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Nederlandstalige Samenvatting

Software ontwikkelaars verantwoordelijk voor het aanpassen van bestaande software
moeten op de hoogte zijn van onderliggende afhankelijkheden in het gedrag van een
systeem. Zulke afhankelijkheden kunnen ontstaan bij de initiële ontwikkeling van soft-
ware, waarbij bepaalde beslissingen moeten worden genomen wat de design van het
systeem betreft. Dit komt vooral voor bij technisch en algoritmisch complexe systemen
omdat meerdere technologisch hoogstaande componenten in eenzelfde implementatie
moeten geı̈ntegreerd worden. Dit geeft aanleiding tot subtiele nuances in de broncode
die fout systeemgedrag tot gevolg kunnen hebben. Deze afhankelijkheden, of design
invarianten, vormen een ernstig probleem voor ontwikkelaars omdat ze meestal enkel
impliciet gekend zijn. Bijgevolg kunnen aanpassingen aan de broncode zo het breken
van deze invarianten tot gevolg hebben.

In dit proefschrift wordt een oplossing uitgewerkt om de ontwikkeling van tech-
nisch en algoritmisch complexe systemen te ondersteunen door design invarianten te
gaan documenteren en verifiëren gebruik makende van een lichtgewicht mechanisme.
De belangrijkste bijdrage van de voorgestelde aanpak is het gebruik van temporeel lo-
gisch programmeren als uitvoerbare specificatietaal om design invarianten te kunnen
specifiëren. Een belangrijk voordeel van dit declaratief formalisme is het hoog abstrac-
tie niveau dat wordt aangeboden. Naast de declaratieve eigenschap van een logisch
formalisme wat het gebruik van hoog niveau concepten toelaat, kunnen ook abstracties
gemaakt worden over tijdsstructuren door gebruik te maken van tijdsafhankelijke oper-
atoren. Dit resulteert in de documentatie van de design invariant in een gedragsmodel
gespecifieerd op een hoog abstractieniveau.

In tweede instantie wordt in de voorgestelde oplossing een causale link voorzien
tussen de specificatie van de design invariant en de broncode die een lichtgewicht ver-
ificatie toelaat op basis van dynamische analyse. Hierbij wordt gebruik gemaakt van
een broncode instrumentatie mechanisme gebaseerd op logisch meta programmeren.
Zo kunnen run-time events zorgvuldig geselecteerd worden en meteen op conceptueel
niveau gespecifieerd worden in plaats van op broncode niveau. De voorgestelde aan-
pak is goal-driven door het combineren van een selectieve instrumentatie met het
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zorgvuldig kiezen van een uitvoeringsscenario relevant voor een bepaalde design in-
variant, wat de toepasbaarheid op delen van grotere programma’s mogelijk maakt.

Om de aanpak te valideren werd het BEHAVE platform gebouwd. Dit platform biedt
ondersteuning voor het documenteren en lichtgewicht verifieren van design invarianten
in C programma’s. Als validatie werd BEHAVE gebruikt ter ondersteuning van de ont-
wikkeling van de Pico virtuele machine. Pico bleek een ideaal experimenteel platform
om onze aanpak te valideren doordat de ontwikkelaar van Pico beschikbaar was. Zo
kon enerzijds inzicht verkregen worden in de genomen beslissingen aangaande het ont-
werp van Pico en anderzijds konden eventueel gevonden inconsistencies geverifieerd
worden. Daarbovenop wordt Pico nog steeds actief gebruikt en ontwikkeld. Gebruik
makende van BEHAVE werd er een set van drie design invarianten gedocumenteerd
en geverifieerd voor Pico: run-time programma documentatie, garbage collection en
staartrecursie optimisatie.
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Chapter 1
Introduction

1.1 Research Context
Current software systems are becoming more complex than ever. Not only the vast
amount of functional variation is growing, the underlying complexity of the imple-
mentation is increasing as well. This complexity poses several challenges to the pro-
grammer who sees a daunting task set forth to create a reliable system.

System complexity is cited as a major reason for the difficulties software engineers
encounter when dealing with large software systems [FPB87]. However, not only the
size of systems causes complexity problems [Min96b]. A range of software systems
exist which need to integrate several technologically and algorithmically challenging
system components. Consider the Pico virtual machine as an example. Pico is an
interpreter for a fairly simple programming language which integrates several techno-
logically sophisticated features such as support for reflection and meta programming,
continuations and first class environments, techniques for supporting automatic mem-
ory management, tail-recursion optimisation, etc. Integrating all these components
creates a complex software system exhibiting subtle interactions, which makes such a
system difficult to maintain and evolve.

Dealing with software complexity manifests itself in different ways. A major dif-
ficulty to overcome is the adaptation of existing software functionality. One possi-
ble way to support the changes is to make the process of change easier by preparing
software systems structurally [MBZR03]. This is often realised by advocating a well-
designed system with a clean separation of concerns (having low coupling and high
cohesion) according to the decomposition mechanism of the programming language
at hand. Furthermore, modularising cross-cutting concerns which cannot be captured
in a language component can be factored out into an aspect using the aspect-oriented
paradigm [KM05a, KM05b]. As a result, when adaptations to the software have to
be made, changes addressing a particular concern are more localised and are therefore
easier to manage.

Next to aiding the process of change, controlling the consequences of a change on

1
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other parts of the software is equally important to keep software reliable. Especially
the impact on the behaviour of a program is difficult to control as adapting certain
parts of a program (well-designed or not) might break intended underlying behaviour in
other parts. These underlying behavioural constraints, usually referred to as invariants,
play a crucial role as they can protect a programmer from making changes which the
correctly working behaviour of a software program depends on. Therefore, to see
if they are satisfied at all times during the evolution of a software implementation,
they must be made explicit and machine-verifiable, which is often done in the form of
annotations or embedded assertions.

Although assertions have shown to contribute significantly to the reliability of
source code [Ros95, YB94], they can only express more local invariants as they are
annotated at specific places in the source code. Moreover they are also tightly coupled
to the implementation as they are typically specified using the programming language
they are embedded in. Such invariants pose constraints on local state or data and are
referred to as data invariants. However, other invariants exist which are non-local and
which not only constrain the data at a particular execution point but also the order in
which statements can be executed. Such invariants pose a real problem as they are
much more difficult to express and verify.

Especially systems which integrate technologically advanced components exhibit
many subtle dependencies which are non-local and which depend on expert knowledge
about the internal operations of a system. This type of invariants are referred to as the
invariants of a system’s design. They are unavoidably introduced during the software
design phase, when a developer makes particular design choices which undoubtedly
have an impact on other parts of a system. These invariants represent the specific
characteristics that limit the future adaptation, flexibility and evolvability of a software
implementation [ABE+04]. It is exactly this type of invariant that we study in this
dissertation.

To demonstrate the subtleties of such design invariants in the code of a technically
complex system, we present an excerpt of C source code of the formerly mentioned
Pico virtual machine listed in figure 1.1. This piece of source code forms a critical
section for implementing automatic garbage collection in Pico. It represents a con-
tinuation function that takes care of evaluating a Pico function application. As shown
by the coloured boxes, different concerns interact and cross-cut throughout the code.
When a static allocation is needed for storing Pico objects of a fixed size (denoted in
red in figure 1.1), a static memory claim can easily be performed at the beginning of
the continuation function (the first arrow denoted in yellow). However, the developer
faces a complicated dependency problem when a dynamic allocation occurs for stor-
ing a Pico object of variable size (e.g. a Pico table). In that case, a memory claim for
claiming dynamic size should be included in the code (the arrow denoted in blue in
figure 1.1) which severely burdens the developer with a chicken-and-egg problem. On
the one hand this memory claim cannot be placed at the very beginning of the contin-
uation as the size of the needed memory has to be known first. And on the other hand,
the further down this claim is placed in the source code of the continuation, the more
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_NIL_TYPE_ _eval_CAL_(_NIL_TYPE_)
 { _EXP_TYPE_ act, arg, dct, exp, frm, fun, nam, par, tab, xdc, xfu;
     ...
   _stk_claim_();
   _stk_peek_EXP_(arg);
     ...
   siz = _ag_get_TAB_SIZ_(arg);
   _mem_claim_SIZ_(DCT_size + FUN_siz + siz);
   _stk_pop_EXP_(arg);
   if (siz == 0)
     { _stk_peek_EXP_(fun);
       ...
           case _APL_TAG_:
             dct = _ag_make_DCT_();
             par = _ag_get_FUN_ARG_(fun);
             _DCT_ = dct; }
   else
     { dct = _ag_make_DCT_();
       _stk_peek_EXP_(fun);
      ...             
             _stk_push_EXP_(arg);
             tab = _ag_make_TAB_(siz);
             act = _ag_get_TAB_EXP_(arg, 1);
             ...
             _stk_push_EXP_(arg);
             tab = _ag_make_TAB_(siz);
             ...
                case _APL_TAG_:
                  xfu = _ag_make_FUN_();
                  par = _ag_get_FUN_ARG_(fun);
                                  default: 
            ...   
           default:
             _error_msg_(_IPM_ERROR_, _ag_get_FUN_NAM_(fun)); }}}

claim 
static 
size

claim 
dynamic 
size

consult stack 
and restore 
reference

allocate 
fixed size 
chunks

allocate 
variable 
size chunks

Figure 1.1: C source code excerpt of a virtual machine

temporary variables have been used for which their references have to be saved and
restored respectively before and after the performed memory claim (denoted in pink in
figure 1.1).

This type of invariants is obviously problematic as they are usually only known in
the head of a developer and thus implicitly present in the software. Additionally, de-
sign invariants are often cross-cutting the entire application code as they represent be-
havioural entities depending on scattered source code. And on top of that they are non-
externally verifiable, which means that they cannot be traced by investigating output
values. They depend primarily on the order in which particular source code statement
(or events) are executed, which requires expert knowledge about the internal workings
of a system.

In the context of software systems with several algorithmically complex compo-
nents, design invariants represent the subtle interplay between different program parts
that realise a particular concern often only known to the developer. They severely limit
future system development because after any change to the code these design invari-
ants might be violated. We want to make design invariants explicit by specifying them
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in a behavioural specification language.
Given this complex interplay of crosscutting entities, verifying design invariants

manually is not desirable. Therefore, next to making design invariants explicit, we
want to apply a program analysis approach to make them machine-verifiable. Existing
formal verification approaches such as model checking, but also other static analy-
sis approaches are not suited in this context as they provide no means for focusing
the analysis on a behavioural cross-cutting entity. Instead they work on an abstract
behavioural model representing an entire program’s behaviour, which makes these ap-
proaches too exhaustive to promote practical use. Dynamic analysis approaches sup-
port a lightweight methodology as they analyse execution traces instead of exhaus-
tively exploring an entire system model. They are efficient and precise, but their re-
sults depend on the provided program input. The power of these approaches lies in
the fine-tuning of its characteristics, depending on how run-time information is gath-
ered [HLL04] and what means of event selection is used. However, most existing ap-
proaches represent behaviour in low-level implementation constructs [GOA05, Roo04,
DFW04, DGD05], which can be a disadvantage for promoting practical use as any
behavioural representation is therefore tightly linked to the source code.

In view of the characteristics of a design invariant, namely that they are non-
externally verifiable and therefore mainly concerned with the order of events, and that
they cross-cut an entire system, we envision a lightweight approach which offers a
means to focus the analysis on only the behaviour relevant for a particular design in-
variant.

1.2 Problem Statement
In this dissertation, we want to offer support to a programmer for the development
of technically and algorithmically complex software systems by making these design
invariants explicit and at the same time machine-verifiable.

Having considered existing analysis approaches such as formal verification, static
and dynamic analysis, we concluded that all of them have certain shortcomings to
support design invariant verification. In summary, an approach is needed which needs
to address the following main problems:

• Implicit Design Invariants
Design invariants impose underlying behavioural constraints on a system, but
they are implicitly present in the software. Hence, every time a change is made
to the software, the design invariant might be violated, possibly inducing severe
program errors.

• Detached Design Invariants
Even if design invariants are made explicit, they are often detached from the
source code. As design invariants are system-wide and may cross-cut an entire
system, this poses a problem as it is difficult and time-consuming to check them
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manually. Moreover, as design invariants might depend on the run-time state of
a system, such a check might even be impossible to perform. On top of that,
these checks have to be done every time a change is being made to the system.

• Non-Oblivious Design Invariants
As a design invariant has to be checked every time a change is made to the
system, the impact of changes to the design invariant description presents another
problem. Specifying the invariant in low-level implementation constructs creates
a tight coupling with the application’s source code. Such a link with the source
code inhibits practical use as the specification needs to be adapted every time a
change is made to the source code.

• Lack of Support for Partialness
To check a particular underlying behavioural constraint, existing program analy-
sis approaches analyse the complete system behaviour by exhaustively checking
the possible program states. Other approaches allow to separately analyse mod-
ules of a system as they are decomposed by the programming language at hand.
However as design invariants can be cross-cutting entities, this would still entail
analysing an entire program’s behaviour, which seriously inhibits practical use.
Such approaches lack support for partialness as they are not able to focus the
analysis on only a particular part of the software’s behaviour.

1.3 Thesis Approach

In this dissertation, we outline an approach for the documentation and lightweight ver-
ification of behavioural dependencies in source code, named design invariants. To
address the problems identified in the problem statement, we target the following solu-
tions:

• Making Design Invariants Explicit, Machine-Verifiable and Oblivious
First, design invariants are made explicit by specifying their (un)wanted be-
haviour in a behavioural model which is at the same time machine-verifiable.
This is done by specifying behaviour in a high-level executable behavioural for-
malism which makes the design invariant model oblivious from low-level imple-
mentation constructs.

• A Lightweight and Goal-driven Approach
Second, the consistency of the behavioural model of the design invariant is veri-
fied in a lightweight manner against only the actual program behaviour which is
relevant to that particular design invariant using dynamic analysis.
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Specifying Design Invariant Behaviour

As a first part of our approach, a behavioural specification formalism is needed to make
design invariants explicit. We propose the use of temporal logic programming as be-
havioural formalism for specifying design invariants in high-level behavioural models.
Such a model is specified as a set of temporal assertions in terms of high-level events
recorded in the execution trace. Such a formalism supports the event-based nature of
design invariants. It is also declarative which makes it extremely suitable for intro-
ducing high-level concepts in the behavioural descriptions. The temporal operators
make this formalism extremely suited to model the temporal relationship between the
run-time events.

Next to specifying the high-level behavioural model of a design invariant, we also
specify the run-time events over which these temporal assertions are checked at a high
level of abstraction. This allows us to specify the high-level behavioural model of
the invariant directly in terms of high-level events instead of low-level programming
constructs. High-level run-time events are represented as logic facts representing a
partial model of program behaviour, which makes the assertions representing design
invariant behaviour machine-verifiable against the high-level run-time events.

Verifying Design Invariant Behaviour

As we want to support the development process of technically and algorithmically
challenging software in a practical way, we propose a lightweight verification approach
that is causally linked with the source code. This is realised by using dynamic analy-
sis where the program under investigation is executed along a well-defined execution
scenario. The actual observed behaviour is obtained through executing selectively in-
strumented source code, which in addition to executing the program, records certain
run-time events of interest. Automatic verification thus amounts to checking whether
the events recorded in the execution trace exhibit the desired behaviour as defined in
the design invariant model. This implies that the verification results are always relative
to the user input. Although this only allows us to find invariant violations instead of
proving their absence, a well-chosen execution scenario generally offers a convenient
way to focus the verification on specific parts of a larger program.

Furthermore, the approach requires a sophisticated aspect-like code instrumenta-
tion scheme for obtaining high-level run-time events. To identify constructs in an ap-
plication’s source code that give rise to particular events of interest, we propose the
use of a logic meta programming approach for representing the structure of a base
language program as a logical representation at the meta level. Constructs of interest
are then described as a logic program representing a condition and checked against
all logic parse tree nodes. Instrumentation for recording a high-level run-time event
is then generated. It is left up to the user to specify what high-level program points
are of interest (and which associated values) and how they should be recorded in the
execution trace.
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The BEHAVE Platform: A Proof-Of-Concept Implementation

A proof-of-concept platform called BEHAVE is implemented that exhibits the elements
of the outlined approach. BEHAVE is a lightweight verification platform for supporting
design invariants in C. It is fully implemented in the logic programming language
Prolog. Modest tool support is available in Smalltalk to aid in setting up and using
the experimental platform. A C parser transforms a C base language program into a
logical representation up until the statement level.

The three main components of the platform are:

• a reification module containing a logic representation of a C base language pro-
gram to be analysed,

• an instrumentation module which generates C source code from the logical rep-
resentation while checking pointcut expressions of interest defined by the user
of the system, and

• a temporal logic meta interpreter which verifies the design invariant models
against the actual program behaviour.

To test the validity of our claims, we applied the BEHAVE platform to the Pico
virtual machine. As the availability of knowledge about made design decisions and
about the internals of a program is crucial for applying our approach, Pico formed
the ideal case study. The original developer was available to give us insight in the
main design decisions that were undertaken for implementing Pico. This is important
since it not only allowed us to question the developer about which design invariants the
Pico behaviour should adhere to during program execution, but also to verify possible
invariant violations found by BEHAVE.

To support the development process of Pico, we expressed and verified the unde-
sired behaviour of three representative design invariants of some of its main techno-
logical components. Active behavioural program documentation is created of the Pico
execution model, garbage collection is now supported and tail recursion optimisation
can now be verified. Further development of Pico is now supported as these design
invariants are made an explicit and verifiable part of future implementations of Pico.

1.4 Thesis Contributions

The main contributions of the research presented within the context of this dissertation
can be summarised as follows:
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• Identification of Design Invariants
Design invariants were identified and defined as important underlying
behavioural dependencies which severely limit future system development.
Their characteristics were discussed and they were found to be non-
externally verifiable and possibly cross-cutting an entire application.

• A Goal-Driven Approach for the Documentation and Lightweight
Verification of Design Invariants
An executable descriptive formalism is used for specifying design
invariants in a high-level behavioural model. A causal link with the source
code is supported allowing lightweight verification based on dynamic
analysis. The approach is goal-driven in the sense that lightweight
consistency checking is performed against only a partial model of program
behaviour and by choosing a well-defined execution scenario.

• The BEHAVE Platform
Implementation of the BEHAVE platform as a proof-of-concept of our
proposed approach for supporting design invariants. BEHAVE is a
lightweight verification platform for C.

• Validating the Use of BEHAVE by Supporting the Development of
Technically and Algorithmically Complex Software
The BEHAVE platform is validated by supporting three technically
sophisticated design invariants in the Pico language interpreter: creating
active behavioural program documentation, supporting garbage collection
and checking tail recursion optimisation.

1.5 Organisation of the dissertation

Chapter 2: Invariants in Software
Investigates the concept of invariants in software development. It is discussed how

invariants are specified and what specification languages exist. A definition is given of
a design invariant, i.e. the type of invariant which is targeted in this dissertation.
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Chapter 3: Program Analysis for Supporting Design Invariants
Discusses existing program analysis approaches and evaluates their suitability for

supporting design invariants.

Chapter 4: A Goal-Driven Approach for the Documentation and Lightweight Ver-
ification of Design Invariants

Proposes an approach for the documentation and lightweight verification of design
invariants. In essence, design invariants are made explicit by documenting their dy-
namic behaviour in descriptive behavioural models which can be verified in a lightweight
manner throughout an application’s lifetime.

Chapter 5: BEHAVE: A Lightweight Verification Platform for C
Illustrates the practical platform which was implemented as a proof-of-concept to

validate our approach outlined in chapter 4. It provides a technical discussion of the
main components that constitute the platform.

Chapter 6: Using BEHAVE for Supporting Program Development
Illustrates the use of the BEHAVE platform and the validation of our proposed ap-

proach by specifying three representative design invariants of the Pico language inter-
preter: active behavioural program documentation, garbage collection and tail recur-
sion optimisation.

Chapter 7: Conclusion and Future Work
Presents the main conclusions of this dissertation. A summary of the work is pre-

sented, the main contributions of this approach are emphasised and we formulate the
conclusion. We end with a presentation of the future research directions.

Appendices
Appendix A contains the full representational mapping which is used in the LMP set-
up for reasoning about C programs. Appendix B lists the instrumentation module of
BEHAVE for performing selective code instrumentation. The documentation and im-
plementation of the temporal logic meta interpreter is presented in appendix C, while
appendix D contains a reuse framework for using BEHAVE to reason about the be-
haviour of Pico 1.0. Finally, appendix E shows a BEHAVE generated code excerpt for
one of the performed Pico experiments.





Chapter 2

Invariants in Software

The complexity and size of today’s software systems provides many occasions for de-
velopers to introduce faulty and erroneous behaviour in an implementation. Any small
change which has to be made to software can have a major impact on other parts of a
system. Most program development support tries to make the process of change easier
by advocating well-structured systems with a clean separation of concerns. But what
about the consequences of change on those parts of a system that are not allowed to
change when a system evolves? In this chapter we elaborate on invariants in software,
i.e. crucial behavioural assertions that must hold through every change cycle.

In this chapter we investigate the concept of an invariant in today’s software de-
velopment. On the one hand we elaborate on what is meant by an invariant and the
factors that influence the different types of invariants. On the other hand we discuss
how invariants can be specified and what specification languages exist. We give a defi-
nition of a design invariant, i.e. a type of invariant which is targeted in this dissertation.
Note that we only elaborate on the notion of an invariant in this chapter. How these
invariants are checked or verified is the subject matter of the next chapter.

We start by pinpointing what invariants really are in section 2.1 by comparing some
of the frequently adopted definitions of invariants. We continue our discourse in sec-
tion 2.2 by discussing in more detail the two fundamental approaches to reason about
the behaviour of a system. We then elaborate in section 2.3 on the different uses of
invariants, i.e. the different roles they can play in the software development life cycle.
Continuing in section 2.4, we survey existing invariants by seeing what type of invari-
ants they can specify and how they are specified. In section 2.5 we have a closer look
at existing formal and non-formal specification languages for specifying invariant be-
haviour. In section 2.6 we define a type of invariant called design invariants which will
be referred to throughout the remainder of this dissertation and we state the main char-
acteristics of these invariants. We end with a conclusion in section 2.7 and a chapter
summary.

11
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2.1 What are Invariants?
Software systems are becoming more and more complex. Although complexity can be
attributed to the continuous increase in size of software, it is a fact that complexity is
an inherent and irreducible property of software systems [FPB87] .

To deal with this inherent complexity, tool support for changing and evolving a
system is becoming crucial. On the one hand, tool support for aiding the evolution
of systems tries to ease the process of making changes by providing mechanisms for
clearly separating concerns of software systems [MBZR03]. When changes have to be
made, they are more localised and made faster and in a straightforward way. On the
other hand, software analysis tools are built to understand the impact of a change on
the behaviour of a system. Because making a change to even a well-designed struc-
tural system with a clear separation of concerns (with low-coupling and high cohesion)
might break the underlying intended behaviour.

Invariants in software form a crucial part of a system’s behaviour. They do not
just represent characteristics of a system at a certain moment of its evolution, but they
represent constraints which must hold through every evolution cycle if the system is
working correctly. They are essential to the comprehensibility of a software system in
general. However, they pose a problem as they are rarely made explicit and therefore,
when changes are made to a system, they can easily be violated. Explicitly stated
program invariants can help programmers by documenting certain aspects of program
execution and identifying program properties that must be preserved when modifying
code. As invariants represent an immutable part of the behaviour of a program, the
fundamental ways of specifying behaviour need to be taken into account.

Different types of invariants exist as they are used in different contexts and in dif-
ferent phases of software development. After providing some definitions of invariants,
in section 2.2 the fundamental ways to specify program behaviour are addressed.

Definitions The term ‘invariant’ is being used extensively in the context of software
and also in mathematics. In the software engineering community, different definitions
are used. Evans [Eva01] states that ‘invariants are properties of software that are always
true at particular program points’. According to Ernst et. al. [ECGN99] invariants are
‘program properties that must be preserved when modifying code’ which is already
less restrictive. Broadly speaking, an invariant is formulated as something, i.e. a con-
dition, data value, object or class, that does not change, or should not, if the system
is working correctly. In the totally different context of network architectures, invari-
ants are referred to as a negative entity which ‘describes aspects of a design that limits
its changeability [ABE+04]. In general terms (closer to mathematics), an invariant is
referred to as something that does not change under a set of transformations.

If we interpret the more mathematical definition in a software context we might
say that an invariant is ‘something’ that does not change during the execution of a
program. Although the definitions from Evans and Ernst did not explicitly state an
invariant as being a property of the behaviour of a program, their examples concur
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with this interpretation. For example they consider a non-zero value of a variable
(a 6= 0) inside a function to be an invariant because during execution of that function,
the expression a 6= 0 should always evaluate to true. As a consequence, to enable
reasoning about invariants in software, reasoning about the behaviour of software is
crucial. A first step for doing so is to see how system behaviour is specified, which is
discussed in the next section.

2.2 Characterising Software Behaviour
In the domain of formal behavioural specification languages, a lot of attention is given
to how the state and operations of a software program should be specified. These
specifications are used later on to prove the correctness of a model of a program with
regard to a specified property. Therefore how they represent behaviour determines the
kind of behavioural reasoning that can be performed at a later stage.

Two kinds of models dominate the abstract description of software: object models
and state transition diagrams [JR00]. These models are based on the following two
fundamental ways to reason about the behaviour of software [Bol04]:

• One can mainly think of behaviour in terms of state that changes (or does not
change) during program execution, or

• about executed operations or events which take place at a certain time when
running a program (which also influences a program’s state).

Behavioural specification languages tend to favour either one or the other. A possible
influence might be the type of a software system. Software systems can be control-
oriented or more data-oriented. Control-oriented systems are systems where the fo-
cus is on event ordering and timing (such as communication systems), whereas for
data-oriented systems the focus is on storage (organization) and retrieval (information
systems such as a library system). However, most systems exhibit properties of both
(such as information systems with real-time requirements). An example of a speci-
fication approach that tends more towards state-oriented thinking is Z [Spi89], while
CSP [Hoa78] (i.e. a special-purpose specification approach for modelling processes)
thinks more in terms of system control.

Bolognesi et.al. [Bol04] introduce a conceptual state-event framework for recog-
nising and balancing the two above-mentioned fundamental behavioural reasoning ap-
proaches. Figure 2.1 depicts their conceptual framework to pinpoint the kind of rea-
soning that can occur when combining state-event behavioural representations. The
authors distinguish four important types of constraints between event types (a certain
operation which takes place at run-time, for example a particular message send) and
state fragments (part of the global program state) that represent (part of) the behaviour
of a program. They identify a state invariant as being a state-to-state constraint on
the values of any number of state variables during system execution (i.e. the type 1
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Figure 2.1: Different types of invariant constraints (adapted from [Bol04])

constraint as depicted in figure 2.1). They conclude that although these state invariants
might be a convenient starting point to express invariant state behaviour, they provide
no information about what can actually happen, meaning about the nature and sequence
of events.

The pure state constraint (Type 1), also known as a state invariant, together with
the pure event constraint (Type 2) are the simplest of the constraints. An event can be
regarded as an action which takes place at a certain point in time which might influence
the state of that program. A pure event constraint thus reasons about an ordering of
events which take place at run-time without considering information about a program’s
state or data. The usefulness of this type of constraint is sometimes doubted since it
leaves out any information about a program’s state. And in general reasoning about
global system state is agreed upon to be of extreme importance.

The mixed constraint types 3 and 4 in figure 2.1 both represent constraints on both
fragments of global state and event types. A distinction is made between constraints
which consider multiple fragments of program state together with one type of event
(Type 3), or multiple types of events while considering only one fragment of a program
state. A constraint of type 3 considering multiple fragments of global states might be
used for considering parallel execution processes all having their own state. Reasoning
about a particular pattern of events along one execution path (representing one global
state) is captured by a type 4 constraint. To conclude, this conceptual framework states
that, in order to specify and reason about program behaviour, two fundamental ap-
proaches are possible. Either behavioural reasoning can be performed primarily based
on events which occur at a certain time during execution. Or reasoning can be based
on checking the state of program variables. Combining both approaches might lead to
the possibility of expressing and reasoning more sophisticated behavioural constraints.

The next section pinpoints the different uses of invariants in software.
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2.3 Uses of Invariants
Invariants in software provide very useful information, both for the developer of the
software and for different peers working on a software project [Ern00]. Even for
software tools such information is important. They are also useful in all aspects of
programming and different phases of software development, such as the design phase,
during coding, testing, making optimisations, maintenance of the software and in gen-
eral for supporting evolution.

Invariants also play different roles depending on what context they are used in or in
what phase of the software life cycle they are employed. In the context of software evo-
lution they play a crucial role as they can protect a programmer from making changes
which the correctly working behaviour of a software program depends on. In program
development for example, they are part of the formal specification of a system (and
its behaviour) which is then consequently refined into a correct program (for example
using the Z specification language [Spi89], see section 2.4.6).

The following uses of invariants emphasise how they can optimally be exploited
and why developers should care about making invariants an explicit part of software.

Creating reliable programs Invariants have long been considered a useful technique
for creating more reliable programs [Gri87]. Program bugs often result from program-
mers implicitly assuming invariants that are not valid. As an example, consider a
function which always returns a non-NULL value [EP06]. Some invariants can also
formalise the contract of a piece of code, clarifying its intended operations [Mey92b].
Also, thinking about code formally where invariants are an explicit part of a formal
specification [Spi89] can result in more disciplined design and hence also implemen-
tation. However, also informal use of invariants in the software design phase can help
programmers [Gro06].

Program documentation Invariants characterise specific aspects of program be-
haviour and they provide valuable documentation of a program’s algorithms, opera-
tions and data structures. As such, they support program understanding, which is a
prerequisite for every task during the software development life cycle. Even better is
having active invariant documentation, as having a causal link between the documen-
tation and the source code provides a way to keep the documentation up-to-date with
the source code. Also for educational purposes, documented invariants provide a valu-
able source of information to students having to master a particular application. After
all, the invariants document some of the main elements of the software application’s
behaviour [EP06].

Checking behavioural assumptions Invariants, which can be checked automati-
cally (which are coupled to the source code), can make sure they are not violated later
when the software evolves. Assert statements for example can be used for checking
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program invariants. They can be inserted into the code at the appropriate place to check
them at run-time.

Advanced code optimisation Invariants which consist of an ordering of events which
take place during the execution of a program can also be used to capture certain be-
havioural event patterns. An abstract example of such a pattern might be of the form
that no event of type X may occur between any two events of type Y . This way, not
only program errors can be checked, but also execution patterns which are more opti-
mised than others. In cases where code optimisation is a fundamental design principle
of the software at hand, this also creates more reliable programs with respect to the
expected optimisation features of the software.

2.4 An Overview of Invariants in Software
In this section we have a closer look at existing invariants in software and we identify
what kind of invariant behaviour they can specify and how they specify it. Many dif-
ferent references to invariant behaviour are encountered. We distinguish them further
according to the following categories:

• Data/state invariants: assertions, loop invariants, dynamically detected invari-
ants,

• Class/object invariants, type invariants,

• Evolutionary Invariants under Law-Governed Architecture,

• Communication Protocols.

One of the most widely recognised invariants are data invariants, i.e. conditions on a
program’s data that are to be maintained throughout the execution of a program. These
kind of invariants are generally recognised and referred to as ‘invariants’, however
in this dissertation we refer to them as state invariants to make the distinction clear
with other invariant behaviour viewed and reasoned about in software. The varying
factor of most well-known approaches that target data invariants is the scope these
invariants belong to. A loop invariant for example represents a local data invariant,
which imposes invariant behaviour on the variables used within a program loop such
as a for or a while loop.

Assertions are a means to check data invariants dynamically at run-time and de-
pending on where they are placed in the code they restrict the data used in that scope.

Dynamically detected invariants (section 2.4.3) are exactly the same as state in-
variants, however since they are detected using a dynamic analysis approach they are
referred to as being dynamic. Class or object invariants represent a particular kind
of data invariants that are used in object-oriented programming languages to put con-
straints on the encapsulated data fields of objects. Since they are able to restrict the
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state of an object or hierarchies of objects, they are also referred to as type invariants.
Evolutionary invariants under a Law-Governed Architecture represent regularities of
software which have to hold also when software evolves over time. These kinds of
invariants can be structural as well as behavioural, however in this context we consider
only the behavioural regularities (see section 2.4.4). Communication protocols have to
specify a set of rules to constrain the order in which communications can take place.
These rules are an example of behavioural invariants which are based purely on event
specifications.

Finally, other behavioural invariants in software are briefly discussed in section
2.4.6. Each of these invariants are explained in the following section. In section 2.5
we discuss (formal) specification languages which can be used to specify invariant
behaviour.

2.4.1 Embedded Assertions
Several programming languages (C, C++, Java, etc. . . ) provide constructs that allow
developers to write assertions that are checked during the execution of a program. An
assertion is a predicate (which evaluates to true or false) placed directly inside a pro-
gram to indicate that the assertion must be obeyed at that place during every execution.
A programmer typically annotates the source code with an assert statement that tests
the predicate about the state of a computation and terminates the program if the pred-
icate evaluates to false. Assertions are generally specified using the comment feature
of their programming language, although some languages offer a specific assert con-
struct. The following is an example of the assert macro in C:

#include <assert.h>

void f(char *p, int n)
{

...
assert(p != NULL);
assert(n>0 && n<5);

...
}

Both assertion statements on lines 5–6 express constraints on the values of the param-
eters of a certain function f. The variable p cannot be a NULL pointer and the integer
n should have a value of 1 through 4. Such assertion checks are used to test invariant
behaviour about the state of the program within a certain scope (in the example the
scope of the invariant is the function f). Loop invariants can also be checked by putting
assertions about loop variables inside an iteration statement.

Embedding assertions in the source code can help a programmer design, develop
and reason about the local state of a program. The use of assertion statements also sim-
plifies the later stages of software development such as testing, debugging and main-
tenance. If an expected assertion fails, the program is aborted and the user is notified
of the assertion failure. In general, the assertion expression which failed is returned,
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together with the filename and line number where the failure occurred. Furthermore,
by adding assertions to the source code, certain values that should remain invariant are
made explicit and they serve as a documentation artefact as well [Ros95]. As adding
assertions to source code can be a time-consuming activity, assertion tools exist that
direct the insertion of assertions. One example of such a tool is C-Patrol [YB94]. As-
sertions are expressed as C expressions in source comments which are then translated
by a pre-processor into executable code, while associated directives in the comments
identify the assertion’s location.

Problems with Embedded Assertions However, considering embedded assertions
as specifications for documenting invariant behaviour raises some problems. First,
these type of assertions are specified like a program statement in the implementation
language and are thus hard-wired into the system. Changing the code means having
to certainly adapt assertions at the same time, which provides an overhead for the user
of the system. Second, only local assertions can be expressed as they are evaluated at
particular program points in the execution of a program. One might want to express
behavioural properties that should remain invariant during a computation, independent
of a control point. But then assertions should be placed at all relevant program points,
which is clearly not what is wanted.

Another type of embedded assertion languages broaden the scope of associating as-
sertions with procedures or methods instead of program points by using pre- and post-
conditions around these entities. These are discussed in the following section 2.4.2.

2.4.2 Class/Object Invariants

In object-oriented programs, the most frequently used invariants are called object in-
variants, which reason about the encapsulated data belonging to a particular object.
For class-based object-oriented languages, an object invariant is usually defined on its
class. Figure 2.2 demonstrates the use of an object invariant specified on a simple class
T. The invariant used in the example is formulated to prevent a division-by-zero error
within the public method M defined on lines 5–8.

1 class T {
2 int a,b;
3 invariant 0 ≤ a < b;
4 public T() {a:=0; b:=3;}
5 public method M(...) {
6 int k;
7 k := 100/(b-a);
8 a:= a+3; b := (k+4) * b; }

Figure 2.2: A simple class illustrating the use of an object invariant (adapted
from [BDF+04])
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One of the best known object-oriented development methodologies which incor-
porate such invariants is Design By Contract(DBC). We first briefly discuss DBC here
and then point out some problems encountered with object invariants.

Design By Contract(DBC) is a design and programming methodology developed by
Bertrand Meyer for designing object-oriented software applications [Mey92a, Mey92b].
It has its roots in theorem proving as mentioned by Hoare [Hoa69]. It is based on the
fact that software engineers should, next to designing and programming software com-
ponents of a system, also define machine-verifiable specifications (or conditions) these
components should adhere to during program execution. It is based on the theory of
abstract data types together with the conceptual metaphor of a business contract. The
main goal of the DBC approach is to help improve the reliability of software systems.

The central idea of the business metaphor reflects itself in how elements of a soft-
ware system collaborate with each other on the basis of mutual obligations and benefits.
For example, the supplier, i.e. the routine or method delivering a particular function-
ality, has the obligation to deliver something to the client, i.e. another subroutine or
method, but requires that some constraints are met beforehand. Three kind of con-
straints are identified in DBC: pre-conditions, post-conditions and class invariants.
Pre-conditions specify conditions that must hold right before a method execution and
hence they are evaluated at that time. The system state is involved together with the
arguments which are passed into the method. In the same spirit, post-conditions are
statements that must be true after a method is executed. Both the new and old system
state, the method’s argument and return value, are involved. While on the one hand
preconditions serve as obligations which a client must meet before employing a partic-
ular method, post-conditions specify guarantees that a software component makes to
its users (if the pre-condition was met, the component can guarantee a positive outcome
for its post-conditions).

1 put_child(new:NODE) is
2 -- Add new to the children of current node
3 require
4 new /= Void
5 do
6 ...Insertion Algorithm...
7 ensure
8 new.parent = Current;
9 child_count = old child_count + 1

10 end -- put_child

To get an idea how these conditions are specified, the above excerpt shows an
example of a method belonging to a class representing the node of a tree structure
annotated with pre- and post-conditions. It is written in Eiffel, the object-oriented
language that DBC was first developed for. The precondition on line 4 states that a
newly added node should not be a NULL object. On lines 7–9 the post-condition states
that the newly added node’s parent must be the current node itself. On line 9, the old
keyword refers to a value of the program state before execution. Evaluation of such
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assertions requires saving a copy of before values. The assertion on line 9 states that
the child count variable should have increased by one after execution.

An invariant in DBC is defined as part of a class definition (therefore often referred
to as a class invariant) and specifies a condition that must hold every time a method is
invoked of an object that is an instance of that class. In practice they are checked every
time before and after a method is executed on any of the class’ instances.

invariant
left /= Void implies (left.parent = Current);
right /= Void implies (right.parent = Current)

The above example shows an invariant for the same Node class to demonstrate the
pre- and post-condition specification. It states that if there is a left or a right child
node, this always implies that its parent is the current node. Note that contracts are
also inherited by classes from their superclass, which is referred to as subcontracting.
Because of this feature, some also refer to a class invariant as being a type invariant as
it might constrain a whole class hierarchy.

The basic idea of how DBC is implemented boils down to the notion of embedded
assertion statements, i.e. a boolean expression about a particular state of a software
system (at a particular point in time) which must evaluate to true during program exe-
cution.

Although DBC has initially been developed for the Eiffel language, extensions
exist for other OO languages and for procedural programming languages as well. The
analogy for a class invariant as scope for formulating constraints is that of a function.
Of course, certain features like inheritance are not applicable in a procedural context.

Note that although class invariants formulate constraints relating to state within the
scope of an object, that pre- and post-conditions specify inter-component constraints.
In a way they also represent invariant behaviour of the communication between two
objects.

Problems with Object Invariants As object invariants are checked dynamically at
run-time (for example when exiting a public method), it does not always guarantee
that an object’s data is consistent with the specified object invariant. Although such
dynamic checks catch many errors, at certain times the object invariant might be tem-
porarily broken. This depends on when the object invariant condition is checked at
run-time. One possible way to view an object invariant is simply as a shorthand for
a post-condition on every public method. This implies that the invariant should be
checked after the execution of each public method. It is excluded to also check the
invariant before the execution of a public method, because the caller of such a public
method does not need to be concerned with satisfying an invariant expression related
to the internal state of the object. To illustrate this problem, consider again figure 2.2
where on line 3 an invariant is expressed over a simple class T. Consider a scenario
with a slightly different version by replacing line 8 as follows:
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8 a:= a+3; P(...);b := (k+4) * b; }

Assume that method P calls M . Note that, at the time P is called, the invariant
is not certain to hold. This problem of re-entrancy might create a division by zero
as should have been prevented by the invariant. This problem is mainly caused be-
cause of ignoring to check the invariant also before the execution of method M (as a
pre-condition). However, we do not want to impose the invariant as a pre-condition
to possible callers, because this breaks object encapsulation as callers need to be re-
sponsible for establishing the consistency of the internal representation of an object
belonging to class T .

Solutions are worked out for callers of such public methods to know if the invariant
holds without revealing the details of the invariant, because it might depend on internal
encapsulated state[LM04, BDF+04]. This is not further discussed here as this is outside
the scope of this dissertation.

2.4.3 Detecting Dynamic Invariants
Substantial research has been done about automatically discovering likely invariants in
software. They are referred to as dynamic invariants because they are detected using a
dynamic analysis approach, which means they are invariant with respect to the program
executions they were detected by. They also belong to the category of data invariants.

DAIKON [ECGN99, EPG+07] is such a tool which dynamically discovers such
invariants in software. Examples of what is referenced to as invariants are constant
values (x = a) or non-zero values (x 6= 0), linear relationships like y = ax+b, ordering
(x ≤ y) and also conditional invariants or implications such as a 6= 0 ⇒ b ≤ a are
possible.

DIDUCE [HL02] is a similar detection tool that aids in detecting complex pro-
gramming errors. The type of invariants which are detected are similar, however the
tool support which is provided and what is done with the results distinguishes both
approaches. Instead of presenting the user with the collection of program invariants
found after execution as in DAIKON, DIDUCE continuously checks the behaviour of
the program against the invariants hypothesised up until that point and reports the vi-
olations detected. Then this invariant is weakened and program execution is resumed.
The application of DIDUCE lies mainly in debugging, program testing and software
evolution.

Such kinds of invariants provide valuable documentation of a program’s data struc-
tures and operations. These dynamically discovered invariants can be inserted into a
program later as an assert statement as mentioned in section 2.4.1.

One recent attempt has been made to detect temporal behavioural properties, be-
longing to the group of invariant properties. These also represent invariant behaviour,
however specified mainly as an ordering of events which occur during program exe-
cution [YE04]. The approach is based on starting from a pre-defined base of property
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patterns which occur frequently. This is a first attempt towards detection of behavioural
invariants which allow reasoning about a temporal ordering of events. Invariant prop-
erties are discussed more into detail in section 2.5.2.

2.4.4 Law-Governed Architecture
Relevant related work is discussed under what is referred to as Law-Governed Archi-
tecture (LGA) [Min93, Min96b, Min96a, Min01]. The intent of LGA is to associate
with a system a set of regularities (or architectural invariants [Min00]) which are ‘the
laws of a system which must hold at all times when a system evolves’. In that sense
these regularities (or constraints) are conceptually close to invariants. They impose
mainly structural constraints on a system related to its architecture (which is not fur-
ther considered within this dissertation), but also some behavioural constraints can
be enforced on the interactions (or events) between system objects. An example of
combining structural and behavioural constraints under LGA is that of a layered ar-
chitecture: the components of a system need to be grouped into layers combined with
constraints on the communication between objects from different layers. Even prin-
ciples such as encapsulation which are usually integrated in a programming language
are thought of as regularities.

LGA is based on a language-independent object model of a software development
project. We refer to a model of a software project instead of only the software as
LGA can specify more than constraints on an object-oriented system itself. It also
addresses constraints which are applicable on the process of software development,
thereby representing the developer of a project as an object interacting with the system.
LGA can specify constraints on relations between objects referred to as interactions or
events. Possible interactions are for example the creation of a class by a programmer, or
the usage relationship between two classes. Constraints can be put on these interactions
depending on properties of the objects that play a role in the interaction.

Darwin/E represents a concrete implementation of LGA, where regularities are
specified dealing with interactions between components in the Eiffel programming lan-
guage. The formalism which is used for expressing constraints is the language Prolog
and these dynamic event (or interaction) constraints are enforced at run-time. Consider
an example rule for constraining the exchange of regular message sends in a layered
architecture (taken from [Min96b]):

sent(S,M,T) :-
level(Ls)@S,level(Lt)@T,
(Ls=Lt | Ls=Lt+1),
do(deliver(M)@T).

The rule declares that a message send event, object S sending the message M to object
T, can only occur if object S belongs to the same layer or one layer higher as that of
object T (assuming that each object in the layered architecture is given a level number
to denote the layer it belongs to).
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LGA only allows constraints about events occurring between objects belonging to
the object model, like object creation and deletion and invoking methods on objects.
Events occurring within a method body, such as an assignment statement or a variable
declaration, cannot be considered.

2.4.5 Communication Protocols

Communication protocols in software also have to adhere to invariant behaviour re-
lated to safety properties as mentioned further on in section 2.5.2. A protocol is a kind
of agreement about the exchange of information in a distributed system. Holzmann
defines the five elements of a communication protocol [Hol91]: the service to be pro-
vided by the protocol, the assumptions about the environment in which the protocol
is executed, the vocabulary of messages used to implement the protocol, the encoding
or format of each message and the procedure rules guarding the consistency of mes-
sage exchanges. The procedure rules are the most difficult to design and also to verify.
These set of rules (also called the protocol) governs how information is delivered. A
complete and consistent set of rules must be designed to arrange the interactions in
a distributed system. These procedure rules consist of specified invariant behaviour
based on events (in this context usually called processes) rather than state that must be
guaranteed to hold at all times.

For reasoning about protocol procedure rules, a partial specification is advocated
to abstract from other issues of protocols (such as message format for example). Such
specifications are defined at an abstract level in terms of processes, channels and vari-
ables which form the needed building blocks of distributed systems to reason about
communication problems (for example the formal specification language LOTOS pro-
vides these abstractions [LG00]). Communication protocols are often checked using a
formal approach such as model checking. In the case of protocols, a formal approach is
more suited to prove the absence of certain invariant properties (for example deadlocks
or improper communication termination).

2.4.6 Other Behavioural Invariants in Software

Other research exists that tackles the problem of expressing behavioural properties in
software that could also be used to specify invariant properties. A significant part is
associated with dynamic analysis tools (further discussed in section 3.6) which formu-
late behavioural assertions over program behaviour represented by an execution trace.
As tools and techniques to reason about invariant behaviour are discussed in chapter 3,
we only summarise relevant concepts which deal with expressing invariant behaviour.

