Vrije Universiteit Brussel

Faculteit van de Wetenschappen
Vakgroep Computerwetenschappen
Software Languages Lab

Ambient Contracts

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Christophe Scholliers

Promotoren: Prof. Dr. Wolfgang De Meuter en Prof. Dr. Eric Tanter

Print: Silhouet, Maldegem
(© 2013 Christophe Scholliers

2013 Uitgeverij VUBPRESS Brussels University Press

VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28

B-1000 Brussels

Tel. +32 (0)2 289 26 50

Fax +32 (0)2 289 26 59

E-mail: info@vubpress.be

www.vubpress.be

ISBN 978 90 5718 277 8
NUR 989
Legal deposit D/2013/11.161/039

All rights reserved. No parts of this book may be reproduced or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

iii

Samenvatting

Vooruitgang in draadloze netwerktechnologie heeft de realisatie van een nieuw soort
applicaties mogelijk gemaakt. Zogenaamde ambiente applicaties bestaan uit mobiele
apparaten die spontaan met elkaar communiceren zonder de noodzaak van een cen-
trale server. De netwerktechnologie die dergelijke spontane interacties mogelijk maakt
noemt men mobiele ad hoc netwerken. De hardware kenmerken van deze nieuwe
netwerken — vooral het feit dat de communicatie erg instabiel is en dat de apparaten
niet kunnen beroepen op een centrale server — maken dat vorige software-oplossingen
voor gedistribueerde systemen onbruikbaar zijn voor de ontwikkeling van ambiente
applicaties. Software-technologie heeft zich tot nu toe gericht op het omgaan met de
hardware kenmerken van ambiente applicaties, maar geven geen antwoorden op hoe
grote en robuuste ambiente software kan gebouwd worden.

Software contracten hebben een belangrijke rol gespeeld bij de ontwikkeling van
grote en robuuste software in het algemeen. Software contracten worden op brede
schaal toegepast in statisch getypeerde talen en maken momenteel hun intrede in dy-
namisch getypeerde programmeertalen. Traditionele contract systemen kunnen echter
niet worden toegepast op de constructie van ambiente applicaties omdat de wijze waarop
deze gevalideerd worden er voor kan zorgen dat er fouten geintroduceerd worden die
niet aanwezig zijn in de oorspronkelijke ambiente applicatie. Daarnaast berusten veel
van de huidige contract systemen voor gedistribueerde systemen op een centrale server,
dewelke niet verenigbaar is met het ad-hoc karakter van ambiente toepassingen. Het
werk in dit proefschrift wordt gemotiveerd door het ontbreken van een passend contract
systeem voor ambiente toepassingen. Dit belemmert de exploratie naar complexere en
meer grootschalige ambiente toepassingen.

In dit proefschrift stellen we een nieuw contract systeem voor dat speciaal ontwor-
pen is voor de ontwikkeling van ambiente toepassingen. Met deze ambiente contracten
kan de programmeur uitdrukken welke verplichtingen moeten nageleefd worden tussen
de gedistribueerde modules van een ambiente applicatie. Het belangrijkste onderzoek-
sthema dat we hebben aangekaart is de ontwikkeling van een contract systeem dat
rekening houdt met de specifieke hardware-eisen van ambiente toepassingen. We to-
nen verschillende toepassingen van ambiente contracten en leggen uit hoe de schuld
moet toegekend worden in geval van een contractbreuk.

Ambiente contracten zijn geformuleerd als een uitbreiding van AmbientTalk. Naast
een praktische implementatie is er ook een formele basis ontwikkeld in PLT-Redex.
We hebben het ambient contract systeem gevalideerd door het toe te pasen in het kader
van een groot applicatie raamwerk genaamd UrbiFlock. Door onze contracten toe te
passen in praktische applicaties hebben we geconstateerd dat vele informele specifi-
caties makkelijk gecodeerd kunnen worden met behulp van het ontwikkelde ambient
contract systeem.

v

Abstract

Advances in wireless technology have enabled the realization of a new brand of dis-
tributed applications, called ambient applications. Such ambient applications consists
of mobile devices that spontaneously interact with each other without the need for a
centralized server. The network technology that enables such spontaneous interactions
is called a mobile ad hoc network. The hardware characteristics of these new kinds
of networks — mainly the fact that the communication is highly volatile and that de-
vices cannot rely on a centralized server — have rendered previous software solutions
for distributed systems obsolete. To date, software technology has focused on deal-
ing with these hardware characteristics of ambient applications but has failed to give
answers on how to build big and robust ambient software.

A proven software methodology called software contracts has played an important
role in the development of big and robust software in general. Software contracts are
widely adopted in statically typed languages and are currently finding their entrance
in dynamically-typed programming languages. Traditional contract systems however,
cannot be applied to the construction of ambient applications because the way in which
they are validated can introduce bugs that are not present in the original ambient appli-
cation. In addition, many of the current contract systems for distributed systems rely
on a centralized server which is not reconcilable with the ad-hoc nature of the ambient
applications. Our work is motivated by the lack of an appropriate contract system for
ambient applications which hampers the exploration of more complex and more large
scale ambient applications.

In this dissertation, we propose a new contract system, dubbed ambient contracts
which is specifically designed for the development of ambient applications. With am-
bient contracts the programmer can express the obligations and promises between the
distributed modules of an ambient system. The main research challenge that we address
is the adaptation of current contract systems to take into account the specific hardware
requirements of ambient applications. We show various applications of ambient con-
tracts, and explain how to assign blame in case of a violation.

Ambient contracts are formulated as an extension of AmbientTalk, a dynamically-
typed object-oriented language built upon the principles of the actor model. Next to a
practical implementation ambient contracts also have a formal specification which is
validated by making use of the PLT-Redex tool. We have validated the ambient contract
system, called AmbientTalk/C, by employing it in the context of a large application
framework called UrbiFlock. From this use case, we found that many of its previous
informal specifications could be easily encoded with the developed ambient contracts.

Acknowledgements

This dissertation would not have been what it is today without the tremendous support
from my colleagues, friends and family. With these acknowledgements I would like to
thank everybody who has helped me directly or indirectly with obtaining my Phd.

From all these people there are a number of persons who I would like to thank
in particular for their impact on my academic life. I thank professors Theo D’Hondt,
Viviane Jonckers and Wolfgang De Meuter for teaching and inspiring me during my
studies. Their classes were a joy to follow and I can only hope that one day I can inspire
a new generation of students just like they inspired the students in my year.

I thank Stijn Mostinckx and Charlotte Herzeel for guiding Eline Philips and me
with our master thesis. I also thank all the members of the former PROG lab who gave
us brutally honest comments on our work. It was through Stijn and the PROG lab that
I became interested in conducting research.

