t1 contains a call to the value of the method attribute of tuple
t2.

In order to express regularities like the one above in our model of intensional views, we
introduce binary intensional relations as defined in Figure 3.9. The set of all binary intensional
relations is denoted as C2 Our definition of a binary intensional view B consists of seven
components:
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• view1, view2: the two intensional views between which the relation is expressed;

• quant1, quant2: two quantifiers;

• pred: a binary predicate that takes two tuples as input: one from the domain of
Tview1Attr

and one from the domain of Tview2Attr
. The predicate is thus dependent

on the attributes of both intensional views view1 and view2;

• Incl, Excl: two sets to explicitly document exceptions to the binary relation.

Binary predicate pred Similar to unary constraints, binary intensional relations contain a
predicate which must be satisfied by the set of quantified tuples. For binary relations, this
predicate expresses a relation between two tuples. A binary predicate is a function which
takes two n-tuples as input and results in a boolean value. We thus define the set of binary
predicates Pred as:

Definition 13. Let A1 = view1Attr ; A2 = v2Attr

PredA1×A2 = TA1 × TA2 → Boolean

Exceptions on binary intensional relations Similar to unary constraints, it is possible to
explicitly document pairs of tuples for which the relation holds or not. Since a binary in-
tensional relation defines a constraint between two sets of tuples, the elements belonging to
the Incl and Excl sets must equally be pairs of tuples. Dealing with exceptions on binary
relations however imposes an additional requirement. Often, a developer does not want to
include/exclude a pair of tuples from the binary relation, but rather wants to express that the
relation explicitly holds or fails for a certain tuple belonging to either view1 or view2 of the
relation. To this end, we introduce the notion of a wildcard (denoted by the symbol ) which
allows for documenting these kinds of exceptions. For instance, in our running example,
suppose that the method setInterestRate on SavingsAccount does not make a call
to a persistence method, and would thus fail the binary relation which we mentioned in the
beginning of Section 3.4.2. The developer of the banking system knows that this method is an
exception which does not need to call a persistence method. In order to explicitly document
this, the developer can add the following pair to the Incl set:

((class:SavingsAccount, method:setInterestRate, field:interestRate), )

Notice that the meaning of depends on whether it is used in the Incl or Excl:

• Incl : (t1, ) indicates that for a tuple t1, belonging to the extension of view1, the
binary relation explicitly holds;

• Excl : (t1, ) indicates that, although the relation holds for t1 belonging to view1, all
pairs of tuples with t1 in first position must be excluded from the result of the relation.
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The Incl and Excl of binary intensional relations are also governed by a number of well-
formedness constraints. First of all, both sets must be subsets of the cross-product of the
extensions of the two intensional views over which the binary relation is defined, augmented
with the wildcard . Moreover, for pairs of tuples which are part of the Excl set, with the
exception of those which contain a wildcard, the binary predicate pred must hold; for the
pairs belonging to Incl, with the exception of those containing a wildcard, the predicate pred
should not hold.

Remark that if the tuple ( , ) is specified in the Incl or Excl set, this means that the
binary relation respectively holds or does not hold for all tuples in the cross-product of the
extensions of the two intensional views v1 and v2.

Using the above definitions, we can express the constraint from our running example,
namely that all mutator methods must contain a call to a method that implements persistence.
We implement this constraint using the following binary intensional relation B:

Example 4.

B = (view1, view2, quant1, quant2, pred, Incl, Excl) where

view1 = Mutators,

view2 = Persistence,

quant1 = ∀,
quant2 = ∃,
pred = containsCall with

containsCall : (t1, t2) → t1.method contains call to t2.method

Incl = {((class:SavingsAccount, method:setInterestRate, field:interestRate), )},
Excl = ∅

This example expresses the relation discussed above, including the explicit specification
of the setInterestRate method as an exception to the relation.

Semantics of binary intensional relations

As was the case with unary intensional constraints, the semantics of a binary intensional
relation align with a set of functions which allow for the verification of the validity of the
relation and the identification of the tuples for which the relation does not hold. We thus also
present a predicate consistent(B) which verifies whether or not the relation is satisfied and
a function discrepancies(B) which returns the set of tuples of the intensional views which
the relation is imposed over, for which the relation does not hold.

We start by explaining the consistent(B) function. Recall that we introduced a wildcard
mechanism for documenting explicit exceptions to a binary relation. As such, when verifying
conformance of a binary intensional relation B, we cannot merely take the exceptions into
account by checking whether a certain pair of tuples (t1, t2) is a member of either the Incl or
Excl set. To solve this problem, we introduce a function match. This function takes as input
a pair of tuples (t1, t2) together with a set of pairs of tuples S (these are the elements of Incl
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View1

View2

discrepancies

Figure 3.10: Inconsistencies of a binary intensional relation

or Excl) and checks whether S contains (t1, t2) or if (t1, t2) is matched by a pair of tuples
belonging to S that contain a wildcard.

Definition 14.

match : (TA1 × TA2)× 2(TA1
∪{ })×(TA2

∪{ }) → Boolean :
(t1, t2)× S → (t1, t2) ∈ S ∨ (t1, ) ∈ S ∨ ( , t2) ∈ S ∨ ( , ) ∈ S

match thus checks whether (t1, t2) is part of the set S or whether there exist a tuple in S
containing wildcards such that t1 and/or t2 match a wildcard.

Using the match function we described above, we can define the predicate
consistent(U) as:

Definition 15. For a binary relation B ∈ C2:
Let A1 = (Bview1)Attr;A2 = (Bview2)Attr

consistent(B) ⇐⇒ Bquant1(extension(Bview1),
Bquant2(extension(Bview2), p))

with p : (TA1 × TA2) → Boolean :
(t1, t2) → (Bpred(t1, t2) ∨match((t1, t2), BIncl) ∧ ¬(match((t1, t2)), BExcl))

This predicate uses a similar mechanism as the consistent(U) predicate which we de-
fined to verify conformance of a unary constraint. However, the consistent predicate for bi-
nary relations nests the two quantifiers: the second quantifier is used as the constraint which
the tuples selected by the first quantifier must adhere to. The second quantifier makes use
of the condition p which holds if a pair of tuples (t1, t2) either satisfies the binary predicate
Bpred of the binary relation or is matched by a pair of tuples from the BIncl set. Moreover,
p requires that the pair of tuples (t1, t2) is not matched by any pair belonging to BExcl. We
repeat again that we use the match function in order to deal with exceptions to the binary
intensional relation which make use of the wildcard mechanism.

Similarly to unary constraints, we can also compute the set of pairs of tuples which are the
discrepancies between the the binary intensional relation B and the entities in the intensional
views view1 and view2. An illustration of what we consider to be discrepancies against a
binary relation is shown in Figure 3.10. This figure displays two Venn diagrams each repre-
senting the extension of an intensional view. The arrows between the elements of the Venn
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diagrams represent pairs of tuples which the binary relation holds for. We specify the set of
possible inconsistencies as those tuples belonging to the cross-product of the extensions of
both views for which the relation does not hold.
More formally, we can compute this set of pairs using the discrepancies(B) function:

Definition 16. For a binary relation B ∈ C2:

discrepancies(B) =



{(t1, t2)
∈ (extension(Bview1)× extension(Bview2))|

(Bpred(t1, t2) ∨match((t1, t2), BIncl))
∧ ¬match((t1, t2), BExcl)} if Bquanti = @

{(t1, t2)
∈ (extension(Bview1)× extension(Bview2))|

(¬(Bpred(t1, t2)) ∧ ¬match((t1, t2), BIncl))
∨match((t1, t2), BExcl)} otherwise

The above definition makes, similarly to the function which calculates the inconsistencies
of unary constraints, a distinction between whether the binary relation uses a @ quantifier
or not, and based on this information returns the set of pairs of tuples which the relation
is not satisfied for. If the binary relation implements a restriction, i.e. if it contains a @
quantifier, then all tuples for which the predicate of the relation holds (also taking exceptions
into account) can be considered to be discrepancies between the relation and the intensional
views on which the relation is imposed. Conversely, for all other combinations of quantifiers,
the pairs of tuples which result in that the relation fails are contained in the pairs of tuples for
which the predicate of the relation does not hold.

In practice, a developer is not interested in knowing all the pairs of tuples which the re-
lation does not hold for, but rather wants to know the tuples that are discrepancies for either
intensional view Bview1 or Bview2 . In order to retrieve this information, we present two func-
tions named discrepanciesview1(B) and discrepanciesview2(B) which respectively return
the tuples belonging to Bview1 or Bview2 which the relation does not hold for.

Definition 17.

discrepanciesview1(B) = Π1(discrepancies(B))
discrepanciesview2(B) = Π2(discrepancies(B))

Where Πi is a function which takes as input a set of pairs and returns the projec-
tion of the i-th element of each pair. For example, if we apply Π1 to the set of pairs
{(a, b), (b, c), (c, d), (c, e)} the result is the set {a, b, c}.

3.4.3 n-ary intensional relations

We generalize the notion of unary constraints and binary relations into n-ary relations, where
n is the number of intensional views over which a constraint is imposed.
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Concept: N-ary intensional relation N
Components: Domain constraints:

N = (view1, view2, . . . , viewn,

quant1, quant2, . . . , quantn,

pred, Incl, Excl)

viewi ∈ V
quanti ∈ QuantAi

pred ∈ PredA1×...×An

Incl, Excl ⊆ (TA1 ∪ { })× . . .× (TAn
∪ { })

where Ai = viewiAttr
with 1 ≤ i ≤ n

Well-formedness constraints: Shortcuts for selector functions:

Incl, Excl ⊆
(ext(view1) ∪ { })× . . .× (ext(viewn) ∪ { })

∀ (t1, . . . , tn) ∈ Excl : p(t1, . . . , tn) if ti 6=
@ (t1, . . . , tn) ∈ Incl : p(t1, . . . , tn) if ti 6=

Nviewi = viewi with 1 ≤ i ≤ n

Nquanti = quanti with 1 ≤ i ≤ n

Npred = pred

NIncl = Incl

NExcl = Excl

Figure 3.11: Definition of n-ary intensional relation N

Definition of n-ary intensional relations

The definition of an n-ary intensional relation can be found in Figure 3.11 An n-ary relation
consists of n intensional views, n quantifiers, an n-ary predicate pred and Incl and Excl
sets. Domain constraints and well-formedness constraint similar to those of binary intensional
relations apply to n-ary relations. We denote the set of all N-ary intensional relations as Cn

Semantics of n-ary intensional relations

Similar to binary intensional views, we define the semantics of n-ary intensional relations us-
ing a function consistent(N) which verifies whether a n-ary relation is upheld and a function
discrepancies(N) which calculates the set of n-tuples of tuples for which the relation does
not hold. Both these functions are a generalization of the functions for checking the consis-
tency of binary intensional relations: instead of verifying whether the relation holds for a pair
of tuples, as was the case with binary intensional relations, these functions verify the validity
of the relation over n-tuples of tuples.
We define the function consistent(N) as:

Definition 18. For an n-ary relation N ∈ Cn:
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Let Ai = (Nviewi)Attr with 1 ≤ i ≤ n

consistent(N) ⇐⇒
Nquant1(extension(Nview1), (Nquant2(extension(Nview2)),
. . . ,

Nquantn(extension(Nviewn), p)))
where p : TA1 × . . .× TAn → Boolean :

(t1, . . . , tn) → Npred(t1, . . . , tn)∨
match((t1, . . . , tn), NIncl) ∧ ¬(match((t1, . . . , tn), NExcl)

Similar to binary intensional relation, we define the set of discrepancies discrepancies(N)
as:

Definition 19. For an n-ary relation N ∈ Cn:

discrepancies(N) =



{(t1, . . . , tn) ∈
extension(Nview1)× . . .× extension(Nviewn)|

(Npred(t1, . . . , tn) ∨match((t1, . . . , tn), NIncl))
∧ ¬match((t1, . . . , tn), NExcl)} if Nquanti = @

{(t1, . . . , tn) ∈
extension(Nview1)× . . .× extension(Nviewn)|

(¬(Npred(t1, . . . , tn)) ∧ ¬match((t1, . . . , tn), NIncl))
∨match((t1, . . . , tn), NExcl)} otherwise

Finally, the set of discrepancies of the i-th intensional view of N can be computed with:

Definition 20.

discrepanciesVi(N) = Πi(discrepancies(N))

3.5 Alternative views

3.5.1 Definition

The sections above described the core model of intensional views. In this section, we take a
look at alternative views, an extension to our model which introduces a dedicated construct
for expressing an often occurring type of constraint. The general idea behind alternative
views is that, for a single intensional view, multiple intensions exist which describe the exact
same set of tuples. For instance, we defined the Accessors view in our running example
using an intension which retrieves all methods starting with the prefix “get-”. Moreover, we
stated that all of these methods must be implemented using an idiom: all accessor methods
consist of a single statement which returns the value of an instance variable. Both conventions
independently give a description of the concept of an accessor method. For the Accessors
intensional view to be consistent, both these descriptions should yield the same set of tuples.
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Concept: Intensional View V
Components: Domain constraints:

V = (Parents, default, Alt) Parents ⊆ V
default ∈ Alt

Alt ⊆ Alt

Well-formedness constraints: Shortcuts for selector functions:

V /∈ Parents

∀ alt ∈ Alt : altAttr = defaultAttr

VParents = Parents

Vdefault = default

VAlt = Alt

Figure 3.12: Definition of an intensional view V with alternative views

We slightly need to alter our definition of an intensional view to implement the notion of
alternative views in our model. This altered definition of an intensional view V can be found
in Figure 3.12 In this definition, the attributes Attr, the intension query and the sets of devi-
ations from this intension (Incl and Excl) are no longer part of an intensional view. Instead,
they are placed in a new kind of entity called an alternative view (the set of all alternative
views is denoted by Alt). The intensional view consists of the set of parent views Parents,
a default alternative view default and the other alternative views Alt of the intensional view.
Similar to our original definition of an intensional view, the view V cannot be part of the
parent views. What’s more, we require that all alternative views Alt have the same attributes
as the default alternative view default.

The definition of an alternative view Alt can be found in Figure 3.13. An alternative
view Alt groups a set of attributes Attr, an intension query and the sets Incl and Excl for
specifying exceptions to the intension. Similar well-formedness constraints are valid for Incl
and Excl as the ones we discussed in Section 3.3.3.

3.5.2 Semantics of alternative views

These changes in our model also have an impact on the semantics of intensional views. In
Section 3.3.4 we described the semantics of an intensional view by means of a function
extension(V ) which calculates the set of tuples belonging to that view. In this section, we
redefine this function in order to take alternative views into account.

We first introduce a function eval(alt, V ) which takes as input an alternative view alt and
an intensional view V . The function returns the set of tuples (TaltAttr

) that are calculated by
the intension of the alternative view.
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Concept: Alternative view Alt
Components: Domain constraints:

Alt = (Attr, query, Incl, Excl) Attr ∈ A
query ∈ QA

Incl, Excl ⊆ TA

Well-formedness constraints: Shortcuts for selector functions:

Incl ∩ eval(Alt, V )) = ∅
Excl ⊆ eval(Alt, V )

AltAttr = Attr

Altquery = query

AltIncl = Incl

AltExcl = Excl

Figure 3.13: Definition of an alternative view Alt

Definition 21.

eval(alt, V ) =


{t| t ∈ evalaltAttr

(altquery)
∧ ∀ parent ∈ VParents :
(∃ t′ ∈ extension(parent) :

(∀ a ∈ (VAttr ∩ parentAttr) :
t.a = t′.a))}

This function is very similar to the eval(V ) function from Section 3.3.4. Using this func-
tion, we can define a function extension(alt, V ) which calculates the extension of an alter-
native view alt belonging to an intensional view V , taking the deviations from the intension
of the alternative into account:

Definition 22.

extension(alt, V ) = (eval(alt, V ) ∪ altIncl) \ altExcl

We revise the extension(V ) function in order to calculate the extension of an intensional
view. This function takes as input an intensional view V with alternative views and returns
the set of tuples belonging to this intensional view.

Definition 23.

extension(V ) =
{

extension(Vdefault, V ) if consistent(V )
undefined otherwise



3.5. ALTERNATIVE VIEWS 69

default alt1

alt2

Extension

Discrepancies

Figure 3.14: Inconsistencies of an intensional view V according to extensional consistency

We say that the extension of a view V is the extension of its default alternative, on the
condition that the view is consist, i.e. if all alternative views of the view yield the same
extension. If the intensional view is not consistent, the extension is undefined. Notice that
this is different from our original definition of an intensional view – without alternative views
– in which the extension of a view could always be calculated.

Finally, we define consistent(V ), a predicate which expresses when a view is considered
to be extensionally consistent, meaning that all alternatives result in the same extension.

Definition 24.

consistent(V ) ⇐⇒ ∀ alt ∈ VAlt : extension(alt, V ) = extension(Vdefault, V )

Similar to constraints over intensional views, it is not really interesting for a developer
to only know whether an intensional view V is extensionally consistent or not. In order to
resolve any inconsistencies, the developer must have access to the set of source code entities
which violate the extensional consistency of the intensional view. In order to calculate this set
of tuples, we define a function discrepancies(V ) which, given an alternative view alt and
an intensional view V , returns the set of tuples which violate the extensional consistency of
the view. Figure 3.14 illustrates this set of inconsistencies. Suppose we have a view V with
three alternatives default, alt1 and alt2. If the intensional V is extensionally consistent, the
extension of all alternatives is the same, thus:

extension(default, V ) = extension(alt1, V ) = extension(alt2)

In other words, all tuples belonging to the intensional view are part of the intersection of the
three alternatives. However, if the intensional view V is not extensionally consistent, any
tuples belonging to the extension of one of the alternative views, but not to the intersection of
all alternatives, is considered to be a discrepancy.

We define the function discrepancies(V ) as:
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Definition 25.

discrepancies(V ) =
⋃

alti∈VAlt

extension(alti) \
⋂

alti∈VAlt

extension(alti)

The discrepancies of an intensional view with alternatives consist of all tuples which are
part of the union of the extensions of all alternative views, but which are not part of the
intersection of the extensions. This resembles the situation as depicted in Figure 3.14. We
are interested in finding all tuples which are part of some of the alternatives, but which do not
belong to all of those alternatives.

3.5.3 Expressing alternative views using unary intensional constraints

As we mentioned earlier, alternative views are simply a layer of syntactic sugar we put on
top of the model of intensional views. While they ease the expression of certain kinds of
constraints, conceptually they do not add to the model of intensional views and constraints.
To illustrate this, we show in this section how we can simulate the semantics of alternative
views using regular intensional views and unary constraints.

Assume we have an intensional view V with n alternative views. For reasons of simplicity,
we assume V does not have any parent views. We thus get:

V = (∅, default, Alt)
default = alt1

Alt = {alt2, alt3, . . . , altn}
alti = (Attr, queryi, Incli, Excli) for 1 ≤ i ≤ n

Where alt1 is the default alternative view and alti is the definition of the i-th alternative (for
i between 2 and n). For all i, queryi is the i-th intension; Attr denotes the set of attributes
that is shared by all alternative views.

We can achieve the same semantics as the intensional view above by constructing a regular
intensional view V ′ and n unary intensional constraints Ui:

V ′ = (Attr, query, ∅, ∅, ∅)
query : t → query1(t) ∨ query2(t) ∨ . . . ∨ queryn(t)
∀ i ∈ {1..n} : Ui = (V ′,∀, predi, Incli, Excli)
∀ i ∈ {1..n} : predi : t → query1(t) ∧ queryi(t)

The intensional view V ′ consists of an intension query, and has empty Incl and Excl sets.
query is defined as the logical disjunction of all intensions queryi of the different alternative
views of the intensional view V . Moreover, for each alternative there exists a unary constraint
Ui which has as an intension the conjunction of the default intension (the intension of the first
alternative) with the intension of the i-th alternative; the set of deviations Incli and Excli of
Ui correspond to those of the alternative view Alti.
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If we construct an intensional view V with n alternative views and a regular intensional
view V ′ with n unary constraints as above, then both intensional views share the same se-
mantics. More formally, the semantic functions we defined over regular intensional views
and intensional views with alternatives correspond:

1. extension(V ) = extension(V ′) ⇐ consistent(V ).

2. consistent(V ) ⇐⇒ ∀ i ∈ {1..n} : consistent(Ui)

3. discrepancies(V ) =
⋃

i ∈ {1..n}

discrepancies(Ui)

In other words:

1. If intensional view V is consistent then both intensional view V as well as V ′ yield the
same extension;

2. The intensional view V with n alternative views is consistent if and only if the n unary
constraints imposed over intensional view V ′ are consistent;

3. The discrepancies of the intensional view V are the same as the union of the discrep-
ancies of the n unary constraints imposed on intensional view V ′.

For a formal treatise of this subject and a proof of the above properties, see appendix A.

3.5.4 Unary intensional constraints versus alternative views

As we mentioned above, unary intensional constraints can be used to simulate behavior sim-
ilar to the usage of alternative views. While both concepts are equivalent at the level of our
formal model, from a user’s point of view, they are employed in different situations.

Alternative views are used to define a constraint which is both a necessary and sufficient
condition. In a sense, alternative views express different ways to compute the same set of
tuples. For instance, in our example of the Accessors view, we require that all accessor meth-
ods start with the prefix “get-” and also that they must consist of a single statement which
returns the value of a field. Due to the property of extensional consistency we require that
both these alternative views for the Accessors intensional view yield the same set of tuples.
Tuples which do not belong to the extension of all alternative views are considered possible
inconsistencies. We thus require that all methods which start with the prefix “get-” are also
implemented by a single statement returning the value of a field, and vice versa.

Unary intensional constraints define a necessary condition which must be upheld by all
the tuples of an intensional view. For example, earlier on we introduced the unary constraint
which expresses that all accessor methods must contain the name of the field they are access-
ing in their name. The main reason why we opted to implement this constraint using a unary
intensional relation and not as an alternative view of the Accessors view is that this constraint
is not sufficient. While it must be true for all accessor methods that their name contains the
field they are accessing, it is not required that all methods that contain the name of a field are
also accessor methods.



72 CHAPTER 3. INTENSIONAL VIEWS MODEL

3.6 Discussion

Intensional versus extensional In Section 3.3.2 we already discussed that we opted for an
intensional description of the set of tuples making up an intensional view rather than an ex-
tensional enumeration of all the tuples. Since our goal is to provide a model for documenting,
and especially evolving regularities in source code, the choice for an intensional description
of a view seems evident. Due to the changing nature of the source code of a system, the
set of tuples belonging to the extension of an intensional view also changes over time. The
use of an intensional specification in order to define intensional views can thus be considered
an enabling factor in automatically supporting the evolution of the extension of intensional
views.

Each time new software entities are added to the system or existing ones are modified or
removed, this can have an impact on the extensions of the intensional views which are defined
on the system. Using an extensional description of an intensional view, all such changes in the
source code of the system would have to be explicitly documented by manually adapting the
set of tuples belonging to the extension a view. However, the intensional description of a view
renders it possible – assuming that the intension of the view classifies the correct set of tuples
– to automatically update the set of tuples in order to reflect the changes in the system. In
other words, as long as the intension of an intensional view classifies the correct set of tuples,
changes to the source code of the system will be automatically captured in the extension of
the intensional view.

Combination of intensional and extensional specification Our classification mechanism
is not purely intensional. Although we do not allow a developer to specify an intensional view
by enumerating the tuples belonging to its extension, we do offer support for extensionally
fine-tuning that extension. More specifically, we provide a hybrid classification model in that
we allow for the extensional documentation of explicit deviations to the intension of an inten-
sional view. When specifying the set of tuples belonging to the extension of an intensional
view, the general case, which entails the majority of the tuples belonging to the extension is
captured by an intensional description. This intensional description is complemented with an
extensional mechanism to document deviations to the intension: a developer can enumerate
tuples which should be explicitly included in the extension of the view or excluded from that
extension.

Overlap between different intensional views An intensional view consists of a set of tu-
ples which associate a number of attributes to a software entity (i.e. an element of the universe
U of software entities). This does not keep one single software entity from appearing in mul-
tiple intensional views. Due to the nature of software, this is even a desirable feature of our
model. In practice, one software entity (class, method, . . . ) is often involved in the implemen-
tation of multiple concerns or concepts in the system. Since such a concept in the source code
is aligned with an intensional view, the same software entity thus can be part of the tuples of
multiple views.
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Crosscuttingness of intensional views Due to the “tyranny of the dominant decomposi-
tion” [TOHS99b], certain concerns in the implementation of a piece of software are mis-
aligned with the modularization of the software. Typical examples of such concerns are
logging, tracing, transaction management, etc. Such so-called crosscutting concerns are
scattered throughout the code: their implementation is not localized in a single module but
can rather spread out over multiple modules. Moreover, their implementation is not cleanly
separated from the base concerns which they interact with. Instead, the code implementing
crosscutting concerns is tangled with the base functionality of the software. As a result, cross-
cutting concerns place an additional burden on software developers in terms of evolvability
and maintainability of a piece of software.

While new modularization techniques such as aspect orientation [KLM+97] try to capture
such crosscutting concerns in a separate module, our model of intensional views complements
such techniques by documenting and verifying the software regularities which underly these
crosscutting concerns. Our model is inherently suitable for dealing with concerns which
crosscut the hierarchical decomposition of a piece of software. Since the queries used to
define an intensional view are naturally crosscutting, and a single source-code entity can
appear in the extension of multiple views, the views can serve as a means of documentation of
the crosscutting concerns and can be used by developers during maintenance tasks to identify
the source-code entities related to a particular crosscutting concern. In chapter 7 we take
a more in-depth look at the relation between intensional views, crosscutting concerns and
aspect-oriented programming and discuss how our approach can aid in alleviating the fragile
pointcut problem.

Interpretation of discrepancies In the sections describing the model of intensional views
and constraints over these intensional views, we have focused on providing a number of func-
tions for calculating the discrepancies between the documented constraints and the imple-
mentation (the source-code entities). While these functions give an accurate description of
the tuples representing source-code entities for which the constraints and the implementation
do not conform, we only approached these discrepancies from a mathematical point of view
and have not yet attributed an interpretation to them, since this interpretation depends on the
expert knowledge of a developer over the software system.

In the next chapter (Chapter 4) we give a number of practical examples of how discrep-
ancies can be interpreted, however, we wish to stress that, since our goal is to co-design
and co-evolve the documentation and implementation, such discrepancies do not always sig-
nify that the implementation is erroneous with respect to the documentation. In practice, the
structural regularities in a software system also evolve, and inconsistencies between the docu-
mentation and the implementation can also be an indicator that the documentation is outdated
and should be adapted.

Expressiveness of the model Note that the expressiveness of a particular instantiation of
our model of intensional views and constraints depends on the underlying query language and
source-code meta model that are used in this instantiation. For example, if the meta model or
query language do not provide support for reasoning at the granularity of method bodies, then
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the expressiveness of our approach is hampered in that e.g. regularities expressing particular
implementation patterns in the source code cannot be expressed and verified. Similarly, if
we use a query language that only reasons over parse-trees, we will be able to express a
large variety of structural regularities but will be limited in expressing regularities about the
behaviour of the software. As such it is not possible to make any general claims about the
expressiveness of our formal model.

In the next chapter, we present one particular such instantiation of our model, namely the
IntensiVE tool suite. Throughout the remainder of this dissertation we will demonstrate that
this particular instantiation is sufficiently expressive to document and verify a wide range of
structural source-code regularities.

Completeness While devising our model of intensional views, one of our goals was to offer
a complete model with respect to the kinds of constraints the model allows to impose on the
source code of a system. As such, we did not limit ourselves to unary intensional constraints
and binary intensional views, but rather provided a conceptual framework (by means of n-ary
relations) for imposing a constraint on any given number of intensional views.

Since we did not specify the actual query language in which the intension of a view is
specified and the language used to implement the predicates used in our constraint mecha-
nism, we cannot make any claims regarding completeness of our model with respect to the
kinds of entities which can be classified nor to the relationships which can be expressed be-
tween these kinds of entities.

Minimality When we first introduced the concepts underlying our model of intensional
views in Section 3.1 we discussed that our model consists of intensional views, i.e. intension-
ally defined classifications, and constraints over these classifications. These two concepts are
at the core of our approach and provide a minimal model for the entities which make up our
model of intensional views.

We devised a number of variations and extensions to these two core concepts in order to
provide additional ease of use for the developer and to support the documentation of structural
source code regularities. For instance, we included the concept of parent views as a means
to provide a scope for intensional views. Similarly, we incorporated support for explicitly
documenting exceptions to the intension of an intensional view. On the level of constraints,
we introduced the notion of unary intensional constraints and binary intensional relations,
which are instantiations of the concept of n-ary intensional relations. Moreover, we also
presented the notion of alternative views as a specific kind of constraint and showed that this
type of constraint is equivalent to the use of unary intensional constraints.

3.7 Conclusions

In this chapter we have introduced the model of intensional views and constraints, which
lies at the core of our approach for documenting, verifying and supporting co-design and co-
evolution of structural source-code regularities throughout the implementation of a software
system. We have approached our model from a conceptual point-of-view and discussed the
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concepts of intensional views and constraints on these intensional views using a specification
of the concepts in a formalism inspired by relation tuple calculus. This formal specification
allowed us to introduce the model independent of any implementation details and allowed us
to precisely specify the semantics of the different concepts in the model.

In the next chapter, we take a look at IntensiVE, our prototype implementation of the
model of intensional views and constraints. While we left some concepts abstract in this
chapter, such as for instance the query language employed to specify the intension of an
intensional view, in the next chapter, we give a couple of examples of such concrete query
languages.
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Chapter 4

IntensiVE

In this chapter we present the technical contribution of this dissertation, namely the Inten-
sional Views Environment, or IntensiVE for short. IntensiVE is our prototype tool suite
implementing the model of intensional views. We have developed IntensiVE as an extension
to the Cincom VisualWorks Smalltalk environment [Cin07]. IntensiVE consists of a number
of tools to support the documentation, verification and evolution of structural source-code
regularities in the source code of object-oriented software systems.

We set forward four goals for this chapter:

1. Section 4.2 When discussing our formal model of intensional views and constraints in
Chapter 3 we deliberately abstracted from the underlying software model on which the
intensional views are imposed, as well as from the languages used to specify the inten-
sion or the predicate of respectively an intensional view or an intensional constraint.
Instead we declared a number of properties which such an intension or a predicate
must adhere to. The first goal of this chapter is to demonstrate concrete instantiations
of these abstract concepts from the formal model. We present how both the intension of
an intensional view can be specified as well as the predicate of an intensional constraint,
using the Smalltalk language and the SOUL logic language. While the former language
allows us to use Smalltalk itself as an underlying model over which intensional views
are defined, the latter provides support to easily reason about Smalltalk as well as Java
programs in terms of an underlying software model;

2. Sections 4.3 to 4.5 The second goal of this chapter is to sketch an overview of the
IntensiVE tool suite. It is this prototype tool suite which we use throughout the next
chapters as a means to perform the experimental validation of our work;

3. Section 4.6 Furthermore, we discuss a number of methodological issues which arise
from our approach and tool suite;

4. Section 4.7 In Chapter 2, we provided an overview of some of the related work from the
field of software classifications as well as approaches for supporting structural source-
code regularities throughout the development process. We finish this chapter by com-
paring this related work to the approach we propose in this dissertation.

77
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Figure 4.1: Overview of IntensiVE

4.1 Overview of IntensiVE

Environment

In line with the tool-oriented philosophy of Smalltalk, we opted for developing our imple-
mentation of the model of intensional views as a tool suite which integrates seamlessly with
the surrounding Smalltalk integrated development environment. IntensiVE is implemented
as a plugin for the StarBrowser [WD04], a framework for VisualWorks Smalltalk which
provides capabilities for implementing software engineering tools based on a classification
mechanism. The tight integration of both our tool suite as well as the StarBrowser framework
with the Smalltalk environment enhances the capabilities of our tool suite. IntensiVE is not
limited to documenting structural source-code regularities and verifying their validity with re-
spect to the source code. A user of our tool suite can directly browse the source-code entities
that belong to an intensional view or that violate one of the expressed structural source-code
regularities, thus aiding the integration of intensional views into the development process.
Another benefit of this tight integration is that the intensional views created by our tool suite
are first-class entities within the Smalltalk environment. As such, it is possible to make them
directly accessible to other development tools like for instance the unit testing framework of
Smalltalk.

Figure 4.1 presents an overview of IntensiVE. The right-hand side of the figure shows
the different layers in the implementation of our tool suite. On the left-hand side, the figure
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illustrates which entities are present in each corresponding layer. The top-most layer contains
our actual implementation of the model of intensional views and constraints. This layer makes
use of the query languages (second layer) in order for defining the intension of a view or
the predicate of a constraint. Such intensions and constraints are expressed in terms of a
representation (third layer) of a program written in either the Smalltalk or Java language. In
the following sections we discuss each of these layers of IntensiVE in more detail.

Supported languages and underlying software meta-model

In Chapter 3 we did not focus on the underlying software model in terms of which the tuples
belonging to the extension of an intensional view are expressed. We rather denoted this soft-
ware model as the universe U of source-code entities which, in a tuple, are associated with a
certain attribute. Our implementation supports a software meta-model for two programming
languages: namely Smalltalk and Java1 (number 1 in Figure 4.1). For both of these languages,
our tool suite uses a software model that contains a representation of a program in either lan-
guage (number 2). The entities from this representation of a program are the universe U of
source-code artifacts (number 5 in Figure 4.1) that are associated with the attributes of the
tuples.

Since our tool suite is implemented in Smalltalk, we make use of the reflective capabilities
of this language. We reuse the first-class, fully reified representation of Smalltalk programs
which is available as a data structure in the Smalltalk environment as the software meta-model
for Smalltalk. This allows us to associate the actual object representing a source-code entity
with an attribute of a tuple. As for Java, we use the representation of a Java program obtained
by applying the Frost parser. This Java parser, implemented in Smalltalk, represents a Java
program by an object-oriented version of its abstract syntax tree. The objects in this syntax
tree serve as the source-code entities of the tuples belonging to the extension of an intensional
view.

Query languages

In order to query the software model and retrieve the source-code entities which belong to
the tuples of the extension of an intensional view, our tool suite also needs access to a query
language which can be used to express the intension of a view. In Chapter 3 we defined
such a query language as a function eval which takes as input the intension of an intensional
view and returns the set of tuples belonging to the extension of the view. IntensiVE supports
two instantiations of such query languages (box number 3 of Figure 4.1), which allow a user
to define an intension (two examples are shown in box number 6) in terms of the software
models discussed above.

• Smalltalk: our tool suite supports Smalltalk as a language for expressing intensions in
terms of the Smalltalk software model. As we mentioned earlier, Smalltalk programs
are represented as first-class entities in the Smalltalk language itself. This first-class

1Java 1.2
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representation, combined with the reflective facilities the language offers, enables rea-
soning about Smalltalk programs from within that same language;

• SOUL: The Smalltalk Open Unification Language (SOUL) [Wuy01] is an implemen-
tation of a Prolog-like language on top of Smalltalk. It provides a declarative paradigm
for reasoning about object-oriented software and offers symbiotic capabilities with re-
spect to the underlying Smalltalk language. The SOUL language can be used to reason
about the Smalltalk as well as the Java software model. To this end it provides two
libraries of logic predicates:

– LiCoR: the Library for Code Reasoning (LiCoR) [MMW01] provides reasoning
capabilities for the Smalltalk language. It consists of a large number of predicates
which ease expressing queries over the fully-reified representation of a Smalltalk
program;

– Irish: Irish [FM04] is – like LiCoR – a collection of predicates for the SOUL
language. The predicates in this library are tailored for reasoning over the Java
language. In particular, these predicates use the representation of Java obtained
by using the Frost parser.

In Section 4.2 we discuss these query languages in more detail and demonstrate how they can
be employed to express the intension of an intensional view.

Support for the model of intensional views and constraints

Our implementation of intensional views is for the larger part a literal translation of the con-
cepts and semantics of the formal model we presented in Chapter 3. As such, our tool suite
provides support for expressing intensional views over both the Smalltalk and the Java soft-
ware model, using Smalltalk and SOUL as query languages. Moreover, IntensiVE supports,
alongside with intensional constraints, the notion of alternative views as a means to impose
constraints over intensional views (box number 4 of Figure 4.1). This support for the dif-
ferent concepts of our model can then be used to express a number of intensional views and
constraints (box number 7) over the entities in the software model, using any of the supported
query languages.

However, our implementation poses a number of restrictions on the general model of
intensional views: A first restriction lies in the fact that, while in our formal model an in-
tensional view V can have any number of parent views, our implementation only allows the
specification of at most one parent view. This lack of multiple parent views does not impact
the expressiveness of an intensional view, since these multiple parents can be simulated by
repeating parts of the intensions of the parent views in the intension of the child view. Further-
more the tight integration of intensional views with the surrounding Smalltalk environment
makes it possible to access intensional views directly from within a query language (as we
will explain in Section 4.2). As a result, intensional views which rely on multiple other views
in order to restrict their scope, can directly access these views from within their intension,
thus minimizing the code duplication occurring in multiple intensional views.
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A second restriction of our implementation concerns the kinds of constraints our tool suite
supports. While we introduced the notion of n-ary relations in our formal model, the kinds
of constraints expressible in our tool suite is restricted to unary intensional constraints and
binary intensional relations. As a result, our tool suite is no longer complete with respect
to the constraints which can be imposed over intensional views. Although this renders our
tool suite less expressible than the formal model of intensional views, none of the examples
of structural source-code regularities we will encounter in this dissertation require the use of
ternary or n-ary intensional relations.

Overview of the tool suite

Our tool suite consists of five different sub-tools:

• Intensional View Editor: this tool is used to define and manipulate intensional views;

• Extensional Consistency Inspector: for a given intensional view, this tool provides
detailed feedback on whether the different alternatives of the intensional view are ex-
tensionally consistent, i.e. if they all yield the same set of tuples;

• Intensional Relation Editor: this tool is used to define and manipulate unary and
binary intensional relations;

• Relation Consistency Inspector: this tool can be used to report on discrepancies be-
tween a certain intensional constraint and the tuples belonging to the extension of the
intensional view(s) which the constraint is imposed on;

• Visualization Tool: this tool provides a visual representation of the different inten-
sional views and constraints in the system and highlights whether the different views
and constraints are consistent or not.

Later on in this chapter, we discuss each of these tools in more detail.

4.2 Supported query languages

A key component of an intensional view V is the intension query which selects the set of
tuples that belong to the extension of the intensional view V . While in our formal model, we
did not specify any concrete query language in which the intension of a view can be described,
we did impose one requirement, namely that for any such query language there must exist an
evaluator. The result of evaluating an intension query must be a set of tuples with attributes
Attr such that in each tuple, every attribute is associated with a source-code entity from the
underlying software meta-model.

In this section, we take a look at two such languages which are supported by the Inten-
siVE tool suite. These two languages demonstrate how two vastly different paradigms can
be used for expressing the intension of an intensional view. In Section 4.2.1, we take a look
at the object-oriented programming language Smalltalk, and exemplify how this language,
and in particular its reflective capabilities, can be utilized to express the intension of a view.
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The second language – SOUL – which we discuss in Section 4.2.2 offers an instance of the
declarative paradigm in order to reason about object-oriented programs. This language, and
especially the LiCoR and Irish predicate libraries, enables us to define intensions using a
declarative paradigm.

Recall from our formal model that similar language facilities are needed in order to ex-
press the predicate of an intensional constraint. We specified that such a predicate must take
as input a number of tuples (depending on the arity of the intensional constraint) and return
a boolean. To implement such predicates, we also use – similar to defining the intension of
a view – the Smalltalk and SOUL languages. In Section 4.4.1 we will come back to this
topic and discuss how we integrated SOUL and Smalltalk into our framework such that both
languages can be used to express the predicate of a constraint.

4.2.1 Smalltalk

The first language for specifying the intension of an intensional view we discuss is Smalltalk.
While Smalltalk is the language in which we implemented our tool suite, it also possesses a
number of characteristics which render it a versatile tool for expressing the intension of an
intensional view. First, Smalltalk programs are represented as data in the Smalltalk language
itself. As such, a fully-reified representation of a Smalltalk program is accessible from within
the Smalltalk language. Second, the reflective capabilities of Smalltalk ease the retrieval
of information from this first-class representation of a Smalltalk program. Using the meta-
object protocol of Smalltalk, a user can query a Smalltalk program and extract the required
information. We do not discuss the Smalltalk meta-object protocol here, but rather refer
to [GR89] for an in-depth treatise of the subject. In what follows, we demonstrate the use of
Smalltalk as a query language by showing a number of examples of intensions from the actual
Smalltalk implementation of the Banking System (our running example from Chapter 3).

Mechanics of using Smalltalk as a query language

While the reflective capabilities of Smalltalk can be used to express the intension of an inten-
sional view, this does not guarantee that the result of such a Smalltalk meta-program is a valid
extension, i.e. a set of tuples that associate a source-code entity with each of the attributes
of an intensional view. In order to construct such extensions and tuples, we provide a small
framework which is used to construct an intension using Smalltalk. This framework consists
of the following classes:

• Extension: instances of the Extension class contain the actual tuples which belong
to the extension of an intensional view. Since Extension shares a lot of similarities
with a regular collection, we provided an interface for this class which is similar to that
of the Collection class, which is part of the standard Smalltalk collection frame-
work. In addition, Extension contains methods which allow a user to add, remove
and access tuples, and to iterate over the tuples in an extension;

• Tuple: the tuples which belong to the Extension are represented by instances of
the Tuple class. This Tuple class implements facilities for associating an attribute



4.2. SUPPORTED QUERY LANGUAGES 83

1 extension := Extension new.
2 Banking allClasses do:[:class |
3 class selectorsAndMethodsDo:[:selector :method |
4 extension add:
5 (Tuple new attribute:#class value: class;
6 attribute:#method value:
7 (SmalltalkMethod compiledMethod:method))]].

Figure 4.2: Example of an intension for the Banking intensional view specified in Smalltalk

with a source-code entity and managing these associations. The most important method
Tuple implements is attribute:value:. This method associates a certain value
with a given attribute. Furthermore, we provide a method valueFor: which retrieves
the association value of a particular attribute.

Using this framework, a user can create a valid intension by writing a Smalltalk meta-program
which returns an instance of Extension.

Examples

To illustrate such an intension expressed in Smalltalk consider the example in Figure 4.2.
This Smalltalk program represents the intension of an intensional view Banking. The ratio-
nale behind the Banking intensional view is that it groups all the classes and methods in the
implementation of the banking system, thus serving as a parent view to limit the scope of the
other intensional views declared over this example system. As such, the Banking view has
two attributes, namely ‘class’ and ‘method’. The extension of this intensional view should
contain a number of tuples, each consisting of the methods of the banking system along with
the class which they are implemented in.

The Smalltalk program calculating this extension consists of two loops. The outermost
loop iterates over all the classes in the Banking namespace (line 2), which contains all the
classes belonging to the banking system. The innermost loop iterates over all the selectors and
methods of each of these classes (line 3) and adds for each of these methods (line 4) a tuple to
the extension collection. Each tuple contains two associations: one association (line 5) which
associates the attribute ‘class’ with class and an association (lines 7 and 8) which binds
the attribute ‘method’ to an instance of SmalltalkMethod, which is a wrapper around the
actual object representing the method.

Another example of an intension specified using Smalltalk is shown in Figure 4.3. This
intension for the Mutators intensional view is based on the rationale that in Smalltalk mutator
methods are mostly implemented following a similar pattern. For example, for a certain
instance variable field, in Smalltalk the mutator method would be named field: and
contain an assignment to the instance variable. Based on this idiom, we express the intension
of the Mutators view using Smalltalk as the query language.