Assertion Checking Auguston et.al. [Aug98] tackle the problem of generic asser-
tions , i.e. an assertion which must always hold. Assertions are formulated in the
assertion language Forman, a functional language. These assertions are checked over
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an execution trace of a program obtained through dynamic analysis. An execution trace
contains occurrences of observable events that happen during program execution, aug-
mented with associated run-time values. So in the first place they are event-based, and
they are mostly formulated using implementation constructs such as function calls and
variable accesses. Because of this lack of abstraction, high-level invariant properties
are difficult to express over an execution trace. Depending on the application domain,
ranging from program comprehension to finding errors in code, debugging or testing,
assertions specify wanted behaviour over events occurring in a certain order at run-
time. A different approach is using an SQL-like language to check invariant assertions
(at run-time) where execution events are represented as tuples in a database [GOA05]
(see also section 3.6.2).

2.5 Specification Languages for Invariants
Having surveyed how invariants are dealt with in current software development, we
illustrate here two representative examples of formal behavioural specification lan-
guages. The Z specification language is a formal specification language which speci-
fies system behaviour by expressing admissible system states for object systems. Z is
an example of a formal specification formalism which is state-based. The properties
of interest are specified by invariants constraining the objects in a system and by pre-
and post-conditions constraining the system operations. Another formal specification
mechanism which can be used for specifying invariant properties is temporal logic.
Specifications formulated in temporal logic are history-based specifications, i.e. they
specify behavioural properties representing an ordering in time. Properties are usually
specified as logic assertions about system objects.

The Object Constraint Language (OCL) is also briefly mentioned in section 2.5.3
as an example of a non-formal specification language which expresses regular software
invariants at the design level for systems based on object models.

2.5.1 The Z Notation
Z is a formal state-based specification language [Spi89]. Z uses the notation of pred-
icate logic to describe in an abstract way the effect of an operation on the system to
enable reasoning about an entire system’s behaviour. Z provides some conventions to
specify sequential, imperative programs by using schemas to represent the state space
(a set of states) and operations for abstract data types (ADT) . State invariants for ab-
stract data types can be expressed in Z inside these schemas, as can be seen in the
following example of a Z schema representing a counter ADT [Spi89]:

Counter
value, limit : mathcal(N)
---------
value ≤ limit
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This schema represents the state space for a simple counter ADT with a value and a
limit representing its state. Both states have a natural number as value. All states of
a Counter ADT must obey the invariant relationship 0 ≤ value ≤ limit documented
by the declaration and by the predicate part in the schema. The set of initial states is
documented by a separate schema and the ADT may only start in one of the initial
states. The following schema represents one initial state for the same counter example:

InitCounter
Counter
---------
value = 0
limit = 100

The next schema demonstrates how operations on an abstract data type are specified
in Z. For an operation, the state of the ADT before the operation is modelled by the
undashed schema components, while the dashed components model the state after the
performed operation. In the example schema below, an increment operation is shown
which increments the value of the counter by one:

Inc
Counter
Counter’
---------
value’ = value + 1
limit’ = limit

Note that the properties of both Counter and Counter’ are implicitly part of the prop-
erty of this schema: the invariant relationship defined for the counter ADT should hold
before and after this operation. In the same manner, operation schemas can be specified
for defining pre- and post-conditions. The invariants the formal specification language
Z supports are targeted towards constraining the state of entities and the relationship
between two entities.

The Z notation is a specification formalism which can be used to specify an entire
software system based on object models. The admissible system states and operations
are specified through integrating invariant expressions (as shown above) in the specifi-
cation of the system. Invariant specifications cannot be decoupled from the system as a
whole; they are embedded in the system specification and through refinement an entire
system can be built from that specification.

2.5.2 Temporal Logic
Temporal logic is a form of logic specifically created for reasoning (formally) about
statements which involve the notion of order in time. Time is modelled as a sequence
of states and depending on the type of temporal logic, one can reason (infinitely) about
the future and/or the past. Temporal operators allow one to speak about the sequencing
of the states along an execution rather than only about the states individually. Consider
the following example of a property for an elevator system which can be expressed
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with temporal logic: ‘the elevator never traverses a floor for which a request is pending
without satisfying this request’ [BBF+99].

Before we can formulate how an invariant is specified using temporal logic, the
three main constituents of temporal logic are first explained here:

• Atomic propositions are used to make statements about the states. These propo-
sitions represent elementary statements which have a truth value in a given state.
x + 1 = y or ‘nice weather’ are examples of propositions,

• Classical logic connectors such as ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion) and ⇒ (logical implication) which allow for the construction of complex
statements relating simpler sub-formulas.

• Temporal operators allow reasoning about the sequencing of events rather than
about the states considered individually. Possible temporal operators are: •
(next), 2 (always), 3 (sometimes). If P represents a property of the current state,
then •P says that the next state satisfies P. 3P satisfies P at some state without
saying which state exactly and 2P denotes that the property P will always hold.
Temporal operators can also be nested arbitrarily.

Having these three constituents for temporal logic available, one can state properties
of one computation path. This type of temporal logic is called linear time logics and is
therefore most suitable to formulate requirements about sequential systems. Branching
time logic, however, can reason about multiple time lines which means that they can
also be used to reason about concurrent processes. In that case, we need to reason about
a tree structure representing behaviour instead of a single execution path (which means
that alternative futures are possible). For that reason, we need two special purpose
quantifiers ,A and E, which allow to quantify over the set of executions. In this case, a
formula Aφ states that all executions starting from the current state satisfy property φ,
whereas Eφ states that there exists an execution satisfying φ.

The combination of temporal operators with the quantifiers can yield the following
combination: A2P . This formula states that for all possible execution paths, P must
always be true. This combination states that the property P is an invariant. In this
context, ‘invariants are properties that are true continuously’. Invariants in temporal
logic can also be used to express safety properties. This type of property expresses that,
under certain conditions, an event never occurs. A very common example of a safety
property is that ‘both processes will never be in their critical section simultaneously’.
In Linear Temporal Logic (LTL) this is formulated as follows:

2¬(crit sec1 ∧ crit sec2)
Temporal logic is frequently being applied in formal verification, and in partic-

ular in model checking. It is used to specify and verify requirements of software
models, which are specified in essentially a formal finite-state modelling language.
The advantage of using temporal logic for specifying invariant behaviour is the level
of abstraction in which the behaviour can be formulated: a property directly reveals
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what should remain invariant. Behaviour is expressed declaratively at the domain level
which makes abstraction of the actual implementation constructs. E.g. in the critical
section example, the safety property is not expressed using implementation language
constructs. Instead the domain concept of a critical section crit sec is used. On top of
that, the temporal operators provide a context abstraction to abstract over time.

2.5.3 Other Behavioural Specification Languages
In this section we have shown up until now two well-known specification formalisms
in which system behaviour can be specified. They are representative within this con-
text in that Z specifies behaviour of object models, while temporal logic specifies be-
haviour interpreted over time structures (or transitions in time). A complete different
example of a non-formal specification language is presented which expresses invariant
behaviour for object models at the design level.

The Object Constraint Language (OCL) is a declarative language used to describe
constraint expressions on UML models [Gro06]. UML is a non-formal graphical mod-
elling language for describing object-oriented analyses and designs of software sys-
tems. OCL supplements UML at the design level by providing a textual language to
formulate expressions which typically specify invariant conditions that must hold for
the system being modelled, or queries over objects described in a model. UML mod-
ellers can use OCL to specify application-specific constraints in their models as well
as queries which are completely programming language independent. OCL allows a
special construct for specifying data invariants, as can be deduced from the example
below. The scope of the invariant is explicitly denoted here by the ‘context’ keyword.
In the example the context represents a class Company for which a limit is imposed on
the number of employees. OCL has been developed as a business modelling language

1 context c:Company inv:
2 self.numberOfEmployees > 50

to counter traditional formal specification languages based on mathematics notation. It
claims to be formal but still easy to read and write. OCL is meant to be used at the de-
sign level and is not a programming language. Only object invariants can be specified
over the UML models.

Other specification paradigms According to Van Lamsweerde [vL00], five differ-
ent types of formal specification paradigms exist, of which two well-chosen represen-
tatives were presented in this section. A third group is characterised as transition-based
specifications, which represent languages in which to formally describe state transition
diagram models. They are based on capturing the required transitions from state to
state. Properties of interest are then described as a set of transition functions in the
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state machine transition. A specification language based on an FSM notation is both
transition-based and state-based. Such specification languages are sometimes consid-
ered too operational and so they run the risk of being too close to implementation con-
structs [JR00] (this is mentioned again in section 3.3). Operational specifications, the
fourth paradigm for formal specifications, is not discussed here, however the language
LOTOS used for defining the communication rules for protocols (see section 2.4.5)
supports this paradigm and also CSP [Hoa78]. A last specification paradigm are func-
tional specifications, but as the main goal here is not to discuss all possible specifica-
tion languages, we limit ourselves to the here presented formal specification language
paradigms.

The next section outlines a definition of design invariants, i.e. the kind of invariants
which are targeted in the context of this dissertation.

2.6 A Particular Type of Invariants: Design Invariants
In general, current programming languages usually adopt a module-centered view of
software. They deal in the first place with the internal structure of modules and with
the interface of a module and the other parts of a system. But they generally provide
few means for making explicit statements about the system implementation as a whole.

This view is reflected in the acknowledged use of data invariants as the primary be-
havioural reasoning approach. Such invariants represent constraints about the program
data that should always hold at specific points during program execution (depending on
the scope of the invariant). Although these invariants, when used, undoubtedly improve
the reliability of the software, these behavioural invariants alone cannot sufficiently
document invariant program behaviour. In the field of testing, this view is currently
reflected as well: popular testing approaches such as the XUnit framework [Ham04]
focus on testing the functional behaviour of small system modules.

In this dissertation we take into consideration a particular kind of invariants like
the Pico garbage collection invariant as demonstrated in the introductory chapter. Such
invariants are not externally verifiable by only considering program data and not lo-
calizable according to the decomposition mechanism of the programming language at
hand.

We advocate the term design invariant to be used within the remainder of this work
and we formulate the following definition:

Definition
A design invariant is a behavioural regularity of the design of a program that is
not aligned with the structure of the program.

We added the connotation ‘behavioural’ to make a clear distinction between struc-
tural and behavioural regularities. This is mainly to avoid confusion with similar terms
used in a more structural context such as Minsky’s regularities under LGA (see sec-
tion 2.4.4) or other approaches [MK06].
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Design invariants exhibit the following main characteristics:

• Design invariants represent behavioural properties related to the design of
a system
Design invariants intend to capture system-specific behavioural concerns related
to a software’s implementation design. This implies the need for a specifica-
tion formalism in which design invariants are expressed should be descriptive to
capture behaviour at the conceptual level rather than low-level implementation
constructs.

• Design invariants cross-cut an entire system
Design invariants can be non-local to a particular module of the programming
language at hand. The definition of a design invariant reveals that such invari-
ants are not aligned with the structure of the source code. Instead they consist of
an ordering of events (or executed statements) that are triggered at scattered pro-
gram points of interest. Combined with associated run-time information about
a program’s particular state when execution reaches those program points, they
form the constituents of a design invariant. To support practical use during pro-
gram development, the used formalism for specifying a design invariant should
be descriptive and partial so that only the behaviour relevant to the design invari-
ant has to be specified.

• Design invariants are non-externally verifiable
Design invariants are non-externally verifiable in the sense that they cannot be
verified solely by observing data values. They represent advanced knowledge
about the underlying design subtleties of a complex system that resides at the
code level. They are mainly based on an ordering of events which occur at a
certain time during program execution. Specifying design invariants requires to
have a close look at the internal execution structure and necessitates expert sys-
tem knowledge rather than inspecting the behaviour of variables on the outside.
An analogy can be drawn with specifying tests in that a test can also either be
based on operations or on function. A unit test is purely functional, because the
program it reasons about is treated as a black-box. A unit test specifies input data
and expected output data. Comparing the actual output data with the expected
output shows the success/failure of a test. Operational (execution structure) tests
on the other hand inspect the internals of the software and its operational details
(this is referred to as white-box testing). Such testing which relies on operations
rather than pure functionality [Bei90] allows the specification of more sophisti-
cated behavioural patterns.

In the next chapter, the underlying mechanisms to check invariants at run-time are
addressed. The domain of program analysis is studied, with an emphasis on tools and
techniques which are capable of checking the concept of a design invariant which were
defined in this chapter. There we distil a set of requirements needed for the analysis of
design invariants in software.
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2.7 Conclusion
In this chapter, invariants in software were identified, their uses were highlighted and
they were classified according to what aspects of behaviour they reason about.

This classification was primarily based on their ability to support the two funda-
mental ways of reasoning about software behaviour. Approaches can be either state-
oriented or more event-oriented, thereby not excluding a combination of both. It can
be concluded that both approaches complement each other in different ways:

• State-oriented approaches support reasoning about invariant behaviour based
on the data of a program belonging to a particular scope. These types of in-
variants contribute significantly to the software development process by making
software more reliable, by preventing system errors and by documenting mainly
the state restrictions of software components. These type of invariants form the
largest group, which can be attributed to the module-centered view current pro-
gramming languages adhere to. They primarily deal with data which can be
captured locally within the boundaries the decomposition mechanism of the pro-
gramming language enforces.

• Event-oriented approaches enable reasoning according to events which occur
at a certain time during program execution. Information about the state of a pro-
gram at a certain point in time can also be considered, although the main building
blocks of reasoning consist of behavioural events. Although such reasoning can
deliver a significant contribution for checking invariant patterns of behaviour,
these type of invariants have not yet been widely established. However, event-
based invariants could perfectly complement data invariants as they target the
execution structure of a system which is non-externally verifiable. Moreover,
events can be entities depending on program points of interest which cross-cut
an entire software system, which makes them viable to reason about system-wide
behavioural program invariants as well.

In section 2.6 we pinpointed the notion of a design invariant, i.e. the invariants
which are considered throughout the remainder of this dissertation. Design invariants
are invariant properties of the design of a system. Following the classification of
event-based vs. state-based behavioural reasoning approaches, design invariants form
the ideal counterpart of data invariants. As they are the conceptualisation of primar-
ily event-based behaviour, they complement data invariants in that they can express
system-wide behaviour based on temporal events. In addition, they capture non-
externally verifiable behaviour about the design of a software system.

2.8 Summary
In this chapter, we started with an introductory section on invariants in software. In
section 2.1 we elaborated on what invariants really are by having compared some of
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the frequently used definitions of invariants. We subsequently discussed in more de-
tail the two fundamental approaches for reasoning about the behaviour of a system.
Then the different uses of invariants were emphasised in section 2.3. Continuing in
section 2.4, we first classified invariants into categories and then an overview was pro-
vided of different types of invariants as referred to in current day’s software develop-
ment. In section 2.5 we had a closer look at existing (formal) specification languages
for specifying invariant behaviour. Consequently we defined a type of invariant called
design invariant in section 2.6. We articulated a definition for a design invariant and
we pinpointed its main characteristics and the requirements which it must fulfil.

In the next chapter, existing program analysis techniques are surveyed which can
check or verify design invariants in source code.





Chapter 3

Program Analysis for Supporting Design
Invariants

In the previous chapter, we provided an overview and a classification of invariants in
software based on the way their behaviour is specified and on their scope. We have
shown that invariants are specified and reasoned about in different phases of the soft-
ware engineering life cycle. We emphasised that invariants serve multiple purposes
ranging from high-level system documentation up to advanced code optimisation op-
portunities. To round it up, we ended by defining a particular kind of invariants, named
‘design invariants’, which represent behavioural regularities of the design of a system
that cross-cut the structure of a program. On top of that, design invariants are non-
externally verifiable and they represent design properties of a system at the code level
(as defined in section 2.6).

In this chapter, we survey existing program analysis techniques and we highlight
their features that allow checking design invariants for a particular software applica-
tion. We start in section 3.1 by pinpointing the requirements for an analysis tool so as
to be able to verify design invariant specifications against the program under investi-
gation. Section 3.2 elaborates on the different types of analyses and defines important
terminology needed throughout the remainder of this dissertation. Next, we distinguish
two main analysis approaches. Section 3.3 elaborates on analysis methods which are
applied to models of a program rather than directly to the source code. These methods
are usually referred to as formal verification approaches. The second main group of
analysis methods is applied directly on code and is described in section 3.4. As code
analysis can either be static or dynamic, the main characteristics of both code analyses
are compared. In section 3.5, we present the main building blocks of static analysis
which are needed for checking design invariants. The same exercise is done for dy-
namic analysis in section 3.6 and for both analyses an evaluation is performed within
the context of this dissertation. We end with a conclusion in section 3.7.

33
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3.1 Tool Support for Design Invariants
In the previous chapter invariants in software were discussed. Two main categories of
invariants were established based on the two fundamental approaches for specifying
software behaviour. Data-based invariants, which impose a constraint on a program’s
data, formed the largest group and they were classified according to the scope of the
invariant. Event-based invariants, which are based on temporal properties, formed the
second group, and specify invariant behaviour in terms of events which occur at a
certain time during program execution.

In section 2.6 we defined the concept of a design invariant, with the following
characteristics:

• They represent behavioural regularities related to the design of a system,

• They cross-cut an entire system, i.e. they are not aligned with the structure of a
program,

• They are non-externally verifiable.

These characteristics pose some important restrictions on tool support for support-
ing design invariants.

First of all, as design invariants represent behavioural properties of the design of
a system, a behavioural specification language is needed which must be able to rep-
resent system-specific design invariants at a high level of abstraction. This is crucial
as formulating design properties is done at the domain level instead of implementation
level. Furthermore, a decoupling of the design invariant description from the actual
code is needed to make sure that the invariant specification does not have to be adapted
every time a change to the source code is being made. This results in a specification
of a design invariant which consists of high-level domain concepts instead of low-level
implementation constructs. Such a specification can serve as documentation to make
the invariant explicit to all peers involved in a software project.

Second, design invariants represent behavioural properties which are not always
localised in a particular component according to the decomposition mechanism of the
programming language at hand. They represent complex behaviour which is depen-
dent on program statements within different components scattered throughout a sys-
tem. Checking such system-wide entities in an automated way poses difficulties re-
garding computational complexity. Every time a particular design invariant needs to
be checked, the whole system is involved. Therefore to promote practical use, tool sup-
port should consider ways to narrow down the process of checking design invariants
in the sense that not all behaviour needs to be studied for checking an invariant. This
is especially necessary in an incremental software development setting where software
evolves as we develop it.

Third, design invariants are primarily operational. This implies that they are not
mainly targeted towards specifying data that remains to be invariant, but rather the



3.2. WHAT IS PROGRAM ANALYSIS? 35

combination of executed system operations or events that needs to remain invariant.
Additionally, this also means that design invariants are non-externally verifiable as
was explained in section 2.6 (in contrast to unit testing for example [Ham04]). They
represent expert behavioural knowledge about the behavioural structure (or control
flow) of a particular system. Hence tool support for making them machine-verifiable
imposes the need for a specification language in which a developer can specify system-
specific expert knowledge about the design invariant. That specification needs to be
automatically verifiable against the actual system.

3.2 What is Program Analysis?
Before having a closer look at existing program analysis approaches and how they can
support documenting and checking design invariants, some terminology needs to be
discussed first. As the field of program analysis consists of many different categories
of analysis support, we introduce some definitions to make a clear distinction between
different groups of tool support.

First of all, what is meant by program analysis? As indicated in the previous chap-
ter, we focus solely on reasoning about the behaviour of a software system. Hence,
even though other interpretations are possible, we advocate the following definition of
program analysis:

Program Analysis
Program analysis is the extraction of behavioural information from software,
where the software is represented as an abstract model or the source code it-
self [JR00].

Other forms of analysis are also important, such as structural analysis which reason
about the syntactical structure of source code[WM06, MK06]. Analysis of human
factors, for example the usability of software, is also a form of analysis. However,
these lie outside the scope of what is discussed in this dissertation.

Within this defined domain of program analysis, different distinctions between ex-
isting techniques can be made. What is usually referred to as formal verification groups
those techniques that perform analysis on a model of a system rather than the system it-
self. Theorem proving and model checking can be classified under this category (which
is discussed in section 3.3). Another group of program analysis is called static anal-
ysis. Abstract interpretation and static analysis techniques belong to this category. A
third group of more informal analysis methods is called dynamic analysis and groups
techniques such as program monitoring, profiling and software testing.

Formal verification techniques distinguish themselves from static analysis in the
sense that they analyse a model of the software instead of the software itself. In essence
they reason about the possible executions of software. This brings us to the following
definitions of static and dynamic analysis as they are interpreted in this context.
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Static Program Analysis
Static program analysis is the investigation of behavioural properties of a pro-
gram that is performed without actually executing that program.

To say it differently, static analysis extracts information form the source code about
the possible executions of software systems. It analyses the program with as goal to
obtain information that is valid for all possible executions.

Dynamic Program Analysis
Dynamic program analysis is the investigation of the properties of a running pro-
gram over one or more program executions [Bal99].

In contrast to static program analysis, the results obtained from a dynamic analysis
is typically valid only for one (or some) program executions.

In the following section we provide an overview of these different analyses within
the context of this dissertation. Their suitability to document and check design in-
variants is discussed together with the extent to which they can be employed to aid a
developer in constructing his software in an incremental development environment.

3.3 Analysis of Models
In the field of program analysis, a particular group of techniques analyses behaviour
related to requirements or design on an abstract model of the source program. A well-
constructed model of the software rather than the software itself can include extra
information such as domain knowledge, design information or even environmental as-
sumptions. On top of that, it is generally agreed upon that a carefully constructed
model is amenable to more advanced reasoning as a high level of abstraction is used.

In general, formal verification methods fall under this category of analysis tech-
niques. Such methods are mathematically based techniques for the specification, de-
velopment and verification of reliable software (and hardware) systems. The emphasis
of such methods lie on the description of software and the analysis of the possible
behaviours a software system can have.

One way these approaches fit into the software development process is to first spec-
ify a model of the software in a formal specification language after which the actual
source code is developed informally. This has as drawback that it cannot be guaran-
teed that the source code works correctly according to the specified properties as the
specification of the model has been proven correct and not its implementation. An-
other approach is to use the formal specification to produce a program in a formal way.
Certain properties of a system can then be formally proven and a refinement technique
may be used to transform the specification into an implementation. A third option is to
use a theorem prover to undertake formal machine-checked proofs of certain properties
against the formally specified system model.
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Theorem Proving

Theorem proving is a technique where both the systems and its desired properties are
expressed as formulas in some mathematical logic [CWA+96]. This logic is supported
by a formal system, which defines a set of axioms and inference rules. Theorem prov-
ing is the deductive process of finding a proof for the properties starting from the
axioms of the system and by using the inference rules. They can be classified ranging
from highly automated provers for general-purpose programs to interactive systems
requiring user input for dealing with special-purpose properties. Using interactive the-
orem provers are very slow mainly because they require a great deal of user input and
are only practical to use if the cost of mistakes is extremely high (e.g. for safety-critical
applications). As theorem proving is very time-consuming and hard to realise in prac-
tice, this may be most appropriate in high-integrity systems involving safety or security
and hence they are not applicable within the context of this dissertation.

Next we discuss another formal verification technique called model checking, as it
might be used for specifying and verifying design invariants. It has proven to be one
of the more successful formal verification approaches for verifying requirements and
design of a variety of systems. In model checking, properties of a system are specified
using temporal logics, which was mentioned already in section 2.5.2 as behavioural
specification medium in which invariant properties can be expressed.

Model Checking

The term model checking in the context of software refers to checking whether all
possible behaviours of a software program are models of a property of that software
program [CGP02]. We refer to a model of the software as it does not directly represent
the code of the software itself but a model of its design or requirements. Model check-
ing formally verifies the behaviour of a model of software under study in a static way.
Verification is done by exhaustively exploring the possible state spaces of an abstract
model against the specification of a property to see if the property holds for that model.

The essential idea behind model checking is depicted in figure 3.1. A model-
checking tool takes as input a model of a software program, representing its design or
its system requirements, and a specification of a certain property that the final system is
expected to satisfy. The model checker then returns YES if the software model satisfies
the property specification or returns a counterexample otherwise [Pal04, CWA+96].
Note that providing a counterexample (i.e. an execution path for which the model does
not hold according to the property at hand), also called a proof-by-refutation is a pow-
erful part of model checking. This way errors can be easily pinpointed in the model as
this provides constructive feedback for the developer. The idea of model checking is
to make sure that the model of the software satisfies as many properties as possible in
order to increase the confidence in the correctness of the model.

Before any checking of properties can begin, the system under study first needs to
be modelled. How the software is modelled determines also which kind of properties
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Model 
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?

Figure 3.1: Model checking approach

can be checked later. Most model checkers have their own formal language for speci-
fying a model of the software which a tool can understand. However, in general they
are all based on some extended version of Finite State Machines (EFSM’s). Briefly
put, a state machine or automaton is a machine evolving from one state to another
under the actions of transitions. A state machine is often depicted by drawing each
state as a circle and each transition as an arrow. Figure 3.2 depicts an example of a
finite state machine representing a modulo 3 counter. Only two transitions (increment,
decrement) and 3 possible system states (0,1,2) are possible.

0 1

2

inc

dec

inc inc

dec dec

Figure 3.2: A finite state machine representing a modulo 3 counter (example
from [BBF+99])

Representing a software system’s source code directly as a finite state machine
would mean that the global program state (of all variables) is represented as a state,
while the transition between states would be a program statement. A specification lan-
guage based on an FSM notation is both event-based (or transition-based) and state-
based, as discussed in section 2.2. Such specification languages are sometimes con-
sidered too operational and so they run the risk of being too close to implementation
constructs [JR00].

After having specified a model of the software, the properties of the system rep-
resenting requirements or design properties are usually specified in a temporal logic,
as mentioned in section 2.5.2. A sophisticated algorithm (different algorithms exist
for different logics) then checks the formula for the property against the model of the
software.
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Model checking in general suffers from the following problems. First, specifying
properties in temporal logic can be very difficult. And second, the number of states
may possibly be very large. This is commonly referred to as the state space explosion
problem [Pal04]. Abstraction techniques for simplifying automata exist for overcom-
ing this problem (i.e. abstraction by state merging or by variables), but as correctness
of the model with respect to the system properties can then no longer be guaranteed,
model checking loses a part of its power as a formal verification technique.

Evaluation The appealing aspect of model checking in this context is the expressive-
ness of the specification language and the range of properties which can be expressed
and verified. Specifying properties over an FSM specification allows one to formu-
late invariant behaviour based on states as well on events (or transitions). This allows
specifying also operational, system-wide properties which can be expressed at the de-
sign level. And although Linear Temporal Logics (LTL) formulae are far from easy to
express as they are referred to as being a main difficulty of model checking [Hol02a],
patterns of property specifications might aid in this difficulty [DAC99].

Note that the high abstraction level of the property specification can be attributed
to the model of the software over which the properties are checked. As the model
describes the design or requirements of a system rather than the implementation con-
structs itself, the properties of this model are also at a high level of abstraction. The
big cost thus lies in establishing the behavioural model of the program, which is an
enormous investment upfront. This is also very impractical as the model is not directly
coupled to the software itself. In an agile setting where software evolves as we develop
it, this would require that for every change that is made to the software, a manual update
of the model is required and then also the verification process of the properties needs
to be done again over the entire model. Current research is aiming more and more to
apply model checking to analyse software directly instead of a model [CGP02]. How-
ever, expressing properties over the source code directly instead of a high-level model
might lower the abstraction level again.

In general, as model checking is a formal approach, one can prove the correct-
ness of the model with respect to certain properties. This means that it can be proved
that a certain invariant property is guaranteed not to occur in the model on which it is
checked. Dealing with the computational complexity of this approach in an incremen-
tal software development environment is still a topic to be investigated [MS03].

3.4 Analysis of Code
As already mentioned, approaches performing analysis on a model of software have
one important disadvantage: the lack of coupling between the model and the actual im-
plementation. Especially in the later stages of development, after software has evolved,
a model becomes less useful if it has not been kept up to date. At a certain time, a model
can even be discarded at the later stages of maintenance.



40 CHAPTER 3. PROGRAM ANALYSIS FOR DESIGN INVARIANTS

In the context of this dissertation, next to making design invariants explicit by spec-
ifying them at a high level of abstraction, a next step is to be able to check them directly
against the source code. As a causal link between the behavioural property specifica-
tion and the software is needed, analysis of code is considered rather than analysis of
a model of software.

3.4.1 Static vs. Dynamic analysis

Considering program analysis, one might consider using either static or dynamic anal-
ysis as defined in section 3.2. Applying a dynamic analysis approach usually consists
of instrumenting the program to collect information as it runs. This means that the ob-
tained system information is typically valid only for the particular execution (or run).
Static analysis approaches on the other hand extract information that holds for all pos-
sible program executions. Another way to formulate the difference between static and
dynamic analysis is the different meaning of a run of a system: static analysis runs a
program over an abstract domain (over a description of possible values), while dynamic
analysis, also even though it uses a certain abstraction, runs a program with concrete
run-time values [Bal].

To demonstrate the difference between static and dynamic analysis, consider an
example where the values of some global variables need to be known. A dynamic
analysis would instrument the program to simply print out these values at particular
points during the program (for example every time they are assigned a value). A static
analysis on the other hand would find all program statements that might affect the
values of the global variables and then analyse those statements to extract information
about the values assigned to them.

A major advantage of dynamic analysis is the precision of the analysis information
which is obtained, although be it only for the considered execution(s). Practically all
static analysis approaches provide approximate information about software behaviour,
which can also be a benefit. Sometimes execution paths which can never actually occur
when running a program are considered . This degree of imprecision means that such
an analysis may not provide information which is accurate enough to be used. This
is more problematic in tools in which a user sets up to detect specific errors than in
software inspection tools which extract interesting properties about software [JR00].

Dynamic analysis tools are in general also easier to implement as information about
one single execution trace is much simpler to obtain than information over all possible
executions. So dynamic tools are available for a wider range of problems.

Static and dynamic analysis tools complement each other: static analysis tools
rather look for simpler classes of errors over the entire source code of a program [JR00].
Dynamic analysis tools can check for deeper semantic errors (but only in those pro-
gram statements that execute for a given execution scenario).

In the next section static analysis is discussed and more in particular the criteria rel-
evant for the analysis of design invariants. As using static analysis for checking design
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invariants would impose the use of a flow-sensitive, context-sensitive, interprocedural
analysis, these terms are explained in detail.

3.5 Static Analysis
Property checking tools using a static analysis approach have recently gained impor-
tance [Raj06]. Contrary to model checkers or theorem provers, these tools do not
ensure that the software correctly implements intended functionality. Instead they look
for specific kinds of errors by analysing the data and control flow of a program. They
analyse all the statements of a program, without regard to how frequently these state-
ments execute in practice.

A result from theoretical computer science is that, for arbitrary programs, some
program properties cannot be calculated precisely through static analysis. Conse-
quently, all static analysis tools make approximations. This can lead to false pos-
itives that do not correspond to runtime behaviour but that cannot be safely elimi-
nated [ARTZ03].

According to Rajamani [Raj06], tools based on static analysers have innovated pri-
marily in two main areas. The first one is the specification language these tools use.
Early tools like Lint (now known as Splint [Spl]) and also more recent tools [AT01,
ARTZ03] check for common errors which can be stated directly at the level of the
programming language (for example referencing an uninitialised variable). They are
generally called software inspection tools. These tools are automated code inspectors,
exhaustively examining a program for defects. In general, static analysis tools un-
cover low-level coding defects that, nonetheless, can cause severe errors in program
behaviour (such as a program crash). At the most basic level, there are tools that find
language-level defects such as integer overflow, division by zero, dereference of a null
pointer, and buffer overflow. Another type of static analysis tools allow a user of a
tool to specify the unwanted behaviour that is of interest to them. METAL is an exam-
ple of a specification language used in combination with a static analyser [HCXE02]
integrated in a compiler (gcc). The language is based on FSM descriptions while the
checking is done with a depth-first search algorithm on the control-flow graph (see
section 3.5.2) of a program. This type of analysis is referred to as metacompilation. A
disadvantage here is that the analysis is more platform-dependent.

The second area of innovation is the exploration of engineering trade-offs. Preci-
sion, speed, completeness and soundness represent the most important ones. A Sound
static analysis aims at producing information that is guaranteed to be valid for all pos-
sible program executions. However, to obtain this guarantee, static analyses need to
perform complex analyses, which can be time-consuming. Consider again the same
example of wanting to know the values of some global variables. An unsound analysis
would scan through the assignment statements that might affect the global variables,
while a sound analysis would also consider indirect assignments that take place via
pointers to these global variables. Unsound analyses are often sufficient as, although
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the analysis information is not always correct, it might provide a starting point for fur-
ther analysis. Another point in favour is the ease of implementation and efficiency of
unsound analyses. In the above example, having to analyse indirect pointer references
to global variables (this is called pointer analysis) is a very complex process. Other
trade-offs to be made concern the precision of the analysis against the analysis speed.
The more precise the results of a static analysis have to be, the more complicated the
analysis gets which results in a time-consuming process. Two influential factors for
tools to be more precise (or more complex) are context- and flow-(in)sensitivity, which
are discussed next.

3.5.1 Comparison Criteria

Flow-sensitive vs. flow-insensitive analysis Flow-sensitive analyses take the exe-
cution order of the program statements into account. They normally use some form
of iterative data flow analysis (as is shown in the next paragraphs) to produce a po-
tentially different analysis result for each program point. Flow-insensitive analyses do
not take the execution order of the program statements into account, and are therefore
incapable of extracting any property that depends on this order. For example, flow-
insensitive pointer analysis algorithms can scale for programs consisting of hundreds
of thousands of lines of code. But because the analysis is flow-insensitive, they cannot,
for example, determine if a pointer is initialised before it is used or determine that a
pointer has different values in different program points. Both of these properties de-
pend on the order in which the statements of the program execute [JR00]. An example
of a frequently used static analysis which is flow-insensitive is type analysis.

Context-sensitive vs. context-insensitive analysis A static analysis can either be
context-sensitive or context-insensitive, depending on how language constructs such
as procedures are analysed. A context-sensitive analysis is an interprocedural analysis
that takes the calling context into account for example when analysing a function call.
With context is meant that the values of the parameters are taken into account where
they might influence statements in the function body. With such an analysis, a different
result is produced for each different analysis context. A context-insensitive analysis
on the other hand produces a single result that is used directly in all contexts (i.e.
without considering different values for parameters). In the case of a context-sensitive
analysis, two directions might be followed. Either a construct is re-analysed for every
new context, or a sort of parameterised analysis is produced once which can then be
specialised for each analysis construct.

In general, the basis underlying static analysis methods is strongly mathematically
founded. A range of different techniques exists which aims specifically on what kind
of problems of the software need to be analysed. This explains why a lot of special pur-
pose tools exist: if the underlying mechanisms can be focused on particular problems,
for example finding nil-pointer references, as in UNO [Hol02b], the static analysis and



3.5. STATIC ANALYSIS 43

the needed algorithm can better be fine-tuned for that particular purpose. Most tech-
niques do have in common that they are based on how data and control flow through a
program. We briefly discuss them below.

3.5.2 Data-flow Analysis

Data-flow analysis is a technique for gathering information about the possible set of
values calculated at program statements in a software program. For performing data-
flow analysis, a control flow graph is used for providing the link between the con-
secutive program statements. Such a graph visualises the possible propagations of
calculated values assigned to variables.

Control Flow Graphs A control flow graph is needed to perform flow-sensitive anal-
ysis (in combination with data-flow analysis), as the order in which the statements are
executed is taken into consideration. A control flow graph (CFG) is a directed graph in
which the nodes correspond to program points (or statements) and the edges represent
the possible flow of control (or program transitions). An example of a CFG is shown
in figure 3.3, which depicts the flow of control for executing an iterative factorial func-
tion [Sch].

res=1

n>0

res = res*n

n = n-1

return 
res

Figure 3.3: Control-flow graph of an iterative factorial function

Data-flow Analysis Classical data-flow analysis makes use of a control flow graph
where a certain variable is assigned to each node. The possible values for that variable
are grouped in a mathematical structure called a lattice. Basically a lattice represents
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a (finite) partial order 1 between elements which is used to represent constraints be-
tween the associated variables belonging to different nodes of the CFG. A collection
of constraints over these variables can systematically be extracted for a complete CFG.
Different analyses can be based on this data-flow analysis scheme. Consider an ap-
proach in which variables in a program need to be analysed to make sure that their
values have already been initialised. For this purpose a data-flow analysis might be
used to detect the points in a program where variables are live or not. A variable is
live at a program point if its value may be read during the remaining execution of the
program. By way of illustration we have included a program fragment in figure 3.4.
The column on the right shows for each program point the least solution for live vari-
ables. As shown on line 6, the variables x and y can be read from that point on in the
program, i.e. they are live variables. In this example, the lattice for this analysis is a
set containing all possible subsets of the set {x, y, z} with binary relation ⊆.

1 [entry] {}
2 var x,y,z; {}
3 x = input; {}
4 while (x>1) { {x}
5 y = x/2; {x}
6 if (y>3) {x,y}
7 x=x-y; {x,y}
8 z = x-4; {x}
9 if (z>0) {x,z}

10 x = x/2; {x,z}
11 z = z-1; } {x,z}
12 return x; {x}
13 [exit] {}

Figure 3.4: Example program with live variables at every program point (taken
from [Sch])

Other data-flow techniques with different goals exist that use the same principle as
explained above. Calculating the reaching definitions for each program point is one
example [Sch]. The reaching definition for a particular program point are those assign-
ment statements that may have defined the current values of variables. To perform this
analysis, the elements in the lattice will be the possible sets of assignment statements.
Note that data flow analysis as it was presented here is only used for intraprocedural
analysis, i.e. analysis which is done local to the body of a function. When complete
programs containing function calls are considered, the analysis is called interprocedu-
ral. Precise interprocedural data-flow analysis is difficult to realise as the CFG for a
whole program can become excessively large and consequently analysis does not scale.
This is especially the case for programming languages which allow higher order func-
tions, objects or function pointers, since this intertwines control flow and data-flow.

1A finite partial order is a mathematical structure consisting of a finite set with a binary relation de-
fined on it. The relation must satisfy the following conditions: reflexivity, transitivity and anti-symmetry
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3.5.3 Evaluation

In this section we briefly touched the subject of static program analysis. The very ba-
sic concepts of such analyses which are relevant to study the usefulness for checking
design invariants were discussed. In section 3.1 the characteristics of design invariants
were matched with the capabilities an analysis tool must have to be able to document
and check them. First, as they are system-wide, if static analysis would be used, an
interprocedural analysis would be needed as multiple function calls spread over a sys-
tem need to be considered. The analysis would ideally be context-sensitive to produce
results as precise as possible. Second, as design invariants are primarily operational,
it was concluded in section 2.7 that they are mainly based on events which occur at
a certain time during execution. Hence a flow-sensitive analysis would be needed as
well. Flow-sensitive combined with context-sensitive interprocedural analysis is very
difficult to realise practically due to the fact that every program statement needs to be
taken into account. Limiting the analysis to a particular design invariant would be hard
if not impossible. Static analysis can be performed in a modular fashion, but only ac-
cording to the modularisation constructs provided by the programming language (e.g.
functions or abstract data types). Another issue which makes it difficult to use static
analysis for checking design invariants is the level of abstraction which is offered by
static analysis approaches. Static analysis stands very close to the implementation level
as it is based on analysing program statements. Expressing properties formulated at the
design level introduces another level of complexity.

In the next section we discuss dynamic analysis and we study the features needed
for checking design invariants.

3.6 Dynamic Analysis

As stated in section 3.2, dynamic analysis is the analysis of properties of a running
program. In contrast to static analysis, dynamic analysis derives properties that hold
for one or more executions. As a consequence they cannot guarantee that a certain
property holds for all future executions. Nevertheless they are precise and efficient,
whereas static analysis approaches are conservative and sound [Ern03].

For checking behavioural properties which are primarily based on specifying the
order of operations rather than state, dynamic analysis is the most straightforward so-
lution. The notion of an event is the primary constituent of acquired run-time informa-
tion. Run-time values can be associated with events which hold precise information
about the run-time state at the moment the event occurred. Such an event can be com-
pared with a part of an execution path. Using the terminology for describing execution
paths for a finite state machine as described in section 3.3, an event consists of an
event type or transition whereas actual run-time values associated with that type of
event represent the state of that transition before or after the transition has taken place.
The before or after state depends on whether the instrumentation code for logging that



46 CHAPTER 3. PROGRAM ANALYSIS FOR DESIGN INVARIANTS

statement was inserted before or after the program statement corresponding to the par-
ticular transition. This means that an execution trace holding a collection of events
can be regarded as a collection of execution paths or even a path through a finite state
machine. We come back to this later in this chapter.

In general, tool support performing dynamic program analysis by reasoning about
the behaviour of a program consists of two main phases:

• Collecting run-time information Usually program instrumentation is set up for
recording run-time operations or events together with associated run-time values
at specific points in the program. Dynamic analyses differ in the level at which
the code instrumentation is performed, the means used for selecting events and
how behaviour is specified.

• Analysing the collected run-time information Depending on how the gathered
run-time behaviour is represented, different analysis techniques exist. Support
for analysing this behaviour is needed. The analysis can either be performed on-
line while the system is still running or post-mortem after execution terminated.

3.6.1 Comparison Criteria
In this section the varying factors of dynamic analysis are discussed and how this
relates to the context of checking design invariants. The following comparison factors
of dynamic analysis approaches are handled here:

• how to collect the run-time events,

• the means of selecting program parts of interest,

• the meta model used to represent run-time events (how program behaviour is
represented),

• expressiveness of the language used to instantiate the behavioural analysis to a
developer’s needs,

• the analysis time.

Collecting run-time events

For collecting run-time events of a program under execution, we need to monitor the
execution in some way. According to Hamou-Lhadj et. al. [HLL04] three main ways
exist to obtain execution information of a program automatically at run-time. The first
two techniques are based on instrumentation, which consists of inserting instrumen-
tation code (such as for example a print statement) at particular locations of interest
either at the source code or at the machine-code level. A third way they mention is
using a debugger for collecting events at certain identified breakpoints in the code.
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We consider the instrumentation approaches here as debugging is further considered in
section 3.6.2 as a dynamic analysis approach on its own.

A frequently used way to collect run-time events is to instrument the target program
under investigation, so that in addition to executing the code normally, it also produces
behavioural information of the running program. This is done by identifying those
points in the system under investigation that are of interest for further analysis. At that
point in the program, extra statements are inserted to reveal the dynamic information
of exactly that event. The two most commonly used instrumentation techniques are to
modify the source code of a program or to modify a compiled binary representation
of the target program. Instrumentation at the source level is performed when target
language information is needed, i.e. when reasoning about a higher level of abstraction
is necessary. Analysis at the byte-code level has the advantage that the source code is
not required to perform the analysis. This is useful in cases where the source code
is not available. Another advantage is that no complex parsing of the source code is
needed (a list of machine instructions is much easier to parse). A difficulty of binary-
level instrumentation is coping with the abstraction level as instrumentation is done at
a lower level (at machine instruction level), however the user expects feedback at least
at the implementation level. Some approaches even try to combine instrumentation at
both levels [Guo06].

Means of Selecting Program Parts of Interest

Not all applications of dynamic analysis need to capture every run-time event which
occurs during the execution of a program. It is very useful to restrict the parts of a
program from which events are intercepted in order to focus the investigation of the
program and to decrease the amount of information that is recorded in an execution
trace. The expressiveness of the medium through which developers can select parts of
the program to be investigated is therefore another interesting criterion of comparison.
Within the domain of program understanding, many tools exist based on trace explo-
ration [HLL04]. These tools need to aim at extracting any information to comprehend
a software system better, so in general little attention is paid to event selection through
instrumentation. For example for object-oriented languages usually all method calls
and object allocations are logged. Their contributions thus mainly lie in the techniques
they use for coping with the size of the traces. These tools typically perform off-line
analysis of (often very) large execution traces. Some top down exploration approaches
try to use knowledge already gathered about a system to filter the execution traces after-
wards. In Walker et al [WMFB+98] they use architectural knowledge about a system
to visualise only the interactions of those main components at the architectural level.

Many tools exist which all have their own way to select events. Some approaches
instrument the entire program according to a fixed set of implementation language
constructs [GOA05, Roo04] (for example instrumenting all method calls and object al-
locations), however some provide a means to instrument individual method calls or ob-
ject allocations selectively (e.g. by enumeration) [DFW04, DGD05]. Stolz et. al. use
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an AspectJ-like pointcut language to select events and instrumentation is done at the
byte-code level by using boolean combinations of regular expressions [SB05]. Other
approaches analyse the behaviour in parallel with program execution performed in a
stepwise fashion allowing unimportant evens to be skipped [GDJ02, Duc99]. Other
ways of selective instrumentation are through parse tree annotation according to type
and value masks [TJ98] or by using a functional expression directly related to pro-
gramming constructs [Aug98, Aug00, AJU02].

How events are selected seriously influences the scalability (and also the usability)
of the dynamic analysis approach. Performing code instrumentation by for example
logging all function calls and all variable assignments already might result (even for
a simple execution scenario) in an extremely large execution trace. This heavily in-
fluences the usability of a tool. Moreover, the behavioural analysis performed on the
execution trace needs to be able to deal with a huge amount of information, which
might limit possible analysis approaches.

