
Faculteit van de Wetenschappen
Vakgroep Computerwetenschappen
Laboratorium voor Programmeerkunde

Ambient References:
Object Designation in Mobile Ad Hoc Networks

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Tom Van Cutsem

Promotoren: Prof. Dr. Wolfgang De Meuter en Prof. Dr. Theo D’Hondt

Mei 2008

Print: DCL Print & Sign, Zelzate

c© 2008 Tom Van Cutsem

2008 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. ++32 (0)2 289 26 50
Fax ++32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5487 487 4
NUR 989
Legal deposit D/2008/11.161/031

All rights reserved. No parts of this book may be reproduced or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

“Civilization advances by extending the number of important operations
which we can perform without thinking of them.”

– Alfred North Whitehead, Introduction to Mathematics (1911)
English mathematician & philosopher (1861 - 1947)

iv

Samenvatting

Twee decennia geleden stelde Mark Weiser een visie voor van de toekomst van onze
computertechnologie. In zijn visie van ubiquitous computing wordt de computer onzicht-
baar. Deze zal verwerkt zitten in alledaagse objecten, alomtegenwoordig in onze dag-
dagelijkse, fysieke omgeving. Naarmate zijn visie momentum kreeg in de onderzoeks-
wereld werd het duidelijk dat de grote moeilijkheid in de verwezenlijking van zijn
visie niet het ontwikkelen van geminiaturiseerde, ingebedde, draadloze hardware betrof
(deze doelen hebben we vandaag reeds bereikt) dan wel het ontwikkelen van de soft-
ware die op dit alomtegenwoordige netwerk van onzichtbare computers moet draaien.

Deze verhandeling onderzoekt schaalbare software-ingenieurstechnieken voor ubiq-
uitous computing. Bekeken als een gedistribueerd systeem zijn ubiquitous comput-
ing applicaties verbonden via een zogenaamd mobiel ad hoc netwerk: een comput-
ernetwerk van mobiele toestellen die draadloos met mekaar kunnen communiceren.
De karakteristieke eigenschappen van zulke computernetwerken zorgen er echter voor
dat de aannames waarop hedendaagse software-abstractietechnieken steunen niet meer
gelden. Deze observatie vormde de onmiddelijke aanleiding voor het ontwerpen van
een nieuwe generatie programmeertalen gebaseerd op het ambient-georiënteerd pro-
grammeerparadigma.

Het doel van ambient-georiënteerd programmeren is om gedistribueerde object-
georiënteerde softwaretechnologie zodanig te kneden dat deze kan omgaan met de
gewijzigde karakteristieke eigenschappen van mobiele ad hoc netwerken. Binnen dit
paradigma lichten we bestaande abstracties door voor het coördineren van gedistribueer-
de softwareprocessen en bestuderen we hoe deze omgaan met de karakteristieke eigen-
schappen van mobiele ad hoc netwerken. We zullen vaststellen dat hedendaagse object-
georiënteerde gedistribueerde software-abstractietechnieken ongeschikt zijn voor deze
netwerken. Event-gestuurde communicatie daarentegen lijkt vooralsnog het meest
schaalbare communicatieparadigma voor deze netwerken. Dientengevolge moeten ob-
ject-geörienteerde applicaties hun traditionele communicatie-abstractietechnieken in-
ruilen voor event-gestuurde technieken. Deze integratie van objecten met events ver-
loopt echter niet zonder slag of stoot, een fenomeen dat we de object-event impedance
mismatch zullen dopen.

Om deze “impedance mismatch” te vermijden stellen we ambient references voor,
een nieuwe programmeertaalconstructie voor het aanwijzen van en communiceren met
objecten verspreid over een mobiel ad hoc netwerk. Ambient references vermijden de
“impedance mismatch” door de event broker – de centrale component van een event-
gedreven architectuur – voor te stellen als een gedistribueerde objectverwijzing. In
tegenstelling tot klassieke objectverwijzingen dewelke een enkel uniek object aanwi-
jzen, verwijst een ambient reference naar een vluchtige groep van nabije objecten. We
beschrijven het ontwerp en de implementatie van ambient references in de context van
AmbientTalk/2, een nieuwe ambient-georiënteerde programmeertaal.

vi

Abstract

Two decades ago, Mark Weiser advanced a vision of the future of computing technol-
ogy. In his vision of ubiquitous computing, the computer of the future will be invisible.
It will be integrated into everyday objects, pervasive throughout our physical environ-
ment. As his vision gained momentum in computer science research, it became clear
that the big hurdle to turn his vision into reality would not be the development of minia-
turised, embedded, wireless hardware (which is a goal we have already reached today),
but rather the development of the software that needs to run on this ubiquitous network
of invisible computers.

This dissertation investigates scalable software engineering techniques for ubiqui-
tous computing. From a distributed systems perspective, ubiquitous computing appli-
cations are distributed across a so-called mobile ad hoc network: a computer network
of mobile devices that communicate via wireless technology. The idiosyncratic proper-
ties of such networks drastically change the assumptions underlying our contemporary
software engineering abstractions. This observation has formed the direct motivation
for a new breed of programming languages based on the ambient-oriented program-
ming paradigm.

The goal of ambient-oriented programming is to mould distributed object-oriented
software technology as to make it fit the changing hardware characteristics of mobile
ad hoc networks. Within the framework provided by this paradigm, we survey exist-
ing abstractions to coordinate distributed processes and examine how they cope with
the hardware characteristics of mobile ad hoc networks. As we will point out, con-
temporary object-oriented distribution abstractions are unsuitable for these networks.
Event-based communication, on the other hand, has proven to be the most scalable
communication paradigm to date. As a consequence, a state-of-the-art object-oriented
application must abandon the classic distributed object-oriented abstractions in favour
of an event-based communication paradigm. However, integrating objects with events
is not without issues, leading us to define the object-event impedance mismatch.

In order to resolve this impedance mismatch, we propose ambient references, a
novel language abstraction for designating and communicating with objects distributed
across a mobile ad hoc network. Ambient references unify the concepts underlying
both object-oriented and event-driven remote communication by turning the event bro-
ker – which lies at the heart of an event-driven, publish/subscribe architecture – into
a remote object reference. Unlike a classic remote object reference, which designates
a single unique object, an ambient reference designates a volatile group of proximate
objects. We contribute the design and implementation of ambient references in the
context of AmbientTalk/2, a novel ambient-oriented programming language.

viii

Acknowledgements

First of all, I would like to heartily thank both of my promotors, Wolfgang De Meuter
and Theo D’Hondt, for genuinely supporting my work. I am greatly indebted to Wolf-
gang in particular, who has supported me throughout every step of this research project,
all the way from motivating me to formulate my nascent ideas in a workshop paper up
to scrupulously proofreading this dissertation. I also want to explicitly thank him for
inspiring me to do research on language design for mobile and ubiquitous computing.
It was his “keukenpaper” (a paper more formally known by the name of “Wild abstrac-
tion ideas for highly dynamic software”) that drew my attention to this topic when I
was a graduate student.

I am indebted to my “reading committee” which, next to my promotors, included
Elisa Gonzalez Boix and Jessie Dedecker. A special thank you goes to Elisa, who has
had the courage to meticulously proofread every single sentence of my text. Proficiat!
My thanks also go to Jessie, whose extensive knowledge on distributed programming
has been of great help to me. I am also grateful to all of the members of my jury: Prof.
Jean-Pierre Briot, Prof. Viviane Jonckers, Dr. Mark Miller, Prof. Kris Steenhaut and
Prof. Dirk Vermeir for taking their time to be able to scrutinise this work. I would
especially like to thank Mark Miller for his significant efforts to improve the quality
and understanding of the text.

I am equally indebted to Stijn Mostinckx, who deserves a special attention as my
inseparable partner in crime. Ever since our graduation thesis we have worked on a
large part of our research in tandem, and I believe we have proven that the proverbial
sum can indeed be greater than its parts. Stijn and myself are infamous for the heated
discussions in our office. These discussions, however, have acted as the very engine
of our research. The AmbientTalk/2 language discussed in this dissertation is our joint
brainchild: evidently, every baby needs two parents.

The work described in this dissertation could not have been achieved without the
proper “ambient” for it to grow in. Therefore, a big thank you goes to all of my past
and present colleagues of the Programming Technology Lab. I would also like to thank
the secretaries of the department for helping out with administrative issues on countless
occasions.

Last but not least, I would like to thank my friends and family. In the first place,
I owe not one but several debts of gratitude to my mother and father. They have sup-
ported my studies and provided me with the perfect place to write my text (that is,
home). I am grateful also to my girlfriend Natalie and to my friends for providing me
with the occasional moments of respite from research.

This work is funded entirely by a Ph. D. fellowship of the Research Foundation -
Flanders (FWO).

x

Contents

1 Introduction 1
1.1 Research Context . 2
1.2 Problem Statement . 3
1.3 Research Goals . 4
1.4 A Language-oriented Approach . 5

1.4.1 Domain-specific Languages 5
1.4.2 Language Integration and Impedance Mismatch 5
1.4.3 The Myth of Distribution Transparency 7

1.5 Contributions . 8
1.6 Dissertation Roadmap . 9
1.7 Summary . 11

2 Ambient-Oriented Programming Revisited 13
2.1 Motivation . 13
2.2 Mobile Ad Hoc Networks . 14

2.2.1 Hardware Characteristics . 14
2.2.2 Ad Hoc Networks versus Ad Hoc Applications 16

2.3 Ambient-Oriented Programming . 17
2.3.1 Classless Object Models . 17
2.3.2 Non-Blocking Communication Primitives 17
2.3.3 Reified Communication Traces 18
2.3.4 Ambient Acquaintance Management 18
2.3.5 Summary . 19

2.4 AmbientTalk/1 . 19
2.4.1 The AmbientTalk/1 Kernel Language 19
2.4.2 First-class Mailboxes . 20
2.4.3 Ambient Acquaintance Management 21
2.4.4 AmbientTalk as a Language Laboratory 21

2.5 Limitations of the AmbientTalk/1 Kernel 23
2.5.1 Limitations of the Object Model 23
2.5.2 Limitations of the Ambient Actor Model 24
2.5.3 Limitations of the Language Laboratory 25

2.6 Conclusion . 26

3 Coordination in Mobile Ad hoc Networks 27
3.1 Coordination . 27
3.2 Criteria for Coordination in MANETs 29

3.2.1 Decentralised Discovery . 29

xi

xii CONTENTS

3.2.2 Decoupled Communication 30
3.2.3 Connection-independent Failure Handling 33
3.2.4 Relation to Ambient-oriented Programming 33

3.3 Survey of Related Work . 34
3.3.1 Languages for Local Area Networks 35
3.3.2 Languages for Wide Area Networks 35
3.3.3 Languages for Wireless Sensor Networks 36
3.3.4 Models and Calculi for Wide Area Networks 37
3.3.5 Tuple Space Middleware for Ad Hoc Networks 39
3.3.6 Middleware for Nomadic Networks 40
3.3.7 Publish-subscribe Middleware for Ad Hoc Networks 42
3.3.8 Synthesis and Discussion . 45

3.4 The Object-Event Impedance Mismatch 50
3.4.1 Specific versus Generic Communication 51
3.4.2 Connection-oriented versus Connectionless Designation . . . 52
3.4.3 Bidirectional versus Unidirectional Communication 53
3.4.4 Threads versus Event Loops 53
3.4.5 Reconciling Objects with Events 54

3.5 Conclusion . 55

4 AmbientTalk 57
4.1 History and Design Rationale . 57
4.2 AmbientTalk: an Object-oriented Language 58

4.2.1 Objects, Instantiation and Delegation 58
4.2.2 Block Closures . 60
4.2.3 Scoping, Nesting and Encapsulation 61
4.2.4 Traits . 63
4.2.5 Type Tags . 65
4.2.6 Summary . 66

4.3 AmbientTalk: a Concurrent Language 66
4.3.1 Event Loop Concurrency . 66
4.3.2 AmbientTalk Actors . 67
4.3.3 Message Passing Semantics 68
4.3.4 Futures . 69

4.4 AmbientTalk: a Distributed Language 74
4.4.1 Far References and Partial Failures 75
4.4.2 Exporting Objects . 76
4.4.3 Service Discovery . 76
4.4.4 Partial Failures Revisited . 78

4.5 Discussion . 78
4.5.1 Event-driven Object-oriented Programming 79
4.5.2 Suitability for Mobile Ad Hoc Networks 80

4.6 Case Study: the Musical Match Maker 81
4.6.1 Data Abstractions . 82
4.6.2 Exporting and Discovering Service Objects 82
4.6.3 The Library Transmission Protocol 83
4.6.4 Failure Handling . 85

4.7 Limitations and Future Work . 86
4.8 Notes on Implementation Status . 90
4.9 Previous and Related Work . 91

CONTENTS xiii

4.9.1 AmbientTalk/1 versus AmbientTalk/2 91
4.9.2 Notes on Related Work . 93

4.10 Conclusion . 95

5 Metalevel Engineering in AmbientTalk 97
5.1 First-class Messages and Methods 97

5.1.1 First-class Messages . 97
5.1.2 First-class Methods . 98

5.2 Reflection . 99
5.2.1 Mirror-based Reflection . 99
5.2.2 Mirages: Mirror-based Intercession 102
5.2.3 First-class References as Mirages 103
5.2.4 Stratified Object References 107

5.3 Linguistic Symbiosis with the JVM 108
5.3.1 Linguistic Symbiosis . 109
5.3.2 Composing Threads with Actors 111
5.3.3 Embedding AmbientTalk in Java 113

5.4 Conclusion . 115

6 Ambient References 117
6.1 Motivation . 117

6.1.1 Roaming . 117
6.1.2 One-to-many Communication 120
6.1.3 Provisional Services . 123
6.1.4 Summary . 126

6.2 Ambient References in a Nutshell 126
6.2.1 Example: Broadcasting Stock Quote Updates 126
6.2.2 Space-decoupled Object References 128

6.3 Decomposing Ambient References 129
6.4 Ambient references in AmbientTalk 132

6.4.1 Scope . 133
6.4.2 Service Objects . 136
6.4.3 Arity . 138
6.4.4 Communication Lifetime . 140
6.4.5 Discovery Lifetime . 144
6.4.6 Relating Discovery Lifetime and Communication Lifetime . . 147
6.4.7 Summary . 150
6.4.8 Interactions between Delivery Policies 150

6.5 Delivery Guarantees . 152
6.5.1 Point-to-point Messages . 152
6.5.2 One-to-many Messages . 153
6.5.3 Delivery Order . 154

6.6 Reintroducing Connection-oriented Designation 155
6.6.1 Anonymous Far References 155
6.6.2 Snapshots . 158
6.6.3 Multireferences . 159
6.6.4 Summary . 160

6.7 On the Scale of Time and Space . 160
6.8 Conclusion . 161

xiv CONTENTS

7 Ambient References in Context 163
7.1 Evaluation . 163

7.1.1 Decentralised Discovery . 163
7.1.2 Loosely-coupled Communication 164
7.1.3 Connection-Independent Failure Handling 167
7.1.4 Summary . 168

7.2 The Object-Event Impedance Mismatch Revisited 168
7.2.1 Specific versus Generic Communication 168
7.2.2 Connection-oriented versus Connectionless Designation . . . 169
7.2.3 Bidirectional versus Unidirectional Communication 170
7.2.4 Threads versus Event Loops 170
7.2.5 Reconciling Objects with Events 171

7.3 Relation to Prior Work . 172
7.3.1 Elasticity . 172
7.3.2 Cardinality . 173
7.3.3 Reference-centric versus Message-centric View 173

7.4 Limitations and Future Work . 175
7.5 Notes on Related Work . 175

7.5.1 Tuple Spaces . 176
7.5.2 Actors and Far References 177
7.5.3 M2MI Handles . 178
7.5.4 ActorSpace . 179
7.5.5 One.world . 180
7.5.6 Distributed Asynchronous Collections 183
7.5.7 Joule Channels . 184

7.6 Conclusion . 184

8 Implementing Ambient References 185
8.1 Implementation Strategies . 186
8.2 Implementation Outline . 186
8.3 Extensional Reach . 188

8.3.1 Representing Reach . 188
8.3.2 Delivery Policies as Traits 189
8.3.3 Representing Discovery Lifetime 190
8.3.4 Representing Arity . 192
8.3.5 Representing Communication Lifetime 194
8.3.6 Representing Expirable Messages 195
8.3.7 Representing Exported Objects 196
8.3.8 Snapshots . 196
8.3.9 Summary . 197

8.4 Intensional Reach . 198
8.4.1 Representing Reach . 198
8.4.2 Delivery Policies as Traits 199
8.4.3 Representing Arity . 199
8.4.4 Representing Discovery Lifetime 202
8.4.5 Communication Lifetime and Expirable Messages 203
8.4.6 Representing Exported Objects 203
8.4.7 Snapshots . 205
8.4.8 Summary . 205

8.5 Evaluation . 205

CONTENTS xv

8.6 Ambient References as Custom Eventual References 207
8.7 Many to Many Invocations . 209

8.7.1 Motivation . 209
8.7.2 Applying M2MI . 210
8.7.3 Using M2MI . 210

8.8 Implementing Connection-oriented References 213
8.8.1 Anonymous Far References 213
8.8.2 Multireferences . 214

8.9 Marshalling Ambient References . 214
8.10 Garbage Collection . 215
8.11 Conclusion . 216

9 Ambient References in Action 217
9.1 Collaborative Chat . 218

9.1.1 Implementation via ambient references 218
9.1.2 Evaluation . 221

9.2 Collaborative Slideshow . 222
9.2.1 Implementation via Ambient References 223
9.2.2 Evaluation . 226

9.3 Comparing Ambient References with M2MI 227
9.3.1 Roaming . 227
9.3.2 One-to-many Communication 229
9.3.3 Provisional Services . 231

9.4 Conclusion . 232

10 Conclusion 235
10.1 Research Goals . 235
10.2 Restating the Contributions . 236
10.3 Limitations of our Approach . 238

10.3.1 Language Integration versus Language Separation 238
10.3.2 Custom Message Delivery Policies 238

10.4 Work influenced by Ambient References 239
10.5 Avenues for Future Research . 241

10.5.1 Aspect-oriented Programming 241
10.5.2 Service Selection . 242
10.5.3 Session Types . 242

10.6 Concluding Remarks . 243

A Ambient References Source Code 245
A.1 Ambient References Language Module 245
A.2 Custom Eventual References Module 251
A.3 Extensional Implementation Module 253
A.4 Intensional Implementation Module 257

Bibliography 262

Index 277

xvi CONTENTS

List of Figures

3.1 Contrasting object-oriented with event-driven communication. 51

4.1 AmbientTalk actors as communicating event loops. 68
4.2 The library transmission protocol. 84

5.1 Reflective view on an AmbientTalk actor. 101
5.2 Entities in the linguistic symbiosis between AmbientTalk and the JVM. 110
5.3 Mediating between JVM invocations and AmbientTalk messages. . . 112

6.1 Scope, communication range and reach of an ambient reference. . . . 130
6.2 Point-to-point ambient message delivery. 138
6.3 One-to-many ambient message delivery. 139
6.4 Delivery of an expirable one-to-many ambient message. 149
6.5 Taxonomy of Ambient Message Delivery Policies. 150
6.6 Impact of an ambient reference’s recall period on message delivery. . 154
6.7 An unbound anonymous far reference. 157
6.8 A bound anonymous far reference. 157
6.9 Flow chart classifying referencing abstractions according to designation. 160

8.1 Overview of the implementation of ambient references. 187
8.2 Delivery policy traits used by a message handler (extensional impl.). . 190
8.3 Multiple dispatch implementing ambient message delivery. 197
8.4 Delivery policy traits used by a message handler (intensional impl.). . 199
8.5 Anycast protocol to select a single receiver. 201

9.1 Structure of the collaborative chat application in AmbientTalk. 218
9.2 Structure of the collaborative slideshow application. 223
9.3 Protocol to transmit a slideshow from a projector to a group of screens. 223

10.1 Abstraction afforded by space-decoupled communication. 241

xvii

xviii LIST OF FIGURES

List of Tables

3.1 Service Lookup versus Service Discovery. 30
3.2 Survey of Related Work. 46
3.3 Degrees of coupling and failure handling. 47

4.1 Overview of AmbientTalk’s units of operation. 74

6.1 Combining communication (rows) and discovery (columns) lifetimes. 148

7.1 Comparing Ambient References to Event notification systems. 168

xix

xx LIST OF TABLES

Chapter 1

Introduction

This dissertation is about programming language abstractions for ubiquitous comput-
ing. Ubiquitous computing is a research vision (proposed by Mark Weiser [Wei91]) in
which computer technology becomes pervasive throughout our daily lives. Weiser pre-
dicts a “disappearing computer”: in his vision, the technology of the future no longer
demands the focus and active attention of the user. Rather, computer technology will
become an inadvertent part of our physical environment. This also brings about a
change in scale: whereas the era of the Personal Computer is characterised by a one-
to-one mapping between computer and user, in the era of ubiquitous computing, thou-
sands of microprocessors will be embedded in the environment to assist users. While
ubiquitous computing is not yet happening in the large, we can see the first signs of it
happening in the small. In the automotive industry, for example, most of today’s mod-
ern cars are already equipped with dozens of microprocessors which each try to assist
the user in an invisible or unobtrusive way. Many people today already have a “per-
sonal area network” of mobile devices such as PDAs, cellular phones or music players.
It will not be long before our clothing will be equipped with sensors and microproces-
sors that communicate with washing machines and wardrobes. Even today it is already
possible to buy running shoes equipped with sensors which wirelessly communicate
with a music player.

A key enabler for ubiquitous computing to happen is the networking technology by
which the different devices in our environment will collaborate with one another. Be-
cause ubiquitous computing deals with dynamic networks where nodes spontaneously
and continuously come and go (because people move about) and moreover because it
stresses the unobtrusiveness of computer technology, it is clear that ubiquitous com-
puting will rely heavily on so-called mobile ad hoc computer networks (MANETs).
Such networks enable computers to communicate with one another invisibly (they em-
ploy wireless communication) and unobtrusively (they do not or should not require
laborious configuration or administration to set up, they form spontaneously simply by
collocating devices).

While we see rapid developments at the level of hardware (increased accuracy of
sensors, reliability of wireless communication, etc.), the developments at the software
engineering level are nowhere near as groundbreaking. Today, developers find them-
selves working with tools (in the broadest sense of the word, including analysis and
design techniques, middleware, programming languages, etc.) which have come of
age in the era of the personal computer, not that of the ubiquitous computer. As a
result, there is a huge gap between the novel ubiquitous hardware waiting to be pro-

1

2 CHAPTER 1. INTRODUCTION

grammed and the software tools available to do so. A testament to this is the launch
of a plethora of research initiatives over the past few years that target “software engi-
neering for ubiquitous computing” in one way or another. Examples include the EU
IST Advisory Group’s vision of “Ambient Intelligence” [Gro03], where the empha-
sis is on smart homes and domotics, IBM Research’s “Autonomic Computing” initia-
tive [KC03], where the emphasis is on self-configurable computer networks and their
services, and the International Telecommunication Union’s vision of the “Internet of
Things” [Int05], envisioning a world wide web of everyday material objects that can
communicate with one another.

The vision behind our research is to ultimately close the gap between ubiquitous
computing and today’s software technology. Needless to say, this dissertation repre-
sents but a small step towards such an ambitious goal. In particular, we will focus on
how to reconcile traditional software abstractions for expressing communication be-
tween distributed processes with the novel type of mobile ad hoc networks. More con-
cretely, we propose a novel object-oriented programming language abstraction which
we term “ambient references”. It is the explicit design goal of ambient references to be
“remote object references” that are suitable for use in mobile ad hoc networks. Like
a classic remote object reference, an ambient reference designates remote objects and
can carry messages to those objects. Unlike a classic remote object reference, which
designates a single unique object, an ambient reference designates a volatile group
of proximate objects. We extensively explore the effects of this new form of object-
oriented designation on message passing.

In the remainder of this introductory chapter, we first sketch the research context of
this work. We highlight the problems to be tackled and how we intend to solve them.
Furthermore, we extensively discuss our programming language-driven approach to
solving the problem. We conclude the chapter with a preliminary overview of this
dissertation’s contributions and a roadmap to assist the reader in browsing the text.

1.1 Research Context
Our research lies within the intersection of four research domains. We describe each
of the domains, sketching their relationship with one another as we go along.

Ubiquitous computing has already been briefly discussed in the introduction. The
vision has spawned a tremendous amount of research in different areas of com-
puter science: researchers investigate sociological impacts, new ways of human-
computer interaction, privacy and security issues, low-level sensor technology,
etc. We are looking at ubiquitous computing from a software engineering per-
spective. Concretely, we focus on the distributed aspects of such software. Many
scenarios that extoll the vision of ubiquitous computing are built upon ad hoc
networking technology, which brings us to the next point.

Mobile ad hoc networks are computer networks composed of mobile devices whose
topology dynamically changes as devices move about. Often, devices commu-
nicate with one another through wireless communication technology (e.g. Blue-
tooth, WiFi, ZigBee,. . .) to guarantee maximum mobility of the devices. Be-
cause of the use of wireless communication, devices can communicate and co-
operate with other devices in their proximity unobtrusively. This makes such
computer networks a key technological enabler of the vision of ubiquitous com-
puting. However, the research area of mobile ad hoc networks itself remains vast,

1.2. PROBLEM STATEMENT 3

with many technological issues left to improve. We are particularly interested in
software development for mobile ad hoc networks. More specifically, we want to
investigate scalable coordination models for the software running on the mobile
nodes of an ad hoc network.

Coordination abstractions Because mobile networks engender an extremely dynamic
network topology, traditional coordination models to express communication be-
tween distributed processes fail to provide the right abstraction boundaries for
application developers. New abstractions are required which are designed from
the ground up to be used in mobile ad hoc networks.

Programming language design Coordination abstractions can take on numerous guises.
They can be abstract calculi, design patterns, operating system constructs, the
APIs of frameworks or libraries, or new programming language constructs. In
this dissertation, we pursue the development of coordination abstractions as pro-
gramming language constructs. We extensively motivate this choice in sec-
tion 1.4.

1.2 Problem Statement

Mobile ad hoc networks exhibit different properties than traditional, fixed computer
networks. While we defer an in-depth discussion of these properties until section 2.2, it
is clear that fundamental changes in the underlying network technology have an impact
on the way distributed software running on top of them is conceived. Abstraction
layers for distributed computing are always built with certain assumptions in mind.
Example assumptions could be “communication is for the most part reliable” or “the
network is mostly totally connected” or “device failures are rare” (which are all valid
assumptions in a contemporary local area network). However, when the properties of
the underlying network change, some of these assumptions fail to hold any longer. As
a result, contemporary abstractions for distributed computing fail to provide adequate
abstraction boundaries in mobile ad hoc networks.

We are not the first to note this discrepancy between traditional distributed comput-
ing abstractions and ad hoc networking technology. As we will describe in chapter 3,
many new abstractions have been proposed which do scale in mobile ad hoc networks.
What gap are we trying to close, then? As we will extensively discuss later, it turns
out that none of the emerging coordination abstractions for mobile ad hoc networks
are object-oriented but rather event-driven, while the lion’s share of today’s software
is written in object-oriented programming languages. This leads us to postulate the
object-event impedance mismatch: a characterisation of the difficulties in combining
the object paradigm with the event-driven communication paradigm for the purposes
of distributed computing.

The observation that the idiosyncratic properties of mobile ad hoc networks require
changes at the level of distributed programming abstractions also forms the original
motivation behind the ambient-oriented programming paradigm, as proposed by Jessie
Dedecker [Ded06]. The goal of ambient-oriented programming (AmOP) is to mould
distributed object technology as to make it suitable for the next generation of computer
networks. Within the context demarcated by the AmOP paradigm, this work specifi-
cally addresses the issue of designating and communicating with objects in a mobile ad
hoc network:

4 CHAPTER 1. INTRODUCTION

Designation In a mobile ad hoc network, applications cannot rely on centralised servers
that are accessible to all peers in the network. This has a large impact on the way
objects in an object-oriented distributed program can designate one another. The
traditional method of resolving symbolic names into object references via cen-
tralised directories or name servers ceases to work in mobile ad hoc networks,
requiring us to rethink the way objects address remote peers.

Communication The wireless technology employed in mobile ad hoc networks un-
dermines the scalability of the traditional “remote method invocation”, which
is the de facto standard object-oriented distributed communication abstraction.
The pillars on which it builds – reliable communication links with a relatively
low network latency – are essentially nonexistent in mobile ad hoc networks. It
requires us to rethink the way objects communicate with remote peers.

1.3 Research Goals

The goals of the research described in this dissertation are threefold:

• We want to investigate which coordination abstractions are appropriate for use
in a mobile ad hoc network and which are not. By studying both classic and
state of the art abstractions documented in the literature, we want to come up
with a number of criteria that capture the essence of coordinating concurrent
processes in a mobile ad hoc network. As described previously, the outcome of
our investigation reveals that classic object-oriented abstractions for distributed
computing fail to adhere to the postulated criteria. Therefore,

• We want to uncover why scalable coordination abstractions for mobile ad hoc
networks are not based on (or not well integrated with) object-oriented principles
and the message passing metaphor to represent distributed communication. In
other words, we want to lay bare the causes of the aforementioned object-event
impedance mismatch. Based on this,

• We want to resolve the object-event impedance mismatch by developing a coor-
dination abstraction that is both object-oriented and event-driven. As such, we
want to show (by means of a “proof by construction”) that it is possible to make
distributed object technology scalable in mobile ad hoc networks.

We achieve our proof by construction by developing a novel language construct
in a novel programming language. Together, they form the chief contributions of this
dissertation:

AmbientTalk/2 In chapters 4 and 5, we extensively describe AmbientTalk/2, a novel
ambient-oriented programming language which will serve as the core technolog-
ical platform in which we can experiment with novel coordination abstractions
for mobile ad hoc networks. Importantly, AmbientTalk/2 is an object-oriented
language whose execution model is entirely and inherently event-driven. As we
will see, this enables distributed language abstractions to be built on top of the
language which can be naturally integrated with the event-driven communication
paradigm.

1.4. A LANGUAGE-ORIENTED APPROACH 5

Ambient References Chapters 6,7,8 and 9 respectively describe the design, evalua-
tion, implementation and application of ambient references as a novel object-
oriented event-driven coordination abstraction for mobile ad hoc networks. Am-
bient references enable objects to intensionally designate proximate objects with-
out the need to resolve names into references. They enable objects to communi-
cate with proximate objects using the event paradigm without giving up on the
object referencing or message passing metaphors of the object paradigm.

In the following section, we motivate why we developed ambient references as a
novel language construct in a novel programming language.

1.4 A Language-oriented Approach
The work described in this dissertation puts a strong emphasis on programming lan-
guage design. This choice is motivated both by cultural as well as practical consider-
ations. Language research at the Programming Technology Lab has a long history of
experiments performed in so-called little languages [Ben86]. Examples include Pico
[D’H96], Agora [Ste94b], ChitChat [De 04, DTM+05] and AmbientTalk/1 [Ded06].

1.4.1 Domain-specific Languages
While Bentley uses the term “little language” in his 1986 CACM column, contempo-
rary computer scientists are more familiar with the term “domain-specific languages”
(DSLs) [MHS05]. What is it that makes such languages attractive from a language de-
signer’s perspective? The major asset of a DSL is that it has the potential of augmenting
the expressive power to solve a specific class of problems. Common to all DSLs is that
they do this by making the data structures and operations from their problem domain
the basic building blocks of the language. Examples of DSLs truly abound: YACC
is a language for describing grammars, so its basic building blocks are grammatical
rules and tokens; LATEX is a language for typesetting documents, to its basic building
blocks include sections, paragraphs and references; Make and ANT are languages for
build automation, so their basic building blocks include files and dependencies; Linda
is a process coordination language so its basic building blocks include primitives for
process communication; AmbientTalk/1 is a language for coordinating asynchronous
distributed objects, so its basic building blocks include message queues and service
discovery; and so forth.

While DSLs certainly have their merits, they are not a panacea. It should not be
forgotten that their expressive power is reciprocal to their generality. This explains
why the creation of a DSL is often a painstaking process of balancing between domain-
specific features and general-purpose language constructs.

1.4.2 Language Integration and Impedance Mismatch
One advantage of domain-specific languages over conventional libraries or middleware
is their ability to enforce certain global rules or a certain programming style by design.
It is this advantage which we will exploit throughout the rest of this dissertation. Being
able to enforce certain properties becomes particularly important when considering
the composition of two or more systems. It is well-known in computer science, and
other engineering disciplines, that the composition of two systems that foster their own

6 CHAPTER 1. INTRODUCTION

style sometimes leads to an “impedance mismatch”. Quoting Lämmel and Meijer, who
themselves derive their definition from Wikipedia [LM07]:

‘Impedance mismatch’ is derived from the usage of impedance as a mea-
surement of the ability of one system to efficiently accommodate the out-
put (energy, information, etc.) of another. [...] Although the term origi-
nated in the field of electrical engineering, it has been generalized and used
as a term of art in systems analysis, electronics, computer science, infor-
matics, and physics. In particular, the term is also used “to refer to the
difficulties encountered when attempting to connect two systems which
have very different conceptual bases”.

In computer science, the term most often refers to the object-relational impedance
mismatch, describing the difficulties of mapping objects onto relational tables and vice
versa [CD96]. Similar problems exist in mapping between objects and XML docu-
ments [LM07]. Indeed, the term is often used to describe the difficulties of converting
between different data formats. In this dissertation, we study impedance mismatch in
a different sense and consider the difficulties that arise when composing language fea-
tures. There are many examples in computer science where different language features
fail to compose well:

• Functional programming languages exhibit a property known as referential trans-
parency, which implies that any expression can always be substituted for its value
without any effect on the semantics of the program (in other words: invoking a
function with the same input always yields the same output). However, such a
functional system cannot be composed safely with a system that allows assign-
ment: the composite system can no longer guarantee referential transparency.

• Logic programming languages with a goal-driven derivation procedure exhibit a
property known as backtracking, which occurs when the search algorithm con-
ducting a proof derivation considers alternatives after descending down a failing
branch of the search tree. When backtracking, substitutions for logic variables
made in the failing subtree are automatically “undone”, enabling the program-
mer to abstract over failed proof derivations. Again, if such a system is composed
with a system allowing assignment (whether via features like Prolog’s assert
or via linguistic symbiosis with a non-functional language [GWDD06]), then the
composite system loses the abstraction barrier, as side-effects are not undone via
backtracking. Gybels et al. have named this impedance mismatch a paradigm
leak, because the effects of one paradigm become visible to the other paradigm
which cannot cope with them appropriately.

• In an object-capability system, objects are capability secure because they can
only be affected by objects that have a reference to them and because there exists
a well-defined operator for controlling the spread of references in the system (the
“Granovetter” operator [MMF00]). However, composing such a system with
one in which references are forgeable (e.g. by casting an integer address into a
pointer in C or C++) leads to a system that is not capability secure: the rules
that previously allowed the system to enforce security can now be circumvented
thanks to operators beyond its control.

• In a system with event loop concurrency (cf. section 4.3.1), concurrency within
one event loop is restricted by processing events sequentially. Hence, all events

1.4. A LANGUAGE-ORIENTED APPROACH 7

run in mutual exclusion and it is not necessary to introduce additional synchroni-
sation constructs within the event loop itself. However, composing an event loop
system with a multithreaded system leads to a composite where the concurrency
invariants of event loops are easily violated by threads accessing an event loop’s
objects [VMD07].

In all of the above cases, the problem is that a global property of one system can no
longer be a property of the composite due to a conflicting feature of the other system,
creating an impedance mismatch. How is it that a language-oriented approach can
avoid or mitigate the impedance mismatch? When designing a library or middleware
as a separate system, with its own rules and programming style, one necessarily needs
to compose that system with its “host” language, the (mostly general purpose) language
in which it is implemented. As a result, some properties of the library/middleware may
not be globally enforced. Whether or not this is an actual problem depends on the
nature of the property: while the backtracking/assignment problem can be seen as a
nuisance, a security leak in a capability-secure system is a serious issue. Nevertheless,
by building a system as a well-designed language, the impedance mismatch can be
avoided because there is no need to compose that language with an implementation
system. The language interpreter has total control over every aspect of the system’s
execution.

Because a programming language makes it possible to truly enforce a certain style
of programming to tackle a certain type of problem, a good language design can enforce
the programmer to use a programming style which has been carefully thought out to
better match the problem at hand. To restate this with a perlisism: “a language that
doesn’t affect the way you think about programming, is not worth knowing” [Per82].

1.4.3 The Myth of Distribution Transparency
Throughout the history of distributed computing, there has been a consistent desire
to abstract from the network layer as much as possible. This desire is justified be-
cause programming a local application is easier than programming a distributed one,
so the more distributed software development can resemble traditional software de-
velopment, the better. Or so it seems. Following the widespread use of the remote
procedure call [BN84], researchers and practitioners alike came to see that distributed
programming is inherently more complex than local programming, and that distributed
computing cannot be subsumed by traditional software engineering techniques. Rather
than becoming the holy grail, distribution transparency turned into myth [GF99]. How-
ever, this has not kept researchers from developing novel abstractions for aiding in the
development of distributed applications. On the contrary, researchers are now aware
of the fallacies of the myth and design their abstractions accordingly. Quoting Eugster
et al. on the goals behind their Distributed Asynchronous Collections abstraction (cf.
section 7.5.6) [EGS00], p. 274:

“[...] distribution transparency is a myth that is both misleading and dan-
gerous. Distributed interactions are inherently unreliable and often intro-
duce a significant latency that is hardly comparable to that of a local inter-
action. The possibility of partial failures can fundamentally change the se-
mantics of an invocation. High availability and masking of partial failures
involves distributed protocols that are usually expensive and hard, if not
impossible to implement in the presence of network failures (partitions).

8 CHAPTER 1. INTRODUCTION

We have been considering an alternative approach where the programmer
would be very aware of distribution but where the ugly and complicated
aspects of distribution would be encapsulated inside specific abstractions
with a well-defined interface.”

In this dissertation, we will follow exactly such an approach. While AmbientTalk/2
and ambient references strive to enable the programmer to abstract from the underlying
network as much as is practically possible, it is never their goal to provide distribution
transparency. A developer using them must be very aware of the issues engendered by
distributed computing, but only when they are fundamental in nature.

1.5 Contributions

It is always difficult to provide an overview of contributions in advance, with the prob-
lem statement only vaguely introduced and without the technical foundations required
to support them. However, listing the contributions early on helps to sketch the context
and subject domain of the dissertation. In short, this dissertation makes the following
conceptual and technical contributions in the intersecting domains of mobile ad hoc
networks, programming language research and coordination languages and models:

• We fine-tune the definition of the original ambient-oriented programming para-
digm based on the fundamental properties that discriminate mobile ad hoc net-
works from traditional networks. We revisit the first ambient-oriented language
(AmbientTalk/1) and highlight its strengths and weaknesses (cf. chapter 2).

• We describe a set of criteria which highlight what properties a programming
abstraction for coordinating distributed processes must posses in order for it to
scale in a mobile ad hoc network (cf. section 3.2).

• We provide an extensive survey of related work on coordination abstractions for
mobile ad hoc networks (cf. section 3.3). As will be described, the outcome of
the survey is that event-based abstractions are the most scalable in a MANET.

• We describe the difficulties of integrating object-oriented programming with
event-driven programming for the purposes of distributed computing and name
this phenomenon the object-event impedance mismatch (cf. sections 3.4 and 7.2).

• We provide a second embodiment of the ambient-oriented programming para-
digm. More specifically, we introduce the AmbientTalk/2 programming lan-
guage, the successor to the original AmbientTalk language developed by De-
decker [Ded06] (cf. chapter 4). The design and implementation of this language
are not solely this author’s contribution: they can be attributed to multiple re-
searchers of the Programming Technology Lab.

• We discuss metalevel engineering techniques in AmbientTalk (cf. chapter 5).
Most importantly, we discuss a mirror-based reflective architecture that allows
custom object references to be introduced reflectively in AmbientTalk. We also
contribute a technique to compose AmbientTalk’s event-driven actor model with
the threads of the Java Virtual Machine using linguistic symbiosis.

1.6. DISSERTATION ROADMAP 9

• We contribute a novel kind of distributed language abstraction which we name
ambient references (cf. chapter 6). Ambient references are designed specifically
for designating and communicating with remote objects across a mobile ad hoc
network. They define a taxonomy of different message passing semantics which
allows the expression of many different kinds of interaction patterns within a
single unified referencing framework.

• We show how ambient references unify object-oriented with event-driven com-
munication. We also relate them to existing referencing abstractions described in
the literature by reformulating these abstractions in terms of ambient references
(cf. chapter 7).

• We show how AmbientTalk/2, extended with the referencing abstractions intro-
duced in chapter 6 forms a suitable platform for expressing coordination between
objects distributed across a MANET, by showing how it satisfies the different co-
ordination criteria introduced earlier in chapter 3 (cf. section 7.1).

• We describe a concrete implementation of ambient references (in AmbientTalk)
which uses state of the art object-oriented composition techniques to modularise
the different kinds of message passing semantics (cf. chapter 8). The implemen-
tation depends on a complex yet robust combination of computational reflection
and linguistic symbiosis. Computational reflection is used to represent ambi-
ent references as a special kind of “object references” in the language, while
linguistic symbiosis enables ambient references to be built on top of the M2MI
framework, a Java library for performing many-to-many communication in ad
hoc networks [KB02].

• We validate ambient references by employing them to implement two represen-
tative collaborative applications designed to run in a mobile ad hoc network.
Subsequently, we show how the communication patterns which ambient refer-
ences can readily express would be implemented in Java using M2MI. Based on
these implementations, we can show how ambient references improve upon the
state of the art (cf. chapter 9).

1.6 Dissertation Roadmap

Ambient references form the main scientific contribution of this work. However, be-
fore going into details on ambient references, we first sketch the research context in
which they have been developed. To ground the technical discussion, we also need to
introduce AmbientTalk, the programming language in which ambient references have
been incorporated and implemented. Once the core concepts comprising ambient ref-
erences have been introduced, ambient references themselves can be placed in context.
Below, we summarise each subsequent chapter in the dissertation.

Chapter 2: Ambient-oriented Programming Revisited provides the reader with an
introduction to the ambient-oriented programming paradigm. We describe the
paradigm as originally proposed by Dedecker [Ded06] but also adjust its char-
acteristics where appropriate. In particular, this chapter clearly highlights what
properties are fundamental to mobile ad hoc networks and require a rethink of

10 CHAPTER 1. INTRODUCTION

the classic programming abstractions for distributed applications. These proper-
ties form the fundamental assumptions underlying a set of criteria defined in the
next chapter.

Chapter 3: Coordination in Mobile Ad hoc Networks puts forward a set of crite-
ria which characterise whether or not a certain coordination abstraction is suit-
able for use in a mobile ad hoc network. In the subsequent survey of related
work, these criteria serve as a discriminant for determining the most suitable
approaches to coordination in mobile ad hoc networks. The outcome of this sur-
vey is that event-based approaches scale much better in a MANET than the tra-
ditional object-oriented approaches. However, composing object-oriented pro-
grams with event systems for the purposes of distributed communication is not
without problems, leading us to define the object-event impedance mismatch.
The main motivation of this dissertation is how to resolve this impedance mis-
match by means of appropriately designed language constructs, to wit ambient
references.

Chapter 4: AmbientTalk introduces the AmbientTalk/2 programming language. This
language is the successor of the original AmbientTalk language developed by
Dedecker [Ded06]. We discuss those language features required to understand
the technical details of ambient references. The focus is on the language’s object-
oriented, concurrent and subsequently distributed language features. These fea-
tures are then put to work in a concrete case study (a “musical match maker”
ad hoc application). We also highlight how AmbientTalk in itself already partly
reconciles objects with events. Finally, the AmbientTalk language design is put
in perspective by relating it to the original AmbientTalk language and other prior
work.

Chapter 5: Metalevel Engineering in AmbientTalk discusses AmbientTalk’s reflec-
tive architecture, how custom object references can be added to the language re-
flectively and how AmbientTalk programs can interoperate with the Java Virtual
Machine. Because embedding an actor-based language like AmbientTalk into a
thread-based language like Java is not without conceptual problems, we devote
a section to explain the embedding process in more detail. Reflection and lin-
guistic symbiosis are subsequently employed in chapter 8 to implement ambient
references in AmbientTalk.

Chapter 6: Ambient References describes ambient references from the designer’s
point of view. It is an exposition of the principal contribution of the dissertation.
Even though AmbientTalk already features high-level language abstractions, we
will show in an example-driven manner that they are insufficient to express many
collaborations in mobile ad hoc networks. Subsequently, we define ambient ref-
erences and describe a taxonomy of the different kinds of communication pat-
terns which they support.

Chapter 7: Ambient References in Context describes ambient references from the
computer scientist’s point of view. It abstracts from the technical details of am-
bient references and relates them to previous work. Also, we evaluate ambient
references by means of the criteria set forth in chapter 3. Finally, with both Am-
bientTalk and ambient references introduced, we describe how their combined
properties facilitate the combination of objects with events to coordinate distri-
buted processes, in part mitigating the object-event impedance mismatch.

1.7. SUMMARY 11

Chapter 8: Implementing Ambient References describes ambient references from
the implementor’s point of view and once again exposes the reader to the tech-
nicalities of AmbientTalk and ambient references. We describe and contrast two
strategies for implementing ambient references. We discuss how the metalevel
engineering techniques introduced in chapter 5 can be employed to implement
ambient references reflectively in AmbientTalk.

Chapter 9: Ambient References in Action describes ambient references from the ap-
plication programmer’s point of view. We describe two small but realistic mobile
ad hoc networking applications and compare an implementation using ambient
references with an implementation using M2MI [KB02].

Chapter 10: Conclusion summarises the contributions made in this dissertation. At
that point we are able to evaluate the contributions of the dissertation with hind-
sight, naturally leading to a discussion on the limitations of this work and on
possible directions for future research.

1.7 Summary
This dissertation is an exposition about novel object-oriented referencing and commu-
nication abstractions for mobile ad hoc networks. We focus on such networks because
they form an important technology underlying the vision of ubiquitous computing. We
will describe why and how scalable coordination abstractions for mobile ad hoc net-
works are not based upon object-oriented principles. To resolve this mismatch, we
propose a novel language construct (ambient references) in a novel programming lan-
guage (AmbientTalk/2) which reconciles object-oriented distributed computing with
mobile ad hoc networks.

The next chapter provides the reader with the necessary background information
on mobile ad hoc networks and their relation to ambient-oriented programming. After-
wards, in chapter 3, this background information will prove to be crucial to understand
which coordination abstractions scale in mobile ad hoc networks. Chapter 2 also dis-
cusses AmbientTalk/1, the first ambient-oriented language. This language’s limitations
form the motivation behind AmbientTalk/2, which is introduced in chapter 4.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Ambient-Oriented
Programming Revisited

This dissertation’s contribution lies in the domain of ambient-oriented programming,
a novel programming language paradigm proposed by Dedecker et. al [DVM+05,
DVM+06a, Ded06]. As the work described in this dissertation builds upon this prior
work, this chapter provides a summary of ambient-oriented programming to serve as a
frame of reference when discussing object designation using ambient references in later
chapters. We will repeat in full the motivation behind ambient-oriented programming,
which are the idiosyncratic properties of mobile ad hoc networks. We also briefly intro-
duce AmbientTalk/1, the first ambient-oriented programming language. We describe
what key features of this language make it suitable for use in mobile ad hoc networks.
We also describe issues and experiences with the language, motivating the need for its
successor language, AmbientTalk/2.

2.1 Motivation
As discussed in the introduction, mobile ad hoc networks constitute the network tech-
nology of ubiquitous computing. The salient properties of such networks are explained
in the following section. In a nutshell, the most difficult problems are that network
connections between devices are unstable due to the limited wireless communication
range of participating devices, that the network is open – (new) devices frequently join
and leave the network – and has little or no infrastructure (e.g. to support globally
accessible servers).

Contemporary distributed programming languages, middleware and libraries offer
abstractions that are built with different assumptions of the properties of the under-
lying communications network. For example, in a conventional distributed system, a
network partition is regarded as a failure, i.e. an exceptional event. In a mobile net-
work, disconnections between devices become the norm, rather than the exception; this
change in the physical nature of the network percolates all the way up to the applica-
tion layer [MCE02]. However, the intermediary abstractions between the application
and network layer cannot optimally cope with these changes, resulting in seemingly
ill-defined abstractions for the application programmer. For example, handling fail-
ing communication using the classic programming language abstractions of exception
handling results in application code that is literally polluted with failure handling. An

13

14 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

ambient-oriented language foregoes such issues by changing the intermediary abstrac-
tion barriers in order to fit the changed hardware phenomena of the underlying network
itself [DVM+06a].

As our work builds on the ambient-oriented programming paradigm, we recapitu-
late the properties of mobile ad hoc networks in the following section.

2.2 Mobile Ad Hoc Networks
A good definition of mobile ad hoc networks given by Murphy et al. [MRV98] and
also quoted in [GR03] is the following:

Definition 1 (Mobile Ad Hoc Network) A transitory association of mobile nodes which
do not depend upon any fixed support infrastructure. [...] An ad-hoc network can be
visualized as a continuously changing graph. Connection and disconnection is con-
trolled by the distance among nodes and by willingness to collaborate in the formation
of a cohesive, albeit transitory community.

The two key points in the above definition are the fact that devices are mobile and
that there is no fixed infrastructure, resulting in wireless peer-to-peer interaction among
the nodes.

Note that this definition allows for quite a broad range of possible networks, as
the type of mobile device and wireless communication medium can vary, catering to a
diverse set of envisaged applications. Devices might be as small as coins, embedded
in material objects such as wrist watches, door handles, lamp posts, cars, etc. They
may even be as lightweight as sensor nodes or they may be material objects “digitized”
via an RFID tag1. Devices may also be as “heavyweight” as a cellular phone, a PDA
or a car’s on-board computer. All of these devices can in turn be interconnected by a
diverse range of wireless networking technology, with ranges as wide as those of WiFi
technology or as limited as those of IrDA (infrared).

2.2.1 Hardware Characteristics
Mobile ad hoc networks composed of mobile devices and wireless communication
links exhibit a number of phenomena which are rare in their traditional, fixed coun-
terparts. In his original work, Dedecker identified four discriminating “hardware phe-
nomena” that are inherent to mobile networks [DVM+06a]. In this work, we claim
that only two of the four phenomena are fundamental and we argue how the other two
can be derived from the fundamental ones. The two fundamental characteristics of a
MANET are:

Volatile Connections (originally named Connection Volatility). Mobile devices e-
quipped with wireless communication media only have a limited communication
range. This implies that communicating devices may move out of earshot at any
time because of the happenstance of node mobility. The resulting disconnec-
tions are not always permanent: the two devices may meet again, requiring their
connection to be re-established. Such network connections are also said to be
intermittent [MCE02]. Quite often, transient network partitions should not abort

1Such tags can be regarded as tiny computers with an extremely small memory, able to respond to read
and write requests.

2.2. MOBILE AD HOC NETWORKS 15

a distributed interaction. Rather, communicating parties in an ad hoc network are
more interested in continuing their collaboration when the connection is restored
– they expect communication to work in the presence of volatile connections.
Dealing with partial failures is not a new ingredient of distributed systems, but
these more frequent transient disconnections do expose applications to a much
higher rate of partial failure than that which most distributed languages or mid-
dleware have been designed for. In mobile networks, disconnections become so
omnipresent that they should be considered the rule, rather than an exceptional
case.

Zero Infrastructure (originally named Ambient Resources). Mobile ad hoc net-
works have no or very little fixed infrastructure [MCE02]. Networks are formed
by the mere colocation of mobile nodes. In such networks, the services available
to an application thus depend on the host device’s location. As devices move,
services may spontaneously appear and disappear as their hosts join with and
disjoin from the ad hoc network. Moreover, a mobile ad hoc network is often not
globally administered by a central authority. In stationary networks, applications
usually expect services to be available and accessible via an a-priori known URL
or similar designator. In a mobile ad hoc network applications have to find their
required services dynamically in the environment. Services have to be discov-
ered on proximate devices, possibly without the help of shared infrastructure.

In the original motivation for AmOP, Dedecker states that services, and more
generally resources, are said to be “ambient” because they are only available to
an application when they are physically proximate.

Additionally, Dedecker identifies the following two characteristics [DVM+06a]:

Autonomy. Most distributed applications today are developed using the client-server
approach. The server often plays the role of a “higher authority” which coordi-
nates interactions between the clients. In mobile networks a connection to such
a “higher authority” is not always available. Every device should be able to act
as an autonomous computing unit.

Natural Concurrency. In theory, distribution and concurrency are two different phe-
nomena. For instance in a client-server setup, a client device might explicitly
wait for the results of a request to a serving device.

We argue that autonomy is a corollary of the lack of shared infrastructure. Without
a shared infrastructure, devices (or more accurately their applications) necessarily need
to be autonomous. The fact that they should be autonomous follows from the fact that
they cannot depend on infrastructure, because there is (mostly) none available. Ad hoc
applications have to be structured such that they can cope with necessary resources or
services being unavailable for an extended period of time.

Natural concurrency already follows from the fact that applications are deployed
on a distributed computer network. Hence, any ad hoc networking application is essen-
tially distributed and concurrent. Granted, if synchronous client-server communication
is used, the degree of concurrency in the system is largely diminished, but not en-
tirely. The client and the server are still separate, distributed processes – they may fail
independently. It is not possible to hide their distributed nature completely from the
applications built on top [WWWK96].

16 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

Any application that is to be deployed on a mobile ad hoc network has to deal
with the above phenomena. What is important to note is that the above phenomena are
universal, in the sense that they do not depend on the particularities of a specific ap-
plication. Exactly because of this universality, it is worth investing in a computational
model that facilitates distributed programming for mobile ad hoc networks by taking
these phenomena into account from the ground up. Such a computational model could
be implemented as a new language, library or middleware platform. However, because
the effects engendered by partial failures and the absence of remote services tend to
affect and pervade the entire application, the above phenomena are not easily hidden
behind traditional library abstractions. Therefore, distribution is often dealt with in
dedicated middleware or programming languages. Together with the argumentation
given in section 1.4, this forms the motivation behind our language-oriented approach
to object designation for MANETs in later chapters.

2.2.2 Ad Hoc Networks versus Ad Hoc Applications
In a short but insightful paper, Garbinato and Rupp discuss the differences between ad
hoc networks and ad hoc applications [GR03]. They argue that ad hoc networks nec-
essarily imply ad hoc applications, but not necessarily the other way around. In other
words, it is possible to envision ad hoc applications in other network infrastructures as
well. To Garbinato and Rupp, an ad hoc application exhibits [GR03]:

• Mobility: a user should be able to use the ad hoc application anywhere, at any
time. Hence, they argue, the application should not be limited by the communi-
cation range of the mobile device (e.g. Bluetooth technology). The communi-
cation range should depend on application logic, not on the underlying physical
communication medium.

• Peer-to-peer interactions: devices should be able to logically communicate di-
rectly, without reference to a central server. However, Garbinato and Rupp make
the point that physically, communication may still be routed through a shared
infrastructure, as long as the communication is logically peer-to-peer.

• Collocation: logical interactions of ad hoc applications are consequences of the
physical interactions of their users. Hence, ad hoc applications are “location-
based”.

It is indeed possible to construct applications fulfilling the above requirements
without resorting to an ad hoc network. Garbinato and Rupp describe an applica-
tion named the ubiquitous flea market [GR03] which is intended to be run on cellular
phones. Using the application, users can advertise items they wish to sell or place a
demand for items they wish to buy (e.g. concert tickets). What makes this an ad hoc
application is that matching buyers and sellers are only notified of one another when
they are proximate (e.g. when both are at a venue). While this proximity could be de-
tected by means of real ad hoc networking technology (for example, using the phones’
Bluetooth protocol), Garbinato and Rupp discuss this application in the context of a
nomadic network (which is a network consisting of both mobile devices and fixed
support infrastructure, e.g. base stations). Mobile phones communicate via a shared
web service (using the GSM network), which keeps track of all phones’ locations and
performs the matching on behalf of the phones. This allows proximity to be defined
independently of any ad hoc networking technology.

2.3. AMBIENT-ORIENTED PROGRAMMING 17

Hence, the claims made in the previous section that ad hoc applications necessarily
need to deal with the hardware phenomena of MANETs only holds for that subset of ad
hoc applications physically deployed on a MANET. In the rest of this dissertation, we
will for the most part keep the focus on ad hoc applications for ad hoc networks. While
such networks limit the kind of applications one may build, they nevertheless form an
important subset. Infrastructure may not always be available (e.g. in disaster relief
scenarios) or it may be inappropriate for the task at hand (e.g. prohibitively expensive
to use). Ad hoc applications deployed in MANETs introduce more challenges from
a systems perspective because of the inescapable hardware characteristics explained
previously. Developing ad hoc applications without reference to a real MANET is
inherently simpler: communication can be made much more reliable and one may
exploit existing infrastructure.

2.3 Ambient-Oriented Programming
In his dissertation, Dedecker extensively motivates why previously developed program-
ming languages and middleware are not readily suitable for MANETs, because they do
not directly address the hardware phenomena described above [Ded06]. In reaction,
he defines the ambient-oriented programming paradigm to clearly identify what char-
acteristics of a system make it suitable for deployment in a mobile ad hoc network. A
language is ambient-oriented if it exhibits a specific set of characteristics. Hence, the
definition of the ambient-oriented paradigm is exactly this set of language character-
istics. They are extensively discussed elsewhere [DVM+05, DVM+06a, Ded06]. We
summarise each of them below such that they can be evaluated in light of coordination
abstractions for mobile ad hoc networks in the following chapter.

2.3.1 Classless Object Models
An ambient-oriented language disallows the use of classes as they are employed in
traditional class-based languages like Java and Smalltalk. In such languages, when ob-
jects are copied between devices (to share information, e.g. using parameter-passing),
the class has to be copied as well. Hence, a single class can become duplicated across
several devices in the network. In a volatile network like a MANET, it becomes impos-
sible to implicitly ensure that all of these duplicate classes are kept in synchronisation.
However, this impossibility breaks the abstraction barrier that all instances of concep-
tually the same class should behave the same way: two instances of conceptually the
same class may behave differently on different machines.

An ambient-oriented language avoids these problems by requiring objects to be
entirely self-sufficient (containing their own code and data). When objects are copied
between hosts, they are self-descriptive and need no shared external entity (the class)
to be duplicated. Of course, this solution is not a “silver bullet” either: if a class-like
sharing relationship between objects is required, it must now be explicitly encoded by
the programmer, who is himself responsible for the consistency of this relationship in
the face of volatile connections.

2.3.2 Non-Blocking Communication Primitives
All distributed object-oriented programming languages have primitives for sending and
receiving messages across the network. An ambient-oriented language requires these

18 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

primitives to be “non-blocking”: a process or thread of control should not be suspended
if the operation cannot be completed immediately. This requirement is based on the fact
that in a wireless ad hoc network, communicating parties can often be unavailable, and
making a communication operation block until the communicating party is available
may lead to unacceptable delays. Furthermore, blocking primitives increase the risk
of distributed deadlocks which are hard to detect in an ad hoc network, because the
network lacks a global coordinator to detect or break the cycle.

Non-blocking message sending is better known under the term asynchronous mes-
sage sending. More specifically, it is the form of asynchronous message sending where
the sender does not even have to wait for the message to be transmitted to the receiver2.
Non-blocking message reception is better known as event-driven computation. A non-
blocking receive operation enables a process to register its interest in a certain type of
message without blocking the control flow. In an event-driven application, the locus
of control lies outside of the application; the control flow is determined by external
events, rather than being encoded within the application itself.

2.3.3 Reified Communication Traces

The above requirement of making all communication between processes non-blocking
implies that devices are no longer implicitly synchronised while communicating. If
communication primitives no longer synchronise processes implicitly, other means
must be provided to do so for some distributed computations to make sense. The
ambient-oriented programming paradigm re-introduces synchronisation by requiring
information about the communication traces of processes to be reified (i.e. made ex-
plicit). By communication traces, we mean e.g. the messages that a process success-
fully received in the past or the messages that are still pending to be sent, etc. Systems
such as Virtual Time [Jef85] have proven that this information suffices to implement
a variety of synchronisation mechanisms, such as optimistic transactions which do not
use locks to synchronise processes but rather rollback computations should conflicts
occur.

2.3.4 Ambient Acquaintance Management

As mentioned in section 2.2, mobile ad hoc networks have no infrastructure, which re-
quires devices to detect services (“ambient resources”) dynamically as they are roam-
ing. In addition, services may be “anonymous”: they have no a priori known address or
URL by which they can be addressed. An ambient-oriented language should therefore
include language features to communicate with anonymous services.

Ambient acquaintance management also entails a mechanism that allows a program
to keep track of which services become available and unavailable as devices roam. An
ambient-oriented language requires this mechanism to be peer-to-peer because of the
lack of infrastructure: devices must be able to advertise their own services directly,
without reference to third party servers. Note that this does not imply that an ambient-
oriented program must be peer-to-peer as a whole: it is always possible to structure
applications according to a client-server pattern. Ambient-oriented programming only

2Some asynchronous message passing models do not require a sender to wait for the message to be
processed, but do require the sender to wait until the message was successfully transmitted across the net-
work. For example, Caromel distinguishes between synchronous transmission but asynchronous servicing
of requests [Car93].

2.4. AMBIENTTALK/1 19

states that applications should not be forced to use a client-server setup in order to
interact.

2.3.5 Summary
The goal of an ambient-oriented programming language is to ease the construction of
software deployed in a mobile ad hoc network because its distributed language features
are carefully constrained to fit the hardware characteristics inherent to a MANET. Com-
municating over volatile connections and communicating with anonymous discovered
services form the essence of the paradigm.

2.4 AmbientTalk/1
AmbientTalk/1 is the first concrete ambient-oriented programming language. It was
originally developed in the context of the dissertation of Dedecker [Ded06] as the pro-
gramming language incarnation of an abstract calculus, known as the ambient actor
model [DV04]. AmbientTalk/1 is the direct precursor to the AmbientTalk/2 program-
ming language presented in this dissertation. In this section, we highlight how Ambi-
entTalk/1 succeeded in converting the AmOP requirements into usable programming
language abstractions. However, we also highlight the limitations of the language.
These limitations form the direct motivation for the introduction of the AmbientTalk/2
programming language, in chapter 4.

2.4.1 The AmbientTalk/1 Kernel Language
AmbientTalk/1 is a reflectively extensible kernel designed as a language laboratory to
facilitate experimentation with AmOP language features. At the heart of the language
is a distinction between so-called active and passive objects, resulting in a “double-
layered” object model [DVM+06a]. AmbientTalk/1’s active objects are based on the
model of ABCL/1 [YBS86]. This model features active objects which consist of a
perpetually running thread, updatable state, methods and a message queue. These
concurrently running active objects communicate by asynchronous message passing.
Upon reception, messages are scheduled in the active object’s message queue and are
processed one by one by the active object’s thread. By enforcing an active object to
process messages sequentially, race conditions on the updatable state are avoided. The
merit of the model is that it unifies imperative object-oriented programming and con-
current programming without suffering from omnipresent race conditions.

Because it would be rather heavyweight to equip every object in an application with
these (relatively heavyweight) concurrency control provisions, AmbientTalk/1 distin-
guishes between active and passive objects. Passive objects are normal objects without
any built-in support for concurrency control. Because of this, the language must impose
very strict rules on how passive objects are shared and manipulated by concurrently ex-
ecuting active objects. AmbientTalk/1’s solution to this problem is to disallow active
objects to share the same passive objects. It enforces this restriction by means of two
rules [DVM+06a]:

• Containment: Upon creation, every passive object is contained within exactly
one active object. The only thread that can enter the passive object is the thread
of this active object that created and contains it.

20 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

• Parameter Passing Rules: When an asynchronous message is sent to an active
object, objects may be sent along as arguments. In order not to violate the con-
tainment principle, a passive object that is about to cross the boundaries of its
active container in this way is passed by copy. Any instance variables of the
passive object are transitively deep-copied up to the level of references to active
objects. Active objects process messages one by one and can therefore be safely
shared by two different active objects. Hence, they are passed by reference.

A concurrent AmbientTalk application is structured as a set of communicating ac-
tive objects. Active objects are also AmbientTalk/1’s unit of distribution and are the
only kind of object that can be referred to across device boundaries. Several active
objects can run on a device and every active object contains an object graph of pas-
sive objects. Objects in this graph can refer to active objects that may reside on any
device. In other words, AmbientTalk/1’s remote object references are always refer-
ences to active objects. Remote references to passive objects are disallowed: uphold-
ing the traditional method invocation semantics of passive objects would imply the use
of synchronous remote method invocations, thereby violating the requirement for all
distributed communication to be non-blocking (cf. section 2.3.2).

2.4.2 First-class Mailboxes

AmbientTalk/1’s novelty with respect to similar active object models based on the actor
model (such as ABCL/1 [YBS86]) lies in the treatment of the queues or mailboxes in
which the asynchronous messages reside. AmbientTalk/1 introduces a mailbox for
each stage in the life-cycle of an asynchronous message:

• The inbox stores the messages which an actor has already received and acknowl-
edged, but not yet processed.

• The outbox stores the messages which an actor has already sent, but which are
not yet known to be received (i.e. their acknowledgment is pending).

• The rcvbox stores the messages which an actor has processed.

• The sentbox stores the messages which have been successfully sent (i.e. they
were acknowledged to be received).

The notion of an inbox and an outbox are well-known in other active object mod-
els and in the original actor model as defined by Hewitt and Agha [Hew77, AH87].
However, the introduction of mailboxes that capture the history of messages is far
less common. The real novelty of AmbientTalk/1 is the fact that these mailboxes are
reified as first-class passive objects that can be manipulated by the programmer3. Am-
bientTalk/1’s mailboxes embody the AmOP characteristic of reified communication
traces (cf. section 2.3.3). In section 2.4.4, we briefly discuss how they have been used
to develop ambient-oriented synchronisation constructs.

3Reification is a term stemming from the domain of computational reflection, cf. section 5.2.2. A “reifi-
cation” of an abstract entity differs from a “representation” of that entity in the sense that the former must
remain causally connected [Mae87] to the entity while the latter must not.

2.4. AMBIENTTALK/1 21

2.4.3 Ambient Acquaintance Management
The final novelty of AmbientTalk/1 lies in its provisions for the discovery of active
objects in the ad hoc network. In the original actor model, an actor a can only get
introduced to another actor b when it is passed a reference to b (by construction or by
message passing). There is no way for it to construct a reference to b by means of
an abstract name. AmbientTalk/1 enables active objects to get acquainted through a
system of four additional mailboxes that reflect the object’s environment:

• The providedbox is a queue of tags (textual descriptions) denoting the abstract
names under which the active object publishes itself in the ad hoc network.

• The requiredbox is a queue of tags denoting the names of remote active objects
with which the active object wants to get acquainted.

• The joinedbox is a queue of resolutions – tuples of the form (tag,activeobj)
– denoting all discovered remote active objects that are currently available for
communication.

• The disjoinedbox is a queue of resolutions denoting previously discovered re-
mote active objects which are currently disconnected (e.g. due to a network
partition).

The AmbientTalk/1 interpreter tries to match the tags in the providedbox and the
requiredbox of distributed active objects. If two active objects running in separate
AmbientTalk/1 interpreters enter one another’s communication range while having an
identical descriptive tag in their providedbox resp. requiredbox, the joinedbox of
the active object that required the collaboration is updated with a resolution containing
the corresponding descriptive tag and a remote reference to the active object that pro-
vided that tag. Conversely, when a network partition occurs, the resolution is moved
from the joinedbox to the disjoinedbox. If the network partition is healed, the res-
olution is moved back to the disjoinedbox. This mechanism allows an active object
to detect new acquaintances in its ambient and to detect when these have disappeared
or reappeared. It provides AmbientTalk/1 with a way to perform ambient acquaintance
management, as explained in section 2.3.4.

2.4.4 AmbientTalk as a Language Laboratory
AmbientTalk/1 has primarily been designed as a “language laboratory” for experiment-
ing with novel concurrent and distributed language constructs. It can be regarded as a
research vehicle for exploring the ambient-oriented programming paradigm. To sup-
port this exploratory research, AmbientTalk/1 relies on the following features:

• The mailboxes are the fundamental semantic building blocks for implementing
new language constructs because they enable access to an active object’s past
and future communication traces. These data-structures allow a programmer to
e.g. re-send previously sent but unacknowledged messages, to retract messages
from a mailbox to prevent them from being delivered or processed, etc.

• AmbientTalk/1 has a concise metaobject protocol (MOP) which enables the pro-
grammer to intervene whenever the interpreter moves messages between an ac-
tive object’s mailboxes. The MOP allows language constructs developed by

22 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

metalevel programmers to react to changes in an active object’s computational
context.

• Extensions to the metaobject protocol can be bundled in so-called language mix-
ins, which act as a module system for language constructs [DVM+06a]. It en-
ables language constructs to be applied locally to one active object without mod-
ifying the metaobject protocol of other active objects.

• AmbientTalk/1 inherits call-by-name parameter passing from its predecessor Pico
[D’H96, DDD04]. This parameter passing semantics is often used to extend the
language with new “forms” (e.g. control constructs). Hence, the language can
be enriched with new primitives that can delay the evaluation of code until the
appropriate moment.

The above language features have been put to work in order to illustrate how Am-
bientTalk/1 can be augmented with novel ambient-oriented language constructs. A
comprehensive overview of these experiments can be found in Dedecker’s dissertation
[Ded06]. Below, we summarise the most important experiments and highlight the role
of the mailboxes in each of them.

Non-blocking Futures In the AmbientTalk/1 kernel language, an asynchronous mes-
sage send does not return any value. Futures are a well-known abstraction that can
represent the return value of asynchronous invocations [Hal85, LS88, YBS86]. Using
the first-class mailboxes, futures have been reflectively added to the kernel language.
In short, a future object is attached to any message added to the outbox. The future
is itself an active object representing the “reply address” of the message: the receiver
will send the return value to this object. While the return value is not yet available,
the future buffers any incoming asynchronous messages in its own inbox. When the
return value becomes available, the future transparently starts forwarding messages to
the return value by moving all messages in its inbox to its outbox. We will extensively
revisit futures in sections 4.3.4 and 4.9.2.

Ambient References While this dissertation discusses ambient references and their
incarnation in AmbientTalk/2, preliminary versions of this language construct have
been implemented in AmbientTalk/1 [Van06]. In AmbientTalk/1, ambient references
are represented as active objects that transparently store and forward any incoming
message to a discovered remote active object. An ambient reference is initialised with
a required tag. By means of the requiredbox and the joinedbox, matching remote
active objects are discovered. When a remote active object disconnects, the ambient
reference makes use of the first-class access to its outbox to retract all messages whose
transmission is pending and to re-insert them in its own inbox. This enables the ambi-
ent reference to resend these messages to another matching active object discovered at
a later point in time.

Weak Replication Dedecker shows how the mailboxes can be used to synchronise
weakly replicated active objects across an ad hoc network without global coordina-
tion [Ded06]. The protocol used to synchronise the active objects is based on a com-
bination of the Bayou [TPST98] and TimeWarp [Jef85] protocols. In TimeWarp, syn-
chronisation between abstract processes is achieved by the careful logging and replay-
ing of messages. To this end, messages are also kept in dedicated message queues at

2.5. LIMITATIONS OF THE AMBIENTTALK/1 KERNEL 23

each step in their life-cycle. These message queues almost directly correspond to Am-
bientTalk/1’s mailboxes, making it an ideal language to experiment with the protocol.

2.5 Limitations of the AmbientTalk/1 Kernel

We motivate the need for a revised ambient-oriented programming language based on
the limitations of AmbientTalk/1. We distinguish between shortcomings of the object
model, the ambient actor model and the features that make up the language laboratory.

2.5.1 Limitations of the Object Model

Double-Layered Object Model Recall that AmbientTalk/1 distinguishes between
active and passive objects and that each passive object is fully contained within exactly
one active object. This containment forbids direct references to passive objects from
objects contained within another active object. As a result, active objects are the only
entities addressable across device boundaries, resulting in a relatively coarse-grained
addressing scheme. If an individual passive object needs to be addressed from within
another active object, its containing active object has to play the role of “facade”: the
identity of the passive object must somehow be explicitly encoded, and the active ob-
ject must forward incoming messages to the contained passive object based on that
encoding. This is clumsy as it boils down to the programmer writing his own object
referencing abstraction. The only alternative is to decompose the active object into
multiple active objects. However, this introduces the overhead of allocating additional
queues and threads. Moreover, the decomposition requires refactoring code that pre-
viously had synchronous access to other contained objects to employ asynchronous
message passing instead. In short, the impossibility to remotely address individual
passive objects leads to coarse-grained interfaces at the level of active objects.

Inter-Actor Message Passing Semantics To avoid concurrent access to passive ob-
jects, AmbientTalk/1 prevents these objects to be shared by different active objects.
As described in section 2.4.1, this is enforced by parameter-passing passive objects
by deep copy in asynchronous message sends. However, this parameter passing se-
mantics introduces a number of issues. First, creating a deep copy of a complicated
data-structure can be a costly operation. Hence, programmers must carefully design
their applications in order to prevent excessive copying of passive objects.

A deep copy of an object always copies all passive objects transitively reachable via
the object graph. The only way in which the programmer can influence the transitive
closure of this graph is by partitioning the passive objects among multiple active objects
(because a deep copy stops at the level of references to active objects). This partitioning
leads to problems similar to those described previously: it may introduce unnecessary
concurrency and it requires code to be refactored. Here, the distinction between active
and passive objects is too coarse-grained to express certain serialisation concerns.

Next to the runtime cost of the deep-copy semantics, creating copies of objects of-
ten introduces object identity issues. Within the source code of the passive object, there
is no indication as to whether the object will ever by copied because it is parameter-
passed to another active object. Copying objects may break existing code because of
e.g. object comparisons based on object identity: a copy of the object no longer has
the same identity as the original. This is especially problematic if passive objects are

24 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

passed back and forth across two active objects: rather than resulting in the original
object, the object passed back will be a copy of a copy of the original.

We will show how AmbientTalk/2 mitigates the above issues by means of a re-
designed object model in section 4.3.2.

2.5.2 Limitations of the Ambient Actor Model

Service Discovery Even though AmbientTalk/1 has support for ambient acquain-
tance management through four dedicated mailboxes, it does not introduce any high-
level service discovery abstractions (e.g. in the form of a publish/subscribe API) for
direct use by application programmers. All service discovery abstractions must thus
be handcrafted via the metaobject protocol. This limitation is due to the fact that there
is very little prior work in the literature on exposing service discovery as a language
construct. Service discovery is almost always provided by means of external libraries
or middleware.

A second limitation of AmbientTalk/1’s service discovery is the lack of control over
the matching process of the tags stored in the requiredbox and the providedbox
of the active objects. AmbientTalk/1 matches these tags based on a simple string com-
parison. As a result, it is impossible to directly represent structured or hierarchical
information using tags. This disallows service discovery from being polymorphic. For
example, an active object whose provided tag equals “colorprinter” will not match a
required tag named “printer”.

Finally, we argue that the ambient actor model’s representation of service discovery
via message queues is arbitrary. For example, the requiredbox and providedbox
are represented as queues, while it is not clear what meaning to attribute to the order
of the tags or to duplicate tags in the mailbox. It is more appropriate to regard them as
sets, because the order of their content does not matter and because it avoids duplicates.

Garbage Collection An issue left partially unaddressed by AmbientTalk/1 is the
garbage collection of messages in the various mailboxes. Because the AmbientTalk/1
interpreter stores processed and sent messages in the rcvbox and sentbox respec-
tively, it becomes necessary for an active object to manage the lifetime of these mes-
sages. If there are no language constructs that need past information, past messages
should obviously be deleted at some point in time. A more space-preserving strategy
would be to throw away message histories by default, unless some language construct
has explicitly expressed its interest in them.

With respect to the outbox, garbage collection policies have already been inves-
tigated in the context of AmbientTalk/1 [DVM+06a]. due-blocks are similar in use
to the well-known try-catch-blocks in exception handling. A due-block is asso-
ciated with a time period and an exception handler. Every outgoing message sent in
the dynamic scope of the due-block is associated with a time to live (the due-block’s
time period). Messages whose time to live expires are automatically removed from the
outbox and trigger the due-block’s exception handler. This prevents messages from
remaining queued in the outbox forever.

Finally, on a more technical note, AmbientTalk/1 does not define any distributed
garbage collection semantics for its remote references to active objects. Once an active
object is referred to remotely, it is no longer reclaimed automatically.

2.5. LIMITATIONS OF THE AMBIENTTALK/1 KERNEL 25

2.5.3 Limitations of the Language Laboratory

Metalevel Engineering issues: Language Mixins The metalevel architecture of
AmbientTalk/1 has a number of drawbacks preventing the construction of scalable sys-
tems. The drawbacks of this architecture have already been summarised [Mar06]; we
repeat the arguments here for completeness.

First, AmbientTalk/1’s reflective architecture is not stratified. A stratified architec-
ture assigns base- and metalevel code to separate layers (cf. section 5.2.1). Lacking
such stratification, AmbientTalk/1’s metaobject protocol is prone to name clashes be-
tween base and metalevel code. For example, a base level method may accidentally
be regarded as overriding a metalevel method simply because its name matches that
of a metalevel operation, thereby changing the language’s semantics unintentionally.
Second, metalevel code is not encapsulated. The details of AmbientTalk/1’s reflec-
tive language constructs are not hidden. As such, base level code may circumvent a
language construct’s public interface and is exposed to internal implementation details.

In AmbientTalk/1, modifications to the metaobject protocol are bundled in lan-
guage mixins, which are then “mixed-in” with the base-level behaviour of an active
object. In order to install multiple language constructs simultaneously, language mix-
ins have to be composed. In AmbientTalk/1, this composition is done ad hoc. There
are no language constructs that aid the developer in checking for e.g. name clashes or
to express the composition of language mixins. As a result, the composition of differ-
ent language constructs may lead to erroneous behaviour that can be hard to debug at
runtime [Mar06].

We show how AmbientTalk/2 foregoes the above issues by means of a stratified
metalevel architecture in section 5.2. Also, while AmbientTalk/1’s reflective architec-
ture is confined to active objects, AmbientTalk/2’s architecture consistently reifies both
the sequential and concurrent parts of the language.

Base-level Engineering issues: Dynamic Scoping Variables in AmbientTalk/1 are
dynamically scoped. This implies that free variables are looked up in the dynamic
runtime environment (the call stack) rather than in the lexical environment (the en-
vironment of definition). This form of unrestricted dynamic scoping has issues that
have been well-documented in the literature, such as accidental name capture (in early
LISP dialects, this was known as the funarg problem [SS78]). Furthermore, be-
cause of dynamic rather than lexical scoping, nested objects cannot access lexically
enclosing variables, which defeats one of the most beneficial properties of nesting (cf.
section 4.2.3).

Linguistic Symbiosis AmbientTalk/1 lacks a mechanism to interoperate with for-
eign languages. Such a mechanism is useful for an experimental language such as
AmbientTalk/1, as it allows the language to remain minimal while all of the func-
tionality necessary for programming in the large can be drawn from foreign languages’
libraries. Lacking such a mechanism, programmers must manually re-implement many
abstractions which are readily accessible via libraries in other languages. While this
is no fundamental problem of AmbientTalk/1, it is nevertheless a very pragmatic issue
which causes AmbientTalk/1’s usability to remain limited in practice.

26 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING REVISITED

2.6 Conclusion
Ambient-oriented programming is a paradigm the feature set of which is developed
specifically to accomodate the idiosyncratic properties of mobile ad hoc networks.
Such networks, composed of mobile devices with wireless communication links ex-
hibit two discriminating characteristics: connections between devices are volatile and
infrastructure is scarce or nonexistent. Networks may be formed ad hoc simply by
collocating devices.

AmbientTalk/1 is the ambient-oriented programming paradigm incarnate. While it
has proven to be a successful research vehicle to explore the paradigm, it remains in
many ways a fledgling language. The AmbientTalk/2 language, while built around the
same guiding principles, is our attempt at combining the requirements of an ambient-
oriented language with a more scalable object model. We postpone a discussion of
AmbientTalk/2 until chapter 4.

With the AmOP frame of reference in place, we first focus on coordination ab-
stractions for mobile ad hoc networks. In the next chapter, we describe how the distin-
guishing characteristics of MANETs lead to a set of criteria that discriminate suitable
coordination abstractions for this type of networks. Armed with these criteria, we sub-
sequently survey related work in search of suitable existing abstractions. Some of these
abstractions will then re-surface as language constructs in AmbientTalk/2, in chapter 4
while others will be embedded in the ambient reference language abstraction, in chap-
ter 6.

Chapter 3

Coordination in Mobile Ad hoc
Networks

In the previous chapter, we discussed which hardware characteristics are inherent to
MANETs and how they relate to AmOP. In this chapter, we use these hardware charac-
teristics to define a set of criteria which circumscribe suitable coordination abstractions
for MANETs. Next, we survey related work and gauge the suitability of each of the
discussed approaches for MANETs by means of the postulated criteria.

3.1 Coordination
Before defining criteria for coordination abstractions in MANETs, we explain our use
of the term “coordination abstraction”. Processes coordinate to reach a common goal
which they cannot achieve by themselves. In this dissertation, we focus on applications
that are distributed by their nature (e.g. an instant messenger, a collaborative text editor,
. . .) rather than centralised applications which are distributed to exploit parallelism. It
is our explicit assumption that coordinating distributed (and hence concurrent) pro-
cesses involves at least:

Discovery Distributed processes can only coordinate if they are somehow introduced
to one another in the network. Discovery can be through centralised directories,
e.g. the Domain Name Service of the WWW, or it could be entirely decentralised
by multicasting advertisements in a local area network. Note that discovery does
not necessarily imply that processes have to discover one another explicitly. It
may well be that they both discover a middle man, which implicitly connects the
processes (good examples of such mediators are tuple spaces and event notifica-
tion services, both discussed later in this chapter).

