
Faculteit van de Wetenschappen
Vakgroep Computerwetenschappen
Laboratorium voor Programmeerkunde

Handling Partial Failures in Mobile Ad hoc Network
Applications: From Programming Language Design to
Tool Support

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Elisa González Boix

Promotoren: Prof. Dr. Wolfgang De Meuter en Prof. Dr. Theo D’Hondt

October 2012

Print: Silhouet, Maldegem

c© 2012 Elisa González Boix

2012 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. ++32 (0)2 289 26 50
Fax ++32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5718 223 5
NUR 989
Legal deposit D/2012/11.161/159

All rights reserved. No parts of this book may be reproduced or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

To my parents, Feliciano and Evelin,
whose endless support made this dissertation possible.

To my brother, Daniel,
who inspired me to study computer science.

To Christophe, my love,
who inspires me to keep on pressing forward.

iv

Abstract

Progress in the field of wireless technology has resulted in a growing body of research
that deals with mobile ad hoc networks (MANETs): networks composed of mobile
devices that are connected by wireless communication links with a limited commu-
nication range. The limited communication range of devices combined with the fact
that devices move about renders applications subject to higher rates of partial failures
than in traditional, stationary networks. This dissertation investigates programming
language support to deal with the effects engendered by partial failures in the software
development process. In particular, we investigate support for handling partial failures
in MANET applications, from the programming language design to tool support.

In order to support distributed programming in such a dynamically changing en-
vironment, it is worth to investigate software engineering techniques where network
disconnections are not treated as the exception but the rule. This observation motivated
the development of the ambient-oriented programming paradigm in which this work
is rooted. Within the context of this paradigm, we propose expressive abstractions
that aid developers to detect, reason about, and handle partial failures. Our survey of
related work will reveal that leasing provides a solution for a failure handling model
in MANETs. However, to date no leasing model has been designed specifically for
MANETs. In this context, leasing needs to be reconciled with computational mod-
els that deal with transient failures, and provide a well-defined high-level interface
to allow developers to handle failures in a modular and reusable way, while accom-
modating the various application needs. This work studies a failure handling model
which combines leasing with ambient-oriented programming, leading to the concept
of ambient-oriented leasing.

We investigate ambient-oriented leasing in the two distinct distributed computing
models. First, we integrate our leasing model in a distributed object-oriented model as
a novel referencing abstraction, called leased object references. Second, we explore the
applicability of ambient-oriented leasing to tuple spaces, resulting in a novel adaptation
of the tuple space model for MANETs called TOTAM (Tuples on the Ambient). We
design and implement both incarnations of ambient-oriented leasing in AmbientTalk/M,
an ambient-oriented language which provides a unified meta model on which both
language abstractions as well as tool support is built.

To support the development of MANET applications, we study tool support in
the form of an ambient-oriented debugger that helps programmers to achieve a bet-
ter understanding of the dynamic behaviour of a MANET application. As a proof-of-
concept tool we provide an online ambient-oriented debugger integrated into Ambient-
Talk Eclipse IDE called REME-D (Reflective Epidemic MEssage-oriented Debugger).

Together, the programming language abstractions and the debugging support pre-
sented in this dissertation provide an innovative toolbox that allows MANET applica-
tion developers to deal with partial failures in an anticipated and controllable way.

v

vi

Samenvatting

Innovaties in het domein van draadloze technologie hebben geleid tot een on-
derzoeksstroming die zich toespitst op zogenaamde mobiele ad-hoc netwerken
(MANETs): dit zijn netwerken waarbij mobiele apparaten met elkaar verbonden zijn
door middel van draadloze communicatie-links die gelimiteerd zijn in hun reikwi-
jdte. De gelimiteerde reikwijdte van de communicatie in combinatie met het feit
dat deze toestellen mobiel, zijn leidt ertoe dat toepassingen die gebruik maken van
zulke netwerken veel meer blootgesteld worden aan partiële fouten dan toepassin-
gen die gebruik maken van een traditionele gedistribueerde netwerkinfrastructuur.
Deze thesis onderzoekt programmeerabstracties die het mogelijk maken om om te
springen met de nefaste effecten als gevolg van partiële fouten tijdens het software-
ontwikkelingsproces. In het bijzonder onderzoeken we ondersteuning voor het om-
springen met partiële fouten voor toepassingen die draaien op MANETs. Dit gaat van
programmeertaalontwerp tot tool-ondersteuning.

Om ondersteuning te geven tijdens het programmeren van gedistribueerde ap-
plicaties in zulke dynamisch veranderende omgeving, is het nuttig om software
engineering-technieken te onderzoeken waarbij het verbreken van een netwerkverbind-
ing niet gezien wordt als een uitzondering maar eerder als de regel. Deze observatie
heeft de ontwikkeling van het ambient-georiënteerd paradigma gemotiveerd waar ook
dit werk zijn wortels vindt. In de context van dit paradigma stellen wij expressieve
abstracties voor die de ontwikkelaar helpen om partiële fouten te detecteren, erover
te redeneren, en ermee om te springen. Ons overzicht van gerelateerd werk zal on-
thullen dat leasing een oplossing biedt als basis voor een foutenafhandelingsmodel in
MANETs. Echter, tot op heden is er geen leasing-model ontwikkeld specifiek voor
MANETs. In deze context moet leasing verzoent worden met modellen die omsprin-
gen met tijdelijke fouten, en moet er een welgedefinieerde interface van een voldoende
hoog abstratieniveau aangeboden worden. Dit moet de programmeur toelaten om te
springen met fouten in een modulaire en herbruikbare manier, zonder de verschillende
software-vereisten uit het oog te verliezen. Dit werk bestudeert een foutenafhandel-
ingsmodel dat leasing verzoent met ambient-georiënteerd programmeren. Het resul-
terende model noemen we ambient-oriented leasing.

We onderzoeken ambient-oriented leasing in twee verschillende gedistribueerde
programmeermodellen. Ten eerste, integereren we ons model met een gedistribueerd
object-georiënteerde programmeermodel door middel van een innovatief referen-
tiemechanisme genaamd leased object references. Ten tweede, exploreren we de
toepasbaarheid van ambient-oriented leasing-abstracties voor tupelruimtes, wat resul-
teert in een vernieuwende adaptatie van het tupelruimtemodel voor MANETs genaamd
TOTAM (Tuples on the Ambient). We ontwerpen en ontwikkelen beide incarnaties van
ambient-oriented leasing in AmbientTalk/M, een ambient-georiënteerde taal die een ge-
unificeerd metamodel aanbiedt waar zowel taalabstracties als tools op gebouwd kunnen

viii

worden.
Om ondersteuning aan te bieden voor de ontwikkeling van toepassingen die op

MANETs draaien bestuderen we tool-ondersteuning onder de vorm van een ambient-
oriented debugger dewelke helpt om programmeurs een beter inzicht te geven in het
dynamisch gedrag van deze toepassingen. We bieden een prototype aan van een online
ambient-oriented debugger debugger die geı̈ntegreerd is met de ontwikkelingsomgev-
ing voor AmbientTalk in Eclipse genaamd REME-D (Reflective Epidemic MEssage-
oriented Debugger).

Tesamen bieden de programmeerabstracties en de ondersteuning voor debugging
een innovatie set van werktuigen die de programmeur in staat stelt om partiële fouten
het hoofd te bieden in een geanticipeerde en controleerbare manier.

Acknowledgements

This dissertation would have not been possible without the help and support of my
colleagues, friends and family.

First of all, I would like to sincerely thank both of my promotors, Theo D’Hondt
and Wolfgang De Meuter, for unconditionally supporting my work throughout all these
years, and finding the means to fund me. I am greatly indebted to Theo who gave me
the opportunity to become a researcher at his lab. I came to Brussels with a 4-month
Erasmus grant to do my master thesis, and he succeeded in inspiring me to do research
through his classes and the intellectually stimulating environment that this lab (still
called PROG in those days) is. His thought-provoking classes spurred up my interest
in programming language design. I am also deeply grateful to Wolf, discussions with
whom have tremendously helped in crystallizing ideas, and improving the quality and
clarity of my papers and, in particular, this dissertation. Despite being a busy man,
he has always made time when it was necessary and never hesitated to talk via video
conference or even to come over to my place. I also appreciate the freedom that he
has always given me; in particular, in the context of our university’s Distributed and
Mobile Programming Paradigms course. Thanks Theo and Wolf!

I owe a big “thank you” to Carlos Noguera, who guided me through the writing pro-
cess, proofread the whole text, and gave me all those useful comments, and “pep talk”
at the right moments. Carlos and I have also closely collaborated in the exploration
of tool support. Working with him has been pretty fun and I hope that we continue
the cooperation in the future. A special thanks also goes to Tom Van Cutsem, whose
expert knowledge on distributed programming and language design has been of great
help to me. Tom has always found time to provide insightful comments on my ideas,
papers and on parts of this dissertation. He also inspired me to investigate a reflective
approach to language design.

I thank the members in my jury for the time invested reading my dissertation, and
for their useful comments on this work: Prof. Franco Zambonelli (Università degli
studi di Modena e Reggio Emilia), Prof. Siobhán Clarke (Trinity College Dublin), Prof.
Bart Jansens (Vrije Universiteit Brussel), Prof. Viviane Jonckers (Vrije Universiteit
Brussel), Prof. Beat Signer (Vrije Universiteit Brussel) and Prof. Ann Nowé (Vrije
Universiteit Brussel).

All the past and present members of the Software Languages Lab have contributed
to this thesis by creating a challenging and fun work environment, and by providing
me with comments at research meetings. I am indebted to a number of people whom I
have closely worked with during these years. Jorge Vallejos helped me to shape some
of my initial ideas, and took over my teaching duties during the final stages of my writ-
ing. We also collaborated a lot (even though we did not share the same experimental
platform). Thomas Cleenewerck stimulated me to explore research paths that I had not
initially considered. Dries Harnie and I have shared many technical frustrations during

x

our collaboration with MIVB in the context of our PRFB projects. His technical skills
have also been of great help in the so-called legendary Android hacking sessions. He
has also helped me with some teaching duties in the distributed programming course.
Christophe Scholliers and Andoni Lombide Carretón deserve a special mention as my
partners in crime within the Ambient group. Since they joined the lab, we have shared
many hours of brainstorming, discussion, programming, writing papers and also drink-
ing beers. Not only has our collaboration been fruitful from a research point of view,
but it has helped me to regain my enthusiasm at difficult moments.

I would also like to thank all my office mates for the discussion and laughter: Jorge
Vallejos, Peter Ebraert, Thomas Cleenewerck, Stijn Timbermont, Jessie Dedecker,
Matthias Stevens, Stefan Marr and Dries Harnie. Also many thanks to our secretaries,
Lydie Seghers, Brigitte Beyens and Simonne De Schrijver for helping me cope with
the university administration, and for a chat from time to time.

Next to being a work environment, SOFT has also created a social environment
where I have made a lot of friends. Many activities spontaneously organized at the
lab have made my life in Belgium more enjoyable. Special thanks goes to the coffee
drinkers, KK buddies and sport buddies, many of whom have been mentioned before,
but there are also: Stefan Marr, Andy Kellens, Dirk Van Deun, Coen De Roover, Nico-
las Cardozo, Yailen Martı́nez, Matthias Stevens, Isabel Michiels, and Kris Gybels. I
also thank to the people that I regularly bother to get Dutch texts proofread.

I am equally indebted to a number of people who are not involved with my work,
but who contributed in other ways to make this dissertation possible. Thanks to my
friends from Barcelona for all the nice dinners each time I am in the country: Ar-
nau Font Riera, Joan Parera Estapé, Anna Guinart Guri, Esther Payerols, Silvia Cam-
poy Garcia, Ana Guitart Carrera, Cristina Santos, Eugenia Garcia Bordes and Emma
Vázquez Martı́n. You make me feel as if distance and time do not matter. Special
thanks goes to Ana for her unconditional support and listening ear that got me through
moments of questioning, and Arnau and Joan, my dearest friends and partners in crime
during my undergraduate days. Thanks to my Erasmus friends for all the nice meetings
around Europe during these years: Clara Checchi Ponsa, Ruth Frutos Morales, Silke
Van Wrangel, Thomas Kastner and Lea Katherine Acera. Also thanks to all my friends
in Belgium for providing me with the necessary distraction. I am especially thankful to
Virginia Gómez Oñate, Raül Romero Valls, Stefanie Vanosmael, and Kim Heymans.

Finally, I would like to thank my family. A special “thank you” goes to my parents
and brother. There are not enough words to describe the support that my parents have
given me. I am really happy that their dream of providing their children with higher
education has become true. I am also deeply grateful to the Scholliers-Ceulemans fam-
ily for their tremendous support and their warmth. They made me feel like one of them
from minute zero. Also many thanks to Nathalie Scholliers who brought Twister into
my life. Last but not least, I would like to thank my schat, best friend and future hus-
band, Christophe Scholliers. He has supported me in every possible way by discussing
ideas, proofreading parts of this dissertation, taking care of household chores during
the final phase of my writing, convincing me to do sports or go out for dinner when I
was stressed, etc. Most of all I thank him for just being himself and always believing
in me. Love u!

This work has mainly been funded by a Prospective Research for Brussels (PRFB)
project of Innoviris.

Elisa González Boix
October 2012

Contents

1 Introduction 1
1.1 Research Context . 2
1.2 Problem Statement . 4
1.3 Research Goals . 5
1.4 Research Methodology . 6

1.4.1 A Language-oriented Approach 6
1.4.2 The Limits of Transparency 7
1.4.3 A Reflective Approach . 7

1.5 Technical Contributions . 8
1.5.1 Supporting Publications . 9

1.6 Dissertation Roadmap . 10

2 Taxonomising Partial Failures in Mobile Ad hoc Networks 13
2.1 Mobile Ad hoc Networks . 14

2.1.1 Hardware Characteristics . 14
2.2 Ambient-Oriented Programming . 15
2.3 Types of Failures . 16
2.4 Design Dimensions of a Failure Handling Model 20
2.5 Criteria for a Failure Handling Model for MANETs 21

2.5.1 Partial Failures and Communication 21
2.5.2 Partial Failures and State Consistency 24
2.5.3 Partial Failures and Memory Management 26

2.6 Partial Failures and the Software Development Process 28
2.7 Conclusion . 30

I Partial Failures in Mobile Ad hoc Network Applications 31

3 Related Work 33
3.1 Survey of Distributed Programming Languages 33

3.1.1 Argus . 34
3.1.2 Mozart . 35
3.1.3 E . 37

3.2 Survey of Formal Languages for Distributed Computing 39
3.3 Survey of Mobile Computing Middleware 40

3.3.1 Object-oriented Middleware 40
3.3.2 Tuple Space-based Middleware 43
3.3.3 Publish/Subscribe Middleware 45

xi

xii CONTENTS

3.3.4 Reflective Middleware . 48
3.4 Discussion of Surveyed Systems . 51
3.5 Conclusion . 53

4 Ambient-Oriented Programming in AmbientTalk 55
4.1 The AmbientTalk language . 55
4.2 Object-oriented Programming in AmbientTalk 56
4.3 Concurrent Programming in AmbientTalk 58

4.3.1 Message Passing Semantics 59
4.3.2 Future-type Message Passing 60

4.4 Distributed Programming in AmbientTalk 61
4.4.1 Far References and Network Failures 61
4.4.2 Exporting and Discovering Objects 62

4.5 Interoperability with Java . 62
4.6 Reflective Programming in AmbientTalk 63

4.6.1 Mirror-based Reflection using Explicit Mirrors 64
4.6.2 Mirror-based Intercession using Implicit Mirrors 66
4.6.3 AmbientTalk’s Metaobject Protocol 68

4.7 Conclusion . 71

5 Enhancing Meta-level Engineering in AmbientTalk 73
5.1 Motivation . 73

5.1.1 Limitations of Structural Correspondence in Ambient-oriented
Programming . 74

5.1.2 Limitations of the Representation of Distributed Communication 76
5.1.3 Limitations of Mirages . 78
5.1.4 Summary . 78

5.2 First-Class References as Transmitter-Receptor Pairs 80
5.2.1 First-class References Overview 80
5.2.2 First-class References Reflective API 82
5.2.3 Deploying Referencing Abstractions 88
5.2.4 Case Study: Lazy References 90

5.3 Reflection on Actors . 95
5.3.1 Extensions to the Meta-Actor Protocol 95
5.3.2 Making Entities Fail . 98

5.4 Discussion . 99
5.5 Limitations and Future Work . 101
5.6 Notes on Related Work . 103
5.7 Conclusion . 105

6 Ambient-Oriented Leasing 107
6.1 Motivation . 107

6.1.1 Scenario: the Mobile Music Player 108
6.1.2 Criteria for a Leasing Model in MANETs 108

6.2 Leasing and Programming Languages: A Proposal 110
6.2.1 Lease Term Management . 112
6.2.2 Lease Access Management 114
6.2.3 Summary . 114

6.3 Leased Object References . 115
6.3.1 Time-decoupled Object References 116

CONTENTS xiii

6.3.2 Leased Reference Kinds . 117
6.3.3 Symmetric Expiration Handling 118

6.4 Leased Object References in AmbientTalk 118
6.4.1 Declaring Leased References 118
6.4.2 Language Constructs for Leased Reference Variants 120
6.4.3 Expiration Handling . 122
6.4.4 Leasing Strategies . 123

6.5 Integrating Leasing with Future-type Message Passing 125
6.5.1 Due-type Messages . 125
6.5.2 Leased Message Protocols 127

6.6 Leased References vs. Leased Messages 132
6.7 An Open Implementation . 133

6.7.1 The Leased Object Reference Framework 134
6.7.2 The Lease Object . 134
6.7.3 The Interceptor Interface . 137
6.7.4 Leasing Strategies . 141
6.7.5 Leased Message Protocols 142

6.8 Evaluation . 144
6.8.1 An Implementation of the Mobile Music Player in Java RMI . 144
6.8.2 Quantitative Evaluation . 147
6.8.3 Qualitative Evaluation . 148

6.9 Limitations and Future Work . 150
6.10 Notes on Related Work . 152

6.10.1 Consistency Maintenance 152
6.10.2 Memory Management . 153
6.10.3 Resource Management . 154

6.11 Conclusion . 155

7 Ambient-Oriented Leasing for Tuple Spaces 157
7.1 Motivation . 157
7.2 TOTAM: Ambient-oriented Programming with Tuple Spaces 159
7.3 Programming in TOTAM . 162

7.3.1 Running Example: the Guanotes Application 162
7.3.2 Defining and Inserting TOTAM Tuples 164
7.3.3 Reading and Removing Tuples from the TOTAM Network . . 166
7.3.4 Writing Application-Specific Propagation Protocols 167

7.4 Case Study: Flikken . 168
7.4.1 Design . 169

7.5 Formal Semantics . 171
7.6 Implementation Status . 173
7.7 Discussion . 174
7.8 Limitations and Future Work . 176
7.9 Notes on Related Work . 177
7.10 Conclusion . 179

8 Evaluating Ambient-Oriented Leasing 181
8.1 Evaluation w.r.t. the Criteria for a Failure Handling Model for MANETs 181
8.2 Concluding Remarks . 184

xiv CONTENTS

II Partial Failures in Software Development Tools 187

9 Related Work 189
9.1 Distributed Debugging Support . 189

9.1.1 Breakpoint-based Debuggers 190
9.1.2 Event-driven Debugging Tools 191
9.1.3 Alternative Approaches . 192

9.2 Conclusion . 192

10 Debugging in the Face of Partial Failures 195
10.1 Motivation . 195

10.1.1 Running Example: the Mobile Shopping Application 196
10.1.2 Challenges of Debugging Ambient-Oriented Applications . . 197
10.1.3 Summary . 198

10.2 Overview of Ambient-Oriented Debuggers 198
10.2.1 Features of an Ambient-Oriented Debugger 199
10.2.2 Architecture . 201

10.3 REME-D: an AOD in AmbientTalk 202
10.3.1 Viewing the Actor State . 202
10.3.2 Breakpoints Catalog . 203
10.3.3 Stepping . 206
10.3.4 Browsing Causal Links . 208
10.3.5 Open Debugging . 208

10.4 Implementation . 209
10.4.1 Creating and Managing A Debugging Session 210
10.4.2 Instrumenting Actors In The Debugging Session 211
10.4.3 Breakpoints . 216
10.4.4 Infecting AmbientTalk VMs 219
10.4.5 Implementation Status . 220

10.5 Limitations and Future Work . 222
10.6 Conclusion . 223

11 Pre-experimental User Study for REME-D 225
11.1 Quasi-Experiments . 225
11.2 Study Design . 226

11.2.1 Pretest design . 226
11.2.2 Posttest design . 227
11.2.3 Debugging Assignment . 228

11.3 Participants profile . 228
11.4 Results . 230

11.4.1 Pretest-Posttest . 230
11.4.2 Observations . 232

11.5 Threats to validity . 234
11.5.1 Internal Validity . 234
11.5.2 External Validity . 234

11.6 Conclusion . 236

CONTENTS xv

III Conclusion 237

12 Conclusion and Future Work 239
12.1 Research Goals . 239
12.2 Restating the Contributions . 241
12.3 Limitations . 243

12.3.1 Meta-level Engineering in AmbientTalk 243
12.3.2 Ambient-Oriented Leasing 243
12.3.3 Ambient-Oriented Leasing for Tuple Spaces 244
12.3.4 Ambient-Oriented Debuggers 244

12.4 Avenues for Future Research . 245
12.4.1 Towards a Distributed Secure Object Model 245
12.4.2 Structuring the Object Soup 246
12.4.3 Debugging Distributed Asynchronous Applications 246

12.5 Concluding Remarks . 247

Appendices 248

A Code Listing of the Mobile Music Player 249
A.1 Code Listing of the Java RMI Implementation 250
A.2 Code Listing of the AmbientTalk Implementation 263

B REME-D’s User Study Material 265
B.1 Pretest Questionnaire . 265
B.2 Posttest Questionnaire . 268
B.3 Debugging Assignment . 271

C REME-D’s Startup Protocol 275

Bibliography 275

xvi CONTENTS

List of Figures

1.1 A reflectively extensible kernel language. 8

2.1 Classification of failures. 18
2.2 The CAP theorem. 25

4.1 AmbientTalk actors as event loops. 59
4.2 AmbientTalk actors from a reflective perspective; representation of (a)

explicit mirrors, and (b) implicit mirrors. 65
4.3 Relationship between explicit and implicit mirrors on mirages. When

a program reflects on a mirage, it consults the mirror factory which
returns the implicit mirror (by default), or (ii) another explicit mirror
(if a custom factory is used). 67

4.4 Message invocation and object marshalling protocol at sender side. . . 68
4.5 Message invocation and object marshalling protocol at receiver side. . 70

5.1 Remote object reference model . 80
5.2 Remote object reference model from a reflective perspective 82
5.3 Default and custom marshalling protocol of transmitters 87
5.4 Marshalling protocol of lazy references 94

6.1 The music library exchange protocol 108
6.2 Feature diagram representing the lease concept. 111
6.3 States of a leased object reference. 116
6.4 Implementation of a leased object reference. 134
6.5 The lease object structure. 135
6.6 The default lease statement policies traits. 136
6.7 Implementation of the interceptors for renew-on-call and revoke-on-

call leased references. 139
6.8 Class diagram of the implementation of mobile music player in Java

RMI. 145
6.9 Overview of the lines of code (a) and % (b) for the music player appli-

cation according to four concerns: memory management, concurrency
control, failure handling and application-level code. 148

7.1 The TOTAM tuple space model. 159
7.2 Lifespan of a context-aware tuple . 161
7.3 Bob’s (a) NearbyFlock, (b) badmintonCouplesFlock, (c) Guanotes in-

box and (d) Guanote editor . 164
7.4 Flikken GUI on the gangster device (left) and a policeman device (right).169

xvii

xviii LIST OF FIGURES

10.1 The shopping checkout protocol. 196
10.2 An ambient-oriented debugging session distributed over two devices. . 201
10.3 Eclipse plugin showing a REME-D debug session. 203
10.4 REME-D elementary breakpoint types. 204
10.5 REME-D ’s breakpoint catalog provided to users. 206
10.6 Debug view after a step-into command. 207
10.7 Behaviour of the debugger actor. 210
10.8 The debugger manager object. 212
10.9 Implicit actor mirror on the local manager. 213
10.10Local manager’s implementation of the schedule meta method. 215
10.11Local manager’s implementation of the send meta method. 216
10.12Eclipse plugin showing the AT Debugger Manager console. 221

11.1 Boxplot of the experience of the participants: (A) development experience (B)
distributed development experience (C) understanding of AmOP in Ambient-
Talk (E) Eclipse experience (K) online debuggers experience. 229

11.2 The participants’ expertise with software languages. 229
11.3 Boxplot of the participants’ attitude towards (D) AmbientTalk, (F) Eclipse

IDE, and (G-J,P) debugging. 230
11.4 Radar diagram of the participants’ attitude towards debugging: (G) develop-

ment tools can prevent a lot of bugs (H) debugging distributed programs is
hard (I) debuggers are a helpful tool to find errors in programs (J) debuggers
are a helpful tool to understand programs (P) a debugger for AmbientTalk is
needed. 230

11.5 Comparison of the participants’ expectations (pretest depicted in grey) and ex-
periences (posttest depicted in black) after using REME-D ; X axis depicts the
5-point Likert scale, and Y axis is the number of participants that selected each
point. 231

11.6 Boxplot of the participants’ appreciation of the features of REME-D. (P) mes-
sage breakpoints (R) step-into command (T) step-over command (V) pause
actor command (W) control over program execution (X) infection of VMs. . . 232

11.7 Boxplot of the participants’ usage of the features of REME-D. (O) message
breakpoints (Q) step-into command (S) step-over command (U) pause actor
command. 232

11.8 Radar diagram of the participants’ experience with REME-D’s UI in Eclipse:
(K) REME-D’s debugging features are clear and accessible in the UI (L) the
Actor view gives a good overview of the state of the application (M) the Debug
Element View gives a good overview of the state of an actor (N) REME-D is
helpful but needs a better user interface. 235

11.9 Radar diagram of the participants’ experience with the assignment: (A) the as-
signment was too easy for me (B) the assignment was very interesting to do (C)
the assignment represents the kind of bugs I have encountered in AmbientTalk
(D) I would have liked more time to complete the assignment (E) I had enough
help in completing the assignment. 235

C.1 REME-D’s debugging session startup protocol. 276

List of Tables

2.1 Overview of the criteria of a failure handling model for MANETs. . . 29

3.1 Survey of Related Work. 50

4.1 Overview of the metaobject protocol of AmbientTalk. 72

5.1 Asynchronous message process protocol API. 83
5.2 Reference marshalling protocol API. 86
5.3 Environmental context protocol API. 88
5.4 Additional methods in the API of explicit mirrors on actors. 96

6.1 AmbientTalk’s extended programming API for ambient-oriented leasing.119

7.1 Programming API of TOTAM . 163
7.2 Overview of the Tuples used in Flikken 170
7.3 TOTAM Tuples: Grammar . 172
7.4 Operational Semantics . 173

10.1 Annotations on asynchronous messages. 212

11.1 Summary of comments about expected features. 233

A.1 Code Legend. 249

B.1 Pretests questions according to the five topics participants were in-
quired: development experience, attitude towards AmbientTalk, Eclipse
IDE and debugging, and exceptions of a debugger for AmbientTalk
programs. 266

B.2 Posttest questions according to the five topics participants were in-
quired: assignment and REME-D UI experience, REME-D perception,
value and frequency of REME-D’s features. 269

xix

xx LIST OF TABLES

List of Listings

3.1 The DisconnectionListener interface. 43
3.2 The TOTA propagation rule. 45
4.1 A prototypical advertisement object. 56
4.2 Extending the prototypical advertisement object. 57
4.3 Future-type message passing in AmbientTalk. 60
4.4 Interoperability with Java. 63
4.5 Introspection, invocation and self-modification via explicit object mir-

rors. 64
4.6 Introspection, invocation and self-modification via explicit actor mirrors. 65
4.7 A prototypical logging mirror. 66
4.8 Definition of a mirage. 66
4.9 An implicit actor mirror. 68
5.1 Accessing and modifying a far reference’s mailbox 83
5.2 Example of a custom receptor . 85
5.3 Installing a custom receptor . 88
5.4 Prototype implementation of an omireference using a custom transmitter 89
5.5 The Song object prototype. 90
5.6 The audio track object prototype. 91
5.7 Receptor object for lazy references. 92
5.8 Transmitter object for lazy references. 93
5.9 Definition of a method invocation observer. 97
6.1 Opening a music sharing session. 121
6.2 Opening a music listening session. 124
6.3 Implementation of the music library exchange protocol. 127
6.4 Implementation of the music genre voting protocol. 128
6.5 The music genre voting protocol using a time-based message protocol. 131
6.6 The lease object API. 135
6.7 The interceptor API. 138
6.8 Implementation of the transmitter for creating leased message protocols. 143
7.1 The TOTAM propagation protocol at sender side. 167
7.2 The TOTAM propagation protocol at receiver side. 168
10.1 Implementation of REME-D’s code-based breakpoints 218
10.2 Implementation of breakpointed messages 219
10.3 Enabling a local manager’s implicit mirror 220

xxi

xxii LIST OF LISTINGS

Chapter 1

Introduction

In the latest years we have witnessed a hardware revolution that makes mobile de-
vices get smaller and ever more powerful. For example, the latest smartphones are
already dual core and incorporate various sensors including a compass, accelerometer,
ambient light, GPS receiver, and even a barometer. In parallel, mobile devices have
gained the ability to communicate using different wireless networking technologies
with ranges as wide as 3G and WiFi, and as narrow as Bluetooth and NFC. This allows
these computing devices to exchange information and interact without hindering but
instead stimulating user mobility. In the last quarter of 2010, for the first time ever,
smartphones already surpassed PC sales evidencing that mobile devices are becoming
fully integrated into everyday activities supplanting existing computers as internet de-
vices. This implies that ever more people become software users and being a software
user no longer hampers one’s personal mobility (as was the case with desktops and
even laptops). Such a profusion of mobile devices bring us one step closer to Mark
Weiser’s ubiquitous computing era [Wei91].

Ubiquitous computing is a research vision which involves the presence of limitless
computing power in everyday objects as small as coins, wrist watches, and microwave
ovens, and as big as cars, buses and bus stops. The computer as a separate device
thus disappears and its information processing capabilities are offered by means of in-
tuitive interfaces embedded in the surroundings in an unobtrusive and invisible way.
Technically, the mobility of wirelessly connected devices results in dynamically de-
marcated network topologies that are known as mobile ad hoc networks (MANETs).
MANETs enable computers to interact with other devices that they encounter (as the
user moves about) in a invisible way (as they use wireless technology), and are usually
un-administered since these networks are formed spontaneously as a consequence of
the collocation of mobile devices. MANETs have emerged as an enabling technology
for ubiquitous computing and have been and are still subject of a large body of research
in ubiquitous computing.

At the software level, this hardware revolution has opened up a whole new world
of application possibilities. This resulted in a tremendous growth in the number of
applications developed for mobile devices. While the Apple Store counts no less than
500,000 applications for the iPhone and iPad, the Google Play (previously known as
the Android market) has reached a similar size achieving a threefold growth over the
previous year. Despite the growth of the number of applications available on these
mobile platforms, today, developing and testing distributed applications for mobile de-
vices is still laborious. Moreover, most applications are actually just single device

1

2 CHAPTER 1. INTRODUCTION

applications that do not fully exploit all the new networking possibilities. One of the
main reasons is that programming languages that are commonly used for these tasks
(e.g., C, C++, Java, Objective-C) have not been designed for the ubiquitous computing
era. As a result, when developing distributed applications running on mobile devices,
programmers have little more than a low-level socket API to work with, directly on top
of the supported networking protocols.

This dissertation presents the results of our study of programming technology for
supporting the development of MANET applications. In particular, we extensively ex-
plore the effects engendered by partial failures on software development technologies.
We ground our research in the ambient-oriented programming paradigm [DVM+06]
developed at the Software Languages Lab. This paradigm has set the basis for a soft-
ware platform that supports the development of applications running on MANETs,
and identifies a set of programming language characteristics that explicitly take into
account the hardware phenomena of mobile devices.

Within the context of this paradigm, the main goal of this dissertation is to propose
expressive abstractions that aid developers to detect, reason about, and handle partial
failures. A second goal of this dissertation is to explore tool support for debugging
MANET applications in the face of partial failures.

1.1 Research Context
The research context of this dissertation is situated at the crossroads of several domains:

Mobile Ad hoc Networks The center of our research lies with a particular kind of
distributed computing environments, known as mobile ad hoc networks (or just
MANETs). A MANET emerges as a set of devices which become interconnected
by means of wireless communication technology. The main characteristic of
MANETs is that devices move about forming transient associations with other
devices; associations which usually do not depend on any fixed infrastructure.
As discussed above, our research focus is on the software development process
for MANETs.

Failure handling The highly dynamic nature of MANETs exposes applications to a
much higher rate of partial failures than traditional distributed computing envi-
ronments. There exists no perfect functioning of the distributed system as such,
but a graceful degradation of services as devices constantly appear and disappear
from the network. This changes the methods and approaches that deal with par-
tial failures, requiring new abstractions designed from the ground up to be used
in a mobile setting.

Programming language design Among others, this dissertation places emphasis on
programming language design. While raising failure handling to the program-
ming language level may seem to make programming more difficult, we argue
that it actually aids developers by providing a linguistic framework in which pro-
grammers can be made aware conceptually of the issues engendered by partial
failures, and react to them accordingly. Since partial failures are so inherent to
MANETs, we argue that they can no longer be hidden and be handled by the
underlying software platform.

Tool support In order to support the construction of MANET applications, the soft-
ware development process itself has to become more systematic. Software tools

1.1. RESEARCH CONTEXT 3

contribute to this task. This has motivated research in integrated development
environments (IDEs) and other tools such as debuggers and profilers. Nowa-
days developers typically edit, compile and debug their programs in a single
integrated environment. Distributed applications, in particular, MANET appli-
cations are not different in this regard. However, the omnipresence of failures in
MANETs requires us to rethink the design and implementation of software tools.
This work therefore also investigates tool support for MANET applications in the
form of a debugger that handles partial failures.

This dissertation forms part of a larger research effort conducted at the Software
Languages Lab in the field of distributed programming for MANETs. The main goal
of this research group is to build sophisticated programming abstractions and tools that
support the development of MANET applications. As such, this work can be seen as a
continuation of the following earlier work:

• Dedecker in his dissertation on “Ambient-oriented programming” [Ded06] per-
forms a first analysis of the implications of the hardware characteristics of
MANETs at a software engineering level and proposes the ambient-oriented pro-
gramming (AmOP) paradigm. It basically consists of a number of guidelines
to be incorporated in future distributed object-oriented programming languages
specially designed for MANETs. He builds a programming language called Am-
bientTalk to support experiments with AmOP language features.

• Van Cutsem’s dissertation [Van08] further explored the AmOP paradigm to
specifically reconcile traditional software abstractions for designating and com-
municating with objects in a MANET. This resulted in the design and implemen-
tation of ambient references. He also introduces AmbientTalk/2 which supplants
its predecessor while staying true to the fundamental characteristics of AmOP.

• In Lombide Carreton’s dissertation [Lom11], the AmOP paradigm is used to
support RFID-enabled applications. By applying AmOP to RFID-enabled ap-
plications, he is able to express RFID-tagged physical objects as software ob-
jects called things. He also investigates how to deal with the reactive nature
of such objects on a new version of the AmbientTalk/2 language, called Am-
bientTalk/R, that automatically tracks dataflow dependencies to support reactive
programming. Based on this AmbientTalk dialect, he builds abstractions for both
node-centric and network-centric data flow programming.

• Finally, Vallejos dissertation’s [Val11] investigates software modularisation tech-
niques for MANET applications. He focuses on the modularity of two different
concerns in the application’s behaviour, namely, context-dependent behaviour
(adaptation to contextual changes), and group behaviour (coordination of repli-
cated services). For his experiments with modularization techniques, he builds
Lambic, an incarnation of the AmOP paradigm in the generic function-based
object model of Common Lisp.

This dissertation continues this tradition in AmOP research by presenting a system-
atic study of partial failures.

4 CHAPTER 1. INTRODUCTION

1.2 Problem Statement

Partial failures are a central ingredient of distributed systems. A partial failure occurs
when one component of the distributed system fails, affecting a number of other com-
ponents, and leading to a degradation of performance. When designing a distributed
system, an important goal is thus robustness with regard to failures so that whenever a
failure occurs the system can recover and continue working to some extent. As such,
there exists a large body of software engineering techniques for making distributed sys-
tems fault tolerant. However, the bulk of this research is built on assumptions which
no longer hold for MANETs. In general, it is assumed that communication is mostly
reliable, the network is mostly connected, device failures are rare, and that, when they
happen, devices do eventually recover and come back online. However, those assump-
tions no longer hold in MANETs because wireless communications are fragile and
prone to fluctuations, and devices may appear and disappear from the environment at
any moment as they move about. As a result, MANETs expose applications to a much
higher rate of partial failures than traditional distributed systems.

As previously mentioned, the AmOP paradigm developed at our lab aims to pro-
vide a solution for this. Roughly speaking, it is a programing model in which network
disconnections are treated as the normal mode of operation instead of representing
them as exceptions. Remote object references are treated as “everlasting perfect” com-
munication links that temporarily buffer messages in the case of network disconnec-
tions. Drawing an analogy with database transaction terminology, AmOP thus provides
an optimistic model which makes network disconnections completely invisible to the
programmer. Traditional distributed models, on the other hand, provide a pessimistic
model in which network disconnections result in exception handling. Prior work as
well as experience with students, has proven that this switch of model dramatically
raises the abstraction level for writing MANET applications.

However, within this optimistic distribution model, the following problems remain
to be solved:

Lack of software development tools for MANET applications So far, tool support
has not been explored in the context of AmOP. Apart from traditional IDE support, we
think that software tools, especially debugging tools, are vital to assist in the software
development of MANET applications. However, debuggers for MANET languages
and middlewares have received very little attention from academia so far. Even though
research in the field of ubiquitous and mobile computing has been active for about
two decades, this may be a symptom of the fact that the development of MANET
applications has not matured yet.

A diverse spectrum of debugging tools does exist for concurrent and distributed
systems. However, they lack mechanisms to enable debugging in the face of partial fail-
ures. In particular, they do not take into account that the target application is exposed
to a high rate of partial failures. Bearing in mind the dynamic nature of MANETs, a
debugging session will consist of an undetermined, fluctuating number of devices. As
a result, a debugger must be able to allow devices to join and leave a debugging ses-
sion without affecting the rest of the participants. Since many bugs may not manifest
themselves until the application is actually deployed, debuggers should also be able to
participate in running mobile systems.

1.3. RESEARCH GOALS 5

Lack of programming abstractions to deal with the effects caused by partial fail-
ures in MANET applications As previously explained, adopting an AmOP para-
digm leads to the optimistic programming model without failures. As a consequence,
application logic is no longer polluted with exception handling code because the lan-
guage’s communication abstractions already take into account that the network connec-
tivity is intermittent. Unfortunately, programming in such a “distributed programming
paradise” engenders a completely new set of difficulties regarding network failures.
First, not all failures can be resolved transparently by the programming language, and
may require coordination among distributed parties. Second, and more importantly,
not all failures are the result of transient network disconnections; permanent failures
should also be dealt with. Because it is impossible to distinguish a transient from a
permanent failure in a MANET, the unavoidable uncertainty has to be dealt with at the
source code level. As a consequence, developers need to pollute application code with
assumptions about the timing behaviour of the different distributed parties. Therefore,
it is crucial to design a failure handling model that allows developers to understand
and handle the various types of failures that may affect an application. In conclusion,
we argue that the different nature of MANETs changes the methods and abstractions
necessary to deal with partial failures.

1.3 Research Goals
In this dissertation, we study abstractions and tools for the construction of MANET
applications that incorporate concepts to deal with the effects engendered by partial
failures. As Dedecker pointed out in his dissertation [Ded06], “it is only when good
software development technology becomes available that advanced applications will
be developed”. In the light of this observation, the goals of the research described in
this dissertation are fourfold:

• We investigate programming language abstractions for failure handling in a
MANET. To this end, we will propose a set of abstract criteria for a failure hand-
ling model to be used in a MANET. A failure handling model is central to enable
programmers to detect, reason about and manage the effects of partial failures.
Moreover, it provides a semantic representation of failures at the programming
language level. We will use these criteria to study the state of the art distribu-
ted programming languages and middleware in Chapter 3. The conclusion of this
study will reveal that combining a decoupled communication model with leasing
provides a solution for devising a new failure handling model in MANETs. This
will lead us to propose a concept that we call ambient-oriented leasing. This is
mainly studied in Chapter 6.

• We investigate whether these failure handling abstractions can be integrated in
a distributed model which is not necessarily based on the object-oriented pro-
gramming style. Prior work on AmOP has formulated that AmOP as an exten-
sion to object-oriented programming. However, the outcome of our study of the
related work will show that data-driven models such as tuple spaces or publish/-
subscribe also exhibit some properties suitable for a mobile environment. As
such, we want to show that it is also possible to reconcile the AmOP vision with
a data-driven model. More concretely, we investigate how the aforementioned
ambient-oriented leasing can also be integrated in a tuple space model. This is
mainly studied in Chapter 7.

6 CHAPTER 1. INTRODUCTION

• In addition to the programming language abstractions for failure handling, we
study tool support in the form of an ambient-oriented debugger that helps pro-
grammers to achieve a better understanding of the dynamic behaviour of a
MANET application. It is our explicit goal to investigate debugging support
in the face of partial failures in tandem with the aforementioned programming
support for dealing with partial failures. This is mainly studied in Chapter 10.

• Finally, we investigate a novel distributed reflective architecture that makes pos-
sible the development of both programming and debugging support for partial
failures in MANET applications. In the object-oriented research community, the
entire Smalltalk school has come up with a unified meta model on which both
the language as well as its tool support is built. Following this vision, we rethink
the original meta-level model of ambient-oriented languages, and we propose
the transmitter-receptor meta-level model. We embody the resulting reflective
model in AmbientTalk/M, the language used to develop ambient-oriented leasing
and the ambient-oriented debugger. This transmitter-receptor model is mainly
studied in Chapter 5.

1.4 Research Methodology
To achieve the stated goals, this dissertation performs a vertical exploration of the ef-
fects of partial failures on the software development process. More concretely, we
study the effects of partial failures on the design of a programming language, and then
we move up to the supporting software development tools. We will achieve our goals
in a “proof by construction” methodology in which we perform a number of design
experiments. In the following sections, we motivate the main choices with regard to
the development of these experiments.

1.4.1 A Language-oriented Approach

When designing a software platform to support partial failures in a MANET, a first
design choice is how to offer the proposed abstractions, either as a programming lan-
guage or as a middleware. Although the general trend in the field of mobile computing
has followed a middleware approach, this work takes a language-oriented approach.
This choice is motivated both by scientifically grounded considerations and by the ex-
pertise of our research lab. From a scientific point of view, prior research has described
a number of reasons why a distributed programming language has advantages over a
middleware or a library approach [BST89, VA01]. Bal et al. in [BST89] pointed out
that the most important advantage of a distributed language is that it yields a higher
level of abstraction. This is because the language provides transparency with respect
to some concerns related to concurrency and distribution. Another important advantage
pointed out by Varela and Agha [VA01] is the fact that distributed languages are better
at enforcing certain properties of the underlying programming model by design. These
advantages are exploited maximally in this dissertation. Moreover, the Software Lan-
guages Lab, in which this research has been carried out, has a long tradition of conduct-
ing language design experiments that are based on so-called “little languages” [Ben86].
Examples include a complete family of languages based on Pico [D’H96, DDD04],
Agora [CDDS94], and AmbientTalk. The experiments conducted in this dissertation
extend the family of ambient-oriented languages previously described.

1.4. RESEARCH METHODOLOGY 7

1.4.2 The Limits of Transparency

From a historical point of view, research in distributed computing has been mainly
driven by advances in the field of distributed object-oriented technology. Many re-
search efforts have focused on hiding distribution behind traditional object communi-
cation abstractions. However, several influential papers have argued that a program-
ming model should not provide the illusion of distribution transparency behind classi-
cal abstractions [GF99, WWWK96]. A better approach is therefore to recognize that
distributed interactions have a number of discriminating properties which clearly set
them apart from local interactions, the effects of partial failures being one of the most
important ones. In this dissertation we endorse this vision.

Actually, our proposal for a distribution model suitable for MANETs will make
failures explicit in the language. Given that failures are so omnipresent in a MANET
setting, we aim to provide abstractions that help developers be aware of the effects
caused by partial failures, and what to expect from the different parties in a distributed
interaction when they can no longer communicate. However, even though we endorse
the arguments against distribution transparency, we do not want to add unnecessary
complexity to programming. Recurring patterns should therefore still be abstracted
away as much as possible in programming language abstractions. As such, this work
explores the trade-off between novel abstractions that aid with the difficulties of fail-
ure handling, on the one hand, and providing mechanisms that allow developers to be
aware of their effects and take them into account in the design and construction of
applications, on the other hand.

1.4.3 A Reflective Approach

There exist different methodologies for designing programming languages. We ad-
here to the vision that distinguishes programming language design from programming
language implementation. While the language design process focuses on providing
abstractions to ease programming applications, language implementation concentrates
on techniques to efficiently provide those abstractions. Our research proposes some
language abstractions that have been made available in a prototype implementation.
Providing an efficient language implementation for them is outside of the scope of our
research. This exploratory style of language design research is traditionally rooted in
the realm of interpreter-based dynamically-typed programming languages. Such an
approach has been previously adopted in high-level languages such as Smalltalk, Lisp,
and JavaScript. These languages also have a rich tradition of being reflectively exten-
sible. The main idea is that the language is based on a well-defined set of concepts
that form the kernel language. An additional layer built on the kernel features then de-
fines high-level abstractions to deal with certain aspects of an application (which in this
work are related to distribution and failure handling). To this end, a reflective layer is
introduced on top of the kernel making the language extensible from within itself. New
language constructs can be reflectively added to the language as programming abstrac-
tions with syntactic support. Figure 1.1 depicts the design philosophy of a reflectively
extensible kernel language.

Rather than building from the ground up a new ambient-oriented programming
language, we have built our experiments by extending AmbientTalk. As previously
mentioned, AmbientTalk was originally developed in the context of Dedecker’s dis-
sertation [Ded06]. It was mainly designed as a “language laboratory” for easing the

8 CHAPTER 1. INTRODUCTION

primitive constru

cts

reflective-based const
ruct
s

Figure 1.1: A reflectively extensible kernel language.

development and experimentation of novel language constructs for MANET applica-
tions. While the language proved to be a successful research vehicle, its object model
and reflective architecture had a number of drawbacks (described in Van Cutsem’s
dissertation [Van08]). This motivated the development of a second incarnation of the
ambient-oriented programming paradigm, AmbientTalk/2, which is at present the main
distribution of AmbientTalk.

From a language designer point of view, an important difference between the two
versions of AmbientTalk lies in the magnitude of the kernel language. As depicted
in Figure 1.1, the kernel language can be further distinguished between a core and a
set of primitive constructs “hardcoded” in the kernel. AmbientTalk/1 featured a mini-
mal kernel building distributed constructs such as service discovery reflectively in the
language. However, its reflective layer exhibits a number of conceptual problems, the
most relevant being the lack of encapsulation and stratification between base and meta
levels. AmbientTalk/2, on the other hand, features a more scalable kernel model, and
a more modular and robust meta-level infrastructure. However, it adds more primi-
tive constructs and it does not reify certain aspects necessary for the development of
distribution and failure handling abstractions (as we will point out in Chapter 5).

In this dissertation, we take the design of the reflectively extensible kernel language
one step further and we revisit the AmbientTalk/2 kernel language in order to provide a
minimal kernel by reducing the number of primitive constructs, favouring the construc-
tion of language constructs for distribution reflectively. The resulting language, called
AmbientTalk/M, will be then exploited to build both our failure handling abstractions,
and our ambient-oriented debugger.

1.5 Technical Contributions
In this section, we summarize the main contributions of this dissertation:

• We define a set of criteria which identify the characteristics that a failure hand-
ling model must possess in order to be used in a MANET (cf. Table 2.1). Part
of these criteria are based on the definition of ambient-oriented programming,
which we extend to better cope with the effects engendered by partial failures.

1.5. TECHNICAL CONTRIBUTIONS 9

• We propose meta-level engineering to support better the development of distribu-
tion and failure handling abstractions and tool support. In particular, we revisit
the meta-level engineering of an ambient-oriented language and introduce two
new concepts: a novel reflective model to represent remote object references,
and a technique that enables meta-programs to dynamically react to the manipu-
lation of objects by the interpreter. We embody those concepts in a new dialect
of AmbientTalk/2, called AmbientTalk/M (cf. Chapter 5).

• We present an approach to a failure handling model for MANETs based on the
notion of leasing. We identify a set of criteria for integrating leasing at the heart
of a failure handling model designed for a MANET. We then define a notion of
a lease which we embed into the abstraction of remote object references, giv-
ing rise to a novel kind of distributed referencing abstractions called leased ob-
ject references. We show a number of language abstractions built around leased
object references in order to decrease the programming effort of leasing. We
finally provide leased object references as an extensible framework that allows
programmers to express their own leasing patterns.

• We provide a second embodiment of ambient-oriented leasing based on tuple
spaces. This results in a novel kind of tuple space model called TOTAM (“Tuples
In The AMbient”) which integrates leasing into a replication-based tuple space
model. Chapter 7 describes its design, concrete instantiation in AmbientTalk,
and a first formalization of the model by means of an operational semantics.

• We promote the development of ambient-oriented applications by proposing the
features of an ambient-oriented debugger. As a proof-of-concept implementa-
tion, we provide an online ambient-oriented debugger integrated into Ambient-
Talk Eclipse IDE called REME-D (Reflective Epidemic MEssage-oriented De-
bugger). This prototype tool shows that it is feasible to implement an ambient-
oriented debugger using a mirror-based reflective architecture with the enhance-
ments introduced in Chapter 5.

1.5.1 Supporting Publications
Of the (co-)authored publications that are related to mobile computing [MDG+06,
VVG+07, VMG+07, GVV+07, MVT+09, GSL+10, SGBDMD10, GBLCS+11,
GBCVC+11, BVB+12, HGDD12], the following introduce the key ideas of this dis-
sertation.

• Mirror-based Reflection in AmbientTalk [MVT+09]
Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonzalez Boix, Eric
Tanter, Wolfgang De Meuter
Software: Practice and Experience, 2009
This paper proposes a mirror-based reflection architecture which reconciles mir-
ror with behavioural intercession in the context of AmbientTalk. It provides the
first ad hoc integration of leasing as a remote object reference, resulting in an ad
hoc implementation of leased object references. Based on our experiences with
such a reflective architecture, we will build AmbientTalk/M (cf. Chapter 5).

10 CHAPTER 1. INTRODUCTION

• A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks
[GBVCJ+09]
Elisa Gonzalez Boix, Tom Van Cutsem, Jorge Vallejos, Wolfgang De Meuter,
and Theo DHondt
In the 47th International Conference on Objects, Models, Components, Patterns
(TOOLS 2009)
This paper proposes the core ideas of the leasing model described in Chapter 6 in
which leasing is combined with a decoupled communication model in an object-
oriented manner. It also describes an earlier version of the programming and
implementation API for leased object references described in this dissertation.

• Context-Aware Tuples for the Ambient [SGBDMD10]
Christophe Scholliers, Elisa Gonzalez Boix, Wolfgang De Meuter, and Theo
D’Hondt
In the 12th International Symposium on Distributed Objects, Middleware, and
Applications (DOA) at On the Move to Meaningful Internet Systems (OTM 2010)
This paper presents the core ideas of the TOTAM tuple space model described in
Chapter 7. The paper focuses on the software engineering support that TOTAM
provides for context-awareness.

• REME-D: a Reflective Epidemic Message-Oriented Debugger for Ambient-
Oriented Applications [GBCVC+11]
Elisa Gonzalez Boix, Carlos Noguera, Tom Van Cutsem, Wolfgang De Meuter,
and Theo D’Hondt
In the 26th Annual ACM Symposium on Applied Computing (SAC 2011)
This paper presents REME-D, our online ambient-oriented debugger for Ambi-
entTalk applications. In particular, it presents an earlier version of the REME-
D prototype tool presented in Chapter 10 which was mostly reflectively imple-
mented, but still required some modification on the underlying interpreter.

1.6 Dissertation Roadmap

This dissertation has been structured in two different parts corresponding to the two
main research problems this research addresses (described in Section 1.3). We now
summarize each chapter in this dissertation.

Chapter 2: Taxonomising Partial Failures in Mobile Ad hoc Networks proposes a
set of criteria for a failure handling model for dealing with partial failures in a MANET.
The chapter starts by describing the hardware characteristics of MANETs which serve
to motivate our criteria. We then provide some basic terminology for failures and
identify three key dimensions in the design of a failure handling model. Subsequently,
we define a set of criteria for failure handling models to be suitable for use in MANETs
according to these dimensions. Finally, we revise our criteria in the light of facilitating
the development of software development tools for MANET applications.

Part I focuses on exploring the effects of partial failures in MANET applications,
and introducing suitable programming abstractions for easing their construction.

1.6. DISSERTATION ROADMAP 11

Chapter 3: Related Work primarily surveys a number of distributed programming
languages and middlewares in the light of the criteria identified in the previous chap-
ter. As mentioned before, the outcome of this survey is that combining a decoupled
communication model with leasing offers a good basis for providing a failure handling
model in MANETs. However, to date leasing has been made transparent to applica-
tions or very low-level support is provided to manipulate leases. The main goal of this
part is to integrate a leasing model into ambient-oriented programming by means of
appropriately designed language support, leading to the concept of ambient-oriented
leasing.

Chapter 4: Ambient-Oriented Programming in AmbientTalk introduces the Am-
bientTalk programming language, an example of the ambient-oriented programming
principles on which the work of this dissertation builds. We describe those language
features required to understand the technical details of following chapters. In particular,
we focus on concurrent, distributed and reflective language features.

Chapter 5: Enhancing Meta-level Engineering in AmbientTalk discusses the
shortcomings of AmbientTalk’s reflective architecture for the development of refer-
encing abstractions and software development tools for ambient-oriented applications,
motivating the need for a revisited meta-level engineering. Subsequently, we introduce
AmbientTalk/M, a dialect of AmbientTalk which revisits the object and actor reflective
layer and introduces the following new concepts: a new representation of remote object
references as a transmitter-receptor pair representing both ends of a reference, and an
observer mechanism that enables meta-programs to dynamically react to the manipula-
tion of objects by interpreter. Such a reflective architecture is subsequently employed
in Chapter 6 to implement our language abstractions for ambient-oriented leasing, and
in Chapter 10 to implement an ambient-oriented debugger.

Chapter 6: Ambient-Oriented Leasing investigates how to integrate leasing at the
heart of a failure handling model suitable for MANETs. The chapter starts by identi-
fying three characteristics required for a leasing model to be usable in a MANET. We
then present a detailed definition for our notion of a lease, and integrate it into distri-
buted communication leading to the abstraction of leased object references. We then
explore the integration of our lease concept into distributed computation by means of
due-type messages which enable to control delivery guarantees of asynchronous mes-
sages exchanged between distributed parties. Our approach is illustrated by a running
example of a mobile music player application in which we put our abstractions to
work. We also investigate the effects of these two new language abstractions from a
software engineering perspective, and introduce support to alleviate the programming
effort they introduce. Subsequently, we describe the implementation of leased object
references as an extensible framework in which custom leased reference variants and
leased-based abstractions can be expressed. We evaluate our language constructs by
comparing our implementation of the music player application with an implementation
using Java RMI.

Chapter 7: Ambient-Oriented Leasing for Tuple Spaces integrates ambient-orient-
ed leasing in a tuple space model, resulting in a novel adaptation of the tuple space
model for MANETs, called TOTAM (Tuples On The AMbient). We describe the TO-
TAM tuple space model and a concrete prototype implementation in AmbientTalk. We

12 CHAPTER 1. INTRODUCTION

present a practical API for TOTAM and show its use by means of the implementation
of a mobile game. We also provide an operational semantics for our model.

Chapter 8: Ambient-Oriented Leasing Under The Microscope concludes the first
part of this dissertation by discussing ambient-oriented leasing in the light of the criteria
for a failure handling model postulated in Chapter 2.

Part II focuses on exploring software developments tools to support the development
of MANETs in the form of a debugger.

Chapter 9: Related Work starts the second part of this dissertation by surveying the
state of the art in distributed debugging tools and techniques.

Chapter 10: Debugging in the Face of Partial Failures focuses on providing de-
bugging support for ambient-oriented applications. The chapter starts by discussing
the challenges of debugging ambient-oriented applications, and presents the main fea-
tures of an ambient-oriented debugger to address them. We then describe the design
and implementation of a concrete instance of those features in REME-D, a Reflective
Epidemic MEssage-oriented Debugger. We present REME-D as an online ambient-
oriented debugger for AmbientTalk that integrates techniques from traditional sequen-
tial and distributed debuggers into a decoupled communication model, and proposes
novel facilities to deal with hardware features of MANETs.

Chapter 11: Pre-experimental User Study for REME-D validates our debugger
by conducting a pre-experimental user study which follows a one-group pretest-posttest
quasi-experiment design. We subsequently discuss the insights gained with regard to
how real users perceived and valued REME-D’s features.

Chapter 12: Conclusion and Future Work concludes our dissertation. We revisit
the problem statement and highlight the contributions of our dissertation with hind-
sight. Finally, we discuss interesting avenues for future research.

Chapter 2

Taxonomising Partial Failures
in Mobile Ad hoc Networks

Partial failure is one of the key issues that distinguishes distributed from parallel com-
puting. In fact, several authors have considered partial failure to be the defining charac-
teristic of a distributed system, quoting Leslie Lamport [Lam87]: “A distributed system
is one in which the failure of a computer you didn’t even know existed can render your
own computer unusable.” Hence, robustness against partial failures has been a main
requirement in the design of distributed systems. Yet, a large body of research in fault
tolerance focuses on hiding failures from the application layer and supporting high
availability (through replication). This is justified because, traditionally, failures have
been considered to add complexity to programming; so, the more a distributed system
resembles a sequential one, the easier it is to program it. Gerraoui and Fayad already
pointed out the dangers of providing the illusion of distribution transparency, which
they refer to as the myth of transparent distribution [GF99]. Nowadays, researchers
are aware of the irreconcilable differences between sequential and distributed comput-
ing. However, in general, it is assumed that a distributed system works perfectly until
some “catastrophic” failure happens which causes a node to stop working completely,
leading to a degradation of performance [Nik00]. This assumption no longer holds
for applications running on mobile ad hoc networks (MANETs). Due to the highly
dynamic nature of MANETs, devices may appear and disappear from the environment
at any moment. As such, there exists no perfect functionality of the system. Rather,
fault tolerance implies graceful degradation of services and dynamic adaptation to the
changing environment. Next to changing the concept of fault tolerance, the different
nature of MANETs also changes the methods and approaches to deal with partial fail-
ures. Basically, MANET applications must be written assuming that failures are the
rule rather than the exception.

The approach that we take in this work is to deal with partial failures at the program-
ming level by uncovering suitable failure handling abstractions which are appropriate
for use in MANET applications. In this chapter, we first characterize the problems of
partial failures in MANET applications. Subsequently, we distill a set of criteria to
adhere to in order for a failure handling model to be suitable for MANETs. Such cri-
teria are grounded in the ambient-oriented programming paradigm [DVM+06], which
in itself already identifies a number of requirements for the development of MANET
applications.

13

14 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

2.1 Mobile Ad hoc Networks
Mobile ad hoc networks (MANETs) are computer networks that are spontaneously
formed when a number of mobile devices that are connected by means of wireless tech-
nology. Quoting Murphy et al. in [MRV98] a mobile ad hoc network is “a transitory
association of mobile nodes which do not depend upon any fixed support infrastruc-
ture”. Such a network thus emerges due to the collocation of mobile devices, resulting
in opportunistic wireless interactions amongst the devices.

Depending on the type of mobile devices and wireless networking technologies
used, there may exist different types of MANETs. On the one hand, mobile devices
can vary between, laptops, tablets, cellular phones, and other electronics embedded
into items such as car’s on-board computers, sensor nodes, or RFID-tagged objects.
On the other hand, wireless technology can range from Wifi technology, Bluethooth,
NFC, to 3G mobile internet. As a result, interactions amongst devices typically hap-
pen over fragile communication links as disconnections of devices can happen at any
moment in time due to the limited network coverage of wireless technology. The types
of MANETs that this work mainly focuses on are wifi-based MANETs in which mo-
bile nodes are interconnected by Wifi technology (such as Wifi-direct) which does not
rely on Internet-gateway access points. We also consider vehicular ad-hoc networks
(VANETs) in which mobile nodes can interact and cooperate with “mobile infrastruc-
ture” (such as vehicles) and other stationary infrastructure (such as roadside equip-
ment) which is interconnected via Wifi. The devices that we target are powerful mo-
bile devices such as tablets or smartphones. As such, we will not target mobile ad hoc
networks composed of thousands of small mobile devices with limited computational
power such as sensors networks.

MANETs can be used to deploy a broad spectrum of applications, which we refer
to as MANET applications. We are particularly interested in the software develop-
ment of MANET applications that range from collaborative applications [KB02] in
which a number of devices interact in impromptu meetings to urban-area applica-
tions [HGDD12] in which mobile users connect with various access points of a mobile
infrastructure which is itself constantly in motion. Examples of collaborative appli-
cations include distributed drawing editors, instant messengers, file and music sharing
applications, and mobile social networking applications [GBLCS+11] (that exploit the
collocation of users to shape social interactions). On the other hand, examples of urban-
area applications include city games like Hitchers [DBT+06], peer-to-peer transport
information applications in which commuters can obtain real-time traffic information
of their itinerary from vehicles (e.g., buses, trains, etc.) and even places (e.g., bus stops,
traffic lights, etc.), vehicular communication applications in which cars communicate
with one another to avoid traffic jams, etc.

2.1.1 Hardware Characteristics
As previously mentioned, mobile ad hoc networks are composed of mobile devices
which communicate with each other by means of wireless communication links with a
limited communication range. Van Cutsem et al. [VMG+07] identified two discrimi-
nating properties which clearly set MANETs apart from traditional fixed networks:

Volatile Connections Mobile devices equipped with wireless technology possess only
a limited communication range. This combined with the fact that users move
about with their devices implies that communicating devices may move out of

2.2. AMBIENT-ORIENTED PROGRAMMING 15

communication range at any time without notice. The resulting disconnections
are not always permanent: the two devices may meet again at some point later
when able to reconnect. Often, such intermittent network connections should not
affect an application, allowing communicating parties to continue their collabo-
ration where they left off. Because transient disconnections are omnipresent, a
disconnection should no longer be treated as a “failure” by default in MANETs.

Zero Infrastructure Mobile ad hoc networks are formed by the temporary colloca-
tion of mobile devices. As a device moves about, it will spontaneously join with
and disjoin from the ad hoc network. As a result, there is very little or no fixed
infrastructure on which devices can rely to discover and collaborate with one an-
other, e.g., a name server to manage service discovery such as Java RMI registry.
The services available to applications have to be dynamically discovered when
they become available on proximate devices. As such, MANETs are usually
un-administrated.

Although MANET applications have been previously identified as a subset of ad
hoc applications running on MANETs [Van08], they introduce a number of challenges
at the software level because any application has to deal with the aforementioned hard-
ware characteristics. These hardware characteristics are universal as they affect and
often pervade the entire application independently of the functionality it provides. As a
result, they undermine the assumptions made by long-established methods, algorithms,
and technologies for distributed computing.

2.2 Ambient-Oriented Programming
The ambient-oriented paradigm (AmOP) was specially designed to help developers
with the development of a MANET applications. The paradigm proposed a set of well-
defined guidelines that a system must comply with in order to be suited for the mobile
environment:

Classless Object Model Due to the dynamic nature of MANETs, an ambient-oriented
language requires objects to be self-sufficient: code and data should be inte-
grated together in an object, rather than separating the code in a class. When
distributing objects across a network in a class-based language, objects and their
classes are copied between devices. As a result, objects residing on different
machines can autonomously update their class even though, conceptually, there
is only one class. To avoid a distributed state consistency problem among dupli-
cated classes, ambient-oriented languages disallow the use of classes, favouring
prototype-based programming instead.

Non-Blocking Communication Primitives The volatile connection phenomenon in-
herent to MANETs requires communication primitives to be non-blocking: the
process sending a message should not be suspended while completing the oper-
ation. As a result, when a communicating party moves out of communication
range, no other concurrently running party will ever be blocked. This approach
minimizes the effect of temporary unavailability of devices [MLE02], and avoids
potential distributed deadlocks.

Reified Communication Traces Since communication is non-blocking, both senders
and receivers continue their execution regardless of message sending or recep-
tion. This means that synchronization is necessary to prevent communicating

16 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

parties from ending up in an inconsistent state. To resolve these inconsisten-
cies, an ambient-oriented language should store an explicit representation (i.e.
a reification) of the communication details of processes. This allows a party to
properly recover from an inconsistency by reversing (part of) its computation.

Ambient Acquaintance Management In order to deal with the zero infrastructure
phenomenon previously described, an ambient-oriented programming language
should allow an object to spontaneously get acquainted with a previously un-
known object without knowing its address beforehand. Ambient acquaintance
management also implies that communicating parties must be able to keep an
up-to-date view of which acquaintances are (dis)connected so that they can take
explicit action when an acquaintance disconnects.

These four language design principles advocate the explicit incorporation of the
hardware characteristics of MANETs described in the previous section in future dis-
tributed object-oriented languages. However, while the paradigm incorporates simple
semantics for handling intermittent disconnections as a result of the volatile connec-
tions phenomenon, it says very little about how to deal with the effects engendered by
partial failures. Quoting Dedecker in his dissertation [Ded06]:

“Although a paradigm is a first necessary step towards supporting the
design and development of AmOP applications it does not necessarily give
insight into how such applications are built and how different (distribution)
concerns should be expressed.”.

Within the context of ambient-oriented programming, this dissertation specifically
explores how failure handling should be dealt with, in particular, how to detect, reason,
and handle partial failures at the programming level. While raising failure handling to
the programming level may seem to make the programming more difficult, we argue
that it actually aids developers by providing a framework in which they can be aware
of the issues engendered by partial failures, and what to expect from the different kinds
of distributed interactions. Before defining criteria for failure handling abstractions in
MANETs, we review the types of failures that can hinder interactions in MANETs.

2.3 Types of Failures
In order to understand the importance of a failure handling model for MANET applica-
tions, we first define basic terminology related to failures and we explain what it means
to tolerate failures.

A failure is traditionally defined as an event that occurs when the services provided
by a system deviate from the ones it was designed for [ALRL04]. In the case of distri-
buted systems, a failure implies that one or more services offered by the system cannot
be provided. The discrepancy between the observed behaviour and the theoretically
correct behaviour of a system is called an error. Hence, an error is an event that may
lead to a failure. For example, errors when transmitting a data package across the net-
work may lead to a failure if the client process is unable to deserialize the package.
Finally, a fault is an incorrect step in a program which causes an error (e.g., the cause
of a transmission error may be a deteriorated network cable). A fault is said to be active
when it causes an error, and dormant when is present in a system but latent. Avizienis
et al. in [ALRL04] describe the relationship between faults, errors and failures as the

2.3. TYPES OF FAILURES 17

“chain of threats”. The activation of a fault results in an error either because an internal
dormant fault becomes active or due to an external fault. The propagation of such an
error to the service interface then makes the service deviate from the correct behaviour,
resulting in a failure. The failure of a service in turn causes an external fault for the
system receiving the service completing the cycle of fault, error and failure.

A failure model (also called the system’s failure modes) defines the different types
of failures that a system tolerates. There exists several classification schemes in the lit-
erature which provide insight into the different types of failures that affect distributed
systems [TS01, ALRL04, GR06]. Based on those schemes, this section provides a pre-
cise description of the kind of failures that are relevant in a mobile distributed system.
We classify failures according to three different aspects: scope of the failure, cause of
the failure and the duration of a failure. These concerns are depicted in Figure 2.1.

The term “process” denotes a software entity that has autonomous behaviour, in-
ternal state and which interacts with other processes by exchanging messages through
the network. A distributed system is thus a collection of processes that communicate
with one another to provide some services.

Scope of the failure As a first basic distinction, failures can be either total or partial.
A total failure happens when all the software entities working in the system cease to
compute. Failures are total in sequential programming where they typically result in an
exception or the inability to complete the computation. In contrast, in distributed com-
puting, the failure of a process may not affect the correct functioning of other processes
in the network. Hence, failures in a distributed system are said to be partial. Although
a total failure is rare in distributed systems, it is still possible e.g., in systems deployed
in highly static network topologies interconnected by reliable technology such as Eth-
ernet. This is not the case in a mobile distributed system: because of the mobility
of devices and the unreliability of wireless technology, partial failures are inherent to
MANETs.

Cause of the failure In a distributed system, failing to provide services means that ei-
ther processes, communication channels, or both are not doing what they are supposed
to do. According to the entity which is deemed to cause the failure, we distinguish
between process failures, communication failures, and arbitrary failures. Determining
what caused a failure is important so that the system can apply compensating actions
and continue working.

Process failures: They form the simplest way of failing; they occur when a pro-
cess stops executing some computation, and does not send any message to other pro-
cesses. Process failures can be caused by programming errors, security attacks, or
hardware malfunction. They may affect the whole process or only certain components
(or threads) within the process. A process failure can be further refined depending on
whether other processes can reliably detect it or not [GR06]. When a process stops
all computation and notifies this to other processes, the failure is said to be a fail-stop
failure. When a process stops without notification, the failure is said to be a crash fail-
ure. In a mobile distributed system, processes typically do not fail gracefully notifying
other processes as many failures are unanticipated because of the adhocness of the en-
vironment. Since other processes do not get notified of the failure, they just perceive
a process failure as a lack of responsiveness. As a result, process failures cannot be

18 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

Failure Types

Cause of the Failure

Scope of the Failure

Total Failure

Partial Failure

Process Failures

Communication/Network Failures

Arbitrary/Byzantine Failures

Duration of the Failure

Permanent Failures
Intermittent Failures
Transient Failures

Fail-stop Failures
Crash Failures

Path Failures
Message Loss

Communication Interface Failures

Figure 2.1: Classification of failures.

distinguished from the failure of the communication channels. This brings us to the
definition of the second type of failures within this category.

Network failures: They arise when the physical communication medium that con-
nects the process with the rest of the system does not transport messages anymore.
Network failures are also referred to in literature as failures in communication, or just
communication failures. In this dissertation, we use these terms interchangeably. A
network failure can be subdivided in three categories [DMQ07]:

• Communication interface failures occur when the network interface transmitting
outgoing messages fails, or when the receiver’s interface fails to process incom-
ing messages, or when both interfaces fail. Hadzilacos and Toueg further dis-
tinguish between send-omission failures and receive-omission failures [HT94].
The former happens when a process completes the transmission but the message
is not put in its outgoing message buffer. The latter happens when a message is
put in the incoming message buffer, but the process does not receive it. In this
work, we use communication interface failures in the broadest sense of the term
including send-omission and receive-omission failures.

• Message lost implies that individual messages transmitted by a process may be
dropped or lost on the communication route between the different nodes in the
network. The loss of messages in a communication channel has also been termed
communication omission failures [CDK05].

• Path failures occur when a communication channel between two nodes appears
to be blocked. Because the effects of path failures are similar to communication

2.3. TYPES OF FAILURES 19

interface failures, we only consider communication interface failures.

In traditional distributed systems, network failures are usually either forced for
administrative reasons (e.g., hardware or software upgrades) or caused by an unpre-
dictable malfunction (e.g., overloading, interference, congestion of the network, denial
of service attacks, physical detach of cables, etc). These assumptions do not hold
for mobile distributed systems because of several reasons. First, MANETs are typi-
cally un-administered (so network failures are not forced for administrative reasons).
Second, devices move about. As a result, many network failures are spontaneously
caused by a lack of network coverage when a device moves out of communication
range and leaves the network. Finally, many failures are simply voluntarily caused by
the end user, e.g., to save battery power, optimize the available bandwidth, maximize
the mobile data connection, etc. End-users thus play a crucial role in mobile distributed
systems; their arbitrary mobility makes unpredictable network failures the norm.

Arbitrary failures (also known as Byzantine failures): They are the most general
case of failures. They occur when the system fails in arbitrary ways because of soft-
ware bugs or malicious behaviour. Those failures do not follow any particular pattern:
processes may stop, crash or even continue working producing incorrect or inconsistent
computation (e.g., sending messages that have nothing much to do with those supposed
to be sent regarding the application functionality). Due to their unpredictability nature,
they may encompass crash failures, communication interface failures, message loss, as
well as malicious failures (e.g., corrupting local state, processing or sending incorrectly
a message, etc).

Arbitrary failures are very harmful to MANETs because they may cause damage
in unanticipated ways. Since devices generally form transient associations which do
not depend on any fixed infrastructure, it is really difficult to detect the compromised
devices. Some work in MANETs has focused on making routing protocols resilient
to such failures [PHM06, ACH+08, GPP+10]. This work aims to tackle malicious
disruptions of the data transmitted over a wireless link (i.e., ensure secure data com-
munication), and the correctness of the routes the data is sent across (i.e., ensure secure
route discovery). However, there has been little research on generic failure detection
mechanisms for them [Col07]. Quoting Doudou et al. in [DGG02]:

“Byzantine failures have many faces, some of which can simply not be
encapsulated inside the failure detector.”

Detecting arbitrary failures requires complementary security-related mechanisms such
as access control techniques, cryptographic key management, etc. In this work, we
assume that processes and communication channels are not subject to arbitrary failures.
Dealing with arbitrary failures requires the design and implementation of programming
abstractions for enabling secure interactions among potentially malicious devices while
minimizing the possible damage, which is outside the scope of this dissertation.

Duration of the failure The last concern classifies failures according to the possi-
bility of recovery: a failure is said to be transient if the system recovers after a finite
amount of time; otherwise it is said to be permanent. Tanenbaum et at. in [TS01]
further redefine transient failures according to how often they occur. Transient failures
occur once and then disappear, while intermittent failures denote failures that appear,
then disappear suddenly, then reappear, and so on. In mobile distributed systems, many
transient failures are intermittent because of the hardware characteristics of wireless
technology and the mobility of devices. In this work, we generally use these two terms
interchangeably to refer to failures in which the system recovers at some point in time.

20 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

Due to the lack of global knowledge in distributed systems, it is hard to determine
whether a failure is transient or permanent. This problem is exacerbated in mobile
distributed systems since a failure can be caused by a process failure, by a network
failure, or simply because the user left the network. As Waldo et al. already remarked
in [Wal01], only the future can prove a failure to be transient or permanent. However,
since the time that the system needs to wait for a connection to be reestablished can
depend on device mobility and end-user preferences, it is impossible to ascertain au-
tomatically whether a failure is transient or permanent. As a consequence, the way
we represent and expose failures in the software platform is crucial to help developers
deal with such undeterminism when building MANET applications. The next section
describes a set of requirements that we use to determine what kind of failure handling
abstractions are suitable for mobile distributed systems.

2.4 Design Dimensions of a Failure Handling Model
In the previous section, we established what types of failures are relevant in the context
of MANETs. As we explained, the hardware characteristics of MANETs change the
assumptions about the properties of the underlying communication network. This,
combined with the fact that devices move about makes that applications are exposed to
a higher rate of partial failures in MANETs than in traditional fixed networks. The lack
of adequate support to deal with failures puts an extra burden on developers which need
to deal manually with their effects at the application level. Since failures in MANETS
are unpredicatable and omnipresent, a mobile distributed system should be able to
detect failures and react to them in a consistent way.

We term a failure handling model the set of abstractions and software techniques
for detecting and reasoning about partial failures. A failure handling model is a crucial
abstraction in a software platform designed to build applications running on MANETs
because it makes developers aware of the hardware environment in which applications
run. In addition, it also make them take into account the indeterminism inherent to
MANETS during the application design. The design of a failure handling model has a
major impact on the design of the software platform as a whole. In particular, it affects
at least the following three components:

Communication As previously mentioned, the lack of communication of a process
in a distributed interaction is the usual symptom of a partial failure. Since the
failure of a process is indistinguishable from a network failure in MANETs, de-
tecting failures usually involves communication. Failure detection can happen
actively (processes send “alive” messages to each other) or passively (processes
wait for the arrival of messages from other processes). At the language level,
the failure handling model may be completely aligned with the communication
facilities (e.g., Rover [JdT+95] augments the remote method procedure (RPC)
abstraction with queueing capabilities to cope with intermittent disconnections),
or it can be made an independent abstraction (e.g., in the language Oz [HRBS98]
developers can install fault streams on software entities in order to react to fail-
ures). In short, a failure handling model must allow process to detect failures
when communicating with other process.

State consistency A fundamental aspect of failure handling is to be able to bring the
system back into a consistent state once a failure has occurred. A failure handling
model must provide abstractions that allow processes to protect against failures

2.5. CRITERIA FOR A FAILURE HANDLING MODEL FOR MANETS 21

and recover from them in a consistent and reusable way. In traditional distributed
systems, protection against failures is achieved using redundancy techniques that
mask failures and support continued operation of the system by enhancing the
availability of data (as in the case of replication, and distributed transactions).
Recovery is typically achieved by regularly saving the system state, and get back
to a previously correct state using checkpointing or message logging techniques.

Memory management During the lifetime of an application, processes will interact
and share resources with an unknown number of processes. Moreover, the pro-
cess exporting a resource to the network may not necessarily be active at the
same time as the one using it. This may lead to an accumulation of outdated in-
formation, compromising the performance of the application, and even the mo-
bile device. A proper failure handling model should be devised along with the
memory management scheme to limit the usage of resources shared with other
processes.

In short, a failure handling model involves a set of programming abstractions that
address the above aspects of a distributed model. Note that a wide range of approaches
have been proposed to address some of these aspects. Most of the existing works have
focused on making one of these aspects resilient to partial failures (e.g., much research
has focused making communication facilities like RPC tolerant to failures). Some
programming models for traditional distributed systems incorporate a failure handling
model which takes into account all three aspects (as in the case of the Oz language
which we discuss in the next chapter). Before analyzing the various approaches in state
of the art of software development platforms, we present a set of criteria to evaluate
their applicability in a MANET.

2.5 Criteria for a Failure Handling Model for MANETs
We now describe criteria that define which failure handling abstractions are suitable for
use in MANETs. The criteria are organized according to the previously identified di-
mensions in the design of a failure handling model: communication, state consistency,
and memory management.

2.5.1 Partial Failures and Communication

In any distributed system, processes must be able to discover other processes, send and
receive information to and from other processes, and synchronize with one another to
provide a number of services. The term communication comprises these three activi-
ties. In the literature, coordination is also used to denote the communication concerns
of a distributed system [PA98]. We adopt a loose interpretation of these terms, and we
sometimes use the two interchangeably.

Traditional distributed models usually provide means to detect the failure of a com-
munication primitive, and represent such a failure to the application level by propa-
gating exceptions. Due to the volatile connections phenomenon previously described,
communication between devices is expected to be interrupted, often for unpredictable
amounts of time. This results in application code that is polluted with exception hand-
ling code because failures are the rule rather than the exception in MANETs. We
therefore advocate a communication model which abstracts over intermittent failures

22 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

by default. This is the essence of our first criteria which is derived from the notion of
ambient-oriented programming presented in Van Cutsem’s dissertation [Van08].

Criterion 1 (Decoupled communication) Processes should be decoupled as
much as possible in space, time, synchronization, and arity to allow computations
to proceed in the face of the intermittent failures and zero infrastructure phenom-
ena present in MANETs.

Communication is decoupled in time when processes do not need to be active at
the same time to communicate with one another. It is decoupled in space when pro-
cesses do not need to know each other beforehand to communicate. Those two forms
of decoupling (or uncoupling) were originally remarked by Gelernter in his work on
generative communication [Gel85]. Eugster et al. in [EFGA03] further distinguished
synchronization decoupling to denote that the control flow of communicating processes
is not blocked upon sending or receiving of a message. Van Cutsem also points out the
importance of the arity decoupling in a MANET. Arity decoupling states that processes
do not need to know the total number of processes communicated with.

It is important to remark that these forms of decoupling are not restricted to a par-
ticular programming paradigm. In general, distributed programming models can be
categorized into data-driven and control-driven1. In a data-driven model, commu-
nication takes place by describing the characteristics of data items exchanged by an
intermediate coordinator. Representative examples that instantiate such a model are tu-
ple spaces, and publish/subscribe systems. In those approaches, the coordinator takes
the form of an associative data structure (or shared dataspace), and an event broker (or
event service). In a control-driven model, communication happens instead by means of
well-defined interfaces that interconnect processes, usually referred to as communica-
tion links. Processes behave as black boxes which use communication links to convey
information to other processes. Distributed object-oriented systems are the classic ex-
ample of a control-driven model in which processes communicate by means of remote
object references. Note that communication links are not restricted to point-to-point
interactions. Other kinds of interactions are definitely possible such as group commu-
nication (by forming a 1-n relationship between processes), and peer-to-peer architec-
tures (by organizing processes into an overlay network). Although much research in
distribution has focused on object-orientation, data-driven models like tuple spaces and
publish/subscribe have been adapted to exhibit some forms of decoupling. We further
discuss them in the next chapter.

A distributed model adhering to the decoupled communication criterion is attrac-
tive since it provides simple semantics to deal with transient failures in a MANET.
However, permanent failures should be handled as well. In the previous section, we
already remarked that it is impossible to accurately distinguish a transient from a per-
manent failure in a MANET. Since failures can only be approximated, the unavoidable
uncertainty has to be dealt with at the application level. This implies that developers
need to make assumptions about the timing behaviour on communication between pro-
cesses. This is not straightforward and it can depend on system parameters such as the
number of clients. This problem is exacerbated in MANETs due to the unpredictable
mobility of devices. Therefore, it is crucial to complement the decoupled communica-
tion model with dedicated support for encapsulating information about a failure. We

1This terminology is based on the taxonomy of coordination models proposed by Papadopoulos in [PA98]
which can be equally applied to distributed programming models.

2.5. CRITERIA FOR A FAILURE HANDLING MODEL FOR MANETS 23

explicitly state the importance of an explicit representation of an application’s timing
assumptions in the following criterion.

Criterion 2 (High-level representation of failures) Processes should agree on
criteria to determine when their logical communication has terminated.

Agreeing on some criteria to delimit their communication allows processes to au-
tonomously differentiate transient from permanent failures and know what they can
expect of each other when they are unable to communicate. This means that communi-
cating parties must rely on some mechanism other than network connectivity to detect
failures. In the literature, we observe that failure detectors have been introduced as a
dedicated abstraction to encapsulate time assumptions [CT96]. A failure detector can
be regarded as an “oracle” that provides information about processes that have failed.
However, failure detectors have been designed only for synchronous and partially syn-
chronous systems2. In contrast, mobile distributed systems are asynchronous by nature.
Chandra and Toueg showed in [CT96] why it is impossible for a failure detector to
achieve both completeness and accuracy over an asynchronous system. Completeness
requires that a failure detector eventually suspects every process that actually crashes,
while accuracy requires that there is a time after which a failure detector does not make
a false detection. This observation has led to a large body of theoretical research on
failure detectors [TS01, GCG01, ZGSK05, GR06]. Almost all of this work focuses on
global failure detection to solve problems like consensus, atomic broadcast, etc. These
approaches guarantee the completeness property but are not necessarily good abstrac-
tions in a MANET since they are devised for systems which do not contain mobile
nodes [Sri06]. In addition, due to the unpredictable mobility of devices, the system
may not even be perceived as synchronous at any point in time. The best the program-
mer can do is to use application-dependent information to determine when a failure
should be considered as permanent, e.g., if it lasts longer than a certain time period, if
the user had full or restricted access to the service, etc.

Note that we are not arguing against abstractions that enable processes to detect
failures. On the contrary, representing failure detection as an abstraction has the ad-
vantage that it allows developers to reuse failure handling concerns in other applica-
tions [FGF99]. We are only arguing that those abstractions will only be able to detect
failures unreliably. To deal with the resulting uncertainty, they should support the de-
scription of failures using application semantics.

A high-level representation of failures actually reveals yet another degree of decou-
pling: it decouples low-level network connectivity of processes from high-level appli-
cation connectivity. This implies that the aspect of communication is separated from
the aspect of failure handling. However, being aware of the state of the connection of a
process is still important in a MANET setting because processes must sometimes take
explicit action upon connectivity changes. Moreover, those actions often pervade the
entire application up to the user interface (e.g., a chat application may grey out partic-
ipants that unexpectedly disconnect leaving a room). To this end, the failure handling
model should also provide abstractions to monitor changes in the underlying network.
We state the importance of offering abstractions to monitor connectivity with other
processes as our last criteria for communication.

Criterion 3 (Reacting to Network Connectivity) A failure handling model
should enable processes to monitor the network connectivity of other processes.

2A synchronous system assumes that there is a time bounds for computation and communication, while
a partially synchronous only makes those assumptions most of the time [GR06].

24 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

2.5.2 Partial Failures and State Consistency
One of main challenges that developers need to face in a MANET setting is to build
applications that continuously adapt to a highly dynamic environment and continue
working in the presence of partial failures. Failure detection is usually followed by
corrective actions whose aim is to bring the system back to a correct state eliminating
the detected error. In traditional distributed systems, rollback, rollforward and com-
pensation are the three main techniques applied for system recovery [ALRL04]. In a
MANET, such techniques are not suitable:

• Backward recovery techniques (also known as rollback recovery protocols) typ-
ically save the state of the system on stable storage at certain points in time
(called checkpoints), and restore a previous correct state when a failure occurs.
However, checkpointing requires distributed snapshots, i.e., a global view of the
system. In a MANET environment, processes cannot get information about a
global state of the system as processes may experience unexpected partial fail-
ures. Moreover, due to the lack of central administration, it is not possible to
guarantee that every process is cooperative and is making snapshots.

Log-based techniques were introduced to reduce the number of checkpoints
while enabling recovery by allowing processes to replay their execution after
a failure beyond the most recent checkpoint. Despite simplifying failure recov-
ery, such techniques provide transparent support which does not require any in-
tervention of the application or the programmer [EAWJ02]. This makes them
unsuitable for MANETs since applications must be aware of the fact that their
environment is continuously changing as they may need to adapt their behaviour
to those changes, e.g., location changes, or network disconnections.

• Rollforward (also known as forward recovery) aims to bring the system in a new
correct state from which it can continue executing, instead of moving back into
a previously correct state. The main problem with rollforward is that it requires
prior knowledge of which failures may occur, i.e., it can only move into a correct
state when all possible failure situation are known beforehand.

• Finally, compensation techniques aim to incorporate enough redundancy in the
system to enable a failure to be masked. Failure masking thus stems from the
systematic use of compensation. Examples of those techniques include atomic
transactions, replication, group-based abstractions, and migration of objects. In
a nutshell, those techniques ensure the availability of services in the network
by providing temporal redundancy in which actions may be performed again
if needed (as in the case of transactions), or data redundancy in which data is
duplicated in other processes so that when a process fails, the data is still avail-
able (as in the case of replication, and group-based abstractions). However, they
generally do not scale to MANETs because they assume the network is mostly
reliable (i.e., nodes are fixed and have a more or less stable network connection)
and rely on some centralized coordination authority. Moreover, those techniques
are useless if a partial failure isolates a node from all the other ones.

The root problem of recovering from partial failures in a MANET is that a funda-
mental trade-off needs to be made between consistency and availability of data. Such a
trade-off was first remarked in the domain of web services as Brewer’s conjecture and

2.5. CRITERIA FOR A FAILURE HANDLING MODEL FOR MANETS 25

Consistency

Availability Partition Tolerance

Figure 2.2: The CAP theorem.

later, formalized and proven as the CAP theorem in [GL02]. The theorem, depicted in
Figure 2.2, states that it is impossible to simultaneously provide consistency, availabil-
ity and partition tolerance; only two can be guaranteed at the same time. Since MANET
applications must almost always be partition-tolerant because failures are inherent to
the network topology, a choice needs to be made between providing consistency or
availability. Relaxing consistency allows the system to remain highly available in the
face of partial failures, while emphasizing consistency implies that the system may
not be available under certain conditions. Since not having access to services can be
considered the rule in a MANET, trading off consistency provides a scalable solution.
Not only providing consistency usually introduces communication overhead, it may be
also difficult (if not impossible) to achieve without making assumptions about the mo-
bility of devices [MP06]. Based on the previous observations, we state the following
criterion:

Criterion 4 (Local Failure Recovery) Processes should rely as little as possible
on remote parties to recover from partial failures. They should be able to perform
failure handling based on their local state as much as possible.

Considering the opportunistic nature of communication which may prevent appli-
cations from accessing a service and data for extensive periods of time, failure handling
abstractions should be based on mechanisms that increase data availability while relax-
ing consistency. In the literature, disconnected operation techniques provide data avail-
ability by emulating the functionality of the disconnected service locally. They were
first introduced in the area of distributed file systems (in the Coda file system [KS92]),
but some techniques have been applied in traditional distributed applications. The
most common techniques used for supporting disconnected operation include caching,
hoarding (i.e., prefetching the data likely to be used before a disconnection), queue-
ing remote interactions during disconnection, and re-routing remote communications
[MRM06]. In short, each process should be able to react to failures without relying on
other remote processes.

Enhancing availability of services and data in the face of partial failures is suitable
for applications that can handle slightly outdated data. For example, it has been used
to build high-volume web services such as Amazon and Google [Vog09]. However, in
a mobile setting, the way to react to failures is highly application-specific [Nik00]. We
explicitly state the importance of this observation in the following criterion.