Representing Program Behaviour

The computational process often expects the recorded run-time events to adhere to a
well-defined meta model. Such a meta model prescribes the different kinds of events
that might occur at run-time and the amount of run-time information that is recorded
about each event. The granularity of the meta model not only determines the informa-
tion accessible about a program’s execution, but also has an impact on the space-time
cost of the computation, especially in combination with a post-mortem analysis strat-
egy. As an example let us consider dynamic analyses of object-oriented programs.
Such analyses usually capture method invocation run-time events. A coarse-grained
model would for instance just record the selector of each invoked method while a finer-
grained model might also record the identity of the receiving objects and the arguments
that were passed along. An extremely fine-grained model could also store deep copies
of the involved objects before and after the method invocation. The nature of the meta
model itself can vary as well: events can be modelled as instances of classes in an
object-oriented meta model [KF04], as procedures in a procedural language [TJ98], as
predicates in a logic meta model [RD99, Ric02, RD02, Roo04, DGD05, GDJ02] or
even as tuples in a relational meta model [GOA05]. The meta model, its granularity
and nature are thus other important criteria, again depending on the application domain
for which the analysis is intended. Specifying program behaviour greatly influences the
kind of behavioural analysis which can be applied later. The level of abstraction plays
an important role. Creating a high-level model of program behaviour instead of speci-
fying a model in low-level implementation constructs provides more opportunities for
applying the behavioural analysis at a high level of abstraction. In this context, this
would allow to specify a design invariant directly over high-level events.
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Support for Analysing Program Behaviour

Some application domains of dynamic analysis require the actual computation over
run-time events to be customisable by the user. General program monitoring frame-
works are made to offer this customisability. Such monitor notification tools (such
as JMonitor [KF04], CCI [TJ98], PMMS [LC92] and many others [PN81] ) provide
a general framework that can be used to instrument a program, but they provide no
further means for analysing the information obtained from the instrumentation. Two
components have to be specified by the user to instantiate the monitoring framework.
First an event pattern needs to be provided where the user expresses the kind of events
he wants to reason about together with the run-time information of that particular event.
And second, a program monitor that is attached to that event pattern needs to be defined
to specify what code needs to be executed when that event occurs. General program
monitors provide no domain-specific computational language specifically tailored to
reasoning about intercepted events. This is left up to the user. Such a framework might
for instance be instantiated with a user-implemented monitor which logs time stamps
to a file whenever it is notified of a run-time event.

Lightweight program verification tools might on the other hand offer a high-level
language in which to express assertions over run-time events. The expressiveness of
the language with which we analyse the run-time events is another important com-
parison criterion. One previously mentioned approach by Stolz et. al. expresses such
behavioural assertions as temporal logic formulae over AspectJ joinpoints [SB05]. Au-
guston et al. express behavioural assertions in an expressive functional high-level lan-
guage called FORMAN which includes quantifiers [Aug98, Aug00, AJU02].

Using a language to express assertions in allows to create specifications of wanted
behaviour which are directly executable over run-time events. Moreover, in this con-
text, using an expressive high-level language provides a means to document invariant
behaviour and have it checked immediately against an execution trace. This way, a
form of active documentation is created which couples documentation actively with
application’s the source code.

Analysis time

Depending on a particular analysis’ needs, analysis of run-time information can either
be performed on-line during an application’s execution or post-mortem. With post-
mortem analysis (or off-line analysis), events are written to an execution trace and after
program execution ends, this trace is analysed. With performing analysis at run-time,
the dynamic information obtained so far is analysed in parallel with further program
execution.

Both ways of analysing dynamic information has its advantages and pitfalls. On
the one hand, off-line analysis allows one to work on a constant size of memory, but
in reality processing large execution traces generally takes up an equal amount of re-
sources than doing analysis on-line. The main advantage of off-line analysis is that the



50 CHAPTER 3. PROGRAM ANALYSIS FOR DESIGN INVARIANTS

analysis process does not have to compete with the running application for space. Fur-
thermore, off-line analysis approaches can exploit the ability to go through the trace
sequentially multiple times and they allow for more sophisticated reasoning. Manag-
ing large traces of data does produce a considerable overhead, even taking into account
that nowadays storage is cheap. On-line querying might seem simpler for the user as
post-processing steps are eliminated and quicker feedback can be given. The program
can also be stopped whenever certain behaviour is detected.

Plenty of dynamic analysis tools perform off-line analysis [DFW04, RD99, Ric02].
Debugging tools are usually performed on-line, such as Coca for debugging C pro-
grams [Duc99, GOA05], while other debugging systems use a combination of both
on-line and off-line analysis [GOA05, Aug98, Aug00, AJU02].

Target language being analysed

Program analysis in general is being performed on systems in all types of programming
languages since tools in many different application domains need some kind of infor-
mation of that system. The kind of analysis which is generally used is not completely
independent from the target language being analysed. For example, dynamic analysis
of object-oriented systems has been explored quite often these past few years. Static
analysis has proven to be less useful for these type of systems due to polymorphism
and late binding, which makes dynamic analysis a very welcome addition. Also a pro-
cedural language such as C is known to be an unsafe language that is quite vulnerable
to memory errors. Because of this, sound static analyses for C are more difficult to pro-
duce. It also sometimes causes some static tools to produce many false positives due
to difficult analyses of indirect referencing through pointers. In such cases, a dynamic
analysis might be a better choice, certainly in the case where correct information is
needed, which is easier to obtain at runtime.

When having a closer look at currently used systems, many older and often very
large (procedural) systems are still employed that are often still heavily used. These
systems are usually referred to as legacy systems . These type of systems often need all
the help they can get from static analysis as well as dynamic analysis as they are often
maintained in an environment where no documentation is present (or not kept up to
date) and where the original developers have already left the company. Analyses best
suited for procedural languages are thus still heavily needed [MDTZ03].

3.6.2 Relevant Application Domains

A whole range of software engineering tools based on dynamic analysis exist that
serve many different application domains. As the intention is to focus here on the
application domain of supporting design invariants in software, we zoom in on some
of these domains that are close to this dissertation context.
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Query-based debuggers Coca [Duc99] performs a dynamic analysis of C programs
that is especially suited to debugging and program profiling purposes. The program
under investigation is executed in a stepwise fashion by a classical debugger. The
computational process runs in parallel with the debugging process (the analysis is per-
formed on-line) to guide the execution of the program. This allows events that are
unimportant to the computational process to be skipped. The computation over run-
time events is thus performed on-line and no events need to be stored. The event meta
model is declarative in nature: a logic fact represents the current run-time event which
can be directly mapped to one of the C programming language constructs. The compu-
tational language used to express behavioural debugging and profiling queries is also
declarative in nature. It is a Prolog variant augmented by predicates to request specific
future run-time events. Event selection happens at run-time by binding attributes of the
event to concrete values. This allows for dynamic filtering of events. The computa-
tional process reasons at run-time about very low-level events to which dynamic filters
can be applied. The query language is declarative and highly expressive. Due to the
on-line nature of the dynamic analysis, the computational process has only access to
the current run-time event. The applicability of this approach is therefore targeted at
debugging and profiling purposes: it is impossible to consider alternative matches for
a run-time event without advancing the application. This makes it difficult to reason
about nested events for example.

Error detection tools A wide range of software engineering tools serve the purpose
of detecting certain errors in software, for example profilers, program testing tools and
assertion checkers. They all strive to making a program work without unacceptable
system errors. Profilers provide numerical summaries of dynamic information of a
program, such as the length of time spent executing a certain procedure.

In the work by Goldsmith et al. [GOA05] an online dynamic analysis approach is
presented for finding correctness or performance bugs in Java programs at run-time.
More generally it can also be used for profiling and debugging. Events are specified as
records in a relational table. Two different relations are specified, method invocations
and object allocations, with the different fields representing the run-time information
of a particular event. For obtaining the events, their PARTICLE compiler generates
and inserts instrumentation - at the byte-code level - before each method and after
any object allocations. Analysis of Java program behaviour by querying is done using
PTQL (their Program Trace Query Language) - a declarative SQL-like language.

Lightweight verification through assertion checking Program verification is usu-
ally understood as a heavyweight approach using model checking (as described in sec-
tion 3.3) to verify the correctness of a program with respect to a particular program
property.

We label the verification approaches we consider here lightweight as they are based
on a dynamic analysis approach where only part of program execution is modelled
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based on a particular execution scenario. Hence the properties are rather checked in-
stead of being proven to hold for the entire program model, as they are only considered
along one execution path. So properties can only be guaranteed to hold for a particular
execution path and not proven correct for the entire program execution.

Auguston et al. [Aug98, Aug00, AJU02] present an expressive specification lan-
guage to describe an application’s behavioural aspects and apply dynamic analysis to
verify these assertions in a lightweight manner. A program’s behaviour is modelled
as a graph over - possibly composite - run-time events supported by an inclusion and
precedence relation. Atomic events directly related to programming language con-
structs occur at a specific moment in time, while composite events occupy an interval
in time. For each programming language, an event grammar formally specifies the
constituents of high-level events and their mutual ordering on the time line. This way,
the event grammar allows automatic low-level event selection according to a given as-
sertion over high-level events. Verification is in general performed post-mortem, but
can be optimised to an on-line computation when the assertions allow it. Assertions
are expressed in the functional, highly expressive language FORMAN which includes
quantifiers, boolean operators and aggregate operations over events as well as target
language operations over target program variables to express intended behaviour or
known types of error conditions. The run-time event’s meta model is formally defined
by an event grammar specifying inclusion and ordering relations over low-level events
directly related to programming language constructs. While the event grammar allows
automatic low-level event selection, the run-time information that is recorded about
each composite event is still dependent on its low-level constituents.

In the work by Stolz et. al. [SB05] a lightweight run-time verification framework
for Java programs is presented. Event specification is done by modelling a program’s
behaviour as a trace of consecutive states. In this approach, run-time states that one
can reason about are limited to those that are addressable through AspectJ pointcuts
(see section 3.6.3 ). By allowing a selection of points in the dynamic control flow of a
program, pointcut expressions select a set of states from the run-time trace. To collect
events at run-time, Linear Temporal Logic (LTL) formulae with pointcut expressions
as propositions are translated into automata. By means of aspect advice code, the
automaton is walked through during program execution, detecting a violation of the
LTL assertion when an error state is entered. Also here are problems with reasoning
about matching and nested events due to the run-time analysis.

Test Oracles Software testing is a discipline which includes the process of executing
software with the intent of finding errors, which classifies it as a dynamic analysis
approach. In software testing, an oracle is regarded as some method for checking
whether the system under test has behaved correctly on a particular execution [BY01].
To state it differently, an oracle is a ‘system’ which takes a specification of a property
(i.e. the test) and verifies whether that specification holds for a particular execution
path. Although test oracles are frequently being referred to in literature, automatically
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applicable oracles are not described. Embedded assertions for example as discussed
in section 2.4.1 can also be seen as oracles. Considering assertions as specifications
of a certain property (usually specified in the implementation language where they are
embedded in), assertion support is a way of using those specifications as test oracles.
However, they suffer from significant problems as already noted in section 2.4.1.

Log file analysis as mentioned by Andrews provides another interesting example
for looking at test oracles [And98]. A framework is offered for automatically analysing
log files and a language (and its implementation) is presented for specifying analyser
programs. A log file machine is seen as a set of parallel state machines as discussed
in section 3.3, each state machine analysing one execution of events. These machines
react in sequence to each line of a log file , doing a transition for a corresponding
event whenever possible. If at the end of going through the events from the log file
the machine is not in a final state, an error is reported. They use the LFAL language
to specify a log file analyser which is based syntactically on a representation of state
machines. However, the approach does not address how to obtain the log files (i.e.
they rely on manual instrumentation). Another example of test oracles is described by
Richardson [RAO92]. They are derived manually from system specifications (written
in multiple languages) for dealing with reactive systems.

3.6.3 Aspect-Oriented Programming
In any programming language, certain concerns, such as logging or error recovery,
are scattered throughout many components of that language. Such concerns cannot
be separated cleanly according to the decomposition the programming language at
hand provides. For example for an object-oriented language we are talking about con-
cerns that are spread over different classes of a system. Aspect-oriented programming
(AOP) [KM05a, KM05b] provides a means to concentrate the necessary code for these
crosscutting concerns in one single module (called an aspect) instead of spreading it
over the code. AspectJ [Asp], an aspect-oriented extension for Java, accomplishes this
advanced separation of concerns via aspects, join points , pointcuts and advice . A join
point is a point in the program’s execution, such as a method entry or exit. A pointcut
is a set of join points. Advice is code to be executed either before, after or instead of
the code at the joinpoint. Advice code has access to run-time data about the joinpoint
that triggered its execution. An aspect then consists of pointcuts and advice. As an
example consider a logging aspect that contains a pointcut describing all places in the
code where some data of interest should be written to a log file. The advice then would
contain some print statement to perform the actual logging.

Although AOP is a programming methodology and has nothing to do with program
analysis, there is common ground in the sense that a logging aspect might be used for
selectively instrumenting a program. This approach is then comparable to a general
purpose program monitor in the sense that the approach itself does not offer any way
to specify or analyse the logged events. The user has to take care of that. The most
interesting point of comparison is the language used for defining the pointcuts, i.e.
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means of event selection as was specified above in this section. The work described
by Gybels et al. for example uses a logic language as pointcut language to avoid tight
coupling between the aspect and the program [GB03].

3.6.4 Evaluation
In this section, the concept of dynamic analysis was explained into more detail and im-
portant criteria of comparison were discussed. Evaluating a dynamic analysis approach
for supporting the specific properties of design invariants leads us to the following con-
clusions.

• Dynamic analysis is a lightweight methodology which is very well-suited to be
used in an agile setting. Analysing execution traces instead of exhaustively ex-
ploring an entire model of software is less computationally expensive. A com-
promise to make is that the results apply only for the analysed run(s) in question
and not for all possible executions.

• The analysis can focus on only those parts of interest for particular invariant be-
haviour. Event types (with associated run-time values) of interest (i.e. specific
transitions) can be identified through employing a sophisticated means of event
selection. Program states of interest can be selected by carefully choosing a
suited execution scenario for particular invariant behaviour. Note that this pro-
vides a way to focus the analysis to entities that may cross-cut an entire system,
i.e. entities that belong together because of addressing a behavioural concern,
but which are not necessarily captured within one module of the programming
language at hand.

• To address the operational characteristic of design invariants, dynamic analysis
approaches fit right in as the concept of an event forms the primary building
block for representing actual behaviour (as mentioned in section 3.6).

• Using dynamic analysis for checking design properties of a system requires the
representation of the actual behaviour (i.e. the execution trace) to be at a high
level of abstraction. In that case the high-level specification of the design invari-
ant can be directly verified in terms of the execution trace. However, existing
dynamic analysis approaches make use of an event grammar to fix the repre-
sentation of actual behaviour [Aug98] which is usually dependent on low-level
events. Advantages of using a fixed set of (low-level) events are the automatic
selection of events and less user involvement.

3.7 Conclusion
In this chapter, existing program analysis approaches were surveyed and their suitabil-
ity for documenting and verifying design invariants in an incremental software devel-
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opment context was evaluated. A formal verification method called model checking
was first discussed. This type of formal analysis is conducted on a model of a pro-
gram rather than a program itself. Next, we elaborated on analysis methods directly
analysing source code, thereby making an important distinction between static and
dynamic program analysis approaches.

The appealing aspect of model checking was found to be the high level of abstrac-
tion of the specification language and the range of properties which can be expressed
and verified. Although model checking is used for different purposes in the sense that
it is an exhaustive method for guaranteeing correctness with regard to a specific prop-
erty instead of merely checking that property, it does meet the need for specifying
properties at the design level. Moreover, specifying properties over an FSM model
of a system allows one to formulate invariant behaviour based on states as well as on
events (or transitions). This also allows the specification of operational, system-wide
properties which can be expressed at the design level. However, the high abstraction
level of the property specification language can be attributed to the level of abstraction
of the software model over which the properties are checked. As the model describes
the design of a system rather than the implementation constructs themselves, the prop-
erties of this model are also expressed at a high level of abstraction (i.e. at the same
level as that of the model). However, establishing such a model is costly and is not
affordable in a lightweight agile setting of aiding a software developer in creating reli-
able software as it is developed. Moreover, a correctly proven model of a system does
not imply that the corresponding implementation is correct at the technical level.

Static analysis approaches were found to be less suited for checking design invari-
ants. The nature of such invariants imposes the need for a static analysis approach to at
least perform a flow-sensitive interprocedural static analysis as explained in section 3.5.
Such an analysis would require the representation of a control-flow graph where each
program statement is included. An analysis would be exhaustive, such as for model
checking, except that the implementation statements are exhaustively traversed instead
of traversing a model of the software. This explains the numerous existence of static
analysis tools that only target specific kinds of errors. Analysis can be more focused
and be made more scalable so that they also produce fewer false positives. However
there is no means for focusing the analysis on a cross-cutting entity such as a design
invariant. Another problem is that analysis is directly performed on the source code.
Static tools offering a specification language to let a user for example specify invariant
behaviour is directly expressed in low-level implementation constructs. This limits the
expressiveness and hence the suitability for the purpose of documentation.

Having surveyed dynamic analyses and their criteria of comparison, dynamic anal-
ysis is first of all a lightweight methodology in the sense that it analyses execution
traces instead of exhaustively exploring a behavioural model of a program. Second,
such an analysis can focus on only those parts of interest that verify particular in-
variant behaviour through careful event selection and choosing a particular execution
scenario. This supports possibly the cross-cutting property of a design invariant. And
third, carefully selecting points of interest by instrumenting them, together with spec-
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ifying the corresponding behaviour at a high-level of abstraction provides a way of
verifying a high-level specification of a design invariant directly against high-level be-
havioural events. This bridges the gap between low-level implementation constructs
and high-level design properties of a software system.

3.8 Summary
In this chapter, we surveyed existing program analysis techniques. We highlighted their
features which allow checking design invariants for a particular software application.
In section 3.1 we pinpointed the characteristics an analysis tool needs to possess in
order to verify design invariant specifications against the program under investigation.
Section 3.2 outlined the different types of analyses and important terminology needed
throughout the remainder of this dissertation was defined. Next, we distinguished be-
tween two main analysis approaches. Section 3.3 discussed analysis methods which
are applied to models of a program rather than code. The second group of analyses
which is performed on code was handled in section 3.4. After comparing the main
characteristics of static and dynamic code analysis, we presented in section 3.5 the
main building blocks of static analysis which are needed for checking design invari-
ants. After doing the same for dynamic analysis in section 3.6, an evaluation was
performed for both analyses within the context of this dissertation.

In the next chapter we present a conceptual framework for the documentation and
lightweight verification of behavioural design invariants. We first introduce a set of
four requirements which should be met by the framework, based on our study of in-
variants in chapter 2 and of program analysis which was discussed in this chapter. After
that, we demonstrate how the conceptual framework tackles these requirements.



Chapter 4
A Goal-Driven Approach for the

Documentation and Lightweight Verification of
Design Invariants

In the previous chapters we introduced the essential background information that is
needed to position and understand the contribution of this dissertation. This chap-
ter describes our approach to documenting and verifying design invariants. It is a
lightweight declarative approach combining selective code instrumentation with high-
level behavioural analysis.

Section 4.1 emphasises the need for supporting documentation and lightweight ver-
ification of design invariants. First the problem context for this dissertation is defined in
section 4.1.1. In a nutshell, design invariants pose a problem for program development
as they are implicitly present in software. Even if they are made explicit, they are de-
tached from the source code so that discrepancies in either the invariant documentation
or the source code need to be updated manually. Heavyweight program verifiers are
able to analyse design invariant behaviour. However as the result of formal verification
consists of a correctly proven system model (with respect to certain properties), these
approaches are not applicable for supporting technically and algorithmically complex
software as the true difficulty lies in development at the source code level.

Based on an evaluation of existing program analysis approaches (Chapter 3), we
define a set of four main requirements in sections 4.1.2 – 4.1.5. These must be satisfied
by our approach to offer support for documenting and verifying design invariants. In
these requirements, the need for a descriptive specification language is formulated to
make design invariants explicit (Requirement 1). Moreover, a causal link with the ac-
tual source code needs to be provided to make the design invariant machine-verifiable
(Requirement 2). To support practical use during program development, a tight cou-
pling with the source code should be avoided for not having to change the design
invariant specification every time the source code changes (Requirement 3). Further-
more a goal-driven approach is advocated to allow focusing the analysis on specific
parts of a larger program (Requirement 4).
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We continue the discussion in section 4.2 by presenting a global overview of our
proposed approach for supporting design invariants. We couple the main solutions of
our approach to the requirements that were identified in section 4.1. Subsequently, the
two main phases of our approach are explained in more detail. We first elaborate on
the verification phase in section 4.2.1, followed by the specification of behaviour in
section 4.2.2, in essence the most distinguishing feature of our approach.

We present in section 4.3 the behavioural formalisms used for analysing program
behaviour. First we show how a partial high-level model of program behaviour is
represented, followed by the executable behavioural formalism that is advocated in
our approach for documenting and verifying design invariants. Section 4.4 then pin-
points how the behaviour is obtained at run-time by adopting a selective source code
instrumentation scheme. For that purpose, the logic meta programming paradigm is
introduced as a means to reason about the structure of a base language program. As
more developer involvement is required in our approach, we introduce in section 4.5 a
four-step recipe on how the proposed approach can be optimally exploited.

A prototype implementation supporting the proposed approach is presented in chap-
ter 5. How it can be used to reason about design invariants is extensively demonstrated
in chapter 6.

4.1 Need for Documenting and Verifying Design Invari-
ants

The complexity of software systems yields too many opportunities for developers to
introduce faulty and erroneous behaviour in an implementation. System complexity
is cited as a major reason for the difficulties software engineers encounter when deal-
ing with systems [FPB87]. A range of complex software systems exist which com-
bine different system components that are technically and algorithmically challenging.
For such systems, complexity resides at the code level. The combination of all these
components gives rise to subtle interactions at the code level that are prone to faulty
behaviour.

Dealing with software complexity during program development manifests itself in
different ways. One major difficulty to overcome is the adaptation of existing software
functionality. Support for easing the process of change by designing systems according
to a clean separation of concerns is a first step [HL95]. Consequently, when changes
have to be made, they are more localised and hence made faster and in a straightforward
way. However, the impact of a change on the overall behaviour of a system cannot be
guaranteed. Even changes to a well-designed system with a low coupling and high
cohesion might break underlying intended behaviour.

As discussed in section 2.3, invariants form a crucial part of a system’s behaviour.
They do not only represent characteristics of a system at a certain moment of its ex-
istence, but they also represent constraints which must hold throughout every change
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cycle if the system is working correctly. They are essential to the comprehensibility
and reliability of a software system in general [Ern00]. Explicitly stated invariants can
help program development by documenting certain aspects of program execution and
identifying program properties that must be preserved when modifying code.

In the context of this dissertation, we focus on design invariants in software. In
section 2.6 the following definition of a design invariant was explained in detail:

Definition
A design invariant is a behavioural regularity of the design of a program that is
not aligned with the structure of the program.

In a first step, we want to support program development by making these type of
invariants, which are usually implicit, an explicit part of the software. It is important
to make people aware of these constraints as they represent a crucial piece of infor-
mation for being able to reliably adapt the software at the further stages of develop-
ment [HT00]. In a second step, to support practical use, we want to partially automate
program development with respect to these design invariants by providing a method for
automatically verifying them in a lightweight manner against the actual source code.

Due to their specific characteristics, design invariants are difficult to capture and
verify. First, as they represent properties related to the design of a system at the code
level, a higher level of abstraction is needed in order to specify them. Second, their of-
ten cross-cutting characteristic poses constraints on the verification mechanism which
can be used, especially when taking into account technically challenging software.
And third, as they are non-externally verifiable, the formalism for specifying their be-
haviour should be primarily event-based (see section 2.6).

Some limitations need to be taken into account before presenting our approach.
The type of software system to which the proposed approach can be applied is any
sequential (single-threaded) software system for which a correctly working version of
the source code is available:

• A sequential system: the proposed behavioural formalism as it is now can only
be used to reason about the behaviour of single-threaded systems as time is rep-
resented in a linear way by using sequential points in time.

• A running version of the source code: a running version of the source code needs
to be provided as program instrumentation at the source code level is performed.

• Programming Language: the proposed approach can in principle be applied to
programs written in any programming language.

In the next section we first define the problem statement for this dissertation. Next,
based on the problem statement a set of requirements is distilled which a tool for sup-
porting design invariants needs to satisfy.
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4.1.1 Problem Statement
Software developers responsible for adapting and evolving an existing implementation
of software must grasp the underlying behavioural dependencies implicitly imposed
by making certain design decisions about the software at hand. This is problematic
because these so-called behavioural design invariants are often not known to devel-
opers or other peers involved in a software project. Even if they are known, they are
often only available in some implicit form. This severely compromises program devel-
opment as making a change might result in violating unknown behavioural constraints
which ultimately lead to unreliable software. Even in a context where such behavioural
design invariants exist in an explicit form, this documentation is not linked to the ac-
tual program. This would imply that developers themselves have to detect manually
those places in the source code which trigger the invariant behaviour, which would be
a difficult and time-consuming activity. It might even be more complicated as actual
run-time values might play a leading role in capturing a particular invariant.

Considering existing analysis approaches for checking design invariants, formal
verification approaches which analyse a model of a system rather than the code itself
are difficult to use for technically challenging software. As the main difficulty lies in
the technical development of the source code, having a correctly proven system model
(with regard to certain properties) does not help at all with the technical realisation of
the software at hand. Other static analysis approaches do not provide means to focus
the analysis on a particular behavioural design invariant not localised in a component
of the programming language at hand.

In summary, an approach is needed for making design invariants explicit by first
documenting them in a behavioural formalism and subsequently making that docu-
mentation machine-verifiable at the same time. Such an approach should address the
following main problems:

• Implicit Design Invariants
Design invariants impose underlying behavioural constraints on a system, but
they are implicitly present in the software. Hence, every time a change is made
to the software, the design invariant might be violated, possibly inducing severe
program errors.

• Detached Design Invariants
Even if design invariants are made explicit, they are often detached from the
source code. As design invariants are system-wide and may cross-cut an entire
system, this poses a problem as it is difficult and time-consuming to check them
manually. Moreover, as design invariants might depend on the run-time state of
a system, such a check might even be impossible to perform. On top of that,
these checks have to be done every time a change is being made to the system.

• Non-Oblivious Design Invariants
As a design invariant has to be checked every time a change is made to the
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system, the impact of changes to the design invariant description presents another
problem. Specifying the invariant in low-level implementation constructs creates
a tight coupling with the application’s source code. Such a link with the source
code inhibits practical use as the specification needs to be adapted every time a
change is made to the source code.

• Lack of Support for Partialness
To check a particular underlying behavioural constraint, existing program analy-
sis approaches analyse the complete system behaviour by exhaustively checking
the possible program states. Other approaches allow to separately analyse mod-
ules of a system as they are decomposed by the programming language at hand.
However as design invariants can be cross-cutting entities, this would still entail
analysing an entire program’s behaviour, which seriously inhibits practical use.
Such approaches lack support for partialness as they are not able to focus the
analysis on only a very particular part of the software’s behaviour.

Based on the problem statement, a set of requirements is distilled in the next sec-
tions which our approach has to satisfy to support the documentation and lightweight
verification of behavioural design invariants.

4.1.2 Implicit Design Invariants
In this dissertation, we want to support the development of technically and algorithmi-
cally challenging systems. One of the factors that inhibit a developer from producing
reliable software are behavioural design invariants. Such invariants impose underly-
ing behavioural constraints on a system, but they are implicitly present. Hence, every
time a change is made to the software, the behaviour of the invariants might be broken,
possibly inducing severe program errors.

So, in a first phase, developers must make these invariants explicit by documenting
them using a behavioural specification mechanism. Due to the particular characteristics
of design invariants (section 2.6), some issues have to be taken into account. Simply
annotating them in the code as embedded assertions (section 2.4.1) where they are
specified directly as source code statements constraining local state is not an option as
design invariants are system-wide and often cross-cut an entire system. Hence they are
not localizable into a component of the programming language at hand.

As design invariants represent behavioural properties which are system-specific, a
developer should therefore be offered a behavioural specification language in which
system-specific invariant properties can be specified. Since developers themselves have
to specify their system invariants using this formalism, specification should not become
too tedious. Moreover, as design invariants are non-externally verifiable and depend
more on execution order, the specification language should support primarily event-
based behavioural specifications (section 2.2).

We summarise the findings through formulating the following requirement:



62 CHAPTER 4. A GOAL-DRIVEN APPROACH

Requirement 1: Need for a Behavioural Specification Language
As design invariants represent behavioural properties which are system-specific,
a developer should be offered a specification language in which design invari-
ants can be documented. The language should primarily support event-based
specifications and as the specification should be used for documenting design
invariants, the specification language should be descriptive.

4.1.3 Detached Design Invariants

Making design invariants explicit is a first step towards supporting a developer in keep-
ing her software as reliable as possible. It makes developers aware of underlying be-
havioural dependencies present in the software. As design invariants might be scat-
tered all over a program, their behaviour inadvertently might be broken when a change
is made to the system.

However, as design invariants are system-wide and may possibly cross-cut an entire
system, it is difficult and time-consuming to check them manually. Moreover, as they
might depend on the run-time state of a system, such a check might even be impossible
to perform. On top of that, these checks have to be done every time a change is being
made to the system. This imposes the need for a machine-verifiable approach in which
the high-level behavioural specification of such a design invariant can be automatically
verified against the source code.

Therefore a link needs to be provided between the behavioural design invariant
specification and the actual source code. Hence when changes are made to the code
for further development or software maintenance, the design invariant can be automat-
ically re-verified. In chapter 3 existing program analysis methods for the verification
of invariant properties were studied.

As formal verification approaches aim at proving the correctness of a system model
with respect to certain properties, they are not suitable for supporting the development
of technically and algorithmically complex software. For such systems, the true diffi-
culty lies in development at the source code level. For static analysis approaches the
required abstraction level would pose a problem as static analysis approaches stand
very close to the actual source code and they provide no means for focusing the analy-
sis on a cross-cutting entity such as a design invariant (section 3.7).

In this context, we therefore formulate a second requirement the proposed approach
needs to address:

Requirement 2: Causal link with the Source Program
In addition to making design invariants explicit, a causal link with the actual
source code needs to be provided to make the invariant documentation machine-
verifiable.
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4.1.4 Non-Oblivious Design Invariants
Providing a causal link to make design invariants explicit and automatically verifiable
already supports a developer in keeping her software as reliable as possible. It makes
developers aware of underlying behavioural dependencies present in the software. On
top of that, coupling the design invariant specifications to the code makes them at the
same time machine-verifiable which partially automates the development process.

However, as these checks have to be done every time a change is being made to
the system, next to automating the verification of the design invariant descriptions,
the impact of changes to the design invariant description should also be taken into ac-
count. Hence, although a causal link is needed with the source code to enable machine-
verifiability, tight coupling should be avoided at all times for not having to change the
invariant specification every time a change is made to the source code.

Again we summarise the findings in the following requirement:

Requirement 3: Oblivious Design invariants
To support program development, a tight coupling with the source code should be
avoided for not having to change the design invariant specification every time the
source code changes. So we require the behavioural specification language to be
at a high level of abstraction to create a design invariant specification which is
oblivious to implementation constructs.

4.1.5 Lack of Partialness
Technically and algorithmically complex software systems have many complex com-
ponents to deal with at once. Not only the size of such systems makes them complex,
but the intertwining of their components makes analysis even more difficult.

As summarised in section 3.7, another problem of formal verification approaches
and static program analysis approaches is their inability to focus the analysis on a
particular part of a program. For formal approaches, a complete representation of a
system model representing all program states needs to be explored. Although research
is focusing on ways to reduce this problem through introducing abstraction techniques
(such as state merging or abstraction on the variables), this still remains a problem.
As for other static analysis techniques, verifying unwanted design invariant behaviour
based on analysing the control flow of programs would require at least a flow-sensitive
interprocedural analysis in which every program statement needs to be included. They
do allow ways to analyse only particular parts of a program, however this is limited
to only those parts which are components of the programming language at hand (for
example through intraprocedural analysis). However, this is not applicable to design
invariants as they might be cross-cutting an entire system (section 2.6).

What is needed is a lightweight approach which allows the focus of analysis to
be narrowed down to the design invariant behaviour we want to analyse. Such an
approach needs to be goal-driven rather than having to go through a representation of
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the entire system behaviour, as in practice the behaviour to be analysed addresses a
specific behavioural design concern.

Therefore we advocate the use of an approach which is based on steering the entire
analysis by a specific design invariant rather than verifying it through exploring an
entire system’s behaviour. This allows us to analyse parts of a larger program as well.

This leads us to the fourth and last requirement:

Requirement 4: A Lightweight Goal-Driven Approach
As design invariants can be system-wide entities which cross-cut an entire appli-
cation, to support practical use, the analysis used must offer a degree of partial-
ness to focus the analysis onto the design invariant in question.

We now present our approach addressing these requirements.

4.2 A Lightweight Goal-Driven Verification Approach
In the previous section four main requirements were identified which our approach
should satisfy. In this section we couple these requirements to the proposed solutions.
Our approach is based on specifying a behavioural design invariant in a high-level
behavioural model. In essence, our approach for supporting design invariants proposes
the following solutions:

• Using a behavioural formalism for specifying a design invariant in a behavioural
model using high-level concepts.

• Providing an approach for making the high-level behavioural model at the same
time machine-verifiable:

– A lightweight verification approach based on dynamic analysis.

– A goal-driven approach by allowing to focus verification on specific parts
of a larger program.

To reconcile the stated requirements from section 4.1, we offer a descriptive be-
havioural formalism in which system-specific design invariants can be expressed. This
formalism primarily supports event-based specifications as non-externally verifiable
entities need to be specified (Requirement 1). Second, we will make these behavioural
models machine-verifiable by providing a mechanism to check whether the wanted
behaviour expressed in the behavioural model matches the actual program behaviour
(Requirement 2). Third, we introduce high-level concepts in the behavioural descrip-
tions of design invariants. Such high-level concepts are of a higher semantic level
than the individual programming constructs offered by a particular implementation
language. This way, a behavioural specification serves as a means of documentation
so that design invariants of a system can be described at the conceptual level (Require-
ment 1). On top of that, introducing high-level concepts also avoids a tight coupling
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between the design invariant model and the source code, which makes the design in-
variant model oblivious from implementation constructs (Requirement 3). Fourth, we
adopt a lightweight verification strategy based on dynamic analysis. When applying
such an approach, the program under investigation is executed along a well-defined
scenario. Run-time events arising during the execution of the scenario are recorded in
an execution trace. This makes the approach goal-driven as it allows us to focus the
verification on specific parts of a larger program (Requirement 4).

In the remainder of this section, we outline an approach for making design in-
variants explicit by documenting their dynamic behaviour in descriptive behavioural
models which can be verified in a lightweight manner throughout an application’s life-
time.

Two important phases can be distinguished:

• In the first phase the design invariant is made explicit by documenting its be-
haviour in a model. This documentation phase consists of two parts:

– specifying the behavioural model as behavioural assertions capturing wanted
and unwanted program behaviour, and

– a description of the high-level concepts over which these assertions are
expressed (this is explained in section 4.2.2).

• In a second phase, the consistency of the model representing the wanted be-
haviour is then verified against the actual program behaviour represented by the
recorded execution trace (see section 4.2.1).

Note that in case of inconsistencies, a third phase might be in order to interpret the
obtained verification results. In section 4.3.2 a formalism is presented which lets us
specify design invariants in high-level behavioural models. These models are at the
same time machine-verifiable as the formalism we use is supported by a programming
language which makes the high-level behavioural models executable. We also explain
in that section the specification of the actual behaviour as descriptions of the high-level
concepts over which the design invariant knowledge is expressed. To better understand
the different components of the proposed approach, we first explain in the following
section how the consistency of the actual behaviour with the design invariant behaviour
is checked in the second phase. After that, the first phase of specifying behaviour is
discussed in section 4.2.2.

4.2.1 Verifying Design Invariant Behaviour

As was clarified in section 4.2, the proposed approach should support a verification
mechanism that is both lightweight and goal-driven (Requirement 4). Therefore we
adopt a dynamic analysis strategy where the program under investigation is executed
along an execution scenario and where run-time events arising during execution are
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Figure 4.1: Lightweight verification of a behavioural model against actual program
behaviour

recorded in an execution trace. As discussed in section 3.6, a dynamic analysis ap-
proach is efficient and precise, but lightweight in the sense that behavioural inconsis-
tencies are found (for a particular program run) rather than that their absence is proven
(as in heavyweight verifiers). Moreover, the careful selection of the components of a
dynamic analysis approach allow for a goal-driven approach so that only the behaviour
relevant to a particular design invariant is considered.

Figure 4.1 shows the lightweight verification set-up of our approach. The actual
observed behaviour is obtained through executing instrumented source code, which,
in addition to executing the program, records certain run-time events of interest. How
the code instrumentation works is explained in section 4.4 in more detail. Automatic
verification thus amounts to checking whether the events recorded in the execution
trace exhibit the wanted behaviour as defined in the design invariant model. This im-
plies that the verification results are always relative to the user input defined by the
execution scenario. Although this only allows us to find invariant violations instead of
proving their absence, a well-chosen execution scenario generally offers a convenient
way to focus the verification on specific parts of a larger program.

4.2.2 Specifying Design Invariant Behaviour
After having briefly explained the idea behind the lightweight verification phase of our
approach, we focus here on the most distinguishing ability of the proposed approach
to document particular parts of a program’s behaviour in high-level behaviour program
models. As was made clear from the stated requirements in section 4.1, a behavioural
formalism is needed to specify design invariant behaviour (Requirement 1). As this
formalism should be used by developers to write system-specific design invariants, it
should stimulate frequent use.
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Specifying a Design Invariant in a High-Level Behavioural Model

As can be seen from figure 4.1, in the verification set-up the behavioural model of
the design invariant is specified as a set of assertions in terms of the run-time events
that are recorded during the application’s execution. As was discussed in section 3.6,
most verification approaches relying on dynamic analysis demand these assertions to
be expressed over a fixed set of low-level run-time events (this is often realised through
formulating an event grammar) that are directly related to programming language con-
structs. Examples of such low-level events are for instance calls to functions or assign-
ments of variables. An assertion might then state that after a call to the function f, the
value of the variable var has been adapted. Expressing program behaviour models us-
ing low-level concepts results in models which do not reveal any semantic information.
Moreover, making small changes to the source code immediately results in adapting
the behavioural model of the design invariant as well. Given the documentation setting
and wanting to stimulate practical use by a developer making changes to the software,
we want to document design invariants in high-level concepts that are of a high se-
mantic level. For example, in a banking application the concepts of money deposit,
money withdrawal and bank account status are frequently used. A possible asser-
tion might state that after every money deposit to a certain bank account, the status of
that account should have increased with the deposited amount. Such an assertion is
decoupled from a particular implementation since it does not contain implementation-
level constructs. Hence, the assertion itself does not need to be adapted when small
changes are made to the software’s implementation (Requirement 3).

The executable behavioural formalism in which assertions of wanted design in-
variant behaviour are specified should at least allow for composing higher level events
from low level run-time events. This way these events can be decoupled from the actual
source code. Going back to the banking application example, this already allows us to
specify the high-level concept money deposit, referenced from assertions in a high-
level behavioural program model, being implemented as a call to the concrete function
actually performing the deposit. However, the values of low-level run-time events are
fixed too. For example for a low level assignment statement only the assigned vari-
able and its value are available. In case we want to know the value of another variable
relevant to a certain bank account we would have to retrieve it from another low-level
event. This would make the analysis of behaviour quite expensive, which would con-
flict with the lightweight requirement (requirement 3). For exactly that reason we opted
for recording run-time events during the execution of an application to be also at a high
level of abstraction.

Specifying High-Level Run-Time Events

Specifying run-time events also at a high level of abstraction allows us to specify the
assertions representing the behaviour of the design invariant directly in terms of high-
level entities instead of low-level implementation constructs. This allows us to create
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a partial model of actual program behaviour (instead of creating an entire model of
behaviour) that only contains those events of interest for verifying the design invari-
ant. This complies with the goal-driven requirement (Requirement 4) as specified in
section 4.1. As the high-level concepts used in the run-time events represent invariant-
specific concepts needed for specifying a behavioural invariant model, we leave it up
to a developer for specifying them. To do so, a developer has to specify when such a
high-level event takes place at run-time and also how to obtain any additional run-time
information that is associated with such an event (see section 4.4). Another implication
is that recording every single low-level run-time event is no longer necessary, which
supports the lightweight and goal-driven requirement (Requirement 4). The resulting
high-level execution trace consists in general of fewer run-time events which allows
our approach to be applied on parts of a larger program as well. The executable be-
havioural formalism which is used for representing a model of program behaviour and
its meta models representing the design invariant behaviour is discussed in more detail
in the next section.

4.3 Reasoning About Program Behaviour
In section 4.2.2 our approach was discussed and the need for a high-level behavioural
formalism to specify program behaviour was emphasised. This formalism should be
highly expressive so that a behavioural specification can serve as documentation to
make design invariants explicit. It should stimulate frequent use, so specifying de-
sign invariants in this formalism should not become impractical. And it should be a
machine-executable specification language to be able to check design invariants auto-
matically.

Before we continue the discourse about the behavioural formalism, we first mention
how program behaviour is modelled.

4.3.1 A Partial Model of Program Behaviour
Before building a model of program behaviour by using a dynamic analysis approach,
some considerations need to be taken into account. The first assumption we make
is that the model is discrete, meaning that it consists of a finite set of well-separated
elements. Using dynamic analysis, such an element or a unit of program behaviour is
referred to as an event. The event is an abstraction for any detectable action performed
during the execution of a program. Actions (or events) evolve in time and the program
behaviour represents the temporal relationship between these actions. This implies the
necessity of introducing an ordering relation for events.

As we mentioned in the previous section, in our approach we record run-time events
during program execution which are, like the behavioural model of the design invari-
ant, also at a higher level of abstraction. The event representation is depicted in fig-
ure 4.2. The ordering relation of events occurring at run-time is established by adding
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Figure 4.2: An event as a unit of program behaviour

a timestamp to an event representation referring to the time at which the event oc-
curred. The event type represents a high-level concept referring to a description of
an action performed during execution rather than a low-level implementation construct
(in contrast to other dynamic analysis approaches). Going back to the banking exam-
ple, money withdrawal is an example of a high-level event type. In order to specify
meaningful program behaviour properties, we enrich events with attributes, which con-
tain static information and run-time values associated with the event. In figure 4.2 a
variable number of associated values is depicted as they are freely chosen by a devel-
oper.

Program behaviour is then modelled as a finite collection of events, called the ex-
ecution (or event) trace, which is actually a model of program’s behaviour temporal
aspect. It is a partial model as it only represents behaviour according to a well-chosen
execution scenario (i.e. relevant to the design invariant under investigation).

4.3.2 An Executable Behavioural Formalism
The next issue to be addressed is the behavioural formalism for specifying design in-
variants, representing properties of program behaviour.

As the specification language should be highly expressive for documentation pur-
poses, we advocate the use of a declarative language as behavioural formalism. This
ensures that the resulting design invariant descriptions convey as much semantical in-
formation as possible. Declarative languages are very well suited to creating a model
of program behaviour as such languages describe what information is needed rather
than how it is obtained. On top of that, declarative languages support the following
benefits in this context [JR00]:

• Partiality: A declarative model of a design invariant can easily express only the
behaviour relevant to the invariant, and not the entire system model.

• Incrementality: A consequence of supporting partiality is incrementality. One
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can formulate a model as consisting of only essential properties, but later dis-
cover through analysis that other properties are needed. These can easily be
added at a later stage.

• Separation of Concerns: A behavioural model can be organised so that distinct
properties of the design (which at the implementation level would possibly in-
tertwine) can be recorded separately. This exactly fits the purpose of design
invariants being system wide entities which possible cross-cut an entire system.

On top of being declarative, the behavioural formalism should be machine-ex-
ecutable. In our approach we advocate a machine-executable logic programming lan-
guage, with Prolog as the most well-known representative, to reason about program
behaviour. In such programming languages, a program consists of logic clauses (or
facts) representing knowledge about a particular problem at hand.

In the proposed approach, the logic program consists of a logic representation of the
source code of a base language program (this will be discussed further in section 4.4.1)
and an event trace of the base language program under investigation (as discussed in
section 4.3.2). So the representation of an event as depicted in figure 4.2 is represented
in a logic clause of the form event(time stamp,event type(...)).

The behavioural assertions documenting a design invariant which are expressed in
terms of the run-time events from the execution trace, are expressed as logic formulas.
To determine whether such a formula is a logical consequence, logic programming
languages make use of a proof procedure.

While behavioural assertions about the events in the execution trace could be ex-
pressed in a regular Prolog-like logic language, we propose the use of an extended
Prolog variant which is even more appropriate for reasoning about behaviour. This
Prolog extension based on temporal logic is extremely suited to model the temporal
relations between run-time events.

Temporal Logic Programming The logic formalism underlying these types of lan-
guages is called temporal logic and was already briefly discussed in section 2.5.2.
For the sake of completeness we briefly repeat how temporal logic formulas are con-
structed. They comprise the classical logic formulas possibly qualified by temporal
operators such as 2 (always), � (sometime), • (previous) and ◦ (next). The truth value
of a logic formula depends on an implicit temporal context: a formula can be true at a
certain moment in time, while it might be false at the next moment (see section 2.5.2).

Different time models are supported in temporal logics. For example, time can
be bounded or unbounded. Time is said to be unbounded to the future or to the past if
every time is succeeded by a later or earlier time respectively. Either time points or time
intervals can be chosen as primitives to reason over time. Time can also be discrete,
dense or continuous depending on whether time is mapped onto the set of integers Z,
rational numbers Q or real numbers R respectively. Linear or branching time means
that, in the case of considering time points as units of time, time is linear if the set of
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time points is totally ordered. In the case of a partial ordering of time points, time is
said to be branching. For our approach, a discrete bound linear time model will suffice.
In this model, informally, the temporal formula 2φ is true if φ is true at all moments
in time. Similarly, we have that �φ is true when φ is true at some moment in time.

Temporal logic programming languages [OM94, Org94] are based on a subset
of temporal logic such that programs written in this subset are machine-executable.
MTL [Brz95] is a temporal logic programming language based on metric temporal
logic. Metric temporal logics incorporate an additional quantitative aspect into the
temporal operators. The �t (sometimes within t time points) operator is for instance
available. In this dissertation we propose the use of a variant of MTL to specify design
invariants in a behavioural model in terms of high-level events.

While temporal logic formulas have been successfully applied in the program ver-
ification domain (see section 3.3), they are sometimes hard to understand. In our ap-
proach, regular logic programming can also be used for expressing design invariants
as logical assertions. However, temporal operators allow the reasoning of temporal
contexts in a very descriptive manner without having to explicitly manipulate the time
stamps of events representing points in time. Behavioural program models expressed
in regular Prolog are thus less descriptive, but they are still suited to support the spec-
ification of models at the conceptual level instead of an implementation level. This is
mainly due to the fact that the (partial) model of program behaviour, i.e. the execution
trace, is also represented at a high level of abstraction.