Communication Coordination involves communication: processes have to be able to
transmit and receive information. This may happen very explicitly, e.g. via a
point-to-point communication channel with explicit send and receive oper-
ations, or it may happen very implicitly, e.g. by registering a callback function
to be invoked whenever a certain event occurs.

Synchronisation To coordinate their actions, processes require mechanisms to put
temporal constraints on their actions (e.g. waiting for a reply to come in). Syn-

27

28 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

chronisation may be completely aligned with communication (as in the case of a
remote procedure call), or it can be made completely independent of communi-
cation (e.g. a purely asynchronous event notification).

Failure Handling Processes can end up in interactions that do not progress because
of network or process failures. Proper coordination abstractions must allow pro-
cesses to recover from such situations. Such abstractions can range from very
simple (e.g. timeouts) to very complex (e.g. distributed transactions).

We will use the term coordination abstraction to denote any software abstraction
that addresses one of the above aspects. Note how, for each of these aspects, widely
different approaches exist to address them. To be able to determine which approaches
are suitable for mobile ad hoc networks, the following section presents a set of criteria
to evaluate the applicability of an approach to coordinate processes in a MANET. First,
we concretise the above aspects of coordination by means of an example.

We ground our following discussion on coordination in MANETs in a concrete ad
hoc networking application. The Musical Match Maker (�uMaMa) is an application
intended to be deployed on mobile devices such as PDAs or cellular phones. �uMaMa
contains a library of the user’s songs. When two people running �uMaMa enter one an-
other’s personal area network (demarcated by e.g. the bluetooth communication range
of their cellular phones), their �uMaMa applications exchange one another’s music
library’s index (not necessarily the songs themselves). After the exchange, �uMaMa
can calculate the percentage of songs both users have in common. If this percentage
exceeds a certain (perhaps user-defined) threshold, �uMaMa can notify the user that
someone with a similar taste in music is nearby. As a side effect of the exchange, the
user can also inspect what songs are in the other user’s library that are not in his or her
own library, allowing the user to learn about new artists he or she is likely to enjoy.

What makes �uMaMa an ad hoc application is that the musical taste of users is
only matched when they are proximate, e.g. if they have joined the same ad hoc net-
work. The advantage over similar internet-based applications is that the mobility of the
application provides for an additional social context: the “musical match” is made at
a time when the users can physically interact. Although the �uMaMa application is
relatively small, it is a representative application because it embodies all characteristics
of a typical mobile ad hoc networking application. In particular, it has to deal with the
different aspects of coordination introduced above:

Discovery The processes that represent the �uMaMa application have to discover one
another without the help of any predefined infrastructure (cf. the zero infras-
tructure hardware characteristic from section 2.2.1). Once the processes have
discovered one another, they need to set up a session to transmit their music
libraries.

Communication Once the processes have established a session, they need to trans-
mit their library index. This transmission can be easily disrupted by the unpre-
dictable movement of the users (cf. the volatile connections hardware character-
istic from section 2.2.1). �uMaMa is designed such that transient disconnections
do not cause the transmission to fail immediately, increasing the chances that it
can eventually be completed and a match can be performed (and thereby also
avoiding angry users).

Synchronisation When the �uMaMa applications transmit their library index, they

3.2. CRITERIA FOR COORDINATION IN MANETS 29

need to synchronise with one another to know when they can send subsequent
song information, and when the library transmission has terminated.

Failure handling If a network partition does persist, the session between both pro-
cesses should eventually be terminated such that any resources associated with
that session (e.g. the partially downloaded library index of the remote party) can
be reclaimed.

In the following section, we introduce criteria for coordination in MANETs. Where
possible, we relate the introduced criteria to the above example. Later, in chapter 4, we
will revisit this example and discuss its implementation in AmbientTalk/2.

3.2 Criteria for Coordination in MANETs
We describe criteria that define which coordination abstractions are suitable for use
in a MANET. Similar to the way Dedecker motivates the AmOP paradigm based on
the hardware characteristics listed in section 2.2 [Ded06], we motivate criteria for co-
ordination abstractions based on the same hardware characteristics. One question we
should address first is whether these criteria are minimal and/or complete. Lacking a
formal model, we can prove neither property. We can only argue that no criterion is
redundant by showing how it addresses specific issues of coordination in a MANET.
We argue that they are complete to the extent that they cover at least the aspects of
coordination discussed in the previous section.

3.2.1 Decentralised Discovery
In traditional, stationary networks a centralised lookup service or name server is often
used for the purposes of discovering remote services. In a mobile ad hoc network, such
lookup services are too inflexible:

• A lookup service is a form of infrastructure (e.g. a server hosting a shared di-
rectory service). A key aspect of coordination in a MANET is that two mobile
devices “out in the field” (without access to shared infrastructure) should be able
to communicate with one another directly. For example, in the �uMaMa appli-
cation, two people should be able to exchange and match their music libraries
anywhere, as long as they are proximate to one another.

• Lookup services often make use of synchronous request/response communica-
tion to resolve names into references (e.g. querying the registry in Java RMI
[Sun98]). This style of communication corresponds to a client “polling” the
lookup service for the availability of a service. In a MANET, this is inappropri-
ate as the unavailability of a service is commonplace. It is thus more suitable to
have a service “push” its availability to clients.

• As we have discussed in section 2.2.1, the limited communication range in com-
bination with the lack of any centralised network infrastructure causes the avail-
ability of services in a MANET to change frequently. Traditional lookup services
do not notify clients of any changes in a service’s registration.

To deal with the above issues, different service discovery protocols have been
devised. Such protocols forego a synchronous request/response interaction model in

30 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

favour of an asynchronous publish/subscribe interaction model [McG00]. Such a dis-
covery protocol allows clients to express their interest in a particular kind of service
and notifies them asynchronously when a matching service becomes available in the
network, usually passing along a reference to the remote service. In a survey on ser-
vice discovery protocols for ubiquitous computing, McGrath explicitly distinguishes
“lookup” from “discovery”, lookup corresponding to the request/response interaction
model of traditional lookup services and discovery corresponding to the publish/sub-
scribe interaction model of service discovery protocols [McG00]. Table 3.1 sum-
marises his view on the most important differences between both.

Lookup Discovery
Uses static databases of information. “Spontaneous” discovery.
Maintained by privileged administra-
tors.

Low or no human administration.

Limited support for searching (lookup
by means of a unique identifier).

Extensive searching abilities (e.g. se-
lecting a specific type of service).

Does not generate events when re-
sources register and unregister.

Automatic adaptation to mobile and
sporadic availability of services.

Table 3.1: Service Lookup versus Service Discovery.

Service discovery protocols tackle all of the aforementioned issues save the first.
While a service discovery protocol surely does not need to rely on infrastructure, it
also does not rule out the use of infrastructure per se. The Jini architecture, discussed
later in section 3.3.6.2 exemplifies this. Given our particular MANET setting, we ex-
plicitly state the importance of a decentralised service discovery abstraction as our first
criterion:

Criterion 1 (Decentralised Discovery) Processes require a decentralised service dis-
covery protocol that enables them to autonomously act upon the (un)availability of
nearby services.

3.2.2 Decoupled Communication

Considering communication in a MANET, we discern two key issues. The first is how
processes can abstract from the intermittent connectivity of the underlying network.
The second is how processes can abstract over the total number of entities with which
they interact. We discuss each of these issues below.

3.2.2.1 Abstracting From Volatile Connections

We describe three criteria that allow communicating parties to abstract from the under-
lying state of the (ad hoc) network. The motivation behind this abstraction is that, in
mobile ad hoc networks, the state of the network is in constant flux because devices
move about in unpredictable ways. A coordination abstraction for a MANET should
allow applications to abstract from this underlying physical state when communicating
because it can make communication more resilient in the face of temporary disconnec-
tions, as explained later.

3.2. CRITERIA FOR COORDINATION IN MANETS 31

The following three criteria are well-known in the literature, especially in the con-
text of publish-subscribe architectures [EFGK03]. They pertain to decoupling the com-
municating parties along three dimensions.

Decoupling in Time The volatile connections in MANETs lead us to consider com-
munication models that can abstract from the network connectivity between commu-
nicating processes. It should be possible for two processes to express communication
independently of their connectivity. This significantly reduces the case-analysis for the
programmer, which can reason in terms of a fully connected network by default, and
can deal with border cases in an orthogonal way (as explained later).

Criterion 2 (Decoupling in Time) Communicating processes do not necessarily need
to be online at the same time.

Decoupling in time is achieved either by synchronising processes until a connection
is available (which, as we argue below, is not a very scalable solution in a MANET) or
by storing sent messages in an intermediary data-structure. This makes it possible for
communicating parties to interact across volatile connections, because the logical act
of information sending is decoupled from the physical act of information transmission,
allowing for the information to be saved and transmitted at a later point in time, when
the connection between both parties is restored. For example, in the �uMaMa applica-
tion, song information sent to a disconnected peer can be buffered and then transmitted
when the users are in close proximity once more.

Decoupling in Space Decoupling in space implies that communicating processes do
not necessarily need to know one another’s exact address or location a priori in order
to collaborate. It is directly motivated by the scarcity of infrastructure in a mobile ad
hoc network, making the reliance on servers to mediate collaborations impractical. A
second motivation for space-decoupled communication is that it enables applications
to adapt more gracefully to changes in their physical environment. In mobile networks,
equivalent services may be hosted by different devices. As a device roams, it may
use different instances of conceptually the same service. For example, in a city tour
application, the handheld device of a tourist may connect to the same tourist infor-
mation service via different access points physically dispersed throughout the city. A
communication model that is decoupled in space supports such transitory relationships,
because it allows one to make abstraction from specific service instances.

Criterion 3 (Decoupling in Space) Communicating processes do not necessarily need
to know each other beforehand.

Decoupling in space implies a form of anonymous communication, often imple-
mented by a form of communication where senders and receivers of data are matched
on the content of the data itself. A prototypical example of this is communication via
tuples in tuple spaces. Gelernter refers to space decoupling in the context of tuple
spaces as “distributed naming” [Gel85].

Finally, decoupling in space is closely related to decentralised discovery, in the
sense that decentralised discovery is usually implemented in terms of communication
which is decoupled in space. However, decoupling in space does not imply a decen-
tralised form of discovery. For example, in the Linda coordination language [Gel85],
processes are decoupled in space but there is no form of discovery to connect decen-
tralised distributed processes.

32 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

Synchronisation Decoupling In a mobile ad hoc network, an application may find
itself deprived of access to a certain service or resource for extensive periods of time.
In fact, not having access to a remote service should be considered the default in a
MANET. For example, in a collaborative meeting application, the application only
has access to the calendars of other people when they are physically nearby. In the
�uMaMa application, two people that are in the process of exchanging their song
libraries while commuting to work by train may only meet hours later (on the way
home) to finish the library exchange. Such extensive periods of time between potential
periods of interaction suggest that synchronisation between different parties should be
performed without blocking their control flow (i.e. without suspending their thread of
control). Blocking synchronisation can lead to applications which remain unresponsive
for extensive periods of time. A reactive synchronisation style is more appropriate in a
MANET, as it leaves processes responsive to other events while waiting for (informa-
tion provided by) another process.

Criterion 4 (Synchronisation Decoupling) The control flow of communicating pro-
cesses is not blocked upon sending or receiving.

Synchronisation decoupling implies that a sender can employ a form of asynchro-
nous message passing, such that the act of message sending becomes decoupled from
the act of message transmission. Likewise, allowing recipients to process messages
asynchronously decouples the act of message reception from the act of message pro-
cessing. Message transmission and reception require a connection between sender and
receiver, but message sending and processing can be decoupled, allowing communicat-
ing process to abstract from the fact that the other process is online or not.

3.2.2.2 Abstracting From Arity

In mobile networks groups of devices are often not statically determined, but are rather
formed ad hoc as devices roam. One is often interested in communicating with only the
proximate devices. The number of such proximate devices is not a priori known to the
application. It is therefore important that interactions can be expressed without explicit
reference to the number of participants. A good coordination abstraction should enable
the programmer to express interactions with a varying number of participants, e.g. one-
to-one, one-to-many or many-to-many interactions.

Criterion 5 (Arity Decoupling) Processes do not necessarily need to know the total
number of processes communicated with.

We use the term arity decoupling to attribute forms of communication that can
target more than one recipient, without explicitly specifying the total number of recip-
ients. Arity decoupling is a special case of space decoupling. Space decoupling can
be regarded as abstracting from both the identity of receivers and the total number of
receivers [EFGK03]. We choose to address these two aspects separately because both
concepts are orthogonal in principle. A communication abstraction can be anonymous
yet specify a maximum number of receivers.

Finally, note that the arity of the interaction influences the synchronisation of the
participating processes. In a point-to-point interaction, a process often needs to await a
reply from a previous request before being able to continue. However, in a one-to-many
interaction, different kinds of synchronisation abstractions are called for.

3.2. CRITERIA FOR COORDINATION IN MANETS 33

3.2.3 Connection-independent Failure Handling
In most distributed systems, network failures are represented as exceptional events that
must be dealt with by applications at every point of interaction between processes.
For example, failures are often represented as exceptions raised by communication
primitives. We argue that failure handling between processes in a MANET should be
independent of any network failures between those processes. We justify this claim by
means of two observations:

1. Connection-independent failure handling enables processes to tolerate network
failures, because their failure handling code is not written in terms of those fail-
ures directly. Tolerating network failures by default is a useful property in a
MANET because – as previously discussed in section 2.2.1 – disconnections as
a result of device mobility can be transient. It often makes sense to be able to
abstract from such transient failures, resuming computation upon reconnection.
Again, in the �uMaMa application, the transmission of the users’ music libraries
should not be aborted but rather paused upon disconnection. Treating discon-
nections as a normal mode of operation is an optimistic form of partial failure
handling. Reacting to enduring network partitions must thus be done by means
of other mechanisms, in order not to lose the benefit of being able to abstract
from failures by default.

2. Connection-independent failure handling potentially makes processes more ro-
bust, because failure handling code can equally be triggered even if there is no
physical network failure. For example, a process may be killed, garbage col-
lected or become otherwise unresponsive (intended or unintended). Such fail-
ures are logical rather than physical, but equally require potential cleanup code
to be ran.

Criterion 6 (Connection-independent Failure Handling) Processes should be able
to perform failure handling independent of any network failures.

Note that we are not arguing against abstractions that enable processes to react to
changes in their underlying network connection with a remote process. On the contrary,
being aware of the state of the connection is often extremely useful information that
may well percolate up to the graphical user interface of an ad hoc application. We are
only arguing that the event of a process disconnecting from the network should not be
represented to the application as a failure, but as an ordinary event. Simply put, in a
MANET, network failures should not be modelled as exceptions because they are not
exceptional.

3.2.4 Relation to Ambient-oriented Programming
The previous sections have introduced a set of criteria that specify which kind of ab-
stractions are suitable for coordinating processes in mobile ad hoc networks. Here, we
relate them to the four requirements of an ambient-oriented programming language in-
troduced in section 2.3. These requirements have previously been used by Dedecker to
discriminate appropriate from inappropriate language constructs for MANETs [Ded06].
As we shall see, some of our criteria are refinements of Dedecker’s AmOP require-
ments, while others are new with respect to the AmOP requirements. We relate each
criterion to the AmOP requirements below:

34 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

Decentralised Discovery This criterion is implicit in the ambient acquaintance man-
agement requirement of the AmOP paradigm (cf. section 2.3.4). Ambient ac-
quaintance management implies that programs should be able to construct an
up-to-date view of proximate devices and their hosted services.

Time-decoupled Communication The implicit assumption underlying the “non-block-
ing communication” requirement of an AmOP language (cf. section 2.3.2) is
that it decouples processes in time and in synchronisation. We merely make this
distinction explicit. Making the difference between time and synchronisation-
decoupling is important however, because neither implies the other. As we shall
discuss in the following section, there exist systems that possess one, but not the
other.

Space-decoupled Communication The requirement for communication to be decou-
pled in space is implicitly present in the ambient acquaintance management re-
quirement of the AmOP paradigm. While this requirement focuses on enabling
programs to have an up-to-date view on the availability of nearby services, the
direct consequence is that it allows programs to get acquainted with nearby ser-
vices without knowing about them a priori. Hence, in an AmOP language it
should be possible to perform space-decoupled communication using the “ambi-
ent acquaintance management” properties of that language.

Synchronisation-decoupled Communication As mentioned above, the non-blocking
communication requirement implicitly includes both time and synchronisation-
decoupling.

Arity-decoupled Communication The AmOP paradigm never prescribes that the lan-
guage should support one-to-many interactions. Hence, this is a novel criterion
for coordination abstractions with respect to the AmOP requirements.

Connection-independent Failure Handling No AmOP requirement specifies explic-
itly how failure handling should be dealt with. The non-blocking communication
requirement does implicitly assume that disconnections should not be regarded
as failures. It is assumed that failure handling can be implemented by means
of the reified communication traces (cf. section 2.3.3). Again, our criterion is
more abstract in that it does not consider a particular implementation of failure
handling.

The above analysis uncovers that our coordination criteria are closely related to the
original AmOP requirements of Dedecker [Ded06]. Some of the criteria are merely
refinements of earlier AmOP requirements, while others are novel or focus on more
specific aspects of coordination. As we shall see later, all of these criteria are relevant
when discussing object designation for MANETs.

3.3 Survey of Related Work
In this section, we analyse a broad range of systems (languages, calculi, middleware,
. . .) with the shared goal of raising the level of abstraction for concurrent and distri-
buted programming for different kinds of computer networks. We will not only focus
on systems developed specifically for mobile ad hoc networks, both because systems
outside of this domain provide interesting ideas and because this brings to light the

3.3. SURVEY OF RELATED WORK 35

differences between systems developed for traditional versus ad hoc networks. In the
subsequent sections, when discussing systems that were not designed a priori for mo-
bile ad hoc networks, it has to be kept in mind that our evaluation makes no claims as
to the applicability of the discussed work in general. We only judge their suitability for
mobile ad hoc networks.

3.3.1 Languages for Local Area Networks
Before the rise of the Internet, research in distributed programming languages mainly
focused on local area networks (LANs). Two exemplar languages are Emerald [BHJL86,
JLHB88] and Obliq [Car95]. Emerald is mainly known for its introduction of mobile
objects: objects that can migrate from one node in the network to another (e.g. to avoid
latency or partial failure, or to balance the load of the system). Obliq’s most distin-
guishing language feature is its distributed lexical scope: the ability for programs to
access lexically visible variables that effectively reside on a different machine.

Most languages for LANs, including the above two, are based on the abstraction
of a remote procedure call (RPC) [BN84]. An RPC is a distributed adaptation of a
regular procedure call, making the caller block and wait for the callee to compute a
return value. The attractiveness of the RPC model is that it can make a procedure call
seemingly network-transparent (modulo latency and the possibility of partial failure).
However, RPC scales very poorly in ad hoc or even wide-area networks [SG01].

RPC neither decouples communicating processes in time, space nor synchronisa-
tion [EFGK03]. Processes can only communicate when they are both online, the caller
needs to know the callee, and the caller remains blocked until the callee has produced
a result. Despite the shortcomings of the RPC model, it remains popular to this day,
albeit in an object-oriented guise. This can be witnessed by the widespread use of
distributed object systems like Sun Microsystems’ Java RMI [Sun98] and the OMG’s
Object Request Broker Architecture [Obj02].

Not all languages developed for LANs are based on RPC. Most notably, the family
of actor-based concurrent languages (ABCL) [YBS86, Yon90] features asynchronous
message passing as the main communication abstraction, although it still permits RPC
and introduces a select statement that allows active objects to block until a certain
message is received. Note that we classify ABCL as a language for LANs because
it was introduced in the context of parallel programming on clusters of computers.
However, the language’s actor legacy would actually make this language quite scalable
in a WAN as well, as shall quickly become clear in the following section.

In a classic LAN, the network topology is relatively stable. Ethernet connections
are very reliable, and the nodes in the network are for the most part not mobile. This
explains why, in most languages for LANs, failure of the communications network is
considered as an exceptional case. This motivates e.g. the design of failure handling as
exception handling in Emerald. It also explains why these languages offer no abstrac-
tions to monitor changes in the network. Furthermore, because the network is often
globally administered and new nodes do not appear frequently, languages for LANs
feature no dynamic service discovery abstractions. Processes are mostly introduced by
means of a priori known URLs or via a central name server.

3.3.2 Languages for Wide Area Networks
There exist a large number of distributed languages that have been developed for
both LANs and WANs. Some are based on variations of the RPC model, such as

36 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

Argus [Lis88]. Others are distributed versions of constraint logic programming lan-
guages, like Distributed Oz [HRBS98] and Janus [KS90], while still others are based
on the message passing model of actors, like Erlang [AVWW96], Salsa [VA01] and E
[MTS05].

The main difference between languages for WANs and LANs lies in the synchroni-
sation decoupling of their communication primitives. Many WAN-oriented languages
introduce asynchronous message passing to e.g. cope with the higher latency of com-
munication. Argus and E feature asynchronous messaging with promises as return
values [LS88] (see also section 4.9.2). Salsa introduces asynchronous message pass-
ing with explicit continuations to synchronise actors on return values. Erlang features
asynchronous message passing without direct support for return values. However, Ar-
gus, Erlang, Oz and Janus do not feature full synchronisation decoupling because they
introduce language constructs that enable processes to suspend until certain conditions
are met (i.e. claiming a promise in Argus, receiving a message in Erlang, reading an un-
bound logic variable in Oz, asking a constraint in Janus). Salsa and E allow processes
to react to incoming messages purely asynchronously and feature full synchronisation
decoupling.

Because WANs – like LANs – are still supported by an infrastructure, none of the
above languages feature any form of service discovery or anonymous, space-decoupled
communication. Rather, processes are introduced to one another via explicit URLs or
similar names (e.g. a universal actor name (UAN) in Salsa) that require a universally
accessible “introducer” in order to be resolved into a useful reference or communica-
tion channel. This solution is feasible in a WAN because such a network is supported
by the necessary infrastructure to make the introducer easily accessible (e.g. via one or
more well-known servers). The Internet’s Domain Name System (DNS) is an exemplar
of such an introducer.

Languages for WANs differ widely in their support for failure handling, but in gen-
eral provide more elaborate failure handling features than their LAN-oriented siblings.
Argus features built-in support for atomic transactions to cleanly deal with unfinished
computations resulting from partial failures. In Erlang, processes can be linked in a
tree-structure to perform failure detection and recovery. Erlang also provides primi-
tives to monitor the connection with a remote process. E similarly allows observers
to be registered on remote references that trigger upon failure. Distributed Oz fea-
tures handlers and watchers: handlers are associated with an operation (e.g. a remote
message send) and trigger when their associated operation fails; watchers are associ-
ated with e.g. remote objects and trigger when the system detects that the object has
become disconnected. One might say that handlers perform failure detection lazily
(when their associated operation is performed), while watchers perform eager failure
detection, triggering failure handling even when no explicit operation is performed.

To the best of our knowledge, none of the above languages feature service dis-
covery: they all assume that infrastructure is available to introduce distributed compu-
tations to one another explicitly. Most languages also do not feature time decoupling,
assuming that communicating processes are mostly online at the same time. Languages
for WANs also do not cater to arity decoupling directly – references are point-to-point.

3.3.3 Languages for Wireless Sensor Networks
Recently, programming languages have been designed specifically for wireless sensor
networks (WSNs). Such networks are mobile ad hoc networks in which the nodes are
often very resource-scarce computers (sometimes called “motes”) equipped with sen-

3.3. SURVEY OF RELATED WORK 37

sors, communicating via radio technology (e.g. ZigBee) with their neighbours. Most
applications devised for WSNs are “divide-and-conquer” programs that request a mea-
surement from all nodes in the network, or in a certain area of the network. Those
measurements are subsequently aggregated along intermediary nodes and finally deliv-
ered to a wireless base station. Both because of this application structure, and because
reconfiguring thousands of motes is impossible to do by hand, languages for WSNs
strongly exploit and embrace code mobility.

ActorNet [KSMA06] is a Scheme dialect with support for migratable actors. Actors
can be dynamically created and can communicate via asynchronous message sending.
Actors can migrate to neighbouring nodes by grabbing their current continuation (via
Scheme’s call-with-current-continuation primitive [ADH+98]) and by
parameter-passing it in a message. This allows actors to migrate, execute code on a
sensor node and then migrate back to the base station, where sensor readings can be
processed. It is not clear exactly how actors on different motes can get acquainted
with one another. It seems they can implicitly communicate by means of broadcasted
messages. ActorNet actors seem to enjoy the time decoupling properties of the original
actor model, although this is not explicitly mentioned by Kwon et al. [KSMA06].

SpatialViews [NKSI05] is an extension of Java with support for the unique con-
cepts of spatial views and spatial view iterators. A spatial view declaratively denotes
a virtual overlay network consisting of all nodes in the ad hoc network providing a
certain service, within certain geometrical boundaries. A spatial view iterator repli-
cates a piece of code across all members of a spatial view for a bounded period of
time. Interestingly, discovery and migration are transparently handled by the language
runtime.

SpatialViews is hard to compare with traditional coordination abstractions because
programs are not organised as a set of communicating entities, but rather as migrating
pieces of code. However, it provides a form of indirect, time decoupled communication
between programs via service variables. These are variables allocated in nodes for a
limited amount of time, and can be read and written by iterators visiting the node. A
form of space decoupling is also provided, because a spatial view specifies the nodes
to visit in an anonymous way, by means of a Java interface type. Nodes that contain
objects of that type are implicitly part of the spatial view. Communication is per-
formed via aforementioned service variables and can be regarded as synchronisation-
decoupled. Service discovery is not provided directly. To get a “view” on which ser-
vices are available, one can execute an iterator whose sole purpose is to return the list
of nodes it visited. SpatialViews is clearly a domain-specific language whose domain is
the set of “divide-and-conquer” sensing applications typical of WSNs. While it excels
in its domain, it is hard to imagine using SpatialViews to structure applications that fall
outside of this domain.

3.3.4 Models and Calculi for Wide Area Networks
In the following two sections, we survey models and calculi, rather than concrete pro-
gramming languages, designed for representing distributed computations in WANs.

3.3.4.1 Actors and ActorSpace

Actors form a model for distributed computation in open networks [Agh86, Agh90].
An actor has identity (a mail address), a message queue (a mailbox) and a behaviour.
The behaviour provides the “script” to process incoming messages. Messages may

38 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

be processed concurrently from the message queue by providing a “replacement be-
haviour” that can start processing the next message in the queue. This does not intro-
duce data races if the original and the replacement behaviour do not share state.

When an actor sends a message to an acquaintance, the message is placed in a
mail queue and is guaranteed to be eventually delivered by the actor system. Although
the actor’s send primitive decouples actors in time and in synchronisation (actors
communicate strictly asynchronously), it does not decouple them in space. A mail
address represents a unique actor and does not allow actors to discover one another by
means of an abstract description. Furthermore, the model does not specify any failure
detection abstractions.

The inability of mail addresses to represent unknown, undiscovered actors have
been addressed in the ActorSpace model [AC93, CA94]. This model is a unification
of concepts from both the actor model and the tuple space model of Linda (see section
3.3.5). Callsen and Agha note that, on the one hand, the actor model provides a secure
model of communication as an actor may only communicate with actors whose mail
address it has been explicitly given via message passing. On the other hand, this disal-
lows actors from getting acquainted with other actors in a time- and space-decoupled
manner, as is the case in Linda via tuple spaces.

The ActorSpace model augments the actor model with patterns, denoting an ab-
stract specification of a group of actors. The actor model’s send primitive, which
normally takes a receiver mail address and a message as arguments and sends the mes-
sage to the corresponding mail address, is changed such the receiver of the message
can also be denoted by means of a pattern rather than a mail address. For example,
an invocation of send("Stereo","playSong") sends the playSong message
to any actor whose own name matches the pattern "Stereo" within the context of a
so-called actorspace.

The send primitive delivers the message to a non-deterministically chosen match-
ing actor. Although this behaviour is good when it does not matter to the sender which
specific actor receives the message (e.g. when the receiver is a replicated file server), it
is not similar to a remote object reference in the sense that multiple messages sent to the
same pattern may be received by several different actors. When there are no matching
actors, the message send is suspended until at least one matching actor appears. The
ActorSpace model explicitly caters to arity decoupling by means of a broadcast
primitive, which sends a message to all available actors matching a given pattern.

An actorspace is a container for actors and nested actorspaces and acts as a hier-
archical scoping mechanism for the resolution of patterns to mail addresses. In order
for actors to be subject to pattern matching, they have to be made explicitly visible in
an actorspace. Controlling this visibility of actors and actorspaces is done by means of
capabilities [CA94].

The ActorSpace model adheres to almost all of the criteria postulated in section 3.2.
However, it does not provide any explicit means of performing service discovery or
failure handling, a direct heritage from the underlying actor model. Finally, the im-
plementation of actorspaces as discussed by Callsen and Agha [CA94] relies on cen-
tralised “coordinators”, making the implementation (but not necessarily the model)
unsuitable for mobile ad hoc networks.

3.3.4.2 Mobile Ambients

Mobile ambients [CG98, Car99] form a process calculus developed with the goal of
unifying the fields of mobile computing (i.e. physically mobile computers) and mobile

3.3. SURVEY OF RELATED WORK 39

computation (i.e. logically mobile processes). In the mobile ambient calculus, pro-
cesses or agents are contained within ambients. An ambient is a bounded place where
computation happens [CG98]. Processes can implicitly navigate between ambients by
making their ambient move into neighbouring and out of enclosing ambients. Processes
communicate by asynchronously posting and by synchronously reading messages in
their enclosing ambient.

Mobile ambients are an interesting abstraction for modelling ad hoc networks be-
cause these networks are naturally composed of mobile devices which can be consid-
ered as ambients. In the ambient calculus, operations like entering or opening an ambi-
ent automatically suspend a process until a matching ambient is available. By aligning
network connectivity with the presence of neighbouring ambients, communication be-
tween physically mobile computations can be succinctly expressed. However, one may
only interact with an ambient if one knows its name. In order for anonymous ambients
to interact, they must somehow be given well-known names with network-wide scope.

Because the ambient acts as a container for the messages posted by its contained
processes, mobile ambients feature time and space-decoupled communication: mes-
sages do not carry a receiver, they are simply posted within the ambient and can be
read at a later point in time by any other process in the same ambient. Processes are
not entirely decoupled in synchronisation because message reception is synchronous.
The calculus does not feature built-in operations to become aware of neighbouring am-
bients. However, if one knows the name of an ambient, it is easy to construct a process
that tests whether the ambient is available by trying to move into it. However, failure
detecting has to be implemented entirely on top of the calculus. Failure of an ambient
is represented in the calculus implicitly (but realistically) as that ambient becoming
unreachable forever [CG98].

Attempts have been made to convert the ideas of mobile ambients into program-
ming language features. N# [WBB06] is a C#-like object-oriented language with sup-
port for ambients that can communicate via ports. Interestingly, the language runtime
automatically creates and terminates ambients as entities come and go (e.g. people
entering or leaving a meeting room). However, for this to work, the language runtime
depends on a central “context server”, making it unsuitable for ad hoc networks.

3.3.5 Tuple Space Middleware for Ad Hoc Networks
Tuple spaces as originally introduced in the coordination language Linda [Gel85] have
received renewed interest by researchers in the field of mobile computing. In the tuple
space model, processes communicate by inserting and removing tuples from a shared
tuple space, which acts like a globally shared memory. Because tuples are anony-
mous, they are extracted by means of pattern matching on their content. Tuple space
communication is decoupled in time because processes can insert and retract tuples
independently. It is decoupled in space because the publisher of a tuple does not nec-
essarily specify, or even know, which process will extract the tuple. This makes Linda
ideal for coordinating loosely-coupled processes.

Naturally, a globally shared, centralised, tuple space does not fit the hardware char-
acteristics of mobile ad hoc networks. Adaptations of tuple spaces for mobile com-
puting, such as Linda in a Mobile Environment (LIME) [MPR01], introduce agents
which have their own, local interface tuple space (ITS). Whenever their host device
encounters proximate devices, the ITS of the different agents is merged into a fed-
erated transiently shared tuple space, making tuples in a remote agent’s tuple space
accessible while the connection lasts.

40 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

In the original tuple space model, synchronisation decoupling is violated because
there exist synchronous (blocking) operations to extract tuples from the tuple space.
However, as the need for total synchronisation decoupling became apparent for mo-
bile networks, mobile computing middleware such as LIME extends the basic model
with reactions which are callbacks that trigger asynchronously when a matching tuple
becomes available in the tuple space.

LIME enables (decentralised) discovery and failure handling by introducing a read-
only, system-maintained tuple space whose tuples represent metadata, such as the hosts
that are currently connected. Registering reactions on such tuples allows processes to
observe their connection with other processes. Even though tuple spaces do not of-
fer explicit arity-decoupling, one-to-many communication can be encoded implicitly
either by having a producer post multiple (duplicate) tuples in the space, or by hav-
ing consumer processes read but not retract tuples, leaving the original tuple for other
processes to consume [EFGK03].

Interestingly, like mobile ambients, LIME unifies mobile computing (“physical mo-
bility”) with mobile computations (“logical mobility”) by allowing agents to migrate
between hosts. Using agent migration, agents can be co-located to ensure a stable con-
nection between their ITS. Mobile Agent Reactive Spaces (MARS) [CLZ00] employs
this mobile agent paradigm for similar reasons, although it does not define a transiently
shared tuple space. In MARS, each device hosts a tuple space and agents can only ac-
cess that local tuple space. To access another tuple space, agents can migrate between
hosts. MARS features a metalevel tuple space that allows programs to register reac-
tions: callbacks that trigger whenever agents perform a read and/or write operation
on the baselevel tuple space. However, it is not clear whether this tuple space also
records the mobility of agents, which is necessary if one wants to get an overview of
all currently connected agents.

LIME extends Linda’s operations with context parameters, like explicit location.
This trades anonymous communication for more control over the tuple space in which
the tuple should be placed. A tuple that was given an explicit tuple space location will
independently migrate to that tuple space once it is connected. The net effect is that the
tuple will still be accessible to the owner of that tuple space if it is no longer connected
to the emitter of the tuple. Tuples on the Air (TOTA) [MZ04] is based on a similar
mechanism: rather than merging local tuple spaces upon network connection, tuples
are equipped with a propagation rule that determines how the tuple migrates from
one tuple space to another. Hence, in TOTA, agents can access one another’s tuples
because it are the tuples themselves that propagate through the network as connections
are established. Like LIME, it augments the tuple space model with a form of event
notification to notify agents when certain tuples arrive in their tuple space.

Tuple spaces act as a middle man between different processes. As a result, there
is no notion of a reference to any particular process. Tuple space-based communica-
tion is necessarily global to all processes sharing the tuple space, which may lead to
unexpected interactions between concurrently communicating processes.

3.3.6 Middleware for Nomadic Networks

We now describe middleware platforms that have been designed for nomadic networks,
which assume a mix of mobile and stationary nodes and hence rely on infrastructure.

3.3. SURVEY OF RELATED WORK 41

3.3.6.1 Rover

The Rover toolkit [JdT+95, JTK97] is designed to support both mobile-transparent
and mobile-aware applications. The desire to hide mobility from applications enables
the reuse of existing techniques and applications in a mobile setting. However, Rover
recognises the fact that a mobile network is too dynamic to be able to abstract away
entirely. Hence, it introduces additional features to make applications aware of mobility
at key points. Rover is based on a client/server architecture. Rover applications are
partitioned into clients, which are usually deployed on mobile devices, and servers,
which mostly reside on a stationary host. There is no support for direct communication
between the mobile clients themselves.

Rover offers support for disconnected operation: the ability of the mobile client
to continue performing useful work while being disconnected from the server. It does
this by means of two concepts: relocatable dynamic objects (RDOs) and queued re-
mote procedure call (QRPC). An RDO is essentially a mobile object, whose code and
data can be migrated from client to server or vice versa. Hence, code and data can
be co-located on the mobile host, avoiding network traffic and enabling disconnected
operation. Every RDO has a “home” server, which maintains a primary copy of the
RDO’s data. Clients essentially download replicas from the server and can modify and
interact with their local copy.

Clients communicate updates to their local RDOs to the server through queued
RPCs. QRPC decouples communication between client and server in time: Rover
queues the RPCs in a log, and performs the RPCs when a connection between client
and server is available. At the application level, clients either block while the QRPC is
pending, or get notified of the result asynchronously via a callback method (enabling
a QRPC to additionally introduce synchronisation-decoupling). When the update of
the client is made to the master copy, conflicts resulting from concurrent modifications
may occur. Rover provides hooks that allow applications to provide custom conflict
resolution strategies.

Rover has a notification mechanism to enable applications to react to changes in
their execution context. The application can either poll for changes in the network,
or register callbacks to get notified. As Rover is not designed for ad hoc networks, it
provides no support for service discovery.

3.3.6.2 Java Intelligent Network Infrastructure

Sun Microsystem’s Jini architecture for network-centric computing [Wal99, Arn99] is
a platform for service-oriented computing built on top of Java. Jini introduces the no-
tion of lookup services1. Services may advertise themselves by uploading a proxy to
the lookup service. Clients search the network for lookup services and may launch
queries for services they are interested in. The fully qualified names of Java interface
types are used as a common ontology to describe and discover services. Clients can
download the advertised proxy of a remote service and may interact with the remote
service through the proxy. Jini’s lookup services do not enforce decentralised discov-
ery as they may be hosted on a remote device, separate from that of either client or
service [Arn99]. Discovery can be made decentralised if the devices hosting the clients
or services themselves also directly host a lookup service. However, judging from its

1With respect to the terminology introduced in section 3.2.1, a Jini lookup service corresponds to a service
discovery mechanism, not to a traditional “lookup service”.

42 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

bootstrapping discovery protocols, Jini is designed for its lookup services to be hosted
on separate devices [Wal01].

Jini provides direct support to deal with the two most apparent phenomena of ad
hoc networks: the fact that clients and service providers may join with and disjoin
from the network at any time, without any prior warning. To deal with unannounced
disconnections, Jini employs leasing (see also section 4.9.2): when services advertise
themselves in a lookup service, they are given a lease. They must then explicitly renew
their lease with the lookup service; if they cannot (e.g. because of a network partition),
the lookup service removes the service advertisement such that it doesn’t provide stale
information. Likewise, clients should interact with services on the basis of a lease such
that a service may reclaim any resources allocated for the client session whenever either
one disjoins from the network. Leasing is essentially a form of connection-independent
failure handling.

Jini is primarily a framework for bringing clients and services together in a net-
work with minimal administrative infrastructure. Once a client has downloaded a ser-
vice proxy, the proxy is the communication channel to the service. This proxy may
encapsulate different implementations to communicate with its service [Wal01]. For
example, the proxy may buffer messages when the remote service is disconnected to
achieve decoupling in time. Hence, Jini’s architecture is flexible enough to accomodate
time, synchronisation or even arity-decoupled references. However, to the best of our
knowledge, Jini does not offer this functionality. By default, Jini relies on Java RMI
and the proxies advertised by services communicate synchronously with their service
over point-to-point protocols.

3.3.7 Publish-subscribe Middleware for Ad Hoc Networks
The publish/subscribe paradigm has been proposed by many researchers as a suitable
abstraction for mobile ad hoc networks [Mei02, CJ02, EGH05] precisely because it in-
herently provides support for loosely coupled interaction between publishers and sub-
scribers and because it naturally supports arity decoupling (events may be delivered to
any number of subscribers).

3.3.7.1 Location-based Publish-Subscribe

Location-based Publish/Subscribe (LPS) [EGH05, EGH06] is a publish/subscribe ar-
chitecture designed specifically for ad hoc applications, but not necessarily for mobile
ad hoc networks. The authors of LPS regard ad hoc applications as independent of the
underlying physical network infrastructure. Hence, LPS is not necessarily confined to
real ad hoc networks. In fact, their current implementation makes use of infrastructure
in the form of a centralised web service that manages the publications and subscrip-
tions.

In essence, LPS is a content-based publish/subscribe architecture, with publishers
publishing events and subscribers filtering events based on the event’s content. LPS is
designed for nomadic networks and it is assumed that all mobile devices can communi-
cate implicitly via a shared infrastructure, even if they are not in communication range.
However, in order to scope interactions between devices, event dissemination and re-
ception is bounded in physical space: a publisher defines a publication range and a
subscriber defines a subscription range. Both are independent of the devices’ commu-
nication range. Only when the publication range of the publisher and the subscription
range of the subscriber physically overlap is an event disseminated to the subscriber.

3.3. SURVEY OF RELATED WORK 43

This introduces a form of spatial scoping on top of the content-based publish/subscribe
paradigm.

LPS decouples publishers and subscribers in time, space and synchronisation. De-
coupling in time is bounded by an event’s time-to-live: after this timeout period has
expired, an event is no longer published. To the best of our knowledge, LPS provides
no explicit discovery or failure handling mechanisms. It is not possible to react to
connecting or disconnecting publishers or subscribers.

3.3.7.2 Scalable Timed Events and Mobility

Scalable Timed Events and Mobility (STEAM) is an event-based middleware designed
for supporting collaborative applications in mobile ad hoc networks [MC03, MCNC05].
It shuns the use of centralised components such as lookup and naming services to avoid
any dependencies of mobile devices on a common infrastructure. STEAM is essentially
a publish/subscribe middleware where events can be filtered according to event type,
event content and physical proximity.

STEAM builds upon the observation that the physically closer an event consumer
is located to an event producer, the more interested it may be in that producer’s events.
For example, in a Vehicular Ad hoc Network (VAN), cars can notify one another of
accidents further down the road, traffic lights can automatically signal their status to
cars near a road intersection or ambulances could signal their right of way to cars in
front of them. To this end, STEAM allows events disseminated by producers to be
filtered based on geographical location using proximities. Proximities are first-class
representations of a physical range, which may be absolute or relative (i.e. a relative
proximity denotes an area surrounding a mobile node, changing as the node moves).
In order to enforce this scoping of events using proximities, STEAM uses a location
service that uses sensor data or GPS coordinates to determine the geographical location
of nodes in the network.

STEAM decouples publishers and subscribers in space and synchronisation. It
does not decouple them in time: published events are disseminated using multi-hop
routing throughout their proximity, after which they disappear. Hence, if a subscriber
is not in range at the time the event is disseminated, it will miss the event. Persistent
events should thus be published repeatedly. Failure handling because of publishers or
subscribers moving out of communication range also has to be encoded on top of the
basic event service.

3.3.7.3 Epidemic Messaging Middleware for Ad Hoc Networks

The Epidemic Messaging Middleware for Ad Hoc Networks (EMMA) [MMH05] is an
adaptation of the Java Message Service (JMS) API [MHS02] for mobile ad hoc net-
works. In JMS, Java components interact asynchronously by posting messages to and
reading messages from message queues. This can be used both for point-to-point and
publish/subscribe interaction. In JMS, queues are often managed by central servers.
EMMA replaces such central servers by a discovery mechanism that allows queues to
be discovered in the local ad hoc network. It uses leasing to remove stale advertise-
ments, similar to Jini.

EMMA, like JMS, distinguishes between durable and non-durable subscriptions
to message queues. A durable subscription remains valid upon disconnection. Non-
durable subscriptions are cancelled upon disconnection and the subscription must be

44 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

made anew upon reconnection. In JMS, the server buffers events while a durable sub-
scriber is disconnected. In EMMA, events for disconnected subscribers are not buffered
but rather sent using an asynchronous epidemic routing protocol. Using this protocol,
messages are broadcast to each host in range, which in turn sends them to all hosts in its
range, and so on. Using epidemic routing, delivery is not guaranteed (i.e. the message
may still be lost if there is no path between sender and receiver at the time of routing).
Naturally, the delivery ratio increases as the number of nodes in the ad hoc network
increases. The protocol does weed out duplicate messages, to ensure that the applica-
tion receives messages at most once. If a message is flagged as persistent, the sender is
notified of successful delivery via an acknowledgement. If no such acknowledgement
is received within a given timeout, the delivery status is unknown.

Communication in EMMA is naturally synchronisation-decoupled using message
queues. It is space decoupled thanks to the use of topics to describe publish/subscribe
queues. Thanks to its automatic discovery management of queues, it is suitable for use
in pure ad hoc networks.

3.3.7.4 Many-to-Many Invocation

Many-to-many invocation (M2MI) [KB02] is a paradigm for building collaborative
systems deployed in MANETs. A middleware framework for Java exists where objects
can refer to other objects in the mobile ad hoc network by means of handles. A handle
is a “remote reference” that identifies objects in the proximity that implement a certain
Java interface.

M2MI distinguishes between unihandles, multihandles and omnihandles. A uni-
handle represents one, a multihandle a specific group and an omnihandle all objects
within communication range that implement the handle’s Java interface. A message
sent to an omnihandle means “every object out there that implements this interface,
call this method” [KB02].

M2MI handles have asynchronous message passing semantics and hence decouple
communicating objects in synchronisation. However, M2MI invocations require that
asynchronous messages do not return a value or throw an exception: all methods of
a handle’s associated interface must have a void return type and cannot throw any
checked exceptions. Request/response interaction or a future-type style of message
passing has to be built on top of the basic abstractions.

Communication by means of handles is decoupled in space: the actual identity or
location of the objects communicated with remains anonymous (the objects are only
implicitly designated by means of the Java interface through which they are exported).
However, M2MI handles do not decouple participants in time: if a message is sent
to an object which is not in communication range at that time, the message is lost.
Any message delivery guarantees have to be programmed on top of the weak delivery
semantics offered by M2MI.

In short, M2MI’s handlers are a suitable remote referencing abstraction for mobile
ad hoc networks, but they are situated at a relatively low level of abstraction. While
they abstract away low-level protocol and serialisation issues, aspects such as service
discovery, stronger message delivery semantics, message ordering, return values and
dealing with disconnections all have to be encoded on top of the basic abstractions.

We will revisit M2MI on several occasions throughout the rest of this dissertation.
In section 7.5.3, we describe the differences and similarities between ambient refer-
ences and M2MI. In chapter 8, we highlight the role of the M2MI Java library in the
implementation of ambient references. Finally, in chapter 9, we extensively compare

3.3. SURVEY OF RELATED WORK 45

two concrete ad hoc networking applications – one written using M2MI handles and
the other using ambient references.

3.3.7.5 One.world

One.world is a system architecture developed on top of Java [GDL+04]. It can be re-
garded more as an “operating system” for pervasive computing rather than as middle-
ware, providing a common execution platform for pervasive computing applications.
In one.world, applications consist of a tree of environments. An environment consists
of components (Java applications) and tuples, self-describing records used to encode
an application’s persistent data (one.world provides support for checkpointing). Addi-
tionally, one.world supports migration of components between different environments.

All components interact though asynchronous event notifications only. Again, an
asynchronous publish/subscribe style of interaction is promoted because of its loose
coupling, making communication decoupled in time, space and synchronisation. Events
may be delivered to multiple components, enabling arity decoupling. One.world uses
leasing to cater to connection-independent failure handling and it provides explicit sup-
port for service discovery. We will revisit One.world in more detail in section 7.5.5
when discussing work related to ambient references.

3.3.8 Synthesis and Discussion

Table 3.2 summarises our survey of related work. It indicates, for each system under
scrutiny, whether and how it adheres to the criteria postulated in section 3.2. The keys
used to indicate the degree of coupling between processes and the means of failure
handling are explained in table 3.3. We also indicate for each system whether it sup-
ports communication by means of message passing. The reasons for including this will
become clear in section 3.4.

Recall that the results presented in table 3.2 are naturally biased towards approaches
designed a priori for mobile ad hoc networks. However, the fact that systems devel-
oped for MANETs satisfy more of our criteria than those not developed for MANETs
does confirm the effectiveness of those criteria in classifying different approaches to
coordination.

3.3.8.1 Interpretation by type of system

Focusing on the different kinds of systems (the table rows) first, we summarise the
observations already made earlier in this section:

Languages for LANs introduce very tight coupling between processes at all levels.
This is justified by the closed and administered topology of the network.

Languages for WANs mostly relax synchronisation between processes, to deal with
failures and latency. Characteristic of all these languages is that processes are intro-
duced via some form of explicit addressing. They rely on the network’s infrastructure
to reliably resolve such addresses into communication channels.

46 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

D
ecoupling

in
Failure

D
ecentr.

M
essage

Tim
e

Space
Synchronisation

A
rity

H
andling

D
iscovery

Passing

L
anguagesfor

L
ocalA

rea
N

etw
orks

E
m

erald
N

(E
rror)

N
(A

ddress)
N

(R
PC

)
N

E
xc.

N
Y

O
bliq

N
(E

rror)
N

(A
ddress)

N
(R

PC
)

N
E

xc.
N

Y
A

B
C

L
Y

(B
uffer)

N
(A

ddress)
Senderonly

N
N

N
Y

L
anguagesfor

W
ide

A
rea

N
etw

orks
E

rlang
Y

(B
uffer)

N
(A

ddress)
Senderonly

N
R

eact
N

Y
A

rgus
N

(E
rror)

N
(A

ddress)
N

(R
PC

)
N

E
xc.

N
Y

Janus
Y

(B
locks)

N
(A

ddress)
N

(L
ogic

V
ar)

N
N

N
N

Salsa
Y

(B
uffer)

N
(A

ddress)
Y

(A
sync

M
sg)

N
N

N
Y

E
N

(E
rror)

N
(A

ddress)
Y

(A
sync

M
sg)

N
R

eact
N

Y
D

istributed
O

z
Y

(B
locks)

N
(A

ddress)
N

(L
ogic

V
ar)

N
R

eact
N

Y
L

anguagesfor
W

irelessSensor
N

etw
orks

A
ctorN

et
Y

(B
uffer)

N
(A

ddress)
Y

(A
sync

M
sg)

Y
N

N
Y

SpatialV
iew

s
Y

(M
ediator)

Y
(D

iscovery)
Y

(M
ediator)

Y
N

N
N

M
odelsand

C
alculifor

W
ide

A
rea

N
etw

orks
A

ctors
Y

(B
uffer)

N
(U

R
I)

Y
(A

sync
M

sg)
N

N
N

Y
A

ctorSpace
Y

(B
uffer)

Y
(M

ediator)
Y

(A
sync

M
sg)

Y
N

N
Y

M
obile

A
m

bients
Y

(M
ediator)

Y
(M

ediator)
Senderonly

N
N

N
N

Tuple
Space

M
iddlew

are
for

A
d

H
oc

N
etw

orks
L

IM
E

Y
(M

ediator)
Y

(M
ediator)

Y
(M

ediator)
Y

R
eact

Y
N

TO
TA

Y
(M

ediator)
Y

(M
ediator)

Y
(M

ediator)
Y

R
eact

Y
N

M
A

R
S

Y
(M

ediator)
Y

(M
ediator)

Y
(M

ediator)
Y

L
ease

N
N

M
iddlew

are
for

N
om

adic
N

etw
orks

R
over

Y
(B

uffer)
N

(A
ddress)

Y
(A

sync
M

sg)
N

R
eact

N
Y

JIN
I

N
(E

rror)
Y

(D
iscovery)

N
(R

PC
)

N
L

ease
Y

Y
Publish-Subscribe

M
iddlew

are
for

A
d

H
oc

N
etw

orks
E

M
M

A
N

(L
ost)

Y
(M

ediator)
Y

(M
ediator)

Y
L

ease
Y

N
L

PS
Y

(M
ediator)

Y
(M

ediator)
Y

(M
ediator)

Y
N

N
N

ST
E

A
M

N
(L

ost)
Y

(M
ediator)

Y
(M

ediator)
Y

N
N

N
M

2M
I

N
(L

ost)
Y

(B
roadcast)

Y
(A

sync
M

sg)
Y

N
N

Y
one.w

orld
N

(L
ost)

Y
(D

iscovery)
Y

(M
ediator)

Y
L

ease
Y

N

Table
3.2:Survey

ofR
elated

W
ork.

3.3. SURVEY OF RELATED WORK 47

Temporal Coupling
Error Communicating with an offline process raises an error.
Lost Information communicated to an offline process is lost.
Blocks Communication with offline process suspends until available.
Buffer Communication with offline process is buffered (e.g. in a mailbox).
Mediator Communication occurs via an intermediate store. Unlike buffers, me-

diators are not necessarily local to the communicating processes.
Spatial Coupling
URI Processes are introduced by explicit address.
Discovery Service discovery is used to introduce processes.
Mediator Processes communicate indirectly via a mediator (e.g. tuple space,

ambient, event service).
Coupling in Synchronisation
RPC Synchronous communication by RPC (Argus allows asynchronous

RPC but its promises require synchronisation by blocking).
Logic Var Process suspends until logic variable is bound.
Sender only Asynchronous send but synchronous (blocking) receive.
Async Msg Asynchronous send and receive by message passing.
Mediator Asynchronous communication via a mediator (for tuple spaces: we

assume the use of reactions to read tuples, not the blocking read
operation of Linda).

Failure Handling
No No explicit means of failure handling is provided.
Exc. Failure handling is represented by means of exceptions, often as a

result of performing a remote call.
React It is possible to register callbacks that can react to failures.
Lease Connections or exchanged data are leased. Failure can be represented

as lease expiration.

Table 3.3: Degrees of coupling and failure handling.

48 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

Models and Calculi for WANs naturally share the same properties as languages for
WANs, given that most languages are based on the models in one way or another.

Languages for WSNs are strongly biased towards a specific type of applications.
Here, the emphasis is not on communicating processes but on migrating processes,
enabling as much work as possible to be done local to a mote, without further commu-
nication.

Tuple Space-based Middleware for Ad Hoc Networks successfully decouples com-
municating processes, even across a volatile ad hoc network. However, one may ques-
tion in how far these approaches still resemble the original tuple space model, given
the profound modifications necessary to adapt the model for MANETs. Interestingly,
Murphy et al. note that – to their own surprise – the features that turned out to be most
useful in LIME were the reactions (especially reactions that fired each time a certain
tuple was inserted in the tuple space) and the use of the system-maintained tuple space
that keeps track of metadata, enabling applications to keep track of which hosts are
connected or not [MPR01]. This reinforces the idea that reactive, event-driven pro-
gramming seems to better match the ad hoc networking setting than the original tuple
space abstractions. In effect, the metaphor of a globally shared memory space becomes
inappropriate due to the fact that the computational context changes so frequently.

Middleware for Nomadic Networks naturally assumes some form of infrastructure.
In the Rover system, this shows in that processes are tightly coupled in space. Rover is
also based on the explicit assumption that clients can frequently synchronise with their
server. Jini has very much the opposite properties: it provides good service discovery
abstractions to enable applications to interact spontaneously, without prior coordina-
tion or administration. However, once processes have been introduced, Jini relies on
standard Java RMI for communication, which is not designed for ad hoc networks. Jini
introduces leasing to manage the lifetime of service advertisements.

Publish/Subscribe Middleware for Ad Hoc Networks successfully decouples pro-
cesses in space and synchronisation. Many systems do not support true decoupling in
time in the sense that, when an event is broadcast, it is lost to any subscriber that is tem-
porarily disconnected. Nevertheless, they naturally cater to arity decoupling and some-
times do not even require an explicit form of service discovery (events are implicitly
delivered to all subscribers in range). While anonymous, connectionless communica-
tion is a publish/subscribe architecture’s major strength, it is at the same time its major
weakness. Sometimes, processes will want to set up a stateful, connection-oriented
collaboration. In a pure publish/subscribe architecture lacking any form of point-to-
point communication, it is very hard to ensure that certain events are only delivered to
certain subscribers. Moreover, publish/subscribe architectures offer no built-in support
for correlating events (e.g. a request with a reply).

3.3.8.2 Interpretation by Criterion

In the following paragraphs, we evaluate the results of table 3.2 by column, i.e. which
systems do or do not satisfy the coordination criteria from section 3.2.

3.3. SURVEY OF RELATED WORK 49

Decentralised Discovery is the ability to autonomously react to services becoming
(un)available in the local ad hoc network. Relatively few systems implement a form of
service discovery. Jini is well-known for its service discovery abstraction, which en-
ables applications to track new services and to deal with disappearing services through
leasing, although discovery is not necessarily decentralised. In tuple space-based mid-
dleware like LIME and TOTA, the middleware performs service discovery implicitly.
At the application-level, the effects of discovery become visible by merging tuple
spaces or by enabling tuples to propagate to a new tuple space.

Decoupling in Time enables processes to communicate while being disconnected.
It is achieved in many systems by either buffering messages sent to offline parties, or
by communicating via a mediator. Often, the mediator takes responsibility for storing
messages until a potential receiver becomes available. For example, in mobile ambi-
ents, the ambients act as stores for messages released by their contained processes. In
tuple space-based middleware, the tuple space acts as a logically shared store of tuples.
In publish/subscribe systems, the event notification service can buffer events when sub-
scribers are disconnected. However, most pub/sub systems for mobile ad hoc networks
do not buffer events for disconnected subscribers. This is motivated by the fact that
most events are relevant only for a limited period of time, after which they become
obsolete anyway.

Decoupling in Space enables processes to coordinate anonymously. In systems like
Jini, which are layered on top of an object-oriented system, service discovery is used
to acquire a reference to a service without knowing its exact address. After service
discovery, communication becomes coupled in space. In tuple space or pub/sub sys-
tems, communication is always anonymous: published tuples or events do not carry
a receiver. M2MI, interestingly, provides the properties of a pub/sub system with an
object-oriented twist: messages are directed at a handle, but handles deliver the mes-
sages to objects anonymously based on a Java interface description.

Decoupling in Synchronisation ensures that the control flow of processes is not sus-
pended upon communication. In most object or actor-based systems it is achieved by
means of pure asynchronous message passing. In other systems, it is achieved by the
use of a mediator that manages the actual transmission of the message or tuple. Note
that tuple spaces provide full synchronisation decoupling only when using the reac-
tive programming style advocated by adaptations for MANETs. These systems also
allow processes to retract tuples by means of Linda’s read operation, which blocks
the process until a matching tuple becomes available.

Arity Decoupling enables processes to abstract from the number of processes com-
municated with. Evidently, point-to-point abstractions (offered by most object-oriented
systems) do not decouple processes in arity. In a tuple space or publish/subscribe sys-
tem, all communication is inherently one-to-many. In tuple spaces, processes operating
on the same tuple space are all potential “receivers” of the tuple. In publish/subscribe
systems, all subscribers that match the published event are eligible receivers. Note that
the proximities of STEAM and the publication space of LPS allow for an additional
form of scoping on the event delivery process.

50 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

Connection-Independent Failure Handling enables processes to detect and deal
with failures independent of the underlying state of the network connection. In most
languages for LANs, failure handling is represented by means of exception handling.
Some languages for WANs, like Erlang, Oz and E introduce dedicated failure detection
primitives thus providing first-class support for partial failure handling. While these
primitives allow the programmer to react to disconnections, they do not immediately
provide support for a more high-level description of failures (e.g. only considering a
disconnection a failure if it outlasts a certain time period). LIME enables processes
to monitor the connection status of available agents by means of a special system-
maintained tuple space whose tuples describe information about the system configura-
tion. TOTA similarly represents connection and disconnection events using dedicated
tuples. Some systems, most notably Jini, use leasing to introduce failure handling.
Lease expiration is treated implicitly as a failure. Since lease expiration is not directly
related to network disconnection, leases form a good connection-independent failure
handling mechanism. Finally, most publish/subscribe approaches offer no abstractions
for monitoring connectivity with other processes. Indeed, in these systems, often one
process is not even aware of the processes communicated with or even if a published
event was successfully received by another party.

3.4 The Object-Event Impedance Mismatch
From our analysis of related work, we draw two conclusions:

1. Object-oriented abstractions based on message passing fail to provide a total
decoupling of processes in a mobile ad hoc network.

2. Publish/Subscribe systems and Tuple Spaces specifically designed for mobile ad
hoc networks enable the best decoupling of processes.

Combining these two facts, it appears that one is forced to abandon the object-
oriented message passing metaphor if one wants to express scalable coordination be-
tween processes in a MANET. However, if the non-distributed part of an application
is written in an object-oriented language, the overall application is then forced to com-
bine two different paradigms: the object-oriented paradigm must interact with an alien
communication paradigm (tuples or events).

A multi-paradigm approach is not necessarily a bad approach. However, its suit-
ability depends on the difficulty of combining the paradigms involved. In this section,
we argue that combining objects with events is far from trivial. Why is this the case?
One of the design goals of most coordination languages and middleware is to provide
abstractions which are orthogonal to (i.e. independent of) the language with which
they are combined, follwing the original motivations of the Linda language [GC92].
As a result of this orthogonality, no unification is sought between elements of the ap-
plication layer and elements of the communication layer. We claim that this lack of
integration leads to what we call the object-event impedance mismatch, analogous to
the way object persistence suffers from the infamous object-relational impedance mis-
match [CD96].

The object-relational impedance mismatch is caused by the fundamental differ-
ences between modelling data as objects and modelling data as tuples which are part
of relations. For example, objects encapsulate their state, enabling operations to be
polymorphic. Tuples expose state, enabling efficient and expressive filtering, querying

3.4. THE OBJECT-EVENT IMPEDANCE MISMATCH 51

and aggregation of data. Objects refer to one another via references, while tuples are
associated with one another via foreign keys. Identity is fundamental to objects, while
tuples lack any inherent form of identity, and so on. We discuss similar such differ-
ences, but rather than contrasting objects with the relational model, we will contrast
objects with event-driven communication models. Figure 3.1 contrasts object-oriented
with event-driven communication. The highlighted differences are discussed in each
of the following sections.

Event Brokersender

1. Generic
Interface

pub

sub

sub

sub

receiver.m()

def m() {
 ...
}

publish(e) subscribe(e)

1. Specific
Interface

3. Bidirectional
communicaton

3. Unidirectional
communicaton

2. Connectionless /
Stateless designation

2. Connection-oriented /
Stateful designation

4. Event loops

4. Threads e

receiver

e

e

e

Figure 3.1: Contrasting object-oriented with event-driven communication.

3.4.1 Specific versus Generic Communication
In object-oriented programming languages, objects communicate by means of message
passing. The interface of an object usually corresponds to the set of visible methods it
(or its class) defines. Messages encapsulate a “selector”, which usually corresponds to
the name of the method to be invoked on the object to which the message is sent. In
object-oriented programming, therefore, communication between objects is expressed
in terms of very specific operations. The generic acts of sending and receiving these
messages are entirely hidden by the language.

In a distributed object-oriented language, sending and receiving messages to and
from remote objects is most often done implicitly by means of the regular message
passing semantics already provided by the language. In an object-oriented language,
remote communication can be expressed as receiver.selector(arg) rather than
send(receiver,selector,arg). Likewise, it is often not necessary to introduce an
explicit receive statement: message reception is represented in terms of method invo-
cation.

In event-driven systems and in tuple spaces, communication between processes
is not in terms of specific operations, but rather in terms of very generic operations,
whose arguments are the events or tuples to be communicated. This is very obvious in
tuple spaces, where communication is performed in terms of explicit in(tuple) and
out(tuple) operations. In an event-driven system, events are often dispatched to
the event broker (the infrastructure between event producers and consumers) by means
of a generic broker.publish(event) invocation. Likewise, event reception is often
an explicit operation:

broker.subscribe(new Listener() {
public void reactTo(Event e) {
// handle incoming event

}
})

52 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

One advantage of a generic communication interface is that it is much easier to
express general patterns of communication. This is because such an interface already
automatically abstracts from the details of the data being communicated. To express
generic patterns via an object-oriented interface, one generally requires a special meta-
level construct to be able to intercept messages without reference to their specific se-
lector and arguments (e.g. doesNotUnderstand: in Smalltalk).

In short, if objects are to communicate with one another via events, they must aban-
don their otherwise specific communication interface in favour of the generic interface
promoted by the event system.

3.4.2 Connection-oriented versus Connectionless Designation
In a distributed object-oriented program, objects communicate via point-to-point chan-
nels known as (remote) object references. As can be witnessed from our survey on re-
lated work, this abstraction provides limited or no support for space-decoupled (anony-
mous and one-to-many) communication (cf. the properties of the object-oriented lan-
guages for LANs and WANs). However, it remains a useful communication abstraction
with two important properties. First, a remote object reference is a connection-oriented
communication channel, which allows the sender to know the identity of the object to
which it sends messages. Second, it is a stateful communication channel ensuring that
multiple messages sent via the same reference are processed by the same receiver. Later
messages are sent via the reference in the understanding that messages sent earlier are
processed first.

Publish/subscribe and tuple space systems feature stateless one-to-many commu-
nication by default. It enables anonymous and arity-decoupled communication, which
is required in a mobile ad hoc network. At the same time it becomes difficult to ex-
press connection-oriented communication, as an event or tuple becomes accessible to
all participating processes, or stateful communication, because multiple consecutive
events may be received by a different set of subscribers. These limitations of tuple
spaces, which also apply to publish/subscribe systems, have been observed earlier by
Agha and Callsen [AC93]:

“[Linda] does not provide any locality, i.e. communication cannot be de-
clared local to two or more processes that want to exchange information
without allowing other processes to potentially interfere.”

There exist ways of building connection-oriented communication on top of such
systems (e.g. private tuple spaces or event topics encoding a connection), but these
abstractions are second-class, just like connectionless one-to-many communication is
a second-class abstraction in an object-oriented programming language.

Note that the notion of a connection-oriented communication channel does not
necessarily imply a secure communication channel. The above discussion deals with
scoping and coupling issues on a software engineering level, not with issues such as
one process intentionally “eavesdropping” on a communication channel between other
processes.

In short, if objects are to communicate with one another via events, they must
abandon the remote referencing abstraction in favour of connectionless communica-
tion via the event broker. This makes the receiver(s) of a message anonymous, which
enables space-decoupled communication, but at the same time may lead to interference
between communicating objects.

3.4. THE OBJECT-EVENT IMPEDANCE MISMATCH 53

3.4.3 Bidirectional versus Unidirectional Communication

Object-oriented programs communicate via message passing which fosters a request/re-
ply style of communication. Even though this request/reply style is often implemented
by means of synchronous (remote) method invocation, much research in concurrent
object-oriented programming has been devoted to maintain the request/reply interac-
tion pattern while relaxing the synchronisation constraints (cf. background on futures
in section 4.9.2).

Publish/subscribe systems and tuple spaces decouple processes by essentially in-
troducing pure asynchronous one-way operations (e.g. publishing an event, writing a
tuple). Request/response interaction can of course be built on top of such systems, e.g.
by manually correlating request and response events/tuples by means of an identifier.
Again, these are second-class abstractions.

Conversely – and perhaps less obviously – an asynchronous, unidirectional event
notification also has to be represented by means of second-class abstractions in an
object-oriented language. Signalling an asynchronous event is often performed by syn-
chronously invoking a method that returns no result. The first-class asynchronous no-
tification of an event system is thus represented as a second-class synchronous method
invocation in an OO system.

In short, if objects are to communicate with one another via events, they must
abandon the bidirectional request/response message passing abstraction in favour of
unidirectional event notification.

3.4.4 Threads versus Event Loops

In an event-driven system, events are usually delivered to an application by an event
loop which is the process representing the event notification engine (cf. section 4.3.1
for a more in-depth discussion on event loops). However, the integration of event deliv-
ery with multithreaded object-oriented languages often leaves much to be desired. The
archetypical integration represents event handlers as “listener” or “observer” objects.
The methods of these objects are intended to be invoked by event loops. Because of
the synchronous method invocation semantics predominant in object-orientation, the
method is executed by the thread of control of the event loop itself. To make the situa-
tion more concrete, here is a canonical example of event notification in Java:

// code executed by application thread
publisher.subscribe(new Subscriber() {
public void reactTo(Event e) {
// code executed by event notification engine

}
});

This style of event notification has two important consequences:

• Event handler objects must be made multiple thread-safe, i.e. they require syn-
chronisation constructs to prevent data races when they concurrently access state
manipulated by application-specific threads. Because thread management lies
outside the control of the application, it is entirely implicit in the code whether
multiple events are signalled to registered event handlers concurrently or sequen-
tially.

54 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

• If the event handler object uses the event loop’s thread of control to perform
application-level computation, it can make the event loop unresponsive. A tes-
tament to this is the documentation of the event-driven Java GUI construction
framework Swing which advises developers to structure their applications such
that listener methods relinquish control to the framework as soon as possible.

Event loops provide the programmer with the ability to consider the handling of a
single event as the unit of concurrent interleaving. The major strength of this model
is that it significantly raises the level of abstraction for the developer, as the level of
granularity at which the concurrent behaviour of the system can be studied is much
more manageable. Rather than having to consider the possible interleaving of each
basic instruction in each method body, the programmer need only consider the inter-
leaving of the different methods themselves2. It has been argued even in the context
of thread-based object-oriented concurrency models that complete mutual exclusion of
each method of a concurrently accessible object ought to be the norm [Mey93].

Event loops also have their drawbacks. Event delivery is an asynchronous process,
and most event-driven systems cannot succinctly express the overall control flow of an
application. Rather, the control flow is dispersed across many different event handlers,
a phenomenon known as inversion of control in the literature [HO06]. We further
discuss this phenomenon and how to resolve it in section 4.5.1.

Choosing between thread-based or event-based concurrency is the topic of long-
standing debates in the literature, and we are certainly not the first to contrast these
two systems. A well-known talk by Ousterhout provides a more general discussion
comparing the assets and drawbacks of threads and events [Ous96]. Miller, in his
dissertation, studies the differences between both in more detail to support the use of
event loops in the E programming language [Mil06].

In short, if objects are to communicate with one another via events, the event bro-
ker becomes an additional source of concurrency in the object-oriented program. In
multithreaded languages, dealing with this additional source of concurrency is non-
trivial. This raises the question of whether threads should – despite their predominance
– remain the model of choice for representing concurrent activities between objects.

3.4.5 Reconciling Objects with Events
In this section, we have contrasted the communication properties of object-oriented
and event-based publish/subscribe models. The simplest solution to resolve the object-
event impedance mismatch is to discard either objects or events and to resort to a single-
paradigm solution where only one of both is used. However, it should be clear from
the above discussion that both paradigms have their merits. Neither does one solve the
object-relational impedance mismatch by discarding objects or relational databases.

Eugster et al. propose an object-oriented language extension with support for events
[EGD01]. However, this language extension does not attempt to integrate the pub-
lish/subscribe style with object-oriented concepts. Rather, their system provides both
object-oriented and event-driven concepts, with little integration between the two. For
example, the language extension still distinguishes event notification from message
passing and objects maintain their thread-based execution model.

2In most pre-emptive thread systems, threads may be interrupted at the level of the instructions of the
underlying (virtual) machine. This makes it even harder for a developer to consider the effects of concurrent
interleaving because the exact points where control is yielded to other threads are completely hidden. Not
even the execution of a single statement in a method body can be considered atomic.

3.5. CONCLUSION 55

The approach to resolving the object-event impedance mismatch which we will
pursue in this dissertation is to find a unification of object-oriented and event-driven
programming such that objects can use event-driven communication in a mobile ad hoc
network without having to adapt to an alien communication paradigm. In particular, we
want our unification to combine the aforementioned properties of objects and events as
follows:

• Objects should be able to communicate via events by means of the familiar, spe-
cific communication interface afforded by message passing. This makes com-
munication more concise because there is no need for explicit publish and
subscribe operations.

• Objects should be able to communicate via events by means of the familiar object
referencing mechanism. While sometimes stateful, connection-oriented commu-
nication is still required, object references must be augmented such that they can
directly express stateless, connectionless communication.

• Objects should be able to communicate via events and still retain the ability to
perform the bidirectional interactions afforded by message passing.

• Objects should be equipped with an event loop concurrency model that can ad-
equately cope with the additional sources of concurrency introduced by event
brokers.

We will revisit the object-event impedance mismatch and how ambient references
resolve it by satisfying the above requirements in section 7.2.

3.5 Conclusion
Coordination abstractions allow programmers to describe how distributed processes
discover one another, how they communicate and synchronise, and how they can grace-
fully recover from disrupted operations due to failures. The volatility and infrastructure-
scarcity of mobile ad hoc networks forces an evaluation of existing coordination ab-
stractions in light of this new type of networks. We do so by means of six criteria. De-
centralised discovery and space decoupling allow processes to abstract from the lack
of infrastructure in a MANET. Time and synchronisation-decoupling and connection-
independent failure handling enable processes to better abstract over volatile connec-
tions. Finally, arity decoupling enables processes to abstract from the total number of
proximate processes communicated with.

When using these criteria to interpret the suitability of existing coordination ab-
stractions for use in mobile ad hoc networks, it becomes apparent that extensions of
object-oriented coordination abstractions (i.e. abstractions using message passing) are
unable to satisfy all of the postulated criteria. Approaches that introduce a mediator,
like a tuple space or an event broker, scale much better in MANETs. However, these co-
ordination abstractions do not compose gracefully with the object-oriented paradigm.
In chapter 7, we will return to this issue after having introduced ambient references. As
we shall describe, ambient references mitigate this impedance mismatch, by pulling the
event broker into the language and by unifying concepts external to the paradigm with
object-orientation. Before we can go into further detail, we first have to introduce am-
bient references and the AmbientTalk/2 language. The latter serves as our language

56 CHAPTER 3. COORDINATION IN MOBILE AD HOC NETWORKS

laboratory to study the unification of object-orientation with event-driven coordination
abstractions, and is the topic of the following chapter.

Chapter 4

AmbientTalk

In this chapter, we introduce the AmbientTalk/2 programming language. It is the ex-
perimental research vehicle in which ambient references have both been designed and
implemented. In particular, it offers an event-driven model of computation that aligns
well with the requirements of ambient references and the event-driven nature of dis-
tributed computations. Next to explaining this event-driven computation model, we
focus on AmbientTalk/2’s domain-specific features for orchestrating service discovery
and composition in mobile ad hoc networks. We also describe how the language en-
ables an ambient-oriented programming style in order to treat network partitions as a
normal mode of operation. We describe AmbientTalk/2’s object model, concurrency
model and distributed communication model in detail. We also highlight related work
that has had a major influence on the design of the language.

A note on terminology before discussing AmbientTalk/2 in more detail: throughout
this dissertation, we will use the term AmbientTalk to refer to AmbientTalk/2. Where
confusion may arise between predecessor and successor, the languages’ full names are
used to clarify the text.

4.1 History and Design Rationale
AmbientTalk has been designed to fill a gap in the field of distributed programming
languages. Even though distributed programming languages are rare, they form a suit-
able development tool for encapsulating many of the complex issues engendered by
distribution [BST89]. Nevertheless, as can be witnessed by our survey of related work
in section 3.3, most research on mobile computing has been performed in the area of
middleware systems [MCE02]. Barring the languages developed for the specific class
of wireless sensor networks (e.g. ActorNet [KSMA06] and SpatialViews [NKSI05]),
the area of programming language research has seen little innovation with respect to
tackling the issues raised by mobile ad hoc networks in general.

In early 2005, Jessie Dedecker developed AmbientTalk/1 in the context of his doc-
toral dissertation [Ded06]. The language is developed as an operational incarnation of
the ambient actor model [DV04]. AmbientTalk/1’s limitations, previously discussed
in section 2.5, have formed the direct motivation for the creation of a successor lan-
guage. AmbientTalk/2 is, however, not the brainchild of a single person. Its design
and implementation have been influenced by different researchers at the Programming
Technology lab over the past two years. Nevertheless, its overall design and implemen-

57

58 CHAPTER 4. AMBIENTTALK

tation can be attributed to the author together with Stijn Mostinckx. Leaving the core
language design in the hands of only two architects has enabled us to ensure that the
language retains “conceptual integrity”, as Frederick Brooks calls it in his landmark
book “The Mythical Man-Month” [Bro95].

The differences between AmbientTalk/1 and AmbientTalk/2 are extensively dis-
cussed in section 4.9.1. Let us first focus on the commonalities instead. At their core,
both AmbientTalk/1 and AmbientTalk/2 are small, dynamically typed, object-oriented
programming languages. Both languages have an actor-based, event-driven model of
concurrency and feature built-in abstractions for discovering remote objects. They both
remain faithful to the four characteristics defining the ambient-oriented programming
paradigm, previously explained in section 2.3. However, as will become clear later,
they differ in the way in which they satisfy the characteristics.

Rather than employing a classic multithreaded concurrency model, AmbientTalk/2’s
model is founded on the actor model of computation [Agh86] and its many incarnations
in languages such as Act1 [Lie87], ABCL [YBS86] and Actalk [Bri88]. However,
AmbientTalk/2’s closest relative is the E programming language [MTS05] (further de-
scribed in section 4.9.2). E combines actors and objects into a unified model called
communicating event loops, which is based on event loop concurrency, described in
section 4.3.1.

4.2 AmbientTalk: an Object-oriented Language
AmbientTalk remains, first and foremost, a language to compose objects (services)
across a mobile ad hoc network. Despite the domain-specific nature of its abstractions
for distributed programming, AmbientTalk remains a full-fledged object-oriented pro-
gramming language in its own right. It inherits most of its standard language features
from Pico [D’H96], Self [US87], Scheme [ADH+98] and Smalltalk [GR89]. From
Pico, it inherits its syntax for tables (arrays), assignment, infix operators and func-
tion invocation. From Scheme, it inherits lexically scoped anonymous closures. From
Self and Smalltalk, it inherits an expressive block closure syntax, the representation of
closures as objects and the combined use of block closures and message passing for
the definition of control structures. AmbientTalk’s object model is derived from Self:
classless, slot-based objects using delegation [Lie86] as a reuse mechanism. We first
focus on AmbientTalk’s object-oriented abstractions.

4.2.1 Objects, Instantiation and Delegation
AmbientTalk is a dynamically typed, object-based language. Computation is expressed
in terms of objects sending messages to one another. Objects are not instantiated from
classes. Rather, they are either created ex-nihilo or by cloning and adapting existing
objects. The following code illustrates standard object-oriented programming in Am-
bientTalk.

def Account := object: {
def balance := 0;
def init(amount) { balance := amount };
def deposit(amnt) { balance := balance + amnt };
def withdraw(amnt) { balance := balance - amnt };

};
def LimitAccount := object: {

4.2. AMBIENTTALK: AN OBJECT-ORIENTED LANGUAGE 59

super := Account;
def limit := 0;
def init(lowest, amount) {
super := Account̂ new(amount);
limit := lowest;

};
def withdraw(amnt) {
(self.balance - amnt < limit).ifTrue: {
raise: TransactionException.new(self, amnt);

} ifFalse: {
super̂ withdraw(amnt);

}
};

};
def account := LimitAccount.new(-500, 1000);
account.deposit(20);
account.balance; // returns 1020

Two prototypes are defined, one for Account objects and one for LimitAccount
child objects, which set a limit to the amount of money that can be withdrawn from the
account. Objects can be created ex-nihilo, by cloning or by instantiating objects. In
the above example code, two objects are created ex-nihilo (i.e. they are “anonymous
objects”) and bound to the variables Account and LimitAccount respectively. Am-
bientTalk objects consist of fields and methods, although methods can subsume fields
because AmbientTalk unifies field access with nullary method application1.

Instantiating an object is done by sending it the message new, which creates a shal-
low copy of that object and initialises the copy using its init method, which plays the
role attributed to “constructors” in class-based languages. Every AmbientTalk object
understands this newmessage. Any arguments passed to new are passed on to the copy’s
init method such that the copy can be reinitialised with new values. AmbientTalk’s
object instantiation protocol closely corresponds to class instantiation in class-based
languages, except that the new object is a clone of an existing object, rather than an
empty object allocated from a class.

By convention, when an object receives a message which it does not understand, it
delegates the message to the object bound to its slot named super. The object stored in
the super slot is called the parent object of the object storing it. In the above example,
the parent of an Account object is nil while the parent of a LimitAccount object is
an Account object. The semantics for delegating messages between objects follows
that of Self [UCCH91] and Act1 [Lie86]: a delegated message is a message that is
forwarded to another object, but for which the self pseudo-variable remains bound to
the delegating object. Hence, AmbientTalk supports object-based (single) inheritance.
The super slot is assignable, such that the parent of an object may change. This enables
dynamic inheritance which is useful for implementing objects with state-dependent
behaviour [UCCH91].

Next to AmbientTalk’s built-in “implicit” delegation, which occurs when an object
receives a message that it does not understand, AmbientTalk also allows objects to
explicitly delegate a request to another object. The expression obj∧m() delegates the
message m to obj, leaving self bound to the sender as well. A traditional “super send”

1This property allows clients of an object to abstract over the fact whether data is stored in a field or cal-
culated by means of a method. Two notable languages from which this feature originates include Self [US87]
and Eiffel. Bertrand Meyer calls this property the uniform access principle [Mey00].

60 CHAPTER 4. AMBIENTTALK

in AmbientTalk is then a message that is delegated to the object stored in an object’s
super slot, as shown in the withdraw method of the LimitAccount object. Note
that super-sends and explicit delegation are two separate concepts in AmbientTalk: an
object has the ability to delegate messages to objects other than its parent. A useful
example thereof will be given in section 4.2.4. While the separation of delegation and
super-sends has the benefit of abolishing ad hoc evaluation rules for super-sends, it does
introduce the subtle difference between writing super∧m() and super.m(). While the
former is a super-send, the latter is an ordinary message send which happens to be
directed at the object’s parent object.

In the example, the delegation relationship between the account objects is implicitly
represented by assigning an Account object to the super field of a LimitAccount

object. Note that each new instance of a LimitAccount receives its own new instance
of the Account prototype as its parent. AmbientTalk features a more declarative syntax
for specifying this kind of delegation where copies of the child do not share the same
parent object. Consider the definition of a prototypical planar point object:

def Point := object: {
def x := 0;
def y := 0;
def init(newx, newy) {
x := newx;
y := newy;

};
def +(other) {
self.new(x+other.x, y+other.y)

};
def distanceToOrigin() {
(x*x + y*y).sqrt();

};
}

Now consider a spatial point that consists of three coordinates, specified as an ex-
tension of a planar point:

def SpatialPoint := extend: Point with: {
def z := 0;
...