Criterion 5 (Application-dependent Failure Handling Strategies) A failure
handling model should enable processes to define the most appropriate strategy
to react to partial failures.

26 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

Although disconnected operation mechanisms provide a “default strategy” for deal-
ing with partial failures, developers still have to do part of the work. For some applica-
tions, it may be acceptable to wait for the connection to be repaired to resume its task,
e.g., distributed video streaming applications. For others, it may be more convenient to
continue their task with a substitute service available in the proximity. As such, failure
handling abstractions should be flexible enough to incorporate a wide range of failure
handling strategies. Not only is the strategy to choose highly application-specific, but
it may also depend on the kind of interaction in which application is engaged. For
example, reacting to the failure at the user’s home, or when the user is at a conference
may require different kind of failure handling strategy. In one case, it may be expected
that the user will eventually come back home and resume its tasks, while in the latter,
he will only remain for a limited period of time at the conference. We conclude that
developers should be able to choose the appropriate technique to distribute resources
enabling application to cope with partial failures in a dynamic way.

2.5.3 Partial Failures and Memory Management
A partial failure may cause the resources held for disappeared peers never to be freed,
leading to an accumulation of outdated information. At first sight, one could solve
this problem by making each process responsible of the data it produces, i.e. the de-
veloper needs to explicitly free resources when they are no longer needed. However,
explicit memory management is known to lead to two very common bugs: incom-
pleteness, the failure to free all used resources (memory leaks), and unsoundness, the
premature reclamation of resources (dangling references) [AR98]. While incomplete-
ness can lead to indefinitely accumulation of useless resources, unsoundness can lead
to unpredictable behaviour which is difficult to detect and debug since entities may fail
long after the event that caused the problem. In sequential programming, these issues
are typically solved by introducing a garbage collector. Many software platforms for
distributed computing adopted this technique and incorporate a distributed garbage
collector3.

The main motivation of the research in distributed garbage collection is to provide a
transparent memory management similar to local garbage collection. They follow one
of the two well-known families derived from their local counterpart, namely tracing
and reference counting. In a mobile setting, these techniques are too inflexible:

• Distributed tracing combines a global inter-space collector (which takes care of
the mark phase which recursively traverses the distributed object graph marking
unused objects) with independent local garbage collectors (which take care of the
sweep phases during which unreferenced objects will be reclaimed). Although
these techniques can collect all kinds of data structures (i.e., they are complete),
they make strong assumptions on the reliability of the network and require the
cooperation of all nodes to collect garbage. As a result, no progress can be made
when a node fails, making them unsuitable for a MANET. Some extensions aim
to improve scalability and avoid global synchronization by organizing nodes into
groups which cooperate to perform garbage collection [LQP92, RJ98]. However,
those techniques can only make progress in the face of failures provided that the
failed node is not part of the group.

3Since most of the research on distributed garbage collection has been investigated in object-oriented
systems [AR98, PS95], the term generally denotes an automatic memory management scheme that reclaims
unused objects that are held by another object in a remote process.

2.5. CRITERIA FOR A FAILURE HANDLING MODEL FOR MANETS 27

• Distributed reference counting, on the other hand, associates each remote ob-
ject with a counter which is updated on each reference creation or deletion.
These techniques are typically more fault-tolerant and scalable, but maintain-
ing counters accurately is costly in terms of communication overhead and ef-
fort to ensure causal order of events. Many works have been proposed to en-
hance fault-tolerance and reduce overhead including indirect reference count-
ing [Piq91], generational reference counting [Gol89], weighted reference count-
ing [Bev87, WI87], network objects [BNOW93], and SSP Chains [SDP92]. A
well-known disadvantage of (distributed) reference counting is that it fails to
collect cyclic garbage (distributed across devices). To solve this issue, some
schemes have been proposed to collect cyclic garbage by using complementary
distributed tracing schemes to detect and reclaim cycles [Lin92, JJ92, LQP92,
JL93, RJ98, VF05], or by migrating objects so that all cyclic garbage is con-
fined to a single device where it can be collected by the local garbage collec-
tor [Bis77, SPG90, ML95]. Yet, they heavily rely on communication between
nodes to detect garbage objects.

In essence, distributed garbage collection has to face similar issues as local garbage
collection: soundness and completeness. When a device containing references to re-
mote objects disconnects from the network, either the remote objects have to be kept
online until the device reconnects (sacrificing completeness – the device referencing
the object may never reconnect, keeping the object from being reclaimed) or it eventu-
ally takes the object offline such that it can be reclaimed (sacrificing soundness – the
device may reconnect and still refer to the object). The higher rate of partial failures
to which applications are exposed in a MANET raises questions on what completeness
and soundness mean in this setting. This brings us to our first criterion for a memory
management scheme suitable for a MANET.

Criterion 6 (Relaxing soundness) Disconnected data should be admitted as valid
state of the distributed memory management model.

Because traditional distributed garbage collection schemes originate from lo-
cal garbage collection, compromising soundness is deemed to be out of the ques-
tion [AR98]. Traditionally, when a network failure occurs, the remote reference be-
comes unusable and it is considered dangling. However, relaxing soundness makes
it possible that applications can deal with intermittent disconnections as remote refer-
ences remain valid during a network disconnection. Simply put, in a MANET, discon-
nected data is so common due to the volatile connections phenomenon that it should be
treated as a normal state of the system.

In general terms, it is not possible for a distributed garbage collector to determine
exactly which data is still in use (alive). As such, all garbage collection schemes use
some kind of approximation to liveness: an object is still alive if it is still reachable (in
tracing-based schemes) or referenced (in reference counting-based schemes). Tradi-
tional distributed garbage collection schemes use communication between the different
nodes hosting the object graph to compute such an approximation. This is because they
assume that the nodes are interconnected by considerably reliable networks such as the
internet. In a MANET, network failures arise much more frequently; thus, the problem
boils down to knowing when the communication will be restored in order to ascertain
if the remote object is still in use. However, as we already argued, the system cannot
distinguish a transient from a permanent failure. As a result, traditional distributed
garbage collection schemes are not necessarily good techniques in a MANET setting.

28 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

Rather than maintaining data until it is no longer used, the lifetime of data should be
agreed before engaging in a collaboration such that resources can be freed if a network
failure persists. A distributed memory management scheme for a MANET should thus
satisfy the following criterion.

Criterion 7 (Contractual memory management) The lifetime of data should be
agreed before being shared among distributed parties.

Note that contractual memory management does not imply an explicit treatment of
memory management. We are arguing that transparent memory management cannot be
reconciled with the characteristics of MANETs: distributed garbage collection requires
application-specific information to reclaim garbage. When a datum is first shared,
both communicating parties should establish a contract which describes under which
circumstances the datum is meaningful in order to help the collector to approximate its
liveness. A good failure handling model should enable developers to steer distributed
garbage collection while abstracting away as much as possible the many low-level
memory management issues.

2.6 Partial Failures and the Software Development Pro-
cess

This dissertation places emphasis on programming language design for easing the sys-
tematic construction of applications running on a MANET. To this end, in the previous
section, we identified a number of criteria that a failure handling model for building
MANET applications should incorporate. Good software development tools are also
indispensable for promoting the development of applications since they help develop-
ers to face better the complexities of software development. In this section, we revise
the criteria of a failure handling model in order to support the development of software
tools for MANET applications.

The software tools we envision include provisions for dealing with the fact that
partial failures are inherent to the application being created, tested, debugged, or main-
tained. An approach often employed in software development is to incrementally build
software focusing on meeting the functional requirements of an application, and con-
sidering at a later stage the non-functional requirements. Usually the first increments
are the most important requirements because they establish the architectural structure
of the system while later increments require, hopefully, only small changes to the over-
all system. Due to the hardware phenomena inherent to MANETs, failure handling
can no longer be considered as a non-functional requirement to be addressed in later
increments. Since partial failures may percolate from the underlying middleware up to
the graphical user interface of an application, the need arises to support partial failures
at the tool level. After all, one can expect that MANET applications incorporate fail-
ure handling as a “functional” requirement. This observation led us to investigate tool
support in tandem with the programming support for dealing with partial failures.

As previously mentioned, we explore tool support in the form of a debugger. De-
buggers assist developers in the process of looking for the places in which the execution
of an application deviates from its intended behaviour. In order to detect anomalous
behaviors at early development stages, it is important to be able to reproduce a range
of possible states that a distributed application can be in, and expose the application to
them. To this end, we propose to incorporate means to make software entities fail on
purpose in the failure handling model:

2.6. PARTIAL FAILURES AND THE SOFTWARE DEVELOPMENT PROCESS29

Criterion 8 (Forcing Failures) A failure handling model should enable processes
to cause failures artificially, and trigger failure handling explicitly even if there is
no physical network failure.

Forcing failures provides the necessary support for software development tools like
debuggers, monitors or testing facilities to define different network topologies. The
effects of failures on applications can then be verified by means of the support for
reacting to network connectivity (described as criterion 3 in Section 2.5.1). Note that
causing the failure of processes also enables applications to trigger failure handling
code proactively at specific points in their execution.

Since many bugs may not manifest themselves until the application is actually de-
ployed, software development tools must also be able to operate on deployed mobile
systems and obtain information about the network state. To this end, software tools
should be able to monitor the network connectivity of processes. This shows once
more that the reacting to network connectivity criterion is essential for supporting the
development of software tools for MANET applications.

Criteria for Communication

C1 Decoupled communication Processes should be decoupled as much as possible in
space, time, synchronization, and arity to allow compu-
tations to proceed in the face of the intermittent failures
and zero infrastructure phenomena present in MANETs.

C2 High-level representation
of failures

Processes should agree on criteria to determine when their
logical communication has terminated.

C3 Reacting to Network Con-
nectivity

A failure handling model should enable processes to mon-
itor the network connectivity of other processes.

Criteria for State Consistency

C4 Local failure recovery Processes should rely as little as possible on remote par-
ties to recover from partial failures. They should be able
to perform failure handling based on their local state as
much as possible.

C5 Application-dependent
failure handling strategies

A failure handling model should enable processes to de-
fine the most appropriate strategy to react to partial fail-
ures.

Criteria for Memory Management

C6 Relaxing soundness Disconnected data should be admitted as valid state of the
distributed memory management model.

C7 Contractual memory man-
agement

The lifetime of data should be agreed before being shared
among distributed parties.

Criteria for Tool Support

C8 Forcing failures A failure handling model should enable processes to cause
failures artificially, and trigger failure handling explicitly
even if there is no physical network failure.

Table 2.1: Overview of the criteria of a failure handling model for MANETs.

30 CHAPTER 2. TAXONOMISING PARTIAL FAILURES IN MANETS

2.7 Conclusion
In this chapter, we identified three major design dimensions for the development of a
failure handling model suitable for MANETs - communication, state consistency and
memory management. We discussed the issues that the high rate of partial failures in-
herent to MANETs impose on each concern, and derived a set of criteria that a suitable
programming model for MANET applications should provide. We also argued that the
technological support for each of these dimensions should also facilitate the develop-
ment of software tools for MANET applications, and subsequently revised our criteria.
Figure 2.1 provides an overview of all criteria according to the different concerns which
we summarize as follows:

• The issues of communication in MANET are related to the fact that connections
are volatile and networks are usually un-administrated. The criterion of decou-
pled communication (C1) derived from the AmOP paradigm allows applications
to proceed their collaboration when failures are transient. However, some fail-
ures may be permanent, and should be dealt with. A failure handling model
should thus provide a high-level representation of failures (C2) to allow devel-
opers decide when a network failure should be considered as a failure at applica-
tion level. Nevertheless, it should still enable processes to monitor the network
connectivity of other processes as the effects engendered by disconnection often
pervade the entire application (C3).

• The major issue of bringing the system back to a consistent state once a failure
occurred is that developers are confronted by the trade-off between maintaining
consistency and providing availability of services. Given a MANET setting,
providing mechanisms to perform failure handling which requires as little as
possible the intervention of remote parties provides a scalable solution (C4).
However, how to react to failures is highly application-dependent. Thus, a failure
handling model should provide means to enable developers to define the most
appropriate strategy to react to partial failures (C5).

• The frequent transient failures inherent to a MANET poses the question of how
a memory management scheme should deal with soundness and completeness.
A model for MANET should relax soundness (C6) so that data remains valid
during intermittent disconnections, and enable that the lifetime of data is agreed
before being shared among other processes (C7) so that garbage collection can
still happen in the presence of long-lasting disconnections.

• Last but not least, we argued that the effects of partial failures percolate up to the
software development tools built for MANET applications. This implies that the
failure handling model should also incorporate support to make processes fail on
purpose to trigger failure handling explicitly (C8).

In the next chapter, we review the state of the art of software engineering technol-
ogy for MANET in the light of these criteria.

Part I

Partial Failures in Mobile Ad
hoc Network Applications

31

Chapter 3

Related Work

In the previous chapter, we have distilled a number of programming model criteria to
be able to deal with partial failures in mobile ad hoc networks (cf. Table 2.1). In this
chapter, we analyse various distributed programming platforms that adhere to one or
more of these criteria. As stated in the introduction, our work takes a language-oriented
approach based on the design philosophy of a reflectively extensible kernel language
in which a small kernel language is augmented with a reflective interface to enable the
construction of programming abstractions from within the language itself. However, a
large body of research in mobile computing has been conducted in the field of middle-
ware. Hence, we survey both distributed programming languages and middleware in
the context of our criteria for a failure handling model for MANETs. It is important
to remark that we do not pursue completeness in this survey, but we focus on the rep-
resentative approaches which provide support for one or more of the criteria. In our
discussion, we use the acronyms C# shown in Table 2.1 to refer to a particular crite-
rion. In general, we will not only focus on approaches developed especially for mobile
ad hoc networks since many interesting ideas have been developed for traditional fixed
distributed systems.

3.1 Survey of Distributed Programming Languages

Programming languages are often considered suitable for expressing distribution and
concurrency concerns because they offer higher-level abstractions to deal with the com-
plexities engendered by those concerns [BST89, BGL98, VA01]. Much research in dis-
tributed programming languages has focused on general-purpose distributed computing
for local area networks (e.g., Emerald [JLHB88], Obliq [Car95] and ABCL/f [YBS86]),
wide area networks (e.g., Erlang [AVWW96], Mozart [HRBS98] and Salsa [VA01], or
wireless sensor networks (e.g., nesC [GLvB+03], SpatialViews [NKSI05] and Actor-
Net [KSMA06]). Some other distributed languages have been especially designed for
reliable distributed computing (like Argus [Lis88]), secure distributed computing (like
E [MTS05]), high-performance computing (e.g. X10 [CGS+05] and Fortress), or web
programming (like HOP [SGL06] and Links [CLWY06]).

However, none of these languages provide support to deal with the radically dif-
ferent network topology of MANETs. In general, most languages assume a relatively
stable network topology and introduce tight coupling between processes. In particular,
they do not feature space-decoupled communication because they assume infrastruc-

33

34 CHAPTER 3. RELATED WORK

ture to introduce distributed processes to one another in the network via some form of
explicit addressing (e.g., a URL). They do not support either arity decoupling directly
since communication happens typically point-to-point. Moreover, the failure handling
model is usually aligned with the exception handling model because network failures
are considered to be exceptional. Nevertheless, several languages provide interesting
features for failure handling, namely Argus, Mozart and E. In the remainder of this
section, we further analyze them; we briefly summarize the language’s main features
before evaluating it. The evaluation is organized according to the three design dimen-
sions of a failure handling model described in Section 2.4.

3.1.1 Argus

Argus [Lis88] is a distributed programming language that provides built-in transac-
tional support to cope with the effects of partial failures. The language provides distri-
buted objects (called guardians) that support transactional semantics. A guardian is a
special kind of remote object which can be accessed by means of handlers which are
similar to methods. A handler invocation is served by one of the guardian’s internal
processes. The state of a guardian consists of a set of local objects (which serve han-
dler invocations), and references to other guardian objects. Local objects which are
annotated with the stable keyword are periodically stored so that they are recover-
able after a crash. The rest of the objects are volatile, i.e., they are assumed to contain
volatile data that can be discarded or reconstructed from stable objects after a crash.
Argus allows computations to run as atomic actions by introducing atomic objects.
Atomic objects differ from regular ones in the way their operations are handled. Each
operation on an atomic object has a lock (either a read or write lock). Operation invo-
cations annotated with the action keyword are then handled as a transaction in which
state changes are applied to a copy of the state of the atomic object. Argus ensures that
either the operation is completed successfully (and state changes are committed), or no
changes are made to the object.

Communication Argus supports both synchronous and asynchronous remote meth-
ods invocations. Asynchronous remote methods invocations are supported by means
of streams calls. Argus’s streams allow a client object to run in parallel with the object
processing the invocation, thus, decoupling them in time. Stream calls are buffered and
sent conveniently so that multiple messages can be sent without waiting for them to
be processed. When a handler invocation is performed on a guardian, Argus delays its
execution until all earlier invocations are completed, ensuring that invocations are exe-
cuted in the correct order. Streams also have some built-in support to deal with failures
as the system retries to deliver calls that failed due to a communication problem with
the guarantee that they are executed at most once. However, the system only retries to
deliver calls for an unspecified period of time after which it gives up and breaks the
stream, raising a failure exception.

In order to deal with the return values of asynchronous remote method invocations,
Argus employs the notion of futures which are also known as promises [LS88]. A pro-
mise serves as a proxy for the value which will be returned as result of the asynchronous
remote invocation. Argus pioneered the concept of promise chaining which allows one
to “chain” asynchronous remote invocations which results in immediate sends with-
out having to wait for the method’s return values. In order to support synchronization
on the result represented by the promise, the language provides the claim operation

3.1. SURVEY OF DISTRIBUTED PROGRAMMING LANGUAGES 35

which allows one to “wait” for the result of the asynchronous remote invocation. The
operation suspends the calling thread if the value of the promise was not received when
it was called. As such, Argus does not feature full synchronization decoupling.

State consistency The language aims to provide a transparent solution for dealing
with the effects of partial failures by means of atomic actions. As such, it does not pro-
vide explicit means of application-dependent failure handling strategies (C5). Atomic
actions provide an all-or-nothing semantics to deal with failures during remote method
invocations. However, atomic actions are based on a two-phase-commit protocol which
is not feasible in the context of MANETs. The main problem is that the protocol ex-
pects failures to be rare and that the participants will come back online to provide their
answer, but in a MANET volatile connections are common and failures may not be
resolved within a reasonable amount of time due to mobility of devices.

Memory management Argus’ memory management model does not relax sound-
ness (C6) nor supports contractual memory management (C7). It provides a transpar-
ent memory management in which each node incorporates a stop the world, mark and
sweep, compacting garbage collector [LCJS87]. In [LL86], Liskov et Ladin describe
a distributed garbage collection algorithm which relies on a local garbage collector for
reclaiming local objects, and introduces a centralized service to store information about
inter-node references. The idea is that each node periodically performs local garbage
collection independently, and updates the information about their references to remote
objects. Although the algorithm is designed to tolerate network failures, it assumes that
“nodes do eventually recover from crashes” [LL86].

3.1.2 Mozart

The Mozart Programming System [HRBS98] is the primary implementation of the OZ
language, a multi-paradigm language that supports functional programming, object-
oriented programming and constraint logic programming. It was implemented within
the context of the Distributed Oz project whose goal was to provide a distributed model
for OZ built around the principle of separation of concerns [Roy99]. Mozart adheres
to the classic goal in traditional distributed systems of network transparency, i.e., a
program should run with the same semantics independently of the distribution of its
language entities. As long as there are no communication issues, remote or local enti-
ties are indistinguishable to programmers. Yet, the distribution model is also network-
aware, i.e., a program has some control over the network connectivity of entities.

A distributed application in Mozart consists of a number of sites across the network
hosting language entities (e.g., objects, dataflow variables, etc.). Sites communicate by
means of shared entities, which can be of three different sorts: mutable entities (includ-
ing cells, ports, objects, threads and locks), monolithic entities (mutable entities which
can be only assigned once, including streams and dataflow logic variables), and im-
mutable entities (including simple values such as numbers, records, and procedures).
Each type of shared entity is attached to a distributed protocol which determines its
network behaviour based on the value to some distributed parameters. There are three
orthogonal distribution parameters which can be attached to an entity: (1) the access
architecture parameter which defines how the sites sharing an entity are coordinated,
(2) the state consistency parameter which defines where the state of the entity is located,

36 CHAPTER 3. RELATED WORK

and (3) the reference consistency parameter which defines the distributed garbage col-
lection algorithm used on the entity. Although each entity carries a default annotation,
programmers can alter the default distributed protocol by means of Annotate proce-
dure which applies a list of distribution parameters for a given entity.

Mozart provides a failure handling model which maps the failure detection mech-
anism in the network layer onto failures at the programming level. A language entity
can be either OK, temporarily failed, or permanently failed. A program can detect the
failure of an entity using two different mechanisms: watchers and handlers. A watcher
allows developers to attach a procedure for a given entity which is invoked when the
entity enters the failed state that the watcher is configured for. A handler attaches a pro-
cedure for a given entity with certain conditions of activation, but the handler procedure
is only called when attempting an operation on a failed entity. The common type of
handler raises an exception into the calling thread, but programmers can provide a han-
dler procedure that replaces the attempted operation. In short, watchers perform eager
failure detection (as they trigger failure handling code when the entity fails even when
no explicit operation is performed), while handlers perform failure detection lazily (as
they only trigger upon operations on entities). Collet remarked in [CR06] that watch-
ers also provide asynchronous failure handling since the watcher procedure is invoked
in its own thread, while handlers are the synchronous counterparts since the handler
procedure is invoked in the thread attempting an operation on a failed entity.

In his dissertation Collet [CR06] revisits Mozart’s failure model and proposes a
fully asynchronous failure handling model based on fault streams instead. In his model,
every site has a failure detector for each language entity which produces a stream giving
its failure state transitions. He distinguishes between an entity that is permanently
failed from the viewpoint of one site (i.e., other sites may still have access to the entity),
or globally for all sites. As a result, a language entity can be either OK, temporarily
failed, locally failed, or permanently failed. Programmers can monitor the state of an
entity by reading its fault stream. A fault stream of an entity thus reifies the history of
states of that entity. This means that programs can now react by a transition back to the
state OK which was not possible in the previous failure model.

Communication Mozart does not decouple entities in space because the language
assumes infrastructure to introduce language entities to other sites in the network. In
order for a site to acquire an initial reference to a shared entity, it has first to acquire
(e.g., by mail, web page, etc.) a string representing the entity’s global identity. Sec-
ond, synchronization decoupling is not fully supported because the language allows a
thread to suspend on certain circumstances. Quoting Collet in his dissertation [Col07]
“an operation on a failed entity simply blocks until the entity’s fault state becomes OK
again.”. The operation may resume if the failure is temporary, but it suspends forever if
the failure is permanent. This also conflicts with the contractual memory management
criterion (C7) since the blocked thread keeps the entity alive, preventing the memory
management system from reclaiming it. To solve this issue, programmers explicitly
need to make an entity fail. When a fault stream is no longer alive, the system closes
the stream (i.e., it triggers the state nil). The threads monitoring the entity can then
detect this state and manually remove explicit references to the entity. Finally, arity de-
coupling is not directly supported in the language because references to shared entities
are point-to-point.

Although fault streams allow programmers to react to changes of network connec-
tivity (C3), they do not directly support a high-level description of failures (C2). The

3.1. SURVEY OF DISTRIBUTED PROGRAMMING LANGUAGES 37

transitions from temporary to permanent are determined transparently by the under-
lying failure detection mechanism, which is in turn, built on top the network failures
of TCP. More high-level representations of failures need to be encoded manually by
means of fault streams and handler/watchers procedures.

State consistency Mozart’s distributed parameters provide a form of application-
dependent failure handling strategies (C5) since developers can select the most ap-
propriate built-in strategy to deal with data inconsistencies and memory management.
However, the Annotate procedure can only be called before the entity gets distribu-
ted. Once an entity is distributed for the first time, its distribution parameters can no
longer be changed. This may be too restrictive for certain MANET applications which
need to dynamically adapt their behaviour to changes in the environment.

Memory management In Mozart, developers can choose among three built-in strat-
egies in the reference consistency parameter: persistent (in which the system sim-
ply keeps the entity alive forever), refcount (in which the system reclaims the entity
based on a weighted reference counting algorithm [Bev87, WI87]), and lease (in
which the system reclaims the entity after its lease expires). Choosing a lease strategy
for an entity allows for relaxing soundness (C6) and contractual memory management
(C7). Although developers can choose a memory management strategy, the language
still provides transparent memory management. As such, to the best of our knowledge,
developers cannot choose the lease duration for a given entity, nor deviate from the
default lease strategy behaviour (e.g., renew leases after certain conditions are met).

We conclude Mozart’s evaluation by remarking that Collet introduced in [Col07]
support to force the failure of an entity (C8) either locally or globally.

3.1.3 E
E [MTS05] is a distributed object-oriented language which was designed for secure
peer-to-peer distributed programming for open networks such as the internet. The lan-
guage combines actors and objects into a unified concurrency model called the com-
municating event loops model. The model is an adaptation of the actor model [Agh86]
in which actors are represented as vats (containers) of regular objects, rather than an
active object (as done in previous actor languages such as ABCL). A vat consists of
a heap of objects and a thread of control which perpetually processes messages from
the actor’s message queue and invokes the corresponding method of the object. Each
object is said to be owned by exactly one vat, and a vat may host multiple objects.
Each object can be referenced from objects owned by other vats. Rather than repre-
senting local and remote objects differently, E distinguishes between several kinds of
references which define the kind of invocations supported. Objects within the same vat
refer to one another by means of near references which can carry synchronous or asyn-
chronous method invocations. Objects hosted in different vats can only communicate
using asynchronous method invocations by means of eventual references.

Communication Since eventual references are the only kind of object reference that
can span across different devices, all distributed communication in E is asynchronous
by design. This makes the language quite suitable for a MANET. However, E’s even-
tual references are not designed to express communication over volatile connections.

38 CHAPTER 3. RELATED WORK

A network failure immediately breaks any vat-crossing eventual reference (a remote
promise or a far reference). This implies that any message sent after the connection is
lost, and the message’s promise is resolved with an exception. As such, E’s event loop
concurrency model does not feature decoupling in time.

In order to deal with the results of asynchronous method invocations, E also em-
ploys promises inspired by Argus’s promises. However, E pioneered the when con-
struct which allows one to access the value of a promise in an entirely non-blocking,
event-driven manner. As such, in contrast to Argus, E’s event loop concurrency model
features full synchronization decoupling.

E introduces support for partial failure handling that allows developers to explicitly
manage the disconnection of a reference. E’s references respond to a method called
whenBroken that takes as argument a handler that is registered to be notified when the
reference breaks upon a network partition. Interestingly, references also respond to a
method called reactToLostClient that notifies the target objects that at least one of
its clients may no longer be able to reach it. However, the language does not fully fea-
ture support for reacting to network connectivity (C3), since there is no corresponding
method for reacting to the reconnection of a reference. This is because, quoting Miller
in his thesis [Mil06], “even after a partition heals, all references broken by that parti-
tion stay broken”. In order to regain connectivity to a remote object after a network
failure, E introduces the notion of sturdy references. In contrast to traditional object
references, sturdy references do not carry messages from a client to a target object.
Rather, a sturdy reference allows one to ask for a new “live” reference to the target
object when an existing one breaks upon a network partition. A sturdy reference is a
form of offline capability which contains the information needed to authorize access to
a given target object. Sturdy references, however, are created by means of an explicit
address (in the form of a URI string), so they do not decouple objects in space.

State consistency The whenBroken and reactToLostClient methods allow de-
velopers to schedule correcting actions at both ends of the reference when a failure
occurs. These methods thus provide the basis on which to build application-dependent
failure handling strategies (C5).

Memory management To the best of our knowledge, E features transparent mem-
ory management based on a distributed garbage collection algorithm derived from ref-
erence counting. Miller mentions in [MTS05, Mil06] that the algorithm assumes that
each vat determines when a reference is no longer reachable, and it does not collect
unreachable inter-vat reference cycles. Since reference breaks upon a network parti-
tion, E’s memory management model does not relax soundness (C6). However, some
control is provided over the lifetime of offline capabilities encapsulated by a sturdy
reference. When a host creates a sturdy reference for one of its local objects, it may
associate a future date with the reference, denoting how long the host should keep the
object available. As such, the language features contractual memory management (C7)
only for sturdy references.

3.2. SURVEY OF FORMAL LANGUAGES FOR DISTRIBUTED COMPUTING39

3.2 Survey of Formal Languages for Distributed Com-
puting

A large body of research in distributed computing has focused on designing formal
models and languages rather than concrete programming languages for describing dis-
tributed computations in open networks. Many approaches are based on the actor
model [Agh86] (e.g., the ActorSpace model [AC93]). In the actor model, a system
consists of a number of concurrent, autonomous entities called actors which commu-
nicate with one another by sending asynchronous messages. Each actor has a mail
address (uniquely identifying an actor), a message queue (a mailbox storing incoming
messages) and a behaviour (defining how an actor handles incoming messages). Since
an actor’s communication model decouples actors in time and in synhronization, the
model is of great relevance in the field of mobile computing. Some approaches aim to
reconcile the asynchronous communication model from actors with the conventional
object-oriented paradigm such as Creol [JO07].

Another group of models and languages are based on the concept of coordination.
A coordination model is concerned with the communication between different entities
in a system, i.e., “the glue that binds separate activities into an ensemble” [PA98]. It
can be represented by a <E,L,M> tuple in which E denotes the entities being coor-
dinated, L the mechanism used to coordinate them, and M the semantic framework the
model complies with. A coordination language embodies a coordination model, i.e., it
implements a communication model rather than a computational one. Most coordina-
tion models and languages for concurrent and distributed systems are based on the tuple
space model of Linda [Gel85]. Since much mobile computing middleware is derived
from the tuple space model, we discuss it in a separate section later (cf. Section 3.3.2).

Although many formal languages provide fully decoupled communication, they do
not provide explicit means for failure handling. A notable exception is the failure hand-
ling model proposed in [JLZ11] for the Abstract Behavioural Specification language
(ABS) [JHS+10]. ABS is a concurrent object-oriented modeling language of which
the concurrency model is based on the concurrency model of Creol. The ABS commu-
nication model features asynchronous method calls with futures as return values. The
language provides both blocking and non-blocking constructs to synchronise active
objects on return values by means of the get and await primitives, respectively.

The failure handling primitives introduced in [JLZ11] to ABS’s communication
model employ futures both to notify failures, and to coordinate error recovery between
client and receiver objects of an asynchronous method call. More specifically, they
introduce the abort primitive which takes as argument a fault name and notifies the
client object of an asynchronous method call (the caller) about the failure of the re-
ceiver object. Client objects can detect whether the invocation failed using an extended
version of a get primitive which takes as argument a fault name and a clause to execute
if the future contains the given fault name as result. While such a primitive allows pro-
cesses to detect and deal with failures even if there is no physical network failure (C3),
failure handling is still represented as an exception. In addition, the model assumes
that failures behave in a fail-stop fashion (cf. Section 2.3) but in a MANET, processes
do not typically fail gracefully notifying other processes before stopping their compu-
tation.

Interestingly, the model introduces a compensating handling mechanism for can-
celling out past asynchronous method calls. To this end, they augment ABS’s return
primitive with an on compensate clause which takes as argument the compensation

40 CHAPTER 3. RELATED WORK

code that needs to be executed after the method’s normal execution completed if com-
pensation of this call is needed. They also introduce the kill primitive which allows
to “annul” an asynchronous message call, i.e., it cancels the asynchronous method ex-
ecution (if it did not start yet) or, it executes the compensation code (if the call was
already executed and it successfully completed). The primitive returns a future itself to
be used to obtain the result using the regular await and get primitives. Two special
fault names may be returned in such a future that specify either that the method call
was successfully annulled before starting or at its end, or that the killed method did not
define a compensation. Although compensating handling code is only triggered by a
kill request at the caller side, it provides an interesting form of application-dependent
failure handling strategies (C5).

3.3 Survey of Mobile Computing Middleware

As previously mentioned, there has been a lot of active research with respect to mobile
computing middleware [MLE02, BC06]. The bulk of this research can be categorized
into several classes (i.e., object-oriented middleware, tuple space-based middleware,
publish/subscribe middleware, and reflective middleware) which we discuss in detail
in this section. We also include some interesting middleware platforms that have been
designed for nomadic networks (networks composed of a mix of mobile devices and a
core infrastructure with fixed nodes) rather than for pure ad hoc networks.

3.3.1 Object-oriented Middleware

Traditionally, object-oriented middleware supports distributed communication based
on the abstraction of a remote procedure call (RPC) [BN84] in which the client object
issuing a method invocation is blocked until the receiver object has returned the result
of the computation. Although RPC scales very poorly for a mobile setting [MLE02],
several extensions have been proposed to adapt RPC to nomadic networks by sup-
porting queuing of RPCs (e.g., Rover [JdT+95]), or enabling rebinding of resources
(e.g., Mobile DCE [SBBK95]). These approaches provide a solution to deal with the
effect of volatile connections but, they do not address long-lasting disconnections as
they do not provide a high-level representation of failures (C2). In the remainder of
this section, we highlight the most relevant object-oriented middleware with respect to
the criteria we distilled for a failure handling model for MANETs (cf. Table 2.1).

3.3.1.1 Java Intelligent Network Infrastructure (JINI)

Jini [Wal99] is a middleware for service-oriented computing built on top of Java. Its
main goal is to allow clients and services to discover and set up an ad hoc network in a
flexible, easy manner with minimal administrative infrastructure. The most important
concept within the Jini architecture is the service. A service is an entity available
on the network which performs a number of tasks for a client. The lookup service
is a central abstraction in Jini since it allows services to advertise themselves in the
network, and clients to find services by launching queries in the Jini lookup service. In
contrast to traditional lookup services, clients and services do not need to be configured
with the network address of the lookup service but they can automatically discover
it in the network. The lookup service thus acts as a shared space for offering and

3.3. SURVEY OF MOBILE COMPUTING MIDDLEWARE 41

finding services in a network (often referred to as a federation). Jini thus features space
decoupling.

Once services have been introduced, Jini relies on the synchronous communication
model of Java RMI [Wal01]. This implies that communication is not decoupled in time
nor synchronization as a network disconnection blocks the communication channel
between objects. Nevertheless, Jini’s architecture is flexible enough to support time,
synchronization and arity-decoupled communication. Jini distinguishes between the
Java interface of the object to be advertised (which must be known by the client object)
and the implementation of a proxy object supporting the same interface. Once a client
has downloaded a service, the proxy is the communication channel to the service. As
such, in theory, the proxy can implement different communication models to interact
with its service [Wal01]. In practice, to the best of our knowledge, Jini does not offer
any implementation that deviates from the Java RMI semantical model based on remote
object references which carry synchronous method invocations.

Jini employs the concept of leasing to allow devices leave the network gracefully
without affecting the rest of the system. Quoting Waldo in [Wal01], “the Jini system
encourages the establishment of such relationships for a finite duration through the
granting of leases on the relationship”. When services register themselves with the
lookup service, they obtain a lease (of which duration is determined by the lookup
service itself). Services must then renew their lease with the lookup service in order to
keep their registration in the lookup service. If they cannot, the lookup service removes
the service registration when the lease expires. The lease expiration thus denotes that
the relationship covered by the lease is ended. Services can also explicitly cancel the
lease prior to its expiration. It is important to remark lease expiration is not causally
connected with the underlying state of the network connection. Hence, leasing provides
a high-level representation of failures (C2) since it allows services to agree on a criteria
to determine the validity of their relationship with the lookup service.

Leasing was originally brought to Jini to deal with the effects of partial failures and
simplify resource management. If the lease covered the allocation of some resource,
the resource associated with the lease can be cleaned up after the lease expires. The
Jini specification advocates a use of leasing to mediate the relationships to any kind of
resource including access to objects (references), files, event registrations, certificates
that grant the lease holder certain capabilities, or service registrations [jin03]. How-
ever, to the best of our knowledge, leases have only been integrated in the Jini lookup
service (as previously explained) and JavaSpaces [FAH99]. JavaSpaces is a Jini service
providing an implementation of the original tuple space model of Linda (see also Sec-
tion 3.3.2). In JavaSpaces, tuples are modeled as Java objects and can be inserted in the
tuple space specifying a lease time, which specifies the maximum amount of time for
which they can reside in the tuple space before being automatically removed. To sum
up, Jini offers “contractual resource management” (C7) as leasing allows entities to
agree on a time-based convention when they establish a relationship. However, due to
its reliance on Java RMI, Jini’s memory management model does not relax soundness
(C6) since a remote reference becomes broken upon a network disconnection.

We will revisit Jini in Section 6.10 where we describe the differences and similari-
ties between its leasing model and the one proposed in this work.

3.3.1.2 Rover

Rover [JdT+95] is a software toolkit designed to ease the construction of both mobile-
transparent and mobile-aware applications. Mobile-transparent applications aim to

42 CHAPTER 3. RELATED WORK

hide the effects of mobility to the application, while mobile-aware applications are
aware of mobility such that they can react appropriately. Rover assumes a nomadic
network in which clients run on mobile devices, and servers run on stationary devices.
Communication happens solely on a client/server basis and as such, mobile devices do
not directly communicate with one another. While this makes Rover look not very suit-
able for ad hoc networks, it offers some interesting mechanisms for failure handling.

Rover supports local failure recovery (C4) by incorporating support for discon-
nected operation. To this end, it introduces two abstractions: relocatable dynamic
objects (RDOs) and queued remote procedure call (QRPC). RDOs behave as mobile
objects which can be dynamically migrated to a client from a server or vice versa.
However, a RDO always resides on a server which maintains the primary copy. Clients
can obtain secondary copies enabling them to work with their local copy during dis-
connections. Updates on that objects need to be reconciled with the primary copy when
connection between client and server is available. Conflicts resulting from concurrent
modifications can be handled in an application-dependent way since one can provide
a conflict resolution strategy for each object. QRPC, on the other hand, provides an
extension to RPC model in which RPCs performed during a disconnection are buffered
in a stable log. When the connection between client and server is available, they are
redelivered and deleted from the log when a result has been received from the server.
Clients can either block while the QRPC is pending or register a callback which will
be asynchronously invoked upon the arrival of the result (providing thus a form of
synchronization decoupling).

By means of RDOs and QRPC, Rover offers two built-in failure handling strategies
(C5). The applicability of RDOs is, however, limited in a MANET because traditional
replication techniques do not scale to MANETs [Ded06]. QRPC, on the other hand,
does provide time-decoupled communication between client and server. Finally, Rover
has built-in support to allow applications to react to changes in their environment. The
environment consists of the state of the RDOs, and the state of the network. As such,
Rover enables processes to monitor the network connectivity of other processes (C3).
Applications can either poll or register a callback to determine the state of the environ-
ment.

3.3.1.3 DR-OSGi

DR-OSGi [KTA09] is a distributed service-oriented middleware designed to deal with
the effects of volatile connections. It extends the R-OSGi distributed infrastructure for
OSGi components with hardening strategies to enable applications to continue work-
ing when the underlying network becomes unavailable. DR-OSGi goes one step fur-
ther than Rover on support for disconnected operation. It allows applications to choose
among a catalog of disconnection operation techniques derived from Mikic-Rakic and
Medvidovic survey [MRM06]. The authors describe five techniques: caching (locally
storing a subset of remote data that has been accessed), hoarding (prefetching the likely
needed remote data before a disconnection), queueing (buffering remote requests sim-
ilar to QRPC), replication (maintaining a local copy similarly to RDOs) and multi-
model components (which allows to combine several of the prior strategies). However,
to the best of our knowledge, DR-OSGi only provides cache, queueing and replication
by default.

Interestingly, DR-OSGi has been designed as an extensible framework in which
developers can implement custom hardening strategies. It augments the R-OSGi in-
frastructure with a hardening manager and a collection of hardening strategies (which

3.3. SURVEY OF MOBILE COMPUTING MIDDLEWARE 43

Listing 3.1: The DisconnectionListener interface.� �
public interface DisconnectionListener{

public Object disconnectedInvoke(RemoteCallMessage invokeMessage);
public Object reconnected(String uri);
public void remoteInvoke(RemoteCallMessage invokeMessage, Object result);
public void serviceAdded(String uri);
public void serviceRemoved(String uri);

}� �
can be configured by the programmer). The hardening manager intercepts the handling
of network exception and successful reconnections attempts from R-OSGi by means of
aspect oriented programming technology. In response to those events, it starts and stop
the corresponding hardening strategy. More concretely, programmers have to provide
a configuration file that specifies which hardening strategy should be applied to which
application. More than one strategy can be specified, which are applied in the order
defined in the configuration file. If the first strategy succeeds, DR-OSGi does not apply
the second one.

In order to create a new hardening strategy, the DisconnectionListener inter-
face (shown in Listing 3.1) needs to be implemented. The disconnectedInvoke and
reconnected methods allow programmers to intercept the disconnection and recon-
nection procedures of R-OSGi. Similarly to Mozart fault streams, these methods allow
the programmer to react to network connectivity (C3), but they do not directly sup-
port a high-level representation of failures (C2). The remoteInvoke method is called
when the remote service invocation succeeds. The implemented class then has to be
deployed as a regular OSGi bundle.

DR-OSGi provides essentially application-dependent failure handling strategies
(C5). Furthermore, failure handling strategies are expressed as separate components,
promoting their reusability among different applications. However, since a hardening
strategy is applied to all services within an application, this may be too coarse grained
for certain applications. In addition, the fact that the remoteInvoke method takes as
argument the result of the invocation indicates that DR-OSGi relies on a synchronous
communication model. Hence, it does not support decoupled communication (C1).

3.3.2 Tuple Space-based Middleware

Tuple spaces were first introduced in the coordination language Linda [Gel85]. A tuple
space is a globally shared virtual data structure which allows processes to communicate
by posting and reading tuples. A tuple is an ordered group of values (called the tuple
content) and has an identifier (called the type name). Processes can post and read tuples
using three basic operations: out to insert a tuple into the tuple space, in to remove a
tuple from the tuple space and rd to access a tuple present in the tuple space (without
removing it). Tuples are anonymous and are extracted from the tuple space by means
of pattern matching on the tuple content.

Tuple space communication is decoupled both in space and time: processes do not
have to know each other beforehand nor be online at the same time in order to insert
and extract tuples. These characteristics make tuple spaces a suitable communication
model for a mobile setting [MLE02]. However, maintaining a globally shared tuple
space is not compatible with the hardware characteristics of MANETs (cf. Section 2.1).

44 CHAPTER 3. RELATED WORK

Adaptations of tuple spaces designed for mobile computing applications have been
proposed that solve this issue. We now review the two most prominent tuple space-
based middleware platforms, namely LIME [MPR01] and TOTA [MZ04]. We will
revisit tuple space-based middleware in Section 7.9 when discussing work related to
the tuple space model proposed in this work.

3.3.2.1 Linda in a Mobile Environment (LIME)

LIME [PMR99, MPR01] adapts the original tuple space model for mobile computing
through the notion of federated tuple spaces. In this model, mobile agents are equipped
with a local tuple space called interface tuple space (ITS). Whenever devices come into
communication range, the ITS are conceptually merged into a federated tuple space
which is transiently shared amongst devices. The federated tuple space enables agents
to access tuples from remote agents. Since tuples can only be exchanged when the
communication partner that issued a tuple space operation is in range of the device
that emitted the requested tuple, communication in LIME is by default not decoupled
in time. Time-decoupled communication is traded in for guaranteeing atomicity for
remove operations which is an essential feature to support synchronization between
applications.

In order to allow a tuple to be accessible to other tuple spaces which are not con-
nected to the emitter of the tuple, LIME exploits the notion of location. A tuple can
be inserted into the ITS with an explicit tuple space location in which the tuple should
be placed. If the destination location is currently not connected, the tuple remains at
the current location, awaiting the arrival of the destination tuple space. Tuples whose
current location is different from the intended destination location are called misplaced
tuples. Misplaced tuples, however, abandon anonymous, space-decoupled communi-
cation so characteristic of tuple space models.

Tuple spaces traditionally do not feature synchronization decoupling because the
operations to extract tuples from the tuple space are blocking. To solve this issue,
LIME extends the original tuple space model with the notion of reactions. A reaction
consists of a pattern and a callback that specifies the actions to be executed when a
tuple matching the given pattern is available in the tuple space.

LIME enables processes to monitor the connection status of the available agents in
the underlying network configuration (C3) by means of a special read-only, system-
maintained tuple space. More specifically, its tuples provide information the tuple
spaces present in the system and on which host they reside on.

3.3.2.2 Tuples on the Air (TOTA)

TOTA [MZ04, MZ09] takes a different approach to distribute the tuple space over the
network by adopting a replication-based model. Rather than merging local tuple spaces
when devices are connected as in LIME, TOTA replicates tuples among collocated de-
vices. TOTA tuples are equipped with a propagation rule that determines how a tuple
migrates from one tuple space to another. The propagation rule takes the form of a
number of operations defined on a tuple which are called by the system when the tuple
arrives to a tuple space. They are shown in Listing 3.2. Exchanging tuples accord-
ing to propagation rules allows the definition of application-specific coordination in
which tuples are shared based not only on network connectivity, but also on semantic
information. The propagation rule can also change the tuple information (by means

3.3. SURVEY OF MOBILE COMPUTING MIDDLEWARE 45

Listing 3.2: The TOTA propagation rule.� �
if(decideEnter()) {

boolean prop = decidePropagate();
changeTupleContent();
this.makeSubscriptions();
tota.store(this);
if(prop) tota.move(this);

}� �
of the changeTupleContent method), thus providing programmers with a flexible
mechanism to achieve context-awareness in an adaptive way.

While TOTA’s replication-based model provides decoupling in time, it does not
guarantee atomicity for remove operations. In fact, TOTA does not provide built-in
mechanisms to remove the whole tuple structure, i.e., a tuple and all its replicas that
migrated to other devices in the network. The provided delete primitive just extracts
from the local TOTA middleware all tuples matching a given template. In [MZ09],
besides a propagation rule, the authors augment tuples with a maintenance rule which
allows tuples to update the tuple field upon network topology changes (so that the
original propagation rule is preserved). In this version of TOTA, the delete primitive
may have an effect on the whole tuple structure depending on its maintenance rule and
the invoking agent. If the tuple has a maintenance rule that specifies that its structure
should be preserved upon network reconfiguration, then deleting it “from the source
node induces a recursive deletion of the whole tuple structure from the network”. This
allows the agent that emitted a tuple to “unsend” it in the network, but it does not allow
other agents to remove tuples as defined in the original model by the in operation.

Like LIME, TOTA augments the tuple space model with primitives to notify agents
when certain tuples arrive in their tuple space. Connection and disconnections of peers
are also represented as tuples, enabling agents to react to network connectivity of the
TOTA network (C3). However, it is not clear how disconnections are detected in TOTA.
In [MZ09], it is described that each TOTA node broadcasts in its one-hop neighbour-
hood a PresenceTuple tuple to announce its presence and that other agents can sub-
scribe to the insertion or removal of these tuples to monitor the network connectivity
of an agent. However, upon a disconnection, the source node is not able to notify other
agents about the deletion of its PresenceTuple tuple.

It is important to note that even though TOTA does not directly offer a high-level
representation of failures (C2), this can be encoded by exploiting the propagation rules.
In the extended version of TOTA described in [MZ09], a MessageTuple class defines
a tuple that floods the network and deletes itself after some time has passed, thus pro-
viding a form of leasing for tuples.

3.3.3 Publish/Subscribe Middleware

Publish/subscribe is a communication paradigm in which processes interact by pub-
lishing event notification (often called events) and subscribing to the type of events
they are interested in. Different strategies for specifying event subscriptions are pos-
sible depending on the system. For example, in topic-based publish/subscribe, events
are matched based on topics or event types, while in content-based publish/subscribe,
matching happens on the actual content of the event. The model relies on an event

46 CHAPTER 3. RELATED WORK

notification service (or event broker) for collecting subscriptions and efficient delivery
of events to subscribers.

Many researchers have proposed publish/subscribe as a suitable communication
model for MANETs because of its loosely coupled nature [Mei02, CJ02, EFGA03,
HGM04]. Not only does publish/subscribe communication decouple publishers and
subscribers in time, space and synchronization [EFGA03], but it also naturally supports
arity decoupling as events may be delivered to an undetermined number of subscribers.
However, the first publish/subscribe systems assumed that components comprising an
application are stationary and interact by means of a fixed, reliable network of event
brokers which is not a very scalable solution for a mobile setting. Many adaptations
for mobile computing relax this assumption by allowing components to be mobile, but
they still rely on fixed infrastructure acting as access points to which mobile clients con-
nect from time to time (e.g., SIENA [CRW00], JEDI [CDNF01] and LPS [EGH05]).
Publish/subscribe middleware designed for pure ad hoc networks does not rely on inter-
mediate infrastructure and typically employs some form of broadcasting. For example,
EMMA [MMH05] broadcasts subscriptions to reachable hosts, while STEAM [MC02]
broadcasts events to subscribers within a certain area surrounding the producer.

Publish/subscribe middleware, however, provides no explicit failure handling mech-
anisms as they typically do no offer abstractions for representing failures (C2) or react-
ing to network connectivity (C3). In fact, communicating parties are usually not aware
of the underlying network configuration, or even if a published event was received by
any subscriber; either failures are transparent to publishers and subscribers and the
event notification service buffers events when subscribers disconnect (like in JEDI), or
the publishers are responsible themselves for encoding failure handling and events get
lost if subscribers move out of communication range (like in STEAM). Two notable
exceptions are EMMA and one.world [GDL+04] which we discuss in what follows.

3.3.3.1 Epidemic Messaging Middleware for Ad hoc Networks (EMMA)

EMMA [MMH05] is a publish/subscribe middleware based on the Java Message Ser-
vice (JMS) [MHS02] in which events are represented by Java objects, and commu-
nication between publishers and subscribers happens by means of message queues.
Message queues in EMMA, like in JMS, support both point-to-point and (topic-based)
publish/subscribe communication. EMMA periodically advertises message queues to
nearby hosts, allowing them to automatically discover one another in an ad hoc net-
work. When hosts receive advertisement messages from queues they are subscribed to,
they add an entry to their Java Naming and Directory Interface (JNDI) [jnd03] registry.
Similarly to Jini, entries in the JNDI are associated with a lease representing the time
of validity of a particular entry. If the lease is not renewed, it will eventually expire and
the entry is deleted from the registry, i.e., the hosts needs to discover again the queue.

EMMA adapts the concepts of durable and non-durable subscriptions present in
JMS for a MANET setting. A durable subscription remains valid upon disconnection
of the clients. On the other hand, a non-durable subscription is deleted upon discon-
nection, and another subscription needs to be made upon reconnection. Interestingly,
if a subscriber is disconnected and the subscription is durable, events are not buffered
but are sent using an asynchronous epidemic routing protocol. The idea of the protocol
is that a message that needs to be sent is replicated to reachable hosts, which in turn
send them to all hosts in their range. As such, messages are spread in the network like
an infection. While using such an epidemic approach does not guarantee message de-
livery, the protocol does take care of removing duplicate messages to provide at-most-

3.3. SURVEY OF MOBILE COMPUTING MIDDLEWARE 47

once delivery semantics for messages. Within epidemic routing, each host maintains
a buffer storing the messages that it has created and the replicas received from other
hosts. Messages are deleted from the buffers using expiration time values that can be
set by senders, thus supporting contractual memory management (C7).

3.3.3.2 One.world

One.world [GDL+04] is a system architecture for pervasive computing developed on
top of Java. It aims to provide an integrated execution platform including a set of sys-
tem services (e.g., service discovery, migration, remote events, and checkpointing) to
ease the development of pervasive computing applications. Applications in one.world
consist of an hierarchy of environments which can be best compared to processes in
operating systems. Environments host application components and the application’s
persistent data that is encoded by self-describing records with named fields called tu-
ples. Application components communicate solely by means of asynchronous event
notifications which are represented as tuples. Moreover, one.world supports migration
of components between different environments.

Interestingly, one.world supports different communication patterns for event no-
tifications along three design axes. A first point of variation is the binding time and
determines when to perform a discovery query. Early binding implies that the ap-
plication first discovers a subscriber, and then uses point-to-point communication for
delivering events. Late binding, on the other hand, combines an event notification with
discovery into a single operation: an event is routed towards any matching subscriber
and successive events may be routed to different subscribers. A second point of varia-
tion is the specificity and determines the number of subscribers for an event; events are
either sent to all matching subscribers or to only a single one. Finally, a third choice is
the query target that determines the entity on which to perform a discovery query. One
may register a discovery query on the external representation of a service (a resource
descriptor), or on events themselves.

Similarly to Jini, one.world employes leases for resource management in order
to limit the time that resources can be accessed. More concretely, leases delimit the
lifetime of tuples in the tuple storage, and “network endpoints” (which interconnect
components by means of sockets). Before their expiration, applications can renew
these leases to expand their lifespan, or cancel them to relinquish access to the resource.
Leases can also be cancelled by the one.world kernel when an application component
migrates. What is remarkable is that one-world features some mechanisms for easing
the use of leases. The underlying implementation makes use of a lease maintainer
which automatically renews the lease it controls until the lease is explicitly cancelled.
Unfortunately, a lease maintainer is completely hidden from applications which cannot
influence its renewal strategy. It is interesting to remark that Grimm et al. conclude
in [GDL+04] that although leases are suitable for controlling remote resources, they
do not work well for controlling local resources (i.e., tuple storage).

To the best of our knowledge, applications cannot react to the expiration of a lease.
As such leases in one.world are used as a form of contractual management (C7) rather
than providing high-level representation of failures (C2). In order to deal with the
effects of partial failures, one.world employs checkpointing and migration instead. The
system provides a checkpointing operation that saves the state of the environment tree
as a tuple, and a restore operation to read a previously captured state and restore its
execution. The migration of an application either moves the application’s environment
and all its content or creates a copy on the remote device. Checkpoints can also migrate

48 CHAPTER 3. RELATED WORK

to different devices. In contrast to traditional recovery solutions, checkpointing and
migration need to be explicitly triggered by applications. In addition, applications
are notified after they have been restored from a checkpoint or have been migrated to
another device. This allows applications to deal with changes on the execution context.
However, such mechanisms still assume that failures can be anticipated and that nodes
have time to migrate or checkpoint before the failure occurs, which is no longer the
case in a mobile setting.

3.3.4 Reflective Middleware
The principle of reflection has been investigated in the field of middleware to offer flex-
ibility for dealing with the highly dynamic nature of the mobile environment [MLE02,
BC06]. The main goal of reflective middleware is to allow applications to monitor and
adapt the behaviour of the underlying middleware implementation according to its need
in order to achieve more efficient or suitable solutions. The first implementations of
reflective middleware (including OpenCorba [Led99], OpenORB [BCA+01] and Dy-
namicTAO [KRL+00]) were based on CORBA which follows a RPC model of commu-
nication, and as such, they do not support decoupled communication (C1). The role of
reflection in these approaches had to do with supporting dynamic reconfiguration of the
middleware services (e.g., monitoring and security). Reflective middleware designed
for mobile computing, on the other hand, employs reflection to offer context-awareness
and dynamic adaptation of the middleware behaviour to environmental changes includ-
ing device and middleware heterogeneity (e.g., ReMMoC [GBS03]), and changes on
the execution context and resource fluctuations (e.g., CARISMA [CEM03] and Mo-
biPADS [CC03]). However, some of these systems (such as UIC [RKC01] and Ex-
ORB [RI04]) still offer by default communication based on standard object-oriented
RPC platforms like CORBA or JavaRMI. Although in principle nothing prevents de-
velopers from implementing custom communication components supporting decou-
pled communication, Grace and Blair argue in [BC06] that ORB-based middleware is
too limited to tackle the variety of communication models used in a mobile environ-
ment such as publish/subscribe, tuple spaces and data-sharing. In the remainder of this
section, we review the most relevant mobile reflective middleware with respect to the
criteria for a failure handling model summarized in Table 2.1.

3.3.4.1 Reflective Middleware for Mobile Computing (ReMMoC)

ReMMoC [GBS03, GBS05] is a web services-based reflective middleware that pro-
vides support to dynamically adapt service discovery and communication protocols to
deal with the heterogeneity of a mobile environment. It consists of a number of com-
ponent frameworks, whose structure can be altered by means of reflection. ReMMoC
employs the notion of web services to allow mobile clients to be developed indepen-
dently from the concrete technique used for both the service discovery and communica-
tion component frameworks. More specifically, applications employ a generic service
lookup API for service discovery and the Web Service Definition Language (WSDL)
to invoke operation on remote services. ReMMoC then takes care of mapping such
abstract requests to the concrete service discovery and interaction protocols provided
in the middleware implementation. As such, applications can discover services in the
environment that matches a service type irrespectively of the discovery mechanism that
is advertising it, and then interact with a newly discovered service by means of different
communication paradigms. By default, ReMMoC incorporates two service discovery

3.3. SURVEY OF MOBILE COMPUTING MIDDLEWARE 49

protocols (SLP and UPnP lookup), and two communication paradigms (RMI by means
of CORBA and SOAP RPC, and publish/subscribe using STEAM).

To the best of our knowledge, ReMMoC lacks abstractions for failure handling. As
remarked by the authors in [GBS05], ReMMoC focuses on providing service lookup
and communication protocols, and “other features including leasing and service events
are not considered”. Internally, the ReMMoC implementation does associate opera-
tions which can be remotely innovated by other services with a lease [Gra04]. Such a
lease is released when the service receives an endReceive() operation that stops incom-
ing messages, and flushes the underlying communication component so that operations
can be executed on a new binding (which may implement a different communication
paradigm). Leases in ReMMoC are, however, not meant to be manipulated by applica-
tions, and no information is provided about their nature, e.g., whether or how they can
be renewed or revoked.

3.3.4.2 Mobile Platform for Actively Deployable Service (MobiPADS)

MobiPADS [CC03] is a mobile computing middleware built on top of Java that exploits
reflection to achieve dynamic adaptation to context changes. The middleware is imple-
mented as a collection of service entities called mobilets which are built as services of
primitives services forming a service-chain composition. In order to enable dynamic
service reconfiguration, the system maintains a system profile that describes the meta-
level configuration of the system components and entities. According to the system
profile, MobiPADS determines the configuration of the service chain to be executed.
Mobile applications can also define a profile to modify the default service reconfigura-
tion mechanism.

Interestingly, MobiPADS supports dynamic adaptation at both the middleware and
application layers. At the middleware level, MobiPADS has a built-in event notifica-
tion mechanism in order to react to contextual events. It directly interacts with the
underlying operating system which monitors and subsequently signals the events to
the middleware. Mobile applications can also subscribe to a set of contextual events
that they are interested in monitoring and react to contextual events. In contrast to
other reflective approaches like ReMMoC, the MobiPADS middleware cannot recon-
figure a mobile application directly; it can only provide the application with contextual
changes. Applications, on the other hand, can directly interact with the underlying mid-
dleware by means of its reflective API to request service adaptations (e.g., change the
configuration of the service chain or the behaviour of individual mobilets). Contextual
events represent information from within the device (including CPU utilization, RAM,
storage and power) to resources external to the device (including network status and
connectivity status). Such a notification mechanism thus allows reacting to network
connectivity (C3).

Similarly to Rover, MobiPADS assumes a nomadic network in which clients run
on mobile devices, and servers are stationary devices interconnected by a wired net-
work. In this case, communication is not restricted to a client/server model as mobilets
can also directly communicate with one another. To the best of our knowledge, Mobi-
PADs relies on WebPADS communication model, which is designed to be asynchro-
nous [CCC02]. However, it does not feature full synchronization decoupling because
the service chain reconfiguration mechanism may suspend clients during the synchro-
nization process. In particular, the initiator of the synchronization has to be suspended
until the system hosting it and the system hosting other participants is reconfigured.

50 CHAPTER 3. RELATED WORK

C
om

m
unication

State
C

onsistency
M

em
ory

M
anagem

ent
ToolSupport

C
1

D
ecoupled

C
om

m
unication

C
2

H
igh-level

C
3

R
eacting

C
4

L
ocal

C
5

Failure
C

6
R

elaxing
C

7
C

ontractual
C

8
Forcing

Tim
e

Space
Synch.

A
rity

R
epresentation

ofFailures
to

N
etw

ork
C

onnectivity
Failure
R

ecovery
H

andling
Strategies

Soundness
M

em
ory

M
an-

agem
ent

Failures

D
istributed

Program
m

ing
L

anguages
A

rgus
N

o
N

o
N

o,blocking
futures

N
o

N
one,

exception
raised

N
o

O
nly

for
stable
objects

N
one,

built-in
trans-

actions
N

o
N

o
N

o

M
ozart

Y
es

N
o

N
o,

logic
vars

block
N

o
Tight

to
netw

ork
connectivity

Y
es,

using
faultstream

s
N

o
Fix

set
of

distribution
param

eters
N

o
N

o,
only

if
lease

strategy
Y

es

E
N

o
N

o
Y

es
N

o
Tight

to
netw

ork
connectivity

N
o,

O
nly

to
netw

ork
disconnections

N
o

N
one,they

could
be

en-
coded

using
handlers

at
both

ends
ofa

reference

N
o

N
o

N
o

Form
alL

anguagesfor
D

istributed
C

om
puting

A
B

S
Y

es
N

o
Y

es
N

o
Fault

nam
es

(∼
exceptions)

N
o,

O
nly

to
(fail-stop)

fail-
ures

N
o

C
om

pensating
m

echa-
nism

on
clientside

N
o

N
o

N
o

O
bject-O

riented
M

iddlew
are

JIN
I

N
o,

re-
lies

on
JavaR

M
I

Y
es

N
o

N
o

L
ease

N
o,

O
nly

to
lease

expiration

N
o

H
andler

for
lease

expi-
ration

on
clientside

N
o

Y
es,

relies
on

JavaR
M

I
Y

es

R
over

Y
es

N
o

Y
es

N
o

N
one,

failure
transparency

Y
es,

register-
ing

a
callback

Y
es

E
itherQ

R
PC

orR
D

O
N

o
N

o
N

o

D
R

-O
SG

i
N

o
N

o
N

o
N

o
Tight

to
netw

ork
connectivity

Y
es

Y
es

E
xtensible

set
of

hard-
ening

strategies
N

o
N

o
N

o

Tuple
Space

M
iddlew

are
L

IM
E

Y
es

Y
es

Y
es

Y
es

N
o

Y
es,

using
re-

actions
N

o
N

one
Y

es
N

o
N

o

TO
TA

Y
es

Y
es

Y
es

Y
es

N
o,

it
could

be
encoded

in
prop-

agation
rules

Y
es

Y
es

N
one,

they
could

be
encoded

in
propagation

rules

Y
es

N
o,

it
could

be
encoded

in
prop-

agation
rules

N
o

Publish/Subscribe
M

iddlew
are

E
M

M
A

O
nly

in
durable
sub-
scrip-
tions

Y
es

Y
es

Y
es

L
ease

N
o

Y
es

E
ither

durable
or

non-
durable

subscriptions
Y

es
Y

es
N

o

one.w
orld

Y
es

Y
es

Y
es

Y
es

N
one,

built-in
recovery

N
o,

only
af-

ter
restoring

or
m

igration

N
o

E
ither

checkpointing
or

m
igration

Y
es

Y
es,

using
leases

N
o

R
eflective

M
iddlew

are
R

eM
M

oC
D

epending
on

service
lookup

and
com

m
unication

protocolem
ployed

N
one

N
o

N
o

N
one

Y
es

N
o

N
o

M
obiPA

D
S

Y
es

N
o

N
o,block-

ing
recon-

figuration

Y
es

N
one

Y
es

N
o

N
one

N
o

N
o

N
o

Table
3.1:Survey

ofR
elated

W
ork.

3.4. DISCUSSION OF SURVEYED SYSTEMS 51

3.4 Discussion of Surveyed Systems

Table 3.1 evaluates the surveyed systems on the criteria for a failure handling model
suitable for MANETs summarized in Table 2.1. Throughout this chapter we have dis-
cussed the entries in Table 3.1 on a system-by-system basis. Each entry indicates, for a
given system under study, whether and how it adheres to the criteria. We now conclude
the chapter by evaluating the entries for each criterion individually.

C1 Decoupled Communication allows processes to deal with the effects of inter-
mittent disconnections by enabling them (1) to communicate while being disconnected
(decoupling in time), (2) to interact anonymously without knowing their exact ad-
dresses (decoupling in space), (3) to remain responsive to communication (decoupling
in synchronization) and (4) abstract from the concrete number of processes communi-
cating with (arity decoupling).

Time-decoupled communication is supported in many systems by either buffering
messages sent while parties are offline (like in Rover), or by communicating by means
of an intermediate coordinator which also buffers messages until a potential receiver
comes online (like some tuple space and publish/subscribe middleware). For example,
in TOTA, each tuple space acts as a logically shared data structure that stores tuples
injected by (disconnected) processes.

Decoupling in space is a characteristic naturally supported in distributed data-
driven models such as tuple space or publish/subscribe systems. However, some object-
oriented systems like Jini, employ service discovery mechanism to allow applications
to acquire a reference to a remote object without knowing its address.

Decoupling in synchronization is achieved in many systems by either employing an
asynchronous message passing style of communication (like E) or by communicating
via an intermediate coordinator which is responsible for the actual transmission of
messages (like in tuple space and publish/subscribe middleware). Note that tuple space
approaches which have not been devised for a mobile setting, usually do not feature
decoupling in synchronization because the operations to remove tuples are blocking (
i.e., a process is blocked until a matching tuple becomes available in the tuple space).

Finally, arity decoupling is also inherent to tuple space and publish/subscribe sys-
tems since all communication happens in a one-to-many manner. In these systems, the
receiver of a tuple or event is potentially any process reading from a tuple space, or any
subscriber that matches the event, respectively.

C2 High-level Representation of Failures enables processes to determine when
their connections or exchanges of data have terminated. Systems adhering to the clas-
sic goal of distribution transparency usually include built-in mechanisms that try to
hide network failures from the application level and when it is not possible, failures are
represented as exceptions. On the other hand, many systems do provide abstractions
for detecting failures (like in Mozart or E) but the representation of failures is coupled
with the underlying network connectivity. Finally, other systems, like Jini, limit the
relationships between entities in the network by means of leasing. A failure is then
represented as the lease expiration. One of the advantages of such a representation of
failures is that lease expiration happens independently from the state of the underlying
network connectivity.

52 CHAPTER 3. RELATED WORK

C3 Reacting to Network Connectivity enables processes to monitor the network
connectivity of other processes and react if necessary. Reacting to network connectivity
is supported in systems targeting the mobile environment as part of the mechanisms de-
signed for context-awareness. For example, MobiPADS provides a notification mecha-
nism that allows applications to react to contextual events, being the connection status
of devices in the network one of them. LIME, on the other hand, enables processes to
monitor the connection status of underlying systems by means of a read-only system-
maintained tuple space. In other systems this is completely aligned with the failure
handling mechanisms. For example, Mozart supports reaction to network connectivity
of processes by installing fault streams applied on the software entity to monitor.

C4 Local Failure Recovery enables processes to recover from failures based on their
local state by increasing availability of data. This is achieved in some systems by ei-
ther providing support for disconnected operations (like in ROVER or DR-OSGi) or
by means of an intermediary coordinator which sends messages employing replication-
based protocols. For example, in EMMA, durable subscriptions are sent using an asyn-
chronous epidemic routing protocol in which the message is replicated for all reachable
hosts. In TOTA, on the other hand, tuples are replicated according to a propagation rule
which allows a form of scoping on the tuple dissemination process.

C5 Application-dependent Failure Handling Strategies enable processes to define
the most appropriate compensating action upon a failure. Systems that provide fail-
ure handling features either provide a built-in (set of) strategies to react to failures,
or provide handlers to react to failures. Systems that provide built-in failure handling
strategies can either apply them by default (e.g., Argus), or allow the application to se-
lect the most appropriate strategy among the set of supported strategies (e.g., Mozart,
Rover, and EMMA). For example, in Mozart, applications can apply a list of distri-
buted parameters to entities providing a way to determine a strategy for access, state
consistency and garbage collection before they get distributed. In systems that pro-
vide handlers to react to failures, programmers must manually encode failure handling
strategies themselves (e.g., E and TOTA). For example, E handlers triggered when a
reference broke could be used to explicitly implement a rebinding strategy to a refer-
ence to an object providing an equivalent service that the broken one. A remarkable
exception is DR-OSGi which provides a default set of failure handling strategies which
can also be extended by deploying OSGi bundles that implements the handler API.

C6 Relaxing Soundness enables connections or exchanges of data to remain valid in
the presence of intermittent disconnections. This is supported in mainly by data-driven
systems such as tuple spaces and publish/subcribe middleware. For example, TOTA
relaxes soundness by employing a replication-based model.

C7 Contractual Memory Management enables processes to reclaim unused re-
sources in the presence of permanent disconnections by agreeing on the lifetime of
the data shared with other processes before it is actually shared. All systems that pro-
vide contractual memory management employ leasing, except for TOTA in which this
needs to be manually encoded on top of the tuple propagation rules. For example, Jini
support contractual memory management due to its reliance on JavaRMI in which leas-
ing have been incorporated to enable the reclamation of objects in the face of failures of
client objects. However, many of these systems assume that leases are managed by the

3.5. CONCLUSION 53

underlying system. As such, they do not allow applications to determine the lifetime
of the leases (like in one.world), or provide very limited support for manipulating them
(like in Java RMI).

C8 Forcing Failures enables processes to trigger failure handling even if no physical
network failure occurred. This is a central feature to enable the development software
tools as it enables them to examine the application behaviour with respect to different
network topologies. Yet, it is only supported in Mozart. This supports our observation
that the deployment of MANET applications is still in its infancy. Although much
mobile computing middleware has been proposed over the last decade (as shown in
this survey), very few applications have been developed relying on that middleware.
This could also explain why software tools for MANET applications have received
very little attention from academy so far.

3.5 Conclusion

Based on our analysis of related work, we draw the following major conclusions:

• First, leasing offer a good solution for supporting both a higher-level represen-
tation of failures (as only network failures exceeding a certain time interval are
considered a failure at the programming level) and contractual memory manage-
ment (as the lifetime of the data is determined by the lease time interval). Current
systems, however, introduce leasing as a low-level concern in their implemen-
tation in order to simplify resource management, or to describe the lifetime of
exchanged data. As a result, leases are either transparent to the application, or
very low-level support is provided to manipulate the default leasing behaviour.
This forces developers to manually build abstractions that express different leas-
ing variants and application-dependent failure handling strategies.

• Second, many object-oriented approaches provide mechanisms to express differ-
ent failure handling strategies based on disconnected operation techniques, but
they fail to provide a total decoupling of processes due to its reliance on RPC.

• Finally, tuple space and publish/subscribe middleware specifically designed for
mobile computing provide the best decoupling of processes. In particular, pub-
lish/subscribe and tuple space-based systems that have been designed for mobile
environments provide decoupling in space (as they allow processes to commu-
nicate anonymously by means of a tuple space or an event broker) and arity de-
coupling (since all communication is inherently one-to-many). However, many
publish/subscribe systems do not feature full decoupling in time since they do not
buffer events sent to offline communicating parties. Tuple space-based middle-
ware built around a federated tuple space model also suffers from this limitation
since tuples can only be exchanged when the communication party that issued
a tuple space operation is in communication range of the device offering the re-
quested tuple. While most tuple space systems enable a process to monitor the
connection status of other remote parties hosting a tuple space by means of a
dedicated tuple space or tuples, publish/subscribe systems offer no support for
monitoring the connectivity of publishers.

54 CHAPTER 3. RELATED WORK

In this work, we propose to devise a failure handling model for MANETs around
the concept of leasing in which leases are combined with a decoupled communication
model. We aim to provide a high-level representation of leases, rather than consider
them as a low-level concern which should be hidden from applications. In order to
support application-dependent failure handling strategies, we will pursue a reflective
approach such that leases are provided as an extensible framework (as found in reflec-
tive middleware and in DR-OSGi) to allow programmers to express different leasing
strategies. All this together is what we call ambient-oriented leasing which is the topic
of Chapter 6 of this dissertation. More concretely, chapter 6 explores the integration
of leasing into a distributed object-oriented model that exhibits decoupled communi-
cation. In Chapter 7, we explore ambient-oriented leasing in the context of a data-
driven model based on tuple spaces. Before we can go into further detail, Chapter 4
introduces AmbientTalk, the language that serves as our language laboratory to inves-
tigate ambient-oriented leasing, and Chapter 5 introduces AmbientTalk/M, a dialect
of AmbientTalk including a reflective architecture suitable to ease the development of
distribution and failure handling abstractions.

Chapter 4

Ambient-Oriented
Programming in AmbientTalk

The work described in this dissertation builds on the principles of ambient-oriented
programming (AmOP) paradigm (described in Section 2.2) and the technical foun-
dation of the AmbientTalk language, a concrete incarnation of the AmOP principles.
We employ AmbientTalk as the research vehicle in which ambient-oriented leasing
has been designed and implemented. Although our failure handling abstractions could
have been implemented in other mobile computing platforms, AmbientTalk already
provides a number of built-in primitives that help express them in a more natural way.
In particular, it offers a non-blocking communication model that aligns well with the
requirements to deal with partial failures. Next to explaining in detail its distribution
and communication model, we also describe its reflective capabilities which facilitate
the experimentation with novel language features from within the language itself. This
chapter gives an introduction to those features of AmbientTalk that are required to un-
derstand the code excerpts and technical contributions presented in following chapters.
A thorough introduction to the language can be found online [DGM+07].

4.1 The AmbientTalk language
The AmbientTalk language described in this chapter is actually AmbientTalk/2, a
successor of the original AmbientTalk/1 language presented in Dedecker’s disserta-
tion [Ded06]. While both languages have an actor-based event-driven model of con-
currency and feature abstractions for service discovery, AmbientTalk/2 features more
modular and stratified meta-level programming abstractions. We refer the interested
reader to Van Cutsem’s dissertation [Van08] for a thorough discussion of the differ-
ences between the two versions. For simplicity’s sake, in this chapter, we use the term
AmbientTalk to refer to AmbientTalk/2, and the language’s full names are used when
the distinction is necessary.

We first describe the core features of AmbientTalk’s kernel including its object-
oriented, concurrent and distributed features. Subsequently, we describe Ambient-
Talk’s reflective layer. We illustrate AmbientTalk’s features by means of an advertising
application that runs on mobile phones. In this application, users can advertise items
which are subsequently displayed on the screen of the cell phone of nearby poten-
tial customers that have registered their interest in those advertisements. For example,

55

56 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

the application can be used to buy or sell concert tickets at the venue itself [EGH06].
This application has been used as running example in previous AmbientTalk publica-
tions [VMG+07, GSL+10].

4.2 Object-oriented Programming in AmbientTalk
AmbientTalk is built on object-oriented principles. Its object model is directly based on
the prototype-based language Self [US87]: classless slot-based objects can be reused
and extended by means of delegation [Lie86] (also known as object-based inheritance).
Computation is expressed in terms of objects sending messages to other objects or
themselves. Listing 4.1 below illustrates object-oriented programming in AmbientTalk
in the context of the advertising application. The code defines a prototypical object
which represents the advertisements for the items traded in the application. This object
is created ex-nihilo1 and bound to the Advertisement variable (line 1). An item
object has fields to store the item’s state and methods to define useful behaviour, e.g., to
get a textual description of the item. The last four lines of code shows how the object
can be used to create new advertisements. Sending new to an object creates a clone of
that object which is initialised by invoking the clone’s init method. The init method
thus serves as the “constructor” for objects.

Listing 4.1: A prototypical advertisement object.� �
1 def Advertisement := object: {
2 def category;
3 def title;
4 def description;
5 def advertiser;
6 def init(aCategory, aTitle, aDescription, anAdvertiser) {
7 category := aCategory;
8 title := aTitle;
9 description := aDescription

10 advertiser := anAdvertiser;
11 };
12 def getDescription() {
13 "Advertiser: " + advertiser.getContactDetails() + "\n" +
14 "Title: " + title + "\n" + description;
15 };
16 };
17 // instantiate a new ad
18 def anAdvertisement := Advertisement.new(Leisure,
19 "Cheap Tickets",
20 "2 FC Barcelona tickets for tonight 50% off",
21 sender);
22 anAdvertisement.category;
23 anAdvertisement.getDescription();� �

Message Sending Messages are used to invoke fields and methods of an object as
shown in listing 4.1 in lines 22 and 23, respectively. When an object receives a mes-
sage, it looks up the method and applies it. Note that the lookup of category is treated
as a category() method2.

If the receiver object does not understand a message, it implicitly delegates the
message to its parent object; the object bound to its slot named super. By default,
super is bound to nil. If a message is delegated to nil, then the original receiver

1An object created ex-nihilo is also called an anonymous object in AmbientTalk.
2In AmbientTalk, the field access is treated as the invocation of a nullary method. This property is also

known as the uniform access principle [Mey00].

4.2. OBJECT-ORIENTED PROGRAMMING IN AMBIENTTALK 57

Listing 4.2: Extending the prototypical advertisement object.� �
1 def BookAdvertisement := extend: Advertisement with: {
2 def author;
3 def init(aTitle, anAuthor, aDescription, anAdvertiser) {
4 superˆinit(Leisure, aTitle, aDescription, anAdvertiser);
5 author := anAuthor;
6 };
7 def ==(aTitle, anAuthor) {
8 (self.title == aTitle).and: { author == anAuthor };
9 };

10 };� �
of the message is informed of the failed lookup. Since super is just a regular field
of an AmbientTalk object, it can be changed dynamically at runtime enabling dynamic
inheritance comparable to Self. AmbientTalk provides the extend:with: function
for specifying that a new object delegates to an existing prototype. Listing 4.2 shows a
new prototype BookAdvertisement which extends the Advertisement prototype.
extend:with: implies that when the BookAdvertisement is cloned, the clone’s
super field is initialized to a clone of the Advertisement parent object including its
own copies of the category, title, description, and advertiser slots.

AmbientTalk also allows objects to explicitly delegate a message to another ob-
ject by means of the ˆ operator3. A traditional use of this operator in AmbientTalk is
to perform super-sends (akin to Java ones). It is important to remark that when us-
ing delegation either implicitly or explicitly, the pseudo-variable self is left bound
to message sender. For example, the super-send shown in listing 4.2 (line 4) del-
egates the init message to the Advertisement object, leaving self bound to the
BookAdvertisement object.

Scoping AmbientTalk is a lexically scoped language, i.e., a name always refers to
the environment where it was defined. However, a name can be also looked up in the
delegation chain. Hence, an object’s scope consist of its lexical scope plus the scope of
its parent objects. To distinguish which scope to use when resolving a name, developers
need to qualify names to be looked up in the object scope. This means that unqualified
names are always resolved in the lexical scope (e.g., author in listing 4.2, line 8),
while qualified names are always resolved in the receiver’s object scope (e.g., self.
title in listing 4.2, line 8).

Block Closures AmbientTalk uses block closures to represent delayed computations
such as implementing the branches of an if:then:else: control structure, or nested
event handlers (as will be described later). Block closures are constructed using the
syntax { |args| body }, where the arguments can be omitted if the block takes no
arguments. The following code excerpt shows a typical use of blocks to iterate over an
array of advertisements, to show all advertisements on the screen.

myAdvertisements.each: { |ad| GUI.show(ad) }

Note that AmbientTalk supports both traditional canonical syntax (e.g., GUI.show
(ad)) as well as keyworded syntax (e.g., myAdvertisements.each: block) for
message sends and method definitions. As a general rule, keyworded syntax is used for

3Read as the carret operator.

58 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

control structures (e.g., while:do:) or object declarations (e.g., object:), while the
canonical syntax is used for expressing application-level behaviour.

Type Tags In order to support object classification in a protoype-based and dynam-
ically typed language, AmbientTalk relies on the notion of type tags. Type tags are
used to categorise objects explicitly by means of a nominal type. They are best com-
pared to empty Java interface types, like the typical “marker” interfaces that are used to
tag objects as java.io.Serializable and java.lang.Cloneable. The follow-
ing code excerpt illustrates the use of type tags for representing the different categories
of advertisements in our running example.

deftype Leisure;
deftype Sports <: Leisure;

A type tag is declared using the deftype keyword. It can be a subtype of zero or
more other type tags using the <: operator. Objects in AmbientTalk may be tagged
with zero or more type tags when they are created by means of the object:taggedAs
: construct. However, it is not possible to alter the type tags of an object after its
creation, i.e., types tags remain constant. This restriction is motivated by the fact that
one important use of type tags in AmbientTalk is to provide a description of what kinds
of services an object provides to remote objects as we will describe later.

4.3 Concurrent Programming in AmbientTalk
AmbientTalk is a concurrent actor-based language [Agh86]. In contrast to Ambi-
entTalk/1, AmbientTalk/2’s actors are not modeled as active objects, but rather as com-
municating event loops like in the E programming language. Recall from Section 3.1.3
that in this model, actors are represented as containers of regular objects and compu-
tation is expressed in terms of messages enqueued in an actor’s mailbox, also called
the actor’s message queue. The actor encapsulates a single thread of execution which
perpetually takes messages from its queue and executes the corresponding method on
the receiver of the message. The method is then run to completion, which is called a
turn. A turn is executed atomically, i.e., an actor cannot be suspended or blocked while
processing a message. Actors take incoming messages from their message queue one
by one (i.e., in serial order) to avoid race conditions on the state of regular objects.
Throughout this text, we will use the terms event loop and actor, and the terms mes-
sage queue and mailbox interchangeably in the context of AmbientTalk.

In AmbientTalk, each object is said to be owned by exactly one actor. Only an
object’s owning actor (also referred to as the owner actor) can directly execute one of
its methods. In other words, an actor has exclusive access to its mutable state. Objects
owned by the same actor communicate using sequential message sending. Objects
owned by different actors can only communicate using traditional asynchronous mes-
sages to one another by means of far references. A far reference is an object reference
that spans different actors and only allows asynchronous communication; any attempt
to access the object synchronously via a far reference raises a runtime exception. Asyn-
chronous messages sent via far references are delivered to the actor owning the receiver
object, more specifically, they are enqueued in the actor’s message queue.

Figure 4.1 illustrates AmbientTalk actors as communicating event loops. The dot-
ted lines represent the actor’s event loop thread which perpetually takes messages from
its mailbox and processes them. The “stick” arrowhead represents a far reference which

4.3. CONCURRENT PROGRAMMING IN AMBIENTTALK 59

is used to communicate asynchronously with an object that is owned by another ac-
tor. The figure 4.1 also shows a message send from a customer to a supplier actor in
the context of our running example. When a notification object N sends a message
getDescription() to advertisement object A, the message is enqueued in the mes-
sage queue of A’s actor which eventually processes it.

N
A

Message
queue

Customer actor

Object Far reference

Event
Loop

Supplier actor

Message getDescription()
from N to A

notification
advertisement

Figure 4.1: AmbientTalk actors as event loops.

4.3.1 Message Passing Semantics

AmbientTalk employs different syntax for sequential message sends (expressed as
o.m()) and asynchronous message sends (expressed as o<-m()). Asynchronous mes-
sages can be sent between objects owned by the same actor or by different actors.
When sending an asynchronous message between objects owned by the same actor, the
message’s arguments are passed by reference, exactly as it is the case with standard
synchronous message sending. When sending an asynchronous message across differ-
ent actors, objects are passed by far reference: the arguments of the invoked method
are replaced by far references to the original objects. In either case, AmbientTalk guar-
antees that asynchronous messages are delivered to an object in the same order as they
were sent. It is important to remark that far references are instead passed by copy
to a third actor. This means that the third-party actor can directly communicate with
the owner actor of the referenced object. When a far reference is passed back to the
object’s owning actor, it is resolved into a local reference.

Objects can also be passed by copy in an inter-actor message send if they have
been declared isolates, i.e., if they have been created with the type tag Isolate. They
are called isolates because they do not have access to their surrounding lexical scope
(i.e., they behave as isolated pieces of code). Any lexically visible variable required
by an isolate needs to be manually copied into the isolate scope. When an isolate is
passed in an asynchronous message, a copy is created and all objects it directly refers
are also recursively passed (according to their own semantics). From the receiver actor
perspective, this leads to the creation of a clone in that actor whose initial state is the
same as the state of the original object at the moment the message was sent. The
receiver actor can then operate on the copy synchronously without additional inter-
actor communication. In short, isolates differ from regular AmbientTalk objects in two
ways: they are passed by copy rather than by far reference in inter-actor message sends,
and they cannot use any free lexically visible names.

60 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

Listing 4.3: Future-type message passing in AmbientTalk.� �
1 def descriptionFut := advertisement<-getDescription()@FutureMessage;
2 //register an observer on the resolved value of the future
3 when: descriptionFut becomes: { |description|
4 // execution is postponed until future is resolved
5 system.println("New advertisement received: " + description);
6 } catch: { |exception| ... };
7 // code following when: is processed immediately� �

4.3.2 Future-type Message Passing
Synchronous and asynchronous message passing also differ in the way return values are
obtained. While a synchronous message send is handled as a regular method invoca-
tion in which the sender waits for the result of computation, an asynchronous message
send returns immediately nil. In order to avoid the use of explicit callback methods to
process the result of an asynchronous computation, AmbientTalk employs the notion of
futures [YBS86] (also known as promises)4. A future is a placeholder object for the re-
turn value of an asynchronous message send. With the introduction of futures, explicit
callbacks are no longer necessary: the future serves as an implicit callback. To illustrate
future-type message passing, consider again the advertising application. Customers
can use their mobile phone to receive advertisements of nearby devices and can get
extra information about the advertisement. Each mobile phone runs an AmbientTalk
application consisting of a single actor. Line 1 of listing 4.3 shows how the descrip-
tion of an advertisement can be requested, given that advertisement denotes a far
reference to the advertisement broadcasted by another actor. The @FutureMessage

annotation makes the getDescription message send immediately return a future
(which stored in the variable descriptionFut). Once the return value is computed,
it “replaces” the future object; the future is then said to be resolved with the value. If
the asynchronously invoked method raises an exception rather than returning a value,
the exception is propagated to the future object; the future is then said to be ruined with
the exception.

Most of the systems introducing futures support synchronization on the return value
(represented by a future) by suspending the thread that tries to access an unresolved fu-
ture. In AmbientTalk, an actor cannot suspend waiting for a future to be resolved or
ruined as this would violate the non-blocking communication principle of an AmOP
programming language (cf. Section 2.2). Instead, AmbientTalk employs non-blocking
futures as in the E language. Developers can register a block of code with a future,
which is executed asynchronously when the future becomes resolved or ruined. For
example, the description that supplied the advertisement can only be printed on the
screen when the descriptionFut future is resolved to a string value as shown in list-
ing 4.3 (lines 3-6). The when:becomes:catch: function takes a future and two block
closures as arguments, and registers the functions as observers on the future. If the fu-
ture is resolved to a proper value, the becomes: closure is applied to the resolved value
(passed as argument). If the future is ruined with an exception, the catch: closure is
applied to the exception. The execution of either of these closures is always scheduled
in the owning actor’s mailbox, such that their execution is serialised with respect to
other messages processed by the actor. As a result, the code following when:becomes

4Future are actually not built into the AmbientTalk kernel, but implemented by means of the meta-level
architecture described in Section 4.6.

4.4. DISTRIBUTED PROGRAMMING IN AMBIENTTALK 61

:catch is always processed immediately even if the future was already resolved or
ruined when when:becomes:catch: is called.

Note that the return value of the when:becomes:catch: function is itself a fu-
ture. That future is resolved with the return value of either the becomes: or the catch
: closure, or ruined with an exception raised during the execution of either closure.
This means that the resolution of the future returned by when:becomes:catch: de-
pends on the resolution of another future (i.e., the future passed as argument in when:
becomes:catch:). This property is known as future pipelining (or future chaining).

It is important to remark that asynchronous messages can be sent to a future regard-
less of its state. If the future is unresolved, the future object accumulates the messages
it receives. When the future is resolved, accumulated messages are forwarded to the
resolved value. Future pipelining will also occur if an asynchronous message sent via
a future has itself a future.

4.4 Distributed Programming in AmbientTalk
A distributed application consists of multiple parts running on different devices in a
network. Each device typically runs a virtual machine that executes that part of the
application. In AmbientTalk, each virtual machine is said to host one or more actors.
Objects are considered to be remote when they are owned by different actors, even
if those actors are hosted by the same virtual machine. Hence, actors are the unit of
concurrency and distribution. The main issues distinguishing distributed programming
from concurrent programming are partial failures and service discovery (i.e., a mecha-
nism to acquire a first reference to a remote object). In the remainder of this section we
describe the language provisions build atop the event loop concurrency model to deal
with these issues.

4.4.1 Far References and Network Failures
Since objects residing in different virtual machines are owned by different actors, they
can only communicate asynchronously via far references. As such, far references are
the only kind of remote object references in AmbientTalk. Far references by default
mask partial failures. When a network failure occurs, a far reference becomes dis-
connected. Messages sent to a disconnected reference are buffered until it becomes
reconnected once the network partition is restored at a later point in time. When the
reference becomes reconnected, it sends all accumulated messages to the remote object
in the order they were originally sent. This behaviour makes that intermittent failures
have no impact on the application’s control flow.

In order to allow applications to react to changes on far references’s connectivity
and to apply failure handling code if necessary, AmbientTalk provides two failure event
handlers which can be registered on a far reference. They install an observer which is
triggered whenever the reference becomes disconnected or reconnected. The code ex-
cerpt below shows how the advertising application uses these event handlers to indicate
nearby sellers that are currently online.
// seller is a far reference to a peer in the advertising application
whenever: seller disconnected: {
gui.showOffline(seller);

};
whenever: seller reconnected: {

gui.showOnline(seller);
};

62 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

The two whenever: functions take as argument a far reference and a nullary clo-
sure that is applied whenever the interpreter detects the disconnection or reconnection
of the referenced object, respectively. Both functions return an object whose cancel
method can be used to cancel the registration of the observer with the interpreter.