Another important advantage of our approach is the use of a temporal logic pro-
gramming language as specification language instead of plain temporal logic. Formu-
las in temporal logic are sometimes very difficult to express [Hol02a, DAC99]. When
using a temporal logic language, one can combine temporal operators in a higher-order
rule so as to reuse them later. This way there is no need to remember their expression
in plain temporal logic.

In the next section, we demonstrate how this model of program behaviour is cou-
pled to the actual source code and how the actual behaviour is obtained over which the
executable behavioural specification is verified.

4.4 Obtaining High-Level Events
In section 4.3.1 we illustrated how units of program behaviour are represented. To
provide a coupling with the source code, a mapping is needed to couple an action
occurring at run-time time with a description of a high-level event. And not only the
type of event or action needs to be coupled to such a high-level description, but also
the associated run-time values which provide run-time context for a particular type
of event. Such a mapping of source code entities to high-level events is realised by
using a dynamic analysis approach which adopts a sophisticated way of event selection
through selectively instrumenting a base language program.

Figure 4.3 depicts the conceptual mapping from a base language program to high-
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Figure 4.3: A Conceptual Representation of Mapping Source Code Entities to High-
Level Events

level behavioural events. This figure resembles figure 4.1, only now we focus on how
to obtain the high-level events instead of how to analyse them by formulating and
verifying behavioural assertions.

The conceptual mapping is achieved by executing a base language program while
intercepting high-level concepts in the source code and recording them as high-level
events. As figure 4.3 demonstrates, intercept constructs are needed which on the one
hand describe those application-specific constructs that lead to such a high-level event.
On the other hand, a specification of the high-level event is needed denoting how they
should be recorded and what static and run-time values are of interest for such a type
of event.

To identify constructs in an application’s source code that give rise to a particular
high-level event of interest, an application’s parse tree should be made available, as
depicted in figure 4.4. A description for recognising a source code entity denoted
typeX can be regarded as a condition which is checked against all parse tree nodes
of a base language program. If a concrete parse tree node satisfies the condition, then
that particular node should be instrumented to make sure that at run-time, a high-level
event is recorded when that particular node is visited. Instrumenting a concrete parse
tree node is done either before or after that particular node. Base language code needs
to be inserted which prints a textual representation of a logic clause (as was specified
in section 4.3.2) to a file representing the event trace. In figure 4.4, base language code
needs to be created for writing ‘event(time,typeX(val1, ..., valn)).’ to a file.

In such a high-level event, associated values must be included as complementary
information. In figure 4.4, in the representation of an event to be logged depicted
there, the labels time, val1 and valn are examples of such run-time values. val1...valn
represent other values which can be freely specified by a developer, depending on
what is of interest for that particular event. Static information as well as run-time
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Figure 4.4: The intercept mechanism for identifying application-specific instances of
high-level events

information might be included. As the mapping maps a particular parse tree node of the
base language program to a high-level event specification, static information about that
node can also be included. Run-time values are those associated values which evolve
over time, such as time denoting a time stamp. These values can only be obtained at
run-time so they must be specified by the user in base language source code.

Logic Meta Programming (LMP) is a well suited approach for reasoning about the
structure of a base language at a meta level. In our approach we advocate the use of
LMP for writing declarative descriptions of source code entities which give rise to a
high-level event that is of interest for a particular design invariant. Therefore we briefly
explain LMP in the next section.

4.4.1 Logic Meta Programming

The main idea of logic meta programming (LMP) is to use a logic language to rea-
son about and to manipulate the structure of programs written in some base language
[Vol98]. The technique of LMP itself is not limited to a particular application domain
nor to a particular base language and has been applied in many different situations
that require meta programming in general. LMP has already been used to discover de-
sign patterns in both Java and Smalltalk programs [Wuy98, FM04], to check, enforce
and search for programming patterns in code [MMW02], to check programming con-
ventions [Mic98], to co-evolve design and implementation [Wuy01], to create aspect-
oriented crosscuts[GB03], to document and check source-code regularities through in-
tensional views and relations [MK06] and to generate code [Bri05].

The central concept of LMP is a mapping which associates every base-language
program with a set of logic declarations which describe the program in sufficient detail
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Figure 4.5: A logic meta programming setup (taken from [Vol98])

to be called a representation of it. Such a mapping is called representative if the base
language program can be reconstructed from the set of declarations [Vol98]. In this
set-up as depicted in figure 4.5, logic programs can be used to specify base language
programs indirectly. A useful mapping describes the syntactic structure of the program
in more detail. Representing the syntax of a program at some point is best done in a
structured hierarchical form, like a program’s parse tree. The mapping also depends
on the aspects we are interested in for the particular application we have in mind.

4.4.2 A Means for Event Selection
Applying LMP for reasoning structurally about a base language program allows us to
formulate declarative descriptions for identifying particular program parts of interest.
Figure 4.6 demonstrates the use of LMP by showing the intercept mapping for the
previously mentioned high-level concepts in a banking application. The description
of the source code entity describes that after a money deposit has been done, that we
want to create a high-level event of type after money deposit. This event denotes
the time (an ordering of the event with respect to other recorded events) and together
with the type of event, shows the money which was deposited (the label amount) and
the bank account status (val). Defining the money deposit predicate then amounts to
identifying the constructs in the application’s source code that give rise to this high-
level concept. The run-time values denoted by the labels also have to be specified. As
these are values which can only be obtained at run-time, base language code needs to
be provided by the user.

Any approach for selectively instrumenting source code constructs of interest is
closely related to an aspect-like approach, based on the principles of Aspect Oriented
Programming, as was described in section 3.6.3. To recall the used terminology within
this context, a pointcut expression is a description of a source code construct of interest.
In figure 4.4, the condition specified as typeX relates to a pointcut expression which
quantifies over all parse tree nodes. A join point is a concrete parse tree node which
fulfils the pointcut description (making a pointcut a collection of joinpoints). Advice is
code to be executed either before or after a particular join point (replacing code using
instead is also possible, but for logging purposes this is not applicable). In this way,
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Figure 4.6: An example of the intercept mechanism using LMP

our approach uses a logging aspect in the sense that we only use logging code as advice
code (written in the language of the base program) that records the needed high-level
events to an execution trace.

In essence, for gathering the run-time events, any aspect approach could be adopted
for selectively instrumenting a base language program, as long as high-level events are
recorded instead of events based on low-level implementation constructs. However, the
used pointcut language and the granularity of the parse tree representation (the chosen
representational mapping) might possibly impose limitations on what conditions can
be formulated.

Using LMP, we adopt a logic language as pointcut language in which we formu-
late declarative descriptions about particular source code constructs. This creates the
extra advantage that, next to the recorded high-level events, also these pointcut de-
scriptions are at a high level of abstraction. This also makes the specified intercept
mappings reusable to apply them on other base language programs as well. Using a
declarative logic language as pointcut language avoids a tight coupling with the source
code [GB03].

In section 3.6, comparison criteria of dynamic analysis approaches were discussed.
To summarise the instrumentation approach based on those criteria, in order to obtain
run-time events we adopt an approach which:

• performs instrumentation at the source code level,

• adopts an aspect-like approach for selectively identifying joinpoints to add in-
strumentation code before or after those joinpoints,

• specifies behaviour at a high level of abstraction (see section 4.3).
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4.5 A Four-Step Recipe for Applying the Proposed
Approach

The lightweight verification approach presented in this chapter provides an expressive
way to create descriptive executable models of design invariants underlying a soft-
ware’s implementation which are at the same time machine-verifiable. A large part of
its strength can be attributed to the ability of freely determining the high-level events
over which these behavioural assertions are expressed. However, as this requires more
developer involvement, we present a four-step recipe to optimally take advantage of
this approach. Figure 4.7 depicts these four steps.

Identification of High-Level Events

Specifying the Behavioural Model

Specifying Application-Specific 
Instances

Lightweight Consistency Verification

1

2

3

4

Figure 4.7: A four-step recipe for applying the proposed approach

The specification phase of our approach comprises steps 1–3. The first step consists
of identifying the high-level events for creating a model of program behaviour (as we
explained in section 4.3.1). In a second step, the current understanding of design in-
variant behaviour is specified in a behavioural model expressing desired and unwanted
behaviour. Temporal logic programming is used as behavioural specification medium,
as introduced in section 4.3.2. In step 3, the mapping from application-specific source
code entities to high-level events, which was clarified in section 4.4, needs to be spec-
ified. For the verification phase of our approach, a lightweight consistency check is
performed by verifying the wanted or undesired design invariant behaviour against the
actual program behaviour.

To demonstrate the practical use of this recipe, we refer to the next chapter where
a concrete implementation of this approach is presented with C as base language and
where this recipe is applied on a running example.

4.6 Summary
In this chapter we outlined our approach for the documentation and verification of
design invariants. It is a lightweight declarative approach combining sophisticated
selective code instrumentation with high-level behavioural analysis.
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Section 4.1 emphasised the need for supporting design invariants. First the prob-
lem context for this dissertation was defined in section 4.1.1. Design invariants pose
a problem for developing reliable software as they are implicitly present in software.
Even if they are made explicit, they are detached from the source code so that discrep-
ancies in either the invariant documentation or the source code need to be manually
updated. Heavyweight program verifiers are able to verify design invariant behaviour,
however they verify a model of a system rather than the source code itself, which does
not fit the context of technically and algorithmically complex systems. Finally, very
few analysis approaches offer a means to focus the analysis on only relevant behaviour
to allow analysis on specific parts of a larger program as well.

Based on an evaluation of existing program analysis approaches, we defined in
sections 4.1.2 – 4.1.5 a set of 4 main requirements which our approach must satisfy to
offer support for documenting and verifying design invariants:

• The need for a descriptive behavioural specification language (Requirement 1),

• The need for a causal link with the source code to make the specification lan-
guage machine-verifiable (Requirement 2),

• The need for a design invariant specification which is oblivious to the source
code to support practical use (Requirement 3),

• A goal-driven and lightweight approach is advocated to allow focusing the anal-
ysis on specific parts of a program (Requirement 4).

We continued the discourse in section 4.2 where we presented a global overview of
our approach for supporting design invariants. We linked the main solutions of the ap-
proach to the requirements that were previously identified in section 4.1. Consequently,
the two main phases of our approach were gradually explained. In section 4.2.1 the
verification phase of our approach was introduced, followed by the specification of
behaviour in section 4.2.2, i.e. the most distinguishing feature of our approach.

In section 4.3 the behavioural formalism used for analysing program behaviour
was presented. First, a partial high-level model of program behaviour was represented,
followed by the executable behavioural formalism based on temporal logic which is
advocated in our approach. Section 4.4 then pinpointed how the behaviour is obtained
at run-time by adopting a sophisticated and selective means of instrumenting the source
code. For exactly that purpose, the logic meta programming paradigm was introduced
as a means to reason about the structure of a base language program. As more devel-
oper involvement is requirement in this approach, we propose in section 4.5 a four-step
recipe on how our approach can be optimally exploited.

In the next chapter, a prototype implementation of the proposed approach for the
programming language C called BEHAVE is presented. How this platform can be used
for reasoning about behavioural design invariants is demonstrated extensively in chap-
ter 6.





Chapter 5
BEHAVE: A Lightweight Verification Platform
for C

In order to validate the feasibility of our proposed approach, we created a prototype
platform named BEHAVE 1 that supports our approach of lightweight verification using
high-level behavioural models of design invariants. BEHAVE is implemented in the
logic language Prolog, and uses an aspect-like approach for instrumenting programs
written in C. Modest tool support is available in Smalltalk to aid in setting up and
using the experimental platform. The three main components of the platform are: a
reification module containing a logic representation of a C base language program, the
instrumentation module which generates selectively instrumented source code and a
temporal logic meta interpreter which verifies the design invariant models against the
actual program behaviour.

This chapter focuses mainly on the technical basis of our prototype. Its conceptual
counterpart was discussed in the previous chapter, whereas the validation of BEHAVE

by applying it onto a case study will be handled in the next chapter.
We start by pinpointing the history of BEHAVE so as to understand some of the

design decisions made. In section 5.2 we elaborate on the declarative meta program-
ming medium used for implementing our platform and we discuss logic programming
in more detail. In section 5.3 we present BEHAVE as a dynamic analysis platform and
discuss its main features conform chapter 3 for existing dynamic analysis approaches.
An overview of the main constituents of the BEHAVE architecture is shown in detail
in section 5.4. In section 5.5 we demonstrate how to optimally exploit the use of
the BEHAVE platform by applying the four-step recipe as discussed in chapter 4. A
simple stack implementation is used as case study for verifying basic invariant stack
behaviour. Section 5.7 elaborates on the system overhead created by the BEHAVE plat-
form. In section 5.6 we demonstrate available tool support. We end with conclusions
in section 5.8.

1BEHAVE is not an acronym; it does unite several keywords that constitute our approach, although
not in the right order: behavioural reasoning, high-level and lightweight automatic verification.
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5.1 History of BEHAVE

Before presenting the actual system, we first present some background information
about the history of the BEHAVE platform. This will help the reader in putting the sys-
tem and its design into its proper context. It must be taken into account that this system
has been created in the first place as an experimentation medium for implementing our
previously outlined approach. Its main purpose is to use it as an environment in which
a developer can reason flexibly about behavioural design invariants of programs writ-
ten in Ansi C. By flexible we mean that on the one hand a decoupling of high-level
events from implementation constructs enables reasoning about design invariants in
terms of high-level concepts. On the other hand reuse is enabled by abstracting away
previously defined concepts from a certain type of application.

The reason why we chose to reason about Ansi C programs as base language pro-
grams lies in the context in which this research was performed. The largest part of this
research was conducted in the context of the four year ARRIBA project funded by the
IWT, Flanders, Belgium 2. ARRIBA stands for Architectural Resources for the Re-
structuring and Integration of Business Applications. The aim of this research project
was to come up with tools and techniques to aid in understanding legacy applications.
Because the Belgian companies involved in the project mainly have to deal with code
bases containing programs written in imperative languages like C and COBOL, we fi-
nally opted to use Ansi C as our language of investigation because of the availability
of test cases.

The initial idea for creating a dynamic analysis platform like BEHAVE was based
on a concrete question from a software developer who was looking for a way to check
certain behavioural invariants in his code that were very hard and time-consuming to
verify manually. Involving the declarative meta programming set-up seemed very nat-
ural as this approach had already been used successfully in a wide range of application
domains. This initial request resulted in a master thesis where the fundamental ideas
underlying BEHAVE were implemented, based on the Zombie library [Gyb05].

An additional step was performed in the context of writing a paper about BE-
HAVE [RMG+06]. Coen De Roover wrote a temporal logic meta interpreter on top
of Prolog. The main contribution of this meta interpreter is to provide an extra layer
of abstraction for representing actions performed at a certain moment in time during
program execution.

To end this section, we would like to inform the reader that this system still is a
prototype supporting our lightweight verification approach. In many parts of its im-
plementation there is room for improvement with regard to performance, robustness,
etc . . . . One technical problem we experienced was the implementation of the C lan-
guage parser to be able to represent a base language program as a set of logical propo-
sitions. The difficulty mainly resides in the way C allows macro’s to be defined. When

2Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen -
http://www.iwt.be
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macro’s are immediately expanded in the code before parsing, valid C statements are
obtained which can be parsed without problems. However, when you want to reason
about macro’s, you cannot expand them as they have to be represented in the meta
model. We chose the latter as we wanted to reason about macro’s as source code en-
tities. In this version of BEHAVE we are only able to parse macro calls which appear
as function calls (i.e. which look like a valid C expression without expanding them).
However, these small deficits do not compromise the strength of our approach.

5.2 Logic Meta Programming

In section 4.4.1 we presented the logic meta programming paradigm (LMP) which is
used to reason about the structure of a base language program. In this section we
demonstrate the use of LMP for the BEHAVE platform to reason about the structure
of C programs. This implies the identification of a representational mapping which
reifies the structure of a C program into a logical representation (this is demonstrated
in section 5.2.5).

As logic programming is adopted at a meta level to reason about base programs, we
first introduce in the following subsections the logic programming paradigm together
with its main characteristics. We limit ourselves to presenting some general ideas and
a few representative queries. For an in-depth overview we refer the reader to [Fla94].

5.2.1 Logic Programming

The main idea behind logic programming is the use of a subset of logic as a pro-
gramming language. In the well-known logic language Prolog, the knowledge about a
problem is captured in a set of logical axioms in the form of Horn clauses [Fla94]. The
execution mechanism of the language, called SLD-resolution, is used to prove that a
query or a goal clause is a logical consequence of the program. The resolution mecha-
nism which is based on unification and backtracking is a very powerful mechanism that
allows for recursion to be used in logic programs. This classifies Prolog as a powerful
programming language and distinguishes it from knowledge representation systems.

One of the essential characteristics of logic programming languages is their declar-
ative semantics. In contrast to imperative languages, a logic program denotes what a
program does rather than how it should be executed. The meaning of a given declara-
tion in a logic programming language can be concisely determined from the statement
itself. Imperative semantics however, demand more the specification of control flow
and is therefore rather complex. For example, the semantics of a simple assignment
statement requires at least the examination of local declarations and knowledge of the
scoping rules of the language.
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Examples and Terminology

For clarity on terminology we describe here how parts of a logic program will be
denoted throughout this dissertation. In Prolog, we refer to logic declarations rather
than program statements and expressions. Any logic program consists of multiple
logic declarations and they can be either a fact or a rule. As an example, consider the
following logic database of a small family tree:

% A simple family tree example
father(albert,jeffrey).
mother(alice,jeffrey).
father(albert,george).
mother(alice,george).
father(george,cindy).
mother(mary,cindy).

The ‘%’ sign denotes a comment line in Prolog. This database contains six logic
facts which declare that albert and alice are the father and mother of two children,
jeffrey and george. george is the father of one child, cindy. The following logic
rules can be added to the database to retrieve additional information:

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

In Prolog, logic variables like X and Y are denoted with a capital letter. The parent rule
is implemented by two logic declarations. They state that X is a parent of Y if X is either
the father or mother of Y. The last added rule defines the grandparent relationship.
The following logic query is launched to retrieve all grandparents from the database:

?- grandparent(X,Y).

This query yields two results X = albert, Y = cindy and X = alice, Y = cindy

which states that both albert and alice are the grandparents of cindy.
The logic program below presents a more advanced logic rule, i.e. a member pred-

icate which defines whether an element is a member in a list. The first declaration
denotes a fact which states that the first element in a list is always a member of that
list. The second logic declaration denotes a logic rule that states that a random element
is part of a list if it is a member of the rest list. The symbol ‘ ’ is used to refer to any
possible value, i.e. a not-named variable.

member(First,[First|Rest]).

member(Element,[_|Rest]) :- member(Element, Rest).

We also refer to parts of a logic declaration as logic terms and logic clauses. A
term refers to that part of a logic declaration that is manipulated as data, e.g. the
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[First|Rest] list used in the above example. A clause denotes an entire logic dec-
laration that is associated with a truth value. The predicate of a clause is uniquely
determined by a name and multiplicity. The multiplicity is a number that denotes the
number of arguments associated with that predicate. The member/2 predicate above
has a name member and a multiplicity 2.

Terms are always contained in clauses and can also be compound, i.e. a term can
have arguments each of which may again be a term. A compound term is also called a
functor. A term without arguments is called an atom (for example the name ‘george’
from the family tree mentioned above is an atom). The nesting of terms into compound
terms or into a functor might be used for providing extra information about a term. In
the family tree example denoted above, we might for example use the functors male(X)
or female(X) as compound terms inside the predicates mother and father. As such
it can be denoted whether a person is either male or female. The following fact of the
logic database would then reveal that albert not only is the father of jeffrey, but that
he has a son called jeffrey, which would be written as follows:

father(albert,male(jeffrey)).

An essential part of logic programming is that multiple logic declarations (i.e. mul-
tiple facts and rules) can define a single predicate. Multiple logic declarations express
multiple alternative computations to solve a query. In the example above, the mem-
ber/2 predicate contains two declarations in the form of a fact and a rule. The fact is
applicable when an element is the first element in a list. The rule is applied when it is
not. The query described below will first invoke the fact and afterwards the rule. The
result returned for Element represents one by one all elements in the list [1,2,3].

?- member(Element, [1, 2, 3]).

Element = 1;
Element = 2;
Element = 3;

Below we describe another example of the predicate append/3 that appends two
lists. The predicate is again described by two logic declarations: a fact and a rule.
The logic fact is applicable when the first argument of the predicate is an empty list. It
states that, when appending an empty list to any list, that list is the result of the append.
When the first argument of the predicate is not the empty list, the rule of the append
predicate will be applied instead.

append([],List,List).

append([First|Rest],List,[First|RestList]) :-
append(Rest,List,RestList).

The append rule states that any two lists [First|Rest] and List can be appended
with as result the list [First|RestList] if and only if the append of Rest and List

yields the result RestList.



84 CHAPTER 5. THE BEHAVE PLATFORM

The example query launched below will invoke the append predicate. The result
returned is List = [1,2,3,4,5].

?- append([1,2,3],[4,5],List).

Main Characteristics of Logic Programming

A logic language like Prolog is a dynamically-typed declarative language which offers
an abundance of qualities that are used in the context of this dissertation:

• Declarative languages like Prolog focus on what needs to be executed instead
of how we should retrieve something. As a consequence, programs written in
a declarative language are easier to understand because they are closer to the
semantics of a program. Furthermore, these languages make it possible to reason
at a higher level of abstraction, i.e. reasoning is done at the domain level instead
of the implementation level.

• The mechanisms underlying logic languages, such as unification and backtrack-
ing, provide a very powerful reasoning engine. The process of unification can
be described as that of finding appropriate values for variables in order to make
two terms the same. As terms can be compound, unification provides a deep
matching algorithm and can also be seen as trying to make two tree structures
the same. Backtracking is a powerful search mechanism that enables to find all
possible solutions for a particular query.

• Logic programming also allows for the specification of recursive logic rules be-
cause of these logic mechanisms. This is the main reason why logic program-
ming is much more powerful than knowledge representation mechanisms. Such
languages created for retrieving data (e.g. SQL) do not support recursion (an
example of the use of recursion will be shown in section 5.4.4).

• Logic programming is multi-way, i.e. one predicate expresses multiple relation-
ships. For example consider the mathematical equation X + Y = Z. In a logic
programming language the predicate addition(X,Y,Z) would be created which
can be used to perform three different tasks:

1. calculating the sum of two numbers,

2. calculating the difference between two numbers (Y = Z −X),

3. checking whether the relationship X + Y = Z holds for a given X, Y and
Z.

• Prolog in particular is an interactive programming environment; a program in
Prolog is represented by a set of logic declarations and you can query that pro-
gram by means of launching queries. For our BEHAVE platform, where we cre-
ate an execution trace of high-level run-time events in the form of logical facts,
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you obtain an analysis language for reasoning about the actual behaviour of a
program for free.

5.2.2 Frequently Used Predicates
Prolog as a programming environment provides a large library of pre-defined standard
logic predicates that are used very often when writing logic programs. To get an even
better feeling for the logic programming paradigm and to prepare the reader for further
investigation of the BEHAVE platform we will provide here some important logical
predicates which will be needed later on in examples.

The findall/3 predicate The findall predicate is a second order predicate be-
cause the second argument is a logical query. After this query is launched, all results
of that query are collected in a list which is the last argument of the predicate. The
first argument then determines which value is put in the result list for each of the query
results. As an example, the following query returns for List the value [1,2,3]:

?- findall(Element,member(Element,[1,2,3]),List).

The forall/2 predicate Another second order predicate is the forall predicate.
The first argument is also a logical query, whereas the second argument represents a
condition. For all alternative bindings found by launching the logical query, they must
satisfy the condition. The query returns true or false, however in case the query fails, it
does not tell you which of the alternative bindings did not satisfy the second argument
condition. The following query returns true:

?- forall(member(Element,[1,2,3]),Element > 0).

The foreach/2 predicate A self-defined meta-predicate predicate which we will
use in the following example is the foreach predicate. It is defined as follows making
use of the Prolog meta predicate call/2 and of our previously explained forall/2

predicate:

foreach(List,Predicate) :-
is_list(List),
forall(member(Item,List),call(Predicate,Item)).

The Prolog call/n predicate launches the logical query Predicate(Item). Note
the n multiplicity of this predicate; it can append a variable number of arguments to the
predicate. Launching the query :- call(member(X),[1,2]) is the same as launch-
ing :- member(X,[1,2]). The foreach/2 predicate appends every element in a list
one by one to the arguments of the predicate and launches that new predicate as a
query. We could use the predicate as follows, to check whether all numbers in a list are
integers:
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?- foreach([1,2,5.32],integer).

This query returns false because integer(5.32) will return false.

5.2.3 Smalltalk Open Unification Language (SOUL)
The different application areas mentioned in section 4.4.1 in which LMP has been suc-
cessfully applied did not use Prolog but rather a Prolog derivative called SOUL [sou].
SOUL is a logic meta-language implemented on top of Smalltalk that reasons about
Smalltalk programs. It was initially developed by Roel Wuyts in the context of his PhD
dissertation [Wuy01]. Although SOUL has a slightly different syntax, it is entirely
based on Prolog and can execute regular Prolog programs. SOUL is however much
more powerful than a conventional Prolog derivative because SOUL can also contain,
next to ordinary Prolog programs, Smalltalk expressions which realises a tight integra-
tion with its base language Smalltalk. The BEHAVE platform was first implemented in
SOUL. This is still visible in that the Ansi C parser is implemented in Smalltalk using
the SmaCC parser generator. However, to really benefit from the powerful symbiosis
between SOUL and Smalltalk, SOUL should be used to reason about Smalltalk as a
base language. Since for our BEHAVE platform we don’t reason about Smalltalk pro-
grams, we opted to use Prolog since we only would use the Prolog features present in
SOUL. To demonstrate briefly the slightly different syntax of both logic languages, you
can find below the SOUL logic declarations that implement the member/2 predicate as
specified above in Prolog:

member(?first,<?first|?rest>).

member(?element,<?|?rest) if
member(?element,?rest).

A variable is denoted with a question mark ?variable as opposed to the first letter
being a capital letter in Prolog (Variable). A list is written as <1,2> instead of the
square brackets and the head and body separator for a logic rule :- is replaced by an
’if’ in SOUL.

5.2.4 Temporal Logic Programming
In chapter 4 we introduced the concept of temporal logic programming as executable
behavioural formalism and we discussed temporal logic and the operators such a logic
uses to reason about time structures (see section 4.3.2).

In this section we demonstrate the use of the temporal operators for our temporal
logic meta interpreter based on MTL. Consider the simple logic database in figure 5.1.
The database holds five Prolog facts and one rule of a salary predicate. They represent
the salary of two people, john and bert. Their salary has changed over the years, so a
time stamp denotes the time context of what salary they have received at what moment
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salary(-1, john, 500).
salary(0, john, 1000).
salary(1, john, 1500).
salary(2, john, 2000).
salary(3, john, 3000).
salary(bert, X) :- salary(john, X).

Figure 5.1: A simple logic database

in time. The present is denoted by ‘0’. Using temporal logic programming (based on
MTL), the temporal operators are used to abstract over the time stamp denoted here as
first argument of the salary predicate. They denote in an abstract way the order of the
predicates without using the actual time stamp. For example, launching the following
query yields S=1500 :

?- next(salary(john,S)). %% ◦salary(john,S).

The expression denoted in comments represents the same query but specified with the
temporal operator notation. This query searches for the salary of john at the next point
in time from now. So the salary of johan at time ‘1’ is returned. The next query looks
for the salary of john at sometime in the future within 2 time steps from now.

?- sometime(2,salary(john,S)). %% 32salary(john,S).

As the time step is a positive number, it reveals that sometime in the future is meant.
A negative number can be used to refer to a time interval in the past until now. Three
results S=1000; S=1500; S=2000 are returned which denote the salaries john had in
the time interval from 0(now) to 2.

With respect to our reuse requirement identified in chapter 3, temporal operators
allow abstraction of temporal contexts in a very descriptive manner without having
to explicitly manipulate integers representing points in time. By combining temporal
operators into reusable higher-order logic rules, often recurring temporal patterns can
be expressed without having to remember their idiomatic expression in plain temporal
logic. Examples are various occurrences and ordering patterns which were identified
as appearing most often in specifications for verification systems [DAC99].

5.2.5 The Representational Mapping
The central concept of logic meta programming is a mapping which associates every
base-language program with a set of logic declarations which describe the program in
sufficient detail to be called a representation of it. Such a mapping is called repre-
sentative if the base language program can be reconstructed from the set of declara-
tions [Vol98]. In this setup as depicted in figure 5.2, logic programs can be used to
specify base language programs indirectly. A useful mapping describes the syntactic
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structure of the program in more detail. Representing the syntax of a program at some
point is best done in a structured hierarchical form, like for example a program’s parse
tree. The mapping also depends on the aspects we are interested in for the particular
application we have in mind.

Logic Program

Base Language ProgramSet of Declarations

R
epresents

Represents

Represents

Mapping

Figure 5.2: A logic meta programming setup (taken from [Vol98])

In this dissertation we use LMP in our setup for building a lightweight verification
platform. Contrary to the other LMP applications as mentioned in section 4.4.1, our
platform is based on dynamic analysis also to reason about the behaviour of a system.
Logic meta programming is used as a means to describe program points of interest for
selectively instrumenting a program. Moreover, we chose as our base language the
procedural language C.

Representing C Programs

Using LMP to reason about and to manipulate C base programs requires a represen-
tational mapping from a procedural programming language to the logic meta level
representation. This mapping determines the parts of a program that are represented as
logic facts. We refer to this process as reifying the structure of the base language into
separate logic declarations.

The choice of the mapping in a logic meta programming system forms a crucial part
of the system’s design. It defines what aspects of the base language are made explicit
and can be manipulated and reasoned about at the meta level. Choosing the mapping
also depends on the level of granularity we want to instrument the code at. Similar
to other instrumentation approaches, the internal representation of a base language
program is represented as a parse tree of the program.

Table 5.1 describes the representational mapping of a subset of C program elements
onto their internal representations. It is based on a C grammar defined for the Ansi
C standard [Deg]. The main difference is the extra first argument for a declaration
and a function definition (i.e. the file name to which they belong). This mapping
directly reifies function definitions, function declarations, macro definitions and macro
declarations into separate logic facts:

• A function definition is represented by a logic fact that declares the file it belongs
to, the return type of the function, the function’s name, the list of parameters and
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C Construct Logic Representation
Function definition functionDefinition(FileName,Ret,Nam,Pars,Body).

Declaration declaration(FileName,DeclSpecifs,InitDecLst).

Macro definition macroDefinition(FileName,Name,Value).

Function macro functionMacro(FileName,Name,Parameters,Body).

C file baseFile(FileName).

Header file includedFile(FileName).

C project path projectPath(PathString).

User include userInclude(FileName,IncludedFileName).

System include systemInclude(FileName,SystemFileName).

Table 5.1: The representational mapping for reasoning about C programs

the body of the function. Note that the body of a function consists again of
a logic fact (or a functor) which contains a parse tree representation up to the
statement level.

• A declaration is represented by a logic fact declaring the file it belongs to, the
declared type and the declared function or variable. Note that a C declaration
can contain many declarations of the same type, declared with an initial value or
not. So the third argument contains an initialise declarator list.

• Macro definitions and functions are represented by a logic fact which again holds
the filename and the macro’s name and value (in the case of a macro function
the parameters are included as well). Note that as we will not reason about
the internals of macro definitions, we represent the macro definition’s value (or
body) as a string.

The five logic facts in the lower part of table 5.1 represent meta information about
different files in a C project under investigation. The header files and base files that
constitute a project are represented by separate logic facts. Also the path of the project
is represented as a separate logic fact. Finally, the include statements of a C file also
have a separate representation.

Although table 5.1 represents the representational mapping into separate logic facts,
the deeper parse tree structure is also reified into functors representing different parse
tree nodes. For example, figure 5.3 depicts a tree representation of a function definition
as specified on row 1 in table 5.1. The dark-grey boxes denote tree leafs (representing
a term), while the white boxes represent a functor 3. As can be seen from figure 5.3,
the body of a function is represented by a compoundStatement functor which holds
a list of declarations and a list of program statements. In this declaration list, tempo-
rary variables to be used within the body of the function are declared. The other lists

3Declaration specifiers are coloured in light-grey. They almost represent a tree leaf, except when the
type specifier is either a struct, union or enum specifier. In that case one extra functor is needed to
represent this type of specifier.
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functionDefinition
(Filename,DeclSpecs,Name,Pars,Body).

[(storageClassSpecifiers)*
(typeSpecifiers)*] 

aFilename

aFunctionName

[(parameterDeclaration)*]

compoundStatement
(Declarations,Statements).

[(declarations)*] [(Statement)*]

list
list

listlist

declarationSpecifiers

list

declarator

parameterDeclaration

...

declaration(Filename, 
DeclSpecs,InitDecList).

...

statement

...

Figure 5.3: Tree representation of a C function definition

holds all statements of the function’s body. Each statement on its own is represented
by another functor depending on the type of statement that is used.

The return type of a function is captured by a declaration specifier. Such a specifier
holds a list of both (possibly multiple) storage class specifiers and type specifiers. An
example of a storage class specifier is static. An example of a function definition
and a declaration will be shown in section 5.4.2. The full representational mapping is
listed in appendix A.

The next section introduces BEHAVE as a dynamic analysis platform which imple-
ments the approach outlined in chapter 4.

5.3 BEHAVE: A Dynamic Analysis Platform
BEHAVE is a dynamic analysis platform that supports the documentation and light-
weight verification of design invariants in C according to the proposed goal-driven
approach explained in the previous chapter.

Figure 5.4 depicts the process of using BEHAVE as a dynamic analysis platform.
The core implementation of BEHAVE is depicted in the large database of figure 5.4
comprising 5 main logic layers. The temporal logic meta interpreter is depicted sepa-
rately as it is a standalone platform component providing an extra layer of abstraction
for analysing program behaviour. The implementation of these five layers is discussed
in section 5.4.

In section 3.6.1, we discussed the main distinctive features of existing dynamic
analysis approaches: the means of selecting program parts of interest (1), specifica-
tion of program behaviour (2), collecting run-time events (3) and analysing program
behaviour (4).

In this section, we describe BEHAVE with respect to these features:
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Figure 5.4: Using BEHAVE as a dynamic analysis platform
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1. To create an instrumented base language program, program parts of interest are
first selected by describing them in a logic rule in terms of a logic represen-
tation of the source code (which is defined by the representational mapping as
explained in section 5.2.5).

2. Program behaviour is specified by letting the user specify a mapping to map
those program parts of interest (as described in step 1) to a logic fact describing
a run-time event.

3. Run-time information is collected in an execution trace by executing the gen-
erated instrumented base language program according to a particular execution
scenario.

4. Analysing program behaviour consists of specifying a behavioural model (as
temporal assertions) representing unwanted behaviour of a particular design in-
variant and checking the consistency of that model against the collected run-time
events. Analysis is performed off-line.

Each of these phases are denoted by their corresponding number in figure 5.4. They
are explained below in more detail.

1. Selecting Program Parts of Interest As mentioned in section 4.4.1, BEHAVE

adopts a logic meta programming approach for representing the structure of C pro-
grams. Therefore, as shown in figure 5.4, the source code of the application under
investigation is parsed and reified in a logic representation (in the reification layer) ac-
cording to the representational mapping defined in section 5.2.5. The reification layer
thus holds a logic meta model of a base language program. Program parts of inter-
est are then described by a logic declaration in terms of the logic facts from the meta
model (these declarations are stored in the reasoning layer, denoted by 1 in figure 5.4).

Note that these logic declarations describing particular program points of interest
are used as constraints or pointcut expressions (see terminology as defined in sec-
tion 3.6.3) that are unified (or not) against logic parse tree nodes (as represented in the
logic meta model). Note the advantage of using a logic language as pointcut language:
the pointcut description can be expressed at a high level of abstraction which avoids a
tight coupling with low-level implementation constructs [GB03].

2. Specifying Program Behaviour For specifying program behaviour, we let a user
of the platform specify the descriptions of run-time events (and associated values) that
are of interest for reasoning about a particular behavioural design invariant. Conse-
quently, a mapping is specified which maps the defined program parts of interest (as
explained in the previous step defined above) to the logic descriptions of run-time
events (see section 4.4.2). This is depicted by 2 in figure 5.4.

A user can specify the constituents of these run-time events at a conceptual level
instead of low-level implementation constructs. Adopting such an approach lets one
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specify a model of wanted behaviour directly in terms of high-level events, thereby
making the model oblivious from implementation constructs. This supports program
development as making small changes to the source code does not influence the be-
havioural model directly.

3. Collecting run-time events Next, an instrumented program is generated. BE-
HAVE generates C source code from the logic representation captured in the reifica-
tion layer, while trying to unify every element from that logic representation with the
pointcut descriptions defined in the mapping (as explained in steps 1 and 2). In case
unification succeeds, next to generating source code for that particular element, instru-
mentation code is generated as well.

To gather the run-time information about the program under investigation, the gen-
erated instrumented program is executed along a well-defined execution scenario (see
number 3 on figure 5.4). As a result, an execution trace is created which contains the
high-level events as described in the mapping from the previous step (only now with
concrete run-time values). The recorded execution trace presents a partial behavioural
meta model representing only the behaviour which was specified in the mapping by
the user, and only that behaviour triggered by the chosen execution scenario.

4. Support for Analysing Program Behaviour As discussed in the previous step, a
partial behavioural logic meta model is created represented by the recorded execution
trace containing high-level events. For analysing this program behaviour, undesired
design invariant behaviour is specified by the user in a high-level behavioural model
in terms of these high-level events. As explained in section 4.3.2, we use temporal
logic programming to specify this model. We could also use plain logic programming,
however temporal logic programming lets us use temporal operators which allow extra
abstractions over time structures.

Figure 5.4 depicts the lightweight verification of a behavioural model representing
a particular behavioural design invariant (depicted by 4). Lightweight verification is
done by checking the consistency of the behavioural model representing undesired
behaviour against the high-level execution trace.

In section 5.4 we explain more into detail what logical declarations each of these
layers contain and how the declarations collaborate in achieving selective program
instrumentation.

5.4 The BEHAVE Architecture
The BEHAVE platform is entirely implemented in Prolog, and more particularly in
SWI-prolog [Wie07] . In the previous section we have shown how to instantiate the
proposed technologies from chapter 4 for building a dynamic analysis tool. In this
section we present the different components of the behave architecture and we zoom
in on the technicalities of the different logic layers.
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5.4.1 An Overview
Figure 5.5 shows the overall architecture of the BEHAVE platform. For a particular
program under investigation, the user of the BEHAVE platform needs to provide the
following information:

• An executable version of the C source code, together with a makefile and a con-
figure file to be able to run the instrumented code afterwards. A suitable execu-
tion scenario also needs to be chosen, which depends on the kind of behavioural
design invariant that needs to be verified,

• The user of the platform has to specify the description of the high-level events.
On top of that, a behavioural model of the design invariant under investigation
needs to be specified in terms of these high-level events.

_______
_log(...)log(...)

Instrumented 
Source Code 

BEHAVE 

Makefile configure

Execution scenario

Source 
code

event(1, eventX(_)).
event(2, eventY(_)).
...
event(85,eventZ(_)).

High-level execution 
trace

Behavioural model 
of design invariant

High-level Events 
Specification

Instrumentation 
Module 

Structural 
Reasoning Module

execute

generate

?
?-solve(model).

VIOLATIONS?

Temporal Logic Meta 
Interpreter

Reification 
Module 

PARSER

Figure 5.5: The BEHAVE Architecture

As can be seen from figure 5.5, the BEHAVE architecture consists of four main com-
ponents. The first component is the reification module which, after parsing the code,
contains a logic meta model of the program under investigation. The second compo-
nent, the instrumentation module, takes care of re-generating the source code from the
logical representation while inserting instrumentation code at specific program points
defined by the user. The third component contains more advanced structural reasoning
declarations, both application-specific and declarations applicable to any C program.
The fourth component is a meta interpreter built on top of Prolog which provides a
highly expressive way to analyse the acquired program behaviour according to a par-
ticular behavioural design invariant.

In the remainder of this section we zoom in on each of the modules that constitute
the BEHAVE platform so as to gain some insight in how the core of the BEHAVE system
works.
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A running example: A simple stack implementation To make the logical represen-
tations of the different layers as clear as possible, we use a simple stack implementation
depicted in figure 5.6 as a C base language program under investigation throughout the
remainder of this chapter.

The stack implementation represents a C project consisting of two files Stack.c

and Stack.h 4. Considering the source code in figure 5.6 the running example contains
four declarations, a function macro and two function definitions.

1 int *stack;
2 int top;
3 static void init(int);
4 static void push(int);

5 #define pop() stack[--top];

6 static void init(int size){
7 top = 0;
8 stack = malloc(size * sizeof(int));
9 }

10 static void push(int element){
11 stack[top++]=element;
12 }

Figure 5.6: Simple C Stack implementation - Stack.h

5.4.2 The Reification Module
As previously explained in our proposed approach in section 4.4.1, BEHAVE adopts a
logic meta programming approach. In this setup, the structure of the base language
is reified into a set of different logic facts according to the representational mapping
defined in section 5.2.5 and depicted in table 5.1. These logic facts are part of the reifi-
cation layer of BEHAVE. This layer, together with the basic layer, forms the reification
module.

5.4.2.1 The Reification Layer

To get a feel for the logic representation of a C base language program, we present
some logic facts by parsing the C stack example (from figure 5.6) according to the
representational mapping. Figure 5.7 shows the logic representation of the definition
of the push function as defined on lines 10–12 in figure 5.6.

A logic fact representing a C function definition consists of five arguments that
completely represent a function definition in Ansi C. The first argument represents the
name of the file which the function is being defined in. The second argument denotes

4We only included the header file here as the c file contains only the main() that executes some of
the stack’s functions and we do not need to refer to it in the course of this chapter.
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1 functionDefinition(
2 "stack.h",
3 [static,void],
4 push,
5 [parameterDeclaration([int],declarator(optional,identifier(element)))],
6 compoundStatement([],[assignment(arrayAccess(identifier(stack),
7 postfixIncrement(identifier(top))),
8 assignmentOperator,
9 identifier(element))])).

Figure 5.7: Logic representation of the push function depicted in figure 5.6

a list which captures the function’s return type. This term contains a list because for
some definitions in C a storage class specifier and/or a type qualifier 5 might be in-
serted before the return type. The name of the defined function is captured by the
third argument. A list of parameter declarations is held by the fourth argument, which
captures one declaration of type int and a declarator that has as name the identifier
element. The optional argument in the declarator functor is used to hold a pointer.

1 declaration("stack.h",
2 [int],
3 [initDeclarator(declarator(pointer([],optional),identifier(stack)),
4 optional)]).

5 baseFile("stack.c").

6 projectPath("/Users/imichiel/Desktop/BEHAVE/Stack-example/").

7 functionMacro("stack.h","pop",[],"stack[--top];").

Figure 5.8: Logic representation examples for the stack example depicted in figure 5.6

The logic fact denoted in figure 5.8 on lines 1–4 represents the declaration of the
global stack variable as a pointer to an integer (as depicted in figure 5.6). The pointer in
the declaration is being represented as a pointer functor. The empty list in this functor
can hold also a type qualifier such as ’const’, the optional argument can again hold
a pointer. The optional argument of the initDeclarator can contain an initializer which
gives an initial value to a declared variable. The baseFile and projectPath facts in
figure 5.8 are trivial. The functionMacro logic fact on line 7 needs some explanation
though. Note that we do not parse the body of the macro. We keep it in the logic fact
as a string because in C it does not always contain a valid C expression or statement
as macro’s contain C source code that gets expanded into the code at compile time.
We could also have chosen to expand the used macro’s and then parse the source code.
However we chose this approach as we want to reason about the use of macro’s as well,

5A storage class specifier in C can be one of the following keywords: typedef, extern, static,
auto or register. A type qualifier can be const or volatile.
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although it causes some problems in the current version of BEHAVE.

5.4.2.2 The Basic Layer

As can be seen on figure 5.4, the reification layer, together with the basic layer, holds
those logic declarations that represent and are able to access the complete base lan-
guage program. The basic layer holds those logic rules that can access the deeper
parse tree structure of the information contained in the logic facts of the reification
layer. For each functor representing a certain C construct (i.e. a node in the parse tree),
the basic layer provides a logic rule for accessing each argument the functor holds.
This representation and also the names of the functors is based on a general Ansi C
grammar.

Below you can see an example of the accessor rules on lines 1–10 to retrieve all five
arguments of a function definition. The Filename and Name of the function definition
are terms (or leaves in the parse tree representation), while the other arguments are
again functors (or parse tree nodes).

1 functionDefinitionHasFilename(F,Filename) :-
2 equals(F,functionDefinition(Filename,Return,Name,Pars,Body)).

3 functionDefinitionHasReturn(F,Return) :-
4 equals(F,functionDefinition(Filename,Return,Name,Parameters,Body)).

5 functionDefinitionHasName(F,Name) :-
6 equals(F,functionDefinition(Filename,Return,Name,Pars,Body)).

7 functionDefinitionHasParameters(F,Pars) :-
8 equals(F,functionDefinition(Filename,Return,Name,Pars,Body)).

9 functionDefinitionHasBody(F,Body) :-
10 equals(F,functionDefinition(Filename,Return,Name,Pars,Body)).

11 isFunctionDefinition(F) :-
12 nonvar(F),
13 equals(F,functionDefinition(Filename,Return,Name,Parameters,Body)).

14 isFunctionDefinition(F) :-
15 var(F),
16 equals(F,functionDefinition(Filename,Return,Name,Parameters,Body)),
17 F.

Figure 5.9: An excerpt of the BEHAVE basic layer

The last two logic rules implement the isFunctionDefinition/2 predicate. The
first rule gets executed if the variable F is already bound to a certain value (this is
checked by the nonvar/1, var/1 standard Prolog predicates on lines 12 and 15 re-
spectively). The first declaration on lines 11–13 serves as a type check to see whether
the variable F indeed holds a representation of a function definition. The second rule
on lines 14–17 is triggered in case the variable F is not yet bound to a value. In this
case, the rule will first bind a functionDefinition fact with only variables as its five
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arguments (line 16). Second, it will match those variables with all function definitions
of the C program under investigation from the reification layer (line 17).