}

In the above example, SpatialPoint and Point remain separate objects in their
own right. The relationship between a child and a parent object defined by extend:
with: implies that the child’s super field is initialised to the parent object and that
when a child is cloned, the clone’s super field is bound to a clone of the parent object.
Hence, when a SpatialPoint is cloned, the clone has its own Point parent object with
its own copies of the x and y fields. Thus, extend:with: is the object-based equivalent
of class-based inheritance.

4.2.2 Block Closures
AmbientTalk provides support for block closures reminiscent of those in Self and
Smalltalk. A block closure is an anonymous function object that encapsulates a piece
of code and the bindings of lexically free variables and self. Block closures are con-
structed by means of the syntax { |args| body }, where the arguments can be omit-

4.2. AMBIENTTALK: AN OBJECT-ORIENTED LANGUAGE 61

ted if the block takes no arguments. The code excerpt below illustrates a typical use of
blocks to map a function over a table of numbers2:

[1,2,3].map: { |i| i + 1 }
// result: [2,3,4]

The following code excerpt shows another typical usage of blocks to remove all
elements from a collection that fail to satisfy a predicate:

def from: collection retain: predicate {
result := clone: collection; // shallow copy
collection.each: { |elt|
predicate(elt).ifFalse: {
result.remove(elt)

}
};
result;

};
from: [1,-2,3] retain: { |e| e > 0 }
// result: [1,3]

Note that block closures can be applied using a familiar canonical function call
syntax. Alternatively, they may be treated as objects: a block closure is an object with
an apply method. In the above example, the call predicate(elt) can be equivalently
expressed as predicate.apply([elt]). Block closures are frequently used in Am-
bientTalk to represent delayed computations, e.g. for implementing control structures
but also for implementing nested event handlers, as will be described in section 4.5.1.

AmbientTalk supports both traditional canonical syntax (e.g. dict.put(key,value
)) as well as keyworded syntax (e.g. dict.at: key put: value) for method defini-
tions, message sends and function invocations. As a general rule, keyworded syntax
is used for control structures (e.g. while:do:) or language constructs (e.g. object:).
The canonical syntax is used for expressing application-level behaviour.

4.2.3 Scoping, Nesting and Encapsulation
This section describes AmbientTalk’s semantics for the resolution of names (scoping),
how nested objects behave, and how scoping can be used to encapsulate an object’s
state.

Lexical versus Object Scope AmbientTalk is a lexically scoped language, meaning
that free variables in a function or method are looked up in their environment of defini-
tion. However, AmbientTalk is also an object-based language with delegation, which
introduces a second scope in which to resolve names: the object scope. The object
scope of an object is the set of all names defined in the object plus the object scope of
its parent object (the object referenced by its super field). The rules for distinguishing
which scope to use when resolving a name are straightforward:

• An unqualified identifier (e.g. x) is resolved in the lexical scope.

• A qualified identifier (e.g. o.x), is resolved in the receiver’s object scope.

2Tables are arrays whose elements are indexed starting from index 1, not 0. The terminology stems from
Pico [D’H96].

62 CHAPTER 4. AMBIENTTALK

These rules have a large effect on programs: lexical variable access can be statically
determined, while qualified access is subject to late binding (enabling object-oriented
polymorphism). The interplay between object inheritance and lexical scoping is par-
ticularly subtle. Consider the following example:

def obj := object: {
def x := 0;
def staticAccess() { x };
def dynamicAccess() { self.x };

}

In the code above, obj defines two accessors for its x field. The first accessor
performs an unqualified access and hence looks up x in the lexical scope. The second
accessor performs a self-send, looking up x in obj’s object scope. Both will access
the same field. The difference between both only becomes apparent in the context of
object-based delegation. Consider the following code:

def child := extend: obj with: {
def x := 42;

}

Invoking child.dynamicAccess() yields 42, because self.x is late-bound and
starts the lookup in child. However, invoking child.staticAccess() returns 0: the
x identifier referred to within the staticAccess method is the lexically visible one,
and no object can change its resolution. Hence, the resolution of x is not the same as
that of self.x.

Nesting and Encapsulation In AmbientTalk, objects may be arbitrarily nested within
other objects, functions or methods. Because of lexical scoping rules, this enables
nested objects to access the lexically visible state and behaviour of enclosing objects.
Nesting objects is crucial to achieve encapsulation because AmbientTalk has no notion
of visibility modifiers for fields or methods. All fields and methods of an object are
considered “public”. Nevertheless, a field or method can be made “private” to a scope
by means of lexical scoping. The following code shows the definition of an object
inside the definition of a function.

def makeBankAccount(balance) {
object: {
def deposit(amnt) {
balance := balance + amnt;
"ok"

};
}

}

Because the bank account object encapsulates the balance variable in its private,
lexical scope, it cannot be selected from within its object scope, i.e. makeBankAccount
(100).balance would result in an exception indicating that the name balance could
not be resolved.

This form of expressing encapsulation is by no means novel or specific to Ambi-
entTalk. It is a routinely used pattern in languages with support for first-class functions
and lexical scoping rules (such as E [MMF00] or Scheme [ADH+98]).

4.2. AMBIENTTALK: AN OBJECT-ORIENTED LANGUAGE 63

4.2.4 Traits
Next to object delegation, AmbientTalk also has support for composing objects explic-
itly using traits. Traits [SDNB03] are composable units of object behaviour3. They
form a general reuse mechanism that subsumes other styles of object composition such
as class-based (multiple) inheritance, mixins [BC90] and object-based delegation. In
its pure form, a trait is a module that both provides a set of methods and requires a set
of methods. The trait can be used by a so-called composite class or object. The opera-
tional effect is that the trait’s provided methods are added to the composite, as if they
were copy-pasted. The composite must ensure that all of the trait’s required methods
are provided.

Trait-based composition is complementary to delegation-based composition. The
advantage of traits over object-based delegation is that they enable an object to reuse
code from multiple sources, not just from a single parent object. Trait composition en-
ables possible name clashes to be resolved using an expressive “little language” that al-
lows for the exclusion or aliasing of names in the composite. This avoids the accidental
overriding of methods to which delegation-based composition is prone. Furthermore,
if it is checked whether the composite indeed provides all of the required methods of
the imported trait, it can be verified whether the composite is complete, avoiding latent
“method not found” errors. The advantage of delegation-based over trait-based compo-
sition is flexibility: while a delegate is easily changed at runtime (dynamic inheritance),
traits are composed once at composition time into a single composite object.

AmbientTalk introduces trait composition by means of explicit delegation. Con-
sider the following definition of an Enumerable trait, which specifies reusable be-
haviour on enumerable collections of objects:

def Enumerable := object: {
// map a closure over the collection
def collect: clo {
def result := [];
self.each: { |e| result := result + [clo(e)] };
result

};
// return an element for which pred holds
def detect: pred { ... };
// return elements for which pred does not hold
def reject: pred { ... };
...

}

Even though the body of detect: and reject: is not shown for brevity, what all
of these methods have in common is that they can be implemented for arbitrary col-
lections, as long as the collection implements the method each:. Hence, Enumerable
is a trait providing collect:, detect: and reject: and requiring each:. The trait’s
required methods are not specified explicitly, and AmbientTalk will not enforce their
implementation by a composite4. The above trait can be used by e.g. a Range abstrac-
tion representing intervals of the form [start,end[as follows:

3Note that traits as described here are not to be confused with the traits of the Self programming lan-
guage [UCCH91].

4Library extensions exist which allow developers to make required methods explicit and to check whether
a composite using the trait implements them.

64 CHAPTER 4. AMBIENTTALK

def Range := object: {
import Enumerable;
def start := 0;
def end := 0;
def init(s,e) { start := s; end := e };
def each: clo {
start.to: end do: clo

};
};
Range.new(0,10).reject: { i (i%3 != 0) }
// result: [0,3,6,9]

By importing the Enumerable trait, Range implicitly also provides all methods of
the trait. It implements each: by applying a closure to all consecutive integers in
that interval5. Note how trait composition is implemented by means of the import
statement. The example code shows how reject: can be invoked as a method of
Range.

When the import statement is executed at runtime, an exception is raised if a name
clash occurs between the importing and the imported object. This requires the pro-
grammer to resolve name clashes at object composition time explicitly. To achieve
this, the import statement provides alias and exclude clauses that allow the pro-
grammer to locally rename a method provided by a trait or to exclude the import of
certain methods.

The operational effect of animport statement is best understood in terms of explicit
delegation. The import statement is implemented by defining local delegate methods
in the composite object for each method provided by the trait. The task of these meth-
ods is to delegate a message from the composite to the trait object from which they
were imported. For example, the trait composition in Range can be rewritten without
import as follows:

def Range := object: {
def collect: clo { Enumerablê collect: clo };
def detect: pred { Enumerablê detect: pred };
def reject: pred { Enumerablê reject: pred };
def start := 0;
... // as above

};

The use of delegation rather than message forwarding is crucial here: within the
trait’s methods, calls to required methods are expressed as self-sends to the composite
object using the trait. Due to AmbientTalk’s support for explicit delegation, Range can
delegate requests to Enumerable even though that object is not its parent object. Range
is free to inherit from an object other than Enumerable, and can also import more than
one trait. Moreover, a single trait object can be imported by multiple composite objects.
This makes traits a highly flexible yet robust composition mechanism.

One important difference between AmbientTalk traits and the original proposal of
Schärli et al. [SDNB03] is that trait import in AmbientTalk cannot be thought of as
“copy-pasting” the trait methods into the composite. Rather, the methods provided
by a trait are shared (via delegation) by all objects using the trait. By not copying

5The primitive to:do: method defined on AmbientTalk integers applies a closure to each integer value
between the receiver and the first argument.

4.2. AMBIENTTALK: AN OBJECT-ORIENTED LANGUAGE 65

the method implementations into composite objects, it can be ensured that lexically
free variables within a trait’s method remain bound in the correct scope, which is the
lexical scope of the trait and not that of the composite.

In the original proposal of Schärli et al. traits are described as stateless entities
(i.e. as a collection of methods only). AmbientTalk allows arbitrary objects to act as
traits. If such objects define state via fields, these fields are copied into any composite
importing such objects. This ensures that clones of the composite object each host their
own copy of any state. This semantics does require a trait to be careful in the way it
addresses its declared fields. To modify or access a field of the composite, a trait should
use an explicit self-send to refer to the field. Otherwise, it refers to the lexically visible
field of the trait itself (cf. section 4.2.3).

4.2.5 Type Tags
AmbientTalk is both a dynamically typed as well as a classless, prototype-based lan-
guage. This introduces the problem that, in AmbientTalk, objects cannot be easily
classified. In statically typed languages, the static type of the variable holding an ob-
ject is often used for these purposes. In class-based languages, the class naturally plays
the role of classifier. Object classification is useful for a diverse number of reasons.
For example, in an exception handler, it is often useful to specify the type of objects
that the handler can catch. Section 4.4.2 showcases the use of classification for the
purposes of service discovery.

To recover the ability of classification, AmbientTalk introduces type tags. A type
tag is identified by name (i.e. it is a nominal type) and it can be a subtype of zero or
more other type tags. Objects, in turn, can be tagged with zero or more type tags. Type
tags are not associated with a set of methods and are not used for static type checking.
They are perhaps best compared with empty Java interfaces, like the typical “marker”
interfaces used in Java libraries to merely tag objects (prominent examples are java

.io.Serializable and java.lang.Cloneable). The following code illustrates the
use of type tags:

deftype IndexableT;
deftype EnumerableT;
deftype OrderedT;
deftype SortableT <: EnumerableT, OrderedT;

def Array := object: {
...

} taggedAs: [IndexableT, SortableT];

Objects can only be tagged with type tags when they are created (via object:
taggedAs:), and their set of type tags remains constant. The rationale behind this
design decision will become clear when considering objects partitioned across multiple
actors, explained in section 4.3.

A primitive function allows the programmer to perform a type test on objects, e.g.
is: Array taggedAs: Enumerable. The type test determines whether an object or
one of its parents is tagged with the given type tag or a subtype of the type tag. This is
very reminiscent of the behaviour of the instanceof operator of Java.

Type tags are first-class objects. Thus, they can be parameter-passed as arguments,
bound to variables, etc. However, type tags do not follow standard object identity
semantics. Type tag equality is by their name rather than by their object identity.

66 CHAPTER 4. AMBIENTTALK

4.2.6 Summary
Throughout this section, we have briefly touched upon those parts of the AmbientTalk
language that are required to understand the technical contributions described in later
chapters. A full account on all of AmbientTalk’s language features is outside the scope
of this chapter. However, the most important language features omitted from the above
discussion – AmbientTalk’s support for metaprogramming and reflection and its inter-
operability with the Java Virtual Machine – will be extensively discussed in the follow-
ing chapter. A comprehensive introduction to all aspects of the AmbientTalk language
can be found online [DGM+07]. The following sections shift the focus of attention to
the concurrent (respectively distributed) features of the language.

4.3 AmbientTalk: a Concurrent Language
In AmbientTalk, concurrency is spawned by creating actors: one AmbientTalk virtual
machine may host multiple actors which execute concurrently. AmbientTalk’s con-
currency model is based on the communicating event loops model of the E language
[MTS05], which is itself an adaptation of the well-known actor model [Agh86]. E
combines actors and objects into a unified concurrency model. Unlike previous ac-
tor languages such as Act1 [Lie87], ABCL [YBS86] and Actalk [Bri88], actors are not
represented as “active objects”, but rather as vats (containers) of regular objects, shield-
ing them from harmful concurrent modifications. AmbientTalk actors are like E vats.
Within the confines of a vat, computation happens sequentially. Incoming messages
from objects living in other vats are processed in a serial manner in order to ensure that
no race conditions can occur on the internal state of the objects within the vat.

4.3.1 Event Loop Concurrency
AmbientTalk’s concurrency model is based on communicating event loops [MTS05].
This is an event-driven concurrency model that differs in many respects from traditional
multithreaded concurrency. In this model, an actor is represented as an event loop.
An event loop is a thread of execution that perpetually processes events from its event
queue by invoking a corresponding event handler. Communicating event loops enforce
three fundamental concurrency control properties:

Property 1 (Serial Execution) An event loop processes incoming events from its event
queue one by one, i.e. in a strictly serial order.

As a consequence of serial execution, the handling of a single event happens in
mutual exclusion with respect to other events. Hence, race conditions on an event
handler’s state caused by concurrent processing of events cannot occur.

Property 2 (Non-blocking Communication) An event loop never suspends its execu-
tion to wait for another event loop to finish a computation. Rather, all communication
between event loops occurs strictly by means of asynchronous event notifications.

As a consequence of non-blocking communication, event loops can never deadlock
one another. However, in order to guarantee progress, an event handler should not
execute e.g. infinite while loops. Rather, long-running actions should be performed
piecemeal by scheduling events recursively, such that an event loop always gets the

4.3. AMBIENTTALK: A CONCURRENT LANGUAGE 67

chance to respond to other incoming events. The only situation where an event loop
can be suspended is when its event queue is empty.

Property 3 (Exclusive State Access) Event handlers and their associated state be-
long to a single event loop. In other words, an event loop has exclusive access to
its mutable state.

As a consequence, two or more event loops never share synchronously accessible
mutable state. Because event handlers are not shared between event loops, they never
have to lock mutable state. Mutating another event loop’s state has to be performed
indirectly, by asking the event loop to mutate its own state via an event notification.

Event loop concurrency avoids deadlocks and certain race conditions by design.
The nondeterminism of the system is confined to the order in which events are pro-
cessed. In standard preemptive thread-based systems, the nondeterminism is more
substantial because threads may be pre-empted upon each single instruction. Even
though deadlock cannot occur, event loops cannot guarantee progress. For example, an
event handler may simply never be invoked, stopping the progress of the application.

In the following section, we describe how the abstract event loop model is incorpo-
rated into the AmbientTalk language.

4.3.2 AmbientTalk Actors
As mentioned in the introduction, AmbientTalk actors are not represented as active
objects, but rather as event loops: the event queue is represented by an actor’s mes-
sage queue, events are represented as messages, event notifications as asynchronous
message sends, and event handlers are represented as (the methods of) regular objects.
The actor’s event loop thread perpetually takes a message from the message queue and
invokes the corresponding method of the object denoted as the receiver of the message.
Messages are processed serially to avoid race conditions on the state of regular objects.

Each AmbientTalk object is said to be owned by exactly one actor. This ownership
relation is established upon object creation and cannot change during the lifetime of the
object. Only an object’s owning actor may directly execute one of its methods. Objects
owned by the same actor may communicate using standard, sequential message passing
or using asynchronous message passing. AmbientTalk borrows from E the syntactic
distinction between sequential message sends (expressed as o.m()) and asynchronous
message sends (expressed as o<-m()). It is possible for objects owned by an actor
to refer to objects owned by other actors. Such references that span different actors
are named far references (the terminology stems from E [MTS05]) and only allow
asynchronous access to the referenced object. Synchronous access to an object via a
far reference raises a runtime exception. Any messages sent via a far reference to an
object are enqueued in the message queue of the actor owning the object and processed
by the owner itself.

Figure 4.1 illustrates AmbientTalk actors as communicating event loops. The dot-
ted lines represent an actor’s event loop which perpetually takes messages from its
message queue and synchronously executes the corresponding methods on its owned
objects. The control flow of an actor’s event loop never “escapes” its actor boundary.
When communication with an object in another actor is required, a message is sent
asynchronously via a far reference to the object. For example, when A sends a mes-
sage to B, the message is enqueued in the message queue of B’s actor which eventually
processes it.

68 CHAPTER 4. AMBIENTTALK

A
B

Message
queue

Actor

Object Far reference

Event
Loop

Actor Message from A to B

Figure 4.1: AmbientTalk actors as communicating event loops.

A far reference encapsulates a copy of the set of type tags with which its target
object is tagged. This implies that a type test can be performed locally on a far reference
to an object. As will be discussed in section 4.4, far references may refer to remote
objects, which explains why the set of type tags of an object must remain constant:
the far reference maintains a copy of that set on a potentially remote device. If the set
could change, it would have to be kept in synchronisation across a volatile network, the
effects of which are impossible to hide from the programmer.

Every AmbientTalk interpreter starts its execution with a single actor. An actor can
spawn new actors by invoking actor: { ... }. When a new, empty, actor is created
it evaluates the code passed to the actor: primitive to construct the first object it will
own. The return value of the actor: primitive is a far reference to this object, thus
allowing the creating actor to communicate with the new object owned by the created
actor.

4.3.3 Message Passing Semantics
In AmbientTalk, asynchronous messages can be sent between objects owned by the
same or by different actors. In the case where both sender and receiver are owned by the
same actor, the message is simply added to the owner’s message queue and parameters
are passed by reference, exactly as is the case with synchronous message sending.
For inter-actor message sends, where an object sends an asynchronous message via
a far reference to an object owned by another actor, objects are parameter-passed by
far reference: the parameter of the invoked method is bound to a far reference to the
object. In either case, messages are guaranteed to be delivered to an object in the same
order as they were sent. Consider the following example, assuming that the code on
the left-hand and the right-hand side is executed in two different actors:

def arg := object: { ... };
obj<-m(arg);

def obj := object: {
def m(par) { ... }

};

In the method body of m, par will be bound to a far reference to arg. In some
cases, the remotely invoked method may want to access its argument synchronously.
To this end, AmbientTalk introduces the notion of an isolate object. Isolates are ob-
jects that are passed by copy over a far reference. This allows the recipient actor to
operate on the copy synchronously, without additional inter-actor communication and

4.3. AMBIENTTALK: A CONCURRENT LANGUAGE 69

without violating the exclusive state access property. When an isolate is copied dur-
ing parameter-passing, all objects it directly refers to are recursively parameter-passed
(according to their own semantics). The following code provides an example of an
isolate:

def ComplexNumber := isolate: {
def re := 0;
def im := 0;
def init(r,i) { re := r; im := i; };
...

}

Isolates are regular objects, with two notable differences. First, as already re-
marked, they are passed by copy across far references. Second, isolates cannot use
any free lexically visible names. Isolates are thus completely isolated pieces of code,
without any implicit dependencies on the surrounding scope – hence their name. Iso-
lates are best thought of as if they were lexically defined at top-level. AmbientTalk does
provide a mechanism for isolates to explicitly copy a lexically visible variable into the
object scope of the isolate, allowing a nested isolate to be parameterised explicitly with
lexically visible variables.

Isolates are disallowed access to their lexical scope because they are copied dur-
ing parameter passing. The restriction avoids having to implicitly copy any lexically
visible variables referred to by the isolate. An alternative to this restriction would be
a form of distributed lexical scoping, as done in Obliq [Car95]. However, in the case
of AmbientTalk, the distributed name lookup would somehow have to be done asyn-
chronously (in order not to violate the non-blocking communication property of both
AmOP, cf. section 2.3.2, and Event Loop concurrency). Reconciling these is a topic of
future research.

Because isolates are copied during parameter-passing, two further issues associated
with them are identity and mutable state. First, each copy of an isolate has its own
object identity. However, it is considered good programming practice to redefine object
equality for isolates in terms of intrinsic properties such as their state. Second, each
copy of an isolate has its own state. Again, it is considered good programming practice
to treat isolates as “constant” objects, moving all mutable state into a separate non-
isolate object that can be shared by all copies.

We conclude the discussion of AmbientTalk’s message passing semantics with a
note on message ordering. Successive asynchronous messages sent by one object to
the same receiver object are delivered in FIFO order. However, it should be kept in
mind that an arbitrary number of other asynchronous messages (sent by other objects)
may be processed by the receiver in between handling these successive messages.

4.3.4 Futures
Up to this point, we have not yet discussed how to deal with return values from asyn-
chronous message sends. By default, an asynchronous message send does not return a
meaningful value (i.e. it returns nil). However, this can make the processing of return
values quite cumbersome, as illustrated by the following example:

70 CHAPTER 4. AMBIENTTALK

calculator<-add(x,y, object: {
def reply(n) {
system.println("result: "+n)

}
})

def calculator := object: {
def add(a,b,customer) {
customer<-reply(a+b);

}
}

In the above code, the anonymous object passed as the third argument to add
serves as a “continuation” of the asynchronous send. The reply method serves as
a “callback”. However, the code is cumbersome to read because the general idea of a
“return value” remains implicit. Moreover, it is a pattern that would need to be repeated
each time a return value is required.

In order to reconcile return values with asynchronous message sends, AmbientTalk
employs the notion of a future (also known as a promise). This is a frequently recurring
language abstraction in concurrent programming languages (cf. section 4.9). In Am-
bientTalk, a future is a placeholder for the return value of an asynchronous message
send. Once the return value is computed, it “replaces” the future object; the future is
said to be resolved with the value. Using futures, the example above can be rewritten
as:

def sumFuture := calculator<-add(x,y);

This change at least makes the handling of return values syntactically identical to
that of the familiar synchronous message send. However, we have yet to explain how
objects can synchronise on the actual value represented by the future. There are two
styles for doing so, each of which is discussed below.

4.3.4.1 Control-Flow synchronisation

In many programming languages, futures act as synchronisation barriers while they are
unresolved: if code tries to access the future’s value before the future is resolved, the
thread of control is suspended until the value has been computed. This principle is
known as wait by necessity [Car93]. In a language with communicating event loops,
however, such a semantics would ruin the non-blocking communication property (cf.
section 4.3.1). It would imply that an event loop can suspend in a state other than when
its event queue is empty. Hence, the event loop would become unresponsive to other
events, and the entire system becomes prone to deadlock once again.

AmbientTalk avoids the wait by necessity semantics and instead employs the se-
mantics first introduced by promises in E [MTS05]. An actor cannot suspend on an
unresolved future. What it can do is to register its interest in the resolved value of
the future by registering an observer – a closure, to be precise – that will be invoked
later, when the future has become resolved. The following code illustrates how this
observation mechanism can be used to print the sum from the previous example:

def sumFuture := calculator<-add(x,y);
when: sumFuture becomes: { |sum|
system.println("result: " + sum);

}

The when:becomes: function takes a future and a block closure as its arguments,
and registers the closure as an observer on the future. If the future is resolved to a

4.3. AMBIENTTALK: A CONCURRENT LANGUAGE 71

proper value6, the closure is applied to the resolved value. Multiple observer closures
may be registered on the same future. Note that the when:becomes: function itself
returns immediately. The code specified in the block closure is always delayed, i.e.
it is executed after the code following the call to when:becomes:, even if sumFuture
is already resolved at the time the observer is registered. It is also guaranteed to be
executed by the same actor that performed the asynchronous message send. Hence, the
execution of the observer is always serialised with respect to other activities within the
same actor (cf. section 4.4.1 for an explanation on how this serialisation is achieved).

The block closure passed to when:becomes: acts as an in-line event handler. It ef-
fectively enables the sender of an asynchronous message to synchronise on and process
the result of that message in the scope where it was sent. Because block closures close
over their lexical scope, all variables in scope at the time the message was sent are still
available when handling the return value at a later point in time. The programmer does
have to be aware of the fact that the values of the variables in scope may have changed
since the time the message was sent, as other code may have run within the actor while
the code was delayed.

A final aspect of synchronising on a future is dealing with exceptions. AmbientTalk
features a standard exception model that allows objects to be raised and caught as
exceptions. When an exception is raised in an asynchronously invoked method, the
exception propagates up to the level of the asynchronous invocation. At this point, the
only available continuation is the future attached to the message. In order to signal
the exception to the sender, the future is ruined with the exception. When a future is
ruined, regular observers on the future are not triggered. However, a separate exception
handler can be specified as follows:

def quotientFuture := calculator<-divide(x,y);
when: quotientFuture becomes: { |quotient|
system.println("result: " + quotient);

} catch: DivisionByZero using: { |e|
system.println("error: divided "+ x +" by zero");

}

In AmbientTalk, exception types are modelled using type tags (cf. section 4.2.5).
Hence, it is assumed that DivisionByZero is a type tag. Should quotientFuture be-
come ruined with (a subtype of) DivisionByZero, the second block closure is applied
to the exception. This enables the handling of asynchronously raised exceptions much
in the same way as the well-known try-catch construct is used for regular exception
handling.

The return value of a call to when:becomes:catch:using: is itself a future. The
future is resolved with the return value of an observer block closure, or ruined if an
exception occurs during the execution of that closure. In effect, the future that is re-
turned by when:becomes: is dependent on the future on which it operates: resolving
or ruining the latter eventually leads to resolving or ruining the former.

4.3.4.2 Data-Flow synchronisation

From the discussion in the previous section, it appears that the programmer can only
perform one operation on a future, which is to wait for its resolved value by means of
when:becomes:. However, futures also specify a meaningful semantics for message
passing. It is always legal to send an asynchronous message to a future, regardless of

6A proper value is any value that is not itself a future, cf. the following section.

72 CHAPTER 4. AMBIENTTALK

the fact whether the future is resolved or not. If the future is unresolved, the message
is simply stored in a private message queue by the future. If the future is resolved,
the message is forwarded to the resolved value instead, as if the sender had sent it
to the actual value in the first place. At the moment the future becomes resolved,
all previously accumulated asynchronous messages are flushed and forwarded to the
resolved value.

An asynchronous message sent via a future f1 may itself have an attached future
f2. This leads to a situation similar to the one described in the previous section:
the resolution of f2 becomes dependent on the resolution of f1. We refer to this
phenomenon as future chaining. The constructed chains of futures effectively encode
a data-flow graph. The following code illustrates the general idea:

def sumFuture := calculator<-add(x,y);
def sqrtFuture := sumFuture<-sqrt();
when: sqrtFuture becomes: { |val|
system.println("sqrt(x+y) = " + val);

} catch: Exception using: { |e|
system.println("calculation error: "+e);

}

When sumFuture becomes resolved, the sqrt message is forwarded to its re-
solved value, in turn leading to the resolution of sqrtFuture. Should sumFuture
be ruined with an exception, the futures of all messages sent to the future, like sqrt
are likewise ruined with the same exception. Exceptions can thus propagate across a
chain of futures.

Another form of chaining occurs when a future is itself resolved with another fu-
ture. The following example demonstrates this:

when: a<-m() becomes: { |v|
doSomethingWith(v);

}

def a := object: {
def m() { b<-n() };

}

The future fa←m attached to the message a<-m() is resolved with the return value
of the method m, which is the future fb←n attached to the message b<-n(). When
fa←m is resolved with fb←n, fa←m is not considered resolved yet, so it will not yet
forward accumulated messages, nor will it notify its registered when:becomes: ob-
server. However, fa←m will register itself as an observer on fb←n. When fb←n finally
becomes resolved with a proper value, it notifies fa←m which in turn resolves itself
with the same value.

It is not allowed to synchronously send a message to a future, even if the future is
resolved. Conceptually, a future should be thought of as a special kind of far reference.
As it is not known beforehand whether a future will resolve to a local or remote object,
there is always the possibility that it will become a far reference. Therefore, a future is
itself treated consistently as if it were a far reference. Adopting the terminology from
E [Mil06], we will reserve the term far reference to denote a remote object reference
to a concrete object and use the term eventual reference to denote the more general
category of all kinds of object references which enforce asynchronous access to their
designated object(s), which includes far references and futures.

4.3. AMBIENTTALK: A CONCURRENT LANGUAGE 73

4.3.4.3 Conditional synchronisation

Futures provide actors with a way of synchronising upon the return value of asynchro-
nous message sends. However, there may be other synchronisation points in an appli-
cation. For example, depending on the state of an object, it may disable or postpone
replies of certain methods. This kind of synchronisation is known as conditional or
behavioural synchronisation [BGL98]. The archetypical example is that of a bounded
buffer whose get method must synchronise on an empty buffer and whose put method
must synchronise on a full buffer.

AmbientTalk adopts the solution to conditional synchronisation proposed in E once
more, by enabling the programmer to explicitly create futures to postpone replies. We
illustrate this by means of a concrete example. Consider a new abstraction named
group: that allows code to synchronise on multiple futures simultaneously. For ex-
ample, an object may want to react only when the return values of two asynchronous
sends have been computed:

when: (group: [a<-m(), b<-n()]) becomes: { |values|
def [result1, result2] := values;
...

}

The call to group: takes as its argument a table of futures and returns a future
itself. The returned future is resolved with a table of values, if and only if all of the
argument futures are resolved. Its definition requires the use of explicit conditional
synchronisation:

def group: futures {
def [groupFuture, groupResolver] := makeFuture();
def resolutions[futures.length] { nil };
def numResolved := 0; // counts the number of resolved futures
// apply a closure over all futures, passing index and value at index
futures.eachWithIndex: { |i, future|
when: future becomes: { |val|
resolutions[i] := val;
numResolved := numResolved + 1;
if: (numResolved == futures.length) then: {
// the last argument future has been resolved
groupResolver.resolve(resolutions);

};
} catch: Exception using: { |e|
groupResolver.ruin(e); // only the first exception is propagated!

};
};
groupFuture;

};

The makeFuture function returns two values: a new, unresolved future and an ob-
ject called a resolver that can be used to explicitly resolve or ruin the future. Note
that the explicitly created groupFuture becomes the return value of the group: func-
tion. Objects can synchronise on this future in the usual way, via the registration of
observers. However, unlike the futures from the previous sections, this future is not
automatically resolved by the language, as it is not implicitly associated with an asyn-
chronous message. Rather, it must be resolved (respectively ruined) explicitly, by in-
voking the resolve (respectively ruin) method of its corresponding resolver.

74 CHAPTER 4. AMBIENTTALK

The group: function registers an observer on each of its argument futures. It
counts the number of successfully resolved futures, and accumulates their values in
the resolutions table. Note that each resolved value is stored at the same index of
the original future, ensuring that the order of the resolutions matches that of the fu-
tures. The groupFuture is resolved explicitly only when all of the argument futures
have been resolved, resulting in the desired synchronisation. If any of the asynchro-
nous sends results in an exception, the first exception to trigger is propagated to the
composite future.

4.3.4.4 Reflective Implementation

Futures are not part of AmbientTalk’s kernel. By default, an asynchronous send returns
nil. Futures are entirely implemented in AmbientTalk itself by means of computa-
tional reflection [Mae87]. We discuss their reflective implementation in section 5.2.3.1
as a concrete example of using AmbientTalk’s metalevel architecture, which is the topic
of the next chapter.

4.4 AmbientTalk: a Distributed Language

In this section, we proceed from concurrent to distributed programming. Actors can be
distributed across a network, each hosted by different AmbientTalk interpreters. The
major difference between single-machine and distributed programming is the possi-
bility of partial failures, the phenomenon whereby remote objects may not respond to
messages, due to either a network or a machine failure. The second important issue is
service discovery, the goal of which is to acquire a first reference to a remote object.

Before continuing, a brief word on terminology. We have previously mentioned
that an actor is said to own one or more objects. Likewise, an AmbientTalk interpreter
is said to host one or more actors. Because AmbientTalk is currently implemented in
Java (cf. section 4.8), a single Java Virtual Machine can be said to host one or more
AmbientTalk interpreters. Two objects are said to be local when they are owned by the
same actor. Objects are considered remote when they are owned by different actors,
even if those actors are hosted by the same interpreter. Within one interpreter there
is no notion of partial failure: connections between actors within a single interpreter
never fail. Hence, interpreters are the unit of partial failure. Within one JVM, there
is no notion of “crashes”: either all interpreters within a single JVM are terminated,
or none of them are. Hence, JVMs are the unit of termination. Table 4.1 summarises
AmbientTalk’s units of operation.

Object Unit of designation
Actor Unit of concurrency
Interpreter Unit of partial failure
Java Virtual Machine Unit of termination

Table 4.1: Overview of AmbientTalk’s units of operation.

4.4. AMBIENTTALK: A DISTRIBUTED LANGUAGE 75

4.4.1 Far References and Partial Failures

Recall from section 4.3.2 that references between objects owned by different actors are
always far references which only permit asynchronous access to their target object. Be-
cause objects residing on different devices (i.e. in distinct interpreters) are necessarily
owned by different actors, far references are the only kind of remote object references
in AmbientTalk. This ensures by design that all distributed communication is asyn-
chronous, as required by the non-blocking communication characteristic of the AmOP
paradigm (cf. section 2.3).

By allowing far references to cross machine boundaries, we must specify their se-
mantics in the face of partial failures. AmbientTalk’s far references are by default re-
silient to failures (including network partitions). When a (network or machine) failure
occurs, a far reference becomes disconnected. A disconnected far reference buffers all
messages sent to it. When the failure is restored at a later point in time (e.g. a network
partition is healed), the far reference flushes all accumulated messages to the remote
object in the same order as they were originally sent. Hence, messages sent to far refer-
ences are never lost, regardless of the internal connection state of the reference. Making
far references resilient to failures by default is one of the key design decisions that make
AmbientTalk’s distribution model suitable for mobile ad hoc networks, because tempo-
rary network failures have no immediate impact on the application’s control flow. This
behaviour is desirable in mobile networks because it can be expected that many partial
failures are the result of temporary network partitions. However, perhaps a machine
has crashed beyond recovery, or it has moved out of the wireless communication range
and does not return. Such persistent failures also need to be dealt with. We postpone
this discussion until section 4.4.4.

Even though it is often desirable not to disrupt an application’s control flow upon
a partial failure (because one wants to optimistically assume the failure will only be
transient), it is nevertheless useful to be able to act upon the failure as an event. This
allows applications to monitor their connectivity with remote objects, and potentially
even fork a failure handling activity to handle a disconnection if it persists for a certain
period of time. To enable such failure handling AmbientTalk introduces two failure
event handlers, both showcased in the following example. In the example, the GUI of
an instant messenger application uses these event handlers to indicate whether a buddy
in the user’s buddy list is online or not.

// buddy is a far reference to an instant messaging peer
whenever: buddy disconnected: {
gui.markOffline(buddy);

};
whenever: buddy reconnected: {
gui.markOnline(buddy);

};

The event handlers are registered by applying primitive functions that both take a
far reference and a nullary closure as their arguments. The closure is applied when-
ever the interpreter detects the disconnection (respectively reconnection) of the object
referred to by the far reference. Some precaution is needed here, as it may seem that
race conditions could occur if these closures are allowed to execute concurrently with
other activities in the same actor. However, AmbientTalk elegantly avoids this prob-
lem. Recall from section 4.2.2 that a closure is an object with an apply method. When
the interpreter wants to invoke the closure, it simply evaluates closure<-apply([]),

76 CHAPTER 4. AMBIENTTALK

thereby ensuring that the closure runs serially w.r.t. other activities in the actor owning
the closure. We will refer to this asynchronous application of closures as triggering a
closure (as opposed to applying a closure).

The return value of both failure event handlers is a subscription object with a single
method, named cancel. When invoked, it cancels the registration of the event handler
with the interpreter, such that the closure will no longer be triggered. However, previ-
ously triggered asynchronous applications may still be pending in the actor’s message
queue. These are not automatically retracted. Hence, the closure may still be applied
even after cancel()was invoked.

4.4.2 Exporting Objects
Objects can acquire far references to objects by means of parameter-passing or return
values from inter-actor message sends. However, it remains to be explained how ob-
jects can acquire an initial far reference to an object owned by a remote actor. In order
to make it possible for an object to be discovered by remote actors, the object must be
explicitly exported.

An object always has to be exported with a corresponding type tag. Here, the type
tag is used to classify what kind of service the object provides. It plays a role similar
to the topic in traditional publish/subscribe architectures [EFGK03]. The subtyping
mechanism of type tags allows objects to be published in a hierarchical classification,
a feature also supported by most publish/subscribe architectures. We do assume that
all distributed peers attribute the same semantics to the names of type tags, and define
the same type hierarchy. The following example shows how to export an object as an
instant messenger chat peer:

deftype InstantMessenger;
def peer := object: {
def chat(textMessage) { ... };

};
export: peer as: InstantMessenger;

From the moment an object is exported, it is discoverable by objects owned by other
actors by means of its associated type tag. The export:as: function returns a publica-
tion object pubwhich can be used to “unexport” the object by invoking pub.cancel().
An unexported object can no longer be discovered by remote objects. However, far ref-
erences referring to the unexported object remain valid, so an unexported object can
still be remotely referred to.

In the following section, it is explained how remote objects can acquire a reference
to an exported object.

4.4.3 Service Discovery
The AmbientTalk interpreter has a built-in service discovery algorithm that enables the
discovery of remote objects in a peer-to-peer manner. The algorithm is fully decen-
tralised, no servers or other infrastructure are required. Objects that want to be notified
by the interpreter of available remote objects do so via a discovery event handler:

def subscription := whenever: InstantMessenger discovered: { |messenger|
buddyList.add(messenger);

};

4.4. AMBIENTTALK: A DISTRIBUTED LANGUAGE 77

A discovery event handler is registered by calling the whenever:discovered:
function which takes as arguments a type tag and a unary closure. Continuing our anal-
ogy with publish/subscribe systems, the closure plays the role of subscriber [EFGK03].
Whenever an actor is encountered in the network that exports a matching object, the
closure is triggered on (i.e. asynchronously applied to) a far reference to the discovered
object. Hence, the parameter of the block closure is the initial far reference to a remote
object, from which other far references may be derived by message passing.

An object matches a discovery request if its exported type tag is a subtype of the
type tag argument to the discovery event handler. This implies that service discovery is
polymorphic: a discovery request for a Printer may be satisfied by a ColorPrinter
object, provided that the ColorPrinter tag is a subtype of Printer. A discovery

request only triggers on objects owned by other actors; an actor does not discover its
own exported objects. It is possible for whenever:discovered: to trigger on the same
remote object multiple times (e.g. when a temporary network partition is healed). The
programmer should thus take this possibility into account.

Analogous to the return value of the failure event handlers (cf. section 4.4.1), the
discovery event handler returns a subscription object whose cancel()method cancels
the registration of the closure. There exists a variant event handler, accessible as a
function named when:discovered: which only applies the closure to the first match-
ing discovered object, and afterwards automatically cancels its registration.

Note that contrary to what the above examples may seem to indicate, the type tag
argument to functions like whenever:discovered: and export:as: can be any ex-
pression. Because type tags are first-class objects, it is straightforward for code to
abstract from the specific type tag to use. The type tag to use does not necessarily
need to be a literal in the source text. This property enables the construction of more
high-level abstractions on top of the primitive discovery event handlers provided by
AmbientTalk. For example, we may define a function whenAll:discovered: that al-
lows a programmer to express the following:

whenAll: [Camera, Laptop, GPS] discovered: { |services|
def [camera, laptop, gps] := services;
def pictureFut := camera<-takePicture();
def taggedPictureFut := when: gps<-readCoordinates() becomes: {|coords|
pictureFut<-geotag(coords);

};
laptop<-upload(taggedPictureFut);

}

The above example is based on the GeoTagger example of Svensson et al. [SHM07].
The code snippet is meant to be run on a handheld device in close proximity to a photo
camera, a laptop and a GPS receiver. When all devices have been discovered, the cam-
era is asked to take a picture which is subsequently geotagged with the GPS coordinates
received from the GPS device. The geotagged picture is then uploaded to the laptop.
Note how the above example maximally exploits all forms of chaining permitted by fu-
tures (cf. section 4.3.4). The new whenAll:discovered: abstraction is implemented
as follows:

def whenAll: typetags discovered: handler {
def compositeFuture := group: (typetags.map: { |type|
def [discoveryFuture, resolver] := makeFuture();
when: type discovered: { |service|
resolver.resolve(service);

78 CHAPTER 4. AMBIENTTALK

};
discoveryFuture

});
when: compositeFuture becomes: handler;

}

The implementation reuses the group: abstraction defined in section 4.3.4.3 to
await the resolution of a table of futures. The table of futures is generated by spawning
a discovery request for each type tag in thetypetags table. Note thattype is a variable,
not a literal.

4.4.4 Partial Failures Revisited
In section 4.4.1 it was described how far references enable the programmer to opti-
mistically abstract from transient failures by default, by buffering messages within the
reference until the connection is restored. Despite the usefulness of this built-in failure
handling strategy, it only works for transient failures. Unfortunately, it is a given that
in distributed computing, one cannot distinguish network failures from device failures
[WWWK96] and even if it is a network failure, one cannot distinguish transient from
permanent failures ahead of time [Wal01]. The best the programmer can do is to choose
a timeout period that will treat the failure as “permanent” when it persists for longer
than that period.

AmbientTalk allows the expression of such timeouts either at the level of eventual
references or at the level of individual asynchronous messages. Timeouts at the level
of eventual references are part of a leasing strategy, which we will extensively discuss
in section 4.6.4. Here, we focus on timeouts associated with individual asynchronous
messages. If the future associated with a message annotated with a timeout is not
resolved within the timeout period, the future is automatically ruined by the system
with a TimeoutException. The following code shows how a timeout can be specified
and dealt with:

when: buddy<-chat(aTextMessage)@Due(minutes(1)) becomes: { |ack|
// message received successfully

} catch: TimeoutException using: { |e|
// message timed out

}

In the above example, if the chat message is not replied to within 1 minute, the
exception handler is triggered (i.e. asynchronously applied). The @ syntax allows a
message to be annotated with one or more type tags. The Due tag can be used to
associate a timeout period with a message.

When performing failure handling, one should always be aware of the fact that the
message may still have been received by the remote party. It may even be possible that
the receiver sends a reply after the timeout period has already expired. In this case,
the future will silently ignore the return value, as it has been previously ruined with a
TimeoutException.

4.5 Discussion
In this section, we take a step back from the technicalities of AmbientTalk and ar-
gue why it can be called an event-driven object-oriented language for mobile ad hoc

4.5. DISCUSSION 79

networks.

4.5.1 Event-driven Object-oriented Programming
The event-driven concurrency model employed by AmbientTalk has the advantage that
it maps well onto the inherently event-driven nature of distributed systems. Devices
may join or leave the network and messages can be received from remote objects at
any point in time. In contrast to multithreaded approaches, event loops are able to
restrict non-determinism to the order in which events are received.

One disadvantage that is often attributed to event-driven concurrency models is that
it causes an inversion of control, i.e. the programmer must explicitly partition the ap-
plication into separate event handlers (e.g. callbacks) [HO06]. The root cause of the
inversion of control problem is that event-driven programming is actually program-
ming without a call stack [Hoh06]. Event handlers are usually triggered from a source
external to the application, with no application-specific stack frames on the runtime
stack7. In a short article, Hohpe describes the consequences of programming without a
call stack. He notes that a call stack provides three implicit properties [Hoh06]:

Continuation The call stack implicitly encodes a “return address”: the callee knows
where to continue the execution after it completes.

Coordination A call stack supports an implicit form of synchronisation between caller
and callee: the calling method waits for called method to complete.

Context Local variables are saved on the call stack8: when a callee returns, the ex-
ecution context of its caller is restored. This “restoration” process only works
for local variables. Instance variables of an object, for example, may have been
changed by the callee.

With the implicit properties of a call stack now made explicit, the apparent prob-
lems related to event-driven programming also become explicit: all three of the above
properties must be encoded manually on top of a pure event system! We claim that
AmbientTalk mitigates the effects of the “inversion of control” because it reintroduces
the three key features of a call stack in an object-oriented manner:

Continuation The implicit return address encoded by the call stack is made explicit
in AmbientTalk as a future. A future is an explicit return address, it provides a
first-class handle to which an asynchronously invoked callee can return the value
of the asynchronous invocation.

Coordination The synchronisation implied by a synchronous method or function call
is replaced by the ability to register observers in the form of closures on futures.
These observers are in-line event handlers that enable the code to “wait for” the
reply to arrive without blocking the underlying thread of control.

Context In AmbientTalk, the context of an outstanding asynchronous call can be cap-
tured by the lexical scope of a closure registered as an observer on the call’s

7This phenomenon is easily observable in e.g. the Java Swing or AWT GUI libraries. A stack trace within
an event notification method of a “listener” object will reveal that the only call frames on the stack pertain to
the GUI’s event loop framework. Thus, there is no implicit application context for the method to exploit.

8In languages that support closures, care must be taken with variables captured by a closure as they may
out-live the lifetime of their stack frame.

80 CHAPTER 4. AMBIENTTALK

associated future. The closure enables delayed code to refer to variables which
were alive at the time the asynchronous call was made. If these variables are
truly local to the scope in which the call was made, they are guaranteed not to
have changed when the observer is eventually triggered9. If the variables are
not local, care must be taken because they may have been assigned in the mean
time (just like instance variables may have been assigned when a synchronous
invocation returns).

The above analysis shows why anonymous (block) closures are so useful to ex-
press event-driven computations. They maintain coordination and context which are
otherwise lost in a pure event system. They therefore prevent the control flow from
becoming scattered across many event handlers. The use of true closures (rather than
mere function pointers) is crucial here because they close over lexically free variables.
Such variables are an important part of the execution context of an asynchronous call.
To make the discussion more concrete, consider the following piece of code:

whenever: InstantMessenger discovered: { |messenger|
when: messenger<-getName()@Due(seconds(10)) becomes: { |name|
buddyList.put(name, messenger);
def sub := whenever: messenger disconnected: {
buddyList.remove(name);
sub.cancel();

}
}

}

The above code features three nested event handlers. Whenever an instant mes-
senger is discovered, the messenger is queried for its name and is added to a buddy
list. If the query is not replied to within 10 seconds, the messenger is ignored. If the
messenger replies but fails at a later point in time, it is removed from the buddy list
and the innermost event handler de-registers itself. This behaviour can be expressed
concisely because of the use of block closures as nested event handlers. Note how the
variables messenger and name can be used without any explicit coding effort within
the nested event handlers. In pure event systems, these variables would have to be
explicitly parameter-passed in between event handlers.

In short, the inversion of control often attributed to event-driven systems can be
mitigated in AmbientTalk by using block closures to represent event handlers.

4.5.2 Suitability for Mobile Ad Hoc Networks
In this section, we argue why AmbientTalk’s language constructs are suitable for devel-
oping mobile ad hoc networking applications. Again, we distinguish between the two
most apparent hardware characteristics of mobile ad hoc networks described at length
in section 2.2.

4.5.2.1 Volatile Connections

The strictly asynchronous communication between objects owned by different actors
is very suitable in mobile ad hoc networks. The built-in message queues of actors

9Note that while the variable is guaranteed to still refer to the same object, that object itself may of course
have been changed.

4.6. CASE STUDY: THE MUSICAL MATCH MAKER 81

and eventual references decouple communication in time and synchronisation, making
the application resilient to transient network failures. The failure handling strategy of
buffering messages optimistically while disconnected is a good default if failures are
mostly engendered by temporary network partitions.

A traditional RPC or RMI communication model is not able to provide a similar
decoupling. To abstract over temporary failures, objects would either remain blocked
waiting for an outstanding RPC to a disconnected object (making the application un-
responsive), or the RPC would fail, forcing the programmer to deal with every failure,
even if it is only temporary.

4.5.2.2 Zero Infrastructure

In mobile ad hoc networks, services have to be discovered in the proximate environ-
ment as devices are roaming. A shared infrastructure is not always available, such that
objects should not be required to rely on a third party to discover one another. To enable
decentralised service discovery, each AmbientTalk interpreter is equipped with a topic-
based publish/subscribe engine. The topics are the type tags used to classify objects in
a meaningful way, independent of any particular device address, catering to anonymous
interactions among objects. Each actor can independently export objects and subscribe
to be notified of objects that become available. At the interpreter level, discovery is
implemented by repetitively broadcasting “advertisement” messages. Fortunately, in
wireless ad hoc networks, we can exploit the fact that the cost of broadcasting a mes-
sage to one device is the same as that of broadcasting it to all devices [KB02].

4.6 Case Study: the Musical Match Maker
In this section, we combine the various language constructs introduced throughout this
chapter and apply them to the musical match maker application (�uMaMa) introduced
in section 3.1. This exposition both serves to validate the practicality of AmbientTalk
and to provide the reader with a coherent view on how to develop distributed applica-
tions with AmbientTalk. The �uMaMa case study has been used as a running example
before in previous AmbientTalk publications [DVM+06b, VDD07, GVDD07].

Before delving into technical details, we briefly outline how the implementation of
�uMaMa in AmbientTalk deals with the different aspects of coordination introduced
in section 3.1:

Discovery The �uMaMa application is represented by means of a single service ob-
ject which is explicitly exported to the network. Two �uMaMa applications dis-
cover one another by means of AmbientTalk’s built-in service discovery event
handlers. Once the objects have discovered one another, they set up a session to
transmit their music libraries.

Communication Once the service objects have established a session, they need to
transmit their library index. Recall from section 3.1 that �uMaMa should tol-
erate transient network failures. We will exploit the failure semantics of Ambi-
entTalk’s far references to achieve this goal.

Synchronisation In our implementation, the �uMaMa service objects transmit their
library index incrementally (on a per-song basis). To synchronise on when they
can send subsequent song information, the service objects will make use of fu-
tures.

82 CHAPTER 4. AMBIENTTALK

Failure handling If a network partition does persist, far references still referring to
a session should be eventually invalidated such that it becomes possible for the
garbage collector to reclaim the allocated session object. Failure handling will
be achieved by means of timeouts and leasing.

In the following section we first explain some simple abstractions used by �uMaMa.
Subsequently, we describe how �uMaMa applications represent themselves as service
objects which need to be exported to and discovered in the network. We are then ready
to explain the distributed library transmission protocol. Finally, we add failure han-
dling.

4.6.1 Data Abstractions
In order to implement �uMaMa, we need some simple data abstractions. The core
abstraction of �uMaMa is the library of songs. We will represent it by a simple Set of
song objects. To give a flavour of how to build data abstractions in AmbientTalk, we
show the definition of a simple Song abstract data type:

def Song := isolate: {
def artist;
def title;
def init(artist, title) {
self.artist := artist;
self.title := title;

};
def ==(other) {
(other.artist == artist).and:
{ other.title == title }

};
}

A song is represented as an object with two fields (initialised upon object creation).
Note that the object is an isolate and thus a pass-by-copy object. Therefore the default
implementation of the == method should be replaced to ensure equality of songs is
based on their content and not on their object identity. Sending the message new to a
song object creates a copy of that object, initialised using its init method.

4.6.2 Exporting and Discovering Service Objects
In order for two �uMaMa applications to discover one another, they have to export
one or more service objects such that these objects can be discovered by objects owned
by remote actors. We assume that a �uMaMa application is represented as a single
service object which can be used to create new library transmission sessions, and that
this object is exported by means of the following type tag:

deftype MuMaMaApp;

The name of this type tag represents global knowledge: all �uMaMa peers have to
somehow know this name. With this type tag defined, the service object representing
the interface to the application can now be exported as follows:

def interface := object: {
def openSession() {

4.6. CASE STUDY: THE MUSICAL MATCH MAKER 83

// return a session object (explained later)
};

};
export: interface as: MuMaMaApp;

Discovering proximate �uMaMa peers is a matter of defining a discovery event han-
dler:

whenever: MuMaMaApp discovered: { |peer|
// open a session to transmit the library
when: peer<-openSession() becomes: { |session|
// start transmitting songs (explained later)

};
};

The peer argument of the above block closure is a far reference to the exported
interface object of another �uMaMa application. Upon discovery, the openSession
message is sent asynchronously to the remote interface object. The block closure

registered as an observer on the future by means of when:becomes: represents the
continuation of the message send.

Note that the code that exports the interface object, and the code above that dis-
covers other such objects is executed by all �uMaMa peers in the network. Hence,
these applications engage in peer-to-peer communication: when a peer Alice and a
peer Bob enter one another’s communication range, Alice will discover Bob’s in-
terface object and Bob will discover Alice’s interface object. This simultaneous
bidirectional matching is an emergent property of the application: it is not coded ex-
plicitly, but rather emerges naturally because network connectivity is often symmetric
(if Alice can talk to Bob, chances are high that Bob can talk to Alice).

4.6.3 The Library Transmission Protocol
We now describe the implementation of the library transmission protocol between two
peers. Once a peer has a reference to the interface object of another peer, it asks
the remote peer to open a library transmission session by sending it the openSession
message. The return value of this message send is a session object which allows song
information to be uploaded on a per-song basis via its uploadSong method10. After all
songs have been sent, the endTransmissionmethod is invoked to signal the end of the
transmission.

Figure 4.2 shows a sequence diagram of the library transmission protocol. For
purposes of clarity the figure only shows the essential objects and describes the protocol
from the point of view of Alice. In reality, this protocol is executed simultaneously
by both Alice and Bob. Below is the definition of the session object at the site of
the recipient peer.

def openSession() {
def peerLibrary := Set.new(); // to store incoming songs
// return a session object to collect the songs
object: {
def uploadSong(song) {

10A realistic implementation would probably improve upon this scheme by uploading multiple songs in
one remote message send or by pipelining messages.

84 CHAPTER 4. AMBIENTTALK

whenever:discovered:
event handler@Alice interface@Bob

session@Bob

openSession()

session

uploadSong(song)

`ok

apply([peer])

endTransmission()

Figure 4.2: The library transmission protocol.

peerLibrary.add(song);
"ok" // acknowledge receipt

};
def endTransmission() {
// calculate match percentage with my library
if: (calculateMatch(peerLibrary, myLibrary) >= THRESHOLD) then: {
// notify the user of the match

}
};

};
};

Note that the peerLibrary is not directly accessible by remote peers, as it is hidden
in the lexical scope of the anonymous session object. Still, it is a variable private
to one particular session. Multiple sessions can be opened simultaneously and each
session will encapsulate its own local state. The return value of uploadSong is a string
representing a simple acknowledgement (see below). The sending peer uploads all of
its own songs one by one to this session object upon discovery:

whenever: MuMaMaApp discovered: { |peer|
when: peer<-openSession() becomes: { |session|
def iterator := myLibrary.iterator();
def uploadNextSong() {
if: iterator.hasNext() then: {
when: session<-uploadSong(iterator.next()) becomes: { |ack|
uploadNextSong(); // recursive call to send next song info

}
} else: {
session<-endTransmission();

};
};
uploadNextSong(); // send the first song info

};
};

Note how song information is sent sequentially from sender to receiver peer. This
behaviour is guaranteed because uploadNextSong is only recursively invoked after the

4.6. CASE STUDY: THE MUSICAL MATCH MAKER 85

current song has been successfully uploaded. It is easy enough to await this acknowl-
edgement by registering an observer on the future returned by the uploadSongmessage
send. Note that the use of an explicit (i.e. external) iterator over the collection is very
useful here. If we were to write myLibrary.each: {|song| ...}, this would imme-
diately generate an uploadSong request for all songs in the library, as each: iterates
over the collection synchronously.

The above code once again demonstrates the usefulness of block closures to repre-
sent the continuation of an asynchronous computation. As argued in section 4.5.1, the
use of block closures keeps the control flow of the application understandable (i.e. not
fragmented). This is because block closures can be nested and because they implicitly
capture the state (lexically free variables) needed to process the continuation.

4.6.4 Failure Handling
One of the major strengths of the ambient-oriented programming paradigm is that it
assumes network partitions are omnipresent, and hence enables the programmer to
abstract from them by default. Because far references mask failures by buffering mes-
sages while disconnected, the source code shown above is fully resilient to partial fail-
ures. Without any additional coding effort, the above protocol will continue to work if
the connection between the peers is only intermittent.

Ironically, an AmOP programmer has to exert more coding effort in order not to
make his code resilient to failures. Although the behaviour of the above source code
is perfect for dealing with temporary network failures, it cannot cope with permanent
failures. The problem is that, if a peer disconnects in the middle of the library transmis-
sion session, the session never terminates and unnecessarily consumes resources (e.g.
the partially uploaded library of the sender peer).

In a first stage, we want the program to keep abstracting over the connection state
of the underlying network for the purposes of exchanging the music library, yet we
want to be able to detect and react upon changes in the environment. For example, we
may want to inform the user that the transmission has temporarily stopped. We can
express this by means of the failure event handlers introduced in section 4.4.1:

whenever: MuMaMaApp discovered: { |peer|
// as before
whenever: peer disconnected: {
// inform the user that the transmission is paused

};
whenever: peer reconnected: {
// inform the user that the transmission has resumed

};
};

In a second stage, we need to gracefully terminate the transmission protocol if a
disconnection lasts for too long. From the point of view of the sender peer, the proto-
col can easily be adapted by associating an upper bound with all of the asynchronous
message sends (using a Due(timeout) annotation), as explained in section 4.4.4. From
the point of view of the receiver, the problem cannot be solved by annotating outgo-
ing messages with timeouts. Rather, what should be annotated with a timeout is the
availability of the anonymous session object that is implicitly exported because it is
the return value of a future-type message send. This can be achieved by not explicitly
returning the session object, but rather a lease to the session object. Our initial support

86 CHAPTER 4. AMBIENTTALK

for leasing in AmbientTalk using leased references [GVDD07] enables the code of the
receiver peer to be rewritten as follows:

def openSession() {
def peerLibrary := Set.new(); // to store incoming songs
def lease := renewOnCallLease: LEASE_TIME for: (object: {
def uploadSong(song) { /* as before */ };
def endExchange() {
// as before
revoke: lease;

};
});
when: lease expired: {
// clean up resources associated with the session
peerLibrary := nil;

};
// return a lease on the session object
lease

};

The most important change to the code is that, rather than returning a far reference
to the session object directly, a lease to that object is returned instead. A leased ref-
erence is an eventual reference to the session object until the lease time has elapsed.
When the lease expires, access to the session object is denied and the leased reference
no longer keeps the object alive for the purposes of garbage collection. Applications
can schedule cleanup actions by registering closures as observers on leased references.
Note also that the lease is revoked explicitly upon normal termination of the library
transmission protocol.

The leased reference defined above is a “renew on call” lease, which implies that
the lease is automatically renewed whenever a message is sent to the session object (i.e.
it uses the heuristic that as long as an object is actively “in use” access to it should be
prolonged). Hence, as long as the library transmission is in progress, the lease will not
be prematurely revoked.

The precise details of the leasing language constructs can be found elsewhere
[GVDD07]. Leasing is also discussed in more detail in section 4.9.2. The problems of
AmbientTalk associated to garbage collection are discussed in the following section.

4.7 Limitations and Future Work
We now discuss the limitations of the AmbientTalk language and give some directions
on how they can be addressed in future work.

Distributed Garbage Collection AmbientTalk currently does not feature a distribu-
ted garbage collector. There are conceptual reasons why this is the case. Recall that
far references mask failures, which allows them to decouple the sender and receiver
objects in time: messages can be sent to the remote target object even though it is dis-
connected. However, this very design decision prohibits one from reclaiming a target
object even if all far references to it are disconnected – there is always a chance that
one of them reconnects, requiring the object to be available still. In more general terms,
the distributed garbage collector has to make a trade-off between soundness and com-
pleteness [AR98]: when a far reference to an object o becomes disconnected, either o

4.7. LIMITATIONS AND FUTURE WORK 87

remains exported until the far reference reconnects (sacrificing completeness – the far
reference may never reconnect, so o is never reclaimed) or it eventually takes o offline
such that it can be reclaimed (sacrificing soundness – the far reference may reconnect
and still refer to the object, hence becoming a broken pointer).

In the current implementation, we chose to sacrifice completeness: objects pointed
to by far references are not automatically taken offline when all those far references
become disconnected. As a result, these objects are not reclaimed. AmbientTalk does
feature a low-level takeOffline: primitive that invalidates all far references refer-
ring to an object, enabling the object to be locally garbage collected. The goal is that
using this primitive in conjunction with AmbientTalk’s reflective capabilities, more
high-level language constructs can be written in AmbientTalk itself.

Initial experiments to reconcile distributed garbage collection with AmbientTalk’s
far references have primarily focused on leasing [GVDD07]. Leasing is a time-based
mechanism to perform fault-tolerant resource management [GC89]. A lease denotes
the right to access a resource for a limited amount of time. At the discretion of the
lease granter – the owner of the resource – a lease can be renewed, prolonging access
to the resource. The advantage of leasing is that the lease granter retains control over
the resource by maintaining the right to reclaim the resource once all of its leases have
expired. Because of the lease time associated with a lease, the lease holder knows when
its access rights have expired meaning it can no longer access the resource. Leasing
solves the tension between soundness and completeness by weakening the notion of
soundness: expired leases essentially are broken references.

The outcome of our experiments with leasing is the leased reference [GVDD07].
Here, an eventual reference plays the role of the lease and the object it designates plays
the role of the resource. Hence, a leased reference only provides access to a remote
object for a limited amount of time. However, as long as the leased reference is ac-
tively being used (i.e. messages are sent via the reference to the remote object), its
lease is transparently renewed. Upon a network partition, the lease cannot be renewed
and will expire if the disconnection outlasts the lease period. When a leased refer-
ence eventually expires, it ruins the future attached to any messages sent to it with an
exception, signalling to the sender that its message could not be delivered. Once all
leased references referring to an object have expired, the object is taken offline using
aforementioned primitive, enabling the object to be garbage collected.

In future work, we would like to make leased references the default far references
of AmbientTalk. However, what is lacking in the current proposal are expressive ways
for programmers to declare and delimit leased references and how to deal with expired
references. Further research is required in at least three areas. First, how can program-
mers expressively define a leasing policy for an entire group of references (e.g. all
far references that make up an active session)? Second, what is the interplay between
parameter-passing and leased references? Parameter-passing copies references, which
in the case of leasing copies the right to access an object, which probably requires
the lease granter to be involved. Third, how can programmers expressively deal with
expired references? It may be useful to introduce language constructs to repair an ex-
pired reference by replacing it with a new one to a potentially different object. Or, the
expiration of one reference may transitively invalidate the session of which it is a part.

Service Discovery The service discovery protocol of AmbientTalk implicitly as-
sumes that distributed actors have a shared understanding of the type tags under which
the objects are exported and discovered. The type tags used to classify exported objects

88 CHAPTER 4. AMBIENTTALK

are assumed to be part of a universally shared ontology. There is a vast body of work
on the limitations of these assumptions and on how to make peers coordinate when
no such global knowledge is assumed. Work has been carried out to incorporate these
results in the context of service discovery [CJF01, KK04], but the topic remains well
beyond the scope of this dissertation.

The matching between exported AmbientTalk objects and subscribed event han-
dlers is currently based entirely on connectivity as defined by the network layer un-
derlying the AmbientTalk interpreter. For example, the matching range is entirely de-
pendent on the fact whether e.g. Bluetooth or WiFi is used. Often, it is useful to be
able to constrain service discovery to only discover services in a certain geographical
region. For example, the Scalable Timed Events and Mobility (STEAM) middleware
[MCNC05] introduces geographical locations as first-class entities named proximities
which can be used for this purpose. In AmbientTalk, constraining service discovery
based on geographical parameters has to be encoded on top of AmbientTalk’s current
discovery mechanism. Concrete experiments have already been conducted that show
the feasibility of such an approach (cf. section 10.4).

Isolates Isolates are AmbientTalk objects that are passed by-copy in inter-actor mes-
sage sends (cf. section 4.3.3). As previously discussed, in order for these objects to be
copied without prohibitive costs, they are not allowed to access their enclosing lexical
scope. In practice, this restriction is often a nuisance because if an isolate wants to call
library functions, it has to import them in its own object scope, even though the func-
tions may have already been imported in the outer lexical scope. On the other hand,
because of this explicit import, the programmer is more aware of what code is copied
along with the isolate.

The problem is that it is very difficult to separate pure code from objects in Ambi-
entTalk, because of its prototype-based nature (code only exists within live objects). In
a language like Java, the presence of static code entities like classes eases distributed
deployment issues. Classes can be loaded, referenced and transmitted independently of
live objects. When a Java object is serialised, classes referenced by the serialised ob-
ject’s class can be transmitted and loaded piecemeal, when they are first referenced by
a byte-code instruction. On the other hand, keeping object and class as separate entities
introduces versioning issues [Ded06]. For example, how should a serialised object of
class C be treated when it is deserialised in a virtual machine that has already loaded
an older or newer version of C? In AmbientTalk, because an isolate is self-sufficient,
different versions of the same abstraction can coexist within the same actor.

The technical problems associated with isolates lead us to consider a more fun-
damental question: are objects really suitable as the unit of information interchange
in a distributed system? A proper answer to this question is beyond the scope of this
dissertation. However, the differences between regular objects and isolates lead us to
believe that AmbientTalk objects, in their current incarnation, are indeed suboptimal
to represent data to be exchanged. The difference in argument passing between objects
and isolates is only a first indication. Another issue with copying objects is that they as-
sume a totally different notion of object identity. Object identity is a crucial element of
an object system, but when objects represent data to be distributed, a mismatch occurs:
the data itself does not have an identity as such (e.g. an XML document does not itself
have an identity). As a consequence, the built-in semantics for testing object equality
is simply wrong for isolates, and we have wasted no small amount of time fixing the
ensuing bugs.

4.7. LIMITATIONS AND FUTURE WORK 89

Security Securing AmbientTalk is a topic that has not yet been thoroughly investi-
gated. However, we have initial ideas to reconcile AmbientTalk with certain security
properties. E, the language on which AmbientTalk’s actor model is based, is a secure
object-capability language [MMF00, MS03]. In a nutshell, the main idea is that a ref-
erence to an object also holds the authority to manipulate that object (strictly by means
of its public interface). Hence, object references become the “resource” to be secured.
In order to uphold security, objects can transmit and acquire object references only
by a very specific set of operations (e.g. object creation and by-reference parameter
passing). E abolishes global or static variables and functions, because they can be des-
ignated by any object, defeating the use of object references as the sole access mecha-
nism. If one consistently models critical resources (such as files or network sockets) as
objects that cannot be globally accessed, applications can be made capability-secure.

Object-capability security seems to us the most appropriate security model for
AmbientTalk, because of the way it successfully unifies access control with object-
orientation. As Miller explains in his dissertation, object-capabilities turn the access
control graph referred to in the security community into the object-reference graph
familiar to object programmers [Mil06]. However, AmbientTalk features language
constructs not present in E, which are – to a lesser or larger extent – in conflict with
object-capabilities. We sum up the most important issues below.

Delegation To a large extent, AmbientTalk’s object model is similar to that of E: it
is a lexically scoped language enabling objects to hide information by means of
their lexical scope. Two features absent in E are delegation and trait composition.
Because trait composition can be translated into a form of explicit delegation (cf.
section 4.2.4), we only consider delegation. Delegation is potentially dangerous
because any object may delegate a message to any other object, which causes the
self pseudo-variable in the invoked method to refer to an arbitrary object. If the
invoked method performs a self-send, as in self.m(x), the programmer must
be aware that the value of x (which may be part of the object’s private state) is
shared with potentially any object.

We do not consider delegation to be an extremely harmful language construct,
for two reasons. First, in AmbientTalk, receiverless message sends (e.g. m(x))
are resolved purely lexically; they are not implicitly transformed into a self-send
if m is not lexically visible. Hence, programmers can choose not to use self
if late binding is not desired. Second, AmbientTalk does not enable distributed
delegation, which implies that self can never be an eventual reference (i.e. it
always refers to a local object). Because we assume that objects local to the same
actor can be trusted, this does not introduce any major security issues.

Reflection AmbientTalk features an extensive metaobject protocol with a mirror-based
architecture (cf. section 5.2). Mirrors are metaobjects which encapsulate the
implementation of their base-level object. As such, even if an object a holds
a reference to a mirror for an object o, a cannot convey more power via the
metalevel interface than via the base-level interface. Even at the metalevel, the
lexical scope of o remains opaque. However, at the metalevel, a can gain more
knowledge about o, as it can introspect o to see to which messages it responds.

In a distributed context, reflecting upon an eventual reference only returns a mir-
ror on the reference (rather than on the – possibly remote – object which the
reference designates). As a result, simply having a far reference to an object
does not convey the power to acquire a far reference to that object’s mirror. A

90 CHAPTER 4. AMBIENTTALK

mirror on a far reference only conveys the right to asynchronously send reified
messages. While reflection certainly conveys more power over local objects, it
does not by itself introduce security issues because objects cannot directly ac-
quire mirrors on remote objects.

The security of delegation and reflection crucially depends on our assumption
that all objects local to an actor can be trusted. However, this assumption is cur-
rently flawed because isolate objects enable code mobility: an isolate originating
from a remote host is a local object yet it cannot be trusted. In order to secure
AmbientTalk, we either need to remove our dependency on this assumption or
otherwise ensure that isolates cannot violate the assumption.

Service Discovery Perhaps the most difficult feature of AmbientTalk to integrate with
capability-security is service discovery. Service discovery enables objects to
acquire object references simply by having knowledge of the type tag with which
other objects have been exported. Hence, because of service discovery, type tags
become an additional resource to be secured, next to object references. However,
because type tags in AmbientTalk are identified simply by their name, type tags
are globally accessible. As such, service discovery becomes a form of “ambient
authority” [MYS03]11 and as such it is in direct conflict with the principle of
object-capability systems that “only connectivity begets connectivity” [Mil06].
This dichotomy should come as no surprise, given that it is the explicit goal of
service discovery to connect two a priori disjoint object graphs.

Because service discovery in AmbientTalk is currently a form of ambient au-
thority, we have no adequate access control to restrict the visibility of exported
objects or discovery queries. A different issue related to service discovery is that
of trust. For example, how can the service discovery module running on a PDA
trust the printing service it has just discovered to really be a printing service?
The problem is exacerbated in pure ad hoc networks because one cannot rely on
a globally accessible authoritative third party to authenticate discovered objects.

In short, service discovery introduces security issues which are currently not
dealt with at the language level. Reconciling object capabilities with service
discovery is an important topic for future research.

Now that the most apparent shortcomings of AmbientTalk have been discussed, we
briefly describe the current implementation of the language.

4.8 Notes on Implementation Status

An interpreter for the AmbientTalk language has been implemented in Java. The im-
plementation ships with a small library providing additional support functions and lan-
guage constructs written in AmbientTalk itself (including the reflective implementation
of futures and leasing). The interpreter can run on the Java 2 micro edition (J2ME)
platform under the connected device configuration (CDC). This configuration targets

11The term “ambient” in this definition is totally unrelated to the one in “ambient-oriented” programming.
Ambient authority indicates a form of global authority, outside of the program’s scope. However, when
considering the authority conveyed by service discovery, the term “ambient” can be taken literally, as the
authority to access a resource is literally determined by the physical ambient of the device.

4.9. PREVIOUS AND RELATED WORK 91

PDAs and high-end cellular phones. Our current experimental setup consists of a num-
ber of QTek 9090 smartphones which communicate by means of a wireless ad hoc
WiFi network.

At the implementation level, AmbientTalk interpreters communicate with one an-
other by means of sockets. AmbientTalk’s topic-based publish/subscribe service dis-
covery mechanism is peer-to-peer and does not require a centralised repository or direc-
tory service. AmbientTalk interpreters discover one another by means of the network’s
support for multicast messaging. After a successful discovery, the two interpreters ex-
change discovery information (e.g. registered subscriptions and exported objects) in
order to find a match.

4.9 Previous and Related Work
In this section, we describe how the AmbientTalk language as described in this chapter
differs from the prior AmbientTalk/1 language. We also provide pointers to prior work
on the various concepts, languages and systems on which AmbientTalk is based.

4.9.1 AmbientTalk/1 versus AmbientTalk/2
Now that both AmbientTalk/1 and AmbientTalk/2 have been presented, we can high-
light their differences and commonalities. Let us first discuss what important features
of AmbientTalk/1 have been kept. Ultimately, the way in which both languages deal
with the two hardware phenomena of MANETs remains the same. In section 4.5.2 we
mentioned that AmbientTalk/2 deals with volatile connections by means of asynchro-
nous message passing and by making far references resilient to failures by default. In
AmbientTalk/1, remote references to active objects provide the same semantics. Am-
bientTalk/2 provides a topic-based publish/subscribe engine to cater to service discov-
ery lacking any network infrastructure. AmbientTalk/1 provides similar functionality
through its four discovery mailboxes discussed in section 2.4.3.

While the language features used by both languages are fundamentally equivalent,
in practice they provide different levels of expressiveness. These will be brought to
light in the following paragraphs. As most changes in going from AmbientTalk/1 to
AmbientTalk/2 are motivated by limitations of the former, the rest of this section mir-
rors section 2.5 on the limitations of AmbientTalk/1.

Double-layered Object Model Recall that AmbientTalk/1’s object model distinguish-
es between active and passive objects. In AmbientTalk/1, actors are modelled as
ABCL/1-like active objects. However, AmbientTalk/2’s concurrency model replaces
the notion of actors as active objects with the notion of actors as vats, based on the vat
model of the E language [MTS05]. In this model, actors become containers of passive
objects. Despite these differences, in both versions each passive object is contained
within exactly one actor. However, AmbientTalk/2 allows both sequential and asyn-
chronous message sends between passive objects whereas AmbientTalk/1 only sup-
ports sequential message passing between passive objects.

Both versions also consider actors as the unit of distribution. However, in Ambi-
entTalk/1, passive objects are not remotely accessible. Only the behaviour of an active
object can be referenced from other actors. In AmbientTalk/2, passive objects owned
by other actors can be individually designated by means of far references. This enables
far more fine-grained interactions between passive objects.

92 CHAPTER 4. AMBIENTTALK

Inter-actor Message Passing The parameter-passing semantics of inter-actor mes-
sage sends in AmbientTalk/2 differs from those of inter-active object message sends in
AmbientTalk/1. In AmbientTalk/1, passive objects are by default passed by copy. In
AmbientTalk/2, objects are by default passed by far reference. Only isolates are passed
by copy. The advantage of passing objects by far reference is that remote communi-
cation is more lightweight because the object-graph does not need to be completely
copied. Moreover, by being able to partition the object graph of an actor into regular
objects and isolates, the programmer has more control over which parts of the graph
must be serialised and which not. In AmbientTalk/1, all passive objects are effectively
isolates, explaining why its by copy semantics are heavyweight and less customisable.

Service Discovery In AmbientTalk/1, service discovery is expressed only in terms of
meta-level entities such as the requiredbox and the joinedbox. AmbientTalk/2
features expressive language constructs like export:as: and when:discovered: di-
rectly at the base-level. Also, AmbientTalk/2 makes service discovery polymorphic
because exported objects are matched with observers based on type tags, which sup-
port subtyping.

Mailboxes The mailboxes of AmbientTalk/1 have either been adapted or removed to
fit with the new object model based on vats:

• The inbox has become the implicit incoming message queue of an actor. The
outbox has become the implicit outgoing message queue contained within
eventual references to objects owned by other actors.

• The sentbox and rcvbox have no direct representation. By default, mes-
sage histories are not kept. However, they can be reconstructed by means of the
metaobject protocol.

• The tags stored in the requiredbox and providedbox have been replaced
by type tags used to subscribe closures as discovery event handlers and to export
objects, respectively.

• The joinedbox and disjoinedbox have been replaced by failure event
handlers on far references (cf. section 4.4.1).

Garbage Collection As discussed above, AmbientTalk/2 actors do not keep track
of their communication history by default. This ensures that messages are normally
automatically garbage collected. If they are needed for the purposes of a reflectively
implemented language construct, they must be explicitly trapped via the metaobject
protocol. This corresponds to the strategy discussed previously in section 2.5.2.

Recall that AmbientTalk/1 did not feature any distributed garbage collector. While
AmbientTalk/2 does not feature automatic distributed garbage collection either, it en-
ables the use of leases to partially resolve this issue (cf. section 4.7).

Metalevel Engineering AmbientTalk/2 has a mirror-based [BU04] meta-level archi-
tecture [MVTT07]. This removes many of the hurdles in engineering robust meta-level
programs in AmbientTalk/1. Most notably, base- and meta-level code are completely
stratified. Name clashes between the two cannot occur (cf. section 5.2.3). Also, mirrors

4.9. PREVIOUS AND RELATED WORK 93

encapsulate implementation details: they provide a well-defined interface (the meta-
object protocol) and can implement this interface however they want, without leaking
implementation details. Thanks to traits, meta-level code can be composed in a princi-
pled way and conflicts between meta-level operations can be detected at composition
time. Finally, AmbientTalk/2 consistently mirrors all base-level entities, not only actor-
level entities, making the MOP more uniform.

Dynamic versus Lexical Scoping In AmbientTalk/1, all identifiers are resolved in
the object scope. AmbientTalk/2 gives the choice between resolution in the lexical
scope or in the object scope. This additional scope enables the useful pattern of nesting
objects to share a private, lexical scope.

Linguistic Symbiosis AmbientTalk/1 does not provide any means to access the li-
braries of foreign languages. Although it has not yet been explained, AmbientTalk/2
can interoperate with the Java Virtual Machine through a mechanism known as lin-
guistic symbiosis. This mechanism is discussed in section 5.3. A full account on this
subject is given elsewhere [VMD07].

4.9.2 Notes on Related Work

In this section, we highlight the programming concepts and languages that have influ-
enced the design of AmbientTalk in significant ways.

Actors AmbientTalk’s integration of concurrent and distributed computing with object-
oriented computing is founded on the actor model of computation [Agh86, Agh90],
already touched upon in section 3.3.4.1. In the model actors refer to one another via
mail addresses. When an actor sends a message to a recipient actor, the message is
placed in a mail queue and is guaranteed to be eventually delivered by the actor sys-
tem. Asynchronous communication by means of mail addresses decouples actors in
time and synchronisation. This property makes the actor model in itself almost suit-
able for mobile networks.

The main feature lacking in the actor model to fit mobile networks is a means to
perform service discovery, i.e. to acquire the mail address of a remote actor via anony-
mous communication. Mail addresses do not decouple sender and receiver in space.
Extensions of the actor model have addressed this issue. We already previously men-
tioned the ActorSpace model [CA94] (cf. section 3.3.4.1) which enables messages to
be sent to a pattern rather than to a mail address. While ActorSpace caters to anony-
mous communication between actors, it does not introduce an explicit form of service
discovery.

E AmbientTalk’s view of actors as communicating event loops is directly based on
the communicating event loops model of the E programming language [MTS05, Mil06].
AmbientTalk also inherits from E the distinction between different types of references
(near versus eventual references) and their associated message passing semantics. E
also pioneered the when expression to access the value of futures (or promises, as they
are called in E) in an entirely non-blocking, event-driven manner.

E is designed for writing secure peer-to-peer distributed programs for open net-
works, but not specifically for mobile ad hoc networks. That is why AmbientTalk

94 CHAPTER 4. AMBIENTTALK

diverges from E’s distribution model with respect to the failure semantics of far refer-
ences. A network disconnection in E immediately breaks the far reference: any mes-
sage sent after the disconnection is not stored, and the message’s promise is resolved
with an exception. Hence, E’s far references do not decouple participants in time and
are not designed to express communication over volatile connections.

E’s references respond to a method named whenBroken that plays a similar role
to AmbientTalk’s whenever:disconnected: failure event handler to enable the pro-
grammer to react upon the disconnection of a far reference. There is no corresponding
method for reacting to a reconnection in E, because once broken, an E far reference
remains broken.

To regain connectivity after a network failure, E features special references, known
as sturdy references, which do survive network failures. Sturdy references, however,
are created by means of an explicit address (in the form of a URL) and are meant to
denote specific objects, so they do not decouple objects in space. When a host creates
a sturdy reference for one of its local objects, it may associate a lease time with the
reference, denoting how long the host should keep the object available. E features
a persistence model with checkpointing, so its sturdy references may persist across
crashes.

Futures The origin of futures can be traced back to their use in speculative paral-
lel programming [BH77]. They are a frequently recurring abstraction in concurrent
languages [BGL98]. They serve as an essential synchronisation tool when asynchro-
nous message passing semantics are introduced. The use of futures as return values
from asynchronous message sends can be traced back to actor-based languages such
as ABCL [YBS86, Yon90, TMY94]. In Argus, futures are known as promises. Argus
promises were the first to introduce a form of chaining [LS88]. Most future abstrac-
tions support synchronisation by suspending a thread that accesses an unresolved fu-
ture. This is sometimes called wait by necessity [Car89, Car93]. This synchronisation
may happen implicitly, as in Multilisp [Hal85] and ProActive [BBC+06] or explicitly,
as in Argus [LS88] and Java 1.5 [GJSB05].

AmbientTalk’s future chaining is similar to promise pipelining in E [MTS05] and
automatic continuations in systems like Eiffel// and ProActive [EAC98]. Future chain-
ing and promise pipelining differ in their treatment of messages sent to unresolved
futures. In AmbientTalk, messages sent to an unresolved future are buffered in a proxy
object local to the sender. In E, messages sent to an unresolved promise are immedi-
ately forwarded to the vat that will contain its resolved value. This is done to minimise
round trips across the network. Incorporating pipelining in AmbientTalk is a topic of
future work.