Next to those event handlers, AmbientTalk allows developers to retract the mes-
sages accumulated in a far reference by means of the retract: construct. It returns
a table containing copies of all messages in the queue at the point in time when the
function was called and cancels their delivery.

4.4.2 Exporting and Discovering Objects
Objects can be implicitly exported to other actors when they are passed as arguments
or return values in inter-actor message sends (as seen in Section 4.3.1). In order for
objects to acquire a first far reference to a remote object, a mechanism is necessary
to make objects available in the network. In AmbientTalk, an actor can explicitly ex-
port objects to other actors by means of a type tag. The code excerpt below shows
how an advertisement object can export itself by means of the type tag stored in the
advertisement’s category field.

def pub := export: self as: self.category;

The export: as: function is parameterized with the object to be exported and the
type tag by which it is discoverable. It returns an object that can be used to “unexport”
the object by invoking pub.cancel(). It it important to remark that far references
already handed out before calling the cancel method remain valid. This implies that
an object may still be remotely accessible despite not being discoverable anymore.

From the moment an object is exported in the network, other objects can discover
it by registering a discovery event handler with the interpreter. In the advertising appli-
cation, a user can be notified whenever a leisure advertisement is received as follows:

def sub := whenever: Leisure discovered: { |advertisement|
def descriptionFut := advertisment<-getDescription()@FutureMessage;
/* see Listing 4.3 */

};

The whenever:discovered: function takes as arguments a type tag and a unary
closure, and registers the closure with the interpreter as a discovery event handler for
the type tag. Whenever an actor is encountered in the network that exports a matching
object, the closure is asynchronously applied taking as argument a reference to the
newly discovered object. In this case, advertisement is bound to a far reference to an
advertisement object owned by another actor. One can then start sending asynchronous
messages via the far reference, e.g., the getDescription() message to print the
description of the advertisement on the screen. An object matches a discovery event
handler if its exported type tag is a subtype of the type tag argument of whenever:
discovered:. Similar to the export:as: function, the whenever:discovered:
function returns an object whose sub.cancel() method cancels the registration of
the discovery event handler with the interpreter.

4.5 Interoperability with Java
AmbientTalk has been built in Java and thus runs on top of the Java Virtual Machine
(JVM). It has been designed so that it can also interoperate with Java in a similar

4.6. REFLECTIVE PROGRAMMING IN AMBIENTTALK 63

Listing 4.4: Interoperability with Java.� �
1 def swing := jlobby.javax.swing;
2 def frame := swing.JFrame.new("Advertisement");
3 def titleField := swing.JTextField.new(20);
4 def textArea := swing.JTextArea.new();
5 def advertiseButton := swing.JButton.new("Advertise!");
6
7 advertiseButton.addActionListener(object: {
8 def actionPerformed(actionEvent) {
9 def title := titlefield.getText();

10 def content := textArea.getText();
11 def advertisment := Advertisement.new(theCategory, title, content, self);
12 export: advertisement as: advertisement.category;
13 };
14 });� �

way to other dynamic languages implemented on top of the JVM such as Groovy, and
JRuby. This means that AmbientTalk objects can access all Java libraries available in
the underlying JVM. For the purpose of this dissertation, it is important to know that
Java objects and classes can be instantiated or invoked from within AmbientTalk using
regular AmbientTalk syntax, and that there are built-in conversions between primitive
data types of Java and AmbientTalk. We briefly illustrate those concepts by means of
the graphical user interface (GUI) for the advertisement application. Further details on
the mechanism that allows the interoperability of AmbientTalk with Java can be found
elsewhere [CMM09, GSL+10].

Listing 4.4 shows a small part of the GUI for the advertisement application using
the Java Swing framework. The GUI consists of a simple input field for the title of the
advertisement, a text area used for the description of the advertisement and a button
to publish the advertisement. The jlobby variable (line 1) gives access to the Java
packages available in the underlying JVM. A Java object (e.g., advertiseButton) is
represented in AmbientTalk as a regular object whose fields and methods correspond
to the public interface-level fields and methods in the Java object. Java classes are also
represented as regular objects whose fields and methods correspond to the public static
fields and methods in the Java class. When AmbientTalk code invokes a Java method
that expects an argument typed as an interface, any AmbientTalk object can be passed
to that method. For example, in line 7, an AmbientTalk object is passed as argument
in the call to addActionListener. Such an anonymous object plays the role of
a Java ActionListener object and as such, it implements the actionPerformed

method. Whenever the user presses the advertiseButton, the anonymous object
will be notified by the underlying system.

This concludes the explanation about the AmbientTalk kernel. We now turn our
attention to its reflective facilities.

4.6 Reflective Programming in AmbientTalk
Reflection allows programs to observe and modify their own structure and behaviour
at runtime [Smi84]. Through the use of reflection, the kernel language can be extended
with both programming support and new language constructs. This is usually accom-
plished by means of reification: the “materialization” of the interpreter structure in the
language. AmbientTalk reifies both its object and actor model with the goal to serve as

64 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

language laboratory for facilitating such experiments in the context of MANETs. The
reflective architecture of AmbientTalk is based on mirrors [BU04], meta-level objects
that allow one to reason about (base-level) objects and make reflective code indepen-
dent of a particular implementation. Mirrors are causally connected [Mae87] to the
objects they mirror. If the object is changed by base-level code, the changes can be ob-
served via the mirror. Conversely, changes applied to the object via the mirror, modify
the actual object.

Mirrors traditionally provide support for introspection (the ability to inspect the
structure and behaviour of a program), invocation (the ability of a program to dynam-
ically execute program fragments), and self-modification (the ability of a program to
change its own structure). In AmbientTalk, such mirrors are named explicit mirrors.
In addition, AmbientTalk provides implicit mirrors which combine mirror-based re-
flection with intercession (the ability to change the program behaviour). An implicit
mirror is a mirror used by the interpreter itself when performing meta-level operations
on base-level objects. In the remainder of this section, we describe both explicit and
implicit mirrors on objects and actors.

4.6.1 Mirror-based Reflection using Explicit Mirrors

In AmbientTalk, explicit mirrors are modeled after the mirrors present in Self [ABC+00]
and Strongtalk [BG93]. Mirrors on objects are created by means of the reflect: con-
struct. It consults a mirror factory to create a mirror on the given object. This ensures
that a mirror is not accessed directly from the base-level object it reflects on. Listing 4.5
(line 1) shows how a mirror on the Advertisement object introduced in listing 4.1 is
acquired. A mirror represents the object on which it reflects as a collection of slots. A
slot binds a name to a method. An object cannot contain two or more slots with the
same name. AmbientTalk represents fields by a pair of accessor and mutator slots. The
accessor is a method that returns the value of the field. The mutator is a method that
takes as argument the value to assign to the field.

Listing 4.5 also shows the three forms of reflection that explicit mirrors support.
First, introspection allows the retrieval of object’s slots (line 2). Second, invocation
allows the explicit invocation of object’s slots (lines 3-5). An identifier prefixed with a
backquote (‘) denotes a symbol. The arguments passed to invoke denote a receiver and
an invocation, an object encapsulating the selector (a symbol) and the actual arguments
(a table). Finally, self-modification allows the addition or removal of slots (lines 6-8).
The createMethod helper function creates a method given a name, parameters, body
of the method and annotations (metadata of a method).

� �
1 def mirrorOnAd := (reflect: Advertisement);
2 mirrorOnAd.listSlots().map: { |slot| slot.name }; // ‘[category,title,init,...]
3 mirrorOnAd.grabSlot(‘category); // accessor for field category
4 mirrorOnAd.grabSlot(‘category:=); // mutator for field category
5 mirrorOnAd.invoke(Advertisement, createInvocation(‘getDescription, []));
6 def method := createMethod(‘getAdvertiser, [], ‘{ advertiser;}, []);
7 mirrorOnAd.addSlot(method);
8 mirrorOnAd.removeSlot(‘getAdvertiser);� �

Listing 4.5: Introspection, invocation and self-modification via explicit object mirrors.

4.6. REFLECTIVE PROGRAMMING IN AMBIENTTALK 65

Base-level

Meta-level

A

mirr
orOn

Ad :
=

refl
ect:

Adve
rtis

emen
tacto

rMir
ror

:=

refl
ectO

nAct
or()

object

local referencecausal connection (mirror-obj)

actor
mirror

explicit
mirror

Base-level

Meta-level

A

object

base

default
mirror

super

implicit
 mirror

Advertisement:= object: {...}

object: {...}mirroredBy: LogMirror

LogMi
rror

:=

mirro
r: {.

..}

(a) Explicit mirrors (b) Implicit mirrors

acto
rMir

ror.
beco

meMi
rror

edBy
: am

actor
mirror

Figure 4.2: AmbientTalk actors from a reflective perspective; representation of (a)
explicit mirrors, and (b) implicit mirrors.

Explicit Mirrors on Actors As previously explained, each object is owned by one
actor. To be more precise, each actor owns both the base-level objects (representing
an application) and their meta-level objects (mirroring base-level objects). In addition,
each actor also owns an actor mirror, a special mirror denoting the mirror on the actor
as a whole. This mirror differs from the explicit mirrors just described in that it does
not reflect on a single base-level object, but rather on the entire event loop. All objects
owned by the actor share the actor mirror. Figure 4.2 (a) gives an overview of the
different objects owned by an actor given the definition of the Advertisement object
and its mirrorOnAd mirror (shown in listing 4.1 and 4.5, respectively). The top-level
function reflectOnActor returns the explicit mirror on the actor executing the call.

The actor mirror reifies those operations which transcend the scope of a single
object or are related to inter-actor operations, e.g., communication among remote ob-
jects. As shown in listing 4.6, the explicit actor mirror also supports three forms of
reflection supported by explicit mirrors on objects: introspection, invocation, and self-
modification. Those forms of reflection take a different shape when applied to actors.
First, introspection (line 2-3) allows developers to inspect the actor’s mailbox, and the
service discovery publications and subscriptions. listIncomingLetters returns a
copy of the actor’s mailbox represented as an array of letter objects. A letter consists of
a receiver-message pair together with a method named cancel which can be invoked
to remove the letter from the actual actor’s mailbox. Second, invocation (line 4) has
been adapted for asynchronous message passing and as such, it enables the explicit
sending or reception of asynchronous messages. The createMessage method returns
an asynchronous message with the given name, parameters and annotations. Finally,
self-modification (line 5) allows developers to alter the service discovery mechanism,
i.e., add new publications or subscriptions.

Listing 4.6: Introspection, invocation and self-modification via explicit actor mirrors.� �
1 def actorMirror := reflectOnActor();
2 def mailbox := actorMirror.listIncommingLetters();
3 mailbox.map: {|letter| letter.message.selector};
4 actorMirror.send(adverstisement, actor.createMessage(‘getDescription, [], []));
5 actorMirror.publish(anAdvertisement, anAdvertisement.category);� �

66 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

Listing 4.7: A prototypical logging mirror.� �
1 def LogMirror := extend: defaultMirror with: {
2 def invoke(delegate, invocation) {
3 system.println("invoked " + invocation.selector + " on " + self.base);
4 superˆinvoke(delegate, invocation);
5 };
6 }
7 }� �

4.6.2 Mirror-based Intercession using Implicit Mirrors

AmbientTalk’s mirror-based architecture goes beyond introspection and also allows
objects to modify the default semantics of the language. An AmbientTalk object can
be associated to an implicit mirror which describes the object’s semantics. That is
to say that the implicit mirror provides custom semantics for the default meta-level
operations on a base-level object. The implicit mirror is then used by the interpreter
when manipulating the base-level object.

Listing 4.7 shows a mirror for logging all methods invoked on an object. The mirror
encodes the logging behaviour by overriding the default implementation of the invoke
meta-level operation. The top-level variable defaultMirror refers to an implicit mir-
ror object containing AmbientTalk’s default metaobject protocol. Although any object
can serve as an implicit mirror as long as it provides a complete implementation of
the metaobject protocol, most implicit mirrors extend the default mirror to implement
their custom semantics. In this case, the LogMirror does not override any meta-level
operation except for invoke.

As also shown in Listing 4.7 (line 3), a mirror can refer to the base-level object
it mirrors by means of its base slot. Note that the LogMirror mirror has not yet
been causally connected to any base-level object i.e., it has not been absorbed by the
interpreter. A mirror becomes causally connected to an object when the object itself
declares to be mirrored by the mirror. This happens when an object is created by
means of the object:mirroredBy: construct. In AmbientTalk, a base-level object
causally connected to an implicit mirror is called a mirage object. Listing 4.8 redefines
the Advertisement prototype from listing 4.1 as a mirage whose (meta) behaviour
is now described by the LogMirror. The object:mirroredBy: construct is pa-
rameterized with two closures: a closure to create the mirage, and one for the mirror
construction. The interpreter creates a mirage in three steps. First, an empty mirage
object is created. Second, an implicit mirror is created and associated with the empty
mirage which is passed as argument to the mirror construction closure (newMirage).
Finally, the empty mirage is associated with its implicit mirror and its initialisation
code is executed. From this point on, the mirage and its mirror are causally connected
and the mirror is effectively used by the interpreter. Note that there is a strict one-to-one

Listing 4.8: Definition of a mirage.� �
1 def Advertisement := object:{
2 /* the original implementation */
3 } mirroredBy: { |newMirage| LogMirror.new(newMirage)};� �

4.6. REFLECTIVE PROGRAMMING IN AMBIENTTALK 67

Actor

Base-level

Meta-level

mirage

implicit
 mirror

invoke

program

interpreter

method invocation

causal connection
(mirror-obj)

(reflect: mirage).invoke

explicit
 mirror

(i) (ii)

Figure 4.3: Relationship between explicit and implicit mirrors on mirages. When a
program reflects on a mirage, it consults the mirror factory which returns the implicit
mirror (by default), or (ii) another explicit mirror (if a custom factory is used).

relationship between a mirage and its unique implicit mirror, i.e., the causal connection
remains constant.

Figure 4.2(b) shows the resulting Advertisement mirage causally connected to
its implicit mirror (called LogMirror in the figure). The top-level function mirror:
is syntactic sugar for creating an extension of the default mirror (i.e., it is equivalent
to line 1 of listing 4.7). Once a mirage is created, it is indistinguishable from a regular
object. Developers can reflect on them by means of the reflect: construct previously
explained. Figure 4.3 illustrates the relationship between mirages, implicit and explicit
mirrors. When the interpreter manipulates the mirage, it always does it via its implicit
mirror. However, when programs want to introspect the mirage via the reflect:
construct, they first consult the mirror factory. The default mirror factory returns the
implicit mirror, but it can also return another explicit mirror if a custom mirror factory
was installed. More details on the mirror factory can be found elsewhere [MVT+09].

Implicit Mirrors on Actors Developers can also install implicit mirrors on actors
by means of the becomeMirroredBy: meta actor operation (as also shown in Fig-
ure 4.2(b)). In contrast to implicit mirrors on objects, implicit mirrors on actors can be
installed at any time during the lifetime of the actor by any object owned by the actor.

Listing 4.9 defines and installs an implicit actor mirror which provides a custom
implementation for the mirror factory on objects. The actor mirror defines a method
named createMirror which serves as a factory method for the creation of explicit
mirrors on objects. Listing 4.9 defines and installs a customized mirror factory in or-
der to create “sealed objects”. To this end, the sealedMirrorFactory actor mirror
overrides the default implementation of createMirror to return an explicit mirror
which seals the base-level object (lines 4-10). The returned mirror overrides the de-
fault implementation of the addSlot and removeSlot meta-level operations such
that adding or removing slots to an object raises an exception (lines 6-9). Note that the
sealedMirrorFactory actor mirror extends the current explicit actor mirror such
that it inherits the implementation for all other meta-level operations.

68 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

Listing 4.9: An implicit actor mirror.� �
1 def actorMirror := reflectOnActor();
2 def sealedMirrorFactory := extend: actorMirror with:{
3 //override createMirror to provide a custom mirror factory for objects
4 def createMirror(onObject) {
5 def defaultExplicitMirror := superˆcreateMirror(onObject);
6 extend: defaultExplicitMirror with:{
7 def addSlot(slot){raise: IllegalOperation.new("Cannot add slot")};
8 def removeSlot(slotName){raise: IllegalOperation.new("Cannot remove slot")};
9 }

10 }
11 };
12 actorMirror.becomeMirroredBy: sealedMirrorFactory;� �

Having discussed both explicit and implicit reflection on both object and actors, we
give an overview of the AmbientTalk’s metaobject protocol in the next section.

4.6.3 AmbientTalk’s Metaobject Protocol
The metaobject protocol (MOP) of AmbientTalk can be divided into a set of indepen-
dent protocols reifying different aspects of objects and actors to meta programmers.
Table 4.1 provides a brief overview and description of the various protocols. We cat-
egorize the different protocols according to the entity which implements the protocol
API. A protocol API is exposed by object mirrors, actor mirrors, or it consists of a num-
ber of methods defined in object and actor mirrors. The full semantics and signatures
of the meta-methods of the protocols can be found elsewhere [MVT+09, DGM+07].
In the remainder of this section, we detail the most important protocols for the pur-
poses of this dissertation: the message invocation protocol and the object marshalling
protocol.

Customer actor

Base-level

Meta-level

N

defaultMirror

a<-getDescription()

sendTo(receiver,
sender)createMessage

(selector,
args,types)

receive(msg)

➊

➋

➌

➍

➏

send(rcv, msg)

➎

send(rcv, msg)

defaultActorMirror

notification

far reference
for A

pass()

meta actor operation
meta object operation
message operation

Figure 4.4: Message invocation and object marshalling protocol at sender side.

4.6. REFLECTIVE PROGRAMMING IN AMBIENTTALK 69

We explain the message invocation and object marshalling protocols by means
of the getDescription() asynchronous message sent from a customer to a sup-
plier actor shown in Figure 4.1. Figures 4.4 and 4.5 provide a graphical illustration
of the sequence of meta operations as a result of executing the advertisement←
getDescription() expression. We first explain the sequence of calls of the message
invocation protocol at the sender side by means of Figure 4.4. A call to a meta-method
corresponds to a step of the protocol (which is annotated with the corresponding num-
ber in the figure).

Step 1. As a result of evaluating the advertisement←getDescription() ex-
pression, the createMessage method is invoked on the actor mirror. The method
returns a message object which consists of a selector, arguments and type tags. create
Message can be overridden to add additional metadata to a message object, e.g., the
FutureMessage annotation used for future-type message passing.

Step 2. Upon creation a message does not have a receiver yet. When the message
send expression is evaluated, the receiver is set and the sendTo method on the message
is called. The default implementation of sendTo calls the send meta operation on the
receiver’s object mirror.

Step 3. The send meta method on an object mirror delegates the responsibility of
sending the message to the actor mirror.

Step 4. The send meta method on the actor mirror schedules the transmission of
the message by making the far reference for the receiver object receive the message.
If the receiver object lives in the same actor (i.e., it is a local object), the actor directly
calls the object’s mirror receive method.

Step 5. When a far reference receives a message, it enqueues the message in its
internal message queue. The interpreter then triggers the object marshalling protocol
by calling pass on the message, and all the objects reachable from its arguments.

Step 6. The semantics of pass is akin to the writeReplace method in Java:
it allows an object to determine how it should be passed to remote objects. For reg-
ular AmbientTalk objects, the default implementation of pass asks the actor mirror
to create and return a far reference designating the referenced object by invoking
createReference meta operation. For objects declared as isolates, the implemen-
tation of pass returns a copy of that object. This concludes the sequence of meta-
operations at the sender side.

After the serialization, the message awaits in the far reference message queue its
turn to reach the beginning of the queue. When this happens, the serialized message
is dequeued and physically transmitted to the receiver actor. Figure 4.5 illustrates the
sequence of call of the message invocation and object marshalling protocols at the
receiver side.

Step 1. When a message is received from the network, the interpreter first triggers
the object marshalling protocol. The unmarshalling of objects is reified by means of the
resolve method whose semantics is akin to readResolve method in Java: it returns
an object replacing the unmarshalled object. The default implementation of resolve
just returns the object previously marshalled.

Step 2. Once resolve has been called to the message (and all objects reachable
from its arguments), the interpreter triggers the message invocation protocol at the
receiver side by asking the actor mirror to receive the unmarshalled message.

Step 3. The actor mirror in turn asks the receiver object mirror to receive the
message. The receive method in the actor mirror allows developers to alter the seman-

70 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

Suplier actor

Base-level

Meta-level

defaultMirror
letter

rcv

⎨ process(rcv)

schedule(rcv, msg)

serve()

invoke(del,inv)
select(rcv,sel)

receive(msg)

➊ ➋

➌

➍
➎

➏ ➐

➑

receive(rcv, msg)
defaultActorMirror

A

advertisement

resolve()

❾

meta actor operation
meta object operation
message operation

Figure 4.5: Message invocation and object marshalling protocol at receiver side.

tics of the reception of all messages sent from other actors to objects owned by an
actor.

Step 4. By default, the object’s mirror receive method delegates the reception of
the message back to the actor mirror by invoking schedule.

Step 5. The schedule method adds the incoming receiver-message pair as a letter
in the actor’s mailbox.

Step 6. When the letter reaches the beginning of the queue, it will be dequeued by
means of the serve method. The default implementation of serve calls process on
the message object of the dequeued letter. By overriding serve, a metaprogrammer
can redefine the message processing behaviour of an actor, e.g., to be prioritised.

Step 7. The process method of a message makes the receiver object’s mirror in-
voke the method corresponding to the selector. By default, an asynchronously received
message is thus transformed into a regular (synchronous) method invocation (in this
example advertisement.getDescription()).

Step 8. The invoke method first obtains the closure of the slot corresponding to
the selector by means of the select method, and applies it. If a matching slot for the
selector is not found in the object nor in one of the objects of its delegation chain, the
doesNotUnderstand meta method is invoked returning an exception.

We conclude our explanation of AmbientTalk’s message invocation protocol with a
note on messages. As the reader may have noticed, messages in AmbientTalk are first-
class objects. AmbientTalk distinguishes between three kinds of messages: asynchro-
nous ones (expressed as←m()), synchronous ones (expressed as .m()) and delegated
ones (expressed as ˆm()). The <+ operator sends a first-class message to a receiver
object as if the message was invoked on the receiver in the source code. The operator
expresses either an asynchronous, a synchronous or a delegated message based on the
type of the given message. For example, the advertisement←getDescription()

expression is equivalent to the following code snippet:

def mesage := <-getDescription();
advertisement <+ mesage;

4.7. CONCLUSION 71

4.7 Conclusion
In this chapter, we have described AmbientTalk, a distributed object-oriented program-
ming language that was especially designed to ease the development of applications
that run on mobile devices interacting over a wireless network. To this end, the lan-
guage has been designed along the principles of the ambient-oriented programming.
The language’s asynchronous concurrency model mask failures by default, allowing
applications to remain responsive upon network disconnections. The languages built-
in publish/subscribe engine allows objects to discover one another in a peer-to-peer
manner, without depending on any centralised infrastructure.

We have also extensively described AmbientTalk’s support for reflection. Reflec-
tion is an integral part of the language given its role as a language laboratory to experi-
ment with novel AmOP language features. In the following chapter, we discuss limita-
tions of AmbientTalk’s meta-level architecture, which motivate the need for a revised
architecture. Subsequently, we introduce AmbientTalk/M, a descendent of Ambient-
Talk which extends its meta-level architecture with tools to ease the development of
failure handling abstractions and tool support reflectively.

72 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK

Table 4.1: Overview of the metaobject protocol of AmbientTalk.

Protocols exposed by object mirrors

Structural Access Protocol Reifies the structure of an object as a collection of slots. It con-
sists of methods to add and remove slots, get access to a first-
class slot representation, and lists all owned slots (i.e., slots
bound directly in the object, and not in one of the objects in
the delegation chain).

Object Instantiation Protocol Reifies the act of creating new objects from existing objects.
It consists of two methods: clone which creates a (shallow)
copy of the object, and newInstance which first calls the
clone method to create a clone of the current object and then
initializes the clone by invoking its init method.

Type Tag Protocol Reifies the type tags attached to an object. It consists of
two methods: isTaggedAs which tests whether an object is
(transitively) tagged with a type, and listTypeTags which
returns an array of type tags which the object is tagged.

Relational Testing Protocol Reifies the relationship between objects. It consists of three
methods, called isCloneOf, and isExtensionOf and
isRelatedTo, which test whether two objects are related
through cloning, object extension, or a combination of cloning
and extension, respectively.

Evaluation Protocol Reifies the evaluation and quotation of abstract grammar ob-
jects. It consists of two methods, called eval and quote
which allow for evaluating and quoting an object part of a parse
tree, respectively. Regular objects simply return themselves
upon quotation and evaluation, but explicit parse-tree objects
(e.g., method invocation) have dedicated evaluation functions.

Protocols exposed by actor mirrors

Service Discovery Protocol Reifies the act of publishing and discovering remote objects.
It consists of methods to advertise a local object as a service,
register a discovery event handler, and to list the advertised
local objects and the active discovery event handlers.

Mirror Creation Protocol Reifies the act of creating mirrors. It consists of two methods
which serve as the mirror factory for explicit mirrors on objects
and actors: createMirror which returns an explicit mirror
on an objects, and getExplicitActorMirror which re-
turns an explicit on the actor. In addition, there is a method to
install a new actor mirror in the actor.

Protocols exposed jointly by actor and object mirrors

Message Invocation Protocol Reifies both asynchronous and synchronous method invoca-
tions. It consists of a number of methods in the object mirror to
intercept the invocation of synchronous messages, the sending
of asynchronous messages, and the reception of both asynchro-
nous and synchronous messages. In addition, it provides meth-
ods in the actor mirror to create and send asynchronous mes-
sages, and to control the actor mailbox (the queue of incoming
receiver-message pairs buffered before being processed).

Object Marshalling Protocol Reifies the act of marshalling and unmarshalling objects when
they are passed as arguments in inter-actor messages. It con-
sists of two methods exposed by object mirrors: pass which
allows an object to determine how it should be passed to other
objects, and resolve which determines how it should be re-
solved upon arrival. In addition, there is a method in the actor
mirror, called createReference, which returns a far ref-
erence to a local object.

Chapter 5

Enhancing Meta-level
Engineering in AmbientTalk

In the previous chapter, we have described AmbientTalk as an object-oriented, distri-
buted programming language with a meta-level architecture based on the principles of
mirror-based reflection. Using such a meta-level architecture has a number of benefits
with regard to the implementation of new language features. First, the implementa-
tion of a language feature is encapsulated in a dedicated meta-level entity, increasing
reusability. Second, the meta-level entity implementing a language feature is stratified
with respect to the base-level code ensuring that it does not interfere with application-
level code. Finally, since base and meta-level code are separated in different layers it
also makes it easier to enable reflection only when really required.

This chapter discusses AmbientTalk/M, a dialect of AmbientTalk that improves its
reflective architecture with tools to ease the development of distribution and failure
handling abstractions. AmbientTalk/M revisits mirror-based reflection in the context
of an ambient-oriented language based on event loops, and contributes two concepts:
a new representation of remote object references as a pair of metaobjects representing
both ends of a reference, and the introduction of an observer mechanism into mirrors
that allows metaprogrammers to react dynamically at runtime to the manipulation of
an object by the interpreter.

5.1 Motivation

The motivation for a revisited meta-level engineering is based on a number of short-
comings when using a mirror-based architecture for building (1) communication-
oriented abstractions for MANETs and (2) tool support in the form of a distributed de-
bugger. What makes reflection1 attractive in the design of distributed mobile systems is
that it improves flexibility [Caz01]: it helps developers deal with the openness and dy-
namic nature of MANETs (e.g., the same application may behave differently depending
on the underlying network topology, location, user preferences, etc.). A reflective ap-
proach exposes implementation details of the distributed system and allows developers
to manipulate them and provide their own solutions to a number of issues such as com-

1In this case the term reflection refers to behavioural reflection, the ability of a program to access and
modify a dynamic representation of itself at runtime.

73

74 CHAPTER 5. AMBIENTTALK/M

munication, synchronization, object serialization, failure handling, etc. Furthermore,
reflection provides means to achieve a clear separation of concerns [McA95, TNCC03].
As such, it facilitates experiments with different distributed abstractions while avoiding
interfering with the application code. Thanks to those strengths, a lot of research effort
has been devoted to implement distributed and concurrent problems using reflection
and meta programming techniques [McA95, Caz01, GGM94].

At first sight, it may seem that AmbientTalk’s reflective architecture is sufficiently
powerful to deal with the development of distributed abstractions since it reifies both
the actor and object model. However, in this section, we illustrate shortcomings aris-
ing from the implementation of distributed abstractions and tool support for which a
mirror-based reflective architecture does not provide simple and clear solutions. We
distinguish between shortcomings on (1) the reification of language constructs for dis-
tribution (i.e., structure correspondence), (2) the representation of distributed commu-
nication, and (3) implicit mirrors.

5.1.1 Limitations of Structural Correspondence in Ambient-oriented
Programming

In a mirror-based architecture, the principle of structural correspondence [BU04] states
that each element of the base-level language maps to an interface in the reflective API.
When applying a mirror-based architecture to a distributed object-oriented language,
the reflective layer should reify both sequential and distributed parts of the language.
As such, AmbientTalk’s reflective layer supports reflection on objects and actors (the
unit of distribution). However, as we show in this section, some distributed constructs
of the language lack a meta-level representation. This is partially due to the fact that
there is little prior work that exposes as language constructs distributed concerns such
as service discovery. Moreover, most work in reflection on actors has been conducted in
languages or frameworks that model actors as ABCL/1-like active objects, rather than
as mere containers for regular objects as is the case in the communicating event loop
model of E and AmbientTalk. We further distinguish shortcomings in the reification of
the communication traces, object marshalling and the environmental context.

Communication Traces. Many classic actor frameworks and languages provide the
notion of a meta-actor [DA07]. Typically meta-actors only allow developers to inter-
cept incoming and outgoing messages to alter the behaviour of the actor system. Am-
bientTalk/1 introduced the concept of mailboxes that capture the history of messages,
i.e., the outgoing messages that have been acknowledged to be received by another ac-
tor, and the messages that have been processed. AmbientTalk/1’s novelty with respect
to other active object models is that these mailboxes are reified as first-class passive ob-
jects that can be manipulated by the programmer. Those mailboxes make explicit the
communication traces of the actor and allow programmers to properly recover from an
inconsistent state due to disconnections, e.g., by reversing (part of) the application’s
computation.

Nevertheless, AmbientTalk/2’s reflective architecture does not provide explicit rep-
resentation of the communication history of an actor. This is a consequence of the
fact that in AmbientTalk/2’s concurrency model replaces the notion of actors as active
objects with the notion of actors as event loops. In an event loop concurrency model,
actors become containers of passive objects which can be remotely referenced by other
actors by means of far references. As a result, the communication traces of an actor are

5.1. MOTIVATION 75

now represented by the actor message queue together with the set of far references that
an actor holds. We identify three main issues in such a representation of communica-
tion traces:

• The message queue of an actor represents the messages that have been received
by the actor but not processed yet, i.e., the actor’s incoming messages. While
the message queue is reified in the actor’s reflective layer, the message history is
not represented. Obtaining messages already processed boils down to overriding
the invoke meta operation on an object mirror. However, one cannot obtain
a message history dynamically as an implicit mirror on an object can only be
installed when the object is created. We will further elaborate on the repercussion
of that limitation later in this section.

• Rather than having an outgoing message queue, outgoing messages are contained
within far references. The main reason for this is that passive objects owned by
other actors can be individually designated by means of far references. Thus,
each far reference contains a part of the outgoing communication of an actor.
Yet, no support is provided at the reflective layer to manage the whole set of
far references that an actor owns. This is necessary to build distributed abstrac-
tions such as network-aware references [PHGD11, PHD11]. Although one can
override the whenever:discovered: operation to intercept the reception of
a far reference to a newly discovered object, it is not possible to intercept far
references acquired implicitly by passing objects as arguments in asynchronous
messages. As a result of this limitation the implementation of network-aware
references in AmbientTalk is not fully reflective, but required modifications on
the interpreter.

• Finally, obtaining messages that have been acknowledged to be received boils
down to creating a custom referencing abstraction that exchanges extra messages
between the two ends of the reference. Although one can dynamically override
the createReference meta operation to install the new referencing strategy,
it will not be possible to alter all references handed out previously. As a result,
meta programs observing the communication traces of an actor (e.g., debuggers,
monitors, etc.) cannot be dynamically coupled to a running application.

Object Marshalling. AmbientTalk’s reflective layer includes an object marshalling
protocol that reifies the act of exporting an object to another actor. It allows developers
to replace an object by a different one when it crosses the actor boundaries. Although
similar protocols can be found in mainstream languages like Java, AmbientTalk ex-
poses object marshalling as a meta-level concern separated from base-level code by
means of object mirrors. The object marshalling protocol, however, is only partially
reified at the actor level for pass-by-reference objects2. While the act of marshalling
objects is explicitly reified, developers cannot trap the act of un-marshalling objects
at the receiver side, forcing developers to create custom referencing abstractions to
encode this.

It is also important to point out the implications of an event loop model in the rep-
resentation of object marshalling. In an object-oriented distributed model such as in
JavaRMI, object marshalling happens when a client object executes a remote method
invocation (since communication is synchronous). In an event loop actor-based model

2Unless specified otherwise, we refer to pass-by-reference objects as objects.

76 CHAPTER 5. AMBIENTTALK/M

such as in AmbientTalk, object marshalling happens when an asynchronous message
is added to the actor’s outgoing mailbox; in the case of AmbientTalk, when it is added
to the far reference’s message queue. However, the object may actually be transmit-
ted long after it is marshalled. For example, the message may be accumulated in the
far reference’s queue due to a disconnection. While these semantics are simple and
applicable for a wide range of objects, some objects (such as reactive values or time
changing values like leases) require to reflect over the possible changes of its fields
between the marshalling point and the transmission point. Unfortunately, a represen-
tation of object marshalling at the transmission point is not available in AmbientTalk’s
reflective layer.

Environmental Context. In an ambient-oriented language reifying the environmen-
tal context of distributed interactions allows developers to react to changes of the un-
derlying network connectivity. AmbientTalk exposes the environmental context by
means of the when:disconnected: and when:reconnected: primitives (cf. Sec-
tion 4.4.1). In order to build language features that require monitoring changes in
the communication process, e.g., to alter the default semantics of network disconnec-
tions, developers need to install those handlers on individual far references. This is,
however, a too fine-grained interface to build language constructs that require altering
the environmental context of the whole actor. For example, unit testing or simulation
frameworks typically need to disconnect an actor as a whole to make the system trigger
failure handling code. To circumvent the lack of representation of the environmental
context at the actor meta level, developers need to write bookkeeping code to address
all references at once.

Although the actor meta level lacks a representation of the established references
to an object, AmbientTalk provides a low-level primitive called takeOffline: that
invalidates all far references to an object, allowing developers to influence the reach-
ability of a remote object. The operation removes an object from the internal data
structures of the interpreter that keep track of which objects are remotely accessible,
enabling the object to be garbage collected once it is no longer locally referenced.
However, there is no counterpart operation reifying the addition of a local object to the
set of remote objects (which results in the creation of a far reference for a local object).
This is useful for metaprograms observing the distributed behaviour of an actor as it
enables them to control the far references being handed out to other actors. Developers
can, however, reconstruct the references that are actually handed out by manipulating
the meta actor protocol. Recall from Section 4.6.3 that createReference is called
on the actor mirror each time an object is passed to another actor. In its default im-
plementation, the interpreter only creates a far reference the first time it is called and
stores it in its internal data structures. In order to monitor which references are actually
handed out, programmers need to override this operation and write bookkeeping code
that mimics how the interpreter maintains the internal data structures for far references.

5.1.2 Limitations of the Representation of Distributed Communi-
cation

In order to build distributed abstractions in an object-oriented paradigm, develop-
ers typically manipulate distributed communication by implementing custom seman-
tics for remote object references. Most traditional distributed systems expose a

5.1. MOTIVATION 77

remote object reference by a proxy3 in the client object’s space which represents
a remote object. Such a proxy forwards messages to the remote object it repre-
sents. It also has an associated message handler that provides an API to intercept
the method invocation performed on it, e.g., the doesNotUnderstand method in
OpenTalk [ope] (Visualworks SmallTalk’s distributed framework), or invoke method
in java.lang.reflect.Proxy.

In AmbientTalk, proxy objects are implemented using mirror-based reflection. A
custom object reference is represented by an empty mirage object whose message re-
ception semantics has been modified by an implicit mirror. The implicit mirror wraps
a native far reference that is used for the actual message transmission to the remote ob-
ject. This approach has proven to be useful for developing distributed abstractions that
focus on the sender perspective such as futures (described in Section 4.3.1). A future
is nothing but a custom object reference that intercepts asynchronous messages sent
to the return value. In addition, such a representation of object references preserves
stratification since both the sender and receiver object of a reference are un-affected
by the meta-level code. As a concrete example, consider again the advertising appli-
cation from Chapter 4. Recall from listing 4.3 how the getDescription message is
used to request the description of an advertisement broadcast by a remote object, and
print it on the screen. When executing advertisement<-getDescription(), the
getDescription message will not be misinterpreted as part of the meta-level opera-
tions of the future.

Although proxies are a simple and widely adopted technique for implementing dis-
tributed abstractions, they suffer from a number of inherent limitations. The major
problem is that the proxy and the object it represents are distinct entities when concep-
tually there is only one, giving rise to the two-body problem [Eug06]. While this dis-
tinction is useful as it preserves stratification, it hampers the implementation of distri-
buted abstractions that take into account the receiver perspective in several ways. First,
the base-level code may circumvent a language construct’s interface (implemented in
the proxy) and expose the internal representation of the original object. This is also
known as the encapsulation problem [Eug06]. When building referencing abstractions
it is particularly harmful because an object reference defines the kind of access right a
client object has on a remote object. As a result, it is not possible to ensure that client
objects always use the proxy (the custom object reference) to access the remote object.
This can pose a number of problems, e.g., a reference to a remote object may be handed
out to unwanted or untrustworthy third parties. Second, when a method of the actual
remote object returns a self-reference, there is no way for the proxy to intercept that,
and again return a proxy. This is known as the “self problem”, first described by Lieber-
man in [Lie86]). This is problematic for e.g., access control abstractions as it should be
possible to intercept all invocations. Welch and Stroud discuss other disadvantages of
using proxies in [WS99]. An important issue they point out is the implication of inher-
itance in proxies. In order for the proxy and the original object to be interchangeable,
the type hierarchy of the proxy should reflect the type hierarchy of the base-level object
it represents. In short, the separation of proxy and remote object introduces problems
for method call interception, encapsulation and typing.

Research in reflection has proposed two ways to circumvent those issues: either
by merging the object and its proxy as done in Kava [WS00], or by making the proxy
inherit from the target object, as in the MOP used by ProActive [CKV98]. In the for-
mer approach, the issue is then to dynamically enable proxies on a per-object or even

3A proxy is often referred to as an interception object or wrapper.

78 CHAPTER 5. AMBIENTTALK/M

per-use basis. In the latter, one loses the ability of using chaining to compose different
distributed abstractions in favor of using inheritance. The advantage of using chain-
ing is that a meta interception mechanism is separated from the meta-level structuring
mechanism [WS99].

Nevertheless, the root cause of the problems with a proxy approach is that mod-
eling distributed communications constitutes a more complex task than intercepting
messages in the client object’s space. Many distributed abstractions require a repre-
sentation that reifies both sides of a distributed communication, and allows performing
intercession and introspection of the exchanged messages. For example, some abstrac-
tions require applying actions both before a message is sent (e.g., to encrypt, compress,
attach access policy, etc.) and before the receiver executes it (e.g., to decrypt, de-
compress, check access lists, etc.). Using proxies to build such abstractions forces
programmers to implement two proxies (one at each side) and manually to coordinate
their work.

5.1.3 Limitations of Mirages
Implicit mirrors are the fundamental building blocks in a mirror-based architecture to
implement new language features. Yet, implicit mirrors in AmbientTalk are installed
at object creation time and cannot be changed during the lifetime of objects. This lim-
itation is motivated by performance reasons as it enables the interpreter to in-line the
meta-level methods associated with objects without an implicit mirror. More impor-
tantly, it enforces the one-to-one relationship between a mirage object and its implicit
mirror [MVT+09]. However, it is too restrictive for certain types of meta-programs that
require activating some functionality at runtime. In particular, software tools like de-
buggers or object inspectors typically monitor or inspect arbitrary objects on-demand.
For example, in Smalltalk, programmers can inspect objects of a running application.

To overcome this limitation, one can resort to proxies but we have already pointed
out their limitations in the previous section. Alternatively, one can integrate the new
language feature using the implicit mirrors on actors instead. Recall from Section 4.6.2
that implicit mirrors on actors can be dynamically installed at any time during the
lifetime of actors. However, this is often too coarse-grained and requires developers
to derive the operations that need to be trapped manually. As a concrete example
consider an object inspector; only the methods executed on the object being inspected
are relevant to be trapped. Using an actor mirror introduces the overhead of trapping
the base-level operations for all objects in the actor. In addition, the actor’s mirror does
not reflect all operations executed on implicit mirrors on objects. For example, since
synchronous method invocation is not trapped by the actor mirror, a debugger would
not be able to update its GUI whenever an assignment changes the value of an object’s
field. To circumvent this, metaprogramers are forced to periodically query an explicit
mirror on an object for information about the object state.

5.1.4 Summary
In this section we have discussed several shortcomings of the mirror-based reflective
architecture of AmbientTalk for building distributed abstractions and tools to support
the development of ambient-oriented applications which we now summarize.

Structural Correspondence. While a mirror-based architecture provides a modular
and stratified design, we show that AmbientTalk’s reflective layer lacks explicit

5.1. MOTIVATION 79

representation of distributed elements necessary for expressing useful distributed
abstractions and tools such as network-aware references. This is due to the fact
that when employing mirror-based reflection in the meta-level facilities of a dis-
tributed object-oriented event-driven language, true structural correspondence
requires an explicit representation of communication traces of an actor, and a
representation of object marshalling and the environmental context both at the
actor and object level.

Representation of Distributed Communication. Representing remote object refer-
ences by proxies introduces a number of well-defined problems, in particular,
for encapsulation and method call interception. In addition, the proxy approach
is too restrictive to model distributed communication since only the client per-
spective is reified, forcing developers to write from scratch abstractions that take
into account the receiver perspective.

Mirages. Although it is useful for tools like debuggers to react upon the manipulation
of an object, this can only be achieved in AmbientTalk by means of implicit
mirrors. However, this makes it impossible for those meta-programs to enable
some functionalities on-demand.

In the remainder of this chapter, we describe AmbientTalk/M, a dialect of Ambient-
Talk which extends its mirror-based architecture with the following support that solves
those issues.

• First, AmbientTalk/M revisits the object and actor reflective layer to provide true
structural correspondence for distribution.

• Second, it introduces a new representation of far references based on the
transmitter-receptor model that reifies distributed communication by opening up
the concept of remote object reference. Remote object references are exposed as
first-class values with a custom metaobject protocol reified by two metaobjects,
one at each end of the reference. In order to avoid re-introducing the inherent
limitations of representing object references as mirages, receptors are causally
connected to the base-level object they represent for the dynamic context of a
distributed interaction. This enables receptors to intercept all method invocations
(including self-invocations) as a result of an asynchronous message delivered by
a receptor, while preserving encapsulation.

• Finally, it introduces an observer mechanism into actor mirrors which allows
developers to get notified of the manipulation of an object by the interpreter
without requiring an implicit mirror. As a result, developers can be notified of
the execution of a meta operation without having to override it. In addition, an
observer can be registered to an (meta or base-level) object dynamically at any
time during the lifetime of the actor.

Note that AmbientTalk/M provides a concrete instantiation of these meta-level
mechanisms, but their contribution transcends AmbientTalk. In the case of the
transmitter-receptor model, to the best of our knowledge, no distributed reflective
framework has previously applied mirror-based reflection to the concept of remote ob-
ject references and dealt with the dynamic context of mobile interactions.

80 CHAPTER 5. AMBIENTTALK/M

5.2 First-Class References as Transmitter-Receptor Pairs
This section describes the design of remote object references using the transmitter-
receptor model. The model combines ideas from classic communication-oriented re-
flective frameworks in which both ends of the communication are reified, with the
principles of mirror-based reflection. The main idea is that an object reference is rei-
fied into two metaobjects encapsulating all aspects of interactions between senders and
receivers. Those metaobjects have been specially designed to reify the distribution
aspects of communication in a mobile network, and provide the necessary meta-level
hooks to build families of referencing abstractions independently from the base-level
functionality of the objects they connect. By manipulating these two metaobjects, de-
velopers can handle remote interactions between two objects in a modular way as they
encapsulate the whole distributed behaviour of a remote object and the references that
are handed to client objects.

5.2.1 First-class References Overview
A remote object reference denotes a unidirectional communication link that carries
messages from a client object to a remotely accessible object (known as a service ob-
ject). Recall from Section 4.4.1 that in AmbientTalk the only type of remote object
references are far references: references that only allow asynchronous messages to the
service object and mask network failures by default. The terms remote object reference
and far reference are thus interchangeable in the context of AmbientTalk. Figure 5.1
shows the conceptual representation of a far reference with a dotted line.

C S

transmitter (S)

client object service object

receptor(S)

Actor A Actor B

conceptual far
reference
local reference
remote reference

base-level object

meta-level object

Figure 5.1: Remote object reference model

AmbientTalk/M represents remote object references as first-class objects which ex-
pose the communication context of a remote interaction at both ends. In Mark Miller’s
dissertation [Mil06] we find a simple yet insightful observation for this reification: “a
reference is an arrow, and an arrow has two ends”. The source of a reference denotes
the end located in the client object’s actor, and the target of a reference denotes the
end located at the service object’s actor. As also shown in Figure 5.1, a far reference is
thus reified as a pair of metaobjects, named transmitter and receptor, representing the
source and the target of a far reference, respectively.

The Receptor is an object that wraps a service object and whose main purpose is to
control distributed interactions with the service object including its message sending,
message reception and parameter passing semantics. Each service object is bound to
at least one receptor. Not only does the receptor intercept each asynchronous message
received by its associated service object in a transparent way, but it also intercepts

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 81

messages sent as a consequence of the message being processed. The receptor can then
perform actions before or after the service object sends or receives a message to handle
aspects such as persistence, replication, security, etc. In addition, the receptor also
controls the parameter passing semantics of the service object, and can then perform
actions according to its semantics, e.g., to ensure that the far reference semantics are
not circumvented, limit the lifetime of the reference, etc.

The Transmitter is an object that reifies the communication channel at the client
side and whose main purpose is to control how the client object sends messages to the
service object. Each transmitter is bound to at least one receptor by default. A trans-
mitter is transparently created on the client device when a receptor is unmarshalled,
and is used to transmit asynchronous messages to the service object (via the recep-
tor). A transmitter can perform some actions before or after a message send to handle
communication aspects such as providing one-to-many communication, applying de-
livery guarantees, logging successful message sends, etc. In addition, a transmitter ex-
poses the network connectivity of the physical communication with the device hosting
the service object, i.e., it reifies the environmental context of the interaction between
communicating parties. According to its semantics, it then applies an appropriate fail-
ure handling strategy, e.g., buffering messages during disconnections, rebinding to an
equivalent receptor, etc. Finally, a transmitter controls the parameter passing semantics
of the service object to third party objects.

In general, a remote object reference consists of a transmitter-receptor pair4 which
is responsible for all the distributed concerns between two sides of the reference.
Metaprogrammers can build custom object references by modifying the metaobject
protocol of transmitters and receptors. Before describing their reflective API, we dis-
cuss our reference model in the light of the principles of mirror-based reflection.

5.2.1.1 Mirror-based reflection and the Transmitter-Receptor Model

To adhere to the principles of mirror-based reflection, transmitters and receptors should
be cleanly separated from regular base-level code. A receptor is typically hidden from
base-level code since it is transparently created and managed by the interpreter, and
only metaprograms can access a receptor by invoking a meta-level operation on the
base-level object (as we describe later). However, transmitters are used by client ob-
jects when sending messages via a reference as shown in Figure 5.1. In order to support
a stratified design, it is important to avoid client objects to directly access transmitters.
To this end, transmitters are causally connected with an empty object representing the
reference at the base level.

Figure 5.2 illustrates our remote object reference model from a reflective perspec-
tive. Client objects do not directly hold a local reference to the transmitter (the meta-
level representation of a reference), but rather to the base-level object associated to the
transmitter. We term such a base-level object the reference data type. The reference
data type is just a regular empty AmbientTalk object whose behaviour is completely
defined by its associated transmitter, i.e., the interpreter uses the transmitter to ma-
nipulate it. Developers can obtain access to the transmitter by means of a dedicated

4 Conceptually, there is a one-to-one correspondence between transmitters and receptors for the default
far references. At implementation level, due to performance reasons, there exist at most one receptor and
transmitter per actor for a given service object.

82 CHAPTER 5. AMBIENTTALK/M

C

reference
 data type

service object

Base-level

Meta-level

Actor A Actor B

client object

S
Base-level

Meta-level

transmitter receptor

causal connection
local reference
remote reference

Figure 5.2: Remote object reference model from a reflective perspective

operation as shown below.

def transmitter := reflectOnReference: reference;

The reflectOnReference: construct returns the transmitter for the given refer-
ence data type. Although a transmitter could be seen as an explicit mirror on a reference
data type, reflectOnReference: does not consult a transmitter factory, in contrast
to the reflect: construct for objects. Transmitters and receptors are meant to be used
to specialise the default far references with custom semantics, i.e., support implicit re-
flection on far references. As such, we do not make the distinction between explicit
and implicit transmitters (nor receptors).

5.2.2 First-class References Reflective API

Transmitters and receptors are represented as regular AmbientTalk objects that inherit
from the transmitter and receptor prototype encapsulating the default language seman-
tics for far references. Table 5.1, Table 5.2 and Table 5.3 provides a comprehensive
overview of the API exposed by the transmitter and receptor prototypes. We categorize
the API according to three different protocols which reify the outgoing communica-
tion traces, the parameter passing semantics of the target object, and the environmental
context of a remote interaction, respectively. These methods may be invoked either
by metaprograms that implement custom referencing abstractions, or by the interpreter
itself. In the remainder of this section we briefly discuss each protocol.

5.2.2.1 Asynchronous message process protocol

The asynchronous message process protocol reifies the act of processing an asynchro-
nous message via a far reference which consists of two separate phases: 1) receiving
and transmitting an asynchronous message from a client object, and 2) receiving and
processing the asynchronous message by the target object. These phases are exposed
by the transmitter and receptor API, respectively, as shown in Table 5.1. Conceptu-
ally, it forms part of the message invocation protocol explained in the previous chapter
(Section 4.6.3). In particular, it reifies the final stage of message invocation protocol
at the sender side (after step 5 in Figure 4.4), and the alters the way how a message is
delivered and processed to the service object at the receiver side (steps in Figure 4.5).

Transmitter API. Recall from Section 4.6.3 that when a client object c executes
s←m(), the actor’s mirror hosting c delegates the responsibility of sending the mes-
sage to the far reference to the service object s. In AmbientTalk-M, the asynchronous

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 83

Table 5.1: Asynchronous message process protocol API.

Transmitter API
schedule(rcv,msg) Adds a letter containing the message and the re-

ceiver to the mailbox.
serve() Dequeues a letter from the mailbox and trans-

mits it.
transmit(msg) Invoked after a message is marshalled, before it

is physically transmitted. Returns the message
to be transmitted to the receptor of a transmitter.

leave(msg) Invoked when a message has been successfully
transmitted to the receiver.

listOutgoingLetters() Returns an array of all letters currently in the
mailbox.

Receptor API
accept(msg) Makes the service object accept the delivery of

an asynchronous message.
sendMessage(rcv,msg) Invoked when the service object sends an asyn-

chronous message to a receiver object.
performInvocation(rcv,inv) Invoked when the service object performs a syn-

chronous method invocation on a receiver ob-
ject.

Listing 5.1: Accessing and modifying a far reference’s mailbox� �
1 def retract: reference matching: closure {
2 def mailbox := (reflectOnReference: reference).listOutgoingLetters();
3 mailbox := mailbox.filter: { | letter | closure(letter.message)};
4 mailbox.each: {|letter| letter.cancel()};
5 mailbox;
6 };� �

message is received by the far reference data type which delegates this task to its trans-
mitter which is asked to schedule the message in its mailbox. The transmitter ’s
mailbox stores asynchronous messages before being transmitted. It works similarly
to the actor’s mailbox, but it stores outgoing letters rather than incoming letters. An
outgoing letter consists of a receiver-message pair together with the marshalled rep-
resentation of the message. The default implementation of schedule first marshalls
the message, and then creates a new outgoing letter and buffers it in its mailbox. By
overriding this method, a metaprogrammer can redefine message sending scheduling
and add additional metadata to a message (e.g., use encryption techniques).

The listOutgoingLetters method returns a copy of the mailbox as an array of
outgoing letter objects. Similar to listIncomingLetters described in Section 4.6.1,
this array is not causally connected to the real mailbox of the transmitter. In order to
cancel the transmission of a message, one needs to invoke the letter’s cancel method.
Note that the interpreter guarantees that no messages are added to or removed from the
transmitter ’s mailbox while a meta-program is executing one of these methods. How-
ever, the cancel method may not succeed if the letter was already put into the physical

84 CHAPTER 5. AMBIENTTALK/M

communication channel. As a concrete usage example, consider listing 5.1 that shows
the implementation of a variation of the retract: construct (cf. Section 4.4.1) us-
ing transmitters. The retract:matching: function takes a reference data type and a
closure as its arguments, and returns an array of letters of which transmission has been
cancelled. It first gets a copy of the mailbox of a transmitter, and filters those mes-
sages for which the given closure returns true (lines 1-2). The function then cancels
the transmission of the matching letters and returns the array of removed letters (lines
3-4). This construct can be used to avoid the propagation of outdated data during a
disconnection, e.g., to remove the messages that update a remote reactive value during
a disconnection, so that only the most recent value is sent upon reconnection.

Outgoing letters are transmitted in a serial manner so that successive asynchronous
messages sent by a client object to the same service object are delivered in a FIFO order.
The serve method is invoked by the interpreter whenever a transmitter should trans-
mit a message from its mailbox. The default implementation works analogously to the
actor mirror’s serve method: it dequeues a letter object from the mailbox and trans-
mits its message to the receptor associated with the transmitter. By overriding serve,
a metaprogrammer can redefine the message transmission to e.g., prioritize message
transmission, cancel the transmission of certain messages, etc. Before the message is
transmitted, the transmit method is called. This method allows developers to reflect
possible changes on the message between the marshalling point (when schedule is
called) and the transmission itself, e.g., cancel messages which are outdated, update
the message delivery guarantees, etc. Once the message is actually transmitted and has
been acknowledged to be received, the leave method is invoked. In this case, overrid-
ing leave allows metaprogrammers to perform some actions on the communication
history of a reference, e.g., maintaining a log of sent messages. This method concludes
the sending phase of the asynchronous message process protocol.

Receptor API. At a later point in time, when the actor hosting the service object
(s in our example) receives the asynchronous message, the corresponding receptor is
asked to accept the asynchronous message to s. The act of accepting a message does
not imply that the message will be processed, but rather that the message has arrived
at the target. To accept a message thus involves determining what to do with it. The
default implementation makes the associated service object receive the message. It can
be overridden to perform control actions on the message before the target object process
it, for example, to apply decryption on a message, check the permissions of the sender
object, implement persistence, etc. It is also possible that the message is not delivered
to the target object. For example, if the message is tagged as ControlMessage, it
is immediately processed by the receptor.

Recall from Section 4.6.3 that an asynchronously received message is transformed
into a synchronous method invocation, i.e., s.m(). In AmbientTalk/M, during the
method invocation of an asynchronous message, any other asynchronous message
send or a synchronous method invocation is first delegated to the receptor that de-
livered the executing method invocation. This means that the service object mirror
calls sendMessage or performInvocation in the receptor whenever it needs to
send an asynchronous or perform a synchronous method invocation, respectively. The
default implementation for those operations corresponds to AmbientTalk’s default se-
mantics: sendMessage calls the send meta-operation on the service’s object mirror,
and performInvocation calls invoke method on the receiver object’s mirror. Those
operations allow developers to control the full extent of the execution of asynchronous
messages that receptors deliver to service objects, and prevent them to be executed if
necessary. A metaprogrammer can override these operations to, e.g., apply access con-

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 85

trol properties to the computation resulting from the processing of an asynchronous
message, log causal relationships between asynchronous message sends, etc. List-
ing 5.2 shows how the performInvocation method on a receptor can be overridden
to build a safe reference, a far reference which does not allow asynchronous messages
that cause side effects on the service object.

Listing 5.2: Example of a custom receptor� �
1 def makeSafeReference(){
2 extend: defaultReceptor with: {
3 def performInvocation(rcv, inv){
4 if: !(invocation.selector.isAssignmentSymbol()) then:{
5 superˆperformInvocation(rcv,inv);
6 }
7 }
8 }
9 }� �

The custom receptor overrides the performInvocationmethod only to allow method
invocations that do not change an object’s state. In AmbientTalk an assignment is ex-
pressed as a synchronous method invocation whose selector denotes the assignment
symbol for a received field name, e.g., ‘fieldName:=. The isAssignmentSymbol
helper function checks whether the recipient selector of the method invocation corre-
sponds to an assignment symbol.

In many cases, a metaprogrammer wants to share control information between
transmitters and receptors transparently to the client and service objects. In order to
facilitate this, we introduced the type tag ControlMessage which can be used to an-
notate messages which are understood by receptors and transmitters and are not further
propagated to the target base-level object. If an incoming asynchronous message is
annotated with @ControlMessage, it is processed by the meta-level, either a trans-
mitter or receptor object depending on which end of the references receives it. If an
incoming asynchronous message is not annotated with @ControlMessage, its pro-
cessing follows the language semantics described above, i.e., it is handled by either the
schedule or accept method of the corresponding transmitter or receptor depending
on which end of the conceptual reference receives it. Intercepting the reception of con-
trol messages on transmitters and receptors can be done by means of the usual Ambi-
entTalk reflective operations, i.e., installing an implicit mirror on the custom transmitter
or receptor.

5.2.2.2 Reference marshalling protocol

The reference marshalling protocol reifies the act of marshalling and unmarshalling
objects when they are passed as argument of a message sent to another actor,
or passed via the service discovery mechanism. This is reified by means of the
marshallingStrategy and unmarshallingStrategy methods on both the trans-
mitter and receptor objects representing a far reference as shown in Table 5.2. In what
follows we describe their default semantics, and their relevance for building different
referencing abstractions.

Recall from the previous chapter (Section 4.6.3) that marshalling is also reified at
the level of the object that is parameter-passed by means of the pass and resolve

meta methods. For objects who did not declare themselves to be pass-by-copy, the
default implementation of pass asks the actor to create and return a receptor to the
object. The receptor is then passed in place of the service object. When this happens,

86 CHAPTER 5. AMBIENTTALK/M

Table 5.2: Reference marshalling protocol API.

Transmitter and Receptor API
marshallingStrategy() Invoked when a receptor or a transmitter is mar-

shalled. Returns either the receptor or the trans-
mitter to be marshalled instead of this receptor
or transmitter .

unmarshallingStrategy() Invoked when a receptor or a transmitter is un-
marshalled. Returns the object replacing the un-
marshalled transmitter or receptor .

the marshallingStrategy method is invoked on the receptor which by default re-
turns the receptor itself. This implies that all client objects share the same receptor to
access the service object in the default implementation. The marshallingStrategy
method at the receptor allows metaprogrammers to redefine how to access the service
object by passing a different receptor object. Metaprogrammers can enforce different
values of arity of the transmitter-receptor relation:

unary at most one receptor is marshalled per service object at any point in time.

multiary a separate receptor is marshalled each time the service object is parameter
passed.

n-ary there is an upper bound on the number of receptors for the service object.

In addition, this method can be used to introduce abstractions to regulate the access
to the receptors as the sponsorship mechanism provided by .NET Remoting framework
for leases on remote objects [Low03].

When a receptor is received in the client object virtual machine, the interpreter in-
vokes the unmarshallingStrategy method. The default implementation asks the
actor to create and return a transmitter. The transmitter is bound to the receptor, and
returned to the client object. Metaprogrammers can override the operation to redefine
the transmitter semantics for a given receptor. This is useful in referencing abstractions
in which the transmitter and the receptor need to share control information, e.g., en-
crypted referencing abstractions.

A client object c can also pass an acquired reference (to a service object s) to a
third-party object p in an asynchronous message send, e.g., p←m(s). In that case, the
marshallingStrategy and unmarshallingStrategy methods are invoked by a
transmitter object that c holds for the service object s. Figure 5.3(a) illustrates the
default semantics of parameter passing a transmitter. The third-party object p acquires
a copy of the transmitter object which the original client object held (c in the figure).
The new transmitter is bound to the same receptor as the transmitter being passed. Note
that if the third party actor is the actor hosting the service object, a local reference to
the service object is returned instead (since the service object is no longer accessed
remotely).

By overriding these two methods, a metaprogrammer can redefine how third par-
ties get access to the service object. In some cases, it may be useful to mediate the
access to the service object via the actor who received directly the far reference, rather

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 87

P

client object

T'

transmitter(S)

Actor A Actor B

Actor C

C S

T

transmitter (S)

client object service object R

receptor(S)

C S
T

transmitter(S)
client object service object R

receptor(S)

P

client object

T'

R'receptor(T)

transmitter(T)

Actor A Actor B

Actor C

conceptual far reference local reference remote referencebase-level object meta-level object

(a) Default marshalling protocol of transmitters (b) A custom marshalling protocol with forwarding reference

Figure 5.3: Default and custom marshalling protocol of transmitters

than access directly the receptor of the service object. Examples of this pattern can
be found in communication abstractions such as network-aware references [PHGD11,
PHD11], and passive replication mechanisms as the ones described in [GGM94]. This
can be achieved by overriding the transmitter marshallingStrategy method to
leave behind a forwarding reference to itself as shown in Figure 5.3(b). In short, the
marshallingStrategy method creates and returns a new receptor R’, which upon
unmarshalling returns a new transmitter T’.

To sum up, the marshallingStrategy and unmarshallingStrategy meth-
ods on a receptor reify how a client object acquires a far reference to a service ob-
ject from the owner actor, i.e., the actor hosting the service object. In contrast, the
marshallingStrategy and unmarshallingStrategy methods on a transmitter
reify how a client object acquires a far reference to a service object from an acquain-
tance of the owner actor. We will show later in Section 5.2.4 how these methods have
been used to implement a concrete referencing abstraction.

5.2.2.3 Environmental context protocol

The environmental context protocol reifies the changes of the underlying network con-
nection with the service object. As shown in Table 5.3, it consists of one method called
addObserver that can be invoked to register an observer that is notified when the ref-
erence state changes to the given state. The native states are identified by the type tags
connected and disconnected. By default, when a reference is created, it is set to
the connected state. Instead of registering an observer object, a first-class asynchronous
message is registered together with the observer object. When a far reference changes
to the given state, the first-class message is sent to the given receiver object. As in
AmbientTalk/1, we call these first-class messages observer messages. As Dedecker al-
ready pointed out [Ded06], subscribing messages instead of objects provides flexibility
since the interface of the observer object does not need to be fixed with regard to the
notification protocol.

Observer messages are scheduled in the recipient actor as regular asynchronous
messages. While this simplifies its processing, the observer object may not be able
to respond to the change in a timely fashion. Applications subject to time constraints
could override the actor scheduling protocol to ensure that these messages are pro-
cessed before all other messages. Observer messages are tagged by default with the

88 CHAPTER 5. AMBIENTTALK/M

Table 5.3: Environmental context protocol API.

Transmitter and Receptor API
addObserver(rcv,msg,typeTag) Registers a message to be sent to the receiver

object when the reference is in the state denoted
by the given type tag. Returns a subscription ob-
ject whose cancel method can be used to cancel
future notifications.

@ObserverMessage tag allowing metaprogrammers to distinguish them from func-
tional asynchronous messages sent by the (meta) program itself. Messages used by
the interpreter to trigger delayed computations for other sorts of events (e.g., service
discovery subscriptions) have also been annotated with an @ObserverMessage tag.

5.2.3 Deploying Referencing Abstractions

Any object can serve as transmitter or receptor as long as it provides a complete im-
plementation of the far references meta protocol previously described. The transmit-
ter and receptor prototype objects described in the previous section are accessible by
means of the defaultReceptor and defaultTransmitter prototypical objects.
These objects are defined in the actor’s top-level scope and their purpose is to facilitate
the construction of custom referencing abstractions that require only slight variations
with respect to default semantics. A custom receptor r can be installed by invoking
becomeReferencedBy: on the service object’s mirror.

Listing 5.3 illustrates the installation of a simple receptor that overrides the accept
method to log incoming messages. The becomeReferencedBy: method has been

added to the explicit mirrors on objects to reify the referencing strategy by which the
recipient object will be remotely accessible. When the obj is going to be passed to
another actor, the interpreter will do it according to the semantics defined by the given
receptor. In this code snippet, it is used to install a new receptor for the obj object that
logs all asynchronous messages it processes from client objects. The target variable
is defined in the defaultReceptor prototype and refers to the (base-level) service
object a receptor wraps.

Listing 5.3: Installing a custom receptor� �
1 (reflect: obj).becomeReferencedBy: (extend: defaultReceptor with: {
2 //override accept to log the message
3 def accept(msg) {
4 log("accepting" + msg.selector + " on " + self.target);
5 superˆaccept(msg);
6 }
7 });� �

The becomeReferencedBy: meta operation can be applied to any object ex-
cept for transmitters and receptors . We opted to disallow it to enforce that they are
parameter-passed according to their reference marshalling protocol (described in Sec-

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 89

Listing 5.4: Prototype implementation of an omireference using a custom transmitter� �
1 def omnireference: typeTag {
2 extend: defaultTransmitter with: {
3 def receivers := Set.new(); //to store available matching objects
4 def schedule(msg){
5 receivers.each: { |rcv|
6 rcv <+ msg;
7 };
8 };
9 whenever: typeTag discovered: { |potentialReceiver|

10 receivers.add(potentialReceiver);
11 };
12 };
13 };� �

tion 5.2.2.2)5. In general, the transmitter-receptor pair needs to be semantically coher-
ent in order to implement a certain reference strategy. In other words, the protocols
implemented by transmitter and receptor need to be composable. Custom transmitters
are installed by overriding the marshallingStrategy method of the receptor to re-
turn a new transmitter . The transmitter to be used is thus determined by the code of
the receptor. Such a design enables the modularization of all distributed behaviour of
the service object and the referencing abstraction itself into transmitter-receptor pairs.

Note that the fact that the transmitter-receptor pair needs to be semantically coher-
ent does not imply that metaprogrammers need to implement both a custom transmitter
and receptor object to build a referencing abstraction. Our framework has been spe-
cially designed to ease the development of custom referencing abstractions that require
changes on both sides of a reference. However, some families of referencing abstrac-
tions only require changes on either transmitter and receptor without requiring a match-
ing counterpart, i.e., the changes provide orthogonal functionalities. For example, this
is exhibited by referencing abstractions exploiting one-to-many communication pat-
terns in which the target objects are actually a group of service objects including M2MI
handles [KB02], and ambient references [Van08]. The code snippet below shows how
to create and use a reference abstraction that transparently discovers and binds to all
objects of a certain type (the Player type tag). This behaviour is reminiscent of an
M2MI omnihandle.

def nearbyPlayers := omnireference: Players;
nearbyPlayers<-updatePosition(myPlayerInfo);

In this example, an omnireference is used in the context of a mobile game to
broadcast a player position to nearby players. Whenever a remote object matching
the Players type tag is discovered, it is added to the set of objects that the omnifer-
ence binds to, called the receivers of the omnireference. As usual, communication with
an omnireference happens by means of asynchronous message passing as shown in the
second line of the code snippet. Implementing such an abstraction does not require a
custom receptor to regulate the access to the receiver objects; it is sufficient to install a
custom transmitter that keeps track of the receivers at the client side of the reference.

Listing 5.4 shows a prototype implementation of such a referencing abstraction.
An omnireference extends the default transmitter so as to apply two changes. First, it
registers a service discovery request to listen for remote objects exported with the given

5As in AmbientTalk, a disallowed operation provokes a runtime exception.

90 CHAPTER 5. AMBIENTTALK/M

service tag (lines 9-11). Second, when a client object sends an asynchronous message
through the reference, the schedule method is overridden to forward the message to
each receiver (lines 4-8).

5.2.4 Case Study: Lazy References
In this section, we illustrate how to use our framework for custom object references by
means of a concrete referencing abstraction, namely lazy references. Lazy references
introduce lazy parameter passing semantics [LJE08, Eug03] into AmbientTalk’s asyn-
chronous distributed object model. In most state-of-the-art distributed systems objects
representing large entities are passed by reference (to avoid wasting network resources
with their transfer) and “small” objects by copy (to avoid overhead of remote invo-
cations). Lazy parameter passing provides support for a family of objects which are
between these two extremes that require developers to make a trade-off between the
overhead of transferring them and their use in a method invocation. This technique
allows an object to be first passed by reference, and then transferred by copy at a later
point in time if it is required in the execution of a method.

To illustrate lazy parameter passing more concretely, consider an adaptation of the
scenario of a music sharing application in [Eug03] that runs on mobile devices. When
two people using the music player enter one another’s personal area network, the music
players exchange their music library’s list (not yet the songs themselves). Listing 5.5
below shows the prototype definition of a song object in AmbientTalk. A song object
consists of metadata associated with a song (the title, and the artist), and the actual
audio track. It has three methods: init (i.e., the object constructor), == that ensures
equality of songs based on their metadata, and play that we explain later.

When a song is exchanged with other music players, a music player receives a
copy of the song together with a copy of its meta data so that the end-user can check
the title and the artist. In contrast, the audio track is parameter-passed by lazy reference.
Only when the song is about to be played by the music player, is the audio track copy
actually transferred. To this end, the audio track is created by means of lazyIsolate:
function as shown in listing 5.6. An audio track consists of the array of bytes encoding
the audio data, and an android.media.AudioTrack instance used to represent an
audio resource in an Android mobile device. Its init method initializes the buffer
with the track audio data stored in the given path6. Before starting playing the audio

6Android is an object defined in the actor’s root lexical scope with helper functions for Android-
specific facilities such as logging, loading the contents of a file stored in the device’s SD card, etc.

Listing 5.5: The Song object prototype.� �
1 def Song := isolate: {
2 def title; //string storing title of the song.
3 def artist; // string storing artist of the song.
4 def audioTrack; //object encapsulating the actual track.
5 def init(artist, title, audioTrack) {
6 self.artist := artist; self.title := title;
7 self.audioTrack := audioTrack;
8 };
9 def ==(other) { (other.artist == artist).and: { other.title == title } };

10 def play() { /*explained later*/ };
11 };� �

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 91

Listing 5.6: The audio track object prototype.� �
1 def audioTrack := lazyIsolate: {
2 def buffer; // array of bytes containing the audio data.
3 def track; // android.media.AudioTrack instance respresenting the audio resource.
4 def init(audioFilePath) {
5 buffer := Android.loadContentFromFile(audioFilePath);
6 };
7 def play() {
8 if: (track == nil) then:{
9 track := Android.createAudioTrack();

10 track.write(buffer, 0, buffer.length());
11 };
12 track.play();
13 };
14 };� �

track, the play method creates an AudioTrack instance and writes the audio data
stored in the buffer to the audio hardware (if necessary). As such, the initialization of
the AudioTrack Android object is delayed until it is necessary to play the song track.

Current distributed systems providing lazy parameter passing support three variants
differing in when the copy of the object is acquired, either (1) when the reference is
first accessed (called implicit or on-access lazy), (2) when explicitly requested in the
method body (called explicit or on-demand lazy), or (3) immediately with the method
invocation (called imperative lazy) [Eug03, LJE08]. Due to the event-loop concurrency
model of AmbientTalk, an actor cannot be suspended in the middle of a computation.
As such, we only provide explicit lazy semantics in which one can register a closure to
be executed when the object copy is fetched from the remote peer. This is done using
the when:fetched: control structure as shown in the code excerpt below.

def play(){
when: audioTrack fetched: { |audioTrack|
audioTrack.play();
};

};

The code excerpt shows the implementation of the play method of the song object.
It is called by the music player GUI when a song needs to be played. The closure passed
to when:fetched: is applied to the copy of the audio track (once it is received). It
calls the play method of the audio track object which actually makes the hardware
resource play the song as previously explained. In the remainder of this section, we
describe how we integrate lazy far references by means of our referencing framework.

5.2.4.1 Lazy reference data type

Lazy references are far references whose message reception and marshalling strategies
deviate from that of normal far references. They basically apply three changes to the
default semantics of far references. First, a lazy reference defines an additional meta
method called download to be able to obtain a copy of the remote object. Second,
asynchronous messages received by a lazy reference are forwarded to the remote ob-
ject, or the local copy once downloaded. Finally, parameter passing of a lazy reference
to a third party is altered to create a new lazy reference when the copy of the value is
not downloaded.

Lazy references have been implemented as a custom transmitter-receptor pair by
means of our referencing framework. Listing 5.7 shows the definition of the recep-

92 CHAPTER 5. AMBIENTTALK/M

Listing 5.7: Receptor object for lazy references.� �
1 def makeLazyReceptor(target, targetDefaultMirror){
2 extend: defaultReceptor.new(target) with: {
3 def isDownloaded := false;
4 //default meta methods of a receptor
5 def accept(msg) {
6 if: (!isDownloaded) then:{
7 self.target <+ msg;
8 };
9 };

10 def unmarshallingStrategy(){
11 makeLazyTransmitter(self);
12 };
13 //method added to the receptor behaviour.
14 def download() {
15 isDownloaded := true;
16 targetDefaultMirrorˆpass();
17 }
18 }
19 };� �

tor for lazy references. The makeLazyReceptor constructor is parameterized with
an isolate (playing the role of the target object of the lazy reference), and its mirror.
Note that one can only create a lazy reference for pass-by-copy objects (isolates in
AmbientTalk). The isDownloaded field encodes whether the isolate has already been
transmitted. Initially, the isolate is not downloaded. When a download message is
sent to the receptor, it returns a copy of the target object by triggering the default mar-
shalling protocol for isolates. This happens by calling the pass method of the isolate’s
mirror (line 16). Once the copy is transmitted, the remote access to the target object is
said to be terminated, and the receptor does not deliver messages to the target object
anymore (line 6-8). When the target is first passed, a lazy receptor will be marshalled
instead. Its unmarshalling strategy has been overridden to return a matching transmitter
(lines 10-12).

Listing 5.8 shows the definition of the transmitter for lazy references. The
makeLazyTransmitter constructor function is parameterized with the receptor as-
sociated to this transmitter. The transmitter also keeps a isDownloaded field to keep
track whether the copy of the target object has been downloaded. Any asynchronous
message received by the transmitter is either forwarded to the remote object if the
copy is not yet downloaded, or forwarded to the copy if it is downloaded. This is
done by overriding schedule (lines 7-13). The transmitter extends the default ref-
erence protocol with a subscribe method, which allows observers to be notified
when the copy has been downloaded (lines 26-34). The addition of an observer makes
the transmitter send the download message to the receptor which returns the copy of
the target object (lines 31-41). The download message has been annotated with the
@ControlMessage annotation to indicate that the receiver of the message is the re-
ceptor rather than the base-level target object. Once the copy is received, all subscribed
observers are asynchronously notified with the downloaded value, and the transmitter
is detached from the receptor (lines 35-39). The detach method is defined in the de-
fault transmitter and makes the interpreter remove the transmitter-receptor pair from
the distributed data structures (explained later in Section 5.3.1.1).

Finally, the transmitter overrides the default marshalling protocol to apply pass-by-

5.2. FIRST-CLASS REFERENCES AS TRANSMITTER-RECEPTOR PAIRS 93

Listing 5.8: Transmitter object for lazy references.� �
1 def makeLazyTransmitter(receptor){
2 extend: defaultTransmitter with:{
3 def isDownloaded := false;
4 def downloadedValue := nil;
5 def isDownloadInProgress := false;
6 def observers := [];
7 def schedule(msg){
8 if: isDownloaded then: {
9 downloadedValue <+ msg; // forward msg to the downloaded value;

10 } else:{
11 superˆschedule(msg); // forward msg to the remote value;
12 }
13 };
14 def marshallingStrategy(){
15 if: isDownloaded then:{
16 downloadedValue;
17 } else:{
18 makeLazyTransmitter(self);
19 }
20 };
21 //methods added to the transmitter behaviour.
22 def subscribe(observer){
23 if: isDownloaded then:{
24 observer<-notifyDownloaded(downloadedValue);
25 } else:{
26 observers := observers + [observer];
27 // ask the receptor for a copy of the value.
28 if: !isDownloadInProgress then: { download() };
29 }
30 };
31 def download(){
32 isDownloadInProgress := true;
33 when: receptor<-download()@[ControlMessage, FutureMessage] becomes: {
34 |value|
35 superˆdetach();
36 isDownloaded := true;
37 downloadedValue := value;
38 observers.each:{ |obs| obs<-notifyDownloaded(downloadedValue);}
39 }
40 }
41 }
42 };� �

lazy-reference semantics when it is passed to third-party objects (lines 14-20). Fig-
ure 5.4 illustrates the marshalling of a lazy reference transmitter when the copy of the
target object has been downloaded or not. It shows the object being marshalled in ei-
ther case with a double line. If the copy has been downloaded when the transmitter
is passed, the copy is returned so that its marshalling protocol creates a new receptor-
transmitter pair representing a new lazy reference (as shown in Figure 5.4 (a)). If the
copy was not downloaded when the transmitter is passed, a new lazy reference to the
copy which still needs to be downloaded should be created. To this end, a new trans-
mitter is created and passed to the third party (as shown in Figure 5.4 (b)). When the
third-party object requires the copy to be downloaded (requested by means of the when
:fetched: construct), the download method of the new transmitter (T’) will call the
download method on the transmitter (T) corresponding to the original lazy reference.
This is possible because download returns a future and a future chain is created be-
tween the transmitters handed out from the original lazy reference. When the original
transmitter obtains the copy, the transmitters handed out to third party objects will be
notified with the copy similarly to other observers.

94 CHAPTER 5. AMBIENTTALK/M

T'

Actor A Actor B

Actor C

T

music player
application A

audioTrack

R

conceptual far reference local reference remote referencebase-level object meta-level object

(a) Marshalling protocol when the copy has been downloaded (b) Marshalling protocol when the copy has not been dowloaded

song downloadedValue
R'

music player
application C

T''

music player
application C

Actor A Actor B

Actor C

T

music player
application A

audioTrack

R

song downloadedValue

downloadedValue

Figure 5.4: Marshalling protocol of lazy references

5.2.4.2 Integration in the Object Marshalling Protocol

Now that we explained the implementation of a lazy reference, we turn our attention to
the language constructs provided to the programer to obtain and use lazy far references.
The following code excerpt shows the implementation of lazyIsolate: construct.

def lazyIsolate: closure {
isolate: closure mirroredBy: (mirror: {
def pass() {

makeLazyReceptor(self.base, super); // apply pass-by-lazy-reference semantics.
};

});
};

The lazyIsolate: construct creates an isolate with the given closure (containing the
code with which to initialize the object and the new object’s lexical parent) and alters
its marshalling protocol to integrate pass-by-lazy-reference semantics. This is done
by overriding the isolate’s meta-level pass method. The method is specialized such
that it returns a receptor of a lazy reference, rather than applying the default pass-by-
copy semantics (i.e., returning a copy of the base-level isolate). The marshalling of the
base-level isolate is thus delegated to the receptor.

The reader may have noted that the custom receptor for lazy references is not in-
stalled using the becomeReferencedBy: meta operation. This is because calling it
on an isolate turns it into a (pass-by-reference) object. Similarly to implicit mirrors
on actors, different referencing strategies can then be installed at any time during the
lifetime of the object by means of becomeReferencedBy:. However, once a receptor
is installed, it is not possible to uninstall it, i.e., turn the object back into an isolate.
Allowing pass-by-reference objects to be passed by copy can lead to several concep-
tual problems with respect to scoping issues and object identity (that we discuss in
Section 5.5). As such, the developer needs to manually pass the isolate’s mirror to
the receptor of the lazy references so that the default pass-by-copy semantics can be
invoked at a later stage. In a sense, lazy parameter passing can be considered as an
exceptional referencing abstraction since it is built for isolates, rather than for objects.

Below is the definition of the when:fetched: control structure that allows base-
level programmers to initiate the transfer of the copy of the isolate.

def when: lazyFarReference fetched: closure {
(reflectOnReference: lazyFarReference).subscribe(object: {
def notifyDownloaded(value) { closure(value) }

});

5.3. REFLECTION ON ACTORS 95

};

The subscribe method has been previously explained as part of the transmitter of
a lazy reference. Recall that a transmitter is a meta-level object representing the source
of a far reference. reflectOnReference: acquires the transmitter from the reference
data type allowing the language construct to invoke the method at the meta-level rather
than on the base-level far reference object itself.

5.3 Reflection on Actors

One of the novelties of AmbientTalk’s reflective layer is that it applies mirror-based
reflection to actors. As explained in the previous chapter, AmbientTalk’s meta-actor
protocol is encapsulated in the actor mirror which allows one to reflect on the event
loop executing a (meta)program. As mentioned in Table 4.1, the meta-actor protocol
provides hooks to influence asynchronous message sending and reception, the service
discovery protocol, the object mirror creation, and the reference creation. In this sec-
tion, we discuss the changes and extensions made to the actor mirror in AmbientTalk/M
for easing the development of referencing, and failure handling abstractions.

5.3.1 Extensions to the Meta-Actor Protocol

In order to accommodate the new mechanism to build referencing abstractions ex-
plained in the previous section, we adapted the reference creation protocol. It con-
sist of the createReference method invoked whenever a pass-by-reference object
is parameter passed between actors. In our approach, createReference returns the
default receptor instead of a far reference data type. This allows metaprogrammers to
define their own transmitter-receptor pair to all references exported to other actors upon
parameter passing objects. As previously mentioned, the default transmitter-receptor
pair encodes a far reference.

In addition, we added to the meta-actor protocol hooks to influence the reference
management protocol, and the method invocation protocol on objects. Table 5.4 pro-
vides an overview of the operations added to explicit mirrors on actors7. In the remain-
der of this section we briefly discuss both protocols.

5.3.1.1 Reference Management Protocol

The reference management protocol reifies the distributed structure of an actor as a
table of object references. Each actor maintains an object reference table, reminiscent
of the object table in network objects [BNOW93]. The object reference table contains
two different kinds of mappings. First, a mapping between identifiers and receptors to
local objects (if there is one). The addReceptor method is called to enter a receptor
into the actor’s object reference table when the local object is first parameter passed to
an actor. It remains there until it is removed implicitly by the interpreter when it detects
the deletion of all its associated transmitters, or it is explicitly removed by program-
mers. Removing a receptor (in either way) happens by means of the removeReceptor
method of the recipient actor’s mirror.

7Note that methods defined by explicit mirrors are also exposed by implicit mirrors.

96 CHAPTER 5. AMBIENTTALK/M

Table 5.4: Additional methods in the API of explicit mirrors on actors.

Reference management protocol
addTransmitter(transmitter) Adds a new transmitter to the object table.
removeTransmitter(transmitter) Removes a transmitter from the object table.
grabTransmitters(reference) Returns an array of all transmitter to a remote

object.
addReceptor(receptor) Adds a new receptor to the object table.
removeReceptor(receptor) Removes a receptor from the object table.
grabReceptors(toObject) Returns an array of all receptors to a local ob-

ject.
listReceptors() Returns an array of all receptors to local objects.
listTransmitters() Returns an array of all transmitters to remote ob-

jects.

Method invocation protocol
addBeforeMethodInvocationObserver(

closure,object,selector,filter)

Registers a closure as an event handler triggered
before a matching method is invoked on an ob-
ject.

addAfterMethodInvocationObserver(

closure,object,selector,filter)

Registers a closure as an event handler triggered
after a matching method is invoked on an object.

Second, the object reference table contains entries for all transmitters that exist in
the actor. In this case, it maps identifiers (of service objects) to the local transmitter for
a service object. The addTransmitter method is called when the actor first acquires
a far reference to the service object as a result of either a discovery request or the
reception of an asynchronous message carrying an object as argument. Similarly to
network objects, the object reference table holds a weak reference to the transmitter,
which allows the underlying local garbage collector to collect it when there is no other
reference to it except through the table. The removeTransmitter method removes a
transmitter from the table of the recipient actor’s mirror and notifies the corresponding
receptor(s) of the removed transmitter.

By default, as previously mentioned, there exists only one transmitter and one
receptor per service object in each actor. However, meta programmers can override
these semantics, e.g., to provide a different transmitter -receptor pair per far reference
handed out, resulting in several receptors in the object reference table for a service ob-
ject. The grabReceptors method returns an array of all receptors for a given service
object. Similarly, the method grabTransmitters returns an array of all transmit-
ter for a service object. In this case, the method extracts the identifier of the service
object through the given reference data type, and returns all transmitters associated
with the same object identifier. Although referencing abstractions that require sev-
eral transmitters for a service object are not common, this hook supports the develop-
ment of referencing abstractions that integrate subject-oriented programming [HO93]
in which the client object of the reference is involved to ascertain the kind of access
that can be granted. Finally, listTransmitters and listReceptors returns an
array of, respectively, all transmitters and receptors in the actor’s object table. As in
the case of listOutgoingLetters, these arrays are not causally connected to the
implementation-level data structures: they just provide a snapshot of the actor’s object
table.

5.3. REFLECTION ON ACTORS 97

Listing 5.9: Definition of a method invocation observer.� �
1 def dictionaryObject := {
2 def put(entry) {...};
3 def get(entry) {...};
4 };
5 before: dictionaryObject invokes: ‘put do: {|entry|
6 log(" added " + entry + " to dictionary");
7 };� �

The object reference table plays a crucial role in the distributed behaviour of an
actor. First, it is used to find the service object referred to by an incoming asynchro-
nous message, and to perform the marshalling and unmarshalling of a service object
transmitted (by service discovery or parameter passing). Second, the table is central to
distributed garbage collection and its interaction with the local garbage collector. The
service objects targeted by the transmitters and receptor objects stored in the object
reference table are considered as root objects for the local garbage collector. As such,
the hooks provided are crucial to build high level distributed memory management ab-
stractions within the language itself. Finally, it allows to create constructs to simulate
network failures as we describe in 5.3.2.

5.3.1.2 Method Invocation Protocol

We introduce the method invocation protocol in order to deal with the fact that implicit
mirrors cannot be dynamically installed on objects (cf. Section 5.1). The goal of this
protocol is to make the interpreter notify a metaprogram of the execution of a method
on an object, while preventing the metaprogram from changing the semantics of the ex-
ecuted method as this may cause unwanted interference with implicit mirrors installed
on the observed object. As shown in table 5.4, the protocol consists of two methods
that register an observer to be notified before and after the execution of a method invo-
cation on a given object. They are called addBeforeMethodInvocationObserver

and addAfterMethodInvocationObserver, respectively. These methods are pa-
rameterized with a closure that subscribes to the object to observe. The closure is
triggered whenever the object executes a method whose name matches a selector and a
filter (a predicate on the actual method invocation).

For syntactic convenience, we feature keyworded syntax constructs for those meta
methods in a similar way to other AmbientTalk language constructs such as whenever
:discovered:. As a concrete usage example, consider listing 5.9 that captures all the
entry additions to a dictionary object. The before:invokes:do: function installs
a before method observer for the put method on the dictionaryObject. As men-
tioned in Section 4.6.1, the backquote denotes a symbol. The do: closure is triggered
on each method invocation whose selector is put. It receives as arguments the actual
parameters of the method being observed, in this case, put has only one parameter
named entry. The order of the arguments on the do: closure is expected to be the
same as the observed method. Analogously, an after observer can be registered using
the after:invokes:do: function. Both functions have an extended version with a
predicate parameter to filter method invocations based on their actual parameters. The
code snippet below shows an equivalent extended version for the example given in
listing 5.9.

98 CHAPTER 5. AMBIENTTALK/M

before: dictionaryObject invokes: ‘put with: {|entry| true} do: {|entry, result|
log(" added " + entry + " to dictionary");

};

The with: closure represents the filter applied to the put method invocation. In
this case, the filter always returns true. The with: closure arguments correspond to
the actual arguments of the method to observe. Similarly to the do: closure, the order
of the arguments on the closure implementing the filter is expected to be the same as
the observed operation (put).

The addBeforeMethodInvocationObserver and addAfterMethodInvoca-

tionObservermethods register a closure as an event handler for a method invocation,
i.e., the code of the closure is always delayed. The closure will thus be asynchronously
triggered whenever a matching method invocation is observed. More concretely, when
a matching method invocation is observed, the interpreter sends a message of the form
closure←apply(args)@ObserverMessage. As we mentioned in Section 5.2.2.3,
observer messages are executed as regular asynchronous messages, making sure that
the closure is applied serially with respect to other executions in the actor.