5.4.3 The Instrumentation Module

The instrumentation module contains three logic layers: the generation layer, the as-
pect layer and the configuration layer. This module is the central component of BE-
HAVE as it consults the rules of other components and it produces the instrumented
code needed to obtain the run-time information of the program under investigation.
We will elaborate here on the first two layers only. The configuration layer solely con-
tains logic facts to set the path for generating the source code files. Appendix B can be
consulted for viewing all the predicates of this layer.

5.4.3.1 The Generation Layer

This layer is responsible for regenerating the C source code from the logical represen-
tation. In figure 5.10 you can see some of the main generate predicates that constitute
the generation layer of BEHAVE. These generation rules walk through the logical rep-
resentation of the C base program in a top down fashion to reconstruct the C source
code of the program under study. The complete generation of the source code from its
logical representation is realised by launching the following query:

?- generateProject(_).

This query triggers the logic rule specified on lines 1–3 in figure 5.10. This predicate
first collects all the names of the files that are part of the C project under investiga-
tion and will then generate a file for each of them (findall/3 and foreach/2 were
explained before in section 5.2.2).

The zopen/2, zclose/1 and zwrite/1 predicates. As in almost every program-
ming language, Prolog offers some predefined predicates to handle standard opera-
tions on files. Standard operations are the open/close and write of a file. To use the
zopen, zclose and zwrite predicates in Prolog, self-defined predicates that translate
them to their Prolog counterparts open, close and write were created. The reason
for doing so is to provide an extra layer of abstraction to be able to run BEHAVE in
both Prolog and SOUL (see section 5.2.3) 6. To demonstrate how we translate these
rules to Prolog, we show here one of the above rules:

zopen(File,Result) :-
open(File,write,Result).

6Putting the ‘z’ in front refers to the Zombie library, i.e. the basis for BEHAVE, as explained in
section 5.1.
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The predicate that is used in the body of the zopen/2 rule is the standard Prolog pred-
icate open/3 to open a file. The variable Result is then bound to a writable stream.

Continuing with the generateFile/1 predicate on lines 4–14 in figure 5.10, a path
needs to be established first where the newly created file will be saved. On line 5 the
generatePath/1 logic fact holds the path where the generated code files will be put 7

and on line 6 the complete path with the filename is created and bound to the Fullpath
variable. Between the opening and closing of the file on lines 7 and 14 respectively, the
whole content of the file is again generated with some extra features for instrumenting
the source code. The includeBehave predicate adds the line ‘#include "Behave.h"’
into each generated file. This header file contains a C function (i.e. a log function)
which will be used for executing the newly added parts for instrumenting the source
code. Then all subparts of a file, such as the included files, the C macro’s, declarations
and function definitions are generated one-by-one.

1 generateProject(Project) :-
2 findall(Filename,isProjectFilename(Filename),Filenames),
3 foreach(Filenames,generateFile).

4 generateFile(Filename) :-
5 generatePath(Path),
6 buildPath(Path,Filename,Fullpath),
7 zopen(Fullpath,Stream),
8 includeBehave(Stream),
9 generateAllIncludes(Filename,Stream),

10 generateAllMacros(Filename,Stream),
11 generateAllDeclarations(Filename,Stream),
12 generateAllFunctionDefinitions(Filename,Stream),
13 znewline(Stream),
14 zclose(Stream).

15 generateAllFunctionDefinitions(Filename,Stream) :-
16 zwritenl("/* Function definitions */",Stream),
17 forall(functionDefinitionHasFilename(Function,Filename),
18 generateFunctionDefinition(Function,Stream)),
19 znewline(Stream).

20 generateFunctionDefinition(Function,Stream) :-
21 generateFunctionSignature(Function,Stream),
22 functionDefinitionHasBody(Function,Body),
23 generateAux(Body,[Body,Function],Stream),
24 znewline(Stream),
25 znewline(Stream).

Figure 5.10: An excerpt of the BEHAVE generation layer

Generating include statements in a file, defined macros and function and variable
declarations is done in a straightforward manner since they are represented as sep-
arate logic facts in the reification layer. As these parts will not be considered for
code instrumentation for obvious reasons, generating these facts only requires a syn-
tax transformation of their logical fact representation into a textual C source code

7A user of the system can specify this path through a BEHAVE user interface created in Smalltalk.
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construct. Generation of the function definition files is somehow less simpler. The
generateAllFunctionDefinitions/2 predicate defined on lines 15–20 first writes a
string to the stream for documentation purposes (line 15) and then repeatedly generates
all function definitions found in that particular file, which leads us to the generate-

FunctionDefinition predicate defined on lines 20-25. It first generates the function
signature on line 21 (putting together the function’s return type with its name and
parameter list 8). After retrieving the body of the function on line 22, the auxiliary
predicate generateAux/3 is launched. This predicate represents the generation of a
certain C construct (a C statement or expression) captured by the Body variable. For
the second argument, a list is formed with as current first element the C construct and
the last element the function definition itself. This particular list represents the path
or entire parse tree to which a C construct belongs to. Obviously the third parameter
holds the stream on which we write the generated code.

The generateAux/3 predicate This auxiliary predicate shown in figure 5.11 imple-
ments the auxiliary predicate which links the predicates from the generation layer to
those of the aspect layer. Next to generating code for a certain C construct held by the
Construct variable, this first declaration on lines 1–6 of the predicate checks if the
user enabled the aspect system (line 2) followed by possibly generating before or after
aspects. If a user of the BEHAVE platform indicated (how exactly this can be done will
be explained in detail in section 5.5) having interest in watching the behaviour of this
particular kind of C construct held in the Construct variable, these aspect-generation
predicates will generate logging behaviour as well. In case no interest has been shown
in instrumenting this particular C construct, the first declaration of the generateAux/3
predicate will fail and hence the second predicate on lines 7–8 of figure 5.11 will be
triggered.

1 generateAux(Construct,Path,Stream) :-
2 aspectsEnabled,
3 generateBeforeAspects(Construct,Path,Stream),
4 generateAux2(Construct,Path,Stream),
5 generateAfterAspects(Construct,Path,Stream).

6 generateAux(Construct,Path,Stream) :-
7 generateAux2(Construct,Path,Stream).

Figure 5.11: The generateAux/3 predicate

This second predicate relies on another auxiliary predicate generateAux2/3 that is
implemented by multiple declarations, one for each type of C program element (state-
ments, expressions, operators) which might appear in the body of a C function. Note
that if a program point of interest is encountered through a before or after aspect that
this auxiliary predicate is also called. Indeed, in addition to generating specific code

8The generateFunctionSignature/2 predicate can be viewed in the appendix
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instrumentation before or after a program point of interest, one must generate the code
for that particular C construct as well (this will become clear by investigating the aspect
layer predicates in section 5.4.3.2).

1 generateAux2(AssignmentExp,Path,Stream) :-
2 assignmentHasLeftExpression(AssignmentExp,LeftExp),
3 generateAux(LeftExpr,[LeftExp|Path],Stream),
4 assignmentHasOperator(AssignmentExp,Operator),
5 generateAux(Operator,[Operator|Path],Stream),
6 assignmentHasRightExpression(AssignmentExp,RightExp),
7 generateAux(RightExp,[RightExp|Path],Stream).

Figure 5.12: An example declaration of the generateAux2/3 predicate for generating
an assignment expression

Figure 5.12 presents one of the declarations of the generateAux2/3 predicate for
generating an assignment expression. Such an expression is typically of the form
leftExpression AssgOperator rightExpression. For each of these three assign-
ment expression components, the generateAux/3 predicate specified in figure 5.11
is triggered. Note the close collaboration between the auxiliary predicates of both
figures 5.11 and 5.12: for every C expression the generateAux predicate checks for
aspects; the generateAux2 predicate goes one level deeper into the parse tree structure
calling the generateAux predicate again on each of the lower level parse tree nodes
encountered, etc . . . . Note that checking at every parse tree node for possible program
points which need to be instrumented, the granularity level for code instrumentation
is as fine-grained as can be. We refer the reader to appendix B.1 for consulting the
predicates of the generation layer.

Note again here the advantage of using a declarative language as representation
medium for representing a base language: the syntax of the C assignment expression
has been abstracted away which makes reasoning at a higher level of abstraction pos-
sible, away from implementation details. This even makes easy reuse of these logical
declarations possible when we would apply our proposed approach on another proce-
dural language. In the case of the assignment expression, all that possibly needs to
change is the rule specifying the assignment operator. Next, we will elaborate on the
aspect layer of BEHAVE which forms the core mechanism for providing code instru-
mentation next to generating regular C source code.

5.4.3.2 The Aspect Layer

As shown above when we presented the generation layer, the mechanism for instru-
menting the source code is intertwined with the code generation process. Together
with generating the source code for function definitions in C, the logical parse tree
structure is traversed. During that process, BEHAVE checks every parse tree node for
program points of interest as indicated by the user.
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Below we elaborate on one part of the aspect layer, i.e. the before aspects. For the
full implementation of the after aspects we refer to appendix B.2.

1 generateBeforeAspects(Construct,Path,Stream) :-
2 forall(isBeforeAspect(Before),
3 generateBeforeAspect(Before,Construct,Path,Stream)).

4 isBeforeAspect(Before) :-
5 captureEvent(Construct,Path,When,RecordAs),
6 equals(Before,
7 before(Construct,Path,ResultingCode,When,
8 transformWhat(Construct,Path,RecordAs,ResultingCode))).

9 generateBeforeAspect(Before,Construct,Path,Stream) :-
10 equals(Before,before(Construct,Path,ResultingCode,Condition,Code)),
11 Condition,
12 Code,
13 generateAux2(ResultingCode,[ResultingCode|Path],Stream).

14 generateBeforeAspect(Before,Construct,Path,Stream).

Figure 5.13: An excerpt of the BEHAVE aspect layer

The first predicate on lines 1–3 provides the link with the predicates from the gen-
eration layer as this rule is called from the generateAux/3 predicate. It declaratively
states the obvious that it will generate a before aspect (line 3) for all encountered before
aspects (line 2) specified by the user of the system. The isBeforeAspect/1 predicate
defined on lines 4–8 indeed provides the link with the user-specified program points of
interest. This is done on line 5 by the captureEvent/4 predicate 9. For every type of
run-time event a user wants to inspect at a later time, she can specify a logic fact. It
must hold a description of the parse tree node of interest, how he wants to capture it and
which run-time information he wants to see. Let us consider the stack implementation
program again from figure 5.6. Suppose we want to view all stack pop operations right
before they are actually executed. Then we would need the captureEvent/4 fact de-
picted in figure 5.14. This fact specifies if a specific C construct Construct with parse

1 captureEvent(Construct,Path,
2 stackPopOperation(Construct,Path),
3 event(time,pop(topOfStack,sizeOfStack))).

Figure 5.14: Using the captureEvent/4 predicate for instrumenting all stack pop op-
erations for the running example depicted in figure 5.6

9The predicate which the user of the system will need to specify is the intercept/3 predicate.
It serves as an interface which gets redirected to the captureEvent/4 predicate demonstrated here.
We will show the use of the intercept/3 predicate in section 5.5 where we explain in detail how to
use the platform.



5.4. THE BEHAVE ARCHITECTURE 103

tree path Path is a pop operation on a stack (we will explain the stackPopOperation

condition in section 5.4.4). Immediately before the pop operation occurs, we want to
insert instrumentation code that, upon program execution, will write the event specifi-
cation on line 3 to an execution trace file. Next to revealing the type of the event (pop),
we also capture the time the event occurred, what is on top of stack and the stack’s
size. Note that time, topOfStack and sizeOfStack are not logic variables here: we call
these keywords which represent the run-time values associated with a particular event.
They will be explained in the next paragraph.

Continuing the explanation of the predicate isBeforeAspect/1 specified in fig-
ure 5.13 on lines 4–7, we unify the Before variable to a before/5 functor (line 6). In
addition to the C construct and its parse tree path it holds a variable ResultingCode

(which will be bound at a later time), the condition that expresses When a construct
should be instrumented (in the example this is the stackPopOperation/2 predicate)
and as last argument holding a logic predicate transformWhat/4. Recalling the first
generateBeforeAspects/3 predicate in figure 5.13, for all found bindings of the
Before variable to the before functor we launch the generateBeforeAspect/4

predicate.

This predicate (defined in figure 5.13 on lines 8–13) extracts the before functor’s
arguments and launches the Condition argument. Recalling the example wanting
to capture all pop operations on the stack, this condition checks whether Construct
(a parse tree node representing a C construct) we are traversing right now fulfils the
stackPopOperation(Construct,Path) condition. If this evaluates to true, the Code

variable bound to the transformWhat/4 predicate is launched. Again referring to the
stack example, this predicate takes the event(time,pop(topOfStack,sizeOfStack))
specification and transforms it into the base language code needed to produce such a
specification at run-time. It decomposes the event specification into predicate names
(event and pop), commas and keywords (time and fcnName). For every type of compo-
nent it will create the C base language code needed to produce all these different com-
ponents. The resulting base language code captured in a behaveCodeList/1 functor
is then unified with the ResultingCode variable. As a last action, the generateAux2

predicate is launched on line 12. The resulting code is passed on to the declaration
that takes care of writing this base language code onto the output stream 10. The sec-
ond generateBeforeAspect declaration on line 14 is needed to not let this predicate
fail in generateBeforeAspects on lines 1–3. The complete implementation for the
transformWhat/4 predicate can be consulted in appendix B, but we won’t discuss it
here into further detail.

10We previously explained (in figures 5.11 and 5.12) the close collaboration between the
generateAux/3 predicate and the generateAux2/3 predicate. The latter is implemented by
having a declaration for each type of construct of the base language. Likewise there exists a declaration
generateAux2(BehaveCodeList,Path,Stream) for writing a list of generated code to the
output stream.
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Keywords We introduced the concept of a keyword to be able to reason not only
about occurred events but also about run-time values associated with that event. A
keyword represents a particular kind of value associated with a run-time event which
provides extra information about that event. Keywords must be specified in the base
language to be inserted into the source code. Consider the keywords from the running
example:

1 keyword(Construct,Path,time,"behaveLog(\"%i\",TIME++);").
2 keyword(Construct,Path,topOfStack,"behaveLog(\"%i\",stack[top-1]);").
3 keyword(Construct,Path,sizeOfStack,"behaveLog(\"%i\",top);").

Figure 5.15: Keywords denoting how associated run-time values

The keywords specified here can be retrieved at run-time by executing the code
specified here as a fourth argument of the keyword predicate. Through the transform-
What/4 predicate, this string is written at the right places in the generated file. The C
behaveLog function is defined as a macro in the file Behave.h. The reader can consult
appendix E to get a better idea of what the generated code looks like. However, the
code shown there is taken from one of the case studies which are presented later in
chapter 6.

5.4.4 The Reasoning Module
The reasoning layer captures those predicates that reason about the structure of base
language programs. Both application-specific predicates as well as predicates gener-
ally applicable to any C program reside in this layer. In figure 5.16 two representa-
tive predicates of this layer are shown. The first application-specific example is the
stackPopOperation condition we specified above to investigate all pop operations on
the stack. From the code from the stack running example depicted in figure 5.6 we see
on line 5 that the pop is implemented as a macro. Figure 5.16 shows on lines 1–2 the
corresponding reasoning predicate stackPopOperation.

The second example is a rule applicable to all C base language programs. It de-
scribes a very straightforward predicate to capture the entry of a function.

The functionEntry/2 predicate checks whether a certain C construct Construct
in the parse tree path Path is the first statement in a function body. If this is the
case, the parse tree path of such a statement would contain four nodes (This can be
easily deduced from 5.3: to reach the statement level, four parse tree nodes need to be
traversed). The fourth (and last) node holds the function definition (lines 4–5), while
the third node holds the function body (line 6). And Construct should be the first
statement in the body (lines 7–8).

In figure 5.17 we depict the expressionIn/3 predicate which finds any kind of
subexpressions of any C construct. This predicate is used to search for expressions of
interest in the parse tree representation of a certain expression (as will be demonstrated
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1 stackPopOperation(Construct,Path) :-
2 macroCallHasName(Construct, ’pop’).

3 functionEntry(Construct,Path) :-
4 listAt(4,Path,Function),
5 isFunctionDefinition(Function),
6 listAt(3,Path,Body),
7 compoundStatementHasStatements(Body,Statements),
8 first(Statements,Construct).

Figure 5.16: Example predicates of the BEHAVE reasoning layer

in the next chapter). Next to finding a certain expression, the predicate also keeps track
of the parse tree path to reach Expression from the Construct construct.

1 expressionIn(Construct,Expression,Path) :-
2 expressionInAux(Construct,Expression,[Construct],Path).

3 expressionInAux(Expression,Expression,Path, Result) :-
4 not(is_list(Expression)),
5 equals(Path,Result).

6 expressionInAux(List,Expression,Path,Result) :-
7 is_list(List),
8 member(Element,List),
9 expressionInAux(Element,Expression,[Element|Path],Result).

10 expressionInAux(Functor,Expression,Path,Result) :-
11 not(is_list(Functor)),
12 compound(Functor),
13 Functor =.. List,
14 list_tail(List,Tail),
15 expressionInAux(Tail,Expression,[Element|Path],Result).

Figure 5.17: The expressionIn/3 predicate

The recursive implementation of this predicate accentuates the power of using a
logic programming language: first an auxiliary predicate expressionInAux/4 is set
up (line 2) to hold one extra argument for creating the path variable and then three dis-
tinctive declarations are defined. Two of the declarations recursively call themselves.
Either Construct holds a list of C constructs in which case we recursively call the
auxiliary predicate on its elements (lines 6–9). Or Construct holds again a compound
expression, which necessitates a recursive call on all arguments (lines 10–15). The dec-
laration defined on lines 3–5 finds the expression and stops the recursion. Note the use
of the ‘=..’ Prolog predicate. It transforms a predicate of the form foo(arg1,arg2)

into the list [foo,arg1,arg2].
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5.4.5 The Temporal Logic Meta Interpreter

In section 5.2.4 we have motivated our choice to use a temporal logic programming
language as a medium for analysing program behaviour. Because temporal logic pro-
gramming languages provide additional logic operators for expressing temporal re-
lationships, they are particularly welcome when reasoning about events representing
run-time behaviour.

In section 5.1 we mentioned the implementation of the temporal logic meta in-
terpreter which forms an important component of the BEHAVE platform. A common
feature of most well-known temporal logic programming languages such as Templog
or Chronolog [Org94] is that they use as proof procedure a temporal version of a
resolution-based procedure. The temporal logic meta interpreter used in BEHAVE how-
ever is based on MTL (see section 5.2.4) and it is shown that MTL can be considered
as an instance of the constraint logic programming (CLP) scheme over a suitable al-
gebra [Brz95]. This is reflected in the meta interpreter’s Prolog implementation as it
employs the clp/bounds library in Prolog.

In section 5.2.4 we mentioned that in order to overcome the limitations of MTL
with regard to the use of temporal operators in the clause heads and bodies (because
of the unboundedness of the underlying logic) that in the meta interpreter time will be
bounded to the time stamps from the execution trace. In figure 5.18 the beginning of
time is set to 0 (the bot predicate), while the end of time is bound to the time stamp of
the last event recorded in the execution trace (the eot predicate on lines 2–4).

bot(0).

eot(Time) :-
findall(T, event(T, _), Ts),
max_list(Ts, Time).

Figure 5.18: Marking the timeline in the temporal logic meta interpreter for the events
in the execution trace

The temporal logic meta interpreter translates both an MTL program and an MTL
goal that needs to be proven (launching a query) into a corresponding classic Prolog
program which contains constraint predicates over time stamps. In order for the meta
interpreter to be able to consult the high-level events contained in the execution trace,
they must be of the form (this can also be deduced from the eot predicate above)
event(T, ). In its implementation, the meta interpreter attaches the variable T to a
predicate that needs to be proven. This clearly demonstrates the context abstraction (or
time abstraction) that is obtained by using this meta interpreter: the use of the temporal
operators lets a user abstract over time while the explicit use of a time stamp in logic
programming is hidden in its implementation.

The temporal logic meta interpreter provides the following operators: 2 (always),
� (sometimes), • (previous) and ◦ (next). Besides these, also operators from classical
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logic are used, such as ¬, ∧ and ∨. Below we show an excerpt of the implementation of
the meta interpreter to give an idea of how it is implemented using the Prolog bounds

library:

1 solve(A) :-
2 prove(A, 0).

3 prove(next(A), T) :- !,
4 NT #= T + 1,
5 prove(A, NT).

6 prove(previous(C, A), T) :- !,
7 C #> 0,
8 NT #= T - C,
9 prove(A, NT).

Figure 5.19: Implementation excerpt from the temporal logic meta interpreter

The solve predicate represents the interface of the meta interpreter. Suppose the
model predicate is defined which represents a temporal logic formula. Trying to prove
the model is done by launching the query ?- solve(model). In the implementation
of the meta interpreter, a prove predicate is implemented which has a declaration for
proving each kind of temporal operator. The declaration on lines 3–5 of figure 5.19
proves the clause A at the next point in time, which means that the clause A should
be proven at time point NT. And this time point is constrained to have the value T+1.
The #=/2 predicate is a constraint predicate from the bounds Prolog library. Likewise,
the prove declaration on lines 6–9 uses the #> and #= constraint predicates to prove
clause A at C previous time steps in the past. Note the use of the Prolog cut operator
in both prove declarations: the operator is used here to make sure that no alternative
declarations for the prove predicate are tried.

The prove predicate itself is mapped onto the generated high-level execution trace
by the following declaration:

1 prove(A, T) :-
2 A =.. [Predicate | Arguments],
3 append([Predicate, T], Arguments, Extended),
4 Term =.. Extended,
5 clause(Term, B),
6 writeln(Term),
7 prove(B, T).

Clause A is found in the repository where clauses have one extra argument (i.e.
a time stamp). This can be deduced from lines 2–5 where for the clause A the vari-
able T is added as first argument to its argument list. For example, at the level of the
temporal meta interpreter, a pop event is of the form event(push(Top,Size)). How-
ever, at the level of Prolog and in the execution trace, the same event is denoted e.g.
event(5,pop(Top,Size)). If such a clause is found, then it is first written to a stream
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and its body is proved. Other declarations of this predicate exist, but we do not explain
them here. For the complete specification of the temporal logic meta interpreter, the
reader is referred to appendix C.

By using these operators, we can describe temporal relations between events con-
tained in the execution trace in an even more expressive manner as opposed to when
you use traditional logic programming. However, although temporal logic formulas
have been successfully applied in the program verification domain, they are sometimes
hard to understand and difficult to formulate [Hol02a]. Therefore users not familiar
with temporal logic are still free to specify their models using plain Prolog rules.

5.5 A Four-step Recipe for Using BEHAVE

Having provided more insight into the internals of the BEHAVE platform and in par-
ticular the different logic layers, we emphasise in this section on how a developer can
use the platform for documenting and verifying a behavioural design invariant in a
lightweight manner.

Using the BEHAVE dynamic analysis platform for reasoning about particular be-
haviour of a system, a user freely determines the high-level events over which they
want to express a behavioural model of a design invariant. Although such large degrees
of freedom require more developer involvement, it lets us specify the actual behaviour
of a system in terms of high-level concepts rather than low-level implementation con-
structs.

Identification of High-Level Events

Specifying the Behavioural Model

Specifying Application-Specific 
Instances

Lightweight Consistency Verification

1

2

3

4

Figure 5.20: A Four-step Recipe for Using BEHAVE

To optimally exploit the BEHAVE platform during an application’s life-cycle, a
developer can therefore adhere to the four-step recipe depicted in figure 5.20. This
recipe was already very briefly introduced in the previous chapter in section 4.5. The
first step comprises the identification of the needed constituents of the high-level events
in order to reason about the specific behavioural design invariant we have in mind. On
top of that, in step 2 we specify our current understanding of the behavioural design
invariant by specifying desired or unwanted behaviour in a behavioural model. In step
3 we formulate the application-specific instances of the high-level events to link the
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needed domain concepts to the actual implementation. This goes hand-in-hand with
specifying the associated run-time values. In step 4 we perform the actual verification
of the behavioural model of the design invariant against the actual behaviour, i.e. the
high-level execution trace.

In subsequent sections, we detail each of the recipe steps identified in figure 5.20
using again the stack implementation from figure 5.6. We use BEHAVE to document
and verify basic invariant stack behaviour 11. An overview figure of the BEHAVE set
up is shown in figure 5.22.

5.5.1 Step 1: Identifying High-Level Run-Time Events
The first step in the recipe to verify invariant behaviour is to identify the needed con-
stituents of the high-level events over which the behavioural model will be expressed.
When thinking about the behaviour of a stack data structure, the operations pop, push
and initialise immediately spring to mind. Independent from a concrete implementa-
tion, the stack size and the element on top are other important stack-related concepts.
However, the concrete values of these concepts will vary over time as the stack is be-
ing used. So we will consider these as additional run-time information associated with
each of the high-level events representing stack operations.

Considering again the concrete stack implementation depicted in figure 5.6, we
could also have described the behavioural model directly in terms of calls to the func-
tion push or occurrences of the macro expansion pop. We have however argued in
chapter 3 that behavioural models consisting of assertions over low-level run-time
events do not match the requirement of being oblivious from source code constructs
as a clean separation between application-specific and conceptual instances is then not
realised. This would impede program development as making a change to the source
code would imply having to change the behavioural model accordingly.

5.5.2 Step 2: Specifying the Behavioural Model
The next step in the recipe consists of specifying the invariant behaviour in a model.
We would like to specify and later verify the following most basic invariant behaviour
of a typical stack data structure:

INVARIANT: Basic stack behaviour
The size of a stack increases by one whenever a new element is pushed on it; it
shrinks by one whenever an existing element is removed through the pop oper-
ation and a stack should always be properly initialised before it is being used.

Given MTL as a specification language as we explained in section 5.2.4, we expressed
our understanding of basic stack behaviour in the model depicted in figure 5.21

11This stack example was also used as an introductory example in De Roover et al [RMG+06]
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1 push(S) :- event(push(_,S)).
2 pop(S) :- event(pop(_,S)).

3 stackInitialised(S) :- event(init).
4 stackUsed(S) :- push(S).
5 stackUsed(S) :- pop(S).
6 stackOperation(S) :- stackUsed(S).
7 stackOperation(S) :- stackInitialised(S).

8 behaviouralModel :-
9 until(stackInitialised, ¬stackUsed),

10 2(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
11 2(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

Figure 5.21: Behavioural Model specifying invariant stack behaviour

The model itself can be found on lines 8–11. The second line of the extract (line 9)
states that until the stack is initialised, it may not be used. At line 10 the model states
that it must always be the case that whenever a push operation left the stack in a state
with size S, any previous stack operation should have left the stack in a state with size
S − 1. Note that this description of desired stack behaviour is truly oblivious from
any implementation-level construct. This makes the model easily reusable for evolved
versions of this program, but also for completely different stack implementations.

Lines 3–7 define the logic predicates used within these assertions. Lines 6 and
7 define that a stackOperation can either be the initialization or manipulation of
the stack. The push and pop operations are considered stack manipulators, which is
expressed by the stackUsed predicate in lines 4 and 5.

The first two lines of figure 5.21 link the predicates used in the behavioural model
to the high-level events observed during the execution of the program. We can see
that the high-level push and pop events in the execution trace record more information
about the state of the stack than is actually needed by this model specification. The first
recorded value is ignored as we are only interested in the second value which records
the size of the stack. By altering the definition of the push, pop and init predicates,
the behavioural model specification can be reused even when different run-time values
are associated with the high-level events in the execution trace. In the next step of the
recipe, a user of the platform has to specify how to observe these high-level events
during the execution of the program.

5.5.3 Step 3: Application-Specific Instances of High-Level Events

At this point in the four-step recipe, we have identified the constituents of the high-level
run-time events typically associated with a stack data structure. We have also specified
a model of its behaviour over these events expressed as a temporal logic program.
The high-level run-time events push, pop and initialize will be the constituents of the
execution traces against which we will verify the program’s behavioural model shown
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in figure 5.21. An example of such an execution trace is shown below, which shows
stack behaviour beginning with a stack initialisation followed by three pushes and a
pop operation.

1 event(0,init).
2 event(1.push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

Since the recorded execution trace consists of user-defined high-level run-time
events, developers have to specify which events should be intercepted during an appli-
cation’s execution and also how each event is recorded. Such a specification consists
of a set of intercept(When, What, RecordAs) declarations:

1 intercept(after,stackPopOperation,
2 event(time,pop(stackTop,stackSize))).

3 intercept(after,stackPushOperation,
4 event(time,push(stackTop,stackSize))).

5 intercept(before,stackInitOperation,
6 event(time,init)).

On the first line of the specification, we declare that all occurrences of a high-level
pop run-time event have to be intercepted. We also declare that these events must
be recorded in the execution trace as facts of the form event(time, pop(stackTop,

stackSize)). stackTop and stackSize are the run-time values associated with the
pop event. Occurrences of the push and initialise events are logged in a similar way.

The rules in the behavioural model and which high-level events to intercept is in-
formation that can be shared by different applications. For each specific program, we
only need to specify how to intercept the high-level events. Applied to the running
example, this for instance amounts to identifying the constructs in the application’s
source code that give rise to the high-level pop event. From the code depicted in fig-
ure 5.6, it is clear that the pop operation is implemented by code resulting from an
expansion of the pop C function macro on line 5. We can express this knowledge in
the stackPopOperation rule which we have previously discussed as an example pred-
icate of the reasoning layer (we will repeat it here on lines 1–2 for the sake of being
complete). Likewise we define stackPushOperation and stackInitOperation on
lines 3–6 which are both implemented as function calls.

Recall that BEHAVE makes an entire application’s parse tree available.
The stackPopOperation(Construct,Path) predicate is checked at each parse tree
node through the Construct variable, while the Path variable represents the path from
the tree’s root that leads to that node. Although the identification rules for the running
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1 stackPopOperation(Construct,Path) :-
2 macroCallHasName(Construct,’pop’).

3 stackPushOperation(Construct,Path) :-
4 functionCallHasName(Construct,’push’).

5 stackInitOperation(Construct,Path) :-
6 functionCallHasName(Construct,’init’).

example here only need to access attributes from the parse tree nodes themselves, Pro-
log’s full declarative reasoning power will be needed for the case studies in chapter 6
(for example through the use of the expressionIn predicate specified before in fig-
ure 5.17).

Retrieving the run-time information associated with each high-level event is done
through the specification of the keywords stackTop and stackSize as we have pre-
viously shown at the end of section 5.4.3.2. These run-time values will have to be
obtained by the execution of application-specific source code.

5.5.4 Step 4: Lightweight Consistency Verification

In the last step, a platform user can verify the consistency of a program’s actual be-
haviour with its desirable behaviour specified in the model. This is done by launching
logic queries against the recorded high-level execution trace. BEHAVE instruments the
source code of the application under investigation in order to record all occurrences
of the high-level run-time events specified in the behavioural program model. In or-
der to intercept occurrences of the high-level pop event, the platform relies on the
stackPopOperation logic rule to identify those source code constructs which give
rise to the pop event. The platform also relies on the definition of the stackTop and
stackSize keywords to obtain the run-time values associated with this event.

To verify the behavioural model specified in figure 5.21, the logic query

?- behaviouralModel.

has to be launched. In case of a verification failure, the temporal logic interpreter
prints the last event that was used in an attempt to prove the query. This information can
be used to either adapt the application to the model or the model to the application. The
generated execution traces consist of high-level events which makes manual inspection
in case of verification failures feasible. As discussed in section 5.3, the generated
execution traces contain in general fewer events since not every low-level event needs
to be recorded.

Having demonstrated all the constituents for using BEHAVE to verify basic stack
behaviour, we provide an overview in figure 5.22.
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1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

1  int *stack; 
2  int top; 
3  void init(int);
4  void push(int); 

5  #define pop() stack[--top]; 

6  void init(int size){ 
7    top = 0; 
8    stack = malloc(size * sizeof(int));} 

9  void push(int element){ 
10     stack[top++]=element;}

1 intercept(after,stackPopOperation,
2   event(time,pop(stackTop,stackSize))).

3 intercept(after,stackPushOperation,
4   event(time,push(stackTop,stackSize))).

5 intercept(before,stackInitOperation,
6    event(time,init)).

1  push(S) :- event(push(_,S)).
2  pop(S) :- event(pop(_,S)).
3  init(0) :- event(init).

4  stackInitialised(S) :- init(S).
5  stackUsed(S) :- push(S).
6  stackUsed(S) :- pop(S).
7  stackOperation(S) :- stackUsed(S).
8  stackOperation(S) :- stackInitialised(S).

9   behaviouralModel :-
10  until(stackInitialised,¬stackUsed),
11  ◻(when(push(S) ⋀ ●stackOperation(S1), S is S1+1)),
12  ◻(when(pop(S) ⋀ ●stackOperation(S1), S is S1-1)).

1 stackPushOperation(Construct,Path) :-
2    functionCallHasName(Construct,'push').
3 stackPopOperation(Construct,Path) :-
4    macroCallHasName(Construct,'pop').
5 stackInitOperation(Construct,Path) :-
6   functionCallHasName(Construct,'init').

1 keyword(stackSize, 'log("%i", top);').
2 keyword(time, 'log("%i", TIME++);').
3 keyword(stackTop, 'log("%i", stack[top-1]);').

Specific for this application

Verified against

Figure 5.22: Source code and corresponding behavioural documentation of a C stack
implementation.

5.6 BEHAVE Tool Support
As mentioned in section 5.1, the BEHAVE platform was originally part of the Visu-
alworks Smalltalk environment [cin]. It was implemented in a Prolog variant SOUL
(see section 5.2.3) which has a tight symbiotic relation with its implementation lan-
guage Smalltalk. In addition to representing regular Prolog programs, SOUL allows
Smalltalk expressions to be used in logic terms. A fully similar implementation of BE-
HAVE still exists in SOUL, however since we do not use SOUL’s reflective facilities,
we decided to port logic declarations to Prolog, partly also because of performance
issues 12.

However, BEHAVE is still being developed and used on top of the VisualWorks
environment. The C language parser is written in Smalltalk using the SmaCC parser
generator [BR] and SOUL tool support, such as the SOUL clause browser, is useful
when adding and browsing logic declarations of the BEHAVE platform. Figure 5.23

12Since Prolog is a fully supported programming language, it offers better lookup indexing schemes
on the arguments of logic declarations.
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Figure 5.23: A screen capture of BEHAVE tool support in Smalltalk

shows the tool support available within Smalltalk. The yellow browser window in
the figure shows the SOUL clause browser. On the left, the BEHAVE logic layers
are shown and the reification layer is selected. The logic fact representing the push

function definition is selected and its representation can be viewed in the lower part of
the browser.

The BEHAVE interface consists of the four smaller windows at the top of fig-
ure 5.23. Directories containing the source code location and the destination for the
generated and instrumented code can be set through a preferences pane. The be-
havioural invariant under study and the source code files to be parsed can be selected
through a pop-up menu.
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5.7 System Overhead
As with any code instrumentation system, the BEHAVE platform introduces some sys-
tem overhead. In BEHAVE the emphasis of computation lies on the pre-processing part
of the source code instrumentation. The source code is first being parsed and then rei-
fied into a logical parse tree representation. For performing the code instrumentation,
the logical parse tree structure is traversed. For each parse tree node, sophisticated
high-level checks are performed in parallel with regenerating the source code for that
particular node. These sophisticated checks consist of launching a logical query which
checks whether that parse tree node matches a high-level logical description which the
user defined and wants to see instrumented.

Although the pre-processing phase produces some computational overhead, it re-
sults in a high-level and selective execution trace. This is in contrast to instrumentation
approaches which use a fixed event grammar for example for logging all function en-
tries/exits and/or for logging all assignment statements.

intercepted included generate instru- # of events in
predicates keywords mented code execution trace

continuationEntry cntName 0.91 sec 9975 events
continuationExit

+ cntStack 1.05 sec
cntPointer

functionEntry fcnName 0.75 sec 16918 events
functionExit

Table 5.2: Comparing the time to generate the instrumented source code and execution
trace sizes for instrumenting all Pico function calls vs. instrumenting only continuation
calls

A consequence of moving a part of the computational overhead to the pre-proc-
essing phase is that the behavioural analysis performed on the execution trace after
instrumentation is simplified significantly. Because of the more compact execution
trace, a more high-level behavioural analysis approach can be applied. As the amount
of logged actual behaviour is reduced into only design invariant specific high-level be-
haviour, the reasoning can be focused on only the behaviour relevant for that particular
design invariant. Table 5.2 presents a simple comparison between instrumenting all
continuations and all function calls in Pico. The Pico input program for producing
these results is depicted in figure 6.30 13. The Pico program represents the application
of a quicksort algorithm on a table of 10 randomly chosen elements. The first row
in the table denotes the data when only the continuation entries and exits are instru-
mented together with the (statically determined) name of the continuation. The second

13These experiments were conducted for Pico 1.0 which totals about 8000 lines of C source code.
The machine used was a Macbook Pro 2,2 2.33Ghz, 2Gb internal memory.
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row shows the same experiment, but two extra keywords are added (representing run-
time values), to show the extra time it takes to instrument the source code. The last
row depicts the same data when all function entries and exits are logged with only the
name of the function as (statically determined) associated value. This demonstrates the
impact the sophisticated code instrumentation has on the amount of generated events.
While the pre-processing phase of instrumenting the source code takes slightly more
time, the difference in execution trace size is significant (also taking into account that
Pico uses much more macros than function calls for performance reasons). Although
the behavioural reasoning language would allow us to also compose high-level events
from low-level run-time events and decouple these events from concrete source code,
the process of doing so would become computationally more expensive.

5.8 Conclusions
In this chapter we presented the BEHAVE platform for documenting and verifying be-
havioural design invariants to support program development. Such design invariants
are documented in models which are expressed as high-level temporal assertions in
terms of high-level run-time events freely chosen by the user.

In this section we emphasise the most important conclusions made while presenting
the platform:

• A user of the platform can specify the constituents of the high-level events at a
conceptual level instead of low-level implementation constructs. Adopting such
an approach lets us specify a model of (un)wanted behaviour directly in terms
of high-level events. This makes the behavioural model oblivious to the source
code and makes it reusable with respect to evolved versions of the program under
investigation,

• BEHAVE adopts an aspect-like approach for selectively instrumenting the source
code (as seen in section 5.4.3.2). As a logic language is used as pointcut language
for selecting those program parts of interest, this allows the pointcut expression
to be oblivious as well from source code constructs; hence they can also be
reused for other adapted implementations,

• An important advantage of BEHAVE is the use of temporal logic programming
as specification language instead of plain temporal logic. Formulas in temporal
logic are sometimes difficult to express [Hol02a, DAC99], and when using a
temporal logic language, one can combine temporal operators in a higher-order
rule so as to reuse them later. This way there is no need to remember their
expression in plain temporal logic,

• Using the BEHAVE platform a user can specify what run-time events should be
recorded using a selective aspect-like approach. Consequently the lightweight
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verification is computationally less expensive because high-level execution traces
in general comprise fewer run-time events (see section 5.7).

• Due to the partiality a declarative specification formalism offers (as discussed
in section 4.3.2), only the behaviour relevant for a particular design invariant is
described in the design invariant model. Combined with a well-chosen execu-
tion scenario and a selective code instrumentation mechanism, this allows for a
lightweight goal-driven verification of parts of a larger program.

We would like to conclude with a note that the invariant stack behaviour we have
specified and verified in section 5.5 was only intended as an example for demonstra-
tive purposes as this is a more local form of behavioural design invariant (see chap-
ter 2). It does demonstrate however that the BEHAVE platform can be easily applied
for checking these local behavioural invariants as well. However, a great deal more
can be achieved, which will become clear in the next chapter where we use BEHAVE

to document and verify in a lightweight manner three cross-cutting and non-externally
verifiable behavioural design invariants of the Pico language interpreter.

Also the uniformity of the platform’s implementation offers clear advantages. As
both the structural meta model and the (partial) behavioural meta model are represented
as logic facts, dynamic and structural analysis can be easily combined. However, this
is not further explored within this dissertation (see future work in section 7.3).

5.9 Summary
In this chapter we presented a prototype platform named BEHAVE that supports the
proposed lightweight goal-driven verification approach presented in chapter 4. BE-
HAVE is implemented in the logic language Prolog and uses an aspect-like approach
for instrumenting programs written in C. The main components of the platform are the
reification module which holds a logic representation of a C base language programs
under investigation, the instrumentation module which combines a generation layer
with an aspect layer to produce selectively instrumented code and the temporal logic
meta interpreter to reason about high-level run-time events.

We started by pinpointing the history of BEHAVE. In section 5.2 we introduced
the logic meta programming set-up used for representing base language programs and
we elaborated on logic programming in general and its characteristics. As temporal
logic programming is used for analysing program behaviour, we explained the use
of this medium as well. In section 5.3 we presented BEHAVE as a dynamic analysis
platform, while an overview of the main constituents of the BEHAVE architecture was
given in section 5.4. In section 5.5 we outlined a four-step recipe on how to optimally
use the BEHAVE platform. Each of those steps were gradually introduced by applying
the four-step recipe for verifying basic invariant stack behaviour. In section 5.7 we
briefly discussed the system overhead the platform produces after demonstrating the
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BEHAVE available tool support in Smalltalk (section 5.6). We rounded off with some
conclusions.



Chapter 6
Using BEHAVE for Supporting Program

Development

In this chapter we demonstrate some sophisticated examples of how the BEHAVE plat-
form can be used for supporting program development by documenting and verifying
design invariants. In the previous chapter we introduced our platform BEHAVE and
we put forward a four-step recipe to optimally exploit the use of this platform. In this
chapter we apply this four-step plan for documenting and verifying three design invari-
ants of a fairly compact but technologically and algorithmically challenging case study
to demonstrate the full power of BEHAVE.

An important criterion for selecting a case study was the availability of knowledge
about design decisions and about the internals of the program. Even though this kind
of information can sometimes be found in documentation, it is better to interview the
original developer directly. Another requirement was that different versions of the
source code would be available as to study how invariant these design invariants really
are with respect to program evolution.

Exactly for those reasons we chose to use the Pico virtual machine as our exper-
imental basis. Pico is an interpreted programming language developed at the Vrije
Universiteit Brussel and is mainly used for teaching purposes [DM, DM00]. The Pico
interpreter incorporates automatic garbage collection, allows higher order functions,
supports meta programming and reflection and uses optimised tail-calls for implement-
ing iterative processes. Pico was initially created to teach the basics of computing to
first year science students other than computer science. It is still heavily used as an
extensive learning tool for teaching programming concepts. However, currently Pico
is mainly used in the second year of computer science to teach principles of inter-
preted languages and memory management. But Pico has also been adopted for doing
research-oriented experiments on prototype-based inheritance, code mobility and dis-
tribution [MDD04].

As for our needed requirements, Pico formed the ideal case study for applying our
BEHAVE platform. First, multiple versions of the Pico interpreter are available which
enables us to study important design invariants with respect to program evolution. Sec-
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ond, the original developer was available to give us insight in the main design decisions
that were undertaken when implementing Pico. This is important since it not only al-
lowed us to question the developer about which design invariants the Pico behaviour
should adhere to during program execution, but also to verify possible invariant viola-
tions found by BEHAVE.

Moreover since Pico is being used as a teaching vehicle for teaching concepts of
interpreted languages, we were inspired by the course’s final attainment level topics to
pinpoint Pico’s important design invariants. Indeed, one of the sub-goals of this disser-
tation is to use the BEHAVE platform in a teaching environment. For more information,
we refer to our future work in section 7.3.3 where we elaborate on this.

We start the chapter with a detailed explanation of the Pico language interpreter as
it is the case study we use throughout this chapter. We zoom in on the Pico memory
model as well as the execution model as they are prerequisites for explaining the Pico
design invariants we document and verify. In the next sections we demonstrate the
use of the BEHAVE platform by verifying behavioural Pico documentation, erroneous
garbage collection behaviour and tail recursion optimisation. Finally we end with a
conclusion.

6.1 The Pico Language Interpreter
The implementation of Pico was strongly inspired by the book from Abelson and Suss-
man [AS84]. Its goal was to establish a technological framework for uniting all notions
and concepts relevant for exposing students to the matter of building a compact lan-
guage processor. Pico is a fairly compact and portable virtual machine with a very
intuitive syntax. The basic Pico implementation (Pico 1.0) consists of an 8000 lines
Ansi C framework that incorporates a fully self-contained computation and storage
model. It is documented by a 500 line meta-circular implementation which closely
resembles the C version. Pico is a simple, dynamically-typed language with automatic
memory management similar to Scheme. It is properly tail-recursive and it is based on
first-class functions which are implemented as closures because of static scoping. As
Pico is being used in an educational and in a research context, its implementation has
heavily evolved over the past years. This resulted, next to occasional small refinements
of Pico 1.0, into serious architectural changes which led to different Pico versions be-
ing in use today. The Pico virtual machine has a number of advanced qualities which
we first explain in more detail as they will be needed to study the case studies in the
following sections.

6.1.1 The Pico Execution Model
Pico is an interpreter which relies on the concept of a continuation to represent the
different sub-computations needed to perform a certain computational task, such as
evaluating a Pico expression. A Pico continuation has a slightly different meaning than
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1 /*----------------------------------------------------------------*/
2 /* ASS */
3 /* expr-stack: [... ... ... DCT VAL] -> [... ... ... ... VAL] */
4 /* cont-stack: [... ... ... ... ASS] -> [... ... ... ... ...] */
5 /*----------------------------------------------------------------*/
6 static _NIL_TYPE_ ASS(_NIL_TYPE_)
7 { _EXP_TYPE_ dct, val;
8 _stk_pop_EXP_(val);
9 _stk_peek_EXP_(dct);

10 _ag_set_DCT_VAL_(dct, val);
11 _ag_set_DCT_DCT_(dct, _DCT_);
12 _DCT_ = dct;
13 _stk_poke_EXP_(val);
14 _stk_zap_CNT_(); }

Figure 6.1: The assignment(ASS) continuation - PicoEva.c

what is usually meant by a continuation. In literature, a continuation is usually referred
to as a representation of the entire execution state of a program at a certain point (i.e.
the entire call stack). In Pico, a continuation represents a part of program execution (i.e.
a part or unit of what is put on the call stack). During execution, these continuations are
placed on what we call the continuation stack, which represents the entire future of the
computation at hand. Continuations are implemented as pointers to C functions which
take no arguments nor return a value. This is demonstrated in figure 6.1 where the
source code of the ASS continuation is shown. On line 6, the signature of the function
denotes both as return type and parameter type the self-defined NIL TYPE which is
specified as the C native void type 1. A continuation may invoke other continuations
by placing them on the continuation stack. Arguments are not passed as parameters (as
can be seen from the function signature in figure 6.1 on line 6); instead they are passed
by placing them on a stack called the expression stack. The implementation view of
both stacks is depicted in figure 6.3. The heart of the Pico interpreter is a loop that
continuously executes the continuation located on top of the continuation stack.