This example contains a more complex illustration of an intension described in Smalltalk.
Similar to the intension for the Banking system, we start by creating a Extension object
(line 1), and iterate over all the classes in the Banking namespace (line 2) and the selectors
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1 extension := Extension new.
2 Banking allClasses do:[:class |
3 class selectorsAndMethodsDo:[:selector :method |
4 class instVarNames do:[:field |
5 ((method writesField:(class instVarIndexFor: field))
6 & (field asString,’:’ = selector asString))
7 ifTrue:[extension add:
8 (Tuple new
9 attribute:#class value: class;

10 attribute:#method value:
11 (SmalltalkMethod compiledMethod: method);
12 attribute:#field value:field asSymbol)]]]].

Figure 4.3: Example intension in Smalltalk for the Mutators intensional view

and methods implemented by those classes (line 3). Lines 4 to 6 iterate over all the field
names of the class and verify if the method performs a write operation to the field at the
index corresponding with the field. What’s more, it is also verified that the name of the field
matches the naming convention we illustrated above by comparing the method name with a
concatenation of the field name and a colon (‘:’). If such a write occurs and if the name of the
method follows the naming scheme, a tuple is added to the extension which groups the class,
method and field (lines 7–12).

Intensional views as first-class entities in Smalltalk

Due to the open implementation of the Smalltalk language and the fact that the intensional
views defined over a system are first-class entities within Smalltalk, it is possible to extend
the Smalltalk query language capabilities with a mechanism which makes it possible to trans-
parently access an intensional view from within the intension of another view. This symbiosis
with the Smalltalk language makes it possible to define intensional views in terms of other
views. Furthermore, we also implement a number of constructs which allow the extraction
of the values of specific attributes from an intensional view (similar to a select statement
from SQL), together with a number of set-theoretical operations such as intersection, union
and difference. Using these constructs, we offer the developer a basic language for combining
and composing intensional views from within Smalltalk.

This makes it possible to express composite intensional views using the Smalltalk lan-
guage, or to provide any other means of combination of a number of intensional views.
In order to obtain this functionality, we extended our tool suite and its integration with the
Smalltalk language as follows:

• We implemented a lookup mechanism such that intensional views can be accessed di-
rectly from within Smalltalk code. This is done by reusing the semantics associated
with the VisualWorks Smalltalk namespace mechanism. A namespace in VisualWorks
is a kind of modularization mechanism which groups a number of classes. For in-
stance, we already used this mechanism when we specified the Smalltalk intension of
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1 (((Views.Mutators for:#class and:#field)
2 difference:
3 (Views.Accessors for:#class and: #field)) for:#class)
4 intersection:(Views.Accounts for:#class)

Figure 4.4: Example of an intension in Smalltalk using intensional views as first-class entities

the Banking and Mutators intensional views. Using this namespace mechanism, a user
can directly quantify a certain class in a certain namespace by using a dot operator. E.g.
to refer to the class Card in the Banking namespace the expression Banking.Card
can be used.

We overloaded this namespace mechanism by creating a “virtual” namespace Views.
For this virtual namespace, the lookup mechanism provided by the dot operator will
return the intensional view corresponding with the identifier used on the right hand side
of the dot. For example, Views.Accessors will return the Accessors intensional
view as a first-class entity;

• The implementation of intensional views provides a number of methods which enable
basic tuple set operations on intensional views such as for instance projection (selecting
a subset of the attributes of the tuples in the extension of an intensional view), union,
intersection and difference.

An example of an intension which uses this mechanism is demonstrated in Figure 4.4. The
result of this extension is the set of all tuples with a single attribute ‘class’ bound to a class in
the Account hierarchy which contains a field for which there exists a mutator method but
not an accessor method.

If we take a more in-depth look at this intension, we see that it uses the virtual namespace
mechanism in order to retrieve the intensional views Mutators, Accessors and Accounts. Line
1 retrieves the Mutators intensional view and projects the tuples belonging to the extension
of that view to the attributes ‘class’ and ‘field’. The result is thus a set of tuples with as
attributes ‘class’ and ‘field’. Similarly, in line 3 the same information is extracted from the
tuples belonging to the Accessors intensional view. In line 2, the difference between these
two sets is calculated, resulting in a set of tuples representing all fields and the class in which
they are defined for which there exists a mutator method but not an accessor method. At the
end of line 3, the associations of the ‘class’ attribute are extracted from this set. Finally, in
line 4, the intersection of these classes is calculated with respect to the associations for ‘class’
in the Accounts intensional view .

4.2.2 Smalltalk Open Unification Language (SOUL)

The second query language IntensiVE supports is SOUL. In Chapter 2 we already briefly
discussed this language. SOUL is an implementation of a Prolog-like declarative language on
top of Smalltalk. This declarative paradigm, as has been demonstrated in [Wuy01, MKPW06,
WM06, MMW01], combined with SOUL’s symbiotic capabilities, makes it an ideal candidate
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for reasoning about source code. One of the key features of SOUL is that it supports symbiosis
with the underlying Smalltalk environment. This renders it possible to reason directly about
Smalltalk objects from within SOUL. Moreover, this symbiosis allows a SOUL query to
invoke Smalltalk code during evaluation.

Although SOUL heavily relies on this symbiosis with Smalltalk, it was developed with the
intent to be independent of the language about which it reasons. To obtain this independence,
the SOUL language only offers a logic kernel together with a number of basic logic primitives.
In order to reason about object-oriented programs, a separate library of logic predicates is
necessary which uses SOUL and the symbiosis with Smalltalk. This architecture of SOUL is
depicted in Figure 4.5. Two such libraries for predicates exist, namely the Library for Code
Reasoning (LiCoR) by Mens, Wuyts et al. [MMW01] which reasons over Smalltalk code and
is depicted in green in Figure 4.5, and Irish [FM04] (in yellow), developed by Johan Fabry,
which provides similar functionality for Java programs.

Each of these libraries provides a meta-level interface (MLI). This MLI is used by the
predicates in the library in order to communicate with the software model which is being
queried. As such, the MLI implements facilities for retrieving source-code entities from the
software model and verifying basic dependencies between such source-code entities. The
MLI thus serves as the interface between the logic language and the software model. LiCoR’s
MLI makes use of the Smalltalk meta-object protocol in order to directly access the entities in
a Smalltalk program; the MLI of Irish reasons over the abstract syntax tree of a Java program
as obtained by applying the Frost Java parser.

On top of this MLI, each library provides a set of language-dependent predicates which
present a logic reification of the software entities. These predicates, such as class, method,
methodInClass and so on, use the symbiotic capabilities of Smalltalk in order to commu-
nicate with the MLI and retrieve the actual objects representing the Smalltalk program or
Java AST nodes. On top of these reification layers, a number of layers of predicates are im-
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1 classInNamespace(?class,[Banking]),
2 methodInClass(?method,?class)

Figure 4.6: Example of a SOUL intension for the Banking intensional view

plemented which are designed to be as independent as possible from the the underlying model
of software entities about which one is reasoning with SOUL (indicated in Figure 4.5 by the
gradient between green and yellow). The layered architecture of the SOUL predicate libraries
prescribes that a predicate can only use predicates in the same or an underlying layer. Due
to this layering mechanism, predicates in the upper layers of the predicate libraries do not
depend on specific Smalltalk or Java constructs and implement functionality which can be
reused when reasoning over either language. As such, only predicates in the reification layer
are allowed to communicate with the MLI.

Mechanics of using SOUL as a query language

In IntensiVE, it is possible to use SOUL as the query language for expressing an intension.
Depending on whether one is declaring intensional views on a Java or a Smalltalk system,
respectively the Irish or LiCoR library can be used. When evaluating a SOUL query, all
solutions are returned which satisfy the query. Each such solution consists of a set of bindings
for the variables used in the logic program such that the values for these variables are a
solution for the query.

It is straightforward to translate these semantics of a logic program into those of the in-
tension of an intensional view. An intension expressed using SOUL corresponds to a logic
SOUL query. Upon evaluation, the solutions of the query are considered to be the extension
of the intensional view. To this end, each solution of the query aligns with a tuple in the exten-
sion of the view. The bindings of the attributes are obtained by extracting the corresponding
variables from the result of the SOUL query. A SOUL query is thus considered to be a valid
intension for an intensional view if all attributes of the intensional view are used as a variable
in the SOUL query.

Examples

A first example of an intension expressed in the SOUL language can be found in Fig-
ure 4.6. This intension is the SOUL variant of the intension for the Banking intensional view,
which we presented in Figure 4.2. The SOUL program in the figure consists of only two
conditions, thus being more succinct than the Smalltalk version2. The first condition restricts
the bindings of the variable ‘class’ (variables in SOUL are indicated by a question mark) to
the classes belonging to the Banking namespace. The second condition will result in bind-
ings for the variable ‘method’ such that ‘method’ is bound to a method implemented in class
‘class’. By evaluating this intension as a query, a set of tuples will be calculated such that
for each method in the banking system there exists a tuple consisting of an attribute ‘method’

2This succinctness is mostly the result of the different abstractions LiCoR offers to reason about source code.
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1 statementsOfMethod(statements(?statements),?method),
2 instanceVariableInClass(?field,?class),
3 member(?statement, ?statements),
4 equals(?statement, assign(variable(?field),?value))

Figure 4.7: Example of a SOUL intension for the Mutators intensional view

1 isFieldInClass(?field,?class),
2 nameOfField(?fieldname,?field),
3 methodInClass(?method,?class),
4 methodWithIdentifier(?method,?name),
5 [(’get’, ?fieldname asString) match: ?name asString]

Figure 4.8: Example of a SOUL intension for the Accessors intensional view

which is bound to the method and an attribute ‘class’ which is bound to the class on which
the method is implemented.

The SOUL variant of the intension of the Mutators intensional view can be found in
Figure 4.7. Similarly to the Smalltalk version (Figure 4.3), the intent behind this intension is
to capture all the methods which write to a field. The SOUL version of this intension consists
of 4 lines. Line 1 selects all the statements ‘statements’ implemented by a method ‘method’.
Notice that, since this intensional view has the Banking intensional view as its parent, the
‘method’ variable will only be bound to methods from the banking system. In line 2 all fields
‘field’ are selected which belong to a class ‘class’ in the banking system. Finally, lines 3 and
4 impose the restriction that at least one of the statements in the parse tree of the ‘method’
performs an assignment to a field.

We mentioned above that the symbiosis between Smalltalk and SOUL makes it possible
to execute Smalltalk code during the evaluation of a SOUL query. An example of an inten-
sion which uses this mechanism is shown in Figure 4.8. This intension captures the entities
belonging to the Accessors intensional view. We defined this view in Chapter 3 informally as
all methods ‘method’ implemented by a class ‘class’ which start with the prefix “get-” and
which access a field ‘field’.

Upon evaluation, the SOUL program in Figure 4.8 will retrieve all fields in the system,
along with their class (line 1). From this field, the name of the field is extracted (line 2)
and bound to the variable ‘fieldname’. Lines 3–4 retrieve all the methods in the class along
with the identifier of that method. Finally, line 5 shows the use of a Smalltalk block: a
logic condition in the SOUL program which is resolved by executing the Smalltalk code
between the square brackets. In our example, this fragment of Smalltalk code performs some
pattern matching: it expresses that the identifier of the method should match the concatenation
of the string “get-” together with the name of a field in the class in which the method is
implemented. Notice that in these Smalltalk blocks the value of a logic variable can be used.
Since the Accessors intensional view has three attributes, namely ‘class’, ‘method’ and ‘field’,
the values for these variables will be extracted from the result of the SOUL query and will
make up the tuples belonging to the extension of the intensional view.
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1 Mutators(?class,?,?field),
2 not(Accessors(?class,?,?field)),
3 Accounts(?class,?)

Figure 4.9: Example of using intensional views as first-class entities in SOUL

Accessors(?class,?method,[#age])

Accessors([Card],?method,[#account])

Figure 4.10: Example of using unification in combination with intensional views as first-class
entities

Accessing intensional views as first-class entities in SOUL

Similar to using Smalltalk as a query language for specifying the intension of an intensional
view, it is possible to use other intensional views from within the intension of a view when
using SOUL as a query language. In order to achieve this first-class citizenship of intensional
views in the logic language, we unified the concept of an intensional view with that of a logic
predicate. For instance, if we have an intensional view V that has as attributes a1, . . . , an,
this intensional view is reified within SOUL by a predicate V with arity n. If we consider for
example the intensional view Accessors with as attributes ‘class’, ‘method’ and ‘field’, the
corresponding logic predicate is:

Accessors(?class, ?method, ?field)

Upon evaluation of this predicate from within a SOUL program, each solution of this condi-
tion corresponds to a tuple belonging to the extension of the Accessors view.

An example of an intension which uses this mechanism is shown in Figure 4.9. This
intension is the SOUL version of the Smalltalk intension shown in Figure 4.4. It retrieves
all classes which implement a persistence method and which contain a field for which there
exists a mutator method but no accessor method. In this intension, we refer to three other
intensional views, namely Mutators, Accessors and Accounts. The first line of this intension
retrieves the combination of all classes and fields for which there exists a mutator method.
Recall that the ? indicates an anonymous variable in SOUL, similar to in Prolog. In the
second line, the bindings of ‘class’ and ‘field’ get restricted to those for which there does not
exist an accessor method. Line 3 further restricts these classes to those which belong to the
implementation of accounts.

This symbiosis between intensional views and SOUL does not restrict the potential of the
logic language. Our integration of intensional views with the logic language does not come at
the cost of limiting the expressiveness of SOUL. Instead, full unification features, backtrack-
ing, and so on remain applicable. Such use of unification is illustrated in Figure 4.10. This
figure shows two examples of a logic condition which uses the Accessors intensional view.
Due to the unification, the integration of intensional views as a logic predicate in SOUL can
be used to retrieve all accessor methods of a field age (first example) or all accessors for the
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field account belonging to the class Card (second example).

4.3 Tool-support for Intensional Views

In this section, we present the different tools which belong to the IntensiVE tool suite. We
demonstrate how our different tools support the creation and manipulation of intensional
views and constraints, and how they integrate with the surrounding Smalltalk environment
by means of a concrete implementation in Smalltalk of the banking system. As such, we pro-
vide a number of examples of how structural source-code regularities in the banking system
are documented using IntensiVE. Moreover, we also show how, using our tool suite, incon-
sistencies between these documented structural source-code regularities and the actual source
code of the banking system can be discovered.

4.3.1 Tree-representation of Intensional Views

Project

Intensional View

Tuple Source-code entity

Intensional Constraint

Figure 4.11: The intensional views and constraints defined on the Banking system.

Intensional views (and constraints) imposed over a system are represented in IntensiVE in
a tree-like manner. For the banking system, this tree-representation is shown in Figure 4.11.
The tree representation consists of five kinds of nodes:

• Projects: projects are the top-level nodes which group a number of intensional views
and constraints. For example, in Figure 4.11 we see one such project, namely Bank-
ing Example which groups all the intensional views and constraints imposed over our
banking system;



4.3. TOOL-SUPPORT FOR INTENSIONAL VIEWS 91

• Intensional Views: the child nodes of a project are the intensional views which belong
to that project. Notice that one intensional view (in our example the Banking inten-
sional view) can have other intensional views as its children. This nesting relationship
between intensional views is used to indicate the parent view of an intensional view.
In Figure 4.11 we thus see that the Accessors, Mutators, Accounts, Cards and Persis-
tence intensional views have the Banking intensional view as their parent view. Using
a drag & drop mechanism, a developer can alter the parent view of an intensional view,
duplicate intensional views and move intensional views from one project to another;

• Tuples: tuples represent the entities belonging to the extension of an intensional view.
In Figure 4.11, the tuples belonging to the Accessors intensional view are shown. Note
that this set of tuples is not stored in the intensional view but is calculated using the
intension of the view;

• Source-code entities: these are the actual entities in the source-code of a system which
are associated with an attribute of a tuple. In the tree-representation, they are depicted
as the children of a tuple. In the figure, we see the source-code entities belonging to
one of the tuples of the Accessors view. More specifically, we see the Account class,
the method owner implemented by this class and the field owner;

• Intensional Constraints: The other children nodes of a Project are the constraints
which are imposed over the intensional views. For instance, in the figure we see two
such constraints, namely “All accounts must have string ‘Account’ in their name” and
“All mutators must invoke a persistence method”. The child nodes of an intensional
constraint are the intensional views which the constraint is imposed on.

In addition to presenting a structured overview of the different intensional views and con-
straints specified over a software system, this tree-representation also serves as the main point
of access to the tools offered by our tool suite. Since this tree-representation is integrated
with the surrounding IDE, it is possible to directly browse the source code of any of the
source-code entities associated with an attribute of a tuple. Moreover, the tools for defining
and manipulating intensional views and constraints are also accessible from within this tree:
by clicking on an intensional view or constraint, the corresponding editor for the view or
constraint will be opened.

4.3.2 Intensional View Editor

An intensional view is manipulated using the Intensional View Editor. This sub-tool – dis-
playing the Accessors intensional view – is shown in Figure 4.12. The tool provides facilities
for defining the attributes of an intensional view (in the case of the Accessors view these are
‘class’, ‘method’ and ‘field’), its intension, comments which detail the purpose of the view
and which provide an explanation of the intension, and the sets of tuples which are explicitly
included in or excluded from the extension of an intensional view. The different alternative
views of an intensional view are indicated by a tabbing mechanism.

In Chapter 3, we already mentioned that the Accessors intensional view has two alterna-
tive views. The first alternative view is expressed in terms of the naming convention which
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Alternative Views

Intension
Attributes

Deviations

Figure 4.12: The Intensional View Editor

states that all accessor methods start with the prefix “get-”. While this naming convention
is widely adopted in Java programs, Smalltalk developers generally use another convention
when implementing an accessor method, namely they require that the selector of the accessor
method matches the name of the field it is accessing. Since we implemented our running
example in Smalltalk, we document this naming convention instead of the Java variant. The
intension of the first alternative (which is shown in Figure 4.12), expressed using SOUL as a
query language (with the LiCoR library) is:

1 methodWithNameInClass(?method,?field,?class),
2 instanceVariableInClass(?field,?class)

This intension is a straightforward translation of the naming convention. The first logic
condition selects all methods, together with their name (which is bound to the logic variable
‘field’) and their class. The second condition verifies whether there exists a field in the class
with as name the value bound to the logic variable ‘field’. Note that the parent view of the
Accessors view is the Banking intensional view (whose intension can be found in Figure 4.2).
As such, evaluating the above intension yields all tuples from the banking system which
respect this naming convention.

In our implementation of the banking system, there exists one exception to this intension:
the accessor method for the purchases field on the CreditCard class is implemented by
the method retrievePurchases. While it does not follow the coding convention which
characterizes the alternative view, we do want to include it in the extension of the intensional
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view. As such, we explicitly document this exception by adding the tuple to the Includes set:

(class : CreditCard, method : retrievePurchases, field : purchases)

The second alternative view (behind the second tab in Figure 4.12, but not actually shown
in the figure) is based on the idiomatic implementation of accessor methods. Such accessor
methods are typically characterized by being implemented as a single statement returning the
value of a field. We express this intension using the following SOUL intension:

1 statementsOfMethod(statements(<?statement>),?method),
2 instanceVariableInClass(?field,?class),
3 equals(?statement, return(variable(?field)))

This intension consists of three conditions. The first condition restricts the bindings of
the ‘method’ variable to those whose statement-list consists of a single statement. This is
achieved by the statementsOfMethod predicate. This predicate binds the statements be-
longing to a method to a functor statements which has one argument, namely the list of
actual statements. By specifying that this list is a singleton (lists in SOUL are delimited by <
>), only methods are considered which consist of a single statement. In the second condition,
all fields ‘field’ of a class ‘class’ are selected. The third condition links the first and second
condition, by requiring that the single statement of the method is a return statement which
returns the value of the instance variable bound to the SOUL variable ‘field’.

4.3.3 Checking extensional consistency of a view

Per alternative Extension

Inconsistency

Figure 4.13: The Extensional Consistency Inspector

When multiple alternative views are defined for a single intensional view, it becomes pos-
sible to verify the extensional consistency of the intensional view, as we have explained in
Chapter 3. Extensional consistency implies that all alternative views of a given intensional
view yield the same set of tuples. In our tool suite we provide the Extensional Consistency
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Inspector: a sub-tool that allows for verification of this type of constraint for a given inten-
sional view. Next to informing a user whether the intensional view is extensionally consistent
or not, this tool reports on the inconsistencies between the different alternatives of the inten-
sional view.

Figure 4.13 shows this tool opened on the Accessors intensional view. Recall from the
previous section that this view has two alternatives: one alternative expressing the naming
convention that the selector of an accessor method must match the name of the field it is
accessing; the other alternative expressed in function of the idiom that an accessor method
consists of a single statement returning the value of a field.

The inspector shows a column for each alternative view of the intensional view. The first
column corresponds to the alternative based on the naming convention; the second column
represents the idiom-based alternative. For each alternative, the different rows in the column
show the tuples belonging to that alternative. Tuples present in the extension of all alternatives
are indicated in black. Discrepancies between the different alternatives are indicated in red
and green. If a tuple is part of the extension of some of the alternatives, but not of all, it is
indicated in green (and prefixed with a ‘+’ sign) in the columns of the alternatives to which
it belongs; if it is absent from the extension of a certain alternative view, it is indicated in red
(and prefixed with a ‘-’).

When verifying the extensional consistency of the Accessors intensional view, we see that
there is one tuple which is marked as a possible inconsistency between the two alternative
views of the Accessors view.

More specifically, the tuple

(class : CheckingAccount, method : getcards, field : cards)

is marked as part of the second alternative (green), but it is not part (red) of the first alter-
native of the Accessors view. Thus, while the accessor method represented by this tuple is
implemented as a single statement which returns the value of cards field, it does not respect
the naming convention which dictates that the selector of the accessor method must corre-
spond to the name of the field. In order to provide easy access to the source-code entities
which violate the extensional consistency of an intensional view, the extensional consistency
inspector provides facilities for browsing the source-code related to the inconsistencies (by
right-clicking on an inconsistency).

4.4 Tool-support for Intensional Constraints

In this section we provide an overview of how our tool suite provides support for imposing
constraints on the intensional views defined on a software system. We demonstrate how
unary intensional constraints and binary intensional relations are defined using our tool suite,
how the predicate expressing the actual constraint is specified and how our tool can provide
feedback concerning the discrepancies between the documented constraint and the source
code of the system.



4.4. TOOL-SUPPORT FOR INTENSIONAL CONSTRAINTS 95

4.4.1 Specifying the predicate of a constraint

Similar to the intension of an intensional view, both the Smalltalk as well as the SOUL query
language can be used in order to express the predicate of an intensional constraint. To illus-
trate how this mechanism works in practice, we take a detailed look at the predicate of the
binary intensional relation: “all mutator methods must invoke a persistence method”. This
binary relation is expressed in terms of two intensional views, namely the Mutators and Per-
sistence view. Mathematically, this relation can be expressed as:

∀ t1 ∈ Mutators :
∃ t2 ∈ Persistence :

calls(t1.method, t2.method)

In Chapter 3, we stated that the predicate of a binary intensional relation must be a func-
tion that takes as input two arguments, namely two tuples, and returns a boolean expressing
whether the constraint holds or not for a given pair of tuples. For the above relation, this
predicate is a function p such that:

p(t1, t2) = calls(t1.method, t2.method)

We can express this binary predicate in SOUL as follows:

methodCallsMethod(?mutator.method, ?persistence.method)

This predicate uses the methodCallsMethod predicate of LiCoR which, given two meth-
ods, returns true if the body of the first method contains a call to the second method. Notice
that the name of the actual tuples which are inputted into the predicate can be chosen by a
developer. For instance, the tuples belonging to the Mutators view are designated mutator;
those belonging to the extension of the Persistence view are referred to as persistence.
In order to access the value of a specific attribute of a tuple, a dot operator is used. E.g.
mutator.method retrieves the value of the ‘method’ attribute from a given tuple.

Similarly, the same binary predicate can be expressed in Smalltalk by the following
Smalltalk program:

(mutator valueFor:#method) compiledMethod
sendsSelector:

(persistence valueFor:#method) compiledMethod selector

The above Smalltalk program receives two tuples from the IntensiVE environment, namely
mutator and persistence, and returns a boolean depending on whether the mutator
method contains a call to the persistence method. To this end, the program retrieves the value
for the ‘method’ attribute from the mutator tuple, extracts its compiled method and verifies
whether this compiled method contains a message send of the selector corresponding with the
selector of the persistence method.

4.4.2 Intensional Relation Editor

The Intensional Relation Editor is the main tool in our tool suite for defining and manipulat-
ing constraints over intensional views. Both unary intensional constraints, as well as binary
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Figure 4.14: The Intensional Relation Editor

intensional relations are defined using this tool. Figure 4.14 shows the Intensional Relation
Editor opened on the binary intensional relation expressing that “all mutator methods must
invoke a persistence method”. This sub-tool of our tool suite allows for defining a constraint
over intensional views by specifying:

• Intensional Views: depending on whether one is defining a unary constraint or a binary
relation, respectively one or two intensional views are provided;

• Quantifiers: one or two quantifiers, depending on the number of intensional views
involved in the constraint;

• Exceptions: a user can explicitly document that for certain tuples or pairs of tuples the
relation does or does not hold;

• Predicate: the expression which is verified for the tuples belonging to the extension of
the intensional views involved in the relation;

• Tuple names: the names which will be used to indicate the tuples in the predicate.

For instance, for the binary intensional relation which is shown in Figure 4.14, we speci-
fied two intensional views, namely the Mutators and Persistence views with as quantifiers
respectively ∀ and ∃. We documented one exception to the relation, namely:

((class : BankCard, method : purchases, field : purchases), )

This exception makes use of the wildcard mechanism (‘ ’) and states that for the tuple de-
scribing the mutator method of the purchases field, implemented by the BankCard class,
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the relation explicitly holds. As the predicate for this binary intensional relation, we used the
SOUL variant which we explained in the previous section.

Unary intensional constraints are declared in a similar way as the binary intensional re-
lation we demonstrated in this section. This can be done by selecting ‘None’ as the second
intensional view in the intensional relation editor. In such a case, the relation editor requires
a unary predicate instead of a binary predicate; exceptions to the relation consist of single
tuples rather than of pairs of tuples.

Although the Intensional Relation Editor could straightforwardly be extended such that
it can deal with n-ary relations, we did not incorporate such constraints in our tool suite since
the need has not arisen from the case studies we conducted.

4.4.3 Verifying validity of an intensional constraint

Pairs of tuples for which constraint holds

Tuples  for which relation does not old
Documented exception

Statistics

Figure 4.15: The Relation Consistency Inspector

Similar to verifying extensional consistency of the alternatives of an intensional view, our
tool suite offers support for checking whether a given constraint imposed on a number of
intensional views holds with respect to the source code of a system. To this end, we supply
the Relation Consistency Inspector. Figure 4.15 shows this sub-tool opened on the binary
intensional relation we discussed in the previous section.

First of all, this tool shows the pairs of tuples from the cross-product of the extensions
of the Mutators and Persistence intensional views for which the predicate holds (pane in the
center of the figure). Note that explicit exceptions to this constraint are shown in either green
(include) or red (exclude). More interestingly, the tool also provides detailed information
concerning tuples which the relation does not hold for. For a binary intensional relation, the
tuples from the first intensional view which do not occur in the relation are shown in the Not
in domain box; the tuples from the extension of the second view for which the relation does
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not hold are presented in the Not in range box. For instance, in our example relation it is
reported that the Not in domain box contains the following tuples belonging to the extension
Mutators intensional view:

(class:Client, method:age:, field:age ),
(class:SavingsAccount, method:interestRate:, field:interestRate ),
(class:Card, method:account:, field:account ),
(class:Client, method:address:, field:address ),
(class:CheckingAccount, method:cards:, field:cards ),
(class:Client, method:name:, field:name )

Each of these tuples does not respect the structural source code regularity stating that a muta-
tor method must invoke a persistence method and are thus reported by our tool. Note that the
Not in range box is empty: this indicates that every persistence method in the banking system
is possibly invoked.

When opened on a unary intensional constraint, the Relation Consistency Inspector will
show similar behavior: tuples which the predicate holds are shown in the middle pane of the
tool for. Tuples for which the constraint fails are shown in the Not in domain box.

4.5 Verifying a collection of intensional views

Until now we have focused on the parts of our tool suite which allow defining intensional
views and constraints on these views, and which support the verification of the validity of a
single intensional view or constraint with respect to source code. However, as the number of
intensional views and constraints increases, it becomes unfeasible to verify them one by one
manually. In order to give a higher-level overview of the intensional views and constraints
imposed on a system, and their validity with respect to the source code of that system, we
provide two tools:

• A visualization tool which presents a graphical overview of the intensional views, con-
straints and their validity;

• An extension to the Smalltalk unit testing framework which aids in incorporating the
verification of intensional views and constraints into the regular testing phase of the
development cycle.

4.5.1 Visualization tool

The visualization tool is implemented as an extension to the StarBrowser and uses the Hot-
Draw [Bra92] framework for graphical editors to give a visual representation of the different
intensional views declared on a software system and the constraints imposed on those inten-
sional views. Figure 4.16 demonstrates this tool applied to the intensional views we defined
on our running example system, namely the implementation of a banking system.

In the visualization of the system, each intensional view is represented by an ellipse. De-
pending on the color (green or red), the depicted intensional view is respectively extensionally



4.5. VERIFYING A COLLECTION OF INTENSIONAL VIEWS 99

Figure 4.16: Visualization of the intensional views and constraints defined on the banking
system

consistent or extensionally inconsistent. For instance, in Figure 4.16, we see that all inten-
sional views except the Accessors and Mutators view are extensionally consistent. For each
intensional view, the parent view is indicated by a line with a diamond on the parent view
end. In our example, all intensional views have the Banking view as their parent.

Constraints imposed on intensional views are shown as a line between the intensional
views involved in the constraint. The color of the line indicates whether the constraint holds or
not. In Figure 4.16 we see that the relation between the Mutators and Persistence intensional
view, which we also described in Section 4.4.2, does not hold.

4.5.2 Unit test integration

Another means to verify the consistency of a set of intensional views and intensional con-
straints is offered by the integration of the IntensiVE tool suite with the Smalltalk unit testing
framework. The principle of unit tests [Bec99] stems from eXtreme Programming (XP) in
which a “test-driven” philosophy is adopted. Each unit test consists of a small fragment of
code which verifies the correct behavior for a single class or method. The general idea behind
using unit tests is that, if these small tests are executed frequently, bugs are detected as early
as possible during development.

To support unit tests, the Smalltalk environment provides a framework which facilitates
defining tests and executing them. A new test case is created by subclassing the TestCase
class. Separate tests are implemented by creating methods whose selector starts with the
prefix “test-”. By using assertions, different parts of the behavior of a system can be tested.
Moreover, the environment contains a number of enhancements and browsers which run the
tests defined on a system and report on failing tests. These test runners then allow a developer
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Figure 4.17: Illustration of the integration of IntensiVE with the Unit testing framework.

to access the debugging facilities of Smalltalk in order to correct the errors resulting from the
failing tests.

We extended this framework with a new kind of entity, namely IntensiVE test cases. An
example of this integration is shown in Figure 4.17. An IntensiVE test case is automatically
generated from a number of intensional views and the constraints imposed on those views (in
our example, it is generated from all the intensional views and constraints we defined on the
Banking system). Similar to regular tests cases, an IntensiVE test case can be verified from
within the different test runners the Smalltalk environment offers. For each intensional view
and constraint, the test case contains a separate test. Executing an IntensiVE test case cor-
responds to verifying whether the test case’s intensional views and constraint are consistent
with the implementation. Upon failure of an IntensiVE test case, the Extensional Consistency
Inspector or Relation Consistency Inspector is shown such that a user can remedy the incon-
sistencies between the structural source-code regularities and the source code of a system.

4.6 Methodology

While the previous sections introduced our tool suite and demonstrated by means of a num-
ber of examples how structural source-code regularities can be documented and verified using
our tools, in this section we propose a lightweight methodology for using our approach and
incorporating it in the development process. Due to the multitude of different kinds of struc-
tural source-code regularities, and the diversity of ways these regularities are manifested in
the source code of a system, it is outside the scope of this dissertation to provide a detailed
overview of how each kind of regularity can be supported by our approach and tool suite.

The methodology we discuss in this section will consist of a number of guidelines for
documenting regularities using our approach and for integrating support for these regularities
into the development process. We have put this methodology into practice in the case studies
which we present in Chapters 5 and 6.
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4.6.1 Documenting a structural source-code regularity

We start our methodology by proposing a number of guidelines for documenting a structural
source-code regularity using intensional views and constraints. A distinctive feature of our
approach is that we explicitly discriminate between the set of source-code entities on which
the constraint is imposed on the one hand, and the actual constraint on the other hand.

Creating the intensional view

When documenting a regularity, we start by identifying the set of tuples representing the
source-code artifacts which the regularity should apply to. If this set of artifacts is already
captured by an intensional view, then the regularity can be documented by imposing an addi-
tional constraint on this intensional view. If not, a new intensional view needs to be created
that captures the source-code entities. In general, such an intensional view will align with a
concept from the problem or solution domain of the system which we wish to document a
regularity for. For instance, in the Banking example we encountered certain intensional views
which are specific to the domain of banks like Cards and Accounts but also certain intensional
views that align with implementation concepts like Accessors and Persistence.

Attributes Attributes specified for the intensional view can be considered to be the exter-
nal interface to the view. They are chosen such that they provide access to the source-code
entities involved in the constraint that expresses the regularity. For instance, since we wanted
to document a number of regularities governing accessor methods in the Banking system, we
included an attribute ‘method’ in the Accessors intensional view. This set of attributes can be
complemented such that other information related to the concept captured by the intensional
view is made accessible. We also added for the Accessors intensional view attributes asso-
ciated with the class on which the accessing method was implemented, as well as the name
of the field that was accessed. This way, a tuple can contain contextual information about
the concept captured by the view, providing a developer access to the source-code entities
related to a certain instance of that concept. However, in order not to clutter the tuples, it is
recommended to limit the number of attributes of an intensional view to at most four or five.

Intension When defining an intensional view, the developer also provides an initial inten-
sion. Upon execution, this intension must yield the tuples representing the source-code enti-
ties which the regularity that is being documented is applicable to. To this end, IntensiVE sup-
ports SOUL and Smalltalk as a query language. As we shall illustrate by means of a number
of examples later on in this dissertation, the SOUL language seems to be a more suitable
candidate to succinctly and declaratively express the intension of an intensional view. How-
ever, due to performance reasons, a developer might opt for Smalltalk as the query language
whenever the intension tends to be computationally intensive.

As we explain later on in this section, we propose a step-wise process for defining the
intensional views and constraints imposed on a system. As a result, if the developer specifies
an initial intension that is either too specific or too general, or if some deviations from this
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initial intension are omitted, this step-wise definition of the documentation will reveal such
inconsistencies and aid in refining the definition of the intensional view.

Parent view The parent view of the intensional view presents a means for determining the
scope which the intensional view is applicable to. If the concept, or the set of source-code
entities, to which the regularity applies is subsumed by an already existing intensional view,
then the new intensional view can use this existing intensional view as its parent view. The
intension of the newly created view will then serve as a kind of filter, selecting the source-
code entities from the extension of the parent view which are of interest to the concept that
is documented with the new intensional view. Similarly, if multiple intensional views share
some overlapping source-code entities, then these overlapping entities can be captured by a
separate parent intensional view with as intension the common part of the intensions of the
two views.

The result is a hierarchy of intensional views that can be refactored during the addition
or refinement of the set of intensional views on a software system. Intensional views that are
situated high in this hierarchy represent more general concepts; the views that are lower in the
hierarchy are in general a representation of more specific concepts in the source code of the
system. Note that often for a certain software system, a top-level intensional view is created
that captures all entities in the software system. All other intensional views defined for this
system are directly or indirectly a child of this top-level view. E.g. in the banking system we
created a top-level view Banking system which the other intensional views on that system are
children of.

When to use an alternative view, a unary constraint or a binary relation

While the source-code entities which a regularity is applicable to are documented using an
intensional view, the actual regularity is encoded by using either an alternative view, a unary
intensional constraint or a binary intensional relation. Although we earlier discussed the
applicability of each of these kinds of constraints, we briefly repeat which situation calls for
which kind of constraint.

• Alternative view: an alternative view is added to the intensional view representing
the concept which the regularity is applicable to if the regularity is limited to a single
concept in the source code of the system. Moreover, the regularity needs to be both
necessary and sufficient. Not only must the regularity hold for all source-code entities
belonging to the intensional view; if a source-code entity adheres to the regularity it
must also belong to the extension of the intensional view. If the regularity thus provides
an alternative description of a certain concept, it is documented using an alternative
view;

• Unary intensional constraint: other regularities which are applicable to a single in-
tensional view, but which only provide a necessary condition on the entities belonging
to the intensional view are documented using a unary intensional constraint. While the
regularity must hold for all tuples in the extension of the intensional view, this does not
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Figure 4.18: A schematic illustration of the process of iteratively refining the documented
regularities and the source code.

mean that if an entity respects the regularity, it should be included in the intensional
view;

• Binary intensional relation: binary intensional relations are used to document regu-
larities that express a dependency between two different intensional views.

Similar to the initially defined version of an intensional view, this first version of a constraint
on intensional views captures the initial assumption about how the documented regularity
manifests itself in the source code.

4.6.2 Co-design of documentation and implementation

After a developer has encoded the initial assumption about how a certain regularity is man-
ifested in the source code (or as we shall discuss in the next section, after the system has
evolved) we propose in our methodology the co-design of the documented design regularities
and the source code in order to synchronize both artifacts. We do not consider the docu-
mentation and the source code as two separate entities which are created independently of
each other. Rather, our methodology takes the verifiable causal link that our documentation
introduces into account. As such, we propose an iterative, simultaneous refinement of the
documentation and the source code as a means to synchronize the design regularities and
the implementation. This process of co-design illustrates the prescriptive use of the docu-
mentation created using intensional views and constraints. The various intensional views and
constraints defined over a system serve as a description of the design regularities that govern a
system. During the co-design of the regularities and the implementation, both this description
as well as the actual source code are refined.

More concretely, we suggest the following process (a schematic overview of which is
shown in Figure 4.18):

1. After initial documentation of a regularity is created, the developer verifies the consis-
tency of the involved intensional views and constraints using the Extensional Consis-
tency Inspector and the Relation Consistency Inspector;

2. If the intensional view/constraint is not consistent, the developer inspects the tuples
which are indicated by the tools as discrepancies, along with the source code of the
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entities in the tuples. Based on this information, the developer can resolve the discrep-
ancies by (a combination of) the following actions:

• Discrepancies can be caused by the intension of the intensional view, or the pred-
icate (or quantifiers) of the constraint being incorrect or imprecise. In such a
case, the active documentation that the developer created for the regularity does
not properly represent the regularity in the source code. In order to rectify this
situation, the developer needs to update the intensional view or constraint;

• Our tools can report a number of discrepancies about which the developer decides
that they are deviations to the intension of the view, or that the constraint is not
applicable to them. In order to synchronize the documentation of the regularity
and the source code, the developer can explicitly mark them as deviations to the
intension or as exceptions to the constraint using the Incl and Excl sets;

• An inspection of the source code of the entities belonging to a discrepancy can
also reveal that the discrepancy was not caused by the documentation, but rather
that the source code did not properly adhere to the documented regularity. In
other words, the discrepancy was the result of an infringement of the regularity.
The developer can solve this inconsistency by altering the source code such that
it correctly obeys the regularity.

3. After the documentation and/or source code have been updated, the developer repeats
the process of verification and resolution until the intensional views and constraints are
consistent with respect to the source code.

After this iterative process, in which the definition of the intensional views/constraints and the
source code will be refined, the documented design regularity and the actual implementation
will be synchronized. In other words, this step-wise refinement results in that the verification
of the documentation and the source code no longer yields discrepancies.

4.6.3 Co-evolution of documentation and implementation

Once the developer has created active documentation of the structural source-code regularities
that govern a system using intensional views and constraints, it is imperative that upon evolu-
tion of the system this documentation and the source code remain mutually consistent. Thus,
the documentation and the source code must co-evolve. This co-evolution is illustrated in
Figure 4.19. Upon changes in either regularities or source code, the support for co-evolution
allows keeping both artifacts synchronized.

Depending on the phase in the implementation cycle, this co-evolution of the documented
design regularities and the source code illustrates both the descriptive as well as the prescrip-
tive use of the intensional views and constraints. During the earlier phases of the implemen-
tation, the different design regularities can still be volatile and subjective to evolution. As a
consequence, the intensional views and constraints serve as a kind of descriptive documenta-
tion for these regularities. During the later phases of the implementation, we envision a more
prescriptive use of the documented regularities. In such a scenario, the documentation serves
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Figure 4.19: A schematic illustration of co-evolving the documented structural source-code
regularities with the source code.

as a means to verify whether evolution of the source code does not break any of the structural
source-code regularities that govern a system.

Structural regularity testing

As a first means to support this co-evolution, we wish to detect discrepancies between the
intensional views/constraints and the source code early on during development. Therefore we
propose a “test-often” philosophy that is similar to the unit testing methodology underlying
eXtreme Programming [Bec99]. This methodology describes a process in which a number of
unit tests are written that each verify that a specific and small part of the system behaves cor-
rectly. By incorporating these tests suites in the development environment and by rigorously
and consistently executing these tests each time considerable changes have been made to the
implementation, the developer can detect bugs in the implementation at an early stage. Simi-
larly, the intensional views and constraints that are defined over a system can be considered to
be structural regularity tests. By continuously verifying the validity of the documented reg-
ularities with the implementation, discrepancies between both these artifacts will be brought
to the developer’s attention at an early stage during development.

Beck attributes a number of properties to unit tests which are also applicable to our ap-
proach. The intensional views and constraints provide a means to document the different
regularities that govern the system on a by need basis. The verification of the documenta-
tion and the resolution of possible discrepancies can be performed when a developer feels the
need for this, e.g. when a number of changes have been made to the implementation. What’s
more, since intensional views and constraints provide documentation for structural source-
code regularities, they aid in making the system more understandable. First off, this better
understanding is aided by that our approach makes the regularities explicit to the develop-
ers. Second, by enabling the consistent propagation of structural source-code regularities in
the source code, this makes the source code more uniform resulting in improved readability.
Furthermore, since the test-driven methodology makes it possible to detect infringements of
regularities early on, this aids in strengthening confidence about the source code following
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the different regularities that govern the system.

Conflict resolution and support for co-evolution

Whenever during the implementation phase our tool suite (for instance our tool that integrates
with the unit testing framework) identifies a discrepancy between a documented regularity and
the source code, the same iterative process as described in Figure 4.18 is applicable in order
to resolve the discrepancy. Not only do we advocate co-design to create documentation for
structural source-code regularities, it also lies at the heart of supporting co-evolution between
the source code and the documented regularities. Whether the structural regularities or the
source code of the system evolves, the iterative process prescribes a means of updating the
documentation of the regularities and/or the source code of the system such that both artifacts
are synchronized again. Due to the integration of our tools with the surrounding development
environment, this process is aided since both the documentation as well as the implementation
can be accessed from within our tool suite.

4.7 Comparison with the state of the art

Now that we have introduced our model of intensional views and constraints (Chapter 3) and
our prototype implementation of this model, namely IntensiVE, we situate how our work
relates to the state of the art which we discussed in Chapter 2.