It is important to remark that these operations can be used to observe method invo-
cations on both base-level or meta-level objects. In AmbientTalk a (mirror) meta-level
object can be seen as a regular object that provides reflective access to a base-level
object. As such, a mirror can also be mirrored by another mirror, and so on. As a
concrete example, consider again the example of a debugger given in Section 5.1. The
code snippet below shows how a debugger can update its GUI whenever an assignment
changes the value of an object’s field by means of the after: function.

after: (reflect: objectInDebug) invokes: ‘invoke with: {|delegate, invocation|
invocation.selector.isAssignmentSymbol();

} do: { |delegate, invocation, result|
// result is bound to the value being assigned.
debuggerGUI<-updateField(objectInDebug, invocation.selector, result);

};

In this case, we install an after observer on the meta-level method invocation of
invoke with a filter to trap assignments. This means that the object to be observed
is the mirror of a base-level object participating in the debugging session (obtained
with the reflect: operation). with: closure defines a filter that takes as parameter
two arguments as specified by the invoke method signatures. As mentioned before,
the isAssignmentSymbol helper function checks whether the selector of the method
invocation corresponds to an assignment symbol. The body of the do: closure sends
an asynchronous message to the GUI to update the the information displayed for the
objectInDebug object. When registering an after observer, the result of the method
invocation is also passed as argument.8 The updateField messages sends to the GUI
the selector of the field name being changed, and the new value obtained through the
result argument of the invoke method.

5.3.2 Making Entities Fail
Causing a partial failure programmatically can be useful for a number of reasons. First,
it allows to isolate certain actors (which are e.g., malicious, spamming, suffering se-
curity attacks, etc.) from the rest of the network. Secondly, it forms the basis to build
meta programs that monitor or simulate the distributed behaviour of an application and
its resilience to partial failures. This argument is valid for any distributed system, but

8By convention, the result will be always the last argument of the closure.

5.4. DISCUSSION 99

in a MANET setting it becomes crucial to understand the distributed behaviour of ap-
plications and detect misbehaviours at early development stages as they are exposed
to a highly dynamic environment. We propose to provide support to make language
entities fail based on the reference management protocol described in Section 5.3.1.1.

As previously explained, AmbientTalk provides the takeOffline: primitive that
allows us to disable all far references to a service object. AmbientTalk/M allows to
implement the takeOffline: primitive reflectively using the reference management
protocol. The method first looks up all the receptors for a given service object, and then
calls removeReceptor on each. In addition, we also provide a takeActorOffline
function which disables all incoming and outgoing references to objects in that actor.

An important use of takeActorOffline is unit testing. AmbientTalk features
a unit testing framework that provides support to test the distributed behaviour of an
application exploiting its concurrency model. Developers can define methods prefixed
with testAsync which return a future. The framework only processes subsequent
tests once this future is resolved or ruined. In many MANET applications, a recur-
ring pattern is to take offline the object representing the remote interface of the local
application to other applications to trigger the failure handling code of the remote ap-
plications. To do so, developers typically use the takeOffline: primitive but, it does
not prevent the local application to send messages to the remote applications. The
takeActorOffline() function prevents programmers from writing boilerplate code
for the bookkeeping of the references to remote applications.

AmbientTalk/M also allows to reflectively implement the disconnect: primitive
that logically disconnect an object it receives as an argument. The primitive returns an
object whose reconnect method reestablishes the object’s connection. In this case,
the implementation first removes the transmitter or receptor for the given object from
the object reference table, which is re-added upon calling the reconnect.

5.4 Discussion
We have described the new meta-level engineering support that AmbientTalk/M intro-
duces to the existing AmbientTalk meta-level architecture. First, it represents far refer-
ences as an open framework in which developers can build referencing abstractions in a
high-level and customisable way. Developers can monitor and redefine the distributed
concerns of an object solely by means of custom transmitter-receptor pairs, abstracting
distribution in dedicated metaobjects which are cleanly separated from application-
level code. Second, it revisits AmbientTalk’s meta-actor protocol and introduces an
observer mechanism that allows developers to react to changes on objects made by
the interpreter without requiring the installation of implicit mirrors. We now motivate
the more important design decisions of AmbientTalk/M’s extensions and highlight a
number of techniques which have influenced the design of AmbientTalk/M.

First-class far references. Our design of the transmitter-receptor model has been
driven by our experiences with AmbientTalk in which references are expressed as mi-
rages, and the analysis of several referencing abstractions built in the language includ-
ing futures, ambient references, leased references, lazy references9, and network-aware
references [PHGD11]. One important idea that shaped the design of our architecture
is that we consider that a reference provides a way to access a remote object and get

9The first implementation of lazy references was conducted in Cardozo’s master thesis [Alv09]

100 CHAPTER 5. AMBIENTTALK/M

certain rights to it. As we target MANET applications, one cannot rely on the pres-
ence of infrastructure acting as mediator or coordinator of a distributed interaction. As
such, remote references become the abstraction to both designate remote objects and
control (and even limit) how objects can be accessed. This also motivated the explicit
representation in our architecture of both sides of a remote interaction by introducing
the concept of transmitters and receptors.

Similarly to implicit mirrors on actors, receptors can be installed at any time during
the lifetime of a service object (by means of becomeReferencedBy:). This design is
mainly motivated by our goal of separating application functionality as much as pos-
sible from distribution concerns. In particular, the transmitter-receptor model aims to
decouple the functionality provided by an object from the way how remote objects can
access such functionality. As a result, developers can decide parameter passing seman-
tics at runtime independently of the object type (determined when the object is defined).
Moreover, this design is flexible enough to allow different referencing strategies to be
handed out to different client objects, for example, to introduce subject-oriented pro-
gramming or role-based models [KO96] into asynchronous method invocations. Note,
however, that we still provide a object:referencedBy: construct to define a default
referencing strategy for an object upon its creation.

Important to remark is that transmitters reintroduce an explicit representation of
the outbox and sentbox of an actor (present in AmbientTalk/1), i.e., the mailbox which
reifies outgoing and sent messages to other actors, respectively. They can be obtained
by overriding serve or leave meta methods of a transmitter, respectively. Similarly
to AmbientTalk, each reference contains a part of the outbox or sentbox, but in Ambi-
entTalk/M the meta-actor protocol now provides means to access all transmitters in an
actor. As such, it is easier to monitor or alter the communication traces of an actor.

To conclude, transmitters and receptors have been specially designed to model
asynchronous communication patterns between objects and provide control over the
messages sent in their interactions. This allow developers to build referencing abstrac-
tions which require both senders and receivers of messages to intercept asynchronous
messages, and control which parties may receive a reference. Although our architecture
naturally supports point-to-point communication abstractions, it is flexible enough to
build abstractions based on other communication patterns such as one-to-many patterns
as shown with the prototype implementation of omnireferences in listing 5.4.

Meta-Actor Protocol Extensions. The addition of the observer mechanism into the
actor meta protocol is mainly motivated by our experiences building tool support for
ambient-oriented programs. As discussed in Section 5.1.3, implicit mirrors on objects
provide the appropriate level of granularity to build certain tools such as inspectors and
tracers, but they are too inflexible to allow those metaprograms to be dynamically en-
abled and disabled at runtime on objects (which do not define an implicit mirror). To
overcome that issue, we introduce the method invocation protocol into actors in which
developers can register observers to be notified before or after the execution of a method
invocation without actually having to override those MOP methods. This allows devel-
opers to use the same API to observe the execution of a base-level, and a meta-level
method invocation. Since mirrors are often used to encode language features, certain
metaprograms (such as debuggers) would like to observe method invocations of meta-
level objects rather than base-level objects. Introducing this protocol directly on the
explicit mirror it would require a way to distinguish whether the observer is installed
on the mirror’s reflectee or the mirror itself. With our current implementation, the dis-

5.5. LIMITATIONS AND FUTURE WORK 101

tinction is made directly in the API which can be called passing as argument either a
base-level object or a mirror object.

The method invocation protocol may be reminiscent of the before/after pattern
present in aspect-oriented programming [KLM+97] and languages like Lisp or CLOS.
However, there are two differences as how it is implemented. First, one is registering
observers before/after a method invocation, rather than computation to be executed be-
fore/after a method invocation. This means that the execution of the observed method
invocation is not intercepted. This is important because otherwise one could cause
unwanted interference with implicit mirrors installed on an object. The registered ob-
servers may still perform operations that changes the state of the observed object, but
they are always executed after the observed method invocation (because observers are
notified asynchronously). Second, we do not provide around methods since it would
imply that the observers could determine when, how and even if the method invocation
is actually executed. Similarly to some AOP languages, our after method has access to
the return value of the observed method invocation (but it cannot modify it).

5.5 Limitations and Future Work
In this section, we discuss limitations of our reflective architecture and give some di-
rections for future work.

Composing Referencing Abstractions. The default transmitter-receptor pair defines
the behaviour common to remote object references operating in an asynchronous com-
munication model. In this chapter we have discussed how developers can create vari-
ations on the default behaviour. Several referencing abstractions, however, may share
similar behaviour for a particular protocol or subset of a protocol (e.g., they may re-
act similarly to disconnections). We rely on AmbientTalk’s traits to combine existing
transmitter-receptor pairs into new ones. A trait is an object module that provides a
set of methods and requires a set of methods. When a trait is imported into a com-
posite object, the trait’s provided methods are “copy-pasted” to the composite, and
the composite must implement all the trait’s required methods. Different variations
of the protocols described for transmitter-receptor pairs can be modularized into traits
allowing them to be reused in new transmitter-receptor pairs at runtime. Composing
overlapping protocols require developer intervention, but AmbientTalk’s trait compo-
sition mechanism helps to detect where the protocols collide. Developers must then
resolve possible name clashes by excluding or aliasing names in the composite object.
As future work, we aim to standardize all distributed abstractions in AmbientTalk’s
standard library into different traits using the API exposed by transmitters and recep-
tors. We would also like to explore a mechanism that guides trait composition to avoid
the composition of semantically incompatible protocols, i.e., the protocol composition
does not raise a name clash but the resulting behaviour is not correct.

Parameter Passing Framework. Our architecture allows a programmer to dynami-
cally install different referencing strategies for an object at runtime. This means devel-
opers can decide on parameter passing semantics for a pass-by-reference object inde-
pendently of its object type. However, such flexibility does not extend to isolates (Am-
bientTalk objects that are parameter passed by copy). Allowing developers to decide
at runtime whether an object is passed by-reference or by-copy is problematic. First,
the notion of object identity is different in objects and isolates. Since different versions

102 CHAPTER 5. AMBIENTTALK/M

of the same isolate may coexist within the system, an isolate has multiple identities.
In addition, the notion of scoping is also different. Since isolates do not have access
to their enclosing lexical scope, they need to explicitly import in their object scope
any object it needs to call (e.g., library functions). Introducing an automatic algorithm
to determine the bindings required by an isolate may lead to very subtle bugs as the
programmer may not be aware of which code is copied along with the isolate. Finally,
since AmbientTalk features different operators for local or remote message sending, it
forces developers to distinguish upfront isolates from objects.

Despite those issues, it is our vision that MANETs require a more flexible parame-
ter passing model with a richer set of parameter passing semantics that suits the differ-
ent kinds of interactions among objects. A first experiment to revisit object parameter
passing for an asynchronous communication model has been conducted in Cardozo’s
master thesis [Alv09]. He observes that a way to bridge the gap between pass-by-
copy and pass-by-reference semantics in ambient-oriented systems is by making object
transfers more flexible in two aspects: when to transfer an object, and what part of the
object graph to transfer. He consequently proposed the Proteus model which introduces
ideas of lazy parameter passing (cf. Section 5.2.4) and adaptive techniques [Lop96]
into AmbientTalk’s asynchronous distributed model. An interesting topic of future
work would be to study whether and how to express different parameter passing seman-
tics for pass-by-copy objects using the transmitter and receptor meta objects. Although
our far references API is flexible enough to implement replication mechanisms similar
to the ones in GARF [GGM94] by overriding the reference marshalling and asynchro-
nous message process protocols, it remains to be explored whether that API is robust
enough to build other semantics such as pass-by-copy-restore [TS03], caching [ET01]
and streaming [YCC+06].

Security. Although the receptor-transmitter model does not offer any built-in security
guarantees, it provides developers with the appropriate infrastructure to build abstrac-
tions that impose certain security properties. For example, receptors are the ideal place
for implementing security policy enforcement. They naturally support security mecha-
nisms derived from role-based principals [RK98a]. The basic concept in this model is
a security metaobject which is attached to an object reference and controls all the calls
via that reference. Since meta objects are attached on a per-reference basis, one can
define different access privileges when interacting with different parties. The model
also provide means to automatically attach security metaobjects when references are
exchanged among different parties.

In his dissertation [Van08], Van Cutsem already discussed initial ideas about how
to reconcile AmbientTalk with object-capability security à la E [MMF00, Mil06]. The
object-capability model also seems to us a suitable model for securing distributed in-
teractions in AmbientTalk/M because it uses the object reference graph as the access
control graph. The main ideas are that objects can be solely affected by sending mes-
sages through a reference, and that there exists a well-defined set of operations to ac-
quire an object reference (i.e., object creation, and passing it as parameter in a message
send). Holding a reference to another object thus implies authority to manipulate it. In
contrast to role-based principals, such a model does not perform access control checks
at the receiver end when the reference is used. Rather, its goal is to avoid excessive
authority which may lead to abuse (e.g., by malicious objects) by limiting the spread
of object references.

Combining object-capability security with the receptor-transmitter model may raise

5.6. NOTES ON RELATED WORK 103

some issues due to the use of reflection. When reflecting upon a reference data type,
client objects gain access to the transmitter of the reference (rather than the remote ob-
ject targeted by the reference). Although this does not convey more power in the sense
of acquiring an object reference to the target object or the target’s mirror, it enables
client objects to gain control over the distribution of access rights. As a result, client
objects can modify how an object reference is spread to third party objects, and possi-
bly leak authority to untrusted parties. Several works studied the security issues raised
by reflection within the context of MOPs [CV01, CHV01, WS99]. Nevertheless, it is
necessary to investigate how those works apply to a mirror-based reflective architec-
ture for distribution. Therefore, building a suitable security mechanism on top of the
receptor-transmitter model is an important topic for future research.

We conclude our discussion about AmbientTalk/M meta-level engineering with a
note on performance. Like AmbientTalk, AmbientTalk/M has not been designed an an
optimized software development platform, rather as a research artifact used as a lan-
guage laboratory. Assessing the performance impact of the new meta-level abstractions
remains an open issue for future work. Following the principles of partial behavioural
reflection [TNCC03], there are a number of optimisations that could be introduced in
AmbientTalk/M. We have already limited the reification of some meta-level operations
to object references with custom receptors in the current implementation. This allows
us to disable the asynchronous message process protocol when a default receptor is
used, avoiding unnecessary interception of method invocations resulting from an asyn-
chronous message send. Such an optimization is called entity selection, and it has also
been applied to mirages and ordinary objects in AmbientTalk.

5.6 Notes on Related Work

We now discuss prior work on reflective meta-level architectures for distributed com-
munication and actors.

Reification of Distributed Communication Reflecting both ends of a remote in-
teraction has been previously explored in a few reflective architectures for traditional
distributed systems. CodA [McA95] was pioneer in providing a dedicated MOP to
ease the development of distributed objects, especially the communication aspect. It
provides a relatively fine-grained meta-level architecture in which a base-level object
is controlled by a set of seven metaobjects. The major drawback of CodA is that a
metaobject can only monitor a message once it has been received by the target object.
As a result, the metaobject cannot dispatch messages based on the sender’s identity.
For example, the metaobject responsible for accepting a message (called Accept) does
not know if the sender is a distributed or local object. This information is relevant to
e.g., perform access control checks when objects are remotely accessed.

Our view of reifying each communication endpoint separately is based on the mail-
er/encapsulator model of GARF [GGM94]. Encapsulators wrap data objects by con-
trolling how they send and receive messages, while mailers perform communication
between encapsulators. The asynchronous message process protocol on receptors and
transmitters is based on the same idea. Encapsulators and mailers represents the root of
the class hierarchy for the basic communication model. Support for asynchronous com-
munications, persistence and replication have been built-in as subclasses. Although
encapsulators and mailers are meta-level objects, they are not completely stratified in

104 CHAPTER 5. AMBIENTTALK/M

GARF; developers need to override a (data) object constructor to bind it to an encap-
sulator and to a mailer. In contrast, in our architecture receptors are installed by means
of a dedicated operation separated from base-level code and transmitters are also auto-
matically instantiated by the interpreter upon the deserialization of an encapsulator.

Instead of reifying communication based on a metaobject model, the channel reifi-
cation model proposed to reify the communication channel between a sender and a
receiver in a separate meta-object called a channel [ACDG98]. A channel acts as a
communication manager that traps and modify each message sent to a receiver. The
model was then extended to support one-to-many communication giving rise to the
multi-channel reification model [Caz01]. The main advantage of this approach in com-
parison to CodA and GARF is that developers can filter messages before they are de-
livered to the target object. Each multi-channel is characterized by its behaviour (the
kind of communication semantics it defines) and the set of receiver objects. This al-
lows that among the same group of senders and receivers can exchange different kinds
of messages. However, it requires to describe the set of receivers of a multi-channel
by explicitly enumerating the receivers when the channel is defined. This makes the
approach unsuitable for distributed systems in which the number of participants in an
interaction may not be known beforehand (like in a MANET).

In the context of RPC, some platforms such as CORBA and DeXteR [GTKT08]
use the notion of an Interceptor object to expose the invocation context of a remote
call. DeXteR is a framework designed to express different parameter passing semantics
built on top of Java RMI. Like our first-class references, DeXteR provides interceptor
points on both client and server sites of a remote call. Those points enable developers
to modify the original invocation arguments for one remote call at runtime. They are
equivalent to overriding the schedule and accept methods of our API and modify-
ing the message arguments. DeXteR enables also sending custom information between
client and the server-side of an interceptor by piggy-backing it to the original invoca-
tion context. This corresponds in AmbientTalk/M to send an asynchronous message
annotated with the @ControlMessage annotation between an transmitter and a recep-
tor. Although flexible, due to its reliance on Java RMI, it is difficult to build referencing
abstractions which deviate from a point-to-point synchronous communication model.
In addition, the system brings unnecessary additional complexity to the generation of
annotations to introduce for a new parameter passing semantics.

In general, current reflective models for distributed computing are often limited to
trapping messages sent to an object and implement the behaviour of that invocation,
lacking the reification of important aspects such as object marshalling. Since most
of them were designed for stationary networks, they also do not provide support for
the specific requirements of MANETs such as exposing the environmental context of
distributed communications, and supporting arity-decoupling communication (the fact
that some messages may have to be dispatched to several destinations).

Reification of Actors Many classic actor frameworks and languages provide the no-
tion of a meta-actor [DA07]. Typically meta-actors only reify the message passing
protocol, allowing developers to intercept incoming and outgoing messages to alter the
behaviour of the actor system. Interestingly, in the Two-level actor model (TLAM), a
formal model to reason about the actor-based interactions, a reachability snapshot can
be created using meta-actors [VT95]. However, those reflective architectures are built
for active objects, the traditional representation of actors. As previously mentioned,
AmbientTalk’s reflection on actors is already innovative on its own as it combines

5.7. CONCLUSION 105

a mirror-based reflective architecture into an event loop concurrency model. To the
best of our knowledge, the additions to manage references and reify the object refer-
ence table are not found in meta-actor architectures. However, certain object-oriented
frameworks like OpenTalk provide a limited interface to manage the object table. In
OpenTalk, object adaptors can keep a record of the object references they export by
means of ObjectTables class which provides three methods to add and get entries.

5.7 Conclusion
In this chapter, we presented AmbientTalk/M, a variant of AmbientTalk which en-
hances its meta-level engineering with support for building custom referencing and
failure handling abstractions, and support for reacting to the manipulation of objects
by the interpreter by dynamically adding observers on explicit mirrors. The reflective
capabilities that we introduced in AmbientTalk/M play a vital role in the remainder of
this dissertation. First, first-class references provide an appropriate platform on top of
which we can build language abstractions to deal with the effects of partial failures on
both ends of a communication abstraction. Second, the revisited meta-level architec-
ture allows us to easily build metaprograms that monitor and control the distributed
behaviour of actors within AmbientTalk itself. In particular, we will employ it to build
a debugger for AmbientTalk programs in the second part of this dissertation.

On the whole, the abstractions introduced in Ambientalk/M facilitate our experi-
ments on language constructs for dealing with partial failures, and allow them to be
reused for building software development tools for ambient-oriented application. Hav-
ing introduced both AmbientTalk/2 and the reflective architecture provided by Ambi-
entTalk/M, the next chapter describes our failure handling model, and its integration as
a custom object referencing abstraction.

We conclude this chapter with a note on terminology: for simplicity’s sake, we
will use the term AmbientTalk to refer to AmbientTalk/M in the remainder of this
dissertation. The languages’ full names will be used to clarify the text when necessary.

106 CHAPTER 5. AMBIENTTALK/M

Chapter 6

Ambient-Oriented Leasing

In this dissertation, we go one step further in distribution support for MANET ap-
plications by introducing abstractions to deal with a number of the failure handling
criteria exposed in Section 2.4. As we already explained in Section 2.3, it is impossible
to accurately distinguish a transient from a permanent failure in a MANET. To deal
with the resulting uncertainty, developers need to make assumptions about the timing
behaviour of the application. To this end, we explore the concept of leasing as a pro-
gramming abstraction that allows developers to capture timing assumptions and react
accordingly. However, as a result of the hardware characteristics of mobile networks
(cf. Section 2.1), a leasing mechanism needs to operate under assumptions different
from traditional distributed systems.

We start this chapter by describing four criteria that a leasing model needs to ex-
hibit to in order to be usable in a MANET. We then describe the notion of a lease
that should be integrated into a software platform designed to build applications run-
ning on MANETs. With our notion of lease introduced, we define two novel language
abstractions: leased object references, which enable decoupled communication with
remote parties while tolerating both transient and permanent failures, and due-type
messages, which enable computation to be processed within time-based guarantees.
We also study some scoping language constructs to reduce the programming effort in-
troduced by leased object references and due-type messages. Finally, we describe how
leased object references are offered as an extensive framework in which many leas-
ing patterns can be expressed. This allows advanced programmers to express custom
leased-based interaction patterns among distributed processes according to the needs
of their application.

6.1 Motivation

In this section, we motivate the main design choices of a leasing model for an ambient-
oriented programming model. We first describe a scenario - that we use as running
example throughout this chapter - and subsequently we use this scenario to derive a
number of criteria for a leasing model to adhere to for the failure handling model cri-
teria postulated in Section 2.4.

107

108 CHAPTER 6. AMBIENT-ORIENTED LEASING

6.1.1 Scenario: the Mobile Music Player
Consider a music player running on mobile devices. The music player contains a li-
brary of songs. When two people using the music player enter one another’s personal
area network, the music players set up an ad hoc network and exchange their music li-
brary’s list (not necessarily the songs themselves). After the exchange, the music player
can calculate the percentage of songs both users have in common. If this percentage
exceeds a certain threshold, the music player can e.g., inform the user that someone
with a similar taste in music is nearby.

MusicPlayerServiceObject@
device A

MusicPlayerServiceObject@
device B

session@
device B

openSession()

session

uploadSong(song)

'ok

endExchange()

Figure 6.1: The music library exchange protocol

Figure 6.1 gives a graphical overview of the music library exchange protocol mod-
eled in an asynchronous distributed object-oriented system. The figure depicts the
stages of the protocol from the point of view of the music player on device A. This pro-
tocol is executed simultaneously on both devices. Once both devices have discovered
each other, the music player running on A asks the remote peer B to start a session to
exchange its library index by sending an openSession message. In response to it, the
remote peer returns a new session object which implements methods that allow the
remote music player to send song information (uploadSong) and to signal the end of
the library exchange (endExchange).

When implementing the music library exchange protocol, we should take care of
network failures. First, the application should remain responsive and cope with tempo-
rary failures, e.g., the application may want to inform the end-user that the transmission
of songs is temporary stopped. However, the application must also cope with perma-
nent failures. The main problem is that if a peer disconnects in the middle of the library
exchange, the session will never terminate, and the application will consume unneces-
sary resources, e.g., the partially uploaded library of the device A.

6.1.2 Criteria for a Leasing Model in MANETs
Leasing provides a solution to deal with the effects engendered by partial failures based
on the temporal availability of resources [GC89]. A lease is a contract that gives the
right to access a resource for a specific duration that is negotiated between the owner
of a resource (called the lease holder) and a resource user (called the lease grantor).
Once a lease is granted, both lease grantor and holder know the period of time that the
resource is available (called the lease term) and conditions under which the lease is
valid (called the lease statement).

In a MANET, leasing needs to operate under assumptions different from classical
distributed systems, as a result of the hardware characteristics of the network (cf. Sec-

6.1. MOTIVATION 109

tion 2.1). Below, we describe four criteria that need to be fulfilled by a leasing model
to be usable in a MANET.

6.1.2.1 Criterion #1: Leasing an Intermittent Connection

In general, a lease denotes a temporal restriction on the logical connection between
lease holder and grantor. At the software level, a logical connection is represented by
a communication link. Because of the volatile connection phenomenon exhibited by
MANETs, communication links are often intermittent. However, that does not imply
that the logical connection should be terminated. In our running example, once the
service objects that represent the music player application have discovered one another,
they need to set up a session to exchange their music libraries. Such a session should
be leased, such that both music players can gracefully terminate their interaction in the
face of a persistent disconnection. However, if a user temporarily moves out of range,
the resulting transient disconnection should not immediately cause the exchange to fail
since the user may reconnect shortly. A leasing model for MANETs must take this into
account: the disconnection of a device does not indicate that resources associated with
the logical connection can already be cleared, since the communication link may be
restored later.

6.1.2.2 Criterion #2: Leasing Management Patterns

As we will see, the advantage of leasing is that it allows both lease grantor and holder to
distinguish a transient from a permanent failure by approximating permanent failures
as disconnections that exceed the lease term. However, leasing can only provide an
approximation of when a disconnection is permanent. The quality of the approximation
depends on the accuracy of the selected lease period. Selecting a suitable lease period
is not straightforward and it requires developers to understand the behaviour of mobile
devices in the physical world and know factors such as the frequency of disconnections
and reconnections. Any leasing model has to deal with this issue, but this issue is
exacerbated in MANETs due to the unpredictable mobility of mobile devices.

In order to tackle this issue, a leasing model for MANETs should provide support
to aid the developer determine the lifetime of leasing agreements. In our running ex-
ample, devices collaborate in the exchange of their music library indexes. As long as
the exchange is active, i.e., uploadSong messages are received, the session should
remain active. The session could thus be exported using a lease which is automatically
extended each time it receives a message. The lease should then be revoked either ex-
plicitly when a client sends the endExchangemessage to indicate the end of the library
exchange, or implicitly if the lease time has elapsed. Other collaborations may involve
objects adhering to a single call pattern in which a lease is automatically revoked upon
the reception of one single message. For example, this pattern is exhibited by futures.
Recall from Section 4.3.2 that futures are objects passed along with a message in order
for the receiver of the message to be able to return a value . Futures are accessed only
once by the receiver of a message to deliver the computed return value or an exception
(if the message invocation failed). Hence, the need for the single call pattern.

To sum up, a desirable characteristic of a leasing model for MANETs is the incor-
poration of a number of built-in leasing patterns that allow programmer to select the
most appropriate leasing agreement for his distributed interactions.

110 CHAPTER 6. AMBIENT-ORIENTED LEASING

6.1.2.3 Criterion #3: A Customizable Leasing Framework

Due to the openness and heterogeneity of mobile ad hoc networks, applications in-
teract with a very diverse range of mobile devices. Of course, as different kinds of
collaboration can be set up, various kinds of leasing agreements are definitely possi-
ble. Providing only a fixed set of leasing patterns is not desirable, because it is hard
to predict the leasing agreement that fits best for each MANET application. There-
fore, a leasing model for MANETs should also be equipped with facilities to enable
experienced developers to construct new and tailored leasing variants.

6.1.2.4 Criterion #4: Symmetric Expiration Handling

As discussed in Section 3.5, some distributed software platforms have previously em-
ployed leases as a technique for resource management and memory management. In
this context, lease grantors remain in control of the resource by maintaining the right
to free the resource once the lease expires. Usually only lease grantors are aware of
a lease expiration so that they can free resources created during the lease agreement.
When employing leasing as a failure detection abstraction that allows MANET appli-
cations to distinguish intermittent from permanent failures, lease expiration represents
the permanent failure of a service. Hence, both lease grantors and holders should be
aware of a lease expiration in order to allow them to gracefully terminate their collab-
oration.

In our running example, the session object is clearly only relevant within the con-
text of a single music library exchange. If the exchange cannot be completed (e.g., due
to a persistent network partition), the session object and the resources allocated during
the session (e.g., the partially uploaded library index) should be eventually reclaimed.
From the lease holder perspective, once a lease expires, it should also be possible to
perform some compensating actions to deal with the permanent failure. From the lease
holder perspective, when the lease on the session in device B expires, the application
running on A notifies the user of the failure of the exchange. If the failure was wrongly
approximated, and the peer is encountered again in the future, a new session will be
established. However, other compensating actions are also possible. For example, the
application could decide to keep the partially received music library instead and resume
the session if the peer is encountered again in the future.

To sum up, a leasing model for MANETs should allow both lease holder and lease
grantor to react to the termination of their logical connection so that they can perform
application-dependent failure handling.

6.2 Leasing and Programming Languages: A Proposal
To meet all these aforementioned criteria, we now introduce the design and implemen-
tation of a leasing model for MANETs. The essence of our leasing model is the com-
bination of an ambient-oriented style of communication with a lease programming lan-
guage concept that enables developers to express different leasing patterns among dis-
tributed processes. We will henceforth refer to this leasing model as ambient-oriented
leasing. In order to be as general as possible with respect to the kinds of distributed
interactions, we integrate the lease concept reflectively, i.e., as a first-class object that
exposes a number of methods that can be overridden, enabling developers to extend the
set of built-in leasing patterns. We first introduce some terminology to precisely define
the key properties of our lease concept.

6.2. LEASING AND PROGRAMMING LANGUAGES: A PROPOSAL 111

Definition 1 (Lease) A lease is a contract between a lease grantor and lease holder
that allows the lease holder to use a resource for a specific period.

A lease should be regarded as an coordination abstraction that represents an explicit
agreement about the access to the service offered by a owner of a resource to a resource
user for a specific period. The lease grantor promises to offer a service to the network
in exchange for the lease holder’s promise to use the service object complying with the
lease agreement. The lease grantor can restrict the access to the leased object when the
lease agreement is violated. Representing a lease as an enforceable contract is of great
significance in a mobile setting in which the interest of the communicating parties may
diverge, and they cannot rely on a centralized authority to mediate their interactions.

In our context, a resource is an object which provides some type of functionality
or service (which we refer to as a service object). A lease specifies an agreement
concerning the right to access and execute some actions on a service object, e.g., to
modify it, or perform method invocations on it. However, a lease does not provide
ownership rights to the lease holder. In general, either the lease grantor is the owner of
the object being leased and retains its ownership, or the lease grantor just manages the
resource and does not have ownership rights itself.

In Section 6.1.2 we argued that there is no single right leasing semantics for all
kinds of collaborations in a MANET application. This observation has lead us to scru-
tinize the different aspects of leasing. Next to identifying the service object being
leased, a lease consists of two essential components along which the behaviour of a
lease may vary: a term for which the lease holder can access the resource, and detailed
statements that rule the lease agreement. The result of composing the behaviour of
the lease term and statements gives rise to different leasing variants. Figure 6.2 gives
a graphical overview of all the components by means of a feature diagram. In the
remainder of this section, we define each of these components and present the most
important properties identified for each component.

optional
mandatory

alternative
(xor)

or

LegendLease

Lease
Statements

Renewal
Policy

Revocation
Policy

Extension
Policy

Lease
Term

Lease Term
Management

Lease Access
Management

Fixed-Term
Lease

Periodic
Lease

Canceable
Lease

Non-canceable
Lease

Extendable
Lease

Non-extendable
Lease

Lease Expiration
Management

Sublease Exclusive

Figure 6.2: Feature diagram representing the lease concept.

112 CHAPTER 6. AMBIENT-ORIENTED LEASING

Definition 2 (Lease Term) The lease term (also called lease period) denotes a
specific time duration for which a lease agreement is in force.

The actual length of the lease term can be defined either by means of a definite time
interval or by means of a characteristic function that determines the duration based on
the occurrence of some event. In this work, a term lasts until the specified time interval
elapses (e.g., 10 minutes, one hour, etc). This is also known in as a time-based term.
The study of conditional terms is outside the scope of this dissertation (that we discuss
in Section 6.9).

Definition 3 (Lease Statements) The lease statements detail the terms and condi-
tions of the lease agreement specifying the nature and scope of a lease.

By nature, a lease entails a two-party agreement in which the lease holder has the
right to access the resource for the lease term, and the lease grantor retains ownership
of the resource. However, specific rights can be given to lease holder and third parties
(objects which do not take part in the original lease agreement). The lease statements
describe the set of properties that can be retained on the lease agreement. By default,
the lease statements include a lease expiration management component to enable both
lease holder and grantor to be notified of the expiration of a lease. This component is
essential to enable developers to act upon a failure and perform the necessary corrective
actions. In addition, the lease statements consist of the following two components:

• the lease term management which indicates the set of operations that a lease
offers to manage the validity of the lease agreement.

• the lease access management which indicates the set of operations that a lease
offers to a lease holder to create and transfer leases to third party objects.

We now further detail the behaviour of each of these components in the following
subsections.

6.2.1 Lease Term Management
Lease term management consists of a number of policies that determine the ability to
prolong or cease the validity of the lease term. Typically, two operations can be offered
when a lease is active: a lease may be renewed (i.e., its term gets prolonged) or revoked
(i.e., its term gets ended). When a lease expires, lease holders can be offered the ability
of extending its term. As such, lease term management consists of three different sorts
of policies with respect to lease renewal, revocation and extension. We further describe
each policy in what follows.

Lease Renewal Policy determines the type of lease agreement with respect to the
ability of a lease holder to extend the validity of the lease term before it has
expired. There are the following choices regarding the renewal policies:

• No renewal A lease with a no renewal policy, called a fixed-term lease,
implies that the lease expires automatically at the end of the specified term.

• Renewal A lease with a renewal policy, called a periodic lease, implies
that the lease can be renewed for a certain duration before its current term
elapses. To this end, the lease provides a method to renew the lease at the
lease holder’s discretion.

6.2. LEASING AND PROGRAMMING LANGUAGES: A PROPOSAL 113

A lease holder can renew a periodic lease either at the same rate, in which case
the current lease term is used to prolong the lease, or at a different rate, in which
case the renewal is requested with a new lease term. The latter may require a
renegotiation of the lease term with the lease grantor if a longer term is provided
in the renewal request. For instance, it is not possible that a periodic lease with a
term of 5 minutes is renewed with a 10-minute term since the original lease term
agreed is shorter than the requested segment length.
A periodic lease can be created with a renewal decision rule which determines
under which circumstances a renewal request can be granted. For example, a
renewal decision rule may be set to limit to the number of times a lease holder
can request a renewal. If the application already exceeded the limit, the renewal
request is denied. In this case, no communication is required between the lease
holder and grantor. However, other decision rules may be based on information
only known by the lease grantor requiring communication, e.g., if the renewal
condition is based on the current number of lease holders for the resource in the
system. Naturally, since a fixed-term lease cannot be renewed, it does not require
a renewal decision rule.

Lease Revocation Policy determines the lease agreement with respect to the ability
for a lease holder to put an end to the validity of the lease term before it has
expired. There are the following choices regarding the revocation policies:

• No revocation A lease with a no revocation policy, called a non-cancelable
lease, implies that the lease cannot be revoked.

• Revocation A lease with renewal, called a cancelable lease, implies that
the lease can be revoked before its current term elapses. To this end, the
lease provides a method to revoke the lease at the lease holder’s discretion.

Similarly to periodic leases, a cancelable lease can be created with a revocation
decision rule which determines under which circumstances a revocation request
can be granted. However, it is not usual that a cancelable lease limits revocation
operations using a revocation decision rule because revoking a lease allows for
opportunistically releasing resources.

Lease Extension Policy determines the type of lease agreement with respect to the
ability for a lease holder to extend the validity of the lease term when it has
expired. As argued in the previous section, a lease can only estimate permanent
failures. Since in some cases leases may falsely treat the failure of a slow process
as a permanent one, it is important to consider means to extend a lease rather than
immediately invalidating it. This allows us to minimize the cost of requesting
new leases if the original lease term provided a wrong estimation of a failure.
There are the following choices regarding the extension policies:

• No extension A lease with a no extension policy implies that the lease
cannot be further extended once it expires. The lease grantor needs to ask
a new lease if he requires access after the expiration of the lease.

• Extension A lease with extension, called a extendable lease, involves a
termination protocol (similar to TCP connection shutdown) upon lease ex-
piration in which the lease holder may renew the lease term.

Naturally, a lease extension policy is not required for fixed-term leases since they
cannot be extended.

114 CHAPTER 6. AMBIENT-ORIENTED LEASING

6.2.2 Lease Access Management
Recall that a lease gives the right to access an object during the lease term, i.e., the
lease holder has permission to access the object. Lease access management specifies
the right a lease holder has to delegate a lease (and thus the right to access the object)
to a third party. There are the following choices regarding lease access management:

Sublease A sublease implies that the lease grantor has the right to create a new lease
from the initial lease, and transfer it to a third party object. This means that
the lease holder is leasing a service object, but also subleasing it simultaneously.
The new lease is ruled by the same lease term and statements as the initial lease,
i.e., a lease holder cannot grant more rights than the acquired ones by the initial
lease agreement. For example, if the lease holder has a time-based lease that
lasts, say, 5 minutes, and he shares its lease once there is only 2 minutes left,
the third party object only obtains a lease for the remaining duration of the term
(i.e., 2 minutes).

Exclusive An exclusive lease implies that the lease grantor cannot sublease the lease
to a third party. This means the lease explicitly denotes a exclusive two-party
agreement between the lease grantor and holder which cannot be shared.

In MANETs, sharing leases allows cooperation without requiring any fixed infras-
tructure. However, when a lease holder shares a lease with a third party object, the
object may gain the authority to access an object, and affect it. In the literature, the
principle of least authority (POLA) recommends granting only the authority that an ob-
ject needs to carry out its job [MS03]. This discipline helps coordination of processes
by reducing the number of cases that objects need to protect themselves against each
other to remain consistent [Mil06]. Making explicit in the design of a lease which kind
of access third parties can gain to a leased service sets the basis for building abstrac-
tions practicing POLA for dealing with malicious behaviour that may lead to arbitrary
failures. However, their design and implementation are outside the scope of this thesis.

6.2.3 Summary
In this section, we have introduced the concept of a lease in an abstract way together
with the necessary terminology describing the important components of a lease. Rather
than designing a lease as one uniform abstraction, we have identified a number of com-
ponents which form a lease. The main rationale for such a decomposition is that we
employ leases as the heart of a failure handling model for MANETs fulfilling the re-
quirements described in Section 2.4. The composition of lease term and lease state-
ments constitutes the kind of lease variant offered to a resource which lease holders
must agree to comply with in order to use that resource. Each component will be incor-
porated in our leasing model presented in Section 6.3. We conclude the description of
our lease concept by discussing two components of a lease which we did not explore
in this work as extension points, namely, lease expiration management, and exclusive
access rights.

6.2.3.1 Lease Expiration Management

In [JK00], Jain and Kircher describe a lease variant in which a lease can be created with
no expiration, i.e., the lease holder must cancel the lease explicitly when it no longer

6.3. LEASED OBJECT REFERENCES 115

needs the resource associated with the lease. This variant is not supported in this work
because it would not allow objects to agree on some criteria to delimit their logical
communication in the face of partial failures, which defeats one of the most beneficial
properties of using leasing at the heart of a failure handling model.

In a legal context, a lease may have addenda or options to be exercised once a
lease expires. For example, when applying leases to car purchases, the lease holder
may gain ownership of the car once the lease term ends. In our lease concept, we do
not incorporate addenda which allow a lease holder to acquire ownership rights to the
resource. Although ownership is an interesting concept to explore as a mechanism to
organize the distributed object reference graph, this option is out of the scope for this
work. We further discuss this in the avenues of future research (cf. Chapter 12).

Our concept of lease does allow lease holders to be notified once the lease term
expires. In particular, those lease holders who registered an interest in the expiration
of a lease will be notified. Notifying lease holders is essential in a leasing model for
MANETs in order to allow programmers to apply some corrective actions (as we previ-
ously argued in the symmetric expiration handling requirement in the previous section).
While some leasing approaches provide these semantics as a lease variant [AKS05], we
consider them to be part of the core concept of a lease. As shown in Figure 6.2, rather
than making expiration lease management a component whose functionality may be
withdrawn from a lease variant, our leases expose it as a mandatory component of the
lease concept.

6.2.3.2 Exclusive Access Rights

In the context of distributed file caching where leases were first introduced in software
engineering, leases confer exclusive possession over a time period. As a result, there
exists only at most one lease active per resource at a time. A client cannot acquire a
lease for a lease term that overlaps with the term of a lease previously granted i.e., no
two leases have overlapping lease terms.

In contrast, we admit that several distinct leases for the same resource may coexist
in the system. The rationale behind this design decision is that a lease represents a
promise of the service that an object offers to the network. Since the different parties
taking part in a collaboration in a MANET may have different interests and properties
(e.g., some users may be more privileged than others), allowing different leases for the
same resource allows us to provide several lease agreements for a service depending on
the communicating parties. Although in this work we do not explore leases that convey
exclusive access, such semantics could be refectively encoded on top of the basic lease
concept.

6.3 Leased Object References
In this section, we introduce the key concepts of our leasing model which integrates
the lease concept described in the previous section into a distributed object-oriented
model, leading to the concept of leased object references (or just leased references). In
a nutshell, a leased reference is a remote object reference that limits the communication
between client and service objects based on a lease agreement. Alesky et Korthaus
remarked in [AK06] that a lease acts as a kind of “connecting link” between the lease
holder and resource. In a distributed object-oriented model, a remote object reference
acts as a communication link that carries messages from a client to a service object

116 CHAPTER 6. AMBIENT-ORIENTED LEASING

they refer to. As such, a remote object reference can naturally serve as a lease in which
the client object plays the role of the lease holder, and the service object plays the role
of the resource. A leased reference is thus a remote object reference that limits the
communication between client and service objects based on a lease agreement, i.e., it
carries messages for a limited duration.

When a client first references a service object, a leased reference is created and
associated to the service object. From that moment on, the client accesses the service
object transparently via the leased reference until it is no longer valid. Each side of the
leased reference has a lease object initialized with a term in order to keep track of the
validity of the lease agreement. When the lease term has elapsed, the leased reference
is said to expire and the access to the service object is terminated. The lifetime of the
lease can be explicitly controlled by renewing or revoking the leased reference before
it expires. Once a leased reference expires, both the client and service object know that
access to the service object is terminated. Leased references define dedicated object
serialization semantics to ensure that third party objects accesses to the service object
are also leased.

6.3.1 Time-decoupled Object References
In order to abstract over the transient disconnections inherent to MANETs, a leased
reference decouples the client object and the service object in time. This means that
a client object can send a message to the service object even if the leased reference
is disconnected at that time. Similar to a far reference, client objects can only send
messages to service objects asynchronously: when a client object sends a message to
the service object, the message is transparently buffered within the leased reference and
the client does not block. In essence, a leased reference decouples client and service
objects in time, but only up until the period of time described by the lease term.

>

Connected
(messages are

forwarded)

Disconnected
(messages are

buffered)

reconnect

revoke

disconnect

dgc

Active

Terminated
(messages are

dropped)

revoke
expireexpire

Figure 6.3: States of a leased object reference.

Figure 6.3 shows a UML-state diagram of the different states of a leased reference.
In general, a leased reference is said to be active when its lease term has not elapsed
yet, and terminated otherwise. While a leased reference is active, client objects can

6.3. LEASED OBJECT REFERENCES 117

send messages to the service object which are buffered in the leased reference. When
those messages are actually transmitted to the service objects depends on the under-
lying network connection in a similar way to Rover (cf. Section 3.3.1.2). When the
leased reference is connected and active (i.e., there is network connection and the lease
has not yet expired), it forwards the buffered messages to the service object. While
disconnected, messages are accumulated in order to be transmitted when the reference
becomes reconnected at a later point in time.

A leased reference becomes terminated either when the lease term expires, or when
the lease term is explicitly cancelled by means of a revoke operation. Only once a
leased reference terminates, the distributed garbage collector can cleanup the refer-
ence, and the service object may become subject to garbage collection. When the
leased reference becomes terminated, the client loses the means of accessing the ser-
vice object via the leased reference. Any attempt in using it will not result in a message
transmission since the leased reference behaves as a permanently disconnected remote
reference.

6.3.2 Leased Reference Kinds
Rather than designing one kind of leased reference, we have designed a family of leased
reference kinds, the behaviour of which varies according to how they manipulate the
different components of the lease concept described in Section 6.2. In this section,
we propose two default leasing variants provided by leased references. We defer the
explanation of how new leased reference kinds can be composed until Section 6.7.

Leased references incorporate two leased reference variants that transparently adapt
the lease term:

• A renew-on-call leased reference automatically renews the lease upon each
message received by the leased object. This pattern has been inspired by the
renewOnCall property of the .NET Remoting framework [Low03]. As long as
the client uses the service object, the leased reference is transparently renewed
by the system.

• A revoke-on-call leased reference automatically revokes the lease upon process-
ing a message on the leased object. Such leased references are useful for objects
adhering to a single call pattern, such as callback objects (such as futures). As
previously explained, callback objects are often used in asynchronous message
passing schemes in order for service objects to be able to return values. These
callback objects are typically remotely accessed only once by service objects
with the computed return value.

These variants are motivated by the trade-off that needs to be considered when
choosing a lease duration between the amount of space maintained at the lease grantor
side, and the messages that need to be sent by the client for managing the lease term.
The shorter the lease term is, the lesser space the system needs to allocate less space.
However, client objects need to send more messages to maintain their lease. In con-
trast, the longer the lease duration is, the system needs to allocate more space, but less
messages need to be sent for lease term management. While a renew-on-call leased
reference reduces the overhead of lease term management by granting longer leases to
clients that have prolonged interest in the service object, a revoke-on-call variant re-
duces the amount of space the system needs to maintain by opportunistically releasing
resources.

118 CHAPTER 6. AMBIENT-ORIENTED LEASING

6.3.3 Symmetric Expiration Handling

In order to support symmetric expiration handling, we allow observers to be registered
on leased references that trigger upon the lease expiration. In contrast to existing leas-
ing models, those observers can be registered at both sides of a leased reference. This
allows client and service objects to treat a failure as permanent (i.e., to detect when the
reference is permanently broken) and to perform appropriate compensating actions. At
the service side, this has important benefits for memory management. Once all leased
references to a service object have expired, the object becomes subject to garbage col-
lection once it is no longer locally referenced.

Because both sides of a leased reference have a timer, no communication with
the server is required in order for a client to detect the expiration of a leased refer-
ence. However, having a client-side and server-side timer introduces issues of clock
synchronisation. Keeping clocks synchronised is a well known problem in distributed
systems [TS01]. This issue is somewhat more manageable with leases since they use
time intervals rather than absolute time and the degree of precision is expected to be
of the magnitude of seconds, minutes or hours. Once the leased reference is estab-
lished, the server side of the reference periodically sends the current remaining time
by piggybacking it onto application-level messages. At worst, the asynchrony causes
a leased reference to be temporarily in two inconsistent states: either the client-side of
the reference expires while the server-side is still active, or the client-side of the refer-
ence is active while the server-side expired. In the first case, a client will not attempt
a lease renewal and thus, the server-side timer will eventually expire as well. In the
second case, when a client requests a lease renewal, the server will ignore it and the
client-side timer will expire soon thereafter. When the server-side timer is expired, the
client perceives the remote object as disconnected.

6.4 Leased Object References in AmbientTalk

We now describe a concrete instantiation of leased object references in AmbientTalk
by means of the mobile music player application introduced in Section 6.1.1. Leased
references have been conceived as a set of AmbientTalk language constructs built on
top of the transmitter-receptor model explained in Chapter 5. Table 6.1 summarizes all
the language constructs. In the course of the following sections, we use this table as
a reference to explain our language constructs. In Section 6.7 we will describe how
programers can create custom leased reference kinds and added them to the language.

6.4.1 Declaring Leased References

We have integrated leased references in AmbientTalk as a custom referencing abstrac-
tion which is ruled by a certain lease agreement. Our language support features con-
structs for creating leased references which correspond to basic leased references and
the two variants described in the previous section. In this section, we describe the most
basic form of a leased reference, a reference with a time-based term can be renewed
and cancelled, in the context of our running example. Recall that the session object
that represents the exchange process between two music players should be subject to
leasing in order for both music players to gracefully terminate the exchange process in
the presence of network failures. Such a session object can be leased as follows:

6.4. LEASED OBJECT REFERENCES IN AMBIENTTALK 119

Built-in leased references
lease: interval for: object creates a leased reference to a service object for

the given time interval.
renewOnCallLease: interval

renewedWith: intervalRenewal

withRenewalConditions: closure

for: object

creates a leased reference that is auto-
matically renewed on every message
sent to the given service object. The
renewedWith: specifies the renewal
time, and withRenewalConditions:
takes a unary closure encoding whether a given
message send renews the reference.

revokeOnCallLease: interval

withRevocationConditions: closure

for: object

creates a leased reference that is automatically
revoked after the object receives a message.
The withRevocationConditions: clo-
sure specifies whether a given message send re-
vokes the reference.

Lease term management
renew: leasedref requests a renewal of the given leased reference.
revoke: leasedref requests a revocation of the given reference.
leaseTimeLeft: leasedref returns the lease time left for a reference.
Failure handling listeners
when: leasedref expired: closure installs a listener on the given reference trig-

gered when it expires.
whenever: reference disconnected:
closure

installs a listener on the given reference trig-
gered whenever it disconnects.

whenever: reference reconnected:
closure

installs a listener on the given reference trig-
gered whenever it reconnects.

Leasing strategies
withLeaseStrategy: strategy do:
closure

activates a leasing strategy within the dynamic
scope of its closure argument.

withoutLeaseStrategy: closure deactivates a leasing strategy within the dy-
namic scope of its closure argument.

lease: interval creates a receptor representing a pass-by-lease
referencing strategy.

renewOnCallLease: interval

renewedWith: interval

creates a receptor representing a pass-by-
renewOnCallLease referencing strategy.

revokeOnCallLease: interval

withRevocationConditions: clo

creates a receptor representing a pass-by-
revokeOnCallLease referencing strategy.

Due-type message passing
@Due(interval) specifies a time-based delivery guarantee on a

future-type message send.
when: future becomes: closure

catch: TimeoutException using: e

registers two closures, closure and e, on a fu-
ture which are applied when the future is re-
solved, or ruined with a TimeoutException.

Leased message protocols
makeTimeBasedProtocol(interval) returns an object encoding a time-based leased

message protocol.
withLeaseProtocol: protocol do:
closure

activates the given leased message protocol
within the dynamic scope of its closure argu-
ment.

when: protocol failedWith:

closure

installs a listener on the given protocol which is
triggered whenever a message fails to meet its
expected delivery guarantees.

Table 6.1: AmbientTalk’s extended programming API for ambient-oriented leasing.

120 CHAPTER 6. AMBIENT-ORIENTED LEASING

def leasedRef := lease: 10.minutes for: session;

The lease:for: construct takes two arguments: the time interval (in millisec-
onds) corresponding to the duration of a time-based term, and an object corresponding
to the service object to which the leased reference grants access. It returns a leased
reference which is active for the given time period unless a renewal or revocation is
explicitly issued. Note that the lease:for: construct is executed at the lease grantor
side before the session object is exported to a client object. The construct actually
returns the receptor object of a leased reference. Recall from Section 5.2.1, that a
receptor is an object representing the end of a reference which is located at the ser-
vice object’s actor. When the virtual machine hosting the service objects hands out the
leasedRef receptor to a client object, the client object receives a leased reference data
type representing the transmitter object of a leased reference. In our running example,
a music player application asks a remote peer to start a session to exchange its library
index by sending it an openSession message which returns a new session object. The
music player can then send song information to the remote peer via the obtained leased
reference as follows:

session<-uploadSong("Mika", "Relax", ...);

Because leased references are actually remote object references, the client can use
the leased reference as if it were the service object itself. The use of leasing is thus
made transparent to client objects.

It is important to remark that the term of a leased reference starts ticking when the
reference is handed out to the client object. After the term expires, access to the session
is terminated and the leased reference expires. As shown in Table 6.1 we provide
support for explicit manipulation of the lifetime of a leased reference. The renew:
construct requests a prolongation of the specified leased reference with a new interval
of time which can be different than the initial time while the revoke: construct cancels
the given leased reference. Cancelling a lease is in a sense analogous to a natural
expiration of the lease, but it may require communication between the client and server
side of the leased reference. Note that such constructs can be issued at both ends of
the leased reference, i.e., either on the receptor at the service object side (stored in
leasedRef), or the leased reference data type at the client side (stored in session).

6.4.2 Language Constructs for Leased Reference Variants
In this section, we describe the language constructs provided to create leased references
for the two leasing variants described in Section 6.3.2.

Renew-on-call Leased References. The renewOnCallLease:for: construct cre-
ates a leased reference which is automatically renewed on every asynchronous message
sent to the service object. When no renewal is performed due to a network partition
or in the absence of utilization, the default leased reference expires once its lease term
elapses. In the running example, once a music player establishes a session with an-
other music player to exchange their music library index, the session should remain
active as long as the exchange is active, i.e., as long as uploadSong messages are
received. A renew-on-call lease can be used to model that kind of collaboration for
the session object. Figure 6.1 shows the complete code for opening a music sharing
session employing a renew-on-call lease rather than a basic leased reference.

6.4. LEASED OBJECT REFERENCES IN AMBIENTTALK 121

Listing 6.1: Opening a music sharing session.� �
1 def openSession(sessionCallback){
2 def senderLib := Set.new();
3 def session := object: {
4 def uploadSong(artist, title, ackCallback) {
5 senderLib.add(Song.new(artist, title));
6 ackCallback<-ok();
7 };
8 def endExchange(){
9 revoke: session;

10 def matchRatio := calculateMatchRatio(senderLib);
11 if: (matchRatio >= THRESHOLD) then: {
12 // notify user of match
13 };
14 };
15 };
16 def leasedRef := renewOnCallLease: 10.minutes for: session;
17 sessionCallback<-receive(leasedRef);
18 };� �

As previously mentioned, the openSession message is sent by a music player
to a remote peer which returns a session object that can be used to start a library ex-
change. A session implements the uploadSong method to send song information and
the endExchange method to signal the end of the library exchange. The session ob-
ject is exported using a lease for 10 minutes which is automatically renewed each time
it receives a message. The leased reference to the session object is revoked either
implicitly if the lease time has elapsed or explicitly upon receiving the endExchange
message indicating the end of the library exchange (line 9). Since the session object
was only referred to by the leased reference, it can be reclaimed once the lease has
expired. Any resources it transitively occupied such as the partially uploaded library
of songs (i.e. senderLib) can be reclaimed as well.

Note that in our running example, the renewal time applied on every call is the
initial interval of time specified as the first parameter in the renewOnCallLease
:for: construct. We also provide an extended form of this construct (called
renewOnCallLease:renewedWith:for:) which allows developers to specify a re-
newal time different than the initial interval. In its most complete form (shown in
Table 6.1), the renewOnCallLease:for: construct also takes as argument a unary
closure encoding a boolean predicate that needs to be satisfied in order for a message
to renew the lease. Such extension is catered for applications requiring higher degrees
of context-awareness to support renewal of leases based on contextual information. For
example, the mobile music player application could renew the lease on the session ob-
ject only if the device battery level is above a certain acceptable level. This could be
expressed in AmbientTalk as follows:

def leasedRef := renewOnCallLease: 10.minutes
withRenewalConditions: {|msg| batteryLevel()>BATTERY_THRESHOLD} for: session;

The batteryLevel is a helper function that retrieves the device battery level from
the underlying runtime platform1. It is important to notice that the renewal conditions
are only executed at the lease grantor side. Whenever the receptor of a leased reference
receives a message from a client object, the closure is triggered (i.e., asynchronously
applied to) taking the message object as argument. If the conditions hold (i.e., the
closure returns true), the leased reference is conceptually renewed. In this example,
the leased reference is renewed independently of the message being received as long
as the battery level does not pass the minimum threshold.

1The battery level of Android devices can be monitored by registering an observer to the
ACTION BATTERY CHANGED intent.

122 CHAPTER 6. AMBIENT-ORIENTED LEASING

Revoke-on-call Leased References. The revokeOnCallLease:for: construct al-
lows developers to create leased references that expire after the service object receives
a single message. By default, the leased reference remains valid for only one asynchro-
nous message send. However, if no message has been received within the specified time
interval, the leased reference expires. As shown in Listing 6.1, the sessionCallback
is passed in the openSession message to asynchronously receive a session object.
A revoke-on-call lease can be used for unexporting this callback object upon receipt of
the receive messages:

remotePlayer<-openSession(
revokeOnCallLease: 10.minutes for: (object: {
def receive(session){
/* start to exchange of its library via the session (explained later) */

}
}));

A lease time of 10 minutes is specified to wait for the reply of the openSession
message. If a disconnection would occur after the message was sent but before the
receive reply was received, the session object could have already been allocated.
Since a session’s lease only lasts 10 minutes by default, it does not make sense to wait
any longer for the reply. If the session callback’s lease expires, the music library ex-
change terminates before it was actually started, requiring no additional cleanup code.

The default semantics of a revoke-on-call lease provided is catered for single-call
objects such as the callback object in our running example. In its most complete form
(shown in Table 6.1), the revokeOnCallLease:for: construct also takes as parame-
ter a unary closure defining whether a given message send revokes the leased reference
or not. It works analogously to the previously explained renew-on-call lease counter-
part, but the net effect is to cancel the lease term rather than renewing it. Note that when
employing revocations conditions, the leased reference may have processed more than
one message before being cancelled. We will describe later in Section 6.5.1 how we
have employed such support to integrate leasing into distributed computing to provide
time-based message delivery guarantees.

6.4.3 Expiration Handling

As previously mentioned, leased references make leasing transparent to client objects
which can access directly a service object by means of asynchronous message passing.
However, it should still be possible to detect and react when a leased reference expires,
as the lease expiration denotes the failure of the logical communication with a service
object. To this end, we introduce a failure event handler which can be registered with
a leased reference to be notify upon its expiration. The code excerpt below shows how
a music player can detect that a session with a remote music player expires.

when: session expired: {
system.println("session timed out.");
// clean the partially received music library

}

The when:expired: construct takes as arguments a leased reference and a nullary
closure that is asynchronously triggered when the underlying implementation detects
that the leased reference has expired. In the example, the failure handler is installed
at the server side so that if the exchange cannot be completed the resources a session
transitively keeps alive can be cleared. However, when:expired: handlers can also
be placed at the client side in order to allow both client and service objects to perform

6.4. LEASED OBJECT REFERENCES IN AMBIENTTALK 123

failure handling upon leased reference expiration. Note that by default the term of
a leased reference is not extendable, as such, the when:expired: handlers are only
triggered once per each leased reference.

As shown in Table 6.1, we have adapted AmbientTalk/2’s default failure handlers
to work with leased references. Client objects can install whenever:disconnected
and whenever:reconnected handlers on leased references to be notified whenever
a reference becomes disconnected or reconnected, respectively.

6.4.4 Leasing Strategies

Integrating leasing into the remote object reference abstraction aligns well with a dis-
tributed object-oriented model of computation since remote references are the unit of
object designation. However, this implies that developers must express leasing seman-
tics in a per-object basis, hindering the reuse of leasing semantics among groups of
objects. To cater for this case, we introduce the notion of leasing strategies that allows
to apply the same leasing semantics to all objects exported within a dynamic execution
extent. Before describing leasing strategies, we introduce a concrete example in the
context of our running example that we use to explain our language support.

6.4.4.1 Motivating Example: Listening Nearby Music Libraries

Consider an extension to the mobile music player application, in which users can also
play songs from remote music libraries of nearby peers. To this end, they can open
a music playing session with remote peers, which subsequently sends their songs so
that the user can play songs locally on his mobile device. In this case, the song objects
shared during the music player library exchange include an audio track next to the
metadata associated with a song (the title, and the artist as defined in Listing 5.5). In
order to optimize the mobile device’s resource, an audio track is only copied to the
remote device if the end-user wishes to play the song (since they are potentially large
objects). To this end, they are passed by lazy reference as explained in Section 5.2.4
(see Listing 5.6 for the audio track object definition). This means that the peer first
receives a remote reference to the audio track. The audio track is then fetched and
copied to the remote device if necessary. Audio tracks should only be accessible as
long as the session is active. As such, each remote reference to audio tracks created
during the session should be also leased.

6.4.4.2 Language Support for Leasing Strategies

Leasing strategies give control over the propagation of the leased references that are
created within the dynamic extent of a body expression. They have been inspired by
the notion of layers of the context-oriented programming ContextL [CH05]. In Con-
textL, layers group related context-dependent behavioural variations. In our work, a
leasing strategy represents the kind of leased reference by which an object is remotely
designated (see Section 6.9 for a detailed discussion of both abstractions). A leas-
ing strategy is automatically applied when an object is exported to a remote object
by passing it as parameter or return value in an asynchronous message send. Simi-
lar to ContextL layers, we provide constructs to activate and deactivate leasing strate-
gies dynamically at runtime. As shown in Table 6.1, the withLeaseStrategy:do:

124 CHAPTER 6. AMBIENT-ORIENTED LEASING

Listing 6.2: Opening a music listening session.� �
1 def openMusicListeningSession(sessionCallback){
2 withLeaseStrategy: (renewOnCallLease: 60.minutes) do: {
3 def musicListeningSession := object: {
4 def index := 1;
5 def fetchNextSong(songCallback){
6 if: (index < myLib.length) then: {
7 def song := myLib.get(index);
8 songCallback<-receiveSong(song);
9 index := index + 1;

10 }
11 };
12 };
13 sessionCallback<-receiveSession(musicListeningSession);
14 }
15 }� �

and withoutLeaseStrategy: constructs allow for the activation and deactivation of
lease strategies within the dynamic scope of its closure argument.

Listing 6.2 illustrates the usage of withLeaseStrategy:do: in the running ex-
ample. The protocol for sharing songs within a music listening session works a bit
different than the music library exchange protocol depicted in Figure 6.1. In this case,
when a remote peer receives session, it receives a leased reference to the musicListen-
ingSession object which can use to start fetching songs objects from the remote peer
by sending fetchNextSong messages. The withLeaseStrategy:do: construct is
used to apply a renew-on-call leasing strategy to the musicListeningSession ob-
ject, and all audiotrack objects passed along with the song objects in the receiveSong
asynchronous message. The first argument defines which leasing strategy to apply,
and the second argument is a block closure in which the given leasing strategy is de-
ployed. A leasing strategy represents a pass-by-lease referencing abstraction which
should be installed to each object passed to remote objects within the dynamic extent
of the withLeaseStrategy:do: construct. More concretely, a leasing strategy cor-
responds to a receptor of a leased reference which has not been installed to a service
object yet. When an object is passed among within the dynamic extent of the do:
closure, the system creates a new instance of the given receptor prototype and binds
it to the object being passed, so that the object is passed by the corresponding leased
reference. As shown in Table 6.1, we provide constructs that return a leasing strategy
for the three built-in leased reference variants. In this example, renewOnCallLease:
is a variation on the renewOnCallLease:for: construct returns a first-class renew-
on-call receptor. It is possible to define custom leasing strategies. This is discussed
later in Section 6.7.

As mentioned, the activation of a leasing strategy affects the behaviour of the pro-
gram within the dynamic extent of the do: closure. We now detail the scoping seman-
tics associated to the activation of the leasing strategy. The given leasing strategy is
propagated to:

(1) any object passed within the control flow of the do: closure,

(2) any object created in the do: closure (even if they are passed to a remote object
after executing the closure),

(3) any object passed within the execution of an asynchronous message processed by
an object created in the do: closure.

6.5. INTEGRATING LEASING WITH FUTURE-TYPE MESSAGE PASSING 125

In our example, the renew-on-call leasing strategy is applied to the
musicListeningSession object according to (1) (because it is passed in the
receiveSession message (line13)), and to the audiotrack objects passed along with
the song objects sent in receiveSong (line 8) according to (3) (because they are
passed within the code executed for the receiveSongmessage sent to an object passed
with the given leasing strategy (musicListeningSession). When the control flow
returns from the dynamic extent of the do: closure, the leasing strategy is deactivated,
and objects are exported according to the default parameter semantics (which as usual
can be overridden in a per-object basis by means of the *lease:for: constructs in-
troduced in the previous section).

It is possible to nest withLeaseStrategy:do: construct which means that the
most inner leasing strategy is applied within the dynamic scope of the do: closure,
and once outside this inner layer, the outer leasing strategy will be applied again. In
other words, nesting the withLeaseStrategy:do: constructs causes a switch of the
leasing strategy applied during the execution of the do: closure. Within the dynamic
context of a withLeaseStrategy:do: construct, the leasing strategy can be deacti-
vated by means of the withoutLeaseStrategy: construct. It takes only one argu-
ment; a block closure in which the current active leasing strategy is deactivated. This
has the effect of restoring the outer leasing strategy (if any defined) or the top (de-
fault) leasing strategy to objects exported within the scope of the given closure. While
the withLeaseStrategy:do: construct delimits the scope boundaries of the deploy-
ment of a leasing strategy, the withoutLeaseStrategy: construct support its local
undeployment, i.e., it hides the export of certain objects within those boundaries.

6.5 Integrating Leasing with Future-type Message Pass-
ing

Limiting the lifetime of remote references using leased references allows developers
to make assumptions about the timing behaviour of the application with respect to
distributed communication, i.e., the time period that a remote object promises to be
accessible during an interaction. Sometimes developers need to make assumptions
about the timing behaviour of the application in respect to distributed computation, the
time period that it is acceptable for processing a message sent to a remote object. Note
that processing a message involves the delivery of a message to a remote object, its
computation at the remote side, and the sending of a message with the return value of
the computation. In this section, we describe how we integrate the lease concept into
message passing in order to allow developers to specify time-based delivery guarantees
on individual messages, i.e., how long to await the return value of a message.

6.5.1 Due-type Messages

In the previous section, we used an explicit callback object (also known as the cus-
tomer of the message being processed [Agh90]) with a method to obtain the result of
the openSession asynchronous message. This is motivated by the fact that in Ambi-
entTalk an asynchronous message send has no return value by default. To avoid forcing
programmers to rely on explicit, separate callback objects, future-type message passing
was introduced in AmbientTalk (as we described in Section 4.3.1). We can rewrite the
asynchronous invocation of openSession using futures as follows:

126 CHAPTER 6. AMBIENT-ORIENTED LEASING

def sessionFuture := remotePlayer<-openSession()@FutureMessage;
when: sessionFuture becomes: { |session|

// open session with remote the player (explained later)
}

We have integrated leasing into futures by introducing a new kind of message anno-
tation called @Due which puts an upper bound on the resolution of the future associated
to the message. As such, a due-type message send denotes a “bounded” future-type
message send whose limit is denoted by a time-based lease. To be more precise, @Due
takes as parameter the time interval denoting the expected deadline within the future at-
tached to the message is expected to be resolved. We can use the @Due annotation in the
above example to denote time the application is willing to wait for a music exchange
session to be started as follows:
def sessionFuture := remotePlayer<-openSession()@Due(10.minutes);
when: sessionFuture becomes: { |session|

// open session with the remote player (explained later)
} catch: TimeoutException using: { |e|

notification("unable to open a session.");
}

The @Due annotation makes the openSession message send immediately return
a future (stored in the variable sessionFuture) which is passed by leased reference
to the receiver object (remotePlayer), rather than occupying the default pass-by-far-
reference semantics. More concretely, the future is passed using a single-call leased
reference initialized with a time-based term (of 10 minutes in this example). If the
return value of the message being processed is received within the lease term, then the
future is resolved with the return value. As explained in Section 4.3.1, when a future
is resolved, the becomes: closure is applied to the return value. In this example, the
session variable refers to a leased reference to the remote session object). If the
return value of the message being processed is not received within the lease term, then
the future is automatically ruined with a TimeoutException exception. As a result,
the catch: closure is applied to the TimeoutException exception.

The leased reference by which a future is passed to the receiver object of an asyn-
chronous message either terminates because the lease term expires, or upon the recep-
tion of the return value. When performing failure handling on the future-type message
send it is important to notice two things. First, if the computation of the message failed
(e.g., if openSession raises an exception), then the future will be ruined with the
raised exception (rather than a TimeoutException exception) and the leased refer-
ence becomes terminated. Second, it may be possible that the message was successfully
processed by the receiver of the message, but the return value arrived after the lease
term of the reference expired. In this case, the return value is lost since the future has
been previously ruined with a TimeoutException exception. Note that specifying a
catch: block for the TimeoutException is equivalent to install a when:expired:
observer on the future’s (server-side) lease.

Listing 6.3 shows what happens when the future sessionFuture is properly re-
solved to a session object. Recall from the previous section that session refers to a
leased reference to the session object. A music player then sends all of its own songs
one by one to this remote session object via the uploadSong method as previously
described in Figure 6.1. After all songs have been sent, the endExchange method is
invoked to signal the end of the library exchange protocol.

The auxiliary function sendNextSong sends the music player’s songs one by one
to the remote session object. This serial behaviour is guaranteed because each sub-

6.5. INTEGRATING LEASING WITH FUTURE-TYPE MESSAGE PASSING 127

Listing 6.3: Implementation of the music library exchange protocol.� �
1 def sessionFuture := remotePlayer<-openSession()@Due(10.minutes);
2 when: sessionFuture becomes: { |session|
3 def iterator := myLib.iterator();
4 def sendNextSong() { // auxiliary function to send each song
5 if: (iterator.hasNext()) then: {
6 def song := iterator.next();
7 def ackFut := session<-uploadSong(song.artist,
8 song.title)@Due(leaseTimeLeft: session);
9 when: ackFut becomes: { |ack|

10 sendNextSong();
11 }catch: TimeoutException using: { |e|
12 notification("stopping exchange: " + e);
13 };
14 } else: {
15 session<-endExchange();
16 };
17 };
18 sendNextSong();
19 } catch: { |e|
20 notification("unable to open a session due to " + e);
21 }� �

sequent uploadSong message is only sent after the previous one returned an acknowl-
edgement. Since the return value of the uploadSong message is only useful in the
context of the current library exchange session, it only makes sense to wait for the fu-
ture resolution for the remaining duration of the session. Such duration can be extracted
by means of the leaseTimeLeft: construct which takes as parameter the leased ref-
erence to the session object. If the future is not resolved within this time deadline, the
library exchange is stopped without requiring additional cleanup code.

6.5.2 Leased Message Protocols

The integration of leasing into future-type message passing by means of the @Due an-
notation, illustrates that low-level memory management concerns (e.g., the callback
objects) can be cleanly incorporated into more high-level abstractions. However, an-
notating each asynchronous message send with @Due annotations puts extra burden on
developers. This can be alleviated by using leased references, as all messages sent via
a leased reference are sent using the same timing assumptions (expressed at the lease
reference declaration). Many times messages sharing the same timing assumptions are
not sent to the same receiver, but they belong to a semantic protocol which involves
the collaboration of a number of remote objects. Manually calculating those timing
assumptions can quickly lead to intricate code as applications become more complex.
To make leasing practical for distributed computation (expressed by messages), we in-
troduce the notion of leased message protocols which abstract the timing dependencies
of a group of due-type message sends. Before explaining leased message protocols, we
detail the pattern they abstract by means of a concrete example.

6.5.2.1 Motivating Example: Context-Aware Music Playlists

Consider an extension to our mobile music player application. Next to exchanging the
music library, the extension provides a context-aware sharing functionality which com-
bines the musical preferences of the nearby’s friends in order to construct an acceptable
playlist for all nearby users. A user first needs to inform the music player application

128 CHAPTER 6. AMBIENT-ORIENTED LEASING

Listing 6.4: Implementation of the music genre voting protocol.� �
1 def broadcastVote(genre, maxVoteTime) {
2 def [future,resolver] := makeFuture();
3 def receivedVotes := Map.new();
4 def retrieveVote(player, timeLeft) {
5 when: player<-askToVote(genre)@Due(timeLeft) becomes: { |vote|
6 receivedVotes.put(player, vote);
7 };
8 };
9 nearbyFriendPlayers.each: { |player|

10 retrieveVote(player, maxVoteTime);
11 };
12 def alreadySent := nearbyFriendPlayers.copy();
13 def voteStartTime := now();
14 def sub := whenever: Player discovered: { |player|
15 if: !alreadySent.contains(player) then: {
16 alreadySent.add(player);
17 def timeLeft := maxVoteTime - (now() - voteStartTime);
18 when: player<-getUsername()@Due(timeLeft) becomes: { |username|
19 if: (isInFriendList(username)) then: {
20 def timeLeft := maxVoteTime - (now() - voteStartTime);
21 retrieveVote(player, timeLeft);
22 }
23 }
24 }
25 };
26 when: maxVoteTime elapsed:{
27 sub.cancel();
28 resolver.resolve(receivedVotes);
29 };
30 future
31 };� �

about his musical preferences (e.g., one or several music genres). When a user enables
the context-aware music playlist, the application starts a poll among all nearby peers
about a certain music genre. When a peer gets asked to vote, it submits its result to
the originator of the poll. The originator waits a while before processing the received
results so that all peers have the chance to vote.

6.5.2.2 Manual Implementation

Listing 6.4 shows the relevant code required to implement the music genre voting pro-
tocol2. In order to implement a poll among all nearby music players, one needs to
define data structures to keep track of which friends are connected in the proximity
and who rated certain genres. Assume a vector nearbyFriendPlayers storing re-
ferences to the interface object of another friend’s music player application discovered
in the network. Recall from previous section that the interface object had one method
openSession to start the music library exchange protocol.

The broadcastVote function takes as parameter a textual description of the genre
to vote, and a time interval maxVoteTime denoting how long the originator of the poll
will wait for results. It returns a future whose value is a hashmap associating the friends
who replied to the poll to their vote. The future is resolved when the maxVoteTime

interval elapses. The application can then calculate the ratings of a particular genre
depending on the current number of friends connected, and decide on a wining genre

2This code has been previously employed in other AmbientTalk publications, e.g., in the team-based
mobile game scenario in Van Cutsem’s dissertation [Van08]

6.5. INTEGRATING LEASING WITH FUTURE-TYPE MESSAGE PASSING 129

or broadcast a new poll on a different genre.
More concretely, the broadcastVote function first asks the players which were

already stored in the nearbyFriendPlayers vector at the time of starting the poll
to vote on a given genre (lines 9-11). In addition, it installs a new discovery handler
(line 14) so that the music player applications of friends which are discovered while
the poll is active are also asked to vote (i.e., friends who become online after the poll
was initiate and before the maxVoteTime elapses). Since retrieving the vote of a newly
discovered friend is similar to retrieving the vote of a previously discovered one, the
shared code is put in the retrieveVote function. When discovering a new music
player in the neigbourhood, the username of the discovered peer is asked in order to
check if it belongs to the friend lists of the user3.

6.5.2.3 The Problems

Listing 6.4 depicts in blue the code dedicated to deal with the timing issues of the voting
protocol. Despite being a relatively small example, it illustrates two issues that the
programmer has to face when explicitly encoding the timing assumptions of message
sends in the application code.

• When implementing a distributed protocol like voting, the several messages sent
during this interaction share the same timing assumptions. However, using only
the @Due annotation forces programers to manually calculate the time left on
each stage of the protocol, and percolate it through the dynamic extent of the ap-
plication to make the corresponding asynchronous message sends see the correct
updated value in its scope. In the voting example, the upper bound on the time
allowed to vote for newly discovered players needs to be manually calculated
as the later a new player is discovered, the fewer time to vote the player has.
Calculating the time left to vote (stored in the timeLeft variable) is done by
subtracting from the original maxVoteTime interval, the time elapsed between
the start of the poll and the current time (retrieved by means of the now helper
function). Such scattering of timing assumptions in the application code leads
to intricate code. In addition, it obfuscates the dependencies that exists between
the different messages sends forming part of the protocol.

• Second, developers also need to deal with the failure handling code when a part
of the whole protocol fails to meet the timing expectations. In the voting ex-
ample, the application proceeds even if some votes were not collected within
the time boundaries, so no failure handling code is required when gathering the
results. Other applications may need to restart part of the protocol if one of
the intermediate stages fail. When the whole protocol finishes, the programmer
may also to need to apply some cleanup or corrective actions. In this example,
the application just executes some cleanup code to cancel the discovery handler
for new music players, and proceeds with the gathered results. Depending on
the application and the kind of protocol being implemented, different protocol
management semantics must be implemented.

In short, the programmer must has to manually implement a layer of abstraction to
encode the timing assumptions of distributed computation and how to react when those

3We assume that the user friend list is retrieved from the device’s contact application, e.g., by means of
the android.provider.Contacts class in the Android platform.

130 CHAPTER 6. AMBIENT-ORIENTED LEASING

assumptions are not met. The above code clearly represents a pattern that program-
mers will have to deal with when encoding applications protocols involving several
communicating parties. However, this pattern cannot be easily modularized because
the concrete upper bound to apply to an asynchronous message may depend on the
computational context of the message send. In the following section, we introduce
the leased message protocol abstraction, the goal of which is to encapsulate the timing
assumptions on message sends into a separate abstraction.

6.5.2.4 Language Support for Leased Message Protocols

A leased message protocol gives control over the asynchronous messages sent within
the dynamic extent of a body expression. We represent a leased message protocol as
an object that automatically traces asynchronous message sends within a dynamic exe-
cution, and determines the proper amount of time to wait for the reply of each message
sent, as well as how to react when the replies do not meet the expected deadlines.
Similarly to a leasing strategy (cf. Section 6.4.4.2), it can be dynamically activated at
specific points in an application execution. However, a leased message protocol de-
scribes the upper bound on a set of asynchronous message sends within a dynamic
execution rather than describing the lifetime of objects passed to remote parties. In
this section, we describe the language constructs provided to activate leased message
protocols at runtime. We defer the discussion on how to build custom leased message
protocols to Section 6.7.

As shown in Table 6.1, the withLeaseProtocol:do: construct installs a given
protocol within the dynamic extent of its closure argument. Listing 6.5 illustrates its
usage on the running example of the context-aware music playlists. In this case, the
leased message protocol employed is a time-based leased message protocol constructed
by means of the makeTimeBasedProtocol helper function (line 9). This function
takes as argument the time interval within the application expects to receive all the
answers for the messages sent within a dynamic execution, and returns a leased mes-
sage protocol object which automatically derives the upper bound of each individual
messages sends from the time left in the original maxVoteTime interval. Note that the
upper bound is relative to the time at which the message was sent to the receiver. In
our example, this implies that the later a new player is discovered (lines 15-20), the
shorter the upper bound of the askToVote message send will be. As mentioned, the
activation of a leased message protocol affects the behaviour of the program within
the dynamic extent of the do: closure. This means that all messages that are directly
or indirectly sent within the dynamic scope of the do: closure are trapped and con-
trolled by the protocol object. A message is said to be indirectly sent when it is sent
as a result of a method invocation within the dynamic extent of do: closure. In our
example, the askToVote message (line 5) is indirectly sent within the body of the
retrieveVote method. Analogously to withLeaseStrategy:do:, it is possible to
nest the withLeaseProtocol:do: construct which switches the protocol according
to the nesting level, i.e., the innermost protocol controls the messages send within the
inner do: closure, and once outside the inner layer the outer protocol is restored.

As shown in Listing 6.5 (lines 26-29), applications can react to the expiration of a
leased-based message protocol by means of the when:expired: construct. We have
overloaded the when:expired: construct described in Section 6.4.3 so that it can
also take as first argument a leased message protocol and registers a block of code
that is asynchronously trigger upon the “protocol expiration”, i.e., the expiration of the

6.5. INTEGRATING LEASING WITH FUTURE-TYPE MESSAGE PASSING 131

Listing 6.5: The music genre voting protocol using a time-based message protocol.� �
1 def broadcastVote(poll, maxVoteTime) {
2 def [future,resolver] := makeFuture();
3 def receivedVotes := Map.new();
4 def retrieveVote(player) {
5 when: player<-askToVote(poll) becomes: { |vote|
6 receivedVotes.put(player, vote);
7 }
8 };
9 def protocol := makeTimeBasedProtocol(maxVoteTime);

10 withLeaseProtocol: protocol do:{
11 nearbyTeamPlayers.each: { |player|
12 retrieveVote(player);
13 };
14 def alreadySent := nearbyTeamPlayers.copy();
15 def sub := whenever: Player discovered: { |player|
16 if: !alreadySent.contains(player) then: {
17 alreadySent.add(player);
18 when: player<-getTeam() becomes: { |team|
19 if: (team == myTeam) then: {
20 retrieveVote(player);
21 }
22 }
23 }
24 };
25 };
26 when: timeoutProtocol expired: {
27 sub.cancel();
28 resolver.resolve(receivedVotes);
29 };
30 future
31 };� �

underlying lease associated with the given time-based leased message protocol. In our
running example, when:expired: is employed to resolve the future returned by the
broadcastVote function with the hashmap of received votes.

Note that the broadcastVote function is only expected to return the votes of
friends who replied to the poll. It is not necessary to perform failure handling code
when individual messages are not answered within its upper bound. However, in many
cases, if the return value of a message is not received within the expected deadline, the
application may need to abort the semantic protocol, or try to re-send certain messages
to other receivers. To cater for these cases, we provide the when:failedWith: con-
struct which takes a leased message protocol, and a block closure. When a message
send fails to meet its expected delivery guarantees, the closure is triggered receiving
by parameter the failed message and the original receiver of the message. As a usage
example consider the following code:

when: protocol failedWith: { |rcv, msg|
logger<-reportError("Voting protocol: message " + msg + "failed.");

};

In this example, we tell the application logger about the failure of a messages sent
within the protocol. Note that the reportError message send may also be subject
to the upper bounds defined by protocol if the when:failedWith: construct is de-
fined within the dynamic extent of the withLeaseProtocol:do: construct defined
at line 10. However, this message does not belong per se to the semantic protocol
implemented broadcastVote function, i.e., it does not belong to the voting proto-
col. Messages can deviate from the delivery semantics defined by an active leased
message protocol if they are explicitly annotated. For example, the time-based leased

132 CHAPTER 6. AMBIENT-ORIENTED LEASING

message protocol can be disabled for the reportError message by annotating it with
@OneWayMessage. The @OneWayMessage is a default annotation provided by Ambi-
entTalk to explicitly annotate messages which do not return a future.

Similarly to Listing 6.4, Listing 6.5 depicts in blue the code dedicated to deal with
the timing issues of the voting protocol. Although the code is not drastically shorter
than the version shown in Listing 6.4 without withLeaseProtocol:do: construct, it
is important to point out that all timing assumptions are encapsulated in the protocol
abstraction instead of having them scattered through the application code. As a result,
the construct enhances the readability and modularity of the code. For example, if the
timing assumptions need to be changed, it suffices to change the protocol code rather
than all individual message send expressions.

6.6 Leased References vs. Leased Messages
In the previous sections, we have described the integration of the lease concept into
distributed communication and computation which give rise to some useful distributed
programming abstractions. This section explains their precise interaction semantics.

The lease on a leased reference specifies how long the reference can be used to
communicate with the service object it refers to. A message sent via a leased reference
will be received by the service object either “immediately” if the reference is connected
when the message is sent4, or at a later point in time within the lease term in case the
reference is disconnected. We now describe the semantics of leased references with
regard to the three kinds of asynchronous message sends featured by AmbientTalk:
one-way messages, future-type messages and due-type messages.

One-way messages. A one-way message send does not expect a return value. Recall
from Section 4.3.1 that this is actually the default semantics for an asynchronous
message send in AmbientTalk. When a one-way message is sent via a leased
reference, the message will be either delivered as long as the lease reference is
valid, i.e., the message may be lost if it was buffered in the leased reference when
the lease term expired. Hence, we say that a leased reference bounds the delivery
of a one-way message to the duration of its lease term.

Future-type messages. A future-type message send expects to receive the return value
by means of a future. When a future-type message is sent via a leased reference,
the leased reference conceptually needs to wait for the reply. Since once the
lease term expires the reference becomes terminated, it only makes sense to wait
for the reply while the reference is valid. How long the leased reference should
wait for the reply is thus specified by its lease term. Hence, we say that a leased
reference bounds the resolution of the message’s future to the duration defined
by its lease term.

Due-type messages. A due-type message send expects to receive a return value within
a time bound. The question again is how long the leased reference should wait
for the reply. In this case, it is a bit more complex because the reference needs to
combine its lease term with the one attached to the future. If the lease term of the
future is shorter than the one of the leased reference, the asynchronous message

4In this case, immediately means that the message is directly transmitted to the actor hosting the service
object, and received shortly on the receiver side. But as usual in a distributed setting, there could be some
intervening of time between the sending and reception of the message due to network delays.

6.7. AN OPEN IMPLEMENTATION 133

is sent using the time bound stipulated by the @Due annotation’s time interval.
Otherwise, the asynchronous message is sent using the time bound stipulated by
the term of the leased reference. Hence, we say that a leased reference bounds
the resolution of the message’s future to the duration defined by the minimum of
its lease term and the @Due annotation.

Note that it is possible that the message send expires on a valid leased reference
because it is buffered in the message queue for a longer period than the given
in the @Due annotation. In that case, the leased reference cancels the message
transmission and the programmer needs to explicitly resend it if necessary.

In general, we will use the term leased message to refer to any message sent to
a leased reference. If all messages sent to one service object are sent using the same
timing assumptions, this can be encoded in the declaration of the leased reference on
the service object (rather than encoding it repeatedly at the level of the message send
using @Due). If at a later point, the timing assumptions need to be changed, it suffices
to change one single leased reference declaration rather than all the individual mes-
sage send expressions. For instance, in our running example, we could omit the @Due
annotation on the uploadSong message send as it can be directly derived by above
mentioned machinery incorporated in leased reference which automatically derives the
time bounds on future-type messages.

Some messages may share the same timing assumptions but are not sent to the
same service object. In this case, the timing assumptions do not have to be repeated at
the level of each message send; this can be encoded using a leased message protocol.
Usually messages sharing the same timing assumptions belong to a semantic protocol,
such as the voting protocol described in Section 6.5.2.1. It may be some cases in
which the group of timing assumptions are not part of the functionality, and thus do
not belong to the same semantic protocol. Yet, expressing their timing assumptions
on a leased message protocol improves the modularity, reusability and evolution of the
code, as it suffices to adapt or specialize the leased message protocol (as we will shown
in Section 6.7.5).

6.7 An Open Implementation

In the previous sections, we have described the language constructs introduced in Am-
bientTalk to provide leasing as a high-level referencing abstraction that materializes
useful leasing management patterns. This section discusses their design and imple-
mentation. In order to provide the programmer with a referencing abstraction which
is both high-level and customizable, leased references have been designed according
to the rules of an open implementation [Kic96]. An open implementation enables pro-
gramers to adjust an implementation by means of a well-defined API. We now describe
leased references as an extensible AmbientTalk framework that enables programmers
to add new leased reference kinds without requiring a detailed understanding of the
underlying transmitter-receptor model on top of which they have been built5.

5The implementation is available as a library module for the AmbientTalk/M language available at
http://code.google.com/p/ambienttalk/.

http://code.google.com/p/ambienttalk/

134 CHAPTER 6. AMBIENT-ORIENTED LEASING

C Slease
transmitterclient object service object

lease
object

interceptor

Actor A Actor B

conceptual leased
reference
local reference
remote reference

base-level object

meta-level object

ruled by
lease
object

interceptor

ruled by

lease
receptor

Figure 6.4: Implementation of a leased object reference.

6.7.1 The Leased Object Reference Framework

Figure 6.4 depicts a leased reference from the implementation point of view. Con-
ceptually, a leased reference is a regular object reference that carries messages from a
client to a service object as depicted with a dotted line. At the implementation level, a
leased reference consists of a transmitter-receptor pair representing the source and tar-
get of a remote reference as explained in Section 5.2.1. The implementation of leased
references relies on three adaptations of the default implementation of the transmitter-
receptor pair. First, the lifetime of a remote reference is limited by means of a lease
term which is initialized when the remote reference is created and associated to a client
object. Second, any asynchronous message received by a leased reference is managed
as described in Figure 6.3. Third, the marshalling of a leased reference has been over-
ridden in order to ensure pass-by-lease semantics to a service object.

As also depicted in Figure 6.4, we expose to the programmer the different variations
points of a leased reference by means of two abstractions: a lease object which imple-
ments methods for managing the life cycle of a leased reference, and a interceptor
object that exposes the different variation points of a leased reference. The following
subsections, we describe the two abstractions and show how programmers can modify
their API to create custom leased references.

6.7.2 The Lease Object

A lease object has been designed along the notion of a lease described in Section 6.2
and provides methods to handle the life cycle of a leased reference. Listing 6.6 shows
the API of the lease object. We categorize the API according to the two different com-
ponents that comprises our notion of leases, namely a lease term and lease statements.
The lease term API provides methods to activate a lease term (i.e., signal the start of
the duration), get the lease period left before the term elapses, and to register listeners
to react to state transitions of a lease term. The lease statement API provides meth-
ods to manage the lease term and control how leases are access by third party objects.
In particular, it provides three methods (renew, revoke and extend) to support the
three different policies for managing a lease term (described in Section 6.2.1) and the
sublease method for specifying the lease access management policy (described in
Section 6.2.2).