The technique used in AmbientTalk to register a closure as an observer on the fu-
ture is directly derived from E’s when expression. It is closely related to the notion
of a customer actor in the actor model, which is an actor representing the continuation
of an asynchronous request [Agh90]. Twisted is a well-known Python framework for
network programming which makes heavy use of this technique to reduce the impact
of network latency on programs. In this framework, deferrables play the role of Ambi-
entTalk’s futures [Fet05]. All of these techniques essentially express control flow in a
continuation-passing style.

Leasing The initial experiments to manage the lifetime of AmbientTalk’s far refer-
ences by replacing them with leased references are primarily based on the use of leasing

4.10. CONCLUSION 95

in Jini [Wal99, Wal01]. Jini is a platform for service-oriented computing built on top of
Java. In Jini, resources owned by a service should be accessed by clients by means of
leases. This ensures that services can gracefully deal with unexpected disconnections.
For example, services may advertise themselves by registering with a lookup service,
but must explicitly renew their registration by means of a lease. Otherwise, the lookup
service removes the advertisement, ensuring that it does not advertise stale information
of services that have become unavailable [Wal01].

Leasing has already previously been integrated into programming languages for
managing the lifetime of remote objects (e.g. in Java RMI [Sun98] and .NET Remot-
ing [MWN02]). The idea of renewing the lease of a remote object upon each remote
method invocation made to the object stems from the .NET Remoting framework. Am-
bientTalk’s support for leasing differs from that of Java RMI and .NET Remoting in the
sense that leases are used for managing valid disconnected remote object references.
Java RMI and .NET Remoting do not provide time-decoupled remote object references
that tolerate failures by default.

Publish/Subscribe Systems AmbientTalk’s service discovery mechanism is based
on the publish/subscribe paradigm [EFGK03]. More specifically, it is based on type-
based publish/subscribe [Eug07], where the concept of topic is unified with the concept
of type. The use of polymorphic type tags for service discovery was also inspired by
Jini’s use of Java interface types to achieve the same goals [Arn99].

Publish/subscribe systems perform well in mobile ad hoc networks because they
decouple publishers and subscribers in time, space and synchronisation. The main dif-
ference between traditional, centralised publish/subscribe architectures and those for
mobile networks is the incorporation of geographical constraints on the event publica-
tions and subscriptions. For example, in the location-based Publish/Subscribe (LPS)
architecture [EGH05, EGH06], a publisher defines a publication range and a subscriber
defines a subscription range. Only when the publication range of the publisher and the
subscription range of the subscriber overlap is an event disseminated to the subscriber.

4.10 Conclusion
In his famous 1973 paper on Hints on programming language design, C.A.R. Hoare
notes that the task of a language designer lies in the consolidation and integration of
existing language features. He notes [Hoa73], p. 26:

“The language designer should be familiar with many alternative features
designed by others, and should have excellent judgment in choosing the
best, and rejecting any that are mutually inconsistent. He must be capable
of reconciling, by good engineering design, any remaining minor incon-
sistencies or overlaps between separately designed features. He must have
a clear idea of the scope and purpose and range of application of his new
language, and how far it should go in size and complexity.”

As language designers of AmbientTalk/2, we have pursued the above advice to
its maximal extent. When considered in isolation, none of AmbientTalk/2’s language
features are truly novel. However, combining the many interesting language features
drawn from a variety of other languages and middleware into a consistent object-
oriented language framework, and this in the specific domain of mobile ad hoc net-

96 CHAPTER 4. AMBIENTTALK

works, is arguably an achievement in its own right. What is more, the very product of
this integration has lead to novel scientific contributions in the following domains:

Object-orientation In the field of object-oriented programming, AmbientTalk/2 com-
bines ex-nihilo objects, prototypes and classes in a unique manner. AmbientTalk/2:

• combines lexical scoping (engendered by nesting objects) with a restricted form
of dynamic scoping (engendered by object-based delegation).

• unifies class instantiation with prototype-based cloning.

• transposes traits as defined by Schärli et al. [SDNB03] into an object-based set-
ting. The main difference with Self’s traits [UCCH91] is that AmbientTalk’s
traits are composed in terms of an explicit delegation message passing operator
rather than via implicit multiple inheritance.

• provides a synergy between the traditional canonical syntax of functions and the
keyworded messages characteristic of Self and Smalltalk. By representing “lan-
guage constructs” as keyworded functions or methods, AmbientTalk/2 becomes
an extensible “language laboratory”.

Distribution In the field of distributed programming, AmbientTalk/2:

• integrates the service discovery abstraction traditionally provided by middleware
or libraries directly in the programming language runtime.

• integrates Rover’s queued RPC failure handling model (cf. section 3.3.6.1) and
the time-decoupling properties of actor mail addresses (cf. section 3.3.4.1) with
E’s far references.

Concurrency AmbientTalk/2 is a proof-by-construction that E’s concurrency model
of communicating event loops can be applied to:

• another object model: AmbientTalk/2 sufficiently differs from E through its in-
troduction of prototypes, delegation, traits, reflection,. . .

• another distribution model: AmbientTalk/2 is designed specifically for MANETs,
which required us to modify the failure semantics of far references.

• represent service discovery as an asynchronous event, to which the programmer
can react using event handlers similar to the when-expression in E to react on the
resolution of promises.

Before turning our attention to ambient references in chapter 6, the following chap-
ter continues our exposition of AmbientTalk. In particular, it describes AmbientTalk’s
support for metaprogramming and reflection. These abstractions are invaluable tools of
the language, given its role as a language laboratory to experiment with novel language
features. Later, in chapter 8, we apply these tools to implement ambient references
reflectively in AmbientTalk.

Chapter 5

Metalevel Engineering in
AmbientTalk

In the previous chapter, we have introduced AmbientTalk as an object-oriented, con-
current and distributed programming language. This chapter serves to establish Am-
bientTalk’s role as a language laboratory: like its predecessor AmbientTalk/1, Am-
bientTalk/2 is an extensible research artifact with the goal of explicitly supporting
the development and exploration of novel language constructs. To this end, the lan-
guage is equipped with extensive metalevel programming abstractions, following a
long-standing tradition of applying reflection to solve concurrent and distributed pro-
gramming problems [OIT92, McA95, MMY96, BGL98, CBM+02]. This chapter con-
tributes the following new concepts: first-class messages, the representation of custom
object references as proxy objects with custom metaobjects and a mechanism to trans-
parently yet safely compose JVM threads with AmbientTalk event loops. In chapter 8,
we show how these concepts are applied to incorporate ambient references (introduced
in the following chapter) as a language construct into AmbientTalk.

5.1 First-class Messages and Methods
We start our exposition of metalevel engineering in AmbientTalk by showing how
object-oriented messages and methods can be manipulated by the programmer as first-
class citizens of the language. While some object-oriented languages (most notably
Smalltalk and Self) also reify messages, we will show that AmbientTalk goes further
with respect to integrating them in the language.

5.1.1 First-class Messages

The messages sent and received by AmbientTalk objects are first-class objects in their
own right. AmbientTalk is far from being the first language to introduce first-class mes-
sages. However, what is remarkable is that AmbientTalk features syntax for expressing
literal messages. Consider the following methods defined on tables (AmbientTalk’s
arrays):

def eachSend: message {
self.each: { |rcvr| rcvr <+ message }

97

98 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

};
def mapSend: message {
self.map: { |rcvr| rcvr <+ message }

};

The expression rcv <+ msg sends a first-class message msg to an object rcv as if
the message was literally invoked on the receiver in the source text. Hence, this ex-
pression provides the functionality of perform: in Smalltalk. The above methods,
together with a literal syntax for messages, can be employed to express higher order
messages [WD05]: messages taking other messages as their argument.

observers.eachSend: <-statusUpdated(newStatus);
[4,5,6].mapSend: .+(2); // returns [6,7,8]

A literal message is denoted by a message send expression lacking a receiver. Am-
bientTalk distinguishes between three kinds of literal messages: asynchronous ones
(<-m()), synchronous ones (.m()) and delegated ones (ˆm()). The<+ operator is poly-
morphic and expresses either an asynchronous, a synchronous or a delegated message
send based on the type of its message argument.

A first-class message can be queried for its selector (its name) and the actual argu-
ments it carries. The message object can also be classified according to all type tags
with which it was annotated using the @ syntax. Hence, for a message msg constructed
as .m()@Type, evaluating is: msg taggedAs: Type yields true.

The benefit of having an expressive syntax for manipulating messages as first-class
language citizens is that it becomes easy to express higher-order functions which can
make direct abstraction from the messages sent back and forth between objects. Tradi-
tionally, this behaviour is incorporated in object-oriented languages by means of func-
tional abstraction using block closures. Higher-order messages can be seen as an alter-
native abstraction mechanism which is purely object-oriented in nature [WD05]. Hav-
ing an expressive syntax for messages is paramount for this abstraction to be usable in
practice: requiring the programmer to write Message.new(‘selector,[argument])
(as is done in Smalltalk) is as inexpressive as requiring the programmer to represent
a lambda closure as the single method of an anonymous inner class (as is done in
Java). Weiher and Ducasse achieve higher-order messages as a second-class abstrac-
tion in Smalltalk by means of argument currying and the ingenious use of Smalltalk’s
doesNotUnderstand: protocol [WD05]. Because AmbientTalk supports messages as
first-class citizens of the language, they do not have to be represented implicitly in
terms of argument currying.

In this section, we have shown how messages can be created and sent as first-class
objects. We postpone a discussion on intercepting messages received by an object (cf.
Smalltalk’s doesNotUnderstand:) until section 5.2.2. In the following section, we
first consider the first-class representation of methods rather than messages.

5.1.2 First-class Methods
In AmbientTalk, methods may be represented as first-class objects. Our representation
is based on the first-class methods of the Pic% language [DD03], an object-oriented
derivative of Pico [D’H96]. In AmbientTalk and Pic%, methods may be represented as
closures. To see why this is useful, consider the following example which is typical of
Smalltalk and Self:

dataset.map: { |data| converter.transform(data) }

5.2. REFLECTION 99

In Pic% and AmbientTalk, the programmer’s intent can be better expressed by re-
placing the block closure (whose sole task is to pass on the data from the collection
on to the converter object) with the actual transform method of the converter. In
AmbientTalk, we express this as follows:

dataset.map: converter.&transform

The.&operator selects a method from a receiver object and evaluates to a first-class
closure representing that method. Importantly, when applying that closure, the caller
only needs to pass regular parameters, it does not need to pass an explicit “receiver”
argument to represent self. While a method does require such an additional receiver
parameter, upon application the closure representing the method implicitly passes the
receiver object from which the method was selected using .&. This ensures that a
method always remains associated with a proper receiver object. This also forms the
major difference between first-class methods and reified methods. In Java, for exam-
ple, java.lang.reflect.Method.invoke requires the receiver to be passed
explicitly as the first argument.

Note that a separate .& operator is required to indicate method selection. The ex-
pression converter.transform represents an invocation of transformwith an empty
parameter list. This is a direct consequence of AmbientTalk’s adherence to the uniform
access principle (cf. section 4.2.1).

Now that we have discussed both first-class methods and messages, we can turn our
attention to AmbientTalk’s support for reflection. As will be described later, first-class
messages have an important part to play in the reification of asynchronous message
sending in AmbientTalk.

5.2 Reflection
Computational reflection allows programs to reason about themselves [Smi84, Mae87].
AmbientTalk provides extensive support for reflection by means of a mirror-based ar-
chitecture. Below, we explain the general ideas behind mirror-based reflection. Am-
bientTalk’s metalevel architecture is novel in that it combines mirror-based reflection
with intercession – the ability of programs to change the semantics of the programming
language. Also, next to applying mirror-based reflection on objects, we also apply it
on event loop actors. Finally, and most importantly, we show how reflection in Ambi-
entTalk can be used to build custom object references as proxy objects with a custom
metaobject. This implementation technique will be used in chapter 8 to implement
ambient references.

5.2.1 Mirror-based Reflection
AmbientTalk is built upon a mirror-based reflective architecture. Bracha and Ungar de-
fine a mirror-based architecture as any reflective architecture whose metaobjects (called
mirrors) adhere to three key design principles: encapsulation, stratification and onto-
logical correspondence [BU04]. They are briefly summarised below:

Encapsulation requires mirrors to encapsulate their implementation details. This
promotes the reuse of metalevel programs because metaprogrammers can code
against an interface rather than against a specific implementation. One of the
important aspects noted by Bracha and Ungar in this context is the role of the

100 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

type system: any metalevel API should not leak implementation details through
its static type declarations.

Stratification requires mirrors to be cleanly separated from base-level functionality.
We already briefly mentioned stratification in section 2.5.3 when discussing the
limitations of AmbientTalk/1’s metalevel architecture. The separation afforded
by stratification ensures that when a base level method’s name corresponds to
a metalevel operation, this method is not accidentally regarded as part of the
metaobject protocol. In a mirror-based architecture, any access to a mirror object
should be a dedicated, explicit operation. Not only does this have benefits for
deployment (e.g. only lazily enabling reflection support [BU04]), it also allows
metalevel programs to intercept this operation to enforce encapsulation of the
meta-level representation of base-level objects. For example, if p is a proxy for
another object o and a client asks a mirror on p, an implementation could hide the
existence of p for the client and directly return a mirror on o instead. This is only
possible if the implementation can intervene in the operation that determines p’s
mirror.

Ontological Correspondence states that the metalevel should be structured according
to the same concepts and rules that govern the base-level. Bracha and Ungar fur-
ther distinguish between structural and temporal correspondence. In short, struc-
tural correspondence implies that each base-level construct in the language has a
meta-level representation. Temporal correspondence requires a mirror-based ar-
chitecture to make the distinction between code (a description of a computational
process) and computation (the actual execution of that process) explicit.

In the following sections, we describe how these abstract design principles are con-
cretised to reflect upon AmbientTalk objects and actors.

5.2.1.1 Mirrors on Objects

AmbientTalk’s mirror-based architecture has been inspired by that of Self [ABC+00].
The following code excerpt shows how one may reflectively manipulate an instance of
the Point object defined in section 4.2.1, page 601:

def p := Point.new(2,3);
// retrieve a mirror by invoking reflect:
def mirrorOnP := (reflect: p);
// read the contents of a field via its mirror
mirrorOnP.grabField(‘x).value; // 2
// retrieve a mirror on a method
mirrorOnP.grabMethod(‘init); // <mirror on method:init>
// reflectively invoke a method
mirrorOnP.invoke(p, ‘distanceToOrigin, []);
// print all method names
mirrorOnP.listMethods.each: { |method|
system.println(method.name)

};
// add a z coordinate
mirrorOnP.defineField(‘z, 0);

1In AmbientTalk, a backquote character is used to quasi-quote an expression (cf. quasi-quoting in
Scheme [ADH+98]). A quasi-quoted expression evaluates to an object representing the expression’s ab-
stract syntax tree. Quasi-quoting an identifier evaluates to a symbol.

5.2. REFLECTION 101

A mirror is a metaobject which is causally connected [Mae87] to the object it mir-
rors: if the object is changed by base-level code, the changes can be observed via the
mirror. Conversely, changes applied explicitly to the object via the mirror modify the
actual base level object. The above examples illustrate many different forms of reflec-
tion. Using the terminology of Kiczales et al. [KRB91], AmbientTalk mirrors support:

Introspection : the retrieval of fields and methods (cf. grabField, grabMethod and
listMethods).

Invocation : the explicit invocation of methods (cf. invoke). The arguments passed to
invoke denote a receiver (any object), a selector (a symbol) and actual arguments
(a table). The receiver parameter is the object to which self is bound during
method invocation. If this receiver is the same as the object being mirrored
(p in the example), the reflective call expresses a standard method invocation.
If the receiver object is a different object, the reflective call expresses explicit
delegation (cf. the ∧ operator introduced in section 4.2.1).

Self-modification : the addition of new fields and methods (cf. defineField).

Mirrors on objects are accessed by calling the reflect: function. The reflect:
function in turn creates a mirror by calling a factory method, which can be replaced
by metaprograms. Because a mirror on an object obj is retrieved via a separate mirror
factory (via reflect: obj), rather than by querying the object itself (e.g. via obj.
reflect), the association between objects and their metaobjects can be separated from
base level concerns. Separating mirrors from their associated base level objects in this
way is what makes the mirror architecture stratified.

5.2.1.2 Mirrors on Actors

A novelty of AmbientTalk’s metalevel architecture is that it enables programmers to
reflect upon actors represented as event loops. Each actor hosts both base-level objects
(representing an application) and metalevel objects (mirroring base objects). Further-
more, each actor hosts an actor mirror: a special object denoting the mirror on the actor
as a whole. This mirror is special in that it does not reflect upon a concrete base-level
object because an AmbientTalk actor is an event loop rather than a concrete object. The
actor mirror allows manipulating the event loop without exposing its implementation,
just like a java.lang.Thread object in Java allows for the manipulation of a thread
without exposing its implementation.

Actor

Base level

Meta level

obj

reflect: obj
actor causal

connection

Figure 5.1: Reflective view on an AmbientTalk actor.

102 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

Figure 5.1 depicts the relationship between base and metalevel objects in an Am-
bientTalk actor. An actor’s mirror is bound to the actor field in the actor’s top-level
scope. An actor mirror can be accessed without invoking reflect:. This does not
violate stratification because actor is already a pure metalevel entity (it does not need
to be reflected).

For the purposes of this dissertation, the most important aspect of an actor mir-
ror is that it reifies the asynchronous message sending protocol used to communicate
with remote objects. The other concepts reified by the actor mirror are discussed else-
where [MVTT07]. The reification of asynchronous message sending in AmbientTalk
is akin to that of other reflective architectures such as that of ABCL/R [WY88] and
CodA [McA95]. In AmbientTalk, base-level code of the form receiver<-message(
argument)@Annotation is reified by the asynchronous message sending metaobject
protocol as:

actor.send(receiver,
actor.createMessage(‘message,[argument],[Annotation]));

The createMessage method returns a first-class object representing the asynchronous
message, while the send primitive enqueues the message in message queue of the re-
ceiver’s owning actor. By overriding these methods, one may attribute new semantics
to asynchronous messages and their transmission. Overriding these methods is done
by dynamically installing a new actor metaobject. Section 5.2.3.1 presents a concrete
example of the installation of a new actor protocol that shows how futures can be at-
tached to asynchronous messages from within AmbientTalk. In the following section,
we first continue our explanation of reflecting on regular objects.

5.2.2 Mirages: Mirror-based Intercession

One form of reflection which has not yet been discussed in section 5.2.1.1, again in
terms of the classification of Kiczales et al. [KRB91], is intercession: the ability of
metaprograms to modify the behaviour of objects. As a language laboratory, Ambi-
entTalk relies heavily on intercession to develop new language constructs. For ex-
ample, both futures and ambient references require intercession to be implemented
reflectively. In this section, we describe how an AmbientTalk programmer can provide
his own definition for methods of AmbientTalk’s metaobject protocol, such as e.g. the
invoke operation showcased in the Point example shown previously.

Early work on computational reflection already made the distinction between two
processes called “reification” and “reflection” [FW84]. Reification allows programs to
access data structures internal to a language interpreter. Mirrors provide such a reifi-
cation for AmbientTalk objects. Reflection, as used by Friedman and Wand, refers to
the reverse property of allowing a program to replace the data structures used by the
language interpreter. Traditionally, support for such reflection in mirror-based archi-
tectures has been very limited [BU04]. AmbientTalk’s contribution is that it reconciles
mirrors with such a form of reflection by means of what we call a mirage [MVTT07].

A mirage is an object whose semantics is entirely described by another Ambi-
entTalk object2. It is a base-level object causally connected to a mirror object that
defines a custom MOP. In order to clarify this, consider the archetypical example of

2The name is both a pun on “reflection” (a mirage is an optical illusion arising from reflection) and
signifies something that does not really exist. Because a mirage’s semantics is specified in AmbientTalk
itself, it does not exist as a concrete AmbientTalk object in the AmbientTalk interpreter.

5.2. REFLECTION 103

intercepting and logging all methods invoked on an object. First, we define a prototype
mirror object that encodes the logging behaviour by overriding the default implemen-
tation of the invoke metalevel operation:

def LogMirror := extend: actor.defaultMirror with: {
def invoke(rcvr, selector, args) {
system.println("invoked "+selector+" on "+self.base);
super̂ invoke(rcvr, selector, args); // perform default behaviour

}
}

To facilitate the development of mirror objects which require only small changes
with respect to the default language semantics, the actor mirror contains a prototypical
mirror object named the defaultMirror which encapsulates AmbientTalk’s default
metaobject protocol. The defaultMirror makes the native metaobject protocol im-
plementation explicitly accessible while keeping it encapsulated behind the protocol’s
interface3. The LogMirror leaves all metalevel operations intact save invoke.

A mirror can refer to the object with which it is causally connected by invoking
self.base. However, the above mirror is but a prototype implementation: it is not
yet causally connected to any object. A mirror object can only be absorbed by the
interpreter when a mirage object is defined to be explicitly mirrored by that mirror
object. The code excerpt below redefines the Point prototype from section 4.2.1 as a
mirage, whose behaviour is now defined by the LogMirror:

def Point := object: {
/* the original implementation */

} mirroredBy: LogMirror;

The object:mirroredBy: language construct associates a mirage base level object
with its corresponding mirror metaobject4. When the mirage is constructed, it becomes
causally connected with its mirror. The latter then effectively becomes absorbed by
the interpreter. For example, evaluating Point.new(1,1).distanceToOrigin() now
triggers the custom invoke method defined by the LogMirror. The details on how
the causal connection between a mirage and its associated mirror is constructed and
maintained can be found elsewhere [MVTT07].

In short, previous mirror-based metalevel architectures provided only limited sup-
port for intercession. The contribution of mirages is that they combine a mirror-based
architecture with intercession, thus making the architecture suitable to experiment with
novel language constructs while maintaining the beneficial software engineering prop-
erties of a mirror-based design.

5.2.3 First-class References as Mirages
Now that AmbientTalk’s metalevel architecture has been introduced, we demonstrate
how it can be employed to create custom object references. In chapter 8, we will show
how ambient references can be implemented as such custom object references. In

3ThedefaultMirror exists only for convenience. It is not necessary for the purposes of avoiding an
infinite meta-regress [Smi84]. An infinite regress would occur if a mirage is itself mirrored by a mirage,
and so on. To avoid infinite regress, a mirage must eventually be mirrored by a concrete (non-mirage)
AmbientTalk object.

4It is an object-based equivalent of the :metaclass option in the CLOS metaobject protocol which
associates a class with a custom metaclass [Pae93].

104 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

this section, we implement the (metalevel) behaviour common to all kinds of custom
eventual references in AmbientTalk itself. In the following section, we show how
futures can be implemented as such custom eventual references.

We define the behaviour common to all custom eventual references in a trait in
order to promote its reusability. The trait can then be “mixed into” different language
constructs.

def TEventualRef := object: {
// disallow synchronous access to the object
def invoke(rcvr, selector, args) {
raise: XIllegalOperation.new(
"Cannot synchronously invoke "+selector+" on " + self);

};
def receive(msg) {
if: (is: msg taggedAs: MetaMessage) then: {
self <+ msg; // process meta-message myself

} else: {
self.intercept(msg); // must be provided by the composite

}
};
// disallow meta-level operations not applicable on eventual refs
def newInstance(initargs) { raise: XIllegalOperation.new(...) };
def addMethod(mth) { raise: XIllegalOperation.new(...) };
...

};

The AmbientTalk metaobject protocol reifies synchronous method invocation sep-
arately from asynchronous message reception. In particular, method invocation and
delegation are reified via a mirror’s invoke method, while asynchronous sends are
reified via its receive method. The above trait makes use of this fact to disallow syn-
chronous invocation on its associated mirage. Hence, an eventual reference enforces
asynchronous access to its principal, which is its most distinctive feature in comparison
to regular object references.

If an incoming asynchronous message is annotated with @MetaMessage, it is pro-
cessed by the mirror itself, i.e. the message is resolved at the metalevel. If the incoming
asynchronous message is not annotated with @MetaMessage, its processing is deferred
to the composite using the TEventualRef trait. The method intercept is thus part of
the required interface of the trait.

Finally, the TEventualRef trait provides an implementation for all metalevel op-
erations that cannot be applied to eventual references. These implementations, like
the implementation for invoke signal the erroneous operation to the caller by means
of an exception. In effect, the only operations supported by eventual references are
asynchronous message sending and equality testing.

A custom eventual reference can now be represented as a mirage whose mirror uses
the above TEventualRef trait. The general pattern is as follows:

object: {
/* empty proxy object */

} mirroredBy: (
extend: actor.defaultMirror with: {
import TEventualRef;
def intercept(msg) {
/* implement reference behaviour */

5.2. REFLECTION 105

}
})

At the base level, the sole purpose of the above object is to act as an empty “proxy”
(representing the object reference). Because it is a mirage, its semantics can be altered
at the metalevel. Its asynchronous message reception behaviour is replaced by the defi-
nition provided by theTEventualRef trait. However, since this definition is incomplete
(it depends on the trait’s required interface), the mirror must additionally provide an
implementation for the intercept method. The implementation of this method effec-
tively encodes the behaviour of the object reference. The following section discusses a
concrete instance of such an implementation, to wit the message passing behaviour of
futures.

5.2.3.1 Case Study: Futures

Futures are not built into the AmbientTalk language. They have been implemented
entirely by means of the metalevel architecture. We outline this implementation here
to serve as a case study in applying the metalevel architecture to a concrete language
construct. In chapter 8, we employ exactly the same techniques to implement ambient
references. The integration of futures in AmbientTalk comprises two parts. First, we
implement a future abstract data type as a special kind of object reference. Second,
we adapt the actor metaobject protocol such that futures are automatically attached to
outgoing asynchronous messages.

Recall from section 4.3.4 that futures are first-class placeholders to which (asyn-
chronous) messages can be sent. Futures either forward the message to the value with
which they are resolved or otherwise buffer the message in a message queue for as long
as they remain unresolved. This semantics can be directly encoded by representing a
future as an object reference, as follows:

def makeFuture() {
def theFuture := object: { } mirroredBy: (
extend: actor.defaultMirror with: {
import TEventualRef; // use metalevel behaviour of eventual refs

def state := UNRESOLVED;
def resolvedValue := nil;
def inbox := [];
// implementation for the required method of the TEventualRef trait
def intercept(msg) {
if: (state == RESOLVED) then: {
resolvedValue <+ msg; // forward the message

} else: {
inbox := inbox + [msg]; // buffer the message

}
};
def resolveWithValue(value) { ... };
def subscribe(observer) { ... };
...

});
def theResolver := object: {
def resolve(val) {
theFuture<-resolveWithValue(val)@[MetaMessage,OneWayMessage]

};

106 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

def ruin(exc) { ... };
};
[theFuture, theResolver]

}

The future’s mirror is either in an unresolved or in a resolved state, as indicated by
its state field. For didactic purposes, we omit the implementation of ruining futures
with exceptions. Initially, the future is unresolved. The transition from an unresolved
to a resolved state occurs when a resolveWithValue message is sent to the future’s
mirror. The theResolver object (acting as the second return value of makeFuture)
implements resolve by sending a corresponding metamessage to the future object’s
mirror. This is accomplished by annotating the message with @Metamessage. Future-
type message passing is disabled for messages annotated with @OneWayMessage. This
annotation is useful if no return value is required for an asynchronous send. More
fundamentally, the resolveWithValue metamessage sent to the future mirror requires
this annotation to avoid an infinite loop. Without this annotation, the resolution of one
future would require the creation (and resolution) of another future, whose resolution
requires another future, and so on.

In addition to the resolveWithValue method, the future mirror also extends the
default metaobject protocol with a subscribemethod which can be used to register an
observer with the future (normally by means of when:becomes:), to be notified when
the future becomes resolved. The (simplified) definitions of these methods are shown
below5.

def observers := [];
def resolveWithValue(value) {
if: (state == UNRESOLVED) then: {
state := RESOLVED;
resolvedValue := value;
inbox.each: { |msg| value <+ msg };
inbox := [];
observers.each: { |obs| obs<-notifyResolved(value)@OneWayMessage };
observers := [];

}
};
def subscribe(observer) {
// if future has already been resolved, notify immediately
if: (state == RESOLVED) then: {
observer<-notifyResolved(resolvedValue)@OneWayMessage;

} else: {
observers := observers + [observer];

}
};

A future can be resolved only once. When it is resolved, all messages previously
accumulated in the inbox are forwarded to the resolved value. Similarly, all registered
observers are notified. An observer that subscribes on a resolved future is notified
immediately. Otherwise, it is stored in a table until the future becomes resolved.

At this point, futures have been introduced as a new data type into the interpreter.
However, we have yet to define how they are integrated into the actor’s message sending

5We omit the case where a future is resolved with another future. In other words, we assume thevalue
parameter of theresolveWithValuemethod not to be a future.

5.2. REFLECTION 107

protocol. The following code excerpt shows how the language module defining futures
refines these methods to attach a future to an outgoing asynchronous message.

actor.install: (extend: actor with: {
def createMessage(sel,args,annotations) {
// first, create a regular message
def msg := super̂ createMessage(sel,args,annotations);

if: (is: msg taggedAs: OneWayMessage) then: {
msg; // if msg is one-way, do not attach a future

} else: {
extend: msg with: { // attach a future to the message
def [future, resolver] := makeFuture();
// this method is invoked upon reception
def process(receiver) {
// delegate to actually invoke the method
def result := super̂ process(receiver);
resolver.resolve(result);
result;

}
}

};
def send(receiver, msg) {
def result := super̂ send(msg);
if: !(is: msg taggedAs: OneWayMessage) then: {
msg.future; // async send returns the future

} else: {
result; // nil, by default

}
}

}
})

The code excerpt shows the installation of a custom actor mirror which overrides
the default implementations of createMessage and send (cf. section 5.2.1.2). The
createMessage method is specialised to return future-type messages. These are asyn-
chronous messages extended with a future field and whose process method is over-
ridden. The overridden process method is invoked when the message arrives at its
receiver object. Its implementation ensures that the future attached to the message is
automatically resolved with the return value of the invoked method. Finally, the actor’s
asynchronous message sending semantics is modified by overriding send. A future-
type message send returns the future attached to the message rather than the default
nil value.

5.2.4 Stratified Object References
From an implementation point of view, custom object references are nothing but place-
holders or proxies for other objects. Implementing proxy objects by means of reflection
as is done in AmbientTalk has several advantages over the more traditional method such
as e.g. using dynamic proxies in Java [GJSB05] or the doesNotUnderstand: protocol
in Smalltalk [GR89]. Object references are objects whose message reception seman-
tics deviate from those of normal objects. By implementing them as mirages, we can
change the actual message reception semantics which the language attributes to that

108 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

object, rather than using hooks provided by the language, as is done traditionally. As a
result:

• base level code is not affected by the metalevel protocol. Because base and
metalevel are cleanly stratified, the methods defined at the metalevel will not
interfere with base level messages. For example, imagine an application involv-
ing newsfeeds to which users may subscribe (by invoking a newsfeed object’s
subscribemethod). Assume that feed is a future to be resolved with a newsfeed
object. When evaluating feed<-subscribe(user), we can rest assured that the
subscribe message will not accidentally be regarded as part of the metaobject
protocol of the future. Contrast this with e.g. Smalltalk’s approach to implement-
ing proxies using doesNotUnderstand:. If subscribe is a method of the proxy
object, then doesNotUnderstand: will simply not fire for this method, because
the proxy object does understand the message. Even worse, if an application
defines its own doesNotUnderstand: method (e.g. on an object representing
a translator), this method may be erroneously invoked by the Smalltalk virtual
machine.

• base level code does not affect the metalevel protocol. For example, in the imple-
mentation of when:becomes:, the observer object is registered with the future by
invoking future<-subscribe(observer)@MetaMessage. The @MetaMessage
annotation is crucial here, as the future’s subscribemethod is defined on the fu-
ture’s mirror, rather than on the base-level proxy object itself. As a result of this
stratification, metalevel messages cannot be mistaken for base level messages:
the implementation of when:becomes: can rest assured that the subscribemes-
sage triggers the metaobject protocol and not the subscribe method of a news-
feed object simply because the base application incidentally happens to imple-
ment a method with the same name.

In short, representing object references as mirages is a robust implementation tech-
nique. The key to this robustness lies in the principle of stratification which our archi-
tecture achieves through its mirror-based design. In the following section, we discuss
a different metalevel engineering technique, one which allows AmbientTalk objects to
interoperate with the underlying Java Virtual Machine.

5.3 Linguistic Symbiosis with the JVM
In this section, we describe how AmbientTalk objects can access objects in the un-
derlying Java Virtual Machine (JVM) by means of a technique known as a linguistic
symbiosis [GWDD06]. Such a mechanism enables us to access Java libraries from
within AmbientTalk. In section 8.7.3, we will describe how the implementation of
ambient references uses this mechanism to access the M2MI library (previously dis-
cussed in section 3.3.7.4). Not only does the symbiosis allow access to Java libraries,
it allows AmbientTalk objects to interoperate with other languages as well, as long as
these languages’ data can be compiled into JVM objects.

While constructing a linguistic symbiosis with the JVM is not novel – as can be
witnessed by the vast number of dynamic languages which provide access to the JVM
(e.g. JRuby, Jython, JScheme, LuaJava, JPiccola, . . .) – the AmbientTalk/JVM sym-
biosis goes further by also reconciling both systems’ fundamentally different concur-
rency models with one another. While AmbientTalk is entirely built on an event-driven

5.3. LINGUISTIC SYMBIOSIS WITH THE JVM 109

actor-based architecture, the JVM employs a traditional multithreaded model. Com-
posing such models is not straightforward: the event-driven model enforces certain
concurrency constraints (cf. section 4.3.1) which could be violated by the JVM’s mul-
tithreaded concurrency if JVM objects access AmbientTalk objects without proper pro-
visions. Linguistic symbiosis acts as a mediator between the two systems to enforce a
safe yet transparent composition.

5.3.1 Linguistic Symbiosis
Our model for explaining the AmbientTalk/JVM linguistic symbiosis is based on that
of inter-language reflection [GWDD06], which is itself based on an open design of
object-oriented languages [Ste94b]. In the inter-language reflection model, a linguistic
symbiosis consists of:

• a data mapping which ensures that data in one language looks like data in the
other language, such that the symbiosis becomes as syntactically transparent as
possible. For example, it is desirable that JVM objects are equally represented
as objects in AmbientTalk, such that messages can be sent to objects regardless
of their native language.

• a protocol mapping between the metalevel representation of both languages’
data. For example, both AmbientTalk and JVM objects communicate by sending
messages, but AmbientTalk is dynamically typed while the JVM is statically
typed and exploits type overloading during method lookup. A proper symbiosis
needs to map these message sending protocols onto one another.

AmbientTalk has been implemented on top of the JVM. Because of this, the JVM
plays two roles: it is both the symbiont system and the implementation host of Ambi-
entTalk (and hence of the linguistic symbiosis itself). Figure 5.2 illustrates the different
objects that play a part in the AmbientTalk/JVM symbiosis, according to the implemen-
tation model of inter-language reflection [GWDD06]. AmbientTalk objects are imple-
mented as JVM objects. This is illustrated by means of the “represents” relationship.
To enable symbiosis, additional objects are required which denote the appearance of
objects from one language in the other language. At the implementation level, such
appearances are implemented as wrapper objects, which wrap an object from a differ-
ent language and which perform the protocol mapping which translates between the
semantics of the symbiont languages. Below, we summarise the data and the protocol
mappings of the symbiosis. A full account of the AmbientTalk/JVM symbiosis can be
found elsewhere [VMD08].

Mapping objects from JVM to AmbientTalk AmbientTalk’s data mapping is sim-
ilar to that of other dynamic languages implemented on top of the JVM. In a nutshell,
JVM values are either mapped to primitive AmbientTalk objects where possible (for
example, a boolean is mapped onto the true or false prototype in AmbientTalk) or
are otherwise represented as regular AmbientTalk objects (the “AT wrapper for JVM
Object” in figure 5.2). The methods (resp. fields) of this wrapper object correspond
to the non-static methods (resp. fields) of the wrapped JVM object. The parent object
to which the AmbientTalk wrapper delegates is a wrapper for the class of the wrapped
JVM object. The methods of this class wrapper correspond to the static methods and
fields defined on the wrapped JVM class.

110 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

AmbientTalk JVM

AmbientTalk implementation on the JVM

AT Object

JVM Object

AT Object
Implementation

JVM Wrapper
for AT Object

AT Wrapper
for JVM Object

Data Mapping

Protocol Mapping

Appearance of
foreign object
(implemented
by wrapper)

A represents BA B

AT Wrapper
for JVM Object
Implementation

Figure 5.2: Entities in the linguistic symbiosis between AmbientTalk and the JVM.

Mapping messages from JVM to AmbientTalk When an AmbientTalk object in-
vokes a method on the wrapper of a JVM object or class, the wrapper converts the invo-
cation into a JVM method invocation by means of the java.lang.reflect API. If
the method is overloaded, the symbiosis attempts to resolve overloading automatically
by inspecting the type and number of actual arguments. If automatic overloading fails,
the AmbientTalk programmer is forced to pass type information in the call (how this is
done is explained elsewhere [VMD08]).

Mapping objects from AmbientTalk to JVM Primitive AmbientTalk objects are
mapped to primitive JVM values when possible (e.g. an AmbientTalk integer is mapped
to an int). If such a conversion is not possible, the AmbientTalk/JVM symbiosis can
represent the AmbientTalk object as a regular JVM object, but only if the static type
of the variable which is to hold that JVM object is an interface type6. Such wrapped
AmbientTalk objects are represented by the “JVM wrapper for AT Object” in figure 5.2.

Mapping messages from AmbientTalk to JVM When a JVM object invokes a
method on such a wrapper, the wrapper transforms the JVM method invocation into
an AmbientTalk invocation by means of the invoke metalevel operation defined on
the wrapped object’s mirror (cf. section 5.2.1.1). Since AmbientTalk does not support
overloaded methods, the method to be invoked can always be uniquely identified.

To illustrate how AmbientTalk objects can be passed to JVM objects, consider the
following archetypical pattern of registering a listener object on a button GUI widget
to act upon event notifications (written in AmbientTalk, but using the actual Java AWT
framework)7:

def Button := jlobby.java.awt.Button;
def b := Button.new("Click me");
b.addActionListener(object: {
def actionPerformed(actionEvent) {
system.println("The button was pressed");

}
})

6This limitation is due to the fact that the implementation uses the JVM’s dynamic proxies to implement
a wrapped AmbientTalk object. Such dynamic proxies can only be instantiated for interface types [GJSB05].

7Thejlobby object is a special AmbientTalk object whose fields correspond to packages and classes
available in the underlying JVM.

5.3. LINGUISTIC SYMBIOSIS WITH THE JVM 111

The above code demonstrates that an instance of the Java class java.awt.Button
appears as an AmbientTalk object b. It also demonstrates that AmbientTalk text ("
Click me") is transparently converted by the symbiosis into a java.lang.String.
The addActionListener method defined on instances of the Java Button class takes
a parameter of type ActionListener as its argument, which is an interface type. As
a result, it is allowed to pass any AmbientTalk object to this method; the object is
not even required to implement all declared interface methods, although the anony-
mous object passed in the above code does properly implement the ActionListener
interface. The symbiosis transparently wraps the AmbientTalk object into a wrapper
implementing the ActionListener interface. The AWT framework will invoke the
actionPerformed method on the wrapper whenever the button is pressed. A discus-
sion on the concomitant threading issues is postponed until the next section.

5.3.2 Composing Threads with Actors
The linguistic symbiosis described above enables AmbientTalk objects to invoke meth-
ods on JVM objects and vice versa. Let us consider the resulting concurrency issues in
both directions:

• When an AmbientTalk object ao invokes a method on a JVM object jo, it is the
actor owning ao that will execute the method of jo. This does not fundamentally
violate any concurrency properties of jo, as any JVM object that is to be manipu-
lated by multiple threads of execution must be made thread-safe using the JVM’s
concurrency control primitives. However, the AmbientTalk programmer must be
wary of the fact that, by making an actor execute JVM bytecode, the actor has
to play by the rules of shared-state concurrency. Hence, the actor may need to
acquire locks and may become blocked. As a result, the deadlock-freedom of the
pure event loop model can no longer be guaranteed.

• When a JVM object jo invokes a method on an AmbientTalk object ao, we can-
not simply allow the JVM thread to execute the method of ao. This would violate
the Exclusive State Access property of the event loop model postulated in sec-
tion 4.3.1. For example, if the thread executing Java AWT event notifications
were allowed to execute the actionPerformed method of the anonymous Am-
bientTalk ActionListener object, the thread would operate concurrently on the
same data as the actor owning the ActionListener. Since AmbientTalk does
not have any thread synchronisation constructs (because it presumes the Exclu-
sive State Access property) this could result in race conditions on the actor’s
state.

In order to safeguard the concurrency properties of AmbientTalk’s event loop model,
the AmbientTalk/JVM symbiosis automatically synchronises multithreaded access to
AmbientTalk objects. We distinguish between two ways in which JVM objects may
access AmbientTalk objects: via method invocation or via event notification. Both are
discussed below.

5.3.2.1 Method Invocation

As previously remarked, when an AmbientTalk object (e.g. the ActionListener in the
above example) is passed as an argument to a JVM object, the AmbientTalk/JVM sym-
biosis implicitly wraps this object in a JVM object implementing the required interface.

112 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

Figure 5.3 illustrates the sequence of events occurring when a JVM object invokes a
method on the wrapper. Conceptually, this wrapper object represents an eventual ref-
erence to the AmbientTalk object because it enforces asynchronous access: whenever
a JVM object invokes a method on the wrapper, the method invocation is transparently
converted by the wrapper into an asynchronous AmbientTalk message send. This mes-
sage send is properly enqueued in the message queue of the actor owning the wrapped
AmbientTalk object. As such, it will be processed serially, and the above invocation
of the actionPerformed method is treated simply as if it were triggered by a regular
AmbientTalk object.

Of course, while the above solution satisfies AmbientTalk’s event loop model, it
does not fit with the JVM’s multithreaded view on the object world: to the JVM thread,
a method invocation should be executed immediately and may return a result or raise
an exception. Therefore, the wrapper object transparently suspends the JVM thread
on a synchronisation barrier until the AmbientTalk method has been processed. Any
return value (or raised exception) is signalled to the barrier object which at that point
resumes the JVM thread.

JVM
object

AT
object

AmbientTalk actor

1. invoke method

2. convert invocation
into async send

4. dequeue and
process message

5. return value or exception6. resume Java thread

3. suspend
Java thread

Actor cflowThread cflow

Barrier

JVM
wrapper

Figure 5.3: Mediating between JVM invocations and AmbientTalk messages.

5.3.2.2 Event Notification

The JVM’s thread-based concurrency model is sometimes inappropriate even for Java
applications. Many interactive applications (e.g. games, user interface frameworks)
or discrete-event simulations require an event-driven approach. In Java, event-driven
programming is not supported directly, but an event-driven style can be adopted by
structuring code around an event loop framework. The Java AWT and Swing toolkits
are the quintessence of such an approach.

In event-driven Java frameworks, asynchronous message sends are second-class
language abstractions. They are represented indirectly in terms of synchronous method
invocations on so-called listener objects. The documentation of most event-driven Java
frameworks specifies that such methods must return as soon as possible, and should
preferably only schedule tasks for later execution instead of calling other methods.
Our symbiosis can detect such indirect (second-class) asynchronous message sends
and map them onto actual asynchronous sends in AmbientTalk, without synchronising
the JVM thread on the return value. This is highly desirable because it guarantees the

5.3. LINGUISTIC SYMBIOSIS WITH THE JVM 113

responsiveness of the event-driven Java framework.
Reconsider the anonymous AmbientTalk object registered as an ActionListener

on an AWT Button. When the AWT event loop invokes the actionPerformedmethod
on the AmbientTalk object, this implicitly indicates an event notification, which is
conceptually asynchronous. However, applying the synchronisation described in the
previous section would suspend the AWT event loop until the AmbientTalk actor has
actually processed the actionPerformed method. In this case, the synchronisation
is superfluous because the method represents an event notification, which does not
need to return any result. The AmbientTalk/JVM symbiosis detects this and essentially
converts the Java listener method invocation into a pure asynchronous AmbientTalk
send by dropping steps 3, 5 and 6 in figure 5.3.

How does our symbiosis distinguish method invocations from event notifications?
In order to qualify as an event notification, the invoked JVM method must a) belong to
an interface extending the java.util.EventListener interface8, b) have a void re-
turn type and c) have an empty throws clause. Because the actionPerformedmethod
adheres to all three of these criteria, an invocation of this method on an AmbientTalk
listener will not block the AWT framework, guaranteeing the overall responsiveness of
the system. Also, AmbientTalk methods invoked in this way must not be restructured
such that they should “return quickly”.

To summarise, linguistic symbiosis is a mechanism that enables AmbientTalk and
JVM objects to transparently communicate with one another. While this mechanism
is common among dynamic languages implemented on top of the JVM, the novelty
of the AmbientTalk/JVM linguistic symbiosis is that it enforces a safe composition of
AmbientTalk event loop actors with JVM threads. In the following section, we discuss
an embedding of AmbientTalk in Java which relies on the linguistic symbiosis outlined
here.

5.3.3 Embedding AmbientTalk in Java
In the previous section, we have primarily regarded linguistic symbiosis as a mecha-
nism for AmbientTalk objects to reuse existing Java libraries. However, it is equally
viable for a Java programmer to embed AmbientTalk components into an existing Java
application. This allows the Java programmer to benefit from e.g. AmbientTalk’s sup-
port for distributed programming. In this section, we describe how an AmbientTalk
interpreter can be embedded in a Java application.

As a concrete example, we illustrate how AmbientTalk unit tests can be combined
with unit tests written in the JUnit unit testing framework, allowing a Java developer
to integrate both unit tests written in AmbientTalk and written in Java in a consistent
testing framework. In AmbientTalk, a unit test is an object whose methods are prefixed
with test. All unit test objects delegate to the prototypical unit test object, which
contains reflective code to invoke all test cases. This object also implicitly implements
the junit.framework.Test Java interface type:

def UnitTestPrototype := object: {
def testMethods; // a table of method metaobjects
def init() {
testMethods := retrieveTestMethods(self);

};

8It is a convention of Java frameworks that classes whose instances represent event listeners implement
(a subtype of) this empty interface.

114 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

def countTestCases() { testMethods.length };
def run(reporter) {
reporter.startTest(self});
testMethods.each: { |method| /* perform the test */ };
reporter.endTest(self});

};
}

Now consider a TestSuite that is composed of both unit tests written in Java and
unit tests written in AmbientTalk. All unit tests uniformly implement the Test in-
terface. In order to incorporate an AmbientTalk unit test into the test suite, a Java
object representing the AmbientTalk interpreter must be instantiated. As noted in sec-
tion 4.3.2, every interpreter automatically creates a single actor which is responsible
for evaluating AmbientTalk code.

public static void main(String[] args) {
AmbientTalkInterpreter evaluator = new AmbientTalkInterpreter(...);
Test exampleATTest =
(Test) evaluator.evalAndWrap(new File("mytest.at"), Test.class);

Test exampleJavaTest = new MyJavaUnitTest();
TestSuite suite = new TestSuite();
suite.addTest(exampleATTest);
suite.addTest(exampleJavaTest);
junit.textui.TestRunner.run(suite);

}

The ellipsis in the code snippet above abstracts from various configuration param-
eters which can be passed to the interpreter (e.g. which initialisation code to run,
the directory path to AmbientTalk libraries, etc.). We further assume that the file
mytest.at contains an AmbientTalk unit test. The AmbientTalk interpreter pro-
vides a method evalAndWrap which takes AmbientTalk code (in the form of a file or a
string), evaluates this code and then wraps the resulting AmbientTalk object in a proxy
implementing the given interface (cf. section 5.3.2.1).

A TestRunner executes the test suite by sequentially invoking each unit test’s run
method. This execution is performed by a Java application thread. Because an em-
bedded AmbientTalk unit test should be run inside its owning actor, an invocation of
the run method on the wrapped AmbientTalk unit test is transformed into an asynchro-
nous message to be processed by the actor owning exampleATTest (as described in
section 5.3.2.1). The JVM thread is transparently suspended by the wrapper until the
AmbientTalk actor has executed the AmbientTalk unit test. The thread is suspended
because the run method is not an event notification (the Test interface to which it be-
longs does not extend the EventListener interface). The JUnit test runner expects the
unit test to run to completion before executing the next test or terminating.

The techniques put forward in the previous section greatly simplify the embed-
ding of AmbientTalk code within Java applications. Since the evalAndWrap method
of the interpreter object automatically creates a wrapper acting as a mediator between
Java and AmbientTalk, neither AmbientTalk nor Java programmers must deal with the
threading issues arising from embedding the event-driven AmbientTalk language into
the multithreaded Java language.

5.4. CONCLUSION 115

5.4 Conclusion
In this chapter, we have presented metalevel engineering techniques in AmbientTalk.
In particular, we have presented AmbientTalk’s support for first-class messages, its
mirror-based metalevel architecture and its support for linguistic symbiosis with the
JVM. We discern the following scientific contributions:

• Through AmbientTalk’s support for first-class messages, higher-order messages
can be directly expressed in the language.

• AmbientTalk’s reflective architecture reconciles mirrors with intercession. This
marriage is accomplished via what we call a mirage: an immaterial object whose
semantics is entirely described by a custom mirror object [MVTT07].

• We have shown how mirages can be applied to implement custom object refer-
ences. The stratification of AmbientTalk’s mirror-based architecture furthermore
ensures that such object references avoid name clashes between base and meta-
level message names.

• We have explained how AmbientTalk’s futures can be implemented as custom
object references and how they can be integrated into the asynchronous message
sending protocol of actors.

• We have described a linguistic symbiosis between AmbientTalk and the Java
Virtual Machine. This linguistic symbiosis is novel in that it allows for the trans-
parent yet safe composition of threads with event loops [VMD08].

With both the AmbientTalk language and its reflective architecture properly intro-
duced, the stage is set for describing ambient references. In the previous chapter, we
have extensively described how AmbientTalk’s far references are appropriate for mod-
elling point-to-point communication which is resilient to partial failures. In the follow-
ing chapter, we describe communication patterns that are inappropriate to express by
means of far references. We will argue why and how ambient references complement
far references to express coordination between objects which are distributed across a
MANET. The concepts introduced in this chapter will only resurface later in chap-
ter 8, when discussing how ambient references have been implemented reflectively in
AmbientTalk.

116 CHAPTER 5. METALEVEL ENGINEERING IN AMBIENTTALK

Chapter 6

Ambient References

With AmbientTalk now introduced, we can use it as a technical platform on top of
which ambient references are conceived. We start this chapter with a discussion on why
AmbientTalk’s built-in language constructs fail to provide the programmer with lan-
guage constructs that deal with a number of the coordination criteria from section 3.2.
Subsequently, we define two novel kinds of language abstractions: ambient references,
which enable communication with a volatile group of proximate objects and anony-
mous far references, which make far references decoupled in space. While ambient
references are but a single language abstraction, they enable messages to be delivered
using a wide range of “delivery policies”. These policies enable ambient references
to express widely different interaction patterns among distributed processes within a
single unifying object-oriented framework.

6.1 Motivation
Before describing the details of the ambient reference abstraction, we highlight the
need for such abstractions in AmbientTalk. At first sight, it might seem that Am-
bientTalk is sufficiently high-level to deal with space-decoupled communication and
arity decoupling directly. After all, the built-in service discovery primitives allow one
to discover remote objects based on an abstract description (a type tag). In this section,
we show by example that explicitly using the service discovery mechanism to commu-
nicate with remote objects can quickly lead to intricate code. This forms the main moti-
vation for including ambient references in AmbientTalk: they allow the programmer to
abstract from this intricate code such that they can better focus on application-semantic
concerns.

6.1.1 Roaming

In a mobile ad hoc network, a single conceptual service may be offered by a multitude
of different devices (“access points”). In a nomadic network, these access points may
even cooperate using the network’s infrastructure. In such a context, a mobile client
of the service should be able to abstract from the different access points. We want to
prevent code running on the mobile client from having to explicitly manage rebinding
of service references based on their current connectivity and availability. This layer of
abstraction is called roaming in the global system for mobile communications (GSM)

117

118 CHAPTER 6. AMBIENT REFERENCES

network, where it is used to transparently “reconnect” a cellular phone to a different
base station when it approaches the boundary of its cell. In this context, such a “recon-
nection” is known as a handover. We give another example of roaming below.

6.1.1.1 Example: Location Service

Consider a location tracking service in a nomadic network. The idea is for mobile
clients to periodically send their latest location information (e.g. GPS coordinates) to
any nearby location tracking service. This service can then be queried either by other
mobile clients or maybe even stationary desktop computers connected to the network.
By querying the service, clients can retrieve the latest location of other mobile clients.
We assume that the location tacking services themselves are connected via the nomadic
network’s infrastructure such that they can share or replicate the location data which
they have gathered.

6.1.1.2 Implementation in AmbientTalk

We sketch a prototypical implementation of the mobile client in the above scenario.
The mobile client’s task is quite straightforward: it periodically sends its current loca-
tion information to a nearby location tracking service. Of course, the code will have to
tackle some border cases. When the client is first started, no location tracking service
may be present. Similarly, while it is moving, the location tracking service with which
it is communicating may no longer be in communication range. This requires the client
to, at some point, rebind its connection to another location tracking service.

A second issue for the mobile client is how to treat location information that it can-
not send to the remote service when no access point is available. The answer to this
question is very application-specific. Possible semantics may be that location infor-
mation is dropped while being disconnected. This is acceptable if the location service
only keeps track of the latest location information anyway. If, on the other hand, the
location service also keeps track of a client’s path of movement (i.e. all locations a
client has visited for a certain period of time), it is necessary to buffer location infor-
mation until a new access point is available. For the sake of the arguments, we assume
the latter semantics.

The following code snippet defines a function createConnection which, given a
client identification, returns a conceptual connection to a nearby location tracking ser-
vice. Location updates can then be submitted to the server by invoking the connection
object’s updateLocation method.

deftype LocationService;
def createConnection(clientId) {
def availableServices := Set.new();
def serviceProvider := nil;
def locationBuffer := Vector.new();

whenever: LocationService discovered: { |svc|
availableServices.add(svc);
if: (serviceProvider == nil) then: {
serviceProvider := svc;
locationBuffer.each: { |loc|
serviceProvider<-submitLocation(clientId, loc);

};
locationBuffer.clear();

6.1. MOTIVATION 119

};

when: svc disconnected: {
availableServices.remove(svc);
if: (serviceProvider == svc) then: {
serviceProvider := nil;
if: !(availableServices.isEmpty) then: {
serviceProvider := availableServices.selectRandom();

}
}

}
};

object: {
def updateLocation(location) {
if: (serviceProvider == nil) {
locationBuffer.append(location);

} else: {
serviceProvider<-submitLocation(clientId, location);

}
}

}
}

We assume that location tracking services are exported and identified by means of
the LocationService type tag. They implement a submitLocation method to store
the coordinates of a client. All available location services are stored in the available
-Services set. The connection object is conceptually in two states: if the service-
Provider variable is set to nil, there is no service provider. Otherwise, the variable in-
dicates the current service provider in use. Note how, in the updateLocation method,
a distinction between these states is made to determine whether or not to buffer the
location update. If a connection with a server is available, the location information is
sent, along with the client’s identification.

The more tedious part of the above code is the management of keeping track which
services are available and which are not. The problem is that AmbientTalk provides
no means to abstract over a set of available services. Rather, this set – represented
here by the availableServices variable – has to be managed explicitly. Services
are added upon discovery and removed upon disconnection. These events have to be
trapped manually. Furthermore, these events generate “state transitions” that have to
be dealt with: if the service being discovered is the only one available, previously
buffered location information must be flushed to the server. Oppositely, if the service
that disconnected was the client’s current access point, the serviceProvider variable
has to be manually rebound.

The above example shows that an AmbientTalk programmer must himself imple-
ment the layer of abstraction that supports roaming. This implies that the above code
is a generic pattern that AmbientTalk programmers will find themselves writing every
time they want their far references to rebind automatically to different remote objects.
The pattern cannot be easily modularised by means of traditional abstraction mecha-
nisms because different instances of the pattern deal with different kinds of services,
messages and – as stated previously – multiple semantics regarding the treatment of
messages sent to disconnected services. In the following section, we address another
communication pattern which cannot easily be abstracted from in AmbientTalk.

120 CHAPTER 6. AMBIENT REFERENCES

6.1.2 One-to-many Communication

AmbientTalk in itself does not provide any means to express arity-decoupled, one-to-
many communication. At first sight, this does not seem to pose much problems. After
all, it is easy enough to iterate over a table of remote objects, and to send each of those
objects a message, as in group.each: {|o| o<-m()}. However, this simple pattern
does not deal with many of the issues that arise when communicating with a volatile
group of objects. For example, how does one deal with objects joining or leaving the
group while performing the “broadcast”, and how should the multiple return values of
the “broadcasted” message be aggregated? We discuss these issues in the context of a
concrete application, introduced in the following section.

6.1.2.1 Example: Voting in an Ad Hoc Network

Consider a simple application for organising a poll among peers. One peer may start a
poll, asking the opinion of nearby peers on a given subject. Nearby peers get notified
of the poll, provide their vote and submit the result to the originator of the poll. After
giving all peers a chance to vote, the originator can process the results and may even
broadcast them to all nearby peers again. On-the-fly voting in an ad hoc network can
be useful in e.g. a disaster relief situation. Paramedics, firemen and rescue workers
could use it to decide on which actions to take next. In a more playful setting, voting
can be used in a team-based mobile multiplayer game to decide on a group strategy
among proximate players of the same team. We will use the latter as the context for a
prototypical implementation in AmbientTalk.

6.1.2.2 Implementation in AmbientTalk

In order to implement voting between nearby team players, the very first step is to build
a collection containing all nearby objects representing those players. AmbientTalk
by itself does not provide any explicit means for such “groups” of proximate objects,
requiring the programmer to create this abstraction himself. The code for implementing
this is remarkably similar to the management of the service providers in the location
service example explained earlier. In this example, it does not suffice to keep track of
all services of a certain type, we also have to ensure that the services represent players
of the same team. This is a dynamic attribute of the service that has to be retrieved and
tested against explicitly in the code. We assume players in the multiplayer game are
service objects exported under the Player type tag.

def nearbyTeamPlayers := Set.new();

whenever: Player discovered: { |player|
when: player<-getTeam()@Due(TIMEOUT) becomes: { |team|
if: (team == myTeam) then: {
nearbyTeamPlayers.add(player);
when: player disconnected: {
nearbyTeamPlayers.remove(player);

}
}

}
};

6.1. MOTIVATION 121

Note that a test for a dynamic attribute, like the player’s team, is encoded by ex-
plicitly querying the player for his team. The asynchronous send is bounded in time by
means of a timeout, which is application-specific: if the call is not replied to within the
timeout period, the player is further ignored.

The above piece of code provides other components of the multiplayer game with
a representation of all nearby team players. It is intended to be reused by different
components of the multiplayer game. The module implementing votes is one of them.
Its implementation is described below.

def broadcastVote(poll, maxVoteTime) {
def [future,resolver] := makeFuture();
def receivedVotes := Map.new();

nearbyTeamPlayers.each: { |player|
when: player<-askToVote(poll)@Due(maxVoteTime) becomes: { |vote|
receivedVotes.put(player, vote);

}
};
when: maxVoteTime elapsed: {
resolver.resolve(receivedVotes);

};

future;
};

The broadcastVote function takes as parameters a textual description of the vote
poll, and a time period maxVoteTime indicating how long incoming results should be
accepted. It returns a future which will be resolved when the time period has elapsed1.
The value of the future will be a mapping associating players with their corresponding
vote. The caller of the vote function can then e.g. calculate the winning vote and/or
broadcast this vote.

Note that the above code has to deal with a number of issues explicitly. First, a
broadcast to all nearby players is represented implicitly by iterating over the previ-
ously constructed list of nearbyTeamPlayers and sending them an askToVote mes-
sage. Not only is this broadcast implicit, it is also inefficient in terms of network load,
as the broadcast is represented in terms of multiple low-level messages to be put on
the network. Second, results are gathered explicitly in the receivedVotes map. This
all seems easy enough to implement. However, the above code foregoes one important
detail, which is the fact that nearbyTeamPlayers is a volatile set, which may change
in between the time the vote is cast and the results are processed.

The major problem with representing one-to-many communication in AmbientTalk
as a simple iteration is the following: the broadcast is only received by objects in range
at the time the broadcast was made. If the poll lasts, say, 5 minutes and a new team
player is discovered after the vote was initiated, he would simply not receive the vote,
because only players in range at the time the poll was created received the message.
This problem is a direct consequence of treating the set of proximate players as an
explicit collection in the application code. An ad hoc solution to this problem is to keep
track of changes in the set explicitly while the vote lasts. The updated code employing
this solution is shown below.

1The functionwhen:elapsed: is a library function which takes a time period and a closure and triggers
the closure when the time period has elapsed. This timing behaviour is not real-time. It depends on the
accuracy of the underlying JVM’s timing capabilities.

122 CHAPTER 6. AMBIENT REFERENCES

def broadcastVote(poll, maxVoteTime) {
def [future,resolver] := makeFuture();
def receivedVotes := Map.new();

def retrieveVote(player, timeLeft) {
when: player<-askToVote(poll)@Due(timeLeft) becomes: { |vote|
receivedVotes.put(player, vote);

}
};

nearbyTeamPlayers.each: { |player|
retrieveVote(player, maxVoteTime);

};

def alreadySent := nearbyTeamPlayers.copy();
def voteStartTime := now(); // the current time

// every subsequently discovered player should also receive the
// vote while the vote time has not yet elapsed
def discovery := whenever: Player discovered: { |player|
if: !alreadySent.contains(player) then: {
alreadySent.add(player);
def timeLeft := maxVoteTime - (now() - voteStartTime);
when: player<-getTeam()@Due(timeLeft) becomes: { |team|
if: (team == myTeam) then: {
retrieveVote(player, timeLeft);

}
}

}
};

when: maxVoteTime elapsed: {
discovery.cancel(); // stop temporary discovery
resolver.resolve(receivedVotes);

};
future

}

The problem of broadcasting the vote to players entering communication range
at a later point in time is tackled by creating a temporary discovery event handler
which is notified of each new player in range from the time the vote is cast until the
vote time is over. The handler’s subscription is cancelled when the maxVoteTime has
elapsed. Note that the above whenever:discovered: event handler has to duplicate
the code shown in the first code excerpt of this section to check whether the player is a
member of the same team, partially defeating the modularisation of the implementation
of nearbyTeamPlayers.

Because notifying a newly discovered player is similar to notifying a previously
discovered one, we use functional abstraction to factor out the common code in the
function retrieveVote. One variability between these two cases is the upper bound
on the time allowed to vote (which is used as the timeout period of the askToVote

message). This upper bound has to be recalculated for each new discovered player,
because such a player will have less time to vote than one already present at the time

6.1. MOTIVATION 123

the poll was created. Calculating the time left to vote (timeLeft) is done by subtracting
from the original maxVoteTime interval the time elapsed between the start of the vote
and the current time, as returned by the library function now. Hence, the longer it takes
to discover a team member, the less time that player is allowed to cast his vote.

Note the explicit check in the whenever:discovered: event handler to filter out
players to which the vote has already been sent. whenever:discovered: event han-
dlers are independent of one another, in the sense that they are triggered for each dis-
covered object, regardless of the fact that other handlers have already been triggered
for that object. Hence, the new whenever:discovered: event handler will also dis-
cover all players previously collected in the nearbyTeamPlayers collection. Without
the explicit check for duplicates, the event handler would send a vote to these players
twice.

The above problem can be circumvented if the use of the nearbyTeamPlayers

collection is simply dropped. In the above code, the askToVote message is first sent to
all elements of the nearbyTeamPlayers set and then sent to every discovered player
which is not in that set. A simpler solution would be to send the askToVote message
to every discovered player. Because the above whenever:discovered: event handler
also triggers for all members of the nearbyTeamPlayers collection, the explicit initial
iteration using each: is not required, and one would not need to check for duplicates
using the alreadySent collection. However, using this solution, the previously shown
code snippet to construct and manage the nearbyTeamPlayers collection is no longer
reused, while it was the goal of that piece of code to be reusable by different modules.

The above example illustrates the issues with which a programmer has to deal when
representing a proximate set of objects (team players in the example) as an explicit col-
lection. Depending on the application at hand, the collection must support different
designation semantics. For example, in the voting example, the application wanted to
designate all proximate team players while a poll was active. The nearbyTeamPlayers
collection was unsuitable for the application because it only designated all team play-
ers at the time the poll was created. The explicit collection abstraction did not cater
to any form of time-decoupling. Performing time-decoupled one-to-many communica-
tion could thus not be subsumed by a simple iteration over the collection, even if that
was how the programmer wanted to express it conceptually.

In this section, we have described the difficulties in representing arity-decoupled,
one-to-many communication abstractions as explicit collections of objects. In the fol-
lowing section, we describe a third pattern of communication which is not explicitly
supported by any of AmbientTalk’s language constructs.

6.1.3 Provisional Services
One of the virtues of futures is that they provide a convenient placeholder for referring
to the result of a parallel computation. This placeholder is a first-class entity, which
implies that it can e.g. be parameter-passed or bound in some data-structure for later
use. This enables the initiator of the parallel computation to carry on computing while
still being able to refer to the result of that parallel computation. This ability of futures
to represent values which have not yet been computed forms the original motivation
behind their use, for example in languages like Multilisp [Hal85] and Eiffel// [Car93].

In the case of future-type message passing, the spawned parallel computation is a
remote method invocation. In AmbientTalk, service discovery is also a parallel com-
putation, and for good reason: if no required service object is immediately available
in the host device’s proximity, it may take a very long time before a service discov-

124 CHAPTER 6. AMBIENT REFERENCES

ery request can be honoured. Unfortunately, AmbientTalk provides no analogue of the
future abstraction for service discovery. A call to when:discovered: returns a sub-
scription object, which can only be used to cancel the subscription. There is no direct
support for “provisional” services which represent service objects that “have not yet
been discovered”. Again, we examine the problem by means of a concrete example.

6.1.3.1 Example: Rendering Product Prices

Consider a supermarket in which all products on the shelves have been tagged with
Radio Frequency Identification (RFID) tags. The customer’s shopping cart is equipped
with an RFID reader that can scan the contents of the cart to construct a digital shopping
cart. One of the functionalities of the cart is that it has a screen that can render all of
the product details in the cart, including the total price of all the products in the cart2.
We assume that the RFID tags themselves contain useful information about properties
intrinsic to the product (e.g. its name, expiration date,. . .). Properties extrinsic to the
product, such as its price, are stored in the supermarket’s database and can be retrieved
by means of a unique product code. The database is accessible to the cart via a wireless
ethernet link.

The goal is to render the user interface on the cart’s screen, displaying all of the
information available directly in the RFID tags in a table overview. We would like the
discovery of the database server and the retrieval of all the product prices to happen in
parallel, as a background task. If a database is not yet available, the customer already
has an overview of at least the intrinsic product details. When a database is available,
missing product information is updated as and when it becomes available.

6.1.3.2 Implementation in AmbientTalk

We assume the availability of an object gui representing the table storing the items in
the graphical user interface and an object productsInCart, representing the collection
of objects currently in the cart. The following code renders the graphical user interface,
assuming a reference server pointing to a database server.

def renderGUI(server) {
productsInCart.each: { |product|
gui.addRow(product.id, product.name, "??");
when: server<-getPrice(product.id) becomes: { |price|
gui.updateRow(product.id, product.name, price);

}
};

};
when: ProductDatabase discovered: { |db|
renderGUI(db)

};

Product information is displayed and price information is gathered in parallel (be-
cause getPrice is sent asynchronously). However, note that products will only start to
appear in the list when a service providing access to the database has been discovered.
Without support for futures, rewriting the code to perform the discovery in parallel
with rendering the GUI requires modifying the renderGUI function.

2Futuristic as this example may seem, actual experiments have been performed that have successfully
prototyped such functionality, such as Metro’s future store, cf. http://www.future-store.org.

http://www.future-store.org

6.1. MOTIVATION 125

def renderGUI() {
productsInCart.each: { |product|
gui.addRow(product.id, product.name, "??");

};
};
def updateGUI(server) {
productsInCart.each: { |product|
when: server<-getPrice(product.id) becomes: { |price|
gui.updateRow(product.id, product.name, price);

}
};

};
when: ProductDatabase discovered: { |db|
updateGUI(db)

};
renderGUI();

The renderGUI code has been refactored into two functions: one performing all
computation that does not require access to the server variable, and another one per-
forming all computation dependent on this variable. This allows both functions to be
invoked independently, allowing the discovery request to proceed in parallel with the
initial construction of the GUI. Because AmbientTalk guarantees that any event han-
dler is only triggered after the current computation of the actor runs to completion,
the renderGUI() statement following the above when:discovered: event handler is
always executed before the handler is triggered, even if a matching service would be
available.

The problem with the above code is that a far reference to a ProductDatabase ser-
vice must always be acquired from a type tag asynchronously by means of a discovery
event handler, such that there can be no parallelism between the code requesting the
reference and the code using the reference. The root cause of the problem is that far
references must refer to a live object, they cannot represent “objects yet to be discov-
ered”.

The astute reader may have noticed that there exists a more elegant solution to
the above problem, which is to make use of first-class futures (cf. section 4.3.4.3) to
represent the server that has not yet been discovered:

def renderGUI(server) {
/* as in the initial implementation */

};
def [future,resolver] := makeFuture();
when: ProductDatabase discovered: { |db|
resolver.resolve(db);

};
renderGUI(future);

The result of an asynchronous service discovery request is captured by means of
an explicitly created future. The future acts as an eventual reference to the database
server while no such server has been discovered yet. The getPrice messages sent in
renderGUI will thus be buffered until a database is available, without changes in the
GUI code.

The above code is clearly a pattern that can be applied to the discovery of any kind
of service. Anonymous far references, introduced in section 6.6.1, abstract this pattern

126 CHAPTER 6. AMBIENT REFERENCES

into an appropriate language construct that better captures the programmer’s intent,
which is to acquire a proxy for a service that is not yet discovered.

6.1.4 Summary
Even though AmbientTalk is a high-level ambient-oriented programming language, we
have demonstrated that the language lacks direct support for expressing different useful
communication patterns in mobile ad hoc networks:

Roaming AmbientTalk’s far references do not support transparent rebinding to differ-
ent objects. They designate a unique object throughout their lifetime.

One-to-many Communication Far references do not support communication with a
group of proximate objects. They refer to only a single object throughout their
lifetime.

Provisional Services Far references cannot be used as an ad interim communication
channel when no matching services are available. They must always designate
an object throughout their lifetime.

All of the above problems can eventually be traced back to the fact that far refer-
ences do not cater to space-decoupling. In the following sections, we introduce the
ambient reference abstraction, whose goal is to reconcile space decoupling with object
referencing, thus filling the above gaps in AmbientTalk’s communication abstractions.

6.2 Ambient References in a Nutshell
An ambient reference should be regarded as a reference to a volatile set of objects.
This volatile set of objects often denotes “all objects of a certain type which are cur-
rently in communication range”. The volatility of the set follows from the fact that
the communication range is limited and because devices may physically move about in
unpredictable ways.

6.2.1 Example: Broadcasting Stock Quote Updates
As a concrete example, suppose a stock quote server hooked up to the Internet through
the infrastructure of a nomadic ad hoc network regularly receives stock quote updates
from several stock markets. Mobile clients are interested in being notified whenever
stock quotes change. In order to receive updates, a “listener” object should be explicitly
exported by the client, as follows, assuming StockQuoteListener is a type tag known
to both clients and server:

export: (object: {
def quoteUpdated(code, price) {
system.println("Price for "+code+" updated: "+price);

};
}) as: StockQuoteListener;

The above code exports a stock quote listener object that simply echoes every stock
quote update to the screen. Exporting objects is done through the export:as: con-
struct explained in section 4.4.2. To address nearby listeners, the server may now
construct an ambient reference as follows:

6.2. AMBIENT REFERENCES IN A NUTSHELL 127

def clients := ambient: StockQuoteListener;

The variable clients designates all objects in communication range which are
exported as a StockQuoteListener. The server can notify the clients by sending a
message to the ambient reference, thereby implicitly referring to all clients currently
within range. The management of this volatile set of objects is under the control of
the ambient reference, shielding the server from having to deal explicitly with service
discovery in terms of the low-level constructs described in section 4.4.3. The following
code shows how the broadcast is achieved:

def makeQuoteServer() {
def clients := ambient: StockQuoteListener;
def quoteDB := ...;
def refresh := minutes(5); // amount of time before refreshing info
object: {
def newPriceReceived(code, price) {
if: (quoteDB.hasPriceChanged(code, price)) then: {
def handle :=
clients<-quoteUpdated(code,price)@[All,Transient(refresh),Oneway];

}
}

}
}

Note that the broadcast is achieved by means of sending the messagequoteUpdated
asynchronously to the clients ambient reference. Because ambient references in-

herently represent remote objects, they are represented as eventual references. They
require client code to use asynchronous message sends to communicate with the re-
mote objects implicitly designated by the ambient reference. The message is annotated
with additional information, telling the ambient reference how to handle the message.
We will not yet give a full account of the semantics of the annotations here. For the
purposes of this example, it suffices to understand that:

All indicates that the message should be sent to (but not necessarily received by) all
objects in the ambient reference’s set (i.e. it identifies the message send as a
broadcast).

Transient indicates that the message should remain available to be sent to nearby
clients until the given timeout period elapses. In the example, it is assumed
that the stock quote information is refreshed after 5 minutes. In a more realistic
setting, this timeout should be correlated with the rate at which the server itself
receives new stock quotes.

Oneway indicates that the message does not need a result or acknowledgement, i.e. it
can be regarded as a pure “event notification”.

Every message send to an ambient reference immediately returns a delivery handle,
which is a first-class representation of the delivery status of the message. A delivery
handle provides functionality to cancel a message’s delivery prematurely. For example,
the server could use it to stop the broadcast of a stock quote before its timeout period of
5 minutes has elapsed. Furthermore, if the message requires a result or acknowledge-
ment, any potential replies to the message can be accessed via this delivery handle.
Concrete examples of the use of delivery handles are given in section 6.3.

128 CHAPTER 6. AMBIENT REFERENCES

We have intentionally left out the details of the message passing semantics of ambi-
ent references in the above discussion. The goal of this section is to give a general feel
for the language abstraction’s purpose and use. In subsequent sections, the semantics
of ambient references is described in more detail.

6.2.2 Space-decoupled Object References
We now provide a definition for the term “ambient reference”:

Definition 2 (Ambient Reference) An ambient reference is a space-decoupled object
reference designating a volatile set of proximate service objects.

An ambient reference is an object reference (an eventual reference, to be precise): it
has the ability to carry messages from a sender to a receiver object. However, it differs
from AmbientTalk’s far references in the following ways:

• An ambient reference decouples objects in space: remote objects are designated
anonymously by means of an intensional description. Any object that adheres to
the description can be designated by the ambient reference. This allows ambient
references to cater to roaming.

• An ambient reference designates a set of objects. Hence, it may refer to more
than one object, which allows it to cater to arity-decoupled, one-to-many com-
munication.

• The set of objects designated by an ambient reference may be empty. Even
then, an ambient reference remains a communication channel to the set. Hence,
ambient references can be used to represent provisional services – services which
are not (yet) available. This is in contrast to far references (acquired by means
of service discovery) which only come into existence when a matching object
actually becomes available.

Note that each of these differences between ambient and far references enables
programmers to express a communication pattern described in section 6.1. We provide
concrete examples to support this claim in section 6.4.

The most distinguishing feature of ambient references is that they are object refer-
ences supporting a form of connectionless (as opposed to connection-oriented) object
designation. In section 3.4.2 we have argued that there are advantages and drawbacks
to both types of object designation. Ambient references provide space-decoupling but
forego stateful communication, while far references provide stateful communication
but forego space-decoupling. We will therefore explore a middle ground between both
referencing abstractions, known as anonymous far references, in section 6.6.1.

From the discussion of the examples in section 6.1, it is clear that there is no single
right abstraction for all kinds of collaborations. For example, whereas the mobile client
in the location tracker example uses point-to-point communication to communicate
with a server, the mobile client in the voting application clearly engages in one-to-
many communication with nearby players. In the location tracker example, messages
should be buffered if no server is nearby. In the voting application, there is no such
requirement. The message sent to the server in the location tracker example requires
no result, while the mobile client in the voting application needs to explicitly process
replies to its message send.

6.3. DECOMPOSING AMBIENT REFERENCES 129

In order to support these differing requirements, we will not introduce different
kinds of ambient references, but rather different message passing operators that influ-
ence the delivery of messages sent via the ambient reference. In the following section,
we discuss the salient features of the message passing semantics supported by ambient
references.

6.3 Decomposing Ambient References
We now describe ambient references independent of their incarnation in AmbientTalk.
More specifically, we introduce the necessary terminology to describe the key char-
acteristics of ambient references. As described in the previous section, an ambient
reference is a space-decoupled object reference. We therefore represent an ambient
reference a as a tuple 〈f,M〉 where f is the characteristic function defining the set of
objects which the ambient reference may designate and M is a set of asynchronous
messages sent to the ambient reference.

Ambient references designate service objects. A service object is any object ex-
ported to the network by an application.The set of all service objects is denoted O and
a specific service object representing a service X is denoted sX (in AmbientTalk, X
could e.g. be a type tag). The characteristic function f forms the intensional descrip-
tion of the following set:

Definition 3 (Scope) The scope Sa of an ambient reference a is the set of all service
objects it may potentially refer to. That is, Sa = { s ∈ O | fa(s)}

At any point in time, service objects may either be accessible or inaccessible to the
ambient reference (that is, the device hosting the service object may be connected to
or disconnected from the device hosting the ambient reference). This brings us to the
definition of the following set:

Definition 4 (Communication Range) The communication range Aa(t) of an ambi-
ent reference a at a given point in time t is the set of all service objects accessible to it
by means of the underlying network.

The communication range restricts the service objects that an ambient reference may
designate at the level of the physical underlying network. Interpreting communication
range in the context of wireless proximity ad hoc networks (where devices commu-
nicate by means of radio communication protocols like WiFi or ZigBee), objects in
communication range are also spatially proximate to the ambient reference. In wired
networks, objects may be logically connected yet not spatially proximate at all. Be-
cause ambient references are designed specifically for mobile ad hoc networks, we
equate object accessibility with the fact that the object’s host device is within commu-
nication range and hence proximate.

Combining an ambient reference’s scope and communication range enables us to
define the set of objects actually denoted by an ambient reference at any given point in
time:

Definition 5 (Reach) The reach Ra(t) of an ambient reference a at a given point in
time t is the set of all objects in its scope that are accessible at that time, i.e. Ra(t) =
Sa ∩ Aa(t).

130 CHAPTER 6. AMBIENT REFERENCES

We say that a service object s is in reach of an ambient reference a at time t if
s ∈ Ra(t). Communication range and reach as defined above should be considered
logical models rather than concrete representations. At any specific point in time, the
exact contents of the sets defined by communication range and reach are unknown
to the ambient reference. In a concrete implementation, the ambient reference will
have to approximate the contents of these sets. We discuss two approaches to do so in
chapter 8.

a
Sa

Aa(t)
Ra(t)

sY2
sX1 sX2

sX3sY1

Figure 6.1: Scope Sa, communication range Aa(t) and reach Ra(t) of an ambient
reference a at a point in time t.

Figure 6.1 illustrates the relationship between scope, communication range and
reach of an ambient reference graphically. The graphical notation abstracts from the
difference between objects, actors and devices. The small circles represent service
objects, each hosted on a different mobile device (and hence necessarily owned by a
different actor). a represents (the location of) an ambient reference. The figure de-
picts the ambient reference’s scope, communication range and reach, assuming that
a’s scope is delimited by all sX

i services. As such, we get Sa = {sX
1 , sX

2 , sX
3 },

Aa(t) = {sX
1 , sX

2 , sY
1 } and Ra(t) = {sX

1 , sX
2 }. Communication range and reach

are represented as two concentric circles. Objects located fully inside both circles are
considered in range or reach. Objects fully outside of both circles are not in range or
reach. For objects located in between both circles, the semantics is undefined: these
objects may or may not belong to the ambient reference’s range or reach.

We refer to any message sent to an ambient reference as an ambient message. After
an ambient message m is sent to an ambient reference a = 〈f,M〉 it holds that m ∈
M. a is referred to as the carrier of m. The set of service objects that are eligible to
receive an ambient message m is derived from its carrier’s reach and will be referred
to as the set of potential receivers PRm of the message. The subset of PRm to which
the message is actually sent is known as the set of actual receivers ARm.

In order to determine ARm and PRm, the message’s delivery must be bounded in
a number of ways. This is done by means of a number of message delivery policies
associated with each ambient message. The delivery policies of an ambient message
are represented as a triplet 〈∆td, n, ∆tc〉. The different policies are:

Discovery Lifetime ∆td is an upper bound on how long to keep the message avail-
able for delivery to objects entering the carrier’s reach, known as the message’s

6.3. DECOMPOSING AMBIENT REFERENCES 131

discovery lifetime. The set of potential receivers of the message PRm is con-
structed by means of its discovery lifetime.

Arity n is an upper bound on how many objects may receive the message, known as
the message’s arity. The arity indicates how many objects to select from PRm

to determine the set of actual receivers ARm.

Communication Lifetime ∆tc is an upper bound on how long to wait for a reply,
if any, from any actual receiver of the message. It is known as the message’s
communication lifetime and is necessary to deal with failures.