After finishing my master studies many, if not all, members of the lab contributed
one way or another to prepare my IWT proposal and prepping me for the famous
“minute”. Getting my funding from the IWT is truly the merit of all these people
together: I will always be grateful for the help I got back then.

I am very thankful to Wolfgang De Meuter for believing in me and giving me the
opportunity to start a Phd under his supervision. At a certain moment he even publicly
called me the best Phd student he every had. I must admit that at that time I was
his first and only Phd student. On a more serious note, I thank Wolf for guiding me
when I needed guidance the most. His support ranged from all practical matters up
to hard-core research brainstorms. When I could not see the wood for the trees Wolf
was there to help me see the bigger picture. I am also thankful that Wolf has given me
the freedom to conduct research and explore all paths in research I wanted to explore.
Finally, I thank Wolf for bringing me in contact with my co-promotor Eric Tanter.

Being able to work with Eric has taught me a lot of important lessons in my aca-
demic life. I especially liked the many discussions over lunch and the fruitful collabo-
ration that flew forth from these discussions. Thank you Eric! I also thank Eric and his
students (at that time), Paul, Ismael, Oscar, Guillaume, David and Victor for welcom-
ing me to the Pleiad lab. During the weekends they were there to, take me to concerts,
theatre, play football, etc.

Many thanks go out to all the students that I (co)guided in their bachelor and master
thesis. Their vivid imagination and their ability to question everything has certainly
made me a better researcher. To name a few, Jasper Maes did a terribly good job in
making an award winning remote controlled R2D2. Ruben Vandamme implemented an
award winning multicore-embedded scheme. Wouter Amerijckx ported and extended
the Crime language to the sunspot platform, leading to a number of publications. Nick
De Cooman did an amazing job on working out alias and ownership control in ambient
applications which hopefully will lead to a publication very soon. And finally, Lode
Hoste, a special thank you for all the academic fights we had over how an event-driven
application should really be programmed [ﬂ

I thank Coen De Roover for guiding students together (for example Wouter) and
working together on the Stadium project. If anything the collaboration has been more
than fruitful. I can only hope that we can repeat such a fruitful collaboration in the
upcoming CHAQ project. I thank Elisa Gonzalez Boix for guiding Nick together and
for the work on tuple spaces, taking Crime and the fact space model to the next level.

Yes you also won awards with your thesis (Alcatel, ICSE) but everybody knows that Lode ;)

vi

Working with you has been a joy and I hope that in the future we can find a new baby
to work on together. I specially thank Tom Van Cutsem and Dries Harnie for the hours
of discussion about the operational semantics of AmbientTalk. Without this collabora-
tion there would not be a formal basis for ambient contracts in AmbientTalk/C. Thanks
to the reading committee, Jens Nicolay, Elisa Gonzalez Boix, Dries Harnie and Carlos
Noguera for giving corrections on my dissertation text. I would like to thank all the
members of the Software Languages Lab of which some have become more than col-
leagues. Thanks for all the priceless parties we went to, a person mentioned before,
Coen, Andoni and Stefan. Thanks also to the people who I had the pleasure sharing an
office with Dirk Van Deun, Stijn Timbermont and Lode Hoste.

I thank Yves Vandriessche and Coen for the hacking sessions on the Arduino boards
which have led to the now infamous Wii workshops. I hope that these workshops can
inspire a new generation of students to start computer science. In the same vain, I
thank Yves for the many hours of assembler hacking we did in order to get the Armpit
Scheme interpreter working with the display and other hardware. Five years and many
first bachelor projects later I can only conclude that it was worth the effort.

I thank all the members of the jury Prof. Dr. Matthew Flatt, Prof. Dr. Erik Ernst,
Prof. Dr. Theo D’Hondt, Prof. Dr. Viviane Jonckers and Prof. Dr. Eva Colebunders
for taking their time to read my dissertation and challenge me with insightful questions
during the defences.

I thank the secretaries of the department which were always ready to help me.
Finally, my bank account very much appreciates that (I have to mention this): The
work in this dissertation has been partially funded by the institute for the Promotion
through Science and Technology in Flanders (IWT-Vlaanderen).

Apart from all the academic support my research would not have been possible
without the personal support from my friends and family. Thank you (and sorry) to all
my friends (too dangerous to enumerate) who had to endure me talking about topics
such as meta-circular interpreters, context-awareness, and other light topics such as the
bifid encryption mechanism. I hope that the long running inside jokes such as de boze
kaaskroket, zijt gij toevallig niet Ellen?, and wait for it Cola, at least partially made
up for the brainpower I sucked from you guys.

Many thanks goes to Kim Heymans which is a true friend on which I can always
count. Thanks for all the times we were together having the time of our life playing
foosball, spinning records and playing playstation (thanks Stefanie). All these moments
were a great distraction and recharged me so that I could work hard to finishing my Phd.

Bedankt moeke en vake jullie zijn er altijd voor mij geweest. Jullie hebben mij de
kans gegeven om naar de universiteit te gaan op een moment dat het er naar uitzag dat
studeren niet voor mij was weggelegd. Bedankt voor al jullie steun! Bedankt ook aan
mijn allerbeste zus Nathalie om Twister in ons leven te brengen, de lekkere cup-cakes
en de crazy hard-core feestjes! Ook hartelijk bedankt bonnenke en bompa!

And finally, the moment everybody has been waiting for: A big thank you for my
partner in crime, my girlfriend and future wife Elisa Gonzalez Boix. This thesis would
not have been what it is today without Elisa. Being together with Elisa has a positive
impact on my life in all aspects. T estimo Elisa!

Thanks for helping, everyone!

— Christophe

2 Academic, an academic baby !

Contents

I TIntreduction|

1.4 Research Approach|

T4l

Language Oriented Approach|

|1.6 Supporting Publications|.

|1.7 Dissertation Roadmap|.

.8 UMMAry| v v v e e e e e e e e e e

2 Ambient-Oriented Programming|

2.1 ~Middleware for Ambient-Oriented Programming]|

2.2 Wireless Network Applications|.

D21

Technological Advances|

n22

Integration at the Application Level| . . .

023

Ambient-Oriented Programming|

2.3 Ambient-Oriented Programming in AmbientTalk]|

P31

A Prototype-Based Language|

N33

A Concurrent Language|

033

A Distributed Language|

2.4 An Early Preview of AmbientTalk/C|

D4l

Ambient Contracts Validation Strategy| .

[2.4.2 Behavioral Validation: Computational Contracts|

D43

Validation of Event-Driven Applications|.

D44

Validation of Distributed Applications| . .