In order to ease the development of lease objects which provide a custom imple-
mentation to such an API, we have implemented a lease object by means of composable

6.7. AN OPEN IMPLEMENTATION 135

isLeaseState(typeTag)
getState()
setState(newState, notification := true)
addStateListener(closure, stateType)
isValidStateTransition(newState)

state
validStates

TTermState

activate()
revoke()
renew(renewalTerm)
expire()
getTermLeft()
isMoreGeneralThan(otherTerm)
merge(otherTerm)

timeInterval
timerSubscription

TimeTerm

getCondition()
activate()
revoke()
renew(renewalTerm)
expire()
getTermLeft()
isMoreGeneralThan(otherTerm)
merge(otherTerm)

condition
ConditionalTerm

renew(term, otherTerm)
revoke(term)
extend(term, otherTerm)
sublease(term)

TLeaseStatements

activate()
revoke()
renew(renewalTerm)
expire()
getTermLeft()
isMoreGeneralThan(otherTerm)
merge(otherTerm)

LeaseTerm

<<uses>>

renew(otherTerm)
revoke()
extend(otherTerm)
sublease()
addListener(closure, stateType)
activate(lr)
getLeaseTermLeft()

term : LeaseTerm
manager: LeaseManager

Lease Object

1 1 LeaseManager1 1

<<uses>>

Figure 6.5: The lease object structure.

traits. Figure 6.5 provides a UML-like diagram depicting the implementation of leased
objects. A lease object consists of two objects, a lease term and a lease manager. Ac-
tually, a lease object is just a wrapper which delegates to the lease term and manager
the actual execution of the lease term API and lease statements API, respectively.

The lease term encodes the methods to manage the duration of a lease. The be-
haviour common to all lease terms is defined in a trait called TTermState. The trait
implements the behaviour for controlling the state of a lease term and notifying ob-
servers according to the life cycle of a term according to Figure 6.3. Developers
can deviate from the default behaviour by initializing the trait with a different set of
states and providing a different implementation on the isValidStateTransition

method which specifies the valid transitions among states. The TTermState trait is
then “mixed into” into the different lease terms. By default, we provide two concrete
implementations of lease terms: a time-based term that has been employed extensively

Listing 6.6: The lease object API.� �
// Lease Statements API
def renew(otherTerm);
def revoke();
def extend(otherTerm);
def sublease(otherTerm);
// Lease term API
def activate(lr);
def getLeaseTermLeft();
def addListener(closure,stateType);� �

136 CHAPTER 6. AMBIENT-ORIENTED LEASING

� �
1 def TFix := object: {
2 def renew(term,renewalTerm) {
3 raise: XLease.new("unable to renew a fixed-term lease" + self.print());
4 };
5 };
6 def TPeriodic := object: {
7 def renew(term, renewalTerm) {
8 def interval := maxMethod(term.getTermLeft, renewalTerm.getTermLeft);
9 term.renew(renewalTerm);

10 };
11 };� �TRen

e
w
a
l
P
o
l
i
c
y

tr
ai

ts

� �
12 def TNonRevocable := object: {
13 def revoke(term) {
14 raise: XLease.new("unable to revoke a non-canceable lease" + self.print());
15 };
16 };
17 def TRevocable := object: {
18 def revoke(term) {
19 term.revoke(self);
20 };
21 };� �TRev

o
c
a
t
i
o
n
P
o
l
i
c
y

� �
22 def TNonExtendable := object: {
23 def extend(term, otherTerm) {
24 raise: XLease.new("unable to extend a non-extendable lease" + self.print());
25 };
26 };
27 def TExtendable := object: {
28 def extend(term, otherTerm) {
29 term.setState(activeT);
30 term.activate();
31 };
32 };� �TExt

e
n
s
i
o
n
P
o
l
i
c
y

tr
ai

ts

� �
33 def TExclusive := object: {
34 def sublease(term) {
35 raise: XLease.new("unable to sublease an exclusive lease" + self.print());
36 };
37 };
38 def TSublease := object: {
39 def sublease(term) {
40 if: (is: term taggedAs: TimeTermType) then: {
41 TimeTerm.new(term.getTimeLeft());
42 } else: {
43 if: (is: term taggedAs: ConditionalTermType) then: {
44 ConditionalTerm.new(term.getCondition());
45 }
46 }
47 };
48 };� �

T
A
c
c
e
s
s
P
o
l
i
c
y

tr
ai

ts

Figure 6.6: The default lease statement policies traits.

in this work, and a first implementation of conditional terms (further discussed in Sec-
tion 6.9).

The lease manager encodes the overall lease statements policies, i.e., provides the
actual implementation of the lease statement API depicted in Figure 6.6. Rather than
implementing the manager as an object providing the full implementation of the lease
statement API, we represent each policy as a trait. A manager is thus represented as:

object: {
import TRenewalPolicy;
import TRevocationPolicy;
import TExtensionPolicy;

6.7. AN OPEN IMPLEMENTATION 137

import TAccessPolicy;
};

In order to compose lease terms, makeLease constructor function is provided
which takes a lease term object, and a lease manager returns the corresponding lease
object. The code snippet below shows how it is used in the implementation of the
lease:for: construct described in Section 6.4.1.

def lease: timeInterval for: obj {
def manager := makeLeaseManager(TFix,TRevocable,TNonExtendable,TSublease);
def leaseObject := makeLease(TimerTerm.new(timeInterval), manager);
lease: obj withAgreement: leaseObject withInterceptor: TDefaultInterceptor;

};

The makeLeaseManager helper function returns the manager object resulting from
importing of the four traits corresponding to the different policies depicted in Fig-
ure 6.2. Figure 6.6 shows the concrete implementations of each trait, corresponding
to these policies. The TRenewalPolicy trait defines the renew method which im-
plements the policy for renews a lease term with a specified renewal term passed as
second argument. As shown in lines 6-11, the default implementation of a periodic
lease provided by the TPeriodic trait only prolongs the lease term if the duration of
the given lease term is greater than the lease term left. This avoids that if a lease will be
renewed by different clients, the lease term indefinitely grows. Nevertheless, other re-
newal policies are definitely possible by providing a new implementation of the renew
method. The TRevocationPolicy trait defines the revoke method which imple-
ments the strategy for revoking a given lease term. The TExtendablePolicy trait
defines the extend method which implements the strategy for extending a given lease
term with a specified extension term passed as second argument. The TExtendable

trait (lines 27-32) defines the simplest extension policy; it always extends the term
with the same interval as the original lease term. Note that the implementation of
an extendable lease provided by the TExtendable trait requires a TTermState trait
implementation that allows a transition from expired state to the initial state. As previ-
ously mentioned, this is not provided in the default TTermState implementation used
in the current time-based and conditional terms. It needs to be encoded by providing
a different implementation on the isValidStateTransition method. Finally, the
TAccessPolicy trait defines the sublease method which implements the strategy
for sharing a lease term with third party objects. As shown in lines 38-49, the default
implementation of a sublease strategy provided by TSublease trait returns a new term
whose duration is specified either by the remaining lease term for time-based terms, or
with the same condition than the original lease term for conditional terms.

Before further detailing how leased references are created by means the lease:
withAgreement:withInterceptor: construct, we introduce the interceptor object
in the next section.

6.7.3 The Interceptor Interface
Our framework supports the construction of leasing variants for leased references in
the form of the interceptor interface. As previously explained, leased references have
been implemented as a custom transmitter-receptor pair. The interceptor interface ex-
poses the asynchronous message process and reference marshalling protocols of the
transmitter-receptor pair (explained in Section 5.2.2) at certain points of its execution.
In the implementation, we represent the interceptor as a trait which provides the meth-
ods shown in Listing 6.7. The onMessageReceived defines the message passing

138 CHAPTER 6. AMBIENT-ORIENTED LEASING

semantics of a leased reference. It is called by the underlying implementation each
time a transmitter or receptor receives a message. The onReferenceCreated and
onReferenceShared methods, on the other hand, define the parameter passing se-
mantics of the service object referenced to ensure a pass-by-lease semantics. More
concretely, the onReferenceCreated determines how a leased reference is created
on the actor hosting the client object. The underlying implementation calls it when
marshalling the receptor of a leased reference. Finally, the onReferenceShared de-
termines how a leased reference is passed to a third party object. It is called by the
underlying implementation upon marshalling the transmitter of a leased reference.

Listing 6.7: The interceptor API.� �
def onMessageReceived(msg,lease);
def onReferenceCreated(lease);
def onReferenceShared(lease);� �

The goal of the interceptor interface is to hide as much as possible the details of
the underlying implementation because the client side of a leased reference behaves
slightly different than its service side counterpart. There exists two key differences
between the implementation of the transmitter and the receptor of a leased reference.
First, the transmitter does not grant access to a service object but to the receptor of the
leased reference pointing to the actual service object (as shown in Figure 6.4). This
means that the messages intercepted by the transmitter are first forwarded to the recep-
tor of a leased reference. Before doing so, the transmitter determines the correct mes-
sage delivery guarantees according to the semantics described in Section 6.6. Second,
although conceptually there is only one lease object per leased reference, the imple-
mentation maintains two lease objects at each side of the reference in order to support
symmetric expiration handling. This implies that the transmitter and receptor maintain
their own set of when:expired: observers (which allow notification without requir-
ing communication), and ensure that the two lease term are kept in synchronization
with each other.

6.7.3.1 Default Leased Reference Variants

As shown before, a leased reference created by means of the lease: construct uses
the default interceptor. The code snippet below shows the message passing semantics
of the default interceptor.
def onMessageReceived(msg, lease) {

if: !(lease.isExpired) then: {
self.deliver(msg);

} else: {
raise: XExpiredLease.new("Expired leased reference" + self.toString);

};
};

If the lease object has not expired, the message is forwarded to the service object
by invoking the deliver method. The behaviour of the deliver method actually
depends on the side of the reference on which the onMessageReceived was invoked.
The implementation of deliver in the transmitter of the leased reference first deter-
mines the message delivery semantics and then schedules the message for transmission
in its message queue. The implementation of deliver in the receptor just forwards
the message to the service object by invoking the accept meta method (cf. Table 5.1).

Figure 6.7 shows how such default interceptor has been extended to implement the
single-call and renew-on-call variants explained in Section 6.4.2. The onMessageRe-
ceived method is overridden in single-call and renew-on-call interceptors to provide

6.7. AN OPEN IMPLEMENTATION 139

� �
1 def TRenewOnCallInterceptor := extend: TDefaultInterceptor with:{
2 def filter;
3 def renewalTerm;
4 def init(dftfilter := (script:{ |msg| true } carrying: []),
5 dftRenewalTerm := TimerTerm.new(lease.getInitialLeaseTerm()) {
6 filter := dftfilter;
7 renewalTerm := dftRenewalTerm;
8 };
9 def onMessageReceived(msg, lease) {

10 if: !(lease.isTerminated) then: {
11 if: (filter(msg)) then: {
12 lease.renew(renewalTerm);
13 };
14 };
15 superˆonMessageReceived(msg,lease);
16 };
17 };� �

re
ne

w
-o

n-
ca

ll
in

te
rc

ep
to

r

� �
17 def TRevokeOnCallInterceptor := extend: TDefaultInterceptor with:{
18 def filter;
19 def init(dftfilter := (script:{ |msg| true } carrying: [])) {
20 filter := dftfilter;
21 };
22 def onMessageReceived(msg, lease) {
23 if: !(lease.isTerminated) then: {
24 if: (filter(msg)) then: {
25 lease.revoke();
26 };
27 };
28 superˆonMessageReceived(msg, lease);
29 };
30 };� �re

vo
ke

-o
n-

ca
ll

in
te

rc
ep

to
r

Figure 6.7: Implementation of the interceptors for renew-on-call and revoke-on-call
leased references.

automatic renewal and revocation of the leased object upon message reception, respec-
tively. Both interceptors delegate the delivery of the message to the default interceptor
by means of a super-send. In the case of a renew-on-call interceptor, it renews its timer
before delegating the delivery of the message. As shown in line 4, the renewal time
interval is the initial lease duration by default. In the case of a single-call lease, it can-
cels its lease upon receiving a message by calling the revoke method which takes care
of setting the state of a lease term to terminated (in particular, revoked) so that future
received messages are dropped.

Recall from Section 6.4.2 that the constructs for creating both leased reference vari-
ants can take an unary closure encoding a boolean predicate that needs to be satisfied in
order for a message to renew or revoke the lease. As shown in lines 12 and 24, the in-
terceptors only renew or revoke the lease object if the filter closure applies to true.
By default, both filters are initialized to a closure that returns true which means that
every message send renews the renew-on-call lease reference, while the revoke-on-call
leased reference is revoked upon the first message send. The script:carrying:
helper function allows the creation of a closure which is passed by copy in inter-actor
messages copying into the closure scope the variables defined in the table given as ar-
gument. This allows us to apply renewal and revocation conditions at both sides of the
reference if necessary.

140 CHAPTER 6. AMBIENT-ORIENTED LEASING

6.7.3.2 Adding Leased References Variants

Now that the lease object and interceptor interface have been introduced, we give fur-
ther details how to compose leased reference kinds. Developing a new leased refer-
ence involves implementing an object providing the functionality for the interceptor,
and passing it together with a suitable lease object to the lease:withAgreement:
withInterceptor: construct. The following code snippet illustrates how to add the
renew-on-call leased reference kind described in Section 6.4.2.

def renewOnCallLease: obj for: timeInterval {
def manager := makeLeaseManager(TPeriodic,TRevocable,TNonExtendable,TSublease);
def leaseObj := makeLease(TimerTerm.new(timeInterval), manager);
lease: obj withAgreement: leaseObj withInterceptor: TRevokeOnCallInterceptor;

};

As previously mentioned, the lease:withAgreement:withInterceptor: con-
struct is the leased reference creation primitive which returns a new leased reference
with the properties defined by the lease object and interceptor passed as arguments.
The code snippet below shows its implementation.

def lease: obj withAgreement: leaseObject withInterceptor: interceptor {
def leaseReceptor := makeLeaseReceptor(leaseObject, interceptor);
(reflect: obj).becomeReferencedBy: leaseReceptor;
leaseReceptor;

};

The makeLeaseReceptor function returns a receptor in which the interceptor ob-
ject is mixed into, and has been initialized with the given lease object. The lease:
withAgreement:withInterceptor: construct installs on the service object a re-
ceptor providing leasing semantics by means of the becomeReferencedBy: meta
method. Recall from Section 5.2.3 that the such a meta method can be called at any
time during the lifetime of a service object. Note that this allows that the service object
declaration does not need to be altered for leasing, promoting a separation between the
distribution and failure handling aspects of the object from its functionality.

6.7.3.3 Parameter Passing Semantics

In the previous section we explain how we build leasing variants by means of the pro-
vided API. The renew-on-call and revoke-on-call leased references variants alter the
default message passing semantics of a leased reference thereby providing some auto-
matic lease term management. In this section, we further describe the default parameter
passing semantics of a leased reference and show how developers can create custom
variants.

The code snippet below shows the parameter passing semantics of the default in-
terceptor.

def onReferenceCreated(lease){
self.transportStrategy(self, lease);

};
def onReferenceShared(lease){

def sublease := makeLease(lease.sublease(), lease.manager);
self.sharingStrategy(self, sublease);

};

When a service object is first passed to a client object, the receptor of a leased refer-
ence is marshalled instead and the system calls the onReferenceCreated method on
the receptor. As shown in the code, the default interceptor returns the receptor itself by
calling transportStrategy method passing the self variable (since the interceptor

6.7. AN OPEN IMPLEMENTATION 141

is a trait mixed into the receptor upon its creation). The transportStrategy method
takes care of the actual marshalling of the receptor and activates the lease object. This
implies that on subsequent passes of the service object to client objects, the system
will hand out the same receptor. Although each client holds its own leased reference
to communicate with the service object, conceptually, all client objects share the same
receptor to the service object, i.e., there is a many-to-one correspondence between
transmitters and receptors for a leased reference. These semantics are motivated by
the trade-off that needs to be considered when creating a lease between the amount of
space maintained at the machine hosting the service object, and the access rights given
to the client. Using one receptor for all leased references handed out to clients re-
duces the amount of space that needs to be allocated. When applications require higher
degrees of access control, the onReferenceCreated method can be overridden to,
e.g., enable forms of security such as authorization, and authentication.

When a client object passes a leased reference to a third party object, the underly-
ing implementation calls the onReferenceShared method on the transmitter of the
leased reference. As shown in the code snippet, the default interceptor first creates a
sublease of the lease object, and returns the transmitter itself with the new lease object.
In our implementation, leased references employ the TSublease trait for detailing
the subleasing policy. Recall from Figure 6.6 that the TSublease trait returns a new
lease term with the remaining term of the original lease. Returning the same transmit-
ter means that the third party object then receives its own leased reference which can
use to communicate directly with the service object. The code snippet below shows
how we could encode a leased reference variant which provides an indirect style of
communication instead.

def TIndirectInterceptor := extend: TDefaultInterceptor with:{
def onReferenceShared(lease){
def sublease := makeLease(lease.sublease(),lease.manager);
def leasedRef := lease: self withAgreement: leaseObject

withInterceptor: TIndirectInterceptor;
self.sharingStrategy(leasedRef, sublease);

};
};

In this case, when the leased reference is passed to a third party object, the third
party object obtains a leased reference to the client object which originally held the
leased reference to a service object. In particular, the transmitter of the leased reference
first creates a sublease of the lease object, and hands out a new leased reference by
returning a new receptor in the sharingStrategy method. As a result, the third party
object does not obtain direct access to the service object, but to the transmitter of the
original client object that in turn refers to the service object. Hence, the original client
object has conceptually become sublease grantor for the third party object. Note that
combining an indirect style of addressing and subleasing results in a leased reference
kind that offers higher degree of decoupling since the service object does not need to
be in direct communication range of a client object to communicate with each other.

6.7.4 Leasing Strategies
In this section, we sketch the implementation of leasing strategies and how meta-level
engineers create new leasing strategies. Recall from Section 6.4.4.2 that a leasing strat-
egy represents a leased reference kind which is bound to each object passed to remote
objects within the dynamic extent of the withLeaseStrategy:do: construct. Con-
ceptually, a leasing strategy corresponds a first-class receptor which has not been yet

142 CHAPTER 6. AMBIENT-ORIENTED LEASING

installed on a service object. At implementation level, a receptor which is employed as
a leasing strategy behaves slightly different from the receptors returned from the leased
reference creation primitive. The main difference is that they have been altered to apply
the dynamic scoping semantics of leasing strategies. This is achieved by overriding the
sendMessage meta method of the transmitter-receptor model (described in Table 5.1).

In order for developers to use custom leasing referencing, this implementation level
aspect has been factored out into the makeStrategy function, which serves as the
leasing strategy creation primitive. The code snippet below shows its usage in the
implementation of the renewOnCall: construct employed in the context of the music
listening session code (cf. Listing 6.2).

def renewOnCallLease: timeInterval {
def manager := makeLeaseManager(TPeriodic,TRevocable,TNonExtendable,TSublease);
def leaseObj := makeLease(TimerTerm.new(timeInterval), manager);
makeLeaseStrategy(leaseObj, TRevokeOnCallInterceptor);

};

This code is reminiscent of the implementation of the renewOnCallLease:for:
construct previously explained, but calls the lease strategy creation primitive instead.
Analogously to the leased object creation primitive, the makeStrategy function cre-
ates a lease strategy from the leased object and interceptor passed as arguments.

We conclude this section by briefly describing the implementation changes made
to AmbientTalk for leasing strategies. In order to activate a leasing strategy within
the dynamic extent of a block, we have introduced a meta variable in the actor mirror,
which denotes the active leasing strategy. Recall from Section 5.3.1 that whenever an
object crosses the actor boundaries, the createReference meta method is called,
returning the receptor denoting the type of remote object reference it is passed by. The
withLeaseStrategy:do: construct temporarily changes (and restores) the value of
the active leasing strategy for the block of code defined by the do: closure. The object
creation native (the object: construct) also has been modified to use the active leasing
strategy so that any object created in the do: closure is parameter passed by leased
reference as specified by the leasing strategy.

6.7.5 Leased Message Protocols
We conclude our implementation section by explaining the implementation of leased
message protocols introduced in Section 6.5.2. A leased message protocol is an ab-
straction that gives control over the asynchronous messages sent within the dynamic
extent of a body expression. At the implementation level, a leased message proto-
col is represented as a custom transmitter which intercepts asynchronous message
sends. Before the actual transmission, the transmitter determines the proper upper
bound for future-type message sends, and how to react when replies do not meet the
expected limit. However, it behaves slightly different from the transmitter of a leased
reference. In particular, it is a transmitter that is created from a leased object and a
protocol object. A protocol object is a trait which needs to override two methods:
onMessageSend and onMessageSendFailed. We describe how to build a leased
message protocol by showing the implementation of the time-based leased message
protocol used in voting protocol example used in Section 6.5.2.

The following code snippet shows the implementation of the makeTimeBasedPro-
tocol function used for the voting protocol in Listing 6.5.

def makeTimeBasedProtocol(maxVoteTime) {
def protocol:= object:{

6.7. AN OPEN IMPLEMENTATION 143

def startTime := now();
def onMessageSend(rcv,msg){

def timeLeft := maxVoteTime - (now() -startTime);
[rcv, futurize(msg, timeLeft)];

};
def onMessageSendFailed(rcv, msg){
// we do not need to abort the protocol

};
};
def manager := makeLeaseManager(TFix,TNonRevocable,TNonExtendable,TExclusive);
def leasedObject := makeLease(TimeTerm.new(maxVoteTime), manager);
makeLeaseProtocol(leasedObject,protocol);

};

The makeLeaseProtocol function corresponds to leased message protocol cre-
ation primitive which returns a transmitter in which the protocol trait object is mixed
into, and it is initialized with the given lease object. In this case, we create a time-
based lease term representing a “timer” (i.e., a term that cannot be renewed, revoked,
extended or subleased). Each time a message is sent, the underlying transmitter calls
the onMessageSend method which allows the protocol to modify the upper bound
of the message before being enqueued for transmission to the service object. The
futurize helper function is defined by AmbientTalk’s futures module and returns a
message with a @Due annotation for the given time interval. When a message expires
before being transmitted, the onMessageSendFailed method is called. In this case,
the onMessageExpired does not apply any failure handling code because the voting
protocol did not need to be aborted if a reply was not received for a message.

Listing 6.8: Implementation of the transmitter for creating leased message protocols.� �
1 def makeLeaseProtocol(lease, protocol){
2 extend: defaultTransmitter with: { |lease, protocol|
3 import protocol;
4 lease.activate(self);
5 def msgObservers := Vector.new();
6 def protocolObservers := Vector.new();
7 def schedule(rcv,msg){
8 def [originalRcv,originalMsg] := unwrapMessage(msg);
9 def [rcvToSend,msgToSend] := self.onMessageSend(originalRcv,originalMsg);

10 def messageWithExpiration := attachExpirationHandler(rcvToSend, msgToSend);
11 rcvToSend <+ messageWithExpiration;
12 };
13 // called by the expiration handler when the message timer expires
14 def onMessageExpired(rcv,msg) {
15 self.onMessageSendFailed(rcv,msg);
16 msgObservers.each: {|obs| obs<-apply()@[Control,OneWayMessage]};
17 };
18 //called by the lease term when it expires.
19 def terminatedAccess() {
20 protocolObservers.each: {|obs| obs<-apply()@[Control,OneWayMessage]};
21 };
22 def addExpirationObserver(code) {
23 msgObservers.add(code);
24 };
25 def addMessageExpirationObserver(code) {
26 protocolObservers.add(code);
27 };
28 };
29 };� �

Listing 6.8 sketches the implementation of the transmitter returned from the
makeLeaseProtocol constructor function. The transmitter imports the protocol trait
and activates the lease object so that the protocol timer starts ticking. It also main-
tains in two vectors storing the observers installed by means of the when:expired:
and when:failedWith: constructs. When the lease term elapses, the lease term sig-
nals this by invoking the terminateAccess method which in turn notifies the when:

144 CHAPTER 6. AMBIENT-ORIENTED LEASING

expired: observers. As shown in lines 6-10, the transmitter overrides the schedule
meta method (cf. Table 5.1) to delegate to the protocol trait the calculation of the time
bounds to apply to a message. Before sending the message to the receiver, it attaches an
expiration handler to be able to react to the expiration of a message. Such handler will
call the onMessageExpired method which delegates to the protocol trait the handling
of the failure, and then notifies the when:failedWith: listeners.

Similarly to leasing strategies, we have introduced a meta variable in the actor
mirror which denotes the “currently” active protocol. Recall from Section 4.6.3 that
message sending is reified at the actor level by means of the send meta operation.
We override this operation to check the value of the active protocol. If any is applied,
the implementation of send delegates to the transmitter representing the active proto-
col. The withLeaseProtocol:do: construct changes the value of the active leasing
strategy for the block of code defined by the do: closure. The when:becomes: and
whenever:discovered: constructs have also been modified in order to apply the
reset the active leasing strategy that was applied when those handlers where created.

6.8 Evaluation
So far we have discussed AmbientTalk language abstractions for a leasing model that
adheres to the criteria distilled in Section 6.1.2. In this section, we compare Am-
bientTalk’s support with JavaRMI [Sun98], which can be seen as state of practice
mainstream technology that includes a leasing model for describing the lifetime of
remote objects. Although Java RMI has not been designed for MANETs, the most
representative object-oriented middleware for mobile computing, namely Jini (cf. Sec-
tion 3.3.1.1), relies on Java RMI for distributed communication and computation.

We compare both approaches by means of the music player music application;
our running example described in Section 6.1.1. We consider this application as a
good “yardstick” because it exhibits a set of key issues that are typical in collaborative
MANET applications. Its implementation in AmbientTalk, shown along Sections 6.4
and 6.5, demonstrates how developers can concisely define and manipulate leased re-
ferences and how the language support eases the development of mobile applications
that deal with both transient and permanent disconnections and properly reclaim their
service objects. The next subsection sketches the implementation of a music player
application that exhibits similar semantics in Java RMI. In doing so, we illustrate how
the abstractions provided by our leasing model have to be mimicked in Java. Subse-
quently, we evaluate both implementations quantitively (based on an analysis of their
lines of code) and also qualitatively (in the light of the criteria for a leasing model in
MANETs described in Section 6.1.2). The core functionality of both implementations
has been included in Appendix A6.

6.8.1 An Implementation of the Mobile Music Player in Java RMI

We now describe a Java RMI implementation of music player application which ex-
hibits similar semantics to our running example. Figure 6.8 shows a UML class dia-
gram for this implementation. The MusicPlayer and Session classes provide meth-
ods implementing the main functionality for the music library exchange protocol de-
picted in Figure 6.1. The class MusicPlayer also includes two methods dealing with

6Both implementations are available at http://code.google.com/p/ambienttalk/downloads.

http://code.google.com/p/ambienttalk/downloads

6.8. EVALUATION 145

whenExpired(ExpirationListener)
isExpired()
expire()
process(Actor)

dueLease_
isExpired_

Message

getOwner()
receive(Message)
receivePrioritized(Message)
stopProcessing()
run()

messageQueue_
session_
thread_

EventLoop

owner_
ELCallback

owner_
ELTransmission

index_
AckReturnValueMsg

song_
index_

UploadSongMsg
peer_
username_
callbackActor_

OpenSessionMsg

leaseSession_
transmissionActor_

SessionReturnValueMsg

EndExchangeMsg

*1

play()
equals()

title_
artist_
timesPlayed_

Song

uploadSong(String,String)
endExchange()

iLeaseSession

uploadSong(String,String)
endExchange()

remoteUser_
senderLib_
mp_

Session

sendSong(clientLeaseSession,index,CallbackActor)
receiveSession(ClientLeaseSession,
 TransmissionActor, CallbackActor)
whenDiscovered(iMusicPlayer)
goOnline(String)

username_
myLib_
sessions_

MusicPlayer

* 1

*

1

expire()
revoke()
renew()
isExpired()
whenExpired()
getTimeLeft()

leaseInterval_
leaseTimer_
timerSubscription_
expired_
whenExpiredListeners_

Lease

LeaseTimerTask1 *

uploadSong(String,String)
endExchange()

session_
ClientLeaseSession

uploadSong(String,String)
endExchange()
whenExpired()

session_
lease_

LeaseSession

*

1

<<implements>> <<implements>>

UnicastRemote
Object

1 11 1

openSession(String)
getSizeOfLibrary()
getLib()

RemoteInterface
1 1

openSession(String)
getSizeOfLibrary()

iMusicPlayer

<<implements>>

*

1

Figure 6.8: Class diagram of the implementation of mobile music player in Java RMI.

the service discovery aspect of the application: the goOnline exports the remote inter-
face of the music player application to the network with a unique identifier constructed
from the string passed as argument, and the whenDiscovered method allows the mu-
sic player application to discover other music players in the network. In the implemen-
tation, we employ a predefined Java RMI registry for service discovery. It is important
to notice that the focus of our comparison lies on the support for dealing with partial
failures at the distributed computation and communication level, rather than service
discovery. In the remainder of this section, we elaborate on these aspects.

Distributed Communication. Recall that once a music player establishes a session
with another music player, the session should remain active as long as the exchange
is active, i.e., as long as uploadSong messages are received. In Java RMI leases
are very tightly coupled to the distributed garbage collection module. Programmers

146 CHAPTER 6. AMBIENT-ORIENTED LEASING

can decide on the duration of a lease by means of the leaseValue property which
is applied to all remote objects in the entire Java VM. The leaseValue property is
actually associated with the underlying socked connection timeout of a remote object
reference. However, the remote reference to the remote interface of a music player
application has different leasing semantics than the remote reference to a session ob-
ject. In order to provide a renew-on-call leasing semantics to the session object, we
employ a LeaseSession class. This class is mainly a wrapper for regulating access
to a Session object depending on a Lease object. The Lease object is an ad hoc
implementation of a time-based lease supporting the lease management semantics nec-
essary for the music player application, i.e., it can be renewed and revoked. Note that
the LeaseSession class implements the service side of a lease for a Session object.
The ClientLeaseSession class implements the client side of a LeaseSession ob-
ject, required to obtain the lease time left and place boundaries on the messages sent to
the session object (described further below).

Recall from Section 6.1.1 that the application should also take care of dealing with
the impact on remote references of the volatile connection phenomenon. Since Java
RMI uses a synchronous communication model, the thread executing a remote method
call blocks upon a network disconnection. This would make the application unrespon-
sive to discovery events notifying new music player peers in the network. To solve
this issue, two different threads need to be spawned: a transmission thread that per-
forms a remote method invocation, and a callback thread that awaits the return values.
These threads need to communicate with each other by means of message objects which
wrap a remote call. In addition, the transmission thread must ensure that messages are
buffered during a network disconnection. In our implementation, the EventLoop class
wraps a thread and a message queue and provides methods to make a thread send a
remote message. The ELTransmission and ELCallback classes represent the afore-
mentioned transmission and callback threads.

Distributed Computation. We implemented five message classes corresponding to
the various remote messages shown in Figure 6.1. Each Message subclass needs to
implement the process method which is in charge of performing the correspond-
ing remote method invocation. Recall from Section 6.5.1 that uploadSong and
openSession have different delivery guarantees because the return value of the
uploadSong message is only useful if it is received within the remaining duration of
the session. Since in Java RMI every remote method invocation has the same timeout
(the one denoted by the lease associated to a remote object reference), we implemented
this by associating a Lease instance with a Message (stored in the dueLease field).
The code snippet below shows the process implementation for the OpenSessionMsg
message subclass:

public void process(EventLoop a) throws NoSuchObjectException {
try {
iLeaseSession session = peer_.openSession(username_);
if (!expired_){
dueLease_.revoke();;
callbackEL_.receive(new SessionReturnValueMsg(

session, (ELTransmission) a));
System.out.println("session opened");

}
} catch (NoSuchObjectException e0){
throw e0; // trying to use an expired session, throw again.

} catch (RemoteException e) {
//exception while session active, reschedule to simulate buffering.
if (!expired_){
System.out.println("unable to open a session - reschedule the message");

6.8. EVALUATION 147

a.receivePrioritized(new OpenSessionMsg(
peer_, username_, timeout_, callbackEL_));

e.printStackTrace();
}

}
}

The process method is called by the ELTransmission thread when the
OpenSessionMsg object reaches the head of its message queue. When process

is invoked, a remote method invocation for openSession is performed on the
RemoteInterface of the MusicPlayer instance. Note that the ELTransmission

thread serving this message is blocked until the openSession invocation fin-
ishes, or the lease associated to the OpenSessionMsg object expires. The re-
sult of openSession is encoded by the SessionReturnValueMsg message.
When the callback thread processes a SessionReturnValueMsg message, an
ClientLeaseSession object is created for the received session object.

In order to react to the expiration of the such a lease, the Message class provides the
whenExpired method which takes as parameter a listener to be applied when the lease
expires. We also modified the ELTransmission class so that the transmission thread
only attempts to perform remote method invocation for messages which have expired
in its message queue. The code snippet below shows the usage of the whenExpired

method in the constructor of the OpenSessionMsg class.

dueLease_.whenExpired(new ExpirationListener(){
public void leaseExpired() {
expired_ = true;
SessionReturnValueMsg expiredMsg = new SessionReturnValueMsg(null, null);
expiredMsg.expire();
callbackEL_.receive(expiredMsg);
System.out.println("TIMEOUT openSession ");

}
});

The expiration listener places an empty expired message in the callback threat to
signal that we do not need to wait anymore for the result of the remote method invoca-
tion, and notifies the user of the expired message.

6.8.2 Quantitative Evaluation
Thanks to the language constructs presented earlier in this chapter, the implementation
of the music application in AmbientTalk counts merely 90 loc while its implementation
in Java RMI counts no less than 462 lines. Table 6.9a summarizes the lines of code for
both implementations according to four different concerns: 1) memory management:
includes the code to setup a renew-on-call lease for the music session and reclaim the
used data structures upon lease expiration, 2) concurrency control: includes the code to
ensure the responsiveness of the application in the face of transient disconnections, 3)
failure handling: includes the code to have time-based delivery policy guarantees on re-
mote messages and 4) application-level code. Note that the code for service discovery
has not been taken into account in this comparison because, as previously mentioned,
we focus our discussion on the distributed communication and computation aspects of
the application. Incorporating the aspect of service discovery would only make the
comparison worse for Java RMI since AmbientTalk’s features a built-in publish/sub-
scribe service discovery mechanism.

To further compare the differences between both implementations, we depict in
Figure 6.9b the percentages of lines of code for each implementation according to

148 CHAPTER 6. AMBIENT-ORIENTED LEASING

Java RMI AmbientTalk
Memory man-
agement code

145 7

Concurrency
control code

148 7

Failure handling
code

78 6

Application-
level code

91 70

Total lines of
code

462 90

(a) Summary of the lines of code

19.70%	

77.78%	

16.88%	

6.67%	

32.03%	

7.78%	
 31.39%	

7.78%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Java	
 RMI	
 AmbientTalk	

Memory	

Management	

Concurrency	

control	

Failure	

handling	

ApplicaIon	

(b) Chart of the percentages

Figure 6.9: Overview of the lines of code (a) and % (b) for the music player appli-
cation according to four concerns: memory management, concurrency control, failure
handling and application-level code.

the four concerns. The most notable difference is the application concern. While
the application-level code has a similar magnitude in both implementations, the graph
shows that most of the code in AmbientTalk consist of application-level code (77,78%)
while in Java RMI this is less than 20% (19,70%). This is mainly because, leasing in
Java RMI is very tightly coupled to the distributed garbage collection module, and it
has not been integrated with a decoupled communication model at all. As a result, the
Java RMI implementation required to encode a number of patterns by hand which we
discuss in the next section.

6.8.3 Qualitative Evaluation

In Section 6.1.2, we postulated three criteria to which a good leasing model for MANETs
should adhere. In the light of these criteria, we now evaluate the language support for
ambient-oriented leasing introduced in AmbientTalk and Java RMI.

Criterion#1: Leasing an Intermittent Connection JavaRMI remote references do
not support time decoupling directly. Time decoupling needs to be manually encoded
by means of two separated threads to asynchronously perform remote method invo-
cations and receive the results. In addition, the transmission thread must ensure that
messages are buffered while the reference is disconnected. This is not required in
AmbientTalk as leased references themselves abstract away from the connection state.
Client objects can send messages via a leased reference as long as it is not expired, in-
dependently of the state of the connection, because a leased reference buffers messages
while disconnected. When knowledge of to the network connectivity is required, de-
velopers can place dedicated listeners that are triggered whenever the leased reference
becomes disconnected and reconnected. As such, leased object references combine
leasing with asynchronous communication into one coherent language concept that
deals with both transient and permanent failures.

Criterion#2: Leasing Management Patterns Java RMI provides leases to delimit
the lifetime of remote object references. However, it is not possible to specify lease pe-
riods on a per-application, per-class or per-object basis because the duration of leases

6.8. EVALUATION 149

is controlled by a VM property (leaseValue). This property is actually associated
with the socked connection timeout. As such, there is no difference between a lease
associated to a remote reference and a timeout for a message send. Upper bounds on re-
mote method invocations need to be explicitly encoded in terms of timers. In addition,
a transmission thread needs to take into account the message expirations.

It is important to remark that Java RMI leases provides a built-in leasing pattern for
managing connected remote object references. As long as there is no network discon-
nection, a remote reference is considered in use. The client-side runtime system trans-
parently renews the lease to a remote object implicitly once the leaseValue reaches
half of its value. This may lead to unnecessary network traffic since control messages
are sent to keep a remote object alive which may not be used anymore. To signal that
a client stopped using a remote reference, developers have to explicitly make sure to
clear local references to the remote reference. For example, in the music player ap-
plication, code was added to stop the transmission and callback threads and to remove
the session from the hashmap storing active opened sessions. If clients do not add this
code, the remote object cannot be collected unless there is a disconnection exceeding
the leaseValue timeout.

In AmbientTalk, we designed leasing language abstractions that gives developers
fine-grained scoping mechanisms to decide which leasing agreement should be used
when and where:

• Leased references allow developers to specify leasing agreements in a per-object
basis.

• Due-type message sends allow developers to specify different leasing agree-
ments on a per-message basis.

• Leased references and due-type messages have been complemented with two
dynamic scoping abstractions. Leasing strategies and leasing protocols allow
developers to specify leasing agreements to a group of objects and messages,
respectively. Leasing strategies the alleviate burden of expressing leasing in a
per-object basis, enabling a group of objects to be passed to client objects under
the same leasing agreement. When a group of messages share the same timing
assumptions, these timing assumptions do not have to be repeated at the level of
each message send; this can be encoded using a leased message protocol.

Moreover, AmbientTalk decouples the notion of network connectivity from failure
handling. As such, a leased reference becomes expired even if a it was still connected
when its lease term elapsed.

Criterion #3: A Customizable Leasing Framework The Java RMI leasing model
is not designed to enable programmers to deviate from the default leasing behaviour.
The system provides an interface to the distributed garbage collection module based on
so-called dirty and clean calls. However, such interface is not meant to be used by ap-
plication programmers. Leasing patterns such as the renew-on-call pattern used by the
music application needs to be implemented explicitly, requiring repetitive renewal code
at client and server-side. In AmbientTalk, useful leasing management patterns have
been made available in the form of dedicated leased references such as the renew-on-
call and revoke-on-call leased references. Since leased references have been designed
as an open implementation, meta-level engineers can build custom leasing variants not
provided in the default implementation.

150 CHAPTER 6. AMBIENT-ORIENTED LEASING

Criterion#4: Symmetric Expiration Handling No notification is performed in Java
RMI upon lease expiration. Client objects are notified about the expiration of a lease
only if they issue a remote method call on an expired lease (which throws an excep-
tion). At server side, the unreferenced method is called on a remote object only
when all clients disconnect. In the music player application, the registration of listen-
ers with leases had to be explicitly encoded. In AmbientTalk, dedicated language con-
structs are provided for the registration of expiration listeners at both sides of a leased
reference. This enables communicating parties to schedule appropriate compensating
actions when their logical connections terminates.

6.9 Limitations and Future Work
We now discuss some limitations of our leasing abstractions and give some hints on
how we think they can be addressed in future work.

Service Discovery A limitation of our current implementation is that leased refer-
ence have not been integrated with Ambientalk’s service discovery constructs. In order
to limit the time that objects are explicitly exported on the network as featured by some
service discovery abstractions like Jini’s lookup service, developers must declare an
object with a lease before calling the export:as: construct (cf. Section 4.4.2). We
would like to provide an extension to the export:as: construct to ease the export
objects with a lease. However, this requires changes on the underlying language ker-
nel. This is a technical limitation derived from the fact that the AmbientTalk kernel
language employs itself an event-loop concurrency model to implement all concurrent
activities such as AmbientTalk virtual machines. Since service discovery has been
modeled as a separate event loop within an AmbientTalk VM, the serialization and
deserialization of explicitly exported objects currently do not trigger as expected the
object marshalling protocol (cf. Section 4.6.3) on which leased references rely.

Conditional Leases As we mentioned in Section 6.2, a term that lasts until a specific
event occurs is called a conditional term. An event can be described in the program-
ming language model as a method call on the service object, or a predicate defining
application-specific conditions. Although our implementation includes a conditional
term object (as explained in Section 6.7.2), we have not yet studied the integration of
conditional terms in leased object references. Note that since a conditional term is not
associated with a specific time limit, the duration is not certain at the time of the grant.
Consequently, the meaning of lease term management changes. For example, it is not
evident what it means to renew, extend, or sublease a conditional term since its length is
not definite. It would be interesting to study whether and how our scoping abstractions
can be applied to conditional terms.

Leasing Management Patterns In order to ease selecting a suitable lease duration,
we explored leased references as an extensible open implementation in which several
leasing management patterns are provided and allows meta-level engineers to encode
custom ones. Other research has focused on analytical models for comparing lease pro-
tocols and determining the optimal lease duration [BRL01, DST03, VZKS11]. In this
context, some interesting ideas have been proposed to adapt the lease duration based on
different conditions. For example, in [DST03], Duvvuri et al. describe three strategies

6.9. LIMITATIONS AND FUTURE WORK 151

to determine the lease duration based on the object access pattern, and server space.
More concretely, age-based leases provide a leasing strategy in which the server grants
short leases to frequently modified objects and long leases to long lived ones, while
renewal frequency-based leases implement a strategy in which the server grants longer
leases to “popular” objects (object that are frequently accessed). Finally, a third strat-
egy is provided by state space overhead-based leases in which the lease duration is set
according to the number of valid leases granted for a particular object. An interesting
topic of future work would be to enlarge the set of default leasing patterns to offer such
adaptive techniques. Their implementation is definitely possible since our underlying
transmitter-receptor model allows meta-level engineers to monitor accesses and mod-
ifications on the referenced objects (by means of the asynchronous message process
protocol described in Section 5.2.2), and to control the remote references being created
within an actor (by means of the actor’s reference management protocol described in
Section 5.3.1.1). However, it remains to be investigated whether and how the intercep-
tor API described in Section 6.7 needs to be modified in order to accommodate such
leasing variants.

Leasing Strategies As previously mentioned, leasing strategies employ a similar
scoping mechanism than the one found in context-oriented programming [CH05]. Sim-
ilar to ContextL layers, our leasing strategies can be activated and deactivated at run-
time. While activation and deactivation of layers is thread-local in ContextL, our leas-
ing strategies are local to an actor. ContextL allows developers to dynamically com-
pose layers by nesting the with-active-layers construct within the control flow
of a program. In contrast to ContextL, two leasing strategies cannot be simultane-
ously active at the same time for a given actor. The main reason for this is that, in
our context, a leasing strategy represents the parameter passing strategy for a group of
objects, rather than behavioral variations of arbitrary code (expressed as partial class
definitions). The composition of leasing strategies is more problematic than layer com-
position in context-oriented programming languages because it is more prone to raise
conflicting behaviour. This could be alleviated by introducing a mechanism in which
developers could express dependency relationships among leasing strategies (e.g., to
allow or disallow certain leasing strategies compositions). Composition mechanisms
for leasing strategies remains a relevant open issue.

Scoping mechanisms similar to the ones supported in context-oriented program-
ming have attracted considerable attention in the aspect-oriented community. For ex-
ample, the CaesarJ [AGMO06] language supports dynamic deployment of aspect on
thread-local scope. Tanter in [Tan08] identifies the problem of existing scoping mod-
els for dynamic aspect deployment as a lack of control over propagation of an aspect
both along call stack and delayed evaluation, as well as deployment-specific join point
filters. Our leasing strategies get propagated on the “call stack” (which in our work
corresponds to the history of asynchronous message sends), but they do not get applied
to certain delayed evaluation. According to Tanter, delayed evaluation propagation
determines the propagation of an aspect in a closure or object created in the lexical
scope of the aspect body. While our withLeaseStrategy:do: construct can capture
object created within its scope, a lease strategy is not engrained to closures so later
closure applications are out of its reach. This is a technical limitation of our software
platform (shared also with leased message protocols) due to the fact that AmbientTalk
does not allow to modify closure creation reflectively, requiring changes in the kernel
interpreter. However, we have modified the most relevant delayed computation con-

152 CHAPTER 6. AMBIENT-ORIENTED LEASING

structs for distribution (when:becomes: and whenever:discovered:) to be able to
reset the active leasing strategy or leased message protocol when those handlers are
applied.

Filtering objects exported within the withLeaseStrategy:do block can be
achieved in our approach by explicitly deactivating the leasing strategy at all required
locations. To address the identified issue, Tanter introduces the notion of deployment
strategies which expresses the scoping semantics of a dynamically-deployed aspect in a
parameterized way by means of three components: two propagation functions to spec-
ify whether an aspect propagates along the call stack and within delayed evaluation,
and a join point filter to filter the joint points seen by the aspect. An interesting point
of future work would be to bring ideas of such a parameterized approach into leasing
strategies in order to provide fine-grained control over scoping of leased references.

6.10 Notes on Related Work
Before concluding this chapter, we describe the most closely related leasing models,
and we highlight the lease-based approaches which have influenced the design of our
leasing model. The notion of lease has been applied to distributed computing to solve
a number of problems such as consistency maintenance, resource management, and
memory management. In this work, we have mostly combined ideas of both lifetime
management and resource management approaches. Moreover, it exposes leases as
first-class values.

6.10.1 Consistency Maintenance
Leases were first introduced by Gray et Cheriton in the context of distributed file cache
consistency protocols to provide mutual exclusion in an efficient and fault-tolerant fash-
ion [GC89]. In this context, a lease grants control over writes to a certain datum during
the term of the lease. In order to read a datum, a client first needs to acquire a lease.
When a client writes a datum, the server invalidates the cached datum of all clients
whose leases have not expired, and postpones the write until it obtains the leaseholders
approval or until the leases expire. In order to read the datum after the lease expires,
a client must first ask the server to renew the lease before it can access the datum.
Leases provide strong consistency semantics by notifying active clients (clients hold-
ing a lease) when a datum changes. However, they may incur a considerable overhead
as each datum has an associated lease and all its updates must be notified.

Several extensions have been proposed to make leases scalable for maintaining
consistency in web proxy caches by allowing a server to grant a lease for a group
of data on the server [YADL99, NKS+02]. A cooperative lease belongs to a group
represented by a leader that is responsible for managing all leased-based operations
with the server, e.g., renewal of the individual object leases, and propagating updates on
an object in the group to clients that are caching it. Interestingly, different policies for
lease renewals can be applied to cooperative leases. An eager renewal policy implies
that the leader renews the lease upon expiration until it is notified by the client not to do
so. A lazy renewal policy, on the other hand, does not renew the lease but sends a “lease
expired” messages to all clients within the group which can then request renewal when
the object is accessed. Our renew-on-call lease variant is similar to eager renewals,
but renewal does not happens after lease expiration but while the lease is active upon
message sending on a leased reference.

6.10. NOTES ON RELATED WORK 153

Most current leasing models stem from the original proposition by Gray et Cheri-
ton in which the notion of a lease is coupled with a global time and assumes syn-
chronized clocks. Interestingly, asynchronous leasing [BDG02] proposes an imple-
mentation of leasing where physical time is replaced by logical time (represented as a
interval of integers). Leasing is then implemented with a quorum-based algorithm in
which a lease is represented by a shared object exporting a lease(startInterval,
endInterval) function. Upon invoking this function, a process sends a LEASE mes-
sage to all processes, and returns true if it receives an ACK LEASE message from the
majority of processes. Each processes contains a permission tree representing the time
interval and acknowledges a lease request according to two properties: (1) a lease is
acquired at most once for a given interval (called at most leasing property), and (2)
a lease cannot be refused if no lease has been requested for an overlapping interval
(called lease mandatory property). In spite of the fact that the algorithm has been de-
signed for an asynchronous system, it is not suitable for a mobile setting because it
assumes a crash-stop failure model (i.e., processes fail by crashing and do not recover
from a crash).

6.10.2 Memory Management
Leases have also been used as a technique for memory management to describe the
lifetime of remote objects in a fault-tolerant fashion. In particular, they have been in-
corporated in some distributed object-oriented systems including Java RMI [Sun98],
and .NET Remoting [MWN02] to enable the reclamation of objects in the face of fail-
ures of client objects. We now further describe how these leasing models related to our
approach in the light of the criteria distilled in Section 6.1.2.

6.10.2.1 Java RMI

We have already extensively discussed Java RMI in Section 6.8. To sum up, leases in
Java RMI are tightly coupled to the distributed garbage collector (DGC) which is based
on the algorithm introduced by Birrell for network objects [ABW93, BNOW93]. More
concretely, Birrell proposed a distributed reference listing algorithm which included
a time-based mechanism to detect process failures and update the reference tables ac-
cordingly. Each process periodically pings the clients that hold references to its objects;
if the ping is not acknowledged after a certain amount of time, the client is assumed to
have terminated, and objects that it referred to may become candidate for garbage col-
lection. Java RMI adopted this algorithm employing the “lease” terminology instead.
Java RMI’s leases are built into a synchronous communication model (based on RPC)
which does not decouple objects in time or synchronization [EFGA03]. As such, they
are only be used to reclaim unused connected remote references.

6.10.2.2 .NET Remoting

The .NET Remoting framework incorporates leasing in combination with the concept
of sponsorship for managing the lifetime of remote objects [Low03]. Sponsors are
third-party objects which are contacted by the framework when a lease expires in order
to check whether or not that party is willing to renew the lease. Clients can register a
sponsor on a lease and thus decide on the lifetime of server objects.

Similar to JavaRMI, the .NET Remoting framework leases are used to reclaim un-
used connected remote references. In contrast to the low-level primitives offered in

154 CHAPTER 6. AMBIENT-ORIENTED LEASING

JavaRMI, the .NET Remoting framework incorporates a leasing pattern at the heart of
its design. Leases are automatically extended on every call on the remote object by the
time specified in the RenewOnCallTime property. If that property is not set, lease
renewal can be achieved by registering a sponsor. Variations on the integrated pattern
need to be built on top of sponsor and lease interface abstractions. The lease interface
provides methods for overriding some leasing properties (e.g. RenewOnCallTime),
renewing the lease, and the registration of sponsors.

Expiration handling is not provided in the .NET Remoting framework. Although
the system does indeed contact sponsors upon lease expiration, there are no guaran-
tees that the system will contact the sponsor of a specific client as it may ask several
sponsors until it finds one willing to renew the lease.

6.10.3 Resource Management
In [JK00], Jain and Kircher described the concept of leasing as a software design
pattern for simplifying resource management. We now discuss a number of object-
oriented systems that follow such a practice of applying leases as a general abstraction
for resource management with regard to the criteria introduced in Section 6.1.2.

6.10.3.1 CORBA

Alesky et al. present in [AKS05] a service-based approach to introduce the concept
of leasing into the CORBA specification. In order to provide reusable leasing func-
tionality for different CORBA-based applications (independent of their programming
language), leasing is modeled as a dedicated CORBA service. In this context, a lease
denotes the right of a resource claimant to use a resource for a limited period of time,
and offer methods to renew and revoke its duration. A resource can be practically any
CORBA entity as long as it implements two methods (used by leases) to start and stop
the use of the resource.

The authors integrate two types of leasing patterns depending on the type of re-
source claimant. First, observed claimants receive a lease which observes the claimant
so that if it terminates, the lease gets cancelled. The object is periodically queried to
detect if it is still alive. Due to the volatile connections phenomenon, such leases do
not seem appropriate for a mobile setting: the claimants may only be disconnected
temporarily, causing the lease to be cancelled erroneously. Second, notified resource
claimants receive a lease which notifies the claimant as soon as it expires. The lease
is then automatically renewed once at server side to give the claimant sufficient time
to renew the lease if necessary. Other leasing patterns may be possible but need to be
built on top of the above mentioned architecture, e.g., automatic renewal of leases can
be accomplished by making explicit renew calls on the lease interface.

To the best of our knowledge, expiration handling is only supported at the client
side using notified claimants.

6.10.3.2 Jini

Jini has been already discussed in Section 3.3.1.1 as a framework built on top of Java
which allows clients and services to discover and set up an ad hoc network. We now
focus our discussion on its leasing model. Jini introduces leasing to deal with unan-
nounced disconnections of clients and services within the federation. In particular, ser-
vices advertise themselves in the lookup service for a particular duration determined

6.11. CONCLUSION 155

by the registration leased handed out by the lookup service itself. Services must be ex-
plicitly renew their lease and if they cannot, the lookup service will remove the service
advertisement upon lease expiration.

In order to ease renewal operations, Jini provides a data structure for the systematic
renewal of a set of leases. Leasing patterns can be built using such a lease renewal ser-
vice which can act as a intermediary implementing the protocol to communicate with
the remote service. Expiration handling can be achieved at client side by registering an
event listener on a lease renewal set. When the lease is about to expire, an expiration
warning event is generated notifying all registered listeners for that set.

In [BMR03], Bowers et al. propose an interesting extension to Jini’s leasing model
for varying lease periods in response to the system size. In particular, the authors
consider two self-adaptive algorithms that enable a Jini system to change the lease
duration in order to guarantee a minimum average responsiveness of a Jini’s lookup
service. One algorithm restricts lease term based on bandwidth consumption of the
leasing system to provide best responsiveness of the as the system size varies. The
second algorithm inverts the process of granting a lease by making the lookup service
periodically poll on a multicast channel from which lease holders listen. A poll includes
the duration over which the lookup service will listen for leaseholders to respond, and
the time increment over the given duration when the next poll can be expected. If
the leaseholder does not respond within the broadcasted duration, the lookup service
cancels the lease.

Finally, as previously mentioned, Jini relies on the synchronous communication
model of Java RMI. Although Jini’s architecture is flexible enough to accommodate a
leasing model integrated with a decoupled communication model, to the best of our
knowledge, Jini does not implement this functionality.

6.11 Conclusion
In this work, we propose to devise a failure handling model for MANETs that is cen-
tered around the concept of leasing. At the beginning of this chapter, we identified a
number of criteria to be exhibited by a leasing model to be used in a MANET setting.
We require a leasing model that (1) takes into account the volatile connections phe-
nomenon, (2) provides different leasing patterns to manage the lifetime of leases, (3)
provides facilities to enable experienced developers to construct new custom leasing
variants, and (4) allows both lease holder and grantor to react to and schedule clean-up
actions upon lease expiration. Subsequently, we proposed a leasing model which incor-
porates the concept of a lease as a first-class object that exposes a number of methods
that can be overridden, enabling meta-level engineers to express new kinds of leasing
agreements among distributed processes.

We integrated the lease concept into AmbientTalk’s distributed communication
model giving rise to the abstraction of a leased object reference: a time-decoupled
object reference which deals with both transient and permanents failures. We de-
signed leased references as an extensible framework which integrates useful patterns,
e.g., renew-on-call and single-call leased references, and provides a well-defined API
on which custom leased reference variants can be built.

We have also integrated the lease concept into AmbientTalk’s distributed computa-
tion model giving rise to due-type messages. Due-type message enable developers to
steer the message delivery process, when the default timing assumptions provided by a
leased reference are not suitable for individual messages.

156 CHAPTER 6. AMBIENT-ORIENTED LEASING

Finally, we have investigated novel language abstractions to alleviate the program-
ming effort that leasing introduces in the form of leasing strategies and leased message
protocols. Leasing strategies enable developers to assign the same leasing semantics
to a group of objects passed to remote parties within a dynamic execution extent of a
code block. Leased message protocols allow programmers to abstract the timing as-
sumption of a group of messages into a separate abstraction, avoiding that they need to
be manually specified for each message send.

In the next chapter, we investigate the applicability of ambient-oriented leasing into
a data-driven model, namely, the tuple space model.

Chapter 7

Ambient-Oriented Leasing for
Tuple Spaces

Until now we have mainly focused on combining leasing with decoupled communi-
cation in a distributed object-oriented model. However, data-driven models like tuple
spaces and publish/subscribe also exhibit some forms of decoupled communication
interesting for a mobile environment as discussed in Chapter 3. In this chapter, we
make a first integration of ambient-oriented leasing into tuple spaces (described in
Section 3.3.2). While the incarnation of ambient-oriented leasing into a distributed
object-oriented model explained in the previous chapter builds upon the decoupled
communication model present in AmbientTalk, the embodiment of ambient-oriented
leasing for tuple spaces entails both the design and implementation of a tuple space
model, and the incorporation of leasing into the model. This has led us to propose a
novel tuple space approach called TOTAM (“Tuples On The Ambient”) inspired by
TOTA (cf. Section 3.3.2.2). We describe how TOTAM enables an ambient-oriented
programming style by integrating leasing for tuple management in the face of partial
failures. We first motivate our work, and then describe the TOTAM tuple space model
(in Section 7.2) and its concrete implementation in AmbientTalk (in Section 7.3). We
demonstrate the applicability of our model by using it in a non-trivial mobile peer-to-
peer application (in Section 7.4) and provide an operational semantics for our model (in
Section 7.5). TOTAM’s design and implementation is attributed to the author together
with Christophe Scholliers [SGD09, SGBDMD10].

7.1 Motivation
TOTAM has been designed with the goal of integrating a failure handling model (ad-
hering to the criteria distilled in Section 2.4) for the tuple space paradigm. We motivate
the need for TOTAM based on a number of software engineering issues exhibited by
prior tuple space models targeting the mobile environment. We focus our discussion
on two aspects: (1) how they support a decoupled communication model, and (2) how
they deal with network failures and the extremely dynamic context to which MANETs
expose applications.

Decoupled Communication. Most tuple space-based approaches targeting the mo-
bile environment follow either a the federated tuple space model (including LIME

157

158 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

[MPR01], TuCSon [OZ99], and EgoSpaces [JR04]), or a replication-based model
(such as TOTA [MZ04] and [MP06]). Recall from Section 3.3.2 that, in a federated
tuple space model, the set of tuples accessible for a device consists of all the tuples
that each device in the vicinity carries in its tuple space. Devices can post and read
tuples from such a federated tuple space by means of the traditional tuple space opera-
tions, and non-blocking operations are provided to read tuples by means of reactions:
callbacks that trigger asynchronously when a matching tuple becomes available in the
tuple space. In this model, however, time decoupling is sacrificed in order to guaran-
tee atomicity for tuple removal operations since tuples can only be exchanged when
the communication partner that issued a tuple space operation is in range of the de-
vice offering the requested tuple. In contrast, in a replication-based model, tuples are
replicated among collocated devices in order to increase data availability in the face
of intermittent connectivity. In TOTA’s model, tuples are also equipped with a propa-
gation rule that prescribes how a tuple is to hop from one tuple space to another one.
These propagation rules provide programmers with a flexible mechanism to express
more elaborate kinds of tuple sharing than simple merging of tuple spaces as proposed
by LIME. Tuples can be thus exploited to achieve context-awareness based not only on
connectivity but also on semantic information. Removal of tuples, however, needs to be
manually encoded in terms of the propagation rules; as such atomic removal of tuples
is not guaranteed by the underlying system. Nevertheless, atomicity for removal oper-
ations is an essential feature to support coordination between applications. In addition,
since tuples are transmitted to all communication partners, information cannot be hid-
den or scoped. By transmitting tuples potential malicious or non-intended users may
be provided with sensitive information, as well as increasing the burden on network
traffic.

Context-Awareness. Current tuple spaces developed for the mobile environment pro-
mote a style of coordination that abstracts away from the mobility and distribution of
devices in the environment, easing the development of MANET applications. However,
this may be too restrictive for certain applications requiring higher degrees of context-
awareness [MLE02]. For example, context information can be used to optimize appli-
cation behaviour given the scarce resources of mobile devices. To deal with this issue,
LIME extends traditional tuple space operations with a location that allows users to
post tuples annotated with the tuple’s intended destination tuple space [MPR01]. How-
ever, this trades decoupling in space and the anonymous communication style of tuple
spaces for more control over the underlying system configuration (since developers can
obtain details about the nodes present in the network and use them to specify the tuple
space in which a tuple should be placed).

In general, context information in tuple spaces is represented by the ability to read
certain tuples from the environment. However, this representation is inappropriate and
can even lead to an erroneous perception of context in both federated and replication-
based tuple space models. The former ties the perception of context to network con-
nectivity which does not always yield the expected result because the visibility of the
tuples (and thus context) depends on collocation of devices holding these tuples. The
latter causes context to be perceived even if a device has left that context a long time
ago because a permanent disconnection leads devices to perceive they are in the ap-
plication’s context forever. In short, the main issue is that the ability to read a tuple
from the environment does not give any guarantees that the context information carried
by the tuple is appropriate for the reader. This forces programmers to manually verify

7.2. TOTAM: AMBIENT-ORIENTED PROGRAMMING WITH TUPLE SPACES159

that a tuple is valid for the application’s context situation after the tuple is read. As
the complexity of applications increases, it becomes impractical for programmers to
explicitly maintain a view of the application context and adapt it accordingly as the
environment changes.

While many approaches allow to monitor the connection status of the devices form-
ing part of the underlying network using dedicated tuples, very few of them provide a
high-level representation of failures. The most notable exception is Tiamat [ME03], a
federated model which includes a leasing model to allow programmers to specify upper
boundaries on the availability of tuples in the tuple space.

7.2 TOTAM: Ambient-oriented Programming with Tu-
ple Spaces

In this work, we introduce TOTAM, a novel tuple space model that gathers concepts
from both federated and replication-based tuple spaces, and extends them with a num-
ber of features to overcome the aforementioned limitations (i.e., an ambient-oriented
programming style with a leasing model, a scoping mechanism, and context rules), and
offer a coherent tuple space-based programming model for MANET applications. In
the remainder of this section, we sum up the most important features of our model.

The Core Model The model underlying TOTAM tuples extends the notion of a tra-
ditional tuple space with machinery to control the scope and visibility of tuples. Fig-
ure 7.1 depicts our model. A device in the network corresponds to a virtual machine
(VM) carrying one or more TOTAM tuple spaces. Each virtual machine forms a TO-
TAM system. TOTAM systems are interconnected by means of a MANET, forming a
TOTAM network. The composition of a TOTAM network varies with to the changes on
the network topology as devices move about.

VM VM

flow of tuples in the model

Applications

Applications

 Tuple Space System

Tuple
Space Rule Engine Tuple Space System

Tuple
Space

Rule
Engine

Tuple Space System

Tuple
Space

Rule
Engine

Figure 7.1: The TOTAM tuple space model.

A TOTAM system consists of a tuple space, and a rule engine which infers when a
tuple should be perceived by applications. The tuple space serves as the interface be-
tween applications and the TOTAM system. As an alternative to blocking operations,
we provide the notion of a reaction to a tuple (similar to LIME reactions [MPR01]): ap-
plications can register an observer that is asynchronously notified when a tuple match-
ing a given template is read or removed from the tuple space.

The tuple space of a TOTAM system contains two types of tuples. Public tuples
denote tuples that are shared with remote TOTAM systems, and private tuples denote

160 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

tuples that remain local to the tuple space in which they were inserted and thus will
not be transmitted to other TOTAM systems. Applications can insert private and public
tuples in the tuple space by means of the out and inject operation, respectively. As
in LIME, applications can access tuples coming from the network without knowing the
different collocated TOTAM systems explicitly.

Distribution of Tuples in the Network When two TOTAM systems discover each
other in the network, the public tuples contained in their tuple spaces are cloned and
transmitted to the collocated TOTAM system according to a propagation protocol
(reminiscent of TOTA propagation rules). However, in contrast to TOTA, TOTAM
triggers the propagation protocol before a tuple is being physically transmitted to a
new TOTAM system, and after it is received by the new TOTAM system. Thus, the
tuple itself contains all the information needed to dynamically adjust its scope in the
TOTAM network while being propagated. This differs from techniques in which the
tuple space itself is scoped and tuples have to be inserted in a certain scope which can
not be changed after the facts. In addition, such a scoping mechanism avoids unneces-
sary exchange of tuples and enhances privacy because the protocol can enforce that a
tuple is not transmitted to a TOTAM system which is not in its scope.

To be able to compute the scope of a tuple, each tuple space has a tuple space
descriptor. This descriptor contains semantic information that is used by the tuples
at sending time in order to decide whether a certain TOTAM system is in their scope.
Descriptors are exchanged between two TOTAM systems when they meet for the first
time or whenever a system decides to change its description.

Coordination Our model combines replication of tuples for read operations (to sup-
port time-decoupled communication) while guaranteeing atomicity for removal oper-
ations (to support synchronization). In order for a remove operation to succeed, the
system which created and injected the tuple in the network (called the originator sys-
tem) needs to be connected. The underlying model does not remove tuples unless the
originator system has acknowledged the operation. As such, a remove operation in our
approach is executed atomically as defined in Linda [Gel85]: if two processes perform
a remove operation for a tuple, only one removes the tuple. When an originator is asked
to remove one of its (stored) tuples by another system, it removes the tuple and injects
an antituple for the removed tuple in the network. By means of antituples, TOTAM
systems can “unsend” tuples injected to the network. For every tuple there is (concep-
tually) a unique antituple with the same format and content, but with a different sign.
All tuples injected by an application have positive sign while their antituples have a
negative sign. Whenever a tuple and its antituple are stored in the same tuple space,
they annihilate one another, i.e., they both get removed from the tuple space.

Supporting Context-awareness TOTAM tuples can carry a context rule that de-
scribes the runtime conditions under which the tuple is visible to an application, fa-
cilitating the development of context-aware applications deployed in a mobile environ-
ment. More precisely, a context rule is conceived as a set of conditions defined in terms
of the presence of other tuples in the receiving tuple space. Such context rule is defined
by the creator of the tuple and gets transmitted together with the tuple when the tuple
is injected in the network. Defining context rules in terms of tuples allows the applica-
tion to abstract away from the underlying hardware while keeping the simplicity of the
tuple space model (both interactions and context information are defined using tuples).

7.2. AMBIENT-ORIENTED PROGRAMMING WITH TUPLE SPACES 161

Perceivable
CR Deactivation

in [template]

[!context rule] /
OC Listeners

Non-perceivable
CR Activation

Non-perceivable
CR Retracted

Non-perceivable
CR Deactivation

[context rule]

rd [template] out [!context rule]

[!context rule] /
OC Listeners

Figure 7.2: Lifespan of a context-aware tuple

When a tuple is inserted at a certain TOTAM system, the tuple is first handed over
to the rule engine which installs the necessary machinery to evaluate the tuple’s context
rule. When the rule engine infers that the conditions on a context rule are satisfied, the
tuple’s context rule is triggered and the rule is said to be satisfied. Only when the
context rule of a tuple is satisfied, is the tuple inserted in the tuple space of the TOTAM
system. At that moment, the applications are able to read the tuple.

The rule engine plays a central role in our model as it takes care of reflecting
the changes to the receiver’s context so that applications cannot perceive those tuples
whose context rule is not satisfied. In particular, it observes the insertion and removal
of the tuples in the tuple space to infer which context rules are satisfied, and subse-
quently control which tuples present in the tuple space should be actually accessible by
applications. As a result, programmers no longer need to infer the presence or absence
of tuples manually as the rule engine takes care of it in an efficient way, making the
code easier to understand and maintain.

The Lifespan of a Context-aware Tuple Context rules introduce a new dimension
to the lifespan of a tuple. Not only can a tuple be inserted or removed from the tuple
space, it can now also be perceivable or non-perceivable for the application. Figure 7.2
shows a UML-state diagram for the lifespan of a context-aware tuple, i.e., a TOTAM
tuple carrying a context rule. When an application inserts a tuple in a TOTAM system1,
the tuple is non-perceivable and its context rule is asserted by the rule engine. The rule
engine then starts listening for the activation of that context rule (CR activation in the
figure).

A tuple will become perceivable depending on whether or not the context rule is
satisfied. If the context rule is satisfied, the tuple is perceivable and it is subject to
tuple space operations (and thus becomes accessible to the application). If the tuple is
non-perceivable, the tuple is not subject to tuple space operations but its context rule
remains in the rule engine. Every time a tuple’s context rule is not satisfied, the out-of-
context listeners of a tuple (OC listeners in the figure) are triggered. Applications can
install listeners to be notified when a tuple moves out of context.

Upon performing an in operation, the tuple is removed from the tuple space but its
context is not modified. As such, the tuple is considered not to be perceivable (as it is
no longer in the tuple space) and its context rule remains in the rule engine. Once out
of the tuple space, the rule engine listens for the deactivation of the context rule. Once

1To keep the figure concise out denotes the insertion of a private or a public tuple.

162 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

the context rule is no longer satisfied, the context rule is retracted from the rule engine,
and the tuple will be eventually garbage collected.

A Best Effort Leasing Model In order to support resource management in the face
of permanent disconnections, we integrate our leasing model into public tuples. De-
signing a leasing model for a replication-based model, however, is challenging because
tuples get replicated through a highly dynamic network topology. The main problem
is that at the moment a tuple needs to be removed it might not be possible to reach
all systems where it was replicated to. As a result, ensuring global consistency across
the network may be impossible to attain without incurring communication overhead,
or making assumption about the mobility of devices [MP06].

In TOTAM, we have introduced a leasing model which does not guarantee strong
consistency, but only guarantees best effort. The underlying system tries hard to remove
all replicas of a tuple, but does not give guarantees when/if this will happen. It is
important to notice that the system does guarantee that the tuple is only removed once.
All tuples are injected in the network with an associated lease denoting the total lifespan
of a tuple. It is determined by the application that creates and injects the tuple to
the network. Programmers can specify the lease time interval by means of dedicated
support (explained later).

A lease is encoded as part of the propagation protocol, and as such, it is transmitted
together with the tuple when it gets replicated and transmitted to another TOTAM sys-
tem. When the lease term has elapsed, independently of the state in which a tuple is,
the tuple becomes candidate for garbage collection in the TOTAM system. This means
that the tuple’s context rule is retracted from the rule engine, and the tuple is removed
from the tuple space if necessary.

The transitions for leasing have been omitted from Figure 7.2 to keep it clear and
concise. The lease of a tuple adds a transition from any state to the state representing
that a tuple is non-perceivable and its context rule is retracted. When a public tuple
gets removed as a result of an in operation, the underlying system sends an antituple
to those systems that have previously received a replica of the removed tuple. If a
TOTAM system cannot be reached, the removal of the tuple is delayed until its lease
expires in the disconnected TOTAM system, or until it is in range with one of the
TOTAM systems carrying its antituple.

7.3 Programming in TOTAM
In this section we describe TOTAM from a programmer’s perspective. We have imple-
mented TOTAM as a middleware in AmbientTalk2. Table 7.1 summarizes TOTAM’s
programming API which we further detail in this section. We illustrate the set of op-
erations provided by TOTAM by means of a concrete application called Guanotes that
we use as running example throughout this section.

7.3.1 Running Example: the Guanotes Application
Guanotes is one of the default applications of Urbiflock [GBLCS+11]: a framework
implemented in AmbientTalk for the development of mobile social applications run-

2TOTAM is available in the AmbientTalk standard library which can be downloaded with the language
at http://soft.vub.ac.be/amop

http://soft.vub.ac.be/amop

7.3. PROGRAMMING IN TOTAM 163

Middleware operations
makeTupleSpace(descriptor) creates a tuple space with the given descriptor.
tuple: content

withPropagationProtocol: protocol

creates a tuple with the given list
of fields. The optional parameter
withPropagationProtocol: denotes
the propagation protocol by which the tuple
may be injected in the network.

propagationProtocol: closure returns a protocol object which extends the de-
fault propagation protocol with the given code
block.

var: symbol return a variable from the given symbol.

Tuple space operations
goOnline publishes the tuple space in the TOTAM net-

work.
rdp(template) returns a tuple matching the template or nil if

none is present at the time of invocation.
rdg(template) returns all tuples matching the template or nil

if none is present at the time of invocation.
out(tuple, lease) adds a private tuple to the tuple space.
inject: tuple inContext: rule

withLease: interval

adds a public tuple to the tuple space.
inContext: and withLease: optional pa-
rameters allow to specify the associated context
rule and (lease) time interval, respectively. It re-
turns a publication object with methods to stop
the tuple’s propagation, and retract it from the
network.

when: template read: closure

outOfContext: oocClosure

registers a reaction on the tuple space for the
given template. When a tuple matching the
template is available in the tuple space, the
closure listener is applied binding all vari-
ables of the template to the matching tuple. Op-
tionally, the outOfContext: closure can be
specified to react when the matching tuple is no
longer perceivable.

when: template in: closure

outOfContext: oocClosure

works analogously to when:read:
outOfContext: operation, but registers
a reaction on the removal of a tuple matching
the template.

whenever: template read: closure

outOfContext: oocClosure

works analogously to when:read:
outOfContext: operation, but triggers
the closure listener for every perceivable
tuple matching the template.

whenever: template in: closure

outOfContext: oocClosure

works analogously to when:in:
outOfContext: operation, but triggers
the closure listener for every perceivable
tuple matching the template.

Table 7.1: Programming API of TOTAM

164 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

ning on Android phones (inspired by Facebook). It allow end-users to interact with
their social networks (organized in flocks) by means of messages. A flock typically de-
notes a group of nearby users that match a number of user-defined criteria. Messages in
Guanotes are called guanotes. A guanote can be sent to the users belonging to a flock
which are currently in their direct neighbourhood, or to all (reachable) users belonging
to the target flock regardless of whether they are currently connected in the Urbiflock
platform.

To exemplify the kinds of interactions using Guanotes, consider the following sce-
nario: Alice and Bob are in the cafeteria of the university sports complex when they
decide it would be nice to play some badminton. Since reserving the badminton field is
rather expensive, Bob decides to invite some extra players by taking his mobile phone
and using Guanotes to send a message to the couples currently in the neighborhood who
like to play badminton. Luckily, Carol and Denis who also wanted to play badminton
see the invitation. They reply to Bob’s message whereafter they meet and start playing
a game. After the game, they get the wild idea to organize a badminton competition
for next week. Again Bob takes his mobile phone and decides to send an invitation to
all couples at the university who like badminton.

Figure 7.3: Bob’s (a) NearbyFlock, (b) badmintonCouplesFlock, (c) Guanotes inbox
and (d) Guanote editor

Figure 7.3 shows Urbiflock on Bob’s device during the process of typing a guanote
after playing a match with Carol and Denis. In particular, four different screenshots
are displayed: (a) the contents of Bob’s NearbyFlock, (b) the contents of Bob’s
badmintonCouplesFlock, (c) Bob’s Guanotes inbox (that contains a guanote pre-
viously received from Carol replying to his first invitation), and (d) the editor for a new
guanote to invite all his friend’s couples to participate in a badminton tournament. Note
that there are few users collocated at this time with Bob (people in the NearbyFlock
shown in (a)) which belong to the badmintonCouplesFlock (b). As he would
like to reach all couples interested in badminton for the tournament, he selects the
badmintonCouplesFlock in the receiver list in Figure 7.3(d).

7.3.2 Defining and Inserting TOTAM Tuples
In order to create a TOTAM system and add it to the network, programmers can invoke
the makeTupleSpace constructor function as follows:

def totam := makeTupleSpace(descriptor);
totam.goOnline();

7.3. PROGRAMMING IN TOTAM 165

This operation initializes a TOTAM system including the rule engine and the tuple
space. The newly created TOTAM system is then published in the TOTAM network
by means of the goOnline operation. This operation returns a publication object with
a cancel method to be able to remove the system from the TOTAM network. From
then on, the newly created system will perpetually look for other systems in the TO-
TAM network and exchange its descriptor with them.As explained before, the descrip-
tor contains semantic information relevant to the propagation of tuples. In the Guanotes
application, the description is embodied in the user profile which is implemented as an
isolate including fields representing the semantic information associated with the user
(e.g., name, gender, hobbies, etc.).

We provide the out(tuple) operation to insert a private tuple in the tuple space.
In order to insert a public tuple, thereby making it available to other collocated TOTAM
systems, the inject: operation is provided. The code excerpt below illustrates the
injection of the guanote depicted in Figure 7.3(d).

def aGuanote := tuple: [guanote, username, badmintonCouplesFlock,
"Guys, what about a 2-on-2 next week?"];

totam.inject: aGuanote;

A tuple is created by means of the tuple: operation which takes as argument
a list of fields (implemented in AmbientTalk as a table). As usual, the first field
of a tuple is its type name, i.e., a type tag (cf. Section 4.2). In this case, the tu-
ple’s type name is the guanote type tag and a guanote consists of the sender of the
tuple (stored in the username variable), the receiver target group (in this case the
badmintonCouplesFlock group) and a textual message.

In its simplest form, the inject: operation takes as argument a tuple and injects
the tuple into the network with a default context rule (i.e., the context rule is always
true), and a default lease (i.e., a lease time interval predefined at the actor level). It
returns a publication object with two methods: a cancel method that allows program-
mers to stop the propagation of the tuple in the TOTAM network, and a retract

method that allows developers to “unexport” a tuple injected into the network (by mak-
ing the system send an antituple to all TOTAM systems which received that tuple). A
tuple carries a default propagation protocol that propagates its to all reachable TOTAM
systems, exactly as in TOTA, i.e., it does not restrict the propagation of tuples. We
explain how to encode and apply custom propagation protocols in Section 7.3.4.

Table 7.1 shows the complete form of the inject: operation. The withLease:
parameter takes a time interval denoting the specific duration of the lease associated
with the tuple. The inContext: parameter takes a context rule defined as a table
containing the set of templates and constraints that need to be satisfied for the tuple to
be perceivable. Constraints are conceived as logical conditions on the variables used
in a template. For example, consider that certain guanotes are only visible if the user is
in, e.g., the cafeteria area. In order to model that a device is in a room, the application
could inject a dedicated public tuple as follows:

totam.inject: (tuple: [inRoom, cafeteriaRoom])
inContext: [tuple: [location, ?loc], withinBoundary(roomArea,?loc)];

The inRoom tuple is a “helper” tuple which allows a guanote to determine when
the user is in the cafeteria area. To this end, the inRoom tuple carries a context rule
which consists of two terms that need to match:

• First, there must be a tuple in the tuple space encoding the location of the user,

166 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

i.e., matching the tuple: [location,?loc] template3. The ? operator in-
dicates a variable in a template. As shown in Table 7.1, variables are actually
defined using the var: construct which takes a symbol as argument. This chap-
ter will use the ? operator in order to ease the reading. In our example, the
template matches any location tuple in the tuple space.

• Second, the location tuple needs to satisfy a constraint: its coordinates have
to be within the area of the room. The withinBoundary function returns such
a constraint given the coordinates stored in the ?loc variable and the cafeteria
area stored in roomArea variable.

7.3.3 Reading and Removing Tuples from the TOTAM Network
In order to read and remove public tuples from the TOTAM network, programmers
can use reactions to register a block of code that is executed when a tuple matching a
template is inserted in the tuple space, reminiscent to LIME reactions. In what follows,
we describe the 4 kinds of reactions supported (shown in Table 7.1). The when:read:
operation takes as argument a template to observe in the tuple space, and a closure that
serves as a event handler to call when the tuple matching the template is available in the
tuple space. It actually performs a reaction to a read operation, i.e., the matching tuple
is not removed from the tuple space. In its simplest form, the when:read: operation
only triggers the event handler once for a matching tuple. If several perceivable tuples
match the template, one is chosen non-deterministically. The whenever:read: op-
eration works analogously but it triggers the event handler for every perceivable tuple
matching the template. The code excerpt below illustrates the usage of whenever:
read: in the implementation of the Guanotes application.

def listenForGuanotesToOwner(guiListener) {
def guanoteTemplate := tuple: [guanote, ?from, ?to, ?msg];
totam.whenever: guanoteTemplate read: {
guiListener<-guanoteReceived(from, to, msg);

};
};

The listenForGuanotesToOwner function is called from the application GUI
in order to start listening for tuples whose type name is guanote. When a perceivable
tuple matches the template, the read: closure is applied binding all variables of the
template to the values of the matching tuple. In this example, the application just
extracts the information from the tuple and sends it to the GUI listener to be displayed4.

Finally, the when:in: and whenever:in operations work analogously to the pre-
vious ones but, they perform a reaction to a removal operation rather than a read op-
eration. In other words, these operations remove the tuple from the tuple space before
applying the closure block. Recall that if the tuple to be removed comes from an-
other TOTAM system, then the underlying TOTAM system has to contact the originator
TOTAM system to atomically remove the original tuple. If that removal fails, the repli-
cated tuple is not removed from the local tuple space and the closure is simply not
triggered.

Our approach extends a LIME reaction with the notion of context: the event handler
for a reaction can only be triggered when the tuple matching the pattern is perceivable.

3A template is created by means of the tuple: operation as well. However, only templates can take
variables as fields.

4In the actual implementation, the tuple contents are converted into an AmbientTalk object which can be
understood by the Java GUI using AmbientTalk’s interoperability layer.

7.3. PROGRAMMING IN TOTAM 167

The complete forms of the previously described operations allows developers to re-
act to a tuple moving out of context by installing an outOfContext listener. In the
code snippet, the whenever:read:outOfContext: operation expresses that certain
guanotes are only visible from within a certain room.

def inroomTemplate := tuple: [inRoom,?name];
totam.whenever: inroomTemplate read: {

guiListener<-display("You are in room" + name);
} outOfContext: {

guiListener<-display("You moved out of room" + name);
};

In this case, each time an inRoom tuple is matched, the application detects that the
user moved in a certain room. Once the user leaves the room, the inRoom’s context rule
is no longer satisfied and the outOfContext closure is applied. In short, the extended
versions of when(ever):* operations asynchronously apply the first closure when
the tuple is perceivable, and the outOfContext: closure when the context rule of the
matching tuple is not satisfied.

Apart from the reactions previously explained, we also provide the rdp and rdg

operations to read one and all tuples in the tuple space, respectively, that match a given
template (at the point in time when the operation is executed).

7.3.4 Writing Application-Specific Propagation Protocols
As previously mentioned, tuples hop from one TOTAM system to another according to
a propagation protocol carried by the tuple itself. A propagation protocol is encoded
in TOTAM as an isolate object implementing a number of methods which are called
by the the underlying TOTAM system. It basically adapts TOTA propagation rules
API (shown in Listing 3.2) for controlling the propagation of tuples before and after
transmitting a tuple. In this section, we explain the API of TOTAM’s propagation
protocols and how programmers can define custom propagation protocols.

Listing 7.1 shows the protocol before propagating the tuple (i.e., at sender side).
First, decideDie is called. It returns a boolean indicating whether or not the tuple
should be removed. If the protocol decides not to remove the tuple, the protocol will
be asked whether a potential receiver is in the scope of this tuple. inScope takes as
argument the descriptor of the sender and receiver tuple space. The protocol can then
decide to propagate the tuple to the receiver descriptor. Finally, before transmitting the
tuple, the protocol can change its content (line 5).

Listing 7.2 shows the protocol on the receiver side. A tuple is first asked whether
it should enter the receiving tuple space (line 1). It will then be allowed to execute
some action on the local tuple space (line 2). Finally the tuple can change its content

Listing 7.1: The TOTAM propagation protocol at sender side.� �
1 if: tuple.decideDie(tupleSpace) then: {
2 remove(tuple);
3 } else:{
4 if: tuple.inScope(senderDescriptor, receiverDescriptor) then: {
5 tuple := tuple.changeTupleContentOnSend();
6 transmit(tuple,locationOf(receiverDescriptor));
7 }
8 };� �

168 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

Listing 7.2: The TOTAM propagation protocol at receiver side.� �
1 if: tuple.decideEnter(ts) then: {
2 tuple.doAction(ts);
3 tuple := tuple.changeTupleContentOnReceive();
4 if: tuple.decideStore(ts) then: {
5 ts.out(tuple);
6 };
7 tuple
8 } else: { nil };� �

and decide to notify the local tuple space that it arrived (line 3 and 4). Tuples with
a protocol which does not notify the local tuple space can be used e.g., to remove
inappropriate tuples.

The code excerpt below illustrates how the Guanotes application creates a custom
propagation protocol to be carried by guanotes which should only be received by users
within direct communication range, i.e., systems only one hop away.

1 def makeGuanoteToNearbyUsers(from, msg){
2 def oneHopProtocol := propagationProtocol: {
3 def hops := 0;
4 def inScope(senderTs, senderDes, receiverDes) {
5 hops < 1;
6 };
7 def changeTupleContentOnReceive(ts) {
8 hops := hops + 1;
9 self.getContent();

10 };
11 };
12 tuple: [guanote, from, to, msg] withPropagationProtocol: guanotesProtocol;
13 };

propagationProtocol: is an operation that allows the programmer to quickly
create a custom protocol. It expects as argument a code block that is used to extend
the default propagation protocol prototype (which corresponds to a tuple which al-
ways propagates to every tuple space encountered). In this example, the inScope

and changeTupleContent methods are overriden in order to limit the propagation
of the guanote. The inScope method will verify that the tuple has been transmit-
ted only one hop. The changeTupleContent increments the hop counter. Line 12
shows programmers can associate a propagation protocol with a tuple by means of the
tuple:withPropagationProtocol: construct.

7.4 Case Study: Flikken

We demonstrate the applicability of TOTAM’s programming API by showing the im-
plementation of Flikken5: a game in which players equipped with mobile devices inter-
act in a physical environment augmented with virtual objects. Flikken is a significant
subset of an augmented reality game inspired by the industrial game “The Target”6. The
game consists of a dangerous gangster on the loose with the goal of earning 1 million
euro by committing crimes. In order to commit crimes the gangster needs to collect
burglary tools around the city (knives, detonators, etc). Policemen work together to
shoot the gangster before he achieves his goal.

5Flikken means cops in Flemish.
6http://www.lamosca.be/en/the-target

http://www.lamosca.be/en/the-target

7.4. CASE STUDY: FLIKKEN 169

Figure 7.4: Flikken GUI on the gangster device (left) and a policeman device (right).

Figure 7.4 shows the gangster’s as well as a policeman’s mobile device at the time
the gangster has burgled the local casino. The gangster knows the locations with larger
amounts of money (banks, casinos, etc). When a gangster commits a crime, policemen
are informed of the location and the amount of money stolen. Policemen can see the
position of all nearby policemen and send messages to each other in order to coordinate
their movements. The gangster and policemen are frequently informed of each other’s
positions and can shoot at each other.

Flikken epitomizes MANET applications that react to context changes in the envi-
ronment. Examples of such changes include player’s location, appearance and disap-
pearance of players, and the discovery of virtual objects while moving about. More-
over, how to react to these changes highly depends on the receivers of the contextual
information. For example, virtual objects representing burglary tools should only be
perceived by the gangster when he is close to their location while they should not be
perceived by policemen at all. In what follows, we describe the coordination and inter-
action between policemen and the gangster using tuples.

7.4.1 Design
Every player has a TOTAM system. Once the game starts, policemen and gangster
communicate by means of the TOTAM network. Throughout the city various context
providers (i.e., TOTAM systems) are placed playing the role of virtual objects or crime
locations by broadcasting the necessary tuples. A special type of context provider is at
the headquarters (HQ) of the players which signals the start of the chase.

In this section, we only describe the set of tuples coordinating the core functionality
which counts 11 tuples (6 of which carry a custom context rule, and 2 a custom lease)
and 7 reactions. Table 7.2 shows an overview of the tuples used in the game. The
tuples are divided into five categories depending on the entity that injects them in the
environment, i.e., all players, only gangster, only policemen, headquarters and city
context providers. A tuple is denoted by the term τ and the first element of a tuple

170 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

Tuple Content Tuple Context Rule / Lease Tuple Description
All Players

τ (TeamInfo,
uid, gip)

[true] Private tuple denoting the player’s team.

τ (PlayerInfo,
uid, gip, location)

[τ (TeamInfo, ?u, ?team), ?team 6=
gip] / [6 min]

Injected to opposite team members every 6 min-
utes to notify the position of a player. Location is
a 2-tuple indicating the (GPS) coordinates of the
player.

τ (OwnsVirtualObject,
GUN, bullets)

[true] Private tuple inserted by players when they pick up
their gun at their HQ.

Only The Gangster
τ (CrimeCommitted,
name,location,reward)

[τ (TeamInfo, ?u, POLICEMAN)] Notifies policemen that the gangster committed a
crime.

τ (OwnsVirtualObject,
type, properties)

[true] Private tuple inserted when the gangster picks up a
virtual object in the game area.

Only Policemen
τ (PlayerInfo,
uid, gip, location)

[τ (TeamInfo, ?u, gip)] / [1 min] Notifies the position of a policemen to his col-
leagues every time he moves.

Headquarters
τ (InHeadquarters,
location)

[τ (PlayerInfo,?u,?team,?loc),
inRange(location, ?loc)]

Notifies that the player entered his HQ. Used to
start the chase (when this tuple moves out of con-
text for the gangster’s HQ) and to reload police-
men’s guns.

τ (CrimeTarget,
name, location)

[true] Notifies the gangster of the position of crime tar-
gets.

τ (CommitCrime,name,
location,reward,vobj)

[τ (PlayerInfo,?u, GANGSTER,?loc),
inRange(location,?loc),
hasVirtualObjects(vobj)]

Notifies the gangster of the possibility of commit-
ting a crime. hasVirtualObjects takes an ar-
ray of virtual object ids and checks that the gangster
has the required OwnsVirtualObject tuples.

City Context Providers
τ (VirtualObject,
id, location)

[τ (TeamInfo, ?u, GANGSTER),
τ (PlayerInfo,?u, GANGSTER,?loc),
inRange(location, ?loc)]

Notifies the gangster of the nearby presence of a
virtual object. inRange is a helper function to
check that two locations are in euclidian distance.

