
Managing Software Dependencies using Design
Structure Matrices

Matthias Stevens1?, Andy Kellens1??, Johan Brichau2, and Theo D’Hondt1

1 Programming Technology Lab
Vrije Universiteit Brussel

{mstevens—akellens—tjdhondt}@vub.ac.be
2 Département d’Ingénierie Informatique

Université catholique de Louvain
johan.brichau@uclouvain.be

1 Introduction

Modularity plays an important role in increasing the evolvability and maintain-
ability of software systems. If a system is structured in such a way that the
different components are loosely coupled, this makes it possible for developers
– or teams of developers – to adapt and maintain a particular component in
relative isolation of the other components of the system. Conversely, if compo-
nents are tightly coupled this can constrain the evolvability of the system. For
instance, low-level implementation dependencies between the different compo-
nents often translate to dependencies among people or develop teams, resulting
in that changes local to one implementation component can have a drastic im-
pact throughout the system.

In this paper we present DSMBrowser [1], a novel approach and accompa-
nying source-code browser for managing dependencies in source code. Our ap-
proach is based on the notion of Design Structure Matrices (DSM), a technique
from the domain of project management. Our tool allows for the computation
of such DSMs directly from source code, thus providing a visualisation of the
dependencies between different components in a system. Moreover, our approach
maintains the causal link with the actual source code. This, in combination with
a meta-programming interface, makes it possible to reason about the different
dependencies in the source code.

In the following sections we give a brief overview of the topic of Design
Structure Matrices and our tool, DSMBrowser. Furthermore, we demonstrate
one application of our meta-programming interface, namely the automatic iden-
tification of refactoring opportunities in order to remove dependencies between
components.

? Matthias Stevens is a Research Assistant of the Fund of Scientific Research, Flanders
(Aspirant van het Fonds Wetenschappelijk Onderzoek – Vlaanderen).

?? Andy Kellens is funded by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen).



2 Design Structure Matrices

At the core of our approach lies the notion of Design Structure Matrices (DSMs) [2].
A DSM diagram names the constituent parts of a system and visualises their de-
pendencies using a square adjacency matrix containing dependency values. These
values can be binary, expressing only the existence or absence of dependency, or
numerical, expressing a degree of dependency between parts of the studied sys-
tem. To illustrate the concept of a DSM, consider the example in Figure 1. This

1

1 2 3 4 5 6

FoundationsFoundations 1 *

Staircases 2 1 * 1

Walls 3 1 2 * 2

Floors (above ground) 4 1 4 *

Electricity grid hookͲup 5 *

Electric wiring 6 1 2 *

Fig. 1. A DSM diagram for the design of a house

example shows a DSM for a familiar system: a house. We see that some parts
of the house, namely the staircases, the walls, the floors above ground level and
the electrical wiring, depend on other parts, while others, namely the founda-
tions and the hook-up to the electric grid, are self-reliant. The different degrees
of dependencies can indicate the number of individual dependencies and/or the
weight of specific types of dependencies.

In our approach, we use similar diagrams as a means to visualise the depen-
dencies between source-code entities. The different rows and columns of a DSM
represent the source-code entities present in a system; as for dependencies be-
tween such source-code entities relations such as direct referencing, subclassing,
message sends, and so on are used.

3 DSMBrowser

As a proof of concept, we have implemented DSMBrowser, an extension to the
VisualWorks Smalltalk development environment and the StarBrowser2 frame-
work [3]. For a user-selected collection of arbitrary source-code entities, our tool
can automatically calculate a DSM based on the static relations between the
entities.

Figure 2 shows a screenshot of DSMBrowser opened on a part of its own
implementation. For each of the modules of DSMBrowser, the dependencies be-
tween this module and the other modules of the system are displayed. Internally,
DSMBrowser uses an hierarchical representation of abstract modules. This rep-
resentation aligns with the different hierarchical levels of (Smalltalk) source code
– packages, classes and methods. These different levels are also reflected in DSM-
Browser’s interface. For example, the tree-view on the left in Figure 2 shows the



 

Fig. 2. Screenshot of DSMBrowser opened on part of its own implementation

different hierarchical levels of the DSM - GUI package – from the top package-
level down to the level of methods. This hierarchical representation allows users
to focus on the dependencies between a relevant, fine-grained subset of the sys-
tem while abstracting away the details of other parts.

DSMBrowser maintains the causal connection between the representation of
dependencies in the interface and the actual, underlying source-code entities. As
such, a user can browse the different source-code entities related to a particular
module or dependency directly from within the DSMBrowser tool (as shown by
the contextual menu in the screenshot).

Moreover, DSMBrowser offers a meta-programming interface that allows
users to define scripts that reason about the different dependencies in the sys-
tem. Furthermore, DSMBrowser offers the possibility to access these scripts from
within the contextual menu to target specific sets of dependencies. For reasons
of brevity, we will not discuss the meta-programming interface in detail in this
paper, however we briefly demonstrate its utility by means of a small scenario.

4 Example of meta-programming: minimizing
dependencies using indirections

Using our meta-programming interface we have implemented a reusable script
that allows for the minimization of message send dependencies between two
packages by introducing indirections. For example, our script can suggest the
introduction of proxy classes.

If message sends originate from many classes in a package A and target few
classes in a package B, then this dependency from package A to package B can
be lowered by applying the Proxy design pattern [4]. The idea is to introduce a
local proxy-class in package A, for each of the few classes which are targeted in



Package B

ClassB1 ClassB2 ClassB3

Package A

ClassA1

Package A

ClassA1

Package B

ClassB1 ClassB2 ClassB3

ClassB_ProxyA1
 

Fig. 3. Minimizing dependencies by introducing a proxy class

package B. Each proxy-class should contain wrapper methods for all methods of
the class of package B it represents and which are called from package A. That
way all calls to package B can be rerouted via local proxies. As a result there
will only be a single inter-package message send dependency for every targeted
method. This mechanism is shown in Figure 3.

When executed, our script will propose a refactoring opportunity to minimize
the dependency, as illustrated by the following transcript:� �

Message sends from package Intensional Relations Model
to package SoulEvalPrintLoop: 30

Analysing for Class level advice ...
The message sends originate from 7 classes and target 4 classes

Advice: The degree of dependency from package
Intensional Relations Model
to package SoulEvalPrintLoop can be lowered by introducing
4 PROXY classes in package Intensional Relations Model which
represent classes EmptyEvaluator, Results, Evaluator, Binding
of package SoulEvalPrintLoop.� �

5 Summary

In this paper, we briefly highlighted some of the features of DMSBrowser, our
novel approach for source-code dependency management as a means to support
software maintenance and evolution.

References

1. Stevens, M.: Design Structure Matrices for Software Development. Licentiate thesis,
Vrije Universiteit Brussel, Faculty of Science, Department of Computer Science,
Pleinlaan 2, B-1050 Brussels, Belgium (2007)

2. Steward, D.V.: The Design Structure System: A Method for Managing the Design
of Complex Systems. IEEE Transactions on Engineering Management 28(3) (1981)
71–74

3. Wuyts, R., Ducasse, S.: Unanticipated integration of development tools using the
classification model. Computer Languages, Systems & Structures 30(1-2) (2004)
63–77

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley, Boston, MA, USA (1994)