B Related Work: Software Verification Techniques|

3.1 Categorization of Software Contracts|.

BI1

3.2 Survey of Related Workl|.

B2l

Higher-Order Behavioral Verification Techniques|

[3.2.2 Behavioral Contracts for Concurrent and Distributed Systems|

B23

Systems for Synchronization Verification|

vii

— O O 00 1 1O U W -

—

13
15
15
17
18
19
19
21
23
25
25
27
29
29
31
32

viii CONTENTS
324 QoS Contracts| 48
13.2.5 Aspect-Oriented Programming and Contracts| 48

B3 Conclusionl v oo vt 49
4 Communicating Event-Loops: Formal Specification| 53
4.1~ AmbientTalk Operational Semantics| 53
4.1. SYNEAX] e e e e e e 53
4.12 ReductionRules| 57
4.1.3 Service Discovery| 62
|4.1.4 Robust time-decoupled message transmission| 64

B2 Conclusionlo i e 66
[Computational Contracts for Functions| 67
[5.1 Higher-Order Contracts ina Nutshell] 69
5.1.1 First-Order Function Contractsl 69
[5.1.2 Higher-Order Pre/Post Contracts| 70

B2 Computational Confracts| 71
BD.2.1 Prohbit Contracts] 72
522 Ensure Contracts| 74
5.2.3 Usage Protocols| 75

5.3 Contract Verification and Blame Assignment|. 77
5.3.1 Flat and Higher-Order Pre/Post Contracts| 77
532 Aspect Extensions for Computational Contracts] 79

15.3.3 Verification and Blame Assignment of Computational Contracts| 81
[5.3.4 Computational Contracts: Step by Step Example| 82

. perational Semantics of Computational Contracts| 83
5.4.1 CEK Model and Syntax Definition|. 83
[5.4.2 Higher-Order Aspect Language| 86
[3:43 Computational Contracts| oo oot .. 89

B DISCUSSION . « « o v v e e e e e 90
5.5.1 Identity, Sameness, and Difference|. 90
552 Who will Guardthe Guards? 92
B6_Conclusionl . . . v vt 92
6 Server Side Ambient Contracts| 95
6.1 ~Object-Level Contracts| 97
|6.1.1 Flat Object Contracts| 97
16.1.2 Higher-Order Object Contracts|. 98

6.2 Computational Contracts over Objects| 100
16.2.1 Method-level Computational Contracts| 100
16.2.2 Computational Contracts for Object Protocols|. 101

16.3 Parametrized and Parametric Polymorphic Contracts for Objects| . . . 105
[6.3.1 Parameterized Contracts] 105
16.3.2 Relationally-Parametric Polymorphic Contract Inference| . . . 106
6.3.3 Executable Semantics| 108

6.4 Blame Assignment in OO Higher-Order Contracts|. 111
16.4.1 Recursive Higher-Order Object Contacts| 111
16.4.2 Blame Assignment for Recursive Higher-Order Contracts| . . 112

6.5 Operational Semantics of Object Contracts|. 113
[6.6 Future Contracts for Event Loop Concurrency| 114

CONTENTS

[6.6.2 Callbacks and Computational Contracts|
6.7 Contract Validation and Blame Assignment in Event Loop Contracts| .
[6.7.1 Future Type Message Contract: Blame Inversion|

[6.7.3 First-Class Aspect Environments for Validating Callbacks| . .
|6.8 Operational Semantics of Higher-Order Event Loop Contracts|
6.9 Conclusion|

(/2.1 Running Example]
[7.2.2 Coarse-Grained Blocking: Delay all Message Processing| . . .
[7.2.3 Fine-Grained Blocking: Delay the Contracted Message|
[7.2.4 Contract Decomposition|

|7.3 Validation and Blame Assignment of Flat Far Reference Contracts| . .

[7.3.2 Flat Far Reference Contracts Implementation|
[7.4 Higher-Order Far Reference Contracts|
[7.4.1 Higher-Order Far Reference Example|
[7.4.2 Computational Far Reference Contracts|
[7.5 Validation and Blame Assignment of Far Reference Contracts|
7.6 Computational Message Contracts|
[7.6.1 Message Contracts|
[7.6.2 Prohibit Message Contract|
[7.6.3 Ensure Message Contracts|
[7.6.4 Protocol Message Contracts|
[7.7 Validation of Messages Contracts|.

[8.1.2 Software Specifications in UrbiFlock betfore AmbientTalk/C]| .
18.2 Contracts over the Graphical User Interface Modulef
[8.2.1 Experiences|.
|8.3 Contracts over the Application Module|.
[8.3.1 Experience|
|8.4 Contracts over the Application IRSU Module]

[8.4.3 Experience| oo
85 Conclusionl

iX

115
117
117
117
118
119
120
122

125
126
126
128
129
130
131
131
131
132
133
134
134
134
135
137
137
138
140
141
141
142
142
143
144
145

9 Conclusion

9.1 Summary and Contributions|
9.2 Shortcomings and Future Work|.
9.3 Conclusionl

[A— Communicating Event Loop Calculus in PCT-Redex|

|A.1 Basic Example of the PLT-Redex Semantics|
|A.2 SyntacticSugar|

[A3~Advanced Example of the PLT-Redex Semantics|

CONTENTS

165

List of Figures

[2.1 _Comparison of wireless communication technology [BCO6].| 16
2.2 Object definition in AmbientTalk,| 20
2.3 Extending an object in AmbientTalk.|. 20
2.4 Defining and applyingablock,| 21
2.5 Keyworded function definition in AmbientTalk.| 21
2.6 Communicating event loopmodel| 22
2.7 Future type message passing in AmbientTalk.| 23
[2.8 Publishing objects 1n the Ambient for remote discovery|. 24
2.9 Object discovery in AmbientTalk.| 24
2.10 Dealing with disconnections in Ambientlalk| 25
[2.1T Errors signaling without contracts (left) and with Contracts (right)) . . 26
[2.12 Contracts 1n a system with first-class functions.| 27
[2.13 A computational contractexample|. 28
[2.14 Supplier Module] o 29
[2.15 Server side and client side contracts over objects| 30
[2.16 Distributed ambient contracts| 30
[2.17 The ambient contracts design space.| 31
[3-TOverview of the categorizations of contracts by Beugnard et al [BIPW99]| 34
3.2 Example: Interface Contract in a Java Like Language.[. 34
3.3 Example: Behavioral Contract in a Typed Language.| 35
3.4 Example: Synchronization Contract in a Java like Language| 35
13.5 Overview of the design space of ambient contracts explored by the |
[related workl) o 51
4.1 Semantic entities of AT-LITEl 54
42 AT-LITESyntax|. 56
|4.3 Substitution rules: = denotes a variable name or the pseudovariable this.| 57
4.4 Actor-local reductionrulesf 61
4.5 Actor-global reductionrules.| 62
4.6 Auxiliary functions and predicates| 63
4.7 Reduction rules for service discovery|. 64
4.8 Reduction rules for time-decoupled message transmissionf. 65

[5.1 Situation of Chapter 5 in the ambient contract design space for functions.| 68