τ (Rechargeable-
VirtualObject,GUN,
BULLETS)

[τ (InHeadQuarters,?loc),
τ (OwnsVirtualObject,GUN,?bullets),
?bullets< BULLETS]

Represents the player’s gun. The gangster gets only
one charge at the start of the game, while police-
men’s guns are recharged each time they go back
to their HQ.

Table 7.2: Overview of the Tuples used in Flikken

indicates its type name. We use capitals for constant values.
The TOTAM system on each player’s device is identified by a descriptor including

its username and the team that he belongs to. However, since there is communication
between policemen and the gangster, tuples injected by players are not scoped on a
team basis. We make use of context rules to control the perception of certain tuples
when necessary (e.g., to make sure the gangster does not see certain tuples). In contrast,
all tuples injected by the TOTAM system at the headquarters are scoped on a team basis
using the player tuple space descriptor.

The player’s TOTAM system carries a private tuple τ (TeamInfo, uid, gip) indicating
which team he belongs to. Every player injects his location to the TOTAM network by
means of the tuple τ (PlayerInfo, uid, gip, location). This tuple is injected into the
tuple space with a custom lease as we will explain later. Both the PlayerInfo and
TeamInfo tuples are often used in other tuple’s context rules to identify the current
whereabouts of a player and his team. For example, the tuple representing a grenade
uses these tuples as follows.

totam.inject: (tuple: [VirtualObject, grenade, location]);
inContext: [tuple: [TeamInfo, ?u, GANGSTER],

tuple: [PlayerInfo, ?u, GANGSTER], ?loc],
inRange(location, ?loc)]

The tuple τ (VirtualObject, grenade, location) should be only visable if the receiver
is a gangster whose location is physically proximate to the virtual object. The inRange

7.5. FORMAL SEMANTICS 171

function checks whether the gangster location (given by ?loc in the PlayerInfo tu-
ple) is in euclidian distance with the location of the grenade (stored in location).
Upon removal of a VirtualObject tuple, a private tuple τ (OwnsVirtualObject, ob-
ject) is inserted in his tuple space. CommitCrime tuples notify the gangster of a
crime that can be committed. As crimes can only be committed when the gangster
has certain burgling items, the context rule of the CommitCrime tuple requires that
certain OwnsVirtualObject tuples are present in the tuple space. For example, in
order for the gangster to perceive the CommitCrime tuple for the grandCasino, a
τ (OwnsVirtualObject,grenade) tuple is needed as shown below.

totam.inject: tuple(CommitCrime, grandCasino, location, reward)
inContext: [tuple: [TeamInfo, ?u, GANGSTER],

tuple: [PlayerInfo, ?u, GANGSTER, ?loc],
inRange(location, ?loc),
tuple(OwnsVirtualObject,grenade)];

Note that since context rules can be developed separately, this enables programers
to reuse rules to build different kinds of tuples, increasing reusability. As shown
above, we have reused the inRange function to build both the rule for the different
VirtualObject tuples and CommitCrime tuples. Decomposing a tuple into content
and context rule also leads to separation of concerns, increasing modularity.

Each player also registers several reactions to (1) update his GUI (e.g., to show
the OwnsVirtualObject tuples collected), and (2) inject new tuples in response to
the perceived ones. For example, when a gangster commits a crime, he injects a tu-
ple τ (CrimeCommitted, name,location,reward) to notify policemen. The code below
shows the reaction on PlayerInfo tuples installed by the application.

def playerinfoTemplate := tuple: [PlayerInfo, ?uid, ?tid, ?location];
totam.whenever: playerinfoTemplate read: {

GUI.displayPlayerPosition(tid, uid, location);
} outOfContext: {

def matchingPlayerinfoTemplate := tuple: [PlayerInfo, uid, tid, ?loc];
def tuple := totam.rdp(matchingPlayerinfoTemplate);
if: (nil == tuple) then: { GUI.showOffline(uid) };

};

Whenever a PlayerInfo tuple is read, the player updates his GUI with the new
location of that player. As PlayerInfo tuples are injected with a custom lease, they
are automatically removed from the tuple space after their time interval elapses trig-
gering the outOfContext: handler. In particular, opposing team members receive the
player’s location with a lease of 6 minutes, and policemen share their location with a
lease of 1 minute. In the example, the outOfContext: handler grays out the GUI
representation of a player if no other PlayerInfo tuple for that player is in the TO-
TAM system. If the rdp operation does not return a tuple, the player is considered to
be offline as he did not transmit his coordinates for a while.

Note how the integration of context into reactions avoids having to write imperative
code for inferring tuple perception. The underlying rule engine takes care of it, making
the code easier to understand and maintain.

7.5 Formal Semantics

We now formalize our tuple space model by means of a calculus with operational se-
mantics based on prior work in coordination [VC09, VO06]. This formalization is joint
work with Christophe Scholliers. The syntax of our model is defined by the grammar

172 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

shown in Table 7.3. k identifies the type of the tuple: + for a public tuple, ⊕ for a pri-
vate tuple and − for an antituple. A tuple c is specified as a first order term τ . τkx,t〈r〉
indicates that the tuple with content τ , type k and time interval of its lease t, originates
from a tuple space with identifier x and is only perceivable when its context rule r is
satisfied. The context rule is considered optional and the notation τkx,t should be read
as τkx,t〈1〉, i.e. the context rule is always true. The antituple of a tuple τkx,t is denoted
by τ−x,t〈0〉, i.e. its context rule is always false.

k ::= + | ⊕ | − Tuple Types
c ::= τkx,t〈r〉 Tuple
S ::= ∅ | c, S Tuple Set
P ::= ∅ | A.P Process
C ::= ∅ | (JSKx | C) | (P | C) Configuration
A ::= out(x, τ, r, t) | inject(x, τ, r, t) | rd(x, ν) | in(x, ν) |
outC(x, ν) | whenRead(x, ν, Pa, Pd).P | whenIn(x, ν, Pa, Pd).P Actions

Table 7.3: TOTAM Tuples: Grammar

A process P consists of a sequence of tuple space operations A. Tuples are stored
in S which is defined as a set of tuples composed by the operator (,). A tuple space with
content S and identifier x is denoted by JSKx. A system configuration C is modeled as
a set of processes P and collocated tuple spaces JSKx composed by the operator |. An
application consists of all P ∈ C.

Next to the grammar, we assume the existence of a matching function µ(ν, τ) that
takes a template ν and a tuple content τ , and returns θ. θ is a substitution map of
variable identifiers from the template ν to the actual values from τ . A concrete value in
this map can be accessed by θz that returns the actual value for z. The matched tuple
can be accessed by θτ . We also assume the existence of a function time which returns a
numeric comparable value indicating the current time. r(S) indicates that the context
rule r is satisfied in the tuple set S.

The semantics of the our tuple space model is defined by the transition rules shown
in Table 7.4. Every transition C λ−→ C ′ indicates that a configuration C can be trans-
formed into a configuration C ′ under the condition λ.

The (OUT) rule states that when a process performs an out operation over a local
tuple space x, the tuple is immediately inserted in x as a private tuple with context rule
r and timeout t′. The process continuation P is executed immediately. When a tuple
is inserted in the tuple space x with an inject operation as specified by (INJ), the
tuple is inserted in x as a public tuple and is replicated to other tuple spaces as specified
by (RPL). This rule states that when a tuple space y moves in communication range
of a tuple space x, all tuples τkx,t which are not private and are not already in y will be
replicated to y. The (RD) rule states that to read a template ν from a tuple space x, x
has to contain a matching τky,t and the context rule of τ is satisfied in S. (RD) blocks if
one of these conditions is not satisfied. When (RD) does apply, the continuation P is
invoked with substitution map θ. Note that we do not disallow x to be equal to y in this
rule. The (KILL) rule specifies that when both a tuple τ and its unique antituple τ− are
stored in the same tuple space, τ is removed immediately. The (TIM) rule specifies that
when the timeout of a tuple τ elapses, its antituple τ− is inserted in the tuple space.

The in operation is guaranteed to be atomically executed. In the semantics, it has

7.6. IMPLEMENTATION STATUS 173

out(x, τ, r, t).P |JSKx|C
t′=time()+t−−−−−−−−−→ P |Jτ⊕

x,t′ 〈r〉 , SKx|C (OUT)

inject(x, τ, r, t).P |JSKx|C
t′=time()+t−−−−−−−−−→ P |Jτ+

x,t′ 〈r〉 , SKx|C (INJ)

Jτkx,t 〈r〉 , SKx|JS′Ky|C
τ 6∈S′∧(k 6=⊕)∧−−−−−−−−−−→

(x 6=y)
Jτkx,t 〈r〉 , SKx|Jτkx,t 〈r〉 , S

′Ky|C (RPL)

rd(x, ν).P |Jτky,t 〈r〉 , SKx|C
µ(ν,τ)=θ∧(k 6=−)∧−−−−−−−−−−−−−→

r(S)
Pθ|Jτky,t 〈r〉 , SKx|C (RD)

Jτ−y,t 〈0〉 , τ
k
y,t 〈r〉 , SKx|C

(k 6=−)−−−−−→ Jτ−y,t 〈0〉 , SKx|C (KILL)

Jτky,t 〈r〉 , SKx|C
t≤time()∧(k 6=−)−−−−−−−−−−−−→ Jτ−y,t 〈0〉 , SKx|C (TIM)

in(x, ν).P |Jτkx,t 〈r〉 , SKx|C
µ(ν,τ)=θ∧r(S)∧−−−−−−−−−−−−→

(k 6=−)
Pθ|Jτ−x,t 〈0〉 , SKx|C (INL)

in(x, ν).P |Jτ+
y,t 〈r〉 , SKx|Jτ+

y,t 〈r〉 , S
′Ky|C

µ(ν,τ)=θ∧r(S)∧−−−−−−−−−−−−→
(x 6=y)

Pθ|JSKx|Jτ−y,t 〈0〉 , S
′Ky|C (INR)

outC(x, τ).P |Jτky,t 〈r〉 , SKx|C
!r(S)−−−−→ P |Jτky,t 〈r〉 , SKx|C (OC)

whenRead(x, ν, Pa, Pd).P |JSKx|C
1−→ rd(x, ν).Pa.outC(x, θτ).Pd|P |JSKx|C (WR)

whenIn(x, ν, Pa, Pd).P |JSKx|C
1−→ in(x, ν).Pa.outC(x, θτ).Pd|P |JSKx|C (WI)

Table 7.4: Operational Semantics

been split into a local rule (INL) and a remote rule (INR). (INL) works similarly
to (RD), but it removes the tuple τkx,t originated by the local tuple space x and inserts
its antituple τ−x,t. (INR) states that when the in operation is matched with a tuple
published by another tuple space y, y must be one of the collocated tuple spaces (i.e.
be in the configuration). Analogously to (INL), the tuple is removed and its antituple
is inserted. The (OC) rule states that to move out of context a tuple τ from a local tuple
space x, x has to contain τ (possibly its antituple) and its context rule is not satisfied.
The WR rule states that a whenRead operation performed on the local tuple space x
with template ν and processes Pa and Pd, is immediately translated into a new parallel
process and the continuation P will be executed. The newly spawned parallel process
is specified in terms of performing a rd operation followed by an outC operation. A
rd operation blocks until there is a tuple matching ν in the local tuple space. The
continuation Pa is then executed to subsequently perform an outC which blocks until
the tuple is no longer perceivable. Finally, the continuation Pd is invoked whereafter
the process dies. TheWI is specified analogously but as it models a whenIn operation,
it performs a in operation rather than a rd one. The wheneverRead and wheneverIn
operations have been omitted as they are trivial recursive extensions of whenRead and
whenIn, respectively.

Note that (KILL) does not remove antituples. This has been omitted to keep the
semantics simple and concise. By means of (RPL), the antituple of a tuple τ is only
replicated to those systems that received τ . In our concrete implementation if a system
cannot be reached, the removal of the antituple is delayed until the timeout of its tuple
elapses (which inserts an antituple as specified by (TIM)). An antituple can only be
removed once there are no processes in the configuration which registered an outC

operation on the original tuple.

7.6 Implementation Status

As previously mentioned, TOTAM has been implemented in AmbientTalk. In order
to use the TOTAM middleware, developers need to import the TOTAM module ac-
cessible via the lobby.at.lang.totam namespace. This module provides the core
model including the scoping mechanism based on propagation protocol and the leasing

174 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

model. The context rules that can be attached to a tuple have been implemented as a
separated module extending TOTAM that is accessible via the lobby.frameworks.
tuples namespace. The rule engine used in its implementation incorporates a truth
maintenance system built on top of a RETE network [For89]. A RETE network opti-
mizes the matching phase of the inference engine providing an efficient derivation of
context rule activation and deactivation. The network has also been optimized to allow
constant time deletions by applying a scaffolding technique [Per90]. For details about
the engine and its performance, we refer to [SP07].

A TOTAM system relies on AmbientTalk’s service discovery facilities (based on
multicast using UDP) to discover other systems in the network. Flikken’s initial exper-
imental setup was a set of HTC P3650 Touch Cruises phones running on J2ME (CDC)
and communicating by means of TCP broadcasting on a wireless ad hoc WiFi network.
It remains future work to port the current Java AWT GUI to the Android platform.

We have written other AmbientTalk applications which use TOTAM and run on
Android devices. An example is the Guanotes application used to explain TOTAM’s
programming API in Section 7.3. Further details about it can be found in [GBLCS+11].
TOTAM has also been used to prototype a mobile bulletin application in collaboration
with the Brussels public transport company (STIB/MIVB). The application works like
the bulletin boards that one sometimes sees at the exit of supermarkets with messages
such as “Im looking for a housekeeper”, but integrated in a small part of the Brus-
sels public transportation system (3 buses)7. Passengers can use an Android device
to post messages on the bus and read messages that were posted by previous passen-
gers. Crossing buses exchange messages such that they get percolated through the
transportation network.

7.7 Discussion
In Section 6.1.2, we postulated four criteria to which a good leasing model for MANETs
should adhere. In this section, we discuss how TOTAM supports ambient-oriented leas-
ing by evaluating it in the light of these criteria.

Criterion#1: Leasing an Intermittent Connection TOTAM combines leasing with
a non-blocking communication model based on tuple spaces. In order to deal with
the intermittent connectivity inherent to MANETs and to increase data availability,
TOTAM replicates tuples to other tuple spaces in the network. However, tuples carry
a propagation protocol which allows them to limit transportation when necessary. By
default, applications are not aware of the intermittent disconnections of other TOTAM
systems in the network since the model abstracts the configuration of the network.
When a higher degree of context-awareness is required, tuples can contain context
rules describing the runtime conditions under which the tuples should be visible in the
receiving tuple space. In order to deal with permanent disconnections, programmers
can inject tuples with a lease which determines how long the tuple should remain in
the tuple space.

Since leases are encoded as part of a tuple’s propagation protocol, and tuples are
replication among TOTAM systems, this may introduce issues of clock synchroniza-
tion. In particular, the system cannot provide strong guarantees about the expiration

7A demo of the mobile bulletin application deployed on buses at MIVB is available at http://www.
youtube.com/watch?v=N7mxaPftod4

http://www.youtube.com/watch?v=N7mxaPftod4
http://www.youtube.com/watch?v=N7mxaPftod4

7.7. DISCUSSION 175

time. In other words, it could be that some copy of a tuple is still unrightfully active
in the system, causing the tuple to be perceivable by applications. At worst, the asyn-
chrony causes a tuple to be subject to read operation. However, the tuple will not
be available for in operations because for a in operation to succeed the owner of the
tuple has to be contacted. When contacting the owner, the requesting tuple space will
be informed that the lease’s tuple is expired.

To sum up, the combination of leasing with a replication-based tuple space model
provides a coherent tuple space-based abstraction that deals with both intermittent and
persistent failures.

Criterion#2: Leasing Management Patterns TOTAM supports leases based on
fixed time-based terms. Developers can determine the time interval of a lease attached
to a tuple by means of the inject: operation. While renewal of such leases is not
supported, revocation is possible by explicitly retracting the tuple from the network
(calling the retract method on the subscription object of the inject: operation).
As explained before, this results in the injection in the TOTAM network of an antituple
for the tuple.

Currently TOTAM does not offer any built-in leasing variants similar to the ones
we introduced for our ambient-oriented leasing for a distributed object-oriented model
(presented in the previous chapter). Nevertheless, they can be built by means of custom
propagation protocols (as we discuss below).

Criterion #3: A Customizable Leasing Framework Propagation protocols provide
developers with a framework where to construct custom leasing variants. In constrast to
the open implementation of leased references, propagation protocols have not been de-
signed especially for supporting the development of leasing variants. Rather, their main
goal is to provide fine-grained control over the propagation of tuples in the network.
Nevertheless, our implementation features a leasing propagation protocol prototype
object, which can be extended to build other leased tuple kinds.

It is important to notice that propagation protocols can be developed separately
from tuple content. As such, once developers built their custom leasing variants in a
propagation protocol, the protocol can be applied to different kinds of tuples, promoting
its reusability across different applications.

Criterion#4: Symmetric Expiration Handling Expiration handling is supported in
TOTAM by registering outOfContext: listeners on reactions (cf. Table 7.1). When
the lease of the matching tuple expires, all registered handlers for that tuple will be
triggered allowing programmers to apply compensating actions, e.g., inject a new tuple
or cancel the injection of another tuple. Note that in the case of registering a reaction
for an in operation, only the process which actually removed the tuple is notified.
These listeners allows processes “interested” in a tuple to be notified. However, the
process injecting a tuple cannot react to its expiration because TOTAM does not offer
dedicated listeners to react to the expiration of tuples matching a template (even if they
were never read or removed from the tuple space). This forces processes injecting the
tuple to also register a reaction for it, even if they are not interested in its content (since
they already have this information).

176 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

7.8 Limitations and Future Work
In this section, we highlight aspects of TOTAM which can be improved on, and give
some directions for future work.

Leasing Model To the best of our knowledge, TOTAM is the only replication-based
tuple space model targeting a mobile environment that includes a leasing model. The
leasing model is, however, a restricted variant of ambient-oriented leasing that we have
proposed in the previous chapter. It lacks expressive support for leasing management
patterns and provides restricted symmetric expiration handling. Nevertheless, we be-
lieve that TOTAM provides a solid grounding towards leased-based coordination in
MANETs. Further research is required at least in two areas.

First, which leasing patterns are useful in a data-driven model? In tuple spaces, a
tuple represents a self-sufficient piece of information conveyed by the distributed sys-
tem. In addition, in a replication-based model like TOTAM, different copies of the
same tuple can coexist in the system. This means that the tuple does not have an iden-
tity as such. This may not be a problem since tuples are anonymous, and meant to
be consumed by one process. But it raises fundamental questions about which lease
management operations make sense. For example, one could imagine that it is useful
to let the system implicitly renew the lease of certain types of tuples if they are highly
demanded, e.g., the tuple can potentially match several registered reactions. However,
it is very difficult to determine the guarantees provided for such a leasing variant since
maintaing all copies in synchronization in such a dynamic network topology is imprac-
tical.

Second, how can programmers expressively deal with expired leases? From our
experience with TOTAM, we believe it may be useful to provide dedicated expiration
listeners which will allow the application to apply compensating actions even if the
tuple was not read or remove. For example, in the context of Flikken, it will be useful
to be able to replace a PlayerInfo tuple with a new one when it expires. Currently,
this has to be manually encoded by injecting tuples at regular intervals.

Tuple Space Descriptors Tuple space descriptors are exchanged between two loca-
tions when they meet for the first time and whenever a location decides to change its
description. In case descriptors stay constant and prevent the propagation of tuples,
they can drastically reduce the burden on the network. In the other case when descrip-
tors change a lot or do not prevent the transportation of tuples, the danger exists that
the network traffic gets dominated by the transmission of descriptors.

In [SGD09], we evaluate the use of tuple space descriptors in terms of network
traffic. In the worst case, a tuple needs to be transported to all connected locations
(i.e., the tuple is not scoped and floods the network) and all connected systems change
their descriptors for every transmitted tuple. The overhead of exchanging the descrip-
tors will be quadratic to the number of connected locations over time. In the best
(meaningful) case, the sent tuples are sculpted to be sent only to one system and the
tuple space descriptors do not change over time, e.g., the tuple hops from system to
system in a ring. The overhead of exchanging the descriptors will be equal to the size
of the ring. All in all, the use of tuple space descriptors in combination with scoped
tuples has the potential to drastically reduce the network traffic when 1) the tuples are
prevented from hopping around and 2) the descriptors do not change often relative to
the number of tuples in the system. However, how often do the descriptors change is

7.9. NOTES ON RELATED WORK 177

highly application-dependent. For example, in Flikken, tuple descriptors do not change
over time because players were not allowed to switch teams. In Guanotes, the tuple de-
scriptor changes when the end-user updates its user profile. As future work, we would
like to conduct experiments with devices to measure the costs of changing tuple space
descriptors for different applications as well as for different propagation strategies.

7.9 Notes on Related Work

Before concluding this chapter, we discuss related work with regard to the various
concepts integrated in TOTAM, namely its leasing model, scoping mechanism and
support for context-awareness.

Leasing Models Typically, a tuple space stores tuples which may never be subject
to a remove operation, and which may never be garbage collected. To solve this prob-
lem, some traditional tuple space approaches such as Objective Linda [Kie96], JavaS-
paces [FAH99] and TSpaces [WMLF98], augmented Linda’s operations with a time-
out: if a matching tuple is not found within the timeout, the operation returns an error.
In JavaSpaces and TSpaces, a tuple can be inserted in the tuple with a lease time denot-
ing the maximum amount of time before the tuple is automatically removed from the
tuple space. However, the centralized nature of those approaches does not make them
applicable in a mobile environment.

To the best of our knowledge, Tiamat [ME03] is the only tuple space model for the
mobile environment that includes a leasing model. Tiamat follows a federated tuple
space model in which each operation is leased. Interestingly, the authors describe that
in Tiamat “leases may be based on time or on other measures such as the number
of remote instances contacted”. Unfortunately, no code examples are provided to see
how programmers can declare leases based on such conditions. Tiamat leasing model
incorporates the concept of expiration in the tuple space operations, but it does not
provide listeners which allows application to react to them.

In [MZ09], Mamei et Zambonelli remark the importance of incorporating a garbage
collection mechanism to TOTA to remove unused tuples. In TOTA, one can encode a
leased tuple such as the one described in our work by means of a custom propaga-
tion rule. In particular, the propagation rule needs to update its content to take into
account the notion of time, and stop its propagation. In fact, as explained before in
Section 3.3.2.2, the MessageTuple class described in [MZ09] defines a tuple that
floods the network and deletes itself after some time has passed. In TOTAM, a lease is
orthogonal to the propagation protocol, so programmers do need to manually encode in
the propagation rule the passage of time, nor the retraction of the tuple from the TOTA
network upon a delete operation.

In [ORV05], Ommici et al. extend ReSpecT [DNO98], logic-based tuple space
language with the notion of time. ReSpecT tuple centers behave like tuple spaces
whose behaviour is specified in terms of reactions to events occurring in the tuple
space. The notion of time is introduced into a tuple center with (1) some temporal
predicates to get information about tuple center and event time, and (2) timed reactions
which specify reactions triggered by time events. Based on this extension, they discuss
how some abstractions that could be built by introducing leasing into tuples similar to
what TOTAM supports. An interesting topic of future work would be to investigate
whether introducing leasing in TOTAM along the principles of (timed) tuple centers

178 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

will allow us to build time-based coordination patterns in a more modular way than our
current solution based on propagation protocols.

Scoping Mechanisms A number of approaches support scoping mechanisms in the
context of tuple spaces. Coordination with Scopes [MW00] introduces the concepts
of scope for a tuple space. A scope represents a view on a flat tuple space. A set of
operations is defined on those views allowing scopes to be joined, nested, intersected
and subtracted. Tuples may thus be visible from several different scopes. This mech-
anism is mainly used to structure tuple spaces according to different viewpoints on a
flat tuple space. However, scopes do not limit the propagation of tuples, i.e., tuples are
propagated to other tuple spaces but may not be visible for certain scopes. Since the
system was not devised for mobile computing applications, they rely on a centralized
infrastructure. In contrast, TOTAM does not rely on any fixed infrastructure and tuples
can be propagated through spontaneously formed MANETs.

CAMA [IA06] is an agent-based tuple space system which allows the definition
of a scope which agents can join and leave. Scopes are defined as containers in a
tuple space and can be nested in order to form hierarchical structures. This notion of
scope improves on coordination with scopes since inserted tuples are only transmitted
to agents which reside in the same scope. However, in order to send tuples to other
scopes the agent first needs to change its scope. Tuples which are inserted in a specific
scope can not be propagated automatically to other scopes. In TOTAM, by allowing
the tuple itself to decide whether it should be propagated, more fine-grained sharing
strategies can be expressed.

L2imbo [DFWB98] is a tuple-space based platform for mobile computing which
provides special features for quality of service. Similar to CAMA, L2imbo introduces
the concept of multiple tuple spaces but suffers from the same limitations as tuples do
not have the ability to decide to which tuple space they should be propagated. It is
interesting to note that L2imbo supports time-outs associated with tuples. This makes
possible for the system to reorder tuples to make optimal use of the available net-
work connectivity. Similar to CAMA, L2imbo introduces the concept of multiple tuple
spaces but suffers from the same limitations as tuples do not have the ability to change
to which tuple space they should be propagated.

Evolving tuples [SJ07] have a field destination that they can change while they are
hopping. This destination field is used to determine where the tuple will be transmitted
to after leaving a host. However, the destination field can only be a broadcast address
or a specific host address. In order to send the tuple to two broadcast addresses the
programmer will have to read the tuple and reinsert it to another broadcast address.
Our approach uses semantic information to determine where it can be transmitted thus
allowing more fine-grained propagation rules.

Publish/subscribe systems are closely related to tuple spaces as they provide similar
decoupling properties [EFGA03]. Some of those systems have explored the concept of
scope for events. In scoped REBECA [LMMB02] systems can create a scope in which
events will be published. A scope can be extended and therefore form a tree of scopes.
Subscribers will only receive events of publishers which are in the same scope or have
a common ancestor in the scope hierarchy. Similar to CAMA, publishing an event in
an other scope requires the publisher to change it scope first. STEAM [MC03] allows
publish/subscribe based on physically location, but it is hard to describe scopes based
on semantic information as shown in the ambient game. Location-based publish/sub-
scribe [EGH05] suffers from the same limitation.

7.10. CONCLUSION 179

Context-Awareness. Finally, we discuss related systems modeled for context-aware-
ness and show how context-aware tuples differ from them. In TOTA, tuples them-
selves decide how to replicate from node to node in the network. Because tuples can
execute code when they arrive at a node, they can be exploited to achieve context-
awareness in an adaptive way. However, programming such tuples has proven to be
difficult [MZ04]. TOTA, therefore, provides several basic tuple propagation strategies.
None of these propagation strategies addresses the tuple perception problems tackled
by our approach. Writing context-aware tuples in TOTA would require a considerable
programming effort to react on the presence of an arbitrary combination of tuples as it
only allows reactions on a single tuple.

GeoLinda [PCBB07] augments federated tuple spaces with a geometrical read op-
eration read(s,p). Every tuple has an associated shape and the rd operation only
matches those tuples whose shape intersects the addressing shape s. GeoLinda has
been designed to overcome the shortcomings of federated tuple spaces for a small sub-
set of potential context information, namely the physical location of devices. As such,
it does not offer a general solution for context-aware applications. In contrast, we
propose a general solution based on context rules, which allows programmers to write
application-specific rules for their tuples. Moreover, in GeoLinda the collocation of de-
vices still plays a central role for tuple perception which can lead to erroneous context
perception.

EgoSpaces provides the concept of a view, a declarative specification of a subset of
the ambient tuples which should be perceived. Such views are defined by the receiver
of tuples while in context-aware tuples it is the other way around. Context-aware tuples
allow the sender of a tuple to attach a context rule dictating the system in which state
the receiver should be in order to perceive the tuple. EgoSpaces suffers from the same
limitations as federated tuple spaces since, at any given time, the available data depends
on connectivity [JR04].

In publish/subscribe models, context-aware publish subscribe (CAPS) [FR07] is
the closest work as it allows certain events to be filtered depending on the context of
the receiver. More concretely, the publisher can associate an event with a context of
relevance. However, CAPS is significantly different from context-aware tuples. First,
CAPS does not allow reactions on the removal of events, i.e., there is no dedicated
operation to react when an event moves out of context. Moreover, it does not provide
coordination of distributed parties, i.e., atomic removal of events is not supported. And
last, the context of relevance is always associated to a physical space.

7.10 Conclusion
In this chapter, we have presented a novel tuple space model for MANETs called TO-
TAM. TOTAM combines ideas from both federated and replication-based tuple spaces
into a consistent tuple space-based framework that is designed around the principles
of ambient-oriented leasing. The design and implementation of TOTAM also demon-
strates that the principles of ambient-oriented leasing are independent of the particular
communication paradigm used to incarnate non-blocking communication, and are also
applicable to a data-driven programming paradigm such as tuple spaces.

We conclude this chapter by stating the novelty of TOTAM:

• It introduces a programming style under the form of context rules to support
the development of context-aware MANET applications. Unlike existing tuple

180 CHAPTER 7. AMBIENT-ORIENTED LEASING FOR TUPLE SPACES

space approaches, only the subset of tuples which should be perceivable, is made
accessible to applications in TOTAM. This is achieved by the use of context rules
combined with the introduction of a rule engine in the tuple space system which
takes care of inferring when a context rule is satisfied.

• It extends the TOTA-like replication-based model with the use of tuple space
descriptors to determine the scope of tuples before they are being transmitted.
This enhances privacy and decreases the burden on the network traffic in a wide
range of applications.

• It integrates the concept of leasing into tuples. This allows developers to deter-
mine upper boundaries on the availability of tuples in the system.

• It introduces the concept of antituples into a replication-based model to enable
the “unsending” tuples injected to the network. Antituples are injected into the
TOTAM network upon removal or retraction operations, avoiding programmers
to manually encode them in terms of propagation protocols.

Chapter 8

Evaluating Ambient-Oriented
Leasing

We conclude the programming language design part of this dissertation by evaluating
the novel programming abstractions for ambient-oriented leasing in the light of the
criteria presented in Section 2.4. We evaluate language support for ambient-oriented
leasing for both a distributed object-oriented model (presented in Chapter 6) and a
distributed tuple space-based model (presented in Chapter 7).

In this chapter, we employ the AmbientTalk language’s full names (AmbientTalk/2
and AmbientTalk/M) to clarify our discussion.

8.1 Evaluation w.r.t. the Criteria for a Failure Hand-
ling Model for MANETs

Recall from Table 2.1 that we identified eight criteria for a failure handling model to
be used in a MANET. We now describe how AmbientTalk, when extended by support
for ambient-oriented leasing, conforms to these criteria. For each criterion, we first
recapitulate its statement and then discuss the extent to which it has been achieved by
the two incarnations.

C1 Decoupled Communication allows processes to deal with the effects of intermit-
tent disconnections by enabling them (1) to communicate while being disconnected (de-
coupling in time), (2) to interact anonymously without knowing their exact addresses
(decoupling in space), (3) to remain responsive to communication (decoupling in syn-
chronization) and (4) to abstract from the concrete number of processes communicating
with (arity decoupling).

In AmbientTalk/M, remote object references by default already decouple client and
service objects in time. This is witnessed by the asynchronous message protocol in the
transmitter-receptor model (summarized in Table 5.1). The transmitter of a remote
reference behaves as the outbox of an actor, in which the client object can schedule
messages to be transmitted to the corresponding service object. Such time-decoupling
characteristic is combined with a lease term in the case of leased references. The
processing of a message send can then be bounded by means of the @Due annotation. In
TOTAM, time-decoupled communication is supported as well because the tuple space

181

182 CHAPTER 8. EVALUATING AMBIENT-ORIENTED LEASING

adheres to a replication-based model in which tuples are replicated among collocated
devices.

AmbientTalk/M inherits from AmbientTalk/2 a limited form of space decoupling
by means of its publish/subscribe service discovery mechanism (cf. Section 4.4.2). It
allows objects to discover each other in the network by means of type tags, i.e., without
knowing their exact address. As we mentioned in Section 6.9, leased references do not
provide any built-in space decoupling mechanisms. In this regard, leased references
are no improvement over the default far references implemented by the transmitter-
receptor model. Instead, we have exploited support for space decoupling in our ex-
ploration of ambient-oriented leasing in tuple spaces. As our survey on related work
shows, this is a characteristic that is naturally supported in tuple spaces.

AmbientTalk/M’s execution model is totally sculpted for decoupling client and ser-
vice objects in synchronization. This is also a property that AmbientTalk/M inherits
from the AmbientTalk/2 actor-based concurrent model. As a result, any abstraction
built on top of the kernel language maintains such characteristic. It includes leased
references and TOTAM. This explains why TOTAM does not feature any of the tradi-
tional blocking operations from tuple spaces. Rather, its programming API is entirely
built around the concept of reactions.

Finally, although remote object references (and leased references) are by default
point-to-point communication links, AmbientTalk/M supports arity decoupling in the
underlying transmitter-receptor model by means of its reference marshalling protocol
(summarized in Table 5.2). Arity decoupling is endorsed by TOTAM. Recall that all
communication in a tuple space model happens in a one-to-many fashion. However, in
contrast to other replication-based tuple space models, TOTAM guarantees atomicity
for removal operations. This supports synchronization of communicating parties since
a tuple can only be removed by one process.

C2 High-level Representation of Failures enables processes to determine when
their logical connections or exchanges of data have terminated.

In this work, we have studied the concept of leasing as a programming language
abstraction that provides a high-level representation for failures. AmbientTalk/M pro-
vides the concept of a lease as a first-class object that exposes a number of methods
that can be overridden to specialize the behaviour of leasing. In contrast to prior leas-
ing models, AmbientTalk/M’s language support provides developers with a number
of fine-grained scoping abstractions to specify which lease should be used when and
where. First, a leased reference offers leasing on a per-object basis. One of the key
features of leased references is that it decouples the concept of a failure in the logical
connection between client and service objects, from a failure in the underlying physical
connection. Second, @Due annotation can be used to specify leasing semantics for in-
dividual message sends, limiting the lifetime of a message sent via a leased reference.
Finally, leasing strategies and leased message protocols enable developers to apply the
same leasing semantics to an entire group of objects or messages.

The use of leasing in the TOTAM tuple space model allows developers to define an
upper bound on the lifetime of a tuple in the tuple space. By integrating leasing into tu-
ples, programmers can actually distinguish valid tuples from stale tuples independently
from the composition of the TOTAM network (i.e., the connectivity of the TOTAM tu-
ple spaces participating in the underlying network). As such, TOTAM provides leasing
on a per-tuple basis.

8.1. EVALUATION 183

C3 Reacting to Network Connectivity enables processes to monitor network con-
nectivity of other processes and react if necessary.

As described in Section 4.4.1, AmbientTalk/2 already provides two event handlers
which can be registered to monitor the states of a far reference. The whenever:
disconnected: and whenever:reconnected: observers are triggered whenever
a far reference becomes disconnected or reconnected. AmbientTalk/M inherits them
but offers them on leased references as well.

TOTAM, on the other hand, does not feature linguistic support for reacting to net-
work connectivity of the underlying TOTAM network. This needs to be encoded man-
ually by injecting leased tuples which define the presence of a device in the network.
We will further discuss this limitation in Chapter 12.

C4 Local Failure Recovery enables processes to recover from failures based on
their local state as much as possible.

Leased references support local failure recovery by providing buffering of mes-
sages while the reference is disconnected. TOTAM, on the other hand, naturally sup-
ports local failure recovery because it employs a replication-based tuple space model
in which intermediary nodes are used to increase the availability of tuples in the face
of partial failures.

Recall from our discussion about related work that in TOTA, tuples carry a propa-
gation rule which enables programmers to scope the tuple dissemination process. TO-
TAM extends such scoping support with the use of tuple space descriptors to determine
the scope of tuples before they are actually transmitted.

C5 Application-dependent Failure Handling Strategies enables processes to se-
lect the most appropriate strategy to react to a partial failure.

AmbientTalk/M provides when:expired: handlers to enable programs to react to
the expiration of a leased reference. Since these handlers can be installed on either
side of a leased reference, both client and service objects can gracefully deal with the
termination of their logical connection and schedule appropriate compensating actions.

TOTAM enables a limited form of application-dependent failure handling strate-
gies by registering outOfContext: handlers on reactions. As previously mentioned,
when a leased tuple expires, all registered handlers for that tuple will be triggered al-
lowing programmers to apply compensating actions, e.g., inject a new tuple or cancel
the injection of another tuple.

Note that AmbientTalk/M provides support to build custom failure handling strate-
gies to react to network disconnections by means of the environmental context protocol
provided in the transmitter-receptor model (summarized in Table 5.2.2.3).

C6 Relaxing Soundness enables connections or exchanges of data to remain valid
in the presence of intermittent disconnections.

In our object-oriented incarnation of ambient-oriented leasing, leased references
relax soundness because a network disconnection does not cause the leased reference
to block (as happens in RPC models employed such as in Java RMI) or break (as
happens in non-blocking models not designed for MANETs such as in E). Since leased
references by default buffer messages sent while they are disconnected, computation is
not lost in the presence of intermittent disconnections.

In short, we observe that leasing in combination with disconnection operation tech-
niques (such as buffering) are the key enabler to relax soundness on the memory man-

184 CHAPTER 8. EVALUATING AMBIENT-ORIENTED LEASING

agement scheme of a distributed object model for MANETs. In a tuple space model,
on the other hand, relaxing soundness is achieved by employing a replication-based
model. This was one of the reasons why we chose to extend TOTA’s tuple space model
for our second incarnation of ambient-oriented leasing.

C7 Contractual Memory Management enables processes to reclaim unused re-
sources in the presence of permanent disconnections by agreeing on the lifetime of
data before it is actually shared.

Both incarnations of ambient-oriented leasing naturally support contractual mem-
ory management by embracing the concept of leasing. Once all leased references to a
service object have expired, the object becomes subject to garbage collection as soon
as it is no longer locally referenced. Since the duration of the lease is agreed before-
hand, if client or service objects are subject to a partial failure, the language remains in
control of the garbage collection of both ends of the reference when the lease expires.

In TOTAM, contractual memory management is supported by combining leases
with the notion of antituples. As a result, either a tuple can be reclaimed when its lease
expires, or it can be opportunistically reclaimed upon retraction or removal (which im-
plicitly injects an antituple in the TOTAM network that traces the copies of the match-
ing tuple and removes them). The linguistic support provided by leased tuples and
antituples precludes programmers from having to manually encode tuple lifetime man-
agement in terms of propagation protocols as it is the case in TOTA.

C8 Forcing Failures enables processes to trigger failure handling code even if no
physical network failure ocurred. This criterion plays an important role for tool sup-
port as it enables tools like debuggers or unit testing tools to reproduce a number of
network configurations and expose the application to them before its deployment.

AmbientTalk/M allows applications to cause partial failures of objects. Recall from
Section 5.3.2, that the takeOffline: construct allows one to permanently disconnect
an object, while the disconnect: constructs allows one to temporarily disconnect an
object (which can be later reconnected by calling the reconnect method). We ini-
tially introduced these constructs as primitive operations in AmbientTalk/2. However,
thanks to the new reflective architecture of AmbientTalk/M, now they can be provided
reflectively, reducing the kernel language size. In particular, the reference management
protocol (cf. Table 5.3.1.1) makes this possible as it reifies the actor’s object reference
table. The aforementioned constructs can be directly used with leased references to
disconnect both sides of the reference.

TOTAM supports forcing failures by means of a dedicated operation,
i.e., goOnline. Recall from Table 6.1 that this operation causes the tuple space be-
come to available in the TOTAM network, and returns an object whose cancel method
can be used to disconnect the tuple space. The underlying implementation makes use
of the disconnect: construct to disconnect the tuple space object from the network.

8.2 Concluding Remarks
Our analysis of our proposal shows that AmbientTalk/M already provides some forms
of decoupled communication (in particular, decoupling in time, and synchronization
(C1)), support for reacting to network connectivity (C3) and support for forcing failures
(C8). Leased references complement such forms of decoupled communication with

8.2. CONCLUDING REMARKS 185

a high-level representation of failures (C2). Such integration of leasing into remote
object references also supports local failure recovery (C4) (by buffering messages) and
application-dependent failure handling strategies (C5) (by means of when:expired:
handlers).

AmbientTalk/M’s lack of communication abstractions which are space and arity
decoupled is covered by TOTAM. TOTAM combines a tuple-space style of decoupled
communication with a high-level representation of failures (C2) based on leasing as
well. Such integration of leasing into tuples also supports local failure recovery (C4)
(by replicating tuples among tuple spaces in the network) and application-dependent
failure handling strategies (C5) (by means of outOfContext: handlers).

Finally, both leased references and TOTAM relax soundness (C6) and contrac-
tual memory management (C7) as a natural result of integrating leasing with a time-
decoupled communication model.

Together AmbientTalk/M, leased references, and TOTAM, are able to directly ad-
dress the eight criteria for adequately supporting failure handling in MANETs. More-
over, they provide this failure handling in an object-oriented way as well as in a data-
driven way (in tuple spaces).

We postpone a discussion of the overall technical and conceptual limitations of our
proposal until Chapter 12.

186 CHAPTER 8. EVALUATING AMBIENT-ORIENTED LEASING

Part II

Partial Failures in Software
Development Tools

187

Chapter 9

Related Work

Software tools are an integral part of application development since they help develop-
ers better face the complexities of software development. Debuggers contribute to this
task by allowing developers to trace back the execution of a program, looking for the
places in which it deviates from the intended behaviour. Next to assist in the arduous
task of finding errors, debuggers also improve program comprehension as they help
developers get a better understanding of the dynamic behaviour of a program. In this
second part, we explore software development tools for MANET applications in the
form of a debugger. Developing such applications is hard due to the highly changing
nature of MANETs. Thus, developing software tools, specifically debugging tools, is
more necessary than ever.

We start this second part of this dissertation by surveying the state of the art of de-
bugging techniques and tools for concurrent and distributed systems. We mainly focus
our discussion on approaches that work on actual program execution, rather than dy-
namic or static analysis approaches which use source code to check certain properties,
or observe testing scenarios. In the next chapter, we will discuss their shortcomings
and introduce a set of requirements to build an ambient-oriented debugger (cf. Sec-
tion 10.1). Subsequently, we describe the design of an ambient-oriented debugger in
Section 10.2, and a concrete instantiation for AmbientTalk programs in Section 10.3.
Chapter 11 concludes this part by describing a user study for REME-D, the results
of which show that developers actually see the added value of REME-D for making
ambient-oriented programming in AmbientTalk easier.

9.1 Distributed Debugging Support
A lot of research has been conducted in developing debugging tools and techniques
for concurrent and distributed systems, resulting in a large number of tools. In 1993,
Pancake and Netzer published one of the most relevant bibliographic efforts in the field
including 293 entries [PN93]. This effort persisted in their online bibliography [PN04]
which, on the last update in 1997, counted no less than 659 entries about technical
reports, journal and conference papers, and Phd dissertations dealing with parallel and
distributed debuggers. However, many of those techniques are now outdated because
of the rapid advances in the latests years in both hardware and software [WCS02],
e.g., GUI-based frontends for debuggers is nowadays a given.

In this section, we present a brief survey of the state of the art of distributed debug-

189

190 CHAPTER 9. RELATED WORK

gers. Based on the McDowell et al. survey on debugging concurrent programs [MH89],
we categorize distributed debuggers into two main families: event-based debuggers
(also known as log-based debuggers) and traditional breakpoint-based debuggers. The
first approach consists in inserting log statements in the program to be able to gener-
ate a trace log (also called event history) during its execution. By browsing the event
history, developers can examine the behaviour of the program execution. Since most
event-based debuggers only support browsing after program completion, these tools
are often referred to as post-mortem debuggers. Breakpoint-based debuggers, on the
other hand, execute the program in debug mode under the control of a dedicated de-
bugger that allows programers to pause/resume program execution at certain points,
inspect program state, and perform step-by-step execution. As such, breakpoint-based
debuggers are typically described as online or interactive debuggers.

9.1.1 Breakpoint-based Debuggers
Most distributed breakpoint-based debuggers are an extension of a conventional se-
quential debugger in which processes are considered to be the basic building blocks,
and communication between processes happens by means of message passing. The
debugger consists of a collection of sequential debuggers (e.g., gdb and dbx) acting
as the back end of the debugger, each controlling the execution of a concurrent or
remote process. A centralized GUI or console then controls and coordinate the activ-
ities of such dedicated sequential debuggers, acting as the front end of the debugger.
Most-well known examples of these types of debuggers include research prototypes
like p2d2 [Hoo96], Node Prism [SAB+94], Net-Dbx [NNE04], and CDB [WCS02],
and commercial debuggers such as TotalView [Got09], IBM’s Distributed Debug-
ger [MMP+96], and Allinea DDT [DDT12].

Breakpoint-based debuggers aim to bring the well-known toolbox of sequential
debugging to a distributed setting. They typically offer the traditional commands to
stop, inspect program state, and step-by-step execution of a running program. Stack
traces, for example, give the developer an idea of what has happened before during
the execution of the program, answering the question of how the developer got to the
current point in the execution. Despite the fact that the stack view does not show
total causality, in most cases tracing back the stack is enough to find the cause of a
bug [SCM09]. When this does not uncover the cause, breakpoints make it easier to
mark interesting places in the execution. Some of the breakpoint-based debuggers
allow to set breakpoints on statements of one process (e.g., TotalView) or a set of
processes (e.g., p2d2, Node Prism). An interesting alternative to traditional breakpoints
is message breakpoints [Wis97]. A message breakpoint stops all receiver processes
of the next message sent by a process. The combination of a message breakpoint
with a traditional breakpoint on the send statements provides a single step execution
which can be used to monitor message sending and follow the execution of a distributed
program.

One of the main critiques to breakpoint-based debuggers is that the level of granu-
larity of commands is limited and too-fine grained as the focus is on the source code,
making debugging complicated and the amount of information overwhelming [TP05].
Millipede aims to solve this by introducing a multi-level debugging approach which
consists of three levels: the sequential level (controlling the intra-process execution),
the message level (controlling messages interchanged between processes), and finally
a protocol level (concerned with communication protocol). At a sequential level, it
combines interactive features (allowing developers to attach gdb to a running process)

9.1. DISTRIBUTED DEBUGGING SUPPORT 191

while logging debugging information in a SQL database for future inspection. At a
message level, Millipede logs messages sent and received by a process, and allows to
stop and step the execution of one PVM API call. At protocol level, Millipede allows
developers to specify rules over message sends or receipts specifying the expected pro-
gram behaviour which is checked for correctness when the debugger logs information
about message sends and receipts.

For the most part, all these distributed debuggers assume a stable network infras-
tructure. Fragile communication channels are assumed to be handled at the application
level, i.e., communication failures are seen as an application-level errors. However, in
a mobile setting, it is desirable that the debugger gracefully deal with network discon-
nections. A relevant exception is TotalView which supports open debugging sessions
to some extent by relying on the underlying MPI middleware to manage and connect to
new or independently started processes. Developers can dynamically attach processes
running on nodes that execute a TotalView debugging agent to a debugging session.
This gives a degree of freedom in the configuration of a debugging session, making it
attractive for ambient-oriented applications. However, the target application still needs
to be compiled in a special way in order to be able to interact with TotalView’s debug-
ging agent before it can be dynamically included in the debugging session.

9.1.2 Event-driven Debugging Tools
A large body of distributed debugging techniques follow an event-based approach.
Event-based debuggers [MH89] conceive the execution of a program as a sequence
of “events” whose definition differs. For example, an event may be a MPI API call,
read/write memory, send/receive functions, etc. The debugger records the history of
the events generated by the application, which can then be used to either browse
the events once the application is finished [SCM09, FPK+07], or to replay the ex-
ecution of a program in order to recreate the conditions under which the bug was
observed [TKV02, NM92, Els89, LMC87]. How to analyze the history of events
also varies from presenting directly the raw data to the user for inspection, to re-
lying on graph-based analysis methods, or supporting graphical visualization tech-
niques (e.g., time-space diagrams [FHL98, MCC+95], message and process order
views [SCM09]).

Event-based debuggers have been criticized mainly because the recording process
is costly (due to the overhead of collecting and saving information) and browsing
an event history does not scale since manually inspecting huge traces becomes cum-
bersome and difficult [MH89]. Many research efforts have focused on reducing the
amount of events recorded or presented to the user [PTP07, NM92, RK98b, Els89].
For example, Amoeba [Els89] supports customizable filters (also called global filters)
that remove events that are of no interest to the user. Amoeba performs post-processing
of the resulting events using recognizers (state machines acting for patterns of events).
Only the events that also pass such local filters are then presented in Amoeba’s user
interface.

Event-based debuggers fit well with a non-blocking concurrency model as message
sends and receipts can be represented as separate events. A partial order of such events
would accurately reflect the behaviour of a distributed application. Some approaches
explore a partial order of the event history based on the happened before relation for
browsing [SCM09] or replay [NM92, Got09, Hoo96]. The happened-before relation
shows how events potentially affect each other [Lam78], allowing developers to iden-
tify potential places that caused a bug and as such, offering a similar functionality as

192 CHAPTER 9. RELATED WORK

stack traces in sequential debuggers.
Although an event-based approach aids developers to detect the occurrence of a

particular program (mis)behaviour, the examination of the corresponding computation
states is typically still required to find the root cause of a bug. As such, some event-
based debuggers combine post-mortem visualization of a program execution with on-
line debugging features, e.g., Millipede, IDLI [BP06]. Others like Amoeba [Els89]
combine replay with online debugging features such as breakpointing. In general,
many of the event-driven debuggers focus on inter-process communication based on
message passing and rely on a dedicated sequential debugger to deal with bugs internal
to a process [CBM90].

9.1.3 Alternative Approaches

Many of the current distributed debuggers assume that applications run in a distributed
object-oriented system and communicate by means of message passing. In this section,
we look at a number of debugging techniques for alternative programming models such
as actors and tuple spaces.

Honda et Yonezawa discuss in [HY88] several debugging and visualization tools
for the actor-based language ABCL/1 based on the abstraction of object groups. Object
groups provide an alternative approach to represent the behaviour of message passing
programs by structuring event history in terms of the collective tasks performed by a
group of objects. When one of the objects in an object group receives a message from
an external object, it triggers a collective task for its group. The execution of such
an entry message can in turn cause other message transmissions to other members of
the group, denoting a task within the object group task. Object group tasks can be
described best as a tree of objects whose root is the first object that received an entry
message. The leaves of the tree then correspond to the objects which got a message but
whose execution did not send any message.

IC2D [BBC+01] is a graphical environment for monitoring and managing distri-
buted ProActive applications (running on a grid). In order to monitor ProActive com-
putations, it provides graphical visualisation including views to visualize the topol-
ogy of active objects, and message sends and receipts for selected active objects. It
also allows to interactively add a new or existing mobile active object to any running
ProActive node as well as to move active objects to other nodes displayed by IC2D.
A more recent implementation of the environment has been integrated within Eclipse
IDE, allowing a step-by-step execution of an active object at the service level.

In [DS10], Dukielska et Sroka describe a distributed debugger for debugging tuple
space-based applications written in JavaSpaces. The debugger combines online debug-
ging features (such as breakpoints in tuple space operations) with replay functionality
which allow developers to record and replay a sequence of tuple space operations.

9.2 Conclusion

Distributed debugging techniques and the debuggers developed to date have either been
designed for parallel computing (e.g., p2d2, TotalView, Node Prism, Allinea DDT),
for grid computing (e.g., Net-Dbx, and IC2D), or for general-purpose distributed com-
puting in fixed, stationary networks (e.g., Amoeba, Causeway, and Millipede). None
of these debuggers have been explicitly designed for applications running on mobile

9.2. CONCLUSION 193

networks. They lack the necessary features to deal with the difficult task of debug-
ging distributed asynchronous applications which run on a radically different network
topology, in particular, to deal with the effects of partial failures. After all, debugging
requires a thorough understanding of the application being debugged, as well as the
software platform on which it is built. In the next chapter, we discuss the challenges
of debugging ambient-oriented applications, and subsequently propose an ambient-
oriented debugger whose goal is to provide a simple but useful debugging toolbox for
ambient-oriented applications.

194 CHAPTER 9. RELATED WORK

Chapter 10

Debugging in the Face of Partial
Failures

Debugging software is an integral part of the development of any application. This task,
which in sequential programs is already difficult, is further complicated in a distribu-
ted environment [CBM90]. When debugging a distributed program, developers must
deal with the inherent non-determinism of concurrent processes. This complicates the
debugging task since an error detected in one execution might not manifest itself in the
debugging session. Furthermore, the mere presence of the debugger might exacerbate
this non-determinism by affecting the way in which the program behaves. Computa-
tions performed by the debugger —recording state, checking for breakpoints, etc.—
may affect the order in which processes are executed, making the reproduction of a
rare erroneous condition even rarer. This condition akin to the Heisenberg uncertainty
principle, is known as the probe effect [Gai85, MH89].

In this chapter, we focus on providing support for debugging applications running
on a MANET. Since partial failures may percolate from the underlying distributed sys-
tem layers up to the graphical user interface of an application, the need arises for
managing partial failures up to the tool level. This observation led us to investigate
debugging support for MANET applications together with the programming support
for dealing with partial failures. We first detail the challenges of debugging MANET
applications built around the principles of ambient-oriented programming, and present
the main features of an ambient-oriented debugger to address them. We then describe
the design and implementation of REME-D (read as remedy), a Reflective Epidemic
MEssage-oriented Debugger. REME-D is an example of an ambient-oriented debugger
for AmbientTalk that integrates techniques from traditional sequential debuggers (step-
ping and state inspection) and distributed debuggers (event-based debugging, message
breakpoints) and proposes novel facilities to deal with ad hoc, fragile networks (epi-
demic debugging, and support for network disconnections). REME-D ’s features have
been implemented in AmbientTalk using the reflective architecture from Chapter 5.

10.1 Motivation

Before describing the features of an ambient-oriented debugger, we highlight the need
for such a technique by discussing the challenges of debugging MANET applications.

195

196 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

To this end, we use an application scenario that we will also use as the running example
throughout this chapter.

10.1.1 Running Example: the Mobile Shopping Application
Consider an adaptation of the scenario of the shopping application found in [SCM09]
that runs on mobile devices. Users can launch the shopping application on their smart-
phone and add items in their shopping cart or check out when they are finished. When
the user checks out the shopping cart, the application implements a protocol for hand-
ling purchase orders similarly to well-known shopping websites. Before the shop can
acknowledge an order, it must verify three things: 1) whether the requested items are
still in stock, 2) whether the customer has provided valid payment information and 3)
whether a shipper is available to ship the order in time.

Figure 10.1 gives a graphical overview of the checkout protocol modelled via a
distributed object-oriented system where communication between devices is asynchro-
nous1. For simplicity, we use explicit callback objects to return the result of an asyn-
chronous computation. When the user check outs the shopping cart in the shopping
application UI, the checkoutCart message of the service object on the user’s smart-
phone is sent which in turn sends the go message to the session object that was created
for the user in a buyer process at the shop. In response to a go message, the buyer sends
out three messages to the inventory, the credit bureau, and the shipper services called
partInStock, checkCredit and canDeliver (as also shown in the figure).

partInStock(teller,pIds)

serviceObject
@smartphone

sessionForUser
@shop

checkoutCart()

serviceObject
@inventory

checkCredit(teller,
clientInfo)teller

@shop

create

serviceObject
@creditBureau

serviceObject
@shipper

canDeliver(teller,
shippingInfo)

receive(b)

result

receive(b)
run(b)

receive(b)

order
[b]place

go()

Figure 10.1: The shopping checkout protocol.

In order for the buyer object to collect the answer of the three services, a teller is
created and passed as an argument in each of the above mentioned messages, serving as
a callback object. A teller is an abstraction implementing an asynchronous adaptation
of the logical and operator. The constructor of a teller object takes two parameters:
a number indicating how many affirmative replies it should receive before it invokes
callback<-run(true), and the callback object to notify. The callback object thus

1To keep the figure concise and limited to the application functionality required for this chapter, we
omitted the part of the protocol that actually places the order after all requirements are satisfied.

10.1. MOTIVATION 197

needs to implement the message run(boolean). In this example, the teller is initial-
ized to 3 replies, and the callback object to notify is the session object residing at the
buyer. Hence, once the teller receives the three expected replies, it reports back to the
shopping session true if all received replies were true; otherwise, false. The buyer
then places the order only if all the requirements become satisfied.

10.1.2 Challenges of Debugging Ambient-Oriented Applications
In this work, we focus on providing debugging support for ambient-oriented applica-
tions: distributed applications running on MANETs that are built using a non-blocking
concurrency model (as defined by the AmOP paradigm, cf. Section 2.2). Develop-
ing ambient-oriented applications is hard because of the effects engendered by partial
failures and the fact that the network is open and has little or no infrastructure; devel-
oping debugging tools for such applications is even harder. As described in Chapter 9,
a diverse spectrum of debugging tools exists for concurrent and distributed programs.
However, they lack mechanisms to enable debugging in a mobile environment. To this
end, two challenges need to be addressed which are discussed in the following sections.

10.1.2.1 Message-oriented debugging

In non-blocking concurrency models, non-determinism is limited to the order in which
asynchronous messages are processed since a message is executed atomically. On the
other hand, the distance between the cause of an error and its manifestation (i.e., error
latency [CBM90]) can be larger. In sequential debugging, a call stack trace is often
used to establish a happened-before relation [Lam78] between function calls. In a non-
blocking concurrency model, at the beginning and end of processing each message,
the call stack is always empty. This means that there is no trace of the path taken to
reach the current execution point outside of a process; thus inter-process communica-
tion history is lost. It is precisely this inter-process communication that is essential
to understand the behaviour of a distributed application. In our running example, the
shopping checkout protocol behaviour consists of nine asynchronous messages, the
most relevant being the three asynchronous messages encoding interactions with other
processes to be verified before placing an order – partInStock, checkCredit and
canDeliver messages. Consider a bug manifests itself when processing the run mes-
sage in Figure 10.1. In order to find what caused the bug, one should start examining
the receive message from the shipper because it denotes the request that run tried to
satisfy. In the worst case, the entire “happened-before” relation chain must be consid-
ered, examining the receive messages from the credit bureau and inventory processes
as well. In short, a debugger designed for a non-blocking concurrency model must be
able to trace message passing between communicating parties, leading to the concept
of message-oriented debugging.

10.1.2.2 Open debugging

To start a debugging session, a debugger is launched and then the target application
is executed within the debugger environment. In traditional distributed debugging, the
debugger may need to interact with the runtime system in order to manage the differ-
ent processes which a distributed application consists of [WCS02]. Given the dynamic
nature of MANETs, the number of processes that comprises an application is unknown
when the debugging session is started. In our running example, we actually assume

198 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

a nomadic network infrastructure in which the users are mobile while shop and other
services are stationary computers that are interconnected via the nomadic network’s
infrastructure. However, an ambient-oriented application typically has to discover and
collaborate with other partner applications when they meet in the environment as the
device moves about. As a result, a debugging session will consist of an undetermined,
fluctuating number of processes according to the applications discovered in the net-
work. Because of this, a debugger must be able to dynamically add an application to an
ongoing debugging session at runtime, i.e., the debugging session must be open. Fur-
thermore, the debugger must also allow objects to leave the debugging session without
affecting the rest of the participants as devices may leave the network at any time. Sup-
porting open debugging sessions, along with a mechanism to detect and deal with the
loss of participants in the debugging session should therefore be part of an ambient-
oriented debugger.

Apart from supporting debugging in the context of a dynamically changing net-
work topology, a debugger also needs to be able to engage in a deployed MANET
application, i.e., an application which is already running on a mobile network when a
debugging session starts. As Dao et al. remarked in [DAKV09], debugging a distri-
buted application is challenging because the correctness of the system at a given point
in time “depends on a combination of past and present system, node, and the network
states”. Reproducing the spectrum of possible states that a distributed application can
be in and exposing the application to them before its deployment may be not feasible.
As a result, many bugs may not manifest until the application is actually deployed.
This is exacerbated in MANET applications since the correctness may also depend on
the unpredictable mobility of the devices. In short, an AOD should also incorporate
facilities in order to allow developers to debug “in situ” on a deployed mobile system
(since discovered services can be added dynamically to the debugging session).

10.1.3 Summary
The above two characteristics have been distilled from the analysis of the implications
of the hardware phenomena inherent to MANETs on the design of a distributed debug-
ger. We will henceforth refer to distributed debuggers that adhere to them as ambient-
oriented debuggers (AODs). AODs incorporate the effects engendered by partial fail-
ures and communication with anonymous discovered services in their design. In short,
they should be able to deal with messages passed between communicating parties and
provide control over the flow of asynchronous messages, as well as being able to be
dynamically deployed on devices when necessary.

10.2 Overview of Ambient-Oriented Debuggers
Having defined the set of characteristics of ambient-oriented debuggers, we now de-
scribe the design and implementation of an ambient-oriented debugger which has been
built around two central ideas: to adapt features from breakpoint-based debuggers to a
non-blocking concurrency model (i.e., an event loop concurrency model), and to treat
the debugging process as an ambient-oriented application which adapts its behaviour
in order to respond to the openness of MANETs. Although the current prototype im-
plementation of such an ambient-oriented debugger was done in AmbientTalk, its prin-
ciples are independent of the implementation language and can be equally developed
in other languages and software platforms for mobile networks built non-blocking con-

10.2. OVERVIEW OF AMBIENT-ORIENTED DEBUGGERS 199

currency models (e.g., in White [Qui07], or iScheme [BVB+12] (an Scheme dialect
embodying the AmOP principles for iPhone application development), or an existing
tuple space-based middelware).

A note on terminology before explaining the main core features and architecture
of an ambient-oriented debugger in more detail: for simplicity, we will use the term
ambient-oriented debugger to refer to an online ambient-oriented debugger. An online
ambient-oriented debugger aims to reconcile the AmOP paradigm with a breakpoint-
based debugging methodology. Although AODs may be incarnated by a post-mortem
debugger, we have not investigated this in this work. The design and implementation
of such an approach is outside the scope of this thesis.

10.2.1 Features of an Ambient-Oriented Debugger
We now introduce the key features of an AOD independently of its incarnation in Ambi-
entTalk. It provides four major features: state inspection, stepping, causal link brows-
ing, and epidemic debugging. The later is unique to ambient-oriented debuggers while
the others are inspired by features of traditional debuggers. In particular, stepping and
state inspection are typical features of sequential debuggers which are now adapted to
a non-blocking concurrency model, while causal link browsing is a feature found in
some post-mortem debuggers.We detail these features in the remainder of this section.

State Inspection An AOD is designed as a breakpoint-based debugger following a
long-standing tradition of developing distributed debuggers based on sequential debug-
gers [DAKV09, Got09, NNE04, Hoo96]. A sequential debugger provides a user with
visibility and control over the target application. AODs perform the same function for
an ambient-oriented application. An ambient-oriented application consists of a num-
ber of processes (hereafter denoted as actors) running on various devices in a network.
Each device typically runs a virtual machine hosting one or more actors that execute
that part of the application, and communicate with each other by means of asynchro-
nous message passing. As a result, an AOD is designed as a breakpoint-based debugger
in which focus is placed on the exchange of asynchronous messages between actors.

An AOD supports the introspection of actors whenever they are suspended (in a
pause state). An actor can be suspended between turns. Recall from Section 4.3,
each method invocation corresponding to the processing of an asynchronous message
spawns a turn which runs till completion (as a conventional sequential method invo-
cation) before the next message is served. A turn may change the actor state and
enqueue new messages to be delivered. Since turns are executed atomically, allowing
actors only to be suspended between turns aligns well with a non-blocking concurrency
model. In addition, the debugger’s probe effect is minimized as turns in the actors of
the debugged application remain atomic. This means that the debugger does not alter
the way how a message is processed nor the order of outgoing messages sent as a result
of its processing. When an actor is suspended, users can inspect the actor’s state which
consists of the objects hosted by the actor as well as the actor’s mailbox.

Stepping To control the debugged application, users can place breakpoints to mark
“interesting points” in the execution of the program at which the developer wishes
to inspect the state. In a sequential debugger, breakpoints are placed on instructions,
e.g., on the assignment of a variable or a method call. In message-oriented debugging,
such interesting points take the form of messages exchanged between actors. As a

200 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

result, in a non-blocking communication model, there are two places in which the
debugger may check if a message hits a breakpoint: when the actor serves a message
that needs to be sent to another actor (i.e., on the actor’s outgoing message queue), and
when the actor serves a message that needs to be received by one of its objects (i.e., on
the actor’s incoming message queue). We denote by breakpointed message a message
which has hit a breakpoint and will pause the actor’s execution when it reaches the head
of an actor’s message queue. We detail the different breakpoint semantics supported in
our concrete incarnation of an AOD in Section 10.3.2.

The notion of applying breakpoints on messages maps well to a non-blocking con-
currency model, since it allows defining meaningful stepping semantics at the message
passing level. In AODs, stepping consists of executing the target application one turn
at a time. As in a sequential breakpointed debugger, three kinds of step commands are
offered: step-over, and step-into and step-return a turn. The concrete semantics of each
step command is discussed later in Section 10.3.3.

Causal Link Browsing Causal link reconstruction allows the user to browse the his-
tory of messages sent and received in a turn. In sequential debuggers, the call stack
gives the developer an idea of how the application has reached its current state. Un-
fortunately, in a non-blocking concurrency model, the call stack is empty at the end of
each turn, thus providing no information to the debugger. Since all inter-actor com-
munication is performed via asynchronous message passing, a traditional call stack is
of no use in establishing the history of the distributed behaviour of the application.
Rather, a partial order of messages sent and received would accurately reflect the dis-
tributed behaviour of the application. To this end, REME-D records the exchange of
asynchronous messages during the execution of the debugged application, and then lets
the user browse the obtained message trace.

A partial order of message sent and received provides an order of activation of
computations similar to the call stack in sequential debugging. However, as Pothier et
al. already remarked in [PTP07] “bugs often manifest themselves long after their root
cause occurs”. In sequential debugging, even if the execution is suspended before a
fault, the root cause of a bug may already be lost, e.g., because the code that caused
it is not accessible on the call stack anymore [PTP07]. In order to aid the user in
the process of finding when the root cause of a bug occurred, AOD adopts an event-
driven approach and also records the history of turns generated by the application. Such
history represents the process order [Lam78], i.e., the order of message arrivals in an
actor. In an AOD, a user can query the turn from where a message originated and
the message that was being processed in that turn, thus establishing a happened-before
relation between messages. The developer can then interactively unravel the causal
links that led to the currently inspected message.

Epidemic Debugging Finally, one of the most distinctive features of AOD is its abil-
ity to respond to the dynamic nature of MANETs. Recall from Section 2.1 that any
application deployed in a MANET is subject to two hardware phenomena, namely
frequent disconnections and the lack of infrastructure. In order to deal with such hard-
ware characteristics specific to the applications being debugged, AOD should itself be
built as an ambient-oriented application which employs a non-blocking communication
model to instrument the actors participating in a debugging session. This means that
both the target application and the debugging infrastructure communicate by means of
asynchronous message passing.

10.2. OVERVIEW OF AMBIENT-ORIENTED DEBUGGERS 201

In addition, an AOD provides epidemic debugging which allows an actor which is
discovered in the network to join an ongoing debugging session. Epidemic debugging
allows the debugging support to be dynamically installed on newly discovered actors,
a process akin to an infection in which the debugger spreads to devices joining the
debugging session. As a result, applications can take part in a distributed debugging
session without having to explicitly be configured as a participant beforehand. Devices
can leave the debugging session at any point in time —either due to communication
failures or in response to a user action— without disrupting the debugging of the re-
maining participants.

10.2.2 Architecture

Figure 10.2 gives an overview of the architecture of the ambient-oriented debugger.
When debugging an ambient-oriented application, there may exist several devices run-
ning parts of the application. As such, debugging support will be distributed over two
or more devices. In this case, Figure 10.2 shows three devices, two of which have
joined the debugging session. The device which starts the debugging session of an ap-
plication is called the debugger device. A device which joins the debugging session at
a later point in time is called an infected device. To be more precise, an infected device
is a device which contains at least one actor participating in the debugging session.
Finally, there may be devices in the network which are conceptually running part of
the target application, but which do not form part of the debugging session. This can
happen because e.g., they are out of communication range of the debugger device, or
because they do not run code relevant to the part of the application being debugged. A
device can also opt out of being debugged, and as such, it will never be infected.

local
manager

 Debugger Actor

Debugger
Front-end

Debugger Device Infected Device

Target Application VM
Device

Debugger VM

commands

events

debugger
manager

 Actor Actor
Target Application VM

Target Application VM

Far reference Local reference

Figure 10.2: An ambient-oriented debugging session distributed over two devices.

As also shown in figure 10.2, the debugger device runs two virtual machines: the
debugger virtual machine (VM) which hosts debugging infrastructure, and the virtual
machine in which the target application runs. The debugger VM consists of two com-
ponents: the coordinator debugger actor (or just debugger actor), and the debugger
front end through which the user can interactively control the target application. Each
actor participating in the debugging session contains a dedicated object (denoted in
grey in the figure) called local debugger manager (or just local manager) that imple-
ments the main debugging features previously described. The debugger actor serves

202 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

as a central manager between the debugger front end and all actors participating in a
debugging session. Users can control a debugged application via the debugger front
end, which issues debug commands (or just commands) in response to the user’s ac-
tions (e.g., set a breakpoint, etc.). These commands are forwarded to the debugger
manager, which in turn transmits it to the corresponding local manager(s). In response
to those commands, a local manager will perform some action (e.g., pausing the actor
execution) and inform the debugger actor of their state by sending debug events (or
just events). The debugger actor forwards the events to the debugger front end so that
it updates the debugging information presented to the user. As such, communication
between the debugger manager and the local managers is bidirectional and happens via
asynchronous message passing.

10.3 REME-D: an AOD in AmbientTalk

In this section, we describe the features of AODs within the context of a concrete
incarnation of this concept in AmbientTalk called REME-D. REME-D is a Reflec-
tive Epidemic MEssage-oriented Debugger that has been implemented as the debugger
module of the AmbientTalk IDE for Eclipse (IdeAT)2. REME-D implements AOD as
an ambient-oriented application written on top of the reflective architecture introduced
in Chapter 5. In this prototype, the debugger front end is implemented by a number of
Java GUI components written on top of the Eclipse Debug Framework, and the debug-
ger and the application VMs are implemented as AmbientTalk VMs. REME-D ’s GUI
displays the debugging information sent to it by participating distributed AmbientTalk
VMs, and allows users to issue debug commands which are sent to the debugger actor
via AmbientTalk’s interoperability layer with Java (cf. Section 4.5).

Figure 10.3 shows a typical REME-D session in the context of the shopping appli-
cation described in Section 10.1.1. The figure displays three views: the debug view in
the top left pane (also called the actor view), the debug element viewer in the top right
pane (also called the actor state inspector), and the editor at the bottom. As shown in
the actor view, the application is composed of two different AmbientTalk VMs running
the Store.at and the Buyer.at AmbientTalk files. The editor shows part of the im-
plementation of the buyer actor which contains a go method. As previously explained,
this method is called when the customer decides to purchase the goods in his shop-
ping cart. Recall that in response to this action, the buyer actor consults three service
providers (the inventory, the credit bureau and a shipper) in order to verify the order
before placing it.

10.3.1 Viewing the Actor State

REME-D supports state inspection of actors whenever they are suspended (i.e., in a
pause state). In particular, users can view the state of an actor reachable from the
actor’s behaviour object, and the messages that wait in the actor’s message queue to
be processed, i.e., the actor’s incoming messages queue. In AmbientTalk, the actor’s
behaviour object denotes the first object created within an actor and represents the root
(i.e., entry-point) for the rest of objects owned by the actor.

2The IdeAT plugin is available to be installed from the Eclipse update site at http://tinyurl.com/
ideat, and its documentation is available at http://tinyurl.com/ideatdocs

http://tinyurl.com/ideat
http://tinyurl.com/ideat
http://tinyurl.com/ideatdocs

10.3. REME-D: AN AOD IN AMBIENTTALK 203

Figure 10.3: Eclipse plugin showing a REME-D debug session.

While an actor’s execution is paused, the state of its objects remains static —no
other execution thread has access to them— and no messages are added to the actor’s
outgoing message queue —the paused thread is the only execution thread in an actor.
However, non-paused actors can still send messages to it. New messages that arrive
while the actor is paused are enqueued, and the local manager notifies REME-D’s UI
that the state of the actor’s message queue changed. Note that while an actor is paused,
its incoming message queue can only grow.

Actors can be explicitly suspended by the developer via a pause command, or im-
plicitly suspended by the local manager as a result of a breakpoint or a step command.
When an actor is suspended, the corresponding local debug manager delays the pro-
cessing of the message at the head of the queue, until it receives the command to resume
execution. The local manager communicates the state of the actor to the debugger ac-
tor which in turn updates REME-D’s UI. Figure 10.3 shows how this information is
presented to the developer in REME-D in the state inspector. The developer is able to
inspect the state of the objects encapsulated in the actor, as well as the messages that
await processing in the actor’s incoming message queue. In this example, the actor
contains a customer and a shoppingCart object, and a go message emitted by an
actor with the id -1774115976. By default, REME-D’s UI shows all objects that exist
in the behaviour object’s scope in a list, and then lets the user navigate the object graph
by unfolding the object to be inspected. For example, Figure 10.3 also shows the state
of the customer object which consists of three fields, a username, fidelityCard
number and a homeAdress object (which is currently folded).

10.3.2 Breakpoints Catalog
As explained in Section 10.2.1, an AOD must allow users to set breakpoints in asyn-
chronous messages, as opposed to instruction breakpoints in traditional sequential de-
buggers. REME-D provides a catalog of breakpoints which combines breakpoints on
messages with some characteristics of traditional breakpoints in sequential debugging.
More concretely, the breakpoints supported in REME-D can be classified according to
three basic properties, leading to the elementary breakpoint types shown in the Fig-
ure 10.4.

204 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

Breakpoints

Role

Designation
Code breakpoints
Conditional breakpoints

Sender breakpoints
Receiver breakpoints

Objective On entry breakpoints
On exit breakpoints

Figure 10.4: REME-D elementary breakpoint types.

The role of a breakpoint determines the place at which the breakpoint is set. As
already mentioned in Section 10.2.1, we distinguish between breakpoints placed in
the actor’s outgoing message queue (called sender breakpoints), and actor’s incoming
message queue (called receiver breakpoints). In the remainder of this chapter, we
refer to the actor’s incoming message queue as just the actor’s message queue, and the
message queue’s full names will be used to clarify the explanation when necessary.

The designation of a breakpoint denotes the way that a user defines a breakpoint.
We distinguish between breakpoints defined in terms of a line of code (called code
breakpoints), or in terms of a predicate condition about the state of a message (called
conditional breakpoints).

The objective of a breakpoint denotes when the execution should be suspended. We
distinguish between breakpoints which suspend the actor’s execution when a message
reaches the head of the message queue, (a) before the message is executed (called on
entry breakpoints) and (b) after the message is executed (called on exit breakpoints).
REME-D provides users with 5 different combinations of these elementary breakpoint
types which are described below:

Message breakpoints A message breakpoint defines a breakpoint on a line of code of
an asynchronous message send. Recall from Section 4.3.1 that in AmbientTalk
an asynchronous message is expressed as o<-m() while a synchronous one is
expressed as o.m(). In Figure 10.3 this is indicated in the editor by a blue dot
next to the go asynchronous message. The figure shows the buyer actor paused as
a result of this breakpoint, and one can see the go at the head of its message queue
in the state inspector view on the right top corner. The actor’s execution pauses
when the breakpointed message reaches the head of the message queue, before
the receiver invokes the method corresponding to the asynchronous message.

Message resolution breakpoints A message resolution breakpoint defines a break-
point on a line of code of an future-type message send, typically expressed as
o<-m()@FutureMessage in AmbientTalk. The actor execution pauses when
the message carrying the return value of the computation reaches the head of the
message queue of the sender actor. This means that execution is paused after
the future-type message is processed but, before the sending actor processes the
message with the return value of the computation.

10.3. REME-D: AN AOD IN AMBIENTTALK 205

Recall from Section 4.3.2 that an AmbientTalk asynchronous message does not
have a return value, but immediately returns nil. Thus, setting a message resolu-
tion breakpoint on an regular asynchronous message send which is not futurized,
does not have any effect since no actor will be stopped ever. For example, placing
a message resolution on the go asynchronous message in our running example
will never pause the actor running the application on the end-user device.

Method breakpoints A method breakpoint defines a breakpoint on a line of code of
a method definition. The actor’s execution pauses when any asynchronous mes-
sage invoking the method defined on the given line of code reaches the head of
the actor’s message queue.

Note that in our running example, setting a breakpoint on the method definition
of the go method in the buyer is equivalent to setting a message breakpoint on
the go asynchronous message since the go method is usually called only once on
a shopping session that the application on the end-user smartphone has opened
on the buyer process.

Symbol breakpoints A symbol breakpoint defines a breakpoint on a method name
corresponding to a given symbol. The actor’s execution pauses before the re-
ceiver object invokes a method whose name is the given symbol. This is signaled
in the editor by selecting a symbol and toggling a breakpoint. A symbol break-
point has a similar effect as a method breakpoint but it may pause the actor’s
execution before invoking the method on many receivers since there may exist
different objects defining a method with the same name. For example, recall
again the the mobile music player application described in Section 6.1.1. Many
copies of the song prototype object (cf. Listing 5.5) can coexist in the system,
all implementing the same API. One can imagine that a user may want to place
a symbol breakpoint for a method name (e.g., play) to investigate which songs
may have been wrongly received and cannot be played.

Message conditional breakpoints A message conditional breakpoint defines a break-
point on a conditional expression about a message. It works similarly to a watch-
point for a message: it allows users to stop execution whenever the result of an
expression is true, without having to predict a particular message send or recep-
tion where this may happen.

Recall from Section 4.6.1, that in AmbientTalk, an actor’s message queue actu-
ally consists of a receiver-message pair (called a letter). Hence, the conditional
expression is a predicate on the state of the message-receiver pair. It can contain
arbitrary AmbientTalk code including more than one statement, but the return
value of the expression must be a boolean. A user can select in which message
queue the conditional breakpoint should be placed by means of the “breakpoint
properties...” dialog. The actor’s execution pauses when the result of the condi-
tional expression is true for a message that reaches the head of the given message
queue(s), before the message is processed.

Figure 10.5 provides an overview of these classes of combined breakpoints accord-
ing to the taxonomy shown in Figure 10.4. In addition to such a breakpoint catalog, the
implementation of REME-D itself employs two other combinations that we describe
later in Section 10.4. Note that more combinations may be identified and added in the
future using the debugger breakpoint abstraction (also described in Section 10.4).

206 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

Meth
od

 br
ea

kp
oin

ts

Sy
mbo

l b
rea

kp
oin

ts

Code breakpoints
Conditional breakpoints

Sender breakpoints
Receiver breakpoints

On entry breakpoints
On exit breakpoints

Mes
sa

ge
 br

ea
kp

oin
ts

Mes
sa

ge
 re

so
lut

ion
 br

ea
kp

oin
ts

Mes
sa

ge
 co

nd
itio

na
l b

rea
kp

oin
ts

Role

Designation

Objective

Figure 10.5: REME-D ’s breakpoint catalog provided to users.

When a user sets a breakpoint, the debugger actor notifies all local managers of
the new breakpoint so that they can update their internal data structures and initialize
the necessary machinery to pause the actor’s execution accordingly. Note that peer-
to-peer is a recurring pattern in ambient-oriented applications in which a single object
plays the roles of both client and server. Since all peers share the same source code,
the debugger should provide a mechanism for specifying on which device the break-
point should be active. REME-D enables control over the activation of breakpoints
by allowing users to select at runtime on which devices a given breakpoint should be
active, similarly to the support provided in p2d2 [Hoo96]. This is set by means of the
“breakpoint properties...” dialog that appears when right clicking on the dot indicat-
ing a breakpoint. REME-D UI will then contact the debugger actor which, in its turn,
notifies the corresponding set of local managers of the (de)activation of the breakpoint.

10.3.3 Stepping
REME-D allows users to perform a step-by-step execution of a running application. As
in a sequential breakpointed debugger, three kinds of step commands are offered: step-
over, and step-into and step-return a turn. In addition, we provide a variation of step-
over called step-until. In the remainder of this section, we describe those commands.

Step-Over Command Stepping over a turn allows the user to observe how the state
of the actor changes as it processes incoming messages. A step-over command instructs
the local manager to process a single message —the one at the head of the queue— and
returns to the paused state. In addition, the local manager keeps track of all outgoing
messages that should be sent during that turn, allowing the user to inspect them.

Step-Into Command Stepping into a turn allows the user to navigate the conse-
quences of processing a given message, i.e., the messages sent to other actors in that
turn. This is important when understanding the behaviour of an actor since actors co-
operate in order to carry out tasks [HY88]. When the user instructs REME-D to step

10.3. REME-D: AN AOD IN AMBIENTTALK 207

Figure 10.6: Debug view after a step-into command.

into the current turn, the local manager will perform a step-over and mark all outgoing
asynchronous messages as breakpointed messages. As a result, at the end of step-into,
the current actor (i.e., the one on which the command was invoked) and all the actors
receiving messages sent on that turn are paused. The user can then assert the effect of
the turn on the actor’s state, and decide which of the now paused recipient actors he
wants to continue debugging. This semantics is reminiscent of the semantics provided
in [Wis97] by the combination of a message breakpoint with a traditional breakpoint
on the send statements.

Figure 10.6 shows the debug view after having stepped into the turn that pro-
cessed the go message shown in Figure 10.3. The actor that performed the turn is
expanded displaying the list of messages emitted during the turn processing go mes-
sage (canDeliver, checkCredit and partInStock). The three actors that received
them are now paused as indicated by the yellow pause signs.

Step-Return Command Step-returning a turn allows the user to return from a mes-
sage which has been stepped into. A step-return command is really useful when de-
bugging future-type asynchronous message sends. When the user instructs REME-D
to step return from a future-type message, the local manager will perform a step-over
of the message, and mark the message sent with the return value of the computation as
a breakpointed message. As a result, at the end of step-return of a future-type message,
the actor that sent the message is paused when the future associated with the message
becomes resolved. The user can then inspect the return value of the message sent, and
can decide to continue debugging from the start of any callback functions registered
with the future by means of the when:becomes:* functions (cf. Section 4.3.2).

Step-Until Command In addition to stepping over a turn, REME-D also allows to
step over several turns until a certain message reaches the head of the actor’ message
queue. A step until command takes a conditional expression about a message (rem-
iniscent of message conditional breakpoints), and instruments the local manager to
step over the execution of a number of messages, pausing the execution again when a
message that satisfies the given condition is found. A step-until command is specially
handy when debugging distributed interactions in which the same message is sent sev-

208 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

eral times to an object with different state (e.g., taking different argument values). For
example, in our running example, the service object in the customer’s smartphone sends
a addItemToCart message each time the customer adds items to the cart of the shop-
ping session with the buyer process. One can imagine that if a bug manifests itself in
the shopping protocol, a user may want to instrument the debugger to make a step over
all addItemToCart messages until the one suspected to be the root cause of a bug
reaches the head of the message queue, e.g., the last addItemToCart message, or one
adding a particular sort of items.

10.3.4 Browsing Causal Links

Stepping allows users to interactively move forward in the computation in order to
determine whether it behaving as intended. To assert the cause of a bug, it is also
important to know what has happened earlier in the computation. As we explained,
in an ambient-oriented debugger, the history of messages sent and receptions provides
users with a partial causality similar to the call stack in sequential debugging. Such
information about the communication traces of actors has also proven to be helpful to
implement a variety of synchronisation mechanisms, leading Dedecker to state it as a
dedicated requirement in his original formulation of the AmOP paradigm [DVM+06].

In REME-D, the message trace is contained within the message itself. Each mes-
sage contains debugging information about the trace of messages from which the mes-
sage originated. A trace of messages consists of a list of < identifier, selector >
tuples which contains the identifier of the turn in which the message send got created,
and the selector of the message being processed in that turn. When a message gets
sent in a turn, the local manager attaches the list of tuples for the message being pro-
cessed to the message, and then adds a new tuple with the debugging information for
that turn. For example, in our running example, the canDeliver, checkCredit and
partInStock messages were sent during the turn in which the go message was pro-
cessed. The local manager in the buyer actor will extend those three messages with
the message history that the go message already had, and a new tuple including the
identifier of the turn processing go, and the go selector. The user can then ask in
REME-D’s UI to inspect the message history for a given message. For example, the
message history of canDeliver message shows debugging information about the go,
and checkoutCart messages.

As an exemple of an ambient-oriented debugger, REME-D allows users to query
the turn from which a message originated. Local managers maintain the history of
turns executed by the actor, noting the incoming and all outgoing messages in the
turn. When an actor processes a message from the message queue, the local manager
stores a < id, cause, effects > tuple which contains the turn identifier, the selector
of the message being processed (representing the cause of the turn), and the list of
all outgoing messages sent during the turn (representing the effects of the turn). This
information is then sent to the debugger actor when a user would like to browse the
turn for a particular message being inspected.

10.3.5 Open Debugging

In this section, we detail how REME-D deals with the hardware characteristics of
MANETs, in particular, how it supports debugging in the face of partial failures of
the target application. REME-D has been designed as an ambient-oriented application

10.4. IMPLEMENTATION 209

in which communication is non-blocking. This means that REME-D sends debug com-
mands and receives events from participating actors via asynchronous message passing.
When a local manager detects a communication failure with the debugger manager, it
removes all breakpoints and resumes the actor if necessary.

Since network disconnections are taken into account in the design of ambient-
oriented applications, it is important to debug their behaviour in the face of these events.
REME-D provides the user with the possibility of simulating the disconnection of a de-
vice. This is achieved by having the local manager on the “disconnected” device cut
communication with other devices, while maintaining it with the debugger manager
(so that the user can still instrument the actor from REME-D’S UI).

10.3.5.1 Epidemic Debugging

As previously mentioned, debugging applications written for MANETs require that
the debugging process itself be open. As such, REME-D ’s debugging sessions are not
constrained to a fixed configuration. The user does not need to define a-priori which de-
vices will participate in the session. Instead, REME-D operates in an epidemic fashion,
spontaneously adding devices to the current debugging session whenever they interact
with actors participating in the session. More concretely, a device is added to the de-
bugging session whenever it receives a breakpointed message from an actor. Upon
receiving a breakpointed message, the AmbientTalk VM deploys a local manager on
the receiver actor and the VM is said to be infected. The local manager then announces
its presence to the debugger manager, which adds the actor information to the debug-
ging session and sends back debugging information (e.g., the active breakpoints).

Recall from Figure 10.6, that the debug view on the right pane shows two different
devices running Store.at and the Buyer.atAmbientTalk files, respectively. REME-
D’S UI also displays newly infected devices as part of the debugging session in the
debug view.

The infection of an actor only happens if the source file was loaded in an Ambi-
entTalk VM started with -Xdebug option (akin to the “-g” option found in Java and C
compilers), or if an actor dynamically activates debugging facilities (explained later in
Section 10.4.4). Allowing devices to explicitly opt-out of a debugging session prevents
the most obvious security issues. In this case, the Store.at file was executed within
Eclipse with a custom run configuration. However, the file could have been executed
outside of Eclipse, e.g., by means of the interactive AmbientTalk shell on a computer,
or the AmbientTalk library for Android devices.

An actor may leave a debugging session in two cases: when the device hosting the
AmbientTalk VM disconnects from the network, or because the user stops the debug-
ging process on the AmbientTalk VM. If a device was suspended when it disconnected,
the local manager resumes the actor. On the other side, the debugger manager removes
the disconnected actor from the debug view. The debug view is thus updated whenever
a device appears or disappears on the network.

10.4 Implementation
As previously mentioned, REME-D has been implemented in the AmbientTalk lan-
guage itself, on top of the reflective infrastructure described in Chapter 5. The debug-
ger manager has been implemented as a regular AmbientTalk object while the local
manager is an actor mirror that alters the default semantics for message sending and

210 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

� �
1 def debuggerEventListener := object:{
2 def startActorEvent(actorId, vmId, fileName, line){
3 eclipsePlugin.handleEvent(StartActorEvent.new(actorId, vmId, fileName, line);
4 };
5 def pauseActorEvent(actorId, actorState){
6 eclipsePlugin.handleEvent(PauseActorEvent.new(actorId,actorState));
7 };
8 /** rest of events **/
9 };� � in

te
rf

ac
e

w
ith

de
bu

gg
er

m
an

ag
er

� �
10 def commandListener := object: {
11 def executeStartCommand(startCommand){
12 startCommand.getBreakpoints().each: {|bP|
13 bP.executeCommand(self);
14 };
15 debuggerManager.loadMainCode(startCommand.getActorId());
16 };
17 def executeSetBreakpointCommand(fileName, lineNumber, bpActiveOnList){
18 if: (nil == bpActiveOnList) then: {
19 debuggerSessionBhv.setBreakpoint(fileName, lineNumber);
20 } else: {
21 debuggerSessionBhv.breakpointActiveOn(fileName, lineNumber, bpActiveOnList);
22 };
23 };
24 /** rest of commands **/
25 };� � in

te
rf

ac
e

w
ith

E
cl

ip
se

pl
ug

in

� �
26 def debuggerManager := debuggerModule.makeDebuggerManager();
27 def eclipsePlugin := jlobby.edu.vub.at.debug.core.DebugCorePlugin.getDefault();
28 debuggerManager.setupDebugSession(debuggerEventListener);
29 eclipsePlugin.registerController(commandListener);� � se

tu
p

Figure 10.7: Behaviour of the debugger actor.

reception. In the rest of this section we describe the implementation of the debugger
manager, the local manager and other relevant abstractions such as breakpoints.