Figure 6.2 shows a schema of the possible sequences in which continuations in
Pico are executed to evaluate a certain type of expression 2. To read the continuation
network, you start in the middle rectangle labelled EXP that symbolises the evaluation
of any expression. Depending on the type of expression that needs to be evaluated, a
different sequence of continuations needs to be executed. We will not explain the com-
plete continuation network here as this is out of the scope of this dissertation. We will
however consider one of the branches to help us explain the ASS continuation from fig-
ure 6.1. When we evaluate a variable definition in Pico, the DEF continuation is put on
the continuation stack (this is marked in figure 6.2 by the red rectangle). This continu-
ation creates a new data slot to store the new variable-value binding in the Pico global

1typedef NIL TYPE void;
2This continuation schema is an excerpt from the syllabus used in the second year Bache-

lor in Computer Science at the Vrije Universiteit Brussel. For more information, please visit
http://prog.vub.ac.be/˜tjdhondt/ICP2/HTM.dir/introduction.htm



122 CHAPTER 6. SUPPORTING PROGRAM DEVELOPMENT

Figure 6.2: The Pico continuation network

environment and already stores the name of the variable in it. This slot is then placed
on the expression stack to pass it on to the next continuation. The EXP continuation
is then pushed on the continuation stack followed by the ASS continuation, which we
can deduce from figure 6.2. The former evaluates the expression to be assigned to the
variable while the latter performs the actual variable-value assignment and stores the
slot in the Pico global environment.

The global environment or global dictionary represents the language environment
in which variables and functions are stored. It is implemented as a linked list of
variable-value pairs (or dictionary slots). Let’s have a closer look at the source code
of the ASS continuation in figure 6.1. The first five lines denoted here form the docu-
mentation of this continuation and represent the state of both stacks before and after
the ASS continuation is executed. The expected elements of the continuation and ex-
pression stack are written down between square brackets and separated by spaces. The
top of the stacks are located on the right side. The ‘...’ represent possible elements
on the stack that are of no importance to the assignment continuation as they are left
untouched during its execution. The expected configuration of the stack before the ex-
ecution of the continuation is located to the left of each arrow, while its configuration
after the execution is located to the right.

To get a feeling of how program execution works in Pico, we consider the fol-
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lowing example of evaluating the variable assignment x:4+7. The ASS continuation is
executed right after the expression ’4+7’ was evaluated by the EXP continuation. On
line 8, the temporary variable val is holding the value of that evaluation, which was
taken off the expression stack. The dct temporary variable on line 9 is holding a new
variable-value pair (a new dictionary slot) in which the variable name (x in our example
assignment) has already been stored by the DEF continuation as explained before. On
line 10 the resulting value of this evaluation is added to the dictionary value slot and
the global dictionary (represented by DCT ) is set as enclosing dictionary of the new
dct (line 11). Finally, the global dictionary is then set to point to the newly created
one on line 12 (which for our example results in the addition of the binding of x to
11 to the global dictionary). On line 8 the value is put again on the expression stack
after removing first the dct that was still stored on the expression stack 3. The final
statement on line 9 removes the ASS continuation from the continuation stack, allowing
the next continuation to be executed.

bottom Bottomtop top

expressions continuationsfree

Figure 6.3: Pico execution stacks - Implementation view

6.1.2 The Pico Memory Model

Pico memory consists of a heap where both the expression stack and the continuation
stack are stored. Conceptually we distinguish between two separate stacks for storing
the continuations and the other one for storing the Pico objects that are passed around
between the continuations. In practice however these stacks are stored in heap memory
in one array containing both stacks that grow towards each other, see figure 6.3.

The heap memory of Pico is managed by an automatic garbage collector. The
garbage collection algorithm can be triggered every time a chunk of memory is re-
quested for storing another object. If no sufficient memory is available, the garbage
collector will traverse the Pico environment not only to delete unused objects, but also
to move all objects still in use to the beginning of heap memory to defragment it. As
a result, memory chunks can be moved to a completely different address in the Pico
heap. This change of location happens transparently because the garbage collector also

3To represent the frequently performed stack operations in Pico on both the expression and the
continuation stack, five operators are used. Next to push and pop, peek, zap and poke are also used.
The peek operation just looks at the top of stack, a zap operation throws away the top of stack without
looking at what is on there and a poke is a combination of a zap followed by a push operation.
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updates any references to that chunk. However, this requires that all references to that
chunk are also stored on the heap, which is not always the case. In many parts of the
Pico implementation, references to chunks of memory on the Pico heap need to be
stored in a temporary variable inside a C function. As a result caution should be taken
with the use of temporary variables. Since the garbage collector may cause these refer-
ences to become invalid, we will elaborate on the design concerns of the Pico garbage
collector in section 6.4.

6.2 Supporting Development in Pico

In this chapter, we validate the BEHAVE platform by supporting development in Pico
through documenting and verifying design invariants. After consulting the original
developer of Pico about the main design decisions made during its development, a
representative set of three design invariants was identified: active behavioural program
documentation, garbage collection and tail recursion optimisation.

The first design invariant we consider in the next section is active behavioural pro-
gram documentation. It is not a true design invariant as it checks the consistency
between actual and documented program behaviour, but it presented us with an ini-
tial opportunity to test the BEHAVE platform. Furthermore, checking this particular
behaviour demonstrates the need for having precise run-time information available,
which justifies the choice of using a dynamic analysis approach (as discussed in chap-
ter 3). The goal of this initial experiment is to check the accurateness of the currently
available program documentation and update it accordingly if any inconsistencies are
encountered.

Garbage collection is the second design invariant that we investigate. This case
study provides an excellent example of a behavioural regularity which crosscuts the
source code of an application (as demonstrated in the introductory example in chap-
ter 1). On top of that, garbage collection represents a design concern which is non-
externally verifiable. Erroneous garbage collection behaviour results in unpredictable
and irregular system behaviour which only in some cases might lead to a severe sys-
tem crash. The goal here is to identify and pinpoint exactly those scattered source code
fragments that might lead to this particular kind of erroneous behaviour.

The third design invariant we document and verify is tail recursion behaviour.
Again here we demonstrate the need for precise run-time information for capturing
true tail recursion behaviour. As guaranteeing true tail recursion behaviour might be
of utmost importance for a virtual machine, we intend to verify with BEHAVE whether
this is the case in Pico.
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6.3 Case Study 1: Verifying Behavioural Program Doc-
umentation

In this section we present the results of an initial experiment performed using the BE-
HAVE platform 4. In this experiment, we verify the actual behaviour of the Pico in-
terpreter against available documentation. Although verifying behavioural documen-
tation does not represent a true design invariant, the run-time documentation of the
interpreter presented a unique opportunity to initially test our approach. First of all the
original developer documented the behaviour thoroughly in a non machine-verifiable
format. Second, many changes have been made to the interpreter over time. As this
interpreter, together with its behavioural documentation, is nowadays used to introduce
computer science students to the foundations of interpretation, it is important to have
reliable documentation conveying its dynamics in a concise but descriptive manner. As
it is uncertain whether the available documentation still accurately reflects the current
behaviour of the interpreter, we intend to identify possible discrepancies between them
with as goal to update the behavioural documentation accordingly.

6.3.1 Behavioural Program Documentation in Pico

The internals of the Pico interpreter are documented in a very consistent manner by the
developer. A well-defined sequence of continuation and expression stack manipula-
tions determine the operational semantics of each Pico expression. So the interpreter’s
documentation conveys how these stacks evolve during the evaluation of a program.
For each continuation, the documentation describes what the continuation stack and
expression stack are expected to look like before and after the execution of the contin-
uation. Consider the documentation of the ASS continuation again (the documentation
and implementation was shown and discussed above in section 6.1.1). Its behaviour is
documented in terms of expression and continuation stack states before and after the
execution of the continuation:

/*----------------------------------------------------------------*/
/* ASS */
/* expr-stack: [... ... ... DCT VAL] -> [... ... ... ... VAL] */
/* cont-stack: [... ... ... ... ASS] -> [... ... ... ... ...] */
/*----------------------------------------------------------------*/

This human-readable schema sufficiently documents the semantics of the assign-
ment expression as implemented by the ASS continuation. At a certain point during
the evaluation of a program, the Pico driver loop removes the assignment continua-
tion (ASS) from the continuation stack and executes it. The ASS continuation in turn
expects a variable environment (represented by the dictionary DCT) and the value that
is to be assigned VAL) to be on the expression stack. They are both needed to store a

4This experiment was published in 2006 in the proceedings of the International Conference on Pro-
gram Understanding [RMG+06]
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variable-value binding in the current environment. At the end of its execution, the ASS

continuation pushes the assigned value VAL on the expression stack, as Pico assignment
expressions evaluate to their right-hand side.

6.3.2 Using BEHAVE to Document and Verify the Behaviour of the
Pico Interpreter

Over the course of some years, several modifications to the Pico source code have been
made. We therefore wanted to verify whether the actual dynamics of the continuation
stack still matched the documented behaviour. For this experiment, we first had to
formalise the existing documentation and then we used BEHAVE to verify whether it
was still loyal to the actual behaviour of the interpreter. The general process overview
is depicted in figure 6.5.

expDocumented('ASS', ['VAL', 'DCT'|R], ['VAL'|R]).
cntDocumented('ASS', ['ASS'|R], R).

Before After

Before After

Figure 6.4: Logical Representation of Pico Behavioural Program Documentation

For formalising the existing documentation, we first transformed it into a format
readable by our platform. The documentation for the ASS continuation as shown above
is denoted by the logical facts defined in figure 6.4. The before and after stack repre-
sentations denoted in figure 6.4 are captured in Prolog lists with the first elements in
the lists representing the top of the stacks. The names of the continuations are quoted
because otherwise they would be regarded as Prolog logic variables as they start with
a capital letter. The documentation both for the expression stack and the continuation
stack is specified in figure 6.4. However in this experiment we describe and verify
the state of the continuation stack only. The experiment can be applied analogously to
the expression stack as well. The second logical fact denoted above thus specifies for
the ASS continuation the state of the continuation stack before and after its execution.
In Prolog, the partial list [’ASS’|R] matches any list starting with the element ’ASS’
while the rest of the list is bound to the variable R. We use this feature to represent the
source code documentation. Now we have this documentation available in a format
readable by our platform, we will use BEHAVE to verify it against the actual program
behaviour.

Step1: Identifying High-level Run-time Events

Following the four-step recipe outlined in the previous chapter in section 5.5, we first
have to identify the high-level events in terms of which we will document the be-
haviour. Following the original documentation, we chose to model the execution entry
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1 cntDocumented('ASS',['ASS'|R],R).
2 cntDocumented('REF',['REF'|R],['REF','APL'|R]).
3 ...

4 behaviouralModel :-
5   ◻(when(cntExecuted(Name,Before,After),
6          cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8    cntExited(Name,_,StackAfter),
9    ●tcntEntered(Name,_,StackBefore).

1 continuationEntry(Construct,Path) :-
2    inContinuation(Construct,Path),
3    functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5   inContinuation(Construct,Path),
6   functionExit(Construct,Path).

7 continuation(Construct) :-
8    isFunctionDefinition(Construct),
9    expressionIn(Construct,Expression,_),
10   manipulatesPicoStack(Expression).

1 keyword(cntName,C,P,Expansion) :-
2    continuationName(C,P,Name),
3    concat(['log("',Name,'");'],Expansion).

1 intercept(before,continuationEntry,
2    event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4     event(time,cntExited(cntName,cntPtr,cntStack))).

1 ...
2 event(60,cntEntered('ASS',13..1,['ASS','print','exit'])).
3 event(61,cntExited('ASS',13..1,['print','exit'])).
4 ...

1 /****************************************/
2 /* ASS                                  */
3 /* expr-stack: [... ... ... DCT VAL] -> */
4 /*             [... ... ... ... VAL]    */
5 /* cont-stack: [... ... ... ... ASS] -> */
6 /*             [... ... ... ... ...]    */
7 /****************************************/
8 static _NIL_TYPE ASS(_NIL_TYPE_)
9  { ... }

Figure 6.5: Source code and corresponding behavioural documentation extracts of the
Pico interpreter.

and exit of a continuation as a high-level event. The run-time values which we will
associate with this event are the configuration of the continuation stack before and af-
ter the execution of the continuation. The type of events which we will identify to
model this behaviour are cntEntered and cntExited. Figure 6.5(a) shows instances
of these events exactly as they will be captured later in the execution trace by executing
the instrumented source code. For both types of events, the name of the continuation
(denoted by cntName), the continuation pointer (cntPointer) and the state of the con-
tinuation stack (cntStack) represent the associated (run-time) values. These values are
specified by keywords (as defined in section 5.4.3.2) which are explained in more detail
in step 3.

Step2: Specifying the Behavioural Model

We can now specify our behavioural model as assertions in terms of the high-level
events we just identified. As the model specification abstract in figure 6.6 summarises,
we use logic facts of the form cntDocumented(CntName,StackBefore,StackAfter)

to document the configuration of the continuation stack before and after the contin-
uation’s execution. The first line of the model therefore specifies that at the start of
the ASS continuation’s execution, the ASS assignment continuation should be on top of
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the stack. After its execution, the continuation has to be popped (or zapped) from the
stack.

The assertions in our behavioural model need to state the following invariant:

INVARIANT: Active behavioural documentation
Whenever a continuation is executed, the configuration of the continuation stack
before and after its execution should match the ones documented in the model.

The actual behaviour model capturing this design invariant is denoted on lines
4–6 of figure 6.6. It holds a temporal relation between the cntExecuted and cnt-

Documented predicates. This relation declares that every time when a continuation has
been executed with the Before and After variables holding the continuation stack be-
fore and after its execution, there should be a documented continuation holding those
same continuation stack configurations. It is important to note that the Before and
After variables used in both predicates on lines 5 and 6 are represented by the same
variable in order to enforce that the observed complete stack configurations (line 5)
agree with their partial specifications (line 6). As we represented these stacks as con-
crete Prolog lists and partial Prolog lists respectively, we are relying on Prolog’s built-
in unification algorithm to perform the actual matching.

1 cntDocumented(’ASS’,[’ASS’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behaviouralModel :-
5 2(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

Figure 6.6: Specification of the behavioural model for active behavioural program
documentation in Pico

The final three lines of the extract in figure 6.6 link the predicates used in the
behavioural model to the high-level events that will be observed during the execution
of the Pico interpreter. This time, instead of just omitting unwanted information from
the recorded events, we are using the temporal operator •t to express that a continuation
has been completely executed once it is exited and was entered t time points ago in the
past.

Step3: Application-Specific Instances of High-Level Events

The third step in our recipe consists of a precise specification of the high-level events
used in the behavioural program model. The model from the previous section com-
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pletely relies on two high-level run-time events: the start and the ending of a con-
tinuation’s execution. More importantly, we are interested in the configuration of the
continuation stack at those moments in time. We therefore associate these values with
the cntEntered and cntExited run-time events. The high-level event specifications
shown in figure 6.7 declare that these run-time events have to be recorded as facts of the
form cntEntered(cntName,cntPtr,cntStack) and cntExited(cntName,cntPtr,

cntStack).

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

Figure 6.7: High-level event specification of a continuation entry and exit

The definitions of the continuationEntry and continuationExit predicates,
which the high-level event specifications rely on, are depicted in figure 6.8. They are
responsible for statically locating those constructs in the Pico interpreter’s source code
that represent the entry and exit points of a continuation. The continuationEntry

rule states that a Construct is the entry point of a continuation if it is part of a con-
tinuation and if it corresponds to an entry point of a function as well. As explained
in chapter 5, the Path variable represents the path from the program’s parse tree root
that leads to the parse tree node bound to the Construct variable. It is used by the
inContinuation clause denoted on lines 7–9 of figure 6.8 to check whether the pro-
gramming language construct is part of a continuation. The functionEntry clause
on line 3 checks whether Construct is the first C statement in a function body (this
predicate was explained in section 5.4.4). The continuation/1 predicate as spec-

1 continuationEntry(Construct,Path) :-
2 inContinuation(Path,Construct),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Path,Construct),
6 functionExit(Construct,Path).

7 inContinuation(Path,Construct) :-
8 last(Path,Construct),
9 continuation(Construct).

10 continuation(Construct) :-
11 isFunctionDefinition(Construct),
12 expressionIn(Construct,Expression,_),
13 manipulatesPicoStack(Expression).

Figure 6.8: Application-specific instances continuationEntry and continuation-

Exit
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ified on lines 10–13 captures the definition of a Pico continuation. Since we know
that continuations invoke other continuations and pass around arguments by respec-
tively manipulating the continuation and expression stack, we identify continuations
based on the semantical definition shown in figure 6.8 on lines 10–13. The predicate
states that a C code construct is a continuation if first of all it is a function and at
least one expression in the body of that function manipulates either the continuation
or the expression stack. Such expressions are identified in the Pico source code by the
manipulatesPicoStack(Expression) clause (see appendix D).

Besides the rules described up until now, there are three important keywords our
meta model specification relies on: the cntName, cntPtr and cntStack keywords.
As stated before in chapter 5, keywords are used to declare how the information as-
sociated with each high-level run-time event can be retrieved from an application’s
run-time state. The cntStack keyword is responsible for capturing the run-time con-
figuration of the continuation stack. It holds a piece of C code, which is tightly bound
to Pico’s internals, to walk over the continuation stack. We do not explain this key-
word here; we refer the reader to appendix D. Figure 6.9 shows the keywords cntName

1 keyword(cntName,C,P,Expansion) :-
2 continuationName(C,P,Name),
3 concat(["behaveLog("’,Name,’");"],Expansion).

4 keyword(cntPointer,Construct,Path,Result) :-
5 continuationName(Construct,Path,Name),
6 concat(["behaveLog(\"%i\",",Name,");"],Result).

Figure 6.9: The cntName and cntPointer keywords

and cntPtr. They differ from the keywords we have seen in the BEHAVE introduc-
tory example in the previous chapter. Instead of simply declaring the code it expands
to as a logic fact, these keywords are actually logic rules which are allowed to query
the application’s parse tree to obtain information that is to be incorporated in the ex-
panded source code. The cntName keyword shown on lines 1–3 in figure 6.9 obtains
the name of a continuation from a program’s parse tree since it is impossible to obtain
a static function’s name at run-time given Ansi C’s limited reflective capabilities. The
cntPointer keyword (lines 4–6) obtains the name of the continuation, but instead of
logging that name, the pointer for that continuation is logged at run-time. Note that,
because of the limited reflective capabilities of C, the same problem occurs for ob-
taining the state of the continuation stack through the cntStack keyword. In practice,
we obtain a representation of the continuation stack that contains the pointers of the
continuations instead of the continuation names as is needed for the lightweight ver-
ification against the documented stack representations. However, as we obtain both
the name of each continuation and its pointer through the cntName and cntPointer

keywords respectively, a logic rule is easily formulated to transform these pointers into
their corresponding names.
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Step4: Lightweight Consistency Verification

So as to verify whether the Pico interpreter indeed behaves as indicated by its docu-
mentation, we used the Pico interpreter to evaluate the Pico program as depicted in
figure 6.11 containing a representative set of Pico expression types. This well-chosen
execution scenario represents a Pico implementation of coroutines from Modula-2.
This way, we obtained high-level execution traces containing information about the
dynamics of the continuation stack. An example of such an execution trace is listed
in figure 6.10. Note that for simplicity reasons we depicted the transformed list repre-
sentation of the continuation stack (i.e. holding the names of the continuations instead
of their pointer) as was explained right above. We verified whether these traces con-

1 ...
2 event(60,cntEntered(’ASS’,13..1,[’ASS’,’print’,’exit’])).
3 event(61,cntExited(’ASS’,13..1,[’print’,’exit’])).
4 ...

Figure 6.10: Excerpt of an execution trace logging all continuation entries and exits

form to our model specification by launching the logic query ?- behaviouralModel.
By doing so, several interesting conflicts were found between Pico’s documented be-
haviour and the behaviour that was observed. One of them was located in the docu-
mentation of the REA continuation which is executed when an expression is read. The
documentation indicated that this continuation just takes off the top of the continuation
stack during its execution, while in reality the EXT and EXP continuations were placed
on top of the stack. Other discrepancies were found in the documentation of three
other continuations: EXp, INV and FCT. In the EXp continuation, EXP was used instead
of EXp 5. In the documentation of both the INV and FCT continuation, their auxiliary
continuations were wrongly depicted.

In addition, several naming inconsistencies were detected. The eval exp contin-
uation was for instance abbreviated in the documentation as EXP, but another continu-
ation already had this name. Such inconsistencies are very likely to confuse program-
mers and is especially troublesome for didactic purposes, such as students studying the
documentation. Upon interpretation of our verification results, we were able to adapt
the machine-verifiable behavioural documentation to the actual program behaviour.
Since this documentation is at least as descriptive as the original documentation in the
source code comments, the machine-verifiable documentation has now been adopted
as the official documentation of the interpreter. This allows the user to keep the doc-
umentation and source code in sync as their consistency can easily be verified after
future modifications to the interpreter.

5In Pico, a naming convention is used where all main continuations are denoted with three uppercase
letters (for example MAI), while auxiliary continuations which are used inside a main continuation are
denoted with one lowercase letter (MAi in the example).



132 CHAPTER 6. SUPPORTING PROGRAM DEVELOPMENT

{ newcoroutine(body()):
    { my_continuation: void;
      handler(value):
        if(is_continuation(value),
           my_continuation:= value,
           call({ hold: my_continuation;
                  value(continuation);
                  continue(hold, handler) }));
      call({ my_continuation:= continuation;
             handler(handler);
             body() }) };
  transfer(p, q):
    q(p);
  p: q: void;
  p:= newcoroutine(while(true, 
                         { display("ping", eoln);
                           transfer(p,q) }));
  q:= newcoroutine(while(true,
                         { display("pong", eoln);
                           transfer(q,p) })) ;
  transfer(p, p) }

1
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Figure 6.11: A well-chosen execution scenario: A Pico implementation of coroutines
from Modula-2

Evaluation

The experiment demonstrated that the introduction of high-level events in the inter-
preter’s behavioural program model resulted in machine-verifiable documentation that
was as declarative as the original. At the same time, the introduction of carefully se-
lected high-level events in the execution traces resulted in relatively compact traces
allowing for a more lightweight verification.

For this experiment, the interpretation of the verification results resulted in adapting
the behavioural documentation. However, also the actual behaviour might be wrong
and then the source code would have to be adapted. This approach shows us inconsis-
tencies between actual and wanted behaviour; it is left up to the user of the platform to
interpret what is causing this inconsistency.

Finally, we would like to conclude this evaluation with a side note. Although the
behavioural model of the Pico interpreter as presented here only expresses desirable
behaviour, we mostly use our verification platform to detect instances of undesirable
behaviour, which will become clear in the next case studies. To specify unwanted
behaviour, one must express the dynamic conditions leading to a crash or to a possible
code optimisation. In most cases this provides the user with direct access to those
places needed for correcting the discovered unwanted behaviour.
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Figure 6.12: Conceptual representation of heap memory before/after a garbage collect

6.4 Case Study 2: Verifying Garbage Collection
In this experiment we document a particular behaviour of the Pico memory model
dealing with automatic garbage collection 6. In section 6.1.2 we explained the Pico
memory model. The problem with garbage collection behaviour is summarised in the
conceptual representation depicted in figure 6.12. The picture shows a particular state
of heap memory before and after a garbage collection occurred. In the before schema a
limited amount of consecutive free slots (the white slots) are available and when mem-
ory would be requested to store for example a chunk of size 3, the garbage collection
algorithm would be triggered 7. The state of that same heap after the garbage collection
algorithm is triggered is depicted in the after schema. The algorithm moves all used
memory to the bottom of the heap in order to free and compact unused memory. As a
result the addresses of chunks of memory might change. This poses no problems for
Pico objects whose references are also stored on the heap. For temporary C variables
however, as such references are not stored as Pico variables, a garbage collect might
result in temporary variables that are referencing invalid locations (as shown in the
after schema in figure 6.12). Hence whenever the possibility of a garbage collection
exists, the temporary variables should always be restored before using them.

Obviously, we want to capture such behaviour and verify if the execution of Pico
exhibits such behaviour. This means that we need to detect situations where a garbage
collect occurs in between the assignment and use of a temporary variable.

Note that functional testing is insufficient here because such a test only fails if a
garbage collect actually defragments memory. Garbage collection is a concrete and

6This experiment has been previously published in 2006 in the proceedings of the International
Conference on Software Engineering and Knowledge Engineering [MRB+06]

7For storing a chunk of size 3 in heap memory, 4 consecutive free slots have to be avail-
able because a first extra slot needs to store the size of the chunk. For more in depth infor-
mation about the Pico memory model we refer to the syllabus of the Interpretation II course:
http://prog.vub.ac.be/˜tjdhondt/ICP2/HTM.dir/notes.htm
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difficult problem which is very time-intensive and for which standard debugging tech-
niques do not work. Depending on the actual memory consumption and organisa-
tion, such tests thus might fail or not, although the erroneous behaviour of a possible
garbage collect is always present. Therefore, we need to test the possible occurrences
of a garbage collect in between the assignments of and the references to a temporary
variable inside a C function. To this extent, we specified a model that captures this
particular kind of behavioural design concern and we will verify this model against the
actual program behaviour using the BEHAVE platform.

6.4.1 Using BEHAVE to Document and Verify Garbage Collection
in Pico

Figure 6.13 provides a general overview of the experiment. As explained in sec-
tion 6.1.1, the Pico implementation consists of many continuations which all represent
a particular part of program execution. As temporary variables might be used incor-
rectly within these continuations, we have to watch their actual behaviour within the
continuations.

Figure 6.13(b) shows an excerpt from the Pico source code. The execution of that
code results in the creation of an execution-trace (shown in figure 6.13(a)) that only
contains the observed behaviour in terms of high-level events. These high-level events
are used to verify the behavioural model of the invariant specified in figure 6.13(c).
Finally, figure 6.13(d), 6.13(e) and 6.13(f) specify how the high-level events need to be
recorded during the execution of the program. We further explain the details of each
of these parts throughout the remainder of the section.

Step1: Identifying High-Level Run-Time Events

The first step of our recipe comprises the identification of the high-level run-time events
needed to verify the garbage collection invariant. Having analysed the problem de-
scription, we need to specify the following high-level run-time events:

• When might a possible garbage collect occur (possibleGC),

• When is a temporary variable used (tempUsed),

• When is a temporary variable being assigned a value (update or initialisation)
(tempUpdated).

Indeed, we want to detect occurrences of possible garbage collection events in between
the assignment and use of temporary variables holding a reference to the Pico memory.
In figure 6.14 some instances of these events are shown as they will appear later in the
execution trace. Besides a time stamp, the needed associated values are the name of
the continuation and the name of the temporary variable.
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1 keyword(time,C,P,"log(\"%i\", TIME++);").

2 keyword(cntName,C,P,Expansion) :-
3    continuationName(C,P,Name),
4    concat(["log(\"",Name,"\");"],Expansion).

5 keyword(var(V),C,P,Expansion) :-  
6   concat(["log("",V,"\");"],Expansion.)

7 keyword(assVar,C,P,Expansion) :-
8    assignmentToVariable(C,Var),
9    keyword(var(Var),C,P,Expansion).

1  tempVariable(Construct,Path) :-
2     identifierHasSymbol(Construct,Var),
3     declaredVariableAs(Path,Var,'_EXP_TYPE_').

4  gcPossible(Construct) :-
5    macroCallHasName(Construct,'_mem_claim_').

6  peekExp(Construct) :-
7     macroCallHasName(Construct,'_stk_peek_EXP_').

8  varAssignment(Construct,Path) :-
9    assignmentHasLeftExpression(Construct,Var),
10   tempVar(Var).

11 tempVarUsed(Construct,Path) :-
12   tempVariable(Construct,Path),
13   not(leftValue(Construct,Path)),
14   inContinuation(Path).

1  possibleGc(Cont) :-
2     event(possibleGc(Cont)).
3  tempUsed(Cont,Var) :-
4     event(tempUsed(Cont,Var)).

5  safeToUseTemp(Cont,Var) :-
6     ●ttempUpdated(Cont,Var),
7     ¬♢-tpossibleGc(_).

8  unsafeUseOfTemp(Cont,Var) :-
9    tempUsed(Cont,Var),
10   ¬safeToUseTemp(Cont,Var).

11 model(Continuation(C),variable(V)) :-
12   ♢unsafeUseOfTemp(C,V).

1 intercept(before,gcPossible,
2    event(time,gcPossible(cntName))).
3 intercept(after,or(peekExp,popExp),
4     event(time,tempUpdated(cntName,macroVar))).
5 intercept(after,varAssignment,
6    event(time,tempUpdated(cntName,assVar))).
7 intercept(instead,tempVarUsed,
8    event(time,tempUsed(cntName,varName))).

1 static _NIL_TYPE_ COX(_NIL_TYPE_) {
2   _EXP_TYPE_ env, val;
3   _TAG_TYPE_ tag;
4   _stk_pop_EXP_(val);
5   _stk_peek_EXP_(env);
6   tag = _ag_get_TAG_(env);
7    if (tag == _ENV_TAG_)
8      { _env_load_(env);
9        _stk_push_EXP_(val); }
10   else
11     _error_str_(_ATC_ERROR_, con_STR); }

1 event(89,tempUpdated('COX',identifier(val))).
2 event(90,tempUsed('COX',val)).
3 event(91,tempUpdated('COX',identifier(env))).
4 event(92,tempUsed('COX',env)).
5 ...
6 event(96,possibleGc('_env_load_')).
7 event(97,tempUsed('COX',val)).

Figure 6.13: Using the BEHAVE platform for verifying Pico memory management
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1 event(89,tempUpdated(’COX’,val)).
2 event(90,tempUsed(’COX’,val)).
3 event(91,tempUpdated(’COX’,env)).
4 event(92,tempUsed(’COX’,env)).
5 ...
6 event(96,possibleGc(’_env_load_’)).
7 event(97,tempUsed(’COX’,val)).

Figure 6.14: Excerpt of an execution trace logging possible garbage collects and tem-
porary variable usage

Step2: Specifying the Behavioural Model

We can now specify an invariant model using temporal logic clauses that describes the
desired as well as the undesired behaviour of the program with respect to these events.
In section 6.1, we described the Pico memory model and we explained that a possible
garbage collect event should not occur between the assignment (which is either an up-
date or an initialisation) and the use of a temporary variable.

INVARIANT: Garbage Collection
After a possible garbage collection occurred, you should not use temporary
variables, unless they have been updated.

Expressed as unwanted behaviour, we will look for all uses of temporary vari-
ables that do not obey this last statement. The model that specifies this behaviour
is shown in figure 6.15. Lines 1-4 introduce additional abstractions in terms of the
events in the execution trace, i.e. possibleGC and tempUsed 8. On lines 5–10 the con-
cepts of unsafe and safe uses of temporary variables are defined as the logic assertions
unsafeUseOfTemp and safeToUseTemp respectively. This last assertion (defined on
lines 5–7) states that it is safe to use a temporary variable Var within a continuation
Cnt if within t time steps in the past from now, the variable Var has been updated (or
given an initial value if it did not have a value yet) and if within that time frame no
possible garbage collection could have occurred. The unsafeUseOfTemp(Cnt,Var)

assertion on lines 8–10 captures the unsafe use of a temporary variable that states the
complement. The actual model of undesirable behaviour can be seen on lines 11–12
and expresses the wish of finding a variable V within a continuation C that is used in an
unsafe way, as it is defined on lines 8–10.

Step3: Specifying Application-Specific Instances

In this step of the recipe we describe how we can specify which events have to be
intercepted at run-time and how they should be recorded. This consists of specifying

8Note that we also need an identical abstraction for tempUpdated(Cnt,Var). The declaration
implementing this abstraction can be consulted in appendix D.
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1 possibleGc(Cont) :-
2 event(possibleGc(Cont)).
3 tempUsed(Cont,Var) :-
4 event(tempUsed(Cont,Var)).

5 safeToUseTemp(Cont,Var) :-
6 •ttempUpdated(Cont,Var),
7 ¬3−tpossibleGc(_).
8 unsafeUseOfTemp(Cont,Var) :-
9 tempUsed(Cont,Var),

10 ¬safeToUseTemp(Cont,Var).

11 behaviouralModel(Continuation(C),variable(V)) :-
12 3unsafeUseOfTemp(C,V).

Figure 6.15: Specification of the behavioural model for verifying garbage collection in
Pico

what source-code constructs raise these high-level events and how associated run-time
values need to be extracted in order to be recorded with the event. The intercept dec-

1 intercept(before,gcPossible,
2 event(time,gcPossible(cntName))).
3 intercept(after,or(peekedExp,poppedExp),
4 event(time,tempUpdated(cntName,macroVar))).
5 intercept(after,varAssignment,
6 event(time,tempUpdated(cntName,assVar))).
7 intercept(instead,tempVarUsed,
8 event(time,tempUsed(cntName,varName))).

Figure 6.16: High-level event specification of garbage collection behaviour

larations denoted in figure 6.16 describe the high-level events that need to be recorded.
All declarations are of the form intercept(When,What,RecordAs). Consider lines
1–2 where we declare that the high-level event of a possible garbage collect is recorded
in the execution trace as event(time,possibleGc(cntName)). More precisely, this
event will be recorded right before the execution of the source code construct that is
identified by the gcPossible assertion. This assertion is defined by the logic clause on
lines 4–5 in figure 6.17. The gcPossible declaration specifies that the high-level event
of a possible garbage collect is triggered by the execution of the source-code construct
Construct if it is a C macro call that is named mem claim 9.

Furthermore, as usual we also log the time at which the event occurred to be able to
reason about the order of events and the name of the continuation in which the possible
garbage collect event occurs (through the keyword cntName).

9There are three other macro calls in the Pico implementation besides mem claim that can trigger
the garbage collection property: stk claim , mem claim SIZ and mem claim STR . We did
not include all of them here because their assertions are very similar to the mem claim assertion;
they are included in appendix D



138 CHAPTER 6. SUPPORTING PROGRAM DEVELOPMENT

On lines 3–6, the same event (event(time,tempUpdated(cntName,varName))) is
described by two different logic declarations. This is because the high-level event of a
temporary variable being (re-) assigned a value can manifest itself in the source code in
various ways. More specifically, this event is triggered by the execution of the source
code construct that is specified by the peekExp, the popExp or the varAssignment

assertions. Another difference between the two clauses has to do with the different
run-time values that are needed. These are represented by the keywords (macroVar and
assVar. They all represent variable names, but depending on the type of C construct
they should be retrieved in a different way. On lines 1–3 of figure 6.17, a temporary

1 tempVariable(Construct,Path) :-
2 identifierHasSymbol(Construct,Var),
3 declaredVariableAs(Path,Var,’_EXP_TYPE_’).

4 gcPossible(Construct) :-
5 macroCallHasName(Construct,’_mem_claim_’).

6 peekExp(Construct) :-
7 macroCallHasName(Construct,’_stk_peek_EXP_’).

8 varAssignment(Construct,Path) :-
9 assignmentHasLeftExpression(Construct,Var),

10 tempVar(Var).

11 tempVarUsed(Construct,Path) :-
12 tempVariable(Construct,Path),
13 not(leftValue(Construct,Path)),
14 inContinuation(Path).

Figure 6.17: Application-specific instances for the garbage collection design invariant

variable is defined by the tempVariable/2 predicate. In essence, some source code
construct is a temporary variable if it is an identifier with name Var and if it has been
declared as being of type EXP TYPE . The tempVarUsed rule on lines 11–14 states that
a temporary variable (denoted by the variable Construct) has been used if first of all
it is a temporary variable (line 12), if it is used within a continuation (line 14) and if it
is not part of the left side of a variable assignment (line 13), as in that case it is updated
rather than used. The needed associated values of the high-level events mainly have to

1 keyword(var(V),C,P,Expansion) :-
2 concat(["log("",V,"\");"],Expansion.)

3 keyword(assVar,C,P,Expansion) :-
4 assignmentToVariable(C,Var),
5 keyword(var(Var),C,P,Expansion).

Figure 6.18: The var(V) and assVar keywords

be obtained by the execution of application-specific source code. From the intercept
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predicates previously defined, the name of the continuation denoted by the keyword
cntName and the time keyword appear in every high-level event specification. As
we have previously explained and used these keywords in our previous case study in
section 6.3, we reuse them here in the high-level specifications necessary for verifying
garbage collection behaviour.

The two keyword declarations specified in figure 6.18 are new: they are used in
combination to be able to capture the name of a variable which is the left-hand part of
an assignment statement. Note that we need two identical rules to the rule denoted on
lines 3–5 for the keywords macroVar and varName; we refer to appendix D for their
specification.

Step4: Lightweight Consistency Verification

After instrumenting the Pico source code, it gets executed according to a well-chosen
execution scenario 10 which creates the execution trace containing the high-level run-
time events that occurred during execution. Consequently the following logic query is
launched:

?- behaviouralModel(Function,Variable).

A failure of this query would mean that no variables can be found that are used in an
unsafe way, which is exactly what is wanted. If the query does not fail, it will return
those continuations together with the names of temporary variables that are used in an
unsafe way inside that continuation. Three occurrences of unsafe usage of variables
were found in two different continuation functions. Let us consider one of the two re-
sults: continuation(’COX’), variable(val). This result means that the temporary
variable val in the COX continuation is used in an unsafe way.

If a garbage collect event occurred that triggers a heap defragmentation during
the execution of the COX continuation, the system would exhibit serious erroneous be-
haviour or even trigger a system crash. The C code fragment representing this function
is depicted in figure 6.19. On line 9 the temporary variable val is used and apparently
the statement on line 8, a call to the function env load might trigger a garbage collect
(as can be seen on the previously shown execution trace in figure 6.14 on line 6).

Evaluation

This case study is a prime example of what we have referred to before as a cross-
cutting behavioural invariant of a system. Garbage collection as a design invariant
cannot simply be locally annotated in the code (like embedded assertions as discussed
in section 2.4.1) as it depends on behaviour that is spread around the entire system.

10As mentioned for our first case study, any particular scenario that lets Pico evaluate a representative
member of different expressions so that most of the continuations are executed will do. Consequently
we used the same input scenario as for the previous case study. This Pico input program is depicted in
figure 6.11
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1 static _NIL_TYPE_ COX(_NIL_TYPE_) {
2 _EXP_TYPE_ env, val;
3 _TAG_TYPE_ tag;
4 _stk_pop_EXP_(val);
5 _stk_peek_EXP_(env);
6 tag = _ag_get_TAG_(env);
7 if (tag == _ENV_TAG_)
8 { _env_load_(env);
9 _stk_push_EXP_(val); }

10 else
11 _error_str_(_ATC_ERROR_, con_STR); }

Figure 6.19: The COX continuation from PicoNat.c

And although the system developer knew this concern all too well, taking into account
this particular behaviour during development, without any automated support, proved
to be unfeasible. On top of that, trying to track this kind of behaviour manually after
finalising the implementation proved to be extremely time-consuming. To emphasise
the difficulty of the garbage collection design invariant, we refer to future work (sec-
tion 7.3.4) where we propose to treat garbage collection as an aspect.

Using BEHAVE for documenting and verifying a second design invariant of Pico
proved to be already more practical and faster. Because of concept reuse, one can more
easily identify and use the constituents of the high-level events. Reuse of application-
specific instances was possible (the continuation predicate defining the concept of a
continuation) and reuse of keywords for retrieving the associated values. For supporting
other design invariants in Pico, a user can consult appendix D as it documents all
reusable predicates for reasoning about the behaviour of Pico.

6.5 Case Study 3: Verifying Tail Recursion Optimisa-
tion

In this section a third Pico design invariant is studied: the principle of tail recursion
optimisation. In this experiment we intend to verify whether the Pico virtual machine
exhibits real tail recursion behaviour, i.e. whether stack usage is optimised for a tail
recursive function. Recursion in general is a method of defining functions in which the
function to be defined is applied within its own function body. Tail recursion is a spe-
cial case of recursion that can be easily transformed into an iteration. As an example,
consider the Pico implementation of the tail-recursive version of the factorial function
depicted in figure 6.20. The last expression in the body of the iterate function (line 5)
consists of a recursive call. To make a distinction between recursion and tail recursion,
let us consider the regular recursive version of the same factorial function depicted in
figure 6.21 yielding the same results as the tail-recursive version. The main difference
between both versions lies in the lines of code where the function recursively calls
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1 factorial(n):{
2 iterate(n,acc):
3 if(n=0,
4 acc,
5 iterate(n-1,acc*n));
6 iterate(n,1)};

Figure 6.20: Tail-recursive factorial function

itself. In the recursive version the result of the call to factorial should afterwards be
multiplied by n (line 4 in figure 6.21), while in the tail-recursive version (line 5 in fig-
ure 6.20) the result of evaluating the function body reduces to evaluating the recursive
call. Therefore tail recursion can be regarded as an optimisation of recursion: in the
context of an interpreter implementation there is no need to save and restore the envi-
ronment around a tail-recursive call: the result of calling the function reduces to the
result of the tail-recursive call.

1 factorial(n):
2 if(n=0,
3 1,
4 n*factorial(n-1));

Figure 6.21: Recursive factorial function

6.5.1 Tail Recursion in Pico
In section 6.1.1, we elaborated on the Pico execution model and we explained that it
consists of a collection of continuations which represent a particular part of the Pico
evaluation process. Continuations are placed on the continuation stack whenever their
execution is needed.

In Pico, the return continuation RET represents that part of program behaviour that
restores the environment (in Pico an environment is referred to as a dictionary) that
was saved on the expression stack. A return continuation is placed on the continuation
stack whenever an environment needs to be restored after a certain evaluation has taken
place for which another environment was needed. Consider for example when a func-
tion application needs to be evaluated, the body of the function needs to be evaluated in
the dictionary representing the environment at function creation time augmented with
the bindings of the formal parameters to the actual parameters. But after creating that
dictionary as the environment to evaluate the function body in, the former environment
needs to be restored again. Figure 6.22 denotes the source code of the return continua-
tion RET. This function takes the previously saved dictionary from the expression stack
and puts the stored value -representing the result of evaluating the last Pico expression-
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1 /*----------------------------------------------------------------*/
2 /* RET */
3 /* expr-stack: [... ... ... DCT VAL] -> [... ... ... ... VAL] */
4 /* cont-stack: [... ... ... ... RET] -> [... ... ... ... ...] */
5 /*----------------------------------------------------------------*/
6 static _NIL_TYPE_ RET(_NIL_TYPE_)
7 { _EXP_TYPE_ val;
8 _stk_pop_EXP_(val);
9 _stk_peek_EXP_(_DCT_);

10 _stk_poke_EXP_(val);
11 _stk_zap_CNT_();
12 _ESCAPE_; }

Figure 6.22: The return continuation (RET) from PicoEva.c

on top of the expression stack. When a function is tail-recursive, all what needs to be
done after obtaining the result of a recursive call is returning that result. Nothing needs
to be evaluated anymore, so the dictionary is no longer needed. Without optimising
tail recursion, many unnecessary returns would have to be executed, as demonstrated
in figure 6.23 by calculating factorial(4). This call structure is absolutely essen-

1 factorial(4)
2 iterate(4,1)
3 iterate(3,1*4)
4 iterate(2,4*3)
5 iterate(1,12*2)
6 iterate(0,24)
7 restore(env) & keep 24 on stack
8 restore(env) & keep 24 on stack
9 restore(env) & keep 24 on stack

10 restore(env) & keep 24 on stack
11 => return(24)

Figure 6.23: Non-optimised tail-recursive call structure

tial for a recursive function since at every restore step the environment is needed for
evaluating the multiplication by n.

In this experiment, we document tail recursion behaviour in order to be able to iden-
tify possible places in the code where tail recursion is not yet optimised. Note that this
experiment clearly demonstrates the need for behavioural information as identifying
tail recursion optimisation amounts to investigating the continuation stack’s run-time
state at very specific moments during program execution. Formulated more precisely,
we need to investigate which continuation is on top of the stack at the time a RET con-
tinuation is placed on the stack. In case the continuation on top of the stack is a RET
continuation as well, then tail recursion is not optimised.
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1 installReturnInContinuation(Cntname,Topcnt,Stack) :-
2   event(pushReturnOnCntStack(Cntname,Topcnt,Stack)).
3 installReturnInContinuation(Cntname,Topcnt,Stack) :-
4   event(pokeReturnOnCntStack(Cntname,Topcnt,Stack)).

5 continuationExecute(Name,Pointer) :-
6  event(continuationEntered(Name,Pointer,_)).

7 possibleTailRecursionOptimization(Cntname) :-
8   continuationExecute('RET',Pointer),
9   ♢- installReturnInContinuation(Cntname,Pointer)).

10 model(Cntname) :-
11   sometime(possibleTailRecursionOptimization2(Cntname)).

1 pushRetCnt(Something) :- 
2 macroCallHasName(Something,'_stk_push_CNT_'),
3 macroCallHasArguments(Something,Arglst),
4 member(identifier('RET'),Arglst).

5 continuationEntry(Something,Path) :- 
6 functionEntry(Something,Path),
7 inContinuation(Path).

1 keyword(cntName,C,P,Expansion) :-
2    continuationName(C,P,Name),
3    concat(['log("',Name,'");'],Expansion).

4 keyword(Something,Path,topCnt,Result) :- 
5   equals(Result,"
6   _CNT_TYPE_ cnt;
7   _stk_peek_CNT_(cnt);
8   log(\"%i\",cnt);
9   };").

1 intercept(before,pushRetCnt,
2   event(time,pushReturnOnCntStack(cntName,topCnt))).