4.7.1 Classification mechanisms

The construct of an intensional view is a classification mechanism that groups a set of source-
code entities that are conceptually related. Although our approach is unique in that it employs
a classification mechanism in order to provide support for the documentation and verification
structural source-code regularities, this classification mechanism bears many resemblances to
those that we discussed in Section 2.2.

Virtual software classifications The concept of an intensional view is inspired both by the
virtual classifications of De Hondt as well as by the classification model employed by Kim
Mens in their doctoral dissertations. However, our work can be considered as a generalization
of these two classification models. Classifications in our approach do not consist of a set
of software artifacts but rather group a set of tuples representing an instance of a certain
concept in the source code. As we shall illustrate in Chapter 6 this representation using tuples
allows conceptual entities in the source code to be documented more succinctly. Moreover, we
extended the virtual classifications both with a scoping mechanism (parent views) as well as
with constructs to explicitly cope with exceptions to the query describing the classifications.
We also generalized the notion of constraints on classifications such that our model supports
relations between an arbitrary number of classifications.



4.7. COMPARISON WITH THE STATE OF THE ART 107

Concern Manipulation Environment Although the goal of the concern manipulation en-
vironment, namely supporting the manipulation of concerns throughout the development cy-
cle, differs from our goal of documenting, verifying and co-evolving structural source code
regularities, the classification models of both approaches share a number of commonalities.
Both approaches propose a classification model in which classifications are first-class entities.
Moreover, they both support the definition of classifications by means of a query and provide
constructs to impose constraints over the classification. However, due to the difference in
focus, the emphasis in our approach lies on the different types of constraints we offer (al-
ternative views, n-ary constraints) which aid in expressing structural source-code regularities
and verifying conformance of the regularities with respect to the source code of a system.

Cosmos Cosmos provides a specialized classification mechanism containing numerous con-
cepts such as classes, properties and topics, which from the point of view of supporting struc-
tural source-code regularities during the development process seem not to be applicable. In
the terminology used by Cosmos, the notion of an intensional view best aligns with the con-
cept of instance concerns. Perhaps the most notable difference between both classification
mechanisms is that, while our approach offers the definition of classifications using a de-
scription (intensional), Cosmos only provides support for enumeration-based classifications
(extensional).

Conceptual Models Similar to Cosmos, Conceptual Models provides a classification mech-
anism which only supports the extensional definition of the classifications. Using Conceptual
Models, this is done by manually specifying a set of lines of source code that belong to a
module. As a result, both the Cosmos classification mechanism as well as conceptual models
seem less suitable for supporting the evolution of structural source-code regularities since,
upon evolution of a system, the entities belonging to a classification would always have to
be updated manually as opposed to intensionally defined classifications, in which the set of
entities belonging to a classification can be re-computed.

Concern Graphs Concern graphs offer a similar classification mechanism as intensional
views, in that both techniques make use of a query-based definition of the set of entities be-
longing to a classification. Furthermore, similar to our methodology, concern graphs advocate
an iterative process where the query describing a concern graph is refined in multiple steps. In
contrast to our approach however, concern graphs lack the possibility to express constraints
on the concern model, rendering this technique less suitable for supporting documentation
and verification of structural source-code regularities.

4.7.2 Support for structural source-code regularities

In addition to discussing how our approach relates to the different classification mechanisms
we discussed earlier, we also provide a comparison of our model, tool suite and methodology
with other approaches that share a similar goal of supporting structural source-code regular-
ities throughout the implementation process. Recall from Chapter 2 that we discriminated
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between three groups of such approaches: code checkers, meta-programming languages and
architectural conformance checkers. In what follows, we dedicate a section to each of these
groups and discuss the parallels and differences of intensional views and constraints with
these approaches.

Code checkers

In Section 2.3.1 we discussed a large group of approaches that provide dedicated support
for the verification of system-wide regularities such as stylistic constraints, commonly made
mistakes, code smells, and so on. With the exception of a number of approaches, such
as FindBugs and PMD, the set of regularities that can be verified with these approaches is
fixed, resulting in these approaches being less suitable for supporting more domain-specific
or application-specific regularities.

In contrast, our approach aims at offering a general platform for documenting and verify-
ing structural source-code regularities. Our approach does not focus on any kind of regularity
in particular, but rather supports the documentation of various kinds of structural source-code
regularities. Furthermore, our approach takes into account that regularities are liable to evolve
over time. Since code checkers provide support for regularities which are rather universal in
nature and which do not change over time, this need for evolving the documented regularities
is not prevalent with such approaches.

However, the generality our approach offers comes at the trade-off that specialized tech-
niques – such as these code checkers – can provide more dedicated support. For example the
P3 system offers, next to facilities for detecting common coding errors, support for automati-
cally correcting such errors. Furthermore, since these approaches focus on verifying specific
regularities, the analysis they perform of the source code can be highly optimized resulting in
efficient run-time and accuracy.

Meta-programming languages

In Section 2.3.2 of Chapter 2 we discussed a number of approaches that offer a meta-
programming language which reasons about a reification of the source code of a system and
allows the implementation of checkers for different kinds of structural source-code regulari-
ties.

In general, these approaches are complementary to our work. We presented our approach
in Chapter 3 independently of the query language used to specify the intension of a view
or the predicate of a constraint. Similarly, our model of intensional views and constraints
also abstracts about the underlying source-code representation. As such, the reification of
the source code about which each of these meta-language approaches reasons can be used as
the universe U of source-code entities over which intensional views are defined. The actual
meta-programming language can be adapted such that it is used to express the intension of an
intensional view or the predicate of a constraint. By means of a plugin architecture, our tool
suite IntensiVE actively supports this integration of other query languages and source-code
representation.
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We put this integration into practice in the implementation of IntensiVE, where we opted
to use one such meta-programming approach, namely SOUL, as the primary means for ex-
pressing the intension of a view. SOUL offers the advantage over other meta-programming
systems such as e.g. CCEL that it provides a full reification of the source code, including the
method bodies. Furthermore, the declarative paradigm, which SOUL is an instantiation of,
has been shown to be an expressive means for reasoning about software.

The combination of our approach and tool suite with meta-programming languages aids
in leveraging some of the disadvantages of the latter. First of all, intensional views and con-
straints provide a structured means to documented regularities and thus creating explicit doc-
umentation of these regularities. Moreover, this documentation is a first-class entity in the
surrounding development environment and the verification of this documentation can be inte-
grated into the development process. Second, our methodology and tool suite actively support
the co-design and co-evolution of structural source-code regularities with the source code of
a system. As such, the structured means of documenting regularities and the integration with
the development process that our approach offers is complemented with the extensive query-
ing facilities offered by meta-programming languages.

Architectural conformance checkers

The third group of related approaches we discussed in Chapter 2 are architectural confor-
mance checkers. These approaches provide support for verifying a high-level description of
the architecture or the design of a system with the source code. While our approach can
also be used to express more low-level regularities such as programming idioms, these archi-
tectural conformance checkers show a number of similarities with intensional views. First,
intensional views can align with a high-level concept in the source code. The constraints
on intensional views can be used to document dependencies or interactions between these
high-level concepts. Furthermore, some of these architectural conformance checkers (such
as two-tier programming and virtual software classifications) also advocate – similar to our
approach – a methodology in which the architectural description is co-evolved with the im-
plementation of the system. In what follows we briefly revisit the architectural conformance
checkers we discussed earlier and provide a more detailed comparison with our approach.

Reflexion Models Reflexion models present a technique in which a developer creates a
high-level view of the different concepts in a system and the calling relations between these
concepts. The approach supports the verification of this high-level view with respect to the
source code of the system. Our approach shows a number of similarities with reflexion mod-
els. The different concepts which appear in the high-level model used by reflexion models
align with the intensional views a developer specifies over a software system; dependencies
between such high-level concepts boil down to the use of relations in our approach. Besides
that our approach supports a richer set of constraints than calling relations between concep-
tual units, the main difference with reflexion models lies in the mapping of the high-level
model onto the source code of the system. While in our approach this mapping is implicit
from the intensional definition of a view, in reflexion models a developer needs to explicitly
and manually map a high-level concept to a set of source-code entities.
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Tool support for design patterns The approach of Florijn et al. relies on the concept of a
fragment: a design element along with a number of roles. Using these fragments, a design
pattern can be documented. An instance of a design pattern can be documented by manually
mapping the different roles of the design pattern description to actual entities from within the
source code of a system. By comparing the prototypical description of a design pattern with
the actual instantiation, inconsistencies can be detected and an automatic resolution strategy
can be proposed.

As we will demonstrate in Chapter 5, our approach lends itself to documenting and veri-
fying different regularities underlying the implementation of design patterns. Although we do
not only focus on the interactions between the different participants of a design pattern, but
also capture naming conventions, implementation patterns, and so on, our approach shares a
number of similarities with that of Florijn. Each of the different roles of the design pattern
correspond to an intensional view; dependencies between roles are documented using inten-
sional relations. However, while Florijn’s approach requires an explicit, extensional mapping
of the different design pattern roles to the entities in the source code, the different views doc-
umenting the role of a design pattern capture the source-code entities belonging to that role
by means of an intensional description.

Ptidej Similar to the work of Florijn, Ptidej provides support for the identification and ver-
ification of design patterns in the source code of a system. In Ptidej, a design pattern is
documented by means of a meta-model that expresses how the different roles of the pattern
relate. By also modeling the actual architecture of the system using the meta-model, Ptidej is
able to detect design patterns, identify infringements against the proper implementation and
provide corrective measures.

While Ptidej documents the prototypical structure of a design pattern, and uses this doc-
umentation in order to support instantiations of this design pattern, we approach the problem
from a different angle. In contrast to Ptidej, we do not document the abstract design pattern.
Rather, we document the structural source-code regularities underlying a particular instanti-
ation of the design pattern. This results in that our approach requires more effort to document
the regularities of a design pattern, since each instantiation of the pattern requires a separate
set of intensional views and constraints. Conversely, our approach offers the advantage that
it allows us to document and verify instantiation-specific naming conventions, dependencies,
and so on.

Two-tier programming Our model of intensional views and the associated methodology
can be considered to be another instantiation of two-tier programming. Using our approach,
the underlying model of the software on which we define intensional views is the first-order
tier. The structural source-code regularities we document using intensional views and rela-
tions form a high-level representation of certain concepts in the software and can thus be
considered the second-order tier. In our approach, there exists no explicit association map-
ping. Rather, the intensional views which make up the second-order tier are defined in terms
of the entities in the first-order tier, resulting in an implicit mapping. An additional benefit of
this implicit mapping is that, upon addition or removal of software entities from the first-order
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tier, there is no need to update the association mapping manually. What’s more, this implicit
mapping mechanism renders it possible to identify inconsistencies automatically between the
first-order and second-order tier.

4.8 Discussion

Extensibility of the tool suite

Although our tool suite at the moment only supports the software model of Smalltalk and
Java, on which intensional views and intensional constraints can be imposed using Smalltalk
and SOUL as a query language, it has been developed with extensibility in mind. From its
inception, one of the main motivations behind our implementation is to provide a prototype
research environment which allows easy experimentation with different underlying software
models and query languages. In order to ease this experimentation, our implementation has
been conceived as a framework that can support many other software models and query lan-
guages.

Choice of Smalltalk as implementation language

Notwithstanding the popularity of the Eclipse platform and the Java language for implement-
ing research-oriented software engineering tools, we opted for our implementation to use
Smalltalk and the Cincom VisualWorks environment. In particular, the openness of the lan-
guage and development environment, the reflective capabilities offered by the Smalltalk meta-
object protocol and the dynamic typing of the Smalltalk language render it an ideal candidate
for prototyping IntensiVE.

• Dynamic typing In addition to speeding up the rapid prototyping of the IntensiVE tool
suite, the use of a dynamically typed language offers a number of significant advan-
tages. Foremost, the combination of dynamic typing with the “everything is an object”
philosophy underlying Smalltalk eases the integration of different software models into
the IntensiVE tools. Without having to take static typing information into account, it is
possible to associate any kind of Smalltalk object to an attribute of a tuple. This makes
it possible to readily incorporate other software models into IntensiVE.

• Reflective capabilities In addition to making it possible to use Smalltalk as a query
language for IntensiVE, the reflective capabilities of Smalltalk also eased implementing
the IntensiVE framework. A first situation in which this reflection proved to be useful
was for configuring the different customizations of the framework. For instance, the
part of the tool suite that initializes the different evaluators for the supported query
languages uses the first-class representation of classes and methods in order to retrieve
all applicable evaluators, configure those evaluators and integrate them into the user
interface of IntensiVE.

A second situation in which we rely on the reflective capabilities of Smalltalk is in
the implementation of the persistence mechanism of IntensiVE. Although the image
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based development of VisualWorks is suitable for managing and manipulating an object
representation of the intensional views defined over a system, in order to distribute a set
of intensional views, a more persistent representation of these views is necessary. This
representation is obtained by representing a volatile intensional view or constraint as a
Smalltalk program: intensional views and constraints can be compiled into a method
that, upon execution, yields the original view or constraint. This representation of data
as a program has as an advantage that the standard distribution and versioning facilities
of Smalltalk are applicable.

• Open implementation Smalltalk offers an open implementation of both the develop-
ment environment as well as the language and standard libraries. The openness of the
environment rendered it possible to provide a tight integration of our tool suite with
the IDE. This is for instance demonstrated by the fact that our tool suite is integrated
with the Smalltalk unit testing framework and that from within our tools it is possi-
ble to easily browse the source code related to the documented structural source-code
regularities. Moreover, the open implementation of the Smalltalk language makes it
possible to extend the language itself. In IntensiVE, we have demonstrated this feature
by extending the Smalltalk namespace mechanism such that it can be used to access in-
tensional views as first-class language entities. Finally, the fact that the implementation
of the entire class library is available and extensible from within Smalltalk itself, makes
it possible to extend this class library straightforwardly. For instance, we were able to
extend the standard Collection framework with the same set-theoretical operations
that the Extension class from the IntensiVE framework implements. This allowed
us to, internally in the implementation of IntensiVE, transparently use extensions and
collections.

SOUL versus Smalltalk

In this chapter, we have illustrated how both the reflective capabilities of Smalltalk as well
as the SOUL logic language can be used as a query language in IntensiVE. In the remain-
der of this dissertation, the majority of the intensions we define will be formulated in the
latter language, SOUL. Although Smalltalk is a versatile tool to reason about Smalltalk pro-
grams, in practice the use of a declarative paradigm appears more suitable in order to express
the intension of an intensional view. This suspicion is strengthened by the observations of
[Wuy01, WM06, MMW01] and by some of our earlier experiments, presented in [MKPW06].
Especially the symbiosis which SOUL offers between the logic paradigm and the underlying
Smalltalk language render it possible to succinctly express the intension of an intensional
view. This is illustrated by the intensions shown in Figures 4.2 and 4.3. These intensions for
the Banking and Mutators intensional views, expressed in Smalltalk, are considerably more
verbose than their SOUL variants, which can be found in Figures 4.6 and 4.7. However, in
some cases, the use of Smalltalk over SOUL as a query language can be preferred. Especially
in situations where the unification and backtracking properties of SOUL are not needed, the
use of Smalltalk as a query language can result in a considerable performance increase.



4.9. CONCLUSION 113

Impact of the model on the implementation and vice versa

The model of intensional views and the associated tool suite IntensiVE have been developed
in an iterative way. We did not start by implementing the complete version of the model as
it is presented in Chapter 3. Instead, we iterated numerous times over both the model and
the implementation, in which decisions concerning the model often led to changes in the
implementation. Conversely, over time the model of intensional views evolved in order to
cope with practical restrictions we encountered while performing experiments with the tool
suite.

For instance, in earlier versions of the model of intensional views, the extension of an
intensional view did not consist of a set of tuples but – more simply – out of a set of source-
code entities. In order to document a concept such as the accessor methods in our banking
system, in the older version of intensional views, we would create an intensional view Acces-
sor methods which groups all accessor methods. Similarly, we would create an intensional
view Banking methods, which classifies all the methods belonging to the banking system.
This latter view would then be the parent view of the Accessor methods intensional view. As
we would also be interested in the classes concerning to the accounts, we would also create
an intensional view Account classes which has the Banking classes view as its parent. The
fact that a single intensional view only contained specific source-code entities instead of a
more structured representation of a concept in the source code of a system, resulted in a pro-
liferation of intensional views. Moreover, this also resulted in an excessively large number of
relations. E.g. we would have a relation expressing that all Banking methods must be imple-
mented by a class in the Banking classes intensional view. This practical problem gave rise to
an overhaul of the model of intensional views, in which we use tuples as a means to represent
a certain concept in the source code of a system.

Similarly, the notion of deviations to the intension of an intensional view, and the excep-
tions on constraints were introduced in our model, after a number of practical experiments
pointed out that in practice, the documented structural regularity would not quite fit with the
situation in the source code and that it should be possible to mark certain source-code entities
explicitly as exceptions to the general rule. Likewise, the observation that the intensions of
multiple intensional views over the same system would contain duplicated code, led to the
conception of parent views.

4.9 Conclusion

In this chapter we introduced IntensiVE, our prototype tool suite that is a practical realization
of the model of intensional views and constraints which we presented in Chapter 3. Whereas
our model makes abstraction of the query language used to define intensions and predicates,
our implementation supports the definition of intensional views and constraints over both
Java and Smalltalk programs using Smalltalk and SOUL as a query language. Furthermore,
we presented our lightweight methodology which provides a set of practical guidelines for
documenting structural source-code regularities using IntensiVE, and for integrating the doc-
umented regularities into the development process. Also in this chapter, we provided a com-
parison of our approach with the state of the art.
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The IntensiVE tool suite was developed with the goal of validating our approach for doc-
umenting and verifying structural source-code regularities and maintaining the causal link
between these regularities and the source code. As such, we will use our prototype tool in
Chapters 5 and 6, where we present the experiments that serve as a validation of the work we
put forward in this dissertation.



Chapter 5

Documenting and verifying
regularities underlying design
patterns

In order to validate the approach we advance in this dissertation, we demonstrate how the
model of intensional views and the associated tool suite can be used to document, verify and
evolve a wide range of structural source-code regularities present in the source code of a
software system. This validation consists of two parts:

• In this chapter we demonstrate that our approach is expressive and versatile enough
to create verifiable documentation for various kinds of structural source-code regu-
larities. As such, we report on an experiment in which we documented different
source-code regularities underlying the implementation of object-oriented design pat-
terns [GHJV95];

• In Chapter 6, we report on an experiment in which we applied our approach and
methodology to create verifiable documentation of the regularities governing three dif-
ferent systems. In particular, we documented the regularities underlying our own tool
suite IntensiVE, the extensible wiki system SmallWiki [DRW05, Ren03] and Delf-
STof [MT05, TM04], a framework for performing formal concept analysis on source
code. The goal of this experiment is to illustrate how our approach and methodology
support the co-design and co-evolution of the documented regularities and the source
code of each of those three systems.

5.1 Design Patterns

Design patterns are well-known, reusable solutions to commonly occurring problems in the
design of a piece of software [GHJV95]. Design patterns are not limited to sketching a tech-
nical solution for a specific design problem but also encompass a description of the context of
the pattern, its applicability and the impact it has on the design of the software. At the tech-
nical level, a design pattern’s description contains a number of participants which specify the
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different source-code entities involved in the pattern and how these participants collaborate.
As such, a design pattern is not an actual part of the design of a piece of software but rather a
template for a proven solution. A particular instantiation of a design pattern will associate a
source-code entity (e.g. class, method) or a set of entities (e.g. class hierarchy) with each of
the participants of the pattern; the collaborations between the participants describe how the
different source-code entities which implement such participants interact.

The use of design patterns gives rise to a number of structural source-code regularities.
A first kind of regularity corresponds to the requirements which arise from the collaborations
between the participants of the design pattern. Second, in the implementation of a design pat-
tern a developer often uses stylistic regularities such as naming conventions in order to convey
knowledge about the different participants of the pattern. For example, a developer can iden-
tify the concrete visitors in the implementation of a Visitor design pattern by using the string
“Visitor” in the class name. Moreover, also implementation regularities such as language id-
ioms, inheritance constraints, and so on are introduced to regulate the implementation of the
different participants of a pattern.

While a certain structural source-code regularity is often specific to a particular instantia-
tion of a design pattern, other instances of the same design pattern in most cases use a similar
regularity. For instance, one possible naming convention underlying the implementation of
a Visitor design pattern can be that the visit methods all start with the prefix “visit-”. While
this naming convention is specific to the single instance of the pattern, other instances often
use a different but similar convention by e.g. consistently using a suffix “-visit” or any other
naming convention, when implementing a visit method.

Due to this wealth of structural source-code regularities, design patterns form an ideal
case study to demonstrate the range of regularities which can be expressed and verified using
intensional views. As such, in what follows we discuss how, for a number of design patterns,
we can document the structural source-code regularities underlying instances of those patterns
using intensional views. We do this based on one particular instantiation of each design
pattern, taken from the implementation of the Smalltalk Open Unification Language (SOUL),
the standard libraries of VisualWorks Smalltalk or from the implementation of our own tool
suite, IntensiVE.

5.2 Experimental set-up

In the following section we discuss nine design patterns from [GHJV95] and discuss a mani-
fold of structural source-code regularities that underly these design patterns. It is not our goal
to give a complete overview of all structural source-code regularities that arise from the use
of design patterns, but rather to demonstrate different kinds of regularities that occur when
applying design patterns and how these regularities are supported by our approach and tool
suite.

For each of the different design patterns, our discussion is structured as follows:

• We start each section by giving a short overview of the design pattern’s rationale, ap-
plicability and mechanics;



5.3. DOCUMENTING DESIGN PATTERNS 117

Design Pattern Section
Visitor 5.3.1
Abstract Factory 5.3.2
Facade 5.3.3
Adapter 5.3.4
Chain of Responsibility 5.3.5
Observer 5.3.6
Template Method 5.3.7
Proxy 5.3.8
Builder 5.3.9

Table 5.1: Overview of the design patterns discussed in this experiment

• We discuss a number of structural source-code regularities which stem from the use of
the design pattern. For each regularity, we mention the kind of regularity to which it
belongs, based on the classification we presented in Section 2.1.3. While some of these
regularities express a naming convention or another kind of stylistic constraint used to
improve comprehension and readability of the source code, other regularities express
invariants about how the different participants of a design pattern should interact, and
yet others regulate the usage of the entities making up an instantiation of the design
pattern. Note that this set of regularities is not final: we by no means claim that the set
of regularities we discuss encompasses all regularities which underly a specific design
pattern. Nor do these regularities encompass all possible kinds of regularities that can
be expressed with intensional views and constraints;

• One concrete instantiation of the design pattern is discussed, taken from either the
implementation of SOUL, the implementation of IntensiVE or from any of the standard
frameworks and libraries included with VisualWorks Smalltalk;

• For this concrete instantiation, we discuss how each of the regularities manifests it-
self in the implementation and how we can codify this instance of the regularity using
intensional views and intensional constraints.

5.3 Documenting design patterns

5.3.1 Visitor

Design pattern

Summary The Visitor design pattern presents a means to implement a set of operations
which can be performed on a certain object structure. The goal of this pattern is to detach
these operations from the actual classes which implement the object structure, such that it is
possible to alter the set of operations with relative ease. An overview of this design pattern
is shown in Figure 5.1. The participants of the Visitor pattern are divided into two class hi-
erarchies: the hierarchy of the Element class which implements the elements belonging to
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visitElementA:
visitElementB:

Visitor

visitElementA:
visitElementB:

ConcreteVisitor1
visitElementA:
visitElementB:

ConcreteVisitor2

acceptVisitor:
Element

acceptVisitor:
operationX

ConcreteElementA
acceptVisitor:
operationY

ConcreteElementB

acceptVisitor: aVisitor
  ^aVisitor visitElementA:self

acceptVisitor: aVisitor
  ^aVisitor visitElementB:self

Figure 5.1: Class diagram of the Visitor design pattern

the object structure and the hierarchy of the Visitor classes that each represent a specific
operation on the object structure. Each of the Elements implements an accept method
which takes as input a Visitor object and calls, via a double-dispatch protocol, a correspond-
ing visit method. This visit method, implemented on a Visitor class, represents the
operation for the specific Element it visits.

Regularities The implementation of an instantiation of the Visitor design pattern gives rise
to a number of structural source-code regularities:

1. (stylistic) The accept methods implemented in the Element hierarchy are character-
ized by an intention-revealing naming convention. E.g. they are consistently named
accept or acceptVisitor, or any other similar naming scheme;

2. (stylistic) The single argument of each accept method is consistently named (e.g. in
Smalltalk, the argument of all accept methods is named visitor or aVisitor);

3. (idiom) The accept methods are implemented by a double-dispatch protocol. This id-
iomatic implementation consists of a single statement which contains a call to the single
argument of the accept method with a self reference as the argument of the call;

4. (stylistic) The classes in the Visitor hierarchy all follow a similar naming scheme.
E.g. they contain the string “Visitor” in their name;

5. (stylistic) The visit method, implemented by a Visitor follows the naming conven-
tion that it uses both an intention-revealing name (e.g. contain “visit” in the method
name) as well as that the name of the visit method contains the Element it is visiting
(e.g. a visit method visiting ElementA would be named visitElementA);

6. (requirement) All accept methods must contain an invocation of a visit method.

While the majority of these regularities present a stylistic regularity which aids in using a
proper naming scheme when implementing an instantiation of the Visitor design pattern, reg-
ularity 3 demonstrates the use of an idiomatic implementation. Moreover, regularity 6 il-
lustrates a design requirement which must be respected in order for the instantiation of the
pattern to be able to function correctly.
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Instantiation

The instantiation of the Visitor design pattern, based on which we documented the aforemen-
tioned structural source-code regularities can be found in the implementation of the SOUL
logic language. In SOUL, an object structure is used to represent the abstract syntax tree
of a logic program. Due to the number of different operations which are applicable to this
abstract syntax tree, the developers of SOUL have opted to use the Visitor pattern in order
to implement these operations. For instance, the retrieval of the logic variables in a SOUL
program, the process of renaming certain entities and the lexical addressing scheme of SOUL
have been implemented by means of a visitor over the abstract syntax tree.

Documenting the regularities

Before we start documenting the above regularities, we assume that there exists an intensional
view named SOUL with as attributes ‘class’ and ‘method’ which groups all the classes and
their methods of the implementation of the SOUL language.

The first three regularities are all related to the concept of an accept method. As such, we
document these regularities by creating an intensional view Accept methods with attributes
‘class’ and ‘method’ and as parent view the SOUL view. The first two regularities each express
a different definition of the concept of an accept method: (1) all methods named accept:,
(2) all methods which have as the name of their first argument aVisitor are – in the SOUL
implementation of the Visitor pattern – considered to be an accept method. We thus document
these regularities by declaring two alternative views for the Accept methods intensional view.
These two alternatives are characterized by the following intensions (expressed using SOUL
as the query language):

1. methodWithName(?method,[#accept:])

2. argumentsOfMethod(<variable(aVisitor)>,?method)

Each of these alternatives aligns with one of the first two structural source-code regulari-
ties. The first intension captures all methods named accept: thus encoding regularity
(1); the second intension selects all methods of which the name of the unique argument is
aVisitor, which is the concretization of regularity (2) in the implementation of the Visitor
pattern in SOUL. By encoding these two regularities using alternative views for the Accept
methods view we ensure that, upon verifying extensional consistency of the different alterna-
tives, violations to these regularities will be detected, as long as the accept method respects
at least one of the two regularities. Only in the case that an accept method respects none of
these regularities, will our tool be unable to report it as an infringement. However, in such
a situation it becomes quite unlikely that the method is indeed an accept method. To sum-
marize, the Accept methods intensional view thus expresses the constraint that all methods
named accept: must have a single argument named aVisitor and vice versa.

The other regularity that is applicable to accept methods, namely regularity (3) which
states that all accept methods should be implemented using a double-dispatch protocol is
encoded by means of the following unary intensional constraint:
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∀ accept ∈ Accept methods :
statementsOfMethod(statements(<?statement>),?accept.method)),

argumentsOfMethod(<?argument>,?accept.method),

equals(?statement,

return(send(?argument,?mess,<variable(self)>)))

This unary constraint expresses that the implementation of all accept methods must consist
of a single statement, that performs a double dispatch to the unique argument of the accept
method. Notice that, in line with our methodology, we did not implement this regularity
as an additional alternative view for the Accept methods view but rather as a separate unary
constraint. While all accept methods should be implemented using a double-dispatch, the
opposite is not true. As such, the double-dispatch is a necessary requirement for an accept
method but not a sufficient requirement.

Regularity (4) expresses a naming convention that must be upheld by the elements in
the Visitor hierarchy. In SOUL, these visitors are implemented as subclasses of the
SimpleTermVisitor class. Regularity (4) manifests itself in the SOUL implementa-
tion by requiring that all Visitor classes end with the suffix “-Visitor”. In order to capture
this stylistic constraint, we first create an intensional view Visitors with attributes ‘class’ and
‘method’ and as parent view SOUL. For this intensional view, we specify a single intension:

classInHierarchyOf(?class,[SimpleTermVisitor])

This intension restricts all bindings of tuples from the SOUL intensional view to those for
which the class is bound to any class in the hierarchy of SimpleTermVisitor.

Based on this intensional view, we document regularity (4) using the following unary
intensional constraint:

∀ visitor ∈ Visitors :
’*Visitor’ match: (visitor valueFor: #class) name

The predicate of the above constraint provides an illustration of the use of Smalltalk as a
query language. This predicate verifies whether the binding of the ‘class’ attribute of a tuple
from the extension of the Visitors intensional view is suffixed with the string “-Visitor”. We
implement this predicate by matching the method name of a visit method with the regular
expression *Visitor. Verifying consistency of the above constraint results in the set of all
subclasses of SimpleTermVisitor which do not respect regularity (4).

In order to encode regularity (5), which states that all visit methods are characterized
both by a naming convention which reveals their intent as well as that they should contain
the name of the element they are visiting in their method name, we define an intensional
view Visit methods. This view, which has the Visitors view as a parent, has a single attribute
‘method’ and consists of two alternative views with as intension:

1. [’*Visit:’ match: ?method selector asString]
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2. classInHierarchyOf(?element,[AbstractTerm]),
[’*’, ?element name asString asLowercase,’*’

match: ?method selector asString]

The first alternative encodes the first part of regularity (5) which states that all visit methods
are characterized by a naming convention. In the case of the Visitor in SOUL, this naming
convention expresses that all visit methods should end with the suffix “-Visit”. The second
alternative codifies that the name of the method should contain the name of an element which
is visited. Verifying consistency of these alternative views will report on any tuples consisting
out of a visit method and its implementing class which either does not end with the suffix “-
Visit” or which does not contain the name of a visited element in its method name.

Finally, in order to express regularity (6), we use a binary intensional relation. This regu-
larity, that expresses that all accept methods must contain a call to a visit method, is defined in
terms of the Accept methods and Visit methods intensional views. More concretely, we define
this relation as:

∀ accept ∈ Accept methods :
∃ visit ∈ Visit methods :

methodCallsMethod(?accept.method, ?visit.method)

The relation holds if for all accept methods, there exists a visit method such that the method
body of the accept method contains a call to the visit method. If an accept method does not
contain such a call, it is reported to be a possible inconsistency between the structural source-
code regularity and the instantiation of the Visitor design pattern in the implementation of
SOUL1. Such accept methods in which the call to the visit method is missing can be an
indication of an error in the implementation of the accept method.

5.3.2 Abstract Factory

Design pattern

Summary The goal of the Abstract Factory design pattern is to provide an interface for
constructing a family of different objects without having to refer to their actual implementing
classes. As such, it is possible to interchange the family of objects without having to adapt
the client code. This design pattern is illustrated in Figure 5.2. In the figure, we have two hi-
erarchies of products namely AbstractProductA and AbstractProductB. For both
of these hierarchies, there exist two groups of subclasses which each form a family of objects.
For instance, AbstractProductA has two subclasses: ProductA1(which belongs to a
first family of objects that is indicated by a light shade of grey) and ProductA2 (which
belongs to another family indicated by the darker shade of grey). For each of these families
of objects, a separate factory exists which constructs instances of the objects in the family.

1Notice that we only verify whether the accept method contains a call to the visit method. While this allows
us to identify accept methods where this call is missing, it does not give us any guarantees that the visit method
will actually be called at run-time.
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Figure 5.2: Class diagram of the Abstract Factory design pattern

E.g. the class ConcreteFactory1 that creates products of the first family of objects. If
the client needs to change the family of objects that is used, this can be achieved by using
another factory.

Regularities For the Factory design pattern, we consider the following four regularities:

1. (stylistic) A Factory should have an intention-revealing name (e.g. contain the string
“Factory” in its class name);

2. (stylistic) The methods of a Factory that constructs a Product are characterized by a
naming scheme that indicates that it is a factory method (they are prefixed with for
example “construct-”, “create-” or “make”). Moreover, this method should contain the
name of the product it produces;

3. (idiom) The factory method is implemented as a single statement returning a product;

4. (usage) Only a Factory is allowed to create instances of a product.

Instantiation

As was the case with the instantiation we used to illustrate the Visitor design pattern, the
example of the Abstract Factory pattern comes from the implementation of SOUL. In SOUL,
the parser constructs the elements of the abstract parse tree representation by using an abstract
factory.

Documented regularities

Regularity (1) manifests itself in the SOUL implementation by requiring that all Factory
classes contain the string “Factory” in their class name. This regularity is encoded using our
approach by creating an intensional view Factories with as attributes ‘class’ and ‘method’.
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This intensional view has the SOUL view – which we described above – as its parent view. It
consists of a single alternative view with as intension:

classBelow(?class,[Factory])

The intension selects all the (direct or indirect) subclasses of the Factory class from the
implementation of SOUL. Regularity (1) is encoded by the unary intensional constraint:

∀ factory ∈ Factories :
’*Factory*’ match: (factory valueFor:#class) name asString

This regularity is quite similar to regularity (4) of the Visitor design pattern, which we dis-
cussed above. Upon verification of this regularity, our tool suite reports on any subclasses of
Factory which do not contain the string “Factory” in their class name.

Regularities (2) and (3) can be implemented using the concept of alternative views. In
the implementation of the Factory design pattern in SOUL, these factory methods are charac-
terized by being implemented in the protocol terms2 as well as the naming scheme which
dictates that the name of a factory method consists of the the prefix “make-” along with the
name of the product it creates. Moreover, all factory methods in SOUL are implemented by
the same idiom: they consist of a single statement which returns the product class which is
being constructed3. In order for us to express these regularities, we create an intensional view
Factory methods which groups all methods that construct a product. This intensional view
has as attributes ‘class’ and ‘method’ and is a child of the Factory view we defined above.
The two alternative views we specify for the Factory methods view have as intension:

1. methodInProtocol(?method, [#terms]),
Products(?product),
[’make’, [?product name] match: ?method selector asString]

2. statementsOfMethod(statements(<?statement>), ?method),
Products(?product),
equals(?statement, return(variable([?product name])))

The first intension expresses the concretization of regularity (2) in SOUL: it collects all the
methods in the implementation which are classified in the protocol terms and the name of
which consists of the prefix “make-” and the name of a product. Note that in this intension,
the second condition uses the fact that intensional views are first-class entities in the SOUL
query language by referring directly to the Products intensional view. While we do not specify
Products here, it is defined as all the subclasses of the AbstractTerm class. The second
alternative documents regularity (3): upon evaluation of this intension, all the methods in
SOUL will be selected which consist of a single statement that returns a product. Since,
due to extensional consistency, these two intensions must yield the same set of entities, all

2In Smalltalk, methods are annotated with a protocol
3The instantiation of the Factory pattern in SOUL does not returns instances of Products, but rather the classes

that represent a Product.



124 CHAPTER 5. REGULARITIES UNDERLYING DESIGN PATTERNS

factory methods which do respect the naming convention, but which do not adhere to the
implementation idiom and vice versa can be detected.

In order to document regularity (4), which encodes that only Factories are allowed to
instantiate products, we first need to define an intensional view which groups all the clients of
the products of the abstract factory in SOUL. This intensional view, named ProductClients,
has two attributes ‘class’ and ‘method’ and as a parent view the SOUL view. It consists of a
single alternative view with as intension:

methodReferencesClass(?method,?product),
Products(?product,?)

As such, it will collect all the methods which contain a direct reference to a product. Notice
that this intension is defined in terms of the Products view. Since in the implementation of
SOUL only the abstract factory is allowed to reference the actual products, we express this
regularity by means of the following binary intensional relation:

∀ referent ∈ ProductClients :
∃ factorymethod ∈ Factory methods :

referent = factorymethod

This intensional relation verifies that all clients of a product are in fact a factory method. If
a method external to the implementation of the Factory references a product, it is identified
as being a possible error. We could also have implemented this regularity using the following
intensional relation:

@ referent ∈ ProductClients :
∀ factorymethod ∈ Factory methods :

referent ∼= factorymethod

Notice that both intensional relations are equivalent and upon verification, result in the same
set of discrepancies.

5.3.3 Façade

Design pattern

doOperation1
doOperation2

Façade
Client

SubSystem1

SubSystem2

SubSystem3

SubSystem4

Figure 5.3: Class diagram of the Façade design pattern
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Summary The Façade design pattern (illustrated in Figure 5.3) is used to implement a sim-
ple, common interface for a group of more complex subsystems. This way, the client code
of the subsystems becomes less coupled to those subsystems, since they do not have to com-
municate with these systems but use a single point-of-entry of communication, namely the
Façade. Furthermore, the Façade hides the complexity of the subsystems from the clients
use the services offered by the subsystems. Moreover, the use of the Façade pattern makes it
easier to adapt or interchange the subsystems which are being used.

Regularities While a number of structural source-code regularities underly the Façade de-
sign pattern, we only discuss one such regularity here. In particular, we will document the
structural regularity which states that all clients of the Façade are prohibited from directly
using the subsystems for which the Façade provides an interface. If this usage regularity is
violated, a client of the Façade is improperly applying the design pattern, resulting in a loss
of the advantages the Façade provides.

Instantiation

The concrete instantiation of the Façade design pattern we use in order to demonstrate how
we can document the above structural source-code regularity is taken from the implemen-
tation of the compiler infrastructure of VisualWorks Smalltalk. The class Compiler is a
Façade providing an interface for the scanner, the parser, the actual Smalltalk compiler, the
decompiler and the code generator of VisualWorks Smalltalk.

Documented regularities

In order to document the regularity underlying the Façade design pattern, we create two inten-
sional views, namely Façade clients and Façade subsystems. The first intensional view (with
one attribute ‘class’) groups all the classes in the Smalltalk image which use the Compiler
Façade. This view consists of a single alternative view with as intension:

methodInClass(?method,?class),
methodReferencesClass(?method,[Compiler])

This intension captures all classes which implement a method that refers to the Façade class
Compiler.

The Façade subsystems intensional view classifies all the classes which the Façade pro-
vides an interface for. This view has an attribute ‘class’ and consists of one alternative view
with as intension:

packageWithName(?package,[’System-Compiler-Public Access’]),
classInPackage(?class,?package),
not(equals(?class,[Compiler]))

Upon execution, this intension captures all the classes in the package ‘System-Compiler-
Public Access’, which contains all classes involved in this instantiation of the Façade design
pattern. Since the class Compiler (which is the Façade) is also part of this package, but
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is not a subsystem of the Façade, we included the last condition of the intension, namely
not(equals(?class,[Compiler])). As a result, the Compiler does not get in-
cluded in the extension of the Façade subsystems intensional view. Another option would
have been to document the Compiler class as an explicit deviation to the intension by
adding the tuple (class : Compiler) to the excludes list of the Façade subsystems view. We
opted however for the solution of incorporating the exclusion of the Compiler class in the
intension of the Façade subsystems since we consider it to be an integral part of that intension.

Based on the above two intensional views, we can implement the structural source-code
regularity which expresses that clients of the Façade are not allowed to directly use the sub-
systems of the Façade by means of the following binary intensional relation:

∀ client ∈ Façade clients :
@ subsystem ∈ Façade subsystems :

classReferencesClass(?client.class, ?subsystem.class)

The predicate of this binary intensional relation verifies whether the client of the Façade di-
rectly references a class which implements a subsystem of the Façade. The result of verifying
the above constraint using the Relation Consistency Inspector tool of IntensiVE is that this
tool will report any clients of the Façade for which the predicate of the relation is true, i.e.
clients which do refer to a subsystem of the Façade.

5.3.4 Adapter

Design pattern

request
adaptee
Adapter

request
Target

specificRequest
Adaptee

request
 ^adaptee specificRequest

call

Figure 5.4: Class diagram of the Adapter design pattern

Summary The Adapter design pattern provides a reusable solution to the problem which
arises when one wishes to reuse an existing class with an interface that does not match the
needed one. The different participants of this design pattern are shown in Figure 5.4. The class
we wish to reuse is called the Adaptee. Rather than using this class with an incompatible
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interface directly in the implementation of the software, the Adapter provides a wrapper
around the Adaptee. The Adapter will implement the interface that is expected by the
software system (in the figure the method request). The implementation of this interface
will then delegate to the Adaptee by invoking the correct method (in the figure the method
specificRequest) of the Adaptee.

Regularities For the Adapter design pattern, we discuss two structural source-code regular-
ities:

1. (inheritance) The Adapter must implement the appropriate interface which is expected
by the application;

2. (requirement) The Adapter must invoke operations on the Adaptee in order to carry out
a request.

Instantiation

In order to demonstrate the above regularities in practice, we consider an instantiation of
the Adapter design pattern from within the implementation of IntensiVE. The Extension
class, which is part of the framework we implemented for constructing an intension of an
intensional view using Smalltalk as a query language, serves as an Adapter for the object
representing a set of tuples. As we mentioned in Chapter 4, this Extension class offers
an interface which is similar to the one of the Collection class. On top of these standard
Collection operations, it also implements a number of set-theoretic operations such as
union, intersection, projection, and so on which are not part of the interface of the Smalltalk
collection library. As such, the Extension class provides a wrapper around the set of tuples,
implementing the standard collection operations as well as the set theoretic operations.

Documented regularities

The concretization of regularity (1) in the instantiation of the Adapter pattern we discussed
above expresses that the Extension class should provide an interface which is compatible
with that of the Collection class from the standard Smalltalk collection library. We imple-
ment this regularity by constructing an intensional view Adapter with an attribute ‘method’.
The parent view of the Adapter intensional view is the view IntensiVE implementation, which
groups all classes and methods in the implementation of IntensiVE. For the Adapter view we
specify two alternative views with as intensions:

1. equals(?class,[Extension]),
methodInProtocol(?method,[#’collection compatibillity’])

2. methodWithNameInClass(?method,?selector,[Extension]),
classUnderstands([Collection],?selector)

The first intension selects all the methods implemented by the Extension class which are
classified in the protocol ‘collection compatibility’. The second intension selects all methods
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implemented by Extension whose selector is also understood by the Collection class.
Due to the property of extensional consistency, both these intensions should yield the same
set of tuples. As such, any methods of the collection interface which are not implemented by
the Extension class, or which are not correctly classified in the ‘collection compatibility’
are reported as discrepancies to the user of our tool suite.