We can distinguish two phases in the delivery of an ambient message. During the
speaking phase, which starts when the ambient message is sent to the ambient refer-
ence, the ambient reference actively discovers receivers for the message. Whenever the
message is sent to an actual receiver selected from the potential receivers, a listening
phase starts during which a reply to the message is awaited. Both of these phases can
be bounded in time. Discovery lifetime bounds the speaking phase while communi-
cation lifetime bounds the listening phase. We describe each of the above policies in
further detail below.

Discovery Lifetime The discovery lifetime of an ambient message is the period of
time in which it may be delivered to potential receivers. If ts denotes the time at
which an ambient message m is sent to an ambient reference a, we can define its set of
potential receivers as:

PRm =
⋃

ts6t6ts+∆td

Ra(t)

The discovery lifetime of an ambient message is a period of time ∆td. Distinguish
two border cases for this time interval, we consider the following choices regarding
discovery lifetime:

• An ambient message has an instant discovery lifetime if ∆td = 0. This signifies
that the ambient message is sent only to objects in reach at the time the message
is sent to its carrier.

• An ambient message has a sustained discovery lifetime if ∆td = ∞. This sig-
nifies that the ambient message is sent to all objects entering its carrier’s reach
starting from the time it is sent.

• In all other cases, an ambient message is said to have a transient discovery life-
time, in which case it is sent to objects in reach in between the time it is sent and
the timeout period elapses.

Arity The second delivery policy of an ambient message is its arity. An ambient
message’s arity n ∈ {1,∞} specifies an upper bound on the number of objects to elect
as actual receivers from its set of potential receivers. We consider two choices:

• An ambient message is point-to-point if it has at most one actual receiver, i.e.
n = 1. This receiver is a non-deterministically chosen element from the set of
potential receivers PRm.

132 CHAPTER 6. AMBIENT REFERENCES

• An ambient message is one-to-many if it can have any number of receivers, i.e.
n =∞. For one-to-many messages, the set of actual receivers ARm = PRm.

If there are no actual receivers, i.e. ARm = ∅, an ambient message is said to be
lost. A lost message is not sent to any service objects.

In principle, the arity n of an ambient message could be any natural number, thus
specifying an exact number of receivers of a one-to-many message. We do not consider
this semantics because ambient references are designed for anonymous interactions,
where the amount of potential receivers is usually completely unknown. We further
discuss this design decision in section 7.3.2.

Communication Lifetime The third delivery policy of an ambient message is its
communication lifetime. Communication lifetime is a period of time ∆tc specifying
how long to wait for a reply, if any, for each actual receiver s ∈ ARm. Again dis-
tinguishing two border cases for this time interval, we consider the following choices
regarding communication lifetime:

• An ambient message is one-way if ∆tc = 0. This signifies that no reply to the
message is required.

• An ambient message is unbounded two-way if ∆tc =∞. This signifies that any
reply to the message may take indefinitely long to arrive.

• In all other cases, an ambient message is bounded two-way, in which case ∆tc
determines how long to await any reply to the message.

Ambient references never guarantee that an ambient message is ever delivered. The
only way to be certain that an ambient message was delivered is to await a reply. When
no reply is received, this may signify that either the message was not sent to any actual
receiver, or it was lost during transmission, or it was delivered but its reply was lost
during transmission or is still pending.

In this section, we have introduced ambient references in a very abstract way, with-
out going into any technical detail. We have introduced the necessary terminology
describing the important aspects of ambient references. Most importantly, an ambient
reference is defined in terms of a characteristic function encoding an intensional de-
scription of its scope. At any point in time, the ambient reference denotes that subset
of its scope which is in communication range, known as its reach. Messages sent via
ambient references are known as ambient messages. The delivery of an ambient mes-
sage may be influenced by means of three delivery policies: discovery lifetime, arity
and communication lifetime. In the following section, we describe the particular in-
carnation of ambient references in AmbientTalk and in that particular context discuss
each of the above aspects of ambient references in further detail.

6.4 Ambient references in AmbientTalk
As illustrated in the stock quote example of section 6.2.1, in AmbientTalk ambient
references are represented as eventual references. An ambient message is simply a
message sent via such an eventual reference. Its message delivery policies can be
expressed at the level of an individual message send as annotations to the message.
However, it is also possible to specify default values for these parameters at the level of

6.4. AMBIENT REFERENCES IN AMBIENTTALK 133

the ambient reference declaration. Annotations at the message-level can then override
these defaults. Using defaults, if all messages are sent using the same delivery policies,
the policies do not have to be repeated at the level of individual messages. If the policies
need to be changed, it suffices to change the single ambient reference declaration rather
than all individual message send expressions.

Being eventual references, ambient references may be parameter-passed as an argu-
ment or return value across other references. An ambient reference always designates a
volatile set of objects which are proximate to the device hosting the ambient reference.
Thus, because proximity is relative to the host device, when an ambient reference is
parameter-passed across devices, the passed reference may designate a different set of
objects than does the original ambient reference. We return to the parameter-passing
semantics of ambient references in section 8.9.

In each of the following subsections, we examine the precise semantics of the scope
and delivery policies of ambient references in AmbientTalk. For each delivery policy,
we also describe when it is generally useful to use that policy. That is, we describe
which delivery policies are appropriate for what use cases. After all delivery policies
have been explained individually, we discuss their composition in section 6.4.8.

6.4.1 Scope

The scope of an ambient reference describes the set of objects to which an ambient
reference can refer. In mathematics, sets are described either intensionally (by means
of a characteristic function specifying which objects belong to the set and which do
not) or extensionally (by explicitly enumerating all of the set’s elements). Because of
the volatile nature of the set of proximate objects, the scope of an ambient reference
is specified intensionally. This is a fundamental difference with respect to traditional
(object) referencing mechanisms in (object-oriented) programming languages, whose
target is most often specified in terms of a specific identity. The power of an intensional
description is that it allows remote objects to maintain their anonymity. It couples
communicating parties only at the level of application-specific attributes, rather than at
the level of object addresses. Furthermore, using an intensional description, one can
abstract from the precise number of elements in the set. It is not possible to create an
extensional description of the scope of an ambient reference. However, it is possible to
create an extensional description of its reach, as explained later in section 6.6.2.

As explained above, a set is intensionally described by means of a characteristic
function that, given an object, determines whether that object belongs to the set or not.
In other words, the characteristic function is a predicate. From an operational point of
view, the predicate is applied to each physically discovered object. If the object satis-
fies the predicate, it is part of the ambient reference’s scope and can be added to the
reference’s reach. Ambient references support a number of built-in characteristic func-
tions to delimit an ambient reference’s scope. These characteristic functions classify
objects according to:

Type tags These form the simplest and most direct way of characterising objects.
We have already illustrated the use of a type tag as a characteristic function in the
introductory example of section 6.2.1. Any given type tag Type induces a characteristic
function f as follows:

def f(obj) { is: obj taggedAs: Type }

134 CHAPTER 6. AMBIENT REFERENCES

Recall that type tags support subtyping to introduce polymorphism: at runtime, obj
may be an object tagged with a subtype of Type. At the implementation level, ambient
references do not explicitly use the above characteristic function. The advantage of
type tags is that they can be unified quite naturally with hierarchical topics in topic-
based publish/subscribe engines [EFGK03], allowing the above type test to be pushed
down to the level of the service discovery engine. We describe an implementation of
this unification in section 8.7.3.

Even though type tags are efficient and mostly a straightforward solution for classi-
fying and discovering objects, they introduce a number of issues. First, matching based
on type tags is based on the implicit assumption that all devices in the network share the
same semantics, i.e. the meaning of a type tag’s name is globally unique. For example,
the type tag Scanner does not enable a distinction between a service representing the
hardware device and one representing the tokenizer of a compiler. The assumption of
globally unique meaning may or may not be realistic, depending on the openness and
the scale of the network on which the application is deployed.

Second, type tags cannot distinguish between different versions of the same ser-
vice. For example, assume that there is a global consensus that Scanner represents a
tokenizer service. Even then so, the type tag cannot distinguish between different ver-
sions of the same service and may match endpoints expecting different versions. This is
also the reason why, in Java, distributed classes are not compared by name but by means
of their serialVersionUID field (which, by default, is a “hashed” representation of the
class structure) to be able to distinguish between different class versions [GJSB05].

Protocols A second kind of characteristic function allowed by ambient references
classifies objects based on protocols. A protocol is a description of the set of selectors
(message names) to which an object responds. The name is derived from its use in
the Smalltalk community and the structural types of the StrongTalk language [BG93].
Whereas type tags introduce a form of nominal typing (the subtype relation between
types is explicitly defined in a type hierarchy), protocols introduce a form of struc-
tural typing (the subtype relation is implicitly defined by means of the interface of the
objects).

Protocols have been added reflectively to AmbientTalk. Like type tags, they are
purely used for classifying objects, not for static type-checking. The following code
illustrates their usage:

def Point := object: {
def x := 0; def y := 0;
def add(pt) { Point.new(x+pt.x, y+pt.y) };

};
// construct a protocol based on the
// interface of an existing object
def PointProtocol := protocolOf: Point;
def Point3D := object: {
def x := 0; def y := 0; def z := 0;
def add(pt) { Point3D.new(x+pt.x,y+pt.y,z+pt.z) };

};
does: Point3D implement: PointProtocol; // true

Even though Point and Point3D have no explicit relation, they both match the
PointProtocol. In AmbientTalk, protocols are represented as sets of selectors (sym-
bols). An object implements a protocol if the protocol is a subset of the set of selectors

6.4. AMBIENT REFERENCES IN AMBIENTTALK 135

defined by the object’s fields and methods. If an object implements a protocol, this
guarantees that the object responds to all messages defined in the protocol, but nothing
more. In particular, no support is provided to recursively type-check arguments or re-
turn values of the methods of a protocol. Using protocols, ambient references can be
defined without reference to a type tag. We can reformulate the stock quote example
from section 6.2.1 as follows3:

def StockQuoteProtocol := protocol: {
def quoteUpdated(code, price);

};
def clients := ambient: StockQuoteProtocol;

The clients ambient reference implicitly refers to all proximate objects imple-
menting a quoteUpdated method. Any protocol P induces a characteristic function f

as follows:

def f(obj) { does: obj implement: P }

Protocols integrate better with a dynamically typed language, because classifying
objects is done based on an intrinsic property of the objects (their interface). The
downside of protocols is that the evaluation of their corresponding characteristic func-
tion cannot be done directly within the service discovery engine. Unlike type tags,
protocols cannot be directly mapped onto an analogue classification mechanism used
by service discovery engines. Combining protocols with service discovery is further
discussed in section 8.7.3.

The matching logic of protocols is based on the “duck test”: “if it walks like a
duck and quacks like a duck, it is a duck”. This is a well-known form of inductive (yet
unsound) reasoning. It leaves open the possibilities for incorrect matches, e.g. both the
protocols for the scanner and tokenizer may consist of a single method scan(document
). Protocols have the advantage over type tags of being able to discriminate between
different versions of the same service, but only if the interface changes as a result of
a version change. For example, if the tokenizer in a later version adds the method
mark(position), to mark a starting position in the token stream, earlier versions of
the tokenizer will not match the new protocol.

Filters The above two characteristic functions classify objects according to static
attributes such as their type or their interface. Often, discriminating objects based
on dynamic attributes is required, especially if those attributes have continuous rather
than discrete values, e.g. matching a printer whose pending job queue size is smaller
than a given integer value. To cater to such matching, ambient references enable any
AmbientTalk predicate to be used as a characteristic function to filter matching objects.
We refer to such predicates as filters and represent them as unary closures returning a
boolean value.

Reconsider the voting example from section 6.1.2.1. Recall that a vote was to
be launched to each proximate player of the same team. One may of course intro-
duce discrete type tags to represent the different values of the team attribute (e.g.
BlueTeamPlayer and RedTeamPlayer), but this is very ad hoc and works only for
attributes with a discrete number of values. Furthermore, it complicates issues such as
making a player switch teams, adding additional teams and filtering based on multiple

3The auxiliary functionprotocol: enables one to define ex-nihilo protocols, without reference to a live
object implementing that protocol.

136 CHAPTER 6. AMBIENT REFERENCES

attributes. Assuming that players have been exported with their team as a public at-
tribute (cf. the following section), an ambient reference that only refers to members of
the sender’s own team is created as follows:

def nearbyTeamPlayers := ambient: Player where: { |p| p.team == myTeam }

Filters work in conjunction with the characteristic functions of both type tags and
protocols. Given one of the above characteristic functions g for type tags or protocols
and any AmbientTalk predicate p, the compound characteristic function becomes4:

def f(obj) { g(obj).and: { p(obj) } }

Filters are very similar in nature to filters in content-based publish/subscribe sys-
tems, where events are matched based on the content of the event, not on their type
[CRW01]. While such systems support a much more fine-grained event dispatch than
topic-based publish/subscribe systems, they are harder to implement efficiently than
their topic-based equivalent [EFGK03]. However, if the filter language is sufficiently
restricted, these systems can be made very efficient as well [EG01], potentially out-
performing topic-based systems because the more fine-grained dispatch leads to less
redundant event notifications. Because we allow arbitrary AmbientTalk code to act
as a filter, we currently forego any possibility of optimisation. We elaborate on this
subject when discussing future work in section 7.4.

Note that filters subsume the characteristic functions of both type tags and proto-
cols. These characteristic functions are treated separately because they describe purely
static aspects of an object (i.e. its type or interface). An implementation may exploit
this fact to optimise the runtime test that determines whether or not a service object
belongs to an ambient reference’s reach.

Summary In this section, we have focussed on how ambient references can desig-
nate service objects in AmbientTalk. As explained in section 6.3, ambient references
are associated with a characteristic function which intensionally denotes its scope. In
AmbientTalk, ambient references can be classified according to static attributes such as
their type tags or their protocol. Filters augment these static classification schemes by
allowing arbitrary AmbientTalk predicates to determine the scope of an ambient refer-
ence. In the following section, we discuss how service objects can be exported such
that they satisfy the different types of characteristic functions of ambient references.

6.4.2 Service Objects

In AmbientTalk, service objects are represented as exported objects. If the character-
istic function of an ambient reference uses type tags to classify objects, it suffices to
export objects as (a supertype of) that type tag in order to make them receive messages
sent via that ambient reference. We have already discussed how this is done in sec-
tion 4.4.2. If a service object wants to make itself available for designation based on a
protocol, it should be exported as that protocol. To do so, the export:as: function is
overloaded and can both be invoked with a type tag or a protocol. Reconsider the client
object from the stock quote example in section 6.2. It can be exported by means of a
protocol rather than using a type tag as follows:

4AmbientTalk’s boolean objects respond to the message and: closure representing (short-circuited)
boolean conjunction.

6.4. AMBIENT REFERENCES IN AMBIENTTALK 137

def StockQuoteProtocol := protocol: {
def quoteUpdated(code, price);

};

def service := object: {
def quoteUpdated(code, price) {
system.println("Price for "+code+" updated: "+price);

};
};

export: service as: StockQuoteProtocol;

Equivalently, it is possible to omit the explicit protocol and export an object with an
implicit protocol automatically derived from the methods implemented by the object.
The as: part of the call is then omitted and the object is exported simply by evaluating
export: service. It is possible for an object to be exported both under a type tag and
under a protocol by exporting the same object multiple times with different arguments.

The return value of the export:as: function and its variants is a publication object,
as explained in section 4.4.2. This publication object has a single cancel method that
takes the publication offline. After invoking cancel, the object is no longer subject to
receiving message sends originating from ambient references. That is, it is removed
from the scope of any ambient reference that previously designated it. This removal
is not atomic, in the sense that messages targeting the object may still arrive after it
was unexported. Hence, the programmer should be aware of the possibility that the
exported object’s methods may still be invoked even after cancel was invoked.

Finally, both for type tags and protocols it is possible to attach attributes to the
object. Recall that in the multiplayer game example in section 6.1.2.1, we assume
players publish the team which they are currently in as an additional attribute. In order
to export an object that matches the nearbyTeamPlayers ambient reference defined in
the previous section, the team attribute must be exported as follows:

deftype Player;
def makePlayer(inTeam) {
def player := object: {
def askToVote(poll) { /* ... */ };

};
export: player as: Player with: {
def team := inTeam;

};
player

};

The third argument to export:as:with: is a closure whose contents is used to con-
struct an attribute object (much like the closure passed to the object: primitive is used
to construct an ex-nihilo object). The closure is used to define this object’s fields and
methods. This attribute object corresponds to the obj parameter of the characteristic
functions defined in the previous section. Depending on the particular implementation
strategy of ambient references, this attribute object may or may not be an isolate object.
The different options and their repercussions are discussed in detail in sections 8.3.7
and 8.4.6.

When a message is received by a service object, the message is added to the mes-
sage queue of that object’s owning actor, as is usual for asynchronous message recep-

138 CHAPTER 6. AMBIENT REFERENCES

tion in AmbientTalk. Hence, the method triggered by the message is executed by the
receiver’s owning actor serially, in mutual exclusion with other received messages. In
this regard, message delivery via ambient references is entirely reminiscent of message
delivery via far references. Thus, exported objects can abstract from the fact whether
they are referred to by means of far or ambient references.

Now that we have described how service objects are both designated and exported,
we turn our attention to the messages sent to these service objects via ambient refer-
ences. In the following sections, we discuss the different message delivery policies
supported by ambient references – arity, communication lifetime and discovery life-
time.

6.4.3 Arity
The arity of an ambient message denotes the maximum amount of receivers of the
message. We distinguish two options: point-to-point or one-to-many messages. We
discuss the details of each kind of message below.

Point-to-point In the case of point-to-point communication, a single object is non-
deterministically chosen from its set of potential receivers. The resulting communica-
tion is point-to-point, like a regular message send via a far reference. The important
difference between point-to-point communication via a far reference and point-to-point
communication via an ambient reference is that in the former case, subsequent mes-
sages are guaranteed to be received by the same object. Ambient references provide no
such guarantee.

Time
tm ts1

m
s1

s2

ts2

s4

ts4

s5

ts5

Ra

s3

speaking
phase

listening
phase s1

Figure 6.2: Point-to-point ambient message delivery.

Figure 6.2 depicts the delivery of a point-to-point ambient message. We assume
that all depicted si services are within a’s scope. The reach Ra is depicted by means
of two waves (which correspond to the concentric circles in figure 6.1) and all service
objects below both waves are considered to be in reach. The timeline denotes the time
as measured on a’s local clock5. tm denotes the time at which a point-to-point message
m is sent to a. tsi denotes the time at which service si is discovered by a. m’s speaking

5We assume no knowledge about the time at which messages are received by service objects. We assume

6.4. AMBIENT REFERENCES IN AMBIENTTALK 139

and listening phases are depicted as intervals below the timeline. The speaking phase
ends when at least one receiver has been discovered. The listening phase starts as soon
as the message is sent to the discovered receiver. Note that, because the message is
point-to-point, it is sent to the first discovered receiver and not to any other receiver
that may be discovered during the message’s discovery lifetime.

Point-to-point messages are expressed by annotating an ambient message with the
@One annotation. An example of such messages is given in section 6.4.4.

In general, point-to-point ambient messages enable roaming. That is, they enable
objects to seamlessly communicate with different service objects that offer the same
service while they physically move about. This is useful when a mobile client requires
access to a service which is offered by a (potentially large) number of different service
providers. The intensional description of the ambient reference’s scope enables the
client to abstract from which service provider it is connected to. However, this setup
only works when using either a stateless communication protocol between client and
service provider or if the different service providers can synchronise their session state
with one another (e.g. by means of a nomadic network infrastructure).

One-to-many In the case of one-to-many message sends, all objects in the ambient
message’s set of potential receivers are selected as actual receivers of the message.
This enables ambient references to be used to perform one-to-many communication
with proximate objects. In effect, a one-to-many message send is a controlled form of
broadcasting, where the scope of the broadcast is delimited by the reach of the ambient
reference at the time the broadcast is performed. Note that there is no guarantee that
the message will effectively be delivered to all objects in reach.

Time
tmts1

speaking
phase

Ra

m
s1 s2

s3

m

ts2

s4

ts4

m s5

ts5

listening
phase s1

listening
phase s2 listening

phase s4

Figure 6.3: One-to-many ambient message delivery.

Figure 6.3 depicts the delivery of a one-to-many ambient message. Again, we
assume that all depicted si services are within a’s scope. Because the message is one-
to-many, it is sent to all service objects in reach when the message is sent and to all

knowledge about the time at which receivers are discovered, messages are sent to them and replies are
received from them.

140 CHAPTER 6. AMBIENT REFERENCES

service objects subsequently discovered during the message’s speaking phase. The
message is not sent to s5 because it is discovered after the message’s discovery lifetime
has expired. Note that there is a listening period per message send to each discovered
receiver. Arrows ending in a cross denote a failed message delivery. Thus, s2 received
m but failed to successfully send its reply back to a while s4 did not receive m.

It is not possible to specify a precise number of receivers of a one-to-many mes-
sage. If a message must be sent to a precise number of objects, it is more appropriate to
construct a snapshot of an ambient reference (see section 6.6.2), which is an enumera-
tion (i.e. an extensional representation) of all objects in its reach. A message can then
be sent explicitly to all objects in the enumeration.

One-to-many messages are expressed by annotating an ambient message with the
@All annotation. An example of one-to-many ambient messages was given in section
6.2.1 to broadcast the stock quote updates to all nearby clients.

In general, one-to-many messages allow a service to broadcast the same informa-
tion to all proximate objects. This is useful for (stationary) services which can use it to
notify all nearby (mobile) clients of certain events. For example, a shop service object
might use it to broadcast advertisements to nearby customers. Alternatively, mobile
clients can use one-to-many messages to communicate with all nearby services (e.g. a
customer asking all nearby shops what products they have on discount).

Summary An ambient message’s arity determines whether communication is point-
to-point or one-to-many. In comparison to communication via far references, point-to-
point messages enable roaming while one-to-many messages enable arity-decoupled
communication with a group of objects. The following section discusses communica-
tion lifetime, a second type of delivery policy for ambient messages.

6.4.4 Communication Lifetime

The communication lifetime of an ambient message is an upper bound on each listening
phase in the delivery of the ambient message. Communication lifetime specifies how
long to wait for a possible reply, if any, from an actual receiver to which the message
was sent. We distinguish between purely unidirectional, one-way message sends and
bidirectional, two-way message sends. Two-way message sends make use of futures
(cf. section 4.3.4) to deliver the reply to the sender. The communication lifetime of
an ambient message specifies how long to wait for the future to become resolved with
the reply. We distinguish between unbounded two-way communication, which implies
an indefinite communication lifetime and bounded two-way communication, where the
communication lifetime is specified by means of a timeout period.

6.4.4.1 One-way ambient messages

A one-way message send expects no reply from any potential receiver. As a result,
no future is attached to the ambient message. If an acknowledgement to a one-way
message is required, it must be acknowledged explicitly with a separate message. A
one-way message does not necessarily imply that the message is broadcast once and
then discarded, as is often the case in event notification services introducing one-way
annotations. One-way messages combine with the discovery lifetime delivery policies
described later (cf. section 6.4.5) and can be sent to potential receivers not in reach at
the time the message was sent.

6.4. AMBIENT REFERENCES IN AMBIENTTALK 141

One-way message sends are annotated with the @Oneway annotation. The broadcast
in the example of section 6.2.1 is an example of a one-way message: the server is not
interested in which clients received the message, and it does not require a result.

In general, one-way messages are most useful when combined with one-to-many
messages to represent a pure “event notification” from one service to multiple nearby
clients. They may also be used in conjunction with point-to-point messages by clients
to send status updates unidirectionally to nearby servers.

6.4.4.2 Unbounded two-way ambient messages

Two-way message sends enable the transmission of a reply from receiver to sender
by means of futures. A future is automatically attached to an ambient message that
is annotated with the @Reply annotation; an annotation specifying that a reply to the
message is expected. The kind of future attached to the message directly depends on
the ambient message’s arity. A point-to-point message send receives a regular future
while a one-to-many message send receives a multifuture. Both are described in further
detail below.

Futures A point-to-point ambient message is received by at most one receiver ob-
ject. As a result, at most one reply to the message can be received. In this case, a
regular AmbientTalk future (cf. section 4.3.4) is attached to the ambient message. As
is the case in standard AmbientTalk, the actual return value can only be accessed by
registering an observer closure with the future using the when:becomes: function.

Reconsider the example of section 6.1.3.1 in which the GUI of a shopping assis-
tant application was to be rendered in parallel with the discovery of a database server
hosting additional product information. Using futures and point-to-point message pass-
ing, we can exploit an ambient reference’s support for anonymous communication as
follows:

def db := ambient: ProductDatabase;
def renderGUI(server) {
productsInCart.each: { |product|
gui.addRow(product.id, product.name, "??");
def handle := server<-getPrice(product.id)@[One,Sustain,Reply];
when: handle.future becomes: { |price|
gui.updateRow(product.id, product.name, price);

}
};

};
renderGUI(db);

Two changes have been made to the original code from section 6.1.3.1. First, in-
stead of using when:discovered:, we use an ambient reference to refer to all prox-
imate ProductDatabase servers. Since ambient references are valid references even
if no matching server has been found, we may readily invoke the renderGUI method,
passing the db ambient reference as an argument. Moreover, the application addition-
ally supports roaming, as it can now transparently query different product servers (of
potentially different super markets).

A second change to the code is the addition of annotations to the getPrice ambi-
ent message in the method body of renderGUI. The @Reply annotation ensures that
a future is associated with the message, which is retrieved by means of the delivery

142 CHAPTER 6. AMBIENT REFERENCES

handle returned by the ambient message send. As explained in section 6.2.1, message
sends to ambient references always return delivery handles rather than futures directly.
This is because a delivery handle provides more functionality than a future (e.g. can-
celling message delivery prematurely) and because one-way ambient messages do not
even have an associated future. The @Sustain annotation is discussed in more detail
in section 6.4.5.3.

Futures are only attached to two-way point-to-point messages. Two-way one-to-
many messages are associated with a more general type of future, discussed below.

Multifutures A one-to-many message send annotated with @Reply is associated with
a multifuture [Ded06]. A multifuture is a future that can be resolved or ruined multiple
times. The multifuture itself represents the collection of values and/or exceptions as a
whole. A multifuture supports the same operations as a regular future. That is:

• it acts as a proxy to which messages may be sent. This message is subsequently
forwarded to every value with which the multifuture is resolved.

• it allows for the registration of observer closures. These closures trigger on every
value or exception with which the future is resolved or ruined.

A multifuture can be unresolved, partially resolved or totally resolved. It can only
be totally resolved if the amount of time to wait for replies is bounded by means of a
timeout period. This is described in further detail in section 6.4.6.2 when the appro-
priate mechanisms to express ambient message lifetimes have been introduced. There
exist three different ways in which observer closures can be registered with a multifu-
ture:

• when observers are triggered only on the first value or exception with which the
multifuture is resolved or ruined. This ensures that a multifuture can be used
anywhere a regular future is expected.

• whenEach observers are triggered on each value or exception of the multifuture.
Hence, these closures can trigger an unspecified number of times.

• whenAll observers are triggered at most once, when the multifuture can guar-
antee that no further results will be gathered. These observers receive as an
argument a table of values and/or exceptions such that all results can be accessed
simultaneously.

Regular futures can be regarded as a special case of multifutures. A regular future
behaves like a multifuture that is resolved at most once. As a result, it is legal to
register whenEach and whenAll observers on regular futures. In this case, both behave
like normal when observers which are triggered at most once. In the case of a whenAll
observer, the value passed to the observer is wrapped in a unary table.

Because a one-to-many message is targeted at all of its potential receivers, and be-
cause this set of receivers is derived from its carrier’s reach, the number of potential
receivers is unknown. Consequently, the sender has to deal with an unknown num-
ber of replies to the message. Multifutures are a convenient abstraction to gather
all of the replies to a broadcast at a single point in the code. To illustrate the use
of multifutures, consider a virtual shopping assistant example originally proposed by
Dedecker [Ded06]. The shopping assistant runs on e.g. the users’ mobile phone
equipped with WLAN. Users can specify their interest in a particular item. While

6.4. AMBIENT REFERENCES IN AMBIENTTALK 143

strolling in the shopping mall, the shopping assistant queries nearby shops for the
item’s price. At any point in time, the shopping assistant displays the store offering
the best price for the item. The code below shows how the shopping assistant can keep
track of the best offer thus far for a given item, which represents a unique product ID.

def bestPriceSoFar;
def bestShopSoFar;
def shops := ambient: Shop;
def handle := shops<-query(item)@[All,Sustain,Reply];
whenEach: handle.future becomes: { |reply|
if: ((bestPriceSoFar == nil).or:{ reply.price < bestPriceSoFar }) then:{
[bestPriceSoFar, bestShopSoFar] := [reply.price, reply.shopId];
updateGUI(bestPriceSoFar, bestShopSoFar);

}
}

The variableshops contains an ambient reference referring to nearby shops (assum-
ing objects representing shops are exported by means of the Shop type tag). The query
message is sent to all shops and expects replies to be sent to a multifuture. A whenEach
listener on the multifuture is triggered each time a shop responds to the query. We
assume the reply to the query is an object containing both the item’s price and shop
information. An example showcasing whenAll observers is given in section 6.4.6.2.
Finally, the @Sustain annotation specifies that the message may be delivered indefi-
nitely, until explicitly retracted (cf. section 6.4.5).

In general, multifutures enable many-to-one communication between peers, allow-
ing for the expressive aggregation of replies. For example, a mobile client can use a
multifuture to gather replies to a request that was broadcast to all stationary services
in the nearby environment. The shopping assistant exemplifies such a communication
pattern. Conversely, a stationary service could use a multifuture to gather replies to a
request that was broadcast to all nearby mobile clients.

This section discussed unbounded two-way ambient messages. Such messages are
associated with a future to gather replies, but there is no upper bound on the amount
of time to wait until a reply arrives. Restricting this time period brings us to bounded
two-way ambient messages, discussed below.

6.4.4.3 Bounded Two-way ambient messages

Once a potential receiver for an ambient message has been discovered by an ambient
reference, the message is sent to that receiver. If the message is a one-way message,
this ends the message delivery. However, if the message is a two-way message, the
ambient reference needs to devote resources to await the reply. A bounded future-type
message send enables control over how long the ambient reference ought to wait for
that reply.

An ambient message can be annotated with @Due(t) where t denotes a timeout
period (in milliseconds), known as the message’s communication lifetime. It indicates
the amount of time to wait for a reply after the ambient message was sent to a receiver.
Hence, the timeout period t is relative to the time at which a receiver for the message
was found. It is not relative to the time at which the message was sent to the ambient
reference; such timeouts are discussed later in section 6.4.6.

An ambient message annotated with @Due(t) always has a future associated with it.
After all, the possible expiration of the message requires a future to report this status to.

144 CHAPTER 6. AMBIENT REFERENCES

The expiration period indicated by @Due interacts with futures as follows. In the case
of a point-to-point message, when the expiration period has elapsed and no reply has
been received, the future attached to the ambient message is automatically ruined with
a TimeoutException. This mimics the familiar way of dealing with overdue messages
in AmbientTalk (cf. section 4.4.4). The interaction behaviour with multifutures is more
complex, because it also depends on the discovery lifetime of an ambient message,
a property which is explained in the next section. We will return to the interaction
between communication lifetime and multifutures in section 6.4.6.2.

6.4.4.4 Summary

Communication lifetime allows peers to specify an upper bound on the listening phase,
i.e. how long to wait for replies to an ambient message. Messages without a listening
phase are one-way messages. For such messages, no reply is expected and there is
no way of checking whether the message was successfully delivered. Messages with
a listening phase are two-way messages and are always associated with a future. The
type of future (regular or multifuture) depends on the message’s arity. If, furthermore,
the communication lifetime of the message is bounded (i.e. not infinite), the future
can also be used to perform failure handling when replies to the message fail to arrive
within the listening phase.

In the next section, we turn our attention to the third delivery policy of ambient mes-
sages, discovery lifetime, which enables one to bound an ambient message’s speaking
phase rather than its listening phases.

6.4.5 Discovery Lifetime
Communication lifetime bounds the listening phase by specifying an amount of time
to wait for a reply to an ambient message, once that message was sent to an actual
receiver. The discovery lifetime of an ambient message bounds the speaking phase
during which service objects entering an ambient reference’s reach are regarded as
potential receivers for the message. Discovery lifetime is a crucial delivery policy
because it forms a temporal scope in which to deliver the message. Without such a
temporal scope, the delivery time of an ambient reference cannot be bounded. This
is because, due to the intensional description of an ambient reference’s scope, it is
impossible to know how many objects the scope contains. As a consequence, it is
impossible to put an upper bound on the number of potential receivers of an ambient
message.

Discovery lifetime bounds the potential receivers of an ambient message in time
rather than in number. The programmer can specify three policies, each of which is
discussed in detail below.

6.4.5.1 Instant Delivery

An ambient message annotated with the @Instant type tag is only sent to objects
within the ambient reference’s reach when the message is sent to the ambient reference.
Any objects that enter the ambient reference’s reach after the message was sent are not
considered potential receivers of the ambient message. In figure 6.3, if the message m
were to have an instant discovery lifetime, it would only be sent to s1 because this is
the only service object in reach at the time m is sent (s1 was discovered at time ts1

prior to tm).

6.4. AMBIENT REFERENCES IN AMBIENTTALK 145

To illustrate instant discovery lifetime, reconsider the location tracking service ex-
ample introduced in section 6.1.1.1. In the example, mobile clients roam within a
nomadic ad hoc network. The infrastructure of that network connects a number of ac-
cess points to a location tracking service, which may be queried by clients to retrieve
location information of another client. Roaming clients periodically submit their GPS
coordinates to a proximate access point. Recall that we mentioned several possible
(application-specific) semantics in the case that no access point is available. The coor-
dinates could be buffered, or they could simply be dropped. Dropping coordinates is
fine if the location server only keeps track of a client’s latest position and not its entire
path. The following code snippet implements this semantics:

def accessPoint := ambient: LocationService;
def updateLocation(loc) {
accessPoint<-submitLocation(clientId, loc)@[One,Instant,Oneway];

};

Note how the entire implementation of the createConnection function defined in
section 6.1.1.2 is subsumed by ambient references and the ability to send point-to-point
ambient messages. Because the message is further annotated with the Instant type
tag, the location information is dropped if there exist no proximate LocationService
objects.

An ambient message with an instant discovery lifetime does not decouple sender
and potential receivers in time: if such a message is sent when its carrier’s reach is
empty (i.e. there are no objects in communication range), the message is lost. How-
ever, messages with an instant discovery lifetime are useful for representing pure event
notifications which are only relevant at the time the message is sent. Often, these noti-
fications are broadcast repeatedly, but with constantly changing argument values. The
quicker a message or event’s content grows stale after it is sent, the more appropriate it
becomes to deliver it to services available at that instant only.

In the following section, we discuss how the delivery of ambient messages can be
decoupled in time, by widening the temporal scope during which the message can be
delivered.

6.4.5.2 Transient Delivery

The potential receivers for an ambient message annotated with @Transient(t) are all
of the objects in its carrier’s reach from the moment it is sent until the timeout period
∆td (represented as an amount of milliseconds t) has elapsed. Hence, an ambient mes-
sage with a transient discovery lifetime may be received by objects which are not in
communication range at the time the message was sent, but which do enter commu-
nication range before ∆td elapses. Instant message delivery can now be regarded as
transient delivery with a timeout period equal to zero. Figure 6.3 adequately depicts a
message with a transient discovery lifetime.

Transient message delivery decouples sender and receiver in time, but only up to a
given period of time. Hence, messages with a transient discovery lifetime may still be
lost if no objects are in reach when the timeout period has elapsed. Transient message
delivery generalises instant delivery in the sense that the sender can more accurately
describe when the information represented by the message becomes stale and should be
dropped. An example of transient message delivery was given in section 6.2.1, where
it was used to broadcast a stock quote update to clients accessible within the next 5
minutes.

146 CHAPTER 6. AMBIENT REFERENCES

In the following section, we describe the final kind of discovery lifetime for an
ambient message.

6.4.5.3 Sustained Delivery

A message annotated with the @Sustain type tag is considered to have an infinite dis-
covery lifetime6. The delivery of the message is sustained unconditionally, until the
sender explicitly retracts the message. The potential receivers of a sustained message
are all objects in its carrier’s reach from the the moment it is sent to the ambient ref-
erence. In figure 6.3, if the message m were to have a sustained discovery lifetime, it
would also be sent to s5 because its discovery lifetime has no upper bound.

Sustained message delivery totally decouples sender and potential receivers in time.
Only if the sender explicitly retracts the ambient message is the delivery cancelled. In
order to illustrate the retraction of sustained messages, reconsider the shopping assis-
tant example from section 6.4.4.2. The code below shows the necessary additions to
stop the delivery of the query message.

def ShoppingAssistant := object: {
def bestPriceSoFar;
def bestShopSoFar;
def deliveryHandle;
def startSearch() {
def shops := ambient: Shop;
deliveryHandle := shops<-query(item)@[All,Sustain,Reply];
whenEach: deliveryHandle.future becomes: { |reply|
if:((bestPriceSoFar == nil).or:{reply.price < bestPriceSoFar}) then:{
[bestPriceSoFar, bestShopSoFar] := [reply.price, reply.shopId];
updateGUI(bestPriceSoFar, bestShopSoFar);

}
}

};
def stopSearch() {
deliveryHandle.cancel(); // stop broadcasting the query message

};
}

In the above example, message delivery is explicitly cancelled when stopSearch

is invoked. It could for instance be invoked implicitly by the user via the shopping
assistant’s GUI. Cancellation is achieved by invoking the cancel method of the de-
livery handle returned by the ambient message send. If an ambient message has an
instant lifetime, invoking cancel has no effect, as the message is already considered
cancelled. In the case of a transient lifetime, an invocation of cancel is treated as if
the timeout period had elapsed, causing the speaking phase to end.

We can use sustained discovery lifetime to encode the delivery semantics of the
original location service example from section 6.1.1.1. In the original example, if a
mobile client was disconnected from any location service, its location updates were
buffered. The code using ambient references is the same as that shown previously
when discussing instant discovery lifetime, only now a sustained discovery lifetime is
used to ensure that the message is not lost upon disconnection.

6We first considered the term “persistent delivery” but refrained from using it as the term is heavily
overloaded and hints at the fact that the message would be stored on persistent storage, which is not the case.

6.4. AMBIENT REFERENCES IN AMBIENTTALK 147

def accessPoint := ambient: LocationService;
def updateLocation(loc) {
accessPoint<-submitLocation(clientId, loc)@[One,Sustain,Oneway];

};

In general, sustained message delivery is useful for publishing information and for
keeping it online, not for representing “events” that are only relevant for a short period
of time. For example, mobile clients can use it to keep information available for one
or more remote services (like the client’s location coordinates in the above example),
without any assumptions on when that information will be consumed.

Summary An ambient message’s discovery lifetime acts as a temporal scope during
which objects entering its carrier’s reach are regarded as potential receivers for the mes-
sage. While point-to-point messages may be retracted from an ambient reference after
they have been delivered once, one-to-many messages must remain available through-
out their discovery lifetime. We distinguish three possible choices: message delivery
may be instant (the message is sent only to objects in reach at the time it is sent),
transiently (it remains available for a given timeout period) or sustained (it remains
available until explicitly cancelled).

We have now discussed the three delivery policies of ambient messages – arity,
communication lifetime and discovery lifetime. In the following sections, we study
their interactions. In the following section in particular, we study the relationship be-
tween the speaking and listening phases during the delivery of an ambient message.

6.4.6 Relating Discovery Lifetime and Communication Lifetime
As previously stated in section 6.3, we distinguish two phases in the delivery of an am-
bient message. During the speaking phase, the carrier of the ambient message actively
discovers potential receivers for the message. Whenever a receiver has been discov-
ered, the ambient message is sent to that receiver. If a reply to the message is required,
a listening phase is then started to await that reply. These phases are depicted in fig-
ures 6.2 and 6.3. For a point-to-point message, the speaking phase lasts until at least
one potential receiver has been discovered. For a one-to-many message, the speaking
phase may proceed in parallel with multiple listening phases, as the message may be
sent to multiple actual receivers. In the previous two sections, we have described the
different mechanisms to control the lifetime of each of these phases.

With both communication and discovery lifetime explained, we now discuss how
they combine. The combined lifetimes determine the total delivery time of the mes-
sage. The total delivery time provides an upper bound on the resolution of any future
associated with the message. Table 6.1 gives an overview of the different combinations
between the choices for communication lifetime (the rows) and discovery lifetime (the
columns). The values depicted are the sum of the corresponding lifetimes. ∆tc and
∆td represent timeout periods specified by the programmer.

Evidently, the total delivery lifetime of a message is only bounded if both its com-
munication and discovery lifetimes are bounded. However, because communication
and discovery lifetimes are specified using separate annotations by the programmer,
the total delivery time of a message can be very implicit in the code. This is especially
the case when combining a bounded discovery or communication lifetime with an un-
bounded one (because the result will be unbounded as well). For example, a program-

148 CHAPTER 6. AMBIENT REFERENCES

@Instant @Transient(∆td) @Sustain
@Oneway 0 ∆td ∞
@Due(∆tc) ∆tc ∆tc + ∆td ∞
@Reply ∞ ∞ ∞

Table 6.1: Combining communication (rows) and discovery (columns) lifetimes.

mer may annotate a message with @Due(minutes(5)) and @Sustain. The resulting
future is not ruined with a TimeoutException 5 minutes after sending the message to
the ambient reference, but 5 minutes after sending it to an actual receiver. Since it may
take forever to discover an actual receiver (because of the sustained discovery lifetime),
the future may never be ruined at all. In order to explicitly correlate communication
and discovery lifetimes, we introduce the expirable delivery policy, discussed below.

6.4.6.1 Expirable Ambient Messages

An expirable ambient message is annotated with @Expires(t). Contrary to the timeout
periods of @Due(t) or @Transient(t)which only specify the lifetime of the commu-
nication or speaking phases respectively, the timeout period of @Expires(t) specifies
the entire lifetime of the message delivery process. Whereas the timeout period of
@Due(t) is relative to the time at which the message is sent to a discovered receiver,
the timeout period of @Expires(t) is relative to the time at which the message is sent
to the ambient reference itself. The longer it takes to discover a potential receiver
for a message, the less time is allotted for that receiver to reply to the message. An
ambient message annotated with @Expires is implicitly also annotated as @Due and
@Transient. Hence, annotating a message with @Expires(t) fixes both its communi-
cation lifetime and its message lifetime.

We now specify how discovery and communication lifetime are related by@Expires
(∆t). ∆t is the total delivery lifetime of the ambient message. The communication
lifetime of such a message can only be determined once a potential receiver is discov-
ered. Because ∆t covers the entire delivery lifetime, we get ∆t = ∆tc + ∆td and it
directly follows that ∆tc = ∆t − ∆td. The time interval ∆td denotes the amount of
time it took the ambient reference to discover the receiver. It can be rewritten as the
difference of two absolute time values: td, the time at which the receiver was discov-
ered, and ts, the time at which the message was sent. Hence, ∆td = td − ts and by
substitution ∆tc = ∆t− (td − ts).

Figure 6.4 illustrates the delivery of an expirable one-to-many ambient message.
Note that the communication lifetime (the length of each listening phase) is now corre-
lated with the time at which the receiver is discovered. The longer it takes to discover
a receiver, the shorter the listening period and the less time is available to wait for the
reply (for example, s4’s reply arrives too late and is discarded). Also note that the total
delivery lifetime of the message does not exceed the timeout period specified by the
programmer (which corresponds to the length of the speaking phase).

In short, an ambient message’s total delivery time is only bounded if it is not anno-
tated with either @Reply or @Sustain. While it is possible to define the total delivery
time implicitly in terms of ∆tc and ∆td, it is often more relevant to express the total
delivery time ∆t explicitly. Expirable ambient messages cater to this by explicitly cor-
relating discovery lifetime with communication lifetime. In the following section, we

6.4. AMBIENT REFERENCES IN AMBIENTTALK 149

Time
tmts1

Ra

m
s1 s2

s3

m

ts2

s4

ts4

m s5

ts5
speaking phase
listening phase s1
listening phase s2
listening phase s4

Figure 6.4: Delivery of an expirable one-to-many ambient message.

describe the effect of these lifetimes on the futures associated with two-way ambient
messages.

6.4.6.2 Lifetime and Futures

If an ambient message’s total delivery lifetime has expired, its future becomes totally
resolved. In the case of a point-to-point message, the future becomes ruined with a
TimeoutException at that point. In the case of a one-to-many message, any when
observers registered on the multifuture are equally notified with a TimeoutException
to ensure that multifutures remain interchangeable with regular futures.

Multifutures provide more possibilities for synchronisation than regular futures.
We previously described the possibility to register a whenAll observer on a multifuture.
Such observers are not triggered by incoming results or exceptions, because it is never
known how many replies should be received (because the total number of receivers of
a one-to-many message is not known a priori). Rather, these observers are triggered
when the multifuture becomes totally resolved. In other words, whenAll observers are
triggered when the ambient message’s total delivery lifetime has passed.

To illustrate the combined use of multifutures and the expiration delivery policy,
we revisit the voting application introduced in section 6.1.2.1. Recall that the goal of
the application is to enable a team player in a mobile multiplayer game to issue a poll
to nearby team players, allow them to reply within a limited period of time and then
collect the results.

def nearbyTeamPlayers := ambient: Player where: { |p| p.team == myTeam };
def broadcastVote(poll, maxVoteTime) {
def [future,resolver] := makeFuture();

def handle :=
nearbyTeamPlayers<-askToVote(poll)@[All,Expires(maxVoteTime)];

whenAll: handle.future resolved: { |receivedVotes|
resolver.resolve(receivedVotes);

} ruined: { |exceptions|
// ignore the votes of faulty players

};

150 CHAPTER 6. AMBIENT REFERENCES

future
};

It is instructive to contrast the above implementation with the original ones defined
on pages 121–122. Note that nearbyTeamPlayers is no longer an explicitly managed
collection, but rather an ambient reference. The askToVote message is sent to all team
players in nearbyTeamPlayers’ reach at the time the message is sent and all team
players entering the reach before the vote time has elapsed. The explicit management
of timeouts is avoided by means of the @Expires delivery policy.

The whenAll observer on the multifuture attached to the handle returned by the
ambient message provides a convenient hook to close the vote and gather the results.
In the original version, receivedVoteswas a map from players to their corresponding
answer. In the above version, it is simply a table of the answers. If information about
the players that voted is required, the return value of askToVote can be changed into
a tuple [receiver,vote] indicating who replied to the askToVote message. Finally,
note that the nearbyTeamPlayers ambient reference is a reusable abstraction: it may
be used by other parts of the application which can use different message delivery
policies for their own ambient messages.

6.4.7 Summary
Ambient references always reference a set of proximate objects. However, they do not
support a single kind of message passing semantics. Rather, the programmer can select
a set of message delivery policies organised in a hierarchy. This hierarchy is shown in
figure 6.5. Note that making a message expirable implies both a bounded communica-
tion lifetime and a transient discovery lifetime. The classification is exclusive, e.g. a
message cannot be annotated both as a point-to-point and as a one-to-many message.

Discovery
Lifetime

Communication
Lifetime

AritySustainableInstant Transient

One-way

Unbounded Bounded Expirable
@Due(t) @Expires(t)

@Sustain@Instant @Transient(t)

@Reply

@Oneway

Point-to-point
@One

One-to-many
@All

Two-way

Figure 6.5: Taxonomy of Ambient Message Delivery Policies.

6.4.8 Interactions between Delivery Policies
One advantage of specifying the three kinds of message delivery policies indepen-
dent of one another is that they can be combined to express a great variety of delivery
semantics. From figure 6.5, we can derive the total number of possible message deliv-
ery policies: 3 (communication lifetime) × 3 (discovery lifetime) × 2 (arity) already
makes for 18 possible basic combinations. Adding the possibility to annotate messages

6.4. AMBIENT REFERENCES IN AMBIENTTALK 151

with @Expires adds 1 (communication and discovery lifetime) × 2 (arity) is 2 more
combinations, bringing the total to 20.

We will not go into details on each of the 20 specific combinations. Rather, we
make some abstraction and discuss the pairwise interactions at the abstract policy level,
resulting in C2

3 = 3 possible combinations. As we will describe, some combinations
cater to particularly useful kinds of interactions, while other combinations may prove
dangerous, introducing pitfalls for the unwary programmer.

Arity and Discovery Lifetime The combination of these two delivery policies is
perhaps the most important, largely determining the kind of interaction. For example, a
point-to-point message with a sustained discovery lifetime expresses a time, space and
synchronisation-decoupled communication with a remote object. The time decoupling
can be relaxed by shortening the discovery lifetime.

A one-to-many message with an instant discovery lifetime adequately captures the
event dissemination from a publisher to nearby interested subscribers. Depending on
the kind of event, its temporal scope can be widened by using a transient discovery
lifetime, increasing its chances to be delivered to nearby subscribers. An event is not
usually broadcast with a sustained discovery lifetime. Sending a one-to-many message
with a sustained discovery period can more be regarded as posting a message in a news
feed or virtual bulletin board: the message remains available for any encountered object
to read. For example, an ad hoc agenda application can use this pattern to broadcast
appointments in its public agenda to all agenda peers it encounters. If the appointment
is cancelled, the broadcast can be retracted.

Arity and Communication Lifetime The relation between these two policies has al-
ready been uncovered when discussing communication lifetime in section 6.4.4. Arity
has no influence on one-way message sends, but it determines the result of a future-type
message send. Because a point-to-point communication naturally results in at most one
reply, a future is an adequate abstraction for the return value. A one-to-many communi-
cation may cause any number of replies to be generated, requiring multifutures instead.
When using multifutures, the programmer should be aware that whenAll observers are
only triggered implicitly if the ambient message’s total delivery time is bounded. Oth-
erwise, they are only triggered when message delivery is cancelled explicitly via the
delivery handle.

Discovery and Communication Lifetime When combining these two policies, the
programmer must be wary. When combining a temporary discovery lifetime (e.g. in-
stant or transient discovery) with an unbounded communication lifetime, this may lead
to a situation where a message is not delivered to any receiver (because the reach of
the ambient reference remains empty), yet the sender relies on the future’s resolution
to trigger the remainder of the computation. In such a situation, we know for sure that
the future will never be resolved (there is no receiver to resolve it). Hence, when using
a temporary discovery lifetime in combination with futures, it is advisable to always
bound the communication lifetime as well (using @Due).

One way of avoiding this pitfall is to change the semantics such that an ambient ref-
erence ruins a future with a special “message lost” exception if it knows that a message
it is about to discard was not sent to any receiver. Nevertheless, using futures without
bounding communication lifetime remains dangerous: the message may be delivered
to a receiver who moves out of communication range before being able to reply. As

152 CHAPTER 6. AMBIENT REFERENCES

a result, the “message lost” exception is not triggered (a receiver was found), yet the
reply might never be received so the future might never be resolved as well.

The relationship between discovery lifetime and the communication lifetime intro-
duced by bounded future-type message sends has been extensively discussed in section
6.4.6. The two represent the lifetime of different stages in the delivery of the message:
the time until a receiver is discovered and the time to wait for a reply. Communication
lifetime relative to message sending time (@Expires) necessarily constrains discov-
ery lifetime to be transient. It puts an upper bound on message delivery (ruling out
@Sustain) yet allows the message to be sent to any receiver in reach until the timeout
has elapsed (ruling out @Instant).

Communication lifetime by itself (@Due) does not influence discovery lifetime.
However, the programmer has to be wary that using@Due in combination with@Sustain
does not put an explicit upper bound on the resolution of the future associated to the

message (cf. table 6.1). However, the situation is less hazardous than the one described
previously because there is always a chance that a potential receiver can still be found,
because the message remains available for delivery.

6.5 Delivery Guarantees
In the previous section, we have discussed at length how ambient references discover
potential receivers for their ambient messages. However, we have yet to explain the
precise delivery semantics of messages transmitted when a receiver is found.

In the literature, the most widely known message delivery semantics are best effort
(the system tries hard to deliver the message, but does not give any other guarantee), at
least once (the message may potentially be delivered multiple times), at most once (the
message is either delivered once, or not at all) and exactly once (the message is guar-
anteed to be delivered without duplicates, provided that any system or network failure
is finite) [CDK05]. In ad hoc networks, it is extremely hard to provide strong delivery
guarantees, because network partitions can often be permanent (i.e. devices move out
of range and never meet again) [MMH05]. Moreover, because it is generally undecid-
able to discriminate between network and machine failure, even in stationary networks
an exactly once semantics is rarely guaranteed. Java RMI for example, employs at
most once semantics [Sun98]. Stronger semantics are often found in message queuing
systems like JMS, where messages can be made persistent to survive the failure of both
message receiver and the delivery system itself.

Ambient references provide an at most once delivery guarantee for point-to-point
messages, but only guarantee best effort delivery for one-to-many messages. Replies
to ambient messages are delivered to the ambient message’s future at most once. We
discuss these choices in more detail below.

6.5.1 Point-to-point Messages
As discussed in section 6.3, a point-to-point message m is delivered to an actual re-
ceiver s selected from the set of potential receivers, i.e. s ∈ PRm. If PRm = ∅
then the message is not sent to any receiver. Otherwise, it is delivered at most once to
the single receiver. The message may get dropped due to transmission errors, in which
case it is also lost. In general, one can assume that the methods of exported objects
invoked by means of point-to-point messages are triggered at most once per message
send.

6.5. DELIVERY GUARANTEES 153

The benefit of at most once semantics is that it does not require heavyweight tech-
niques to implement (e.g. persistence, transactions) [GDL+04], while it provides a
manageable abstraction for the programmer which is relieved from the burden of filter-
ing out duplicate (retransmitted) messages. For two-way point-to-point ambient mes-
sages either the future attached to the message is resolved with a reply (this could be a
simple acknowledgement) or it is ruined with a TimeoutException if no reply arrives
during the listening phase.

Note that a future ruined with a TimeoutException does not imply that the mes-
sage was not received. It may be the case that a message has been successfully received
by a remote party, but that the reply (acknowledgement) is lost or arrives late. Hence,
the sender regards the message send as failed without the receiver being aware of this.
The message may thus trigger a computation which remains unacknowledged to the
sender. Such computations are known in the literature as orphans [CDK05] (figura-
tively speaking, these are computations “without a parent” to report their results to).
One of the major difficulties in distributed programming remains the design of appli-
cations that can gracefully recover from such situations in which different parties have
a diverged view on the state of the distributed system.

6.5.2 One-to-many Messages
For one-to-many messages, the delivery semantics is more complex. Recall from sec-
tion 6.3 that such messages are delivered to all potential receivers. In order to prevent a
message from being delivered more than once to the same receiver, either the ambient
reference must remember all previous receivers to which it already sent the message,
or the receivers must remember all ambient messages which they have previously re-
ceived. In either case, bookkeeping information is necessary to filter out duplicate
messages. If the lifetime of an ambient message is finite, then the set of potential re-
ceivers is similarly finite and as a result the bookkeeping information can be removed
at some point in time.

The problem lies with ambient messages with an unbounded lifetime (e.g. a mes-
sage annotated with @Sustain). For such messages, the set of potential receivers is
unbounded and as a result there is no predefined point at which the bookkeeping in-
formation can be forgotten. Because it is not realistic to store such bookkeeping in-
formation indefinitely, we weaken the delivery guarantees for one-to-many messages.
More specifically, a one-to-many message is delivered at most once only if its lifetime
is smaller than some predefined constant, which we term the recall period. The recall
period indicates the maximum amount of time until which an ambient reference can
“recall” the identity of a previous receiver or alternatively, until which a receiver “re-
calls” a previously received message. If a one-to-many message’s lifetime exceeds the
recall period, it may be delivered multiple times to the same receiver. Such duplicate
message delivery only occurs after an object becomes disconnected and then recon-
nects at a later point in time. Nevertheless, in general, one-to-many messages have
only best effort semantics.

Figure 6.6 depicts the impact of the recall period on message delivery. We assume
that m is a one-way, one-to-many message with a sustained discovery lifetime. The
dotted arrows denote the movement of service objects. m is sent to both s1 and s2. Both
services subsequently move out of reach. Because s1 reconnects within the duration
of its recall period, it is “recalled” by a and does not receive m again. s2 on the other
hand, receives m twice because it is regarded by a as a “new” service (s2 is not recalled

154 CHAPTER 6. AMBIENT REFERENCES

recall period s1

Time
tmts1

Ra

m
s1 s2m

ts2

s1

m
s2

ts2

s1
s2

recall period s2

speaking
phase

Figure 6.6: Impact of an ambient reference’s recall period on message delivery.

by a because its disconnection outlasted its recall period).
In short, when performing one-to-many communication using transient or sustained

ambient messages, the AmbientTalk programmer must be aware that such messages
may trigger the method of actual receiver objects multiple times. This requires the
programmer to either take duplicate filtering measures at the application-level or to
ensure that the invoked method is idempotent [CDK05], i.e. that duplicate invocations
have no inadvertent effects (e.g. because the method performs no side-effects).

6.5.3 Delivery Order
A final aspect of message delivery is the order in which ambient messages are received
by their receiver(s) with respect to the order in which the messages were sent. Here,
again, the discovery lifetime plays an important role. Multiple messages with an instant
discovery lifetime sent to the same ambient reference will arrive in the same order at
actual receivers.

For messages with a prolonged (i.e. transient or sustained) discovery lifetime, am-
bient references do not specify any order on the way ambient messages are delivered to
potential receivers. When a new potential receiver enters an ambient reference’s reach,
it may receive any pending ambient messages sent to that ambient reference in any
order.

Note that when using transient messages, any delivery order is always relative to
the particular discovery lifetimes of the messages at hand. Consider the following
example:

a<-first()@Expires(seconds(5));
...
a<-second()@Expires(seconds(1));
...
a<-third()@Expires(seconds(3));

Given code like this, we can never guarantee that a receiver always receives the
sequence first,second,third. A potential receiver entering a’s reach after 2 seconds
may receive first and third, but no longer second. The programmer must thus be

6.6. REINTRODUCING CONNECTION-ORIENTED DESIGNATION 155

aware that for messages with a prolonged discovery lifetime, the time at which the
message is sent to the ambient reference is irrelevant in terms of message ordering.

The lack of any delivery order on prolonged messages can be compared to the
lack of any order on tuples in a tuple space [Gel85]. In tuple spaces, subsequent
in(tuple) operations performed by a consumer process are not necessarily corre-
lated with subsequent out(tuple) operations performed by a producer process: ev-
ery in(tuple) operation may retract any matching tuple in the tuple space. Stronger
guarantees must be incorporated at the application-level.

Finally, note that an explicit order can be defined on messages by using a pattern
of nested when:becomes: observers. For example, the following code guarantees that
second is sent to a remote service only after first was successfully received and
processed by an actual receiver:

when: a<-first()@[One,Sustain,Reply] becomes: { |ack|
when: a<-second()@[One,Sustain,Reply] becomes: { |ack2|
// first and second have been processed in order

}
}

In short, it is guaranteed that @Instantmessages are delivered to actual receivers in the
order in which they were sent to the ambient reference. For messages with a prolonged
discovery lifetime no such ordering is guaranteed. If a delivery order is required, it
must be implemented either by means of acknowledgements (when:becomes:) or by
passing application-level sequencing information in the ambient messages.

6.6 Reintroducing Connection-oriented Designation
In section 6.2.2, we highlighted that the most distinguishing feature of ambient refer-
ences is that they are object references supporting a form of connectionless (as opposed
to connection-oriented) object designation. This feature is at the heart of their ability to
support roaming. However, we also mentioned that roaming is not always a desirable
abstraction as it only works for either stateless communication or for services which
can synchronise by means of infrastructure (e.g. in a nomadic network). In this section,
we introduce abstractions that reintroduce connection-oriented designation but without
sacrificing the space decoupling afforded by ambient references.

6.6.1 Anonymous Far References
In section 6.2.2 we pointed out that ambient references trade stateful communication
for space-decoupling while far references trade space-decoupling for stateful commu-
nication. In this section, we introduce an abstraction that strikes a balance between
both, which we shall refer to as anonymous far references.

Anonymous far references are required when communication must be space-de-
coupled yet stateful. Recall the RFID shopping cart example from section 6.1.3. In
the example, we required an ad interim remote object reference to a ProductDatabase
service to act as a stand-in while no ProductDatabase was available. We named such
references provisional because they act as a stand-in that allows clients to send mes-
sages to and pass around the stand-in object when a real service is not yet discovered.
Far references fail to represent such provisional references because they are not decou-
pled in space, they must always refer to a known object. In section 6.4.4.2 we have

156 CHAPTER 6. AMBIENT REFERENCES

shown that ambient references – in combination with sustained message delivery – can
be used to represent a provisional reference to a ProductDatabase.

However, the problem is that ambient references form a provisional reference to any
service object in their scope. That is, ambient references cannot guarantee statefulness:
subsequent point-to-point messages are not guaranteed to be received by the same ser-
vice object (recall that point-to-point messages are delivered to a non-deterministically
chosen potential receiver). While this behaviour enables roaming, recall that roam-
ing is only a suitable abstraction when the communication protocol between client
and service object is stateless or if the different designated service objects can ex-
change session information. In the shopping cart example, if a reference to only one
ProductDatabase service is required, ambient references are not the right abstraction
either.

In section 6.1.3.2 we already provided a pattern for implementing provisional refer-
ences in AmbientTalk without reference to ambient references, by combining first-class
futures with a service discovery event handler. We pointed out that what is lacking is
a proper referencing abstraction that allows programmers to abstract from the pattern.
Anonymous far references form such an abstraction.

6.6.1.1 Anonymous Far References in AmbientTalk

An anonymous far reference is a remote object reference that transparently discovers
and binds to a service object by means of an intensional classification mechanism, like
a type tag or protocol. Hence, an anonymous far reference, like an ambient reference,
has a scope. However, unlike an ambient reference, the anonymous far reference does
not designate all objects in its scope but rather one non-deterministically chosen object
from its scope (the first object to enter communication range, to be precise). Once an
anonymous reference is bound to a remote object, it behaves just like a far reference
to this object. Reconsidering the RFID shopping cart example from section 6.1.3.1,
we may construct a provisional reference to a proximate product database server as
follows:

def renderGUI(server) {
/* as in the initial implementation */

};
def database := discover: ProductDatabase;
renderGUI(database);

The expression discover: ProductDatabase initiates a service discovery request
for a remote object exported as a ProductDatabase and immediately returns an anony-
mous far reference to such an object. Initially, this reference is unbound, i.e. it does
not designate any object yet. Only when a matching object is found does the reference
become bound. However, objects can safely send messages to an anonymous far refer-
ence even if it is unbound. As can be expected, messages sent to an unbound reference
are buffered and forwarded later, when the reference becomes bound.

Figure 6.7 depicts the situation where an anonymous far reference is created, but
where no matching service object has yet been found. The type tag with which the
anonymous far reference is initialised is depicted as a diamond shape. The object A
refers to an unbound anonymous far reference that will bind to objects whose type tag
“matches” the diamond shape. Conceptually, an unbound anonymous far reference is

6.6. REINTRODUCING CONNECTION-ORIENTED DESIGNATION 157

A

Actor

unbound anonymous
far reference

Figure 6.7: An unbound anonymous far reference.

a dangling remote reference. Any messages sent to this reference will be accumulated
until it is bound.

Figure 6.8 depicts the situation where an actor hosting a matching exported service
object enters communication range. The object is shown to be exported under a type
tag “matching” the diamond shape of the reference. Because a matching service object
has been found, the anonymous far reference at A becomes bound to this remote object.
Any messages that were previously accumulated are forwarded to the remote service
object.

When the two actors move back out of one another’s communication range, the
anonymous far reference does not revert to an unbound status. Rather, it maintains
the bond with the remote service. Hence, once an anonymous far reference becomes
bound, its behaviour is indistinguishable from that of a regular far reference. This be-
haviour is what makes anonymous far references a stateful, connection-oriented com-
munication channel, like a far reference. Hence, the database variable in the code
excerpt above refers to at most one ProductDatabase object, and all messages sent
to it are sent to that same object. We thus traded the roaming abstraction of ambient
references for the statefulness of far references.

A

Actor

bound anonymous
far reference

Actor

exported
object

Figure 6.8: A bound anonymous far reference.

6.6.1.2 Futures for Service Discovery

There is an interesting parallel to be drawn between traditional futures on the one hand
and anonymous far references on the other hand:

• In the same way that futures allow one to abstract from the return value of an
asynchronous message send (i.e. the result may or may not yet have been com-
puted), anonymous far references allow one to abstract from the status of an
asynchronous discovery request (i.e. a suitable service has or has not yet been
found).

158 CHAPTER 6. AMBIENT REFERENCES

• Futures start off in an unresolved state and can later become resolved. Anony-
mous far references start off in an unbound state and can later become bound.

• Once resolved, a future essentially becomes a proxy for the computed value.
Once bound, an anonymous far reference essentially becomes a proxy for the
discovered service.

• A future is a first-class reference to a value that is yet to be computed. Anony-
mous far references are a first-class reference to a value that is yet to be discov-
ered.

• Messages sent to an unresolved future (in AmbientTalk and E) are buffered and
forwarded later, when the future becomes resolved. Messages sent to an unbound
anonymous far reference are buffered and forwarded later, when the anonymous
reference becomes bound.

Strengthened by the above parallel, we claim that anonymous far references are to
service discovery what futures are to asynchronous method invocations. As such, they
bring about the same advantages:

• Futures allow a caller to refer to the result of an asynchronous computation in the
same scope as where that computation was started, and not in a separate callback.
Likewise, an anonymous far reference can be used in the same scope as where a
remote service is required.

• A future allows a caller to proceed in parallel with some asynchronous computa-
tion. Likewise, declaring an anonymous far reference initiates an asynchronous
service discovery process, but the declaring object can immediately proceed.

To summarise, anonymous far references form a middle ground between far ref-
erences and ambient references. They combine the space-decoupled designation of
ambient references with the stateful, connection-oriented communication provided by
far references. Anonymous far references are not a special kind of ambient refer-
ences because they do not designate a volatile set of objects, but rather one non-
deterministically chosen element from a volatile set of objects.

6.6.2 Snapshots
Ambient references designate a volatile set of objects and therefore cater to anonymous
collaboration with an unknown number of proximate objects. Sometimes, even though
a collaboration starts off with an unknown number of peers, it may at some point in
time be necessary to fix the objects communicated with. For example, in a multiplayer
game for mobile phones, before a game can be started, a number of opponents need to
be discovered. As the number and identity of other peers is not yet known, this requires
some form of anonymous communication. However, once a game session starts, the
set of players is usually fixed and the game must ensure that further session-specific
information is only routed to the players that joined the game.

To this end, it is possible to acquire an extensional representation of the objects
designated by an ambient reference by making a snapshot of its reach. This represen-
tation is an enumeration of all the potential receivers at the time the snapshot is made.
It is represented as a standard AmbientTalk table of far references to the remote ob-
jects. Using a snapshot, one converts communication with a volatile set of objects that

6.6. REINTRODUCING CONNECTION-ORIENTED DESIGNATION 159

is decoupled in space into communication with a precise set of objects that is no longer
decoupled in space.

As a concrete example, if players is an ambient reference to all Player objects,
one may create a snapshot as follows:

def enum := snapshot: players;

The variable enum is a reference to a (possibly empty) table which can then be
iterated over using e.g. the standard each: method. It is never guaranteed that the
enumeration accurately reflects the current availability of services. The moment the
snapshot is made, objects contained within it may move out of range. However, because
the snapshot contains far references, communication with the remote objects is still
decoupled in time and synchronisation.

In general, snapshots enable one to convert arity-decoupled communication (i.e.
communication with an unknown number of services) into arity-coupled communica-
tion (i.e. communication with a known number of services). Furthermore, a snapshot
reveals the identity of the objects communicated with.

6.6.3 Multireferences
As explained in the previous subsection, a snapshot represents the extensional enumer-
ation of the reach of an ambient reference as a simple table of far references. While
this representation gives full control over the set to the AmbientTalk programmer, the
downside of such a representation is that the programmer can no longer use the ex-
pressive one-to-many communication abstractions provided by ambient references to
communicate with objects in that set. In particular, one can no longer represent a broad-
cast to the set by means of a single message send (cf. the @All annotation for ambient
messages) and one can no longer use multifutures and whenEach or whenAll observers
to expressively gather results.

We reintroduce these abstractions by means of multireferences [Ded06]. A mul-
tireference – like an ambient reference – denotes a group of objects. However, unlike
an ambient reference, it denotes a fixed rather than a volatile group of objects. Any
message sent to a multireference is automatically broadcast to all objects in its set and
returns a multifuture which can be used to gather all replies. A multireference can be
created from any table of objects.

If multireferences are created from a table of far references constructed by the ap-
plication, they represent a communication channel which is connection-oriented (they
refer only to the given objects) but no longer anonymous (the objects in their set are
explicitly enumerated). However, multireferences can also be used in tandem with
snapshot to create a communication channel which is both connectionless and anony-
mous: while the table returned by snapshot is fixed, its contents is generated by an
ambient reference and never explicitly enumerated in the application code. As a con-
crete example, one may create a multireference to all nearby players as follows (still
assuming players represents an ambient reference to nearby players):

def opponents := multiref: (snapshot: players);

The opponents variable contains a multireference encapsulating the table of players.
Rather than using explicit iteration to communicate with the opponents, one may now
use familiar asynchronous message sends to communicate with all objects encapsulated
by the multireference.

160 CHAPTER 6. AMBIENT REFERENCES

In general, multireferences support one-to-many communication with a fixed group
of objects. When combined with snapshots, they form a communication abstraction
that maintains both the statefulness and the anonymity of the communication.

6.6.4 Summary

While ambient references cater to anonymous interactions, they do not cater to stateful,
connection-oriented designation. Statefulness is reintroduced by means of anonymous
far references, snapshots and multireferences. Figure 6.9 depicts a flowchart that re-
lates different kinds of designation with the object referencing abstractions that have
been introduced. In the iconic representation of the referencing abstractions, a cloud
denotes a volatile set while a circle denotes a constant set. A dashed line indicates an
intensionally specified set while a solid line indicates an extensionally specified set.

Designation is

connection-
oriented

anonymous

single
receiver

single
receiver

Anonymous
Far Reference

Y

Y

Y

Ambient
Reference

N

Snapshot +
Multireference

N

Far
Reference Multireference

NYN

designation via
discovery

designation via
introduction

Figure 6.9: Flow chart classifying referencing abstractions according to designation.

6.7 On the Scale of Time and Space

Throughout this chapter, we have often referred to measures of time and space when
discussing ambient references. For example, a one-to-many ambient message can be
sent to “many” different encountered devices and the lifetime of an ambient message
is “some period” of time. But how much is “many”, and how long is “some period”?
As language designers, we cannot decide on the precise scale of these values in the
application programmer’s stead, as they are application-dependent. What we can do,
however, is to put the notions of time and space in perspective with respect to the kind
of applications for which ambient references have been designed.

As noted by Grimm et al., what characterises ubiquitous and pervasive computing
applications is the human scale at which they operate [GDL+04]. Because such appli-
cations interact with humans, the measures they use for time and space are similar to
those employed by humans. So, when considering interactions among people, we can

6.8. CONCLUSION 161

expect interactions among tens to hundreds of devices. AmbientTalk and ambient ref-
erences are designed for ad hoc networks connecting people (through a mobile device
they carry with them), so it is designed for the human scale of such networks. It is not
designed to connect thousands of nodes in a wireless sensor network, or to scan tens of
thousands of RFID tags on containers in a harbour.

Similarly, with respect to time we expect timeouts for ambient messages to be in
the order of human time scales, such as seconds, minutes, hours or even days or weeks.
The timing abstractions for ambient references were not designed for dealing with sub-
second time frames. They were definitely not designed for real-time systems.

6.8 Conclusion
At the start of this chapter, we set out to explore the basic problems that an AmbientTalk
programmer has to deal with when creating applications that require the coordination
of proximate objects in an ad hoc network. We demonstrated the various issues by
means of concrete examples. Subsequently, we introduced the abstraction of an ambi-
ent reference: a space-decoupled object reference to a volatile set of proximate objects.
Ambient references carry ambient messages: object-oriented messages without a re-
ceiver, but annotated with a set of policies that steer their delivery process. They deal
with the discussed issues as follows:

Roaming is achieved by sending point-to-point messages to an ambient reference des-
ignating the set of service providers. Because the scope of an ambient reference
is specified intensionally, one may abstract from the particular service instances
to which a message is sent.

One-to-many Communication is achieved by means of one-to-many messages. Mul-
tifutures enable the programmer to perform arity-decoupled communication with-
out losing the beneficial request-response interaction pattern normally associated
with an object-oriented message send.

Provisional Services can be represented by ambient references to which messages
are sent with a sustained discovery lifetime. Messages are buffered within the
ambient reference until one or more matching services become available.

By providing the programmer with a wide range of options to control the delivery
process, the at first disparate set of problems can all be succinctly expressed by means
of ambient references. Even though the set of delivery policies to choose depends on
the specific problem at hand, the core abstraction is always the same: programs send
messages to references representing a volatile set of proximate objects.

When stateful communication is required, the abstraction of communicating with
a volatile set of objects is not appropriate. While far references can guarantee stateful-
ness, they do not cater to any form of anonymous communication. As a result, we have
introduced anonymous far references, snapshots and multireferences whose goal is to
reconcile stateful communication with space decoupling.

In this chapter, we have primarily focussed on the different kinds of communication
patterns which ambient references can express. We have not yet described how ambient
references help in resolving the object-event impedance mismatch. This is one of the
focal points of the next chapter, which describes ambient references in a more general
context and relates them to other referencing abstractions.

162 CHAPTER 6. AMBIENT REFERENCES

Chapter 7

Ambient References in Context

In this chapter, we abstract from the technicalities of AmbientTalk and ambient refer-
ences and put the novel language abstraction in context. First, we describe how a pro-
grammer, armed with the AmbientTalk language and the ambient reference abstraction
can conveniently express coordination in a MANET. We do this by means of an eval-
uation with respect to the criteria postulated in section 3.2. Subsequently, we describe
how ambient references combine the power of event-based publish/subscribe systems
with an object-oriented programming style. Finally, we relate ambient references to
our own prior work and to related research.

7.1 Evaluation

In section 3.2, we postulated six criteria to which a good coordination abstraction for
mobile ad hoc networks should adhere. In this section, we evaluate how AmbientTalk
and ambient references conform to these criteria.

7.1.1 Decentralised Discovery

AmbientTalk is equipped with a type-based publish/subscribe engine that directly caters
to decentralised service discovery. By registering discovery event handlers which trig-
ger upon the presence of a nearby service, an application can react to changes in its
physical environment. While the built-in discovery functionality is limited to describ-
ing remote objects by means of a type tag, library functions exist which augment this
functionality with discovery based on protocols and additional filtering using Ambi-
entTalk predicates.

Ambient references themselves do not directly provide service discovery. They
always designate a collection of proximate objects implicitly. This implicit collection
can be made explicit by means of snapshots if required. Of course, ambient references
can be used to implement service discovery. For example:

def whenever: TypeTag discovered: handler {
def nearbyServices := ambient: TypeTag;
def hdl := nearbyServices<-ping()@[All,Sustain,Reply];
whenEach: hdl.future becomes: handler;

}

163

164 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

In the above code snippet, the primitive function whenever:discovered: (cf. sec-
tion 4.4.3) is redefined in terms of ambient references. The ping ambient message
is continuously broadcast to all nearby services of the given type. By registering a
whenEach observer on the multifuture associated with the one-to-many ambient mes-
sage, we can conveniently keep track of replies to this message and hence of the pres-
ence of new services. For completeness, the above implementation relies on the fact
that services are exported as follows1:

def export: service as: TypeTag {
primitiveExport: (object: {
def ping() { service }

}) as: TypeTag;
}

If only a single service object needs to be discovered, anonymous far references are
a more suitable referencing abstraction. An anonymous far reference combines service
discovery with object designation such that it can represent a service object “yet to be
discovered”. Moreover, an anonymous far reference is always time-decoupled, such
that messages sent to the reference are never lost.

In section 3.2.1, we noted the importance of a decentralised discovery mechanism
for acquiring references to proximate services in MANETs. Such decentralised dis-
covery is provided as a primitive abstraction in AmbientTalk but can also be expressed
in the language itself by means of ambient references.

7.1.2 Loosely-coupled Communication
As noted in section 3.2.2, coordination abstractions between objects across a MANET
should be decoupled as much as possible in time, space and synchronisation to reduce
the impact on the application of the intermittent connectivity and the scarce infras-
tructure of the underlying network. Below, we discuss how AmbientTalk and ambient
references achieve such decoupling.

7.1.2.1 Decoupling in Time

In AmbientTalk, eventual references by default fully decouple sender and receiver in
time. The transmission time of a message may be bounded by annotating a message
send with a @Due annotation, which eventually ruins the future associated with the
message with a TimeoutException. An anonymous far reference caters to even more
time-decoupling than a far reference because it also buffers messages sent to it while
no matching object has been discovered yet. As stated previously, it additionally allows
client objects to abstract from the availability of the “to be discovered” service.

The degree to which communication over an ambient reference is decoupled in
time is controlled by the lifetime of an ambient message. Since ambient references
distinguish between two phases in the delivery of an ambient message – the speak-
ing phase and the listening phase(s) – there are two time periods that can be bounded.
An ambient message with a sustained discovery lifetime and no bounded communi-
cation lifetime (@[Sustain,Reply]) essentially fully decouples sender and potential
receivers in time, while a one-way ambient message with an instant discovery lifetime
(@[Instant,Oneway]) does not decouple them in time at all. Sometimes neither of

1The function primitiveExport:as: is assumed to be an alias to the originalexport:as: function.

7.1. EVALUATION 165

these choices is appropriate: we want to abstract over temporary disconnections, but
at a certain point we need to consider the option that the disconnection may well be
permanent and react upon it.

Thanks to the whole event-driven object-oriented framework underlying Ambient-
Talk, the various timeouts specified by means of the @Due, @Transient and @Expires
annotations do not need to be implemented by suspending the control flow of the

sender object. A timeout can be represented as an event that needs to be processed
by the actor. Thanks to futures and their observers, a timeout can be dealt with in
the appropriate (lexical) scope, where all relevant context-information regarding the
original send is still available. Finally, note that the @Expires policy manages the
correlation of discovery and communication timeouts such that the programmer does
not need to deal with this explicitly.

7.1.2.2 Decoupling in Space

AmbientTalk enables a limited form of space decoupling through its explicit support
for service discovery via type tags. It allows objects to coordinate without knowing one
another’s exact address. However, service discovery in itself is not a communication
channel (i.e. an object reference). Rather, it is a mechanism by which communica-
tion channels (far references) to objects can be acquired. All effective communication
is still expressed in terms of far references, which designate a well-defined receiver
throughout time. For some applications, this stateful behaviour is useful. For appli-
cations that require support for roaming (i.e. being able to use equivalent services
transparently), it is not.

Ambient references are decoupled in space by definition. They designate an ab-
stract set of proximate objects by means of an intensional description of their scope
(a type tag or protocol together with an optional filter predicate that may query the at-
tributes of a service object). Whereas far references are useful for setting up a resilient
point-to-point communication link with a specific service, as the musical match maker
example of section 4.6 illustrates, ambient references provide a volatile but more op-
portune communication link with any matching service that happens to be available,
regardless of which device hosts the service.

We argue that such opportunistic communication is often more appropriate when
the dynamic execution context changes frequently, as in pervasive or ubiquitous com-
puting applications. Grimm et al. [GDL+04] support this claim when discussing the
difference between what they call “early” versus “late” binding in their one.world sys-
tem for pervasive computing. In their system, early binding causes discovery to trigger
once when routing an event, after which all subsequent events are routed to that same
discovered service, while late bound events are always routed to any remote resource
(service) matching a certain description (see section 7.5.5 for a more thorough expla-
nation). The resulting behaviour is very similar to that of sending a message to an
(anonymous) far reference versus sending a message to an ambient reference. Quoting
Grimm. et al [GDL+04], p. 449:

“In our experience, late binding is generally preferable over early binding
for pervasive applications, as it is more responsive in an ever changing
computing environment. However, if an application sends many, possi-
bly large messages to the same receiver in short succession, the overhead
of repeatedly resolving discovery queries becomes noticeable, and early
binding represents the more appropriate choice. At the same time, with

166 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

early binding, the application needs to be prepared to rediscover the re-
ceiver if its computing context changes.”

The opportunistic addressing of ambient references provides direct support for
roaming. Objects communicate with whatever matching service is available and as
they roam, they continue their collaboration with potentially different instances of the
same service. Hence, ambient references enable an application to adapt itself to a new
environment without explicitly coding for reconfigurability. This advantage is not to
be underestimated in a mobile network that is in a state of constant flux. For exam-
ple, consider a not so distant future where cars will be communicating by means of a
VANET (vehicular ad hoc network) with nearby cars on the highway or even with the
infrastructure itself (roads, bridges, traffic signs, . . .). In such a network, services that
report accidents, road works, traffic jams, . . . will be available on a multitude of dif-
ferent hosts; they will be updated without global administration and peers will join and
leave the network unannounced at high frequency. In such networks, roaming becomes
a key abstraction to manage the sheer complexity arising from such changes.

Anonymous far references are introduced in AmbientTalk to fill the gap between
far references (which introduce no decoupling in space, but enable stateful communi-
cation) and ambient references (which are totally decoupled in space, but do not enable
stateful communication). An anonymous far reference is decoupled in space, but once
bound it remains bound to the same service object, guaranteeing statefulness. Hence,
anonymous far references correspond to “early binding” in one.world, which as Grimm
et al. mention can improve efficiency but at the cost of having to manually reconfig-
ure the application should the service to which the anonymous far reference is bound
disappear.

7.1.2.3 Decoupling in Synchronisation

AmbientTalk’s event-driven execution model is totally aimed at decoupling sender and
receiver objects in synchronisation. This is one of the key features of AmbientTalk. Be-
cause AmbientTalk is a programming language, this property can be enforced. While
programmers can of course still simulate a “blocked” process, the language’s design
causes such behaviour to be more difficult to express, hence making programmers re-
frain from using that solution unless it is really critical to their problem at hand.