3 intercept(before,pushRetCnt,
4   event(time,pokeReturnOnCntStack(cntName,utopCnt))).

5 intercept(before,continuationEntry,
6    event(time,cntEntered(cntName,cntPtr,cntStack))).

1 event(2268,cntEntered('BND',221108,[221108,142116,209544,10072])).
2 event(2269,pushReturnOnCntStack('BND',221108,142116)).
3 ...
4 event(2891,pokeReturnOnCntStack('BND',221108,142116)).

1  static _NIL_TYPE_ BXG(_NIL_TYPE_)
2 { _EXP_TYPE_ arg, exp, nbr, val; 
3   _UNS_TYPE_ ctr, siz;
4   _stk_claim_();
5   _stk_pop_EXP_(val);
6   _stk_pop_EXP_(nbr);
7   _stk_peek_EXP_(arg);
8   siz = _ag_get_TAB_SIZ_(arg);
9   ctr = _ag_get_NBU_(nbr);
10   if (ctr < siz) 
11     { ...

Figure 6.24: Using the BEHAVE platform for identifying tail recursion optimisation

6.5.2 Using BEHAVE for Verifying Tail Recursion Optimisation
We again use our BEHAVE platform by applying the four-step recipe as demonstrated
in section 5.5. An overview of the complete BEHAVE set-up for tail recursion optimi-
sation is depicted in figure 6.24. We explain all needed components one by one in the
following subsections.

Step1: Identifying High-Level Run-time Events

As a first step we identify the concepts needed to reason about tail recursion behaviour.
For detecting needed tail recursion optimisation, consecutive calls of the return contin-
uation have to be detected. This is achieved by capturing run-time events which place a
return continuation on the continuation stack (placeReturnOnContinuationStack).
Next to identifying this high-level event, the associated run-time values play an impor-
tant role as well. We capture at run-time what is on top of the continuation stack right
before placing the return continuation on the stack.

Step2: Specifying the Behavioural Model

In this experiment we document and verify in a lightweight manner the following de-
sign invariant:
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INVARIANT: Tail Recursion Optimisation
When a return continuation is placed on the continuation stack, there should
not be another return continuation on top of the continuation stack

Using the concepts we defined in section 6.5.2, this model seems very straight-
forward in that we only need to watch when a return continuation is placed on the
continuation stack and at that time check the top of the stack. The model for this de-
sign invariant is specified in figure 6.25. The installReturnOnContinuationStack

1 installReturnOnContinuationStack(Cntname,Topcnt) :-
2 event(pushReturnOnCntStack(Cntname,Topcnt)).
3 installReturnOnContinuationStack(Cntname,Topcnt) :-
4 event(pokeReturnOnCntStack(Cntname,Topcnt)).

5 possibleTailRecursionOptimisation(Cntname) :-
6 sometime(and(installReturnOnContinuationStack(Cntname,TopOfStack),
7 TopOfStack=’RET’)).

Figure 6.25: The behavioural model for capturing tail recursion optimisation

declarations on lines 1–4 define an extra abstraction over both stack operations events
push and poke that can place a continuation on the continuation stack. The behavioural
model describing the design invariant on lines 5–7 declares that in the body of a con-
tinuation with name Cntname, at some point during program execution, a RET continu-
ation is placed on the continuation stack and that at that time there already is a ’RET’

continuation on top of the stack. Note that we again specify the unwanted behaviour
such that execution can identify those places where we might be able to optimise the
unwanted behaviour. If at some point tail recursion is not optimised, we would get
as a result the name of a continuation Cntname in which tail recursion needs to be
optimised.

However, an implementation detail forces us to slightly adapt the behavioural model.
Because of the limited reflective capabilities of Ansi C, it is impossible to directly re-
trieve the name of a static function at run-time when you have only the pointer to the
function available (this was previously explained in section 6.3.2). So on line 7 in fig-
ure 6.25, the TopOfStack variable can never be equal to ’RET’ as its holds a pointer
instead of a string. Instead we use the model shown in figure 6.26 by using an ad-
ditional high-level run-time event continuationExecute. This predicate is identical
to the continuationEntered predicate from the first case study. We provide an ad-
ditional name abstraction to make our intent of looking for a function to be executed
more clear. This model specifies the need for tail recursion optimisation if, during pro-
gram execution the RET continuation is executed (this retrieves the pointer of the RET

continuation) and sometime before that (sometime in the past), a RET continuation is
placed on top of the stack. The link between both entities is provided by having the
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1 possibleTailRecursionOptimisation(Cntname) :-
2 continuationExecute(’RET’,Pointer),
3 sometime(-,installReturnOnContinuationStack(Cntname,Pointer)).

Figure 6.26: The adapted behavioural model

same variable name Pointer in the rules on lines 2 and 3 so they have to be unified
with the same value. We base ourselves on the fact that a continuation placed on the
continuation stack is awaiting execution at a later point in time.

Step3: Specifying Application-Specific Instances

In step 3 we describe which events have to be intercepted at run-time and how they
should be recorded. This entails both the specification of what source-code constructs
raise these high-level events and how associated run-time values need to be extracted.
In the intercept predicates specified in figure 6.27, the application-specific instances of
the high-level events are mapped to their descriptions. The first two intercept rules on

1 intercept(before,
2 pushRetCnt,
3 event(time,pushReturnOnCntStack(cntName,topCnt))).
4 intercept(before,
5 pokeRetCnt,
6 event(time,pokeReturnOnCntStack(cntName,utopCnt))).
7 intercept(before,
8 continuationEntry,
9 event(time,cntEntered(cntName,cntPointer,cntStack))).

Figure 6.27: High-level events specification for tail recursion optimisation

lines 1–6 capture the action of placing a RET continuation on the continuation stack.
In Pico this can be done either by pushing something onto the stack or using the poke
operation 11. We need to distinguish between these two operations because of the
different run-time values associated with them. In case of the poke operation, we need
to look at what is right below the top of stack because there is still another continuation
on top that is of no interest to us (i.e. that will be removed by the poke operation). On
lines 3 and 6 we use the keywords topCnt and utopCnt to retrieve the top of stack, or
what is right under the top of the continuation stack.

The application-specific instance, pushRetCnt shown in figure 6.28 on lines 1-
4, refers to a C construct which is a macro call stk push CNT in the Pico code with
argument the identifier ’RET’. The pokeRetCnt predicate is identical (see appendix D).

We introduced two new keywords, topCnt and utopCnt, to obtain as run-time val-
ues the continuation on top of the continuation stack or, in the case of a poke operation,

11A poke operation basically replaces the top of the stack with another continuation
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1 pushRetCnt(Construct) :-
2 macroCallHasName(Construct,’_stk_push_CNT_’),
3 macroCallHasArguments(Construct,Arglist),
4 member(identifier(’RET’),Arglist).

5 continuationEntry(Construct,Path) :-
6 functionEntry(Construct,Path),
7 inContinuation(Path).

Figure 6.28: Application-specific instances for tail recursion optimisation

the continuation right below the top. The topCnt keyword is shown in figure 6.29. As

1 keyword(topCnt,Construct,Path,Result) :-
2 equals(Result,
3 ";{/* cntStackpeektop Pico 1.0 */
4 _CNT_TYPE_ cnt;
5 _stk_peek_CNT_(cnt);
6 behaveLog(\"%i\",cnt);
7 };").

Figure 6.29: The topCnt keyword

the utopCnt is very similar, we did not include it here (see appendix D). The other run-
time values that were used in the model, like cntName, cntPointer, were reused from
other case studies. Appendix E contains a generated code excerpt of instrumenting
Pico according to the intercept predicates defined for this experiment.

Step4: Lightweight Consistency Verification

As discussed in the previous chapter, performing a dynamic analysis of a system re-
quires the execution of the instrumented system and hence also input data is needed
to trigger particular behaviour of the problem at hand. In the previous two case stud-
ies it was sufficient to let Pico evaluate a collection of different expressions in such a
way that it covered a broad range of continuations (the well-chosen execution scenario
used for this purpose was depicted in figure 6.11). In this case study, we are concerned
with very specific behaviour, so we must provide a sufficiently complex tail-recursive
function. We chose as execution scenario to apply the quicksort algorithm as depicted
in figure 6.30. For this particular concern, the application of the quicksort algorithm
represents a well-chosen execution scenario as this function possesses both a recursive
and a tail-recursive call (lines 15 and 16 respectively). Hence we executed Pico by let-
ting the quicksort algorithm sort a table of 10 randomly generated numbers (see lines
17–20). By launching the query

?- sometime(possibleTailRecursionOptimization(Cntname)).
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{QuickSort(V,Low,High):{
    Left : Low;
    Right : High;
    Pivot : V[(Left+Right)//2];
    until(Left > Right,
                   {while(V[Left] < Pivot, Left := Left+1);
                    while(V[Right] > Pivot, Right := Right-1);
                    if(not(Left > Right),
                          {Save : V[Left];
                           V[Left] := V[Right];
                           V[Right] := Save;
                           Left := Left+1;
                           Right := Right-1},
                           false)});
                    if(Low < Right, QuickSort(V, Low, Right), false);
                    if(High > Left, QuickSort(V, Left, High), false)};
V[10]:0;Low:1;High:size(V);
x:1;y:1;
while(not(x>size(V)),{y:= (y+4253) \\ 1237;V[x]:=y;x:=x+1});
QuickSort(V,Low,High);

1
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16
17
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19
20

  

Figure 6.30: Pico implementation of the quicksort algorithm

we want to find out if sometime during program execution tail recursion activity is tak-
ing place without it being optimised, i.e. behaving like normal recursion. If anything is
found, the name of the continuation where the non-optimised tail recursion takes place
is returned.

The query did not return any results, meaning that tail recursion looks fully op-
timised as it should be. Having browsed through the source code examining those
parts where a RET continuation is placed on the stack confirmed our results: a check
was added to each of those places to see if the top of stack contains already a RET

continuation. If so, a second RET was not placed on the stack.

Evaluation

Although checking the model did not return any results, an important inefficiency was
discovered that unknowingly led to non-optimised tail recursion. The behavioural
model as specified in figure 6.26 consists of one main run-time event shown in fig-
ure 6.31. This predicate provides an abstraction for either a push or a poke operation

1 installReturnOnContinuationStack(CntName,Topcnt) :-
2 event(pushReturnOnCntStack(CntName,Topcnt)).

3 installReturnOnContinuationStack(CntName,Utopcnt) :-
4 event(pokeReturnOnCntStack(CntName,Utopcnt)).

installReturnInContinuuation abstraction

Figure 6.31: The installReturnOnContinuationStack/2 predicate

of the RET continuation on the continuation stack. We tested this predicate separately:
?- sometime(installReturnInContinuation(CntName,Top)).
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12 results were found that correspond to 12 pushes of the RET on the continuation stack,
and indeed, in none of these cases the RET continuation was found on top of the stack.
However, for every result found, the same BXG continuation was found on top of the
stack with Top = 142260. The code below presents one of those results:
event(380, pushReturnOnCntStack(BND, 221120, 142260))

CntName = ’BND’
Top = 142260 ; %% BXG continuation

We reused the cntStack keyword that was previously defined for the first case study,
to be able to view the state of the entire continuation stack at run-time. Having added
the extra keyword to the above predicate to accommodate an extra variable, the meta
interpreter returned the following result 12:
event(4722,pushReturnOnCntStack(BND,’BXG’,

[BXG,RET,BXG,RET,BXG,RET,BXG,_print_EXP_,exit_loop]))

Cntname = ’BND’
Topcnt = ’BXG’
CntStack = [BXG,RET,BXG,RET,BXG,RET,BXG,_print_EXP_,exit_loop];

This result demonstrates a strange alternating behaviour of the RET and the BXG con-
tinuation. The BXG continuation represents a part of the execution of a Pico begin

statement. In Pico, such a statement is either denoted as begin(expr1,...,exprn)

or as {expr1;...;exprn} and defines a construct to group a sequence of expressions
to be evaluated. In the quicksort implementation of figure 6.30, a begin statement is
used on lines 6–16.

The BEG and BXG continuations are two closely collaborating continuations evalu-
ating such a Pico begin statement (both continuations are listed in figures 6.32 and
6.33 respectively). BEG represents the entry of evaluation by checking if there is at
least one expression (see line 7 in figure 6.32) in the begin statement. If so, a loop is
set up to evaluate all expressions by pushing a number on the expression stack (line
11 of figure 6.32) and BXG on the continuation stack (line 14). BXG thus represents a
continuation that is executed as many times as there are expressions to evaluate inside
the begin statement. The alternating execution of BXG and RET refers to a call to BXG

when the last expression of a begin statement was just evaluated. If not, the code
on lines 9–14 of figure 6.33 code would be executed and then the EVL continuation
would appear on the continuation stack, which is not the case. This leads us to the
important conclusion that, when we evaluate a tail-recursive function in Pico, and the
recursive function call is the last expression of a begin statement (like the situation of
our chosen execution scenario quicksort.pco), that tail recursion does not work as it
should, i.e. it is not optimised! The check added in the source code of the BND con-
tinuation 13 function (line 6 in figure 6.34) has no effect for intercepting tail recursion

12The stack result depicted here is an adapted version for the sake of clarity; the actual stack rep-
resentation contains pointers instead of the names of the continuation functions. This was previously
explained in section 6.3.2.

13The BND continuation (see the code excerpt in figure 6.34) takes care of that part of evaluation of
binding the formal parameters to the actual parameters. A loop also needs to be used here depending on
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1 static _NIL_TYPE_ BEG(_NIL_TYPE_)
2 { _EXP_TYPE_ arg, exp; _UNS_TYPE_ siz;
3 _stk_claim_();
4 _stk_peek_EXP_(arg);
5 siz = _ag_get_TAB_SIZ_(arg);
6 if (siz == 0)
7 { _stk_poke_EXP_(_VOID_);
8 _stk_zap_CNT_();
9 return; }

10 _stk_push_EXP_(_ONE_);
11 exp = _ag_get_TAB_EXP_(arg, 1);
12 _stk_push_EXP_(exp);
13 _stk_poke_CNT_(BXG);
14 _stk_push_CNT_(EVL); }

Figure 6.32: The BEG continuation from PicoNat.c

1 static _NIL_TYPE_ BXG(_NIL_TYPE_)
2 { _EXP_TYPE_ arg, exp, nbr, val; _UNS_TYPE_ ctr, siz;
3 _stk_claim_();
4 _stk_pop_EXP_(val);
5 _stk_pop_EXP_(nbr);
6 _stk_peek_EXP_(arg);
7 siz = _ag_get_TAB_SIZ_(arg);
8 ctr = _ag_get_NBU_(nbr);
9 if (ctr < siz)

10 { _stk_push_EXP_(_ag_succ_NBR_(nbr));
11 exp = _ag_get_TAB_EXP_(arg, ctr+1);
12 _stk_push_EXP_(exp);
13 _stk_push_CNT_(EVL);
14 return; }
15 _stk_poke_EXP_(val);
16 _stk_zap_CNT_();

Figure 6.33: The BXG continuation from PicoNat.c

here, because the BXG continuation is blocking the check. The problem is caused by the
non-optimised code of both the BEG and the BXG continuation. In the case where a Pico
begin statement contains only one expression, there is no need to set up a loop and
push the BXG continuation on the continuation stack. Similarly, and more importantly,
to avoid having to go back to the BXG continuation in case of the last expression, we
have to eliminate the last call of BXG. We will rewrite the code of the BXG continuation
and replace it by the source code shown in figure 6.35. We replace the if (ctr <

siz) check with the check on line 4 to make sure that a loop is set up only if there
is more than one expression left to evaluate. If there is only one expression left, we

how many variables need to be bound. In case of the last binding (check on line 4), all bindings need
to be added to the enclosing environment and in that new environment the body of a function needs to
be evaluated. After that evaluation, the former environment needs to be restored again, which explains
storing the dictionary on the expression stack (line 8) and placing a RET on the continuation stack (line
10).
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1 static _NIL_TYPE_ BND(_NIL_TYPE_)
2 { _EXP_TYPE_ act, arg, dct, exp, fun, frm, nam, nbr, par, val, xdc;
3 ...
4 if (ctr == siz)
5 { ...
6 if (cnt != RET)
7 { _stk_peek_EXP_(exp);
8 _stk_poke_EXP_(_DCT_);
9 _stk_push_EXP_(exp);

10 _stk_push_CNT_(RET); }
11 _stk_push_CNT_(EXP);
12 _DCT_ = dct; }

Figure 6.34: Tail recursion check in the BND continuation from PicoEva.c

1 static _NIL_TYPE_ BXG(_NIL_TYPE_)
2 {...
3 exp = _ag_get_TAB_EXP_(arg, ctr+1);
4 if (ctr+1 < siz) %% If there is more than one statement left to evaluate
5 { _stk_push_EXP_(_ag_succ_NBR_(nbr));
6 _stk_push_EXP_(exp);
7 _stk_push_CNT_(EVL);
8 return; }
9 _stk_zap_EXP_();

10 _stk_push_EXP_(exp);
11 _stk_poke_CNT_(EVL); }

Figure 6.35: Optimisation of the BXG continuation from PicoNat.c

can reduce the result of evaluating the begin statement to the result of evaluating the
last expression of that begin statement (lines 9-11 of figure 6.35), which is exactly
what is needed for eliminating the blocking of the tail recursion check. We remove the
collection of expressions (i.e. the arguments of the begin statement) contained in the
begin statement (on line 9 of figure 6.35 they are removed from the expression stack)
as they are no longer needed. Consequently, the last expression of the begin statement
is pushed on the expression stack and we have it evaluated by replacing BXG by EVL

on the continuation stack (the poke operation on line 11). A similar optimisation is
performed in the BEG continuation (this code excerpt is not shown here).

After performing the BEG and BXG optimisations, the design invariant capturing
Pico’s behavioural program documentation (see section 6.3) was used to automatically
update the documentation of both the BEG and BXG continuation.

6.6 Conclusions

We have come across some important observations while conducting these case stud-
ies:
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• Using the BEHAVE platform on a particular case study to document and verify
several design invariants creates an easy to use plug-and-play environment for
reasoning about the behaviour of a program. A small investment needs to be
made at first to define the keywords to retrieve the associated run-time values
and the rules for expressing the application-specific instances. But once they are
defined, you can start reusing the concepts easily for intercepting other parts of
the dynamics of your program.

• Because the user herself can specify only those high-level run-time events needed
for reasoning about a particular design invariant, a high-level compact execution
trace is created. As a consequence, the trace contains concise and to-the-point
behavioural domain knowledge of the design invariant at hand which already
reveals a great deal of information on its own. In addition to this, analysing
program behaviour becomes computationally less-expensive as such a trace in
general comprises fewer events.

• Using BEHAVE by plugging in defined concepts and by running simple queries
on the high-level run-time events does not only verify the behaviour of a de-
sign invariant, it can also reveal a great deal about a design invariant’s domain
around it. In the case of verifying the behavioural documentation (the first de-
sign invariant that was verified), some naming inconsistencies were discovered
which are equally important to remove as adapting non up-to-date documenta-
tion because they are very likely to confuse users of the system too. As for the
tail recursion case, we discovered a non-optimised BEG continuation by simply
watching the run-time values for specific tail recursive behaviour.

• Although this lightweight verification approach cannot prove the correctness of
a program with respect to the invariants because it is based on dynamic analysis,
it can take advantage of well-chosen execution scenario’s that are relevant to
particular invariant behaviour. Although invariants are cross-cutting an entire
system, they do address one specific behavioural concern that is often triggered
by a particular execution scenario. Hence this might create an extra opportunity
to focus analysis on parts of a larger program.

In addition to these observations, each of them validated the following important
claims we made in our previous chapters:

• The simple stack example from the previous chapter demonstrated that BEHAVE

can also be easily used for the lightweight verification of local invariants such as
the ones discussed in chapter 2. An example is the verification of invariant stack
behaviour.

• Verifying garbage collection as a design invariant clearly expresses the need to
be able to reason about behavioural cross-cutting concerns and not only about lo-
cal behavioural invariants. The garbage collection model is behaviourally cross-
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cutting in the sense that multiple points of program execution need to be inter-
cepted. Depending on the order of events and on the associated run-time values
a certain pattern adheres to the model or not.

• In comparison to functional testing frameworks such as unit testing [Ham04],
our approach offers the possibility to test an invariant model that exhibits non-
externally verifiable behaviour. The model we specified for the lightweight ver-
ification of the garbage collection invariant can lead us to situations that might
result in erroneous behaviour or even a system crash. So errors do not have to
actually occur in order to be detected. An additional consequence of this is that
it provides a way to obtain a high degree of test coverage although only one
execution trace is examined.

• Studying tail recursion as a design invariant really validates our claims for need-
ing behavioural information to reason about invariants in software. Tail recursion
is a pure dynamic concept which can only be intercepted when executing your
program.

Having documented and verified three representative design invariants of a techni-
cally and algorithmically complex software system, further development of this sys-
tem is partially automated with respect to these invariants. They are made explicit in
a high-level behavioural specification which is loosely coupled with the source code.
This makes them oblivious to source code adaptations but verifiable in a lightweight
manner throughout an application’s lifetime.

6.7 Summary
In this chapter we validated the use of BEHAVE by applying it to a fairly small but a
technically and algorithmically complex case study, namely the Pico language inter-
preter. Pico presented an excellent opportunity to validate our platform: the original
developer was still around so he could provide us with the expert knowledge we needed
to be able to perform these case studies. In the first section we elaborated on our Pico
case study to introduce the most important concepts needed as these design invari-
ants capture expert knowledge about a system. Therefore explanation about the pico
execution and memory model was first provided .

We continued our chapter by applying the four-step recipe to three Pico behavioural
design invariants. The first invariant supported the creation of active behavioural docu-
mentation about the Pico execution model. Existing documentation provided by the de-
veloper was first transformed into a machine readable format and then verified against
the actual program behaviour. For the second case study, garbage collection in Pico
was discussed in section 6.4 and its behaviour was also documented and verified in
a lightweight manner. In section 6.4 we specified a behavioural model for identifying
correct tail recursion behaviour, an important design invariant of an optimised language
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interpreter. For each of those case studies we identified some problem points which
could be used for improving Pico in one way or another. We ended with a conclusion
by pointing out our most important observations made while applying BEHAVE and
by summarising how these particular Pico design invariants validated our previously
made claims about our proposed approach.





Chapter 7
Conclusion and Future Work

In this dissertation, we proposed a goal-driven approach for the documentation and
lightweight verification of design invariants. We have demonstrated that our approach
supports the development of technologically and algorithmically complex software
systems.

In this chapter we present the conclusions of this dissertation. We begin by sum-
marising the work presented, after which we emphasise the main contributions of this
work. We end with a presentation of future research directions.

7.1 Summary
Software developers responsible for adapting and evolving an existing implementation
of software must grasp the underlying behavioural dependencies implicitly imposed
by making certain design decisions about the software at hand. This is problematic be-
cause these so-called behavioural design invariants are often not known to developers
involved in a software project. Even if they are known, they are often only available
implicitly in the software. This severely impedes program development as making a
change might result in violating unknown behavioural constraints which ultimately
leads to unreliable software.

Therefore, a developer should be offered a behavioural specification language in
which system-specific design invariants can be specified and hence be made explicit.
Such a specification formalism should support event-based specifications which take
the order of events into account due to the non-externally verifiable behaviour design
invariants might exhibit. And, as the specification should also be used for documenta-
tion purposes, the specification language should preferably be descriptive.

As such behavioural regularities might be cross-cutting an entire system, manu-
ally detecting those places in the source code which trigger the invariant behaviour is
unfeasible. It can even become an impossible task as ‘guessing’ associated run-time
values is not always possible. This implies the need for a causal link between the spec-
ification and the source code to make the specifications machine-verifiable. However,

155
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to support practical use during program development, a tight coupling between the de-
sign invariant specification and the source code should be avoided so as not having to
adapt the specification every time a change to the code is being made.

Considering existing program analysis approaches and their suitability for checking
design invariants, heavyweight formal verifiers such as model checking are difficult to
use in this context. Formal methods analyse system models and prove the correctness
of a model with respect to particular properties. However, for technically and algo-
rithmically complex software, the true challenge lies at the code level, and a correctly
proven system model does not contribute to its technical realisation. Another difficulty
to overcome stems from the possibly cross-cutting behaviour of a design invariant. The
applied analysis should allow to focus on parts of a larger program to support practi-
cal use. Static analysis approaches are therefore less suited as they provide no means
to focus the analysis on a particular behavioural design concern not directly localised
in a component of the programming language at hand. And most existing dynamic
analysis approaches represent behaviour as fixed low-level implementation constructs,
which makes analysing a high-level description computationally more expensive and
hence impractical.

In this dissertation we proposed an approach for supporting program development
of technically and algorithmically challenging systems by making design invariants
explicit and at the same time machine-verifiable. The most distinctive feature of our
proposed approach is the use of temporal logic programming as executable behavioural
formalism for making design invariants explicit. One of the main contributions of this
formalism is the high level of abstraction it offers. Next to the declarative feature
offered by a logic language which allows the use of high-level concepts, abstractions
over time structures are offered by the use of temporal operators. This provides a
design invariant model which is at a high level of abstraction.

Moreover, a causal link between the design invariant specification and the source
code is provided allowing a lightweight verification. This is realised by using a dy-
namic analysis approach which adopts an aspect-like code instrumentation mechanism
by means of logic meta programming for obtaining high-level run-time events. By
choosing a well-defined execution scenario, only those high-level events of interest are
recorded which are relevant to the design invariant under investigation. This makes the
approach goal-driven and hence applicable to parts of a larger program.

To validate and verify the practical feasibility of our proposed approach, we con-
structed the BEHAVE platform. BEHAVE is a lightweight verification platform which
makes design invariants explicit for base language programs written in Ansi C. BE-
HAVE implements all the needed requirements as formulated in section 4.1. To opti-
mally exploit the use of the platform, we have identified a four-step recipe and demon-
strated its use by applying it on a running example.

The practical application of BEHAVE was illustrated by supporting the develop-
ment of the Pico virtual machine, an interpreter for a fairly simple but technologically
sophisticated programming language. Pico presented us with an excellent case study
as the developer was available to inform us about the practical design decisions made
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when Pico was initially developed. We supported a representative set of three important
design invariants of Pico: active behavioural program documentation, garbage collec-
tion and tail recursion optimisation. Further development in Pico is now supported as
these design invariants are made an explicit and verifiable part for future adaptations
of Pico.

7.2 Conclusion
In this dissertation we proposed and implemented a goal-driven approach for support-
ing the development process of technically and algorithmically sophisticated software
by supporting design invariants in a lightweight manner. Design invariants represent
underlying behavioural dependencies at the code level implicitly imposed by making
certain design decisions about the software at hand. Our approach applies temporal
logic programming as a behavioural formalism in which these design invariants are
first made explicit. A causal link between the design invariant specification and the
source code is supported allowing a lightweight verification. Our approach is based on
dynamic analysis supporting selective code instrumentation by means of logic meta
programming. Combining the selective instrumentation with a well-chosen execu-
tion scenario, only those high-level events that are relevant to the design invariant un-
der investigation are recorded. Lightweight verification then amounts to consistency
checking of the temporal assertions (which comprise the undesired design invariant
behaviour) against the high-level execution trace.

In the remainder of this section we briefly summarise the main contributions of this
dissertation.

Identification of Design Invariants
Within the context of this dissertation we studied invariants in software and how in-
variants are specified. Two main categories of invariants exist depending on the two
fundamental ways behaviour is specified: state-based invariants and event-based in-
variants. The former are specified as constraints on a program’s state or data, while
the latter constrain non-externally verifiable operations or events in software. We have
identified a type of invariants called design invariants which are primarily event-based
and they take the order of the events at run-time into account. They represent underly-
ing behavioural dependencies implicitly imposed by making certain design decisions
about the software at hand:

Definition
A design invariant is a behavioural regularity of the design of a program that is
not aligned with the structure of the program.

They represent the invariants of a design, which are the specific characteristics
that limit its future adaptation, flexibility and evolvability [ABE+04]. These type
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of system-specific invariants are considered problematic as they are usually implic-
itly present in software, they might be cross-cutting an entire application and they
are non-externally verifiable. In the context of technically challenging systems with
several algorithmically complex components, this may lead to underlying behavioural
dependencies which severely limit future system development.

A Goal-Driven Approach for the Documentation and Lightweight
Verification of Design Invariants

We proposed a goal-driven approach for the documentation and lightweight verifica-
tion of design invariants for supporting program development of technically and algo-
rithmically complex software. A highly expressive and executable formalism, tempo-
ral logic programming, is used for making design invariants explicit by documenting
them in a high-level behavioural model. A lightweight verification approach based
on dynamic analysis is adopted for making the behavioural model at the same time
machine-verifiable against an execution trace. For instrumenting a program, a declar-
ative aspect-like code instrumentation approach is used to identify those high-level
concepts in the source code that give rise to high-level events of interest to a partic-
ular design invariant. Consequently, the event trace is then created by running the
instrumented program according to a well-defined execution scenario, which makes
the approach goal-driven as well.

The main contributions of our approach are the use of temporal logic program-
ming as an executable behavioural formalism for making design invariants explicit and
machine-verifiable. Moreover, we used a logic language as selective code instrumenta-
tion language (or pointcut language) to identify high-level source code entities which
give rise to high-level run-time events. Expressing temporal assertions representing
undesired design invariant behaviour directly in terms of high-level events makes the
program analysis computationally less expensive and it results in a high-level design
invariant specification which is oblivious to source code constructs.

The BEHAVE Platform

We created a prototype platform named BEHAVE to validate the feasibility of our pro-
posed approach. BEHAVE supports the documentation and lightweight verification of
design invariants in C by specifying them in high-level behavioural models which are
at the same time executable.

BEHAVE is entirely implemented in the logic language Prolog, and uses a declara-
tive aspect-like approach for instrumenting Ansi C programs. A C parser and modest
tool support is available to aid in setting up and using the experimental platform. The
three main components of the platform are: a reification module containing a logic rep-
resentation of a C base language program, the instrumentation module which generates
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selectively instrumented source code and a temporal logic meta interpreter which ver-
ifies the design invariant models against the actual program behaviour.

To optimally exploit the use of the BEHAVE platform, we have identified a four-
step recipe and demonstrated its use by applying it on a running example. In a first
step, users have to identify the high-level events with their associated run-time values
that are to be used in the design invariant model. Second, they have to specify the
undesired behaviour of a particular design invariant in a high-level behavioural model.
As a third step, the application-specific instances need to be defined which give rise
to the high-level events. The fourth and last step comprises the verification phase of
our approach where developers can have the consistency of the programs documented
behaviour and its actual behaviour verified.

Validating the Use of BEHAVE by Supporting Program Development
The BEHAVE platform was validated by supporting program development of the Pico
virtual machine (Pico 1.0). Pico is an interpreter of a fairly simple but technologically
sophisticated programming language which incorporates automatic garbage collection,
allows the use of higher order functions, supports meta programming and reflection,
uses optimised tail-recursion for implementing iterative processes, etc. As the pro-
posed approach necessitates the availability of knowledge about design decisions made
and about the internals of the program from the program under study, Pico formed an
excellent case as the original developer was available to give us insight in the main
design decisions that were undertaken.

We supported program development in Pico by studying three technically complex
design concerns which form a crucial part of the technical design of Pico. The first
concern addressed the lightweight verification of behavioural program documentation
of the Pico evaluation engine. As Pico expressions are evaluated by a (variation of a)
continuation-based-style interpreter, checking the expected dynamics of the execution
model is crucial. The second concern our approach supported was automatic garbage
collection. Special care should be taken about restoring temporary references after the
garbage collection algorithm is triggered, so we documented this particular behaviour
in a high-level model, thereby enabling its lightweight verification. Optimised tail-
recursion behaviour forms the third design concern which our approach supported. To
be able to use tail-recursion to implement iterative processes, stack usage needs to
be optimised, so we have set up a design invariant model to identify possible locations
where optimisations has not been done. For all three Pico design concerns, inconsisten-
cies confirmed by the developer were found which were attributed to subtle errors and
non-optimised continuations in the Pico source code. For example, the garbage col-
lection inconsistencies encountered were the main cause of occasional system crashes
which could not at all be identified externally.

We concluded that our proposed approach contributes significantly to supporting
program development by documenting its major design concerns and by having a
causal link with the source code.
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7.3 Future Work

This section lists a number of directions for future research as well as a number of
possible improvements for the current implementation of the platform.

7.3.1 Possible Improvements and Additions for BEHAVE

Dynamic Code Instrumentation The current version of BEHAVE performs code in-
strumentation which is purely statical. The program points of interest (or, to use AOP
terminology, pointcut expressions) are described declaratively and an entire applica-
tion’s parse tree is traversed (while re-generating the code) searching for nodes which
unify with those particular pointcut descriptions. On top of this, the instrumentation
code inserted at points in the program, contains only code to print strings to an external
file (representing the execution trace).

However, the code which is inserted in the C source program could also contain
(next to code to print strings) code which performs ‘dynamic tests’ on run-time values.
This way, we could for example filter the instrumentation on run-time values. This
would require the expansion of the aspect layer of BEHAVE where the before and after
predicates could be expanded with for example inserting if tests on keywords. This
would result in an even more compact execution trace. However, it remains to be
investigated how this would be integrated in the platform and which applications would
benefit of this extra filtering of events.

Combining Structural and Behavioural Reasoning Meta programming systems
used for program analysis perform reasoning by querying or matching a particular rep-
resentation of the program under investigation. Such a representation is defined by a
meta model and this model is often specifically fine-tuned for the particular purpose it
must fulfil. In the proposed approach, we use two meta models of the base language
program under investigation. On the one hand we employ a structural meta model es-
tablished by the logic meta programming (LMP) set-up as discussed in section 4.3.1
for selecting program points of interest. On the other hand a partial behavioural meta
model is used to reason about representative parts of a program’s behaviour (see sec-
tion 4.3.1). Although both meta models are represented as logic facts in Prolog, they
are used independently of each other. The structural meta model is used to obtain the
needed run-time behaviour, while the partial behavioural meta model is used to analyse
the obtained program behaviour.

As both meta models are uniformly represented in Prolog as logic facts, they
could be readily combined to reason about the structure as well as the behaviour of
a base language program. Possible general applications are pattern detection tech-
niques [MMW02] which could benefit from both structural as well as behavioural
information. Design invariants (as defined in chapter 2) could also have structural
underlying dependencies in addition to behavioural constraints.
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Another use in the context of the proposed approach could be to use the structural
meta model to support the analysis of the reported inconsistencies of the behavioural
design invariant model. These inconsistencies found by matching the design invariant
description against the actual program behaviour can be less straightforward to imme-
diately trace them back to the source code. Launching structural queries might help in
more easily localising certain run-time values, especially for larger programs.

On-line analysis for BEHAVE Our proposed approach (as demonstrated in the BE-
HAVE prototype implementation) has currently been designed with a post-mortem (or
off-line) behavioural analysis strategy in mind. A post-mortem analysis strategy con-
sists of instrumenting a program under investigation followed by executing a well-
defined execution scenario that lets the created execution trace focus on that behaviour
relevant for the design invariant in question. So, the analysis of the recorded run-time
behaviour starts after having finished program execution.

Debuggers for example offer tool support for aiding software development by per-
forming on-line analysis. The main advantage is that it might be simpler for the user
as post-processing steps are eliminated. Quicker feedback can be given as well and
the program can be stopped immediately when an inconsistency is detected. For per-
forming online analysis (or ad-hoc analysis), a behavioural reasoning process would
be needed which runs as a co-routine alongside the application. The execution of
the application would have to be interleaved with the evaluation of a logic program,
which has to be able to suspend and resume the execution of the application. When a
particular execution event is requested by a declarative query, the program execution
should continue until this event is encountered. Control should then be returned to the
reasoning process where the current event is then analysed and a new request for the
following event is being made.

A consequence of on-line analysis is that we do not have a complete execution
history at our disposal when a query is analysed. The applicability of this on-line
approach is therefore limited to querying for simple rules. Since the execution of a
program is advanced whenever we backtrack upon a choice for a run-time event, we
cannot access past events in this way and considering alternatives for an event is not
possible [Roo04]. It remains to be investigated how our approach could benefit from
such an analysis.

Better Support for Macro’s in Ansi C As briefly mentioned in section 5.1, we
identified some practical limitations of the current implementation of the BEHAVE

platform. One major obstacle was found to be the parsing of macros in C. A macro
is a source code construct which normally gets expanded first by the compiler before
the source code gets parsed. The resulting expanded program is a well-formed pro-
gram which can be parsed according to a C grammar. However, as the program of
investigation was a language interpreter where a lot of attention is paid to performance
optimisations, macros are used extensively and they form a crucial part of the execu-
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tion model. That is why we opted not to expand the macros to be able to reason about
them as high-level concepts.

The way we solved this in the current version of BEHAVE is to treat macro calls as
function calls and reify them into a logic predicate macroCall/2 without parsing the
macro body but storing it in its logical representation as a string. This works well as
long as only simple macros are defined. However, in C, a macro can contain part of a
C statement, which is joined with the other part of the statement only after expanding
it in the source code. This explains why the body of a macro is not parsed: it does not
always contain a valid C expression. An additional problem caused by not being able
to parse the macro body are type declarations. These declarations are not parsed as
the macro body is not parsed and hence the type is not known in the remainder of the
program.

Another solution should be found for parsing C code without losing information
about macro calls. One possible solution could be to expand macro calls anyway,
but to use a mechanism to mark the expanded code in some way to denote its origin.
However, it remains to be researched how feasible such an approach would be and in
what way such macro call markings can be integrated into a logical representation of
the source code.

7.3.2 Model-Driven Engineering Support
Considering the proposed approach and in particular the four-step recipe explained and
applied throughout the last three chapters, it is only at the very end of the recipe where
the application-specific instances need to be formulated in terms of programming lan-
guage constructs. The behavioural model, the identification of high-level events and
even the description of the intercept mappings where the source code constructs are
linked to their respective high-level events description are all base-language indepen-
dent.

One possible application could be more sophisticated test-driven development.
Test-driven development (TDD) is an existing software development technique which
is advocated in the agile community. Such testing is based on repeatedly first writing
a test case and then implementing only the code necessary to pass the test. This kind
of testing is associated with Extreme Programming, an agile way of developing soft-
ware. Proponents emphasise that TDD is a way of designing software, not merely a
testing method. However, almost all testing done in this context (e.g. XUnit frame-
work [Ham04]) are functional tests which test small standalone local components. This
is mainly the case because as for agile approaches, testing is part of the development
life cycle, so as testing is done more often, to truly support program development,
it needs to be automated. On top of that, unit tests are written in the programming
language in which the base language program to be tested is written.

BEHAVE can be used on a higher level for writing sophisticated tests for more
cross-cutting behavioural entities which can be written before they are implemented.
Since the behavioural models are base language independent, they can even be applied
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later onto different implementations.

7.3.3 Computer Science Education

Having specified and checked design invariants for the Pico language interpreter in
chapter 6, we were inspired by the final attainment level of the second year course
Interpretation of Computer Programs II 1. The aim of that course is to conceive and
construct step-by-step a virtual machine for the Pico programming language as dis-
cussed in section 6.1. The virtual machine contains various essential and technically
challenging components such as an automatic memory manager, a stack machine, a
parser, etc. as thoroughly demonstrated in chapter 6. All the design invariants that we
modelled for the Pico interpreter represent those concepts that students should certainly
have grasped at the end of the second year course.

Taking into account the base-language independence of the run-time events and the
behavioural model of the design invariants as discussed in section 7.3.2, one can imag-
ine a setting where a teacher would provide a student with descriptions of high-level
events and a behavioural model which reasons over these events. Even the mapping
description can be provided. All of this information would leave the student with a de-
scription of a certain behavioural concept which she should grasp. It is then left up to
the student to link the conceptual entities to those implementation-level constructs that
give rise to such entities. This experiment presents at the same time an opportunity to
evaluate the communicative aspect (or documentation aspect) of the behavioural mod-
els empirically. A student would have to read and understand the declarative descrip-
tions of conceptual entities. An example use could be to learn novice students new
algorithms, where the algorithms are described conceptually and the student should
link the concepts to the actual implementation.

In today’s software engineering education very little attention is given to the dy-
namic interactions in a program. The current trend in educational methods is an
objects-first approach and preferably even design-first, where most attention is paid
to structural modelling at the design level in terms of objects [BMBL05, BMF04,
MBB03, MBB02, MBFP00]. Although object interactions are also considered, this
is more done in a global way and not so much at the code level. Although this ‘think-
ing in terms of objects’ philosophy from the early beginnings is crucial for novices,
it does not teach a student how algorithms work and in general how more technical
components interact at the code level.

7.3.4 Garbage Collection as an Aspect

In section 6.4 we presented a case study in which we documented a particular kind
of behaviour of the Pico memory model dealing with automatic garbage collection.

1The contents of the course can be consulted at http://prog.vub.ac.be/˜tjdhondt/ICP2/HTM.dir/ in-
troduction.htm
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Figure 7.1 repeats the code excerpt of the eval CAL continuation (it was previously
shown in chapter 1 as figure 1.1) as this piece of code forms a critical section for
garbage collection. This continuation evaluates Pico function applications (in the Pico
continuation network from figure 6.2 this continuation is denoted as CAL). The essence
of the garbage collection design invariant lies in the combination of the static and
dynamic memory claims denoted in yellow and blue respectively and restoring the
references of the temporary variables by consulting the expression stack (denoted in
pink). Claiming memory for an object of static size can be done at the very beginning of
a continuation function, as shown on figure 7.1 by the stk claim () macro (denoted
in yellow). Claiming memory of dynamic size is difficult: it should be done as early
as possible so as to minimise the number of references which need to be restored
after the claim. An interesting path to explore in the near future would be, next to

_NIL_TYPE_ _eval_CAL_(_NIL_TYPE_)
 { _EXP_TYPE_ act, arg, dct, exp, frm, fun, nam, par, tab, xdc, xfu;
     ...
   _stk_claim_();
   _stk_peek_EXP_(arg);
     ...
   siz = _ag_get_TAB_SIZ_(arg);
   _mem_claim_SIZ_(DCT_size + FUN_siz + siz);
   _stk_pop_EXP_(arg);
   if (siz == 0)
     { _stk_peek_EXP_(fun);
       ...
           case _APL_TAG_:
             dct = _ag_make_DCT_();
             par = _ag_get_FUN_ARG_(fun);
             _DCT_ = dct; }
   else
     { dct = _ag_make_DCT_();
       _stk_peek_EXP_(fun);
      ...             
             _stk_push_EXP_(arg);
             tab = _ag_make_TAB_(siz);
             act = _ag_get_TAB_EXP_(arg, 1);
             ...
             _stk_push_EXP_(arg);
             tab = _ag_make_TAB_(siz);
             ...
                case _APL_TAG_:
                  xfu = _ag_make_FUN_();
                  par = _ag_get_FUN_ARG_(fun);
                                  default: 
            ...   
           default:
             _error_msg_(_IPM_ERROR_, _ag_get_FUN_NAM_(fun)); }}}

claim 
static 
size

claim 
dynamic 
size

consult stack 
and restore 
reference

allocate 
fixed size 
chunks

allocate 
variable 
size chunks

Figure 7.1: Pico code excerpt of eval CAL continuation

documenting and verifying this typical garbage collection behaviour, to generate the
necessary garbage collection statements. As became clear from the case study, garbage
collection is cross-cutting an entire application, so why not treat it as an aspect? For
garbage collection in Pico, this would entail that the memory claims would have to
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be inserted as advice. The pointcut expressions, which require temporal constraints,
would be the identification of the chunk allocations (see figure 7.1 where the fixed size
chunk allocations are denoted in red and the variable sized chunks denoted in green)
as those statement allow to compute the allocation sizes. However, it remains to be
investigated how feasible this would be in practice.

7.3.5 Using BEHAVE for Supporting Evolution
So far we have validated the use of the BEHAVE platform by using it to aid the develop-
ment process. We have done so by documenting and verifying three design invariants
for the Pico language interpreter, each representing a behavioural, technically chal-
lenging concern of the language interpreter. We have encountered unwanted behaviour
in all three concerns and the results allowed us to steer the development process for
those particular concerns.

As mentioned in section 6.1, Pico formed the ideal case study for testing the BE-
HAVE platform as the original developer was available to give us insight in the main
design decisions that were taken when implementing Pico. This is important as design
invariants capture expert knowledge of technically complex software. We also men-
tioned the availability of multiple versions of the Pico interpreter. A possible future
work would be to apply the same experiments (i.e. the same behavioural models of the
three design invariants) on another version of the Pico language interpreter. Pico 2.0

{ ctr(init):
    { n: init;
      incr():: n:= n+1;
      decr():: n:= n-1;
      clone() };
  c: ctr(0);
  c.incr();
  c.incr();
  c.incr();
  c.decr() }

1
2
3
4
5
6
7
8
9

10

  

Figure 7.2: A counter object in Pico 2.0

is an extended version of Pico 1.0 where specific features were added to move towards
an object-oriented version of Pico (a prototype-based version). Figure 7.2 depicts a
counter object which can be evaluated by Pico 2.0. For representing objects, first-class
environments were introduced as a way to represent the state of an object (in figure 7.2
on line 5, the clone() function returns a first-class environment). Also to enable object
re-entrancy, the concept of a constant declaration was added (object cloning requires a
deep copy of an object’s instance variables, but a shallow copy of its methods), which
can be seen on lines 3 and 4 (the double colon notation). The dot notation for enabling
a message passing mechanism also had to be added. Furthermore, quasiquoting was
added, multi-dimensional tables as well as introspection facilities (via additional native
functions).
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Verifying the same design invariant models for this version of Pico would allow
us to investigate the reusability of the behavioural models and see if adaptations have
to be made only at the level of the application-specific instances. Although Pico 2.0
incorporated several important functional extensions, the expressed design invariants
should have remained the same.

Pico 3.0 presents another version of Pico, but with a completely different archi-
tecture. Instead of using continuations as units of program execution, a frame-based
style of programming is adopted. In this case, the behavioural models of the design
invariants will probably have to be changed as well, as the conceptual building blocks
of the models are no longer employed. However, we believe that still a part of the Pico
rules could be reused.

7.4 Closing Remarks
In this dissertation we proposed and implemented a goal-driven approach for partially
automating program development of technically and algorithmically complex soft-
ware. We achieved this by documenting design invariants and making them verifiable
in a lightweight manner.