The second regularity of the Adapter pattern manifests itself in our instantiation in
that all methods of the Extension class which implement a part of the interface of the
Collection class, must forward a call to the wrapped set of tuples. This implementation
convention is documented using a unary intensional constraint:

∀ adapter ∈ Adapters :
statementsOfMethod(statements( <

return(send(

send(variable(self), tuples, <> ),
?message,

?args)) > ),?adapter.method)

This unary constraint verifies whether all methods of the Adapter consist of a single state-
ment which returns the value of the delegation of a message to the variable tuples. It is
this instance variable tuples of the Extension class which contains a reference to the
wrapped set of tuples.

5.3.5 Chain of Responsibility

Design pattern

handleRequest
successor

Handler

handleRequest
ConcreteHandler1

handleRequest
ConcreteHandler2

handleRequest
  self canHandle 
     ifTrue:[self doOperation]
     ifFalse:[successor handleRequest]

Figure 5.5: Class diagram of the Chain of Responsibility design pattern
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Summary The Chain of Responsibility (CoR) design pattern provides a solution template
for the problem of a group of objects which can all handle a certain kind of request, but for
which it is not a priori known which object will handle it precisely. The class diagram of the
CoR pattern is shown in Figure 5.5. The design pattern consists of an abstract class Handler
with an instance variable successor and a number of concrete handlers which can handle
the request. To this end, these concrete handlers implement a method handleRequest. In
order to handle a specific request, a chain of handler objects is created. The first handler in
the chain receives the request and, if possible, handles the request. If the first handler cannot
handle it, it will forward it to the next handler (which is stored in the successor instance
variable) and so on, until the end of the chain is reached or a handler has processed the request.
A code excerpt implementing this mechanism is shown in Figure 5.5.

Regularities For the Chain of Responsibility design pattern, we consider the following
three structural source-code regularities:

1. (inheritance) All handlers must override the method which handles the request;

2. (requirement) All methods which handle a concrete request must also include code
which forwards the request to the next handler in the chain. Only these methods may
refer to the next handler in the chain;

3. (usage) Clients of the handlers must access them via the handler chain; Direct access
to any of the concrete handlers is prohibited.

Instantiation

As an instantiation of the CoR design pattern, we consider an experimental sub-tool of Inten-
siVE which, given a set of intensional views, automatically searches possible relations that
hold between the intensional views (this tool was not included in our discussion of Inten-
siVE in Chapter 4). Due to the large number of relations which can be proposed by this tool,
we implemented a filtering mechanism which performs some post-pruning on the results re-
ported by this tool. We constructed a number of filters which take as input a binary intensional
relation and verify whether or not it is an interesting result. These filters are implemented by
means of the CoR pattern: if according to a filter a certain relation is obsolete, the filter will
prune it. If not, the filter will pass the relation to the next filter in the chain, and so on. And
the end of the chain, there is a special filter which collects all non-pruned results.

Documented regularities

We document regularity (1) by creating an intensional view Handlers with as parent view
IntensiVE implementation, as attributes ‘class’ and ‘method’ and two alternative intensions:

1. classInHierarchyOf(?class,[AbstractFilter]),
methodInClass(?method,?class)

2. methodInClass(?method,?class),
methodWithNameInClass(?,[#filterElement:],?class)
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The first alternative selects all the classes implemented in the hierarchy of the
AbstractFilter class (this is the abstract Handler in the instantiation of the CoR),
together with their methods. The second alternative captures all classes which imple-
ment a method named filterElement:, together with the methods implemented by
those classes. As such, these two alternatives express the constraint that all classes in the
hierarchy of AbstractFilter must implement a method filterElement:. Con-
versely, all classes which implement filterElement: but which are not part of the
AbstractFilter hierarchy will also be reported as discrepancies between the intensional
view and the implementation. While it might seem that this constraint is more strict than
regularity (1) we discussed above, it is based on the observation that, if a class implements a
method filterElement: but is not part of the AbstractFilter hierarchy, it is likely
that this is an error in the source code.

In order for us to codify regularity (2), we create an intensional view Handling methods
with as attribute ‘method’ and as parent view the Handlers view. For this intensional view we
create two alternative views:

1. methodWithNameInClass(?method,[#filterElement:],?class)

2. methodSendsSelector(?method,[#next])

The first alternative will capture all the methods with as name filterElement:; the sec-
ond alternative yields all methods which send the selector next. Since both intensions must
result in the same set of tuples, checking extensional consistency of these alternative views
will report on all handling methods which do not call the successor in the chain of handlers as
well as all methods which refer to the next handler in the chain, but which are not a handling
method and which should thus not be allowed to refer to this next handler.

Finally, we implement regularity (3), which states that no individual handler should be
accessed outside the chain, by means of a unary intensional constraint:

@ handler ∈ Handlers :
method(?method),

not(Handlers(?,?method)),

methodReferencesClass(?method, ?handler.class)

This constraint verifies that for none of the handlers, there exists a method in the system
(outside of the methods belonging to the Handlers view itself) which references a handler.
We allow methods in the implementation of the Handlers to access the handlers directly,
since some of these methods perform the construction of the handler-chain.

5.3.6 Observer

Design pattern

Summary The Observer design pattern is applicable in situations in which a number of
entities depend on the state of a particular object. Each time the state of the object changes,
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  observers do:[:observer | 
                             observer update]

operation
   ... "update the state"
   self changed

Figure 5.6: Class diagram of the Observer design pattern

all dependent entities must be notified of this change. The class diagram of this design pattern
is shown in Figure 5.6. The object which other objects depend on is called the Subject. This
subject implements a number of facilities in order to manage objects which observe its state:
the attach and detachmethods can be used to respectively register or unregister an object
as an Observer of the Subject. When the state of the subject changes, the method in the subject
responsible for the change invokes the changed method on the subject (an example of such
a method operation is shown in the figure). This changed method (whose prototypical
implementation is also shown in Figure 5.6) will then notify all the Observers by invoking an
update method on them.

Regularities While there exist a number of regularities such as e.g. naming conventions
which underly the implementation of an instantiation of the Observer design pattern, most
of these regularities can be documented in a similar way as the regularities we discussed
above. We therefore focus on another structural source-code regularity which illustrates an
interesting use of our approach and tool suite. In particular, we are going to document the
regularity that all state changing methods must notify that the state of the subject has changed.

Instantiation

The particular instantiation of the Observer design pattern which we will document is taken
from the implementation of IntensiVE. Throughout the implementation of our tool suite, we
use the Observer design pattern to notify the user interface components of changes in the
underlying intensional views and constraints that are shown in the interface.

The implementation of the Observer pattern in IntensiVE makes use of the built-in model-
view-controller framework of Smalltalk: this framework adds capabilities for adding and
removing Observers to any Smalltalk object. It also provides a set of methods (changed,
changed: . . . ) which, when invoked, inform the Observers of the object of a state change.
As such, whenever a method of the implementation of IntensiVE changes the state of an
object, it must invoke one of changed,changed:,. . . methods in order to notify the object
of the change. Since we use the MVC framework of Smalltalk, the observers of the object
will then be notified.
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Documented regularities

We document the above regularity by creating two intensional views: an intensional view
Change notification which groups all methods that perform the notification to the Observers
and a view named State changes that captures all methods that change the state of an object
in the implementation of the model of intensional views. The Change notification view has a
single attribute ‘method’ and one alternative which is defined as:

methodInClass(?method,[Object]),
methodInProtocol(?method,[#’changing’])

This intension (written down in SOUL) captures all methods of the class Object which
are classified in the changing protocol. These are all the methods like e.g. changed
implementing the notification of the Observers in Smalltalk’s MVC framework.

The State changes intensional view has as attributes ‘class’ and ‘method’ and consists of
a single alternative view. This view has the IntensiVE implementation view as its parent view.
In order to define the intension of this alternative, we use the Smalltalk language. Due to the
large number of state changing methods, using Smalltalk as the language for specifying the
intension instead of SOUL allows us to more efficiently4 retrieve the set of tuples belonging
to the State changes view.

1 extension := Intensional.Extension new.
2 mutators := Views.Mutators for:#method.
3 (Store.Registry allPackages select:[:package|
4 package name = ’Intensional Views Model’]) first definedClasses
5 do:[:class |
6 class selectorsAndMethodsDo:[:selector :method|
7 mutators do:[:mutator |
8 (method
9 sendsSelector:((mutator valueFor: #method)

10 selector))
11 ifTrue:[extension add:
12 (Tuple new attribute:#class value:class;
13 attribute:#method value:
14 (SmalltalkMethod
15 compiledMethod:method)]]]].

Without going into detail, we briefly discuss the workings of this intension. The intension
selects all mutator methods (line 2) in the implementation of IntensiVE by referring to the
Mutators intensional view. It then iterates over all classes in the ‘Intensional Views Model’
package (lines 3–4), which contains the implementation of the intensional views model. Next,
the intension iterates over all these classes and their methods (lines 5 and 6) and verifies for
each method implemented on class class, whether it invokes any of the mutator methods
(lines 8–10). If a mutator method is called, a tuple representing the method which calls
the mutator is added to the extension (lines 11–15). Note that this intension in Smalltalk
corresponds to the following SOUL query:

4On an Apple Mac Mini with an Intel Core Duo 1.66Ghz processor and 1Gb of RAM , the Smalltalk equivalent
ran for 5 seconds as opposed to the SOUL query which took 20 seconds.
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Mutators(?mutator),
packageWithName(?package,[’Intensional Views Model]),
classInPackage(?class,?package),
methodInClass(?method,?class),
methodCallsMethod(?method,?mutator)

While this SOUL equivalent of the intension is much more succinct and easier to com-
prehend, we opted for the Smalltalk version due to its better efficiency. Notice that in order
to capture the state changing methods, we trusted that only methods using a mutator method
alter the state of an object. While this is not guaranteed by Smalltalk itself (a method can
directly access the instance variable in its class), we are allowed to make this assumption.
We documented a separate structural source-code regularity expressing the explicit obligation
that all accesses to instance variables must be performed via a mutator method. As such, we
enforce that all direct accesses to an instance variable can only occur from within a mutator
method.

In order to document the regularity that all state changing methods must invoke a method
that notifies the observers, all we need to do is implement the following binary intensional
relation:

∀ statechange ∈ State changes :
∃ changing ∈ Change notification :
methodCallsMethod(?statechange.method, ?changing.method)

This relation verifies that all methods which perform a state change contain an invocation of
a method which notifies the observer of this change.

5.3.7 Template Method

Design pattern

templateMethod
operation1
operation2

Abstract Class

operation1
operation2

Concrete Class

templateMethod
 self operation1.
 self operation2

Figure 5.7: Class diagram of the Template Method design pattern

Summary The Template Method design pattern is illustrated in Figure 5.7. This design pat-
tern enables the implementation of an algorithm while deferring some of the algorithm’s steps
to a subclass. This concept is demonstrated in the figure. The algorithm is implemented by the
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method templateMethod in the AbstractClass. In the implementation of the algo-
rithm, two operations operation1 and operation2 are invoked which are left abstract
in AbstractClass. A concrete algorithm (represented by the class ConcreteClass)
implements operation1 and operation2. As such, the invariant part of the algorithm
is implemented by the AbstractClass while each ConcreteClass implements the
variable parts of the algorithm.

Regularities The Template design pattern imposes an interesting kind of structural source-
code regularity that we did not yet encounter in any of the previous examples. Namely, in
order for the algorithm to be functioning properly, each subclass of AbstractClass must
implement the correct interface containing the abstract methods which get called from within
the templateMethod. If this inheritance regularity is violated, the implementation of the
algorithms might function improperly.

Instantiation

The instantiation of the Template Method design pattern we use as a guideline to document the
above regularity is taken from the implementation of IntensiVE. In IntensiVE, the evaluation
of intensions is delegated to a dedicated class. For each query language that is supported by
our tool suite, there exists a separate subclass of AbstractEvaluatorwhich evaluates the
intension. This class also implements a method verifyIntension: that verifies whether
an intension is correct and, if not, throws an exception. This verifyIntension: method
is a template method which delegates the verification of both the syntactical correctness of
an intension, as well as whether the intension uses the correct attributes of an intension to
two methods, namely correctIntension: and correctAttributes: which are
implemented by the concrete evaluators.

Documented regularities

We can document this structural source-code regularity quite elegantly by creating an in-
tensional view TemplateMethods with as parent view IntensiVE implementation, as attribute
‘class’ and two alternative views with an intension:

1. classBelow(?class, [AbstractEvaluator])

2. methodWithNameInClass(?,[#’correctIntension:’],?class),
methodWithNameInClass(?,[#’correctAttributes:’],?class)

When evaluating the first intension, this will result in all the classes which are (directly or
indirectly) a subclass of the AbstractEvaluator class. The result of the second in-
tension is the set of all classes which implement both the method correctIntension:
as the method correctAttributes:. For this intensional view to be extensionally
consistent, all the concrete evaluators must implement the correctIntension: and
correctAttributes:. Moreover, a user will also be informed about any classes which
do implement these two methods, but which are not a descendant of AbstractEvaluator.
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This second constraint – which the dual version of the documented regularity – results in that
our alternative views express a stronger constraint than the one we described above. However,
if a class implements the correctIntension: and correctAttributes:, but is not
part of the AbstractEvaluator class hierarchy, this is an indicator of a possible error.
That is why in this case, we opted to implement the above constraints by means of alternative
views.

5.3.8 Proxy

Design pattern

request
Subject

request:
realSubject

Proxyrequest
RealSubject

request: args
   realSubject request: args
  

Figure 5.8: Class diagram of the Proxy design pattern

Summary The Proxy design pattern is used when implementing a class which serves as a
placeholder for another class. The class diagram of this pattern is shown in Figure 5.8. The
Proxy class which serves as a placeholder for another class is implemented in the same hier-
archy (i.e. Subject) of the element it replaces (the RealSubject class). The Proxy im-
plements the same interface as the subject. However, instead of handling the request itself, the
proxy forwards it to the RealSubject. This design pattern closely resembles the Adapter
pattern which we discussed in Section 5.3.4. The main difference between the Adapter and
the Proxy pattern is that the latter pattern is used when the interface of the wrapper is identical
to the interface of the wrappee.

Regularities One structural source-code regularity underlying an instantiation of the Proxy
design pattern we will discuss here is the idiomatic implementation of the handling of requests
on the Proxy class. When a Proxy receives a request which is also implemented by the Subject
it is wrapping, it should forward this request to the actual subject.



136 CHAPTER 5. REGULARITIES UNDERLYING DESIGN PATTERNS

Instantiation

The instantiation of the Proxy design pattern we document here is taken from the implementa-
tion of the Trippy object inspector of VisualWorks Smalltalk. In the implementation of Trippy,
a Proxy design pattern is used to make it possible to preview any object that represents a visual
component from the interface framework of VisualWorks. The VisualComponentProxy
pretends to be such a VisualComponent in order for Trippy to visualize it without having
to take the actual visual component which is wrapped by the proxy out of its proper hierar-
chy. In the implementation, VisualComponentProxy thus forwards any requests to the
instance of VisualComponent which it serves as proxy for.

Documented regularities

We document the above regularity by creating an intensional view ProxiedMethods with as
attribute ‘method’ and a single alternate view with as intension:

methodWithNameInClass(?method,?selector,[VisualComponentProxy]),
methodWithNameInClass(?,?selector,[VisualComponent])

This intension captures all the methods implemented by the VisualComponentProxy
class for which there exists a method with the same selector in the VisualComponent
class. It thus returns a set of tuples representing all methods of the proxy which implement
the interface of the subject.

In order for the proxy to be implemented correctly, all the methods belonging to the Prox-
iedMethods intensional view should share an idiomatic implementation which forwards the
incoming request to the wrapped subject. This is verified by the following unary intensional
constraint imposed on the ProxiedMethods intensional view:

∀ proxy ∈ ProxiedMethods :
methodWithName(?proxy.method, ?message),

argumentsOfMethod(?arguments, ?proxy.method),

methodWithSend(?proxy.method, variable(actualComponent),

?message, ?arguments)

The above constraint holds if for all methods of the proxy that implement a part of the
VisualComponent interface, it is true that they forward the requests they receive to the
wrapped subject using the same arguments (in case of the Trippy example this subject is
stored in the instance variable actualComponent). If the VisualComponentProxy
thus implements a proxied method that does not contain such a call, upon verification of the
above constraint, this method will be reported as a possible inconsistency.

5.3.9 Builder

Design pattern

Summary The Builder design pattern is applicable whenever a developer strives to de-
couple the construction of a complex object structure from its actual representation. This
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Figure 5.9: Class diagram of the Builder design pattern

makes it possible to reuse the same construction process for a different representation of
the object structure. The workings of this design pattern are shown in Figure 5.9. The
Builder hierarchy implements the infrastructure for the construction of the object struc-
ture. A builder contains a method for each of the different products it can manufacture, along
with a method (getResult in the figure) for returning the entire object structure. An object
that guides the construction process (called the Director) uses an instance of the builder to
construct the actual object structure. For instance, in the figure, the director contains a method
construct that invokes a number of calls to the builder in order to construct the object. In
order to return the constructed object, the construct method invokes the getResult
method of the builder.

Regularities We discuss two structural source-code regularities for the Builder design pat-
tern:

1. (stylistic) All methods responsible for constructing products must follow a similar nam-
ing scheme;

2. (requirement) The director should not reference any of the products directly.

Instantiation

The parser infrastructure of VisualWorks Smalltalk uses the Builder design pattern to con-
struct the abstract syntax trees representing a Smalltalk program. The different classes in
the hierarchy of the Parser class are the directors which make use of a concrete builder.
For the Smalltalk parser, this concrete builder is the ProgramNodeBuilder class which
constructs objects in the hierarchy of ProgramNode.

Documented regularities

To create verifiable documentation for the two regularities above, we start by creating an in-
tensional view called BuilderProducts which contains all the products created by the



138 CHAPTER 5. REGULARITIES UNDERLYING DESIGN PATTERNS

Builder. This intensional view with as attribute ‘class’ has one alternative view with as inten-
sion:

classInHierarchyOf(?class,[ProgramNode])

As such, it contains all abstract syntax tree nodes, represented by all classes in the hier-
archy of ProgramNode. Next, we create an intensional view Production methods which
groups all methods of the concrete builders that construct an abstract syntax node. This in-
tensional view has as attributes ‘class’ and ‘method’ and a single alternative view with as
intension:

1 classInHierarchyOf(?class,[ProgramNodeBuilder]),
2 methodInClass(?method,?class),
3 BuilderProducts(?product),
4 methodWithSend(?method,variable([?product name asSymbol]),new,?)

Lines 1 and 2 of the above intension select all classes and methods in the
ProgramNodeBuilder hierarchy. Line 3 retrieves all products by referring to the
BuilderProducts intensional view. Finally, line 4 restricts the set of methods from the
ProgramNodeBuilder hierarchy to those who send a message new to a product.

Using the Production methods intensional view and a unary intensional constraint we can
express regularity (1) as follows:

∀ production ∈ Production methods :
[’new*’ match: ?production.method asString]

Upon verification, this unary constraint will return true or false depending on whether all the
methods that construct a product following the same naming scheme, i.e. the method name
starts with the prefix “new-”. We implemented this regularity using a unary constraint rather
than by creating an additional alternative view for the Production methods intensional view
since the constraint that all these methods should start with “new-” is a necessary condition
but not a sufficient one: while it must hold that all production methods start with “new-” the
opposite is not necessarily true.

We document the second regularity by creating an intensional view BuilderDirectors with
as attribute ‘class’ and one alternative view:

classInHierarchyOf(?class,[Parser])

This intensional view thus states that all classes in the hierarchy of Parser are a director
in the instantiation of the Builder design pattern. Using this intensional view, we express
regularity (2) by the following binary intensional relation:

∀ director ∈ BuilderDirectors :
@ product ∈ Builderproducts :
methodReferencesClass(?director.method, ?product.class)

This relation verifies that none of the directors directly reference a builder product class.
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5.4 Discussion

Kinds of regularities encountered

The goal of the above experiment was to demonstrate how a wide range of structural source-
code regularities can be documented using our model of intensional views and constraints.
During this experiment, we studied various specific regularities that are present in instanti-
ations of nine different design patterns and explained how, using our methodology and the
IntensiVE tool suite, we created verifiable documentation for these regularities. This docu-
mentation entails the following kinds of structural source-code regularities:

• We demonstrated a number of stylistic constraints which describe the naming scheme
that the different source-code entities making up the participants of a design pattern
should follow. As we have shown, such constraints cover a wide range of structural
source-code regularities from specifying how different classes or methods should be
named, over how the arguments of a method should be named, to even more complex
naming schemes. An example of such a more complex naming scheme can be found
in the Factory design pattern: we documented that each factory method must consist of
the prefix “make-” along with the name of the actual entity it produces;

• Another kind of regularity we encountered in this experiment was the idiomatic imple-
mentation of some of the participants of a design pattern. These regularities are char-
acterized by that they describe a certain implementation pattern for a participant of a
design pattern. We documented these regularities by encapsulating this implementation
pattern using multiple alternative views or unary intensional constraints. For instance,
one such regularity we encountered is that the accept methods of a Visitor design pattern
need to be implemented using a double-dispatch protocol in order to function correctly.
We documented this regularity by means of a unary intensional constraint on the Accept
methods intensional view. Another example of such an idiomatic implementation stems
from the instantiation of the Adapter design pattern. In this pattern, we require that all
methods implemented by an Adapter follow a similar implementation pattern, namely
that in their implementation they perform a delegation to the adaptee;

• A number of the regularities we documented involve the correct usage of the design pat-
tern. These regularities prescribe how the different entities belonging to an instantiation
of a design pattern can be used by client code. For instance, for the Façade pattern, we
documented that a client of the façade is not allowed to directly access the subsystems
for which the façade provides an interface. Other examples of such usage regularities
that we have encountered in the above experiment are that in the instantiation of the
Builder pattern the director is not allowed to create products directly or in the Chain of
Responsibility pattern, where external elements are not allowed to directly use any of
the elements of the chain;

• We also encountered a number of inheritance regularities. These kinds of regularities
describe how the different entities in a class hierarchy are structured. One example we
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1 Parser>>parseArgsAndTemps: aString notifying: req
2 "(for explainer) parse the string and answer
3 with an Array of Strings (the arg and temp names)"
4 ˆself
5 initPattern: aString
6 notifying: req
7 saveComments: false
8 return: [:pattern |
9 "skip primitive if any"

10 self readStandardPragmas: MethodNode new temps: #().
11 ((pattern at: 2) , self temporaries)
12 collect: [:param | param name asString]]

Figure 5.10: The implementation of the parseArgsAndTemps:notifying: method in
the Parser class.

encountered of such an inheritance regularity is that in the instantiation of the Tem-
plate method design pattern all subclasses of AbstractEvaluator must override a
method named verifyIntension: in order;

• The last kind of structural source-code regularities we encountered are design require-
ment regularities. These regularities express the dependencies between different con-
cepts from the design of a system. For example, in the Visitor design pattern we en-
countered the design regularity that all accept methods must contain an invocation of
a visit method. Another example of such a regularity is that, when implementing an
Observer design pattern, each state change should trigger an update of the observers.

Verification of the regularities

While the emphasis of this chapter lies with the documentation of structural source-code
regularities, the actual documentation we created for each of the instantiations of the design
patterns is verifiable with respect to the implementation of that instantiation. Since the in-
tensional views and constraints we presented in the experiment are a translation of how we
assumed the different regularities manifest themselves in the implementation of the design
patterns, we – in line with our methodology – iteratively refined this initial documentation
with respect to the source code. Based on the feedback provided by our tool suite, we then
refined the documentation and/or the source code until both artifacts were synchronized.

This iterative refinement of the regularities and the source code has led to the following
two observations:

• In some cases, inconsistencies between the documented regularities and the actual
source code revealed a number of errors in the implementation of the design pattern.
For instance, when verifying the validity of the documentation we created for the in-
stantiation of both the Visitor as well as the Factory design patterns in SOUL, the tool
suite reported a number of source-code entities that erroneously deviated from the doc-
umented naming conventions. Similarly, verifying our documentation of the Observer
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design pattern in the implementation of IntensiVE itself identified a couple of loca-
tions in the source code which perform a state change but for which the corresponding
notification of this state change was – incorrectly – omitted.

• Upon verification of the intensional views and constraints, we also encountered a num-
ber of discrepancies which did not result from bugs in the source code, but rather il-
lustrated that in some cases our initial documentation of a regularity did not entirely
match with how this regularity was manifested in the source code. For instance, for
the instantiation of the Builder design pattern, we imposed the restriction that none
of the directors should directly refer to a concrete product. However, when verifying
the consistency of this constraint with respect to the source code, we were reported
on a single method which did not respect this regularity. The implementation of this
method can be found in Figure 5.10. This method, belonging to the default Smalltalk
parser, provides a means for the Explainer tool to extract the variable names (arguments
and temporaries) from a string representing a Smalltalk program. In order to skip any
primitives in this string, the readStandardPragmas:temps: method is invoked,
which expects an instance of MethodNode as its first argument. The creation of this
instance is not related to the Builder design pattern, and is thus not a violation of the
documented regularity. As such, we document this method as an explicit exception to
the regularity.

Validity of the regularities

Note that the documentation of the structural source-code regularities does not provide any
guarantees that the documented instantiation of the design pattern behaves properly. In our
documentation we often provide a conservative approximation of the envisioned regularity.
E.g. in the Visitor design pattern we require all accept methods to invoke a visit method.
However, since we only analyze the source-code of the system we cannot make any claims
whether at run-time, an accept method will actually invoke a visit method. Instead, we ap-
proximate this information by requiring that the accept method’s body contains a call to a visit
method. As such, it is possible that, although our tool suite reports no discrepancies between
the documentation and the implementation, at run-time the accept method’s invocation of the
visit method never gets executed. However, if our tool suite reports that an accept method
does not contain a call to a visit method, this can be an indicator that the instantiation of the
Visitor design pattern is not implemented correctly.

Applicability of different kinds of constraints

Although we already discussed the applicability of the different kinds of constraints supported
by our tool suite and approach earlier, this experiment provides a nice illustration of their use:

• Alternative views: provide a means to give multiple, equivalent descriptions of a sin-
gle intensional view. For instance, in the instantiation of the Adapter design pattern,
we have used alternative views to express that the set of methods in the protocol ‘col-
lection compatibility’ must be identical to the set of methods that implement a message
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also understood by the Collection class. Due to the property of extensional consis-
tency, which requires that all alternatives of the same intensional view yield the same
extension, using alternative views as a constraint over intensional views allows us to
detect all source-code entities which belong to at least one of the alternative views, but
not necessarily to all of the alternatives. For instance, suppose that we have a concern
described by three alternative views, each expressing a different regularity governing
the concern. If a source-code entity respects one of these regularities, but not the other
two, then it will be flagged as a possible inconsistency by our tool suite. Only in the
case that a source-code entity does not respect any of the regularities documented by
alternative views will it be missed by our approach;

• Unary intensional constraints: document a regularity which is applicable to a single
intensional view. For instance, we have documented the naming convention that all
methods of a Builder that construct a Product should begin with the prefix “new-” by
means of a unary constraint. As we have discussed earlier, the difference between a
unary constraint and the use of alternative views is that the former kind expresses a
condition that is necessary while the latter expresses a necessary and sufficient condi-
tion;

• Binary intensional relations: are used to express a regularity that involves two in-
tensional views. For instance, the requirement that no director in the instantiation of
a Builder pattern should be allowed to directly instantiate a Product is expressed with
such a relation.

Reusability of the documentation

It was not our goal to create a reusable set of source-code regularities which is generally
applicable whenever a design pattern is instantiated. Instead, we focussed on demonstrating –
using design patterns as a case study – how our approach can be applied to document different
kinds of regularities that govern the implementation of one specific instantiation of a design
pattern.

However, this does not mean that the documentation we created is limited to the instantia-
tion of the design pattern which we applied it to. First of all, the regularities we discussed are
often not limited to a single instantiation of the design pattern, but express a constraint which
is in general applicable to instantiations of the same design pattern. The usage constraints,
design conventions and implementation idioms such as for instance the regularity that all fac-
tory methods must return an instance of a product, a proxy must forward calls to the wrapped
object and so on, describe invariants which must be upheld by any instantiation of the design
pattern for the instantiation to be able to behave properly. While the stylistic constraints we
have defined are often specific to a single instantiation of a design pattern, similar conventions
often govern other instantiations of that same pattern.

Second, also the actual documentation we created for the structural source-code regular-
ities is to some extent reusable. While the intensional views and constraints over the views
which we defined during our experiment document the regularities underlying a single instan-
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tiation of a design pattern, they can be considered to be a sort of implementation template for
documenting similar regularities underlying other instantiations of the same design pattern.

Although it lies outside the scope of this dissertation, we envision a more reusable means
to document the different regularities underlying design patterns using some sort of “tem-
plate regularities”. Such templates consist of a number of parameterized intensional views
and constraints that express the different regularities governing a certain design pattern. By
instantiating these template regularities, i.e. by specifying which source-code entities are as-
sociated with the roles of the design pattern, the set of intensional views and regularities can
document a specific instantiation of the design pattern and verify whether this instantiation
respects the different structural source-code regularities that govern that design pattern.

5.5 Conclusions

In this chapter we presented an experiment in which we demonstrated how our model of in-
tensional views and constraints and the associated tool suite can be used to document various
structural source-code regularities. As a case study, we analyzed the different structural-
source code regularities underlying the implementation of object-oriented design patterns and
demonstrated how we can translate these regularities, applied to a specific instantiation of the
design pattern, into intensional views and constraints over these intensional views.

The goal of this chapter was to provide an initial assessment of whether our approach
provides a sufficiently generic and expressive means for documenting structural source-code
regularities. In the next chapter, we complement this validation by studying how our model
of intensional views and constraints, along with our iterative and test-based methodology can
aid in maintaining the causal link between documented regularities and source code when a
system evolves.
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Chapter 6

Supporting co-design and
co-evolution using intensional views
and constraints

In this chapter we report on three case studies which serve as a means to assess how our
approach and associated methodology support the maintenance of the causal link between the
documentation of structural source-code regularities and the source code of a system:

• In Section 6.1 we discuss an experiment in which we documented the structural source-
code regularities underlying the implementation of the IntensiVE tool suite. Further-
more, we illustrate how we incorporated the verification of these regularities in the
development process of IntensiVE and analyze how our approach and methodology
aided in both detecting and resolving evolution conflicts;

• Section 6.2 gives an account of the second experiment we conducted, in which we doc-
umented the set of regularities governing the implementation of SmallWiki, a collabo-
rative wiki system implemented in VisualWorks Smalltalk. We started this experiment
by encoding the regularities underlying an initial version of SmallWiki. By applying
this documentation to subsequent versions of SmallWiki, we studied how the evolu-
tion of the system impacted the intensional views and constraints we defined and how,
by applying our methodology, we were able to synchronize the documentation and the
source code;

• In the third case study we documented DelfSTof (Section 6.3). DelfSTof is an object-
oriented framework for performing experiments on source code using formal concept
analysis. For this framework, we documented some of the regularities governing the
correct instantiation of this framework and applied it to a concrete instantiation of the
framework.

145
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6.1 IntensiVE

6.1.1 Overview

In Chapter 4 we introduced IntensiVE, the tool suite we implemented in the context of the
work we present in this dissertation. In this first experiment, we use the implementation of
IntensiVE as a case study to demonstrate how our approach can support the co-design and
co-evolution of documented structural source-code regularities with respect to the implemen-
tation. IntensiVE is a modest-sized application that consists of 148 classes and 2118 methods.

We documented a number of regularities underlying the implementation of IntensiVE,
using the tool suite itself. We created a total of 41 intensional views which group source-code
entities from the implementation of IntensiVE. For 13 of these 41 intensional views, more
than one alternative view was specified. Moreover, we imposed 23 constraints over these
intensional views: 15 unary intensional constraints and 8 binary intensional relations.

An overview of the intensional views we declared on the source code of IntensiVE and
the constraints over these views can be found in Figures 6.1 and 6.2. In these figures, each
intensional view is represented as a rounded rectangle; when there are multiple alternative
views for one intensional view, this is indicated by stacked rectangles. For instance, for the
intensional view Intension Evaluators (displayed in Figure 6.1), we defined three alternative
views. The parent view of a certain intensional view is indicated by means of a dotted line
with a circle at the end of the parent view. E.g. the intensional view Extension has the Core
model view as its parent. If an intensional view is defined in terms of other views, this is
indicated by a dotted line with a square at the end. For instance, in Figure 6.1, we see that the
intensional view Core Model is defined in terms of the Views Model and Constraints Model
views. Constraints over intensional views are visualized by an arrow.

In what follows, we briefly discuss the different structural regularities we documented
for IntensiVE. We will not give a detailed description of the actual definition of all inten-
sional views and constraints, but only discuss those views and constraints that illustrate the
detection of an interesting evolution conflict. However, the interested reader can find a com-
plete overview of the definition of all intensional views and constraints on IntensiVE in Ap-
pendix B.

Intensional views and constraints over the core model of IntensiVE

The core model of IntensiVE consists of the part of the source code that implements the
model of intensional views and constraints. As such, it encompasses all the classes and
methods which implement the notions of intensional views, unary constraints, quantifiers,
evaluation of intensions, and so on. The intensional views and constraints documenting the
structural source-code regularities in this part of the implementation of IntensiVE are shown
in Figure 6.1. We can distinguish between the following regularities:

• Domain-related regularities: a number of the intensional views we defined over the
core model directly align with a domain concept from the model of intensional views.
For example, we have intensional views that group the source-code artifacts that im-
plement the evaluation of the intension of an intensional view (Intension evaluators),
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Figure 6.1: Overview of the intensional views and constraints in the IntensiVE core.

the implementation of quantifiers (Quantifiers and Quantifier evaluation), the saving
mechanism of the entities in the core model (Saving and Compilation), and so on. Note
that these intensional views and the constraints imposed on them implement different
kinds of regularities:

– A number of stylistic constraints are encoded such as for instance naming conven-
tions for certain class hierarchies, a correct naming scheme for argument names,
etc;

– Since IntensiVE is implemented as a framework, some of the regularities pre-
scribe the specialization interface which needs to be implemented for a certain
concept (e.g. the different methods a class implementing a quantifier must over-
ride).;

– We also documented a number of design constraints that dictate how different
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concepts in the framework must interact. For example, we have expressed that
all Constraint type evaluators must implement the correct invocation pattern for
calling a Constraint language evaluator. This binary intensional relation regulates
how the implementation of the evaluation of constraints must make use of the
evaluators for the predicate of a relation.

• Consistent implementation of idioms: A number of intensional views document the
consistent implementation of certain implementation concepts such as accessor and
mutator methods. These views are not limited to expressing whether these idioms are
implemented correctly, but also regulate the correct usage of mutators and accessors
throughout the implementation of the IntensiVE core model;

• Documentation of design patterns: We created some intensional views that document
an instantiation of a design pattern in the implementation of IntensiVE. For example,
the Extension intensional view documents an instantiation of the Adapter design pat-
tern. These intensional views and the constraints imposed on the views document the
pattern’s structure by expressing the correct naming scheme of the different participants
in the design pattern, the idiomatic implementation of some of the participants and de-
pendencies between participants (e.g. all adapted methods must forward a request to
the adaptee).

• Implementation regularities: In our documentation of regularities underlying the core
model of IntensiVE, we expressed the constraint that for each class in the core model,
there should exist a corresponding unit test case. While this regularity is not directly
related to documenting the implementation of IntensiVE, it documents a regularity of
the development process itself.

Other intensional views and constraints over IntensiVE

Next to the intensional views and constraints over the core model of IntensiVE, we also doc-
umented a number of structural source-code regularities in the graphical user interface of
IntensiVE and the part of the saving mechanism that handles the representation of data as
programs. Furthermore, we documented the implementation of the Factory and Observer
design patterns in IntensiVE, the implementation of the deduce tool and a number of imple-
mentation concepts like private methods which express often-occurring coding conventions.
These intensional views and constraints are illustrated in Figure 6.2.

• Graphical user interface: We documented a number of regularities underlying the
graphical user interface of IntensiVE. In particular, we expressed a number of reg-
ularities concerning the implementation of the drag & drop functionality in the edi-
tors of the IntensiVE tool suite. Furthermore, we documented an architectural regu-
larity which regulates the correct interaction between the editors and the intensional
views/constraints which are being edited. In IntensiVE, the editor is strictly separated
from the item that is being edited. As such, the editor only has access to the item that is
being edited by means of the mutator methods of the item. A wrapper is placed around
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Figure 6.2: Overview of the intensional views and constraints in the user interface and satellite
tools of the IntensiVE implementation.

this item in order to provide additional services such as change notification and undo
functionality. Consequently, we documented that from within the editor only changes
can be made to an item by means of invocations of mutator methods to the wrapped
item;

• Design patterns: In the implementation of IntensiVE, we used a Factory design pattern
to construct instances of entities from the core model as well as the user interface, etc.
We documented this instantiation of the Factory design pattern similarly to the Factory
design pattern we discussed in Chapter 5. Furthermore, in the GUI part of IntensiVE we
used an Observer design pattern in order to notify an editor of changes in the entities
which are being edited. This design pattern has also been documented using a set of
intensional views and constraints. Similarly, we documented the chain of responsibility
from the implementation of the deduce tool, one of the experimental tools we grafted
on the implementation of IntensiVE;
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• Implementation regularities: We also created a number of intensional views on the
implementation of IntensiVE for capturing infringements on a number of frequently
made errors or coding errors. We created an intensional view specifying that all imple-
mentors of the ‘=’ message in IntensiVE should also implement a method hash. If not,
object comparison in collections might behave incorrectly. Similarly we expressed the
regularity that all methods classified in the private protocol can only be invoked from
within the class hierarchy in which they are defined1. Furthermore, as a precaution that
the initialization of a parent class is not lost, we documented a regularity stating that
methods which override the initialize method must contain a super call.

6.1.2 Supporting co-design and co-evolution

In this section we illustrate how we were able to support co-design and co-evolution of the
documented structural source-code regularities with the source code of IntensiVE by apply-
ing our approach and methodology. This section is divided into two parts:

• We first discuss a number of examples that demonstrate how the co-design of the doc-
umented regularities in IntensiVE and the source code led to the step-wise refinement
of the intensional views and constraints as well as to the detection of inconsistencies in
the source code of IntensiVE;

• Secondly, we relate our experience of incorporating the verification of the regularities
we documented using intensional views and constraints into the development process
of IntensiVE. We illustrate how this integration allowed us to detect infringements on
documented regularities as early as possible during development. Furthermore, we
discuss how changes in the implementation and design of our tool suite impacted the
documented regularities and how our methodology aided in synchronizing the docu-
mentation and the source code upon evolution.

Co-design of intensional views and source code

The intensional views and constraints we imposed on the implementation of IntensiVE were
created during the later phases of the actual development of our tool suite, as soon as the
functionality of the tool suite was rich and stable enough to express the intensional views and
constraints documenting the tool suite’s own regularities. In order to create these views and
constraints, we followed the iterative refinement process we described in Chapter 4. As such,
we started out by – for each intensional view and constraint – defining an initial assumption
about how the structural source-code regularities governing IntensiVE manifest themselves
in the implementation.

As prescribed by our methodology, we subsequently verify the validity of this initial doc-
umentation with respect to the source code. Based on the inconsistencies reported by our tool
suite, we iteratively refined the source code and/or the documentation of the regularities and

1In Smalltalk, all methods are public. However, in order to identify methods that should be considered private,
we classify them in the private protocol
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AlternativeView>>model
model isNil
ifTrue:
[model := UndoableModel onObject: self.
self addDependent: model].

ˆmodel

Figure 6.3: Example of a lazy-initialized accessor method

repeated this verification process until the set of intensional views and constraints was syn-
chronized with the source code. For certain intensional views and constraints, this verification
of the initial version of the documentation revealed that there were no discrepancies between
the documentation and the source code, meaning that our initial assumption about how a
structural regularity is manifested in the source code was correct. Among others, this was the
case for the Accept methods and Visit methods intensional views, and the binary relation that
expresses that all accept methods must contain a call to a visit method.

However our initial attempt at specifying documentation for a regularity resulted in a
number of discrepancies between the documentation and the implementation for the majority
of intensional views and constraints. By inspecting the documentation and discrepancies
using our tool suite we identified three reasons for these discrepancies.

Deviations from the documentation A first reason for the inconsistency of the documen-
tation is that the intension of an alternative view or the predicate of a constraint is correct
in the general case but there exist some source-code entities for which the documented reg-
ularity does not hold. These exceptions to the regularity were then explicitly documented
as deviations to the documentation. As such, these deviations demonstrate how the source
code of our tool suite had an impact on the documented regularities and how, by updating this
documentation, we were able to co-design both artifacts.

For example, we defined the Accessors intensional view using the following two alterna-
tive views:

1.methodWithName(?method,?field),
instanceVariableInClass(?field,?class)

2.statementsOfMethod(statements(<?statement>),?method),
instanceVariableInClass(?field,?class),
equals(?statement, return(variable(?field)))

The first alternative expresses the naming convention that the name of an accessor method
must correspond to the name of the field that is being accessed; the second alternative states
that an accessor method consists of a single statement returning the value of an instance vari-
able. Verifying consistency of this intensional view reported three methods which followed
the naming scheme (alternative 1) but which did not adhere to the implementation idiom (al-
ternative 2). A closer inspection of these three methods revealed that they all followed a
similar implementation pattern (as illustrated in Figure 6.3). This pattern deviates from the
idiomatic implementation we documented by doing a lazy-initialization of the accessed field.
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Figure 6.4: The Extensional Consistency Inspector opened on the Mutators intensional view.

To correct this intensional view, we documented the three methods as explicit deviations from
the intension of the second alternative view.

While in the case of the Accessors view the deviation was caused by an intension that was
too specific, the Extension intensional view provides an example of an intension that was too
broad. Upon verifying the validity of the Extension view, our tool suite pointed out a single
discrepancy, namely the method copy implemented in the Extension class. The Extension
view captures the regularity that the methods of the Extension class form an adapter for
the actual underlying abstraction of a set of tuples. As such, the methods belonging to the
Extension that adapt a method that is part of the interface of Collection must forward
a request to the wrapped set of tuples. However, since the Extension class as well as
the Collection class implement a method copy, this method was also captured by our
intensional view as a method that should be adapted. Since this copy method was not part of
the adapted interface, we explicitly documented it as a deviation to the Extension intensional
view.

Errors in the documentation A second reason for some of the discrepancies we encoun-
tered was that our initial assumption on which we based the intensional view or constraint
was erroneous and needed to be altered. Similar to the examples discussed above, these dis-
crepancies illustrate how co-designing the source code impacted the documented regularities.
One example of such an erroneous definition of an intensional view was the initial intension
of the Mutators intensional view. We defined this view as consisting of two alternative views,
namely:

1.methodWithName(?method,?name),
instanceVariableInClass(?field,?class),
[?field asString,’:’ = ?name asString]

2.statementsOfMethod(statements(<?statement>),?method),
argumentsOfMethod(<?argument>,?method),
instanceVariableInClass(?field,?class),
equals(?statement, assign(variable(?field),?argument))
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The first alternative expresses that the name of all mutator methods must match the name of
a field, followed by a colon. The second alternative captures the implementation idiom that a
mutator method must consist of a single statement assigning the value of the only argument
to a field. When verifying extensional consistency of this intensional view using our tool
suite (see Figure 6.4), we were informed of quite a lot of methods that did not adhere to the
second alternative. A detailed inspection of these methods revealed that our initial intension
for the second alternative was much too strict. For instance, the method lastChecked:
implemented in IntensionalRelation was defined as:

1 IntensionalRelation>>lastChecked: anObject
2 lastChecked := anObject.
3 self changed:#relation

In addition to assigning the value of anObject to the lastChecked field, this method
also contained a statement that performed a change notification.