5.2 Example math module providing a contracted function.|. 69
5.3 The AmbientTalk prompt: signaling a contract violation.| 70
5.4 Higher-order pre/post contract over the function .| 70

X1

Xii

LIST OF FIGURES

|§.5 ‘The AmbientTalk prompt: signaling a higher-order contract violation,| 71

5.6 Using a prohibit contract to prevent the sqrt to display text.| 73
5.7 Defining a prohibit contract over the argument of the map_pos function.| 73
-------- 73
o
5.10 Ensure protocol contract over the readCharFromFile function|. . . 75
5.11 Defining a prohibit protocol contract over the readAndShow function.| 77
B.12 Higher-Order pre/post contract Constructors] - - - 78
[5.13 A higher-order contract definition over the function fixIen) 78
[5.174 Aspect to validate the argument of the sqrt function. 81
[5.15 Computational contract constructor] 81
[5.16 High-Level Abstraction for Computational Contracts) 82
[5:T7 _Computational contract implementation inuse] 82
B.1 ore syntax of the A. language| 84
[5.19 Basic reduction rules of the CEK machine for higher-order contracts]. 85
[5:20 Syntax of the X, language]. 87
[5.21 Reduction rules foraspects.|. 88
[5.22 Meta functions to weave aspects.| oL 89
[5.23 Reduction rule for computational contracts.| 90
[5.24 Syntactic sugar for the definition of Computational Contracts,] 90
15.25 Example where a computational contract and a function contract can |
1 1 th function) oL oL 91

6.1 Situation in the ambient contracts design space for objects. 96
[6:2Situation in the ambient contracts design space for futures] 96
[(3 FlatObject Contract] 97
6. at Object Contract Usage]. 98
[65_Object contract definition and deployment]. %
[6:6_Violation of the stack contract by the module wsesat] %
6.7 _Computational contract over methods] 100
6.8 Methods with a computational contract blame assignment] 100
[6.9 Tnitalization Protocol]l 102
[6.10 Deactivation Protocoll. 102
6.11 TypeQualifierProtocol.| 103
612 Dynamic Preparation Profocol] 104
[6.13 Parametrized confract constructor function for stack confracts] 105
[6.14 Stack module making use of a parametric contract.| 106
.15 Paramelric object contract violation] . - 106
/6. arametric polymorphic identity function.| 107
. 1ng the parametric polymorphic identity function.|. 107
618 Parametric polymorphic contract for the Function] 107
16.19 Applying Parametric Polymorphic Contract Functions|. 108
16.20 Applying Parametric Polymorphic Contract with Objects| 108
16.21 Parametric Polymorphic Contract Inference| 110
[6.22 Data structure under contract.).o 111
[6.23 Unfair contract validation] 111
[6.24 Fair contract validationl] 112
[6.25 Object contract definition.| 113
[6.26 Blame order in the math example.| 113

[6.27 Extension for Contract Syntax.| 114

LIST OF FIGURES Xiii

[6.28 Recursive Contract Semanticsl 115
16.29 Server providing a function with a future contractf. 115
16.30 Client using a future contract.|. 116
631 Futureblamelo 116
16.32 Example of callbacks in combination with a computational contract.| . 117
[6.33 Passing (left) and resolving (right) a future from the client module to |
L theservermodulel. 118
[6.34 Future contract constructor 119
[6.35 Definition of a varianton the block) 120
|6.36 Aspect capturing registration construct.| 121
16.37 Extension for Event Loop Contracts Syntax.| 121
[6.38 Object-Oriented Aspect Language| 122
16.39 Extensions for reifying the aspect environment.| 122
[7.1 Situation in the ambient contracts design space.| 126
|7.2 Defining and exporting the coordinator object on the server actor|. . . 127
[7.3__Discovering and registering with the coordinator by the client actor| . 127
T4 Asynchronous contract violation] - . - .~ - . . . - 128
[7.5__Specitying remote-object assertion constructors with a custom valida- |
[G0N HIEHME] . « « o o v o v e e e e e e e e 129
[7.6 Specitying a contract with an atomically executed assertion.| 130
[7.7 Assertion variations supported by flat far reference contracts.| 131
[7.8 Coordinator (Actor)| 131
.9 Deadlock Example: Clhient (Actor)| 132
7.10 Transmission ordering: Server side (Actor)] 133
. ransmission ordering: Client side (Actor)f 133
[7.12 Transitively passing far references.| 133

|7.13 Validating asynchronous contracts before processing a contracted mes- |

................................... 134

|7.14 Asynchronous Contract: Sequence Diagram| 135
[7.15 Flat far reference contract constructor| 136
[/.16 AddPlayer contract validation example,| 137

. ar Reference Contracts: Stack Example (Uses)[. 139
[7.18 Far Reference Contracts: Stack Example (Defs), 139
[7.19 Computational Far Reference Contract: Stack Example (Defs)] 139
|7.20 Computational far reference contract violation.| 140
[/.21 Implementation of Far Reference Contracts| 140
[7.22 Providing a function with a prohibit computational contract for messages.|142
[7.23 Computational message contract violation.|. 142
|7.24 Providing a function with an ensure computational contract for messages.|143
[7.25 Computational message contract violation.|. 143
[7.26_Message ordering confractexample.| 143
727 Message ordoring CORract GXample] . . « « « « o v o o v oo v 144
[7.28 Aspect example of intercepting message sends|. 144
|7.29 Prohibit message contract constructor.| 145
8.1 UrbiFlock Design Diagram| 148
8.2 Comments 1n the Application Module.| 151
[8.3 Graphical User Interface, Hello World examplef 151

|8.4 Graphical User Interface, Hello World example screenshot.| 151

Xiv LIST OF FIGURES

[8.5 Contracts defined over the graphical user interface module| 152
B:6 State diagram of an UrbiFlock application] . . - 154
[8.7 Application contracts protocol implementation.| 155
[8.8 Contracts defined over the application listener,|. 156
157

. 158

. verview of contractual bindings of the application.| 160
[8.12 Exporting an application.| 161
8.13 Ambient contracts over the remote application interface of IRSUf. . . 162
8.14 Computational contracts for mandatory supercalls.| 162
B.15 Mossage contract for asking fatings] . - » - » « .« o o oo oo 163
A.1 Example AmbientTalk code snippet.| 171
. t-Redex: AmbientTalk code snippet.| 171
|A. t-Redex: Actorcode snippet.| 172
A4 Tracing the execution of an AmbientTalk program] 172
|IA.5 PIt-Redex Reduction graph.|. 172
A6 Syntacticsugar] 173
(A7 Ambientlalk, sending an asynchronous message|. 173
ASPIi-Redex: sending an asynchronous messagd] 173
. t-Redex Reduction graph of an asynchronous message.' 174
t-Redex reduction rules for the AmbientTalk language.| 175

List of Tables

3.1 Higher-Order Contract Validation.| 42
5.1 Overview of the high-level functional computational contracts provided
[mAmbienfTalk] o oot 72
6.1 Aspect Extensions for First Class Aspect Environments.|. 120
[7/.1 ~ Computational contracts over messages.| 141

XV

Xvi LIST OF TABLES

Chapter 1

Introduction

It is now more than 20 years ago that M. Weiser postulated his vision for “The com-
puter of the 21st Century” [Wei91]]. In his vision, computer interactions are no longer
tied to a single location which usually involve a chair, a screen, a keyboard and a
mouse. Instead computing is envisioned to become an unobtrusive and distraction-free
activity in a technology-rich environment. In such environments where computing is
omnipresent, personal computers are shifted to the background and controlled through
the set of all physical objects in the environment.