To support practical use, our approach advocates oblivious design invariant speci-
fications and a lightweight goal-driven verification. The design invariant obliviousness
results in not having to adapt the documentation every time the source code changes.
The lightweight goal-driven approach allows a developer to focus the analysis on spe-
cific parts of a program. Hence, the approach is applicable to larger systems as well.

The main challenge of technically and algorithmically complex systems lies in get-
ting the technicalities right. Therefore we strongly believe that supporting any aspect
of their development must be primarily code-driven.



Appendix A

The Full Representational Mapping

This appendix lists the complete representational mapping for representing a subset of
C program elements to their internal representations. The mapping is based on a C
grammar as developed for the Ansi C standard grammar[Deg].

Table 5.1 describes the direct mapping of function definitions, function declara-
tions, macro definitions and macro declarations into separate logic facts (the table was
shown already in section 5.2.5; it is repeated here for the sake of completeness).

C Construct Logic Representation
Function definition functionDefinition(FileName,Ret,Nam,Pars,Body).

Declaration declaration(FileName,DeclSpecifs,InitDecLst).

Macro definition macroDefinition(FileName,Name,Value).

Function macro functionMacro(FileName,Name,Parameters,Body).

C file baseFile(FileName).

Header file includedFile(FileName).

C project path projectPath(PathString).

User include userInclude(FileName,IncludedFileName).

System include systemInclude(FileName,SystemFileName).

The following functors capture the representation of types, operators, declarators
and program statements:
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C Construct Logic Representation
+ addition(LeftExpression,RightExpression).

&& and(LeftExpression,RightExpression).

& bitwiseAnd(LeftExpression,RightExpression).

ˆ bitwiseExclusiveOr(LeftExpr,RightExpr).

| bitwiseInclusiveOr(LeftExpr,RightExpr).

/ division(LeftExpression,RightExpression).

== equal(LeftExpression,RightExpression).

> greater(LeftExpression,RightExpression).

>= greaterOrEqual(LeftExpression,RightExpression).

<< leftShift(LeftExpression,RightExpression).

% modulo(LeftExpression,RightExpression).

* multiplication(LeftExpression,RightExpression).

! = notEqual(LeftExpression,RightExpression).

|| or(LeftExpression,RightExpression).

-> pointerAccess(PostFixExpression,Identifier).

>> rightShift(LeftExpression,RightExpression).

< smaller(LeftExpression,RightExpression).

<= smallerOrEqual(LeftExpression,RightExpression).

− substraction(LeftExpression,RightExpression).

Expression– postfixDecrement(Expression).

Expression++ postfixIncrement(Expression).

–Expression prefixDecrement(Expression).

++Expression prefixIncrement(Expression).

Abstract declarator abstractDeclarator(Pointer,DirectAbstrDecl).

Array Access P[E] arrayAcces(P,E).

Array Declarator arrayDeclarator(DirectDeclarator,ConstantExpr).

Assignment expr assignment(LeftExpr,AssgnOp,RightExpr).

Assgn operators =,>>=,<<=,+ =.− =,*=,/=,%=,&=,=̂,|=
Case statement case(ConstantExpression,Statement).

Cast cast(Type,Expression).

Constant constant(Something).

Declarator declarator(Pointer,DirectDeclarator).

DoWhile statement doWhile(Statement,Expression).

Enumerator enumerator(Identifier,ConstantExpression).

Enumspecifier enumSpecifier(Identifier,EnumeratorList).

For Statement for(Init,Cond,UpdateExpression,Statement).

Function body compoundStatement(Declarations,Statements).
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C Construct Logic Representation
Function call functionCall(PostFixExpression,Arguments).

Function declarator functionDeclarator(DirectDeclarator,List).

Function type declarator functionTypeDeclarator(Declarator).

Goto goto(Identifier).

Identifier identifier(Symbol).

If statement ifThenElse(Expression,Statement,ElseStat).

Init declarator initDeclarator(Declarator,Initializer).

Initializer initializer(ListOrAssignment).

Label label(Symbol,Statement).

MacroCall macroCall(Name,Arguments).

Macro macro(Symbol).

PostFixExpr.Identifier memberAccess(PostFixExpr,Identifier).

Parameter Decl. parameterDeclaration(DeclSpecs,Declarator).

Parentheses (Expr) parenthesedExpression(Expr).

Pointer pointer(TypeQualifierList,AnotherPointer).

Return return(Expression).

If without else shortIf(Expression,Statement).

Sizeof sizeof(Expression).

Storage class spec. typedef, extern, static, auto, register

String stringLiteral(Something).

Struct declaration structDeclaration(SpecQualLst,StructDecLst).

Struct declarator structDeclarator(Declarator,ConstantExpr).

Struct struct(Identifier,StructDeclarationList).

Switch statement switch(Expression,Statement).

Typename typeName(SpecQualList,AbstractDeclarator).

Self-defined type typeNameSymbol(Something).

Unary operation unaryOperation(Operator,Expression).

Union union(Identifier,StructDeclarationList).

While statement while(Expression,Statement).





Appendix B
BEHAVE Instrumentation Module

This appendix contains the logic predicates contained in the BEHAVE instrumentation
module of the BEHAVE architecture as depicted in figure 5.5. This layer contains the
predicates needed to generate instrumented source code for a base language program
parsed and reified in the BEHAVE reification layer. As explained in section 5.4.3, this
module consists of two layers: the generation layer and the aspect layer. The generation
layer generates C code for each of the logical representations of all C parse tree nodes.
The aspect layer contains the predicates to check for each parse tree node if it needs to
be instrumented before or after that particular node.

B.1 Generation Layer
The predicates of the generation layer are listed below. All predicates contained in
that layer are included, however not all declarations of the generateAux2/3 predicate
are listed. There is a generateAux2 declaration for every C language element as de-
scribed in the full representational mapping in appendix A. We included only a few
representative examples.

generateProject(Project) :-
findall(Filename,isProjectFilename(Filename),Filenames),
foreach(Filenames,generateFile).

generateFile(Filename) :-
generatePath(Path),
buildPath(Path,Filename,Fullpath),
zopen(Fullpath,Stream),
includeBehave(Stream),
generateAllIncludes(Filename,Stream),
generateAllMacros(Filename,Stream),
generateAllDeclarations(Filename,Stream),
generateAllFunctionDefinitions(Filename,Stream),
znewline(Stream),
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zclose(Stream).

%% Logic fact set by the user through the user interface
generatePath("/Users/imichiel/Desktop/BEHAVE-needs/Pico-1.0/generated/").

buildPath(Path,Filename,Fullpath) :-
appendStrings(Path,Filename,Fullpath).

includeBehave(Str) :-
aspectsEnabled,
zwrite("#include \"behave.h\"",Str).

includeBehave(_).

generateAllIncludes(Filename,Stream) :-
generateSystemIncludes(Filename,Stream),
generateUserIncludes(Filename,Stream).

generateAllIncludes(Filename,Stream) :-
zwrite("INCLUDES FAILED",Stream).

generateSystemIncludes(Filename,Stream) :-
zwritenl("/* System includes */",Stream),
forall(systemIncludeHasFilename(Include,Filename),

generateSystemInclude(Include,Stream)),
znewline(Stream).

generateUserIncludes(Filename,Stream) :-
zwritenl("/* User includes */",Stream),
forall(userIncludeHasFilename(Include,Filename),

generateUserInclude(Include,Stream)),
znewline(Stream).

generateSystemInclude(Include,Stream) :-
zwrite("#include <",Stream),
systemIncludeHasFile(Include,Filename),
zwrite(Filename,Stream),
zwritenl(">",Stream).

generateUserInclude(Include,Stream) :-
zwrite("#include \"",Stream),
userIncludeHasFile(Include,Filename),
zwrite(Filename,Stream),
zwritenl("\"",Stream).

generateAllMacros(Filename,Stream) :-
generateAllMacroDefinitions(Filename,Stream),
generateAllFunctionMacros(Filename,Stream).

generateAllMacroDefinitions(Filename,Stream) :-
zwritenl("/* Macro definitions */",Stream),
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forall(macroDefinitionHasFilename(MacroDefinition,Filename),
generateMacroDefinition(MacroDefinition,Stream)),

znewline(Stream).

generateAllFunctionMacros(Filename,Stream) :-
zwritenl("/* Function macros */",Stream),
forall(functionMacroHasFilename(FunctionMacro,Filename),

generateFunctionMacro(FunctionMacro,Stream)),
znewline(Stream).

generateMacroDefinition(MacroDefinition,Stream) :-
macroDefinitionHasName(MacroDefinition,Name),
zwrite("#define ",Stream),
zwrite(Name,Stream),
zwrite(" ",Stream),
macroDefinitionHasValue(MacroDefinition,Value),
zwritenl(Value,Stream).

generateFunctionMacro(FunctionMacro,Stream) :-
functionMacroHasName(FunctionMacro,Name),
zwrite("#define ",Stream),
zwrite(Name,Stream),
functionMacroHasParameters(FunctionMacro,Parameters),
zwrite("(",Stream),
generateCommaList(Parameters,[FunctionMacro],Stream),
zwritenl(")\\",Stream),
functionMacroHasBody(FunctionMacro,Body),
zwrite(" ",Stream),
zwritenl(Body,Stream).

generateAllDeclarations(Filename,Stream) :-
zwritenl("/* Declarations */",Stream),
forall(declarationHasFilename(Declaration,Filename),

generateDeclaration(Declaration,Stream)),
znewline(Stream).

generateDeclaration(Declaration,Path,Stream) :-
isSimpleDeclaration(Declaration),
declarationHasDeclarationSpecifiers(Declaration,DeclSpecs),
generateSpaceList(DeclSpecs,[Declaration|Path],Stream),
zwritenl(";",Stream).

generateDeclaration(Declaration,Path,Stream) :-
declarationHasDeclarationSpecifiers(Declaration,DeclSpecs),
generateSpaceList(DeclSpecs,[Declaration|Path],Stream),
zwrite(" ",Stream),
declarationHasInitDeclaratorList(Declaration,InitDecList),
generateCommaList(InitDecList,[Declaration|Path],Stream),
zwritenl(";",Stream).

generateAllDeclarations(Filename,Stream) :-
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zwrite("DECLARATIONS FAILED",Stream).

generateAllFunctionDefinitions(Filename,Stream) :-
zwritenl("/* Function definitions */",Stream),
forall(functionDefinitionHasFilename(Function,Filename),

generateFunctionDefinition(Function,Stream)),
znewline(Stream).

generateAllFunctionDefinitions(Filename,Stream) :-
zwrite("FUNCTIONS FAILED",Stream).

generateFunctionDefinition(Function,Stream) :-
generateFunctionSignature(Function,Stream),
functionDefinitionHasBody(Function,Body),
generateAux(Body,[Body,Function],Stream),
znewline(Stream),
znewline(Stream).

generateFunctionSignature(Function,Stream) :-
functionDefinitionHasReturn(Function,Return),
generateSpaceList(Return,[Function],Stream),
functionDefinitionHasName(Function,Name),
zwrite(" ",Stream),
zwrite(Name,Stream),
functionDefinitionHasParameters(Function,Parameters),
zwrite("(",Stream),
generateCommaList(Parameters,[Function],Stream),
zwrite(")",Stream).

generateAuxStatement(E,Path,Stream) :-
generateAux(E,Path,Stream),
zwritenl(";",Stream).

zforeach(List,Predicate,Args) :-
list(List),
list(Args),
forall(member(Item,List),apply(Predicate,[Item|Args])).

generateDeclarationList(List,Path,Str) :-
list(List),
forall(member(Declaration,List),

generateDeclaration(Declaration,[List|Path],Str)).

generateSeparatedList([Last],Separator,Path,Stream) :-
generateAux(Last,[Last|Path],Stream).

generateSeparatedList([First|Rest],Separator,Path,Stream) :-
generateAux(First,[First|Path],Stream),
zwrite(Separator,Stream),
generateSeparatedList(Rest,Separator,Path,Stream).
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generateSeparatedList([],Separator,Path,Stream).

transformWhat(Construct,Path,What,NewWhat) :-
termToCode(Construct,Path,What,Code),
equals(Dc,[[";{"],Code,["behaveLog(\".\\n\")}"]]),
flatten(Dc,DecoratedCode),
equals(NewWhat,behaveCodeList(DecoratedCode)).

termToCode(Construct,Path,Term,Code) :-
atom(Term),
!,
keyword(Construct,Path,Term,Code).

termToCode(Construct,Path,Term,Code) :-
equalsStructureList(Term,[Functor|Arguments]),
addCommas(Arguments,List),
maplist(termToCode(Construct,Path),List,TransformedArgs),
concat([" behaveLog(\"",Functor,"(\");"],First),
equals(Last," behaveLog(\")\");"),
equals(C,[[First],TransformedArgs,[Last]]),
flatten(C,Code).

keyword(topOfStack,
Construct,
Path,
"behaveLog(\"%i\", _stack_[_top_ - 1]);").

keyword(sizeOfStack,
Construct,
Path,
"behaveLog(\"%i\", _top_);").

keyword(time,
Construct,
Path,
"behaveLog(\"%i\", TIME++);").

keyword(comma,Construct,Path,"behaveLog(\",\");").

keyword(functionName,Construct,Path,Result) :-
functionName(Construct,Path,Name),
concat(["behaveLog(\"’",Name,"’\");"],Result).

keyword(var(V),Construct,Path,Result) :-
concat(["behaveLog(\"",V,"\");"],Result).

keyword(assVar,Construct,Path,Result) :-
assignmentToVariable(Construct,Var),
keyword(var(Var),Construct,Path,Result).

keyword(macroName,Construct,Path,Result) :-



176 APPENDIX B. BEHAVE INSTRUMENTATION MODULE

macroCallHasName(Construct,Name),
concat(["behaveLog(\"’",Name,"’\");"],Result).

keyword(AnythingElse,Construct,Path,Result) :-
concat(["behaveLog(\"",AnythingElse,"\");"],Result).

generate(Construct,Str) :-
generateAux(Construct,[Construct],Str).

generateStatementList(List,Path,Str) :-
list(List),
forall(member(Constr,List),

generateAuxStatement(Constr,[Constr,List|Path],Str)).

generateCommaList(List,Path,Str) :-
generateSeparatedList(List,",",Path,Str).

generateSpaceList(List,Path,Str) :-
generateSeparatedList(List," ",Path,Str).

generateSummary(Function,Stream) :-
functionDefinitionHasFilename(Function,Filename),
zwrite(Filename,Stream),
zwrite(": ",Stream),
generateFunctionSignature(Function,Stream).

generateSummary(Unknown,Stream) :-
zwrite("no summary available",Stream).

generateDeclaration(Declaration,Stream) :-
generateDeclaration(Declaration,[],Stream).

addCommas([],[]).

addCommas([X],[X]).

addCommas([First|Rest],[First,comma|NewRest]) :-
not(equals(Rest,[])),
addCommas(Rest,NewRest).

generateAuxWrap(CompoundStatement,Path,Str) :-
isCompoundStatement(CompoundStatement),
generateAux(CompoundStatement,Path,Str).

generateAuxWrap(Construct,Path,Str) :-
zwrite("{",Str),
generateAux(Construct,Path,Str),
zwrite(";}",Str).

generateAux(Construct,Path,Stream) :-
aspectsEnabled,
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generateBeforeAspects(Construct,Path,Stream),
generateAux2(Construct,Path,Stream),
generateAfterAspects(Construct,Path,Stream).

generateAux(Construct,Path,Stream) :-
generateAux2(Construct,Path,Stream).

generateAux2(Construct,Path,Stream) :-
not(equals([Construct|_],Path)),
error("generateAux2/3 convention violated:

path needs to already include first argument").

generateAux2(Addition,Path,Stream) :-
additionHasLeftExpression(Addition,Left),
generateAux(Left,[Left|Path],Stream),
zwrite(" + ",Stream),
additionHasRightExpression(Addition,Right),
generateAux(Right,[Right|Path],Stream).

generateAux2(And,Path,Stream) :-
andHasLeftExpression(And,Left),
generateAux(Left,[Left|Path],Stream),
zwrite(" && ",Stream),
andHasRightExpression(And,Right),
generateAux(Right,[Right|Path],Stream).

generateAux2(Assignment,Path,Stream) :-
assignmentHasLeftExpression(Assignment,Left),
generateAux(Left,[Left|Path],Stream),
assignmentHasOperator(Assignment,Op),
generateAux(Op,[Op|Path],Stream),
assignmentHasRightExpression(Assignment,Right),
generateAux(Right,[Right|Path],Stream).

generateAux2(CompoundStatement,Path,Stream) :-
isCompoundStatement(CompoundStatement),
zwritenl("{",Stream),
zwritenl("/* declarations */",Stream),
compoundStatementHasDeclarations(CompoundStatement,Decls),
generateDeclarationList(Decls,Path,Stream),
zwritenl("/* statements */",Stream),
compoundStatementHasStatements(CompoundStatement,Stats),
generateStatementList(Stats,Path,Stream),
zwrite("}",Stream).

B.2 Aspect Layer

This section contains all predicates of the aspect layer.
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generateBeforeAspects(Construct,Path,Stream) :-
forall(isBeforeAspect(Before),

generateBeforeAspect(Before,Construct,Path,Stream)).

generateAfterAspects(Construct,Path,Stream) :-
forall(isAfterAspect(After),

generateAfterAspect(After,Construct,Path,Stream)).

generateBeforeAspect(Before,Construct,Path,Stream) :-
equals(Before,before(Construct,Path,Result,Joinpoint,Code)),
Joinpoint,
Code,
generateAux2(Result,[Result|Path],Stream).

generateBeforeAspect(Before,Construct,Path,Stream).

generateAfterAspect(After,Construct,Path,Stream) :-
equals(After,after(Construct,Path,Result,Joinpoint,Code)),
Joinpoint,
Code,
generateAux2(Result,[Result|Path],Stream).

generateAfterAspect(After,Construct,Path,Stream).

isBeforeAspect(Before) :-
nonvar(Before),
equals(Before,before(Construct,Path,Result,Joinpoint,Code)).

isBeforeAspect(Before) :-
var(Before),
captureEvent(Construct,Path,When,CodeSpec),
equals(Before,

before(Construct,
Path,
Result,
When,
transformWhat(Construct,Path,CodeSpec,Result))).

isBeforeAspect(Before) :-
var(Before),
equals(Before,before(Construct,Path,Result,Joinpoint,Code)),
Before.

isAfterAspect(After) :-
nonvar(After),
equals(After,after(Construct,Path,Result,Joinpoint,Code)).

isAfterAspect(After) :-
var(After),
equals(After,after(Construct,Path,Result,Joinpoint,Code)),
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After.

isAfterAspect(After) :-
var(After),
captureEventAfter(Construct,Path,When,CodeSpec),
equals(After,

after(Construct,
Path,
Result,
When,
transformWhat(Construct,Path,CodeSpec,Result))).

behaveCodeListHasCodeList(BehaveCodeList,CodeList) :-
equals(BehaveCodeList,behaveCodeList(CodeList)).

isBehaveCode(BehaveCode) :-
equals(BehaveCode,behaveCode(Code)).

behaveCodeHasCode(BehaveCode,Code) :-
equals(BehaveCode,behaveCode(Code)).

isBehaveCodeList(BehaveCodeList) :-
equals(BehaveCodeList,behaveCodeList(CodeList)).

captureEvent(Construct,Path,Translated,RecordAs) :-
intercept(before,Functor,RecordAs),
Translated =.. [Functor,Construct,Path].

captureEventAfter(Construct,Path,Translated,RecordAs) :-
intercept(after,Functor,RecordAs),
Translated =.. [Functor,Construct,Path].





Appendix C
BEHAVE Temporal Logic Meta Interpreter

This appendix is intended to provide documentation and the complete implementa-
tion of the temporal logic meta interpreter used within the context of this dissertation.
The meta interpreter was implemented by Coen De Roover. It is written as a Prolog
extension making use of the Prolog library clp/bounds.

C.1 Documentation

These are the temporal operators the temporal logic meta interpreter supports:

not(A) not A
next(A) A at the next point in time
next(C,A) A at C steps in the future - C can be a variable
previous(A) A at previous point in time
previous(C,A) A at C steps in the past - C can be a variable

Table C.1: Not, Next and Previous Operators

sometime(-,A) A sometime in the past
sometime(+,A) A sometime in the future
sometime past(W,A) A must be true within now and W steps in the past
sometime future(W,A) A must be true within now and W steps in the future
sometime(C,A) A must be true within C steps(C can be +/-)
sometime(A) A is true sometime during the whole timeline

Table C.2: Sometime Operators
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always(-,A) A must always be true in the past
always(+,A) A must always be true in the future
always past(A) A must always be true in the past
always future(A) A must always be true in the future
always(A) A must be true during the whole timeline
always future(W,A) A must be true within W time steps in the future
always past(W,A) A must be true within W time steps in the past

Table C.3: Always Operators

when(C1,C2) If C1 is true at a certain time, then C2 must be true as well
or(A,B) A or B must be true
and(A,B) A and B must be true
until(A,B) B must always be true until at some point A is true

Table C.4: Compound Operators

C.2 Implementation of the meta interpreter

C.2.1 Marking the timeline
% SWI-Prolog constraint library
:- use_module(library(’clp/bounds’)).

max_list([X], X).
max_list([X|Xs], Y) :- max_list(Xs, Z), Y is max(X, Z).

% beginning of time
bot(-1).

% end of time
eot(Time) :-

findall(T, event(T, _), Ts),
max_list(Ts, Time).

C.2.2 The Temporal Logic Operators
solve(A) :-

prove(A, 0).

prove(not(A), T) :- !,
not(prove(A, T)).

prove(next(A), T) :- !,
NT #= T + 1,
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prove(A, NT).

prove(next(C, A), T) :- !,
C #> 0,
NT #= T + C,
prove(A, NT).

prove(previous(A), T) :- !,
NT #= T - 1,
prove(A, NT).

prove(previous(C, A), T) :- !,
C #> 0,
NT #= T - C,
prove(A, NT).

prove(sometime(X, A), T) :-
atom(X),
X = -,
prove(sometime_past(_, A), T).

prove(sometime_past(Within, A), T) :-
Steps #=< 0,
Steps #>= -Within,
prove(sometime(Steps, A), T).

prove(sometime(X, A), T) :-
atom(X),
X = +,
prove(sometime_future(_, A), T).

prove(sometime_future(Within,A), T) :-
Steps #>= 0,
Steps #=< Within,
prove(sometime(Steps, A), T).

prove(sometime(C, A), T) :-
C#>=0,
bot(Bot),
eot(Tot),
NT in Bot..Tot,
NT #>= T,
NT #=< T+C,
prove(A, NT).

prove(sometime(C,A), T) :-
C #=< 0,
bot(Bot),
eot(Tot),
NT in Bot..Tot,
NT #>= T + C,
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NT #=< T,
prove(A, NT).

prove(sometime(A), _) :-
bot(Bot),
eot(Tot),
C in Bot..Tot,
prove(A, C).

prove(always_future(A), T) :-
eot(EOT),
T #= EOT, !,
prove(A, T).

prove(always_future(A), T) :-
copy_term(A, AC),
prove(A, T),
NT #= T + 1,
prove(always_future(AC), NT).

prove(always_past(A), T) :-
bot(BOT),
T #= BOT, !,
prove(A, T).

prove(always_past(A), T) :-
copy_term(A, AC),
prove(A, T),
NT #= T - 1,
prove(always_past(AC), NT).

prove(always(X, A), T) :-
atom(X),
X = +,
prove(always_future(A), T).

prove(always(X, A), T) :-
atom(X),
X = -,
prove(always_past(A), T).

prove(always(A), T) :-
copy_term(A, AC),
prove(always_past(A), T),
prove(always_future(AC), T).

prove(always_future(Within, A), T) :-
Within #= 0, !,
prove(A,T).

prove(always_future(Within, A), T) :-
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copy_term(A, AC),
prove(A, T),
NT #= T + 1,
NW #= Within - 1,
prove(always_future(NW, AC), NT).

prove(always_past(Within, A), T) :-
Within #= 0, !,
prove(A,T).

prove(always_past(Within, A), T) :-
copy_term(A, AC),
prove(A, T),
NT #= T - 1,
NW #= Within - 1,
prove(always_past(NW, AC), NT).

prove(when(C1, C2), T) :-
prove(C1,T) -> prove(C2,T) ; true.

prove(X #= Y, _) :-
X #= Y.

prove(or(A,B), T) :- !,
(prove(A, T) ; prove(B, T)).

prove(and(A,B), T) :- !,
prove(A, T),
prove(B, T).

until(A,B) :-
sometime_future(S, A),
S1 #= S - 1,
always_future(S1, B).

C.2.3 The prove/2 predicate

Clause A is a built-in predicate:

prove(A, _) :-
predicate_property(A, built_in), !,
call(A).

Clause A is found in the normal repository:

prove(A, T) :-
clause(A, B),
%prove(B, 0).
prove(B, T).
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Clause A is found in the execution trace repository where predicates have an extra
argument:

prove(A, T) :-
A =.. [Predicate | Arguments],
append([Predicate, T], Arguments, Extended),
Term =.. Extended,
clause(Term, B),
writeln(Term),
prove(B, T).



Appendix D
BEHAVE for Pico 1.0

This appendix is intended as a BEHAVE reuse framework for reasoning about the be-
haviour of Pico 1.0. We list here all used predicates for documenting and verifying the
design invariants from chapter 6.

Section D.1 first documents all reasoning predicates and the used keywords, while
section D.2 provides the declarations that implement these predicates.

D.1 Documentation

Table D.1 lists the Pico 1.0 reasoning predicates which were directly used for inter-
cepting run-time events. The declarations implementing these predicates are shown in
section D.2.2. Note that the pointcut descriptions used in the intercept predicates
(denoted in bold in section D.2.1) appear as atoms. However, BEHAVE adds variables
C and P which represent a C construct and the parse tree path respectively. So these
pointcut descriptions always represent a predicate of the form predicate(C,P) (as
can be seen from table D.1) and in an intercept predicate they are denoted as the
atom predicate.

continuationEntry(C,P) Construct C on path P is at the entry of a continuation
continuationExit(C,P) Construct C on path P is at the exit of a continuation
peekExp(C,P) Construct C peeks the Pico expression stack
popExp(C,P) Construct C does a pop from the Pico expression stack
varAssignment(C,P) Construct C represents a variable assignment
tempVarUsed(C,P) The value of temporary variable C has been used
pushRetCnt(C,P) Construct C pushes a RET cont. on the CNT stack
pokeRetCnt(C,P) Construct C pokes a RET cont. on the CNT stack

Table D.1: Pico Reasoning Predicates
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Table D.2 lists other Pico reasoning predicates which are used in the bodies of the
above mentioned predicates in table D.1.

inContinuation(Path) Path is the path of a continuation
inContinuation(Path,Cont) Path is the path of a continuation Cont
functionEntry(C,P) Construct C with path P is the entry of a function
functionExit(C,P) Construct C with path P is the exit of a function
continuation(Construct) Construct C is a continuation
manipulatesPicoStack(C) Construct C uses one of the pico stacks
cntStack(C) Construct C uses the continuation stack
expStack(C) Construct C uses the expression stack
tempVariable(C,P) Construct C is a temporary variable
assignmentToVariable(A,V) A is an assignment expr. of variable V
macroCallArgument(M,A) M is a macro call with A as first argument

Table D.2: Other Pico Reasoning Predicates

time time stamp
cntName name of a Pico continuation function
cntPointer pointer of a continuation
cntStack state of the entire continuation stack
assVar name of a variable being assigned
macroVar name of a variable which is the argument of a macro call
var(V) a variable V
topCnt top of the CNT stack
uTopCnt element right under the top of the CNT stack

Table D.3: Pico 1.0 keywords

Table D.3 lists all keywords representing Pico run-time values which can easily be
reused for associating them with other Pico high-level run-time events. They return
values depending on the context at the time they are called and the keywords log their
value at that time during execution.

D.2 Implementation of all predicates

D.2.1 User-defined Intercept/3 predicates

intercept(before,continuationEntry,
event(time,cntEntered(cntName,cntPointer,cntStack))).
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intercept(after,continuationExit,
event(time,cntExited(cntName,cntPointer,cntStack))).

intercept(before,gcPossible,
event(time,gcPossible(cntName))).

intercept(after,peekExp,
event(time,tempUpdated(cntName,macroVar))).

intercept(after,popExp,
event(time,tempUpdated(cntName,macroVar))).

intercept(after,varAssignment,
event(time,tempUpdated(cntName,assVar))).

intercept(instead,tempVarUsed,
event(time,tempUsed(cntName,varName))).

intercept(before,pushRetCnt,
event(time,pushReturnOnCntStack(cntName,topCnt))).

intercept(before,pokeRetCnt,
event(time,pokeReturnOnCntStack(cntName,utopCnt))).

D.2.2 Reasoning Predicates
This section lists all reasoning predicates which are specifically used for Pico. Other
predicates used here which belong to the basic layer are not repeated here. Predicates
which were used directly as pointcut description in the intercept predicates in sec-
tion D.2.1 are denoted in bold.

continuationEntry(Construct,Path) :-
functionEntry(Construct,Path),
inContinuation(Path).

continuationExit(Construct,Path) :-
functionExit(Construct,Path),
inContinuation(Path).

inContinuation(Path) :-
inContinuation(Path,_).

inContinuation(Path,Continuation) :-
last(Path,Continuation),
continuation(Continuation).

functionEntry(Construct,Path) :-
listAt(4,Path,Function),
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isFunctionDefinition(Function),
listAt(3,Path,Body),
compoundStatementHasStatements(Body,Statements),
first(Statements,Construct).

functionExit(Construct,Path) :-
listAt(4,Path,Function),
isFunctionDefinition(Function),
listAt(3,Path,Body),
compoundStatementHasStatements(Body,Statements),
last(Statements,Construct).

continuation(Construct) :-
isFunctionDefinition(Construct),
expressionIn(Construct,Expression,_),
manipulatesPicoStack(Expression).

manipulatesPicoStack(Expression) :-
cntStack(Expression).

manipulatesPicoStack(Expression) :-
expStack(Expression).

cntStack(Construct) :-
peekCnt(Construct).

cntStack(Construct) :-
pokeCnt(Construct).

cntStack(Construct) :-
popCnt(Construct).

cntStack(Construct) :-
pushCnt(Construct).

cntStack(Construct) :-
zapCnt(Construct).

expStack(Construct) :-
peekExp(Construct).

expStack(Construct) :-
pokeExp(Construct).

expStack(Construct) :-
popExp(Construct).

expStack(Construct) :-
pushExp(Construct).

expStack(Construct) :-
zapExp(Construct).

gcPossible(Construct,Path) :-
macroCallHasName(Construct,’_stk_claim_’).

gcPossible(Construct,Path) :-
macroCallHasName(Construct,’_mem_claim_’).

gcPossible(Construct,Path) :-
macroCallHasName(Construct,’_mem_claim_SIZ_’).

gcPossible(Construct,Path) :-
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macroCallHasName(Construct,’_mem_claim_STR_’).

peekExp(Construct,Path) :-
macroCallHasName(Construct,’_stk_peek_EXP_’).

popExp(Construct,Path) :-
macroCallHasName(Construct,’_stk_pop_EXP_’).

varAssignment(Construct,Path) :-
assignmentHasLeftExpression(Construct,Var),
tempVar(Var).

tempVarUsed(Construct,Path) :-
tempVariable(Construct,Path),
not(leftValue(Construct,Path)),
inContinuation(Path).

tempVariable(Construct,Path) :-
identifierHasSymbol(Construct,Var),
declaredVariableAs(Path,Var,’_EXP_TYPE_’).

assignmentToVariable(Assignment,Variable) :-
assignmentHasLeftExpression(Assignment,Identifier),
identifierHasSymbol(Identifier,Variable).

macroCallArgument(MacroCall,Argument) :-
macroCallHasArguments(MacroCall,ArgumentList),
first(ArgumentList,Argument).

pushRetCnt(Construct) :-
macroCallHasName(Construct,’_stk_push_CNT_’),
macroCallHasArguments(Construct,Lst),
member(identifier(’RET’),Lst).

pokeRetCnt(Construct) :-
macroCallHasName(Construct,’_stk_poke_CNT_’),
macroCallHasArguments(Construct,Lst),
member(identifier(’RET’),Lst).

D.2.3 Behavioural Models
This section lists the three behavioural models for the three Pico design invariants.
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Design Invariant 1: Active Behavioural Documentation

cntDocumented(’ASS’,[’ASS’|R],R).
cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
...

behaviouralModel :-
2(when(cntExecuted(Name,Before,After),

cntDocumented(Name,Before,After))).

cntExecuted(Name,StackBefore,StackAfter) :-
cntExited(Name,_,StackAfter),
•tcntEntered(Name,_,StackBefore).

Design Invariant 2: Garbage Collection

possibleGc(Cont) :-
event(possibleGc(Cont)).

tempUsed(Cont,Var) :-
event(tempUsed(Cont,Var)).

tempUpdated(Cont,Var) :-
event(tempUpdated(Cont,Var)).

safeToUseTemp(Cont,Var) :-
•ttempUpdated(Cont,Var),
¬3−tpossibleGc(_).

unsafeUseOfTemp(Cont,Var) :-
tempUsed(Cont,Var),
¬safeToUseTemp(Cont,Var).

behaviouralModel(Continuation(C),variable(V)) :-
3unsafeUseOfTemp(C,V).

Design Invariant 3: Tail Recursion

continuationExecute(Name,Pointer) :-
event(continuationEntered(Name,Pointer,_)).

installReturnOnContinuationStack(Cntname,Topcnt) :-
event(pushReturnOnCntStack(Cntname,CntPointer,Topcnt)).

installReturnOnContinuationStack(Cntname,Topcnt) :-
event(pokeReturnOnCntStack(Cntname,CntPointer,Topcnt)).

possibleTailRecursionOptimization(Cntname) :-
continuationExecute(’RET’,Pointer),
3−installReturnOnContinuationStack(Cntname,Pointer)).
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D.2.4 Keywords
This section lists all keywords used for verifying the three design invariants for Pico
1.0. They represent Pico run-time values to be associated with high-level events. They
can be reused for capturing run-time values associated with other design invariants for
Pico 1.0.

keyword(time,Construct,Path,"behaveLog(\"%i\", TIME++);").

keyword(comma,Construct,Path,"behaveLog(\",\");").

keyword(cntName,C,P,Result) :-
continuationName(C,P,Name),
concat([’behaveLog("’,Name,’");’],Result).

keyword(cntPointer,Construct,Path,Result) :-
continuationName(Construct,Path,Name),
concat(["behaveLog(\"%i\",",Name,");"],Result).

keyword(cntStack,Construct,Path,Result) :-
equals(Result,
";{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx, siz;
behaveLog(\"[\");
siz = _ag_get_TAB_SIZ_(_STK_);
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))

/_EXP_SIZE_);
for ( ; idx < siz ; idx++) {

exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog(\"%i,\", exp.cnt);

}
exp = _ag_get_TAB_EXP_(_STK_, siz);
behaveLog(\"%i]\", exp);
};").

keyword(var(V),Construct,Path,Result) :-
concat(["behaveLog("",V,"\");"],Result).

keyword(assVar,Construct,Path,Result) :-
assignmentToVariable(Construct,Var),
keyword(var(Var),Construct,Path,Result).

keyword(macroVar,Construct,Path,Result) :-
macroCallArgument(Construct,Arg),
keyword(var(Arg),Construct,Path,Result).

keyword(topCnt,Construct,Path,Result) :-
equals(Result,
";{/* cntStackpeektop Pico 1.0 */
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_CNT_TYPE_ cnt;
_stk_peek_CNT_(cnt);
behaveLog(\"%i\",cnt);
};").

keyword(utopCnt,Construct,Path,Result) :-
equals(Result,
";{/* cntStackpeekundertop Pico 1.0 */
_CNT_TYPE_ cnt,temp;
_stk_pop_CNT_(temp);
_stk_peek_CNT_(cnt);
_stk_push_CNT_(temp);
behaveLog(\"%i\",cnt);
};").

The two keywords below represent alternative versions of topCnt and utopCnt
that are more efficient, i.e. they do not influence continuation stack behaviour. The
above versions are more intuitive, but they use the continuation stack at run-time.

keyword(’topCnt2’,Construct,Path,Result) :-
equals(Result,
";{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx;
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog(\"%i\", exp.cnt);
};").

keyword(’utopCnt2’,Construct,Path,Result) :-
equals(Result,
";{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx;
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
idx = idx+1;
exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog(\"%i\",exp.cnt);
};").



Appendix E
BEHAVE generated code excerpt

This appendix contains an example of generated code of the BEHAVE platform. It
shows an excerpt of the file PicoEva.c after performing the code instrumentation for
verifying the tail recursion design invariant from section 6.5. The instrumentation
code is put in bold. On the first line, the file behave.h is included which contains the
implementation for the behaveLog function used in the instrumentation code which
writes strings to a file.

1 intercept(before,
2 pushRetCnt,
3 event(time,pushReturnOnCntStack(cntName,topCnt))).
4 intercept(before,
5 pokeRetCnt,
6 event(time,pokeReturnOnCntStack(cntName,utopCnt))).
7 intercept(before,
8 continuationEntry,
9 event(time,cntEntered(cntName,cntPointer,cntStack))).

High-level events specification

The above intercept predicates were evaluated for generating the following in-
strumented code excerpt:

#include "behave.h"

/* System includes */

/* User includes */
#include "Pico.h"
#include "PicoMai.h"
#include "PicoEnv.h"
#include "PicoMem.h"
#include "PicoNat.h"
#include "PicoEva.h"

/* Macro definitions */
#define CAL _eval_CAL_
#define EXP _eval_EXP_
#define NAT _eval_NAT_
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/* Function macros */

/* Declarations */
static _NIL_TYPE_ APL(_NIL_TYPE_);
static _NIL_TYPE_ ASS(_NIL_TYPE_);
...

/* Function definitions */

static _NIL_TYPE_ ASS(_NIL_TYPE_){
/* declarations */
_EXP_TYPE_ dct, val;
/* statements */
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("continuationEntered(");behaveLog("’ASS’");
behaveLog(",");behaveLog("%i",ASS);behaveLog(",");
;{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx, siz;
behaveLog("[")

siz = _ag_get_TAB_SIZ_(_STK_);
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
for ( ; idx < siz ; idx++) {

exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog("%i,", exp.cnt);

}
exp = _ag_get_TAB_EXP_(_STK_, siz);
behaveLog("%i]", exp);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_pop_EXP_(val);
_stk_peek_EXP_(dct);
_ag_set_DCT_VAL_(dct,val);
_ag_set_DCT_DCT_(dct,_DCT_);
_DCT_ = dct;
_stk_poke_EXP_(val);
_stk_zap_CNT_();
}

static _NIL_TYPE_ ATA(_NIL_TYPE_){
/* declarations */
_EXP_TYPE_ act, apl, arg, dct, exp, fun, nam, nbr, par, tab;
_CNT_TYPE_ cnt;
_UNS_TYPE_ ctr, siz;
/* statements */
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("continuationEntered(");behaveLog("’ASS’");
behaveLog(",");behaveLog("%i",ASS);behaveLog(",");
;{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx, siz;
behaveLog("[")

siz = _ag_get_TAB_SIZ_(_STK_);
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
for ( ; idx < siz ; idx++) {

exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog("%i,", exp.cnt);

}
exp = _ag_get_TAB_EXP_(_STK_, siz);
behaveLog("%i]", exp);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_mem_claim_();
fun = _ag_make_FUN_();
_stk_pop_EXP_(apl);
_stk_pop_EXP_(nbr);
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_stk_pop_EXP_(tab);
_stk_pop_EXP_(arg);
_stk_peek_EXP_(dct);
siz = _ag_get_TAB_SIZ_(arg);
ctr = _ag_get_NBU_(nbr);
act = _ag_get_TAB_EXP_(arg,ctr);
nam = _ag_get_APL_NAM_(apl);
par = _ag_get_APL_ARG_(apl);
_ag_set_FUN_NAM_(fun,nam);
_ag_set_FUN_ARG_(fun,par);
_ag_set_FUN_EXP_(fun,act);
_ag_set_FUN_DCT_(fun,dct);
_ag_set_TAB_EXP_(tab,ctr,fun);
if (ctr < siz) {
/* declarations */
/* statements */
_stk_push_EXP_(arg);
_stk_push_EXP_(tab);
nbr = _ag_succ_NBR_(nbr);
_stk_push_EXP_(nbr);
_stk_push_EXP_(apl);
} else {
/* declarations */
/* statements */
_stk_zap_EXP_();
_stk_peek_EXP_(exp);
_ag_set_DCT_VAL_(dct,tab);
_stk_poke_EXP_(_DCT_);
_stk_push_EXP_(exp);
_stk_pop_CNT_(cnt);
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("pushReturnOnCntStack(");behaveLog("’ATA’");
behaveLog(",");
;{/* cntStackpeektop Pico 1.0 */
_CNT_TYPE_ cnt;
_stk_peek_CNT_(cnt);
behaveLog("%i",cnt);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_push_CNT_(RET);
_stk_push_CNT_(EXP);
_DCT_ = dct;
};
}

static _NIL_TYPE_ ATV(_NIL_TYPE_){
/* declarations */
_EXP_TYPE_ act, arg, dct, exp, nbr, tab, val;
_CNT_TYPE_ cnt;
_UNS_TYPE_ ctr, siz;
/* statements */
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("continuationEntered(");behaveLog("’ASS’");
behaveLog(",");behaveLog("%i",ASS);behaveLog(",");
;{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx, siz;
behaveLog("[")

siz = _ag_get_TAB_SIZ_(_STK_);
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
for ( ; idx < siz ; idx++) {

exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog("%i,", exp.cnt);

}
exp = _ag_get_TAB_EXP_(_STK_, siz);
behaveLog("%i]", exp);
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}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_claim_();
_stk_pop_EXP_(val);
_stk_pop_EXP_(nbr);
_stk_pop_EXP_(tab);
_stk_peek_EXP_(arg);
siz = _ag_get_TAB_SIZ_(arg);
ctr = _ag_get_NBU_(nbr);
_ag_set_TAB_EXP_(tab,ctr,val);
if (ctr < siz) {
/* declarations */
/* statements */
act = _ag_get_TAB_EXP_(arg,ctr + 1);
_stk_push_EXP_(tab);
nbr = _ag_succ_NBR_(nbr);
_stk_push_EXP_(nbr);
_stk_push_EXP_(act);
_stk_push_CNT_(EXP);
} else {
/* declarations */
/* statements */
_stk_zap_EXP_();
_stk_pop_EXP_(dct);
_ag_set_DCT_VAL_(dct,tab);
_stk_peek_EXP_(exp);
_stk_poke_EXP_(_DCT_);
_DCT_ = dct;
_stk_push_EXP_(exp);
_stk_pop_CNT_(cnt);
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("pushReturnOnCntStack(");behaveLog("’ATV’");
behaveLog(",");;{/* cntStackpeektop Pico 1.0 */
_CNT_TYPE_ cnt;
_stk_peek_CNT_(cnt);
behaveLog("%i",cnt);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_push_CNT_(RET);
_stk_push_CNT_(EXP);
};
}

static _NIL_TYPE_ BND(_NIL_TYPE_){
/* declarations */
_EXP_TYPE_ act, arg, dct, exp, fun, frm, nam, nbr, par, val, xdc;
_CNT_TYPE_ cnt;
_TAG_TYPE_ tag;
_UNS_TYPE_ ctr, siz;
/* statements */
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("continuationEntered(");behaveLog("’ASS’");
behaveLog(",");behaveLog("%i",ASS);behaveLog(",");
;{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx, siz;
behaveLog("[")

siz = _ag_get_TAB_SIZ_(_STK_);
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
for ( ; idx < siz ; idx++) {

exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog("%i,", exp.cnt);

}
exp = _ag_get_TAB_EXP_(_STK_, siz);
behaveLog("%i]", exp);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_claim_();
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_mem_claim_();
_stk_pop_EXP_(val);
_stk_pop_EXP_(dct);
_ag_set_DCT_VAL_(dct,val);
_stk_pop_EXP_(nbr);
_stk_pop_EXP_(arg);
siz = _ag_get_TAB_SIZ_(arg);
ctr = _ag_get_NBU_(nbr);
if (ctr == siz) {
/* declarations */
/* statements */
_stk_zap_EXP_();
_stk_zap_CNT_();
_stk_peek_CNT_(cnt);
if (cnt != RET) {
/* declarations */
/* statements */
_stk_peek_EXP_(exp);
_stk_poke_EXP_(_DCT_);
_stk_push_EXP_(exp);
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("pushReturnOnCntStack(");behaveLog("’BND’");
behaveLog(",");
;{/* cntStackpeektop Pico 1.0 */
_CNT_TYPE_ cnt;
_stk_peek_CNT_(cnt);
behaveLog("%i",cnt);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_push_CNT_(RET);
};
_stk_push_CNT_(EXP);
_DCT_ = dct;
} else {
...
};
};
}
...

static _NIL_TYPE_ RET(_NIL_TYPE_){
/* declarations */
_EXP_TYPE_ val;
/* statements */
;{ behaveLog("event(");behaveLog("%i", TIME++);behaveLog(",");
behaveLog("continuationEntered(");behaveLog("’ASS’");
behaveLog(",");behaveLog("%i",ASS);behaveLog(",");
;{/* cntStack dump Pico 1.0 */
_EXP_TYPE_ exp;
_UNS_TYPE_ idx, siz;
behaveLog("[")

siz = _ag_get_TAB_SIZ_(_STK_);
idx = ((_CNT_ - (_UNS_TYPE_)(_mem_STORE_+_STK_.ptr.ofs))/_EXP_SIZE_);
for ( ; idx < siz ; idx++) {

exp = _ag_get_TAB_EXP_(_STK_, idx);
behaveLog("%i,", exp.cnt);

}
exp = _ag_get_TAB_EXP_(_STK_, siz);
behaveLog("%i]", exp);
}; behaveLog(")"); behaveLog(")");behaveLog(".\n")}
_stk_pop_EXP_(val);
_stk_peek_EXP_(_DCT_);
_stk_poke_EXP_(val);
_stk_zap_CNT_();
_ESCAPE_;
}
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