10.4.1 Creating and Managing A Debugging Session

As previously explained, the debug manager coordinates a debugging session. Simi-
larly to the architecture shown in Figure 10.2, the debug manager is an object within an
AmbientTalk actor called the debugger actor. Figure 10.7 provides an implementation
overview of the debugger actor organized in three different parts3. First, the debugger
actor defines two other objects which mediate communication between the debugger
front end and local managers participating in the debugging session. The command
listener object serves as the interface with the Eclipse UI and is called directly from
the front end in response to the user’s actions (e.g., set a breakpoint). The event listener
object serves as interface with the debugger manager and is called to communicate up-
dates to the debugger’s front end (e.g., mark on the GUI that an actor was paused as
a result of a breakpointed message). Finally, the debugger actor creates the debugger
manager and sets up the bidirectional communication with the Eclipse UI (lines 26-29).

In response to a user’s action, the Eclipse UI contacts the command listener using
AmbientTalk’s interoperability layer with Java. The command listener sends a message
to the debugger manager for a given command which in turn communicates the com-
mand to the corresponding local manager(s). In response to debug commands, local

3For conciseness, we only show the implementation of a couple of command and events; the rest are
implemented based on the same strategy.

10.4. IMPLEMENTATION 211

managers may communicate changes about the actor/debugging state to the debugger
manager which in turn reports them to the event listener. This implementation strategy
decouples the core functionality of the debugger (provided by the debugger and local
managers) from the front-end interactions (encapsulated in the command and event lis-
teners). As a result, it eases the development of new debugger front ends since plugging
new GUI front ends only requires modifying the event listener. In addition, it allows
creating unit tests for the debugger core in the same way as they are implemented for
regular AmbientTalk applications.

For the sake of reproducibility, Appendix C describes the interactions between de-
bugger manager and command and event listeners for REME-D’s startup protocol.

10.4.1.1 The Debug Manager Object

Figure 10.8 gives an overview of the debugger manager. A debugger manager object
is created by means of the makeDebuggerManager function which consists of three
parts (delimited with an inner box in the figure). First, the function defines the neces-
sary data structures to manage the debugging session. A hashmap actorList main-
tains an up-to-date list of connected actors in the debugging session. It is updated when-
ever an actor loses connectivity by registering a whenever:disconnected: handler
(cf. Section 4.4.2). The hashmaps breakpointsInAllVM and breakpointsInVM

store the breakpoints that should be active in all AmbientTalk VMs and only in a sub-
set of AmbientTalk VMs, respectively. The debugger manager keeps those hashmaps
up-to-date according to the user’s actions on the UI, and informs the corresponding
local managers when that is necessary. Hence, a local manager only receives infor-
mation regarding to the breakpoints relevant to it (it does not known in which other
VMs or actors the breakpoint is active). The hashmap vmIdToActorIdMap stores
the actor identifier per AmbientTalk VM and it is used by breakpointActiveOn

for computing the breakpoints active on a given list of VM identifiers. Finally, the
debugEventListener stores a reference to the event listener to communicate changes
reported by local managers to the debugger front end.

As shown in Figure 10.8, the makeDebuggerManager function also creates
two interface objects: a localInterface object which defines all methods that
can be invoked by the debugger front end via the command listener object, and a
remoteInterface object which defines all the methods that can be invoked remotely
by local managers to update the debugger front end. As explained before, when the
command listener invokes one of the localInterface methods for a command, the
debugger manager sends an asynchronous message to the corresponding local man-
ager(s). Those messages are annotated with a @Debug annotation so that a local man-
ager can distinguish between application-level messages and debug-level messages.
Table 10.1 provides an overview of all annotations used in the REME-D prototype.

10.4.2 Instrumenting Actors In The Debugging Session

In order for REME-D to control an actor in the debugging session, a local manager
is installed in each actor created during the debugging session. A local manager is
an implicit actor mirror that alters the default language semantics for the message
invocation protocol (described in Section 4.6.3) to implement the features of AODs.

212 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

1 def makeDebuggerManager() {� �
2 def actorList := HashMap.new();
3 def breakpointsInAllVM := Vector.new();
4 def breakpointsInVM := HashMap.new();
5 def vmIdToActorIdMap := HashMap.new();
6 def debugEventListener;� �da

ta
st

ru
ct

ur
es

� �
7 def localInterface := object: {
8 def codeBreakpointActiveOn(filename, lineNumber, listVMIds){...};
9 def clearCodeBreakpoint(filename, lineNumber){...};

10 def setCodeBreakpoint(filename, lineNumber, messageResolved := false){...};
11 def stepReturn(actorId){...};
12 def stepOver(actorId){...};
13 def stepInto(actorId){...};
14 def resumeActor(actorId){...};
15 def pauseActor(actorId){...};
16 def loadMainCode(actorId){...};
17 def setupDebugSession(debugEL){
18 debugEventListener := debugEL;
19 export: remoteInterface as: debuggerUtilModule.DebuggerManager;
20 network.online();
21 };
22 def getLocalManagerById(localManagerId){...};
23 def listLocalManagers(){...};
24 };� �

in
te

rf
ac

e
w

ith
fr

on
te

nd

� �
25 def remoteInterface := object: {
26 def actorStarted(actorId, sourceLocation, frLocalManager){...};
27 def actorPaused(actorId,actorState){...};
28 def actorResumed(actorId){...};
29 def updateInbox(actorId, msg, addition := true){...};
30 def updateMessageSent(actorId, msg){...};
31 };� �in

te
rf

ac
e

w
ith

lo
ca

lm
an

ag
er

s

32 localInterface; //return value of this function
33 };

Figure 10.8: The debugger manager object.

Figure 10.9 shows the definition of a local manager’s implicit actor mirror. We ex-
plain later in this section how and when a local manager is installed on an actor. The
makeLocalManager function creates a local manager by extending a given actor mir-
ror with REME-D’s debugging functionality. The function also takes as parameter a
boolean denoting whether the local manager is joining a running debugging session
and the debugger manager of that session (if known). We can distinguish four different
parts in the behaviour of a local manager (delimited by an inner box in the figure).

@Debug Annotation used to mark messages as debugging commands
from the debugger actor.

@Pause Annotation used to mark messages that require pausing the re-
ceiver actor. It is used both by breakpointed messages and mes-
sages sent during step-into command.

@PauseResolve Annotation used to mark messages that require pausing the
sender actor. It is used both by messages breakpointed as a
result of a message resolution breakpoint and messages sent
during step-return command.

Table 10.1: Annotations on asynchronous messages.

10.4. IMPLEMENTATION 213

1 def makeLocalManager(actor, debuggingSession, debuggerManagerFarRef){
2 extend: actor with: {� �
3 def debuggingState := INITIAL;
4 def pausedState := INITIAL;
5 def debuggerManager := nil;
6 def actorId := debuggerUtilModule.generateRandomId();
7 def inbox := [];
8 def senderBreakpoints := HashMap.new();
9 def receiverBreakpoints := HashMap.new();

10 def turnHistory := Vector.new();
11 def turnId := 0;� �dat

a
st

ru
ct

ur
es

� �
12 def send(rcv, msg) {/*explained later*/};
13 def schedule(rcv, msg){/*explained later*/};
14 def serve(){/*explained later*/};� �m

et
a

m
et

ho
ds

� �
15 def remoteInterface := object: {
16 def evaluateCode(){...};
17 def startInDebugMode(tableCodeBreakpoints){...};
18 def pause(){...};
19 def resume(){...};
20 def stepCommand(stepTypeTag) {...};
21 def addBreakpoint(breakpoint){...};
22 def removeBreakpoint(breakpoint){...};
23 };� �in

te
rf

ac
e

w
ith

de
bu

gg
er

m
an

ag
er

� �
24 def whenDiscoveryActorDiscovered(da) { /*explained later*/};
25 if: (debuggerManagerFarRef == nil) then: {
26 when: debuggerUtilModule.DebuggerManager discovered: { |da|
27 whenDiscoveryActorDiscovered(da);
28 };
29 } else: {
30 whenDiscoveryActorDiscovered(debuggerManagerFarRef);
31 };
32 };� �serv

ic
e

di
sc

ov
er

y

Figure 10.9: Implicit actor mirror on the local manager.

Data Structures A local manager keeps track of a number of data structures. The
debuggingState variable indicates whether the actor execution is in an initial, a run-
ning or a paused state. Once a local manager has been created and installed on an
actor, the local manager is said to be in the initial state, but it has not started until it re-
ceives the startInDebugMode message from the debugger actor (as described in Fig-
ure C.1). Once started, the actor being controlled by a local manager may be running or
paused. The pauseState variable indicates the reason to pause an actor’s execution.
An actor may be paused as a result of a pause command, a breakpointed messages, or
any of the supported step commands. The inbox stores the base-level messages sent to
an actor while it is paused. The senderBreakpoints and receiverBreakpoints

hashmaps store the breakpoints that need to be checked when sending or receiving a
message, respectively. Finally, the turnHistory vector keeps a list of objects repre-
senting the turn information, and the turnId variable stores the current turn identifier.

Meta Methods A local manager overrides a number of meta actor methods to al-
ter the default language semantics for the message invocation protocol. We describe
three changes to the semantics. First, the local manager’s implicit mirror overrides the
schedule meta method to check if a message hits a receiver breakpoint and pauses the
actor’s execution if necessary. Second, any asynchronous message sent during a turn
is extended to include information about the turn and sender in order to build the event
history for browsing causal links. This is done by overriding the send meta method.

214 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

send also checks if a message hits a sender breakpoint, in which case the message
is annotated with a @Pause annotation. As described in Table 10.1, this annotation
pauses the receiver actor. Finally, the serve meta method is overridden to implement
the resume and step commands.

Interface with the debugger manager The remoteInterface object defines all
the methods that can be invoked remotely by the debugger manager to instrument the
actor’s execution.

Service Discovery Finally, a local manager extends the default meta-actor protocol
with the whenDiscoveryActorDiscovered method which takes care of sending the
actorStarted event from the startup protocol explained in Figure C.1, and places
the necessary failure handling code to deal with disconnections of the debugger man-
ager. As shown in Figure 10.9 (lines 25-31), the whenDiscoveryActorDiscovered
method is called when a debugger manager is discovered on the network, or it is im-
mediately called if the debugger manager is already known (e.g., when infecting a new
actor, the local manager is initialized with a given debugger manager as we discuss
later in Section 10.4.4.

In the remainder of this section, we provide more insight about the three meta
methods that the local manager’s actor mirror overrides as they implement the core
debug functionalities.

10.4.2.1 Instrumenting Message Reception

Recall from Section 4.6.3 that the schedule method is called right before a message
is added to the message queue of an actor. Figure 10.10 shows the behaviour of the
schedule method in the local manager’s implicit mirror. schedule first checks the
message’s annotations. If the message has a @Debug annotation, the default semantics
of schedule are applied (lines 2-4) as it represents a debug-level message sent by the
debugger actor. For all other messages, the local manager checks the debugging state
to determine how to handle the message. Each debugging state is delimited by an inner
box in the figure. When an actor receives a message when it has not yet started (lines
34-38), it will buffer all application-level messages that it receives from other actors
until it receives the startInDebugMode message from the debugger actor. When an
actor receives a message while running (lines 20-32), the local manager checks whether
the message hits a breakpoint in the receiverBreakpoints hashmap, and pauses the
execution if a match is found. Finally, if the actor is paused when schedule is called,
e.g., due to a pause command (lines 7-18), the incoming message is buffered and the
debugger actor is notified of the arrival of a new message. The debugger actor in turn
updates the UI representation of the message queue in the inspector. These semantics
are not applied for debug-level messages.

10.4.2.2 Instrumenting Message Processing

Recall from Section 4.6.3 that the serve method is called when a message is dequeued,
before being processed. It is overridden to create an object with turn information and
adds it to the turn history for the message to be processed. The serve method also
updates the pauseState variable after having served a message, i.e., when a turn is
completed. If the message was executed as a result of a step-over or step-into com-
mand, the pause state is set to initial so that the actor’s execution is again paused in the

10.4. IMPLEMENTATION 215

1 def schedule(rcv, msg){
2 if: (is: msg taggedAs: Debug) then:{
3 superˆschedule(rcv,msg);
4 } else: {
5 if: isStarted() then:{
6 if: isPaused() then: {� �
7 if: ((isInStepInto()).or:{isInStepOver()}) then:{
8 debuggerManager<-updateInbox(actorId, msg, false)@Debug;
9 superˆschedule(rcv,msg);

10 } else: {
11 if: isInStepReturn() then: {
12 debuggerManager<-updateInbox(actorId, msg, false)@Debug;
13 installFutureBreakpoint(msg);
14 superˆschedule(rcv,msg);
15 } else: {
16 pauseAndBuffer(rcv, msg, pausedState);
17 }
18 };� � ac

to
ri

s
pa

us
ed

19 } else: {� �
20 def [isBreakpointed,bkpt] := isBreakpointed(‘receiverBreakpoints,rcv,msg);
21 if: isBreakpointed then:{
22 if: (is: msg taggedAs: PauseResolve) then:{
23 installFutureBreakpoint(msg);
24 superˆschedule(rcv,msg);
25 } else:{
26 pauseAndBuffer(rcv, extendWithPauseBhv(msg,actorId,debuggerManager),
27 BREAKPOINT);
28 };
29 } else: {
30 superˆschedule(rcv,msg);
31 };
32 };� �

ac
to

ri
s

ru
nn

in
g

33 } else: {� �
34 if: (is: msg taggedAs: ExternalMessage) then: {
35 superˆschedule(rcv,msg);
36 } else:{
37 pauseAndBuffer(rcv,msg);
38 }� �

ac
to

rh
as

no
ts

ta
rt

ed

39 };
40 };
41 };

Figure 10.10: Local manager’s implementation of the schedule meta method.

next turn. If the message was executed as a result of a step-return command, the debug
state is changed to running, and the debugger actor is notified of its resumption.

10.4.2.3 Instrumenting Message Sending

Finally, recall from Section 4.6.3 that the send method is called before a message is
queued on a far reference to be sent to another actor. Listing 10.11 shows the behaviour
of the send method in the local manager’s implicit mirror. Similarly to schedule’s
implementation, send first checks the message’s annotations. If the message has a
@Debug annotation, default semantics for send are applied as it represents a debug-
level message sent to update the debugger manager. When an application-level message
is sent, the local manager first extends it with the turn information, and then checks
whether the message hits a breakpoint stored in the senderBreakpoints hashmap.
If the message hits a breakpoint, or if the local manager was instrumented to do a step-

216 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

1 def send(rcv, message){
2 def types := tagsOf: message;
3 if: (nil != (types.find: { |type| type.isSubtypeOf(Debug) })) then: {� �
4 if: (!disconnectedFromDebuggerManager) then: {
5 superˆsend(rcv,message);
6 }� �

de
bu

g
m

es
sa

ge

7 } else: {� �
8 def turn := updateTurnHistory(turnId, message);
9 def msg := extendWithTurnInformation(turnId, turn.getCause().selector, message);

10 def [isBreakpointed,bkpt] := isBreakpointed(‘senderBreakpoints,rcv,msg);
11 if: (isBreakpointed.or:{isInStepInto()}) then: {
12 def newMsg := msg;
13 if: (nil != bkpt) then: {
14 if: bkpt.onEntry() then: {
15 newMsg := extendWithPauseBhv(msg, actorId, debuggerManager);
16 } else:{
17 newMsg := extendWithPauseBhv(msg, actorId, debuggerManager,PauseResolve);
18 };
19 } else:{
20 newMsg := extendWithPauseBhv(msg, actorId, debuggerManager);
21 };
22 def result := superˆsend(rcv,newMsg);
23 if: isInStepInto() then: {
24 debuggerManager<-updateMessageSent(actorId, msg)@Debug;
25 };
26 result;
27 } else:{
28 superˆsend(rcv,msg);
29 };� �

ap
pl

ic
at

io
n-

le
ve

lm
es

sa
ge

30 };
31 };

Figure 10.11: Local manager’s implementation of the send meta method.

into command, the local manager again extends the message with a @Pause annotation
before sending it by calling the extendWithPauseBhv method (explained later in
Section 10.4.4).

10.4.3 Breakpoints
As discussed in Section 10.3.2, a breakpoint can be categorized according to three
basic properties: role, designation and objective. In the implementation, we define the
behaviour common to all breakpoints in a trait in order to promote its reusability. The
trait is “mixed into” different breakpoints in order to implement the breakpoint catalog
shown in Figure 10.5.

def TBreakpoint := isolate:{
def condition;
def breakpointId;
def breakpointTypes;
def init(cond, types, bId := /.at.support.debugger.util.generateRandomId()){
[self.condition,self.breakpointId,self.breakpointTypes] := [cond,bId,types];

};
def getBreakpointId() {self.breakpointId};
def onEntry() {true};
def ==(otherBreakpoint) {
self.getBreakpointId == otherBreakpoint.getBreakpointId

};
def matches(rcv,msg) { self.condition(rcv,msg) };
def getBreakpointTypes() { self.breakpointTypes };
def isTaggedAs(typeTag) {
{ |return|

self.breakpointTypes.each: { |t|

10.4. IMPLEMENTATION 217

if: t.isSubtypeOf(typeTag) then: { return(true)}
};
false;

}.escape();
};

};

The TBreakpoint trait represents a breakpoint as an object storing an identi-
fier, a condition and breakpoint type tags. The breakpointId uniquely identifies
the breakpoint and is used for storing the breakpoint in the debugger data structures.
The condition variable stores an AmbientTalk closure encoding a boolean pred-
icate that needs to be satisfied in order for a message to hit the breakpoint. The
breakpointTypes denotes the role of the breakpoint. A breakpoint may be tagged
with the SenderBreakpoint and/or ReceiverBreakpoint type tag. Finally, the
onEntry method defines the objective of the breakpoint. By default all breakpoints
are on-entry breakpoints but this method can be overridden by the composite object.

Note that the TBreakpoint trait expresses all REME-D’s breakpoints as condi-
tional breakpoints. Hence, code breakpoints have been built into REME-D in terms of
conditional breakpoints as shown in the following listing:

def codeBreakpoint := isolate: {
import /.at.support.debugger.util.TBreakpoint alias init := initBreakpoint;
def filename;
def lineNumber;
def init(name, number, cond, types){
def breakpointId := (name + "-" + number);
self.initBreakpoint(cond, types, breakpointId);
filename := name; lineNumber := number;

};
def getFilename() {filename};
def getLinenumber() {lineNumber};

};

When a user places a breakpoint on a line of code on the UI, the debugger man-
ager creates an instance of the corresponding code breakpoint and then, it passes it as
argument in a setBreakpoint message to the necessary local manager(s). As such,
a code breakpoint is declared to be an isolate (i.e., an object passed by copy). List-
ing 10.1 shows the implementation of all code-based breakpoints in the breakpoint
catalog offered the user, namely message, message resolution and method breakpoints.
They have been implemented as an extension to the codeBreakpoint prototype. The
script:carrying: helper function allows the creation of a closure which is passed
by copy in inter-actor messages copying into the closure scope the variables defined
in the table given as argument. In the remainder of this section, we explain how the
debugger handles breakpoints by describing message-type breakpoints.

10.4.3.1 Message Breakpoints

As shown in Listing 10.1 (lines 18-23), a message resolution breakpoint extends a
message breakpoint prototype overriding the behaviour of the onEntry method. The
onEntry method returns false, denoting an on-exit breakpoint. Since a message reso-
lution breakpoint is a subtype of message breakpoint, the local manager will add it to
its senderBreakpoint hashmap which is checked each time a message is sent. This
happens when the send meta method calls the isBreakpointed helper function (cf.
Figure 10.11, line 10). isBreakpointed returns a boolean if the outgoing message
hits a sender breakpoint, and the matching breakpoint if any. If a matching breakpoint

218 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

Listing 10.1: Implementation of REME-D’s code-based breakpoints� �
1 def messageBreakpoint := extend: codeBreakpoint with: {
2 def init(name, number) {
3 def cond := script: {|rcv, msg|
4 def utilModule := /.at.support.debugger.util;
5 def lineNumber := msg.getLocationLine();
6 def filename := msg.getLocationFilename();
7 def res := false;
8 if: ((nil != lineNumber).and: { nil != filename }) then:{
9 res := ((name == filename).and:{number == lineNumber})

10 };
11 res
12 } carrying: ‘[name, number];
13 def types := [utilModule.SenderBreakpoint, utilModule.MessageBreakpoint];
14 superˆinit(name, number, cond, types);
15 };
16 };
17 def messageResolvedBreakpoint := extend: messageBreakpoint with: {
18 def init(name, number) {
19 superˆinit(name, number);
20 self.breakpointTypes := superˆgetBreakpointTypes()+[MessageResolveBreakpoint];
21 };
22 def onEntry() {false};
23 };
24 def methodBreakpoint := extend: codeBreakpoint with:{
25 def init(name, number) {
26 def cond := script: { |rcv, msg|
27 def res := false;
28 if: ((reflect: rcv).respondsTo(msg.selector)) then: {
29 def method := (reflect: rcv).grabMethod(msg.selector);
30 def sourceLocation := /.at.support.util.getSourceLocation(method);
31 if: (nil != sourceLocation) then: {
32 if: ((name == sourceLocation.fileName).and:{
33 number == sourceLocation.line}) then: { res := true }
34 }
35 };
36 res
37 } carrying: ‘[name, number];
38 def types := [/.at.support.debugger.util.ReceiverBreakpoint];
39 superˆinit(name, number, cond, types);
40 };
41 };� �

is an on-entry breakpoint, then the debugger extends the message with a @Pause an-
notation before sending it. If a matching breakpoint is an on-exit breakpoint, then the
debugger extends the message with a @PauseResolve annotation before sending it.

At a later point in time, when the receiver actor schedules the message, its local
manager also checks whether it matches a breakpoint as shown in Figure 10.10 (line
20). The isBreakpointed helper function always returns true for messages anno-
tated with the @Pause or @PauseResolve annotation. If the message is annotated
with the @Pause annotation, the actor’s execution is only paused. If the message is an-
notated with the @PauseResolve annotation, the local manager installs a new break-
point called a future resolution breakpoint as shown in Figure 10.10 (line 23). The
following code snippet shows the implementation of this breakpoint.

def futureResolutionBreakpoint := extend: conditionalBreakpoint with: {
def init(msg) {
def condition := {|receiver, message|

def selector := messag.selector;
(receiver == (reflect: msg).invokeField(msg, ‘future)).and:{
(selector ==‘resolveWithValue).or:{selector == ‘ruinWithException}

}};
superˆinit(condition, [/.at.support.debugger.util.SenderBreakpoint]);

}};

10.4. IMPLEMENTATION 219

A future resolution breakpoint is a conditional sender breakpoint whose goal is to
hit the message carrying the return value of the original message computation. When
the resolveWithValue or ruinWithException message carrying the result of the
computation is sent back to the sender actor, the future resolution breakpoint will be
hit, causing the message carrying the result to be annotated with a @Pause annotation.

The local manager also creates a future resolution breakpoint when executing a
step-return command as shown in Figure 10.10 (lines 11-15). A similar implementation
technique has also been used to implement a step-until command. However, a step-until
command makes use of a conditional sender breakpoint created from the conditions the
user introduces via REME-D’s UI.

10.4.4 Infecting AmbientTalk VMs

As explained before an actor becomes infected when it receives a breakpointed mes-
sage (a message which has hit a breakpoint). A breakpointed message is annotated by
a Pause type or one of its subtypes (e.g., PauseResolve type) to pause the receiv-
ing actor execution. Listing 10.2 shows the implementation of breakpointed messages.
The extendWithPauseBhv function takes four parameters: the message to break-
point, and the type tag to annotate the message with, the identifier of the actor sending
the message, and a reference to the debugger manager. The function returns a new
message extending the original message encoding the infection of the actor receiving
the message by overriding the method responsible for processing the message, called
process. To this end, the process method (lines 8-21) installs a new local manager
on the receiver actor (if necessary) by means of the enableLocalManager function.
Recall from Section 4.6.2 that implicit mirrors on actors can be dynamically installed
on an existing actor in order to override an actor’s meta methods. The only require-

Listing 10.2: Implementation of breakpointed messages� �
1 def extendWithPauseBhv(msg, actorId, debuggerManager, pauseType := Pause) {
2 if: (is: msg taggedAs: pauseType) then:{
3 msg; // do not wrap it again.
4 } else:{
5 extend: msg with: { |actorId, debuggerManager|
6 def lmModule := /.at.support.debugger.localManager;
7 def alreadyPaused := false;
8 def process(rcv) {
9 def actor := reflectOnActor();

10 if: !(is: actor taggedAs: lmModule.LocalManagerModule) then: {
11 if: ((reflect: actor).respondsTo(‘debuggable)) then:{
12 lmModule.enableLocalManager(true, false, debuggerManager);
13 rcv <+ self;
14 } else:{
15 raise: lmModule.XDebuggerException.new(
16 "cannot infect an non-debuggable actor");
17 };
18 } else: { //local manager already enabled
19 superˆprocess(rcv);
20 };
21 };
22 def getLocationLine(){superˆgetLocationLine() };
23 def getLocationFilename(){superˆgetLocationFilename()};
24 def getSenderActorId(){actorId};
25 } taggedAs: [pauseType, /.at.lang.types.Isolate];
26 };
27 };� �

220 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

ment for infecting an actor is that the receiving actor knows the source code for the
local manager. The source code is included in the default AmbientTalk standard li-
brary, and thus accessible to any created actor (via the /.at.support.debugger

namespace). Nevertheless, REME-D’s implementation only infects the receiver actor
if its actor mirror has a debuggable field. This field exists on those actors created
within an AmbientTalk VM launched with the -Xdebug option.

We conclude our implementation overview by explaining how the
enableLocalManager function works. As shown in Listing 10.3 (line 6), it
installs a local manager by replacing the current actor mirror with a local manager’s
implicit actor mirror (returned from calling makeLocalManager from Figure 10.9).
enableLocalManager is called to install a local manager either upon infection (as
just shown in Listing 10.2 line 12), or when an actor is created as a result of evaluating
code in a debugging session. It is also called to uninstall a local manager when a
debugger actor leaves the debugging session (because of disconnection or as a result
of a stop command).

Listing 10.3: Enabling a local manager’s implicit mirror� �
1 def enableLocalManager(enable, debuggingSession := true, debuggerManager := nil) {
2 def actor := reflectOnActor();
3 if: (enable) then: {
4 if: (!(is: actor taggedAs: LocalManagerModule)) then: {
5 def newProtocol := makeLocalManager(actor,debuggingSession,debuggerManager);
6 actor.becomeMirroredBy: newProtocol;
7 } else: { actor };
8 } else:{
9 actor.becomeMirroredBy: defaultActorMirror;

10 }
11 };� �

10.4.5 Implementation Status
The implementation discussed in this section is a “proof of concept” implementation
the aim of which is to show that it is feasible to implement AODs using a mirror-based
reflective architecture with the enhancements of Chapter 5. As such, it should not be
considered as a stable, optimized, scalable debugger. Rather, it is a research artifact
that serves as proof by construction that an AOD is viable.

As previously mentioned, REME-D has been integrated with the AmbientTalk IDE
for Eclipse as the debugger module. Nevertheless, REME-D can run independently of
this particular front end. There exists another front end written in Java Swing developed
within the context of Astudillo’s master thesis [Ast12]4.

There are a number of features which are not currently integrated in the REME-D’s
UI, i.e., they do not have a dedicated UI component in the Eclipse IDE:

• causal link browsing.

• setting symbol, conditional and message resolution breakpoints.

• simulating network disconnections.

4Screenshots of the Java Swing front end are available at http://
patricio-astudillo-thesis.blogspot.com/

http://patricio-astudillo-thesis.blogspot.com/
http://patricio-astudillo-thesis.blogspot.com/

10.4. IMPLEMENTATION 221

In order for users to make use of those features, the Eclipse plugin has been ex-
tended with a console connected to the AmbientTalk VM running the debugger man-
ager, called AT Debugger Manager. The user needs to instrument the debugger by
explicitly invoking methods of the debugger manager from the command line in the
“AT Debugger Manager” console. Figure 10.12 shows how a user can make use of
such an interactive console to install a breakpoint on the go symbol. As shown, the re-
sult of such a symbol breakpoint pauses the buyer actor before executing the go method
(analogously to the code breakpoint shown in figure 10.3).

Figure 10.12: Eclipse plugin showing the AT Debugger Manager console.

It is important to mention that the AmbientTalk IDE for Eclipse actually con-
tains the AmbientTalk/2 interpreter rather than the AmbientTalk/M dialect described
in Chapter 5. As a result, there are a number of features which are not supported by
REME-D when invoked from within AmbientTalk’s Eclipse IDE:

Lazy Introspection of Objects When an actor is paused, the local manager is passed
the actor’s state in the actorPaused message including the object behaviour
fields and its values. In order to minimize the amount of state to be transferred,
REME-D’s implementation in AmbientTalk/M wraps the values in a special kind
of lazy reference (cf. Section 5.2.4) that works as follows. The debugger man-
ager first obtains a far reference to the value, and only when the user unfolds the
object’s field, is the actual value passed to the UI in a fieldUpdate event.

Push-based Introspection of Objects REME-D’s implementation in AmbientTalk/2
uses a pull approach to introspect objects. The object’s fields and values are only
requested to the corresponding local manager when a user unfolds an object
in the state inspector. REME-D’S implementation in AmbientTalk/M combines
this with a push approach using the method invocation protocol described in Sec-
tion 5.3.1.2. The local manager places an after-observer whenever an assignment
changes the value of the object’s field being introspected (i.e., an object which is
unfolded in the state inspector) to notify the UI of the new assigned value. As a
result, REME-D conveniently updates the UI’s values when necessary, avoiding
that the user has to manually force a UI refresh by folding and unfolding objects
in the state inspector.

222 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

Network Failure Simulation REME-D’s implementation makes use of the reference
management protocol described in Section 5.3.1.1 in order to simulate network
failures. When a user wants to simulate the network disconnection of an actor,
the debugger does not make use of the network.offline primitive because
that would also disconnect the debugger actor itself. Rather, it iterates over all
receptors created in the actor, and disconnects all of them except for the one to
the local manager actor mirror.

In order for users to make use of the aforementioned features, they need to down-
load the AmbientTalk/M interpreter and library projects and create their own distri-
bution5. The AmbientTalk Eclipse IDE allows a user to use his own AmbientTalk
distribution by specifying it in a custom debug configuration for the AmbientTalk file
to debug.

10.5 Limitations and Future Work
There are a number of features which could be interesting to provide in an ambient-
oriented debugger. First of all, since the focus of AOD is on inter-process communica-
tion, debugging sequential messages is currently not supported in REME-D . Including
support for such messages would require adaptations to AmbientTalk’s interpreter, so
that the continuation stack is reified in the reflective layer. Second, the happened-before
relationship provided when browsing causal links informs users of all possible places
that may have caused a bug [SCM09]. However, it does not guide users about where to
look first, nor to pinpoint when a bug occurred. In order to support developers in this
task, we would like to combine features from omniscient debuggers [Lew03, PTP07].
For example, turn history could also be extended to include actor state history to be
able to know in which context a particular field or variable was given a certain value.
In order to provide stepping both forward an backwards in time, REME-D’s imple-
mentation should modularize the stepping process (currently highly interwoven with
the schedule meta method) into an abstraction similar to breakpoints. As a result,
the schedule meta method would delegate the stepping functionality into the step
abstraction passing by parameter the data structure “where to step”. With respect to
breakpoints, we believe that our breakpoint abstraction can be reused to place break-
points on the message history, but it remains to be actually carried out.

In this work, we have not considered to support several debugging sessions at the
same time. We assume that a device launching an application in debug mode hosts the
debugger manager and that the rest of devices required for a debugging session would
be dynamically added to the existing debugging session. It would be interesting to
allow devices to participate in multiple debugging sessions. For example, this can be
beneficial for building a omniscient debugger in the face of partial history information.
A debugger manager could communicate with other active debugger managers in the
network to obtain information about an actor which has left a session.

At a technical level, REME-D ’s implementation available in the Eclipse IDE still
suffers from a number of limitations which was also confirmed by our user study that
we discuss in the next chapter. Amongst them, we plan to improve the actor view
and introduce a dedicated message view to facilitate the browsing of message history.
In fact, the ultimate goal is to re-implement the Eclipse UI without using the Debug

5Instructions how to check-out those projects, and create a distribution are available at http://
tinyurl.com/6wak2p7

http://tinyurl.com/6wak2p7
http://tinyurl.com/6wak2p7

10.6. CONCLUSION 223

Framework. Many of the UI problems experienced stems from the fact that the Debug
Framework has been designed for Java programs. Since AmbientTalk is a distributed
dynamic language, we need to tweak the UI implementation for supporting certain
features, e.g., debugging sessions are not meant to be open in Eclipse. We would
also like to develop a dedicated UI for the Android platform in order to explore “live
debugging” of applications running on Android devices.

Finally, the most relevant limitation that we plan to tackle in future work is the de-
bugging of custom referencing abstractions including leased references. Although the
current implementation of REME-D makes use of the reflective architecture introduced
in Chapter 5, it lacks a layered design. As a result, it would have a significant impact on
the debugger architecture to be able to debug other reflective language constructs such
as leased references while avoiding interference. First steps towards a layered design
have happened during decoupling the Eclipse UI from the debugger core, which allows
us to write unit tests for the debugger. Moreover, since interactions within the debugger
are stratified by means of the @Debug annotation, the architecture has the basic blocks
to be able to “debug the debugger”. However, it remains to be investigated how we can
debug other reflective language constructs in an easy and modular way without intro-
ducing interference while minimizing the debugger’s probe effect. More importantly
in the case of leased references, it remains to be investigated how and what it means
to “debug a time changing value”, e.g., should we pause all the lease terms when an
actor’s execution is stopped or not?, should we simulate the passage of time?, etc.

10.6 Conclusion
In this chapter, we have explored tool support in the face of partial failures in the form
of a debugger. In ambient-oriented programming, the complexity of programming in
a distributed setting is married with the network fragility and open topology of mobile
applications. To address the challenges faced when debugging ambient-oriented appli-
cations, we introduced an online ambient-oriented debugger called REME-D. REME-
D’s principal contribution is that it implements the features of ambient-oriented debug-
gers as an ambient-oriented application which incorporates breakpoint-based debug-
ging methodology where the focus is placed on the exchange of asynchronous mes-
sages between actors. More concretely, REME-D adapts features from breakpoint-
based debuggers to event loop concurrency —actor state inspection, message break-
points, stepping over or into turns— , while incorporating for online usage features
from post-mortem, message-oriented debuggers —browsing causal links. To respond
to the openness of MANETs, REME-D proposes epidemic debugging: it can install
itself on newly discovered devices, a process akin to an infection in which REME-D
spreads to devices joining the debugging session. Devices can leave the debugging
session, either due to communication failures or in response to a user action, without
disrupting the debugging of the remaining participants. REME-D implements those
features by exploiting the reflective API described in Chapter 5, resulting in a modu-
lar, reusable and flexible design that shows that it is possible to build tool support in
tandem with the programming support for dealing with partial failures.

224 CHAPTER 10. DEBUGGING IN THE FACE OF PARTIAL FAILURES

Chapter 11

Pre-experimental User Study
for REME-D

In order to assess the feasibility of an ambient-oriented debugger, we tested REME-D
in a study with 22 subjects which follows a one-group pretest-posttest pre-experimental
design. The subjects were asked to use REME-D’s implementation available in Ambi-
entTalk’s Eclipse IDE during an assignment the goal of which was to understand and
debug the shopping application used as the running example in the previous chapter (cf.
Section 10.1.1). In this chapter, we describe the conducted experiment and its results.

11.1 Quasi-Experiments

The goal of our experiment was to test our debugger on a number of points in order to
study the practical use of its features. There are three conditions to take into account
when choosing the most appropriate empirical study for this experiment. First, we are
testing a new tool. Second, the AmbientTalk user base is relatively small (estimated to 8
active researchers, and around 100 occasional programmers including master students
and outside contributors). Third, we dispose of a relatively short amount of time (which
does not allow us to study participants over a long period of time). Given those restric-
tions, the most reliable and feasible type of experiment is a quasi-experiment [CS63].
A quasi-experiment is an empirical study which lacks random assignment on selection
of the groups or other factors being studied. Moore describes in [A.08] a number of
situations in which it is appropriate to conduct a quasi-experiment study instead of a
random assignment evaluation. Our experiment certainly complies with at least three
of the described situations: (1) the pool of potential participants is too small to fill both
a treatment and a control group, (2) it is impossible to avoid “contamination” of the
control group1, and (3) REME-D was still under development at the time of the study.

Note that a quasi-experiment, as opposed to a (randomized) scientific experiment,
does not allow us to make any founded claim regarding the usability of REME-D.
However, it does provide insights about how real users perceive and value the features
of an ambient-oriented debugger. Still, quasi-experiments are an established practice

1Contamination may happen e.g., when students in the control group may talk about the study during
lunch or breaks from classes, making the control group be influenced by the study.

225

226 CHAPTER 11. PRE-EXPERIMENTAL USER STUDY FOR REME-D

in software engineering [KDHKS09]2, and have been previously applied for providing
an initial assessment of software tools integrated in Eclipse [DWZVD09].

11.2 Study Design

We employed a one-group pretest-posttest quasi-experiment design [CS63] in our user
study. This experiment consists of only one group of 22 participants which is subject
to a test before the experiment is conducted (called a pretest). The pretest serves as
the baseline to quantify the expectations of a participant regarding an ambient-oriented
debugger before being introduced to REME-D. After having used REME-D in a num-
ber of debugging tasks, participants are asked to fill in a test (called a posttest) that
measures their perception of the tool. Pretest and posttest usually employ the same
questions varying the independent variable, i.e., introducing REME-D. By comparing
the pretest and posttest results, we can measure how exposure to REME-D influenced
the perception of ambient-oriented debugging, and which features of REME-D were
deemed useful by participants.

The questionnaires used for the pretest and posttest employ close-end matrix ques-
tions in which participants need to rate a number of statements on a five-point Likert
scale, i.e., a 1-5 scale ranging from “totally disagree” to “totally agree”. Likert scales
are easy for respondents to fill in and provide enough freedom to express their opin-
ion. However, they may be subject to distortion as respondents may start agreeing
with statements as presented, or following a certain pattern instead of expressing their
opinion (acquiescence bias). In order to avoid this bias, we intermingle the number of
consecutive positive and negative statements so that respondents have more difficulties
to find out trivial patterns.

In the experiment, participants were invited for a session that took between 45 to
75 minutes in total. At the start of the session, the participants were asked to fill in the
pretest. Afterwards, they received a short demonstration (that lasted for about 15 to 20
minutes) of the features of an ambient-oriented debugger in REME-D. Following this
demonstration, the participants were asked to use REME-D to identify and solve bugs
in the shopping application (cf. Section 10.1.1). After the participants completed their
assignment, or reached the end of the predefined amount of time, they had to fill in a
second questionnaire serving as a posttest.

11.2.1 Pretest design

The pretest measured the expectations prior to using REME-D. It consists of 22 state-
ments structured along four themes. Each theme aims to determine possible external
variables that might influence the dependent variables.

Personal background We ask some personal details including age, education level,
and the top 3 programming languages they were most comfortable with.

Development experience A number of statements were included to get information
about the participant’s experience in developing software including experience
with AmbientTalk and the Eclipse IDE.

2Kampenes et al. studied in [KDHKS09] 113 experiments reported on nine major software engineering
journals between 1993-2002, and detected that 35% of them were quasi-experiments.

11.2. STUDY DESIGN 227

Attitude towards debugging In order to assess the participant’s standpoint towards
debugging, a number of statements were included that relate to debugging.

Expectations from an ambient-oriented debugger like REME-D Finally, a number
of statements were included to measure the actual dependent variable, namely
REME-D . In particular, they assess the participant’s expectations w.r.t an ambient-
oriented debugger and the debugging features to be supported.

We left enough space for participants to write down some comments about desired
features in an ambient-oriented debugger, and features of the AmbientTalk language
that are perceived to make the developing of AmbientTalk applications hard.

The exact list of statements used in the pretest can be found in Appendix B.1.

11.2.2 Posttest design

The main goal of the posttest is to measure whether the participant’s expectations with
regard to an ambient-oriented debugger have been fulfilled, and whether REME-D is
considered to be a useful debugger. The posttest consists of 24 statements structured
according to a number of issues:

Assignments Experience. The first series of statements aims to assess interference by
external variables. In particular, they relate to the participant’s experience with
the assignment. Was the assignment too hard? Did the participant find the as-
signment representative for the kind of bugs he previously encountered while
developing software in AmbientTalk? Did the participant feel time pressure that
may have influenced his performance or perception? Was the assignment suffi-
ciently interesting?

Value of an ambient-oriented debugger. To get an impression of the participant’s
perception of an instance of an ambient-oriented debugger, a number of state-
ments were included in relation to REME-D. These statements aim to assess
whether REME-D provides a better or quicker methodology in the process of de-
bugging and understanding AmbientTalk applications. Does an ambient-oriented
debugger provide any added value? Does REME-D allow developers to debug
AmbientTalk applications more efficiently? Does REME-D allow developers to
understand AmbientTalk applications more effectively? Does REME-D allow
developers to solve realistic bugs?

UI Experience. A number of statements were included to assess the participant’s ex-
perience with the REME-D user interface in the Eclipse IDE. The goal of these
statements is twofold. First, they aim to gauge to what extent the participant
noticed the dedicated UI components for REME-D available in Eclipse, and ac-
tively used them. Were the debugging features clear and easy to find in the
UI? Does the debug element view provide a good overview of the actor’s state?
Secondly, they aim to assess interference that might influence the perception of
REME-D’s features. Was the UI easy to use? Does the debugger require a better
user interface?

Value of REME-D features. To get a better impression of the participant’s percep-
tion of the debugging features, we added two kinds of questions related to each

228 CHAPTER 11. PRE-EXPERIMENTAL USER STUDY FOR REME-D

debugging feature introduced in the tool demonstration, namely message break-
points, step-into, step-over and pause command, infection of devices. First, par-
ticipants were asked to indicate how often they used REME-D’s features. Sec-
ond, the usefulness of each of the REME-D features was asked for. If the feature
was never used, the participants were asked to indicate how useful they thought
the feature would be.

We also left enough space for participants to write down some comments or sug-
gestions they had about the tool and the assignment.

The exact list of statements used in the pretest can be found in Appendix B.2.

11.2.3 Debugging Assignment
In the experiment, the participant was asked to complete a number of tasks relative to
the debugging process of an AmbientTalk application, namely, the shopping applica-
tion. When choosing an application for the study several requirements were taken into
account. First, the application should not be too complex so that the assignment could
be finalized within the time frame. However, the application should be representative of
a real world ambient-oriented application. Finally, the experiment setup for the target
application should exclude as many external variables as possible. The shopping appli-
cation scenario satisfies these requirements. It is a simple yet representative application
that has been previously used as running scenario of a distributed debugger [SCM09].
In addition, it can be easily adapted to run in two AmbientTalk virtual machines, so
that participants do not need to spend too much time on the experimental setup.

The study involved a debugging assignment which consisted of two tasks for which
we introduced errors in the shopping application. The assignment first described the
shopping checkout protocol shown in Figure 10.1, and detailed what was the expected
behaviour when running it. In the first task, the participants were asked to use REME-
D to find out why the shopping checkout protocol did not work properly and fix the
problem. The second task described an extension to the shopping checkout protocol
in which the buyer contacts a warranty broker to propose a warranty for the purchases
item to the client. Since the quota returned was always negative, participants were
asked to investigate the protocol and determine what the problem was.

Appendix B.3 details the final debugging assignment used in the experiment. In
addition to the assignment text, participants were also given introductory documenta-
tion on REME-D explained during the tool demonstration. Finally, the necessary code
for the experiment was made available as an Eclipse Java project including two Ambi-
entTalk files (one for the shopping application, and a second one including the code for
the warranty broker).3

11.3 Participants profile
In the study we observed 22 participants working on a number of debugging tasks. The
participants were recruited from within the computer science department of our univer-
sity, in particular, they were all enrolled in a master or PhD program. More concretely,
13 participants hold a bachelor degree and were close to obtaining a MSc degree, and
the remaining 9 hold a MSc degree and were (relatively) close to a PhD degree. All

3All the material offered to the participants is available at http://tinyurl.com/
debuggingSessionMaterial.

http://tinyurl.com/debuggingSessionMaterial
http://tinyurl.com/debuggingSessionMaterial

11.3. PARTICIPANTS PROFILE 229

A B C E K

1
2

3
4

5

Figure 11.1: Boxplot of the experience
of the participants: (A) development expe-
rience (B) distributed development experi-
ence (C) understanding of AmOP in Ambi-
entTalk (E) Eclipse experience (K) online
debuggers experience.

Top 1 Top 2 Top 3
Scheme 11 1 2

Java 3 11 6
Ruby 3 1 2
C++ 2 1 0

C# 1 1 0
Haskell 1 1 0

AmbientTalk 1 0 2
SmallTalk 0 0 6

Python 0 2 0
C 0 1 2

Lisp 0 1 0
Perl 0 1 0

JavaScript 0 1 0
Objective C 0 1 0

ASP.NET 0 0 1
Total 22 22 21

Figure 11.2: The participants’ expertise with
software languages.

participants in the study were required to have experience with AmbientTalk. Finally,
all participants were of age 21 to 27.

During the pretest we inquired about their knowledge of development in general,
distributed applications development, ambient-oriented programming in AmbientTalk,
the use of Eclipse and online debuggers. Figure 11.1 provides a summary of this inquiry
in a boxplot. Most participants considered themselves rather experienced software de-
velopers (mean score 4), but not particularly experienced in developing distributed
applications (mean score 3). However, all the participants understand the principles
of ambient-oriented programming in AmbientTalk (C). As for their knowledge of soft-
ware platforms and tools, all the participants have indicated to be rather familiar with
Eclipse (mean score 4), but most participants consider themselves to only have limited
experience with online debuggers.

In order to get a better impression of the participant’s developer profile, partici-
pants were also asked to provide their expertise with particular technologies, i.e., the
three programming languages in which they would consider themselves to be most
proficient. The results are shown in Table 11.2. All the participants are experienced
in a dynamic language like AmbientTalk, and are knowledgeable of Java. None of the
participants had prior knowledge of REME-D.

Finally, the pretest also included a number of questions to measure the partici-
pants’ attitude towards AmbientTalk, Eclipse IDE and debugging. Table B.1 (in Ap-
pendix B.1) includes the exact statements for those questions, and Figure 11.3 shows
the answers to these questions in a boxplot. As shown in Table B.1, several questions
were asked relative to debugging. Next to the boxplot, Figure 11.4 provides a sum-
mary of the participants’ attitude towards debugging in a radar diagram; each branch
represents a single question; the bold line shows the average and the colored surface in-
dicates the range of given answers (calculated as the average± the standard deviation).

230 CHAPTER 11. PRE-EXPERIMENTAL USER STUDY FOR REME-D

D F G H I J P

1
2

3
4

5

Figure 11.3: Boxplot of the partici-
pants’ attitude towards (D) AmbientTalk,
(F) Eclipse IDE, and (G-J,P) debugging.

!"

#"

$"

%"

&"

'"
("

)"

*"+"

,"

Figure 11.4: Radar diagram of the partic-
ipants’ attitude towards debugging: (G) de-
velopment tools can prevent a lot of bugs
(H) debugging distributed programs is hard
(I) debuggers are a helpful tool to find er-
rors in programs (J) debuggers are a helpful
tool to understand programs (P) a debugger
for AmbientTalk is needed.

The participants’ attitude towards debugging is pretty consistent along the different
questions. With the exception of two respondents, all the participants strongly agree
that debuggers are a helpful tool to find bugs in programs (I). In addition, they generally
seem to agree that debuggers are a helpful tool to understand programs (J). With only
three ratings lower than 3, participants acknowledge that debugging distributed pro-
grams is hard (H). Most of the participants also agree that better tools can prevent bugs
(G, mean scores 4). More importantly, with only one rating lower than 3, participants
are mostly unanimous about the need for a debugger for AmbientTalk (P).

As for their attitude to the software technologies and tools relevant to the study,
most participants find the Eclipse IDE suitable for developing distributed applications
in AmbientTalk (F) having only two participants rating the statement lower than 3.
Unfortunately, the results on the participants’ attitude towards AmbientTalk are not
conclusive (D).

11.4 Results
In this section, we discuss the main results from the experiment4.

11.4.1 Pretest-Posttest
We discuss the assignment experience and the way exposure to REME-D influenced the
participants’s perception of debugging ambient-oriented applications in AmbientTalk
by comparing the results obtained from the pretest and posttest. Figure 11.5 provides
an overview of the results. Overall, REME-D was well-received by the participants. As

4All the raw data including all 22 filled pre/posttests questionnaires is available at http://code.
google.com/p/ambienttalk/downloads

http://code.google.com/p/ambienttalk/downloads
http://code.google.com/p/ambienttalk/downloads

11.4. RESULTS 231

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

-­‐-­‐	
 -­‐	
 0	
 +	
 ++	

(a) Value as a tool to find bugs
in programs

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

-­‐-­‐	
 -­‐	
 0	
 +	
 ++	

(b) Value as a tool to under-
stand programs

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

-­‐-­‐	
 -­‐	
 0	
 +	
 ++	

(c) Value as a tool to ease pro-
gramming in AmbientTalk

Figure 11.5: Comparison of the participants’ expectations (pretest depicted in grey) and expe-
riences (posttest depicted in black) after using REME-D ; X axis depicts the 5-point Likert scale,
and Y axis is the number of participants that selected each point.

can be seen in Figure 11.5 (a), most participants were positive with respect to the value
of REME-D as a tool to help them find bugs in their programs with the exception of
one participant. However, we can observe that their answers are more spread compared
to the pretest, in which most participants strongly agree with the statement. Hence,
REME-D did not meet the participants expectations in this regard. In our discussion
with the participants after the session, they expressed their doubts about the suitability
of the assignment, as some of them did not seem convinced that the types of bugs
included are representative of real bugs. We will further discuss this point in the section
about threats to validity.

Regarding the usefulness of REME-D as a program understanding tool, all par-
ticipants indicate that the tool helps them to understand AmbientTalk programs (Fig-
ure 11.5 (b)). Actually, we can observe that the perception of the value of a debugger as
a software understanding tool has improved in the posttest after working with REME-
D. In the pretest, more participants expressed their reservations regarding a debugger
as a tool helpful to understand programs. The posttest revealed that participants had
a more positive attitude towards the statement after exposure to the tool, reducing the
number of participants giving lower scores.

As for the use of REME-D as a means to make ambient-oriented programming in
AmbientTalk easier (Figure 11.5 (c)), results show that most participants are more pos-
itive in the posttest. It is interesting to remark that 4 out of 22 participants change their
opinion on this point after working with REME-D. We regard this result as encour-
aging since all participants stated in the pretest that they understand the principles of
ambient-oriented programming in AmbientTalk.

While these are preliminary findings, we think the results are positive. They show
that REME-D is capable of improving program understanding for AmbientTalk appli-
cations, and eases their development. Participants also seem convinced that the tool
can help reduce the time to debug distributed AmbientTalk programs when asked in
the posttest (question H in posttest; cf. Table B.2). This inquiry’s mean scores 4 in the
posttest, having only 2 participants rating the statement lower than 3.

11.4.1.1 Features of REME-D

The posttest also included questions regarding the usefulness of REME-D’s features.
Table B.2 (in Appendix B.2) includes the exact statements for those questions, and
Figure 11.6 shows a summary of participants’ evaluation of these features. In gen-

232 CHAPTER 11. PRE-EXPERIMENTAL USER STUDY FOR REME-D

P R T V W X

1
2

3
4

5

Figure 11.6: Boxplot of the participants’
appreciation of the features of REME-D.
(P) message breakpoints (R) step-into com-
mand (T) step-over command (V) pause ac-
tor command (W) control over program ex-
ecution (X) infection of VMs.

O Q S U

1
2

3
4

5

Figure 11.7: Boxplot of the participants’
usage of the features of REME-D. (O) mes-
sage breakpoints (Q) step-into command
(S) step-over command (U) pause actor
command.

eral, participants seem to have valued message breakpoints, step-into command, pause
command and the infection of other VMs (all means scored 4). In particular, only one
participant rated message breakpoints and pause command lower than 3. In addition,
all participants were convinced of the usefulness of the infection feature; none of them
rated this feature lower than 3. On the other hand, participants were rather neutral
towards step-over command and the control over the execution of an AmbientTalk pro-
gram. These results may be explained because the participants did use that features less
or not at all. Figure 11.7 summarizes the participants’s opinion about the frequency of
usage of some of REME-D’s features. Participants indeed did not use that many step-
over commands during the assignment; only 4 participants score this statement higher
than 3. Most participants often used message breakpoints, and the step-into command.

Regarding the effectiveness of the representation of REME-D’s features in the
Eclipse IDE, the opinions of participants in the posttest were reasonably positive. Fig-
ure 11.8 provides a summary of the participants’ experience with REME-D’s UI in
a radar diagram. The formulation of each question can be found in Table B.2 (in
Appendix B.2). Most participants did appreciate the actor and debug element views
provided in the Eclipse IDE (mean for question L and M score 4). In addition, all
participants find REME-D’s UI easy to use with the exception of one participant who
“strongly disagreed”. That participant was totally disappointed with REME-D’s UI
since he is also the only participant who did not find debugging features clear and ac-
cessible in the UI and strongly disagree when asked about the usefulness of the actor
and debug element views. Not surprisingly, he is one of the 4 participants that strongly
believe that in essence REME-D is helpful, but it requires a better UI.

11.4.2 Observations
While working with REME-D, participants encountered a number of issues related
to REME-D’s UI. First, the debug element view was not correctly updated when an
actor stopped due to a breakpoint. To overcome this issue, they were told to click

11.4. RESULTS 233

Feature description #comments
Expected features supported in REME-D at the time of the study
inspecting actor state 5
inspecting mailbox contents 4
breakpoints 3
step-by-step execution 2
pause command 1
Expected features supported in current version of REME-D
inspecting state inside of an object 3
simulation of disconnected scenarios 2
message history 2
breakpoints extensions 2
decoupling of debugger core functionality from Eclipse IDE 1
Expected features interesting for future research in REME-D
mapping breakpointed messages to lines of code 1
better visualization of actor view 1
adding message view 1

Table 11.1: Summary of comments about expected features.

on the actor label again so that Eclipse Debug Framework would trigger a UI refresh.
Second, participants were confused by the way the UI presented the list of messages
sent during a turn. The list was shown under the actor name in which they instrument
the debugger to step into a message. However, when clicking on the message, the
debug element view did not show the message state (i.e., the arguments state), raising
a UI exception. This is because REME-D ’s UI was not instrumented to show them
that information. Participants were also slightly confused by the way the tool presents
the actor participating in the debugging session in the actor view. Three participants
explicitly included in the posttest comments to improve this view, e.g., “actors should
get names instead of line numbers”.

Interestingly, more than half of participants (12 out of 22) left feedback on the
pretest and posttest questionnaires. All the pretest comments are about expected fea-
tures in the debugger. In contrast, the posttest comments mainly included improve-
ments on the REME-D ’s UI which relate to the above mentioned issues. In particular,
3 participants complained about the stepping functionality (e.g., “stepping-in was not
very perfect. I got lost on where the current execution step was [..]”), and three more
about the limitations of message state inspection.

Table 11.1 provides an overview of the expected features for a debugger for Am-
bientTalk applications that participants freely indicated in the section for comments. It
maps each expected feature to the number of comments that explicitly refer to the fea-
ture. We have classified the table according to three kinds of features: features which
were expected and supported in REME-D’s version used during the study, features
which we identified to be relevant, and have been incorporated in the version described
in this chapter, and interesting features with which this work could be continued. It is
interesting to remark that the most recurring expected features were already supported
in REME-D at the time of the study. Note that although REME-D already provided
some inspection of the actor state reachable from the behaviour, it was not possible to
interactively inspect any kind of object (e.g. messages sent or in the inbox).

234 CHAPTER 11. PRE-EXPERIMENTAL USER STUDY FOR REME-D

11.5 Threats to validity
As previously explained, a quasi-experiment study does not allow us to make any gen-
eralized claims regarding the usability of REME-D. Instead, quasi-experiments do al-
low us to observe how potential users perceived our tool. However, quasi-experiments
are subject to concerns regarding the validity of the observations resulting from the ex-
periment. According to the known guidelines for quasi-experimental research designs,
in the next two subsections we discuss the threads to internal validity, and to external
validity of our experiment. Internal validity considers the validity of cause-effect in-
ferences made during the experiment, while external validity considers the validity of
generalized inferences (or how wrong we are when making generalized observations
from the study).

11.5.1 Internal Validity
The analysis of the experiment’s outcomes assumes that REME-D is the only factor
influencing the dependent variables. However, several factors may have potentially
interfered in the participants’ perception of REME-D.

First, participants may have felt inclined to answer positively to the tool. We mit-
igated this concern by making clear to participants that they did not have to please
anybody, and that only honest answers were valuable.

Second, the introductory demonstration might have biased participants towards us-
ing the REME-D’s features shown to them. To counter this effect, we explained all
features of REME-D but only showed participants where they could find REME-D
features in Eclipse, and the basic REME-D views. Participants were told they could
use any feature they liked.

Third, the assignment executed by our participants might be too simplistic or hard.
To assess this risk, the posttest included a set of questions to measure the participants’
experience with the tasks performed in the assignment. Figure 11.9 provides a sum-
mary of the participants’ experience with the assignment in a radar diagram. Recall
that each branch represents a single question; the bold line shows the average and the
colored surface indicates the range of given answers. The formulation of each ques-
tion can be found in Table B.2 (in Appendix B.2). The results show that participants
generally did not find the assignment too hard (question A) with the exception of two
participants, and find the experiment interesting to do (question B).

Finally, the duration of the experiment may also have influenced the internal valid-
ity. We also included some questions for this inquiry. The results, shown in Figure 11.9,
reveal that participants do not seem to have experienced time pressure (question D) and
were satisfied with the help received to complete the assignment (question E).

11.5.2 External Validity
For the most part, the generalizability of the results depends on three major con-
cerns [MZS+10]: representativeness of the participants, suitability of the selected case,
and the degree to which the bugs encountered in the assignment are representative of
real-world bugs.

A risk exists concerning the composition of the group of participants: since all
participants were computer science students or researchers, they might not form a rep-
resentative sample of software developers. While all participants rated themselves as

11.5. THREATS TO VALIDITY 235

!"

#"

$"

%"

&"

'"
("

)"

*"+"

,"

Figure 11.8: Radar diagram of the par-
ticipants’ experience with REME-D’s UI
in Eclipse: (K) REME-D’s debugging fea-
tures are clear and accessible in the UI (L)
the Actor view gives a good overview of the
state of the application (M) the Debug El-
ement View gives a good overview of the
state of an actor (N) REME-D is helpful but
needs a better user interface.

!"

#"

$"

%"

&"

'"
("

)"

*"+"

,"

Figure 11.9: Radar diagram of the partici-
pants’ experience with the assignment: (A)
the assignment was too easy for me (B) the
assignment was very interesting to do (C)
the assignment represents the kind of bugs
I have encountered in AmbientTalk (D) I
would have liked more time to complete the
assignment (E) I had enough help in com-
pleting the assignment.

expert software developers, they had different degrees of expertise with distributed soft-
ware development, Eclipse, AmbientTalk and debugging (as discussed in Section 11.3).
It is important to remark that the computer science master students (60% of our partic-
ipants) had only been exposed to AmbientTalk for a month when the study took place.
Although we admit that the learning curve involved may have impacted the results,
participants were proficient in very similar languages (as discussed in Section 11.3).
Hence, we think this impact is limited. In addition, participants were allowed to ask
questions about the technology involved in the study at any time.

As previously explained, the shopping application is a “showcase” application. Al-
though it has been used in previous research efforts in debugging [SCM09], the risk
exists that the application is not representative of a real-world ambient-oriented appli-
cation. Note that the assignment only tackled a part of the application (the checkout
protocol) which was adapted so that participants could understand and debug it within
the duration of the experiment.

Finally, the bugs encountered in the assignment may not have been representative of
real-world bugs. Considering that we wanted to keep the amount of time necessary to
execute the assignment manageable, the risk exists that the assignment did not capture
the complexity associated with real-life bugs in ambient-oriented applications. Indeed,
results show that participants did not find the assignment to be representative of the kind
of bugs they encountered while developing in AmbientTalk (question C in Figure 11.9).
This risk was also confirmed by some participants during discussions after the session.

236 CHAPTER 11. PRE-EXPERIMENTAL USER STUDY FOR REME-D

11.6 Conclusion
In this chapter, we have described the setup and execution of a one-group pretest-
posttest quasi-experiment study conducted for evaluating REME-D. The goal of this
evaluation was to get an impression of the practical usability of the features proposed
by an ambient-oriented debugger, rather than getting truly scientific results (which can-
not be achieved with a quasi-experiment design because it lacks a random selection and
assignment). Considering the results and observations described in the previous sec-
tions, the user study has provided us with three valuable insights. First, the features
that participants actually expected from an ambient-oriented debugger were indeed
supported in REME-D . This observation is based on the analysis of both the pretest
statements and the suggestions that participants freely left on space provided for com-
ments. Second, participants valued REME-D as a program understanding tool suited
to make ambient-oriented programming in AmbientTalk easier. Finally, the Eclipse UI
interface is relevant to how users perceive and value the features of REME-D , and it
requires some attention.

Part III

Conclusion

237

Chapter 12

Conclusion and Future Work

This chapter concludes our study of a software development platform for the systematic
construction of MANET applications that deals with partial failures. Before enumer-
ating some interesting avenues for future research, we revisit the research goals with
hindsight and we restate the contributions of the dissertation.

12.1 Research Goals
This dissertation studied programming language abstractions and tool support for
MANET applications that incorporate concepts to deal with the effects caused by par-
tial failures. In Section 1.3, we stated four research goals which we now review and
discuss the extent to which they have been achieved.

• We investigate programming language abstractions for failure handling in
MANET applications. In Chapter 3 we proposed a set of criteria for any ade-
quate failure handling model to be used in a MANET. We employed these criteria
in Chapter 3 to study the state of the art distributed programming languages and
middleware. Our survey revealed that combining a decoupled communication
model with leasing provides a solution for devising a failure handling model in
MANETs. Based on this, we have investigated how to design a leasing model
that operates in MANETs. To this end, Chapter 6 identified four criteria that a
leasing model needs to fulfill to be used in a MANET, and proposed the notion
of ambient-oriented leasing.

• We explore whether these failure handling abstractions can be integrated in
a distribution model which is not based on object-oriented programming.
Our survey of related work in Chapter 3 showed that data-driven models such as
tuple spaces or publish/subscribe provide a loosely coupling of processes, mak-
ing them suitable for a mobile environment. This led us to explore a first integra-
tion of ambient-oriented leasing in tuple spaces in Chapter 7. Ambient-oriented
leasing has subsequently been integrated with the distributed object oriented pro-
gramming language concepts of AmbientTalk.

• We study tool support in the form a debugger in order to help programmers
get a better understanding of the dynamic behaviour of a MANET applica-
tion. Our survey of state of the art on debugging tools in Chapter 9 showed that

239

240 CHAPTER 12. CONCLUSION AND FUTURE WORK

existing debuggers for distributed systems do not support debugging in the face
of partial failures. This led us to design and study an ambient-oriented debugger
in Chapter 10. It was also our explicit goal to investigate debugging support in
the face of partial failures in tandem with the programming support for dealing
with the effects of partial failures.

• Finally, we investigate a novel distributed reflective architecture that enables
the development of both programming language and debugging support for
partial failures in MANET applications. This led us to rethink the meta-
level model of prior ambient-oriented languages in Chapter 5 and propose the
transmitter-receptor meta-level model which reconciles mirror-based reflection
with remote object references. Even though the transmitter-receptor model was
technically added to our AmbientTalk language, we argue that it can be translated
to any actor-based programming language such as E.

We achieved these goals following a “proof by construction” methodology. We
have done so by developing novel programming language abstractions and tool support
in an ambient-oriented programming language. The resulting artifacts validate the main
concepts put forward in this dissertation:

AmbientTalk/M is an extension to the AmbientTalk/2 programming language. Its key
feature in respect to our research goals is that it embodies the aforementioned
transmitter-receptor model on which we conducted our experiments for failure
handling language abstractions. Moreover, it incorporates an observer mecha-
nism on mirrors that also helped us to implement tool support reflectively in the
language itself. In short, the language provides an extensive meta-level architec-
ture specially designed to ease the development of abstractions for distribution
and failure handling in a MANET. Conversely, one might say that the language
and tool experiments form a validation of the transmitter-receptor model.

Leased Object References are time-decoupled object references which deal with
both transient and permanent failures by integrating the notion of leasing with
object designation. Their most distinguishing features is that they integrate a
number of useful leasing patterns while enabling meta-level engineers to build
custom leased references encoding differing leasing semantics. Leased object
references are the central abstraction of our leasing model for MANETs. We
also integrated leasing into message passing by means of due-type messages that
allow developers to deviate from the default message delivery guarantees pro-
vided by a leased reference. Finally, we studied various scoping abstractions to
decrease the programming effort introduced by leased references and due-type
messages. All together, they form an extensive set of abstractions for dealing
with the effects engendered by partial failures.

TOTAM is a novel tuple space model with combines a replication-based tuple space
model with ambient-oriented leasing enabling tuple management in the face of
partial failures. The design and implementation of TOTAM demonstrates that the
principles of ambient-oriented leasing are independent of the distributed object-
oriented communication model and that they can be translated to a data-driven
model such as tuple spaces.

REME-D is an ambient-oriented debugger that was developed to complement Ambi-
entTalk programmer’s toolbox with debugging support. More precisely, REME-

12.2. RESTATING THE CONTRIBUTIONS 241

D is an online debugging tool that proposes novel facilities to deal with the hard-
ware characteristics of MANETs (epidemic debugging, and support for partial
failures) and which integrates techniques from traditional sequential debuggers
(stepping and state inspection) and distributed debuggers (event-based debug-
ging, message breakpoints) with ambient-oriented programming. The design
and implementation of REME-D demonstrates that it is possible to build debug-
ging support reflectively on top of an AmOP language.

12.2 Restating the Contributions
The following summarizes the contributions of each chapter with regard to the research
goals:

• In Chapter 2, we formulated eight criteria for an adequate failure handling
model in MANETs (cf. Table 2.1). We motivated each criterion based on hard-
ware characteristics of MANETs. The criteria were organized according to the
key indicators for the design of a failure handling model, namely, communica-
tion, state consistency and memory management. Decoupled communication
(C1) is key for enabling communication over volatile connections, while a high-
level representation of failures (C2) decouples low-level networking connectiv-
ity from a high-level application connection. Reacting to network connectivity
(C3) is essential to support network-awareness at application and tool support
level. With respect to state consistency, local failure recovery (C4) allows appli-
cations to perform failure handling without intervention of remote parties, and
application-dependent failures handling strategies (C5) enables processes to de-
fine the most appropriate strategy to react to partial failures. From a memory
management point of view, soundness should be relaxed (C6) so that data re-
mains valid during intermittent disconnections, and contractual memory man-
agement (C7) enables reclamation of data in the face of permanent disconnec-
tions. Finally, in order to support the development of tool support, it is necessary
incorporate support for triggering failure handling code explicitly (C8).

• In Chapter 3, we survey a number of representative distributed programming
languages and middleware that satisfy one of more of these criteria. Table 3.1
evaluates each approach for the aforementioned criteria. Based on our analysis
of related work, we concluded that a failure handling model should be designed
around the concept of leasing combined with a decoupled communication model.

• In Chapter 5, we first discussed where AmbientTalk’s meta-level architecture
falls short to support the development of failure handling abstractions and tool
support for MANET applications. We then introduced the transmitter-receptor
reflective model that reconciles mirror-based reflection with ideas from classic
communication-oriented reflective frameworks to the abstraction of an object re-
ferences. This model provides a novel representation of remote object references
in which both ends of a reference are reified by two dedicated metaobjects en-
capsulating all aspects of interactions between senders and receivers. We also
revisit AmbientTalk/2’s actor meta-level infrastructure to provide true structural
correspondence for distribution, and to introduce an observer mechanism into
actor mirrors which allows developers to be notified about the manipulation of
an object by the interpreter without requiring an implicit mirror. We instantiated

242 CHAPTER 12. CONCLUSION AND FUTURE WORK

these meta-level mechanisms in AmbientTalk/M, a new dialect of AmbientTalk/2.
The language is used in the rest of the dissertation as the software technology for
enabling the development of failure handling abstractions and tool support for
MANET applications.

• Chapter 6 introduced ambient-oriented leasing, which is our proposal for a object-
oriented failure handling model suitable for MANETs. It is an object model that
incorporates the concept of leasing at the heart of its design. We started this
chapter by formulating four criteria for a leasing model in a MANET. We then
made a proposal for expressing leasing as a programming language abstraction.
We integrate our lease concept into remote object references giving rise to what
we call leased object references: a time-decoupled object reference which deals
with both transient and permanent failures. We then integrate the lease concept
into future-type message passing giving rise to due-type message passing. We
also discussed the effects of introducing those abstractions into a programming
language and propose two novel abstractions to scope the effects of leased re-
ferences and due-type messages: leasing strategies enable developers to assign
the same pass-by-leased-reference semantics to a group of objects, and leased
message protocols enable developers to assign the same timing assumptions to a
group of messages.

• In the same chapter, we elaborated on the open implementation of leased refer-
ences, and discuss how meta-level engineers can use the provided framework to
express custom leased reference kinds, and build custom variations of leasing
strategies and leased message protocols.

• In Chapter 7, we discussed a first integration of ambient-oriented leasing into
tuple spaces. This resulted in a novel tuple space model called TOTAM. In the
context of this dissertation, the key contributions of TOTAM lie with (1) extend-
ing a TOTA-like replication-based tuple space model with scoping mechanism
to control the propagation of tuples in the network, and (2) integrating leasing
into tuples enabling developers to determine upper boundaries on the availability
of tuples in the system thereby avoiding the burden of manually removing the
copies of a tuples (which is taken care by means of antituples). Moreover, the
model also introduces a general programming concept in the form of a context
rule to support development of context-aware applications in a mobile environ-
ment.

• Chapter 8 described how AmbientTalk/M, when extended with ambient-oriented
leasing, satisfies our eight criteria for a failure handling model to be used in a
MANET both in an object-oriented and tuple space-based distributed model.

• In Chapter 9, we survey the state of the art in distributed debugging techniques
and tools. We concluded that current approaches are not suitable for debugging
in a MANET setting because they lack the necessary features to deal with the
effects of partial failures emerging from a radically different network character-
istics than traditional, stationary networks.

• In Chapter 10, we identified two challenges of debugging in the face of par-
tial failures. First, a debugger needs to be able to trace messages interchanged
between communicating parties, leading to the concept of message-oriented de-
bugging. Second, debugging sessions need to be open, and debuggers should be

12.3. LIMITATIONS 243

able to engage in running MANET applications, leading to the concept of open
debugging. We henceforth refer to distributed debuggers that provide support for
these challenges as ambient-oriented debuggers.

• In the same chapter, we presented the design and implementation of an ambient-
oriented debugger for AmbientTalk programs called REME-D. REME-D’s prin-
cipal contribution is that it implements the features of ambient-oriented debug-
gers as an ambient-oriented application which incorporates a breakpoint-based
debugging methodology where the focus is placed on the exchange of asynchro-
nous messages between actors. REME-D also shows that it is feasible to imple-
ment an ambient-oriented debugger reflectively using a mirror-based reflective
architecture with the enhancements of Chapter 5.

• In Chapter 11, we presented the design and results of a pre-experimental user
study conducted for validating REME-D. Although the results of such an exper-
iment are not conclusive, the study provided us with three valuable insights with
regard to how real users perceive and value the features of an ambient-oriented
debugger: (1) the features that users actually expect from an ambient-oriented
debugger were indeed supported in REME-D, (2) users value REME-D as a tool
to make ambient-oriented programming easier, and (3) further work is required
on the UI as it had a great impact on how users perceive and value the features
of REME-D.

12.3 Limitations
In the preceding chapters we already highlighted specific technical limitations of the
approaches they describe. In this section, we recall the most important ones, and posi-
tion them in the broader context of this dissertation.

12.3.1 Meta-level Engineering in AmbientTalk
Our transmitter-receptor model aims to provide a good reflective model where to repre-
sent custom referencing abstractions. As a result, our solution has been shaped towards
expressing distributed interactions based on an object-oriented programming approach,
in which objects are passed by object reference among communicating parties. It re-
mains a future question to extend such a model to AmbientTalk’s isolates, objects that
adhere to pass-by-copy semantics. For example, the implementation of lazy references
(cf. Section 5.2.4) would benefit from further control over object serialization protocol.

We should also investigate the performance impact of the transmitter-receptor
model and the other meta-level abstractions introduced in AmbientTalk/M. Although
the current implementation already limited the reification of some meta-level opera-
tions to object references with custom receptors, further work is required to optimize
our language. This is relevant because our current experimental setup for AmbientTalk
applications is Android devices. While these devices are getting more powerful in the
recent years, they still remain constrained in comparison to full-fledged computers.

12.3.2 Ambient-Oriented Leasing
This dissertation has proposed programming language support that offers developers
fine-grained scoping abstractions for leasing. However, so far, we have mainly focused

244 CHAPTER 12. CONCLUSION AND FUTURE WORK

on dynamic scoping constructs for leased references and leased messages. This means
that, for example, acquiring a leased reference to a vector, does not have any implica-
tion for the individual leases to the objects within the vector. Exploring data scoping
for leasing to provide “leased-based data structures” remains an open research ques-
tion. While we do not see fundamental issues to express such abstractions based on
our transmitter-receptor model, it may require revisiting the reflective API exposed by
leased references.

Another design choice when exploring scoping for leasing constructs is that we
opted for explicit scoping abstractions. While leasing strategies and leased message
protocols solve the problem of scattering leasing in the application code, leasing re-
mains entangled with application code. An alternative to these scoping abstractions
would be to introduce techniques for separation of concerns such as those provided by
aspect-oriented programming. However, leasing requires an expressive pointcut lan-
guage (which can capture parameter passing of objects and messages) in which leasing
concerns may evolve independently from the base functionality, exacerbating the point-
cut fragility problem. Endorsing the arguments against distribution transparency stated
in the introduction, we believe that explicit scoping abstractions outweigh the benefits
of full modularization.

Finally, we would like to note that composition of leased abstractions has not been
explored in the current leasing model. An important aspect of the current implemen-
tation is that the different interaction policies between leased references and leased
messages described in Section 6.6 are encoded in the underlying transmitter-receptor
pair. As such, it remains to extend our open implementation with means to allow de-
velopers to encode custom interaction policies. Moreover, we also encode a default
strategy for nesting leasing strategies and leased message protocols which cannot be
customized by ambient-oriented leasing meta-level engineers.

12.3.3 Ambient-Oriented Leasing for Tuple Spaces
The most significant limitation of TOTAM lies with its leasing model. As previously
mentioned, TOTAM remains a first integration of ambient-oriented leasing and as such,
the abstractions incorporated for leasing need to be further developed and subjected to
more experimentation. In particular, we need to study how we can translate useful
leasing patterns present in our object-oriented leases (such as renew-on-call leased re-
ferences), to the realm of tuples.

Experiences with students using TOTAM (in the context of our university’s Dis-
tributed and Mobile Programming Paradigms course) have shown the importance of
linguistic support for monitoring the network connectivity of the devices forming the
underlying TOTAM network. While this may defeat the metaphor of a shared tuple
space, it appears to be a necessary feature which is currently encoded by hand in TO-
TAM (as we discussed in Section 8.1). Recall from Chapter 7 that programmers need
to encode this in TOTAM by injecting leased tuples which “simulate” the presence of
a device in the network. It remains to be seen how to elegantly integrate network-
awareness support in the TOTAM model. We are considering a solution like in LIME
which adds a “meta” tuples space providing such information.

12.3.4 Ambient-Oriented Debuggers
In order to complete the study of partial failures in the context of tool support, we need
to integrate our debugger with the rest of language constructs for ambient-oriented

12.4. AVENUES FOR FUTURE RESEARCH 245

leasing. In short, the current incarnation of REME-D can only interact with future-type
messages. However, the debugger cannot control the leasing semantics of leased refer-
ences and due-type messages. As a result, developers cannot “freeze” leases, expire or
renew leased references at will. It remains to be investigated what it means to debug a
lease, and which are the appropriate features that a debugger needs to provide to this
end. In a broader context, the exploration of debugging reflective language constructs
is an open issue left for future research.

Since the debugger is itself an ambient-oriented application, its implementation
could also benefit from leased references. Currently, we assume a single debugging
session, and this session is not leased. As such, if an actor disconnects from the de-
bugging session, the debugging facilities are deactivated, and the corresponding data
structures need to be cleaned up by hand. Employing leasing in the debugger imple-
mentation is essential in order to provide advanced debugging features such as multiple
debugging sessions or back-in-time debugging in an efficient way.

12.4 Avenues for Future Research

In this section, we discuss how our research could be extended or studied in a different
context, rather than focusing on the technical limitations of its current instantiation.

12.4.1 Towards a Distributed Secure Object Model

Security has been been left unexplored in the context of ambient-oriented programming
so far. With the emergence of new kinds of mobile applications dealing with “digital
money”, proposing a secure distributed model is more crucial than ever. These mo-
bile applications running on the user’s smartphone represent the client’s virtual wallet
storing digital money. Proposals such as BitCoin [Nak09] exist that allow money to
be safely transferred in a peer-to-peer distributed network. However, this only involves
numerical information. The digital currencies envisioned for the future “virtual wallet-
based mobile applications” may represent a wide spectrum of information including
digital coupons, rides on a metro card, concert tickets, points in loyalty cards, etc.
Such rich types of information actually need a full-fledged object-oriented representa-
tion. For example, a coupon has graphical information, expiry date, usage restrictions
(e.g., not to be used with other coupons) and so on.

How to conceive and provide a secure distributed object-oriented model for eas-
ing the construction of such mobile applications remains an open research question.
We believe that leased references provides a solid basis to build a distributed object-
oriented model that integrates security mechanisms (e.g., avoid unauthorized access
to objects, forging of objects, and duplication of objects, etc.) without requiring fixed
infrastructure. We are currently thinking of combining them with language-based secu-
rity techniques such as capability-based security [Mil06]. As discussed in Section 5.5,
the object-capability model is a suitable model for securing distributed interactions in
AmbientTalk/M because it uses the object reference graph as the access control graph.
Recall from Section 6.2.2 that our notion of a lease already includes a component that
allows us to control which kind of access third parties can gain to a leased service. This
sets the basis for abstractions that limit the spread of leased references and enforce the
principle of least authority promoted by the object-capability model.

246 CHAPTER 12. CONCLUSION AND FUTURE WORK

12.4.2 Structuring the Object Soup

A main contribution of this dissertation is the study of a remote object reference ab-
straction that incorporates machinery for dealing with both transient and permanent
failures. However, as objects are parameter passed back and forth during distributed
interactions, the object graph becomes increasingly complex and distributed across dif-
ferent devices, forming an unstructured “soup” of objects. We believe that a relevant
open question in the context of ambient-oriented programming is now to build abstrac-
tions to structure such an object soup.

We have initial ideas on how to impose structure on those graphs by combining
ideas from ownership types with the transmitter-receptor model embodied in Ambi-
entTalk/M. Ownership types [CPN98] were initially devised as a static typing mecha-
nism to avoid problems caused by sharing objects through aliasing. They impose struc-
ture on object graphs by putting objects into boxes (represented by the owner), limiting
the visibility of object references and restricting access from other boxes using context
parameters. The owner of the object is not necessarily the object that creates it, thus
decoupling the concept of owning an object and having a reference to it. Using Ambi-
entTalk/M, one could already integrate custom referencing abstractions that restrict the
way how objects in different devices can access each other. A receptor can be seen as
the box that encapsulates all references handed out to other devices, and the entity used
to limit how the references can be used (by checking the validity of each message sent
through it). However, it remains to be seen which context parameters are relevant in
an ambient-oriented context and whether our API is robust enough to express them. In
Listing 5.2, we showed the prototype implementation of a safe reference exhibiting se-
mantics akin to an immutable reference in [CWÖJ08] and “arg” reference in [NVP98]
that prevents a client object from calling methods that mutate a target object. Such
a reference was built by overriding the performInvocation method to prevent
synchronous method invocations executed by the target object. However, to date, no
ownership type system has been applied to a distributed software platform.

12.4.3 Debugging Distributed Asynchronous Applications

Finally, it remains to be studied whether the principles of an ambient-oriented debugger
can be translated to other languages and software platforms. In particular, an interesting
avenue of research is to investigate how the features of an ambient-oriented debugger
can help us to understand Ajax-enabled web applications and their debugging process.

Ajax [Gar05] programs work as communicating event loops processing user inter-
face events as well as asynchronous messages from a server, or from other JavaScript
event loops within the browser. Unfortunately, debugging tools currently available such
as Firebug, or Chrome’s debugger only support debugging of sequential client’s code
(browser) providing very little control over the requests sent to the server. It is precisely
this inter-process communication that is essential to understand the behaviour of a dis-
tributed application. Similar to MANET applications, Ajax-enabled web applications
do require message-oriented debugging.

Moreover, there exist some JavaScript libraries such as Q that provide support for
future-type message passing. To the best of our knowledge, no debugging support
is provided for those libraries. Stepping commands such as the step-return or step-
into described in Section 10.3.3, thus become really handy when debugging future-
type message passing interactions. In conclusion, exploring and translating the set of
principles present in an ambient-oriented debugger and REME-D to the realm of web-

12.5. CONCLUDING REMARKS 247

based applications poses an interesting research question.

12.5 Concluding Remarks
This work can be seen as the continuation of the activities of ambient-oriented pro-
gramming research group, the goal of which is to build “nec plus ultra” distributed
programming technology for the development of MANET applications. In the in-
troductory chapter, we discussed the gap between the AmOP optimistic model which
makes network disconnections completely invisible to the programmer, and the tradi-
tional distributed pessimistic model in which network disconnections result in excep-
tion handling. Our research closes that gap by augmenting an optimistic model with
the suitable failure handling abstractions that allow developers to detect, reason about
and handle partial failures at the programming level. We claim that this results in a
realistic model to deal with the effects of partial failures. While the abstractions and
tools described in this thesis are research experiments, we argue that they form the basis
of a solid software development platform for supporting the development of MANET
applications.

248 CHAPTER 12. CONCLUSION AND FUTURE WORK

Appendix A

Code Listing of the Mobile
Music Player

This appendix includes the core functionality of the mobile music player application
as discussed in Section 6.8. We first include the implementation of the application
in Java RMI and then in AmbientTalk. Table A.1 summarizes the colors used in the
code corresponding to the four concerns used to evaluate the application (described in
Section 6.8.2), and the service discovery code.

Color Code deals with...
blue memory management
red concurrency control
green failure handling
purpule application
none service discovery (not included in the quantitative evaluation)

Table A.1: Code Legend.

249

250 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

A.1 Code Listing of the Java RMI Implementation
This section includes the Java RMI implementation of the music player application
according to the UML class diagram depicted in Figure 6.8. Each of the following
sections contains the source code listing for each class.

A.1.1 MusicPlayer

package tools.musicPlayer;

import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import java.util.HashMap;
import java.util.Timer;
import java.util.TimerTask;
import java.util.Vector;

public class MusicPlayer {

public static final String RMI_REGISTRY = "192.168.1.100";
public static final String MUSIC_PLAYER = "MusicPlayer";

public static final int LEASE_SESSION_INTERVAL = 60000; // 1 minute

public static final int THRESHOLD = 25;
public String username_;
public Vector myLib_;

// transmissionActor in charge of the remote message sending of this session.
private HashMap sessions_;

public MusicPlayer(String username){
username_ = username;
myLib_ = new Vector();
sessions_ = new HashMap();

}

public class RemoteInterface implements iMusicPlayer {

public RemoteInterface() {}

public iLeaseSession openSession(final String remoteUser)
throws RemoteException{

System.out.println("opening new session for " + remoteUser);
Vector senderLib = new Vector();
Session session = new Session(remoteUser, this);

LeaseSession leaseSession=new LeaseSession(session,LEASE_SESSION_INTERVAL);
leaseSession.whenExpired(new ExpirationListener() {
public void leaseExpired() {
System.out.println("session with " + remoteUser + " timed out.");

}
});

return leaseSession;
}
public int getSizeOfLibrary() throws RemoteException{

return myLib_.size();
}
//added to access library from session called always local.
public Vector getLib(){

return myLib_;
}

}

public synchronized void sendSong(
iLeaseSession session, int index, CallbackActor callbackActor)

{

A.1. CODE LISTING OF THE JAVA RMI IMPLEMENTATION 251

Actor transmissionActor = (Actor) sessions_.get(session);
if (index < 0) {
// callback from endExchange or an timeoutException on uploadSongMsg occured
// stop the session and make sure that an unreferenced message is sent by:
// -stopping transmissionActor (in the AckReturnValueMsg)
// -removing session from map (must be done here)
transmissionActor.stopProcessing();
sessions_.remove(session);

}else{
if (myLib_.size() > index) {
Song song = (Song) myLib_.get(index);

//annotate the message with @Due(leaseTimeLeft: session)
//Note: to be able to do this we implement the client side of the lease,
//otherwise, it will require another remote method call.
long timeout = ((ClientLeaseSession)session).getTimeLeft();
UploadSongMsg songMsg = new UploadSongMsg(

song, index +1, timeout, callbackActor);

songMsg.whenExpired(new ExpirationListener(){
public void leaseExpired() {

System.out.println("stopping session ");
}

});

transmissionActor.receive(songMsg);
}else{
transmissionActor.receive(new EndExchangeMsg());

}

}
};
public synchronized void receiveSession(iLeaseSession session,

TransmissionActor transmissionActor, CallbackActor callbackActor
){

//associate the session with a transmission actor
if (session != null){

sessions_.put(session, transmissionActor);

sendSong(session, 0, callbackActor);
}

}
public synchronized void whenDiscovered(iMusicPlayer remotePeer)

throws InterruptedException
{

// discover other music players
CallbackActor callbackActor = new CallbackActor(this);
TransmissionActor transmissionActor = new TransmissionActor(callbackActor);
//annotate the message with @Due(1 minute)
OpenSessionMsg msg = new OpenSessionMsg(
remotePeer, username_, 60000, callbackActor);

transmissionActor.receive(msg);

msg.whenExpired(new ExpirationListener(){
public void leaseExpired() {
System.out.println("unable to open a session");

}
});

}

public void goOnline(String remoteUser){
//export remoteInterface as MusicPlayer + username

//(which is used in rmi as unique identifier for service)
try {

iMusicPlayer stub = (iMusicPlayer) UnicastRemoteObject.exportObject(
new RemoteInterface(), 0);
// Bind the remote object’s stub in the registry
Registry registry = LocateRegistry.getRegistry(RMI_REGISTRY);
registry.bind(MUSIC_PLAYER + username_, stub);
System.out.println("Remote interface exported");

} catch (Exception e) {
System.err.println("Export:as exception: " + e.toString());
e.printStackTrace();

}

252 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

// start discover other music players
// Using Timer and DiscoveryTimerTask to detect other music players

// rmi throws an exception if the service is not yet in the rmi.
Timer discoveryDetectorTimer = new Timer();
DiscoveryTimerTask discoveryDetector =
new DiscoveryTimerTask(discoveryDetectorTimer, remoteUser);
discoveryDetectorTimer.scheduleAtFixedRate(
discoveryDetector, 0, DiscoveryTimerTask.DISCOVERY_RATE);

}

public void addSong(String artist, String title){
myLib_.add(new Song(artist, title));

}

private class DiscoveryTimerTask extends TimerTask{
/**
* The rate at which to schedule this timer task

*/
public static final int DISCOVERY_RATE = 3000; // in milliseconds
public String service_;
public boolean found_;
public Timer discoveryDetectorTimer_;

public DiscoveryTimerTask(Timer timer, String service){
discoveryDetectorTimer_ = timer;
service_ = service;
found_ = false;

}

public void run(){
try {

if (found_ == false){
Registry registry = LocateRegistry.getRegistry(MusicPlayer.RMI_REGISTRY);
iMusicPlayer peer_ = (iMusicPlayer) registry.lookup(

MusicPlayer.MUSIC_PLAYER + service_);
discoveryDetectorTimer_.cancel();
try {

System.out.println("discovered a new music player: " + service_);
whenDiscovered(peer_);

} catch (InterruptedException e) {
System.out.println("Unknown whenDiscovered exception " + e.toString());
e.printStackTrace();

}
}else {System.out.println("found! I shouldn’t be here!");}

} catch (NotBoundException e){
// the service is not found yet.