Moving closer to realizing Weiser’s vision is not possible without improvements in
both hardware and software technology. Current day mobile devices are characterized
by their support for advanced networking technologies like Wi-Fi, Bluetooth and more
recently Near Field Communication (NFC). Such networking technologies enable mo-
bile devices to spontaneously interact with each other and thus form an enabling tech-
nology towards Weiser’s vision. The hardware characteristics of these new kinds of
distributed hardware — mainly the fact that the communication is highly volatile and
that devices can not rely on a centralized server — have rendered previous software
solutions for distributed systems obsolete.

In order to overcome the software problems introduced by this new hardware,
the ubiquitous computing field has been undergoing three main generations of re-
search challenges [Coml1]. The first generation of ubiquitous computing systems
was mainly driven by technological advances in wireless communication which en-
able collocated devices to spontaneously interact without the need for a centralized
infrastructure. The research goal was to literally connect everything to everything
and has been termed connectedness (1991-2005). The second generation of systems
was driven by the need to adapt running systems according to their context and has
been termed awareness (2000-2007). At the heart of many of these systems lies
a form of reasoning engine which is fed by data from sensors that record the cur-
rent context. Once this context is processed the application dynamically adapts it-
self according to the available information. These challenges are addressed in re-
search areas such as context-oriented programming [HCNOS, [CHOS]], context aware-
ness [DSAOQTL IADB™99], resource-awareness, etc. Finally, the third generation ubig-
uitous computing research, building upon awareness and connectedness, has focused
on giving meaning to services and interactions in order to make them smarter, lead-
ing to a research field dubbed smartness (2004-). Such systems can be described as
highly complex dynamically orchestrated and coordinated groups of interacting nodes.
A prominent factor in such systems is the scale and complexity of the developed appli-

2 CHAPTER 1. INTRODUCTION

cations.

While the problems of connectedness and awareness are mainly understood, deal-
ing with the challenges of smartness is still an ongoing research activity. It is our vision
that the development of large scale complex ubiquitous systems can only be realized
when the programmer is equipped with appropriate software engineering abstractions.
Previous efforts to aid the developer into writing ubiquitous applications already had
a significant impact on the software development process. However, they focus on
abstracting away from the hardware characteristics of the devices on which ambient
applications are deployed in order to provide connectedness.

When developing (large scale) ubiquitous applications, the non-functional require-
ments become prevalent over the pure functional requirements. One particular suc-
cessful way to deal with these requirements in sequential software is by making use
of contracts [Mey92]. The contracts defined over a module stipulate both the obliga-
tions and promises of clients and suppliers so that the programmer does not need to
be concerned about the internal details. Recently the work on contracts systems have
been revived with work on higher-order contracts [EEF02, [FB06, (GPW10] and distribu-
tion [CP09, |ABZ10]. Contract systems allow the programmer to abstract away from
the internal details of modules only when they are powerful enough to express the func-
tionality of the abstractions that they monitor. We argue that current contract systems
fall short in expressing the (temporal) behavior of ubiquitous applications. Moreover,
in certain situations when a contract is violated they fail to correctly point out the re-
sponsible of the violation.

In this dissertation, we focus on the formulation of a contract system that can cap-
ture ubiquitous requirements so that the programmer can express the obligations and
promises of his modules. The main research challenge that we address is the adap-
tation of current contract systems to take into account the specific requirements of
ubiquitous applications. Many of the current contract systems for distributed systems
rely on a centralized server which is not reconcilable with the ad-hoc nature of the
targeted applications. Moreover, many of the standard ways to validate contracts are
not applicable in a distributed context. The reason is that they change the semantics of
the underlying program in order to verify the contract. These kind of contract systems
are not satisfactory as their usage might introduce deadlocks which are not present in
the original software. The work in this dissertation is thus motivated by the quest for
a contract system that enables the programmer to write robust software for distributed
applications that communicate over unreliable networks. This is also the main research
challenge addressed in this dissertation: to bridge the gap that makes it impossible to
apply current day contract systems for the development of robust ubiquitous applica-
tions.

A large body of software engineering research has been conducted in order to over-
come the limitations of traditional tools for the development of ubiquitous applications.
Also at the Software Language Lab (SOFT), where this research has been conducted,
a great effort has been made in order to deal with the new generation of ubiquitous
hardware. Our lab has formulated answers towards connectedness under the form of
a new programming paradigm dubbed ambient-oriented programming [VMG™07]. At
the heart of this paradigm lies a set of programming language abstractions that deal
with the volatility of the connection over which the distributed nodes communicate.
Many research efforts have also focussed on awareness with research artifacts such as
Fact Spaces [MSP™07], TOTAM [SGDQ9] and Context L [CHO3||. Finally, in recent
years these research artifacts have been combined in order to realize more complex dy-
namically orchestrated applications. A prominent example of the later can be found in

1.1. RESEARCH CONTEXT 3

the development of UrbiFlock [GBLCS™ 11|}, a ubiquitous social networking applica-
tion that builds upon both the research efforts coming from AmbientTalk and TOTAM.
Naturally, the work presented in this dissertation is an extension of the research that we
previously conducted at the Software Languages Lab.

In summary, current day ambient software engineering tools fall short for the devel-
opment of large scale ubiquitous applications. Traditional contract systems can not be
applied for the construction of such applications as they rely on a centralized server or
might alter the semantics of the original software. The lack of an appropriate contract
system for ubiquitous applications hampers the exploration of the third research track
in order to fulfill the vision of Weiser. In this dissertation, we propose a new contract
system, dubbed ambient contracts, which adheres to the characteristics of ubiquitous
applications. With this contract system the programmer can express the obligations
and promises between the distributed modules of a ubiquitous system.

1.1 Research Context

The research conducted in this dissertation spans a number of research fields from
different branches of computer science. We describe each of the domains and sketch
why each of the research domains are relevant for the formulation of our solution.

Ubiquitous Computing is the research vision postulated by M. Weiser as explained
in the introduction. It has spawned a tremendous amount of research over the different
areas of computer science. The vision now postulated more than two decades ago is
slowly becoming a reality. While many individual research challenges are solved, it
remains to be seen how all these research efforts can be combined in order to develop
large scale applications. It is this observation that has led us to develop software engi-
neering abstractions under the form of software contracts in order to aid the developer
in building large scale ubiquitous applications.