We solved this inconsistency by altering the intension of the second alternative view such
that it became less strict and verifies whether a method contains an assignment to a field.

1 2.statementsOfMethod(statements(?statements),?method),
2 argumentsOfMethod(<?argument>,?method),
3 instanceVariableInClass(?field,?class),
4 member(assign(variable(?field),?argument),?statements)

Note that, since we also encoded a regularity to ensure that all assignments to a field in the
core model of IntensiVE are performed strictly by means of a mutator method, this relaxation
of the definition of a mutator method did not pose any problems.

Errors in the implementation Another possibility is that our initial assumption was cor-
rect, but the source code of IntensiVE (incorrectly) did not adhere to the documented struc-
tural source-code regularity. In other words, verifying the validity revealed a number of “er-
rors” in the implementation. While some of these discrepancies were of the stylistic kind,
such as source-code entities which were classified in the wrong protocol (in the case of the
Compilation and Extension intensional views) or which did not respect the proper naming
scheme, we were able to find a number of more serious violations of regularities. In contrast
to the examples above, these errors in the implementation demonstrate how the descriptive
use of the documented regularities impacted the source code of IntensiVE.

A first example of such an error we identified was when verifying consistency of the unary
constraint:
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∀ adapter ∈ Extension :
methodWithNameInClass(?adapter.method,?name,?),

statementsOfMethod(statements(<

return(send(

send(variable(self), tuples,<>),

?name,

?args))>),?adapter.method)

This constraint verifies whether all adapted methods implemented on the Extension class
follow a similar implementation pattern, namely that they consist of a single statement that
returns the value of a delegation of the same method to the variable tuples. However, our
tool suite informed us of a single method collect: implemented in Extension that did
not adhere to the implementation pattern. This method was implemented as:

Extension>>collect: aBlock
self tuples collect: aBlock

The consistency of the constraint failed since we omitted to return the result of the dele-
gation. The correct implementation of the collect: method would consist of a single
statement ŝelf tuples collect: aBlock2. Moreover, since in Smalltalk methods
without a return statement (implicitly) return the receiver of the message (i.e. the instance of
Extension), this bug was not immediately apparent at run-time.

Another example of an erroneous implementation of a structural source-code regularity in
IntensiVE was identified by checking conformance of the Hash/equals intensional view. This
intensional view is defined by two alternative views:

1. methodWithNameInClass(?method,=,?class)
2. methodWithNameInClass(?method,hash,?class)

This intensional view expresses that all methods in IntensiVE implementing the ‘=’
message must also implement a method hash and vice versa. When verifying consistency of
this intensional view, the tool suite informed us that the class ExceptionElement, which
serves as a wrapper around tuples, did implement ‘=’ but that we incorrectly omitted the
hash-operation.

Although these two examples are not critical bugs, they can cause erratic behavior at
run-time. What’s more, these errors were not detected by the unit tests we have defined for
IntensiVE. As such, they provide a nice illustration of how our approach can complement
behavioral tests.

All of the discrepancies we discovered in the implementation were resolved by altering
the source code. Whether by changing the protocol of a method, an incorrect name, or by
making the source code adhere to an implementation pattern, we were able to synchronize the
source code and the documented regularities.

2Return statements in Smalltalk are indicated by the ‘ˆ ’ sign.
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Co-evolution of the documentation and the implementation during the development pro-
cess

After obtaining a set of consistent intensional views and constraints defined on the imple-
mentation of IntensiVE, we incorporated the verification of these views and constraints into
the standard testing phase of our tool suite. As such, we used the integration our tool suite
offers with the unit testing framework in Smalltalk. This allowed us to verify the validity
of the intensional views and constraints at the same time when the unit tests were verified.
Consequently we were able to detect infringements on naming conventions, the idiomatic im-
plementation of certain concepts, etc early on in the development process. In particular, we
encountered three situations in which either the documentation, the implementation or both
artifacts simultaneously needed to co-evolve:

Evolution of the source code We expressed a binary intensional constraint stating that
for each class in the core model there should exist a corresponding unit test class. While
this regularity held from the start for the vast majority of classes (except for e.g. abstract
classes, which we specified as being deviations from the constraint), this implementation
regularity aided in ensuring that, whenever the core model of IntensiVE was extended or
updated, the corresponding test suite evolved as well. More specifically, it allowed us to
maintain some kind of test suite coverage of the implementation. Although this constraint
is quite coarse (we do not consider the test coverage of single methods, only of complete
classes), this prescriptive use of the documented regularities helped us to assess the impact on
the test suite of simple refactorings in the core model.

Evolution of the documentation At the time we created the initial version of the docu-
mentation of the regularities underlying IntensiVE, the evaluation of intensional constraints
was implemented by a separate class for each combination of a kind of constraint (unary or
binary) with a supported query language (SOUL, Smalltalk). For example, the implementa-
tion consisted of SOULUnaryEvaluator, SmalltalkBinaryEvaluator and so on.
For the purpose of making it easier to extend our implementation with new query languages
and kinds of constraints, we refactored this implementation. We created two separate class
hierarchies, namely a class hierarchy implementing the kinds of constraints and a hierarchy
of classes representing the evaluators for the specific query languages. We composed the two
hierarchies by means of the Strategy design pattern: the evaluator for e.g. a unary constraint
can be parameterized with an evaluator for a query language.

This refactoring had a significant impact on the structural source-code regularities under-
lying the implementation of IntensiVE. In an earlier version, we had a single intensional view
Constraint evaluators which captured the evaluators for constraints. Furthermore, the naming
conventions and inheritance constraints that governed this implementation of the constraint
evaluators were documented by a number of constraints imposed on the Constraint evalu-
ators view. The verification of this documentation obviously resulted in a large number of
reported discrepancies. As such we also had to refactor the documentation. We removed the
Constraint evaluators view and replaced it with the Constraint type evaluators and Constraint
language evaluators views which correspond with this alteration in the structure of IntensiVE.
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Figure 6.5: The Relation Consistency Inspector opened on the binary relation that expresses
that for each product there should exist a corresponding factory method.

Moreover, we documented the interface a query language evaluator needs to implement and
the composition mechanism for configuring a constraint evaluator with the proper language
evaluator.

Evolution of documentation and source code In order to ease with the experimentation of
different editors, models of intensional views and constraints, query languages, and so on, we
introduced the Factory design pattern in order to abstract from the actual classes implementing
the different conceptual entities from the model of intensional views. This factory was not
part of the original design of IntensiVE. As such, introducing the factory required us to create
factory methods for each of the different entities in the model of intensional views. Moreover,
we had to create a hierarchy of factories, each implementing the construction of a different
family of entities representing a variation on the model of intensional views.

We supported this evolution task using our approach by creating a number of intensional
views and constraints as soon as the base infrastructure of the factory pattern was imple-
mented. These views and constraints document the different factories, factory methods and
interactions between these entities.

For instance, we created the binary intensional relation:

∀ product ∈ Products :
∃ fac ∈ Factory methods :

methodReferencesClass(?fac.method, ?product.class)

This relation expresses that for each product, there must exist a corresponding factory
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method. The documentation of the regularities underlying the instantiation of the factory
pattern allowed us not only to verify that our implementation followed the correct implemen-
tation pattern and naming scheme or helped us identify improper use of the factory. Since the
refactoring of the documentation and the source code happened simultaneously, we were able
to “guide” the refactoring using our documentation. For instance, Figure 6.5 demonstrates the
Relation Consistency Inspector opened on the binary intensional relation we discussed above.
This tool reported many violations of the regularity. This is not surprising since, at the time
at which we verified this relation, the introduction of the Factory pattern was still work in
progress. However, we were able to introduce the design pattern aided by our tool suite. For
instance, the information presented in Figure 6.5 allowed us to quickly assess the products for
which we still needed to implement a corresponding factory method.

6.1.3 Conclusions

The above case study illustrates the applicability of our methodology. As we observed during
the experiment, the step-wise refinement of the intensional views and constraints not only
aids in creating accurate documentation of the structural source-code regularities underlying
IntensiVE, but particularly helps in identifying source-code entities which do not respect a
regularity. As such, this step-wise refinement resulted in the co-design of the documented
regularities and the source code. This led for instance to situations such as the Extension and
Mutators intensional views where the discrepancies were caused by documentation that did
not prove to be entirely correct. By respectively documenting explicit deviations from the in-
tensional view, or by refining the documentation we were able to resolve these discrepancies.
In the experiment above, we also encountered a number of situations (e.g. Hash/Equals) for
which the discrepancies were the result of an error in the source code. We resolved these
situations by adapting the source code of IntensiVE.

Moreover, the case study also demonstrates how our approach can be applied to support
the co-evolution of the documentation of structural source-code regularities and the imple-
mentation of a system during the development cycle. Incorporating the verification of the
documented regularities into the test cycle of our development process enabled us to iden-
tify infringements of coding conventions, naming schemes, idiomatic implementations and
design conventions early on during development. This was best demonstrated by the gradual
introduction of the Factory design pattern. By frequently verifying the intensional views and
constraints that document the regularities underlying this design pattern, we were able to de-
tect infringements of naming conventions, proper use of the design pattern, and so on, at the
same time that the design pattern was introduced in the implementation.

This case study also illustrated how the refactoring of a part of the implementation – the
evaluation of intensional constraints – impacted the structural source-code regularities gov-
erning that part of the implementation. This restructuring resulted that, upon verification, our
tool suite indicated that a number of intensional views and constraints were no longer syn-
chronized with the implementation. Due to these alterations to the source code of IntensiVE,
we updated our documentation such that it reflected the changed set of regularities.
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6.2 SmallWiki

6.2.1 Overview

The second case study we consider in this chapter is SmallWiki [Ren03, DRW05]. SmallWiki
is a collaborative wiki system implemented in VisualWorks Smalltalk, developed by Lukas
Renggli of the university of Bern. Similar to the previous experiment on IntensiVE, we cre-
ated a number of intensional views and constraints for the SmallWiki system which encode
the structural source-code regularities underlying SmallWiki’s implementation. In order to
assess how our approach is able to maintain the causal link between the regularities and the
source code of SmallWiki, we performed the following experiment:

• Following our iterative methodology we created a number of views and constraints on
version 1.54 (14/12/2002) of SmallWiki. This version was the first internal release of
the project and consists of 63 classes on which 424 methods were implemented. This
version of SmallWiki incorporated the base structure for the wiki system: a represen-
tation of a wiki document together with basic facilities to display and store such wiki
documents;

• In order to assess the impact of evolution on the documented structural source-code
regularities, and in order to verify how our approach can support the co-evolution of
the documented regularities and the implementation we applied the intensional views
and constraints we created on version 1.54 of SmallWiki to version 1.90 of the same
project. Version 1.90 (15/01/2003) is an internal release dating one month after the
initial 1.54 release and consists of 71 classes and 633 methods. The major difference
between this release and the 1.54 release is that the mechanism for outputting HTML
had been completely refactored;

• We finally reapplied the documented structural source-code regularities to version
1.304 (16/11/2003) of SmallWiki. This version entailed 108 classes and 1219 meth-
ods, thus being considerably larger than the previous two versions. Since this version
was released almost a year after the initial version 1.54, on which we started the experi-
ment, this allowed us to assess the impact of evolution of SmallWiki on the regularities
over a longer period of time.

The most significant difference between this experiment and the previous one is that during
this experiment, we assessed the evolution of the different structural source-code regularities
a posteriori instead of during the actual development of the system. As such, this case study
served as a means to demonstrate that during development of a system, changes to the source
code can break existing regularities. Furthermore, this case study also demonstrates that such
regularities can evolve over time, and that an approach such as intensional views can be used
to identify and resolve these evolution conflicts.

6.2.2 Intensional views and constraints over SmallWiki 1.54

We documented the coding conventions, naming conventions and design dependencies in the
initial release of SmallWiki (version 1.54) using intensional views and intensional constraints.
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Figure 6.6: Overview of the intensional views and constraints over SmallWiki.

We created 15 intensional views of which 4 have multiple alternative views. Moreover, we
defined 12 intensional constraints on these intensional views. An overview of these views
and constraints is illustrated in Figure 6.6. For a full overview of the implementation of these
views and constraints we refer to Appendix C.

These intensional views and constraints are an adaptation3 of a previous experiment which
we reported on in [MKPW06]. In this experiment, we started out with limited knowledge
about the implementation of SmallWiki. By studying both the documentation of SmallWiki
and its implementation, and by iteratively refining our documentation we achieved a good
understanding of the workings of the wiki system. Each time we discovered a concept or a
dependency in the implementation of SmallWiki, we documented it using an intensional view
or constraint. By verifying this documentation, we were able to review our assumptions about
the internals of SmallWiki.

We started out by creating an intensional view SmallWiki Entities grouping all classes and
methods in the implementation of SmallWiki. Next, we studied the major class hierarchies
that were present in the implementation. Each of these hierarchies aligned with a specific
concern in SmallWiki:

• Wiki Structures: all classes in the hierarchy of Structure represent wiki entities that
can be referred to by a single URL such as for instance a web page or a chapter in the
wiki;

3We restructured the intensional views and expressed them using the new formalism and model we explained
in Chapter 3.
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• Page Components: the different components which a wiki page consists of such as text,
links, tables, headers are implemented by a subclass of PageComponent;

• Wiki actions: the classes in the hierarchy of Action each represent an action that can
be performed on a SmallWiki entity such as cancel, edit, save, etc. By inspecting this
class hierarchy, we noticed that all methods implementing an actual action started with
the prefix “execute-” and were classified in the protocol action. We encoded this
regularity by means of alternative views for the Wiki actions view. All effective, non-
abstract actions are collected in the Effective actions intensional view. We documented
the regularity that each of these classes must provide a method name execute;

• Wiki Server: the classes in the WikiServer hierarchy implement a particular kind
of SmallWiki server (e.g. the class SwazooServer that makes use of the Swazoo
network library);

• Visitors: the Visitor hierarchy implements an instantiation of the Visitor design
pattern that allows performing various operations on a wiki document. A closer study
of this Visitor hierarchy revealed that SmallWiki provides two different kinds of
visitors:

– Output Visitors: the visitors responsible for generating output (HTML, Latex,
. . . );

– Storage Visitors: the visitors responsible for persistently storing a wiki document;

A closer inspection of the Structure and Action hierarchies revealed that both hierar-
chies are related:

• Actioned Wiki Structures: we noticed every class in the Action hierarchy imple-
mented an action for a particular element of the Structure hierarchy. For example,
the edit operation on a Page was implemented by a class PageEdit. We grouped the
classes which such an action is implemented for in the Actioned Wiki Structures view;

• Structured actions: this intensional view is the dual of the Actioned Wiki Structures
intensional view: while the Actioned Wiki Structures intensional view captured all wiki
structures which a number of actions are defined on, this intensional view groups the
implementation of those actual actions;

The presence of the Visitor design pattern resulted the documentation of the entities that are
visited by such a Visitor and regularities that govern these entities:

• Wiki Visited Elements: all wiki entities which are visitable by a visitor. This inten-
sional view expresses the regularity that all such elements should implement a method
accept: which is classified in a protocol visiting;

• Outputable Elements: all wiki entities which are visitable by an output visitor;

• Wiki Storable Elements: all wiki entities which are visited by a storage visitor. By
means of an alternative view we document the constraint that this set of storable ele-
ments equals the set of wiki structures, i.e. all wiki structures must be storable;
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Finally, we grouped all the unit tests over SmallWiki in the intensional view Test Cases. We
also discovered a number of constraints that govern the above intensional views:

• We documented the naming convention that for all Actioned Wiki Structures classes,
there must be a Structured action class such that the name of the wiki structure is a
prefix of the name of the action;

• In order to be able to deal with an action on a wiki document, all Wiki Structures classes
must invoke a Wiki action;

• The Wiki Structures must communicate with the Wiki Server;

• All Page Components must be outputable, as such, they must be a subset of the Out-
putable Elements intensional view;

• For all Output Visitors there must be an Outputable Element such that the name of the
outputable element matches the visit method on the output visitor. We also express the
dual of this constraint, namely that for each outputable element there should be a visit
method on an output visitor by means of a binary intensional constraint;

• For all Storage Visitors there must be a Wiki Storable Element such that the name of the
storable element matches the visit method on the storage visitor. Similar to the above
constraint, the dual of this binary intensional relation is documented;

• For every visit method belonging to Visitors, there must be a corresponding Wiki Visited
Element;

• All accept methods on Wiki Visited Elements must invoke a visit method on Visitors;

• For all classes in SmallWiki Entities there should be a corresponding Test Case;

• The visit methods in the Visitors intensional view are implemented by either a message
send to a stream or by an invocation of another visit method.

6.2.3 Supporting evolution of the documented structural source-code regulari-
ties and the implementation

In this section we assess the impact of evolution on SmallWiki by applying the intensional
views and intensional constraints to versions 1.90 and 1.304 of the wiki system.

Impact of evolution on version 1.90

We verified conformance of the documentation of the structural source-code regularities to
version 1.90 of SmallWiki. The result of verification can be seen in Figure 6.7 presenting
the output of our Visualization tool. In particular, we observed that a number of views and
constraints were violated.
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Figure 6.7: The Visualisation tool illustrating conformance of the set of intensional views and
constraints applied to version 1.90 of SmallWiki

Violation of a stylistic regularity We documented the naming convention that the first
argument of a method on an output visitor must correspond to the name of the visited el-
ements. However, the binary intensional relation (between the Output Visitors and Out-
putable Elements) expressing this convention failed in version 1.90. A closer inspec-
tion of the discrepancy indicated a single method named acceptOrderedList: in the
VisitorOutputLatex that erroneously deviated from this convention (the argument was
named numberedList instead). We correct this small discrepancy by altering the source
code;

Incorrect documentation In our documentation of version 1.54 of SmallWiki, we explic-
itly included the class Document as a deviation to the second alternative view of the Wiki
Storable Elements view. The reason for this was that the second alternative of this view stated
that all Wiki Structures must be storable. The Document class was not a part of the Wiki
Structures view; however, according to the implementation it was clearly a storable element
since there existed a corresponding method on a storage visitor. In version 1.90 this explicit
deviation caused the Wiki Storable Elements intensional view to become inconsistent. An
inspection of the discrepancies illustrated that due to a change in the implementation, this
corresponding method for the Document class was no longer present in the storage visi-
tor. We made the documentation consistent again with the implementation by removing this
explicit deviation;
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Figure 6.8: The Relation Consistency Inspector opened on the relation between the Wiki
Structures and Wiki action views.

Changes in the design of SmallWiki Our tool suite also reported that the binary intensional
relation stating that all elements of Wiki Structures invoke a Wiki action was violated. In
version 1.54 of SmallWiki, a wiki structure would receive a request from the server to perform
a certain action. To this end, the structure would create an instance of a wiki action, execute
the action and return the result. Verification of this regularity (see Figure 6.8) informed us
that none of the Wiki Structures respected this regularity. An inspection of the source code
of version 1.90 of SmallWiki indicated that the mechanism discussed above was refactored.
Rather than handling an action by itself, a wiki structure delegated this to an instance from the
Renderer hierarchy. We documented the effect of this refactoring on the structural source-
code regularities by creating an intensional view Renderer. We documented the dispatch
mechanism by a unary constraint expressing that all Wiki structures must dispatch the
action to a Renderer.

This inspection of the rendering facilities also indicated that the wiki actions in version
1.90 use a separate class for generating HTML code (HTMLWriteStream) rather than by
outputting HTML code themselves (as in version 1.54). We also documented this change
in the implementation of SmallWiki by creating a binary intensional relation expressing that
wiki actions must use this mechanism. When verifying this regularity, we noticed a large
number of discrepancies. Since this change in the design of SmallWiki was still a work in
progress, we did not resolve these discrepancies.

Impact of evolution on version 1.304

We repeated the above experiment by applying the intensional views and constraints we ob-
tained after version 1.90 of SmallWiki to version 1.304 of the wiki system. While the time
interval between version 1.90 and 1.304 was quite large, the documented structural source-
code regularities appeared to have remained fairly stable. However, verification of the docu-
mentation did report discrepancies between the regularities and the implementation. In what
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Figure 6.9: The Extensional Consistency Inspector opened on the Wiki actions intensional
view.

follows, we discuss a number of examples of such violated regularities.

Violation of a stylistic constraint We documented a binary intensional relation that
expresses that the single argument of all visit method in Storage Visitors must match
the name of the Wiki Storable Element that is being visited. E.g. the argument of
the method acceptPage: must contain the string ‘Page’. This constraint was vio-
lated by the acceptLinkInternal: method in the LinkInternalVisitor class.
In this method, the argument was named anInternalLink rather than the expected
aLinkInternal. We resolved this minor stylistic inconsistency by adapting the source
code.

Violation of a regularity as well as an inconsistency in the source code Our tool suite
reported that the intensional view Wiki actions was inconsistent (see Figure 6.9). This inten-
sional view was defined by two alternative views:

1.[’execute*’ match: ?method selector asString]
2.methodInProtocol(?method, action)

The first alternative states that all methods with the prefix “execute-” are wiki actions; the
second alternative selects all methods classified in the protocol action. An inspection of
inconsistencies between the two alternative views of the view brought it to our attention that
there were two methods, namely executeSearch and executePermission which
were clearly captured by the first alternative view, but which were incorrectly classified in an-
other protocol than the protocol action. We resolved this situation by classifying both meth-
ods in the correct protocol. Moreover, there were two methods save and authenticate
which did not follow the first naming convention, but which were classified in the protocol
action. We documented these two methods as explicit deviations to the first alternative
view of Wiki actions;
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Figure 6.10: Diagram representing the problem with the Page components and Output Visitors
intensional views.

Incorrect documentation The binary intensional relation declaring that all page compo-
nents have a corresponding visit method on an output visitor failed. This relation was imple-
mented as follows:

∀ component ∈ Page components :
∃ outputable ∈ Outputable elements :

component = outputable

Figure 6.10 illustrates the reason for the discrepancies of this intensional relation. The right-
hand side of the diagram represents a part of the hierarchy of page components in the Small-
Wiki system. The left-hand side shows two classes from the implementation of the Visitor
pattern. The regularity requires that for each page component there exists a corresponding
visit method on an output visitor. This is encoded by requiring that each page component is
also a part of the Outputable elements view (i.e. the set of SmallWiki entities that is visited
by an output visitor).

For a number of page components (in the figure the LinkExternal and LinkMailTo
classes), none of the visitors belonging to the Output Visitors intensional view implement a
corresponding accept method. Rather, the accept methods for these page components were
implemented on the abstract class Visitor. In the abstract class, these accept methods then
delegated to a more specific accept method (e.g. the method acceptExternalLink:
delegate to acceptLink:). As such, these classes are not part of the Outputable elements
view thus resulting in the discrepancies. We resolved this inconsistency by documenting the
discrepancies as explicit deviations from the Outputable elements view.
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6.2.4 Conclusions

We can make observations about SmallWiki similar to those we made about IntensiVE case
study. While the initial version of the SmallWiki system we documented was quite small,
resulting in that only a handful of interesting regularities governed the system, the case study
allows us to assess the impact of evolution on the documentation of this set of regularities. In
analogy to the verification of the intensional views and constraints over IntensiVE, verifying
consistency of the documentation we created over the implementation of SmallWiki resulted
in the two following situations:

• We encountered a number of situations in which discrepancies between the intensional
views/constraints and the implementation were caused by source-code entities which
did not abide with certain documented structural source-code regularities. In order to
render the documentation and the implementation consistent again, we had to alter the
source code of the system in order to correct the violated regularity or in the case of
an exception to the regularity we had to explicitly document it as a deviation from the
view/constraint;

• In other situations, the structural source-code regularities had evolved. Whether due to
changes in the conventions followed by the developer or a refactoring of the design of
the system, the documented structural source-code regularities no longer reflected the
current conventions which governed the system. In these cases we had to update the
definitions of the intensional views and intensional constraints in order to align with the
evolved regularities.

This experiment again demonstrates the need for co-design and co-evolution of the docu-
mented structural regularities and the implementation. Moreover, it also illustrates that the
intensional views and constraints over SmallWiki were able to detect inconsistencies between
the documented regularities and the source code of SmallWiki, which arose from the evolu-
tion of the SmallWiki system.

Another observation we can make about the experiment on SmallWiki is that the step-wise
definition and verification of intensional views and constraints aided in us getting a better un-
derstanding of the internals of SmallWiki. When initiating the case study, we started out
with little or no knowledge about the SmallWiki system. We created a number of intensional
views which capture high-level concepts in SmallWiki like for instance the page structure,
wiki actions, and so on. In general, these initial intensional views aligned with the different
class hierarchies in the implementation of SmallWiki. Furthermore, we encoded how we as-
sumed the different concepts in SmallWiki are structured or how they interact by means of
constraints over these intensional views. By verifying these assumptions with respect to the
source code, we gained a better understanding of the implementation of SmallWiki. This re-
sulted in us being able to refine the documentation of SmallWiki by creating intensional views
which capture more detailed concepts such as the different types of visitors (for storage, for
output), and so on. While this gradual construction of documentation for the regularities gov-
erning SmallWiki required a larger effort than the effort required for documenting a system
for which we have expert knowledge like IntensiVE, we feel that this documentation process
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aided in understanding the internals of SmallWiki. While we cannot claim in general that doc-
umentation of structural regularities using intensional views aids in comprehending a piece
of software, for SmallWiki we experienced that the process of alternating between exploring
the source code of SmallWiki and documenting/verifying how we assumed that SmallWiki is
structured, resulted in a better understanding of the SmallWiki system.

6.3 DelfStoF

6.3.1 Overview

The final case study we consider in this chapter is DelfSTof. DelfSTof is a framework for
performing formal concept analysis (FCA) [GW99]. FCA is a data mining technique that,
given a set of objects4 and a set of attributes describing those objects, returns maximal groups
of objects according to the attributes they share. In other words, the result of performing
formal concept analysis on a group of objects is that the algorithm returns the subsets of
objects that, according to the attributes describing the objects, are similar. DelfSTof was
implemented mainly by Tom Tourwé and Kim Mens in the context of their work on using
FCA in order to identify crosscutting concerns [MT05, TM04]. DelfSTof’s initial release
consists of 86 classes implementing 440 methods.

While the implementation of the core FCA algorithm is monolithic and low-level for effi-
ciency reasons, DelfSTof also consists of a number of classes which provide additional func-
tionality to ease experimenting with different sets of objects and attributes. More precisely,
DelfSTof provides a number of customization points:

• An instantiation of DelfSTof can specify the set of objects which FCA is applied to;

• DelfSTof provides a set of classes for deriving attributes for each object. Especially for
analyzing source code, the framework includes a parse tree traversal algorithm that can
be configured to extract certain properties;

• In order to decrease the size of the output, DelfSTof provides an extensive filtering
framework to filter the considered attributes before the actual concept analysis is per-
formed as well as the set of concepts returned by the algorithm;

• DelfSTof provides a means to implement the grouping of concepts with similar proper-
ties (e.g. all concepts containing polymorphic methods, . . . ). These so-called concept
analyzers can be instantiated to analyze the concepts returned by the FCA algorithm
and group them in a specific way;

• The framework provides the notion of a context. Such a context is a class representing
the configuration of the FCA algorithm. This context specifies the set of objects that
is used by the algorithm and the attribute creator used to generate the attributes of
the objects. Furthermore, such a context also selects the filters and analyzers that are
applicable to a specific experiment.

4Notice that in FCA terminology the term objects not used in the sense of ‘object-oriented programming’ but
rather the set of objects the FCA algorithm will analyze.



168 CHAPTER 6. SUPPORTING CO-DESIGN AND CO-EVOLUTION

6.3.2 Intensional views and constraints over DelfSTof
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Figure 6.11: Overview of the intensional views and constraints over DelfSTof.

Figure 6.11 gives an overview of the intensional views and constraints we defined on
DelfSTof. For this experiment – which is based on our previous work as reported in [MK06]
– we explicitly focussed on documenting the structural source-code regularities that are con-
cerned with properly instantiating the framework. Therefore we documented a number of
regularities which document the set of methods (and their implementation pattern) that need
to be implemented by a class that customizes a particular aspect of DelfSTof. Moreover, we
also documented the correct usage of the context creation: since the filters and analyzers are
arranged as a Chain of responsibility, we created a number of views and constraints that detect
instances of improper usage of the chain. Furthermore, we also provided a number of reg-
ularities that aid in verifying that the context creation process is performed correctly. More
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specifically,

• The DelfStof entities intensional view captures all the source-code entities in the imple-
mentation of DelfSTof;

• Filters groups the implementation of the filtering mechanism. Since DelfSTof makes a
distinction between filters that are applicable to attributes and filters that are applicable
to concepts, we provide two children of the Filters intensional view namely Attribute
Filters and Concept Filters. We impose a number of constraints over these intensional
views which govern the implementation of the filters.

• In analogy to filters, we also document the concept analyzers (i.e. the classes responsi-
ble for grouping related concepts returned by the FCA algorithm). The analyzers that
group concepts containing the same kind of objects (i.e. classes, methods and parse
trees) are grouped in the Basic Analyzers view. The concept analyzers that perform
a more “semantic” grouping of concepts (for instance all concepts that contain only
polymorphic methods) are gathered in the Predefined Analyzers view;

• The most important concept in the DelfSTof framework is that of a context creator. A
subclass of ContextCreator contains a number of factory methods that specify the
filters and analyzers used by a particular FCA experiment. We document these con-
text creators using the intensional view Context Creators. The set of concrete context
creators supplied by DelfSTof is grouped by the Predefined Context Creation view. Fur-
thermore, we create for each kind of factory method implemented by a context creator
a separate intensional view. Namely, we implement the Classification Analyzers Cre-
ation, Attribute Filter Creation, Attribute Filter Creation and Basic Analyzers Creation
views.

We also document a number of regularities that govern these context creators. First
of all, we specify the regularity that the methods in the Predefined Context Creation
must return an instance of Collection containing the different filters or analyzers
that are applicable. Second, we document four binary intensional relations that express
the regularity that each kind of factory method must return a collection containing the
correct kind of entities. For example, we require that the methods in the Basic Analyzers
Creation view only refer to Basic Analyzers.

• The Parsetree Attribute Creator and Parsetree Attribute Generator intensional views
group source-code entities which are responsible for extracting properties from a parse
tree of a method. Moreover, we define a constraint which states that the parse tree
attribute creator must use a parse tree attribute generator;

• The Concepts intensional view groups the implementation of different kinds of con-
cepts, as they are created by the concept analyzers;

• Experiment execution contains the top-level methods which are used to initialize and
invoke an experiment using FCA. Since all these methods follow a similar implemen-
tation pattern, we document this pattern.
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Similarly to the two other case studies, we do not illustrate the actual implementation of all
the intensional views and intensional constraints here but rather refer the interested reader to
Appendix D.

6.3.3 Supporting evolution of the documented structural source-code regulari-
ties and the implementation

In order to assess how our approach and tool suite support the evolution of the regularities
we documented on the implementation of DelfSTof, we performed two experiments. First,
we applied the set of intensional views and constraints to multiple subsequent versions of the
DelfSTof framework. We studied how changes in the implementation affected the structural
source-code regularities and how our approach allowed us to deal with this evolution. Second,
we applied our documentation to one particular instantiation of the DelfSTof framework.

Supporting evolution over different versions of DelfSTof

In line with the other case studies, we applied our iterative methodology to create a first ver-
sion of the intensional views and constraints over DelfSTof. We thus started by encoding
an assumption about the structural source-code regularities in the framework. By verify-
ing the validity of this assumption with respect to the implementation and by refining our
views/constraints and the source code, we ended up with a set of intensional views and con-
straints which reflected the structural source-code regularities of DelfSTof. During this iter-
ative process, we did not only refine our documentation but also encountered a number of
source-code entities which did not respect some of the naming conventions or which deviated
from the documented implementation patterns.

When verifying the validity of this set of intensional views and constraints to subsequent
versions of DelfSTof, we did not encounter much discrepancies. Our tool suite identified
a number of instances of source-code entities which did not respect a naming convention.
Furthermore, we encountered one refactoring in the implementation of the classification an-
alyzers that resulted in that we needed to update our documentation. However, over time the
structural source-code regularities in DelfSTof did evolve little, nor did the implementation
deviate much from these regularities.

This can be explained by the fact that the architecture of the framework was simple and
did not significantly evolve during the different versions. Although the size of the code base
of DelfSTof increased significantly (from 86 classes and 440 methods to 192 classes on which
747 methods are implemented), most of these extensions did not alter the framework but rather
extended the default set of filters and analyzers that were offered by DelfSTof. Moreover,
since all of the changes were made by the two original developers of the framework, and due
to the simplicity of the framework, almost none of these extensions infringed the structural
source-code regularities governing DelfSTof.
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Applying the documentation to the instantiation of DelfSTof

Applying the intensional views and constraints we defined over DelfSTof to a particular in-
stantiation of the framework yielded more interesting results. A developer who was novel to
DelfSTof had customized and used the framework in order to detect refactoring opportunities
based on duplicated code, i.e. pieces of code with similar parse trees. As such the developer
had to customize the framework in a number of ways:

• The parse tree attribute creators, i.e. the part of DelfSTof that allows the traversal of a
parse tree of a program and extracts the information of interest for a certain experiment,
needed to be extended such that for any given method, an abstract parse tree (a parse
tree in which all literals have been omitted) can be extracted;

• A number of analyzers had to be implemented which group concepts on which a similar
object-oriented refactoring is applicable;

• In order to reduce the number of false positives, the developer needed to implement
certain attribute filters which removed trivial parse trees, as well as a couple of concept
filters which pruned away uninteresting results;

• Depending on the case study which the developer’s instantiation of DelfSTof needed to
be applied to, a different context needed to be created.

The developer did not have any a priori knowledge about DelfSTof and studied other in-
stantiations of the framework in order to learn its internals before implementing his own
instantiation.

We used the set of intensional views and constraints we defined over DelfSTof as a kind
of prescriptive documentation to verify whether the particular instantiation of the framework
respected the different regularities that govern DelfSTof. When verifying consistency of these
views and constraints we were notified by our tool suite of two situations in which the frame-
work customizer circumvented the facilities offered by the framework, and where the regu-
larities governing the framework were thus violated.

Violation against the implementation pattern of Experiment execution Verifying the va-
lidity of the documented regularity informed us that the implementation pattern Experiment
execution was violated.
This regularity was implemented as follows:

∀ experiment ∈ Experiment execution :
statementsOfMethod(statements(<?statement>),?experiment.method),

equals(?statement, send(variable(self),

[#runAnalysisOnObjects:forCase:],

<send(variable(self),?,<>),literal(?project)>)),

[(’runOn’, ?project asString)

match:(?experiment.method selector asString)]
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The above unary constraint specifies that all methods implementing the top-level
invocation of an experiment must consist of a single statement that invokes the
runAnalysisOnObjects:forCase: message. Furthermore, the regularity requires
that the second argument of this invocation (i.e. the project name) matches the name of the
method implementing the experiment execution. Let us illustrate this regularity by an exam-
ple. The method runOnSoul in the ContextCreator class is implemented as follows:

runOnSoul
self
runAnalysisOnObjects: self soulObjectCreatorClass
forCase: ’Soul’

This method respects the regularity since it invokes the
runAnalysisOnObjects:forCase: message and the second argument (namely
‘Soul’) matches the method name (runOnSoul).

The customizer’s implementation violated the above regularity by not us-
ing the runAnalysisOnObjects:forCase: but rather invoking the
performAnalysisOnObjects: method. While this method also initializes a
FCA experiment, this was not the intended use of the framework. As a result, the additional
behavior provided by runAnalysisOnObjects:forCase: – namely logging and
benchmarking of the performed experiment – did not get executed.

Violation of chain of responsibility Our tool suite also informed us that the instantia-
tion of DelfSTof violated the regularity that Context Creators are not allowed to refer di-
rectly to the basic Chain Building Blocks. This regularity documents the creation of the
chain of responsibility for the filters and analyzers in the DelfSTof framework. A de-
veloper implementing a customization of the framework must, among others, implement
a method basicAnalyzers that returns a collection of analyzers that are to be used
in the FCA experiment. The internals of this framework will then transform this col-
lection of analyzers into a chain and correctly terminate this chain by an instance of the
DefaultAnalyzer class. Consequently, a framework customizer should not manually add
this DefaultAnalyzer class to the collection of analyzers. The framework customizer
was not aware that this termination of the chain was performed by the framework and ex-
plicitly added the DefaultAnalyzer to the collection of analyzers in his instantiation.
Consequently, our tool suite reported that this addition of DefaultAnalyzer violated the
regularity.

6.3.4 Conclusions

Although the second phase of the experiment we described above – in which we applied our
documentation to an instantiation of DelfSTof– is technically not an instance of co-design or
co-evolution, since only the source code evolves without us having to evolve the documenta-
tion, it illustrates an interesting application of our approach. We started by documenting the
regularities underlying the framework in order to co-evolve the implementation of the frame-
work with this documentation. Since our intensional views are expressed by means of an
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intensional description, they cannot only be used to capture the source-code entities belong-
ing to the implementation of the framework but also to capture source-code entities belonging
to extensions and instantiations of this framework. As the different structural source-code reg-
ularities we documented not only express a number of naming conventions, implementation
schemes, prohibitions, and so on about the implementation of the framework, but also about
the instantiation of this framework, this documentation can serve as a means to verify the
instantiation of the framework. By verifying conformance of the intensional views and con-
straints that are defined over a framework during the implementation of an instantiation, it is
possible to detect certain infringements of the structural and stylistic regularities governing
the framework.

6.4 Discussion

Evolution of structural source-code regularities

The set of structural source-code regularities of a software system is not a static entity. One
of the observations we were able to make about the case studies we conducted above is that
over time, not only the source code of a software system evolves, but also the regularities
which govern this software system. For instance, we encountered a number of situations in
which the implementation pattern for a certain concept needed to evolve in order to capture
changes in the system’s design. One example of such an evolution conflict occurred in the
SmallWiki case study. In this case study, we expressed – using a binary intensional relation
– that for all storable elements of a wiki page, there must be a corresponding visit method on
the storage visitor. While this regularity held for the first versions of SmallWiki, the introduc-
tion of a number of page elements which reused the storage mechanism from another element
rather than implementing its own resulted in that we needed to update the documentation of
the regularities slightly in order to capture the new situation. Similarly, other changes in the
design of the application can have an impact on regularities which express how certain design
elements must interact. For example, in IntensiVE we refactored the evaluation mechanism
of intensional constraints. This refactoring had a drastic impact on the structural source-code
regularities that were documented in this part of the implementation of IntensiVE: while the
existing regularities were no longer valid, the refactoring introduced a number of new regu-
larities. We encountered a similar situation in the SmallWiki case study. In between version
1.54 and version 1.90 of the wiki system, the rendering of HTML pages was significantly
altered. As such, we had to alter our set of intensional views in order to capture this new
rendering system and the structural dependencies which were introduced upon the rendering
system. Finally, changes to the implementation of a system can give rise to totally new struc-
tural source-code regularities. One instance of such a situation occurred with the introduction
of the Factory design pattern in IntensiVE’s implementation.

Support for co-evolution

The case studies we explained in this chapter illustrate that our approach is suitable for docu-
menting structural source-code regularities in object-oriented systems, as well as for support-
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ing the co-evolution of this documentation with the implementation of the system. First, this
support is achieved by the fact that the documentation we create using intensional views and
intensional constraints is active and verifiable. The intensional views defined on a system are
expressed in terms of the actual implementation entities, thus providing active documentation
of concepts in the source code of the system. Furthermore, the constraints imposed on these
views are verifiable with respect to the source code. This enables the identification of discrep-
ancies between the documented regularities and the source code, thus aiding in maintaining
the causal link between these regularities and the implementation.

Second, the intensional description of the set of tuples belonging to an intensional view
aids in supporting evolution of the documented source-code regularities. Since the set of
tuples belonging to an intensional view is calculated, this allows – upon evolution – the auto-
matic classification of newly added or modified source-code entities, thus providing a means
to verify the validity of the different constraints with respect to these changes in the source
code.

Third, our approach is non-coercive: the different constraints we impose on a system
are not enforced by our system but our tool suite rather informs a developer of discrepan-
cies between the regularities and the implementation. This enables a developer to deviate
temporarily from the documented regularities during development, providing more flexibility
than a coercive approach in which the different regularities are enforced.

Iterative definition of the documentation and co-design

One of the cornerstones of the methodology we advance in this dissertation is the incremental
and iterative definition of the documentation of structural source-code regularities as a means
to support the co-design of regularities and source code. Using this scheme, a developer
performs a step-wise refinement of documented structural source-code regularities by alter-
nating between adapting the documentation and verifying the documentation with respect to
the implementation. In addition to providing support for verifying conformance of the docu-
mentation, our approach and tool suite support this iterative methodology by the construct of
explicit deviations from an intensional view or an intensional constraint. This mechanism of
deviations makes it possible to explicitly include or exclude a particular tuple from the exten-
sion of an intensional view, or explicitly to mark for a tuple that a certain constraint does (not)
hold. In practice, these deviations proved to be quite useful: although the iterative method-
ology we applied when constructing a set of views and constraints resulted in that upon each
iteration, the documentation more closely matched the actual concretization of a regularity
in the source code, we often encountered source-code entities which substantially deviated
from the regularity and as such were documented as an exception to the general rule. For
documentation purposes, the fact that deviations to a view/constraint are explicitly present in
the model of intensional views aids in constantly keeping a developer aware of them.

A side-effect of this iterative inception of the documentation for structural source-code
regularities is that the co-design of documentation and source code can be considered to
be a kind of “co-evolution in the small”. While the discrepancies between the documented
regularity and the implementation during this step-wise process often indicated a possible
refinement of the documentation, we also encountered a number of situations – as we have
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illustrated in the case studies – in which inconsistencies were the result of an error in the
source code of the system. As such, the discrepancies which are encountered at definition-
time of the documentation can be – depending on the expert knowledge of the developer
– interpreted as being an error in the documentation, an error in the implementation or an
exception to the regularity.

Mutual dependencies between intensional views

We learned from our case studies that a developer cannot consider the different intensional
views and constraints in isolation. For instance, when resolving an inconsistency between an
intensional view or constraint and the implementation by either updating the view/constraint
and/or the implementation, it does not suffice to verify the consistency of that single inten-
sional view or constraint. Due to the parent view scoping mechanism of intensional views,
the fact that one view can be expressed in terms of another and that intensional constraints
rely on the intensional views for which they are defined, changes in a single intensional view
or changes to a source-code entity which belongs to the extension of an intensional view, can
have an impact on multiple entities in our documentation.

While this property of our approach contrasts with the isolation property of unit tests
which by definition are independent of each other, this mutual dependency between different
intensional views and constraints does not have to be considered a disadvantage of our ap-
proach. Often, local changes in the source code of a system can impact a number of concerns
spread throughout the implementation of a system. The same observation holds for structural
source-code regularities: in order to address an inconsistency of a certain regularity, the source
code of a system can be altered such that another regularity in the system is violated. While
this has as effect that in practice, often an entire set of intensional views and constraints needs
to be verified with respect to the source code, it allows us to detect instances of changes in the
implementation (or the documentation) which have widespread consequences throughout the
implementation and/or documentation.

Costs versus benefits

An important question concerning the usefulness of our approach is whether the effort that a
developer needs to invest in order to document the structural source-code regularities govern-
ing a system using intensional views and constraints is outweighed by the advantages that are
gained by the consistent adherence of the source code to the documented regularities. Since
the three case studies we reported on in this chapter are modestly-sized, and only a relatively
small number of intensional views (up to 41) and constraints (up to 23) have been defined, it
is impossible to draw any conclusions about whether or not applying our approach is worth
the effort for large-scale, real-life systems. Such an assessment is thus the topic of further
study.