Any (proper) abstraction built on top of AmbientTalk maintains the synchronisation
decoupling provided by the language. This includes ambient references, anonymous
far references and multireferences. All three are deliberately represented as eventual
references: they only support asynchronous message sending and they retain the use of
futures and the associated observer closures to express non-blocking synchronisation.
Ambient references and multireferences augment the synchronisation capabilities of
futures via their support for multifutures. The whenEach and whenAll observers that
can be registered on multifutures provide convenient synchronisation points for one-
to-many communication.

From the receiver objects’ point of view, messages originating from ambient ref-
erences are not processed differently from messages originating from far references.
Both kinds of messages are enqueued in the message queue of the actor owning the
receiver ensuring that messages can be received even while the receiver object is busy
processing another message. The receiver can implicitly reply to an ambient message
by means of the return value of its triggered method.

7.1. EVALUATION 167

7.1.2.4 Arity Decoupling

Arity decoupling enables the expression of a collaboration between an a priori un-
known number of services. AmbientTalk by itself does not directly support any form
of arity decoupling. Built-in far references only support point-to-point communication
with a well-defined receiver. Anonymous far references also do not cater to arity de-
coupling, although they can bind with any one object chosen from an unknown number
of proximate objects.

Ambient references support arity decoupling by introducing one-to-many ambient
messages. Communication can only be expressed with a volatile group of proximate
objects. However, by attributing a longer discovery lifetime to the ambient message,
the programmer can increase the chances that the message is received by remote ob-
jects. Communication with a fixed group of objects is supported by multireferences
(cf. section 6.6.3). The introduction of multifutures to represent the replies to a one-to-
many ambient message allows the sender of a broadcast message to easily gather any
replies.

In section 6.1.2, we already argued why a sequence of point-to-point messages
falls short of representing the broadcast of information to a group of volatile objects.
The advantage of representing broadcasting as a first-class operation in its own right is
that the language construct can both hide the total number of receivers communicated
with and the actual delivery of the message to the appropriate receivers [CA94]. The
management of a (volatile) set of receivers in the application’s stead is the key design
goal behind ambient references. This management is not trivial: it requires a significant
amount of coding effort in order to discover proximate objects and to explicitly manage
the various delivery policies, as can be witnessed from the implementation of ambient
references which is described in chapter 8.

7.1.3 Connection-Independent Failure Handling

One of the design goals of AmbientTalk (and AmOP in general) is to not regard net-
work disconnections as “failures”. Most obviously, far references are resilient to tem-
porary disconnections. The failure event handlers introduced in section 4.4.1 enable a
program to react to disconnections orthogonal to the communication that occurs along
the far reference. This reaction does not by default cause any part of the application
to abort (which would be the case if disconnections were modelled as programming
language exceptions). The use of @Due to limit the lifetime of a message sent via an
eventual reference also does not cause that eventual reference to become unusable once
the message expires. It only causes the particular annotated message to time out, and it
does not necessarily imply that message delivery failed.

The use of timeouts in combination with eventual references enables one to deal
with failures orthogonal to the underlying state of connectivity of the ad hoc network.
Of course, most often a timeout triggers because there is a network partition, so a
message (or its reply) cannot be delivered in due time. However, it is perfectly possible
for a timeout to occur when sender and receiver are connected. The receiver could
have discarded a message, or it may not have been able to process the message in time
because it first had to process other pending messages. Note that even in the case of
anonymous far references or ambient references, failure handling is expressed at the
messaging level and not at the reference level: while individual messages may time
out, this does not render the underlying referencing abstraction invalid.

168 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

7.1.4 Summary
The language abstractions built into AmbientTalk already deal with four of the criteria
proposed in section 3.2. Eventual references introduce time and synchronisation de-
coupling, service discovery introduces a form of space decoupling and timeouts and
leased references introduce a form of connection-independent failure handling. How-
ever, AmbientTalk lacks communication abstractions which are explicitly space decou-
pled. Such abstractions are necessary to express roaming, one-to-many communication
and provisional services. As ambient references enable the expression of exactly these
communication patterns (cf. section 6.8), together AmbientTalk and ambient refer-
ences are able to directly address the six criteria for adequately expressing coordina-
tion in mobile ad hoc networks. What is more, they express this coordination in an
event-driven yet object-oriented way, as will be discussed in the following section.

7.2 The Object-Event Impedance Mismatch Revisited
We now turn our attention once more to the issues in combining objects with events,
as explained in section 3.4. Before explaining how ambient references help to solve
the issues, we describe the relationship between ambient references and event systems.
How is it that ambient references enable AmbientTalk programmers to program in an
event-driven yet object-oriented way?

Objects communicate via object references. Event-driven systems communicate
via event brokers (the mediator between publishers and subscribers). The crux of am-
bient references is that they represent the event broker as an object reference. There-
fore, an ambient reference can be regarded as a little publish/subscribe engine of its
own. Table 7.1 contrasts the concepts of an event-based, publish/subscribe abstraction
with those of ambient references. In a publish/subscribe system, publishers send events
to an event broker, which is responsible for delivering those events to interested sub-
scribers. With ambient references, the act of sending a message to an ambient reference
represents the publication of an event for consumption by nearby interested objects.

Publish/Subscribe Ambient References
Data are Events Messages
To send Publish an event Send an ambient message

To receive Register a callback Export an object
To handle Invoke a callback Trigger (asynchronously invoke) a method

Table 7.1: Comparing Ambient References to Event notification systems.

In each of the following sections, we revisit the problems from section 3.4 in light
of the ambient reference abstraction.

7.2.1 Specific versus Generic Communication
In section 3.4.1 we contrasted the specific communication interface of objects with the
generic communication interface that is often provided by publish/subscribe architec-
tures. Ambient references maintain the specific interface of objects by representing
events as messages. This has both drawbacks and advantages. A drawback is that

7.2. THE OBJECT-EVENT IMPEDANCE MISMATCH REVISITED 169

this makes the representation of events explicit in the code. In the introductory stock
quote example in section 6.2, the event quoteUpdated(code, price) is represented
as a message send of which the message selector identifies the kind of event and the
message arguments constitute the event data. Both sender and receiver need to be fully
aware of the structure (selector and arguments) of the message.

There are two major advantages when representing events as messages. First, event
publication can be unified with object-oriented message sending. Rather than having to
explicitly construct an event as an object of a certain type and then invoking a generic
publish(Event) method, a message is sent to an object representing the subscribers
and the event’s type becomes the selector of that message. Second, event handling
can be unified with object-oriented method invocation. Rather than having to represent
event notification by subscribing a generic reactTo(Event) callback method to an
event type, it is represented by asynchronously triggering a method whose selector
corresponds to the kind of event.

In short, ambient references resolve the impedance mismatch by representing events
as messages, thus maintaining the specific communication interface of object-oriented
message passing.

7.2.2 Connection-oriented versus Connectionless Designation

Recall from our discussion in section 3.4.2 that while object-oriented referencing ab-
stractions provide connectionless communication but no space decoupling, pure event
systems provide space decoupling but do not cater to any connection-oriented commu-
nication.

It should be clear from our exposition of anonymous far references that they have
been explicitly designed to combine the advantageous properties of both object and
event systems. They provide both space decoupling and statefulness, because once an
anonymous reference is bound, it remains bound to the same object. Hence, while com-
munication along an anonymous far reference is evidently anonymous, it is guaranteed
that subsequent message sends are received by the same service. Snapshots together
with multireferences enable stateful and anonymous communication with more than
one object.

While anonymous far references and snapshots cater to connection-oriented desig-
nation, ambient references enable connectionless designation by definition. Ambient
references designate a volatile set of objects. Because of this, they provide direct sup-
port for one-to-many communication. As a result, one-to-many messages can represent
event notifications to nearby interested subscribers. While a pure event notification is
best implemented using an instant discovery lifetime, time decoupling can be intro-
duced in the event system by prolonging the discovery lifetime of the ambient mes-
sage. Because communication across an ambient reference is stateless, multiple point-
to-point messages may be received by different service objects, enabling roaming.

Even though ambient references provide connectionless designation, the program-
mer can still control what kind of objects the ambient reference may designate. Recall
that an ambient reference is initialised with a characteristic function defining its scope;
the set of objects which it may designate. Objects can be designated based on static
attributes (type tags and protocols) or dynamic attributes. Ambient references share
this property to restrict which objects they may designate with the ActorSpace model.
As noted explicitly by Callsen and Agha [CA94], this is an improvement over the pri-
vacy provided by tuple spaces: tuple space-based communication provides no way of

170 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

specifying what kind of processes may or may not consume a tuple. In this regard,
publish/subscribe systems are much like tuple space systems.

In tuple spaces and publish/subscribe systems it is generally the receiver of data that
specifies what kind of data (tuples or events) it wants to accept, rather than the sender
specifying what kind of receiver (subscriber) can accept the data. Ambient references
invert this relationship. As a result, they have the advantage that their scope can delimit
what objects are eligible to receive their messages. The downside is that service objects
have to encode their interest in particular data sent via ambient messages by means of
explicit conditional tests in their triggered methods.

In short, ambient references resolve the impedance mismatch by providing a form
of stateless and connectionless designation, like event brokers. If stateful communi-
cation is required, anonymous far references and snapshots provide a middle ground
between the space-decoupled communication provided by ambient references and the
stateful communication provided by far references.

7.2.3 Bidirectional versus Unidirectional Communication

Publish/subscribe systems are good at broadcasting information from publishers to sub-
scribers. However, if subscribers need to pass information to event publishers, this can
only be accomplished by turning the subscribers themselves into publishers and by
turning event publishers into subscribers explicitly to gather the replies. Ambient ref-
erences avoid this pattern by means of futures. Using futures, the return value of an
asynchronously invoked method can naturally serve as an implicit reply from receiver
(subscriber) to sender (publisher).

Classic futures are not directly applicable to one-to-many communication, because
a future can only be resolved with a single value (or ruined with a single exception)2.
Multifutures solve this problem because they can become resolved multiple times.
They remain object-oriented in the sense that a multifuture is a first-class represen-
tation of the reply, and any messages sent to it are forwarded to all values with which
it becomes resolved. Via their support for whenEach and whenAll observers, they also
enable the sender to expressively link event notification with reply processing and this
without giving up on the anonymous style of communication promoted by publish/sub-
scribe systems.

In short, ambient references resolve the impedance mismatch by using futures to
express bidirectional communication without giving up on the full synchronisation de-
coupling afforded by event brokers.

7.2.4 Threads versus Event Loops

In section 3.4.4 we noted that event-driven frameworks are mostly incorporated into
(multithreaded) object-oriented languages by means of callback methods. However,
because the callback method is invoked synchronously by a thread which is not man-
aged by the application, the application developer must be aware of the resulting con-
currency issues. By unifying event notification with the asynchronous invocation of a
receiver’s method, such issues are avoided. In particular:

2The futures of ABCL/1 [YBS86] form a notable exception. However, while these futures can be resolved
multiple times, they follow the traditional semantics that accessing an unresolved future suspends the control
flow of the accessor.

7.2. THE OBJECT-EVENT IMPEDANCE MISMATCH REVISITED 171

• because the AmbientTalk language ensures that incoming messages are pro-
cessed serially by an actor, the receiver object does not need to guard against
race conditions on its data. While it is true that the serial execution of incoming
messages conservatively limits the overall concurrency of the system (i.e. some
methods are safe to execute in parallel), the resulting system is arguably safer
and easier to understand for the programmer.

• because methods are processed asynchronously by the actor owning the receiver
object, the thread of control of the event broker remains responsive. Hence, a
method that takes a long time to complete does not monopolise the resources of
the entire event delivery subsystem.

The major drawback of event-based systems is that they suffer from an inversion
of control. In section 4.5.1 we extensively described how AmbientTalk avoids the
adverse effects of inversion of control (e.g. code fragmentation) by means of futures
and (block) closures. Ambient references retain the use of futures and (block) closures
as observers on futures (even for multifutures).

In short, because of the event loop architecture of AmbientTalk, service objects
must not take any additional synchronisation precautions when being designated by
one or more ambient references. This is in contrast to multithreaded object-oriented
programs where explicitly subscribing to an event broker introduces concurrency is-
sues.

7.2.5 Reconciling Objects with Events
In section 3.4.5, we explicitly stated which properties of objects and events we wanted
our unification to exhibit. Here, we discuss how ambient references achieve these
properties by representing the event broker as an object reference:

• Ambient references maintain the specific communication interface of object-
oriented message passing by representing events as messages.

• Ambient references, like event brokers, provide connectionless designation, cater-
ing to anonymous interactions with a volatile group of proximate objects. Anony-
mous far references provide connection-oriented designation while remaining
space-decoupled.

• Ambient references make use of futures to retain the bidirectional communica-
tion of message passing, without sacrificing the time and synchronisation decou-
pling afforded by event brokers.

• Thanks to AmbientTalk/2’s event loop concurrency, ambient references can com-
pose gracefully with other concurrent processes: ambient messages are delivered
to remote objects like any other message via the incoming message queue of ac-
tors and impose no additional synchronisation burden on the “subscribers” (the
actual receivers of the ambient message).

As can be observed from the above discussion, ambient references are not solely
responsible for resolving the impedance mismatch. Rather, it is the combination of
AmbientTalk’s event loops, (anonymous) far references and ambient references that
together bridge the gap between event-driven and object-oriented abstractions.

172 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

7.3 Relation to Prior Work
We have already explored ambient references in previous work [VDMD05, DVM+06a,
VDM+06, Ded06, VDD07]. However, the exposition of ambient references in prior
publications differs from the account given in this dissertation in a number of signif-
icant ways. An early exposition of ambient references [VDM+06] considered a hier-
archy of ambient references with a single, built-in message delivery policy rather than
one single ambient reference abstraction supporting a wide range of message delivery
policies. We briefly give an overview of what we will call the “early taxonomy” below
such that we can more accurately contrast it with the description of ambient references
given in this chapter – the “revised taxonomy”.

In previous work, the focus was on different kinds of ambient references rather than
on different kinds of delivery policies. The early taxonomy builds upon three principal
design dimensions [VDM+06]:

Scope of Binding is similar to the scope as defined in section 6.3. It determines the set
of objects to which the ambient reference may bind. The early taxonomy only
considers type tags and filters to delimit the scope of an ambient reference, not
protocols.

Elasticity defines how resilient an ambient reference is to disconnections of the ob-
jects it has previously discovered. There is a strong relationship between elas-
ticity and the discovery lifetime of an ambient message, but the two differ in
significant points, as discussed later.

Cardinality defines the maximum number of objects to which an ambient reference
can refer. It corresponds closely with an ambient message’s arity as defined
above, but again there are some important differences.

In each of the following subsections, we discuss these design dimensions in further
detail and contrast them with the design of the revised taxonomy.

7.3.1 Elasticity
Three different values for elasticity lead to the following kinds of ambient references
(in the early taxonomy):

Fragile ambient references stop designating an object the moment moves out of com-
munication range. In light of the early taxonomy, an ambient reference in the
revised taxonomy is “fragile”. If one sends a message to a fragile ambient ref-
erence, it is only delivered to objects that are proximate at that time. The same
behaviour is achieved in the revised taxonomy using an instant discovery lifetime
for the message.

Elastic ambient references keep on designating a disconnected object until a specified
timeout period has elapsed. As a result, a message sent to an elasic ambient
reference might still be delivered to a remote object if it reconnects within the
timeout period, otherwise the message is lost. The revised taxonomy introduces
this behaviour by means of the @Transient(t) delivery policy.

Sturdy ambient references keep on designating any object they have previously dis-
covered, even if those objects have long moved out of communication range. If

7.3. RELATION TO PRIOR WORK 173

one sends a message to such an ambient reference, the message is stored until
delivered to any matching object. A similar behaviour for ambient messages can
be specified using the @Sustain delivery policy.

Fragile ambient references are the only kind of ambient reference in the early tax-
onomy that truly denote a “volatile set of proximate objects”. Elastic and sturdy ref-
erences may designate objects that have already moved out of reach. As such, they no
longer accurately reflect the abstraction of ambient references as a reference to proxi-
mate (accessible) objects only. In the revised taxonomy, an ambient reference is always
fragile. Rather than being able to send a message to previously reachable objects, re-
vised ambient references enable the programmer to send a message to objects that may
become reachable in the future.

7.3.2 Cardinality
The early taxonomy distinguishes between the following ambient references for differ-
ent values of cardinality:

Uni ambient references refer to at most one remote object at any point in time.

Multi ambient references refer to a maximum predefined number of objects at any
point in time.

Omni ambient references have no upper bound on the number of objects they may
refer to, and usually represent all remote objects within scope.

In the revised taxonomy, cardinality of references is replaced by the arity of ambient
messages, where a point-to-point message most closely corresponds to the behaviour of
a unireference and a one-to-many message most closely corresponds to the behaviour
of an omnireference. Multireferences have no direct analogue in the revised taxonomy
because experience showed that they made little sense in ad hoc networks. The point
is that ambient references add space decoupling and anonymity to remote object refer-
ences, which is useful for precisely those situations where it is a priori not known with
how many participants to interact. Also, if more than the maximum allowed services
would be available, which ones should the reference bind to, and which not? Only
distinguishing between targeting one or all objects in range considerably simplified the
taxonomy3. If communication with an exact number of receivers is required, snapshots
can be used in the revised taxonomy to turn an intensional ambient reference into an
extensional collection.

7.3.3 Reference-centric versus Message-centric View
Another fundamental difference between the early and the revised taxonomy lies in the
way they enable the programmer to define variabilities in semantics. The early tax-
onomy is reference-centric: a programmer defines a certain kind of ambient reference
which applies a certain semantics on all messages it receives. The revised taxonomy
is message-centric: there is only one kind of ambient reference and each message car-
ries its own instructions on how to be delivered to the objects abstracted from by the

3This design can be considered an application of MacLennan’s zero-one-infinity principle of good pro-
gramming language design, which goes as follows: “The only reasonable numbers in a programming lan-
guage design are zero, one, and infinity” [Mac86].

174 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

receiver ambient reference. To exemplify the difference, reconsider the introductory
example from section 6.2:

def clients := ambient: StockQuoteListener;
...
clients<-quoteUpdated(code, price)@[All,Transient(timeout),Oneway];

This example code reflects the following abstractions:

1. clients refers to stock quote listeners currently in reach.

2. quoteUpdated should be sent to all stock quote listeners in reach now, or within
the next timeout milliseconds.

In the early taxonomy, this example would have been written as follows:

def clients := ambient: StockQuoteListener
withCardinality: Omni
withElasticity: Elastic(timeout);

...
clients<-quoteUpdated(code, price);

This code reflects the following abstractions:

1. clients refers to all stock quote listeners that are in reach now or that were in
reach during the last timeout milliseconds.

2. quoteUpdated should be sent to these listeners.

The difference does not appear to be large, but there are some important conse-
quences. In the revised taxonomy, a single ambient reference can be used with different
messaging policies in the same program. In the early taxonomy, this requires the decla-
ration of multiple ambient references because a single ambient reference is inherently
associated with a delivery policy that is applied to all messages sent via that reference.
Having to declare a separate ambient reference per delivery policy is less efficient be-
cause each ambient reference has to separately determine its reach. Using the revised
ambient references, the costs associated with service discovery can be shared by dif-
ferent messages with their own delivery policies. Also, in the early taxonomy, ambient
references cannot be accurately described as references representing “a volatile set of
proximate objects”. In that taxonomy, an ambient reference can only be understood
in terms of all of its properties. In the revised taxonomy, an ambient reference can be
understood without reference to any delivery policy.

There are more subtle differences between the early and revised taxonomies. For
example, fragile ambient omnireferences had ad hoc support for “sustained message
delivery”. In the revised taxonomy, sustained message delivery is an integral part of
the taxonomy and no longer an ad hoc delivery mode for one specific combination of
ambient reference types. Furthermore, the revised taxonomy introduces delivery modes
that were lacking in the early taxonomy, such as one-way messages and communica-
tion lifetime. The new system introduces a clear distinction between discovery and
communication lifetime and provides a message sending mode (@Expires) which cor-
relates the two. Bounding the resolution of multifutures in time based on the associated
message’s lifetime is also a novel feature of the revised taxonomy.

Finally, in the early taxonomy, an anonymous far reference is represented as a
sturdy ambient unireference [VDD07]. Such a reference binds to at most one re-
mote object (uni) and once bound never rebinds to another object (sturdy). In this

7.4. LIMITATIONS AND FUTURE WORK 175

dissertation, we no longer consider this abstraction as an ambient reference, because
an ambient reference now consistently designates a volatile set of proximate objects,
while a sturdy ambient unireference designated a single, fixed object. Instead, we pro-
vide anonymous far references as a separate abstraction. This abstraction is named an
anonymous far reference rather than an ambient reference, because we use the latter
term solely for referring to object references designating a volatile set of objects.

7.4 Limitations and Future Work

In this section, we highlight aspects of ambient references which can definitely be im-
proved upon. We postpone a discussion on the conceptual drawbacks of using ambient
references until section 10.3.

Proximity Ambient references allow a programmer to designate proximate objects in-
tensionally, via a type tag or a protocol. Any additional constraints that cannot
be conveniently encoded as a type tag or a protocol must be specified by means
of a predicate, which is opaque to the ambient reference. There are many con-
straints that one must encode as a predicate for which it would be better to make
them explicit. For example, ambient references do not provide direct support for
expressing geographical proximity constraints on the designated objects. Event
systems like STEAM [MCNC05] and LPS [EGH05] have already proven that
making geographical location explicit enables the event notification engine to
exploit this information (e.g. to limit the propagation of events by means of
geographical bounds).

Security When considering security, the two major issues are the following. First,
some exported objects may want to control which parties may send it ambient
messages. Second, some ambient references may want to control which parties
can receive their messages. Ambient references provide direct support for nei-
ther of the above: security measures must be built on top of ambient references
(e.g. by parameter-passing public cryptographic keys in ambient messages to
verify the authenticity of a sender or receiver’s identity). In this way, ambient
references are no improvement over most tuple space-based or publish/subscribe
communication abstractions, which also do not offer any built-in security guar-
antees. An interesting topic of future work would be to study whether and how
security measures could be built into the scope of an ambient reference, since this
scope already acts as a kind of contract on which both senders and receivers of
ambient messages must agree in order for a message to be transferrable between
them.

7.5 Notes on Related Work

Ambient references can be regarded as a referencing mechanism that generalises a
number of related approaches. In this regard, referencing abstractions in related work
can be considered “special cases” of ambient references. In subsequent sections, we
describe the work most closely related to ambient references (i.e. other referencing
abstractions). Where possible, we identify how the abstraction under scrutiny can be
expressed in terms of ambient references.

176 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

7.5.1 Tuple Spaces
In this section, we encode tuple space-based communication [Gel85] in terms of am-
bient references in order to gain insight in how communication via tuples relates to
communication via ambient messages.

Assume that the objects sending and receiving ambient messages are the “pro-
cesses” or “agents” from the tuple space paradigm. Assume further that ambient mes-
sages are the tuples (i.e. a message<-m(arg) is represented as a tuple (m, arg)). The
tuple spaces themselves can be implicitly represented by the set of ambient messages
whose discovery lifetime has not yet expired (the set denotedM in section 6.3). Note
that this tuple space is only writeable by processes (objects) that have access to the
ambient reference, and that it is only readable by processes (objects) that are within the
ambient reference’s reach. Hence, the reach of an ambient reference introduces a form
of scoping in the tuple space model.

Sending a message to an ambient reference corresponds to adding a tuple to a tuple
space. Exporting a service object corresponds to perpetually querying the tuple space
for tuples matching the methods of the exported object. A receiver process (exported
service object) implicitly accesses the tuple spaces defined by all ambient references
that designate it. Because of the mobility of physical devices, the set of tuples that
a process can read or take thus varies in time. This bears much resemblance to the
engagement and disengagement of the interface tuple spaces in LIME [MPR01] (cf.
section 3.3.5), even though in our encoding tuple spaces are never explicitly merged.
Our encoding now being complete, we can examine the different message delivery
policies in the context of tuple space communication:

• The arity of an ambient message corresponds to specific tuple space commu-
nication patterns. A point-to-point message send corresponds to an interaction
where a process writes a single tuple into the tuple space and one of a number
of processes (the potential receivers of an ambient message) takes the tuple from
the tuple space. This corresponds to “one-for-all” communication [EFGK03].
A one-to-many ambient message send corresponds to an interaction where the
sending process writes a single tuple into the tuple space and multiple processes
read the tuple, consuming only a copy of the tuple and leaving the original for
other processes to consume, naturally leading to “one-for-each” communica-
tion [EFGK03]. Note that using ambient references, it is the sender that decides
on the arity of the communication. In tuple spaces, the situation is reversed.

• The discovery lifetime of an ambient message corresponds to a “time to live”
value attached to a tuple inserted into a tuple space. When the time to live
elapses, the tuple is removed from the tuple space and no longer readable by
processes.

• With respect to the reply destination of an ambient message, a one-way ambient
message corresponds most closely to traditional tuple space-based communica-
tion. Indeed, writing a tuple into a tuple space is a one-way asynchronous opera-
tion. A future-type ambient message must be encoded in a tuple space interaction
by having the sending process perform a (non-blocking) read on a special tuple
representing the reply, which is put into the tuple space by the receiving process.

• The communication lifetime of an ambient message provides an upper bound for
the non-blocking read operation on a reply tuple.

7.5. NOTES ON RELATED WORK 177

The above encoding enables us to compare the expressiveness of ambient refer-
ences to that of tuple spaces. On the one hand, tuple spaces are more flexible in the
sense that they enable the expression of more fine-grained interaction patterns. For ex-
ample, there is no delivery policy for ambient messages that directly corresponds to a
tuple space communication where multiple processes post tuples and a single process
consumes them (this would require multiple ambient references). Also, consuming but
a single tuple from a tuple space is easy to express in tuple spaces, while using ambient
references this requires the export of a service object which is immediately unexported
when it first receives an ambient message.

Reversing the line of thought that tuple spaces are more flexible, ambient references
can be regarded as more high-level: a single ambient message send mostly requires
multiple primitive operations in the tuple space model. Moreover, an exported service
object with two or more methods can directly express the reception of different kinds
of messages. In the tuple space model, there is no primitive to directly express commu-
nication of the form in(tuple1 OR tuple2). Futhermore, as already described
in section 3.3.5, the traditional tuple space communication primitives need fundamen-
tal adaptations (i.e. they must be made synchronisation-decoupled) in order to scale in
mobile ad hoc networks.

Matsuoka and Kawai have previously studied the incorporation of tuple space com-
munication in an object-oriented language [MK88]. However, their system does not
make any attempt at unifying concepts of tuple space-based communication with object-
oriented language features. Rather, they describe how to develop an appropriate object-
oriented interface to a tuple space. More concretely, they represent tuples and tuple
spaces as first-class objects. The methods defined on the classes of these objects corre-
spond to the primitive operations of Linda.

7.5.2 Actors and Far References
In the original actor paradigm, actors refer to one another using mail addresses [Agh86],
as previously explained in section 3.3.4.1. A mail address uniquely identifies a remote
actor. Moreover, the asynchronous send operator of the actor model allows programs
to abstract over volatile connections because messages are implicitly buffered in the
actor’s mailbox. Actor mail addresses, like far references, do not cater to space decou-
pling but enable stateful designation. In section 6.6, we have discussed that ambient
references do not guarantee a stateful connection, which has lead us to introduce anony-
mous far references. In the following, we discuss an encoding of actor mail addresses
in terms of ambient references to show how one can make the designation of an ambient
reference logically stateful.

From the point of view of our ambient reference abstraction, mail addresses can
be reconstructed as ambient references whose scope is a singleton (i.e. a set consist-
ing of a single, unique object). An actor with mail address addr could for instance
be represented by means of the ambient reference ambient: Actor where: { |a|
a.address == addr }. Assuming that addr identifies a unique actor, the reference
can only ever refer to that actor. In order to achieve delivery properties similar to that
of the actor model’s send primitive, every message sent over such an ambient ref-
erence should be a point-to-point message with a sustained discovery lifetime and an
unbounded communication lifetime. Being a point-to-point message, it will be deliv-
ered to the sole possible receiver and then discarded. The sustained discovery lifetime
ensures the message remains buffered until the matching actor is in reach. Because the
message has an unbounded communication lifetime, its associated future never times

178 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

out, allowing the acknowledgement of the message to take forever (as in the original
actor model). While the above delivery policy most closely matches message delivery
in the actor model, it is not entirely similar. As discussion in section 6.5, point-to-point
messages are delivered at most once, while in the original actor model a message is
guaranteed to be delivered eventually [Agh86], which is a stronger delivery guarantee.

Because AmbientTalk’s far references are inherently based on mail addresses and
the actor send primitive, the same strategy applies to turn an ambient reference into
a far reference to an object. In order for an ambient reference to designate a unique
object, the identity of that object must be made first-class, e.g. by associating each
exported object with a globally unique identifier (GUID). Note that such a “connection-
oriented” ambient reference still supports roaming: if another object is exported by
means of the same GUID, it can be assumed to logically represent the same object and
the ambient reference may designate it as well.

7.5.3 M2MI Handles
M2MI handles [KB02] have previously been discussed in section 3.3.7.4. We briefly
recall their characteristic properties here. An M2MI handle is an anonymous reference
to remote objects exported by means of a Java interface type. M2MI distinguishes
between uni, multi and omnihandles. Unihandles refer to one specific proximate object,
multihandles to a specific group of proximate objects and omnihandles to all proximate
objects of the handle’s interface type. Communication over a handle is unreliable:
messages sent to receivers which are out of communication range are lost.

Many of the ideas behind ambient references are based on the different kinds of
handles provided by M2MI. However, ambient references and M2MI handles differ
in the level of abstraction they provide to the application developer. Kaminsky and
Bischof explicitly note that M2MI handles form an expressive yet low-level referenc-
ing abstractions, more high-level abstractions like stronger delivery guarantees, service
discovery and failure detection should be built on top [KB02]. Ambient references lit-
erally build upon M2MI handles. As we will discuss in chapter 8, ambient references
have been implemented on top of M2MI handles, exploiting the fact that these refer-
ences are designed specifically for ad hoc wireless proximal networks to the fullest
extent.

The major strength of an M2MI handle is that it accurately reflects the connectivity
of the underlying ad hoc wireless proximity network. As the authors put it themselves,
a message sent to an omnihandle literally means “every object out there that imple-
ments this interface, call this method”. The key point here is the term “out there”,
which characterises the fact that communication through handles is purely achieved
through the underlying wireless communication range of the host device. Ambient ref-
erences share this fundamental aspect with M2MI handles. An ambient reference is
an abstraction for the set of objects that is reachable through wireless broadcast com-
munication. Because the wireless communication range of the transceivers of mobile
devices is inherently limited, it follows that those objects must be physically proximate.
Being an abstraction for (a set of) proximate objects is the essence of both M2MI han-
dles and ambient references.

To show that object designation via ambient references subsumes object designa-
tion via M2MI handles, we describe how the latter can be expressed by appropriately
delimiting the scope of ambient references:

• A unihandle refers to a unique proximate remote object. To make ambient refer-

7.5. NOTES ON RELATED WORK 179

ences exhibit such a behaviour, the reference’s scope must again be restricted to
a singleton, requiring a technique similar to that for representing mail addresses
as shown in section 7.5.2.

• A multihandle refers to a unique group of proximate objects. Objects can join
the group by attaching themselves to the multihandle. In order to represent mul-
tihandles as ambient references, this group of objects must be captured as its
scope. Such an ambient reference can be thought of as having a scope whose
elements are described extensionally rather than intensionally. In other words,
the characteristic function of its scope is a test whether the argument object is a
member of the group.

• An omnihandle refers to all proximate objects of a certain type. It is most easily
represented by an ambient reference whose scope is intensionally specified by
means of a type tag. AmbientTalk’s type tags assume the role of Java interfaces
in M2MI to determine the type of the exported objects.

The message passing semantics of handles can be accurately captured by sending
one-to-many, one-way messages with an instant discovery lifetime. The one-to-many
semantics ensures that the message is broadcast to a group of nearby objects, which
is the semantics of both multi and omnihandles. Even though broadcasting might not
seem appropriate for unihandles, it does not matter whether the message is point-to-
point or one-to-many because there can be only a single receiver, by construction of
the reference’s scope as a singleton set. The one-way semantics reflects the fact that
M2MI handles only support the asynchronous invocation of methods that do not return
a value or raise no declared exceptions. Finally, and most importantly, the instant
discovery lifetime implies that messages are delivered only to receivers currently in
range, and otherwise immediately discarded. Hence, M2MI handles do not support
time decoupling.

Multihandles seem to closely correspond to multireferences as discussed in sec-
tion 6.6.3. Indeed, with respect to object designation, they both represent a fixed group
of objects. However, both abstractions differ in terms of object communication because
multireferences support decoupling in time while multihandles do not.

7.5.4 ActorSpace

The ActorSpace extension to the actor paradigm has been previously discussed in sec-
tion 3.3.4.1. To recapitulate, ActorSpaces extend the actor model by allowing messages
to be sent to patterns as well as mail addresses. Patterns are an abstract representation
for a group of similar actors. The original send primitive of the actor model can be
used to send a message to a pattern. The message is then delivered to an actor match-
ing the pattern. An additional broadcast primitive allows sending a message to all
actors matching a given pattern [CA94].

Clearly, the ActorSpace model shares similar goals with the ambient reference ab-
straction, but in a different context. ActorSpace does not give up on the strong delivery
guarantees of the actor model because no ad hoc networking model is assumed. Am-
bient references, on the other hand, provide a wider range of message passing options
to the programmer, even though the core idea of both abstractions is the same: enable
actors to send messages to other actors whose mail addresses are not known (i.e. they
are both an anonymous message passing abstraction).

180 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

In order to adequately capture the semantics of ActorSpace by means of ambient
references, the notion of an ActorSpace pattern must be unified with the notion of
an ambient reference’s scope. What exactly constitutes a pattern in ActorSpace is a
little unclear in the exposition given by Callsen and Agha. In an earlier publication
on ActorSpace, actors can be named with an arbitrary string and a pattern is literally a
regular expression over strings [AC93]. In a later publication, actors can be described
by means of attributes and a pattern becomes a conjunction or disjunction of such
attributes [CA94]. Both semantics can be expressed by means of filters on the scope of
an ambient reference and by exporting objects together with a set of properties.

Defining a representation for patterns does not suffice to capture the semantics of
ActorSpace. The model further defines the resolution of a pattern to a group of mail
addresses to be local to a specific actorspace. Moreover, actorspaces can be naturally
nested. It therefore seems appropriate to unify the notion of an actorspace with the
notion of a type tag. Type tags also form a scope in which to resolve discovery requests,
and the scopes they define can be structured hierarchically by means of subtyping.

We illustrate how ambient references can express communication in ActorSpace
by means of a small example. Assume that actors are named after the user owning
them, and that we are only interested in actors that are published in the actorspace with
the name MySpace. Referring to either the user Alice or Bob is achieved by means of
the following ambient references (depending on which representation for patterns is
chosen):

// if patterns are regular expressions over strings
ambient: MySpace where: {|a| a.pattern ˜= ".* (Alice | Bob) .*" };
// if patterns are (con|dis)junctions of attributes
ambient: MySpace where: {|a| (a.name == "Alice").or: { a.name == "Bob" }};

As the example shows, type tags represent actorspaces while filters select only
those actors from the space whose attributes match a specified pattern4.

In order to encode the message passing semantics of the ActorSpace send and
broadcast primitives, we have to specify the message delivery policies of messages
sent over the above ambient references. Naturally, the difference between send and
broadcast is expressed by means of the arity of an ambient message: send sends
point-to-point messages while broadcast sends one-to-many messages. As for the
temporal delivery aspects of the ambient messages, Callsen and Agha note that the pre-
cise delivery semantics of both send and broadcast are not fixed by the ActorSpace
model. In their future research directions, they explicitly note that ActorSpace com-
munication could be made more flexible if messages with different delivery behaviours
were allowed [CA94]. Ambient references cater to exactly such different delivery be-
haviours by allowing messages to be annotated with different delivery policies. This
enables the programmer to choose which delivery semantics is most appropriate for the
communication at hand.

7.5.5 One.world
One.world [GDL+04] has already been briefly discussed as a system architecture for
pervasive computing in section 3.3.7.5. It provides a framework in which applications
use a common data format (tuples) and in which they communicate by sending asyn-
chronous events to one another. Events are themselves represented as tuples. Events

4In AmbientTalk, the operator∼= is defined on strings and returnstrue if and only if the receiver string
matches the regular expression given as an argument.

7.5. NOTES ON RELATED WORK 181

in one.world include a source field, which references the event handler to which in-
formation about the delivery of the event, or a potential response to an event (in the
case of request/reply interactions) should be sent. Hence, this source field corresponds
to a future associated with an ambient message. Additionally, events have a closure
field which represents a dictionary that can be used to store the state necessary to ad-
equately process a potential reply. This is entirely reminiscent of the use of closures
as observers on futures in AmbientTalk and E. Events are delivered with at most once
delivery semantics. Grimm et al. note that such a semantics is appropriate because it
is lightweight (it does not require heavyweight distributed transactions) and because
it allows events to be explicitly dropped to reduce the load on the system if necessary
[GDL+04].

Discovery takes on a central role in the one.world infrastructure, quoting Grimm et
al. [GDL+04], p. 448:

“The primary challenge in designing the communications facilities for
one.world is to provide services that are more flexible than established
point-to-point communications technologies and support a rich set of com-
munication patterns. In particular, as people and devices move through the
physical world, service discovery assumes a critical role for pervasive ap-
plications. After all, if an application cannot locate necessary resources in
an ever changing computing environment, it cannot function.”

Hence, one.world shares with ambient references the goal of providing a framework
in which different communication patterns with mobile services (resources) can be
described. One.world, like ambient references, provides the programmer with different
options along a number of principal design axes:

Binding Time determines when to perform a discovery request with respect to event
notification. Two options are available (cf. the quote in section 7.1.2.2, p. 165):

• Early binding implies that a discovery request is resolved once and sub-
sequently direct point-to-point communication is used to interact with the
resolved resource. That is to say: once a matching service is discovered,
all subsequent communication is with the same service. As already dis-
cussed in section 7.1.2.2, early binding corresponds to communication via
an anonymous far reference.

• Late binding implies that every event notification is combined with discov-
ery: a late bound event is always routed toward any matching service and
successive events may be routed to different services. Late binding corre-
sponds to communication via an ambient reference.

Early bound events and anonymous far references ensure that the target to which
messages are sent does not change, while late bound events and ambient refer-
ences provide maximum chances for a message (an event) to be delivered to any
matching service (i.e. they support roaming).

Specificity determines the number of recipients of an event. This corresponds to the
arity of an ambient message. In one.world a distinction is made between:

• Anycast, where the event is sent to a single matching recipient (cf. point-
to-point ambient messages).

182 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

• Multicast, where the event is sent to all matching recipients (cf. one-to-
many ambient messages).

Query Target determines the entity on which to perform a discovery query. One may
register a discovery query on:

• Resource descriptors. A resource descriptor is the external representation
of a service. This resource descriptor can be a globally unique ID or a tu-
ple. The GUID is used for point-to-point communication, while services
exported by means of a tuple can be “discovered” by sending events to a
matching tuple. In AmbientTalk, GUID-based communication would be
performed in terms of far references. Using a tuple as a resource descriptor
corresponds to using type tags, protocols and filters to intensionally repre-
sent the scope of an ambient reference.

• Events themselves. Using this option, an event handler becomes a listener
for a particular kind of (late bound) event. This option enables late bound
events to be intercepted by other applications. It is most useful for log-
ging or protocol translation purposes. The functionality provided by using
events as query targets cannot be directly expressed using ambient refer-
ences. One could export a “proxy” service whose sole purpose is to trap
ambient messages, but intercepting messages in this way influences the de-
livery semantics. For example, if a point-to-point ambient message is sent
to a logging proxy service, the message is considered “delivered” and will
not be sent to the real service – unless the logging proxy broadcasts the
message anew.

One.world being a system architecture and ambient references being a language
construct, they evidently provide different levels of abstraction. For example, one.world
requires applications to listen for events by means of a generic EventHandler inter-
face supporting a single handle(Event) method. Ambient references unify events
with object-oriented messages. The closure of an event must be managed explicitly
as a dictionary in one.world, whereas in AmbientTalk, closures are an integral part of
the language and close over all lexically visible state automatically. Taken together, all
of these differences lead to a substantial difference in expressive power. Consider the
following example code [GDL+04], p. 450:

SymbolicHandler destination = new DiscoveredResource(new
Query(new Query("",

Query.COMPARE_HAS_SUBTYPE,
UserDescriptor.class),

Query.BINARY_AND,
new Query("user", Query.COMPARE_EQUAL, fetchUser)));

operation.handle(new RemoteEvent(this, closure, destination, msg));

The purpose of the above code is to send the message msg to a remote service
representing a certain user (as indicated by the fetchUser string). In AmbientTalk
we can express this example as follows:

def user := ambient: UserDescriptor where: {|u| u.user == fetchUser};
user<-selector(args)@[One,Instant,Oneway];

Rather than having to send a generic msg object, we can directly encode the mes-
sage represented by msg as a base-level AmbientTalk message. Note that we have

7.5. NOTES ON RELATED WORK 183

chosen to model the event with an instant discovery lifetime. The precise lifetime of
the one.world event depends on the settings of the operation object. This object
will deliver the event and can perform failure detection and recovery (e.g. retry send-
ing the event until it is successfully received). The differences between both of the
above code snippets would become even more dramatic if we would include the code
necessary to initialise the closure and msg variables and the code to process a reply.

The above example is a concrete illustration of how proper language design can
realistically augment the programmer’s expressive power. In absolute terms, one.world
can express the same communication as ambient references. However, in relative
terms, the level of abstraction provided by ambient references is significantly higher.
Arguably, the better the code matches the intended communication, the more under-
standable it becomes. This is not a critique on one.world in particular, but rather a
reinforcement of our assumption that domain specific languages are an appropriate
software engineering tool, as stated in the introductory chapter.

7.5.6 Distributed Asynchronous Collections
Distributed asynchronous collections (DACs) are object-oriented abstractions for ex-
pressing different publish/subscribe interaction styles and qualities of service [EGS00].
They relate to ambient references because DACs also provide a framework for express-
ing different message delivery policies.

A DAC extends the notion of a traditional object-oriented collection to a distributed
context. In a nutshell, objects can add elements to the collection (which is equivalent
to publishing an event) and can register a callback to be invoked asynchronously when-
ever elements are added to the collection (which is equivalent to subscribing to events).
A DAC is shared between multiple distributed objects. Importantly, a DAC is not a cen-
tralised collection accessible by distributed objects but rather an inherently distributed
collection. While traditional object-oriented collections differ in terms of whether or
not they accept duplicates (e.g. bags versus sets) or the order in which they store their
elements (e.g. stacks versus queues), DACs differ in terms of delivery guarantees (e.g.
at-least-once versus at-most-once delivery) and delivery order (e.g. FIFO versus Total
order). A DAC is constructed by means of a topic (as used in topic-based publish/sub-
scribe systems [EFGK03]), which is functionally equivalent to the use of type tags by
ambient references.

Ambient references share with DACs the goal to make publish/subscribe-based
interactions easier to accomplish in an object-oriented language. Both approaches do
have their differences:

• DACs – unlike ambient references – have not been designed specifically for
MANETs. For example, DACs do not support time decoupling: messages are
considered volatile and are dropped once delivered to all connected subscribers.

• Ambient references go further in integrating publish/subscribe with object-orien-
tation than DACs. For example, ambient references unify events with messages
and event delivery with method invocation. No such unification is provided by
DACs. Also, DACs provide no support for dealing with replies to events. Adding
an element to the collection is a unidirectional operation.

• The delivery policies provided by DACs are different than those provided by
ambient references. For example, DACs support different delivery guarantees
and delivery orders but do not support the analogue of arity or discovery lifetime.

184 CHAPTER 7. AMBIENT REFERENCES IN CONTEXT

The differences between ambient references and DACs notwithstanding, they share
the common goal of providing a distributed programming abstraction which is cus-
tomisable to the problem at hand, by enabling the programmer to specify different
delivery policies. Whereas DACs unify publish/subscribe communication with object-
orientation by representing the event broker as a collection, ambient references unify
publish/subscribe communication with object-orientation by representing the event bro-
ker as an object reference. Because object references lie at the heart of an object-
oriented language, ambient references can additionally unify events with messages and
method invocations.

7.5.7 Joule Channels
Multireferences and multifutures are akin to the channels abstraction in the Joule lan-
guage [TMHK95]. Like multireferences and multifutures, Joule channels may convey
messages to more than one object and enable the sender to expressively gather all
replies to the message. Unlike multireferences, but like multifutures, the set of objects
to which the channel conveys messages may grow over time.

A Joule channel has two separate interfaces: an acceptor and a distributor. The
acceptor forwards any message sent to it to all objects designated by the channel. The
channel can be made to designate additional objects via the distributor. This is rem-
iniscent of the distinction between futures and resolver objects in AmbientTalk (cf.
section 4.3.4.3) and the promise-resolver pairs in E [Mil06] to distinguish manipulat-
ing the object designated by the future from manipulating the future itself.

7.6 Conclusion
In this chapter, we have put ambient references in perspective. We discussed how Am-
bientTalk and ambient references adhere to the criteria postulated in section 3.2, thus
arguing that in combination they form a powerful platform to express coordination
between objects in a MANET. We also discussed how ambient references import the
beneficial properties of event-driven publish/subscribe systems into an object-oriented
language, without sacrificing the object-oriented message passing metaphor. They re-
solve the object-event impedance mismatch by representing the event broker as an
object reference. Finally, we discussed how ambient references as described here re-
semble and differ from related and prior work. In the following chapter, we delve back
into more technical details when discussing the implementation of ambient references
in AmbientTalk.

Chapter 8

Implementing Ambient
References

With both the AmbientTalk language and ambient references fully explained we can
now turn our attention to the implementation aspects of the language abstraction. Two
implementations for ambient references have been devised, each on the basis of a dif-
ferent design. We discuss both designs in detail and compare their relative advantages
and drawbacks.

It should be clear from their exposition in previous chapters that ambient references,
anonymous far references and multireferences are special kinds of object referencing
abstractions. Hence, implementing them requires support for first-class object refer-
ences which have the ability to intercept and reify any messages sent to them. We
will therefore apply the technique used to represent futures as object references (cf.
section 5.2.3.1) once more in this chapter.

At a lower level of abstraction, ambient references should somehow communicate
with remote objects by means of an appropriate network protocol. The choice of the
underlying network protocol is important given the peculiarities of mobile ad hoc net-
works. Concretely, we will make use of the M2MI library already discussed in sec-
tions 3.3.7.4 and 7.5.3. Given that M2MI is a library developed for Java and not for
AmbientTalk, we will make use of AmbientTalk’s support for linguistic symbiosis (cf.
section 5.3) such that AmbientTalk objects can safely use the M2MI API.

We conclude this chapter with a discussion on the implementation of anonymous
far references and multireferences which, as we shall see, do not require the more
elaborate implementation techniques required for ambient references.

Note that the implementations discussed in this chapter are “proof of concept” im-
plementations: they illustrate that it is feasible to implement the concept of an ambient
reference, as described in chapter 6, using contemporary technology. In particular, we
are well aware that the implementation as described here is by far not optimal or scal-
able up to thousands of network nodes. The implementation rather serves as a proof by
construction that ambient references are a feasible language construct. For the sake of
reproducibility, the complete source code of the implementation is listed in appendix A.

185

186 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

8.1 Implementation Strategies
We describe two different strategies to implement ambient references, based on two
different representations for the reach of an ambient reference. Recall from section 6.3
that the reach of an ambient reference represents that subset of the ambient reference’s
scope which is in communication range at a particular point in time. An ambient refer-
ence’s reach can be specified:

Extensionally In this design, the reach of an ambient reference is represented as an ex-
plicit collection of far references. In other words, the ambient reference’s reach
is represented as an extensionally specified set of elements. In order to represent
the elements of this set, the ambient reference must use a service discovery en-
gine to keep track of new services joining the network (which are then added to
the set) and of discovered services leaving the network (which are then deleted
from the set). Section 8.3 elaborates on this implementation.

Intensionally In this design, the reach of an ambient reference is represented implic-
itly by means of a broadcast channel. Everyone listening on the channel is im-
plicitly part of the ambient reference’s reach. The implementation is broadcast-
based because communicating with objects in reach entails sending a message
on the broadcast channel. Section 8.4 provides an in-depth discussion on this
implementation.

The choice of representation for the ambient reference’s reach has a large impact
on how the different delivery policies for ambient messages can be achieved. The
details can be found in the respective implementation sections. Section 8.5 provides a
comparative overview after the details of both implementations have been discussed.

8.2 Implementation Outline
Even though there exist two different implementations of ambient references, depend-
ing on how their reach is represented, both implementations are built around the same
design. We sketch this generic design here, before delving into technical details in the
subsequent sections. Figure 8.1 provides an illustrative overview of the entire process
of sending a message via an ambient reference to potential receivers in the ambient
reference’s reach.

We discuss each of the steps indicated in the figure below:

1. A message is sent to an ambient reference. The ambient reference is a mirage
representing a proxy object that can intercept and reify the message (cf. the
representation of custom object references as discussed in section 5.2.3).

2. Based on the annotations of the message (cf. the overview in section 6.4.7), the
message is associated with a dedicated message handler object that encodes the
delivery policy for that message. This handler object is implemented by means of
trait composition: for each of the three delivery policies (arity, discovery lifetime
and communication lifetime), the handler uses a separate trait.

3. The ambient reference dispatches the message to its associated handler, passing
itself as an argument. The precise delivery semantics of the message is dependent

8.2. IMPLEMENTATION OUTLINE 187

sender ambient
reference

actual
receiver

reach

@Annotations

1. intercept &
reify message

2. associate handler
based on annotations

5. receive
message

6. invoke
method

3. dispatch
to handler

4. send message
to reach

message handler
(composed of traits)

Arity

Discov. LT.

Comm. LT.

Figure 8.1: Overview of the implementation of ambient references.

on the interplay between the different delivery policies composed together in the
handler.

4. The handler can eventually send the message to potential receivers by means of
the ambient reference’s reach. The details of how the reach is used depend on
whether it is specified either intensionally or extensionally.

5. The message is subsequently buffered in the message queue of actors owning
actual receivers to which the message could be delivered successfully.

6. When the actors processes the message, the corresponding method is triggered
in the actual receiver.

Note that the above sketch still abstracts from a lot of technical details. In particular,
we did not specify how replies are dealt with and how delivery handles fit into this
picture. Both will be explained later on in this chapter. The three most important
aspects of the implementation are the following:

• In the spirit of the work on modular interpreters [Ste94a, LHJ95, Esp95], where
monads are used to construct a language interpreter using modular building
blocks, we have used trait-based composition to factor out the behaviour specific
to each of the three delivery policies of ambient references (arity, communication
and discovery lifetime) into separate objects. These objects act as basic building
blocks with which a handler for an ambient message can be constructed. Ambi-
ent messages receive a handler whose behaviour is composed of a trait for each
kind of delivery policy. While the delivery policies are not entirely orthogonal
(there is a definite interplay between them, cf. section 6.4.8), the advantage of
using trait-based composition is that each kind of delivery policy is specified in
a modular way, making the interplay between the different policies explicit by
means of the composition interface defined by the different traits.

• An ambient reference is essentially implemented as a proxy to (a set of) remote
objects. It intercepts each message sent to it and subsequently delivers the mes-
sage to its actual receivers according to a specified delivery policy. As described
previously in section 5.2.3, a proxy representing a custom object reference is

188 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

implemented by means of a mirage. Just like we discussed the reflective im-
plementation of futures in section 5.2.3.1, this chapter discusses the reflective
implementation of ambient references as custom object references.

• An ambient reference designates objects in its reach. As stated in the previous
section, the implementation of this designation has a large effect on the result-
ing properties of the ambient reference. The following two sections discuss the
repercussions of the choice of designation on the trait-based implementation of
the handlers.

8.3 Extensional Reach
We now describe an implementation of ambient references where the reach of the refer-
ence is represented by means of an explicit collection of references to remote objects.
Because the objects which the ambient reference designates are made explicit using
this representation, the implementation is very receiver-centric: the different message
handlers describe their delivery policies in terms of the arrival and departure of po-
tential receivers because these events can be explicitly captured by means of a service
discovery engine.

8.3.1 Representing Reach
The reach of an ambient reference can be represented by means of a collection, e.g. a
vector. Service objects are added to the collection each time a service discovery engine
detects the presence of a new matching service. Service objects are removed from the
collection each time the service discovery engine detects that a previously discovered
service is no longer responsive. The following code encodes this behaviour1:

def ambient: typetagOrProtocol where: filter {
...
def reach := Vector.new();
whenever: typetagOrProtocol discovered: { |descriptor|
if: filter(descriptor.attributes) then: {
// add the discovered service to the AR’s reach
reach.add(descriptor.service);
// notify discovery observers (explained later)
self.notifyObservers(descriptor.service);

};
};
whenever: typetagOrProtocol lost: { |descriptor|
if: reach.contains(descriptor.service) then: {
// remove the lost service from the AR’s reach
reach.remove(descriptor.service);
...

};
};
...

}

1Most of the code depicted in this chapter is part of a module implementing ambient references. To use
ambient references, application programmers can simply import this module and as such access its public
definitions.

8.3. EXTENSIONAL REACH 189

In the above code, reach is defined to be an instance variable of the ambient ref-
erence. Upon creation, the ambient reference makes use of two functions provided by
a service discovery module to keep track of appearing and disappearing services. The
whenever:discovered: and whenever:lost: functions shown here are not built-in
AmbientTalk functions. Rather, they are the public interface to a discovery engine
written in AmbientTalk itself (cf. section 8.7.2). One difference with the built-in
whenever:discovered: function is that the above function accepts type tags as well
as protocols as its first argument, while the built-in function accepts only type tags (cf.
section 4.4.3).

The ability of ambient references to restrict their scope based on arbitrary Ambi-
entTalk predicates is not directly supported by the service discovery module. That is
why, in the above code, an additional if-test is performed to check whether the dis-
covered service object actually belongs to the scope of the ambient reference. This is
done by applying the filter predicate, which is passed as an initial argument to the
ambient reference, to the attributes with which the service object was published. We
discuss service descriptors and their attributes in more detail in section 8.3.7.

Note that the discovery of a new service in turn triggers observers registered on the
ambient reference itself. These observers are registered by message handlers to be able
to react upon the appearance of a new potential receiver. Their use will become clear
throughout the subsequent sections.

8.3.2 Delivery Policies as Traits

Every ambient message receives a message handler which encodes its overall delivery
policy. As discussed in section 6.3, an ambient reference supports three kinds of poli-
cies: arity, communication lifetime and discovery lifetime. In the implementation, we
represent each policy as a trait. A handler is thus represented as:

def handler := object: {
import TArity;
import TCommunicationLifetime;
import TDiscoveryLifetime;

};

The TDiscoveryLifetime trait defines a dispatch method which, given an am-
bient reference and an ambient message as arguments performs the actual message
delivery. This dispatchmethod can be regarded as a multimethod: its behaviour actu-
ally depends on the “type” of message it receives. In a language with direct support for
multiple dispatch one would be able to modularly implement an ambient message’s dis-
patch without having to use traits. AmbientTalk lacks direct support for multimethods.
However, rather than implementing the multiple dispatch by means of inflexible if-
tests, we represent the multiple dispatch by a series of single dispatches, implemented
as late bound self-sends to auxiliary methods. Each trait implements its own version of
the appropriate auxiliary methods. Figure 8.2 provides an overview of the provided and
required interface of the traits used by the handler. The traits’ methods are explained
throughout the following sections.

190 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

registerMessage(ar,msg)
registerMessageUntilReceiverFound(ar,msg)

send: msg to: ar ifNoneInReach: closure
sendAndRegister(ar,msg)
createFuture()

TArity

discoveryStopped(msg)
send: msg to: ar ifNoneInReach: closure
sendAndRegister(ar,msg)

dispatch(ar,msg)
registerMessage(ar,msg)
registerMessageUntilReceiverFound(ar,msg)

TDiscoveryLifetime

createFuture()

attachFutureToMessage(msg)
discoveryStopped(msg)

TCommunicationLifetime

MessageHandler

<<uses>><<uses>>

<<uses>>

Provided
interface

Required
interface

Figure 8.2: Delivery policy traits used by a message handler (extensional impl.).

8.3.3 Representing Discovery Lifetime

The discovery lifetime trait manages the prolonged registration of an ambient mes-
sage with its carrier (i.e. the ambient reference to which it is sent) in order to get
notified of new potential receivers becoming available. Moreover, it provides the
dispatch method which is the entry point of the message delivery process. The
TDiscoveryTrait introduced in the previous section is an abstract entity. There ex-
ist three concrete implementations of the trait, corresponding to the three values for
discovery lifetime. We discuss each concrete implementation in turn.

Instant First, consider the code for ambient messages with an instant discovery life-
time. Note that whenever we discuss a trait implementation like the one below, we
explicitly indicate further dispatches to other traits.

def TInstant := object: {
def dispatch(ar, msg) {
self.send: msg to: ar ifNoneInReach: { }; // dispatch TArity
self.discoveryStopped(msg); // dispatch TCommLT
object: { def cancel() { false } };

}
}

When an ambient message with an instant discovery lifetime is received by an am-
bient reference, it is sent to one or all potential receivers currently in reach (depending
on the arity of the message, cf. the following section). Because the message has an
instant discovery lifetime, it is not registered with its carrier for prolonged delivery. By
invoking discoveryStopped, the discovery lifetime trait signals to the communication
lifetime trait that no more receivers will be discovered. Note that, if the reach is empty
at the time an @Instant message is sent, it is not received by any object.

The return value of the dispatch method is a registration object that is used by
the delivery handle to cancel the delivery of the message. As will be shown later, for
prolonged (transient and sustained) messages, this object is used to unregister an am-
bient message with its carrier. In the case of an instant discovery lifetime, the message
is never registered with the ambient reference, so it does not need to be unregistered
upon cancellation. A dummy object is returned simply to achieve consistency across
the different delivery policies.

8.3. EXTENSIONAL REACH 191

Sustain Next, we discuss the implementation of messages with a sustained discovery
lifetime.

def TSustain := object: {
def dispatch(ar, msg) { self.sendAndRegister(ar, msg) };//dispatch TArity
def registerMessageUntilReceiverFound(ar, msg) {
def registration := ar.addDiscoveryObserver: { |rcvr|
rcvr <+ msg;
registration.cancel();

};
def stopDiscovery() { self.discoveryStopped(msg) };// dispatch TCommLT
object: {
def cancel() {
registration.cancel();
stopDiscovery();

}
};

};
def registerMessage(ar, msg) {
def registration := ar.addDiscoveryObserver: { |rcvr|
rcvr <+ msg;

};
def stopDiscovery() { self.discoveryStopped(msg) };// dispatch TCommLT
object: {
def cancel() {
registration.cancel();
stopDiscovery();

}
};

};
}

When a message with a sustained discovery lifetime is received by an ambient
reference, the message is first sent to one or all service objects in reach (depending on
the message’s arity). Since the message has a sustained lifetime, it should be registered
with its carrier, such that it is notified each time a new potential receiver comes in reach.
This is done by means of the addDiscoveryObserver method defined on the ambient
reference. Note that there are two ways in which a message can be registered: it can
either be registered until a receiver is found, or until explicitly cancelled. Which of the
two methods is invoked depends on the arity of the ambient message.

Every time a new potential receiver is discovered, the message associated with the
handler is forwarded to the receiver. As explained in section 5.1.1, the expression rcvr
<+ msg sends the first-class message object msg to the receiver rcvr as if the message

send were performed directly in the source text. One important property implicit in
the above code is whether the addDiscovery-Observer can trigger twice for the same
receiver. The service discovery engine itself detects duplicate advertisements and hence
only fires the observer once per unique receiver. However, if the receiver becomes
disconnected for longer than a certain amount of time (which we call the discovery
engine’s recall period), the engine forgets about the remote object and notifies the
ambient reference of the object’s disappearance (cf. the whenever:lost: observer
in section 8.3.1). Should that object later reconnect, it will not be “recalled” by the
discovery engine. This causes the ambient reference to be notified of a new potential
receiver, and as a result the addDiscoveryObservermay be invoked multiple times on

192 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

the same receiver. This implementation corresponds to our explanation in section 6.5
that one-to-many message delivery may violate at most once delivery semantics.

Transient The final option is for the ambient message to have a transient lifetime.
We can conveniently express a transient lifetime as a sustained lifetime which is auto-
matically cancelled once the transient message’s discovery lifetime period has expired:

def makeTTransient(initTransientPeriod) {
def makeAutoExpirable(originalRegistration) {
def timerRegistration := when: initTransientPeriod elapsed: {
originalRegistration.cancel();

};
object: {
def cancel() { // signals a premature cancellation
timerRegistration.cancel(); // stop the timer
originalRegistration.cancel(); // cancel the registration now

}
}

};
extend: TSustain with: {
def transientPeriod(msg) { initTransientPeriod };
// override the methods defined by the sustainable lifetime trait
def registerMessageUntilReceiverFound(ar, msg) {
def reg := super̂ registerMessageUntilReceiverFound(ar, msg);
makeAutoExpirable(reg);

};
def registerMessage(ar, msg) {
def reg := super̂ registerMessage(ar, msg);
makeAutoExpirable(reg);

};
}

};

Note that the above trait is parameterised with the timeout period specified in the
corresponding @Transient(t) annotation, which is why the trait is represented as a
function rather than as a singleton. The trait uses delegation to acquire the methods
defined for a sustained discovery lifetime. However, it overrides the two registration
methods in order to make the returned publication “auto-expirable”. It does this by
starting a timeout (by means of the when:elapsed: library function) which simply
cancels the original registration when the timeout period has elapsed.

8.3.4 Representing Arity

The trait representing the arity delivery policy of an ambient reference provides three
methods:

• The createFuture method returns a particular kind of future to be attached to
the message.

• The send:to:ifNoneInReach: method sends the message to one or all objects
in reach of the given ambient reference. If the reach is empty at the time this
method is invoked, its third argument is applied.

8.3. EXTENSIONAL REACH 193

• The sendAndRegister method sends a message once to one or all objects in
reach of the given ambient reference. Then, depending on the arity, the message
is registered with the ambient reference until a receiver is found or until its life-
time expires (by invoking one of the two registration methods discussed in the
previous section).

One Below is the implementation of the arity trait for point-to-point messages:

def TOne := object: {
def createFuture() { makeFuture() };
def send: msg to: ar ifNoneInReach: closure {
if: (ar.reach.isEmpty) then: closure else: {
def receiver := (ar.reach)[1 ?? (ar.reach.length + 1)];
receiver <+ msg;

};
};
def sendAndRegister(ar, msg) {
def registration := object: { def cancel() { false } };
self.send: msg to: ar ifNoneInReach: {
// dispatch TDiscoveryLT
registration := self.registerMessageUntilReceiverFound(ar, msg);

};
registration

};
}

The createFuture method simply returns a regular future, as can be expected for
a point-to-point message. The send:to:ifNoneInReach: method either invokes its
argument closure if the collection representing the reach is empty, or it delegates to
a communication lifetime trait to send the message to a non-deterministically chosen
receiver by means of the ?? operator2. The sendAndRegister method first sends the
message to one potential receiver currently in reach. If such a receiver exists, this stops
the delivery process (a point-to-point message can have at most one receiver). If no
receiver is in reach, however, it asks the discovery lifetime trait to register the message
with the ambient reference until a potential receiver is found (or until the discovery
lifetime of the message expires, whichever comes first).

All Below is the implementation of the arity trait for one-to-many messages.

def TAll := object: {
def createFuture() { makeMultiFuture() };
def send: msg to: ar ifNoneInReach: closure {
if: (ar.reach.isEmpty) then: closure else: {
ar.reach.each: { |receiver|
receiver <+ msg;

}
};

};
def sendAndRegister(ar, msg) {
self.send: msg to: ar ifNoneInReach: { };

2The expression a ?? b is equivalent to the expression a.??(b). The method ?? is defined on Ambi-
entTalk integers and returns a random integer drawn from a uniform distribution over [a, b[.

194 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

self.registerMessage(ar, msg); // dispatch TDiscoveryLT
};

}

The createFuture method now returns a multifuture rather than a regular fu-
ture because a one-to-many message can generate multiple replies. In the send:to
:ifNoneInReach: method, rather than selecting one receiver from the current reach,
the message is “broadcast” to all receivers in the current reach by sending the message
to all elements in the collection. The sendAndRegister method first sends the mes-
sage to all current members of the ambient reference’s reach. Then, regardless whether
the reach contained potential receivers or not (a one-to-many message can have any
number of receivers), it asks the discovery lifetime trait to register the message with
the ambient reference until its discovery lifetime expires.

8.3.5 Representing Communication Lifetime
The communication lifetime trait defines two methods. attachFutureToMessage takes
a message as its argument and returns a tuple [future,message]. Here, future de-
notes the future that is attached to the message (for two-way messages) or nil (for one-
way messages) and message denotes a novel message to which the future has been
attached (for two-way messages) or the original message (for one-way messages). This
method is invoked when the message is originally intercepted by an ambient reference
receiver (cf. section 8.6).

The second method, discoveryStopped, is used by the discovery lifetime traits
and signals to the communication lifetime trait that no more potential receivers for the
message will be found (i.e. that the last message has been sent). This enables any
future attached to the ambient message to become totally resolved.

Oneway We start with describing one-way ambient messages:

def TOneway := object: {
def attachFutureToMessage(msg) { [nil,msg] };
def discoveryStopped(msg) { };

}

A one-way ambient message does not attach a future to a message. Neither does it
need to take any special actions when the last message has been sent.

Reply A two-way message with an unbounded communication lifetime uses the fol-
lowing trait:

def TReply := object: {
def attachFutureToMessage(msg) {
def [fut,res] := self.createFuture(); // dispatch TArity
[fut, futurize(msg, fut)];

};
def discoveryStopped(msg) { };

}

A two-way message requires a future. What kind of future (regular or multifuture)
depends on the arity. The self-send to createFuture is a dispatch to one of the arity
traits defined previously. When a future for the message is constructed, it is attached

8.3. EXTENSIONAL REACH 195

to the message by a call to the auxiliary function futurize. This function adapts the
behaviour of the message such that after being processed, the message resolves the
associated future with the result of the invoked method. This is made possible because
AmbientTalk’s metaobject protocol provides the necessary hooks to trap asynchronous
message processing.

Because the communication lifetime is unbounded, no actions need to be taken
when the last message is sent. The future attached to the message will not time out
automatically.

Due Finally, we consider two-way messages with a bounded communication life-
time:

def makeTDue(initDuePeriod) {
extend: TReply with: {
def timeLeftForReply(msg) { initDuePeriod };
def discoveryStopped(msg) {
when: self.timeLeftForReply(msg) elapsed: {
(msg.handle.future)<-becomeResolved()@MetaMessage;

}
};

}
};

The above trait is parameterised with a timeout period corresponding to the value
in the associated @Due(t) annotation. The trait is further defined as an extension of
an unbounded communication lifetime trait. It overrides discoveryStopped to start
a timeout which, upon triggering, notifies the future associated with the message to
become totally resolved. In the case of a regular future, this ruins the future with a
TimeoutException. In the case of a multifuture, this message disallows any further
results to be processed and hence enables the multifuture’s whenAll observers to be
triggered. Note the @MetaMessage annotation to the becomeResolved message. As
discussed in section 5.2.3 this annotation signifies that the message is destined for the
future itself and not for the object represented by the future.

8.3.6 Representing Expirable Messages

The final type of messages that can be processed are expirable messages, tagged with
the @Expires annotation. Recall from the diagram in section 6.4.7 that an expirable
message fixes both the message’s communication and discovery lifetimes. This is accu-
rately reflected in its implementation below, which uses trait composition to implement
this “multiple inheritance” relationship:

def makeTExpires(expPeriod) {
object: {
import makeTTransient(expPeriod);
import makeTDue(expPeriod) exclude timeLeftForReply;
def timeLeftForReply(msg) {
self.transientPeriod(msg) - (now() - msg.handle.sendTime)

};
}

};

196 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

An expirable message is constructed with an expPeriod argument, signifying the
expiration period specified in the annotation. An expirable message inherits all of the
behaviour of a message with a transient discovery lifetime where the maximum dis-
covery lifetime equals its expiration period. It also inherits the behaviour of a message
with a bounded communication lifetime, save the timeLeftForReply method. The
expirable message provides its own definition for the time that is left for a reply to be
received, as it is no longer a constant. Note that the variable sendTime, which is stored
in the message’s delivery handle, denotes the time at which the message was sent to
the ambient reference (cf. section 8.6).

As we have discussed at length in section 6.4.6, the communication lifetime of an
expirable message grows shorter the longer it takes to discover a potential receiver. If,
for example, a potential receiver exists at approximately the time the message was sent,
then now() - msg.handle.sendTime will be close to 0 and the message’s communi-
cation lifetime roughly equals the maximum value, which is its discovery lifetime. The
longer it takes to find a receiver, the later the timeLeftForReply method is invoked
and hence the larger the value of now(), causing the value of timeLeftForReply to
shorten.

Note that, because an expirable message fixes both the communication and discov-
ery lifetimes, some care is required when composing the actual traits into a composite
handler (cf. the composition code in section 8.3.2). For the purposes of composing the
message handler, an expirable message has an empty discovery lifetime trait and uses
the above trait to represent its communication lifetime. If the above trait were used
both as the composite’s communication and its discovery lifetime, the implementation
would be composed twice, which would immediately lead to name clashes.

8.3.7 Representing Exported Objects
We now turn our attention to the receivers of ambient messages. Recall from sec-
tion 6.4.2 that objects are eligible for receiving ambient messages only after they have
been explicitly exported, potentially specifying a number of attributes. Below is the
implementation of the export:as:with: function:

def export: service as: typetagOrProtocol with: closure {
def attributes := isolate: closure;
def descriptor := ServiceDescriptor.new(service, attributes);
export: descriptor as: typetagOrProtocol;

};

Again, the invoked export:as: method is part of the interface of a custom dis-
covery engine written in AmbientTalk itself, which enables objects to be exported as
either a type tag or a protocol (cf. section 8.7.2). The closure describing the attributes
of the service is used to construct an isolate object, which is exported together with a
reference to the service object. Because the attributes are modelled as an isolate, they
are passed by copy to remote discovery engines. This enables the filter predicate of
remote ambient references to locally query those attributes, without requiring further
communication.

8.3.8 Snapshots
If the reach of an ambient reference is represented by means of an explicit collection,
creating snapshots of the ambient reference’s reach becomes extremely easy. The im-

8.3. EXTENSIONAL REACH 197

plementation is as follows:

def makeSnapshot() { reach.asTable() };

The method turns the collection object representing the ambient reference’s reach
into an AmbientTalk table of far references. By not simply returning the reach collec-
tion directly, we ensure that the caller of the makeSnapshot method cannot modify the
original collection, which should be maintained solely by the ambient reference.

8.3.9 Summary
Figure 8.3 gives a complete overview of the delivery process of an ambient message
by means of the extensional implementation described above. Note that the messages
exchanged between the TArity and TDiscoveryLifetime traits depend on the kind of
message. For example, if the message msg is tagged with the Instant annotation, the
message send:to:ifNoneInReach: is sent to the TArity trait. The margin on the left
indicates the time intervals corresponding to communication and discovery lifetime.

[@Sustain | Transient]
sendAndRegister(ar,msg)

discovery
lifetime

comm.
lifetime

createFuture() attachFutureTo
Message(msg)

becomeResolved()

TDiscoveryLifetime TArity TCommLifetime

Futuredispatch(ar,msg)
<<create>>

[@Instant] send: m to: a
ifNoneInReach: c

discoveryStopped(msg)

[@All] register(ar,msg)
[@One] registerUntilReceiverFound(ar,msg)

Figure 8.3: Multiple dispatch implementing ambient message delivery.

To summarise, using the extensional implementation of an ambient reference’s
reach, the ambient reference can refer to all service objects in reach at any point in
time. Instant message delivery is expressed simply by sending a message to one or
all elements of the reach collection (depending on the arity). Transient and sustained
delivery are achieved by registering an observer with the ambient reference, which is
triggered each time a new potential receiver is discovered. This allows the ambient
message to be delivered to receivers that come in reach after the message was sent to
the ambient reference.

We have now discussed the complete details of delivering ambient messages sent
via ambient references whose reach is represented by means of an explicit collection
object. The implementation of ambient references as a whole still remains incom-
plete. For example, it is not yet explained when and by whom the dispatch and
attachFutureToMessage methods are invoked. This will be explained later, in sec-
tion 8.6. In the following section, we first discuss an alternative implementation of
ambient references whose reach is only represented implicitly.

198 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

8.4 Intensional Reach

In this section, we discuss an implementation of ambient references where the reach
of the reference is represented intensionally. As a result, it is closer to the intuitive
definition of ambient references whose scope is also specified intensionally. Because
the implementation no longer directly refers to objects in reach, the implementation is
no longer “receiver-centric” but rather “message-centric”: ambient references simply
broadcast their messages to anyone that is subscribed to a broadcast channel, and it is
up to the receivers to e.g. filter out duplicates based on previous received messages.
The events of subscribing to or unsubscribing from this broadcast channel are not made
explicit anywhere in the implementation. Hence, no service discovery engine is used
to keep track of “nearby” service objects.

8.4.1 Representing Reach

In the intensional implementation of ambient references, the reach is represented as a
“broadcast channel”. We implement such a channel by means of M2MI omnihandles.
Recall from section 3.3.7.4 that sending a message to an M2MI omnihandle broadcasts
that message to all nearby exported Java objects of a certain interface type. M2MI
handles are Java objects. We defer an explanation of how such objects can be accessed
by AmbientTalk objects until section 8.7.3. For now, it suffices to know that we wrap
an M2MI omnihandle in a small abstraction which we name an omnireference which
allows AmbientTalk code to treat the Java M2MI handle as if it were an AmbientTalk
eventual reference. Below is the definition of the reach of an ambient reference:

def ambient: typetagOrProtocol where: filter {
...
def reach := omnireference: typetagOrProtocol;
def performAnycast(replyHandler) {
reach<-anycast(filter, replyhandler);

};
def performBroadcast(msg, id, ttl) {
reach<-broadcast(filter, msg, id, ttl);

};
...

}

The omnireference wrapper takes care of converting the type tag or the protocol into
a Java interface type with which the Java M2MI handle can be initialised. The ambient
reference further defines two auxiliary methods which are used by the handlers defined
below to communicate with objects in reach. performAnycast broadcasts the message
anycast to any object that happens to be proximate enough to receive the broadcast.
Any object that receives the broadcast should reply to the replyhandler object. This
method is part of a simple anycast protocol that enables an ambient reference to get
a view on which objects are in reach. The performBroadcast method broadcasts the
broadcast message to nearby receivers (cf. section 8.4.3). Any object receiving this
message can then deliver msg to exported application objects. The additional id and
ttl arguments specify a unique message identifier and a time to live value respectively.
Their role will be explained in due course.

Note that in both of the auxiliary methods, the filter predicate is passed as an
argument to the broadcasted message. Because M2MI only enables one to delimit the

8.4. INTENSIONAL REACH 199

scope of a broadcast at the level of types (i.e. Java interfaces) and not at the level of
dynamic attributes, some objects may receive the broadcasted messages even though
they do not satisfy the filter. Receivers of anycast or broadcast messages should
therefore first check whether they actually belong to the scope of an ambient reference
by applying the passed filter predicate to the attributes of locally exported objects.
Only if the objects satisfy the filter will the objects reply (in the case of anycast)
or deliver msg (in the case of broadcast). For this strategy to work, however, filter
must be passed by copy, requiring the predicate to be implemented as an isolate3.

8.4.2 Delivery Policies as Traits
The intensional implementation of ambient message delivery is also based on a mul-
tiple dispatch over the different delivery policies. However, in this implementation,
the initial dispatch is on arity, rather than on discovery lifetime as in the extensional
implementation. Figure 8.4 shows the modified trait hierarchy. Again, we discuss the
individual methods throughout the following sections.

timeLeft(msg)
stillValid(msg)

TDiscoveryLifetimediscoveryStopped(msg)
stillValid(msg)
timeLeft(msg)

dispatch(ar,msg)
createFuture()

TArity

createFuture()

attachFutureToMessage(msg)
discoveryStopped(msg)

TCommunicationLifetime

MessageHandler

<<uses>><<uses>> <<uses>>

Figure 8.4: Delivery policy traits used by a message handler (intensional impl.).

8.4.3 Representing Arity
As in the extensional implementation, each of the three kinds of traits discussed above
has a number of implementations depending on the different kinds of delivery policies.
We first discuss arity because the initial dispatch is now on this trait.

All Representing the ambient reference’s reach as a broadcast channel naturally has
the advantage that one-to-many messages become very easy to implement. Below is
the implementation of the arity trait for one-to-many messages:

def TAll := object: {
def createFuture() { makeMultiFuture() };
def dispatch(ar, msg) {
def continuation;
def id := generateMessageId(msg);
def sendOnce() {
def ttl := self.timeLeft(msg); // dispatch TDiscoveryLT

3In AmbientTalk, closures are by default pass-by-reference, but there exist library functions to express
pass-by-copy closures as well (cf. section 9.1.1). Since closures are objects which define anapplymethod,
pass-by-copy closures are nothing but isolate objects which define an applymethod. However, because
isolates do not have access to their enclosing lexical scope, isolate closures must explicitly import any lexical
variables on which they depend as instance variables of the closure object.

200 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

ar.performBroadcast(msg, id, ttl);
continuation := when: BROADCAST_RATE elapsed: {
if: self.stillValid(msg) then: { // dispatch TDiscoveryLT
sendOnce(); // recursive call to start new broadcast

} else: { // stop broadcasting
self.discoveryStopped(msg); // dispatch TCommLT

}
}

};
sendOnce(); // start broadcasting
def stopDiscovery() {
continuation.cancel();
self.discoveryStopped(msg); // dispatch TCommLT

};
object: { def cancel() { stopDiscovery() } }

};
};

The trait provides a single dispatch method. The inner sendOnce function is
used to start an asynchronous iterative process. Upon each invocation of sendOnce,
the message is broadcast to the ambient reference’s reach. Subsequently, after a fixed
timeout period, the process is repeated (by recursively invoking the method), but only
if the message’s discovery lifetime has not yet expired. This is tested by dispatching
the stillValid message to a discovery lifetime trait (discussed later). If a message
is no longer valid, the sendOnce function is no longer recursively invoked, and the
communication lifetime trait is notified that no more messages will be sent (using the
discoveryStopped message, which serves the same purpose here as it did in the ex-
tensional implementation).

Because the above implementation periodically broadcasts the message to any re-
ceiver in reach, regardless of whether they already previously received it or not, the
broadcasted message includes a unique message identifier id. This identifier allows
receivers to check whether they previously received the given ambient message. The
ttl variable is the ambient message’s “time to live”: it denotes how much longer the
message will be broadcast by the handler (this depends on the message’s discovery
lifetime). This value is also passed to any remote receiver, as a hint for how long they
should store bookkeeping information regarding this message.

One For point-to-point messages, the delivery protocol is slightly more complex,
because such messages should be delivered to at most one receiver. Figure 8.5 depicts
the anycast protocol by which a single receiver is elected from the group of nearby
potential receivers. The object in the centre represents the ambient reference. The
dotted circle represents its communication range. All other objects are assumed to
have a matching type and are hence eligible to receive broadcast messages if they are
in range. The object marked C, however, is assumed not to match the filter predicate
of the ambient reference (i.e. it is not in the reference’s scope).

The protocol goes as follows. First, the anycast message described previously is
broadcast via an M2MI omnihandle to all nearby objects. Each receiver locally filters
its exported objects and if they satisfy the filter, the objects send a reply message to
the ambient reference, passing along a reference to themselves. The ambient reference
awaits replies for a predefined amount of time before processing them. If no object

8.4. INTENSIONAL REACH 201

1. broadcast request 2. gather replies

AR AR

AB

C

D
E

AB

C

D
E

anycast reply

Figure 8.5: Anycast protocol to select a single receiver.

replied, this process of receiver selection is repeated. If there is at least one receiver, one
is non-deterministically chosen to receive the point-to-point message4. The equivalent
AmbientTalk code is shown below:

def TOne := object: {
def createFuture() { makeFuture() };
def dispatch(ar, msg) {
def continuation;
def sendOnce() {
def receivers := [];
ar.performAnycast(object: {
def reply(rcvr) { receivers := receivers + [rcvr] };

});
continuation := when: ANYCAST_TIMEOUT elapsed: {
if: !receivers.isEmpty then: {
receivers[1 ?? (receivers.length + 1)] <+ msg;
self.discoveryStopped(msg); // dispatch TCommunicationLT

} else: {
continuation := when: BROADCAST_RATE elapsed: {
if: self.stillValid(msg) then: { // dispatch TDiscoveryLT
sendOnce(); // recursive call to start new anycast

} else: { // stop the anycast protocol
self.discoveryStopped(msg); // dispatch TCommunicationLT

}
}

}
}

};
sendOnce();
def stopDiscovery() {
continuation.cancel();
self.discoveryStopped(msg); // dispatch TCommLT

};
object: { def cancel() { stopDiscovery() } }

};
};

4Because ambient references do not specify which potential receiver is elected as the actual receiver of
the message, we could as well simply have awaited just one reply. The message would then always be sent
to the first potential receiver to respond to the anycast.

202 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

The above code is structured according to the same pattern of periodically invoking
an auxiliary sendOnce function. However, rather than performing a broadcast during
each iteration, the anycast protocol described above is performed: the anycast mes-
sage is sent to all receivers in reach, after which replies are gathered by the anonymous
object passed as an argument to the performAnycast method. After a fixed timeout,
if at least one receiver is available, one of them is non-deterministically chosen to re-
ceive the message. If no receiver replied and if the message’s discovery lifetime has
not expired, the process is repeated.