Mobile Ad Hoc Networks are the enabling technology that allows the concretization
of Weiser’s vision. While the hardware technology of mobile devices is constantly
improving, the characteristics of mobile ad hoc networks are significantly different
from traditional distributed networks. The programmer needs to take these differences
into account when writing ubiquitous applications, and has to do this for every mobile
application that he/she writes. This observation has led to the development of software
abstractions specifically designed for the development of applications that make use of
mobile ad hoc networks. The characteristics of mobile ad hoc networks naturally have
to be taken into account for the abstractions advertised in this dissertation.

Software Verification is the process of checking that a software system adheres to a
set of initial design requirements. Verification can be used for many purposes, such as
debugging, testing, validation, profiling, fault protection, behavior modification (e.g.
recovery), etc. The term verification is mostly associated with static verification. How-
ever, there are two types of verification, runtime verification and static verification. We
argue that the dynamic and the ad-hoc nature of mobile ubiquitous applications are
better suited towards runtime verification. In this dissertation, contracts are verified
during the execution of ubiquitous applications. Moreover, through reflective capabili-
ties, runtime verification can be made an integral part of the underlying language.

4 CHAPTER 1. INTRODUCTION

1.2 Design by Contract

Contract frameworks have been around for a very long time but the first appearance of
pre and post-conditions can be found in the work of Tony Hoare [Hoa72|]. Tony Hoare
observed that the validity of a program result can often be determined solely based on
the input and the output of the program. Therefore, validating the input of a program is
as important as validating the output of the program. In his work he developed a formal
model under the form of what is now known as a Hoare triple [Hoa72[]. A Hoare triple
P{Q}R consists of a precondition P, a subprogram () and a postcondition over the
result R. The precondition of a Hoare triple validates the input of the subprogram @
while the postcondition validates its result. By chaining such subprograms together
certain properties about the composition of the program can be proved.

The ideas of Hoare were adopted and implemented in the programming language
CLU by Barbara Liskov [LSAS77]. Afterwards, they were adopted in a wide range
of programming languages but were mostly influenced by the programming language
Eiffel [Mey88|l. Together with the Eiffel language many terms used to describe proper-
ties of a contract systems were introduced, most notably the term Design by Contract
(DbC). Meyer was inspired by contracts in the business world where the parties of a
contract are called the client and the supplier. Similarly to a business contract, a soft-
ware contract specifies obligations that must be fulfilled by the involved parties. In
DbC the obligation that must be fulfilled by are:

e Preconditions, which state the conditions the client of a supplier must meet.

e Postconditions, state the guarantees that the supplier fulfills given that the client
meets the preconditions.

Many times the contractual obligations are specified on the module boundaries.
When a module imports another module, the two modules enter into a contractual
agreement. The contract system keeps tracks of the obligations and promises of the
supplier and client of the values that flow between the modules. When a violation
against a contract is detected, the contract system points out the responsible module.
The process of keeping track of the obligations and promises of the values in order to
point out the responsible module when a violation is detected is called blame assign-
ment.

The large proliferation of external frameworks which provide support for
DbC [LCCT 05, [FFO1, [DH98, [LKP02, [KHB99] is a proof of the wide adoption of the
design by contract methodology in current programming languages. However, all these
contract frameworks are incarnations of basic pre/post contract systems. They are not
directly applicable for use in an ambient-oriented programming language because they
do not integrate well with the basic programming language constructs for programming
mobile distributed application. One of the observations is that basic pre/post contract
systems do not monitor the subprogram (). In an ambient-oriented programming lan-
guage this subprogram () can send messages or change the state of the program by
means of side effects. Such concerns are important in the context of ubiquitous sys-
tems but they are hard to express with current contract systems. In the following section
we give an overview of the limitations of current contract systems.

1.3. PROBLEM STATEMENT 5

1.3 Problem Statement

From previous research efforts it has become apparent that developing applications for
mobile ad hoc networks is substantially different from developing applications for fixed
computer networks because of two differentiating characteristics [VMGT07]]: nodes in
the network only have intermittent connectivity (due to the limited communication
range of wireless technology combined with the mobility of the devices) and appli-
cations need to discover and compose services without relying on additional infras-
tructure such as a centralized server. These properties do not map well onto regular
contract systems for general purpose programming languages [DVM™05] which treat
disconnections as fatal errors and assume that all communication is stable. As a result,
it is currently extremely hard to program and debug applications that are deployed in
such a highly dynamic environment.

The lack of abstractions dedicated to verify ubiquitous or ambient applications[ﬂre-
sults in complex and unmaintainable code [UBPUOS]. In this dissertation, we present a
novel programming abstraction called ambient contracts to deal with these difficulties.
In the development of any contract system it is important that the contracted system be-
haves exactly as the original program in case the program does not violate any contract.
In case the program does violate a contract there should be a meaningful report about
the cause of the problem and which module is the responsible for the violation. In the
following paragraphs we give more detail of the different problems that a programmer
has to face when using current contract systems for developing ambient applications.

Complex First-Class Values and Blame Assignment. Prominent programming
paradigms today all have support to build complex first-class values. This is no dif-
ferent for the language constructs that have been developed for the ambient-oriented
paradigm. Programmers exchange objects, functions, futures, and remote references
between distributed communication partners without having to worry about low-level
serialization concerns. While contracts for higher-order functions have been investi-
gated, the use of complex first-class values such as remote references or future values
poses new challenges which existing contract systems can not deal with. The use of
these complex first-class values is so prominent that a contract system that does not
support such values would be very limited in expressiveness. Therefore, the use of
complex first-class values should be natively supported. From previous research it has
become clear that when supporting higher-order values at runtime determining who is
the responsible for a violation is no longer trivial. In short, an ambient contract sys-
tem should keep track of who to assign blame in case a violation against a contract is
detected, even in the presence of complex first-class values.

Capturing Ubiquitous Behavioral Properties. One of the main advantages of a
contract system is that it provides the programmer with an enforceable specification of
the obligations and promises of using certain values of his program. To this end, the
contract system must be sufficiently expressive for the target domain. In the case of
ubiquitous applications this means that the contract systems should be able to express
aspects such as prohibiting or enforcing sending messages over the network, manda-
tory method invocations, access permission, memory constraints etc. Current contract
systems, however, have mainly focused on pre- and post-conditions. They can not

'We use the terms ubiquitous and ambient application interchangeably.

6 CHAPTER 1. INTRODUCTION

validate that certain events happen or should not happen during the execution of a con-
tracted value in a ubiquitous setting. In this dissertation, we investigate how we can
overcome the problems of current higher-order contract systems to allow validation of
the computation of a function. As these concerns could not be expressed even on a
single node, a first research problem was the formulation of a contract system that can
validate concerns over the internal working of a function.