In this chapter we have illustrated only a single use of documentation created using in-
tensional views and constraints. In particular, we have demonstrated the applicability of our
approach for documenting the different structural source-code regularities governing a sys-
tem. By integrating the regularities in the development process, we were able to keep this
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IntensiVE SmallWiki DelfSTof
Code size (classes/methods) 148/2118 108/1219 192/747
Number of views 41 15 18
Number of constraints 23 12 11
Execution time 48 sec 5 sec 7 sec

Table 6.1: Overview of the case studies and the execution time of the test suites.

documentation consistent with the source code of that system. While the obvious advantage
of this approach is that we support the consistent implementation of structural source-code
regularities in the source code of a system, and the integration with the testing process results
in that discrepancies between the regularities and the implementation are discovered early
on during the development process, this is not the only application of our approach. Since
intensional views and constraints created using our tool suite are first-class entities, other
software engineering tools can exploit them. As such, while the developer needs to invest an
initial cost in order to document the structural source-code regularities using IntensiVE, this
documentation can serve multiple purposes.

As we already mentioned earlier, using intensional views and constraints in order to ex-
press the regularities governing a system results in the creation of explicit, first-class doc-
umentation of these regularities. The intensional views defined over a system align with a
concept in the source code of a system, the constraints imposed on these intensional views
each document a certain regularity. As such, the documentation created using our approach
provides a kind of “conceptual model” of the different concepts in the source code, along with
the different conventions and dependencies that govern these concepts. Since our documen-
tation is incorporated in the development environment, and our tool suite provides means to
browse the source code entities belonging to this conceptual model, it can serve as a means to
make a developer aware of the different concepts and regularities governing a system and pro-
vides an initial point-of-access in order to navigate the source code based on this conceptual
model.

In Chapter 7 we will discuss another application of the documentation created using inten-
sional views and constraints. In particular, we will show that the problem of fragile pointcuts,
one of the open issues in aspect-oriented programming, is caused by the fact that aspect de-
velopers heavily rely on how the source code of the base system which aspects are defined
over is structured. We propose to alleviate this problem of fragile pointcuts by no longer ex-
pressing aspects directly in terms of how the source code is structured at a given moment in
time, but rather propose to express pointcuts in terms of the entities in the conceptual model
created using IntensiVE.

Run-time of the test suite

In addition to the discussion above about the costs/benefits of applying our approach to large-
scale systems, an important factor that might limit the scalability of our approach is the addi-
tional run-time it imposes on the test suite of an application. Especially since we promote the
frequent verification of the intensional views and constraints that are defined on a system, it is
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important that the time necessary to verify this set of views and constraints does not hamper
the development process by imposing too much of an overhead.

Table 6.1 gives an overview of the code size of each of the three case studies we discussed
in this chapter, along with the number of intensional views and constraints defined on each
case study, and the time needed5 to verify all the intensional views/constraints with respect to
the source code. The execution time of each of the test suites ranges from a couple of seconds
for DelfSTof and SmallWiki up to 48 seconds for the intensional views and constraints we
defined on the source code of IntensiVE. Although neither our tool suite nor the SOUL query
language is extensively optimized, it does not take excessively long to verify the intensional
views and constraints defined on the case studies. As can be seen in the table, the larger
the code size and the number of intensional views/constraints, the more time was necessary
for verifying consistency of the documented regularities. Due to the computation-intensive
nature of some of the regularities we documented in IntensiVE, the relative execution time of
this test suite was considerably larger than the time required for the other two case studies.
For instance, one such regularity we documented in IntensiVE that has proven to be quite
expensive in terms of execution time was the verification that all state changes also trigger the
proper change notification. However, by cleverly optimizing the intensions/predicates and by
not applying time-consuming analysis of the source code, we were able to limit the execution
time of even this largest case study to less than one minute.

It is reasonable to assume that if the size and complexity of the source code of a system
increases, so will the number of intensional views and constraints that document the regu-
larities governing that system. One possible way to deal with this increased complexity and
to limit the execution time of the test suite, is for a developer to divide a large (sub)system
in smaller subsystems and create a separate set of intensional views and constraints for each
subsystem.

Evaluation of the methodology

For the three case studies we reported on in this chapter, we rigorously applied the methodol-
ogy we advanced in Section 4.6. This methodology provides a lightweight set of guidelines
for documenting structural source-code regularities using the model of intensional views and
the associated tool suite, along with directions how to co-design and co-evolve this documen-
tation with the source code. Furthermore, the methodology advocates a “test-often” philos-
ophy in which the consistency of the documentation is verified at regular times during the
development cycle, such that infringements of the documented regularities can be detected as
soon as possible. We can conclude the following from the experience we gained performing
these three case studies:

• Our iterative refinement describes three possible means of resolving discrepancies be-
tween the documented structural source-code regularities and the source code. By in-
specting the documentation and the implementation, a developer can choose to either
correct the intension/predicate of an intensional view/constraint, to document excep-
tions to the intensional view or constraint or to correct errors in the source code. This

5Benchmarks performed on an Apple Mac Mini with an Intel Core Duo 1.66Ghz processor and 1Gb of RAM.
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resolution of discrepancies aligns with evolution conflicts we encountered in all three
case studies. For each case study, upon evolution we did not only encounter situations
in which the source code of a system did not adhere to the regularities governing this
system. We also encountered situations in which either our implementation contained
source-code entities that were exceptional cases which the regularities did not apply to.
Moreover, we also noticed that during the development of the system, changes in the
design or underlying regularities resulted in an update of the documentation. As such,
these case studies seem to indicate that co-design and co-evolution of the documenta-
tion and source code is necessary and that our approach and methodology are able to
support this;

• Another cornerstone of our methodology is the integration of the verification of the
documented regularities with the regular unit testing phase. In our case studies, we
only integrated this verification in the development cycle of IntensiVE(for the other
case studies, we studied the effects of evolution a posteriori). However, our experiences
with the IntensiVE case study illustrate that the frequent verification of the documented
regularities allows detection of discrepancies between the regularities and the source
code early on during development.

False positives and false negatives

Applying our approach to the different case studies we reported on in this chapter allowed
us to identify a number of interesting evolution conflicts. However, if our tool suite does
not report on any discrepancies between the documented regularities and the source code,
this does not necessarily imply that the different regularities governing a system are correctly
adhered to.

For example, using SOUL as a language to express the predicate of an intensional con-
straint, we approximate the calling relationship between two methods by verifying that the
parse tree of the first method contains a call to the message implemented by the second
method. While such an approximation can identify methods in which a specific call is lack-
ing, it does not provide any guarantees whether the call is actually performed at run-time (e.g.
when it is part of an ‘if’ statement), thus possibly resulting in false negatives.

Similarly, false negatives can also be the result of an intension that is too specific. Al-
though our model can accommodate such overly-specific intensions by explicitly including
particular tuples (in case of an exception to the general rule) in the extension of an intensional
view, our approach does not guarantee that the correct set of tuples is captured in general.
Consequently, the verification of an intensional constraint imposed on such an overly-specific
intensional view can result in that certain discrepancies between the regularity and the source
code are omitted.

Our model of intensional views provides one construct which aids in dealing with such
false negatives, namely alternative views. When multiple intensions have been specified for
the same intensional view, verifying extensional consistency of these alternatives can reveal
certain tuples which belong to one of the intensions but not to all of the other intensions of
the same view. If one of these intensions is too specific and omits a particular tuple which is
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captured by any of the other intensions, this false negative will be reported by our tool suite.
However, this mechanism does not provide any certainties: in the event that all intensions are
too specific and the same tuple is missed by all alternatives, our tool suite is unable to report
this false negative.

Analogously, our approach can report false positives: tuples which are identified as being
discrepancies between the documented regularities and the source code, but which are in
practice not. However, this forms less of a problem than false negatives since these false
positives do not result in inconsistencies in the implementation and they can be explicitly
documented as exceptions to an intensional constraint.

6.5 Conclusions

This chapter presented the experiences we gained performing three case studies in which
we applied our approach, methodology and tool suite for documenting the set of structural
source-code regularities underlying the implementation of IntensiVE, SmallWiki and Delf-
STof. We integrated this documentation in the development process (the IntensiVE case
study), or applied it to subsequent versions of the case study (SmallWiki, DelfSTof). As
we have demonstrated, this allowed us to deal with both evolution of the source code as well
as of the regularities that govern the system. We were able to detect discrepancies between
the documentation and the source code and supported the resolution of these discrepancies
by either updating the intensional views/constraints and/or the source code. This co-design
and co-evolution of the documentation and implementation resulted in that the causal link
between both artifacts remained valid during development and upon evolution of the system.

As we have illustrated, the set of intensional views defined over a system provides doc-
umentation for some of the concepts that are prevalent in the source code. For instance, in
the SmallWiki case study we created a number of intensional views that grouped the source
code entities implementing wiki page components, actions on wiki pages, and so on. In the
next chapter, we introduce an application of this first-class documentation. More specifically,
we explain the problem of fragile pointcuts and discuss how we can alleviate it by expressing
pointcuts in terms of the conceptual model created using intensional views.
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Chapter 7

Using model-based pointcuts to tackle
the fragile pointcut problem

In the previous chapter we already hinted that first-class documentation for structural source-
code regularities that is created using intensional views and constraints is general enough
to support other software engineering considerations. In this chapter, we illustrate how the
integration of our approach with an aspect-oriented programming language can be used to
tackle the fragile pointcut problem, one of the important open evolution problems in research
on aspect-orientation. The underlying cause for this fragile pointcut pointcut is that aspect
developers often implicitly rely on different structural source-code regularities. If these regu-
larities are not systematically adhered to, this may lead to erratic behavior of the aspects when
the software evolves, which is to be avoided.

This chapter is structured as follows:

• In Section 7.1 we give a brief overview of aspect-oriented programming (AOP). In
particular, we take a look at the problem of crosscutting concerns and illustrate by
means of a number of examples how AOP addresses this problem;

• In Section 7.2 we introduce the fragile pointcut problem. We study the underlying rea-
sons for the fragility of pointcuts using illustrative examples and discuss how the fragile
pointcut problem relates to the lack of support for verification of structural source-code
regularities;

• We present our approach – model-based pointcuts – in Section 7.3. We provide one
concrete instantiation of this approach that uses the formalism of intensional views and
constraints;

• To illustrate how model-based pointcuts tackles the fragile pointcut problem, we dis-
cuss a small aspect-oriented extension of the SmallWiki system. In Section 7.4, we
provide an assessment of the impact of evolution on these aspects and show how our
approach can support this evolution;

• In Section 7.5 we give a short overview of other approaches that aim at alleviating
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the fragile pointcut problem and discuss how these approach relate to model-based
pointcuts.

The work we discuss in this chapter is based on our earlier work on model-based pointcuts,
as reported in [KMBG06] and [BKG+06].

7.1 Aspect-oriented programming

We start by introducing some common terminology from the domain of aspect-oriented pro-
gramming.

7.1.1 Modularization of crosscutting concerns

The goal of aspect-oriented programming is to provide an advanced modularization mecha-
nism to separate the core functionality of a software system from system-wide concerns that
cut across the implementation of this core functionality. When designing a piece of soft-
ware, one of the driving forces is to obtain a modularization of the software into a number
of components such that there exists a minimum of overlap of functionality between these
components [Par72]. In other words, the idea is to modularize the system in such a manner
that each module implements a single concern. The intent of this separation of concerns in
the implementation of a system is to obtain software that is easier to develop and maintain.
Since a developer working on the implementation of one concern is not hassled with the im-
plementation of other concerns in the system, the complexity of the development process can
be reduced.

However, using the modularization mechanisms offered by classic programming lan-
guages – such as for example procedures and classes – the modularization of a system is
performed in terms of a single functional decomposition of the system. The modulariza-
tion schemes offered by these programming languages thus suffer from the “tyranny of the
dominant decomposition” [TOHS99b], which states that a software system can only be mod-
ularized in one decomposition at one time. Consequently, in a sufficiently large system there
can be certain concerns that do not align with this dominant decomposition. The implementa-
tion of these so-called crosscutting concerns is spread throughout multiple modules. Since a
single module then contains source code belonging to multiple concerns, the maintainability
and evolvability of this module is hampered. Typical examples of crosscutting concerns are
logging, synchronization, transaction management, exception handling, and so on.

Crosscutting concerns are characterized by high degrees of scattering, meaning that the
extent of their implementation encompasses multiple modules, and tangling indicating that
the source code implementing such crosscutting concerns is intertwined with the source code
that implements a part of the core functionality of a system.

7.1.2 Aspect-oriented programming

Aspect-oriented programming (AOP) [KLM+97, KM05b] focusses on extending the mod-
ularization capabilities of existing programming paradigms with novel language constructs
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Figure 7.1: Overview of the concepts from aspect-oriented programming

that allow a developer to modularize crosscutting concerns cleanly. To this end, the concept
of an aspect is introduced: an abstraction mechanism that modularizes the implementation of
a crosscutting concern. Although a large number of aspect-oriented languages exists, most
of these languages share the same set of basic concepts. These concepts are illustrated in
Figure 7.1.

One of the characteristics of aspect-oriented programming languages is that they employ
an implicit calling mechanism, in contrast to traditional programming languages where the
crosscutting behavior is explicitly invoked from within the base code of the system. This
entails that at certain events during the execution of the system (dubbed joinpoints) the cross-
cutting behavior implemented by the aspect will be executed. As such, the source code of the
base program – the part of the system implementing the core functionality – is unaware of
the different aspects that are invoked at runtime. This property is called the ‘obliviousness’
property of aspects with respect to the base program.

To select this set of joinpoints at which a certain aspect is applicable, a pointcut is used.
A pointcut is a query that reasons about the joinpoints present in a system and selects those
joinpoints at which the aspect needs to intervene. For instance, if a developer wishes to exe-
cute a piece of crosscutting behavior each time a particular method gets executed, the pointcut
must select the joinpoints in the system that correspond to the invocation of that method. The
advice of an aspect contains the actual implementation of the crosscutting behaviour. This
advice will be invoked at the joinpoints selected by the pointcut during the execution of the
system.

While it is not our goal to give a complete overview of aspect-oriented programming lan-
guages, we illustrate the concepts discussed above by means of some examples. In particular,
we briefly discuss the AspectJ and CARMA aspect languages, as we will encounter examples
expressed in these two languages throughout this chapter. A first example of an aspect can be
found in Figure 7.2. This aspect is implemented in the AspectJ [Lad03, KHH+01] language.
AspectJ is an aspect-oriented extension to Java that offers a pointcut language consisting of a
number of composable primitive pointcuts which capture low-level events in the execution of
a program such as message sends, assignments to variables, and so on. The advice code of an
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1 pointcut setXY(FigureElement fe, int x, int y):
2 call(void FigureElement.setXY(int, int))
3 && target(fe)
4 && args(x, y);
5

6 after(FigureElement fe, int x, int y): setXY(fe, x, y)
7 {
8 System.out.println(fe + " moved to (" + x + ", " + y + ").");
9 }

Figure 7.2: An example of an AspectJ aspect

AspectJ aspect is expressed using regular Java program code.
The aspect in Figure 7.2 implements simple logging facilities in a graphical editor. Each

time a figure is moved using the editor, we wish to write a log entry to the screen stating that
a certain figure has moved to new coordinates x and y. Lines 1 – 4 in the figure contain the
pointcut of this logging aspect. In AspectJ, pointcuts can be assigned a name (in this case the
pointcut is named setXY). This pointcut captures all call-joinpoints associated with a call
to the method setXY(int,int) implemented in the class FigureElement. Pointcuts
are also provided with a means to pass contextual information to the advice. In our example,
the setXY pointcut associates fe with the target of the call-joinpoint (line 4), i.e. the ac-
tual FigureElement that is being moved. Furthermore, the pointcut also passes the new
coordinates x and y, bound (line 3) to the arguments of the call to setXY(int,int), as
contextual information to the advice. The advice (lines 6–9) of the aspect will be executed af-
ter1 a joinpoint captured by the setXY pointcut has occurred. The body of the advice simply
logs that figure fe has moved to coordinates x and y.

1 after ?joinpoint matching
2 reception(?joinpoint, setXY, ?args),
3 inObject(?joinpoint,?obj),
4 objectClass(?obj,[FigureElement]),
5 equals(?args,<?x,?y>)
6 do
7 Transcript show: ’Figure ’, ?obj,
8 ’ moved to coordinates: ’, ?x,’,’,?y.

Figure 7.3: An example of a CARMA aspect

Figure 7.3 shows an example of an aspect implemented in the CARMA [GB03] language.
CARMA is an aspect language for Smalltalk that uses the logic programming paradigm in or-
der to express pointcuts. CARMA is based on the SOUL logic language and extends this
language with a number of predicates that allow reasoning over the joinpoints in a system.
This use of a logic pointcut language which offers unification, backtracking and facilities to

1Similarly, AspectJ supports the execution of advice before a certain event in the system or around an event,
thus replacing the behavior of the base program.
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reason over an entire reification of a program has proved to provide an expressive means to
create generic, reusable pointcuts [GB03]. The aspect in Figure 7.3 implements the CARMA
variant of the AspectJ pointcut we discussed above. The pointcut comprises lines 2 – 5 of
the aspect shown in Figure 7.3. Line 2 of the pointcut results in a number of bindings of
the variable ?joinpoint that are a reception joinpoint of the message setXY. These join-
points are further restricted (lines 3 and 4) to those that occur in an instance of the class
FigureElement. Finally, line 5 binds the first and second argument of the call to setXY
to the variables ?x and ?y respectively. After a joinpoint that matches the pointcut is encoun-
tered during the execution of a program, the advice of the aspect (lines 7 and 8) is executed.
Similar to the advice of the AspectJ aspect, this advice displays some logging information on
the Transcript. In order to pass contextual information from the pointcut to the advice,
the logic variables from the pointcut can be used in the advice.

7.2 The fragile pointcut problem

7.2.1 Definition

It has been observed in the literature [KS04, SG05, KM05b, SGS+05] that the semantics of
a pointcut can change unexpectedly when the structure of the base program is altered. Even
if no changes are made to the actual pointcut, the evolution of the base program can result in
the set of joinpoints in the system changing. As a result, it can happen that the pointcut no
longer captures the expected set of joinpoints, thus resulting in erratic behavior.
This problem has been dubbed the fragile pointcut problem (FPP). We define it as [KMBG06]:

The fragile pointcut problem occurs in aspect-oriented systems when pointcuts
unintentionally capture or miss particular joinpoints as a consequence of their
fragility with respect to seemingly safe modifications to the base program.

Consequently, one cannot assess whether changes to the base program are safe by solely
studying this base program. Pointcuts that refer to joinpoints originating from the base pro-
gram must as well be inspected in order to ensure that changes to the base program do not
affect the pointcut.

We illustrate the fragile pointcut problem in Figure 7.4. The left-hand side of the Figure
represents a software system on which a single aspect has been defined. The source code of
the system gives rise – at execution time – to a number of joinpoints. The pointcut of the
aspect selects, by referring to a structural or behavioral property of the source code, four of
these joinpoints where the aspect will intervene.

Upon evolution of the base program (right-hand side of Figure 7.4), the source code of
the system changes. Consequently, the set of joinpoints that is associated with the entities in
the source code of the base program also changes. Since the pointcut refers to a structural or
behavioral property of the base program, it is possible that these changes in the base program
result in a pointcut that no longer captures the correct set of joinpoints. We encounter two
kinds of such joinpoint mismatches:
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Figure 7.4: Illustration of the fragile pointcut problem

• If changes in the base program result in the pointcut accidentally selecting a wrong
joinpoint related to those source-code entities, we encounter an unintended joinpoint
capture (e.g. the joinpoint indicated in black in Figure 7.4);

• Conversely, changes in the source-code of the base system can also result in certain
joinpoints that were previously selected by the pointcut no longer being selected, even
though they were supposed to be. We denote these cases as an accidental joinpoint miss
(the dashed joinpoint in the Figure).

Note that a pointcut can also break when the source-code entities which it explicitly refers to
are no longer present in the system. For instance, both pointcuts we discussed in Section 7.1.2
explicitly rely on the presence of a class FigureElement. If this class is removed, or if
its name is altered, the pointcut will also fail. However, similar to a compiler error, such
instances of fragile pointcuts can easily be detected when evaluating the pointcut description
of an aspect.

7.2.2 Examples of fragile pointcuts

To understand the fundamental causes of the fragile pointcut problem, we analyze how dif-
ferent “styles” of defining pointcuts cause the pointcut to be fragile with respect to changes
in the base program. To this end, we introduce a simple example, namely the implementation
of a buffer in Java. For this buffer, we demonstrate how we can implement the pointcut of a
synchronization aspect by applying each of the different pointcut styles. We then provide an
example of how changes in the source code of the base program impact the pointcut.

A part of the implementation of this Buffer class is shown in Figure 7.5. The buffer con-
tains two fields, namely a field representing the contents of the buffer and a field ind that
contains the current index into the buffer. Furthermore, the buffer implements two methods
for accessing the contents of the buffer: a method get() that returns the object in the buffer
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1 class Buffer {
2 private Object contents[];
3 private Int ind = 0;
4

5 public Object get()
6 {
7 ...
8 return contents[ind];
9 };

10 public void set(Object obj)
11 {
12 ...
13 contents[ind] := obj;
14 };
15

16 }

Figure 7.5: Part of the implementation of a simple Buffer object

at the current index and a method set(Object) that places an object in the buffer. The
pointcut of the synchronization aspect we define on this buffer implementation must capture
these get() and set(Object) methods. In the following sections, we demonstrate such
a pointcut expressed using each of the different styles of pointcuts (i.e. enumeration-based,
pattern-based, structural-property based and behavioral-property based).

Enumeration-based pointcuts

Enumeration-based pointcuts are the simplest way of defining the set of joinpoints at which
an aspect needs to intervene. Such a pointcut consists of an enumeration of the exact set of
joinpoints which the crosscutting behavior needs to be invoked at. For instance, for the syn-
chronization aspect from our buffer example, we can specify an enumeration-based pointcut
to capture all “accessors” of the buffer by directly referring to the method signatures of these
methods. We can define this pointcut in AspectJ as:

pointcut accessors()
call(void Buffer.set(Object)) ||
call(Object Buffer.get());

Upon evolution of the base program, this pointcut is unlikely to result in unintended joinpoint
captures. Since the pointcut explicitly refers to the methods at which the aspect needs to
intervene, it is not possible that this pointcut captures additional joinpoints that result from
changes in the base program.

However, the enumeration-based pointcut is brittle with respect to accidental misses. If
the developer of the buffer for instance adds additional accessors such as setAll or getAll
that respectively add or retrieve a collection of objects in the buffer, these newly added meth-
ods do not get captured by the pointcut. A developer thus needs to update the pointcut
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manually in order to take these accessors into account. If the pointcut is not updated, the
synchronization aspect would incorrectly miss these setAll and getAll methods.

The pointcut is equally brittle if the Buffer class or any of the getter and setter methods
are removed from the system. In this case, the pointcut refers to source-code entities that no
longer exist thus becoming ill-defined.

Pattern-based pointcuts

The second way of defining pointcuts we discuss is by means of a pattern. Rather than re-
ferring directly to the signature of a method, a pattern-based pointcut makes use of wildcards
for the method signatures. For instance, for the getter methods in the implementation of the
buffer, we see that the names of these methods start with the prefix “get-” and “set-”. We can
define an AspectJ pointcut based on this naming scheme as:

pointcut accessors()
call(* set*(..))) ||
call(* get*(..));

At first glance this pointcut is less fragile than the enumeration-based version we discussed
above. The addition of methods like getAll and setAll will automatically and correctly
be captured by this pattern-based pointcut. As long as the accessor methods respect the nam-
ing convention that they should be prefixed “get-” or “set-”, this pointcut will correctly capture
them. However, this does not mean that pattern-based pointcuts are not fragile. Suppose for
instance that a developer adds a method settings() to the implementation of the Buffer
class. Since this method also starts with the prefix “set-” but does not represent an accessor
method it will be incorrectly captured by the synchronization aspect, resulting in an unin-
tended joinpoint capture.

Structural-property based pointcuts

More expressive pointcut languages, such as the CARMA language we briefly discussed
above, are not restricted to expressing pointcuts in terms of simple run-time events such as
message sends, field access and so on, but also provide facilities for expressing pointcuts
based on fine-grained structural properties in the source-code entities of the base program.
For instance, instead of relying on naming conventions in order to capture the accessor meth-
ods in the Buffer class, we can base a pointcut on the structural pattern that is used to
implement these accessors. The getter methods on the buffer are all characterized by the fact
that they return the value of an instance variable; the setter methods all perform an assignment
to an instance variable. Using CARMA, we can express these structural patterns using two
pointcuts.

1 call(?joinpoint,?method),
2 methodInClass(?method,?class),
3 instanceVariableInClass(?iv,?class),
4 methodWithReturn(?method,return(?iv));
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The above pointcut captures all calls to getter methods. It selects all call-joinpoints of a
?method (line 1) such that the ?class which ?method is implemented in contains an
instance variable ?iv (lines 2 and 3) and ?method contains a return statement that returns
the value of the instance variable2.

Likewise, we can implement a pointcut that captures all setter methods as:

1 call(?joinpoint,?method),
2 methodInClass(?method,?class),
3 instanceVariableInClass(?iv,?class),
4 methodWithAssignment(?method,assign(?iv,?value));

This pointcut is similar to the pointcut that captures all getter methods. It selects all method
calls to a method that perform an assignment to an instance variable.

The above structural-property based pointcuts are not fragile with respect to some of the
changes in the base program we discussed above. For instance, the getAll and setAll
methods would correctly be captured by the above pointcuts. The method settings, which
resulted in the fragility of the pattern-based pointcut, will not be captured by these two point-
cuts. As long as the implementation of accessors follows one of the two structural patterns
we encoded in the above CARMA pointcuts, the pointcuts will remain correct upon evolution
of the base program.

However, suppose we replace the implementation of get() in the Buffer class by the
following method:

public Object Buffer.get()
{
Object temp := contents[ind];
... //some operations
return temp;

}

The above get() method does not return the value of the instance variable, but rather stores
it in a temporary variable temp. After performing some other operations which do not affect
the value of temp, the get() method returns the value of the temporary variable. While
technically speaking the above method is an accessor method, it deviates from the structural
pattern we discussed above. Consequently, the structural-property based pointcut will not
capture this alternative implementation of a getter method.

Behavioral-property based pointcuts

Behavioral-property based pointcuts are expressed in terms of the execution history of an ap-
plication or the values that appear at run-time in the system. One such construct that allows for
the specification of pointcuts in terms of a behavioral property is cflow. The cflow pred-
icate can be used to restrict joinpoints captured by a pointcut to those that lie in the control
flow of a specific set of joinpoints. For instance, suppose we want to optimize the implemen-
tation of the synchronization aspect such that the synchronization will not be executed again

2The methodWithReturn predicate considers the indexing into arrays for variable accesses.
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if the buffer is already synchronized. We can implement this optimization using the following
AspectJ pointcut:

pointcut optimizedAccessors():
accessors() &&
!cflow(accessors());

This pointcut captures all joinpoints that are associated with an accessor method and that are
not in the control flow of another accessor method. The pointcut thus selects all joinpoints
associated with top-level invocations of accessor methods. While this pointcut does not refer
directly to the source code of the system, it still is fragile upon evolution of the source code.
Since the optimizedAccessors() pointcut refers to the accessors() pointcut, and
this latter pointcut is fragile this results in that the optimizedAccessors() pointcut is
fragile too.

Another cause for the fragility of behavioral-property based pointcuts is that, although
they are defined in terms of the run-time values of a system rather than the actual structure of
that system, they often need to refer explicitly to the names of source-code entities in order to
retrieve these run-time values.

7.2.3 Analysis of pointcut fragility

The fragility of the pointcuts we discussed above is caused by the tight coupling that exists
between the pointcut definition and the source code of the base program. A first contributor to
this tight coupling is the fact that in a pointcut definition pointcut developers often explicitly
refer to the different symbols of the base program: method signatures, variable names, and so
on. For example, enumeration-based pointcuts directly refer to the signature of the methods
at which the aspect needs to intervene. The slightest change in the signature of a method that
ought to be captured thus results in pointcut fragility.

Another contributor to the fragile pointcut problem is that pointcut developers often make
assumptions about how a certain concept of the base program manifests itself in the source
code. For instance, the structural-property based pointcuts we discussed above rely on the
assumption that the implementation of getter and setter methods in the implementation of
the Buffer class all follow a similar implementation scheme. Since this pointcut does not
directly refer to entities in the source code of the base program, it is more flexible with respect
to evolution. For example, changes to the method signatures of the getters and setters do not
influence the pointcut. However, if the base code developer – when evolving the system –
deviates from the implementation scheme on which the pointcut developer relied, the pointcut
becomes fragile.

As a means to prevent accidental misses and unintended captures, pointcut developers
rely on the presence of certain ‘design rules’ in the source code of a base program. Since
a pointcut does not have direct access to certain concepts that are prevalent in a system, it
relies on the structure of the implementation of that concept in the source code. For example,
the synchronization aspect on the Buffer class we discussed above is defined in terms of
the concepts of ‘getters’ and ‘setters’. However, these concepts are not explicit, first-class
entities in the pointcut language. Consequently, a developer tries to capture these concepts by
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Figure 7.6: Illustration of model-based pointcuts

relying on how these concepts are implemented. By directly referring to method signatures or
by relying on naming conventions, implementation patterns and so on the pointcut developer
will try to capture the ‘getters’ and ‘setters’ in the source code.

As long as base code developers adhere to the design rules which the pointcut relies on,
the pointcut will capture the correct set of joinpoints. However, since the concept captured by
a pointcut as well as these design rules are only implicitly available in the source code, seem-
ingly safe modifications to the base program can result in unexpected and erratic behavior of
the aspects imposed on the base program.

7.3 Model-based pointcuts

In this section we present model-based pointcuts, the technique we propose to alleviate the
fragile pointcut problem. We start by explaining the different concepts underlying model-
based pointcuts; afterwards, we introduce a concrete instantiation of model-based pointcuts
based on our formalism of intensional views and constraints.

7.3.1 Definition

Model-based pointcuts provide a new pointcut definition mechanism that reduces the coupling
between the pointcut definition and the base program. This mechanism aims at rendering both
the concepts that are implicitly captured by the pointcut as well as the design rules that govern
these concepts explicit to the developer. A schematic illustration of model-based pointcuts can
be found in Figure 7.6.
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Rather than defining a pointcut by referring to how the base program is structured at a
given point in time, model-based pointcuts are defined in terms of a conceptual model of the
base program. This conceptual model provides a representation of the different conceptual
entities that exist in the base program and makes them accessible to the pointcut language.
This way, the joinpoints captured by the pointcut are not characterized by a structural property
of the base program but rather by a conceptual property. At the same time, this conceptual
model contains verifiable constraints on concepts that express the different design rules (i.e.
regularities) that govern these concepts, as well as how these concepts are mapped to the
actual source-code entities.

Let us illustrate this mechanism by means of an example. A conceptual model of the
Buffer implementation we discussed above would contain a concept “AccessorMethods”
representing the accessor methods (i.e. getters and setters). Indeed, the notion of accessing
data is an important concept both for the buffer data structure and for the synchronization
aspect that we wish to apply to that data structure. Using model-based pointcuts, the pointcut
of the synchronization aspect we defined over the buffer is implemented as:

pointcut accessors():
call(* *(..)) &&
classifiedAs(AccessorMethods);

The above AspectJ-like pointcut captures all call-joinpoints to methods classified as accessor
methods. To this end, the pointcut directly refers the conceptual entity AccessorMethods by
means of the special joinpoint predicate classifiedAs. Notice that this pointcut no longer
needs to rely on the structural regularities that govern the accessor methods in order to capture
this concept in the pointcut definition.

Such model-based pointcuts alleviate the fragile pointcut problem by:

1. Adding an additional layer of indirection between the pointcut definition and the base
program. This conceptual layer contains a representation of the various concepts of
interest in the base program. Since the pointcuts are defined in terms of this conceptual
layer rather than by referring directly to how the source code of the base program is
structured, the tight coupling between a pointcut and the base program is removed;

2. While this conceptual layer effectively decouples the pointcut from the base program
structure thus reducing the fragility of the pointcut, it reintroduces this fragility at the
level of the conceptual layer itself. As long as the different concepts in this layer clas-
sify the correct set of source-code entities the pointcut will still intervene at the correct
joinpoints upon evolution of the base program. However, if changes in the source code
result in the conceptual layer no longer being consistent to the base program, the con-
cepts becomes fragile. In order to deal with this fragility, verifiable constraints are
imposed on the different concepts in the conceptual layer to aid in detecting discrep-
ancies between the conceptual layer and the base program. Using this information,
a developer can resolve inconsistencies between the conceptual layer and the source
code.

In a sense, model-based pointcuts impose a contract between pointcut developers and base
program developers:
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Figure 7.7: An overview of how view-based pointcuts fit into IntensiVE.

• For the pointcut to function correctly, the pointcut developer requires that the concep-
tual layer provides access to certain concepts of interest in the base program. Further-
more, the developer expects upon evolution these concepts to remain consistent with
respect to the source code of the base program;

• The base program developer provides a number of concepts to the pointcut developer
by means of the conceptual layer. It is the responsibility of the base program developer
to ensure that the concepts in the conceptual layer remain consistent with respect to
the source code of the base program. To this end, the base program developer imposes
verifiable constraints on the conceptual layer.

7.3.2 Concrete instantiation: View-based pointcuts

Now that we have explained the mechanism of model-based pointcuts, we discuss one in-
stantiation of this mechanism, namely view-based pointcuts. View-based pointcuts present
a particular instantiation of model-based pointcuts in which we use our formalism of inten-
sional views and constraints as a means to create a conceptual layer. Figure 7.7 illustrates
how view-based pointcuts fit into the implementation of IntensiVE. This figure is an extended
version of Figure 4.1 from Chapter 4. The left-most column illustrates the extension of the
tool suite with support for model-based pointcuts.

While the different concepts in the conceptual layer correspond to the set of intensional
views defined over a system, the constraints imposed on these concepts align with the use
of alternative views, unary constraints and binary intensional relations. We extended the
CARMA logic pointcut language with a means to express pointcut definitions in terms of
the intensional views that are defined on a system. Consequently, the joinpoints associated
with the source-code entities belonging to the extension of the intensional views are, via the
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conceptual layer, made accessible to a view-based pointcut.
For example, the synchronization aspect on the implementation of the Buffer class can

be implemented using the following view-based, CARMA aspect:

after ?joinpoint matching
call(?joinpoint,?method),
AccessorMethods(?class,?method,?field)

do
.. "perform synchronisation of the buffer"

First of all, notice that in the above pointcut we do not use a classifiedAs predicate.
Since the CARMA language is an extension of SOUL, the CARMA pointcut mechanism can
use the first-class representation of intensional view we discussed in Section 4.2.2 of Chap-
ter 4. As a result, the condition AccessorMethods(?class,?method,?field) uses
this first-class representation to retrieve all methods that are classified by the AccessorMeth-
ods intensional view. The above pointcut will select all call-joinpoints that are associated with
such an accessor method.

The integration of intensional views in a pointcut language makes it possible for a base
program developer to extend the pointcut language with certain concepts from the domain
of the base program, that were previously not accessible as first-class entities from within
the pointcut language. Furthermore, since the conceptual model also imposes a number of
constraints on the intensional views, the IntensiVE tool suite can be employed to aid the
developer in keeping the conceptual model in sync with the implementation.

7.4 Model-based pointcuts in practice

We performed a small case study in order to illustrate how model-based pointcuts alleviate
the fragile pointcut problem. In particular, we defined two aspects on the implementation
of SmallWiki, one of the case studies discussed in Chapter 6. We first defined these aspects
on version 1.54 of SmallWiki, using both a traditional pointcut mechanism and model-based
pointcuts. Afterwards, we assessed the impact of base program evolution on both types of
pointcuts by reapplying the same pointcuts to version 1.304 of SmallWiki, which is a release
of almost one year after version 1.54.

7.4.1 Aspects on SmallWiki

For this case study, we extended the implementation of version 1.54 of SmallWiki with two
aspects:

1. Action logging: this aspect provides basic logging facilities for the different actions that
occur in the wiki system. For example, each time a page is opened, saved, edited and
so on, this aspect will write an entry to the Transcript;

2. Italics output: the second aspect we define on SmallWiki changes the rendering of the
wiki documents such that all text is rendered in italics rather than in the regular font.
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Although both aspects provide a rather trivial extension to the functionality of SmallWiki,
these simple aspects do allow us to illustrate the impact of base program evolution on both
the traditional pointcut and the model-based pointcut.

The Action logging aspect

We first discuss the implementation of the pointcut for the Action logging aspect using both a
traditional pointcut description and a model-based pointcut in the CARMA aspect language.
Since the emphasis of this case study lies in studying how evolution of the base program
impacts the pointcut definition, we omit the advice code from these examples.

Traditional pointcut for Action logging The pointcut for the Action logging aspect should
capture all call joinpoints to methods that perform an action on a Wiki page. We rely on
how the concept of an action is implemented in SmallWiki to select these joinpoints. As
we already mentioned in Chapter 6 the actions on a wiki document are characterized by two
regularities: all wiki actions are implemented by a method prefixed by “execute-” and are
classified in a protocol action. Based on these regularities, we can express two variants for
the Action logging aspect’s pointcut:

1 classInNamespace(?class,[SmallWiki]),
2 methodWithNameInClass(?method,?selector,?class),
3 [‘execute*’ match: ?selector],
4 call(?joinpoint,?method)

The above pointcut is based on the regularity that all actions in SmallWiki are implemented by
a method that is prefixed by “execute-”. This pointcut first selects all classes in the namespace
SmallWiki (line 1); in lines 2 and 3 all methods are selected that are implemented by those
classes and that start with the prefix “execute-”; line 4 captures all call-joinpoints associated
with these methods.

Alternatively, we can define a pointcut that is based on the regularity that all methods
implementing an action are classified in the protocol action:

1 classInNamespace(?class,[SmallWiki]),
2 methodInClass(?method,?class),
3 methodInProtocol(?method,action),
4 call(?joinpoint,?method)

Model-based pointcut for Action logging We also provide the model-based variant of the
pointcut for the Action logging aspect. As the conceptual model in terms of which the pointcut
is expressed, we use the set of intensional views and constraints we defined on the implemen-
tation of SmallWiki in Section 6.2 of Chapter 6.

We use the intensional view Wiki Actions discussed in Chapter 6 to define the point-
cut for the Action logging aspect. This intensional view has two attributes, namely ‘class’
and ‘method’ and consists of two alternative views: one alternative contains all methods in
SmallWiki that start with the prefix “execute-”; the other alternative contains all methods



196 CHAPTER 7. MODEL-BASED POINTCUTS

in the protocol action. Note that these alternative views align with the structural source-
code regularities we discussed above as being characteristic for the implementation of actions
in SmallWiki. Consequently, our definition of the traditional pointcuts relies on that these
regularities are respected in the implementation of SmallWiki. Based on the Wiki Actions
intensional view, we define the pointcut for the Action logging aspect as:

WikiActions(?class,?method),
call(?joinpoint,?method)

This pointcut captures all call-joinpoints that are associated with a method that belongs to the
Wiki Actions intensional view.

The Italics output aspect

Traditional pointcut for Italics output For the Italics output aspect, we want to alter the
outputting of Wiki pages. In SmallWiki, a document is rendered by means of a visitor object
that traverses the document and generates suitable output (HTML, Latex, . . . ) for each com-
ponent of the page. As such, for the Italics output aspect to function properly, we want the
aspect to intercept all calls originating from a page component to a method on a visitor that
generates output.

For the Italics output aspect, we define the following pointcut:

1 classInNamespace(?class,[SmallWiki]),
2 classInHierarchyOf(?class, [PageComponent]),
3 classInHierarchyOf(?output, [OutputVisitor]),
4 methodWithNameInClass(?method,?selector,?output),
5 withinClass(?joinpoint,?class),
6 send(?joinpoint,?selector)

Line 1 selects all classes in the SmallWiki namespace; line 2 captures all page components
(i.e. all classes in the hierarchy of PageComponent). Lines 3 and 4 select all methods that
generate output (all methods implemented on a class in the hierarchy of OutputVisitor).
Finally, lines 5 and 6 select all send joinpoints of a message implemented by an output gen-
erator that is invoked from within a page component.

Model-based pointcut for Italics output The model-based version of the pointcut for the
Italics output aspect relies on two concepts from the base code of SmallWiki, namely the
implementation of page components and output generation. For each of these concepts, we
already defined an intensional view in Chapter 6 that groups the source-code entities related
to each concept. In particular, we defined an intensional view Page components with a single
attribute ‘class’ that groups all the components of a wiki document. We also created an
intensional view Output Visitors with as attributes ‘class’ and ‘method’ containing all methods
that generate output for a certain page component. We can thus define the view-based pointcut
for the Italics output aspect as:

1 Pagecomponents(?component),
2 OutputVisitors(?visitor,?method),



7.4. MODEL-BASED POINTCUTS IN PRACTICE 197

3 methodWithName(?method,?selector),
4 send(?joinpoint,?selector,?args),
5 withinClass(?joinpoint,?component)

In analog to the traditional pointcut we defined above, this pointcut selects all send joinpoints
(line 4) that originate from within a page component (lines 1 and 5) of a message that imple-
ments the generation of output (lines 2 and 3).

7.4.2 Impact of evolution on the aspects

In this section we assess the impact of evolution of the base code of SmallWiki on the dif-
ferent pointcuts we defined above. To this end, we reapply the pointcuts to version 1.304 of
SmallWiki.

Impact of evolution on the Action logging aspect

Traditional pointcut for Action logging Changes to the implementation of SmallWiki re-
sulted in that version 1.304 implemented a considerably larger set of actions on wiki page
components. For instance, the system was extended with a login mechanism, search func-
tionality, and so on. While most of these actions were correctly captured by the traditional
pointcut, we did encounter some methods that caused this pointcut to select the wrong set of
joinpoints.

We defined two variants of the pointcut that captures all executions of actions in Small-
Wiki: one pointcut defined in terms of the convention that all actions start with the prefix
“execute-”; the other pointcut is based on the regularity that actions are classified in the pro-
tocol action. The following changes in the implementation resulted in fragility of those
pointcuts:

• Two methods named save and authenticate were added to SmallWiki. While
these methods implement a Wiki action and should thus be intercepted by the Action
logging aspect, they clearly do not start with the prefix “execute-” thus rendering the
pointcut based on this naming convention fragile. However, since both methods are
classified in the action protocol, they were correctly captured by the other variant of
the pointcut we specified;

• The evolution of SmallWiki also resulted in the introduction of the methods
executeSearch and executePermission. Since these two methods are pre-
fixed “execute-”, they were captured by the pointcut that relies on this regularity. How-
ever, these methods were missed by the second pointcut since they were respectively
classified in the protocols actions (with an extra ‘s’) and private.

Consequently, neither of the two pointcuts we defined for the Action logging aspect was
able to correctly capture all of the Wiki actions. While the pointcut based on the nam-
ing convention resulted in that the save and authenticate methods were accidentally
missed, the pointcut based on the action protocol missed the executeSearch and
executePermission methods.
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Model-based pointcut for Action logging We also reapplied the model-based version of
the Action logging pointcut to version 1.304 of SmallWiki. However, before applying the
aspect, the conceptual model that was defined over SmallWiki was verified using the Inten-
siVE tool suite. This allowed us to ensure that the conceptual model was still consistent with
the new version of the source code.