} catch (Exception e) {
System.err.println("Unknown discoveryTimer exception: " + e.toString());
e.printStackTrace();

}

}
}

}

A.1.2 iMusicPlayer

package tools.musicPlayer;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface iMusicPlayer extends Remote {
public iLeaseSession openSession(final String remoteUser) throws RemoteException;
public int getSizeOfLibrary() throws RemoteException;

}

A.1. CODE LISTING OF THE JAVA RMI IMPLEMENTATION 253

A.1.3 Session

package tools.musicPlayer;

import java.rmi.RemoteException;
import java.util.Vector;

import tools.musicPlayer.MusicPlayer.RemoteInterface;

public class Session{

public String remoteUser_;
public Vector senderLib_;
public RemoteInterface mp_;

protected Session(String remoteUsername, RemoteInterface mp) {
senderLib_ = new Vector();
remoteUser_ = remoteUsername;
mp_ = mp;

}

public String uploadSong(String artist, String title) throws RemoteException {
senderLib_.add(new Song(artist, title));
return "ok";

}

public void endExchange() throws RemoteException{
Vector myLib = mp_.getLib();
senderLib_.retainAll(myLib);
int matchRatio = (int) ((senderLib_.size()*100)/(myLib.size()+0.01));
if (matchRatio >= MusicPlayer.THRESHOLD) {
System.out.println("Found user "+ remoteUser_ +
" with similar taste in music ("+matchRatio+"% match)");
//notifyOnMatch

} else {
System.out.println("User "+ remoteUser_+ "
does not share your taste in music ("+matchRatio+"% match)");

};
//"done";

}
}

A.1.4 Song

package tools.musicPlayer;

public class Song {

public String artist_;
public String title_;
public int timesPlayed_;

public Song(String artist, String title){
artist_ = artist;
title_ = title;
timesPlayed_ = 0;

}
public void play(){

timesPlayed_ ++;
}
public boolean equals(Object other){

return (other != null) && (this.getClass() == other.getClass()) &&
(artist_.equals(((Song) other).artist_) &&
(title_.equals(((Song) other).title_)));

}
public String toString(){

return artist_ + " - " + title_ + "(" + timesPlayed_ + ")";
}

}

254 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

A.1.5 ExpirationListener

package tools.musicPlayer;

public abstract class ExpirationListener {
public abstract void leaseExpired();

}

A.1.6 Message

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;

public abstract class Message {
// Messages can be annotated with @Due(timeout).
// Following fields are required for that interaction
public long timeout_;
public Lease dueLease_;
public boolean expired_;
public ExpirationListener listener_;

public Message(long timeInterval){
expired_ = false;
if (timeInterval > 0){

dueLease_ = new Lease(timeInterval);
}

}
public void whenExpired(ExpirationListener listener){
// one expired per message send - for this application is fine.
if (listener_ == null) {

listener_ = listener;
}

}
public boolean isExpired(){
return expired_;

}
public void expire(){
expired_ = true;

}

public abstract void process(Actor a) throws NoSuchObjectException;
}

A.1.7 OpenSessionMsg

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;
import java.rmi.RemoteException;

public class OpenSessionMsg extends Message {
public iMusicPlayer peer_;
public String username_;
CallbackActor callbackActor_;
public OpenSessionMsg(iMusicPlayer remotePeer, String username,

long timeoutDue, CallbackActor callbackActor){
super(timeoutDue);

if (timeoutDue>0) {
dueLease_.whenExpired(new ExpirationListener(){
public void leaseExpired() {
expired_ = true;
if (listener_ != null) listener_.leaseExpired();

A.1. CODE LISTING OF THE JAVA RMI IMPLEMENTATION 255

//sending an empty expired message to be able to stop callbackActor.
SessionReturnValueMsg expiredMsg = new SessionReturnValueMsg(null, null);
expiredMsg.expire();
callbackActor_.receive(expiredMsg);

}
});

}
username_ = username;
peer_ = remotePeer;
callbackActor_ = callbackActor;

}
public void process(Actor a) throws NoSuchObjectException {

try {
iLeaseSession session = peer_.openSession(username_);

if (!expired_){
dueLease_.revoke();

ClientLeaseSession leaseSession =
new ClientLeaseSession(session, MusicPlayer.LEASE_SESSION_INTERVAL);

a.setSession(leaseSession);
callbackActor_.receive(new SessionReturnValueMsg(

leaseSession, (TransmissionActor) a));
}

} catch (NoSuchObjectException e0){
throw e0;

} catch (RemoteException e) {
//exception while session active, reschedule to simulate buffering.
if (!expired_){
a.receivePrioritized(new OpenSessionMsg(

peer_,username_,timeout_,callbackActor_));
e.printStackTrace();

}
}

}
}

A.1.8 UploadSongSessionMsg

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;
import java.rmi.RemoteException;

public class UploadSongMsg extends Message{
public Song song_;
public int index_;
CallbackActor callbackActor_;

public UploadSongMsg(Song song, int index, long timeoutDue,
CallbackActor callbackActor){

super(timeoutDue);

if (timeoutDue>0) {
dueLease_.whenExpired(new ExpirationListener(){
public void leaseExpired() {

expired_ = true;
if (listener_ != null) listener_.leaseExpired();

// by sending -1 we make sure that the callbackActor stops and
// the used infrastructure for the session in MusicPlayer is cleaned.
callbackActor_.receive(new AckReturnValueMsg(-1));
System.out.println("TIMEOUT song " + song_.toString());

}
});

}

song_ = song;
index_ = index;
callbackActor_ = callbackActor;

}

256 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

public void process(Actor a) throws NoSuchObjectException {
CallbackActor callbackActor=(CallbackActor)((TransmissionActor) a).getOwner();
iLeaseSession session = a.getSession();
try {

String ack = session.uploadSong(song_.artist_, song_.title_);

//check again for expired_ because the TransmissionActor thread may be
//blocked when the message already expired.
if (!expired_){
dueLease_.revoke();

callbackActor.receive(new AckReturnValueMsg(index_));
System.out.println("acked sent song " + song_.toString());

};

} catch (NoSuchObjectException e0){
// trying to use an expired session, throw again.
throw e0;

} catch (RemoteException e) {
//exception while session active, reschedule to simulate buffering.
if (!expired_){
System.out.println("reschedule message-unable to send" +song_.toString());
a.receivePrioritized(new UploadSongMsg(

song_, index_, timeout_, callbackActor_));
e.printStackTrace();

}
}

}
}

A.1.9 EndExchangeMsg

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;
import java.rmi.RemoteException;

public class EndExchangeMsg extends Message {

public EndExchangeMsg() {
super(0); // Msg without timeout.

}

public void process(Actor a) throws NoSuchObjectException {
CallbackActor callbackActor=(CallbackActor)((TransmissionActor) a).getOwner();
iLeaseSession session = a.getSession();
try {

session.endExchange();

//callback from endExchange is required in Java because
// the client has to let rmi know that the reference is not used anymore,
// i.e. make sure that the unrefenced control message is sent.
// clean the used infrastructure for the session by sending -1.
callbackActor.receive(new AckReturnValueMsg(-1));
a.stopProcessing();

} catch (NoSuchObjectException e0){
throw e0;

} catch (RemoteException e) {
//exception while session active, reschedule to simulate buffering.
System.out.println("reschedule message - unable to end exchange ");
a.receivePrioritized(new EndExchangeMsg());
e.printStackTrace();

}

}
}

A.1. CODE LISTING OF THE JAVA RMI IMPLEMENTATION 257

A.1.10 AckReturnValueMsg

package tools.musicPlayer;

public class AckReturnValueMsg extends Message {
public int index_;
public AckReturnValueMsg (int index){

super(0);
index_ = index;

}
public void process(Actor a) {

iLeaseSession session = a.getSession();
MusicPlayer callback = (MusicPlayer) ((CallbackActor) a).getOwner();
callback.sendSong(session, index_, (CallbackActor) a);

if (index_ < 0) a.stopProcessing();

}
}

A.1.11 SessionReturnValueMsg

package tools.musicPlayer;

public class SessionReturnValueMsg extends Message{

public iLeaseSession session_;
public TransmissionActor ta_;
public SessionReturnValueMsg (iLeaseSession session, TransmissionActor ta){

super(0);
session_ = session;
ta_ = ta;

}
public void process(Actor a) {

a.setSession(session_);
MusicPlayer callback = (MusicPlayer) ((CallbackActor) a).getOwner();
callback.receiveSession(session_, ta_, (CallbackActor) a);

}
}

A.1.12 EventLoop

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;
import java.util.Vector;

class MessageQueue{
private static final int _DEFAULT_QUEUE_SIZE_ = 10;

private final Vector elements_;

public MessageQueue() {
elements_ = new Vector(_DEFAULT_QUEUE_SIZE_);

}
/**
* Enqueue an event in the buffer. This method wakes up any

* waiting consumer threads.

*/
public synchronized void enqueue(Message msg) {

elements_.add(msg);
notify();

}

public synchronized void enqueueFirst(Message msg) {
elements_.add(0, msg);
notify();

}

258 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

/**
* Dequeue a message from the queue.

* This method will block when the buffer is empty!

*/
public synchronized Message dequeue() {
try {

while(elements_.isEmpty()) {
wait();

}
return (Message) elements_.remove(0);

} catch (InterruptedException e) {
e.printStackTrace();

}
return null;

}
}
public abstract class Actor implements Runnable{

protected MessageQueue messageQueue_;
public iLeaseSession session_;
protected boolean askedToStop_;
protected Thread thread_;

public Actor(){
messageQueue_ = new MessageQueue();
askedToStop_ = false;
session_ = null;
thread_ = new Thread (this);
thread_.start();

}
public void receive(Message msg) {
messageQueue_.enqueue(msg);

}
/*
* When an actor receives a message, it is immediately placed

* in the message queue and will be processed later.

* Using this method, messages are scheduled first in the queue.

* Used by to retransmit remote message call that failed, so that

* we provide similar buffering of messages than in AT.

*/
public void receivePrioritized(Message msg) {
messageQueue_.enqueueFirst(msg);

}

public void stopProcessing() {
if (!askedToStop_) {

askedToStop_ = true;
// explicitly interrupt my event processor because it
// may be blocked waiting on other events
thread_.interrupt();
// to provoke the unreference control message.
session_ = null;

}
}

public void handleMessage(Message msg) throws NoSuchObjectException{
msg.process(this);

};
public void run(){
while(!askedToStop_){

try {
Thread.sleep(1000);
Message msg = messageQueue_.dequeue();
if (!msg.isExpired()) {
handleMessage(msg);

} else{
//make sure that this threads stops
this.stopProcessing();

}
} catch (Exception e) {
System.out.println("error while handling a message");
e.printStackTrace();

}
}
System.out.println("got interrupted" + this.toString());

A.1. CODE LISTING OF THE JAVA RMI IMPLEMENTATION 259

}

public abstract Object getOwner();

public iLeaseSession getSession(){
return session_;

}
public void setSession(iLeaseSession session){

session_ = session;
}

}

A.1.13 ELCallback

package tools.musicPlayer;

public class CallbackActor extends Actor {

public MusicPlayer owner_;

public CallbackActor(MusicPlayer mp){
super();
owner_ = mp;

}
public Object getOwner(){

return owner_;
}
public String toString(){

return "CallbackActor";
}

}

A.1.14 ELTransmission

package tools.musicPlayer;

public class TransmissionActor extends Actor {

public CallbackActor owner_;

public TransmissionActor(CallbackActor actor){
super();
owner_ = actor;

}
public Object getOwner(){

return owner_;
}
public String toString(){

return "TransmissionActor";
}

}

A.1.15 iLeaseSession

package tools.musicPlayer;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface iLeaseSession extends Remote{
public String uploadSong(String artist, String title) throws RemoteException;
public void endExchange()throws RemoteException;

}

260 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

A.1.16 LeaseSession

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.server.Unreferenced;

public class LeaseSession extends UnicastRemoteObject
implements iLeaseSession, Unreferenced{

public Session session_;
public Lease lease_;

public LeaseSession(Session session, long leaseInterval) throws RemoteException{
lease_ = new Lease(leaseInterval);
session_ = session;

}
public String uploadSong(String artist, String title) throws RemoteException {
if (lease_.isExpired()) {

throw new NoSuchObjectException("asked for an expired session");
} else {

lease_.renew();
return session_.uploadSong(artist, title);

}
}
public void endExchange() throws RemoteException {
if (lease_.isExpired()) {

throw new NoSuchObjectException("asked for an expired session");
} else {

lease_.revoke();
session_.endExchange();

}
}
public void whenExpired(ExpirationListener listener){
lease_.whenExpired(listener);

}
}

A.1.17 ClientLeaseSession

package tools.musicPlayer;

import java.rmi.NoSuchObjectException;
import java.rmi.RemoteException;

public class ClientLeaseSession extends Lease implements iLeaseSession {

public iLeaseSession session_;

public ClientLeaseSession(iLeaseSession session, long leaseInterval) {
super(leaseInterval);
session_ = session;

}
public String uploadSong(String artist, String title) throws RemoteException {
if (isExpired()) {

throw new NoSuchObjectException("asked for an expired session");
} else {

this.renew();
return session_.uploadSong(artist, title);

}
}
public void endExchange() throws RemoteException {
if (isExpired()) {

throw new NoSuchObjectException("asked for an expired session");
} else {

revoke();
session_.endExchange();

}

A.1. CODE LISTING OF THE JAVA RMI IMPLEMENTATION 261

}
public void renew(){

System.out.println("renewing client lease");
super.renew();

}
}

A.1.18 Lease

package tools.musicPlayer;

import java.util.Iterator;
import java.util.Timer;
import java.util.TimerTask;
import java.util.Vector;

public class Lease {

public long leaseInterval_;
private Timer leaseTimer_;
private LeaseTimerTask timerSubscription_;
protected boolean expired_;
private Vector whenExpiredListeners_; //lazy initialization

public Lease(long leaseInterval){
leaseInterval_ = leaseInterval;
expired_ = false;
leaseTimer_ = new Timer();
timerSubscription_ = new LeaseTimerTask();
leaseTimer_.schedule(timerSubscription_, leaseInterval);

}
public synchronized void expire(){
// System.out.println("expiring lease");

revoke();
//notify expiration to listeners.
if (whenExpiredListeners_ != null) {
for(Iterator iterator=whenExpiredListeners_.iterator();iterator.hasNext();){
((ExpirationListener)iterator.next()).leaseExpired();

}
}

}
public synchronized void revoke(){

//System.out.println("revoking lease");
if (!isExpired()){
expired_ = true;
leaseTimer_.cancel();

}
}
public synchronized boolean isExpired(){

return expired_;
}
public void renew(){

if (!isExpired()){
timerSubscription_.cancel();
timerSubscription_ = new LeaseTimerTask();
leaseTimer_.schedule(timerSubscription_, leaseInterval_);

}
}
public void whenExpired(ExpirationListener listener){

if (isExpired()){
listener.leaseExpired();

} else{
if (whenExpiredListeners_ == null) {
whenExpiredListeners_ = new Vector(1);

}
whenExpiredListeners_.add(listener);

};
}
public long getTimeLeft(){

return timerSubscription_.getTimeRemaining();
}

262 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

private class LeaseTimerTask extends TimerTask{
public boolean cancelled_;
public Timer timer_;
public LeaseTimerTask(){

cancelled_ = false;
}
public void run() {

if (!cancelled_) expire();
}
public long getTimeRemaining(){

return this.scheduledExecutionTime() - System.currentTimeMillis();
}
public boolean cancel(){

cancelled_ = true;
return super.cancel();

}
}

}

A.2. CODE LISTING OF THE AMBIENTTALK IMPLEMENTATION 263

A.2 Code Listing of the AmbientTalk Implementation

def AmbientRefsM := /.at.lang.ambientrefs_old; // for discovery
deftype MusicPlayer; // music players are exported using this service type

import /.at.lang.futures; // for when:becomes:
enableFutures(false);

import /.at.lang.leasedrefs exclude minutes, seconds, millisec; // for leasing

def Song := object: {
def artist := nil;
def title := nil;
def timesPlayed := 0;
def init(artist, title) {

self.artist := artist;
self.title := title;
self.timesPlayed := 0;

};
def ==(other) {

(artist == other.artist).and: {title == other.title};
};
def play() {

timesPlayed := timesPlayed + 1;
};
def toString() {

artist + " - " + title + "(" + timesPlayed + ")";
};

};
def Vector := jlobby.java.util.Vector; // we represent song libraries as vectors
def THRESHOLD := 25; // when users share 25% of their songs, we signal a match
def MusicPlayerModule := object: {

def myLib := Vector.new(); // the local user’s songs library
def userName := jlobby.java.lang.System.getProperty("user.name");
def notifyOnMatch := { |user, percentage| nil };
def init(userName, notifier := notifyOnMatch) {
self.userName := userName;
myLib := Vector.new();
notifyOnMatch := notifier;

};
def notification(@texts) {

system.println("[music player "+userName+"] ", @texts);
};
def createInterface() {

object: {
def openSession(remoteUser) {
notification("opening new session for " + remoteUser);
def senderLib := Vector.new();
def session := object: {

def uploadSong(artist, title) {
senderLib.add(Song.new(artist, title));
"ok"; // tell sender that song was successfully received

};
def endExchange() {

revoke: session; // takes the session offline

senderLib.retainAll(myLib);
def matchRatio := (senderLib.size()*100/(myLib.size()+0.01)).round();
if: (matchRatio >= THRESHOLD) then: {
notification("Found user ", remoteUser,
" with similar taste in music (",matchRatio,"% match)");
notifyOnMatch(remoteUser, matchRatio);

} else: {
notification("User ", remoteUser, "
does not share your taste in music (",matchRatio,"% match)");

};
};

};

def leasedSession := renewOnCallLease: 10.minutes for: session;
when: session expired: {

notification("session with " + remoteUser + " timed out.");
senderLib := nil;

};

264 APPENDIX A. CODE LISTING OF THE MOBILE MUSIC PLAYER

// return session object (which will be leased referenced) to client
leasedSession;

}
def getSizeOfLibrary() { myLib.size() };

};
};

def goOnline() {
export: createInterface() as: MusicPlayer;
// uses an ambient reference to discover one other music player
def musicPlayerFuture := AmbientRefsM.ambient: MusicPlayer;
when: musicPlayerFuture becomes: { |ambientReference|
notification("discovered new music player: " + ambientReference);

def futureSession := ambientReference<-openSession(userName)@Due(1.minutes);
when: futureSession becomes: { |session|

def iterator := myLib.iterator(); // to iterate over own music library
def sendSongs() { // auxiliary function to send each song
if: (iterator.hasNext()) then: {

def song := iterator.next();

def futureUploadSong := session<-uploadSong(song.artist,
song.title)@Due(leaseTimeLeft: session);

when: futureUploadSong becomes: { |ack|

notification("sent song " + song.artist + " - " + song.title);
sendSongs(); // recursive call to send the rest of the songs

} catch: { |exception|
notification("stopping exchange: " + exception)

};

} else: {

session<-endExchange()@OneWayMessage;

};
nil;

};
sendSongs();

} catch: TimeoutException using: { |e|
notification("unable to open a session");

}

};
};
def addSong(artist, title) {
myLib.add(Song.new(artist, title));

};
};

Appendix B

REME-D’s User Study Material

This appendix includes the material created for the pre-experimental user study for
REME-D. In particular, it provides the questionnaires designed for the pretest and
posttest, and the debugging assignment given to the participants during the experiment.

B.1 Pretest Questionnaire
In the experiment conducted to evaluate REME-D , two questionnaires were used. This
section prints the pretest questionnaire used to get a zero-measurement before the par-
ticipants started their assignments with the tool. We first show the questions according
to the different topics the participants were inquired. Afterwards, we include the ques-
tions in the original form used in the experiment. A more detailed explanation of each
question’s purpose is given in Section 11.2.1.

265

266 APPENDIX B. REME-D’S USER STUDY MATERIAL

Development Experience
A I consider myself an experienced developer.
B I am proficient in development distributed systems.
C I understand the principles of ambient oriented programming in AmbientTalk.
E I am familiar with the Eclipse IDE.
K I am proficient in the use of online (breakpoint-based) debuggers.
Attitude towards AmbientTalk
D Developing in AmbientTalk is easy.
Attitude towards Eclipse IDE
F Eclipse is a good IDE to develop AmbientTalk programs.
Attitude towards debugging
G A lot of bugs can be prevented by using better development tools.
H Debugging distributed programs is hard.
I Debuggers are a helpful tool to find errors in programs.
J Debuggers are a helpful tool to understand programs.
P A debugger for AmbientTalk is needed.
Expectations of a debugger for AmbientTalk programs
O A debugger would make programming AmbientTalk easier.
L Breakpoints are essential to debugging a program.
M Step-by-step execution is essential to debugging a program.
N Inspecting the program’s state is essential to debugging a program.
Q When debugging AmbientTalk programs messages between actors are more important

than messages between objects.
R Inspecting mailbox contents is essential to debugging AmbientTalk programs.
S An AmbientTalk debugger must take into account the frequent disconnections and

zero infrastructure phenomenon present in a mobile ad hoc networking setting.

Table B.1: Pretests questions according to the five topics participants were inquired:
development experience, attitude towards AmbientTalk, Eclipse IDE and debugging,
and exceptions of a debugger for AmbientTalk programs.

B.1. PRETEST QUESTIONNAIRE 267

Please answer the following questions with regard to your age, education and pro-
gramming background. The answers will be kept private and only serve to put your
other answers in context.

What is your age?:
Please sketch your educational background (Master, Bachelor, etc):

Please list the top 3 programming languages you are most comfortable with

Questionnaire
For each of the statements below, please rate each one on a scale from 1 (totally dis-
agree) to 5 (totally agree) to indicate to what extend they represent your opinion.

I consider myself an experienced developer 1 2 3 4 5

I am proficient in development distributed systems 1 2 3 4 5

I understand the principles of ambient oriented programming in Am-
bientTalk

1 2 3 4 5

Developing AmbientTalk is easy 1 2 3 4 5

I am familiar with the Eclipse IDE 1 2 3 4 5

Eclipse is a good IDE to develop AmbientTalk programs 1 2 3 4 5

A lot of bugs can be prevented by using better development tools 1 2 3 4 5

Debugging distributed programs is hard 1 2 3 4 5

Debuggers are a helpful tool to find errors in programs 1 2 3 4 5

Debuggers are a helpful tool to understand programs 1 2 3 4 5

I am proficient in the use of online (breakpoint-based) debuggers 1 2 3 4 5

Breakpoints are essential to debugging a program 1 2 3 4 5

Step-by-step execution is essential to debugging a program 1 2 3 4 5

Inspecting the program’s state is essential to debugging a program 1 2 3 4 5

A debugger would make programming AmbientTalk easier 1 2 3 4 5

A debugger for AmbientTalk is needed 1 2 3 4 5

When debugging AmbientTalk programs messages between actors
are more important than messages between objects

1 2 3 4 5

Inspecting mailbox contents is essential to debugging AmbientTalk
programs

1 2 3 4 5

An AmbientTalk debugger must take into account the frequent dis-
connections and zero infrastructure phenomenon present in a mobile
ad hoc networking setting

1 2 3 4 5

Comments
Please note what features would you like to have in a debugger for AmbientTalk,
and what, if any, feature of the language might make it hard to develop AmbientTalk
applications. (You can continue on the other side of the sheet.)

268 APPENDIX B. REME-D’S USER STUDY MATERIAL

B.2 Posttest Questionnaire
As previously mentioned, in the experiment conducted to evaluate REME-D , two ques-
tionnaires were used. This section prints the posttest questionnaire used to evaluate the
experiment and gauge the participants’ experiences with the tool. We first show the
questions according to the different topics the participants were inquired. Afterwards,
we include the questions in the original form used in the experiment. A more detailed
explanation of each question’s purpose is given in Section 11.2.2.

B.2. POSTTEST QUESTIONNAIRE 269

Assignment Experience
A The assignment was too easy for me.
B The assignment was very interesting to do.
C The assignment represents the kind of bugs I have encountered in AmbientTalk.
D I would have liked more time to complete the assignment.
E I had enough help in completing the assignment.
REME-D UI Experience
J I found REME-D’s user interface easy to use.
K REME-D’s debugging features are clear and accessible in the UI.
L The Actor view gives a good overview of the state of the application.
M The Debug Element View gives a good overview of the state of an actor.
N In essence REME-D is helpful, but it needs a better user interface.
REME-D Perception
F REME-D makes AmbientTalk programming easier.
G REME-D will significantly help to reduce the time to debug distributed AmbientTalk

programs.
H REME-D will help me understand the distributed behaviors of AmbientTalk programs.
I REME-D will help me solve real bugs.

Value of REME-D’s features
P I find asynchronous message breakpoints useful.
R I find step-into a useful debugging operation.
T I find step-over a useful debugging operation.
V I find pausing an actor a useful debugging operation.
W I find that REME-D’s operations give me sufficient control over the execution of an

AmbientTalk program.
X I find that infecting other VM’s is a useful feature when debugging distributed Ambi-

entTalk programs.
Frequency of REME-D’s features
O I often used asynchronous message-breakpoints during the assignment.
Q I often used step-into during the assignment.
S I often used step-over during the assignment.
U I often paused an actor during the assignment.

Table B.2: Posttest questions according to the five topics participants were inquired:
assignment and REME-D UI experience, REME-D perception, value and frequency of
REME-D’s features.

270 APPENDIX B. REME-D’S USER STUDY MATERIAL

Questionnaire
For each of the statements below, please rate each one on a scale from 1 (totally dis-
agree) to 5 (totally agree) to indicate to what extend they represent your opinion.

The assignment was too easy for me 1 2 3 4 5

The assignment was very interesting to do 1 2 3 4 5

The assignment represents the kind of bugs I have encountered in
AmbientTalk

1 2 3 4 5

I would have liked more time to complete the assignment 1 2 3 4 5

I had enough help in completing the assignment 1 2 3 4 5

REME-D makes AmbientTalk programming easier 1 2 3 4 5

REME-D will significantly help to reduce the time to debug distribu-
ted AmbientTalk programs

1 2 3 4 5

REME-D will help me understand the distributed behaviors of Ambi-
entTalk programs

1 2 3 4 5

REME-D will help me solve real bugs 1 2 3 4 5

I found REME-D’s user interface easy to use 1 2 3 4 5

REME-D’s debugging features are clear and accessible in the UI 1 2 3 4 5

The Actor view gives a good overview of the state of the application 1 2 3 4 5

The Debug Element View gives a good overview of the state of an
actor

1 2 3 4 5

In essence REME-D is helpful, but it needs a better user interface 1 2 3 4 5

I often used asynchronous message-breakpoints during the assign-
ment

1 2 3 4 5

I find asynchronous message breakpoints useful 1 2 3 4 5

I often used step-into during the assignment 1 2 3 4 5

I find step-into a useful debugging operation 1 2 3 4 5

I often used step-over during the assignment 1 2 3 4 5

I find step-over a useful debugging operation 1 2 3 4 5

I often paused an actor during the assignment 1 2 3 4 5

I find pausing an actor a useful debugging operation 1 2 3 4 5

I find that REME-D’s operations give me sufficient control over the
execution of an AmbientTalk program

1 2 3 4 5

I find that infecting other VM’s is a useful feature when debugging
distributed AmbientTalk programs

1 2 3 4 5

Comments
Please note any additional comment you might have, either on the assignment, or on
the tool. Please include features that you think might be enhanced, or added in order
to make REME-D a better debugging tool (You can continue on the other side of the
sheet).

B.3. DEBUGGING ASSIGNMENT 271

B.3 Debugging Assignment
A session assignment was handed out to participants in the experiment conducted to
validate REME-D . The full text of the assignment is printed in this section in its orig-
inal form. An description of the tasks within the assignment can be found in Sec-
tion 11.2.3.

272 APPENDIX B. REME-D’S USER STUDY MATERIAL

email: egonzale@vub.ac.be
office: 10F731

goShopping: Debugging AmbientTalk programs
with REME-D
Lab session material available at Pointcarre under LabSessions, and at http:
//soft.vub.ac.be/˜egonzale under Teaching.

Idea
The purpose of this exercise is to get familiar with REME-Da, a distributed debug-
ger designed for AmbientTalk applications. To this end, the lab material provides
you with an application that contains errors. You should try to fix them by launch-
ing it in the Eclipse AmbientTalk plugin in debug mode and using REME-D’s
features.

Finding bugs in the goShopping application
The provided application is a sample shopping application that needs to process
purchase orders. Before the shop can acknowledge the order, it must verify three
things: 1) whether the requested items are still in stock, 2) whether the customer
has provided valid payment information and 3) whether a shipper is available
to ship the order in time. The following picture depicts this application which
consists of 4 actors.

buyer Actor

shipper Actor

account Actor

product Actor

teller

partInStock

checkCredit

canDeliver

The buyer actor processes order purchases. In response to a go message,
the buyer actor sends out the appropriate messages to product, account and
shipper actors. To keep the first part of this exercise simple, we do not make
use of futures. Instead, the buyer makes use of an AsyncAnd abstraction.
The constructor of an AsyncAnd object takes two parameters: a number
indicating how many affirmative replies the AsyncAnd should receive before
it invokes callback<-run(true), and the callback object to notify. The

http://soft.vub.ac.be/~egonzale
http://soft.vub.ac.be/~egonzale

B.3. DEBUGGING ASSIGNMENT 273

callback object thus needs to implement the message run(boolean). In the
goShopping application provided, all three actors simply send an affirmative
reply to the AsyncAnd callback.

Your task consists on fix and improve this application as follows:

(a) Running goShopping.at should print the following to the console “Got
answer: true”. However, it currently prints “Got answer: false” because the
application does not behave as expected. Use REME-D debugging features
to fix this bug.

(b) Once the shop acknowledges the order, it contacts a warranty broker to
suggest the client a warranty for the purchases item. To do so, the war-
ranty broker contacts several insurance agencies, and returns the best quote.
However, it currently returns an negative quota. Use REME-D debugging
features to fix this bug.

To reproduce the bug you need to 1) launch the warranty broker code
(stored in the warrantyBroker.at provided in the lab session mate-
rial), and 2) comment line 133 of goShopping.at to use instead the
goWithInsurance (sent using the sectionB method).

Note: In this case synchronization between buyer and the warranty broker
happens by means of future-based message passing instead of using the
explicit AsyncAnd abstraction.

(c) Add two unit test to the goShopping application to make sure these bugs
do not happen again in the future.

aread as remedy

274 APPENDIX B. REME-D’S USER STUDY MATERIAL

Appendix C

REME-D’s Startup Protocol

This appendix demonstrates the interactions between debugger manager and command
and event listeners by means of a concrete example. Figure C.1 gives a graphical
overview of the startup protocol for a REME-D debugging session.

In response to a click on the debug button in the Eclipse IDE, the JavaVM running
the Eclipse plugin creates two AmbientTalk VMs: the debugger VM and the target
application VM. The debugger VM loads the code of the debugger actor shown in
Figure 10.7 creating a debugger manager, and the command and event listeners. The
target application VM loads the code of a local manager, which upon initialization
announces its presence to the debugger manager by means of the actorStarted mes-
sage. The debugger manager in turn communicates this to the event listener by sending
a startActorEvent message. Finally, the listener notifies the corresponding Eclipse
UI component (as shown in Figure 10.7, line 3) so that the debug view is updated with
the information of the new actor.

Upon receiving the startActorEvent message, the Eclipse UI then creates a
startCommand object including the breakpoints active on the UI. The execution of the
startCommand object, notifies the command listener by invoking its executeStart-
Command method. As shown in Figure 10.7 (lines 10-25), the command listener first
obtains the breakpoint commands from the start command, and executes them. Ex-
ecuting a breakpoint command may either call the codeBreakpointActiveOn or
setCodeBreakpoint method of the debugger manager as also shown in lines 17-23.
Finally, the execution of the executeStartCommandmethod, sends a loadMainCode
message to the debugger manager, which in turn sends an evaluateCode message to
the local manager. In response to an evaluateCode message, the local manager loads
the target application code, ending the debugging session startup protocol.

275

276 APPENDIX C. REME-D’S STARTUP PROTOCOL

removeBreak-
point(..)*

addBreakpoint(..)*

U
Icom

ponent
@
EclipsePluginVM

com
m
andListener

@
debuggerVM

launch(..)

localM
anager

@
targetVM

eventListener
@
debuggerVM

actorStarted(..)
sendActorStarted(..)

handleEvent(..)

setB
reakpointC

om
m
and

@
debuggerVM

create*
create

evaluateCode(..)

executeStartCommand(..)

executeSetBreakpointCommand(..)*
codeBreakpointActiveOn(..)

setCodeBreakpoint(..)*

loadMainCode(..)

executeCommand(..)*

debuggerM
anager

@
debuggerVM

executeCommand(..)

debuggerA
ctorB

hv
@
debuggerVM

create

setupDebugSession(..)
register-
Controller(..) create

startC
om

m
and

@
debuggerVM

Figure
C

.1:R
E

M
E

-D
’s

debugging
session

startup
protocol.

Bibliography

[A.08] Moore K. A. Quasi-experimental evaluations. part 6 in a series on
practical evaluation methods. Research-to-Results Brief, 2008.

[ABC+00] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölszle,
John Maloney, Randall Smith, David Ungar, and Mario Wolczko. The
SELF 4.1 programmer’s reference manual, 2000.

[ABW93] G. Nelson S. Owicki A. Birell, D. Evers and E. Wobber. Distributed
garbage collection for network objects. Technical Report 116, Digital
Systems Research Center, 1993.

[AC93] Gul Agha and C. J. Callsen. Actorspace: An open distributed pro-
gramming paradigm. In Proceedings of the 4th ACM Conference on
Principles and Practice of Parallel Programming, ACM SIGPLAN No-
tices, pages 23–32, 1993.

[ACDG98] M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi. Channel reifica-
tion: A reflective model for distributed computation. In IEEE Inter-
national Performance, Computing and Communications Conference
(IPCCC’98), pages 32–36, 1998.

[ACH+08] Baruch Awerbuch, Reza Curtmola, David Holmer, Cristina Nita-
Rotaru, and Herbert Rubens. Odsbr: An on-demand secure byzantine
resilient routing protocol for wireless ad hoc networks. ACM Trans.
Inf. Syst. Secur., 10:6:1–6:35, January 2008.

[Agh86] Gul Agha. Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[Agh90] Gul Agha. Concurrent object-oriented programming. Communications
of the ACM, 33(9):125–141, 1990.

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
Transactions on aspect-oriented software development I. chapter An
overview of caesarj, pages 135–173. Springer-Verlag, Berlin, Heidel-
berg, 2006.

[AK06] Markus Aleksy and Axel Korthaus. Using temporary properties to
provide leasing functionality in corba. In Proceedings of the 20th In-
ternational Conference on Advanced Information Networking and Ap-
plications - Volume 01, AINA ’06, pages 941–946, Washington, DC,
USA, 2006. IEEE Computer Society.

277

278 BIBLIOGRAPHY

[AKS05] Markus Aleksy, Axel Korthaus, and Martin Schader. Realizing the
leasing concept in corba-based applications. In Proc. of Symp. on Ap-
plied Comp., pages 706–712, 2005.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput., 1(1):11–33, Jan-
uary 2004.

[Alv09] Nicolas Cardozo Alvarez. Parameter passing semantics for mobile ad-
hoc networks. Master’s thesis, Vrije Universiteit Brussel in collabora-
tion with Ecole des Mines de Nantes, August 2009.

[AR98] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting the
internet: A survey of distributed garbage collection. In ACM Comput-
ing Surveys, volume 30, pages 330–373, 1998.

[Ast12] Patricio Javier Astudillo. A distributed back-in-time debugger for
ambient-oriented programs. Master’s thesis, Vrije Universiteit Brus-
sels, Faculty of Sciences, Software Languages Lab, 2012.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, second edition,
1996.

[BBC+01] Françoise Baude, Alexandre Bergel, Denis Caromel, Fabrice Huet,
Olivier Nano, and Julien Vayssière. Ic2d: Interactive control and de-
bugging of distribution. In Proceedings of the Third International Con-
ference on Large-Scale Scientific Computing-Revised Papers, LSSC
’01, pages 193–200, London, UK, UK, 2001. Springer-Verlag.

[BC06] Paolo Bellavista and Antonio Corradi. The Handbook of Mobile Mid-
dleware. Auerbach Publications, Boston, MA, USA, 2006.

[BCA+01] Gordon S. Blair, Geoff Coulson, Anders Andersen, Lynne Blair,
Michael Clarke, Fabio Costa, Hector Duran-Limon, Tom Fitzpatrick,
Lee Johnston, Rui Moreira, Nikos Parlavantzas, and Katia Saikoski.
The design and implementation of Open ORB 2. IEEE Distributed
Systems Online, 2:–, June 2001.

[BDG02] Romain Boichat, Partha Dutta, and Rachid Guerraoui. Asynchronous
leasing. In Proceedings of the The Seventh IEEE International Work-
shop on Object-Oriented Real-Time Dependable Systems (WORDS
2002), WORDS ’02, pages 180–187, Washington, DC, USA, 2002.
IEEE Computer Society.

[Ben86] Jon Bentley. Programming pearls: little languages. Commun. ACM,
29(8):711–721, 1986.

[Bev87] David I. Bevan. Distributed garbage collection using reference count-
ing. In Parlallel Architectures and Languages Europe, pages 176–187.
Springer-Verlag, 1987.

BIBLIOGRAPHY 279

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a Production Environment. In Proceedings of the OOP-
SLA ’93 Conference on Object-oriented Programming Systems, Lan-
guages and Applications, pages 215–230, 1993.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concur-
rency and distribution in object-oriented programming. ACM Comput-
ing Surveys, 30(3):291–329, 1998.

[Bis77] P. B. Bishop. Computer Systems with a Very Large Address Space and
Garbage Collection. PhD thesis, Massachusetts Institute of Technol-
ogy Laboratory for Computer Science, May 1977.

[BMR03] Kevin Bowers, Kevin Mills, and Scott Rose. Self-adaptive leasing for
jini. In PERCOM ’03: Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications, page 539,
Washington, DC, USA, 2003. IEEE Computer Society.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote pro-
cedure calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[BNOW93] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber.
Network objects. In Proceedings of the fourteenth ACM symposium on
Operating systems principles, SOSP ’93, pages 217–230, New York,
NY, USA, 1993. ACM.

[BP06] Hoimonti Basu and Jan Pedersen. Idli: An interactive message debug-
ger for parallel programs using lam-mpi. In Hamid R. Arabnia, editor,
Proceedings of the International Conference on Parallel and Distribu-
ted Processing Techniques and Applications Conference on Real-Time
Computing Systems and Applications, PDPTA 2006, volume 1, pages
513–520, Las Vegas, Nevada, USA, June 2006. CSREA Press.

[BRL01] Randal C. Burns, Robert M. Rees, and Darell D. E. Long. An analytical
study of opportunistic lease renewal. In Proceedings of the The 21st
International Conference on Distributed Computing Systems, ICDCS
’01, pages 146–153, Washington, DC, USA, 2001. IEEE Computer
Society.

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Pro-
gramming languages for distributed computing systems. ACM Com-
put. Surv., 21(3):261–322, 1989.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In Proceed-
ings of the 19th annual Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 331–343, 2004.

[BVB+12] Engineer Bainomugisha, Jorge Vallejos, Elisa Gonzalez Boix, Pascal
Costanza, Theo D’Hondt, and Wolfgang De Meuter. Bringing scheme
programming to the iPhone Experience. Software: Practice and Expe-
rience, 42(3):331–356, 2012.

280 BIBLIOGRAPHY

[Car95] Luca Cardelli. A Language with Distributed Scope. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 286–297. ACM Press, 1995.

[Caz01] Walter Cazzola. Communication-Oriented Reflection: a Way to Open
Up the RMI Mechanism. PhD thesis, Department of Computer Science,
Universita degli Studi di Milano, February 2001.

[CBM90] Wing Hong Cheung, James P. Black, and Eric Manning. A framework
for distributed debugging. IEEE Software, 7(1):106–115, 1990.

[CC03] Alvin T. S. Chan and Siu-Nam Chuang. Mobipads: A reflective mid-
dleware for context-aware mobile computing. IEEE Trans. Softw. Eng.,
29(12):1072–1085, December 2003.

[CCC02] Siu-Nam Chuang, Alvin T. S. Chan, and Jiannong Cao. Dynamic ser-
vice composition for wireless web access. In Proceedings of the 2002
International Conference on Parallel Processing, ICPP ’02, pages
429–, Washington, DC, USA, 2002. IEEE Computer Society.

[CDDS94] Wim Codenie, Koen D’Hont, Theo D’Hondt, and Patrick Steyaert.
Agora: Message passing as a foundation for exploring OO language
concepts. SIGPLAN Notices, 29(12):48–57, 1994.

[CDK05] Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design (4th Edition) (International Computer Science).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi
event-based infrastructure and its application to the development of the
opss wfms. IEEE Trans. Softw. Eng., 27(9):827–850, September 2001.

[CEM03] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Carisma:
Context-aware reflective middleware system for mobile applications.
IEEE Trans. Softw. Eng., 29(10):929–945, Octuber 2003.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform clus-
ter computing. In OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming systems lan-
guages and applications, pages 519–538, New York, NY, USA, 2005.
ACM Press.

[CH05] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming: an overview of contextl. In Proceed-
ings of the 2005 symposium on Dynamic languages, DLS ’05, pages
1–10, New York, NY, USA, 2005. ACM.

[CHV01] Denis Caromel, Fabrice Huet, and Julien Vayssiere. A simple security-
aware mop for java. In International Conference in Metalevel Archi-
tectures and Separation of Concerns (Reflection 2001), volume 2192,
pages 118–125. Springer-Verlag, 2001.

BIBLIOGRAPHY 281

[CJ02] Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe
middleware for mobile systems. SIGMOBILE Mob. Comput. Commun.
Rev., 6(4):25–33, 2002.

[CKV98] Denis Caromel, Wilfried Klauser, and Julien Vayssire. Towards seam-
less computing and metacomputing in java. Concurrency: Practice
and Experience, 10(11-13):1043–1061, 1998.

[CLWY06] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links:
Web programming without tiers. In In 5th International Symposium
on Formal Methods for Components and Objects (FMCO. Springer-
Verlag, 2006.

[CMM09] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Lin-
guistic symbiosis between event loop actors and threads. Computer
Languages, Systems Structures, 35(1):80 – 98, 2009.

[Col07] Raphael Collet. The Limits of Network Transparency in a Dis-
tributed Programming Language. PhD thesis, Faculte des Sci-
ences Appliquees, Departement d’Ingenierie Informatique, Universite
Catholique de Louvain, December 2007.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In OOPSLA ’98: Proceedings of the 13th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 48–64. ACM Press, 1998.

[CR06] Raphael Collet and Peter Van Roy. Failure handling in a network-
transparent distributed programming language. Advanced Topics in
Exception Handling Techniques, pages 121–140, 2006.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Achieving scalability and expressiveness in an internet-scale event no-
tification service. In Proceedings of the nineteenth annual ACM sym-
posium on Principles of distributed computing, PODC ’00, pages 219–
227, New York, NY, USA, 2000. ACM.

[CS63] D.T. Campbell and J.C. Stanley. Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin Company,
1963.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43:225–267, March 1996.

[CV01] Denis Caromel and Julien Vayssire. Reflections on mops, components,
and java security. In ECOOP, pages 256–274. Springer-Verlag, 2001.

[CWÖJ08] Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch
Johnsen. Minimal ownership for active objects. In APLAS, volume
5356 of Lecture Notes in Computer Science, pages 139–154. Springer,
2008.

282 BIBLIOGRAPHY

[DA07] Bill Donkervoet and Gul Agha. Reflecting on aspect-oriented pro-
gramming, metaprogramming, and adaptive distributed monitoring. In
Proceedings of the 5th international conference on Formal methods
for components and objects, FMCO’06, pages 246–265, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[DAKV09] Darren Dao, Jeannie Albrecht, Charles Killian, and Amin Vahdat. Live
debugging of distributed systems. In Proceedings of the 18th Interna-
tional Conference on Compiler Construction: Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2009, CC ’09, pages 94–108, Berlin, Heidelberg, 2009. Springer-
Verlag.

[DBT+06] Adam Drozd, Steve Benford, Nick Tandavanitj, Michael Wright, and
Alan Chamberlain. Hitchers: Designing for cellular positioning. In
Ubicomp, pages 279–296, 2006.

[DDD04] Wolfgang De Meuter, Theo D’Hondt, and Jessie Dedecker. Pico:
Scheme for mere mortals. 2004.

[DDT12] Allinea DDT. The distributed debugging tool. Technical re-
port, Allinea, 2012. http://www.allinea.com/Portals/
90122/docs/user-guides-and-technical-docs/
allinea-ddt-3.1-user-guide-may-2012.pdf (captured
May 2012).

[Ded06] Jessie Dedecker. Ambient-Oriented Programming. PhD thesis, Facul-
teit Wetenschappen, Vrije Universiteit Brussel, May 2006.

[DFWB98] Nigel Davies, Adrian Friday, Stephen P. Wade, and Gordon S. Blair.
L2imbo: a distributed systems platform for mobile computing. Mob.
Netw. Appl., 3(2):143–156, 1998.

[DGG02] Assia Doudou, Benot Garbinato, and Rachid Guerraoui. Encapsulat-
ing failure detection: from crash to byzantine failures. In Proc. Inter-
national Conference on Reliable Software Technologies, pages 24–50.
Springer-Verlag, 2002.

[DGM+07] Jessie Dedecker, Elisa Gonzalez Boix, Stijn Mostinckx, Stijn Timber-
mont, Jorge Vallejos, and Tom Van Cutsem. The AmbientTalk/2 tuto-
rial. 2007. http://soft.vub.ac.be/amop/at/tutorial/
tutorial (captured in September 2011).

[D’H96] Theo D’Hondt. The pico programming project. 1996. http://
pico.vub.ac.be (captured in September 2011).

[DMQ07] C. Dabrowski, K. Mills, and S. Quirolgico. Understanding failure re-
sponse in service discovery systems. The Journal of Systems and Soft-
ware, 80:896–917, June 2007.

[DNO98] Enrico Denti, Antonio Natali, and Andrea Omicini. On the expressive
power of a language for programming coordination media. In Pro-
ceedings of the 1998 ACM symposium on Applied Computing, SAC
’98, pages 169–177, New York, NY, USA, 1998. ACM.

http://www.allinea.com/Portals/90122/docs/user-guides-and-technical-docs/allinea-ddt-3.1-user-guide-may-2012.pdf
http://www.allinea.com/Portals/90122/docs/user-guides-and-technical-docs/allinea-ddt-3.1-user-guide-may-2012.pdf
http://www.allinea.com/Portals/90122/docs/user-guides-and-technical-docs/allinea-ddt-3.1-user-guide-may-2012.pdf
http://soft.vub.ac.be/amop/at/tutorial/tutorial
http://soft.vub.ac.be/amop/at/tutorial/tutorial
http://pico.vub.ac.be
http://pico.vub.ac.be

BIBLIOGRAPHY 283

[DS10] Magdalena Dukielska and Jacek Sroka. Javaspaces netbeans: a linda
workbench for distributed programming course. In Proceedings of the
fifteenth annual conference on Innovation and technology in computer
science education, ITiCSE ’10, pages 23–27, New York, NY, USA,
2010. ACM.

[DST03] Venkata Duvvuri, Prashant Shenoy, and Renu Tewari. Adaptive leases:
A strong consistency mechanism for the world wide web. IEEE Trans.
on Knowl. and Data Eng., 15(5):1266–1276, September 2003.

[DVM+06] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter. Ambient-oriented Programming in Ambienttalk. In Dave
Thomas, editor, Proceedings of the 20th European Conference on
Object-oriented Programming (ECOOP), volume 4067 of Lecture
Notes in Computer Science, pages 230–254. Springer, 2006.

[DWZVD09] Michiel De Wit, Andy Zaidman, and Arie Van Deursen. Managing
code clones using dynamic change tracking and resolution. In IEEE In-
ternational Conference on Software Maintenance (ICSM 2009), pages
169–178. IEEE, September 2009.

[EAWJ02] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34:375–408, September 2002.

[EFGA03] P. Th. Eugster, Pascal A. Felber, R. Guerraoui, and A.Kermarrec. The
many faces of publish/subscribe. ACM Computing Survey, 35(2):114–
131, 2003.

[EGH05] P.Th. Eugster, B. Garbinato, and A. Holzer. Location-based publish/-
subscribe. Fourth IEEE International Symposium on Network Com-
puting and Applications, pages 279–282, 2005.

[EGH06] Patrick Eugster, Benoit Garbinato, and Adrian Holzer. Pervaho: A
development & test platform for mobile ad hoc applications. In Third
annual International Conference on Mobile and Ubiquitous Systems:
Networking & Services, pages 1–5, July 2006.

[Els89] I. J. P. Elshoff. A distributed debugger for amoeba. SIGPLAN Not.,
24(1):1–10, 1989.

[ET01] John Eberhard and Anand Tripathi. Efficient object caching for dis-
tributed java rmi applications. In Middleware ’01: Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 15–35, London, UK, 2001. Springer-Verlag.

[Eug03] Patrick Th. Eugster. Lazy Parameter Passing. Technical report, Sun
Microsystems, 2003.

[Eug06] Patrick Eugster. Uniform proxies for java. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, OOPSLA ’06, pages 139–152,
New York, NY, USA, 2006. ACM.

284 BIBLIOGRAPHY

[FAH99] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Princi-
ples, Patterns, and Practice. Addison-Wesley Longman Ltd., Essex,
UK, 1999.

[FGF99] Pascal Felber, Rachid Guerraoui, and Mohamed E. Fayad. Putting
oo distributed programming to work. Commun. ACM, 42:97–101,
November 1999.

[FHL98] Michael Frumkin, Robert Hood, and Louis Lopez. Trace-driven de-
bugging of message passing programs. In 12th International Parallel
Processing Symposium, IPPS ’98, pages 753–762, Washington, DC,
USA, 1998. IEEE Computer Society.

[For89] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. In Artificial Intelligence & Databases,
pages 547–557. Kaufmann Publishers, INC., San Mateo, CA, 1989.

[FPK+07] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and
Ion Stoica. X-Trace: A pervasive network tracing framework. In 4th
USENIX Symposium on Networked Systems Design & Implementation,
pages 271 – 284, Cambridge MA, USA, April 2007.

[FR07] D. Frey and G-C. Roman. Context-aware publish subscribe in mobile
ad hoc networks. In 9th International Conference on Coordination
Models and Languages (COORDINATION), volume 4467 of LNCS,
pages 37–55. Springer, June 2007.

[Gai85] Jason Gait. A debugger for concurrent programs. Software: Practice
and Experience, 15(6):539–554, 1985.

[Gar05] Jesse James Garrett. Ajax: A new approach to web ap-
plications. http://adaptivepath.com/ideas/essays/
archives/000385.php, February 2005. [Online; Stand
18.03.2008].

[GBCVC+11] E. Gonzalez Boix, Noguera C., T. Van Cutsem, W. De Meuter, and
T. D’Hondt. REME-D: a Reflective, Epidemic Message-Oriented De-
bugger for Ambient-Oriented Applications. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC), Taichung, Taiwan,
March 21–25, 2011, volume 2, pages 1275–1281. ACM, 2011.

[GBLCS+11] E. Gonzalez Boix, A. Lombide Carreton, C. Scholliers, T. Van Cutsem,
W. De Meuter, and T. D’Hondt. Flocks: Enabling Dynamic Group In-
teractions in Mobile Social Networking Applications. In Proceedings
of the 2011 ACM Symposium on Applied Computing (SAC), Taichung,
Taiwan, March 21–25, 2011, volume 1, pages 425–432. ACM, 2011.

[GBS03] Paul Grace, Gordon S. Blair, and Sam Samuel. Remmoc: A reflective
middleware to support mobile client interoperability. In On The Move
to Meaningful Internet Systems 2003: CoopIS, DOA and ODBASE,
volume 2888 of Lecture Notes in Computer Science, pages 1170–1187,
Catania, Sicily, Italy, November 2003. Springer.

http://adaptivepath.com/ideas/essays/archives/000385.php
http://adaptivepath.com/ideas/essays/archives/000385.php

BIBLIOGRAPHY 285

[GBS05] Paul Grace, Gordon S. Blair, and Sam Samuel. A reflective framework
for discovery and interaction in heterogeneous mobile environments.
SIGMOBILE Mob. Comput. Commun. Rev., 9(1):2–14, January 2005.

[GBVCJ+09] E. Gonzalez Boix, T. Van Cutsem, Vallejos J., W. De Meuter, and
T. D’Hondt. A Leasing Model to Deal with Partial Failures in Mobile
Ad Hoc Networks. In In the 47th International Conference on Objects,
Models, Components, Patterns (TOOLS 2009), volume 33 of Lecture
Notes in Business Information Processing, pages 231–251. Springer-
Verlag Berlin Heidelberg, June 2009.

[GC89] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism
for distributed file cache consistency. In SOSP ’89: Proceedings of the
twelfth ACM symposium on Operating systems principles, pages 202–
210, New York, NY, USA, 1989. ACM Press.

[GCG01] Indranil Gupta, Tushar D. Chandra, and Germán S. Goldszmidt. On
scalable and efficient distributed failure detectors. In Proceedings of
the 20th annual ACM symposium on Principles of distributed comput-
ing, PODC ’01, pages 170–179, New York, NY, USA, 2001. ACM.

[GDL+04] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven
Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello,
Steven Gribble, and David Wetherall. System support for pervasive
applications. ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, Jan 1985.

[GF99] R. Guerraoui and M. E. Fayad. OO Distributed Programming is
Not Distributed OO Programming. Communications of the ACM,
42(4):101–104, 1999.

[GGM94] Benoı̂t Garbinato, Rachid Guerraoui, and Karim Mazouni. Distribu-
ted programming in garf. In Proceedings of the Workshop on Object-
Based Distributed Programming, pages 225–239, London, UK, 1994.
Springer-Verlag.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33:51–59, June 2002.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: a holistic approach to networked embedded sys-
tems. In ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2003.

[Gol89] Benjamin Goldberg. Generational reference counting: A reduced com-
munication distributed storage reclamation scheme. In ACM SIG-
PLAN, editor, Programming Languages Design and Implementation,
volume 24, pages 313–321, 1989.

[Got09] Chris Gottbrath. Deterministically troubleshooting network applica-
tions. Technical report, TotalView Technologies, april 2009.

286 BIBLIOGRAPHY

[GPP+10] Wojciech Galuba, Panos Papadimitratos, Marcin Poturalski, Karl
Aberer, Zoran Despotovic, and Wolfgang Kellerer. Castor: Scalable
secure routing for ad-hoc networks. In IEEE INFOCOM, pages 1–9.
IEEE Computer Society, 2010.

[GR06] Rachid Guerraoui and Luı́s Rodrigues. Introduction to Reliable Distri-
buted Programming. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[Gra04] Paul Grace. Overcoming Middleware Heterogeneity in Mobile Com-
puting Applications. PhD thesis, Computing Department, Lancaster
University, March 2004.

[GSL+10] Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Car-
reton, Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter.
Scripting mobile devices with ambienttalk. Handheld Computing for
Mobile Commerce: Applications, Concepts and Technologies, pages
202–224, 2010.

[GTKT08] Sriram Gopal, Wesley Tansey, Gokulnath C. Kannan, and Eli Tilevich.
Dexter: an extensible framework for declarative parameter passing in
distributed object systems. In Middleware ’08: Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware, pages
144–163, New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[GVV+07] Elisa Gonzalez Boix, Jorge Vallejos Vargas, Tom Van Cutsem, Jessie
Dedecker, and Wolfgang De Meuter. Context-aware leasing for mo-
bile ad hoc networks. In 3rd Workshop on Object-Oriented technol-
ogy for Ambient Intelligence and Pervasive Computing (OT4AmI) co-
located at the European Conference on Object-Oriented Programming
(ECOOP’07), 2007.

[HGDD12] Dries Harnie, Elisa Gonzalez Boix, Wolfgang De Meuter, and Theo
D’Hondt. Programming urban-area applications. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing (SAC), pages
1516–1521. ACM, 2012.

[HGM04] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe in a
mobile environment. Wirel. Netw., 10(6):643–652, November 2004.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming:
a critique of pure objects. In Proceedings of the eighth annual con-
ference on Object-oriented programming systems, languages, and ap-
plications, OOPSLA ’93, pages 411–428, New York, NY, USA, 1993.
ACM.

[Hoo96] Robert Hood. The p2d2 project: building a portable distributed debug-
ger. In Proc. of the SIGMETRICS symposium on Parallel and distribu-
ted tools (SPDT), pages 127–136, New York, NY, USA, 1996. ACM.

[HRBS98] Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-
ming languages for distributed applications. New Generation Comput-
ing, 16(3):223–261, 1998.

BIBLIOGRAPHY 287

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-
tolerant broadcasts and related problems. Technical Report 94-1425,
Computer Science Department, Cornell University, May 1994.

[HY88] Yasuaki Honda and Akinori Yonezawa. Debugging concurrent systems
based on object groups. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages 267–282, London,
UK, 1988. Springer-Verlag.

[IA06] A. Iliasov and Romanovsky A. Structured coordination spaces for fault
tolerant mobile agents. Advanced Topics in Exception Handling Tech-
niques, 4119:181–199, 2006.

[JdT+95] Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K.
Gifford, and M. Frans Kaashoek. Rover: a toolkit for mobile informa-
tion access. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95), pages 156–171, Colorado, December
1995.

[JHS+10] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte,
and Martin Steffen. ABS: A core language for abstract behavioral
specification. In Bernhard K. Aichernig, Frank S. de Boer, and Mar-
cello M. Bonsangue, editors, Proceedings of the 9th international con-
ference on Formal Methods for Components and Objects, volume 6957
of FMCO’10, pages 142–164. Springer-Verlag, 2010.

[jin03] The jini distributed leasing specification version 1.0, 2003.
http://river.apache.org/doc/specs/html/
lease-spec.html.

[JJ92] Niels Christian Juul and Eric Jul. Comprehensive and robust garbage
collection in a distributed system. In In Proc. IWMM, volume 637 of
Lecture Notes in Computer Science, pages 103–115. Springer-Verlag,
1992.

[JK00] Prashant Jain and Michael Kircher. Leasing. In Proceedings of the 7th
Patterns Languages of Programs Conference (PLoP), pages –, 2000.

[JL93] R. Jones and R. Lins. Cyclic weighted reference counting without de-
lay. In Proceedings of Parlallel Architectures and Languages Europe,
pages 712–715. Springer-Verlang, 1993.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-
grained mobility in the Emerald system. ACM Transactions on Com-
puter Systems, 6(1):109–133, February 1988.

[JLZ11] Einar Broch Johnsen, Ivan Lanese, and Gianluigi Zavattaro. Fault in
the future. In Proceedings of the 13th international conference on Co-
ordination models and languages, COORDINATION’11, pages 1–15,
Berlin, Heidelberg, 2011. Springer-Verlag.

[jnd03] Java naming and directory interface version 1.2. Technical report, Sun
Microsystems, Inc., 2003.

http://river.apache.org/doc/specs/html/lease-spec.html
http://river.apache.org/doc/specs/html/lease-spec.html

288 BIBLIOGRAPHY

[JO07] Einar Broch Johnsen and Olaf Owe. An asynchronous communica-
tion model for distributed concurrent objects. Software and Systems
Modeling, 6(1):35–58, mar 2007.

[JR04] Christine Julien and Gruia-Catalin Roman. Active coordination in ad
hoc networks. In Rocco De Nicola, Gian Luigi Ferrari, and Greg
Meredith, editors, Coordination Models and Languages, 6th Interna-
tional Conference, COORDINATION 2004, Pisa, Italy, February 24-
27, 2004, Proceedings, volume 2949 of Lecture Notes in Computer
Science, pages 199–215. Springer, 2004.

[KB02] Alan Kaminsky and Hans-Peter Bischof. Many-to-many invocation:
a new object oriented paradigm for ad hoc collaborative systems.
In ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 72–73. ACM Press,
2002.

[KDHKS09] Vigdis By Kampenes, Tore Dybå, Jo E. Hannay, and Dag I. K. Sjøberg.
A systematic review of quasi-experiments in software engineering. Inf.
Softw. Technol., 51(1):71–82, January 2009.

[Kic96] Gregor Kiczales. Beyond the black box: Open implementation. Tech-
nical report, Los Alamitos, CA, USA, 1996.

[Kie96] Thilo Kielmann. Designing a coordination model for open systems.
In Proceedings of the First International Conference on Coordination
Languages and Models, COORDINATION ’96, pages 267–284, Lon-
don, UK, UK, 1996. Springer-Verlag.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean marc Loingtier, and John Irwin. Aspect-oriented
programming. In 11th European Conference on Object-Oriented
Programming (ECOOP’97), volume 1241 of LNCS, pages 220–242.
Springer-Verlag, 1997.

[KO96] Bent Bruun Kristensen and Kasper . Roles: conceptual abstraction
theory and practical language issues. Theor. Pract. Object Syst., 2:143–
160, December 1996.

[KRL+00] Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane,
Claudio Magalhã, and Roy H. Campbell. Monitoring, security, and dy-
namic configuration with the dynamictao reflective orb. In IFIP/ACM
International Conference on Distributed systems platforms, Middle-
ware ’00, pages 121–143, Secaucus, NJ, USA, 2000. Springer-Verlag
New York, Inc.

[KS92] James J. Kistler and M. Satyanarayanan. Disconnected operation in
the coda file system. ACM Trans. Comput. Syst., 10:3–25, February
1992.

[KSMA06] Youngmin Kwon, Sameer Sundresh, Kirill Mechitov, and Gul Agha.
Actornet: An actor platform for wireless sensor networks. In In Proc.

BIBLIOGRAPHY 289

of the 5th International Joint Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS), AAMAS ’06, pages 1297–1300, New York,
NY, USA, 2006. ACM.

[KTA09] Young-Woo Kwon, Eli Tilevich, and Taweesup Apiwattanapong. DR-
OSGi: hardening distributed components with network volatility re-
siliency. In Proceedings of the 10th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’09, pages 19:1–19:20, New
York, NY, USA, 2009. Springer-Verlag New York, Inc.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distribu-
ted system. Communications ACM, 21(7):558–565, 1978.

[Lam87] Leslie Lamport. Distribution e-mail, May 1987. http:
//research.microsoft.com/en-us/um/people/
lamport/pubs/distributed-system.txt (captured in
September 2011).

[LCJS87] B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. Implementation of
argus. In Proceedings of the eleventh ACM Symposium on Operating
systems principles, SOSP ’87, pages 111–122, New York, NY, USA,
1987. ACM.

[Led99] Thomas Ledoux. Opencorba: a reflective open broker. In Reflec-
tion’99, volume 1616 of LNCS, pages 197–214, Saint-Malo, France,
July 1999.

[Lew03] Bil Lewis. Debugging backwards in time. In Proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG 2003),
September 2003.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In Conference proceedings on
Object-oriented Programming Systems, Languages and Applications,
pages 214–223. ACM Press, 1986.

[Lin92] Rafael D. Lins. Cyclic reference counting with lazy mark-scan. Infor-
mation Processing Letters, 44(4):215–220, 1992.

[Lis88] Barbara Liskov. Distributed programming in Argus. Communications
Of The ACM, 31(3):300–312, 1988.

[LJE08] Christopher Line, K. R. Jayaram, and Patrick Eugster. Lazy argument
passing in java rmi. In PPPJ ’08: Proceedings of the 6th international
symposium on Principles and practice of programming in Java, pages
127–136, New York, NY, USA, 2008. ACM.

[LL86] Barbara Liskov and R. Ladin. Highly available distributed services and
fault-tolerant distributed garbage collection. In Proceedings of the 5th
ACM Symp. Principles of Distributed Computing, pages 29–39, 1986.

[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel pro-
grams with instant replay. IEEE Trans. Comput., 36(4):471–482, April
1987.

http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt
http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt
http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt

290 BIBLIOGRAPHY

[LMMB02] Fiege Ludger, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann.
Engineering event-based systems with scopes. In ECOOP ’02: Pro-
ceedings of the 16th European Conference on Object-Oriented Pro-
gramming, pages 309–333, London, UK, 2002. Springer-Verlag.

[Lom11] Andoni Lombide Carreton. Ambient-Oriented Dataflow Programming
for Mobile RFID-Enabled Applications. PhD thesis, Vrije Universiteit
Brussel, Faculty of Sciences, Software Languages Lab, October 2011.

[Lop96] Cristina Videira Lopes. Adaptive parameter passing. In In proceed-
ings of the second International Symposium on Object Technologies
for Advanced Software (ISOTAS’96), pages 1 – 25, 1996.

[Low03] Juval Lowy. Managing the lifetime of remote .net objects with leasing
and sponsorship. MSDN Library, December 2003.

[LQP92] Bernard Lang, Christian Queinnec, and Jose Piquer. Garbage collect-
ing the world. In Conference Record of the Nineteenth Annual ACM
Symposium on Principles of Programming Languages, pages 39–50,
1992.

[LS88] B. Liskov and L. Shrira. Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design
and Implementation, pages 260–267. ACM Press, 1988.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection.
In OOPSLA ’87: Conference proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications, pages 147–155, New
York, NY, USA, 1987. ACM Press.

[MC02] René Meier and Vinny Cahill. Steam: Event-based middleware for
wireless ad hoc networks. In 22nd International Conference on Dis-
tributed Computing Systems, pages 639–644, Washington, DC, USA,
2002. IEEE Computer Society.

[MC03] R. Meier and V. Cahill. Exploiting proximity in event-based middle-
ware for collaborative mobile applications. In Distributed Applications
and Interoperable Systems, 2003.

[McA95] Jeff McAffer. Meta-level programming with coda. In ECOOP ’95:
Proceedings of the 9th European Conference on Object-Oriented Pro-
gramming, pages 190–214, London, UK, 1995. Springer-Verlag.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce, Irvin Karen, L. Karavanic, Krishna Kun-
chithapadam, and Tia Newhall. The paradyn parallel performance
measurement tools. IEEE Computer, 1995.

[MDG+06] S. Mostinckx, Jessie Dedecker, Elisa Gonzalez Boix, Tom Van Cut-
sem, and Wolfgang De Meuter. Ambient-Oriented Exception Hand-
ling. Advanced Topics in Exception Handling Techniques, 2006.

BIBLIOGRAPHY 291

[ME03] Gareth P. McSorley and Huw Evans. Tiamat: Generative communi-
cation in a changing world. In Middleware Workshops, pages 37–44.
PUC-Rio, 2003.

[Mei02] René Meier. Communication paradigms for mobile computing. SIG-
MOBILE Mob. Comput. Commun. Rev., 6(4):56–58, 2002.

[Mey00] Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall, 2000.

[MH89] Charles E. Mcdowell and David P. Helmbold. Debugging concurrent
programs. ACM Computing Surveys, 21:593–622, 1989.

[MHS02] R. Sharma J. Fialli M. Hapner, R. Burridge and K. Stout. Java message
service specification version 1.1. Technical report, Sun Microsystems,
Inc., 2002.

[Mil06] M. Miller. Robust Composition: Towards a Unified Approach to Ac-
cess Control and Concurrency Control. PhD thesis, John Hopkins Uni-
versity, Baltimore, Maryland, USA, May 2006.

[ML95] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed
garbage by controlled migration. In Proceedings of PODC’95 Princi-
ples of Distributed Computing, 1995.

[MLE02] C. Mascolo, L.Capra, and W. Emmerich. Mobile Computing Middle-
ware. In Advanced lectures on networking, pages 20–58. Springer-
Verlag, 2002.

[MMF00] Mark Miller, Chip Morningstar, and Bill Frantz. Capability-based
financial instruments. In Proceedings of the 4th International Con-
ference on Financial Cryptography, FC ’00, pages 349–378, London,
UK, UK, 2000. Springer-Verlag.

[MMH05] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. Emma: Epi-
demic messaging middleware for ad hoc networks. Personal Ubiqui-
tous Comput., 10(1):28–36, 2005.

[MMP+96] Michael S. Meier, Kevan L. Miller, Donald P. Pazel, Josyula R. Rao,
and James R. Russell. Experiences with building distributed debug-
gers. In Proceedings of the SIGMETRICS symposium on Parallel and
distributed tools, SPDT ’96, pages 70–79, New York, NY, USA, 1996.
ACM.

[MP06] Amy L. Murphy and G.P Picco. Using lime to support replication for
availability in mobile ad hoc networks. In 8th International Conference
on Coordination Models and Languages (COORDINATION), LNCS,
pages 194–211. Springer-Verlag, 2006.

[MPR01] Amy L. Murphy, G. Picco, and G.-C. Roman. LIME: A middleware for
physical and logical mobility. In Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems, pages 524–536.
IEEE Computer Society, 2001.

292 BIBLIOGRAPHY

[MRM06] Marija Mikic-Rakic and Nenad Medvidovic. A classification of dis-
connected operation techniques. EUROMICRO Conference, 0:144–
151, 2006.

[MRV98] A. L. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal
reasoning about mobile communications. In IWSSD ’98: Proceedings
of the 9th international workshop on Software specification and design,
page 25, Washington, DC, USA, 1998. IEEE Computer Society.

[MS03] Mark Miller and Jonathan Shapiro. Paradigm regained: Abstraction
mechanisms for access control. In Proceedings of Eighth Asian Com-
puting Science Conference, ASIAN’03, pages 224–242, December
2003.

[MTS05] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers:
Programming in E as plan coordination. In Symposium on Trustworthy
Global Computing, volume 3705 of LNCS, pages 195–229. Springer,
April 2005.

[MVT+09] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonzalez
Boix, Éric Tanter, and Wolfgang De Meuter. Mirror-based reflection
in AmbientTalk. Software: Practice and Experience, 39(7):661–699,
2009.

[MW00] Iain Merrick and Alan Wood. Coordination with scopes. In SAC
’00: Proceedings of the 2000 ACM symposium on Applied computing,
pages 210–217, New York, NY, USA, 2000. ACM.

[MWN02] Scott McLean, Kim Williams, and James Naftel. Microsoft .Net Re-
moting. Microsoft Press, Redmond, WA, USA, 2002.

[MZ04] Marco Mamei and Franco Zambonelli. Programming pervasive and
mobile computing applications with the TOTA middleware. In PER-
COM ’04: Proceedings of the Second IEEE International Conference
on Pervasive Computing and Communications, pages 263–273, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and
mobile computing applications: The tota approach. ACM Trans. Softw.
Eng. Methodol., 18(4):15:1–15:56, July 2009.

[MZS+10] Nick Matthijssen, Andy Zaidman, Margaret-Anne Storey, Ian Bull,
and Arie van Deursen. Connecting traces: Understanding client-server
interactions in ajax applications. In Proceedings of the 2010 IEEE
18th International Conference on Program Comprehension, ICPC ’10,
pages 216–225, Washington, DC, USA, 2010. IEEE Computer Soci-
ety.

[Nak09] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem, 2009. http://fastbull.dl.sourceforge.net/
project/bitcoin/Design%20Paper/bitcoin.pdf/
bitcoin.pdf (captured in August 2012).

http://fastbull.dl.sourceforge.net/project/bitcoin/Design%20Paper/bitcoin.pdf/bitcoin.pdf
http://fastbull.dl.sourceforge.net/project/bitcoin/Design%20Paper/bitcoin.pdf/bitcoin.pdf
http://fastbull.dl.sourceforge.net/project/bitcoin/Design%20Paper/bitcoin.pdf/bitcoin.pdf

BIBLIOGRAPHY 293

[Nik00] Pekka Nikander. Fault tolerance in decentralized and loosely coupled
systems. In Proceedings of Ericsson Conference on Software Engi-
neering (ECSE’2000), September 2000.

[NKS+02] Anoop Ninan, Purushottam Kulkarni, Prashant Shenoy, Krithi Ra-
mamritham, and Renu Tewari. Cooperative leases: scalable consis-
tency maintenance in content distribution networks. In Proceedings
of the 11th international conference on World Wide Web, WWW ’02,
pages 1–12, New York, NY, USA, 2002. ACM.

[NKSI05] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming
ad-hoc networks of mobile and resource-constrained devices. SIG-
PLAN Not., 40(6):249–260, 2005.

[NM92] R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for de-
bugging message-passing parallel programs. In Supercomputing ’92:
Proceedings of the 1992 ACM/IEEE conference on Supercomputing,
pages 502–511, Los Alamitos, CA, USA, 1992. IEEE Computer Soci-
ety Press.

[NNE04] Panayiotis Neophytou, Neophytos Neophytou, and Paraskevas Evripi-
dou. Debugging MPI grid applications using Net-dbx. In European
Across Grids Conference, Lecture Notes in Computer Science, pages
139–148, 2004.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
ECOOP, pages 158–185, 1998.

[ope] Visualworks Opentalk Developer’s Guide - Part Number: P46-0135-
06.

[ORV05] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Time-aware co-
ordination in respect. In Proceedings of the 7th international confer-
ence on Coordination Models and Languages, COORDINATION’05,
pages 268–282, Berlin, Heidelberg, 2005. Springer-Verlag.

[OZ99] Andrea Omicini and Franco Zambonelli. Tuple centres for the co-
ordination of Internet agents. In 1999 ACM Symposium on Applied
Computing (SAC’99), pages 183–190, San Antonio, TX, USA, Febru-
ary 1999. ACM. Special Track on Coordination Models, Languages
and Applications.

[PA98] George A. Papadopoulos and Farhad Arbab. Coordination models and
languages. Advances in Computers, 46:330–401, 1998.

[PCBB07] Julien Pauty, Paul Couderc, Michel Banatre, and Yolande Berbers.
Geo-linda: a geometry aware distributed tuple space. In AINA ’07:
Proceedings of the 21st International Conference on Advanced Net-
working and Applications, pages 370–377, Washington, DC, USA,
2007. IEEE Computer Society.

[Per90] Mark Perlin. Scaffolding the RETE network. In International Confer-
ence on Tools for Artificial Intelligence, pages 378–385. IEEE Com-
puter Society, 1990.

294 BIBLIOGRAPHY

[PHD11] Kevin Pinte, Dries Harnie, and Theo D’Hondt. Enabling cross-
technology mobile applications with network-aware references. In
13th International Conference on Coordination Models and Lan-
guages, COORDINATION 2011, volume 6721 of LNCS, Heidelberg,
2011. Springer-Verlag.

[PHGD11] Kevin Pinte, Dries Harnie, Elisa Gonzalez Boix, and Wolfgang De
Meuter. Network-aware references for pervasive social applications.
In Second IEEE Workshop on Pervasive Collaboration and Social Net-
working (PERCOM workshops), pages 537–542, 2011.

[PHM06] Panagiotis Papadimitratos, Zygmunt J. Haas, and Senior Member. Se-
cure data communication in mobile ad hoc networks. IEEE Journal
On Selected Areas In Communications, 24:343–356, 2006.

[Piq91] José M. Piquer. Indirect reference counting: A distributed garbage
collection algorithm. In E. Aarts and J. van Leeuwen, editors, Pro-
ceedings of the Conference on Parallel Architectures and Languages
Europe (PARLE’91), Eindhoven, The Netherlands, volume 505 of Lec-
ture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
June 1991.

[PMR99] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. Lime:
Linda meets mobility. In Proceedings of the 21st international confer-
ence on Software engineering, ICSE ’99, pages 368–377, New York,
NY, USA, 1999. ACM.

[PN93] Cherri M. Pancake and Robert H. B. Netzer. A bibliography of par-
allel debuggers, 1993 edition. In Proceedings of the 1993 ACM/ONR
workshop on Parallel and distributed debugging, PADD ’93, pages
169–186, New York, NY, USA, 1993. ACM.

[PN04] Cherri M. Pancake and Robert H. B. Netzer. Bibliography on par-
allel and distributed debuggers, 2004. http://liinwww.ira.
uka.de/bibliography/Parallel/debug_3.1.html (cap-
tured in June 2012).

[PS95] David Plainfossé and Marc Shapiro. A survey of distributed garbage
collection techniques. In Proc. Int. Workshop on Memory Manage-
ment, Kinross, Scotland (UK), 1995.

[PTP07] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient
debugging. In Proceedings of the 22nd annual ACM SIGPLAN confer-
ence on Object-oriented programming systems and applications, OOP-
SLA ’07, pages 535–552, New York, NY, USA, 2007. ACM.

[Qui07] John Quigley. The white programming language, 2007. CODE
Group, Illinois Institute of Technology. http://dijkstra.cs.
iit.edu/code/white.

[RI04] Manuel Roman and Nayeem Islam. Dynamically programmable and
reconfigurable middleware services. In Proceedings of the 5th ACM/I-
FIP/USENIX international conference on Middleware, Middleware

http://liinwww.ira.uka.de/bibliography/Parallel/debug_3.1.html
http://liinwww.ira.uka.de/bibliography/Parallel/debug_3.1.html
http://dijkstra.cs.iit.edu/code/white
http://dijkstra.cs.iit.edu/code/white

BIBLIOGRAPHY 295

’04, pages 372–396, New York, NY, USA, 2004. Springer-Verlag New
York, Inc.

[RJ98] Helena Rodrigues and Richard Jones. Cyclic distributed garbage col-
lection with group merger. In ECOOP ’98: Proceedings of the 12th
European conference on Object-Oriented Programming, volume 1445
of Lecture Notes in Computer Science, pages 260–273, 1998.

[RK98a] Thomas Riechmann and Jrgen Kleinder. Meta objects for access con-
trol: Role-based principals. In Colin Boyd and Ed Dawson, editors,
ACISP, volume 1438 of Lecture Notes in Computer Science, pages
296–307. Springer, 1998.

[RK98b] M RONSSE and D KRANZLMULLER. Rolt(mp) - replay of lamport
timestamps for message passing systems. PROCEEDINGS OF THE
SIXTH EUROMICRO WORKSHOP ON PARALLEL AND DISTRIBU-
TED PROCESSING - PDP ’98, pages 87–93, 1998.

[RKC01] Manuel Roman, Fabio Kon, and Roy H. Campbell. Reflective middle-
ware: From your desk to your hand. IEEE Distributed Systems Online,
2(5), 2001.

[Roy99] Peter Van Roy. On the separation of concerns in distributed pro-
gramming: Application to distribution structure and fault tolerance
in mozart. In In International Workshop on Parallel and Distributed
Computing for Symbolic and Irregular Applications (PDSIA 99), July
1999.

[SAB+94] Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Si-
mons, and Rich Title. A scalable debugger for massively parallel
message-passing programs. IEEE Parallel Distrib. Technol., 2(2):50–
56, June 1994.

[SBBK95] A. Schill, B. Bellmann, W. Bohmak, and S. Kummel. System support
for mobile distributed applications. In Proceedings of the 2nd Inter-
national Workshop on Services in Distributed and Networked Environ-
ments, SDNE ’95, pages 124–, Washington, DC, USA, 1995. IEEE
Computer Society.

[SCM09] Terry Stanley, Tyler Close, and Mark S. Miller. Causeway: A message-
oriented distributed debugger. Technical Report HPL-2009-78, HP
Laboratories, 2009.

[SDP92] Marc Shapiro, Peter Dickman, and David Plainfossé. Robust distri-
buted references and acyclic garbage collection. In Proceedings of
the 11th Symposium on Principles of Distributed Computing (PODC),
PODC ’92, pages 135–146, New York, NY, USA, 1992. ACM.

[SGBDMD10] C. Scholliers, E. Gonzalez Boix, W. De Meuter, and T. D’Hondt.
Context-aware tuples for the ambient. In On the Move to Meaning-
ful Internet Systems, OTM 2010, pages 745–763. Springer, 2010.

296 BIBLIOGRAPHY

[SGD09] Christophe Scholliers, Elisa Gonzalez Boix, and Wolfgang De Meuter.
Totam: Scoped tuples for the ambient. In Proc. of the CAMPUS Work-
shop collocated with DisCoTec’09 federated event, volume 19, pages
19–34. EASST, 2009.

[SGL06] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language
for programming the web 2.0. In OOPSLA Companion, pages 975–
985, New York, NY, USA, 2006. ACM Press.

[SJ07] Drew Stovall and Christine Julien. Resource discovery with evolving
tuples. In ESSPE ’07: International workshop on Engineering of soft-
ware services for pervasive environments, pages 1–10, New York, NY,
USA, 2007. ACM.

[Smi84] Brian Cantwell Smith. Reflection and semantics in LISP. In POPL
’84: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 23–35, New York, NY,
USA, 1984. ACM Press.

[SP07] Christophe Scholliers and Eline Philips. Coordination in volatile net-
works. Master’s thesis, Vrije Universiteit Brussels, 2007.

[SPG90] Marc Shapiro, David Plainfoss, and Olivier Gruber. A garbage detec-
tion protocol for a realistic distributed object-support system. Techni-
cal Report 1320, INRIA-Roquencourt, 1990.

[Sri06] Nigamanth Sridhar. Decentralized local failure detection in dynamic
distributed systems. Reliable Distributed Systems, IEEE Symposium
on, 0:143–154, 2006.

[Sun98] Sun Microsystems. Java RMI specification, 1998. http:
//java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/
rmiTOC.html.

[Tan08] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th international conference on Aspect-oriented
software development, AOSD ’08, pages 168–179, New York, NY,
USA, 2008. ACM.

[TKV02] Nam Thoai, Dieter Kranzlmüller, and Jens Volkert. Shortcut replay:
A replay technique for debugging long-running parallel programs. In
Proceedings of the7th Asian Computing Science Conference on Ad-
vances in Computing Science: Internet Computing and Modeling, Grid
Computing, Peer-to-Peer Computing, and Cluster, ASIAN ’02, pages
34–46, London, UK, UK, 2002. Springer-Verlag.

[TNCC03] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Par-
tial behavioral reflection: spatial and temporal selection of reification.
In Proceedings of the 2003 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications, OOP-
SLA 2003, pages 27–46. ACM, 2003.

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html

BIBLIOGRAPHY 297

[TP05] Erik Tribou and Jan Pedersen. Millipede: A multilevel debugging envi-
ronment for distributed systems. In Proc. of the Inter. Conf. on Parallel
and Distributed Processing Techniques and Appl. (PDPTA), volume 1,
pages 187–193, Las Vegas Nevada, USA, 2005.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 2001.

[TS03] Eli Tilevich and Yannis Smaragdakis. Nrmi: Natural and efficient mid-
dleware. In ICDCS’03, pages 252–252, 2003.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity.
In Conference proceedings on Object-oriented Programming Systems,
Languages and Applications, pages 227–242. ACM Press, 1987.

[VA01] Carlos Varela and Gul Agha. Programming dynamically reconfig-
urable open systems with SALSA. SIGPLAN Not., 36(12):20–34,
2001.

[Val11] Jorge Vallejos. Modularising Context Dependency and Group Be-
haviour in Ambient-oriented Programming. PhD thesis, Vrije Uni-
versiteit Brussel, Faculty of Sciences, Software Languages Lab, July
2011.

[Van08] Tom Van Cutsem. Ambient References: Object Designation in Mobile
Ad hoc Networks. PhD thesis, Faculteit Wetenschappen, Programming
Technology Lab, May 2008.

[VC09] Mirko Viroli and Matteo Casadei. Biochemical tuple spaces for self-
organising coordination. In COORDINATION ’09: Proceedings of
the 11th International Conference on Coordination Models and Lan-
guages, pages 143–162, Berlin, Heidelberg, 2009. Springer-Verlag.

[VF05] Luis Veiga and Paulo Ferreira. Asynchronous complete distributed
garbage collection. In 19th IEEE International Parallel and Distri-
buted Processing Symposium (IPDPS 2005), pages –. IEEE Computer
Society, 2005.

[VMG+07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. Ambienttalk: object-oriented
event-driven programming in mobile ad hoc networks. In Inter. Conf.
of the Chilean Computer Science Society (SCCC), pages 3–12. IEEE
Computer Society, 2007.

[VO06] M. Viroli and A. Omicini. Coordination as a service. Fundamenta
Informaticae, 73(4):507–534, 2006.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM,
52:40–44, January 2009.

[VT95] Nalini Venkatasubramanian and Carolyn Talcott. Reasoning about
meta level activities in open distributed systems. In Proceedings of
the fourteenth annual ACM symposium on Principles of distributed

298 BIBLIOGRAPHY

computing, PODC ’95, pages 144–152, New York, NY, USA, 1995.
ACM.

[VVG+07] Jorge Vallejos Vargas, Tom Van Cutsem, Elisa Gonzalez Boix, Stijn
Mostinckx, Jessie Dedecker, and Wolfgang De Meuter. The message-
oriented mobility model. Special Issue on Journal of Object Technol-
ogy (JOT), 6(9):363–382, 2007.

[VZKS11] Roman Vitenberg, Dmitry Zinenko, Kristian Kvilekval, and Ambuj
Singh. Analyzing performance of lease-based schemes under failures.
In Proceedings of the 2011 IEEE 30th International Symposium on
Reliable Distributed Systems, SRDS ’11, pages 193–202, Washington,
DC, USA, 2011. IEEE Computer Society.

[Wal99] Jim Waldo. The Jini Architecture for Network-centric Computing.
Commun. ACM, 42(7):76–82, 1999.

[Wal01] Jim Waldo. Constructing ad hoc networks. In IEEE International
Symposium on Network Computing and Applications (NCA’01), pages
9–20, 2001.

[WCS02] Xingfu Wu, Qingping Chen, and Xian-He Sun. Design and develop-
ment of a scalable distributed debugger for cluster computing. Cluster
Computing, 5(4):365–375, October 2002.

[Wei91] M. Weiser. The computer for the twenty-first century. Scientific Amer-
ican, pages 94–100, september 1991.

[WI87] P. Watson and I.Watson. An efficient garbage collection scheme for
parallel computer architecture. In Parallel Architectures and Lan-
guages Europe, pages 432–443. Springer-Verlang, 1987.

[Wis97] Roland Wismüller. Debugging message passing programs using invis-
ible message tags. In Proc. of the European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 295–302. Springer-Verlag, 1997.

[WMLF98] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T spaces.
IBM Systems Journal, 37(3):454–474, July 1998.

[WS99] Ian Welch and Robert J. Stroud. From dalang to kava - the evolution
of a reflective java extension. In Proceedings of the Second Interna-
tional Conference on Meta-Level Architectures and Reflection, Reflec-
tion ’99, pages 2–21, London, UK, 1999. Springer-Verlag.

[WS00] Ian Welch and Robert J. Stroud. Kava - a reflective java based on
bytecode rewriting. In Proceedings of the 1st OOPSLA Workshop on
Reflection and Software Engineering: Reflection and Software Engi-
neering, Papers from OORaSE 1999, pages 155–167, London, UK,
2000. Springer-Verlag.

[WWWK96] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A
note on distributed computing. In MOS ’96: Selected Presentations
and Invited Papers Second International Workshop on Mobile Object

BIBLIOGRAPHY 299

Systems - Towards the Programmable Internet, pages 49–64. Springer-
Verlag, 1996.

[YADL99] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin. Volume
leases for consistency in large-scale systems. IEEE Transactions on
Knowledge and Data Engineering, 11(4):563–576, July 1999.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in ABCL/1. In Conference proceed-
ings on Object-oriented programming systems, languages and appli-
cations, pages 258–268. ACM Press, 1986.

[YCC+06] Chih-Chieh Yang, Chung-Kai Chen, Yu-Hao Chang, Kai-Hsin Chung,
and Jenq-Kuen Lee. Streaming support for java rmi in distributed en-
vironments. In PPPJ ’06: Proceedings of the 4th international sympo-
sium on Principles and practice of programming in Java, pages 53–61,
New York, NY, USA, 2006. ACM.

[ZGSK05] Shelley Q. Zhuang, Dennis Geels, Ion Stoica, and Randy H. Katz. On
failure detection algorithms in overlay networks. In IN IEEE INFO-
COM, pages 2112–2123, 2005.

	Introduction
	Research Context
	Problem Statement
	Research Goals
	Research Methodology
	Technical Contributions
	Dissertation Roadmap

	Taxonomising Partial Failures in Mobile Ad hoc Networks
	Mobile Ad hoc Networks
	Ambient-Oriented Programming
	Types of Failures
	Design Dimensions of a Failure Handling Model
	Criteria for a Failure Handling Model for MANETs
	Partial Failures and the Software Development Process
	Conclusion

	I Partial Failures in Mobile Ad hoc Network Applications
	Related Work
	Survey of Distributed Programming Languages
	Survey of Formal Languages for Distributed Computing
	Survey of Mobile Computing Middleware
	Discussion of Surveyed Systems
	Conclusion

	Ambient-Oriented Programming in AmbientTalk
	The AmbientTalk language
	Object-oriented Programming in AmbientTalk
	Concurrent Programming in AmbientTalk
	Distributed Programming in AmbientTalk
	Interoperability with Java
	Reflective Programming in AmbientTalk
	Conclusion

	Enhancing Meta-level Engineering in AmbientTalk
	Motivation
	First-Class References as Transmitter-Receptor Pairs
	Reflection on Actors
	Discussion
	Limitations and Future Work
	Notes on Related Work
	Conclusion

	Ambient-Oriented Leasing
	Motivation
	Leasing and Programming Languages: A Proposal
	Leased Object References
	Leased Object References in AmbientTalk
	Integrating Leasing with Future-type Message Passing
	Leased References vs. Leased Messages
	An Open Implementation
	Evaluation
	Limitations and Future Work
	Notes on Related Work
	Conclusion

	Ambient-Oriented Leasing for Tuple Spaces
	Motivation
	TOTAM: Ambient-oriented Programming with Tuple Spaces
	Programming in TOTAM
	Case Study: Flikken
	Formal Semantics
	Implementation Status
	Discussion
	Limitations and Future Work
	Notes on Related Work
	Conclusion

	Evaluating Ambient-Oriented Leasing
	Evaluation w.r.t. the Criteria for a Failure Handling Model for MANETs
	Concluding Remarks

	II Partial Failures in Software Development Tools
	Related Work
	Distributed Debugging Support
	Conclusion

	Debugging in the Face of Partial Failures
	Motivation
	Overview of Ambient-Oriented Debuggers
	REME-D: an AOD in AmbientTalk
	Implementation
	Limitations and Future Work
	Conclusion

	Pre-experimental User Study for REME-D
	Quasi-Experiments
	Study Design
	Participants profile
	Results
	Threats to validity
	Conclusion

	III Conclusion
	Conclusion and Future Work
	Research Goals
	Restating the Contributions
	Limitations
	Avenues for Future Research
	Concluding Remarks

	Appendices
	Code Listing of the Mobile Music Player
	Code Listing of the Java RMI Implementation
	Code Listing of the AmbientTalk Implementation

	REME-D's User Study Material
	Pretest Questionnaire
	Posttest Questionnaire
	Debugging Assignment

	REME-D's Startup Protocol
	Bibliography