Scoping of Behavioral Contracts. Ubiquitous applications are inherently concur-
rent. The programming paradigms for ubiquitous computing have addressed the com-
plexity of writing concurrent applications by a model called communicating event-
loops. This model provides the user with language constructs that mitigate the prob-
lems of dealing with concurrency and volatile connections. For example, language
constructs such as non-blocking futures provide the programmer with a way to simu-
late synchronous communication in an asynchronous communication model. However,
these language constructs also introduce the notion of event handlers which are trig-
gered when the results of sending an asynchronous message becomes available. The
scope and the blame assignment of behavioral contracts in combination with such call-
back mechanisms — that can trigger at any moment in time — is not investigated by
current contract systems.

Non-Interference. When naively inserting contract validation code into a running
program the semantics of the underlying program might be altered. Of course this is
an unwanted property and should be avoided as much as possible. In the context of
ubiquitous applications maintaining interference-free contract validation is not as triv-
ial as it might seem. First, the programmer can not assume that a centralized server
is always available because communication is set up in an ad-hoc fashion. This com-
plicates contract validation as there is no longer a centralized point where the contract
can be verified. Second, connections are volatile and can be broken at any moment
in time. Therefore, a contract system should never block the computation, in order
to avoid introducing deadlocks which were not present in the original program. This
observation is in line with previous research effort that showed that blocking program-
ming language abstractions can not be reconciled with the development of ubiquitous
applications. In short, an ambient contract should not interfere with the distributed
semantics of the program even in the presence of volatile connections.

In conclusion, the main research problem that we address in this dissertation is the
formulation of an expressive contract system that can deal with complex first-class
values in the presence of highly volatile connections.

1.4 Research Approach

A large part of the work described in this dissertation deals with programming language
design. This choice is motivated by a number of practical and cultural considerations.
Language research at the Software Languages Lab (formerly known as Programming
Technology Lab) has a long tradition of conducting research with so called little lan-
guages [Ben86)]. Examples include Agora [CDDS94]] and AmbientTalk [VMG™07].
In this section we motivate the choice for a language-oriented approach. The second
major design decision for the definition of an ambient contract system is whether the

1.4. RESEARCH APPROACH 7

contracts are verified statically or at runtime. In this section we argue for runtime
verification as opposed to static verification.

1.4.1 Language Oriented Approach

The main advantage of a language-oriented approach is the ability to define the sys-
tem as a whole rather than a composition between the framework and the underlying
language in which the framework is defined. It is well known from prior work that
the composition of certain software systems that foster their own rules can lead to an
“impedance” mismatch. A prevalent example can be found in the database world where
relational databases are mapped onto objects and vice versa [CD96]. Another example
closer to ubiquitous computing can be found in the mismatch between an event-driven
system and a multithreaded program. Composing those two leads to a system where the
invariants governing the event-driven system can be easily broken by the multithreaded
program. Thus, the main problem is to compose these systems into one coherent system
that maintains the global properties, such as deadlock freedom, despite the composi-
tion. Maintaining such properties is much harder with a library or a middleware than
with a programming language. The reason is that a middleware or a framework might
not always be able to control parts of the underlying language needed to truly enforce
certain properties. On the contrary, when designing language abstractions this compo-
sition can be avoided as the language designer has complete control over the imple-
mentation of every aspect of the language. This makes a language-oriented approach
more suitable for the development of a contract system than the design of a middleware
or a framework. A good language design can truly enforce certain program properties
which have been specifically designed to address the problems at hand.

1.4.2 Runtime Verification

Two main approaches exist for the verification of contracts: runtime assertion check-
ing (RAC) and static verification [[CRO6]. Both approaches have their advantages and
disadvantages.

Runtime verification consists of monitoring the application while it is executing.
The programmer defines a set of assertions that define correct executions of the pro-
gram and the contract system verifies these assertions at runtime. When the contract
system discovers a violation of one of those tests, it reports the violation. Runtime
verification of contracts was popularized by the contract system in Eiffel [Mey91].

Static verification consists of a logical proof system that, given a set of specifica-
tions and the program code, verifies that no violations of the specifications can occur
at runtime. Static verification implies that the verification is based on the program text
and that the program is not executed during the verification phase. To be sound, static
approaches need to be conservative. This means that they may report a violation even
though the program actually does not violate the specification at runtime.

Both approaches have their merits. Runtime assertion checking systems often allow
the programmer to express more than their static verification counterparts. Static verifi-
cation techniques, on the other hand, allow the programmer to catch violations earlier,
i.e. even before the program is executed. This advantage does not come without a
cost. Generally, static verification tools require fairly elaborate specifications of the
modules being checked. Furthermore, in order to be effective, static verification tools
require specifications that are usually more complex than the specifications needed for
runtime verification. And finally, current complex static verification mechanism do not

8 CHAPTER 1. INTRODUCTION

scale very well for very large software projects. As we argue in this dissertation, the
use of static verification is hard to combine with the dynamic nature of mobile ad-hoc
network applications where the communication partners during a program execution
might not be known or available at deployment time.

1.5 Contributions

This dissertation makes the following contributions in the intersection of programming
language design, mobile ad hoc networks and runtime verification:

Survey of Related Work. We give an extensive survey of related work on program
validation. Many contract monitoring and verification mechanisms have been designed.
However, only few take into account both the dynamic nature of the programming
language and the dynamic nature of ambient applications. From this survey of related
work we conclude that the higher-order contract mechanisms [[FF02]] developed in the
context of the dynamic language Scheme [KCRO98]| form the most suitable foundation
for the specification of an ambient contract system.

Communicating Event Loop Calculus. Together with Tom Van Cutsem and Dries
Harnie, we defined an operational semantics of the AmbientTalk programming lan-
guage [VCSHDM]. We believe this is the first formal account of an actor-based lan-
guage whose concurrency model is based on communicating event loops. The usability
of the semantics has been validated by a direct translation of the reduction rules into an
executable program by using the PLT-Redex [FFF09] tool. The advantage of having an
executable semantics is that it enables us to try out example programs and validate their
operation. Because of the non-deterministic nature of our semantics, writing out the
evaluation steps for the execution of even a small program would require a big effort.
Moreover, due to the sheer amount of evaluation steps involved in the execution of a
simple program executing it by hand would be very prone to error.

Computational Contracts. We have developed the concept of computational con-
tracts. A computational contract is a contract over the execution of a contracted en-
tity. One example of a computational contract is a contract over a function to ensure
that this function updates the GUI when applied. Computational contracts can verify
well-defined execution points during the execution of a contracted entity. With com-
putational contracts the developer can define a function contract that verifies a single
event or a sequence of events during the execution of the contracted function. We have
defined computational contracts that can be used in combination with object-oriented
and event-loop concurrency language constructs.