As we already discussed in Chapter 6, verification of the Wiki actions intensional view –
which the view-based pointcut of the Action logging aspect is based on – indicated that this
view was not extensionally consistent. A closer inspection of the discrepancies reported that
the methods save and authenticate were captured by the second alternative view (stat-
ing that all actions must belong to the action protocol) but not to the first alternative view
(i.e. all methods with as prefix “execute-”). Analogously, it was reported that the methods
executeSearch and executePermission belonged to the first alternative but not to
the second.

Since the alternatives of this intensional view correspond to the regularities which each of
the traditional pointcuts we defined for the Action logging aspect is based on, it is not surpris-
ing that, upon verification of the intensional view, exactly those methods that resulted in the
fragility of the traditional pointcuts were reported as discrepancies between the intensional
view and the implementation of SmallWiki. While the base code developer still needed to
update the conceptual layer and the source code of the base program in order to synchronize
both artifacts, after having done so the model-based pointcut itself needed no alterations in
order to remain valid.

Impact of evolution on the Italic output aspect

Traditional pointcut for Italics output A number of the page components added to the im-
plementation of version 1.304 of SmallWiki resulted in that the traditional pointcut we defined
for the Italics output aspect became fragile. The pointcut of the Italics output aspect is based
on the assumption that for all page components, a corresponding visit method in the hierarchy
of OutputVisitor is invoked. The aspect must intercept this corresponding method and
change the output of the page component into italics. However, certain page components in
version 1.304 of SmallWiki (for instance LinkExternal and LinkMailTo) did not have
such a corresponding output method on the OutputVisitor class. Instead, for reasons of
code reuse, their visit method was implemented on the abstract Visitor class. This method
on the abstract class then delegated the visit operation to other visit methods (that were im-
plemented on a class in the OutputVisitor hierarchy). While the implementation of
these newly added page components deviated only subtly from the implementation scheme
on which the pointcut for the Italics Output aspect relied, the newly added components were
unintentionally missed by the pointcut.

Model-based pointcut for Italics output The model-based pointcut for the Italics output
aspect is based on two intensional views: Output Visitors and Page Components. Upon appli-
cation of these intensional views to the evolved version of SmallWiki, these intensional views
remained extensionally consistent. However, as we already discussed in Chapter 6, the binary
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intensional relation that expressed that for all page components there should exist a corre-
sponding visit method failed. When analyzing the discrepancies between this constraint and
the implementation of SmallWiki, the same set of page components were reported as those
that resulted in the fragility of the traditional pointcut for the aspect.

7.4.3 Conclusion

The above experiment demonstrated model-based pointcuts. As we have illustrated these
model-based pointcuts did not have to be adapted to reflect the changes in the source code
upon evolution of the base program. This is in contrast to the traditional pointcuts that be-
came fragile since the regularities which they relied on were no longer adhered to in the
evolved version of SmallWiki. This does not imply at all that model-based pointcuts avoids
the problem of pointcut fragility. However, since the pointcuts are defined in terms of a con-
ceptual model rather than in terms of the structure of the base program, the fragility appears
at the level of this conceptual model instead of at the level of the pointcuts. The conceptual
model contains a number of constraints imposed on the concepts that make the link between
the concepts and the source code explicit and verifiable. Consequently, evolution conflicts
that result in fragility can be detected and resolved at the level of this conceptual layer, thus
preventing the pointcut from becoming brittle.

7.5 Related work

In this section we give a brief overview of other approaches that have been proposed as a
means to tackle the fragile pointcut problem and discuss their strengths and weaknesses.

7.5.1 More expressive pointcut languages

A first group of approaches aim to provide a mechanism for defining more robust pointcuts
by offering more expressive pointcut languages. Rather than the low-level, restricted set of
constructs that are offered by AspectJ, these approaches provide more elaborate means to rea-
son about the source code or the run-time state of a system. We already encountered such a
more expressive pointcut language, namely the CARMA language which we also extended
as a means to express model-based pointcuts. This pointcut language offers a complete logic
programming language with access to a full reification of the abstract syntax tree of the pro-
gram on which the aspects are defined [GB03]. The Alpha language [OM05] also uses the
logic paradigm to define pointcuts. However, this language enhances the expressiveness of the
pointcut language by automatically deriving models of the program and by providing predi-
cates to query these models. This way, Alpha makes it possible to define e.g. pointcuts that
query the entire state or execution history of a program. Finally, event-based AOP [DFL+05]
and JAsCo [VSCD05] allow the definition of so-called stateful aspects: aspects that are trig-
gered by the occurrence of a certain sequence of events during the program’s execution.

While these more expressive pointcut languages make it possible to define pointcuts that
are more flexible with respect to changes in the base code, they do not make fragile pointcuts
disappear. As we have illustrated in Section 7.2.2, these pointcuts still need to refer to a
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structural or behavioral property of the program to specify the set of joinpoints captured by
the pointcut. Although they enable the definition of more generic and reusable pointcuts, they
do not aid in making the concepts in the source code which pointcuts depend on explicit in
the pointcut language.

7.5.2 Annotation-based pointcuts

Kiczales et al. [KM05c] and Havinga et al. [HNB05] propose expressing pointcuts in terms
of explicit annotations in the source code as a means of making pointcuts more robust. While
these annotations aid in making the concepts that are implicitly captured by the pointcut ex-
plicit by means of an annotation, they shift the fragility of the pointcut to the annotations
themselves. Instead of requiring that the base program respects the structural source-code
regularities which the pointcut relies on, annotation-based pointcuts require that the base pro-
gram is annotated consistently. If upon evolution of the system the source code is not correctly
annotated, the pointcut based on these annotations becomes fragile. Havinga et al. propose to
alleviate this problem by weaving the annotations themselves into the source code using an
aspect. However, this results in the fragility of the annotation-based pointcut being shifted to
the aspect used to introduce the annotations in the source code.

7.5.3 Pointcut delta analysis

Stoerzer et al. [KS04, SG05] propose the use of pointcut delta analysis for detecting instances
of fragile pointcuts. Pointcut delta analysis (using the associated tool PCDiff) compares a
static approximation of the set of joinpoint that are captured by each pointcut before changes
are made to the source code to the set of joinpoints captured after the source code has been
changed. The developer can then analyze the delta between these sets of joinpoints and iden-
tify possible discrepancies.

While this approach is very useful for at finding instances of unintended captures, it is
impossible for this technique to find accidental misses that result from the addition or mod-
ification of source-code entities. If for example the addition of a new method causes new
joinpoints to appear in the system for which an aspect should intervene, but the pointcut of
that aspect does not capture these new joinpoints, this results in an accidental miss. However,
these joinpoints will not be part of the delta of the sets of joinpoints before and after evolution
of the base program.

It would be interesting to extend our own tool suite with similar facilities as those offered
by PCDiff. Rather than saving the set of joinpoints captured by a pointcut at a given moment
in time, and comparing this saved set with the joinpoints captured by the pointcut after the
system evolves, we could offer similar functionality for intensional views. Such a mechanism
would allow a developer to save the extension of an intensional view at a given moment in
time and, upon evolution, compare this saved extension to the current extension of the view.
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7.5.4 Explicit pointcut interfaces

Similar to model-based pointcuts, a number of approaches try to alleviate the fragility of
pointcuts by introducing an interface in between the pointcuts and the base program. A first
such approach is Open Modules [Ald05]. Using this approach, a developer of a module must
specify the joinpoints that are accessible to aspects that are defined outside of the module. An
alternative approach is proposed by Sullivan et al. [SGS+05] by means of design rules. These
design rules present an interface specification which must be adhered to by base code devel-
opers and which must be used by pointcut developers. Once in place, the base code and the
pointcuts can be altered independently of each other as long as the design rules remain valid.
Explicit Pointcut Interfaces (XPI) are an implementation of design rules. An XPI consists of
a global set of pointcuts together with some constraints that serve as a means to verify the va-
lidity of the pointcuts. These constraints are also implemented using pointcuts (using e.g. the
declare warning construct of AspectJ). Using XPIs, the set of pointcuts is fixed before-
hand, resulting in that the aspect developer losing some flexibility. Conversely, model-based
pointcuts do not restrict the set of pointcuts that can be used by aspect developers. Using our
approach a base code developer presents the pointcut developer with a conceptual model in
terms of which pointcuts can be defined.

7.6 Discussion

Detection of fragile pointcuts

Model-based pointcuts, and our particular instantiation of view-based pointcuts, alleviate the
fragile pointcut problem by:

• Decoupling the pointcut from the structure of the base program. This is achieved by
expressing the pointcut in terms of the entities of a conceptual layer rather than in terms
of the source-code entities of the base program directly. These conceptual entities are a
first-class representation of the concepts that traditional pointcuts capture by means of
relying on the structural source-code regularities that govern these concepts. More con-
cretely, our extension of the CARMA aspect language allows a definition of pointcuts
in terms of intensional views that are specified over a system;

• Providing a means to keep the conceptual layer synchronized with the base program’s
source code. To this end, we incorporate constraints into the conceptual layer that aid
in verifying that each concept classifies the correct source-code entities. In view-based
pointcuts, the constraints over intensional views as well as the support offered by the
IntensiVE tool suite allow a developer to keep the conceptual layer and the source code
mutually consistent.

Our approach does not prevent the occurrence of the fragile pointcut problem. If the
source-code of the base program is altered in such a way that the regularities governing the
concepts on which a pointcut relies are violated, the pointcut does become fragile. However,
using model-based pointcuts this fragility is shifted from the actual pointcut definition to the
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conceptual layer. Not only are the concepts on which a pointcut relies made explicit in this
conceptual layer, we can also provide support to deal with the evolution conflicts that result
in the fragility of the pointcut in this conceptual layer.

The constraints that are imposed on the conceptual layer document the “design rules” that
govern a certain concept in the source code of the base program. It are these rules which
traditional pointcut mechanisms are forced to rely on in order to capture concepts that are
only implicitly available in the source code of the base program. Since the constraints of the
conceptual layer make these rules both explicit as well as verifiable with respect to the source
code, upon evolution of the base code certain evolution conflicts that would otherwise lead
to the fragility of a pointcut can be detected and resolved. Our approach does not guarantee
that all occurrences of the fragile pointcut problem are detected. This is highly dependent on
the different concepts that are part of the conceptual layer and especially the constraints that
govern these concepts.

Supporting other conceptual layers and pointcut languages

In this chapter we have reported on one concrete instantiation of model-based pointcuts which
we implemented as a proof-of-concept. In particular, we demonstrated view-based pointcuts,
an extension to the CARMA aspect-oriented language that provides support for expressing
pointcuts in terms of intensional views.

In Section 2.2 of Chapter 2 we discussed a number of classification mechanisms that
can be employed to document the different concepts that are prevalent in the source code
of a system, such as for instance CME, Cosmos and Concern Graphs. In analog to the use
of intensional views, such classification mechanisms could also be adopted as a means to
express the conceptual layer in an instantiation of model-based pointcuts. However, model-
based pointcuts impose the following two requirements on such classification mechanisms:

• The classifications must provide an “active” documentation for the concepts in the base
program. In other words, the pointcut language must have access to the source-code
entities in the base program via the classifications;

• The classification mechanism must provide a mechanism (e.g. the use of constraints)
to keep the classifications synchronized with the implementation. If such a mechanism
is not provided, no support is offered to detect evolution conflicts that are caused by
changes in the base program. As a result, the pointcuts expressed in terms of this
conceptual layer might become fragile.

Furthermore, existing pointcut languages can also be extended with predicates to query
the conceptual layer defined for a system. While in our implementation of view-based point-
cuts, we were able to integrate this conceptual model elegantly by means of the fact that
intensional views can be accessed as first-class entities from within SOUL, in practice a pred-
icate like isClassifiedAs that verifies whether a certain source-code entity belonging to
a specific classification should suffice.
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Extensive validation

In this chapter we did not provide an in-depth validation of model-based pointcuts. Instead,
we demonstrated how our approach was able to detect evolution conflicts that resulted in
the fragility of two aspects defined on the SmallWiki case study. Although this was only a
small case study that allowed us to illustrate our approach, we feel that these initial results are
promising. However, a more detailed validation on larger cases is necessary to fully validate
our claims.

7.7 Conclusions

In this chapter we discussed how our approach for documenting and co-evolving structural
source-code regularities can be used to manage the evolution of aspect-oriented software, or
more precisely to support the co-evolution of pointcuts and the base program to which they
are applied. We have illustrated that the fragile pointcut problem, one of the open issues
in aspect-orientation that can seriously hamper the evolvability of aspect-oriented programs,
is caused by too tight a coupling between a pointcut definition and the source code of the
base program. Using a number of examples, we illustrated that this tight coupling originates
from the fact that aspect developers rely heavily on how the base program is structured. For
a pointcut developer to capture a certain concept that is implicitly available in the source
code, the developer assumes the presence of “design rules” that govern how this concept is
implemented in the source code. If upon evolution these design rules are not respected, this
can lead to the pointcut definition becoming brittle.

Our approach, model-based pointcuts, provides a means to tackle the fragile pointcut
problem by decoupling pointcut definitions from the actual structure of the source code and
expressing them in terms of a conceptual model of the software. By providing verifiable
constraints over this conceptual model, it becomes possible to detect and resolve evolution
conflicts that would otherwise lead to the fragile pointcut problem. As a proof-of-concept
of this approach, we implemented view-based pointcuts. View-based pointcuts provide an
extension to the CARMA language in which pointcuts can be expressed using a conceptual
model created by means of intensional views and constraints on these views.

Model-based pointcuts serve as a nice illustration of how the documentation created using
intensional views and constraints is applicable to other software engineering purposes. By ex-
tending an aspect-oriented programming language and integrating IntensiVE in this language,
we are able to support the co-evolution of pointcuts and base programs. This application of in-
tensional views shows that our approach is not restricted to supporting structural source-code
regularities throughout the development process, but that our formalism is general enough to
support other software development tasks.
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Chapter 8

Conclusion and Future work

8.1 Summary

The premise of this dissertation is that developers introduce structural source-code regularities
in the implementation of a system as a means to deal with the inherent complexity of such
systems. Through rigorous use of naming conventions, programming idioms, design patterns,
and so on, developers aim to communicate their intent, to improve comprehensibility of the
source code or to direct the correct implementation of certain concerns.

Since these regularities are only implicitly available in the source code, evolution of the
system can result in the causal link between the regularities and the source code no longer
being upheld. When the source code of the system is altered, it is not guaranteed that these
changes respect the different regularities in the system. In the same vain changes in the regu-
larities, for example due to altered coding or design policies, can result in mismatches between
these regularities and the source code. Consequently, there is a need for approaches that aid a
developer in sustaining this implicit link between regularities and the implementation.

In this dissertation we introduced a novel approach that aims at alleviating the aforemen-
tioned problem. We presented the model of intensional views and constraints as a formalism
for documenting a wide variety of structural source-code regularities and to verify these reg-
ularities with respect to the source code. This documentation turns the implicit structural
source-code regularities into explicit, first-class entities. Our model is based on a software
classification mechanism in which sets of related source-code entities are grouped to docu-
ment a particular concept in the source code. By imposing constraints on these classifications,
the different regularities that govern the concept documented by the classification are made
explicit and verifiable.

To complement this model of intensional views, we proposed a methodology that aims at
actively integrating structural source-code regularities into the development process. To this
end, our methodology advocates the co-design and co-evolution of regularities and source
code. We propose to turn the causal link between regularities and source code into an integral
part of the development process. Rather than considering regularities and source code as
two separate, isolated entities, the methodology we proposed in this dissertation enables the
development and evolution of both regularities and source code in unison.

205
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We presented our research prototype – IntensiVE – as a technical contribution for validat-
ing our approach. This tool suite provides a concrete instantiation of the model of intensional
views and constraints implemented as an extension to the VisualWorks Smalltalk develop-
ment environment. To support our methodology, this tool suite is tightly integrated with the
surrounding development environment and the testing framework of this environment.

Finally, we introduced model-based pointcuts as a means to tackle the fragile pointcut
problem, one of the open evolution problems within aspect-orientation. We have demon-
strated that this fragile pointcut problem is caused by the too tight coupling between pointcut
definitions and the structure of the source code of the base program which aspects have been
defined on. Consequently, changes to the structure of the source code can result in the point-
cuts becoming fragile. To alleviate this problem we effectively proposed to decouple the
pointcut definition from the source code and rather express this pointcut in terms of a concep-
tual layer defined using intensional views and constraints.

8.2 Conclusion

Due to their importance to software development, it is important that the different structural
source-code regularities that are introduced into the source code of a system are (and remain)
correctly adhered to. Throughout this dissertation we have argued that the model of inten-
sional views complemented with the associated methodology and tool suite provides a viable
means for maintaining the causal link between regularities and source code, aiding in the
consistent propagation of regularities in the implementation of a software system.

First, our formalism of intensional views presents a dedicated conceptual framework,
independent of the used query language, that is sufficiently expressive to create verifiable
documentation for a wide range of structural source code regularities. As we have shown in
our experiments, our concrete instantiation of the model can be used to document the regular-
ities underlying implementation-specific, application-specific and domain-specific concepts
and verify these regularities against the source code.

Second, our approach succeeds at emphasizing the link between regularities and source
code by integrating the regularities into the development process. This is achieved by co-
designing the regularities and the source code. The documentation and the source code are
developed in unison. Through an iterative process both regularities and source code are re-
fined and matched. Furthermore, the test-often philosophy we propose aims at identifying
discrepancies between documentation and implementation early on, thus supporting the co-
evolution of both. We put our approach to practice in a number of case studies. These case
studies illustrate that our approach is able to identify interesting evolution conflicts in which
both updates to the source code as well to the documented regularities are needed in order to
maintain the causal link between regularities and implementation.

We also observed from our case studies that this documentation and verification of regu-
larities does not only aid in maintaining the causal link between regularities and source code.
Our case studies indicated that the documentation and the process of creating documentation
can also support software comprehension (SmallWiki) or verification of framework instantia-
tions (DelfSTof). Furthermore, model-based pointcuts – the technique we propose to alleviate
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the fragile pointcut problem – illustrate that our model of intensional views and constraints is
general enough to support other software evolution problems.

8.3 Limitations and Future work

In this section we discuss some of the limitations of our approach and propose future work
aimed at alleviating these limitations. Furthermore, we introduce some directions of future
research that build upon the work presented in this dissertation.

8.3.1 Improvements

We start our discussion of future work by proposing a number of technical improvements of
the work we have presented and in particular of the IntensiVE tool suite.

A template mechanism for intensional views and constraints

In Chapter 5 we already discussed one possible improvement to our tool suite, namely the
introduction of a template mechanism that renders intensional views and constraints more
reusable. We have noticed that up to a certain degree views and constraints contain reusable
information. For instance, the intensional views and constraints we defined on the instantia-
tions of a design pattern are often portable to other instantiations of that pattern. Similarly,
we observed certain “patterns” in intensional views and constraints we specified. E.g. we
often encountered intensional views that grouped classes and methods in one particular class
hierarchy.

Therefore we want to offer developers the ability to turn views and constraints into
reusable entities. We wish to provide a template mechanism in which developers can give
a partial specification of an intensional view or constraint. This enables a developer to create
a “library” of intensional views and constraints which can be instantiated by completing the
specification of the view or constraint.

Incremental verification of intensional views and constraints

Throughout this dissertation we have argued that our tool suite provides a tight integration
with the surrounding development environment. This tight integration makes it possible for
developers to directly browse the source-code entities that belong to the extension of an in-
tensional view. Similarly, the discrepancies between a constraint and the implementation can
be accessed from within the IntensiVE tool suite. Furthermore, the documentation created
using our tools is a first-class entity offered to the surrounding development environment. For
instance, this allows us to extend the CARMA pointcut language with a means to specify
model-based pointcuts in terms of the intensional views that are defined over a system. Fur-
thermore, we proposed a test-often philosophy as a means to detect discrepancies between the
documented regularities and the source code as early as possible during development. Our
tool suite supports this methodology by means of an extension to the unit testing framework
of the surrounding development environment.
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To take this integration one step further, we wish to alter the implementation of Inten-
siVE such that the incremental verification of the set of intensional views and constraints is
supported. Instead of the test-driven approach our tool suite provides in its current incarnation,
such incremental verification would enable the change-driven verification of the documented
regularities. We envision tool support in which changes to the source code of the system, or
to the documented regularities automatically trigger the verification process. Upon evolution
of the system, this would immediately offer a the developer information concerning possible
discrepancies between the regularities and the implementation.

However, this active verification of the documentation poses some technical challenges.
The integration of this change-driven verification into the development environment should
be conceived in a non-intrusive way. As a result, this iterative verification must not be allowed
to impose a significant run-time overhead during the development process. Consequently, it
is not feasible to verify the entire set of documentation whenever a change is made in the
system. Rather, only the documentation that is related to the changes of the system needs to
be verified.

One possible technology we wish to use to achieve such an iterative verification of the
documentation is a forward chaining algorithm [For82]. For a logic-based query language
(cf. SOUL) forward chaining presents a data-driven evaluation of queries. Using such a
forward chainer, changes in the system will not trigger the evaluation of all rules but rather
propagate the changes throughout the rules that are influenced by these changes.

Improved visualization

While our tool suite offers the visualization of the intensional views and constraints to provide
a general overview of the validity of the regularities in a system, this visualization is rather
primitive. Our Visualization Tool is restricted in the sense that it only provides a visual repre-
sentation of the validity of the entirety of the documented regularities. We indicate by means
of a color scheme whether or not an intensional view or an intensional constraint is consistent
with respect to the implementation. Given the richness of information that visualization tools
can provide a developer, we aim to improve our Visualization Tool such that it can offer a
developer a wealth of information concerning the validity of the documented regularities in a
single view.

As we already hinted in [MKPW06], more advanced visualization schemes such as for
instance CodeCrawler [Lan03, DL05] provide a visual representation of different metrics on
the system. We can adopt such a scheme by letting the geometrical properties of the entities
in the visualization depend on quantitative information concerning the intensional views and
constraint. For example, if we visualize an intensional view by means of a rectangle, we
could define the height of that rectangle in terms of the number of tuples that belong to the
view’s extension. We could let the width of the rectangle vary with the number of alternative
views, the number of discrepancies, etc. Similarly, if we visualize a binary relation as a line
between two intensional views, we could let the width of the line depend on the number of
discrepancies that violate the relation.

Such visualizations are not only applicable to provide an overview of the entire set of
intensional views and constraints. In our current implementation the Extensional Consistency
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Inspector and the Relation Consistency Inspector – our tools for verifying consistency of re-
spectively the alternative views and intensional constraints – provide a textual representation
of the discrepancies between the documentation and the source code. If the intensional view
contains multiple alternatives or if the number of discrepancies grows, this textual represen-
tation can become cluttered. It is our intent to replace these tools with versions that provide a
graphical representation of the discrepancies. For instance, such a graphical representation of
the extensional consistency of the alternative views would not only make it possible to iden-
tify the tuples that violate extensional consistency, but would enable a developer to quickly
assess which tuples are violating which of the alternative views.

8.3.2 Advanced querying facilities

Another direction of further research we propose is to investigate how other query languages
and paradigms can be combined with our approach as a means to express the intension of
a view or the predicate of an intensional constraint. Our current implementation offers two
such languages, namely Smalltalk and SOUL. As we have demonstrated, these languages
allow us to create intensional views and constraints that can document a wide variety of
structural source-code regularities. However, in the following sections we discuss a number
of approaches that can improve over these query languages.

Combination with static analysis techniques

The two languages, namely SOUL and Smalltalk, that our tool suite supports in order to
express the intension of a view or the predicate of a constraint provide a purely structural
analysis of the source code in terms of the parse tree of a program. For instance, if we
specify a predicate that verifies whether a method m contains a call to a method n, this
relationship is verified by checking that the parse tree of method m contains a send of the
message implemented by method n. The obvious advantage of this verification scheme is that
it can be performed quite efficiently. However, this naive approximation of a calling relation
between two methods comes at the cost of a lack of precision. Consequently, this can result
in the introduction of false positives and false negatives.

To alleviate these problems we wish to investigate how our formalism and tool suite can be
complemented with source code meta-models and query languages that offer a more precise
approximation of the semantics of a program. In particular, the use of static analysis [NNH99]
and abstract interpretation [CC77] techniques seem to offer a viable candidate for improving
the accuracy of the statically verified relations between source-code entities. These techniques
aim at providing a conservative approximation of the semantics of a program without actually
executing this program. Examples of such techniques are for instance call-graph analysis and
pointer analysis [Hin01].

However, the application of such static analysis techniques can introduce a significant
run-time overhead on the verification process. Some techniques provide a complex, time-
consuming analysis to extract a particular property of a program. Since we advocate a test-
often philosophy as a means to detect infringements against structural source-code regularities
early on during the development process, we need to find a good trade-off between precision
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1 jtClassDeclaration(?c) {
2 class ?c {
3 private ?type ?field;
4 public ?type ?name() {
5 return ?field;}
6 }
7 }

Figure 8.1: Example of template queries for retrieving the accessor methods in a system.

and efficiency.

Application of fuzzy reasoning

Another extension we propose to the query facilities offered by our approach is the use of
fuzzy reasoning. In particular, fuzzy set theory [Zad65] and fuzzy logic programming [Lee72]
seem interesting techniques to combine with our approach. In fuzzy set theory, the elements
belonging to a set are attributed a certain membership degree (a value between 0 and 1) which
expresses to what degree an element belongs to the set.

One concrete way of integrating such fuzzy reasoning techniques with our approach is by
supporting the fSOUL [DBD06] language, a fuzzy logic programming extension to SOUL,
as a query language to specify the intension of a view. By using this language, we can take
uncertainty into account during the evaluation of an intension. This uncertainty is reflected in
the extension of the intensional view by associating a membership degree to each tuple in the
extension.

When reasoning about software, this fuzzy interpretation can be used to deal with source-
code entities that slightly deviate from the pattern expressed by the query [DBN+07, DBD06].
Consequently, elements that almost match an intension but not entirely will be included in the
extension of a view. However, a lower membership degree will be associated with these
elements. One application we wish to explore of this integration of fuzzy reasoning with in-
tensional views is to compare the results of ‘crisp’ evaluation with those of a fuzzy evaluation
of the intension of a view. We believe that the tuples that are part of the fuzzy evaluation of
the intension but not of the crisp evaluation might often reveal interesting information to the
developer.

For example, fSOUL provides a unification mechanism for identifiers that
takes linguistic deviations into account. If we would evaluate an intension
methodWithName(?method,drawFigure) using the crisp SOUL evaluator, this will
result in all methods that are precisely named drawFigure. Evaluating the same inten-
sion using fSOUL would also capture a method misspelled drawFigrue, however, a lower
membership degree would be associated with this method.

Source code template queries

As a means to improve the ease of use of the querying facilities offered by our approach
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to express the intension of a view, we propose the use of Concrete source code template
queries [DBN+07]. This work by De Roover et al. provides an extension to logic-based
query languages (such as SOUL) in which developers can query the source code of a system
by specifying an implementation template. Instead of specifying a logic program that reasons
over the source code of a software system, a developer can query the system by providing
a prototypical implementation containing logic variables of a concept that is being queried.
This template is then matched with the implementation of the system.

An example of source code templates (adopted from [DBN+07]) is shown in Figure 8.1.
This example illustrates how template queries can be used to retrieve the accessor methods in
a Java program. Recall that we encountered the implementation idiom for accessors numerous
times throughout this dissertation. We characterized a getter method as a method returning
the value of a field. The template query in Figure 8.1 literately translates this implementation
pattern into a query. The template matches all classes ?c that contain a private field ?field
of type ?type. Lines 4 and 5 capture the definition of the actual accessor methods. Namely,
a method called ?name is considered an accessor method if it is public, and contains a return
statement that returns the value of the ?field variable. Furthermore, this template requires
that the return type of the method and the type of the field match.

As a means to match a template query with the source code, a combination of structural
and behavioral representations of the source code is used. Rather than syntactically matching
the template with the source code, template queries offer a means to introduce variability in
the expressed pattern by applying a number of static analysis techniques as we have mentioned
above such as points-to analysis and call-graphs. This allows template queries to match a tem-
plate to implementations that deviate slightly from the implementation pattern. For example,
consider the following getter method:

public Integer getIndex() {
Integer temp;
temp = index;
return temp;

}

This getter method deviates from the prototypical implementation by assigning the value
of the field index to a temporary variable and then returning the value of this temporary
variable rather than directly returning the value of the field. However, due to the use of
points-to analysis, the above method will be captured by the template query in Figure 8.1.

8.3.3 Structural regularity mining

To aid a developer in uncovering the structural source-code regularities that govern a system,
we propose further research into the development of (semi-)automated techniques that mine
the source code of a system for regularities. This process of discovering structural source-
code regularities seems strongly related to aspect mining [KMT07], a novel research direction
in aspect-oriented software development that aims at uncovering crosscutting concerns in
existing code bases.
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Such aspect mining techniques are based on the assumption that crosscutting concerns
are characterized by a number of symptoms such as for instance the rigorous use of nam-
ing and stylistic conventions [STP05, MT05], high fan-in values [MvM04] or code duplica-
tion [BvvT05]. By using source code analysis approaches such as clone detection, or tech-
niques from data mining such as cluster analysis [JD88] and formal concept analysis [GW99],
these aspect mining techniques mine the source code for groups of source-code entities that
all exhibit a similar symptom of crosscutting.

The task of mining for structural source-code regularities is based on the same assump-
tions as aspect mining, namely that certain concepts (crosscutting or not) in the source code
of a system are characterized by a recurring pattern in their implementation. We feel that
techniques similar to those for mining aspects can be used to discover structural source-code
regularities. Although some aspect mining techniques are particularly devised to only de-
tect instances of crosscutting concerns, techniques such as the work of Tourwé et al. [MT05]
and He et al. [HBZH05] propose a strategy in which the source code is mined for recurring
patterns in general. Using extensive post-filtering, the set of results is reduced to those sets
of entities that represent a crosscutting concern. Our intuition that these techniques are suit-
able for identifying regularities is strengthened by the findings of Tourwé and Mens [MT05].
They report on an experiment in which they applied formal concept analysis [GW99] to group
source-code entities which contained similar substrings. While this experiment identified a
number of crosscutting concerns, they were also able to identify certain implementation id-
ioms, design patterns and domain-specific concepts that were characterized by a similar nam-
ing scheme.

The output of such a mining algorithm is a collection of sets of related source-code en-
tities. As such, a developer still needs to transform this extensional set of entities into an
intensional view. To automate this process, we propose the technique of inductive logic pro-
gramming [BG95]. This machine learning technique takes as input a set of facts and returns
a set of logic rules that provide a description for those facts. We have performed some initial
experiments [TBKG04] using ILP as a means to induce an intension of a view automatically
from a set of source-code entities. While these experiments yielded promising results, further
research is needed.

8.3.4 Using intensional views and constraints to generate source code

Another avenue of future research we intend to investigate is the combination of intensional
views and constraints with code generation [CE00] techniques. While our current approach
allows maintaining the causal link between the regularities that govern a system and the sys-
tem’s implementation, using code generation will allow for a more pro-active use of this
documentation.

In particular, we envision a system in which the specification of the intensional views and
constraints lie at the basis of a code generation process that, within the bounds of possibility,
aids a developer when implementing a concept by creating template code that adheres to the
different regularities that govern the concept. In the same way, this code generation process
can serve as a means to alter the source code of the system upon changes in the regularities.
As a technical platform to implement this integration of intensional views and generative tech-
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nology, the work of Brichau [Bri05] seems a suitable candidate. First, the work of Brichau
is based on the declarative meta programming paradigm and the SOUL language thus easing
technical integration of the program generators into our tool suite. Second, Brichau’s work
provides a means to compose different generators and provides (semi-automatic) conflict res-
olution for these generators. Due to the crosscutting nature of regularities, a single entity is
often governed by multiple regularities. As such, the support for the composition of genera-
tors and for resolving conflicts that arise from the generation process play an important role
in integrating the generative technology with intensional views.

8.3.5 Large-scale validation

In Chapters 5 and 6 we discussed a number of case studies which we performed in the context
of the validation of this dissertation. However, none of these case studies was executed in an
industrial, large-scale setting. As such, an important continuation of our work lies in validat-
ing our approach in an practical environment. Applying our formalism, methodology and tool
suite in a real-life context provides us with means to assess the scalability of our approach and
will result in better insights on whether the benefits our approach offers outweigh the costs
they introduce. Furthermore, such a more elaborate evaluation of intensional views will most
likely lead to other improvements and refinements of our tools and formalism.

8.4 Contributions

We conclude by repeating the contributions the work we have presented in this dissertation
offers:

• A first contribution of our approach lies in the fact that we explicitly take the causal
connection between regularities and source code into account during the development
process. To this end, we propose the co-design and co-evolution of regularities and
source code. We do not consider the development and evolution of regularities and
implementation as two separate entities but rather develop them in unison;

• We propose the model of intensional views and constraints as a formalism to create
verifiable documentation for structural source-code regularities. This model is inde-
pendent of the software meta-model of the programming language on which a devel-
oper imposes views and constraints as well as of the query language used to specify the
views/constraints. Our formalism, tailored towards the documentation and evolution of
regularities, offers the advantage that it is expressive enough to support a wide variety
of regularities.

• A methodology is proposed that supports our model of intensional views and con-
straints. This methodology describes a structured way of documenting regularities us-
ing our formalism and offers a set of guidelines of how to incorporate the documented
structural source-code regularities into the development process. Our methodology pro-
poses the step-wise, incremental refinement of intensional views and source code as a
means to support co-design of both artifacts. By advocating a test-driven verification
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of the documented regularities, our methodology aims at maintaining the causal link
between regularities and source code upon evolution;

• As a technical contribution of our dissertation, we implemented the IntensiVE tool
suite. This research prototype is a concrete instantiation of the model of intensional
views and constraints that allows the definition of verifiable documentation for regu-
larities in Java and Smalltalk programs. Our tool suite offers the developer the SOUL
logic language and the Smalltalk language as a means to express the intension of an in-
tensional view and the predicate of a constraint. Furthermore, our tools tightly integrate
with these query languages as well as with the surrounding development environment.
This enables IntensiVE to fully support our methodology. Moreover, the documented
intensional views and constraints are first-class entities that are accessible by other soft-
ware engineering tools;

• Finally, our approach is general enough to support other software evolution problems.
As one example of such a problem that can be supported by intensional views, we pre-
sented model-based pointcuts. This contribution to aspect-oriented programming alle-
viates the fragile pointcut problem by decoupling pointcut definitions from the structure
of the source code. Model-based pointcuts are defined in terms of a conceptual layer
which presents a reification of the important concepts in the system. In our instanti-
ation of model-based pointcuts, we propose to define this conceptual layer by means
of intensional views and constraints. Since this allows us to keep this conceptual layer
synchronized with the source code, our approach can detect evolution conflicts that
cause pointcut fragility and provide support for resolving these conflicts.
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Proof

In this appendix we present the proof of equivalence between the regular version of inten-
sional views and the version of intensional views that provides alternatives. We introduce the
theorem before giving a formal proof.

Theorem 1

Given:
an intensional view V = (Parents, default, Alt) as defined by Figure 3.13 with:

Parents = ∅
default = alt1

Alt = {alt2, alt3, . . . , altn}
alti = (Attr, queryi, Incli, Excli) for 1 ≤ i ≤ n

If
for this view V we construct a regular intensional view

V ′ = (Attr, query, Parents, Incl, Excl)

as defined by Figure 3.6 with n unary intensional constraints Ui as follows:

Parents = ∅, Incl = ∅, Excl = ∅
query : t → query1(t) ∨ query2(t) ∨ . . . ∨ queryn(t)
∀ i ∈ {1..n} : Ui = (V ′,∀, predi, Incli, Excli)
∀ i ∈ {1..n} : predi : t → query1(t) ∧ queryi(t)
(where queryi is defined by the alternatives alti belonging to V )
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then
we can show that V and V ′ are semantically equivalent in the following sense:

1. extension(V ) = extension(V ′) ⇐ consistent(V ).

2. consistent(V ) ⇐⇒ ∀ i ∈ {1..n} : consistent(Ui)

3. discrepancies(V ) =
⋃

i ∈ {1..n}

discrepancies(Ui)

To simplify the proof, we will assume that the Incli and Excli sets are empty. Notice that
this does not have any impact on the validity of our proof since, for each intension queryi of
alternative view alti we could define an intension query′i such that:

query′i(t) = (queryi(t) ∨ t ∈ Incli) ∧ t /∈ Excli

This intension query′i(t) takes the Incli and Excli directly into account. The proof for the
general case can thus be “transformed” in a proof where the Incli and Excli sets are empty
by replacing the occurrences of queryi by query′i.

Part 1

To prove:

extension(V ) = extension(V ′) ⇐ consistent(V )

Proof:

extension(V ) = extension(Vdefault, V ) (Definition 23)
= {t|query1(t)} (Definition of alt1)
= {t|query1(t)} ∨ {t|query2(t)} ∨ . . . ∨ {t|queryn(t)} (Since consistent(V ))
= {t|query1(t) ∨ query2(t) ∨ . . . ∨ queryn(t)}
= extension(V ′) �

Part 2

To prove:

consistent(V ) ⇐⇒ ∀ i ∈ {1..n} : consistent(Ui)
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Proof:

consistent(V ) ⇐⇒ ∀ alti ∈ VAlt : extension(alti, V ) = extension(Vdefault, V )
(Definition 24)

⇐⇒ extension(alt2, V ) = extension(Vdefault, V ) ∧
. . . ∧
extension(altn, V ) = extension(Vdefault, V )

⇐⇒ extension(alt2, V ) = extension(alt1, V ) ∧ (Vdefault = alt1)
. . . ∧
extension(altn, V ) = extension(alt1, V )

⇐⇒ extension(alt1, V ) = extension(alt2, V ) ∧
. . . ∧
extension(alt1, V ) = extension(altn, V )

⇐⇒ (∀t ∈ extension(alt1, V ) : t ∈ extension(alt2, V ) ∧
∀t ∈ extension(alt2, V ) : t ∈ extension(alt1, V )) ∧
. . . ∧
(∀t ∈ extension(alt1, V ) : t ∈ extension(altn, V ) ∧
∀t ∈ extension(altn, V ) : t ∈ extension(alt1, V ))

⇐⇒ ∀t ∈ extension(alt1, V ) : query2(t) ∧ (Definition of intension of alti)
∀t ∈ extension(alt2, V ) : query1(t) ∧
. . . ∧
∀t ∈ extension(alt1, V ) : queryn(t) ∧
∀t ∈ extension(altn, V ) : query1(t) ∧

⇐⇒ ∀t ∈ extension(alt1, V ) : (query2(t) ∧ . . . ∧ queryn(t)) ∧
∀t ∈ extension(alt2, V ) : query1(t) ∧
. . . ∧
∀t ∈ extension(altn, V ) : query1(t)

⇐⇒ ∀t ∈ extension(alt1, V ) : (query1(t) ∧ query2(t) ∧ . . . ∧ queryn(t)) ∧
(Definition of alt1)

∀t ∈ extension(alt2, V ) : query1(t) ∧
. . . ∧
∀t ∈ extension(altn, V ) : query1(t)

⇐⇒ ∀t ∈ {t|query1(t)} : (query1(t) ∧ query2(t) ∧ . . . ∧ queryn(t)) ∧
(Definition of intension of alti)

∀t ∈ {t|query2(t)} : query1(t) ∧
. . . ∧
∀t ∈ {t|queryn(t)} : query1(t)

⇐⇒ ∀t ∈ {t|query1(t) ∨ . . . ∨ queryn(t)} : query1(t) ∧ query2(t) ∧ . . . ∧ queryn(t)
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∀ i ∈ {1..n} : consistent(Ui) ⇐⇒ consistent(U1) ∧ . . . ∧ consistent(Un) with 1 ≤ i ≤ n

⇐⇒ (∀ t ∈ extension(V ′) : query1(t) ∧ query2(t)) ∧
(Definition of Ui)

. . . ∧
(∀ t in extension(V ′) : query1(t) ∧ queryn(t))

⇐⇒ ∀ t ∈ extension(V ′) : query1(t) ∧ query2(t) ∧ . . . ∧ queryn(t)
⇐⇒ ∀ t ∈ {t|query1(t) ∨ . . . ∨ queryn(t)} :

query1(t) ∧ query2(t) ∧ . . . ∧ queryn(t)
(Definition of V ′)

⇐⇒ consistent(V ) �

Part 3
To prove:

discrepancies(V ) =
⋃

i ∈ {1..n}

discrepancies(Ui)

Proof:

discrepancies(V ) =
⋃

i ∈ {1..n}

extension(alti) \
⋂

i ∈ {1..n}

extension(alti) (Definition 25)

= {t|query1(t) ∨ . . . ∨ queryn(t)}\ {t|query1(t) ∧ . . . ∧ queryn(t)}
(Definition of intension of alti + conjunction/disjunction)

= {t|(query1(t) ∨ . . . ∨ queryn(t)) ∧ ¬(query1(t) ∧ . . . ∧ queryn(t))}

⋃
i ∈ {1..n}

discrepancies(Ui) = discrepancies(U1) ∪ . . . ∪ discrepancies(Un) with 1 ≤ i ≤ n

= {t|t ∈ extension(V ′) ∧ ¬(query1 ∧ query2)} ∪ . . . ∪
(Definition 12)

{t|t ∈ extension(V ′) ∧ ¬(query1 ∧ queryn)}
= {t|t ∈ extension(V ′) ∧ (¬(query1 ∧ query2) ∨ . . . ∨ ¬(query1 ∧ queryn))}
= {t|(query1(t) ∨ query2(t) ∨ . . . queryn(t)) ∧ (¬query1(t) ∨ . . . ∨ ¬queryn(t))}

(Definition of V ′)

= {t|(query1(t) ∨ query2(t) ∨ . . . queryn(t)) ∧ ¬(query1(t) ∧ . . . ∧ queryn(t))}
= discrepancies(V ) �
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Intensional Views and Constraints
over IntensiVE

B.1 Intensional views

B.1.1 Core Model

We define three intensional views Core Model, Views Model and Constraints Model which
capture the source-code entities that implement the core of the formalism underlying the
IntensiVE tool suite.

Name: Core Model Attributes: class, method
Parent view: None

Description:
All classes and methods in the implementation of the core model, i.e. the union of all entities imple-
menting views and constraints.
Intension:(Smalltalk)
Views.ViewsModel union:(Views.RelationsModel)

Alternative intensions: /

Name: Views Model Attributes: class, method
Parent view: None

Description:
All classes and methods implementing the model of intensional view.
Intension:(SOUL)
or(packageWithName(?pack,[’Intensional Views Model’]),

packageWithName(?pack,[’Predicate Views Model’])),
classInPackage(?class,?pack),
methodInClass(?method,?class)

Alternative intensions: /
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Name: Constraints Model Attributes: class, method
Parent view: None

Description:
All classes and methods implementing the model of intensional constraints.

Intension:(SOUL)
or(packageWithName(?pack,[’Intensional Relations Model’]),

packageWithName(?pack,[’Predicate Relations Model’])),
classInPackage(?class,?pack),
methodInClass(?method,?class)

Alternative intensions: /

B.1.2 Intensional view implementation

The following intensional views capture concepts from the domain of intensional views and
its saving mechanism.