8.4.4 Representing Discovery Lifetime
The discovery lifetime trait implicitly controls how long to continue the repetitive
broadcasting of the ambient message by means of itsstillValidmethod. This method
returns a boolean indicating whether the message’s discovery lifetime has expired. It
also provides a timeLeft method that returns the amount of discovery lifetime left,
which is used in the arity trait for one-to-many messages defined in the previous sec-
tion.

Instant A message with an instant discovery lifetime is easily represented as having
a lifetime of 0 seconds, as follows:

def TInstant := object: {
def timeLeft(msg) { 0 };
def stillValid(msg) { false };

};

Note that an instant message is always broadcast or anycast at least once, because
the arity traits perform at least one broadcast or anycast unconditionally before check-
ing whether the message has expired.

Transient An ambient message with a transient lifetime has a predefined timeout
period which can be used to derive whether the message is still valid if we know the
time at which the message was sent. The time at which the message is sent is stored
in the message’s delivery handle in a field named sendTime. Given this information, a
transient lifetime can be encoded as follows:

def makeTTransient(timeout) {
object: {
def transientPeriod(msg) { timeout };
def timeLeft(msg) { (msg.handle.sendTime + timeout) - now() };
def stillValid(msg) { self.timeLeft(msg) > 0 };

}
};

Sustain A message with a sustained discovery lifetime does not expire automatically.
This is reflected in the implementation as follows:

def TSustain := object: {
def timeLeft(msg) { RECALL_PERIOD };
def stillValid(msg) { true };

};

8.4. INTENSIONAL REACH 203

Note the implementation of timeLeft. Strictly speaking, invoking timeLeft on
a message with a sustained discovery lifetime should return ∞. However, since the
return value of this method is used as a lower bound on the “time to live” value by
means of which potential receivers can know how long to remember the message for
filtering out duplicates, we choose to return a predefined timeout period. The choice
of the name is not accidental: this timeout period closely corresponds to the “recall
period” of the service discovery engine in the extensional implementation: it is the
maximum amount of time a receiver is willing to store information about previously
received message sends. This implies that, if a receiver receives a sustained ambient
message m, goes out of reach for longer than RECALL_PERIOD milliseconds and then
moves back in reach, it will have forgotten about m and will receive the message twice.

8.4.5 Communication Lifetime and Expirable Messages
With respect to communication lifetime and expirable messages, the implementation
for intensional ambient references is entirely reminiscent of the implementation for
extensional references given in sections 8.3.5 and 8.3.6. Hence, we will not repeat this
part of the implementation here.

8.4.6 Representing Exported Objects
In the extensional implementation, it was the ambient reference itself that for the most
part avoided duplicate messages by only sending messages to new potential receivers as
signalled by the discovery engine. This discovery engine hides a lot of the bookkeeping
code necessary to filter out duplicate advertisement messages, etc. In the intensional
implementation, ambient references no longer use a discovery engine and hence put the
burden of keeping track of duplicate messages on the potential receivers. Therefore, we
can expect the code to export objects to be more complex than the quite straightforward
implementation discussed for an extensional reach in section 8.3.7. The following code
exports object for use with the intensional implementation of ambient references:

def export: serviceObject as: typetagOrProtocol with: closure {
def attributes := object: closure;
def alreadyReceivedMessages := makeLeasedEntryTable();
def broadcastMsgHandler := object: {
def anycast(scopeFilter, replyHandler) { ... };
def broadcast(scopeFilter, msg, id, ttl) { ... };

};
def pub := M2MI.export: broadcastMsgHandler as: typetagOrProtocol;
object: {
def unexport() {
pub.unexport();
alreadyReceivedMessages.deactivateLeaseRenewal();

}
}

};

The closure argument is used to initialise an object representing the exported ser-
vice object’s attributes. The variable alreadyReceivedMessages stores the list of
message identifiers corresponding to those ambient messages that have previously been
delivered to the exported serviceObject. Entries in this list are leased: each entry
has a corresponding time to live (which can be prolonged). Once this time to live

204 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

elapses, the entry is removed from the list. Note that the object being exported is not
the serviceObject directly, but rather a proxy object named broadcastMsgHandler.
This proxy object understands the anycast and broadcast messages discussed in sec-
tion 8.4.1. The proxy is not exported by means of AmbientTalk’s built-in export:as:
function but rather by means of the M2MI library5. This makes the object eligible
for the reception of any messages sent to an M2MI omnihandle whose Java interface
matches the Java representation of typetagOrProtocol (cf. section 8.7.3).

We now discuss the two methods of the broadcastMsgHandler object. Below
is the implementation of the anycast method which implements part of the anycast
protocol:

def anycast(scopeFilter, replyHandler) {
if: scopeFilter(attributes) then: {
replyHandler<-reply(serviceObject)

}
};

Recall from section 8.4.3 that the anycastmethod is used to determine all potential
receivers for a point-to-point message. As explained in section 8.4.1, the receiver first
has to check whether it actually belongs to the scope of the ambient reference by ap-
plying the given scopeFilter predicate to the attributes of the exported service object.
Only if the predicate is satisfied is a reference to the actual service object sent to the
replyHandler. The service object can then receive a point-to-point message directly
if it is elected as the receiver. It is not necessary to check for duplicate messages as a
point-to-point message is guaranteed to be delivered at most once.

The broadcast method is invoked whenever a one-to-many message is broadcast
by an ambient reference. Its implementation is shown below.

def broadcast(scopeFilter, msg, id, ttl) {
if: scopeFilter(attributes) then: {
if: alreadyReceivedMessages.containsEntry(id) then: {
// msg already previously received, update lease time
alreadyReceivedMessages.renewEntry(id, ttl);

} else: {
serviceObject <+ msg;
alreadyReceivedMessages.addEntry(id, ttl);

}
}

};

Again, the implementation ensures that the message is only processed if the receiver
is in scope of the ambient reference. The second if-test ensures that duplicate messages
are weeded out: if the identifier associated with the message was previously received,
the time to live of that identifier’s entry is renewed and the message is further ignored.
By renewing the leased entry for the message in the table of received messages, we
ensure that no duplicates can ever be received as long as the receiver does not move
out of reach of the ambient reference. If the message was not previously received, it
is delivered to the actual service object and an entry is added to the table of received
messages to filter out subsequent duplicate messages.

5TheM2MIobject is a facade object that mediates between AmbientTalk and the M2MI Java API.

8.5. EVALUATION 205

8.4.7 Snapshots
Recall from section 8.3.8 that in the extensional implementation the reach collection
itself represented the snapshot. In the intensional implementation, such a representa-
tion is not readily available. However, it is easy enough to think about the anycast
protocol to select a receiver for a point-to-point message as building a temporary snap-
shot of the reference’s reach. Hence, we can readily reuse this protocol to actually
return a snapshot to an interested client, as follows:

def makeSnapshot() {
def [fut,res] := makeFuture();
def theSnapshot := [];
self.performAnycast(object: {
def reply(rcvr) { theSnapshot := theSnapshot + [rcvr] }

});
when: ANYCAST_TIMEOUT elapsed: {
res.resolve(theSnapshot);

};
fut;

}

The above code returns a future which is eventually resolved with a table of ref-
erences to all objects that replied to the anycast message before the anycast timeout
elapsed.

8.4.8 Summary
We have sketched an alternative implementation of ambient references whose reach
is represented only implicitly by means of M2MI omnihandles. Because the ambi-
ent reference no longer explicitly refers to potential receivers in reach, the delivery
of a point-to-point message requires an anycast protocol to elect a suitable receiver.
Broadcasting, on the other hand, is much easier and more efficiently implemented by
broadcasting the message via the omnihandle. Because no underlying service discovery
engine is used to detect new potential receivers, messages with a prolonged discovery
lifetime are broadcast at regular intervals, until their discovery lifetime expires or their
delivery is cancelled. This requires potential receivers to explicitly filter out duplicate
messages. While this filtering of duplicate messages also happens in the extensional
implementation, it is dealt with at the level of the service discovery engine and there-
fore was only implicit in our discussion. Now that both the extensional and intensional
implementations have been explained, we can compare them with one another.

8.5 Evaluation
Having explained two alternative implementation strategies for ambient references, we
can now describe their relative advantages and disadvantages:

• Because the extensional implementation has explicit references to all potential
receivers at each point in time, expressing a point-to-point message is easy.
However, the downside is that a one-to-many broadcast must be implemented
by sending a unicast message to all receivers in the collection representing the
reach. This is a very inefficient way of implementing broadcasting in terms of

206 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

network load. Especially in a wireless proximal ad hoc network, where all com-
munication is inherently broadcast via radio, a broadcast to n receivers results in
n consecutive radio signals, each only processed by one device and discarded by
all others.
In the intensional implementation, expressing a point-to-point message send re-
quires a two-phase anycast protocol to elect a receiver on the fly. The downside
here is that, even though one device will be able to process the message, all
devices need to reply to the single sending device at about the same time, po-
tentially congesting the network. On the other hand, expressing one-to-many
communication is both extremely expressive and extremely efficient: a single
broadcast message addresses all potential receivers in one shot.

• In the extensional implementation, snapshots are readily available as the collec-
tion representing the reach is a continuously updated snapshot of the environ-
ment. In the intensional implementation, snapshots must be constructed on the
fly, although this does not take much effort as the anycast protocol used to deliver
point-to-point messages can be readily reused.

• In the extensional implementation, potential receivers pass their attributes by
copy to ambient references that discover them. It is the ambient reference itself
that applies its filter locally to the copied attributes. In the intensional implemen-
tation, the ambient reference periodically passes its filter by copy to potential
receivers. It is the potential receivers themselves that apply the copied filter to
their local attributes.
The advantage of the extensional implementation is that it is often easier to pass
state (attributes) by-copy than to pass code (the filter predicate) by-copy. Also,
the filter is applied only once per receiver entering the reach of the ambient ref-
erence. The downside of this scheme is that if an ambient reference has a large
number of potential receivers, it can quickly become swamped with discovery
events and essentially becomes a bottleneck for processing all of the filters. In
addition, by checking the predicate only once, changes in a remote service’s
provided attributes are not taken into account, such that over time the ambient
reference may refer to receivers which are strictly speaking no longer in its scope.
For the intensional implementation, all of these advantages and disadvantages are
reversed: because the filter must be applied remotely, it should be self-contained
and cannot depend on location-specific values which cannot be copied along.
Also, the filter is passed along and checked in each message send, which can
be a serious performance hit. On the upside, the scheme of simply broadcasting
the filter predicate along with messages makes for a decentralised solution which
scales to a large number of receivers: all receivers will process the filter predicate
in parallel and the ambient reference is no longer a bottleneck. Moreover, by
checking the predicate continuously, changes in the attributes of nearby services
are always taken into account. Hence, an ambient reference’s reach is always
consistently a subset of its intended scope.
If it can be guaranteed that the filter predicate of an ambient reference is ref-
erentially transparent (i.e. it is free of side effects and thus always returns the
same output for the same input), receivers could cache the outcome of the fil-
ter, remembering for each ambient reference in communication range whether
or not they belong to its reach. This would avoid any redundant filter check-
ing. Changes in an exported object’s attributes (which can be detected purely

8.6. AMBIENT REFERENCES AS CUSTOM EVENTUAL REFERENCES 207

locally, without any remote communication) could then invalidate this cache if
necessary.

We have now described the ambient message delivery process in full. However,
there are still some loose ends to tie up. For example, when is the dispatch method
invoked upon the traits to start the delivery process, and by whom? And where is the
return value of this method (the “registration” object) stored? How are futures and
reply handles attached to ambient messages? The following section will fill in these
details. It discussed how all previously explained code is integrated into AmbientTalk’s
metaobject protocol by representing ambient references as custom eventual references.

8.6 Ambient References as Custom Eventual References
As discussed in chapter 6, an ambient reference is represented as an eventual refer-
ence to the AmbientTalk programmer. To achieve this, we reuse the metalevel engi-
neering techniques discussed in section 5.2.3 to represent object references by means
of mirages. This enables ambient references to intercept and reify any asynchronous
messages sent to them. With the ambient message made explicit, ambient references
can add metadata to the message (such as a delivery handle) and can then deliver the
message to the remote objects they designate based on the delivery policies indicated
by the message’s annotations.

In section 5.2.3.1 futures were defined as custom eventual references by means of
mirages. Here, we use the same pattern to define ambient references:

def ambient: typetagOrProtocol where: filter {
object: { /* empty proxy object */
} taggedAs: [AmbientReference] mirroredBy: (
extend: actor.defaultMirror with: {
import TEventualRef; // use metalevel behaviour of eventual refs

def intercept(message) {
def handler := createHandler(message);
def [fut, newMsg] := handler.attachFutureToMessage(message);
def registration;
def handle := object: {
def future := fut;
def sendTime := now();
def cancel() { registration.cancel() };

};
registration := handler.dispatch(self,

extendWithHandle(newMsg, handle));
handle // the value of an ambient message send is always a handle

};
def makeSnapshot() { ... };
...

})
}

An ambient reference is a mirage object whose mirror imports the TEventualRef
trait to acquire the metalevel behaviour of eventual references. Recall that intercept
is part of that trait’s required interface, so an implementation must be provided by the
composite object. Upon intercepting an asynchronous message sent to it, the ambient

208 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

reference first constructs a handler for the message. Based on the annotations of the
message, a message handler is created for the given combination of annotations by
means of trait composition, as noted in section 8.3.26.

When a handler for the message has been constructed, the ambient reference at-
taches the appropriate future to the message by invoking the attachFutureToMessage
method on one of the communication lifetime traits discussed in section 8.3.5. This
method returns a tuple consisting of the future to be attached to the message’s handle,
and a new message object to which the returned future is attached.

As discussed in section 6.2.1, a message send to an ambient reference always re-
turns a delivery handle. This object allows the sender to access any future associated
with the ambient message and to prematurely cancel the message delivery, which is
primarily useful in the case of ambient messages with an unbounded lifetime. The
handle object is explicitly constructed by the ambient reference upon message inter-
ception. Note that the handle object also stores the time at which the message was sent
to the ambient reference, which is used by the @Expires delivery policy to calculate
the appropriate expiration time (cf. section 8.3.6).

Finally, the ambient reference dispatches to the message’s handler to start the de-
livery process. The auxiliary extendWithHandle method extends the message object
with a handle field referring to its handle. This allows the traits to access the message’s
future and the sendTime field. Recall that the return value of the dispatchmethod is a
registration object that enables the delivery policy to be cancelled. This object is used
by the cancel method of the message’s delivery handle to stop the message delivery
process.

The above discussion on reifying ambient messages and attaching delivery handles
fills in the missing details in the implementation outline sketched in section 8.2. Before
concluding this section, we highlight once more the advantages of the stratified design
of AmbientTalk’s custom object references. Because base and metalevel are cleanly
stratified:

• methods defined at the metalevel do not interfere with base level messages. For
example, imagine an ad hoc application in which an ambient reference cameras
designates nearby photo cameras in the ad hoc network. Also imagine these

camera objects to implement a makeSnapshot()method to take a picture. When
evaluating cameras<-makeSnapshot(), we can rest assured that makeSnapshot
will not accidentally trigger the metaobject protocol of the ambient reference.

• methods defined at the base level do not interfere with metalevel messages. Con-
sider the following function which is part of the ambient reference language
construct module:

def snapshot: ambientRef {
ambientRef<-makeSnapshot()@MetaMessage;

}

Because the makeSnapshot method is defined at the metalevel, the correspond-
ing message must be explicitly annotated with @MetaMessage such that it is sent
to the mirror rather than the base level proxy. Continuing our previous example,
the ambient reference language module can rest assured that the makeSnapshot

6For didactic purposes, our explanation abstracts from the fact that message delivery policies can be
incomplete at the message-level and may depend on the default policies specified at the ambient reference
level. The complete implementation can be found in appendix A.

8.7. MANY TO MANY INVOCATIONS 209

message above triggers the metaobject protocol and not the methods of nearby
cameras simply because they incidentally happen to have the same name.

We have now provided a complete overview of the implementation of ambient ref-
erences in AmbientTalk. However, the role played by M2MI in this implementation
still remains vague. The following section discusses where and how our implementa-
tion relies on the features provided by this Java library.

8.7 Many to Many Invocations
We now briefly describe the role of M2MI in the implementation of ambient refer-
ences. First, we motivate why ambient references are built on top of M2MI. Second,
we describe their particular use in the extensional and intensional implementations of
ambient references. Finally, we describe how they can be technically used in Ambi-
entTalk because M2MI has been designed as a Java library, not as an AmbientTalk
library.

8.7.1 Motivation
Many to many Invocations are built upon a custom network protocol named the “many
to many protocol” (M2MP). M2MP has been designed specifically for wireless proxi-
mal ad hoc networks. Its design is based upon the following assumptions, as stated by
Kaminsky and Bischof [KB02]:

• The M2MP protocol does not assume device addresses. This allows devices to
enter and leave ad hoc networks without having to maintain any routing infor-
mation and without having to acquire or release e.g. IP addresses. This is an
important advantage because infrastructure to maintain this information is un-
available in pure ad hoc networks.

• The M2MP protocol always broadcasts all messages to all nearby devices. This
does not introduce additional performance penalties compared to other proto-
cols because wireless radio transmissions are inherently broadcast in the sender’s
proximity.

• Whether or not a device should actually process a received message depends
solely on the message’s contents. Unlike traditional network protocols where
message relevancy is determined by means of a recipient address, an application
using M2MP must use the message’s contents (preferably its initial bytes) to
determine whether it should process or discard the message.

• M2MP assumes that message delivery is mostly reliable. As a result, it only
includes minimal reliability measures. M2MP uses checksums to ensure that
corrupted packets are discarded. However, unlike high-level protocols such as
TCP/IP, M2MP does not perform automatic retransmission in case of dropped
packets or because of packets arriving out of sequence.

Due to its lightweight nature and because of the above assumptions, M2MP forms
a good substrate on top of which to build communication abstractions for mobile ad
hoc networks. M2MI makes use of M2MP to transmit Java invocations, while ambient
references in turn make use of M2MI to transmit AmbientTalk messages. We could

210 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

have also used M2MP directly, bypassing the M2MI layer. While this would probably
have resulted in a more efficient system, the implementation on top of M2MI is simpler
to understand and does not give up on any of the essential benefits of using M2MP.

8.7.2 Applying M2MI

M2MI is used in different ways in the different implementations of ambient references:

Intensional Reach In this implementation, M2MI is used explicitly. M2MI Omni-
handles are used to represent the reach directly. The major advantage of this
approach is that a one-to-many message can be broadcast directly and efficiently
via the omnihandle.

Extensional Reach In this implementation, M2MI is only used implicitly through the
service discovery engine. We have employed M2MI to construct an implemen-
tation of the discovery algorithm which is built into the AmbientTalk interpreter
(written in Java) in AmbientTalk itself. Services discover one another by repeti-
tively broadcasting AmbientTalk query messages to nearby devices and awaiting
replies. M2MI readily supports this implementation strategy through its omni-
handles. Services are considered unavailable when they become unresponsive to
such query messages for longer than a given timeout period. This timeout period
is what we have called the recall period in sections 8.3.3 and 8.4.4. Our main mo-
tivation behind implementing a service discovery engine in AmbientTalk itself
is that this engine becomes much more amenable to customisation from within
AmbientTalk.

As an example of such a customisation, based on the discovery engine written
in AmbientTalk using M2MI, we have implemented the more energy-efficient
DEAPSpace service discovery algorithm. This algorithm is developed specifi-
cally for ad hoc networks of resource-scarce devices [Nid01]. In this implemen-
tation, services still discover one another through broadcasts. However, rather
than having every device advertise its own services to all other devices periodi-
cally, in DEAPSpace every device broadcasts advertisements of services offered
by all nearby devices periodically. Hence, n broadcasts each containing 1 ser-
vice advertisement are replaced by 1 broadcast containing n service advertise-
ments. Because of this reduced number of broadcasts, individual devices even-
tually save more energy. However, even in the DEAPSpace implementation, the
role of M2MI remains unchanged: M2MI omnihandles are still used to broad-
cast the aggregated service advertisements. Note that DEAPSpace allows objects
to discover service objects which may be beyond their physical communication
range (because announcements may be effectively forwarded by intermediate
parties). The extensional implementation of ambient references does not use this
implementation because discovered objects would not necessarily be in commu-
nication range, defeating the abstraction that ambient references only designate
physically proximate objects.

8.7.3 Using M2MI

Recall the use of omnihandles in section 8.4.1 to represent the reach of an ambient
reference:

8.7. MANY TO MANY INVOCATIONS 211

def reach := omnireference: typetagOrProtocol;
...
reach<-anycast(...);

Using the M2MI library in Java directly, we would write:

Type reach = M2MI.getOmnihandle(Type.class);
...
reach.anycast(...);

Note that while in AmbientTalk typetagOrProtocol is really a variable, the type
declaration Type in the Java code represents an actual static type (i.e. Type must be
some concrete application-specific interface). Also note that while anycast is sent
asynchronously even in the Java implementation, this cannot be directly expressed be-
cause Java offers only synchronous method invocation syntax and semantics. M2MI
handles must be initialised with an object representing a Java interface type. The
omnireference: wrapper in the above AmbientTalk code is responsible for mapping
the above AmbientTalk code onto the corresponding Java code. To this end, Ambi-
entTalk type tags and protocols must be converted into Java interfaces. Below, we
discuss how the different options (discussed in section 6.4.1) to express an ambient
reference’s scope are implemented in terms of M2MI:

Type Tags For type tags, the conversion process is quite straightforward because Java
interfaces, like type tags, are nominal types supporting multiple supertypes. A type tag
T1 defined as deftype T1 <: T2, T3 is converted into the following Java interface
type:

public interface T1 extends T2, T3 { }

Every AmbientTalk type tag which does not explicitly define a list of supertypes is
implicitly a subtype of a root type. This root type is represented as the following Java
interface:

public interface RootType extends EventListener {
public void invoke(ATObject message);

}

Every generated interface eventually inherits from the above interface. Hence, every
Java interface representing a converted AmbientTalk type tag automatically declares a
method invoke which takes an argument of type ATObject, which is the AmbientTalk
interpreter’s root type for any value representing an AmbientTalk object. This invoke
method is called from within AmbientTalk code to send an AmbientTalk message via
an M2MI handle, e.g. reach<-anycast(...) is translated by the omnireference:
wrapper into handle.invoke(<-anycast(...))where handle is the wrapped M2MI
handle.

The invoke message is subsequently transmitted across the network using the
M2MP protocol underlying M2MI. At its destination, this message is received by an
M2MI message delivery thread and the invoke method is invoked by that thread on
the exported AmbientTalk object. When an AmbientTalk object is exported by means
of the M2MI layer (cf. the exported broadcastMsgHandler object in section 8.4.6),
the object is not exposed directly to M2MI. Rather, a small wrapper (AmbientTalk) ob-
ject is exported which implements a single invoke method. The conversion described

212 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

in the previous paragraph ensures that all invocations on M2MI handles from within
AmbientTalk are converted into calls to this invoke method. This method essentially
acts as a callback for the M2MI framework. While this callback is invoked from within
a JVM thread (the M2MI delivery thread), the AmbientTalk/JVM symbiosis converts
this method invocation into an asynchronous AmbientTalk message send such that it is
properly scheduled in the actor’s message queue.

Recall from section 5.3.2.2 that the linguistic symbiosis between the JVM and Am-
bientTalk considers a Java method invocation as an asynchronous event notification if
the invoked method returns no value, throws no exceptions and is part of (a subtype
of) the java.util.EventListener interface. RootType extends this interface such
that an invocation of the above invoke method is treated by the symbiosis as an asyn-
chronous event notification. Thus, when the M2MI framework delivers messages sent
via M2MI handles to exported AmbientTalk objects, these invocations will not block
the M2MI delivery thread, guaranteeing the responsiveness of the M2MI framework
because the call returns immediately.

The conversion from AmbientTalk type tags to Java interfaces is done at runtime
by synthesising the interfaces using a byte code generation library. The JVM’s support
for dynamic class loading ensures that these generated interfaces can be loaded when
required to construct an appropriate M2MI handle.

Protocols For protocols, there exists no direct encoding into Java interface types. At
first sight, one may expect to be able to convert a protocol into an equivalent Java inter-
face whose method names match the selectors of the AmbientTalk protocol. However,
Java features nominal subtyping, where types are only considered subtypes if this is ex-
plicitly stated in their declaration. One Java interface is not a subtype of another Java
interface simply because the methods it defines are a subset of the methods defined by
the other interface.

Protocols are thus represented in terms of a generic Protocol type tag plus an
additional runtime type test which compares two protocols based on structural subtyp-
ing. The type tag is converted into a Java interface type using the conversion method
described in the previous section. Hence, the implementation of protocols on top of
M2MI handles is suboptimal, because any object exported by means of a protocol will
receive all messages sent via M2MI handles for the Protocol interface. The objects
then have to perform an additional type test to check whether they really are destined
to receive the message.

Filter Predicates As previously explained in section 8.4.1, the optional filter predi-
cates supported by ambient references cannot be used to efficiently scope message de-
livery itself. Filters are arbitrary AmbientTalk closures which are used in a conditional
expression to explicitly ignore those messages which have been received by an object
which is not actually in an ambient reference’s scope. This may lead to inefficient use
of the network since messages may sometimes be delivered needlessly.

Predicates could be used to efficiently scope message delivery itself if they are no
longer regarded as opaque arbitrary AmbientTalk predicates but rather as a restricted
query language. Such a representation allows the application of event routing tech-
niques in content-based publish/subscribe systems [CRW01, EG01] to improve upon
the accuracy of the message delivery. Integrating such techniques in the implementa-
tion of ambient references is left as a topic for future research.

8.8. IMPLEMENTING CONNECTION-ORIENTED REFERENCES 213

To summarise, ambient references make use of M2MI handles to transmit Am-
bientTalk messages via the low-level M2MP protocol to remote objects. In order to
achieve this, the characteristic function defining the scope of an ambient reference
must be represented in Java. Type tags are directly compiled into Java interface types
by means of bytecode generation. Protocols and filter predicates are not converted
in this way, requiring additional runtime checks when messages are delivered using
M2MI handles.

Now that both ambient references and the role of M2MI in their implementation
have been explained, we turn our attention to the implementation of anonymous far
references and multireferences.

8.8 Implementing Connection-oriented References

This section discusses the implementation of the referencing abstractions from sec-
tion 6.6 whose goal was to reintroduce stateful communication. We discuss anonymous
far references below and multireferences in the following subsection.

8.8.1 Anonymous Far References

Recall from section 6.6.1 that an anonymous far reference is constructed by invoking
discover: Type, where Type can be a type tag or a protocol. This function call imme-
diately returns a reference to any discovered object matching the given type. If no such
object is available, the reference is unbound and transparently buffers asynchronous
messages sent to it.

We already hinted at the implementation for anonymous far references in sec-
tion 6.1.3.2. The code snippet below generalises the code snippet from section 6.1.3.2
such that it becomes applicable for any type tag or protocol:

def discover: typetagOrProtocol {
def [future,resolver] := makeFuture();
when: typetagOrProtocol discovered: { |service|
resolver.resolve(service);

};
future

}

We use a first-class future to represent the anonymous far reference. We explicitly
stated in section 6.6.1.2 that anonymous far references are to service discovery what
futures are to asynchronous method invocations. The implementation reveals that the
correspondence is such that one may readily use futures to represent anonymous far
references: an unresolved future is an unbound anonymous far reference. It simply
buffers incoming messages and forwards them to an actual far reference once the far
reference has been acquired via service discovery.

Next to the above discover: function, the ambient reference language module
also provides a discover:where: function that allows one to refine to which remote
services the anonymous far reference may bind. The implementation of this function
is more complex because the first service to be discovered may not immediately be
a match. However, unbound anonymous references are still represented as first-class
futures, so the essential aspects of the implementation remain unchanged.

214 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

8.8.2 Multireferences
Briefly recapitulating from section 6.6.3, a multireference is an object reference to a
fixed group of objects. Any message sent to a multireference is automatically broad-
cast to all objects in the group and returns a multifuture which can be used to gather
replies. A multireference can be created from any table of objects. The following code
snippet shows how multireferences are implemented as yet another kind of custom ob-
ject reference, entirely similar to the pattern previously shown in section 5.2.3.1 for
futures and section 8.6 for ambient references:

deftype MultiReference;
def multiref: farrefs {
object: { } taggedAs: [MultiReference] mirroredBy: (
extend: actor.defaultMirror with: {
import TEventualRef;
def intercept(msg) {
def [multifut,res] := makeMultiFuture(msg,farrefs.length);
// attach the above multifuture to the message
def newMsg := futurize(msg, multifut);
// forward the message to the entire group
farrefs.each: { |farref| farref <+ newMsg };
multifut; // the return value is the multifuture

};
...

})
}

As can be seen, a multireference encapsulates a table of far references and explicitly
forwards each message sent to it to all objects in the table. The forwarded message is
equipped with a multifuture which may be used by the sender to conventiently gather
any replies to the message. Note that the total number of receivers (farrefs.length
) is passed to the makeMultiFuture method. This number serves as a hint to the
multifuture as to how many replies it may expect. The futurize method has been
explained before (cf. section 8.3.5) and is used to attach the multifuture to the message,
resulting in an augmented newMsg which notifies its associated future when it has been
processed.

To summarise, both the implementations of anonymous far references and multiref-
erences use AmbientTalk’s built-in far references to perform the actual (stateful) com-
munication. Both abstractions are also implemented as custom eventual references.
This fact is implicit in the implementation of anonymous far references because we
have reused futures to represent unbound anonymous far references. An alternative
strategy would have been to represent anonymous far references as explicit custom
eventual references, like we did for futures, ambient references and multireferences.
We have now described the implementation of all the different referencing abstractions
from chapter 6 in terms of custom eventual references. Before concluding this chapter,
we briefly discuss two more technical aspects of ambient references, to wit marshalling
and garbage collection.

8.9 Marshalling Ambient References
We have yet to explain what semantics we attribute to the marshalling (also known as
the serialisation or pickling) of ambient references. That is, when an ambient reference

8.10. GARBAGE COLLECTION 215

itself is passed as an argument in a message to a remote object, should the ambient
reference be passed by copy or by (far) reference?

It is customary in distributed object systems that objects representing references
(i.e. proxies) are passed by copy [CDK05]. That is to say: the proxy object is passed by
copy, not the object which it designates. Ambient references adhere to this semantics.
Thus, when an ambient reference is parameter-passed as an argument (resp. as a return
value via a future) in an inter-actor message send, the receiver (resp. sender) receives
its own copy of the reference. It does not receive a far reference to the proxy object
representing the ambient reference.

In order to copy an ambient reference, it suffices to copy the type tag or protocol
and the filter predicate with which it has been initialised. By means of this data, the
copy can re-initialise itself. As previously stated in section 6.4, the copy may designate
a different set of objects than the original does, because the notion of proximity is
relative to the device hosting the ambient reference. When an ambient reference is
passed from a sender to a receiver, the original reference designates objects proximate
to the sender, while the copied reference designates objects proximate to the receiver.

Type tags and protocol objects are isolates and can be copied without problems.
However, copying the filter predicate is a more delicate issue. To copy the predicate,
it must be implemented as a pass-by-copy closure (cf. section 8.4.1), since regular
closures are passed by far reference. Therefore, the marshalling semantics of ambient
references specifies that it is an error to parameter-pass an ambient reference whose
scope is described by means of a regular AmbientTalk closure.

8.10 Garbage Collection
We briefly discuss how ambient references influence the garbage collection of the dif-
ferent objects that play a part in an ambient message send. Most importantly, any object
that is exported in order to receive incoming ambient messages is no longer subject to
automatic garbage collection. From a garbage collection point of view, the ambient of
an actor acts as an additional “root” from which the GC algorithm derives which ob-
jects can still be referred to. To make an exported object subject to garbage collection,
it must be explicitly unexported.

It is possible to build more sophisticated abstractions on top of the simple ex-
port/unexport operations provided by ambient references. For example, we could in-
troduce leasing such that an exported object is automatically unexported after a certain
period of time, unless it regularly receives ambient messages. We can readily reuse the
“renew on call lease” abstraction discussed in section 4.6.4 to express such behaviour:

def export: serviceObject as: typetagOrProtocol for: timeout {
def lease := renewOnCallLease: timeout for: serviceObject;
// export the lease rather than the actual service object
def registration := export: lease as: typetagOrProtocol;
when: lease expired: {
registration.cancel(); // unexport the object

};
registration

}

Note that by exporting a leased reference to the service object rather than the object
itself, the object can be automatically unexported once the lease expires.

216 CHAPTER 8. IMPLEMENTING AMBIENT REFERENCES

Ambient references themselves only become subject to garbage collection if they
are not referred to by local objects and they do not contain any pending messages. As
long as an ambient reference contains messages which it still has to deliver, the am-
bient reference may influence the distributed application and should not be reclaimed
prematurely. A similar situation occurs when garbage collecting actors: actors should
also not be garbage collected as long as there are messages pending in their mailbox,
even if they are not referred to by other actors [KWN90].

Ambient messages themselves are also objects. These become subject to garbage
collection once their lifetime has expired. As long as their lifetime has not expired,
they are referred to by an ambient reference which prevents them from being collected
prematurely.

8.11 Conclusion
We discussed two implementation strategies for ambient references. Both strategies
differ in the way they represent the ambient reference’s reach: either as an extension-
ally specified collection or as an intensionally specified broadcast channel. In either
case, the different message delivery policies supported by ambient references are im-
plemented in a modular way by means of trait composition. The advantage of such an
implementation is that it makes the interplay between the different messaging policies
explicit in the composition interfaces of the traits.

Ambient references, anonymous far references and multireferences are a new kind
of object reference. While such abstractions are traditionally implemented by means of
ad hoc implementation hooks, the aforementioned abstractions can be integrated much
more tightly in the language by means of computational reflection. In particular, using
AmbientTalk’s support for intercession via mirages, these references can robustly reify
and intercept any messages sent to them without interference from base level objects.

Both the extensional and the intensional implementations of ambient references
also depend on the Many to Many Invocations library. The extensional implementation
uses M2MI implicitly by means of a service discovery engine, while the intensional
implementation directly uses M2MI omnihandles to broadcast messages to nearby de-
vices. Accessing the Java objects that represent M2MI handles is possible because of
the linguistic symbiosis between AmbientTalk and the JVM.

In the following chapter, we cross the abstraction barrier once again and examine
ambient references from the programmer’s rather than the implementor’s point of view
by using ambient references to implement a number of concrete ad hoc networking
applications.

Chapter 9

Ambient References in Action

We validate ambient references by employing them to build two concrete ad hoc net-
working applications: a chat application featuring multiple chat rooms and a collabo-
rative slideshow application, both designed for use by multiple collocated mobile de-
vices. These applications are based on demo applications shipped with the M2MI
library (which was previously introduced in section 3.3.7.4).

After discussing how these applications can be implemented by means of ambient
references, we discuss how ambient references subsume M2MI handles, which can be
seen as state of the art referencing abstractions for MANETs. We do so by means of the
communication patterns (introduced in section 6.1) for which ambient references have
been designed. We implement each communication pattern in Java using M2MI. As
such, we can specify precisely how ambient references improve upon M2MI handles.
M2MI is an apt candidate for a direct comparison with ambient references because:

• M2MI handles, like ambient references, have been designed from the ground
up to be used in a mobile ad hoc networking setting. Comparing ambient ref-
erences with an approach that is also developed for MANETs ensures that the
comparison is biased toward neither system from the start.

• The survey summarised in table 3.2 shows that M2MI is the only approach to
coordination designed specifically for MANETs which is based on the message
passing metaphor. As a result, coordination is expressed similarly to how it is
expressed by means of ambient references. On the other hand, this also implies
our comparison is not suitable to bring to light all of the difficulties of integrating
object-orientation with events discussed in section 3.4, because M2MI partially
addresses some of those issues as well (e.g. representing events as messages).

• Ambient references and M2MI handles are of a comparable scale. Both are
designed as relatively specific language constructs which can be applied to solve
a concrete interaction between objects “in the small”. Other systems, like Jini
or one.world, are less amenable to a direct comparison with ambient references
because they cover a wide range of aspects not covered by ambient references,
such as deployment, persistency and security issues.

In each of the following sections, we first describe the example ad hoc networking
application and then its implementation in AmbientTalk via ambient references. We
conclude each section by highlighting the beneficial properties of ambient references
on the structure of the distributed application.

217

218 CHAPTER 9. AMBIENT REFERENCES IN ACTION

9.1 Collaborative Chat
Consider a collaborative chat application running on mobile devices such as laptops,
PDAs or cellular phones1. The goal of such applications is to allow people in one an-
other’s vicinity to chat with each another. As noted by Kaminsky and Bischof [KB02],
this could be useful when discreet communication is required (e.g. in a library, in a
conference during a presentation,. . .) or to communicate in very noisy places (e.g. in
an engine room). The chat application under consideration has two use cases:

• Users should be able to create and join different chat rooms. Conversations
should be private to a chat room, i.e. they should not be visible to users in
other chat rooms.

• Users must be able to discover all proximate chat rooms without any preliminary
configuration. Note that we do not consider any security issues; we consider all
chat rooms to be “public”.

9.1.1 Implementation via ambient references
We assume that each chat room is uniquely identified by means of a name (a string). We
refer to the chat room in which a user is logged in at a given point in time as the user’s
active chat room. The implementation of the chat application is structured around two
main communication patterns, each expressed by means of ambient references:

• An ambient reference designating all proximate chat applications is used to ad-
vertise the name of the active chat room. Peers who receive this advertisement
message add the chat room name to their list of available chat rooms. By us-
ing the @Sustain delivery policy, the advertisement message is automatically
broadcast by the ambient reference, without the programmer having to explicitly
schedule broadcasts repeatedly.

• To communicate with all members of the active chat room, an ambient reference
is used which designates all proximate chat applications whose active chat room
name matches that of the sender. Broadcasting a message to nearby members of
the active chat room is implemented by sending a one-to-many ambient message
to this ambient reference.

ChatRef

newChatRoom(name)
setChatRoom(name)
reportChatRoom(roomName)
putMessage(room, text)

myChatRoomList
Chat

sendMessage(text)
name

myRoomName
ChatRoom

allChatsroomMembers
<<ambientref>> <<ambientref>>

<<exported as>>

myChatRoom

Figure 9.1: Structure of the collaborative chat application in AmbientTalk.

Figure 9.1 depicts the structure of the application. Note the following conventions:
1This application is based on the demo application in theedu.rit.chat2package distributed with build

20060329 of the M2MI library available at http://www.cs.rit.edu/˜anhinga/m2mi.shtml.

http://www.cs.rit.edu/~anhinga/m2mi.shtml

9.1. COLLABORATIVE CHAT 219

• We assume classes in the UML class diagram to represent prototype objects in
AmbientTalk.

• We represent type tags as abstract classes with no methods. An “exported as”
stereotype indicates that an object is exported as a certain type tag.

• Associations between objects implemented by means of ambient references are
attributed with the “ambientref” stereotype.

A ChatRoom object represents a chat room identified by means of a name. Below
is the implementation for this abstraction in AmbientTalk:

deftype ChatRef;
def makeChatRoom(myRoomName) {
def roomMembers :=
ambient: ChatRef
where: (script: { |chat| chat.chatRoom == myRoomName }

carrying: ‘[myRoomName]);
object: {
def name := myRoomName;
def sendMessage(line) {
roomMembers<-putMessage(myRoomName,line)@[All,Instant,Oneway];

};
}

};

The ambient reference roomMembers designates all proximate ChatRef objects
whosechatRoom attribute equals its own room name. We assume the intensional imple-
mentation of ambient references where the filter predicate is passed by copy to exported
remote objects to check whether their chatroom matches the user’s current chatroom.
Therefore, the argument to where:must be a pass-by-copy closure2. The sendMessage
method is invoked by the Chat object (which is explained below). The method is re-
sponsible for sending a text message to proximate members of the chat room. It does
so by sending putMessage as a one-way, one-to-many ambient message with an instant
discovery lifetime to the encapsulated ambient reference.

The Chat object in the diagram above is responsible for advertising the user’s active
chat room to nearby peers. Its implementation is shown below:

def Chat := object: {
def username;
def myChatRoom;
def myChatRoomList;
def reportHandle := object: { def cancel() { } };
def allChats := ambient: ChatRef;
...
def setChatRoom(roomName) {
reportHandle.cancel(); // cancel previous advertisement message
myChatRoom := makeChatRoom(roomName);
reportHandle :=

2The library functionscript: body carrying: variablesreturns an isolate object representing a clo-
sure. It implements anapplymethod whose method body corresponds tobody. Thevariablesparameter
denotes the names of variables which are lexically free inbody that must be copied along with the closure.
These variables become fields of the isolate object representing the closure. A pass-by-copy closure can be
thought of as a script that may be executed remotely.

220 CHAPTER 9. AMBIENT REFERENCES IN ACTION

allChats<-reportChatRoom(roomName)@[All,Sustain,Oneway];
};
def sendText(line) {
myChatRoom.sendMessage(username + "> " + line);

};
...

}

The Chat object encapsulates an ambient reference allChats designating all prox-
imate objects exported as a ChatRef. Its myChatRoom variable refers to the ChatRoom
object in which the user is currently logged in (i.e. the active chat room). The
setChatRoom method is triggered by the GUI each time the user selects a different
chat room; the sendTextmethod is triggered by the GUI each time the user has entered
a text message3. Advertising the presence of the chat room is done by sending a one-
way, one-to-many ambient message with a sustained discovery lifetime to all proximate
ChatRef objects. Because message delivery is sustained, there is no need for the client
object to repetitively broadcast it to nearby objects; the ambient reference does this on
behalf of the client. However, because a sustained message send has no upper bound
on its lifetime, its delivery should be explicitly cancelled at some point in time. There-
fore, its associated delivery handle is stored in the variable reportHandle. Whenever
the user switches chat rooms, the delivery of the old chat room’s reportChatRoom
advertisement message is explicitly cancelled.

The Chat object also stores a list of the names of all nearby ChatRooms, including
the ones created by itself. It also exports a nested object as a ChatRef such that its
methods may be triggered by ambient messages:

def Chat := object: {
...
export: (object: {
def reportChatRoom(roomName) {
myChatRoomList.containsKey(roomName).ifFalse: {
myChatRoomList.add(roomName);
// update the GUI

}
};
def putMessage(senderRoom, line) {
if: (senderRoom == myChatRoom.name) then: {
/* display line in GUI */

}
};

}) as: ChatRef with: {
def chatRoom() { myChatRoom.name }

}
}

The reportChatRoom method allows the chat application to react to the advertise-
ment of nearby chat rooms. The implementation simply adds the broadcasted chat
room name to its list of chat rooms if it did not do so before. Hence, the list of chat
rooms can be conveniently used to filter out duplicate advertisements for the same chat
room. The putMessage method, triggered whenever an ambient message is received

3The AmbientTalk implementation of the chat application reuses the GUI code of the original M2MI
implementation in Java via linguistic symbiosis (cf. section 5.3).

9.1. COLLABORATIVE CHAT 221

from a proximate chat room’s roomMembers ambient reference, simply displays the
text in a chat window. Note that the text is only displayed if the sender’s chat room
matches the user’s currently active chat room. This check is necessary to avoid a race
condition not addressed in the original M2MI implementation, which could cause a
user to receive a message sent by a member of its previous chat room, just after the
user has switched chat rooms.

Note that the above object is exported together with a chatRoom attribute. This
attribute is queried by the roomMembers ambient reference encapsulated by each chat
room. Note that the attribute is actually implemented as a method rather than as a
field. This is important, because it ensures that each time the filter of roomMembers
is evaluated, chat.chatRoom transparently retrieves the user’s current chat room. If it
were implemented as a field, chat.chatRoom would once and for all refer to the chat
room joined by the user at the time the object was exported.

9.1.2 Evaluation

The above implementation of the chat application in AmbientTalk boasts the following
strengths:

• As noted several times in chapter 6, ambient references naturally cater to roam-
ing. That is, the set of objects designated by e.g. the roomMembers ambient
reference changes over time, without the programmer having to manage these
changes explicitly. Furthermore, because the roomMembers ambient reference
only designates objects whose chat room name matches the user’s active chat
room, service objects whose chat room attribute changes are dynamically ex-
cluded from or included into the scope of the ambient reference. Nevertheless,
while the roomMembers ambient reference can guarantee to the sender that the
receiver of the putMessage belonged to its reach at the time that message was
sent, it does not guarantee that the receiver still belongs to its reach when the
message is eventually delivered, since the receiver’s attributes may have changed
meanwhile. That is why, in the putMessage implementation, an additional test
is necessary to ensure that the message does not arrive in the wrong chat room.

If one were to implement a referencing mechanism akin to roomMembers in
M2MI, the functionality of the filter predicate of ambient references would have
to be implemented on top of more low-level designation mechanisms. In M2MI,
the “scope” of a handle is either specified by means of an interface type (via om-
nihandles) or otherwise by means of specific object identifiers (by “attaching”
or “detaching” objects to/from a unihandle or multihandle). To represent filter
predicates, one must explicitly discover nearby objects via an omnihandle, test
whether the discovered object matches the predicate and then attach the object to
a multihandle. The multihandle then encodes an ambient reference whose scope
is demarcated by a filter predicate.

• By using a sustained ambient message send to advertise the availability of a chat
room, the Chat object does not have to manually reschedule the advertised mes-
sage. Whenever the content to be advertised changes (e.g. whenever the user se-
lects a new active chat room), a new ambient message is sent and the old ambient
message’s delivery is cancelled. If one were to implement such repeated adver-
tising using M2MI directly, the time-decoupling afforded by sustained message

222 CHAPTER 9. AMBIENT REFERENCES IN ACTION

delivery must be implemented by hand. A timer thread must be used to repeti-
tively broadcast an advertisement message via an omnihandle. Furthermore, this
introduces concurrency issues because of the introduction of a separate timer
thread to wake up the application.

• The above application does not decouple chat participants in time: a message
is only propagated to peers which are proximate at the time the message is sent.
However, because time decoupling can be explicitly controlled using the lifetime
of an ambient message, time decoupling can be easily introduced. It suffices to
simply prolong the lifetime of the putMessage message:

def sendMessage(line) {
roomMembers<-putMessage(myRoomName,line)@[All,Transient(t),Oneway];

};

By making the message delivery transient instead of instant, the chat message
can be delivered to peers which enter communication range at a later point in
time4. If communication between peers would be via M2MI handles, which do
not cater to time decoupling, the code would have to be significantly refactored:
one would need to add a timer thread and arrange for the putMessagemessage to
be repeatedly broadcast. The introduction of a new thread also has repercussions
on the application’s concurrency control. This brings us to the final strength of
the above AmbientTalk implementation.

• The chat application is concurrently manipulated by multiple entities: messages
may arrive from the network and events may arrive from the GUI at any point in
time. Thanks to the event loop architecture, objects never have to explicitly take
any precautions with respect to concurrency control. In a corresponding Java
implementation using M2MI, careful use of synchronized blocks is required to
avoid race conditions between the application thread, the GUI event notification
thread and any M2MI thread delivering messages arriving from the network.

9.2 Collaborative Slideshow
The second M2MI demo application under scrutiny is a collaborative slideshow appli-
cation5. The goal of this application is to allow different devices representing physical
screens and projectors to collaborate to display a slideshow. For example, a professor
could use this application to broadcast a slideshow of his course both to a physical
projector and to the laptops of nearby students. Moreover, multiple slideshows may be
broadcast simultaneously and their slides can be displayed next to one another (or even
overlaid) on the different screens. The three key entities in this system are:

Projectors which provide slideshows for display. Projectors correspond to devices
(e.g. laptops, PDAs) running some slideshow presentation software.

Screens which display available slideshows on a physical screen.

4The programmer must be wary that prolonged ambient messages are not guaranteed to be delivered in
sending order (cf. section 6.5), so theputMessagemethod’s argument list is best extended with a sequence
number identifying the ordering of the text messages.

5Our exposition is based on the code in theedu.rit.slides package distributed with build 20060329
of the M2MI library available at http://www.cs.rit.edu/˜anhinga/m2mi.shtml.

http://www.cs.rit.edu/~anhinga/m2mi.shtml

9.2. COLLABORATIVE SLIDESHOW 223

Theatres which group different projectors and screens for the purposes of a collabo-
rative slideshow. Theatres are identified by a user-defined name and are simply
a means to scope the interaction between different projectors and screens such
that they do not interfere with other ongoing collaborative slideshows.

In spite of what the above terminology might suggest, note that a physical projector
should be considered to be a screen, not a projector: a physical projector’s job is to dis-
play slides on a physical screen (which has no digital representation), not to broadcast
them to a virtual screen.

A slideshow consists of a number of slides. When a projector advertises a slideshow,
screens in the theatre incrementally prefetch and cache its slides. This way, when a pro-
jector later instructs all screens to display a certain slide, chances are high the slides are
already downloaded at the screen’s device, avoiding network latency when displaying
a new slide.

9.2.1 Implementation via Ambient References
Figure 9.2 shows the structure of the key objects in the AmbientTalk implementation.

theatre
Screen

getSlideRefs()
getSlideRef(idx)

SlideShow

setSlideShow(sshow)
displayFirst()
displayLast()
displayNext()
displayPrevious()

myTheatreName
Projector

<<exported as>>

availableSlides(slideRefs)
displaySlide(slideRef)

myTheatreName
cache

Screen

<<ambientref>>

mySlideShow

download()
slide
SlideRef

0..*

Figure 9.2: Structure of the collaborative slideshow application.

The code involves two distributed protocols. The first protocol is a service dis-
covery protocol for theatre names. Both Screen and Projector objects advertise the
existence of their active theatre (that is, the theatre to which they currently belong). Us-
ing AmbientTalk’s built-in service discovery event handlers, the application can keep
track of available theatre names. To join a theatre, the application can instantiate either
a projector or a screen parameterised with the name of the joined theatre (see below).

S

S

S
P

S

S

S
P

S

S

S
P

S

S

S
P

availableSlides(slideRefs) slideRef<-download() Slide displaySlide(slideRef)

1. 2. 3. 4.

Figure 9.3: Protocol to transmit a slideshow from a projector to a group of screens.

The second protocol allows Projectors to send their slides to the active theatre
incrementally. This protocol is depicted in figure 9.3 and will be explained throughout

224 CHAPTER 9. AMBIENT REFERENCES IN ACTION

the following paragraphs. In the figure, one projector transmits a slide show to three
nearby screens in its theatre. A theatre is essentially a collection of Screen objects
and is thus implemented by means of an ambient reference designating objects of type
Screen whose theatre name matches the active theatre name (cf. the implementation
of chat rooms in the previous section):

deftype Screen;
def makeProjector(myTheatreName) {
// theatre designates all nearby Screen objects belonging to my theatre
def theatre :=
ambient: Screen
where: (script: {|screen| screen.theatreName == myTheatreName}

carrying: ‘[myTheatreName]);
def mySlideShow;
// delivery handle for theatre advertisement message
def advHandle := object: { def cancel() { } };
object: {
// invoked by the GUI
def setSlideShow(sshow) {
mySlideShow := sshow;
advHandle.cancel(); // stop advertising previous show, if any
advHandle :=
theatre<-availableSlides(sshow.getSlideRefs())@[All,Sustain,Oneway];
...

};
}

};

A Projector advertises that it has slides available for download by sending a sus-
tained availableSlides message to its theatre. This advertisement message does not
contain the slides themselves, as these are potentially large objects and broadcasting
them repeatedly would congest the network. Instead, the advertisement message con-
tains a table of far references to the slide objects.

When a Screen object receives the advertisement message, it prefetches any avail-
able slides which are missing from its cache. Slides are prefetched such that they are
cached locally in the Screen before they actually need to be displayed (avoiding large
network latencies when the presenter changes slides). To actually download a specific
slide object, the screen sends a download message to the far reference to the slide ob-
ject. The actual slide object is then passed by copy as the return value of this message
(and is retrieved by the Screen via a future):

def makeScreen(myTheatreName) {
def cache := HashMap.new();
...
export: (object: {
def availableSlides(slideRefs) {
def fetchNextSlide(idx) {
if: (idx <= slideRefs.length) then: {
if: !cache.containsKey(slideRefs[idx]) then: {
when: slideRefs[idx]<-download() becomes: { |slide|
cache.put(slideRefs[idx], slide);
when: seconds(1) elapsed: {
fetchNextSlide(idx+1);

}

9.2. COLLABORATIVE SLIDESHOW 225

} catch: Exception using: { |e|
// abort the download, clear all slides
cache.removeAll(slideRefs);

}
} else: { // already got slide idx, fetch the next one
fetchNextSlide(idx+1);

}
}

};
fetchNextSlide(1); // start downloading the slideshow

};
...

}) as: Screen with: {
def theatreName() { myTheatreName };

}
};

The fetchNextSlide function incrementally downloads slides from the projector
to the screen (the recursive implementation is reminiscent of the library transmission
protocol discussed in section 4.6.3). By means of far references and futures, the re-
quest/response prefetching protocol can be succinctly expressed, without the need for
explicit callbacks or explicit session state to identify the slides.

The above prefetching process does not cause the screens to actually display the
slides. In order to display a slide, the projector sends a displaySlide message to
its theatre, again passing the identity of the slide to display. This message is sent
using a sustained message delivery such that the application does not have to repeatedly
broadcast the message by hand:

def makeProjector(myTheatreName) {
...
def slideIndex := 0;
def displayHandle := object: { def cancel() { } };
def displayNext() {
slideIndex := slideIndex + 1;
displayHandle.cancel(); // cancel previous advertisement
def slideRefToDisplay := mySlideShow.getSlideRef(slideIndex);
displayHandle :=
theatre<-displaySlide(slideRefToDisplay)@[All,Sustain,Oneway];

};
...

};

If the screens have previously prefetched the slide, they can display it immediately;
otherwise, they need to download it first:

def makeScreen(myTheatreName) {
...
def displaySlide(slideRef) {
if: (cache.containsKey(slideRef)) then: {
gui<-display(cache.get(slideRef));

} else: {
when: slideRef<-download() becomes: { |slide|
cache.put(slideRef, slide);
gui<-display(slide);

226 CHAPTER 9. AMBIENT REFERENCES IN ACTION

}
}

}
}

9.2.2 Evaluation
The following aspects of the above implementation are noteworthy:

• The theatre ambient reference encapsulated by a projector object designates
all proximate screens in the active theatre. Screens joining or leaving the theatre
have no impact on the projector: the ambient reference allows the programmer to
make abstraction from these events. Again, in M2MI these events must be dealt
with explicitly. Lacking filter predicates to demarcate the scope of an M2MI
omnihandle, all proximate screen objects must be explicitly discovered, queried
for their theatre attribute and, if their theatre name matches that of the projector,
attached to a multihandle. The multihandle is then used to communicate only
with screens belonging to the same theatre. The programmer must take care that,
when a screen switches theatres, the screen must be explicitly detached from
the multihandle of its previous theatre (otherwise it may still receive slideshows
from the previous theatre).

• We make use of sustained message sends to notify screens in a projector’s the-
atre of slides available for download or which slide should be displayed. Because
message delivery is sustained, this introduces time decoupling between the pro-
jector and the screens. If the information to be broadcast needs to change, we use
the same pattern as used previously in the chat application and explicitly cancel
the delivery of the previous ambient message before broadcasting an updated
one. Using M2MI handles, sustained message sends must be implemented by
explicitly scheduling repeated broadcasts in the code.

• Ambient references can serve as a communication channel by which other even-
tual references are passed to proximate objects. This allows those proximate
objects to engage in a connection-oriented request/response interaction with a
unique object. In the prefetching protocol, this is used to download a specific
slide from the specific projector advertising that slide. While M2MI unihandles
cater to connection-oriented interaction, they do not cater to request/response
interactions: replies must be represented explicitly in the code by means of call-
backs. The callback must also be parameterised with an identifier that correlates
a call with its callback.

• As in the chat application, ambient references benefit from a tight integration
with their event-driven host language, AmbientTalk. In particular, no explicit
locking of objects is required, while a corresponding implementation in Java
using M2MI would have to be carefully made multiple thread-safe.

In each of the above two sections, we have discussed how ambient references can
be used in the construction of two concrete ad hoc networking applications. However,
while we have briefly contrasted ambient references with M2MI, it remains vague how
ambient references exactly improve upon this state of the art MANET abstraction at
the level of concrete source code. In the following section, we will discuss how the

9.3. COMPARING AMBIENT REFERENCES WITH M2MI 227

communication patterns introduced in section 6.1 have to be encoded in terms of M2MI
handles, thus showing precisely the difference in level of abstraction between the two
referencing abstractions.

9.3 Comparing Ambient References with M2MI
In section 6.1 we have introduced three communication patterns which constitute the
motivation for including ambient references in AmbientTalk. In each of the following
subsections, we show how to implement these patterns in Java using M2MI. In doing
so, we illustrate precisely how the abstractions provided by ambient references have to
be reconstructed in state of the art technology in a mainstream language.

9.3.1 Roaming
In section 6.1.1.1 we introduced the location service example. In the example, a mobile
client continuously submits its latest location information to any LocationService.
As the client roams, it may submit this information to different location services. In
section 6.4.5.3 we have shown how ambient references directly cater to expressing such
behaviour:

def accessPoint := ambient: LocationService;
def updateLocation(loc) {
accessPoint<-submitLocation(clientId, loc)@[One,Sustain,Oneway];

};

Here, we discuss how such a communication pattern can be implemented in Java us-
ing M2MI. Point-to-point communication is expressed by means of M2MI unihandles.
However, unihandles do not cater to roaming directly: they are associated with a unique
object and in this respect resemble far references rather than ambient references. There-
fore, the following implementation achieves roaming as follows: first, an omnihandle
is used to ask all nearby location services to reply to the sender with a unihandle to
themselves. When the sender receives a reply, it can deliver the message via the uni-
handle. When the sender does not receive any reply, it retries the whole process (to
mimic the @Sustain message delivery policy of ambient references). The following
class encapsulates the implementation:

class UpdateLocation implements ReplyHandler, TimerTask {
private static final long ANYCAST_TIMEOUT = 2000L; // 2 seconds
private boolean isMessageSent = false;
private final ID clientId;
private final Location loc;
private final ReplyHandler replyHandler =
(ReplyHandler) M2MI.getUnihandle(this, ReplyHandler.class);

private final Timer myTimer =
TimerThread.getDefault().createTimer(this);

public UpdateLocation(ID clientId, Location loc) {
this.clientId = clientId;
this.loc = loc;

}
public void sendTo(LocationService omnihandle) {
performAnycast(omnihandle, myTimer);

228 CHAPTER 9. AMBIENT REFERENCES IN ACTION

}
... // continued below

}

By invoking new UpdateLocation(id, loc).sendTo(locationServices), the
client can submit its location to any nearby service (provided locationServices de-
notes an omnihandle to all objects of type LocationService). This starts the anycast
protocol which is implemented by the following methods:

private void performAnycast(LocationService omnihandle, Timer repeater) {
omnihandle.anycast(replyHandler);
repeater.start(ANYCAST_TIMEOUT);

}
public synchronized void reply(LocationService s) {
if (!isMessageSent) {
isMessageSent = true;
s.submitLocation(clientId, loc);

}
}
public void action(Timer theTimer) {
if (theTimer.isTriggered()) {
synchronized(this) {
if (!isMessageSent) {
performAnycast(theTimer); // repeat

}
}

}
}

First, the performAnycast method broadcasts the anycast message to all prox-
imate LocationServices. Since M2MI handles cannot directly express return val-
ues, the sending object must implement a callback method to process the reply. In
the above example, the callback method is named reply. It is meant to be invoked
with a unihandle to a location service. The boolean isMessageSent ensures that the
submitLocation message is sent to at most one location service (this corresponds to
the @One annotation of the above ambient message).

To deal with the case that no replies to the anycast message are received, the
performAnycast method schedules the action method to be invoked by a separate
repeater timer thread when a certain timeout period has elapsed. The actionmethod
checks whether a reply was received and if not, repeats the anycast protocol. The
conditional test on isTriggered() is necessary to avoid a race condition that can occur
when another thread concurrently cancels the timed action6. The synchronized block
is necessary because access to the boolean isMessageSent must be made multiple-
thread safe: the actionmethod is executed by the timer thread while the replymethod
may be concurrently invoked by an M2MI thread.

The following code snippet sketches the implementation of the location service:

class LocationServiceImpl implements LocationService {
public void anycast(ReplyHandler r) {
r.reply((LocationService)M2MI.getUnihandle(this,LocationService.class));

6More information regarding this race condition can be found in the developer documentation of
M2MI at http://www.cs.rit.edu/˜anhinga/m2miapi20040302/doc/edu/rit/util/
TimerTask.html

http://www.cs.rit.edu/~anhinga/m2miapi20040302/doc/edu/rit/util/TimerTask.html
http://www.cs.rit.edu/~anhinga/m2miapi20040302/doc/edu/rit/util/TimerTask.html

9.3. COMPARING AMBIENT REFERENCES WITH M2MI 229

}
public void submitLocation(ID clientId, Location loc) { ... }

}

The service responds to the anycast message by invoking the callback with a unihan-
dle to itself.

The astute reader will have noticed that the above implementation of roaming using
M2MI handles almost directly corresponds to the anycast protocol used to implement
point-to-point ambient message delivery (cf. section 8.4.3). This is not surprising
and shows that the implementation of a language construct closely corresponds to the
pattern of code which the construct is trying to hide.

To summarise, the above implementation in Java hints at the fact that ambient ref-
erences can effectively abstract from the following patterns. First, point-to-point mes-
sages have to be encoded in terms of an anycast protocol via omnihandles, because
unihandles do not directly cater to roaming. Second, request/response interaction must
be implemented in terms of calls and callbacks. Third, prolonged message sends must
be implemented explicitly by means of a timer thread.

9.3.2 One-to-many Communication
In section 6.1.2.1, we introduced the example of launching a vote in an ad hoc network
to nearby team players in a mobile multiplayer game. We first implemented the exam-
ple in AmbientTalk and later, in section 6.4.6.2, we have shown how ambient references
can succinctly express the broadcasting and gathering of the votes as follows:

def nearbyTeamPlayers := ambient: Player where: { |p| p.team == myTeam };
def broadcastVote(poll, maxVoteTime) {
def [future,resolver] := makeFuture();
def handle :=
nearbyTeamPlayers<-askToVote(poll)@[All,Expires(maxVoteTime)];

whenAll: handle.future resolved: { |receivedVotes|
resolver.resolve(receivedVotes);

} ruined: { |exceptions|
// ignore the votes of faulty players

};
future

};

The implementation in Java using M2MI is structured as follows: when the vote is
initiated, a report message is broadcast at a fixed rate to all nearby players until the
vote time elapses. Team members reply to this message and are subsequently asked to
vote. Replies are gathered explicitly in a HashMap until the vote time elapses.

class BroadcastVote implements VoteReplyHandler, TimerTask {
private static final long BROADCAST_RATE = 2000L; // 2 seconds
private final String myTeam;
private final String poll;
private final long deadline;
private final VoteReplyHandler replyHandler =
(VoteReplyHandler) M2MI.getUnihandle(this, VoteReplyHandler.class);

private final Player nearbyPlayers =
(Player) M2MI.getOmnihandle(Player.class);

private final HashMap receivedVotes = new HashMap();

230 CHAPTER 9. AMBIENT REFERENCES IN ACTION

public BroadcastVote(String myTeam, String poll, long maxVoteTime) {
this.myTeam = myTeam;
this.poll = poll;
this.deadline = System.currentTimeMillis() + maxVoteTime;
performDiscovery(TimerThread.getDefault().createTimer(this));

}
public boolean stillValid() {
return System.currentTimeMillis() <= deadline;

}
... // continued below

}

When a BroadcastVote instance is created, the discovery process is started by in-
voking performDiscovery. This method broadcasts a discovery message (report) via
the nearbyPlayers omnihandle. Since this omnihandle refers to all players (not only
players of team myTeam), the discovery message contains myTeam as an argument and
expects only team members to reply to the discovery request. Below are the methods
implementing the calls and callbacks to communicate with remote players:

private void performDiscovery(Timer repeater) {
nearbyPlayers.report(myTeam, replyHandler);
repeater.start(BROADCAST_RATE);

}
public synchronized void playerDiscovered(Player p) {
if (!receivedVotes.containsKey(p) && stillValid()) {
receivedVotes.put(p, null); // ensures p can vote only once
p.askToVote(poll, replyHandler);

}
}
public synchronized void replyToVote(Player p, String answer) {
if (stillValid()) { receivedVotes.put(p, answer); }

}
public void action(Timer theTimer) {
if (theTimer.isTriggered()) {
if (stillValid()) {
performDiscovery(theTimer);

} else {
// vote expired, process receivedVotes

}
}

}

Upon receiving a reportmessage, remote team players return a unihandle to them-
selves (via the replyHandler unihandle). This in turn triggers the playerDiscovered
callback which checks whether the player has been discovered before. If this is not
the case and the vote has not expired yet, the player is asked to vote (by sending a
askToVote message to its unihandle). By adding the player to the receivedVotes

map, the sender ensures that askToVote cannot be sent more than once to the same
player. Again, the replyHandler is passed in the askToVote message such that the
remote team player can reply his or her answer. Replying is done via the replyToVote
callback. The vote is only taken into consideration if the vote deadline has not yet
passed. Finally, recall that the action method serves as the callback for a separate

9.3. COMPARING AMBIENT REFERENCES WITH M2MI 231

timer thread which repeatedly invokes the performDiscovery method until the vote
deadline has passed.

The code for the Player service is given below. The Player only replies to report
messages if its team matches the team of the sender. Replies are always explicitly

performed by means of a unihandle to a VoteReplyHandler.

class PlayerImpl implements Player {
private final String myTeam;
private Player myHandle = (Player)M2MI.getUnihandle(this,Player.class);
public PlayerImpl(String team) { myTeam = team; }
public void report(String team, VoteReplyHandler r) {
if (myTeam.equals(team)) {
r.playerDiscovered(myHandle);

}
}
public void askToVote(String poll, VoteReplyHandler r) {
String answer = processPoll(poll);
r.replyToVote(myHandle, answer);

}
}

Comparing the above implementation to that using ambient references, we can note
the following differences. First, service discovery must be performed explicitly by re-
peatedly broadcasting discovery requests. Issues such as filtering out non-team players
and previously discovered team players must be dealt with explicitly. Second, replies
must again be encoded explicitly via callbacks whereas multifutures serve this pur-
pose when employing ambient references. Third, the whenAll:resolved:ruined:
synchronisation provided by multifutures in combination with the @Expires policy
must be explicitly encoded in terms of a timer thread. Fourth, the above code must
be carefully made thread-safe since playerDiscovered and replyToVote may be in-
voked concurrently (by multiple M2MI invocation threads) and both manipulate the
receivedVotes map.

9.3.3 Provisional Services
In section 6.1.3 we introduced the concept of a provisional service: an ad interim rep-
resentation of a service that is not yet available. In the RFID shopping cart example,
such a provisional service is used to both render a GUI and retrieve product prices from
a ProductDatabase server in parallel, even if no such server is available yet. In sec-
tion 6.4.4.2, we have shown how ambient references can play the role of a provisional
service, as follows:

def db := ambient: ProductDatabase;
def renderGUI(server) {
productsInCart.each: { |product|
gui.addRow(product.id, product.name, "??");
def handle := server<-getPrice(product.id)@[One,Sustain,Reply];
when: handle.future becomes: { |price|
gui.updateRow(product.id, product.name, price);

}
};

};
renderGUI(db);

232 CHAPTER 9. AMBIENT REFERENCES IN ACTION

If we were to implement this example in Java using M2MI, the implementation
would be very similar to that of the roaming example displayed at length in sec-
tion 9.3.1: the sustained message send (cf. @Sustain) would be represented by repeat-
edly broadcasting a discovery request via an omnihandle. Exported ProductDatabase
s would reply to this message with a unihandle to themselves. This allows the sender
to send the getPricemessage to one such service (since the message is point-to-point,
cf. @One). The only addition to the code in the roaming example is that the getPrice
message send must additionally return the product price as a result (it is a two-way
message, cf. @Reply). As we have seen in the previous section, such a return value can
be implemented by means of an additional callback.

In short, M2MI handles cannot directly represent provisional services because they
do not cater to time decoupling: if a message is sent to an M2MI handle when no
matching exported objects are proximate, the message is lost. The time decoupling
property must be implemented in terms of repeated message sends. The code examples
given in the previous two sections clearly show how this can be accomplished.

9.4 Conclusion
We have shown ambient references in action by employing them to construct two small
but representative, concrete applications for mobile ad hoc networks. Subsequently, we
have compared M2MI handles with ambient references in terms of the generic com-
munication patterns for which ambient references have been designed. This compar-
ison confirms our statement that ambient references and M2MI handles are designed
for providing different levels of abstraction. Whereas M2MI handles are extremely
lightweight and flexible, they require the programmer to encode more high-level pat-
terns by hand. We summarise the most noteworthy differences below:

• A recurring pattern in M2MI is the implementation of service discovery. Often,
services are discovered by broadcasting discovery requests via an omnihandle.
Subsequent communication occurs only via uni or multihandles which denote
only a subset of the proximate objects. Ambient references can denote this sub-
set expressively by means of its support for filter predicates. Filter predicates
directly delimit the scope of the ambient reference.

• M2MI handles do not cater to request/reply interactions. Return values or ex-
ceptions must be explicitly encoded in terms of callbacks. While this approach
works, it obscures the overall control flow of the application. It also proves
our point that straightforwardly combining an object-oriented application with
events requires the application to abandon bidirectional communication (cf. sec-
tion 3.4.3). Ambient references use the machinery of non-blocking futures to
maintain bidirectional communication and to counteract the partitioning of code
in fragmented callbacks.

• M2MI handles do not support time decoupling directly. Time decoupling is al-
ways represented by means of separate timer threads which periodically call back
on the application to trigger repeated message sends. The discovery lifetime of
ambient messages has been designed to avoid such patterns in the application
code itself.

• All M2MI applications are multithreaded. There is always at least one applica-
tion thread and at least one other M2MI invocation thread (which delivers mes-

9.4. CONCLUSION 233

sages arriving from the network). Often, additional concurrency is spawned by
the user interface (e.g. the AWT or Swing event loop thread) and one or more
timer threads (cf. theaction callback in the above examples). As a result, M2MI
applications must always be carefully kept thread-safe. While it is tempting to
“merely” add the synchronized modifier to all methods, this solution comes at
the cost of an increased risk of deadlock. The communicating event loops model
employed by AmbientTalk enforces this synchronisation pattern (actors process
messages sequentially) and abolishes deadlocks by enforcing all communication
among concurrent entities to be asynchronous.

The above comparison between ambient references and M2MI – a state of the art
referencing abstraction for MANETs in a mainstream language – forms the final con-
tribution of this dissertation. The following chapter summarises all previously made
contributions and concludes the text with a discussion on limitations, influenced work
and future work.

234 CHAPTER 9. AMBIENT REFERENCES IN ACTION

Chapter 10

Conclusion

In this concluding chapter, we revisit our research goals as stated in the introduction
with hindsight and highlight the contributions of this dissertation once more. We dis-
cuss the rough edges to our proposal and outline those aspects of ambient references
which may lead to interesting avenues of future research. We also point out other re-
search which has been – to some extent – influenced by the work described in this
dissertation.

10.1 Research Goals

In section 1.3, we explicitly stated our intended research goals. We briefly recapitulate
these goals and address to what extent they have been achieved.

• It was our goal to be able to discriminate which coordination abstractions are
appropriate for use in MANETs and which are not. In chapter 3, we put forth
six criteria for which we extensively motivated why they are critical for coordi-
nation in MANETs. Our survey of related work further highlighted that classic
object-oriented abstractions fail to adhere to the postulated criteria. Event-driven
abstractions, on the other hand, appeared to be more suitable. Therefore,

• It was our goal to uncover why the object-oriented message passing metaphor
for distributed communication was unsuitable for coordination in a MANET.
Contrasting them with the more suitable event-driven coordination abstractions
brought to light a number of fundamental differences. These differences compli-
cate the composition of object-oriented with event-driven systems and have lead
us to define the object-event impedance mismatch. Based on this,

• It was our goal to resolve the mismatch by developing a coordination abstraction
that is both object-oriented and event-driven. As such, we wanted to prove by
construction that it is possible to make distributed object technology scalable in
mobile ad hoc networks.

We have achieved our proof by construction by developing a novel language con-
struct in a novel programming language. Together, they form the chief contributions of
this dissertation:

235

236 CHAPTER 10. CONCLUSION

AmbientTalk/2 is a novel ambient-oriented programming language. Its important
property with respect to our research goals is that the language combines ob-
jects with a pure event-driven (as opposed to multithreaded) concurrent execu-
tion model for the specific purposes of expressing coordination in MANETs.
Furthermore, the language provides built-in support for publish/subscribe-based
service discovery and is equipped with an extensive metalevel architecture. Am-
bientTalk/2 is in itself already suitable for expressing complex communication
patterns in a MANET, as the musical match maker case study from section 4.6
indicates. However, primarily its lack of any direct space-decoupled communi-
cation abstractions have lead us to design and implement ambient references.

Ambient References are space-decoupled object references designating a volatile set
of proximate service objects. Their expressive power lies in their unification
of object-orientation with event-driven concepts. Their most distinguishing fea-
ture is that, unlike traditional object-oriented abstractions, they designate objects
based on an intensional description. It is this property which decouples their
clients and the service objects they designate in space. This space-decoupling,
in turn, enables the direct expression of communication patterns – such as roam-
ing, one-to-many communication and provisional services – which are otherwise
absent from the AmbientTalk/2 programmer’s toolbox.

While ambient references introduce space-decoupling, they do not cater to state-
ful communication. To this end, we have introduced anonymous far references,
snapshots and multireferences. The merit of these abstractions is that they com-
bine space decoupling with statefulness. Together with ambient references and
far references, they form an extensive set of object designation abstractions from
which a programmer can choose the most appropriate for the task at hand.

In chapter 7, we have shown how AmbientTalk/2, when extended with the different
object designation abstractions introduced in chapter 6, forms a suitable platform for
expressing collaboration between objects which are distributed across a MANET. We
did so by discussing how the abstractions offered by this platform adhere to each of the
six criteria put forward in chapter 3.

10.2 Restating the Contributions
For each chapter, we summarise what that chapter contributes to this dissertation’s
research goals:

• In chapter 2, we recapitulated the motivation behind ambient-oriented program-
ming. In particular, we discussed how mobile ad hoc networks are characterised
by the fact that connections between devices are volatile and that infrastructure
to support communication is scarce. We also highlighted the limitations of Am-
bientTalk/1, the first ambient-oriented programming language.

• In chapter 3, we described six criteria that characterise coordination abstractions
which are suitable for use in mobile ad hoc networks. Decentralised discovery
and space-decoupled communication are key for coordination without infrastruc-
ture. Time- and synchronisation decoupling and connection-independent failure
handling allow processes to communicate in the face of volatile connections. Fi-
nally, arity decoupling enables processes to engage in many-to-many interactions
with an unknown number of proximate peers.

10.2. RESTATING THE CONTRIBUTIONS 237

• In the same chapter, we used the criteria to extensively survey related work.
Our summary in table 3.2 indicates that contemporary object-oriented message
passing abstractions do not scale in MANETs, while event-based abstractions
do.

• The above observation forces object-oriented programs to adapt to event-based
communication abstractions. This adaptation is hindered by fundamental dif-
ferences between the two paradigms, a phenomenon which we have titled the
object-event impedance mismatch.

• In chapter 4, we introduced AmbientTalk/2 as the successor to AmbientTalk/1.
While AmbientTalk/2 uses the same building blocks as its predecessor, the limi-
tations discussed in chapter 2 have lead AmbientTalk/2 to employ a different ob-
ject model, based on the communicating event loops of the E language [MTS05].
As a result, the language allows objects and events to be gracefully combined for
the purposes of communication in MANETs.

• In chapter 5 we introduced metalevel engineering techniques in AmbientTalk.
We primarily focussed on AmbientTalk’s support for first-class messages, its
reconciliation of mirror-based reflection with intercession through mirages and
applying mirages to represent custom object references. We discussed how Am-
bientTalk provides interoperability with the Java Virtual Machine through lin-
guistic symbiosis based on inter-language reflection. Importantly, the linguistic
symbiosis enforces a safe composition of AmbientTalk’s event loop actors with
the JVM’s threads.

• Chapter 6 introduced ambient references, which constitute our attempt at uni-
fying the event-driven properties of publish/subscribe systems with the message
passing abstraction of object-orientation. We described ambient references from
a designer’s point of view, discussing in detail the different message delivery
policies and the communication patterns which they support.

• In chapter 7, we described how AmbientTalk, when extended with support for
ambient references, satisfies the six criteria for coordination in MANETs. Fur-
thermore, this coordination is done in an event-driven yet object-oriented way.
The effects of the object-event impedance mismatch are avoided because am-
bient references unify objects with events by representing the event broker of
publish/subscribe systems as an object reference. Chapter 7 concluded with a
discussion on how related work can be recast in terms of ambient references.

• Chapter 8 extensively elaborated on the implementation details of ambient ref-
erences. We discussed how the representation of an ambient reference’s reach
leads to two different implementation strategies. What both strategies have in
common, however, is their use of traits to express the different message delivery
policies in a modular way. Finally, we discussed the finer points of representing
ambient references as first-class object references (by means of reflection) and
how the implementation can safely reuse the many to many invocations (M2MI)
library [KB02] by means of the linguistic symbiosis explained in chapter 5.

• In chapter 9, we implemented two concrete ad hoc networking applications by
means of ambient references. Subsequently, we contrasted ambient references
with M2MI, a state of the art referencing abstraction for MANETs in Java. By

238 CHAPTER 10. CONCLUSION

re-implementing the motivating examples for ambient references introduced in
chapter 6 via M2MI, we have demonstrated precisely where ambient references
gain in expressiveness.

10.3 Limitations of our Approach
We already highlighted specific technical shortcomings of ambient references in sec-
tion 7.4. Important as they may be, we will not repeat them here, but rather focus on
the limitations of the concept of ambient references as a whole.

10.3.1 Language Integration versus Language Separation
Our language-oriented approach seeks to unify objects and events by means of dedi-
cated programming language constructs. As a result, our solution requires a homo-
geneous software platform: all distributed services are assumed to be implemented as
AmbientTalk objects. This is in contrast with coordination abstractions like that of the
original Linda language which strive for a clean separation between application and
coordination aspects [GC92].

Separating programming from coordination language has benefits which are lack-
ing in an integrative approach. A separate coordination abstraction can be used in
conjunction with any programming language; it is not a language construct tailored to
fit the design of a single language. This makes such a coordination abstraction suitable
for use in a heterogeneous network where it cannot be assumed that all software is writ-
ten in the same or a similar platform. This may well prove to be an important asset in
a ubiquitous computing context. On the other hand, as we have extensively discussed
in section 3.4, separating the programming language from the coordination abstraction
leads to an impedance mismatch: their integration will not be without problems as both
systems were designed in separation, with different goals and different driving forces
shaping the design.

10.3.2 Custom Message Delivery Policies
As they are presented in this work, ambient references provide a fixed set of message
delivery policies for the programmer. While the programmer has some degree of free-
dom in selecting between a number of predefined design dimensions (i.e. an ambient
message’s arity, communication and discovery lifetime), ambient references do not al-
low the programmer to compose his or her own delivery policies.

Because our framework of message delivery policies is fixed, it may be that ambi-
ent references will not be directly usable for some application scenarios because they
abstract from too much interaction details. Comparing them with a more low-level ab-
straction like the M2MI handles (cf. section 9.3), it is clear that a gain expressiveness
comes at the cost of less fine-grained control over the communication.

One way to provide the programmer with the best of both worlds (i.e. a referencing
abstraction which is both high-level and customisable) is to restructure the implemen-
tation of ambient references according to the rules of an open implementation [KP96].
An open implementation provides the programmer with a well-defined API through
which the implementation may be adjusted in a very controlled way. While ambient
references have been implemented in an open implementation (the metaobject protocol
of AmbientTalk), they are themselves not designed as an open implementation. One

10.4. WORK INFLUENCED BY AMBIENT REFERENCES 239

important aspect of the current implementation is that the different delivery policies are
at least already specified modularly as traits. In an open implementation, programmers
would be able to add their own traits to the implementation, together with an annotation
that would select the corresponding trait.

While the current trait hierarchy most probably requires a redesign to accomplish
an open implementation of ambient references (because it is presently too biased to-
wards expressing only the envisioned message delivery policies), we see no fundamen-
tal issues that would prohibit us from doing so. AmbientTalk’s metaobject protocol is
flexible enough to allow new delivery policies to be composed at runtime.

An alternative to introducing custom delivery policies as special annotations is to
consider what minimal subset of the current taxonomy can be provided to the program-
mer such that he can build more useful delivery policies on top of ambient references,
without modifying the implementation of the language construct itself. We are aware
that the current taxonomy of delivery policies may overwhelm the programmer. In
hindsight, the taxonomy of delivery policies should be considered a roadmap that has
helped us in exploring the design space of sending messages to a volatile group of
proximate objects. From our experience, in most cases expirable ambient messages
are the most appropriate delivery policy. By promoting this policy as the default, the
programmer is left solely with the task of determining an appropriate timeout period
and to choose between point-to-point or one-to-many communication.

10.4 Work influenced by Ambient References

We highlight recent work that was influenced by the work put forward in this disserta-
tion.

Ambient Bindings Plšek et. al [PMS07] have applied the notion of an ambient ref-
erence in a component-oriented software engineering context. As a point in case, they
have extended Fractal [BCL+06], a component model for the Java programming lan-
guage with what they call ambient bindings. In a component-based program, compo-
nents are linked via bindings (also known as connectors). Bindings are often associ-
ated with contracts (e.g. provided and required interfaces) to which both parties have
to adhere before they can be connected. Ambient bindings transpose loose coupling
between objects into loose coupling between distributed components. We point out
that the experiment of Plšek et. al is based on the exposition of ambient references
preceding this dissertation, as discussed in section 7.3. Also, as can be expected, the
concept of an ambient binding is less tightly integrated with the host language than in
the case of ambient references and AmbientTalk, as can be witnessed from the absence
of non-blocking futures to support asynchronous request/response interactions (they
employ explicit callbacks instead).

