
Advanced Traceability for ATL

Andrés Yie1,2?, Dennis Wagelaar2??

1 Grupo de Construcción de Software, Universidad de los Andes, Colombia
2 System and Software Engineering Lab (SSEL), Vrije Universiteit Brussel, Belgium

{ayiegarz, dennis.wagelaar}@vub.ac.be

Abstract. Tracing information is an essential part of the ATLAS Trans-
formation Language (ATL). It is used to support interaction between
transformation rules, where each rule can use the output of other rules
by means of the implicit tracing mechanism. However, tracing informa-
tion is often useful outside the scope of the transformation execution as
well. Currently, ATL offers limited access to the implicit tracing informa-
tion via the resolveTemp() method. In addition, the tracing information
is always discarded after the transformation execution. We propose a
method that allows richer runtime access to the tracing information, as
well a method for efficiently storing the tracing information in a separate
model.

1 Introduction

The tracing information used in the execution of an ATL transformation are
the relationships between every source element and its corresponding target
elements. These relationships are represented as tracing links which are used
by the ATL virtual machine (ATL-VM) to resolve the interactions and implicit
dependencies between the different rules involved in the executed transformation.

Each time one transformation rule is matched, a new tracing link is created
between the matched source element and all its corresponding target elements.
Subsequently, when a transformation rule implicitly requires the target elements
produced for a different rule, the ATL-VM automatically resolves the depen-
dency using the tracing links. Furthermore, when a rule produces several target
elements and a different rule needs a specific one of them, the ATL user needs to
specify explicitly the name of the output variable associated with the required
element using the resolveTemp() API method. This method is the standard way
to access the tracing information and is described in more detail in Section 2.

The tracing information often is required outside the scope of the execution
as tracing models. These models represent the relationships between source el-
ements and its corresponding target elements. There are several uses for these
models [1], for instance, to analyze the impact of a change in the source models,
? This research was supported by the Flemish Interuniversity Council (VLIR) funded

CARAMELOS project (http://ssel.vub.ac.be/caramelos/)
?? This work is part of the VariBru project, which is funded by the Institute for the

encouragement of Scientific Research and Innovation of Brussels (ISRIB).

to propagate the changes, to verify if the requirements are fulfilled in the code
or as input in some complex transformation chains. [2].

However, ATL offers limited access to the target elements via the resol-
veTemp() API method, using the name of the output variable. Advanced access
such as select the output elements by their type is not possible in the actual
ATL-VM. Furthermore, the ATL virtual machine discards the tracing informa-
tion after the execution of a transformation rule. This situation forces the ATL
users to extend their transformation rule for building and storing the required
tracing model. The extension of the transformation rules to generate a tracing
model can be done automatically, by using a High-Order Transformation (HOT).
In [3], a HOT is presented to automatically append the additional output ele-
ments to the original rules to generate the required tracing model. Nevertheless,
this solution creates an overhead problem because for every time that the origi-
nal rule is changed it is necessary to inject the rule into an ATL model, execute
the HOT, and extract the ATL code from the generated model. Moreover, the
modification of the HOT for adding customized tracing information or to use a
different metamodel is a complex task.

We propose two methods to offer access to tracing information to the ATL
user. The first one is a small extension of the ATL virtual machine providing
richer access to the tracing information during the transformation execution.
This richer access can be used with an endpoint rule1 to generate a tracing
model. The second method is based on ATL bytecode adaptation and automat-
ically generate a tracing model together with the target model, having minimal
overhead.

2 The implicit tracing mechanism

ATL’s implicit tracing mechanism is based on an internal facility that encodes re-
lationships between the source element and its corresponding target elements (so
called transient links) using the native type ASMTransientLink. Every time that
one rule is matched, one ASMTransientLink is created, the name of the matched
rule is assigned and the source and target elements are added to it. Finally the
new link is added to a collection of transient links. This collection is encoded
in the internal type ASMTransientLinkSet and stored in the module field This-
Module.links. These two internal types offer basic facilities to manage transient
links and its source and target elements. However, the ASMTransientLink and
the ASMTransientLinkSet operations cannot be accessed by the ATL end user.
The Figure 1 present an UML diagram with the ASMTransientLink and the
ASMTransientLinkSet native types.