Name: Intension Evaluators Attributes: class, method
Parent view: Views Model

Description:
The entities responsible for evaluating an intension. Three alternatives:

1. All classes in the correct hierarchy;

2. All classes implementing the correct interface;

3. All classes of which the name ends with “IntensionEvaluator”.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[AbstractIntensionEvaluator])
2.methodWithNameInClass(?,[#’checkIntension:’],?class),

methodWithNameInClass(?,[#’eval:inContext:’],?class),
methodWithNameInClass(?,[#’eval:inContext:bindings:’],?class),
methodWithNameInClass(?,[#language],[?class class])

3.[’*IntensionEvaluator’ match: ?class name]

Name: Saving Attributes: method
Parent view: Views Model

Description:
All methods that implement a save operation on an intensional view.
Intension:(SOUL)
methodWithName(?method,[#saveIn:])

Alternative intensions: /
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Name: Extension Attributes: method
Parent view: Core Model

Description:
All methods on the Extension class which are compatible with the collection hierarchy. Notice this
is the example of the Adapter design pattern from Chapter 5. We define two alternatives for this view:
1. all methods in the Extension class implemented in the correct protocol; 2. all methods in the
Extension class which are also implemented by the Collection class.
Alternative intensions:(SOUL)
1.methodInClass(?method,[Extension]),

methodInProtocol(?method,[#’collection compatibillity’])
2.methodWithNameInClass(?method,?name,[Extension]),

classUnderstands([Collection],?name)

Name: Compilation Attributes: class, method
Parent view: Core Model

Description:
All methods involved in the compilation of intensional views and constraints.
Intension:(SOUL)
methodInProtocol(?method,?protocol),
[’*compil*’ match: ?protocol asString]

Alternative intensions: /

B.1.3 Constraints model

The intensional views in this section describe a number of domain concepts related to con-
straints over intensional views.

Name: Predicate Evaluation Attributes: class, method
Parent view: Constraints Model

Description:
All evaluators of the predicate of a constraint. Two alternatives: 1. All classes in the correct hierarchy;
2. All classes implementing the correct interface.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[AbstractPredicate])
2.methodWithNameInClass(?,[#’evaluateForSource:target:’],?class)

Name: Quantifiers Attributes: class, method
Parent view: Constraints Model

Description:
The implementation of quantifiers. Three alternatives: 1. Classes in the correct hierarchy; 2. Classes
containing the name “Quantifier”; 3. Classes implementing the correct interface.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[AbstractQuantifier])
2.[’*Quantifier*’ match: ?class name]
3.methodWithNameInClass(?,[#symbol],?class),

methodWithNameInClass(?,[#’evaluateFor:predicate:’],?class)
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Name: Quantifier Evaluation Attributes: method
Parent view: Quantifiers

Description:
The methods implementing the actual evaluation of a quantifier.
Intension:(SOUL)
methodWithName(?method,[#’evaluateFor:predicate:’])

Alternative intensions: /

Name: Constraint Evaluators Attributes: class, method
Parent view: Constraint Model

Description:
The evaluation of the predicate in a constraint.
Intension:(SOUL)
classInHierarchyOf(?class,[RelationEvaluator])

Alternative intensions: /

Name: Constraint Type Evaluators Attributes: class, method
Parent view: Constraint Evaluators

Description:
The evaluation of a unary or binary intensional constraint. These classes use a strategy design pattern
to identify the actual SOUL/Smalltalk evaluator.
Intension:(SOUL)
classInHierarchyOf(?class,[PredicateRelationConstraintEvaluator]),
methodInProtocol(?method,evaluation)

Alternative intensions: /

Name: Constraint Language Evaluators Attributes: class, method
Parent view: Constraint Evaluators

Description:
Evaluators of a constraint depending on the SOUL or Smalltalk query language. 1. All classes in the
correct hierarchy; 2. All classes implementing the correct interface.
Alternative intensions:(SOUL)
1. classInHierarchyOf(?class,[PredicateRelationEvaluator])
2. methodWithNameInClass(?,[#’evaluateConstraints:withSource:for:withTarget:for:’],

?class)

B.1.4 Graphical user interface

Name: GUI Attributes: class, method
Parent view: None

Description:
All classes and methods involved in the implementation of the user interface part of IntensiVE.
Intension:(SOUL)
or(packageWithName(?package,[’Intensional Views UI’]),

packageWithName(?package,[’Intensional Relations UI’]),
packageWithName(?package,[’Predicate Views UI’])),

classInPackage(?class,?package),
methodInClass(?method,?class)

Alternative intensions: /



B.1. INTENSIONAL VIEWS 223

Name: Editors Attributes: class, method
Parent view: GUI

Description:
All editors (e.g. Intensional View Editor, Extensional Consistency Inspector, . . . ).
Intension:(SOUL)
classInHierarchyOf(?class,[UI.ApplicationModel])

Alternative intensions: /

Name: Editor Actions Attributes: class, method
Parent view: Editors

Description:
All the actions (like save, check, and so on) which are executable from within an editor.
Intension:(SOUL)
methodInProtocol(?method,[#’interface actions’])

Alternative intensions: /

Name: Editor model change Attributes: class, method, messages
Parent view: Editor actions

Description:
All actions in the editor that change the state of an intensional view or constraint. Notice that the
intensional view has an attribute ‘messages’ in which the actual change messages are stored. Smalltalk
is used to specify the intension of this view due to the large number of change methods that need to be
queried.
Intension:(Smalltalk)
| mut ext |
ext := Extension new.
"collect all selectors of mutator methods"
mut := (Views.CoreModelMutators forVariables:(Array with:#method))

collect:[:tup | (tup valueFor:#method) selector].
"if an editor action sends a message that corresponds to a mutator,
add a tuple to the extension"
Views.EditorActions do:[:tup | |mess t|

mess := (((tup valueFor:#method) messages) intersection: mut).
(mess size > 0) ifTrue:[

t := tup copy.
t attribute: #messages value: mess.
ext add:t ]].

ext

Alternative intensions: /

Name: Exception Elements Attributes: class, method
Parent view: GUI

Description:
Exception elements serve as wrappers around tuples in order to visualize them in the Extensional
Consistency Inspector. We define this intensional view by two alternatives: 1. All classes in
the correct hierarchy and 2. All classes implementing the correct interface.
Alternative intensions:(SOUL)
1. classInHierarchyOf(?class,[ExceptionElement])
2. methodWithNameInClass(?,asText,?class)
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Name: Drag & Drop Attributes: class, method
Parent view: GUI

Description:
All methods implementing drag & drop facilities in IntensiVE.
Intension:(SOUL)
methodInProtocol(?method,[#’drag & drop’])

Alternative intensions: /

Name: Drop actions Attributes: class, method
Parent view: Drag & Drop

Description:
The methods implementing the actions which occur when an element is dropped. We define three
alternative views for this view:

• The naming convention that all drop methods must start with the prefix “drop-”;

• All methods with as argument aDragDrop;

• All methods which – by analyzing the windowSpec of an editor – are considered to be a drop
action. The dropMethod predicate analyzes the windowSpec implemented by ?class and
binds ?method to all actions that perform a drop.

Alternative intensions:(SOUL)
1.methodWithName(?method,?name),

[’drop*’ match: ?name]
2.argumentsOfMethod(<variable(aDragDrop)>,?method)
3.dropMethod(?class,?,?method)

Name: Drag initialize Attributes: class, method
Parent view: Drag & Drop

Description:
All methods initializing a drag operation. Defined as either all methods which are a drag method in
a windowSpec (alternative 1) or which send the selector doDragDrop. The dragEnterMethod
predicate analyses the windowSpec defined by ?class and extracts all bindings of ?method that
initialize a drag.
Alternative intensions:(SOUL)
1.dragEnterMethod(?class,?,?method)
2.methodSendsSelector(?method,[#doDragDrop])

B.1.5 Factory design pattern

The following intensional views are used to encode the instantiation of the Factory design
pattern in IntensiVE.
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Name: Factory Attributes: class, method
Parent view: IntensiVE

Description:
All the Abstract Factories in IntensiVE. Defined as 1. All classes in the hierarchy of Factory and 2.
All classes containing the string “Factory”.
Alternative intensions:(SOUL)
1. classInHierarchyOf(?class,[Factory])
2. [’*Factory*’ match: ?class name]

Name: Factory methods Attributes: method
Parent view: Factory

Description:
The Factory methods, i.e. all methods starting with the prefix “create-”.
Intension:(SOUL)
methodWithName(?method,?name),
[’create*’ match:?name]

Alternative intensions: /

Name: Factory products Attributes: class
Parent view: Core Model

Description:
The actual Products produced by the Factory methods. This intensional view is defined as all the
classes in the Core Model which are not a Factory itself, because the Factory should instantiate all
kinds of entities in the core model. Notice that this intensional view is defined in terms of both the
CoreModel and the Factory intensional views.
Intension:(SOUL)
CoreModel(?class,?),
not(Factory(?class,?))

Alternative intensions: /

Name: Factory clients Attributes: class
Parent view: Core Model

Description:
The classes using a Factory to instantiate Products. It is defined as all classes that reference a Factory
Intension:(SOUL)
Factory(?factory,?)
methodReferencesClass(?method,?factory)

Alternative intensions: /

B.1.6 Observer design pattern

The following two intensional views express a number of constraints related to the Observer
design pattern.
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Name: State changes Attributes: class, method
Parent view: IntensiVE

Description:
All the state changes in IntensiVE, i.e. all the methods that invoke a mutator method. For performance
reasons, we opted to implement the intension of this view in Smalltalk.
Intension:(Smalltalk)
| extension |
extension := Extension new.
setters := Views.Mutators for:#method.
Intensional allClasses do:[:class |

class selectors do:[:selector |
setters do:[:setter | ((class compiledMethodAt: selector)

sendsSelector:((setter valueFor: #method) compiledMethod selector))
ifTrue:[extension add:

(Tuple new attribute:#class value:class;
attribute:#method value:

(SmalltalkMethod class:class selector: selector))]
]]].
extension

Alternative intensions: /

Name: Subjects Attributes: class, method
Parent view: IntensiVE

Description:
All the subjects of the Observer pattern in IntensiVE, defined as all the methods that send self
changed or changed:.
Intension:(SOUL)
or(methodWithSend(?method,?,[#changed:],?),

methodWithSend(?method,?,[#changed],?))

Alternative intensions: /

B.1.7 Deduce tool

The deduce tool is an experimental sub-tool of IntensiVE which is used to automatically mine
for intensional constraints. In its implementation a chain of responsibility is used to imple-
ment the filtering mechanism which prunes the set of resulting constraints. The following two
intensional views document this chain of responsibility.

Name: Deduce tool Attributes: class, method
Parent view: IntensiVE

Description:
All classes and methods in the implementation of the Deduce Tool.
Intension:(SOUL)
packageWithName(?package,[’Deduce Tool’]),
classInPackage(?class,?package),
methodInClass(?method,?class)

Alternative intensions: /
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Name: Filter chain Attributes: class
Parent view: Deduce tool

Description:
The implementation of the filters of the Deduce tool, which are arranged by means of a chain. This
intensional view consists of the following three alternatives:

• All classes in the AbstractFilter hierarchy;

• All classes with the suffix “-Filter”;

• All classes implementing the correct interface, i.e. the method filterElement:

Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[AbstractFilter])
2.[’*Filter’ match: ?class name asString]
3.methodWithNameInClass(?,[#’filterElement:’],?class)

B.1.8 Implementation idioms

A number of intensional views are used to capture an idiomatic implementation of a concept
in the implementation of IntensiVE.

Name: Accept methods Attributes: class, method
Parent view: Core Model

Description:
The different services in the StarBrowser2 are implemented by means of a Visitor design pattern. The
Accept methods intensional view groups all accept methods in the core model which accept such a
visitor.
Intension:(SOUL)
methodWithName(?method,[#’acceptService:’])

Alternative intensions: /

Name: Visit methods Attributes: class, method
Parent view: None

Description:
All the visit methods implemented in the StarBrowser2 framework. These visit methods implement a
certain service for a given element. This view consists of two alternative views: 1. All methods with
as prefix “do-” in the correct hierarchy and 2. All methods in the protocol operations.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[Service]),

methodWithNameInClass(?method,?name,?class),
[’do*’ match:?name]

2.classInNamespace(?class,[Classifications2]),
methodInClass(?method,?class),
methodInProtocol(?method, operations)
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Name: Accessor methods Attributes: class, method, field
Parent view: Core Model

Description:
All accessor methods characterized by either 1. A method with the same name as a field and 2. a
method consisting of a single statement returning the value of a field.
Alternative intensions:(SOUL)
1.methodWithName(?method,?field),

instanceVariableInClass(?field,?class)
2.statementsOfMethod(statements(<?statement>),?method),

instanceVariableInClass(?field,?class),
equals(?statement, return(variable(?field)))

Name: Core model mutator methods Attributes: class, method, field
Parent view: Core Model

Description:
All mutator methods in the core model. Either defined as 1. all methods which correspond with the
name of a field followed by a colon or 2. all methods containing a statement which performs an
assignment to a field.
Alternative intensions:(SOUL)
1.methodWithName(?method,?name),

instanceVariableInClass(?field,?class),
[?field asString,’:’ = ?name asString]

2.statementsOfMethod(statements(?statements),?method),
argumentsOfMethod(<?argument>,?method),
instanceVariableInClass(?field,?class),
member(assign(variable(?field),?argument),?statements)

B.1.9 Implementation constraints

The intensional views in this section are used to express constraints which are not directly
related to the concepts in the implementation of IntensiVE, but rather group entities which
are used to impose a number of constraints over the implementation. Such views are used to
e.g. express bad smells, coding guidelines, . . .

Name: Unit tests Attributes: class
Parent view: Core Model

Description:
All the unit tests in the implementation of IntensiVE.
Intension:(SOUL)
classInHierarchyOf(?class,[XProgramming.SUnit.TestCase])

Alternative intensions: /



B.2. INTENSIONAL CONSTRAINTS 229

Name: Hash/Equals Attributes: class
Parent view: IntensiVE

Description:
This intensional view expresses the constraint that all classes which implement equals must also
implement hash in order for comparison between objects to behave correctly. This view consists of
two alternatives: 1. All classes implementing hash and 2. All classes implementing equals.
Alternative intensions:(SOUL)
1. methodWithNameInClass(?,hash,?class)
2. methodWithNameInClass(?,equals,?class)

Name: Private methods Attributes: class
Parent view: IntensiVE

Description:
All methods classified in the private protocol.
Intension:(SOUL)
methodInProtocol(?method,private)

Alternative intensions: /

Name: Initialize methods Attributes: class
Parent view: IntensiVE

Description:
All methods named initialize.
Intension:(SOUL)
methodWithName(?method,initialize)

Alternative intensions: /

Name: Saving mechanism Attributes: class
Parent view: IntensiVE

Description:
The IntensiVE saving mechanism. This is implemented by all classes in the hierarchy of
IntensionalStorage. These classes provide means to make the intensional views and constraints
persistent.
Intension:(SOUL)
classInHierarchyOf(?class,[IntensionalStorage])

Alternative intensions: /

Name: Overridden initialize methods Attributes: class
Parent view: Initialize methods

Description:
All methods overriding the initialize method.
Intension:(SOUL)
overridingSelector(?class,initialize)

Alternative intensions: /

B.2 Intensional Constraints

On the above intensional views, we define 23 intensional constraints:



230 APPENDIX B. INTENSIONAL VIEWS AND CONSTRAINTS OVER INTENSIVE

Description:
The argument name of the single argument of a saving method must be aLayer.
Quantification:
∀ save ∈ Saving:
Predicate:
argumentsOfMethod(<variable(aLayer)>,?save.method)

Description:
The evaluator for the constraint of a type evaluator must contain an invocation of a language evaluator
(use of the strategy design pattern).

Quantification:
∀ constraint ∈ Constraint type evaluators: ∃ language ∈ Constraint language evaluators:
Predicate:
methodCallsMethod(?constraint.method, ?language.method)

Description:
A quantifier evaluation method takes two arguments, namely aCollection and aPredicate.
Quantification:
∀ quant ∈ Quantifier evaluation:
Predicate:
argumentsOfMethod(<variable(aCollection), variable(aPredicate)>,?quant.method)

Description:
In order for the Visitor pattern to function properly, all accept methods should contain a call to a visit
method.

Quantification:
∀ accept ∈ Accept methods: ∃ visit ∈ Visit methods:
Predicate:
methodCallsMethod(?accept.method, ?visit.method)

Description:
The name of the message invoked in the double dispatch of the visitor must match the name of
the class that accepts the visitor. E.g. the method that accepts the class Element must be named
doElement:

Quantification:
∀ accept ∈ Accept methods:
Predicate:
statementsOfMethod(statements(<?statement>), ?accept.method),
equals(?statement,return(send(?,?message,?))),
methodInClass(?accept.method,?class),
[(’do’, ?class name asString,’:’) match: ?message asString]

Description:
All compilation methods have a single argument aStream.
Quantification:
∀ compile ∈ Compilation:
Predicate:
argumentsOfMethod(<variable(aStream)>,?compile.method)
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Description:
Compilation methods either invoke another compilation method or write to the stream.
Quantification:
∀ compile ∈ Compilation:
Predicate:
methodWithSend(?compile.method,?rec,?message,?args),
or(equals(?rec,variable(aStream)),

and(Compilation(?,?method),
equals(?message,[?method selector])))

Description:
All adapted methods on Extension must contain a call to the wrapped object.
Quantification:
∀ adapter ∈ Extension:
Predicate:
methodWithNameInClass(?adapter.method,?name,?),
statementsOfMethod(statements(<
return(send(

send(variable(self), tuples,<>),
?name,
?args))>),?adapter.method)

Description:
Primitive dead code check: all classes of the core model should be referenced somewhere in the
implementation of IntensiVE.

Quantification:
∀ core ∈ Core Model:
Predicate:
(Intensional allClasses select:[

:class |
(class methodDictionary values select:[

:method | method classesReferenced
includes:(core valueFor:#class)]) size > 0]) size > 0

Description:
Primitive test coverage: for each class in the core model there should exist a corresponding test case.

Quantification:
∀ core ∈ Core Model: ∃ test ∈ Unit tests:
Predicate:
[?core.class name,’Test’ match: ?test.class name]

Description:
All filters must implement a method named filterElement:.
Quantification:
∀ handler ∈ Filter chain:
Predicate:
methodWithNameInClass(?,[#filterElement:], ?handler.class)
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Description:
An element of the chain is not allowed to invoke next.
Quantification:
@ handler ∈ Filter chain:
Predicate:
methodWithSend(?handler.method, ?, next,?)

Description:
Filters can not reference each other; they need to be created via the chain.
Quantification:
@ handler ∈ Filter chain:
Predicate:
FilterChain(?,?method),
methodReferencesClass(?method, ?handler.class)

Description:
The implementation of a drop action must use the standard facilities of StarBrowser2. This is ensured
by verifying that the dragDropContext: method implemented by DropHelper is used.

Quantification:
∀ handler ∈ Drop actions:
Predicate:
methodWithSend(?action.method, variable([#’Classifications2.DropHelper’]),

[#dragDropContext:],<variable(aDragDrop)>)

Description:
All changes in an editor to an intensional view/constraint must be performed by invoking a mutator
method on the model field.

Quantification:
∀ change ∈ Editor model change: ∃ mutator ∈ Core mutator methods:
Predicate:
member(?message,?change.messages),
methodWithSend(?change.method,send(variable(self),model,<>),

[?mutator.method selector],?a)

Description:
All factory clients, i.e. methods that reference a Factory, must also send the current method.
Quantification:
∀ client ∈ Factory client:
Predicate:
methodSendsSelector(?client.method, current)
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Description:
A client of the factory is not allowed to reference products directly; instead, such accesses should
happen via the factory.

Quantification:
∀ client ∈ Factory client: @ product ∈ Products:
Predicate:
methodReferencesClass(?client.method, ?product.class)

Description:
All factory methods must reference a product class in order to instantiate it.
Quantification:
∀ fac ∈ Factory methods: ∃ product ∈ Products:
Predicate:
methodReferencesClass(?fac.method, ?product.class)

Description:
There should exist a factory method for each product.
Quantification:
∀ product ∈ Products: ∃ fac ∈ Factory methods:
Predicate:
methodReferencesClass(?fac.method, ?product.class)

Description:
All state changes should trigger a “changed” method.
Quantification:
∀ statechange ∈ State changes: ∃ subject ∈ Subjects:
Predicate:
methodCallsMethod(?statechange.method, ?subject.method)

Description:
The Saving Mechanism is implemented as a singleton, as such, none of the classes are allowed to
override new.

Quantification:
@ saving ∈ Saving mechanism:
Predicate:
overridingSelector([?saving.class class], initialize)

Description:
All calls to private methods must originate from the class hierarchy in which they are defined.
Quantification:
@ private ∈ Private methods:
Predicate:
CoreModel(?class,?method),
methodCallsMethod(?method,?private.method),
methodInClass(?private.method,?c),
not(classInHierarchyOf(?class,?c))
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Description:
All overridden initialize methods must contain a super call to initialize.
Quantification:
∀ override ∈ Overridden initialize methods:
Predicate:
methodWithSend(?init.method,variable(super),initialize,?)



Appendix C

Intensional Views and Constraints
over SmallWiki

C.1 Intensional views

C.1.1 SmallWiki Entities

The following intensional view groups all the entities in the implementation of SmallWiki.

Name: SmallWiki Entities Attributes: class, method
Parent view: None

Description:
All classes and methods in the implementation of the SmallWiki, i.e. all the entities in the SmallWiki
namespace.
Intension:(SOUL)
classInNamespace(?class,[SmallWiki]),
methodInClass(?method,?class)

Alternative intensions: /

C.1.2 Wiki Structures

Name: Wiki Structures Attributes: class
Parent view: SmallWiki Entities

Description:
The main structural elements which are part of a Wiki page like pages and chapters. This intensional
view is defined by a single alternative capturing all classes in the hierarchy of the Structure class.
Intension:(SOUL)
classInHierarchyOf(?class,Structure])

Alternative intensions: /

235
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Name: SmallWiki Entities Attributes: class
Parent view: Actioned Wiki Structures

Description:
The structural elements for which there are corresponding actions.
Intension:(SOUL)
WikiActions(?action,?),

Alternative intensions: /

Name: Page Components Attributes: class
Parent view: SmallWiki Entities

Description:
The different entities belonging to a page like tables, links, . . . .
Intension:(SOUL)
classInHierarchyOf(?class,[PageComponent])

Alternative intensions: /

C.1.3 Wiki Actions

The set of intensional views capturing actions on Wiki documents.

Name: Wiki Actions Attributes: class, method
Parent view: SmallWiki Entities

Description:
All the actions which can be performed on Wiki elements (e.g. save, cancel,. . . ). This intensional
view is defined by two alternative views: 1. all the methods with as prefix “execute-” implemented on
a class in the hierarchy of Action and 2. all the methods in the protocol action.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[Action]),

[’execute*’ match: ?method selector asString]
2.methodInProtocol(?method,action)

Name: Effective Actions Attributes: class
Parent view: Wiki Actions

Description:
All concrete actions on wiki elements. Defined either as 1. all leaf classes in the Action hierarchy
or 2. all classes which implement a a method named execute.
Alternative intensions:(SOUL)
1.not(superclassOf(?class,?))
2.methodWithNameInClass(?,execute,?class)

Name: Effective Actions Attributes: class
Parent view: Wiki Actions

Description:
All actions that correspond with a Wiki Structure.
Intension:(SOUL)
WikiStructures(?structure),
[?structure name,’*’ match:?class name]

Alternative intensions: /
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C.1.4 Wiki Visitor

An important part of the implementation of SmallWiki is based on the Visitor design pattern.
The following intensional views capture the different entities which implement either a visited
element or a visitor.

Visited Elements

Name: Wiki Visited Elements Attributes: class, method
Parent view: SmallWiki Entities

Description:
All the elements of a Wiki document which can be visited. This intensional view is defined as 1. all
the accept: methods in SmallWiki or 2. all the methods in the protocol visiting.
Alternative intensions:(SOUL)
1.methodWithNameInClass(?method,[#accept:],?class)
2.methodInProtocol(?method,[#visiting]),

methodInClass(?method,?class)

Name: Wiki Storable Elements Attributes: class
Parent view: Wiki Visited Elements

Description:
All the elements which can be persistently stored. This intensional view is defined as: 1. all the
classes for which there exists a corresponding method on a Storage Visitor or 2. all Wiki Structures.
This intensional view thus expresses the constraint that all Wiki Structures should be accepted by a
storage visitor.
Alternative intensions:()
1.StorageVisitors(?,?visitmethod),

[?visitmethod selector = (’accept’, ?class name ,’:’) asSymbol]
2.WikiStructures(?class,?)

Name: Outputable Elements Attributes: class
Parent view: Wiki Visited Elements

Description:
All elements which can be outputted to a web page. This intensional view is defined as all the visited
elements which are accepted by an output visitor.
Intension:(SOUL)
OutputVisitors(?,?visitmethod),
[?visitmethod selector = (’accept’, ?class name ,’:’) asSymbol]

Alternative intensions: /

Visitors

The actual web page rendering mechanism and storage mechanism of SmallWiki are imple-
mented as a Visitor over the elements in a Wiki document. This collection of Visitors is
documented by the following three intensional views.
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Name: Visitors Attributes: class, method
Parent view: SmallWiki Entities

Description:
This intensional view groups all the behaviour concerning visiting of the elements of a Wiki docu-
ment. As such, it is defined as all the methods classified in the protocol with as prefix visiting,
implemented by a class in the hierarchy of Visitor.
Intension:(SOUL)
classInHierarchyOf(?class,[Visitor]),
methodInProtocol(?method,?protocol),
[’visiting*’ match:?protocol]

Alternative intensions: /

Name: Storage Visitors Attributes: class, method
Parent view: Visitors

Description:
The Visitors responsible for storing a Wiki document to e.g. an XML document, and so on. This view
is defined by a single alternative capturing all Visitor entities in the VisitorStore hierarchy.
Intension:(SOUL)
classInHierarchyOf(?class,[VisitorStore])

Alternative intensions: /

Name: Output Visitors Attributes: class, method
Parent view: Visitors

Description:
Similar to the intensional view above, a visitor is used to generate a web page from an object structure
representing a Wiki document. To this end, all the Visitors in the hierarchy of VisitorOutput are
used.
Intension:(SOUL)
classInHierarchyOf(?class,[VisitorOutput])

Alternative intensions: /

C.1.5 Other

In this section we provide the definition of two intensional views capturing the implementa-
tion of the Wiki server itself and the unit tests over SmallWiki.

Name: Wiki Server Attributes: class
Parent view: SmallWiki Entities

Description:
All the classes in the hierarchy of WikiServer.
Intension:(SOUL)
classInHierarchyOf(?class,[WikiServer])

Alternative intensions: /
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Name: Test Cases Attributes: class
Parent view: SmallWiki Entities

Description:
All the test cases over SmallWiki.
Intension:(SOUL)
classInHierarchyOf(?class,[XProgramming.SUnit.TestCase])

Alternative intensions: /

C.2 Intensional Constraints

Over the above intensional views we defined the following intensional constraints:

Description:
For all Wiki structures for which actions are defined there should exist at least one corresponding
action, i.e. an action for which the name of the wiki structure prefixes the name of the action.

Quantification:
∀ action ∈ Actioned Wiki Structures: ∃ structure ∈ Structured Actions:
Predicate:
((action valueFor:#class) name asString,’*’)

match:
((structure valueFor:#class) name asString)

Description:
For all classes in SmallWiki there should exist a corresponding test case. Notice that for this
intensional view, all abstract classes are considered to be explicit deviations.

Quantification:
∀ entity ∈ SmallWiki Entities: ∃ test ∈ Test Cases:
Predicate:
((entity valueFor:#class) name asString,’*’)

match:
((test valueFor:#class) name asString)

Description:
For all outputable elements there must exist a method on an output visitor which has an argument
matching the name of the outputable element.

Quantification:
∀ outputable ∈ Outputable Elements: ∃ output ∈ Output Visitors:
Predicate:
argumentsOfMethod(?arguments,?output.method),
member(?argument,?arguments),
[’*’,( ?outputable.class name asString),’*’ match:?argument asString]
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Description:
All output methods on the output visitor correspond with an outputable element. Notice that this
binary intensional relation is the dual of the relation above.

Quantification:
∀ output ∈ Output Visitors: ∃ outputable ∈ Outputable Elements:
Predicate:
argumentsOfMethod(?arguments,?output.method),
member(?argument,?arguments),
[’*’,( ?outputable.class name asString),’*’ match:?argument asString]

Description:
All page components should be outputable.
Quantification:
∀ component ∈ Page Components: ∃ outputable ∈ Outputable Elements:
Predicate:
component = outputable

Description:
For all storable elements there must exist a method on an storage visitor which has an argument
matching the name of the storable element.

Quantification:
∀ storable ∈ Wiki Storable Elements: ∃ storage ∈ Storage Visitors:
Predicate:
argumentsOfMethod(?arguments,?storage.method),
member(?argument,?arguments),
[’*’,( ?storable.class name asString),’*’ match:?argument asString]

Description:
All storage methods on the storage visitor correspond with an storable element. Notice that this binary
intensional relation is the dual of the relation above.

Quantification:
∀ storage ∈ Storage Visitors: ∃ storable ∈ Wiki Storable Elements:
Predicate:
argumentsOfMethod(?arguments, ?storage.method),
member(?argument,?arguments),
[’*’,( ?storable.class name asString),’*’ match:?argument asString]

Description:
All Wiki structures communicate with the Server.
Quantification:
∀ structure ∈ Wiki Structures: ∃ server ∈ Wiki server:
Predicate:
methodInClass(?wikistructure, ?structure.class),
methodInClass(?wikiserver, ?server.class),
methodCallsMethod(?wikistructure, ?wikiserver)
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Description:
For all visited elements there must exist a method on an visitor which has an argument matching the
name of the visited element.

Quantification:
∀ visited ∈ Wiki Visited Elements: ∃ visitor ∈ Visitors:
Predicate:
argumentsOfMethod(?arguments, ?visitor.method),
member(?argument,?arguments),
[’*’,( ?visited.class name asString),’*’ match:?argument asString]

Description:
All accept: methods implemented on a visited element invoke a method on the visitor.
Quantification:
∀ visited ∈ Wiki Visited Elements: ∃ visitor ∈ Visitors:
Predicate:
methodCallsMethod(?visited.method, ?visitor.method)

Description:
Visitor methods either write to a stream or invoke another visitor method.
Quantification:
∀ wikivisitor ∈ Visitors:
Predicate:
or(and(WikiVisitors(?,?visitor),

methodCallsMethod(?wikivisitor.method,?visitor)),
methodWithSend(?wikivisitor.method, variable(stream),?,?))
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Appendix D

Intensional Views and Constraints
over DelfSTof

In this appendix we give an overview of the intensional views and constraints we declared
over the DelfSTof case study.

D.1 Intensional views

D.1.1 DelfSTof entities

The following intensional view groups all the classes and methods belonging to DelfSTof:

Name: DelfSTof entities Attributes: class, method
Parent view: None

Description:
All classes and methods belonging to the implementation of DelfSTof, i.e. all the classes and methods
in the ConceptAnalysis namespace.
Intension:(SOUL)
classInNamespace(?class,[ConceptAnalysis]),
methodInClass(?method,?class)

Alternative intensions: /

D.1.2 Filtering

This section gives an overview of the different intensional views which group source-code en-
tities that belong to the implementation of the filtering mechanism in DelfSTof. We consider
two kinds of filters: attribute filters that restrict the set of attributes considered for the concept
analysis and concept filters that prune the set of identified concepts.
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Name: Filters Attributes: class, method
Parent view: DelfSTof entities

Description:
The source-code entities responsible for the filtering of attributes and concepts. This intensional view
is defined as the set of all classes/methods in the category Filters.
Intension:(SOUL)
classInCategory(?class,Filters)

Alternative intensions: /

Name: Attribute Filters Attributes: class, method
Parent view: Filters

Description:
This intensional view groups the entities implementing the filtering of attributes which are considered
for the concept analysis. It is defined by two alternative views: 1. all the methods and classes in the
hierarchy of AttributeFilter and 2. all the classes which implement the correct interface.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[AttributeFilter])
2.methodWithNameInClass(?,[#’validAttribute:’],?class),

methodWithNameInClass(?,[#’generateAttributesFor:’],?class)

Name: Concept Filters Attributes: class, method
Parent view: Filters

Description:
The tuples belonging to the extension of this view represent all the classes and methods which perform
filtering on the resulting concepts outputted by the concept analysis. This view is defined as either 1.
all the classes/methods in the hierarchy of ConceptFilter or either as 2. all the classes and their
corresponding methods which implement a method shouldInclude:.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[ConceptFilter])
2.methodWithNameInClass(?,[#’shouldInclude:’],?class)

D.1.3 Concept Analyzers
The following two intensional views group the source-code entities which are responsible
for the analysis of the concepts returned by the formal concept analysis algorithm. Each
concept analyzer provides a means to pre-classify a concept based on a given property. E.g.
DelfSTof contains analyzers for identifying concepts that consist out of polymorphic methods,
and so on.

Name: Predefined Analyzers Attributes: class, method
Parent view: DelfSTof entities

Description:
The Predefined Analyzers intensional view groups all the concrete concept analyzers in DelfSTof. It
is defined as 1. all the classes which are an (indirect) subclass of ConceptAnalyzer and 2. all the
classes which understand a certain set of messages.
Alternative intensions:(SOUL)
1.classBelow(?class,[ConceptAnalyzer])
2.classUnderstands(?class,[#’handleConcept:’]),

classUnderstands(?class,[#’canHandleConcept:’])
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Name: Basic Analyzers Attributes: class, method
Parent view: Predefined Analyzers

Description:
The basic analyzers are a subset of the predefined analyzers and represent all the classes which im-
plement an analysis which groups a number of concepts based on primitive properties like the set of
methods, parse trees, . . .
Intension:(SOUL)
classBelow(?class,[BasicAnalyzer])

Alternative intensions: /

D.1.4 Context Creation

The intensional views in this section group a number of tuples representing the source-code
entities involved in the set-up of the experiment: for each experiment which uses DelfSTof, a
context is created which selects the proper set of filters and concept analyzers.

Name: Context Creation Attributes: class, method
Parent view: DelfSTof entities

Description:
The main intensional view grouping all the entities which are involved in the creation of a context.
Intension:(SOUL)
classInCategory(?class,[#’Context Creation’])

Alternative intensions: /

Name: Context Creators Attributes: class, method
Parent view: Context Creation

Description:
The classes and methods which implement a different context for the formal concept analysis al-
gorithm. This intensional view is defined by two alternative views: 1. all the classes in the
ContextCreator hierarchy and 2. all the classes which implement a certain set of methods.
Alternative intensions:(SOUL)
1.classInHierarchyOf(?class,[ContextCreator])
2.methodWithNameInClass(?,attributeFilterClasses,?class),

methodWithNameInClass(?,basicAnalyzers,?class),
methodWithNameInClass(?,conceptFilterClasses,?class),
methodWithNameInClass(?,classificationAnalyzers,?class),
methodWithNameInClass(?,attributeCreatorClass,[?class class])

Name: Classification Analyzers Creation Attributes: method, analyzer
Parent view: Context Creators

Description:
The set of tuples representing a method which selects the Predefined Analyzers used in a context,
together with each selected analyzer.
Intension:(SOUL)
methodWithName(?method,classificationAnalyzers),
methodReferencesClass(?method,?analyzer),
not(equals(?analyzer,[OrderedCollection ]))

Alternative intensions: /
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Name: Attribute Filter Creation Attributes: method, filter
Parent view: Context Creators

Description:
The set of tuples representing a method which selects the Attribute Filters used in a context, together
with each selected filter.

Intension:(SOUL)
methodWithName(?method,attributeFilterClasses),
methodReferencesClass(?method,?filter),
not(equals(?filter,[OrderedCollection ]))

Alternative intensions: /

Name: Basic Analyzers Creation Attributes: method, analyzer
Parent view: Context Creators

Description:
The set of tuples representing a method which selects the Basic Analyzers used in a context, together
with each selected analyzer.
Intension:(SOUL)
methodWithName(?method,basicAnalyzers),
methodReferencesClass(?method,?analyzer),
not(equals(?analyzer,[OrderedCollection ]))

Alternative intensions: /

Name: Concept Filters Creation Attributes: method, filter
Parent view: Context Creators

Description:
The set of tuples representing a method which selects the Concept Filters used in a context, together
with each selected filter.

Intension:(SOUL)
methodWithName(?method,conceptFilterClasses),
methodReferencesClass(?method,?filter),
not(equals(?filter,[OrderedCollection ]))

Alternative intensions: /

Name: Predefined Context Creation Attributes: method
Parent view: Context Creators

Description:
All methods responsible for selecting the context. This intensional view is defined as the union of the
four intensional views we defined above.

Intension:(Smalltalk)
((Views.AttributeFilterCreation union: Views.BasicAnalyzersCreation)

union: Views.ClassificationAnalyzersCreation)
union: Views.ConceptFiltersCreation

Alternative intensions: /



D.1. INTENSIONAL VIEWS 247

D.1.5 Experiment initialization, parse tree attributes and concepts

Name: Experiment execution Attributes: method
Parent view: DelfSTof entities

Description:
This intensional view consists out of all the methods which initialize the execution of an experiment
using the FCA algorithm.
Intension:(SOUL)
methodOfClassInProtocol(?method,[ContextCreator class],[#’run me’])

Alternative intensions: /

Name: Concepts Attributes: class, method
Parent view: DelfSTof entities

Description:
This intensional view groups all the classes and methods which represent a concept. These classes are
used to represent the different types of pre-classified concepts and are created by the concept analyzers.
This intensional view is defined by two alternative views: 1. all the classes in the package ‘Concept
Classes’ and 2. all the classes in the category ‘Helper Classes’.
Alternative intensions:(SOUL)
1. classInPackageNamed(?class,[’Concept Classes’])
2. classInCategory(?class,[#’Helper Classes’])

Name: Parsetree Attribute Creator Attributes: class, method
Parent view: DelfSTof entities

Description:
When using a set of methods as the objects under analysis by the FCA algorithm, often the attributes
describing these methods are based on the parse tree of the methods. DelfSTof offers a set of parse tree
attribute creators which extract a certain property from the parse tree of a method. This intensional
view contains those classes and methods which implement such a parse tree attribute creator. It groups
these entities based either on 1. all the classes in the ParseTreeAttributeCreator hierarchy
or 2. all the classes in the package ‘AttributeCreation’ which contain the string “ParseTreeAttribute-
Creator” in their class name.

Alternative intensions:()
1. classInHierarchyOf(?class,[ParseTreeAttributeCreator])
2. classInPackageNamed(?class,[’AttributeCreation’]),

[’*ParseTreeAttributeCreator*’ match:?class name]

Name: Parsetree Attribute Generator Attributes: class, method
Parent view: DelfSTof entities

Description:
The parse tree attribute creator uses a visitor pattern in order to traverse a parse tree of a method.
The entities implementing this visitor are grouped in this intensional view. It is defined as: 1. all the
classes in the hierarchy of AttributeGeneratorVisitor or 2. all the classes in the package
‘AttributeCreation’ which contain the string “AttributeGenerator” in the class name.
Alternative intensions:(SOUL)
1. classInHierarchyOf(?class,[AttributeGeneratorVisitor])
2. classInPackageNamed(?class,[’AttributeCreation’]),

[’*AttributeGenerator*’ match:?class name]
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Name: Chain Building Blocks Attributes: class
Parent view: DelfSTof entities

Description:
The entities in the context creation make use of a chain in order to analyze/filter the concept/attributes.
This intensional view captures all the classes representing a core building block of such a chain.
Intension:(SOUL)
or(equals(?class, [DefaultAnalyzer]),

equals(?class, [NullConceptFilter]),
equals(?class, [NullAttributeFilter]))

Alternative intensions: /

D.2 Intensional Constraints

D.2.1 Implementation patterns and regularities

Description:
All methods initializing an experiment must be implemented in the same way.
Quantification:
∀ experiment ∈ Experiment execution:
Predicate:
statementsOfMethod(statements(<?statement>),?experiment.method),
equals(?statement,send(variable(self),[#runAnalysisOnObjects:forCase:],

<send(variable(self),?,<>),literal(?project)>)),
[(’runOn’, ?project asString) match:(?experiment.method selector asString)]

Description:
All context creation methods must create a new OrderedCollection using either the new or
with: messages.

Quantification:
∀ creator ∈ Predefined Context Creation:
Predicate:
or(methodWithSend(?creator.method,variable(OrderedCollection),new,?),

methodWithSend(?creator.method,variable(OrderedCollection),[#’with:’],?))

Description:
All parse tree attribute creators make use of a parse tree generator (visitor).
Quantification:
∀ attribute ∈ Parsetree Attribute Creator: ∃ generator ∈ Parsetree Attribute Generator:
Predicate:
methodInClass(?method,?attribute.class),
methodWithSend(?method,variable([?generator.class name asSymbol]), new,?)
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D.2.2 Regularities concerning correct use of the chain

Description:
The basic building blocks of the chain must be used by the AbstractContextCreator. If not,
the chain will not be correctly terminated.

Quantification:
∀ block ∈ Chain Building Blocks:
Predicate:
methodInClass(?method,[AbstractContextCreator]),
methodReferencesClass(?method,?block.class)

Description:
Context creators may not directly refer to a chain building block.
Quantification:
∀ creator ∈ Context Creators: @ block ∈ Chain Building Blocks:
Predicate:
methodInClass(?method,?creator.class),
methodReferencesClass(?method, ?block.class)

Description:
Basic Analyzers may not directly refer to a chain building block.
Quantification:
∀ analyzer ∈ Basic Analyzers: @ block ∈ Chain Building Blocks:
Predicate:
methodInClass(?method, ?analyzer.class),
methodReferencesClass(?method, ?block.class)

Description:
Attribute filters may not refer to the next filter in the chain.
Quantification:
@ filter ∈ Attribute Filters:
Predicate:
methodWithSend(?filter.method,variable(self),nextFilter,?)

Description:
Concept filters may not refer to the next filter in the chain.
Quantification:
@ filter ∈ Concept Filters:
Predicate:
methodWithSend(?filter.method, variable(self),nextFilter,?)

D.2.3 Regularities governing context creation

The following four regularities encode the knowledge that each of the different kinds of con-
text creation methods return a set of filters/analyzers of the correct kind.
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Description:
Classification Analyzers Creation are only allowed to refer to Predefined Analyzers.
Quantification:
∀ creator ∈ Classification Analyzers Creation: ∃ analyzer ∈ Predefined Analyzers:
Predicate:
(creation valueFor:#analyzer) = (analyzer valueFor:#class)

Description:
Attribute Filter Creation are only allowed to refer to Attribute Filters.
Quantification:
∀ creator ∈ Attribute Filter Creation: ∃ filter ∈ Attribute Filters:
Predicate:
(creation valueFor:#filter) = (filter valueFor:#class)

Description:
Basic Analyzers Creation are only allowed to refer to Basic Analyzers.
Quantification:
∀ creator ∈ Basic Analyzers Creation: ∃ analyzer ∈ Basic Analyzers:
Predicate:
(creation valueFor:#analyzer) = (analyzer valueFor:#class)

Description:
Concept Filters Creation are only allowed to refer to Concept Filters.
Quantification:
∀ creator ∈ Concept Filters Creation: ∃ filter ∈ Concept Filters:
Predicate:
(creation valueFor:#filter) = (filter valueFor:#class)
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