Not surprisingly, the implementation of ambient bindings is quite reminiscent of
the implementation of ambient references. In Fractal, components can be controlled
via what is known as a control membrane. This membrane acts as a reflective interface
to the component, enabling the expression of non-functional component requirements
separate from the base-level component code [PMS07]. The implementation of ambi-
ent bindings entails the deployment of a base-level proxy component, called an ambient
interceptor in their system. The re-binding behaviour of this interceptor is controlled
by an ambient controller, which is situated at the membrane-level. This is entirely

240 CHAPTER 10. CONCLUSION

reminiscent of our mirage/mirror distinction in the reflective implementation of ambi-
ent references (cf. section 8.6).

Proximity References In his masters dissertation, Ramiro has made initial attempts
at integrating proximity with ambient references and service discovery [Ram08]. In
his extended system, service discovery in AmbientTalk can be scoped according to
physical proximity measures. Both exported objects and discovery listeners can indi-
cate the physical boundaries of their interactions. In his experimental implementation,
these boundaries are implemented as arbitrary relations over the Euclidean distance
between interacting mobile devices. In Ramiro’s experimental setup, this distance is
approximated by means of the devices’ GPS coordinates.

Next to scoping AmbientTalk’s service discovery protocol, Ramiro also introduces
the notion of a proximity reference. A proximity reference is an anonymous far refer-
ence (as discussed in section 6.6.1) with the difference that the anonymous far refer-
ence’s scope can additionally be restricted by means of physical proximity relations.
For example, one may create a reference to a Printer service which may be at most
10 meters away by means of the following code:

def printer := proximity: Printer
attach: myGPSCoordinates
in: euclidean_distance(meters(10));

One limitation of Ramiro’s experimental setup is that it is only possible to express
proximity as a subset of the device’s physical communication range. For ad hoc sce-
narios, this is not a problem because in most cases, devices cannot communicate with
devices outside of their communication range anyway. However, in a nomadic net-
working setup, where devices can potentially communicate with a great number of
other devices by means of shared infrastructure (e.g. a base station), other implemen-
tation techniques are required such that proximity can be expressed independent of the
physical range of a device’s wireless communication link. This requires looking into
novel routing techniques such as geocasting, where the destination of network packets
can be constrained by means of the geographical location of the receivers [Mai04].

Supporting Mobile Actors Ambient references have been used to incorporate trans-
parent network reconfiguration in a mobile actor system [VVG+07]. In AmbientTalk/1,
Vallejos implemented migration of mobile actors, much in the spirit of migratable ac-
tors in Salsa [VA01] and mobile agents in ProActive [BBC+06]. One problem in such
systems is the updating of actor references after moving actors from one host to another.
While the sending and receiving hosts involved in the migration process can locally up-
date their references, third party hosts may be unaware of the migration and keep on
referring to the moved actor at its original host. By replacing actor mail address-based
communication by sustained point-to-point communication over ambient references,
programmers can effectively abstract from actor mobility because the ambient refer-
ence can be made to denote a unique service object without reference to any device
address.

In this dissertation, we have stressed the use of space-decoupled communication
to make an object unaware of different objects that represent conceptually the same
service (cf. section 6.1.1). The abstraction afforded by ambient references is depicted
in figure 10.1 on the left: the ambient reference may deliver messages to either service

10.5. AVENUES FOR FUTURE RESEARCH 241

S S

Ambient Reference

Service
instance 1

Service
instance 2

S S

Ambient Reference

Mobile
Service

1. Abstracting from multiple objects
offering the same service

2. Abstracting from multiple
devices hosting the same object

Figure 10.1: Abstraction afforded by space-decoupled communication.

(the boxes represent different actors or devices). The experiment with mobile actors
shows that space-decoupled communication is equally important to be able to abstract
from different devices that host what is conceptually the same object. This is depicted
on the right-hand side of figure 10.1: the ambient reference will deliver messages to
the object regardless of the device that hosts it.

The White Language The AmbientTalk language in itself has spawned third party
interest in language design for ubiquitous computing. White [Qui07] is a nascent pro-
gramming language for mobile networks, whose language design is influenced by Am-
bientTalk. While the language still appears to be in its very early stages of development,
with no concrete implementation for download or publications for documentation, it is
nevertheless promising to see that our approach instigates other researchers to tackle
the same problems and improve upon our work by means of a similar, language-driven
approach.

10.5 Avenues for Future Research
In this section, we discuss how our research could be extended or studied in a different
context without the emphasis on addressing limitations, as was the case in section 10.3.

10.5.1 Aspect-oriented Programming
One research domain which has been left unexplored in this dissertation is that of
aspect-oriented programming (AOP) [KLM+97]. The goal of AOP is to be able to
modularise crosscutting concerns. A crosscutting concern is an aspect of an application
which is difficult to capture using traditional modularisation techniques such as traits,
classes, methods or functions. Traditionally, distributed programming has served as a
resourceful application domain for AOP, because it engenders a lot of non-functional
aspects in addition to the application’s core logic. Examples are taking care of object
serialisation during parameter passing, performing concurrency control, enforcing cer-
tain security properties, etc. In fact, one of the first aspect-oriented languages, D, was
a domain-specific aspect language for tackling exactly these issues [LK97].

In general, AOP techniques have not yet been applied to do ambient-oriented pro-
gramming. In Dedecker’s dissertation as well as in this dissertation, metaobject pro-

242 CHAPTER 10. CONCLUSION

tocols are used as a more general mechanism to capture crosscutting aspects in dis-
tributed programming such as message sending and message reception, following a
long-standing tradition of applying reflection to solve concurrent and distributed pro-
gramming problems [OIT92, McA95, MMY96, BGL98, CBM+02]. It remains to be
investigated whether the full power of a metaobject protocol is really required to ex-
press certain ambient-oriented language constructs. In this dissertation, they key ex-
ploited feature of the metaobject protocol is the ability to intercept message sends.
There is a strong correspondence between the ability to intercept message sends and
the use of “around advice” to instrument a method invocation with additional code.
Also, ambient references make explicit use of annotations on message sends to direct
the message sending process. Such annotations could similarly be exploited by an
aspect weaver to weave in the appropriate aspect.

While AOP can definitely be used to provide a modular implementation of a lan-
guage construct like ambient references, a more fundamental consideration is whether
AOP can replace the language construct itself, or indeed to abolish the need for an
ambient-oriented programming language by advising programs written in a general-
purpose language. It is our conjecture that AOP ultimately depends on a suitable base
language whose aspects it is to describe. The intent of AOP is to modularise crosscut-
ting concerns, not to turn a general-purpose language into a domain-specific language.
If aspects are used to encode “language features” (e.g. asynchronous message passing),
these features still need to be composed with the base language. In this light, AOP is
prone to the impedance mismatch resulting from the composition of two systems dis-
cussed in section 1.4.2.

10.5.2 Service Selection
One issue currently overlooked by ambient references is how to rank available nearby
services. That is to say, if multiple matching services are available in an ambient ref-
erence’s reach, which one should the ambient reference prefer as the actual receiver of
e.g. point-to-point messages? Currently, this selection is non-deterministic, i.e. at the
implementation’s discretion.

Closely related to ranking services in reach is the idea of making the definition of
the reach itself dependent on ranking metrics. The idea here is to replace the boolean
filter predicate of ambient references by a metric that returns how well a nearby object
matches certain requirements (e.g. in the form of a number between 0 and 1). This
would result in the scope (and consequently also the reach) of an ambient reference
becoming a fuzzy set [Zad65]. Fuzzy sets are sets whose “characteristic function” is
exactly such a metric. Investigating the impact of this change in representation on
message passing remains a topic for future research.

10.5.3 Session Types
Ambient references currently support designation based on nominal typing (using type
tags) and structural typing (using protocols). One could envision designation based
on more advanced typing schemes. The work on session types shows how static types
can be used to describe the behaviour of processes in terms of sending and receiving
messages [Hon93] and has recently been applied to distributed object-oriented lan-
guages [DCYAD05]. For example, the session type ?int?int!bool describes an ob-
ject that first receives two messages containing an int and subsequently outputs a mes-
sage containing a bool. It matches the dual type !int!int?bool. Session types may

10.6. CONCLUDING REMARKS 243

also be conditional or iterative, such that complex interactions between objects (e.g.
the library transmission protocol discussed in section 4.6.3) can be expressed as finite
state machines whose state transitions correspond to message sending and message
reception.

Traditionally, session types have been studied in a synchronous, two-party interac-
tion context. An extension of session types to support asynchronous, multi-party inter-
actions as supported by ambient references has only been proposed recently [HYC08].
It remains to be seen how this state of the art research can be used for the purposes of
making interactions among objects using ambient references more type-safe.

10.6 Concluding Remarks
Today, we find ourselves at the dawn of the ubiquitous computing era. While Weiser’s
vision will probably take many years still to become reality, the research on mobile ad
hoc networking technology today already provides us with a glimpse of what future
applications may offer. At the same time, it provides us with a glimpse of the difficul-
ties with which the developers of those applications will be confronted. Next to all the
difficulties already engendered by distributed computing, the very properties of the ad
hoc network make it difficult – or indeed impossible – to use tried-and-tested patterns
such as naming and directory servers or client-server interactions. MANETs are par-
ticularly unforgiving with respect to the traditional distributed computing abstractions
put forth by the otherwise so successful object-oriented paradigm.

The goal of ambient-oriented programming is to make the metaphor of distribu-
ted computing as a natural extension of object-oriented message passing as accurate
as is practically possible in MANETs. The seminal work of Dedecker has laid the
foundation for this dissertation by showing how active object models, asynchronous
message passing abstractions and some form of distributed naming form the suitable
ingredients for objects to scale in a MANET [Ded06]. While his investigation of asyn-
chronous message passing and its integration into an OO model was extremely thor-
ough, the combination of distributed naming (space-decoupled communication) with
object-oriented programming left much to be desired still.

This work can be seen as the continuation of Dedecker’s work in unifying OOP
with distributed computing for MANETs. We have primarily focused on the question
of how to address objects whose identity is a priori unknown. Our investigation has lead
us to evaluate different coordination abstractions, and to conclude that event-driven,
publish/subscribe approaches scale best. While Dedecker already recognised this, what
was still lacking was a mechanism to transpose this event-based, publish/subscribe
communication into an object-oriented language abstraction. Ambient references have
been designed exactly to fill this gap in the ambient-oriented paradigm. Employing
ambient references, programmers can denote a volatile set of proximate objects by
means of an intensional description. Communication with objects in the set can be
customised along various design dimensions by annotating the messages sent to these
references.

In the introductory chapter, we discussed the gap between ubiquitous computing
and contemporary software development tools. We noted how, ultimately, our research
is about closing that gap. While the tools that are described in this dissertation are
state of the art research vehicles, we argue that, as this technology matures, it can be
the basis of a solid software development platform for constructing applications in the
coming age of calm technology.

244 CHAPTER 10. CONCLUSION

Appendix A

Ambient References Source
Code

This appendix contains the complete implementation of ambient references in Ambi-
entTalk as they are discussed in chapter 8. The implementation is divided among four
main modules: the language module implementing all code common to both the exten-
sional and intensional implementation of ambient references, a module implementing
the generic behaviour of custom eventual references in AmbientTalk and finally the
modules containing the implementation details of the extensional resp. intensional im-
plementation. Each of the following sections contains the complete source code listing
for each module.

A.1 Ambient References Language Module

File at/lang/ambientrefs.at

/* This module implements the behaviour common to both the extensional

* and intensional implementation of ambient references and provides the

* public interface of the ambient references language construct.

*/
def Util := /.at.support.util;
def FuturesModule := /.at.lang.futures;
def MFuturesModule := /.at.lang.multifutures;
def OneWayMessage := FuturesModule.OneWayMessage;
def ProtocolM := /.at.lang.structuraltypes;
import /.at.support.timer;
import /.at.lang.firstclassrefs;

deftype IllegalAnnotation <: /.at.types.Exception;
def XIllegalAnnotation :=
/.at.exceptions.createException(IllegalAnnotation);

deftype ARAnnotation;

deftype MsgArity <: ARAnnotation;
deftype One <: MsgArity;
deftype All <: MsgArity;

245

246 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

deftype MsgDiscoveryLifetime <: ARAnnotation;
deftype Instant <: MsgDiscoveryLifetime;
deftype TransientT <: MsgDiscoveryLifetime;
deftype Sustain <: MsgDiscoveryLifetime;

def Transient(period) {
extend: TransientT with: { |period|
def ==(other) { super == other };

} taggedAs: [/.at.types.Isolate, /.at.types.TypeTag];
};

deftype MsgCommunicationLifetime <: ARAnnotation;
deftype Oneway <: MsgCommunicationLifetime;
deftype Twoway <: MsgCommunicationLifetime;
deftype Reply <: Twoway;
deftype DueT <: Twoway;

def Due(timeout) {
extend: DueT with: { |timeout|
def ==(other) { super == other };

} taggedAs: [/.at.types.Isolate, /.at.types.TypeTag];
};

deftype Expirable <: TransientT, DueT;
def Expires(timeout) {
extend: Expirable with: { |timeout|
def ==(other) { super == other };

} taggedAs: [/.at.types.Isolate, /.at.types.TypeTag];
};
def extendWithHandle(msg, handle) { extend: msg with: {|handle|} };

def AmbientRefsModule(ARImplModule := /.at.ambient.ar_extensional_impl) {
// a pass-by-copy object that resolves to the correct
// implementation module when deserialised
def ARImplModuleCapsule := ARImplModule.capsule;
def arityTraitFor(annotation) {
// ARITY = ONE | ALL
if: (annotation.isSubtypeOf(One)) then: {
ARImplModule.TOne;

} else: {
if: (annotation.isSubtypeOf(All)) then: {
ARImplModule.TAll;

} else: {
raise: XIllegalAnnotation.new(
"Illegal arity annotation: " + annotation);

}
};

};
def commLTTraitFor(annotation) {
// REPLY = DUE | ONEWAY | FUTURE
if: (annotation.isSubtypeOf(Oneway)) then: {
TOneway;

} else: {

A.1. AMBIENT REFERENCES LANGUAGE MODULE 247

if: (annotation.isSubtypeOf(DueT)) then: {
makeTDue(annotation.timeout);

} else: {
if: (annotation.isSubtypeOf(Reply)) then: {
TReply;

} else: {
raise: XIllegalAnnotation.new(
"Illegal commLT annotation: " + annotation);

}
}

};
};
def discLTTraitFor(annotation) {
// LIFETIME = INSTANT | TRANSIENT | SUSTAINABLE
if: (annotation.isSubtypeOf(Instant)) then: {
ARImplModule.TInstant;

} else: {
if: (annotation.isSubtypeOf(TransientT)) then: {
ARImplModule.makeTTransient(annotation.period)

} else: {
if: (annotation.isSubtypeOf(Sustain)) then: {
ARImplModule.TSustain;

} else: {
raise: XIllegalAnnotation.new(
"Illegal discLT annotation: " + annotation);

}
}

};
};
def createHandler(msg, dfltArityType, dfltLifetimeType, dfltReplyType) {
def ArityTrait := arityTraitFor((is: msg taggedAs: MsgArity).ifTrue: {
Util.getAnnotationOfType(msg, MsgArity);

} ifFalse: { dfltArityType });

def CommLTTrait;
def DiscLTTrait;

// EXPIRABLE => LIFETIME = TRANSIENT AND REPLY = DUE
if: (is: msg taggedAs: Expirable) then: {
def ann := Util.getAnnotationOfType(msg, Expirable);
DiscLTTrait := makeTExpires(ann.timeout);
CommLTTrait := nil;

} else: {
DiscLTTrait := discLTTraitFor(
(is: msg taggedAs: MsgDiscoveryLifetime).ifTrue: {
Util.getAnnotationOfType(msg, MsgDiscoveryLifetime);

} ifFalse: { dfltLifetimeType });
CommLTTrait := commLTTraitFor(
(is: msg taggedAs: MsgCommunicationLifetime).ifTrue: {
Util.getAnnotationOfType(msg, MsgCommunicationLifetime);

} ifFalse: { dfltReplyType });
};
// perform trait composition to construct the handler
object: {

248 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

import ArityTrait;
import CommLTTrait;
import DiscLTTrait;

};
};
def TOneway := object: {
def attachFuture(msg) { [nil,msg] };
def discoveryStopped(msg) { /* do nothing */ };

};
def TReply := object: {
def attachFuture(msg) {
def [fut, res] := self.createFuture(); // dispatch TArity
[fut, FuturesModule.futurize(msg, fut)];

};
def discoveryStopped(msg) { /* do nothing */ };

};
def makeTDue(initDuePeriod) {
extend: TReply with: {
def timeLeftForReply(msg) { initDuePeriod };
def discoveryStopped(msg) {
when: self.timeLeftForReply(msg) elapsed: {
(msg.handle.future)<-becomeResolved()

@[OneWayMessage,MetaMessage];
};

};
};

};
def makeTExpires(expPeriod) {
object: {
import ARImplModule.makeTTransient(expPeriod);
import makeTDue(expPeriod) exclude timeLeftForReply;

def timeLeftForReply(msg) {
self.transientPeriod - (now() - msg.handle.sendTime);

};
}

};

deftype AmbientReference;

def makeAmbientReference(typetagOrProtocol,
filter,
defaultArity,
defaultLifetime,
defaultReply) {

def extendedMirror;
def commonMirror := mirror: {
import TEventualRef;

// == provide required methods for TEventualRef trait ==

def intercept(message) {
def handler := createHandler(

A.1. AMBIENT REFERENCES LANGUAGE MODULE 249

message,defaultArity,defaultLifetime,defaultReply);

def [fut, newMsg] := handler.attachFuture(message);
def registration;
def handle := object: {
def future := fut;
def sendTime := now();
def cancel() { registration.cancel() };

};
registration :=
handler.dispatch(extendedMirror,

extendWithHandle(newMsg, handle));
handle // value of ambient message send is always a handle

};

def toString() {
"ambient:"+typetagOrProtocol.typeName;

};

def transportStrategy :=
{ |ARImplModuleCapsule,typetagOrProtocol,filter,defaultArity,

defaultLifetime,defaultReply|
// when arriving at the remote host, create a new local AR
/.at.lang.ambientrefs(ARImplModuleCapsule).ambient:

typetagOrProtocol
where: filter
withArity: defaultArity
withLifetime: defaultLifetime
withReply: defaultReply };

}; // end mirror
extendedMirror := ARImplModule.extendAmbientReference(
commonMirror, typetagOrProtocol, filter);

object: {
} taggedAs: [AmbientReference] mirroredBy: extendedMirror;

}; // end makeAmbientReference

def dfltFilter := script: { |o| true } carrying: [];
def dfltArity := One;
def dfltLifetime := Sustain;
def dfltReply := Oneway;

// the public interface of the AR language module
def PublicInterface := object: {
def IllegalAnnotation := IllegalAnnotation;

def One := One;
def All := All;
def Instant := Instant;
def Transient := &Transient;
def Sustain := Sustain;
def Reply := Reply;
def Due := &Due;
def Oneway := Oneway;
def Expires := &Expires;

250 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

// allow exporting an object together with a set of properties
def export: serviceObject as: typetagOrProtocol with: closure {
def attributes := isolate: closure;
ARImplModule.exportServiceObject(
serviceObject, typetagOrProtocol, attributes);

};
// override export:as: to include a property object
def export: serviceObject as: type {
export: serviceObject as: type with: {};

};
def export: svcObject {
export: svcObject as: (ProtocolM.protocolOf: svcObject) with: {};

};
def export: svcObject with: clo {
export: svcObject as: (ProtocolM.protocolOf: svcObject) with: clo;

};
// def [tFuture, discoverySubscription] := discover: Type
def discover: T {
def [fut,res] := FuturesModule.makeFuture();
def sub := when: T discovered: { |t|
res.resolve(t);

};
[fut,sub];

};
// def [tFuture, discoverySubscription] :=
// discover: Type where: { |t| filter(t) }
def discover: T where: filter {
def [arFuture, arResolver] := FuturesModule.makeFuture();
def sub := DiscoveryModule.whenever: T discovered: { |remoteRef|
def props := isolate: { nil };
if: (is: remoteRef taggedAs: PropertyObject) then: {
remoteRef := remoteRef.service;
props := remoteRef.properties;

};
if: (filter(props)) then: {
sub.cancel();
arResolver.resolve(remoteRef)

};
};
[arFuture, sub];

};
def ambient: T {
makeAmbientReference(
T, dfltFilter, dfltArity, dfltLifetime, dfltReply);

};
def ambient: T withArity: A {
makeAmbientReference(T, dfltFilter, A, dfltLifetime, dfltReply);

};
def ambient: T withLifetime: L {
makeAmbientReference(T, dfltFilter, dfltArity, L, dfltReply);

};
def ambient: T withArity: A withLifetime: L {
makeAmbientReference(T, dfltFilter, A, L, dfltReply);

A.2. CUSTOM EVENTUAL REFERENCES MODULE 251

};
def ambient: T withReply: R {
makeAmbientReference(T, dfltFilter, dfltArity, dfltLifetime, R);

};
def ambient: T withArity: A withReply: R {
makeAmbientReference(T, dfltFilter, A, dfltLifetime, R);

};
def ambient: T withLifetime: L withReply: R {
makeAmbientReference(T, dfltFilter, dfltArity, L, R);

};
def ambient: T withArity: A withLifetime: L withReply: R {
makeAmbientReference(T, dfltFilter, A, L, R);

};
def ambient: T where: filter {
makeAmbientReference(T, filter, dfltArity, dfltLifetime, dfltReply);

};
def ambient: T where: filter withArity: A {
makeAmbientReference(T, filter, A, dfltLifetime, dfltReply);

};
def ambient: T where: filter withLifetime: L {
makeAmbientReference(T, filter, dfltArity, L, dfltReply);

};
def ambient: T where: filter withReply: R {
makeAmbientReference(T, filter, dfltArity, dfltLifetime, R);

};
def ambient: T where: filter withArity: A withLifetime: L withReply:R{
makeAmbientReference(T, filter, A, L, R);

};
def snapshot: ref {
ref<-makeSnapshot()@[FuturesModule.FutureMessage,MetaMessage];

};
def snapshot: ref after: period {
def [f,r] := FuturesModule.makeFuture();
when: period elapsed: {
r.resolve(snapshot: ref);

};
f;

};
}; // end anonymous module object

}; // end AmbientRefsModule function

A.2 Custom Eventual References Module

File at/lang/firstclassrefs.at

/* This module implements the TEventualRef trait which factors out the

* common behaviour of first-class eventual reference objects in AT.

*/
def XIllegalOperation := /.at.exceptions.XIllegalOperation;
def Vector := /.at.collections.vector.Vector;

def FirstClassRefModule := object: {

252 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

// an annotation identifying messages destined for the mirror itself
deftype MetaMessage <: /.at.types.Message;

// sentinel used to end the asynchronous delegation chain
// between mirrors on eventual refs
def NilEventualRef := object: { };
/**
* This trait is meant to be mixed into a mirror definition

* to make the mirror behave as an eventual reference.

*
* Trait requires:

* // a closure describing how to pass the reference

* def transportStrategy;

* // a method defining how to intercept base-level messages

* def intercept(msg);

* // a method defining how to print the ref

* def toString();

*
* Optionally, a composite may redefine the ’delegate’ field which

* specifies the object to which metamessages should be forwarded if

* they are not understood by the eventual ref itself

*/
def TEventualRef := object: {
// disallow synchronous access to the object
def invoke(slf, sel, args) {
// the only legal operation on references is ’==’
if: (‘(==) == sel) then: {
// two eventual refs are equal iff their mirrors are equal
self == (reflect: args[1])

} else: {
raise: XIllegalOperation.new("Cannot synchronously invoke " +
sel + " on " + self.toString());

}
};
def invokeField(slf, sel) { self.invoke(slf, sel, []) };

def receive(msg) {
if: (is: msg taggedAs: MetaMessage) then: {
// check whether the *mirror* itself can respond to the selector
if: ((reflect: self).respondsTo(msg.selector)) then: {
self <+ msg; // process meta-message myself

} else: {
// forward meta-message to delegate if not understood
self.delegate<-receive(msg)@MetaMessage;

};
} else: {
self.intercept(msg); // provided by composite

}
};
def delegate := NilEventualRef;

// ensure that a reference object does not become a far reference when
// parameter-passed. Rather, it implements its own by copy semantics
def pass() {

A.3. EXTENSIONAL IMPLEMENTATION MODULE 253

/.at.support.util.uponArrivalBecome: self.transportStrategy;
};
def print() {
"<" + self.toString() + ">";

};
def isTaggedAs(typeTag) {
typeTag.isSubtypeOf(/.at.types.FarReference).or: {
(self.super).isTaggedAs(typeTag)

}
};
def typeTags() {
(self.super) t̂ypeTags() + [/.at.types.FarReference];

};
// disallow meta-level operations on eventual references
def clone() {
raise: XIllegalOperation.new(
"Cannot clone " + self.toString);

};
def newInstance(initargs) {
raise: XIllegalOperation.new(
"Cannot create new instance of " + self.toString);

};
def defineField(sym, obj) {
raise: XIllegalOperation.new(
"Cannot define field "+sym+" in " + self.toString);

};
def addField(fld) {
raise: XIllegalOperation.new(
"Cannot add field "+fld.name+" in " + self.toString);

};
def addMethod(mth) {
raise: XIllegalOperation.new(
"Cannot add method "+mth.name+" in " + self.toString);

};
}; // end TEventualRef

}; // end of FirstClassRefModule

A.3 Extensional Implementation Module

File at/ambient/ar extensional impl.at

/* This module implements "extensional" ambient references

* whose reach is represented as an explicit collection.

*/
def FuturesModule := /.at.lang.futures;
def MFuturesModule := /.at.lang.multifutures;
def Vector := /.at.collections.vector.Vector;
def OneWayMessage := FuturesModule.OneWayMessage;
def DiscoveryModule := /.at.ambient.discovery;
import /.at.support.timer;
import /.at.lang.firstclassrefs;

254 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

deftype DescriptorT;
def DescriptorObject := object: {
def service;
def attributes;
def init(svcObject, attrs) {
service := svcObject;
attributes := attrs;

};
def ==(other) {
(does: other respondTo: ‘service).and: { service == other.service };

};
} taggedAs: [/.at.types.Isolate, DescriptorT];

def ARExtensionalImpl := object: {
def capsule := /.at.support.util.uponArrivalBecome: {
/.at.ambient.ar_extensional_impl

};
def extendAmbientReference(arMirror,

typetagOrProtocol,
filter) {

extend: arMirror with: {
def reach := Vector.new();
def discoveryObservers := Vector.new();
DiscoveryModule.whenever: typetagOrProtocol

discovered: { |descriptor|
def service := descriptor;
def attributes := isolate: { };
if: (is: descriptor taggedAs: DescriptorT) then: {
service := descriptor.service;
attributes := descriptor.attributes;

};

if: filter(attributes) then: {
// add the discovered service to the AR’s reach
reach.add(service);
// notify discovery observers
discoveryObservers.each: { |o| o<-apply([service]) };

};
};
DiscoveryModule.whenever: typetagOrProtocol lost: { |descriptor|
def service := descriptor;
def attributes := isolate: { };
if: (is: descriptor taggedAs: DescriptorT) then: {
service := descriptor.service;
attributes := descriptor.attributes;

};
if: reach.contains(service) then: {
// remove the lost service from the AR’s reach
reach.remove(service);

};
};
def addDiscoveryObserver: obs {
discoveryObservers.add(obs);
// return a subscription object

A.3. EXTENSIONAL IMPLEMENTATION MODULE 255

object: { def cancel() { discoveryObservers.remove(obs) } };
};
def makeSnapshot() { reach.asTable() };

}
}; // end extendAmbientReference

def TOne := object: {
def createFuture() { FuturesModule.makeFuture() };
def send: msg to: ar ifNoneInReach: closure {
if: (ar.reach.isEmpty) then: closure else: {
def receiver := ar.reach.random;
receiver <+ msg;

};
};
def sendAndRegister(ar, msg) {
def registration := object: { def cancel() { false } };
self.send: msg to: ar ifNoneInReach: {
// dispatch TDiscoveryLT
registration := self.registerMessageUntilReceiverFound(ar, msg);

};
registration

};
};
def TAll := object: {
def createFuture() { MFuturesModule.makeMultiFuture() };
def send: msg to: ar ifNoneInReach: closure {
if: (ar.reach.isEmpty) then: closure else: {
ar.reach.each: { |receiver| receiver <+ msg };

};
};
def sendAndRegister(ar, msg) {
self.send: msg to: ar ifNoneInReach: { };
// this method returns a registration object which is implicitly
// passed on to sendAndRegister (allows early retraction of the msg)
self.registerMessage(ar, msg); // dispatch TDiscoveryLT

};
};
def TInstant := object: {
def dispatch(ar, msg) {
self.send: msg to: ar ifNoneInReach: { }; // dispatch TArity
self.discoveryStopped(msg); // dispatch TCommLT
// return publication object to cancel message delivery
object: { def cancel() { false } };

}
};
def TSustain := object: {
def dispatch(ar, msg) {
self.sendAndRegister(ar, msg) }; // dispatch TArity

def registerMessageUntilReceiverFound(ar, msg) {
def registration := ar.addDiscoveryObserver: { |rcvr|
rcvr <+ msg;
registration.cancel();

};
// returns publication that can be used to stop msg delivery

256 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

def stopDiscovery() {
self.discoveryStopped(msg) }; // dispatch TCommLT

object: {
def cancel() {
registration.cancel();
stopDiscovery();

}
};

};
def registerMessage(ar, msg) {
def registration := ar.addDiscoveryObserver: { |rcvr| rcvr <+ msg };
// returns publication that can be used to stop msg delivery
def stopDiscovery() {
self.discoveryStopped(msg) }; // dispatch TCommLT

object: {
def cancel() {
registration.cancel();
stopDiscovery();

}
};

};
};

def makeTTransient(initTransientPeriod) {
def makeAutoExpirable(originalRegistration) {
def timerRegistration := when: initTransientPeriod elapsed: {
originalRegistration.cancel();

};
object: {
def cancel() { // signals a premature cancellation
timerRegistration.cancel(); // stop the timer
originalRegistration.cancel(); // cancel the registration now

}
}

};
extend: TSustain with: {
def transientPeriod := initTransientPeriod;
// override the methods defined by the sustainable lifetime trait
def registerMessageUntilReceiverFound(@args) {
def reg := super̂ registerMessageUntilReceiverFound(@args);
makeAutoExpirable(reg);

};
def registerMessage(@args) {
def reg := super̂ registerMessage(@args);
makeAutoExpirable(reg);

};
};

};
def exportServiceObject(serviceObject, typetagOrProtocol, attrs) {
DiscoveryModule.export: DescriptorObject.new(serviceObject, attrs)

as: typetagOrProtocol;
};

}; // end of ARExtensionalImpl module

A.4. INTENSIONAL IMPLEMENTATION MODULE 257

A.4 Intensional Implementation Module

File at/m2mi/ar intensional impl.at

/* This module implements "intensional" ambient references

* whose reach is represented using an M2MI omnihandle.

*/
def FuturesModule := /.at.lang.futures;
def MFuturesModule := /.at.lang.multifutures;
def Vector := /.at.collections.vector.Vector;
def ProtocolM := /.at.lang.structuraltypes;
def OneWayMessage := FuturesModule.OneWayMessage;

import /.at.support.timer;
import /.at.lang.firstclassrefs;
import /.at.m2mi.api;

deftype ReplyHandlerT;
deftype ProtocolAmbientRefType;

def RECALL_PERIOD := seconds(5);
def DISCOVERY_RATE := seconds(2);
def ANYCAST_TIMEOUT := millisec(500);

def min(x,y) { (x < y).ifTrue: { x } ifFalse: { y } };

def makeLeasedIdEntry(id,originalTTL) {
object: {
def timeToLive := originalTTL;
def id := id;
def lapse(duration) { timeToLive := timeToLive - duration };
def renew(duration) {
timeToLive := min(originalTTL, timeToLive + duration) };

def expired() { timeToLive < seconds(0) };
}

};
// create a table of leased entries
def makeLeasedEntryTable() {
def entries := Vector.new();
def leaseRevoker;

def activateLeaseRevoker() {
leaseRevoker := whenever: RECALL_PERIOD elapsed: {
entries.removeAll: { |entry|
entry.lapse(RECALL_PERIOD);
entry.expired(); // if true, the entry will be removed

};
if: (entries.isEmpty) then: {
leaseRevoker.cancel(); // all entries deleted, can stop checking
leaseRevoker := nil;

};
};

};
object: {

258 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

def containsEntry(id) {
entries.contains(id, { |elt,entry| elt == entry.id })

};
def addEntry(id, ttl) {
entries.add(makeLeasedIdEntry(id, ttl));
if: (leaseRevoker == nil) then: {
activateLeaseRevoker();

};
};
def renewEntry(id, ttl) {
def idx := (entries.find: { |entry| entry.id == id });
entries.at(idx).renew(ttl);

};
def deactivateLeaseRevoker() {
(nil == leaseRevoker).ifFalse: {
leaseRevoker.cancel();

};
entries := nil;

};
}

};

deftype AmbientReference;
deftype AmbientMessageHandler;

def generateMessageId(msg) { (print: msg.selector) + now().intValue };

def ARIntensionalImpl := object: {
def capsule := /.at.support.util.uponArrivalBecome: {
/.at.m2mi.ar_intensional_impl

};
def extendAmbientReference(arMirror, typetagOrProtocol, filter) {
extend: arMirror with: {
def reach;
def scope;

if: (is: typetagOrProtocol taggedAs: /.at.types.TypeTag) then: {
// convert type tag directly into Java interface
reach := omnireference: typetagOrProtocol;
scope := filter;

} else: {
// use a dummy type tag and test the protocol at discovery time
reach := omnireference: ProtocolAmbientRefType;
scope := script: { |service|
(/.at.lang.structuraltypes.does: service.protocol

match: typetagOrProtocol).and: {
filter(service) };

} carrying: ‘[typetagOrProtocol,filter];
};
def makeSnapshot() {
def [fut,res] := FuturesModule.makeFuture();
def snapshot := [];
def replyhandler := unireference: ReplyHandlerT for: (object: {
def reply(receiver) { snapshot := snapshot + [receiver] };

A.4. INTENSIONAL IMPLEMENTATION MODULE 259

});

self.performAnycast(replyhandler);
when: ANYCAST_TIMEOUT elapsed: {
detachUniRef: replyhandler;
res.resolve(snapshot);

};
fut;

};
def performAnycast(replyHandler) {
reach<-anycast(scope, replyHandler);

};
def performBroadcast(msg, id, ttl) {
reach<-broadcast(scope, msg, id, ttl);

};
}

}; // end extendAmbientReference

def exportServiceObject(obj, typetagOrProtocol, attributes) {
def attributes.protocol := ProtocolM.protocolOf: obj;
def alreadyReceivedMessages := makeLeasedEntryTable();
def unicastMessageHandler :=
unireference: AmbientMessageHandler for: obj;

def broadcastMessageHandler := object: {
def anycast(scope, replyHandler) {
if: scope(attributes) then: {
replyHandler<-reply(unicastMessageHandler);

}
};
def broadcast(scope, msg, id, ttl) {
if: scope(attributes) then: {
if: !alreadyReceivedMessages.containsEntry(id) then: {
if: !(ttl == 0) then: {
alreadyReceivedMessages.addEntry(id, ttl);

};
obj <+ msg; // deliver the message

} else: {
// msg already previously received, update lease time
// to make sure the object does not receive it twice
alreadyReceivedMessages.renewEntry(id, ttl);

}
}

};
};
def pub := export: broadcastMessageHandler asTypeTag:
((is: typetagOrProtocol taggedAs: /.at.types.TypeTag).ifTrue: {
typetagOrProtocol;

} ifFalse: {
ProtocolAmbientRefType;

});
object: {
def unexport() {
pub.unexport();
detachUniRef: unicastMessageHandler;

260 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

alreadyReceivedMessages.deactivateLeaseRevoker();
}

}
};

def TInstant := object: {
def timeLeft(forMsg) { seconds(0) };
def stillValid(msg) { false };

};
def makeTTransient(timeout) {
object: {
def transientPeriod := timeout;
def timeLeft(msg) { (msg.handle.sendTime + timeout) - now() };
def stillValid(msg) { self.timeLeft(msg) > seconds(0) };

}
};
def TSustain := object: {
// RECALL_PERIOD is max amount of time receiver wants to recall msg
def timeLeft(forMsg) { RECALL_PERIOD };
def stillValid(msg) { true };

};
def TAll := object: {
def createFuture() { MFuturesModule.makeMultiFuture() };
def dispatch(ar, msg) {
def continuation;
def id := generateMessageId(msg);
def sendOnce() {
def ttl := self.timeLeft(msg); // dispatch to DiscLT

ar.performBroadcast(msg, id, ttl);
continuation := when: BROADCAST_RATE elapsed: {
if: self.stillValid(msg) then: { // dispatch TDiscoveryLT
sendOnce(); // recursive call to start new broadcast

} else: { // stop broadcasting
self.discoveryStopped(msg); // dispatch TCommLT

}
}

};
sendOnce(); // start broadcasting
def stopDiscovery() {
continuation.cancel();
self.discoveryStopped(msg); // DISPATCH to CommLT

};
object: { def cancel() { stopDiscovery() } }

};
};
def TOne := object: {
def createFuture() { FuturesModule.makeFuture() };
def dispatch(ar, msg) {
def continuation;
def sendOnce() {
def receivers := [];
def replyHandler := unireference: ReplyHandlerT for: (object: {
def reply(rcvr) { receivers := receivers + [rcvr] };

A.4. INTENSIONAL IMPLEMENTATION MODULE 261

});

ar.performAnycast(replyHandler);
continuation := when: ANYCAST_TIMEOUT elapsed: {
if: !receivers.isEmpty then: {
receivers[(1 ?? receivers.length).round] <+ msg;
detachUniRef: replyHandler;
self.discoveryStopped(msg); // dispatch TCommunicationLT

} else: {
continuation := when: BROADCAST_RATE elapsed: {
if: self.stillValid(msg) then: { // dispatch TDiscoveryLT
sendOnce(); // recursive call to start new anycast

} else: { // stop the anycast protocol
self.discoveryStopped(msg); // dispatch TCommunicationLT

}
}

}
}

};
sendOnce();

def stopDiscovery() {
continuation.cancel();
self.discoveryStopped(msg); // DISPATCH to CommLT

};
object: { def cancel() { stopDiscovery() } }

};
};

}; // end of ARIntensionalImpl module

262 APPENDIX A. AMBIENT REFERENCES SOURCE CODE

Bibliography

[ABC+00] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölszle,
John Maloney, Randall Smith, David Ungar, and Mario Wolczko. The
SELF 4.1 programmer’s reference manual, 2000.

[AC93] Gul Agha and C. J. Callsen. Actorspace: An open distributed program-
ming paradigm. In Proceedings of the 4th ACM Conference on Prin-
ciples and Practice of Parallel Programming, ACM SIGPLAN Notices,
pages 23–32, 1993.

[ADH+98] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams Iv,
D. P. Friedman, E. Kohlbecker, Jr. G. L. Steele, D. H. Bartley, R. Hal-
stead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman,
and M. Wand. Revised report on the algorithmic language scheme.
Higher Order Symbol. Comput., 11(1):7–105, 1998.

[Agh86] Gul Agha. Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[Agh90] Gul Agha. Concurrent object-oriented programming. Communications
of the ACM, 33(9):125–141, 1990.

[AH87] Gul Agha and Carl Hewitt. Concurrent programming using actors.
Object-oriented concurrent programming, pages 37–53, 1987.

[AR98] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting the
internet: A survey of distributed garbage collection. In ACM Computing
Surveys, volume 30, pages 330–373, 1998.

[Arn99] Ken Arnold. The jini architecture: Dynamic services in a flexible net-
work. In 36th Annual Conference on Design Automation (DAC’99),
pages 157–162, 1999.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, second edition,
1996.

[BBC+06] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fab-
rice Huet, Matthieu Morel, and Romain Quilici. Grid Computing: Soft-
ware Environments and Tools, chapter Programming, Deploying, Com-
posing, for the Grid. Springer-Verlag, January 2006.

263

264 BIBLIOGRAPHY

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman
Meyrowitz, editor, Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications / Proceedings of
the European Conference on Object-Oriented Programming, pages 303–
311, Ottawa, Canada, 1990. ACM Press.

[BCL+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The fractal component model and its support in java. Software Practice
and Experience, Special Issue on Experiences with Auto-adaptive and
Reconfigurable Systems, 2006.

[Ben86] Jon Bentley. Programming pearls: little languages. Commun. ACM,
29(8):711–721, 1986.

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk
in a Production Environment. In Proceedings of the OOPSLA ’93 Con-
ference on Object-oriented Programming Systems, Languages and Ap-
plications, pages 215–230, 1993.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concur-
rency and distribution in object-oriented programming. ACM Computing
Surveys, 30(3):291–329, 1998.

[BH77] Henry G. Baker Jr. and Carl Hewitt. The incremental garbage collection
of processes. In Proceedings of Symposium on AI and Programming
Languages, volume 8 of ACM Sigplan Notices, pages 55–59, 1977.

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object
structure in the Emerald system. In Conference proceedings on Object-
oriented programming systems, languages and applications, pages 78–
86. ACM Press, 1986.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote proce-
dure calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[Bri88] J.-P. Briot. From objects to actors: study of a limited symbiosis in
smalltalk-80. In Proceedings of the 1988 ACM SIGPLAN workshop on
Object-based concurrent programming, pages 69–72, New York, NY,
USA, 1988. ACM Press.

[Bro95] Frederick Brooks Jr. The mythical man-month (anniversary ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Program-
ming languages for distributed computing systems. ACM Comput. Surv.,
21(3):261–322, 1989.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In Proceed-
ings of the 19th annual Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 331–343, 2004.

BIBLIOGRAPHY 265

[CA94] C. J. Callsen and G. Agha. Open heterogeneous computing in Ac-
torSpace. Journal of Parallel and Distributed Computing, 21(3):289–
300, 1994.

[Car89] Denis Caromel. Service, asynchrony and wait-by-necessity. Journal
of Object-Oriented Programming, 2(4):12–18, November–December
1989.

[Car93] Denis Caromel. Towards a method of object-oriented concurrent pro-
gramming. Communications of the ACM, 36(9):90–102, 1993.

[Car95] Luca Cardelli. A Language with Distributed Scope. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 286–297. ACM Press, 1995.

[Car99] Luca Cardelli. Abstractions for mobile computation. In Jan Vitek and
Christian Jensen, editors, Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, volume 1603 of Lecture Notes in
Computer Science, pages 51–94. Springer, 1999.

[CBM+02] Licia Capra, Gordon S. Blair, Cecilia Mascolo, Wolfgang Emmerich,
and Paul Grace. Exploiting reflection in mobile computing middleware.
SIGMOBILE Mob. Comput. Commun. Rev., 6(4):34–44, 2002.

[CD96] Michael J. Carey and David J. DeWitt. Of objects and databases: A
decade of turmoil. In The VLDB Journal, pages 3–14, 1996.

[CDK05] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems: Concepts and Design (4th edition). Addison-Wesley, 2005.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice
Nivat, editor, Foundations of Software Science and Computation Struc-
tures: First International Conference, FOSSACS ’98, volume 1378 of
Lecture Notes in Computer Science, pages 140–155. Springer-Verlag,
Berlin Germany, 1998.

[CJ02] Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe mid-
dleware for mobile systems. SIGMOBILE Mob. Comput. Commun. Rev.,
6(4):25–33, 2002.

[CJF01] Harry Chen, Anupam Joshi, and Timothy Finin. Dynamic Service Dis-
covery for Mobile Computing: Intelligent Agents meet Jini in the Aether.
Cluster Computing, 4(4):343–354, Oct 2001.

[CLZ00] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Mars: A pro-
grammable coordination architecture for mobile agents. IEEE Internet
Computing, 4(4):26–35, Jul/Aug 2000.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. De-
sign and evaluation of a wide-area event notification service. ACM Trans.
Comput. Syst., 19(3):332–383, 2001.

266 BIBLIOGRAPHY

[DCYAD05] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern,
and Sophia Drossopoulou. A distributed object-oriented language with
session types. In Trustworthy Global Computing, volume 3705 of Lec-
ture Notes in Computer Science, pages 299–318, 2005.

[DD03] Theo D’Hondt and Wolfgang De Meuter. Of first-class methods and
dynamic scope. RSTI - L’objet no. 9/ 2003. LMO 2003, pages 137–149,
2003.

[DDD04] Wolfgang De Meuter, Theo D’Hondt, and Jessie Dedecker. Pico:
Scheme for mere mortals. In Jacques Malenfant and Bjarte M. Østvold,
editors, ECOOP Workshops, volume 3344 of Lecture Notes in Computer
Science. Springer, 2004.

[De 04] Wolfgang De Meuter. Move Considered Harmful: A Language Design
Approach to Mobility and Distribution for Open Networks. PhD thesis,
Vrije Universiteit Brussel, 2004.

[Ded06] Jessie Dedecker. Ambient-Oriented Programming. PhD thesis, Vrije
Universiteit Brussel, Faculteit Wetenschappen, May 2006.

[DGM+07] Jessie Dedecker, Elisa Gonzalez Boix, Stijn Mostinckx, Stijn Timber-
mont, Jorge Vallejos, and Tom Van Cutsem. The Ambienttalk/2 Tu-
torial, 2007. http://prog.vub.ac.be/amop/at/tutorial/
tutorial (captured in March 2008).

[D’H96] Theo D’Hondt. The pico programming project. 1996. http://pico.
vub.ac.be (captured in March 2008).

[DTM+05] Wolfgang De Meuter, Eric Tanter, Stijn Mostinckx, Tom Van Cut-
sem, and Jessie Dedecker. Flexible object encapsulation for Ambient-
Oriented Programming. In Dynamic Languages Symposium at OOP-
SLA ’05: Companion of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
ACM Press, 2005.

[DV04] Jessie Dedecker and Werner Van Belle. Actors for mobile ad-hoc net-
works. In L. Yang, M. Guo, J. Gao, and N. Jha, editors, International
Conference on Embedded and Ubiquitous Computing, volume 3207 of
Lecture Notes in Computer Science, pages 482–494. Springer-Verlag,
August 2004.

[DVM+05] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient-Oriented Programming. In OOP-
SLA ’05: Companion of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
ACM Press, 2005.

[DVM+06a] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter. Ambient-oriented Programming in Ambienttalk. In Dave
Thomas, editor, Proceedings of the 20th European Conference on
Object-oriented Programming (ECOOP), volume 4067 of Lecture Notes
in Computer Science, pages 230–254. Springer, 2006.

http://prog.vub.ac.be/amop/at/tutorial/tutorial
http://prog.vub.ac.be/amop/at/tutorial/tutorial
http://pico.vub.ac.be
http://pico.vub.ac.be

BIBLIOGRAPHY 267

[DVM+06b] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, , Wolfgang De
Meuter, and Theo D’Hondt. Ambienttalk: Language support for mo-
bile computing. In International Workshop on System Support for Fu-
ture Mobile Computing Applicatons (FUMCA). IEEE Computer Society
Press, 2006.

[EAC98] S.O. Ehmety, I. Attali, and D. Caromel. About the automatic continu-
ations in the Eiffel// model. In Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applica-
tions, pages 219–225, 1998.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114–131, 2003.

[EG01] Patrick Th. Eugster and Rachid Guerraoui. Content-based publish/sub-
scribe with structural reflection. In COOTS’01: Proceedings of the
6th conference on USENIX Conference on Object-Oriented Technolo-
gies and Systems, pages 10–10, Berkeley, CA, USA, 2001. USENIX
Association.

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm. On
objects and events. In OOPSLA ’01: Proceedings of the 16th ACM SIG-
PLAN conference on Object oriented programming, systems, languages,
and applications, pages 254–269, New York, NY, USA, 2001. ACM
Press.

[EGH05] Patrick Eugster, Benoı̂t Garbinato, and Adrian Holzer. Location-based
publish/subscribe. Fourth IEEE International Symposium on Network
Computing and Applications, pages 279–282, 2005.

[EGH06] Patrick Eugster, Benoı̂t Garbinato, and Adrian Holzer. Pervaho: A devel-
opment & test platform for mobile ad hoc applications. In Third annual
International Conference on Mobile and Ubiquitous Systems: Network-
ing & Services, pages 1–5, July 2006.

[EGS00] Patrick Th. Eugster, Rachid Guerraoui, and Joe Sventek. Distributed
asynchronous collections: Abstractions for publish/subscribe interac-
tion. In ECOOP ’00: Proceedings of the 14th European Conference
on Object-Oriented Programming, pages 252–276, London, UK, 2000.
Springer-Verlag.

[Esp95] David Espinosa. Semantic Lego. PhD thesis, Department of Computer
Science, Columbia University, 1995.

[Eug07] Patrick Eugster. Type-based publish/subscribe: Concepts and experi-
ences. ACM Trans. Program. Lang. Syst., 29(1):6, 2007.

[Fet05] Abe Fettig. Twisted Network Programming Essentials. O’Reilly Media,
Inc., October 2005.

[FW84] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without
metaphysics. In LFP ’84: Proceedings of the 1984 ACM Symposium
on LISP and functional programming, pages 348–355, New York, NY,
USA, 1984. ACM.

268 BIBLIOGRAPHY

[GC89] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism
for distributed file cache consistency. In SOSP ’89: Proceedings of the
twelfth ACM symposium on Operating systems principles, pages 202–
210, New York, NY, USA, 1989. ACM Press.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and
their significance. Commun. ACM, 35(2):97–107, 1992.

[GDL+04] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swan-
son, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Grib-
ble, and David Wetherall. System support for pervasive applications.
ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transac-
tions on Programming Languages and Systems, 7(1):80–112, Jan 1985.

[GF99] Rachid Guerraoui and Mohammed E. Fayad. OO Distributed Program-
ming is Not Distributed OO Programming. Communications of the ACM,
42(4):101–104, 1999.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification third edition. Addison-Wesley Professional, 2005.

[GR89] Adele Goldberg and David Robson. Smalltalk-80: The Language.
Addison-Wesley Longman Publishing Co., Inc., 1989.

[GR03] B. Garbinato and P. Rupp. From ad hoc networks to ad hoc applications.
In Proceedings of the 7th International Conference on Telecommunica-
tions, pages 145–149, 2003.

[Gro03] IST Advisory Group. Ambient intelligence: from vision to reality,
September 2003.

[GVDD07] Elisa Gonzalez Boix, Tom Van Cutsem, Jessie Dedecker, and Wolf-
gang De Meuter. Language support for leasing in mobile ad hoc net-
works. Technical Report VUB-PROG-TR-07-08, Vrije Universiteit
Brussel, 2007.

[GWDD06] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt. Inter-
language reflection: A conceptual model and its implementation. Com-
puter Languages, Systems & Structures, 32(2-3):109–124, 2006.

[Hal85] Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8:323–364, 1977.

[HO06] Philipp Haller and Martin Odersky. Event-based programming without
inversion of control. In Proc. Joint Modular Languages Conference,
Springer LNCS, 2006.

[Hoa73] C. A. R. Hoare. Hints on programming language design. Technical
Report STAN-CS-73-403, Stanford University, 1973.

BIBLIOGRAPHY 269

[Hoh06] Gregor Hohpe. Programming without a call stack – event-driven ar-
chitectures, 2006. www.enterpriseintegrationpatterns.
com/docs/EDA.pdf (captured in March 2008).

[Hon93] Kohei Honda. Types for dyadic interaction. In CONCUR ’93, volume
715 of Lecture Notes in Computer Science, pages 509–523, 1993.

[HRBS98] Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-
ming languages for distributed applications. New Generation Comput-
ing, 16(3):223–261, 1998.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. SIGPLAN Not., 43(1):273–284, 2008.

[Int05] International Telecommunication Union. ITU Internet Reports 2005:
The Internet of Things, 7th edition. Geneva, Switzerland, 2005.

[JdT+95] Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K.
Gifford, and M. Frans Kaashoek. Rover: a toolkit for mobile informa-
tion access. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95), pages 156–171, Colorado, December
1995.

[Jef85] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404–425, 1985.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-
grained mobility in the Emerald system. ACM Transactions on Com-
puter Systems, 6(1):109–133, February 1988.

[JTK97] Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Mobile
computing with the rover toolkit. IEEE Transactions on Computers,
46(3):337–352, 1997.

[KB02] Alan Kaminsky and Hans-Peter Bischof. Many-to-many invocation: a
new object oriented paradigm for ad hoc collaborative systems. In OOP-
SLA ’02: Companion of the 17th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
Onward! Track, New York, NY, USA, 2002. ACM Press.

[KC03] J. Kephart and D. Chess. The vision of autonomic computing. IEEE
Computer, 1(36):41–50, 2003.

[KK04] Wooyoung Kim and Alan H. Karp. Customizable description and dy-
namic discovery for web services. In EC ’04: Proceedings of the 5th
ACM conference on Electronic commerce, pages 142–151, New York,
NY, USA, 2004. ACM.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Pro-
ceedings European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and
New York, 1997.

www.enterpriseintegrationpatterns.com/docs/EDA.pdf
www.enterpriseintegrationpatterns.com/docs/EDA.pdf

270 BIBLIOGRAPHY

[KP96] Gregor Kiczales and Andreas Paepcke. Open implementations and
metaobject protocols. Tutorial slides and notes, Software Design Area,
Xerox Corporation, 1996. http://www.parc.xerox.com/csl/
groups/sda/publications.

[KRB91] Gregor Kiczales, Jim Des Rivieres, and Daniel G. Bobrow. The Art of
the Metaobject Protocol. MIT Press, Cambridge, MA, USA, 1991.

[KS90] Kenneth Kahn and Vijay A. Saraswat. Actors as a special case of con-
current constraint (logic) programming. In OOPSLA/ECOOP ’90: Pro-
ceedings of the European conference on object-oriented programming
on Object-oriented programming systems, languages, and applications,
pages 57–66, New York, NY, USA, 1990. ACM Press.

[KSMA06] YoungMin Kwon, Sameer Sundresh, Kirill Mechitov, and Gul Agha.
Actornet: an actor platform for wireless sensor networks. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1297–1300, New York, NY, USA,
2006. ACM.

[KWN90] Dennis Kafura, Doug Washabaugh, and Jeff Nelson. Garbage collection
of actors. In OOPSLA/ECOOP ’90: Proceedings of the European con-
ference on object-oriented programming on Object-oriented program-
ming systems, languages, and applications, pages 126–134, New York,
NY, USA, 1990. ACM.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In ACM, editor, Conference record of POPL ’95,
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages: San Francisco, California, January 22–25, 1995,
pages 333–343, New York, NY, USA, 1995. ACM Press.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared be-
havior in object-oriented systems. In Conference proceedings on Object-
oriented Programming Systems, Languages and Applications, pages
214–223. ACM Press, 1986.

[Lie87] Henry Lieberman. Concurrent object-oriented programming in ACT 1.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent
Programming, pages 9–36. MIT Press, 1987.

[Lis88] Barbara Liskov. Distributed programming in Argus. Communications
Of The ACM, 31(3):300–312, 1988.

[LK97] Cristina Videira Lopes and Gregor Kiczales. D: A language framework
for distributed programming. Technical Report SPL97-010, P9710047,
Palo Alto, CA, USA, February 1997.

[LM07] Ralf Lämmel and Eric Meijer. Revealing the X/O impedance mismatch
(Changing lead into gold). In Roland Backhouse, Jeremy Gibbons,
Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Programming,
LNCS. Springer-Verlag, 06 June 2007.

http://www.parc.xerox.com/csl/groups/sda/publications
http://www.parc.xerox.com/csl/groups/sda/publications

BIBLIOGRAPHY 271

[LS88] B. Liskov and L. Shrira. Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, pages 260–267. ACM Press, 1988.

[Mac86] Bruce J. MacLennan. Principles of Programming Languages: Design,
Evaluation, and Implementation. Oxford University Press, USA, De-
cember 1986.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection. In
OOPSLA ’87: Conference proceedings on Object-oriented Program-
ming Systems, Languages and Applications, pages 147–155, New York,
NY, USA, 1987. ACM Press.

[Mai04] Christian Maihöfer. A survey of geocast routing protocols. IEEE Com-
munications Surveys & Tutorials, 6(2):32–42, 2004.

[Mar06] Pierre Martin. A reflective approach to building extensible distributed
actor languages. Master’s thesis, Vrije Universiteit Brussel, 2006.

[MC03] René Meier and Vinny Cahill. Exploiting proximity in event-based mid-
dleware for collaborative mobile applications. In Proceedings of the 4th
IFIP International Conference on Distributed Applications and Interop-
erable Systems (DAIS’03), 2003.

[McA95] Jeff McAffer. Meta-level programming with coda. In ECOOP ’95: Pro-
ceedings of the 9th European Conference on Object-Oriented Program-
ming, pages 190–214, London, UK, 1995. Springer-Verlag.

[MCE02] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile Com-
puting Middleware. In Advanced lectures on networking, pages 20–58.
Springer-Verlag New York, Inc., 2002.

[McG00] Robert E. McGrath. Discovery and its discontents: Discovery pro-
tocols for ubiquitous computing. Technical Report UIUCDCS-R-99-
2132, Department of Computer Science University of Illinois Urbana-
Champaign, 2000.

[MCNC05] René Meier, Vinny Cahill, Andronikos Nedos, and Siobhán Clarke.
Proximity-based service discovery in mobile ad hoc networks. In Distri-
buted Applications and Interoperable Systems, pages 115–129. Springer,
2005.

[Mei02] René Meier. Communication paradigms for mobile computing. SIGMO-
BILE Mob. Comput. Commun. Rev., 6(4):56–58, 2002.

[Mey93] Bertrand Meyer. Systematic concurrent object-oriented programming.
Communications of the ACM, 36(9):56–80, 1993.

[Mey00] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
March 2000.

[MHS02] R. Sharma J. Fialli M. Hapner, R. Burridge and K. Stout. Java message
service specification version 1.1. Technical report, Sun Microsystems,
Inc., 2002.

272 BIBLIOGRAPHY

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how
to develop domain-specific languages. ACM Comput. Surv., 37(4):316–
344, 2005.

[Mil06] Mark Miller. Robust Composition: Towards a Unified Approach to Ac-
cess Control and Concurrency Control. PhD thesis, John Hopkins Uni-
versity, Baltimore, Maryland, USA, May 2006.

[MK88] Satoshi Matsuoka and Satoru Kawai. Using tuple space communication
in distributed object-oriented languages. SIGPLAN Not. Special issue:
’OOPSLA 88 Conference Proceedings, 23(11):276–284, 1988.

[MMF00] Mark Miller, Chip Morningstar, and Bill Frantz. Capability-based finan-
cial instruments. In Proceedings of Financial Cryptography. springer-
Verlag, 2000.

[MMH05] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. Emma: Epi-
demic messaging middleware for ad hoc networks. Personal Ubiquitous
Comput., 10(1):28–36, 2005.

[MMY96] H. Masuhara, S. Matsuoka, and A. Yonezawa. Implementing parallel
language constructs using a reflective object-oriented language. In Pro-
ceedings of Reflection Symposium ’96, pages 79–91, April 1996.

[MPR01] A. Murphy, G. Picco, and G.-C. Roman. LIME: A middleware for phys-
ical and logical mobility. In Proceedings of the The 21st International
Conference on Distributed Computing Systems, pages 524–536. IEEE
Computer Society, 2001.

[MRV98] A. L. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal
reasoning about mobile communications. In IWSSD ’98: Proceedings
of the 9th international workshop on Software specification and design,
page 25, Washington, DC, USA, 1998. IEEE Computer Society.

[MS03] Mark Miller and Jonathan Shapiro. Paradigm regained : Abstraction
mechanisms for access control. In Proceedings of Eighth Asian Com-
puting Science Conference, December 2003.

[MTS05] Mark Miller, E. Dean. Tribble, and Jonathan Shapiro. Concurrency
among strangers: Programming in E as plan coordination. In R. De
Nicola and D. Sangiorgi, editors, Symposium on Trustworthy Global
Computing, volume 3705 of LNCS, pages 195–229. Springer, April
2005.

[MVTT07] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, and Eric Tan-
ter. Mirages: Behavioral intercession in a mirror-based architecture.
In Proceedings of the Dynamic Languages Symposium - OOPSLA’07:
Companion of the 22st annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications., pages
222–248. ACM Press, 2007.

[MWN02] Scott McLean, Kim Williams, and James Naftel. Microsoft .Net Remot-
ing. Microsoft Press, Redmond, WA, USA, 2002.

BIBLIOGRAPHY 273

[MYS03] Mark Miller, Ka Ping Yee, and Jonathan Shapiro. Capability myths de-
molished. Technical report, Combex, Inc., 2003.

[MZ04] Marco Mamei and Franco Zambonelli. Programming pervasive and mo-
bile computing applications with the TOTA middleware. In PERCOM
’04: Proceedings of the Second IEEE International Conference on Per-
vasive Computing and Communications, page 263, Washington, DC,
USA, 2004. IEEE Computer Society.

[Nid01] Michael Nidd. Service discovery in DEAPspace. IEEE Pers. Commun.,
8(4):39–45, Aug 2001.

[NKSI05] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming
ad-hoc networks of mobile and resource-constrained devices. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 249–260, New York,
NY, USA, 2005. ACM.

[Obj02] Object Management Group. Common Object Request Broker Architec-
ture: Core specification, 2002. http://www.omg.org.

[OIT92] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed pro-
gramming system with multi-model reflection framework. In Proceed-
ings of the Workshop on New Models for Software Architecture, Novem-
ber 1992.

[Ous96] John Ousterhout. Why threads are a bad idea (for most purposes),
1996. Presentation given at the 1996 Usenix Annual Technical
Conference, January 1996. http://www.softpanorama.org/
People/Ousterhout/Threads (captured in March 2008).

[Pae93] Andreas Paepcke. User-level language crafting: Introducing the CLOS
metaobject protocol. In Object-oriented programming: the CLOS per-
spective, pages 65–99. MIT Press, Cambridge, MA, USA, 1993.

[Per82] Alan J. Perlis. Epigrams on programming. ACM SIGPLAN Notices,
17(9):7–13, Sept. 1982.

[PMS07] Aleš Plšek, Philippe Merle, and Lionel Seinturier. Ambient-oriented
programming in fractal. In 3rd Intl. Workshop on Object Technology for
Ambient Intelligence and Pervasive Systems (OT4AmI), co-located with
ECOOP ’07, 2007.

[Qui07] John Quigley. The white programming language, 2007. CODE
Group, Illinois Institute of Technology. http://dijkstra.cs.
iit.edu/code/white.

[Ram08] Victor Ramiro. Proximity is in the eye of the beholder: a conceptual
framework. Master’s thesis, Universidad de Chile, Santiago de Chile,
2008. To Appear.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black. Traits: Composable units of behaviour. In Luca Cardelli, edi-
tor, ECOOP, volume 2743 of Lecture Notes in Computer Science, pages
248–274. Springer, 2003.

http://www.omg.org
http://www.softpanorama.org/People/Ousterhout/Threads
http://www.softpanorama.org/People/Ousterhout/Threads
http://dijkstra.cs.iit.edu/code/white
http://dijkstra.cs.iit.edu/code/white

274 BIBLIOGRAPHY

[SG01] U. Saif and D.J. Greaves. Communication primitives for ubiquitous sys-
tems or rpc considered harmful. pages 240–245, 2001.

[SHM07] David Svensson, Gorel Hedin, and Boris Magnusson. Pervasive appli-
cations through scripted assemblies of services. In IEEE International
Conference on Pervasive Services, pages 301–307, July 2007.

[Smi84] Brian Cantwell Smith. Reflection and semantics in LISP. In POPL ’84:
Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pages 23–35, New York, NY, USA,
1984. ACM Press.

[SS78] Guy L Steele and Gerald J Sussman. The art of the interpreter or, the
modularity complex (parts zero, one, and two). Technical report, Cam-
bridge, MA, USA, 1978.

[Ste94a] Guy L. Steele, Jr. Building interpreters by composing monads. In ACM,
editor, Conference record of POPL ’94, 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: Portland, Ore-
gon, January 17–21, 1994, pages 472–492, New York, NY, USA, 1994.
ACM Press.

[Ste94b] Patrick Steyaert. Open Design of Object-Oriented Languages, A Foun-
dation for Specialisable Reflective Language Frameworks. PhD thesis,
Vrije Universiteit Brussel, 1994.

[Sun98] Sun Microsystems. Java remote method invocation specification,
1998. http://java.sun.com/j2se/1.4.2/docs/guide/
rmi/spec/rmiTOC.html (captured in March 2008).

[TMHK95] E. Dean Tribble, Mark S. Miller, Norm Hardy, and David Krieger.
Joule: Distributed application foundations. Technical Report ADd03.4P,
Agorics Inc., December 1995. www.agorics.com/Library/
joule.html.

[TMY94] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. Abcl/f: A
future-based polymorphic typed concurrent object-oriented language -
its design and implementation. In G. Blelloch, M. Chandy, and S. Jagan-
nathan, editors, Proceedings of the DIMACS workshop on Specification
of Parallel Algorithms, number 18 in Dimacs Series in Discrete Math-
ematics and Theoretical Computer Science, pages 275–292. American
Mathematical Society, 1994.

[TPST98] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. Theimer. The case
for non-transparent replication: Examples from Bayou. IEEE Data En-
gineering Bulletin, 21(4):12–20, december 1998.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Or-
ganizing programs without classes. Lisp Symb. Comput., 4(3):223–242,
1991.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In
Conference proceedings on Object-oriented Programming Systems, Lan-
guages and Applications, pages 227–242. ACM Press, 1987.

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
www.agorics.com/Library/joule.html
www.agorics.com/Library/joule.html

BIBLIOGRAPHY 275

[VA01] Carlos Varela and Gul Agha. Programming dynamically reconfigurable
open systems with SALSA. SIGPLAN Not., 36(12):20–34, 2001.

[Van06] Tom Van Cutsem. A Modular Mixin-based Implementation of Ambient
References. Technical Report VUB-PROG-TR-06-07, Vrije Universiteit
Brussel, 2006.

[VDD07] Tom Van Cutsem, Jessie Dedecker, and Wolfgang De Meuter. Object-
oriented coordination in mobile ad hoc networks. In 9th Interna-
tional Conference on Coordination Models and Languages (COORDI-
NATION), volume 4467 of Lecture Notes in Computer Science, pages
231–248, Heidelberg, June 2007. Springer-Verlag.

[VDM+06] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, Elisa Gonzalez,
Theo D’Hondt, and Wolfgang De Meuter. Ambient references: ad-
dressing objects in mobile networks. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 986–997, New York, NY,
USA, 2006. ACM Press.

[VDMD05] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, and Wolfgang De
Meuter. Abstractions for Context-aware Object References. In 2nd
Workshop on Building Software for Pervasive Computing, OOPSLA 05,
2005.

[VMD07] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Linguis-
tic symbiosis between actors and threads. In Proceedings of the 2007
International Conference on Dynamic Languages (ICDL 2007), ACM
Digital Library, August 2007.

[VMD08] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Linguistic
Symbiosis between Actors and Threads. Computer Languages, Systems
and Structures, 1(35), September 2008. To Appear.

[VVG+07] Jorge Vallejos Vargas, Tom Van Cutsem, Elisa Gonzalez Boix, Stijn
Mostinckx, and Wolfgang De Meuter. The message-oriented mobility
model. Journal of Object Technology. Special Issue: TOOLS EUROPE
2007, 6(9):363–382, October 2007.

[Wal99] Jim Waldo. The Jini Architecture for Network-centric Computing. Com-
mun. ACM, 42(7):76–82, 1999.

[Wal01] Jim Waldo. Constructing ad hoc networks. In IEEE International
Symposium on Network Computing and Applications (NCA’01), page 9,
2001.

[WBB06] Torben Weis, Christian Becker, and Alexander Brändle. Towards a pro-
gramming paradigm for pervasive applications based on the ambient
calculus. In International Workshop on Combining Theory and Sys-
tems Building in Pervasive Computing (CTSB), co-located with Perva-
sive 2006, 2006.

276 BIBLIOGRAPHY

[WD05] Marcel Weiher and Stéphane Ducasse. Higher order messaging. In DLS
’05: Proceedings of the 2005 symposium on Dynamic languages, pages
23–34, New York, NY, USA, 2005. ACM.

[Wei91] Mark Weiser. The computer for the twenty-first century. Scientific Amer-
ican, pages 94–100, september 1991.

[WWWK96] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A note
on distributed computing. In MOS ’96: Selected Presentations and In-
vited Papers Second International Workshop on Mobile Object Systems
- Towards the Programmable Internet, pages 49–64. Springer-Verlag,
1996.

[WY88] Takuo Watanabe and Akinori Yonezawa. Reflection in an object-oriented
concurrent language. In Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 306–315. ACM
Press, 1988.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in ABCL/1. In Conference proceed-
ings on Object-oriented programming systems, languages and applica-
tions, pages 258–268. ACM Press, 1986.

[Yon90] Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent Sys-
tem. Computer Systems Series. MIT Press, 1990.

[Zad65] L.A. Zadeh. Fuzzy sets. Information and Control, (8):338–353, 1965.

Index

ABCL, 35, 94
Active Object, 19, 23
ActorNet, 37
Actors, 37, 93

in AmbientTalk, 66, 67
ActorSpace, 38, 179
Ad hoc

Application, 16
Network, 14

All, 140
Ambient Acquaintance Management, 18,

21, 34
Ambient Actor Model, 19, 57
Ambient Bindings, 239
Ambient Message, 130
Ambient References, 128

in AmbientTalk/1, 22
Ambient-oriented Programming, 13, 17
AmbientTalk/1, 19
Annotations, 78
Anonymous

Communication, 31
Service, 18

Anonymous Far References, 156
Argus, 36, 94
Arity, 32

of Ambient References, 131, 138
One-to-many, 132
Point-to-point, 131

Arity Decoupling, 32, 120, 167
Aspect-oriented Programming, 241
Asynchronous Message, 18
At Least Once, 152
At Most Once, 152
Attribute Object, 137
Attributes, 137

Best Effort, 152
Block Closures, 60

Call Stack, 79

Callbacks, 70
Capabilities, 6, 88
Cardinality, 173
Carrier, 130
Client-server, 18
Collocation, 16
Communication, 27

Decoupled, 30
history, 24
trace, 18, 20

Communication Lifetime, 131, 140
Bounded two-way, 132
One-way, 132
Unbounded two-way, 132

Communication Range, 129
Conceptual Integrity, 58
Conditional Synchronisation

in AmbientTalk, 73
Connection-oriented, 52, 155, 169
Containment, 19, 23
CORBA, 35

Deadlock, 18, 66
Decoupling

in arity, 32, 49
in space, 31, 49, 165
in synchronisation, 32, 49, 166
in time, 31, 49

Deep Copy, 23
Deferrables, 94
Delegation, 59, 64, 89
Delivery Handles, 127, 142
Delivery Policies, 130
Designation, 169
Disconnected Operation, 41
Discovery, 21, 27

Decentralised, 29, 49, 163
in Jini, 41

Discovery Event Handler, 76
Discovery Lifetime, 131, 144

Instant, 131

277

278 INDEX

Sustained, 131, 146
Transient, 131, 145

Distributed Asynchronous Collections, 183
Distributed Naming, 31
Domain-specific Language, 5
Duck Test, 135
Due, 78, 143
Dynamic Inheritance, 59, 63

E, 36, 93
Elasticity, 172
Embedding, 113
Emerald, 35
EMMA, 43
Encapsulation, 62
Epidemic Routing, 44
Erlang, 36
Event Loops, 6, 53, 58, 66
Event-driven Computation, 18
Eventual References, 72
Exactly Once, 152
Exceptions

in AmbientTalk, 71
Exclusive State Access, 67
Expirable Ambient Messages, 148
Expires, 148
Exporting Objects, 76, 82

Failure Event Handler, 75
Failure Handling, 28, 85

Connection-independent, 33, 50, 167
in WAN Languages, 36

Failure handling
in AmbientTalk, 75, 78

Far References, 67, 72, 75
Anonymous, 156

Filters, 135
Fractal, 239
Futures, 22, 70, 94

and Anonymous Far References, 158
of Ambient Messages, 141
ruining, 71

Fuzzy Sets, 242

Garbage Collection, 24, 215
Distributed, 24, 86, 92

Geocast, 240

Handover, 118
Higher-order Messages, 98

Idempotent, 154
Impedance Mismatch, 6

Object-event, 50
Instant, 144
Instantiation, 59
Intercession, 102
Inversion of Control, 54, 79
Isolates, 69, 88

J2ME, 90
Janus, 36
Java

JMS, 43
RMI, 35

Jini, 41, 94

Language Mixin, 22, 25
Leasing, 85, 87, 94

in EMMA, 43
in Jini, 42

LIME, 39
Linda, 39
Linguistic Symbiosis, 108
Listeners, 79
Little Language, 5
Lookup Service, 29
LPS, 42, 95

M2MI, 44, 178, 217
as Implementation Library, 209

Mail Address, 37, 177
Mailbox, 20, 21, 37, 92
MARS, 40
Marshalling, 214
Message Handler, 186
MetaMessage, 104
Metaobject Protocol, 21
Mirages, 102
Mirrors, 99
Mobile Ad Hoc Network, 14
Mobile Ambients, 38
Multifutures, 142, 149
Multilisp, 94
Multireferences, 159
Musical Match Maker, 28, 81

Nomadic Network, 16, 40
Nominal Type, 65
Non-blocking Communication, 18, 34, 66

Object Nesting, 62

INDEX 279

Obliq, 35
One, 139
One-to-many Messages, 139
One-way Messages, 140
One.world, 45, 165, 180
Oneway, 141
Open Implementations, 238
Ownership by actors, 67
Oz, 36

Paradigm, 17
Paradigm Leak, 6
Passive Object, 19, 23
Point-to-point Messages, 138
Potential Receivers, 130
ProActive, 94, 240
Promise Pipelining, 94
Promises, 36, 70, 94
Protocols, 134
Provisional Services, 124
Proximity, 240

in STEAM, 43
Publish/Subscribe, 42, 95

QRPC, 41
Quasi-quoting, 100

Reach, 129
Recall Period, 153
Referential Transparency, 6
Reflection, 20, 99

Inter-language, 109
Reification, 20
Remote Object Reference, 20, 52
Remote Procedure Call, 35
Replication, 22
Reply, 141
Request/reply, 53
RFID, 14, 124
Roaming, 117, 139
Rover, 41
RPC, 35

Queued, 41

Salsa, 36, 240
Scope

Extensional Implementation, 188
Intensional Implementation, 198
Lexical, 61
Object, 61

of Ambient References, 129, 133
Scoping

Dynamic, 25
Spatial, 43

Security, 88
Serial Execution, 66
Service Discovery

and Security, 90
in AmbientTalk, 76, 83, 87
in AmbientTalk/1, 24
versus Service Lookup, 29

Service Objects, 136
Session Types, 242
Snapshots, 159
Space Decoupling, 31
SpatialViews, 37
Stateful, 52, 169
STEAM, 43

Proximities, 88
Stratification, 25, 108
Sustain, 146
Synchronisation, 28
Synchronisation Decoupling, 32

Tag, 21
Temporal Scope, 144
Time Decoupling, 31
Timeouts, 78
TOTA, 40
Traits, 63
Transaction, 18
Transient

Disconnection, 15
Transient, 145
Tuple Spaces, 39, 176
Twisted, 94
Two-way Messages, 141
Type Tags, 65, 76

Ubiquitous Computing, 1
Uniform Access Principle, 59

Vats, 66
Volatile Connections, 14, 31, 80

Wait by necessity, 70
when:becomes:, 70
White, 241
Wireless Sensor Network, 36

Zero Infrastructure, 15, 81

	Introduction
	Research Context
	Problem Statement
	Research Goals
	A Language-oriented Approach
	Domain-specific Languages
	Language Integration and Impedance Mismatch
	The Myth of Distribution Transparency

	Contributions
	Dissertation Roadmap
	Summary

	Ambient-Oriented Programming Revisited
	Motivation
	Mobile Ad Hoc Networks
	Hardware Characteristics
	Ad Hoc Networks versus Ad Hoc Applications

	Ambient-Oriented Programming
	Classless Object Models
	Non-Blocking Communication Primitives
	Reified Communication Traces
	Ambient Acquaintance Management
	Summary

	AmbientTalk/1
	The AmbientTalk/1 Kernel Language
	First-class Mailboxes
	Ambient Acquaintance Management
	AmbientTalk as a Language Laboratory

	Limitations of the AmbientTalk/1 Kernel
	Limitations of the Object Model
	Limitations of the Ambient Actor Model
	Limitations of the Language Laboratory

	Conclusion

	Coordination in Mobile Ad hoc Networks
	Coordination
	Criteria for Coordination in MANETs
	Decentralised Discovery
	Decoupled Communication
	Connection-independent Failure Handling
	Relation to Ambient-oriented Programming

	Survey of Related Work
	Languages for Local Area Networks
	Languages for Wide Area Networks
	Languages for Wireless Sensor Networks
	Models and Calculi for Wide Area Networks
	Tuple Space Middleware for Ad Hoc Networks
	Middleware for Nomadic Networks
	Publish-subscribe Middleware for Ad Hoc Networks
	Synthesis and Discussion

	The Object-Event Impedance Mismatch
	Specific versus Generic Communication
	Connection-oriented versus Connectionless Designation
	Bidirectional versus Unidirectional Communication
	Threads versus Event Loops
	Reconciling Objects with Events

	Conclusion

	AmbientTalk
	History and Design Rationale
	AmbientTalk: an Object-oriented Language
	Objects, Instantiation and Delegation
	Block Closures
	Scoping, Nesting and Encapsulation
	Traits
	Type Tags
	Summary

	AmbientTalk: a Concurrent Language
	Event Loop Concurrency
	AmbientTalk Actors
	Message Passing Semantics
	Futures

	AmbientTalk: a Distributed Language
	Far References and Partial Failures
	Exporting Objects
	Service Discovery
	Partial Failures Revisited

	Discussion
	Event-driven Object-oriented Programming
	Suitability for Mobile Ad Hoc Networks

	Case Study: the Musical Match Maker
	Data Abstractions
	Exporting and Discovering Service Objects
	The Library Transmission Protocol
	Failure Handling

	Limitations and Future Work
	Notes on Implementation Status
	Previous and Related Work
	AmbientTalk/1 versus AmbientTalk/2
	Notes on Related Work

	Conclusion

	Metalevel Engineering in AmbientTalk
	First-class Messages and Methods
	First-class Messages
	First-class Methods

	Reflection
	Mirror-based Reflection
	Mirages: Mirror-based Intercession
	First-class References as Mirages
	Stratified Object References

	Linguistic Symbiosis with the JVM
	Linguistic Symbiosis
	Composing Threads with Actors
	Embedding AmbientTalk in Java

	Conclusion

	Ambient References
	Motivation
	Roaming
	One-to-many Communication
	Provisional Services
	Summary

	Ambient References in a Nutshell
	Example: Broadcasting Stock Quote Updates
	Space-decoupled Object References

	Decomposing Ambient References
	Ambient references in AmbientTalk
	Scope
	Service Objects
	Arity
	Communication Lifetime
	Discovery Lifetime
	Relating Discovery Lifetime and Communication Lifetime
	Summary
	Interactions between Delivery Policies

	Delivery Guarantees
	Point-to-point Messages
	One-to-many Messages
	Delivery Order

	Reintroducing Connection-oriented Designation
	Anonymous Far References
	Snapshots
	Multireferences
	Summary

	On the Scale of Time and Space
	Conclusion

	Ambient References in Context
	Evaluation
	Decentralised Discovery
	Loosely-coupled Communication
	Connection-Independent Failure Handling
	Summary

	The Object-Event Impedance Mismatch Revisited
	Specific versus Generic Communication
	Connection-oriented versus Connectionless Designation
	Bidirectional versus Unidirectional Communication
	Threads versus Event Loops
	Reconciling Objects with Events

	Relation to Prior Work
	Elasticity
	Cardinality
	Reference-centric versus Message-centric View

	Limitations and Future Work
	Notes on Related Work
	Tuple Spaces
	Actors and Far References
	M2MI Handles
	ActorSpace
	One.world
	Distributed Asynchronous Collections
	Joule Channels

	Conclusion

	Implementing Ambient References
	Implementation Strategies
	Implementation Outline
	Extensional Reach
	Representing Reach
	Delivery Policies as Traits
	Representing Discovery Lifetime
	Representing Arity
	Representing Communication Lifetime
	Representing Expirable Messages
	Representing Exported Objects
	Snapshots
	Summary

	Intensional Reach
	Representing Reach
	Delivery Policies as Traits
	Representing Arity
	Representing Discovery Lifetime
	Communication Lifetime and Expirable Messages
	Representing Exported Objects
	Snapshots
	Summary

	Evaluation
	Ambient References as Custom Eventual References
	Many to Many Invocations
	Motivation
	Applying M2MI
	Using M2MI

	Implementing Connection-oriented References
	Anonymous Far References
	Multireferences

	Marshalling Ambient References
	Garbage Collection
	Conclusion

	Ambient References in Action
	Collaborative Chat
	Implementation via ambient references
	Evaluation

	Collaborative Slideshow
	Implementation via Ambient References
	Evaluation

	Comparing Ambient References with M2MI
	Roaming
	One-to-many Communication
	Provisional Services

	Conclusion

	Conclusion
	Research Goals
	Restating the Contributions
	Limitations of our Approach
	Language Integration versus Language Separation
	Custom Message Delivery Policies

	Work influenced by Ambient References
	Avenues for Future Research
	Aspect-oriented Programming
	Service Selection
	Session Types

	Concluding Remarks

	Ambient References Source Code
	Ambient References Language Module
	Custom Eventual References Module
	Extensional Implementation Module
	Intensional Implementation Module

	Bibliography
	Index