For instance, in the transformation module Class2Relational presented in
Listing 1, the transformation rule Class2Table (line 3) will transform Class el-
ements into Tables elements, and the rule SingleValuedAttribute2Column (line
11) will transform Attributes into Columns. Every time one of these rules is

1 A called rule automatically executed at the end of the transformation

2

Fig. 1. ASMTransientLinkSet and ASMTransientLink native types

matched, a new transient link is created and the source and target elements
are assigned to it. Subsequently, the rule Class2Table will need to assign all the
Columns generated from the Attributes of the Class to the generated Table.
Therefore an implicit dependency exists between both rules. The ATL-VM re-
solves this dependency using the tracing links by translating the assignments of
the source element into assignments with the target elements. In the presented
case, the ATM-VM finds in the ASMTransientLinkSet collection all the ASM-
TransientLinks that have an Attribute as source element and collect the target
elements for them.

When an ATL transformation uses the resolveTemp() method, the ATL-VM
finds the required transient links, but returns only the target elements associated
with the name of the variable received as parameter. For instance, in Listing 1,
the resolveTemp() method is used (line 24) to explicitly assign the owner (table)
of a column. Hence, the ATL-VM finds the transient link that has the owner
(class) of the attribute (a.owner) and assigns the output element with the vari-
able name ’table’. This output variable belongs to the rule Class2Table (line
7).

3 Runtime access to the tracing information

As was mentioned before, occasionally the ATL users require richer access to the
tracing information. For instance, to find target elements by type or to iterate
over all the transient links. In order to do that, it is necessary to recreate the

3

1 module Class2Relational;
2 create OUT: Relational from IN: Class;
3 rule Class2Table {
4 from
5 c: Class!Class
6 to
7 table: Relational!Table (
8 name <- c.name ,
9 col <- Sequence {key}->union(c.attr ->reject(e|e.multiValued)),

10 key <- Set {key}
11),
12 key : Relational!Column (
13 name <- ’Id’
14)
15 }
16
17 rule SingleValuedAttribute2Column {
18 from
19 a: Class!Attribute (
20 not a.multiValued)
21 to
22 c: Relational!Column (
23 name <- a.name ,
24 owner <- thisModule.resolveTemp(a.owner , ’table ’)
25)
26 }
27
28 rule MultiValuedAttribute2Column {
29 from
30 a: Class!Attribute (a.multiValued)
31 to
32 t: Relational!Table (
33 name <- a.owner.name + ’_’ + a.name ,
34 col <- Sequence{id, value}),
35 id: Relational!Column (
36 name <- ’Id ’),
37 value: Relational!Column (
38 name <- a.name
39)
40 }

Listing 1. Class2Relational transformation module

tracing links in a different model. However, we can simplify this process giving
access to the implicit tracing information to the ATL user.

We extended the ASMTransientLinkSet and ASMTransientLink types with
a couple of methods that allow to iterate over the ASMTransientLinkSet collec-
tion and enrich the access to the source and target elements of the ASMTran-
sientLinks. These methods are:

– ASMTransientLinkSet.getLinks(): this method returns a collection of every
transient link in the transformation execution.

– ASMTransientLink.getSourceElementsMap(): this method returns a map of
the source elements of the transient link. The key of the map is the name of
the source variable and the value is the source element.

– ASMTransientLink.getTargetElementsMap(): this method returns a map of
the target elements of the transient link. The key of the map is the name of
the target variable and the value is the target element.

4

With these added methods, the ATL user can access the implicit tracing
information using the ATL (hidden) helper attribute ThisModule.links. For in-
stance, this richer access allows to the developer to get the target elements by
their type or to produce a tracing model. It is critical to only access this infor-
mation as a final step in the transformation, when all the elements are created
and assigned after all the rules have been matched and all (traced) model ele-
ments are created. In practice, this means that the tracing information should
not be accessed in the from part of matched rules or in helper attributes without
context. To be safe this access can be done in an endpoint rule such as the rules
presented in Listing 2. The purpose of these rules is to generate a tracing model
as a final step of a transformation execution.

1 endpoint rule getTraceModel () {
2 to
3 trace : TRACE!TraceModel (
4 name <- thisModule.toString(),
5 traces <- thisModule.links.getLinks()->collect(e |
6 thisModule.getTraceLink(e))->flatten ()
7)
8 }
9

10 rule getTraceLink(inSource : OclAny) {
11 to
12 trace : TRACE!TraceLink (
13 name <- inSource.getRule (). toString(),
14 sources <- inSource.getSourceElementsMap (). getKeys()->collect(e |
15 thisModule.getElement(e, inSource.getSourceElementsMap ().get(e))),
16 targets <- inSource.getTargetElementsMap (). getKeys()->collect(e |
17 thisModule.getElement(e, inSource.getTargetElementsMap ().get(e)))
18)
19 do {
20 trace;
21 }
22 }
23
24 rule getElement(name : String , element : OclAny) {
25 to
26 outelement : TRACE!TracedElement (
27 name <- name
28)
29 do {
30 outelement.refSetValue(’ref ’, element);
31 }
32 }

Listing 2. Tracing transformation rules

We use three rules to generate a tracing model: (lines 1-8) the endpoint rule
that creates the root of the tracing model and iterates over the transient link
collection calling the getTraceLink rule for every element in the links collection.
(lines 10-22) called rule that creates a link with the name of the rule and its source
and target elements. (lines 24-32) is the rule that create Traced Elements for the
source and target elements. Although, the presented rules are purely imperative,
they offer a simple solution to generate a trace model from the ATL’s implicit
tracing mechanism.

5

This method offers two main advantages with respect to the HOT method
presented before: 1) It is possible to add a superimposed module [4] to the previ-
ous rules to generate the tracing model keeping the original rule and the tracing
specific rule nicely separated in two different modules. 2) The rules used to gen-
erate this model are simpler and easy to change in order to use a customized
metamodel or add specific information. The drawback of this method is its poor
performance. The cause behind this is the necessity to create a copy of the inter-
nal tracing model as a final step of the transformation. We tested this method
in the Regular ATL-VM with a copy transformation for a model with nearly
9000 elements and it took in average 12.4 seconds, this is 136% more than the
normal execution of the same transformation that took in average 5.3 seconds2.

4 Automatic storing of the tracing information

The second method that we present is the most end-user friendly because auto-
matically stores the tracing information in a tracing model after the execution of
the transformation rule. The ATL user must select the generation of the tracing
model in the advanced launch configuration3 and give a name and path for out-
put tracing model4. The launch configuration dialogs are presented in Figure 2.

Fig. 2. ATL Launch configuration dialogs

This strategy is based on bytecode adaptation similar to the way that su-
perimposition is implemented in ATL, and is based on three steps, which are
explained in the following subsections.

2 The experiment code can be downloaded from http://ssel.vub.ac.be/svn-pub/

ATLTrace/TracingBenchmark
3 Provided that the option Allow Inter-model references in the advanced launch con-

figuration is activated
4 Our adaptation automatically selects the tracing metamodel

6

4.1 Tracing metamodel and model loading

When the transformation starts, an additional metamodel and an output model
are loaded. The metamodel is the Tracing metamodel and the model is the output
tracing model that conforms to the metamodel. The metamodel is internally
named TRACE and the model trace.

The TRACE metamodel presented in Figure 3 has a TransientLinkSet and
a TransientLink meta-classes that replace the native types. Additionally, this
metamodel has a TransientElement meta-class that represents a source or target
element in the transformation and has the name of the rule variable, and a
reference value to an EObject. This reference points to the actual elements in the
source and target models. Furthermore, using the EMF code generation facilities
we implemented the native TransientLinkSet and TransientLink methods in an
EMF plug-in. This EMF plug-in allows the visualization of models conform to
the TRACE metamodel and the transparent call to the methods of the EMF
version of the TransientLinkSet and TransientLink inside the ATL-VM.

Fig. 3. Tracing Metamodel

4.2 Bytecode adaptation

The second step is the bytecode adaptation, when the ASM file is loaded. The
adaptation replaces all the native implementations of TransientLinkSet and
TransientLink for our proposed EMF versions. These EMF versions are con-
form to the TRACE metamodel.

In the standard ASM code, the instances of TransientLinkSet and Tran-
sientLink are created by three contiguous instructions: 1) a push of the type
(TransientLinkSet or TransientLink), a push of #native and 3) the new in-
struction. When the ATM-VM executes these instructions a new native instance
is created. Our adaptation is done by replacing those push #native instruc-
tions by push TRACE instuctions. Therefore, when the ATL-VM executes the

7

adapted instructions, instances of our EMF metaclasses TransientLinkSet or
TransientLink are created instead of the native ones. The standard and adapted
instructions are presented in the Figure 4.

Standard bytecode Adapted bytecode

(.....) (.....)

Fig. 4. ASM bytecode Adaptation

In the transformation execution the ATL implicit mechanism transparently
uses the TransientLinkSet and TransientLink EMF versions instead of the native
ones.

4.3 Tracing model serialization

When the transformation is finished, the tracing model is stored together with
the other target models. An example of a generated tracing model is presented
in Figure 5.

Fig. 5. Tracing Model

The main advantages of this method is that it does not requires changes to
the original transformations, is end-user friendly and the performance has low
overhead. We tested this method with a copy transformation for a model with
nearly 9000 elements and it took approximately 6.0 seconds. This 12% more
than the normal execution. Although, the TRACE metamodel and the output

8

trace model cannot be customized by de end user, we offer the same richer
access to the implicit tracing mechanism as the method presented in Section 3.
In a similar fashion to that used by Listing 2, a customized tracing model can
be generated using the enriched access provided.

5 Conclusions and future work

In this paper we present a method that enrich the access to the tracing infor-
mation during transformation execution. This richer access can be used to find
target elements by type or with an endpoint rule to generate a tracing model
by iterating over all the transient links collection. Additionally, we present a
method that stores a tracing model after the execution in an user-friendly way.
This method is based on ATL bytecode adaptation.

These two additional methods enrich the ATL-VM with possibilities to the
end-users to access easily the tracing information and to avoid changing their
original transformations5. The first method offers the possibility of easily gener-
ate a custom tracing model by using a customized metamodel. Even so, the use
of this method represents a reduction in the performance of the transformations.
The second method, offers the most end-user friendly option to automatically
generate the tracing model with almost not repercussions in the performance of
the transformations.

However, to have a complete traceability solution for ATL it is necessary
to consider several missing features. First, when a chain of transformation is
used, is necessary calculate transitive closures over a set of tracing models. This
means, to offer dedicated operations to navigate through the different tracing
steps involved in a transformation chain. Second, to add information to each
tracing link about the implicit dependencies among rules in order to analyze
the impact of a change. For instance, to relate the tracing links produced by
the Class2Table rule and SingleValuedAttribute2Column from Listing 1 when
an implicit dependency exists. Third, the presented methods do not trace the
elements created by a called rule. It is necessary to define a representation for
this elements and relate them with the matched rules that trigger the called
rule. Finally, in some cases the rule’s name and variable’s name is not the most
suitable meta-data for the tracing links and a more customized information is
required. This could be possible if we add trace annotations to the transformation
rules that can be added to the trace model automatically.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3) (2006) 515–526

5 The code of both extensions can be downloaded from the TracingModel branch of the
ATL CVS (http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.m2m/org.
eclipse.m2m.atl/plugins/?root=Modeling_Project&pathrev=TracingModel)

9

2. Vanhooff, B., Baelen, S.V., Joosen, W., Berbers, Y.: Traceability as input for model
transformations. (Third ECMDA traceability workshop 2007)

3. Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of the Euro-
pean Conference on Model Driven Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany (2005)

4. Wagelaar, D.: Composition techniques for rule-based model transformation lan-
guages. In: ICMT ’08: Proceedings of the 1st international conference on Theory
and Practice of Model Transformations, Berlin, Heidelberg, Springer-Verlag (2008)
152–167

10