Ambient Contracts. Building further on the concepts of computational contracts we
have developed the concept of ambient contracts in a contract framework called Am-
bientTalk/C. Ambient contracts allow the specification of behavioral constraints over
distributed objects which communicate over an unreliable network. Ambient contracts
allow assertions over remote references to be validated without interfering with the
messages ordering semantics of the program. We have defined ambient contracts that
can be used in combination with object-oriented language concepts and event-loop lan-
guage constructs such as futures.

1.6. SUPPORTING PUBLICATIONS 9

Validation. We have applied the AmbientTalk/C framework to a framework for the
rapid prototyping of context aware social networking applications called UrbiFlock.
This framework constitutes of almost 4000 lines of AmbientTalk code and another
3000 lines of Java GUI code. We give an overview of the most important ambient
contracts applied throughout this framework and report on our experience of using the
AmbientTalk/C contract framework.

1.6 Supporting Publications

Of the (co-)authored publications that are related to connectedness [RSAT12
GSL'10], awareness [MSP107, SBMDI0], and smartness [SHSDMI11|, STMT11]
SHT™11,/IGBLCS™11]], the following introduce the key ideas of this dissertation:

Ambient Contracts: Verifying and Enforcing Ambient Object Compositions a La
Carte Personal Ubiquitous Computing. Christophe Scholliers, Dries Harnie, Eric
Tanter and Wolfgang de Meuter. [SHT T 11] The work described in this paper is an early
version of what we describe in this dissertation. It defines contracts over a group of
remote references. In this dissertation, we have elaborated on these ideas and extended
them with computational contracts. For the later we also have incorporated blame
assignment.

Computational Contracts: Grey Box Verification and Blame Assignment in a
Higher-Order Setting Proceedings of the 2011 Workshop on Scheme and Func-
tional Programming. Christophe Scholliers, Eric Tanter and Wolfgang De Meuter.
[STM11] The work in this paper lays the foundations on which we build ambient con-
tracts. More specifically, it gives an overview of how higher-order values can be com-
bined with behavioral contracts.

Flocks: Enabling Dynamic Group Interactions in Mobile Social Networking Ap-
plications Symposium on Applied Computing. Elisa Gonzalez Boix, Andoni Lom-
bide Carreton, Christophe Scholliers, Tom Van Cutsem, Wolfgang De Meuter and Theo
D’Hondt. [GBLCS™11] In this paper the UrbiFlock framework is explained which
forms the basis of the validation chapter.

1.7 Dissertation Roadmap

Chapter 2. Ambient-Oriented Programming provides the reader with an intro-
duction to the main requirements for the ambient-oriented paradigm (AmoP). We de-
scribe the paradigm as proposed in previous work by Dedecker [DVM™05] and Van
Cutsem [VMGT07|]. A thorough overview of these requirements deduced from the
hardware layer is very important not only for the definition of language constructs for
ambient-oriented programming but also for the software engineering support as pro-
posed in this dissertation. At the end of chapter 2 we give a sneak preview of the
AmbientTalk/C framework.

Chapter 3. Related Work: Software Verification Techniques gives an overview of
the landscape of contract systems. Many available contract systems provide powerful

10 CHAPTER 1. INTRODUCTION

specifications but are not always applicable in an ambient environment. We conclude
that the flexibility and the dynamic nature of ambient oriented systems are best matched
with current higher-order contract systems. However, not all problems encountered in
a ubiquitous setting can be tackled by these systems.

Chapter 4. Communicating Event-Loops: formal Specification gives a formal
overview of the underlying event-loop concurrency model [VCSHDM]|, the computa-
tional model for concurrency and distribution, that adheres to the AmOP criteria pre-
sented in chapter 2. We start with a quick overview of the basic language constructs of
the AmOP paradigm followed by the operational semantics. The communicating event
loops calculus we present in this chapter is used in the remainder of the dissertation
to define the language constructs that constitute ambient contracts. The formulation of
this operational semantics is used in later chapters in order to define the semantics of
ambient contracts.

Chapter 5. Computational Contracts for Functions This chapter investigates the
first step towards ambient contracts. We define a novel contract system to validate
concerns over the internal working of functions. In this chapter we limit ourself to the
explanation of computational contracts for functions.

Chapter 6. Server-Side Ambient Contracts gives an overview of how computa-
tional contracts are combined with language constructs specifically for the ambient-
oriented paradigm. It shows how higher-order contract systems can be unified with a
prototype-based object model, event loop concurrency and futures values. In this chap-
ter we define contract that are defined over objects hosted by the same actor. These
contracts can be used in order to protect the server from misbehaving clients.

Chapter 7. Client-Side Ambient Contracts In this chapter, we propose an novel
asynchronous contract system. In this contract system, the validation of contracts over
remote references is postponed until a message is sent to the contracted (remote) value.
By postponing the verification, non-interference of the contract with respect to dead-
locks and message ordering can be ensured. We describe an expressive model to spec-
ify and verify asynchronous contracts over remote objects. Subsequently, we give an
overview of how to validate and assign blame for higher-order far-reference contracts.
Finally, we give an overview of how computational contracts can be used in order to
specify contracts over the outgoing messages of a contracted entity. The contracts de-
fined in this chapter can be used in order to protect the client from misbehaving servers.

Chapter 8. Ambient Contracts at Work presents the validation of the developed
contract system by means of a concrete use case. We apply ambient contracts to a
context-aware social networking application called UrbiFlock [GBLCS™11]. Many of
the contracts defined in the earlier chapter are directly influenced by their application
in this framework.

Chapter 9. Conclusion gives an overview of the contributions made in this dis-
sertation. This naturally leads to a discussion of the current limitations and possible
directions for future work.

1.8. SUMMARY 11

1.8 Summary

In this dissertation, we present a novel contract system specifically designed for the
development of large scale ambient applications. We have focused our research ef-
forts on such systems in order to facilitate the development of third generation ambient
applications. Starting from the hardware characteristics of mobile devices we will de-
duce the desirable properties a contract system for ambient applications needs to have.
From these properties we develop a contract system that supports the specification and
verification of local behavioral, event-driven abstractions, and asynchronous messages
passing. As we show in the related work no other contract system can deal with the
challenges of an ambient environment. Moreover, our contract system provides the
programmer with specialized reports that point out the parties to blame in case of a
violation.

12

CHAPTER 1. INTRODUCTION

Chapter 2

Ambient-Oriented
Programming

The main contribution of this dissertation is the definition of a contract system ap-
plicable for the development of smart ambient applications. In this chapter we give
an overview of the ambient-oriented programming paradigm. The ambient-oriented
programming paradigm forms the foundation on which the work presented in this dis-
sertation has been built. We start this chapter with a short overview of the technologies
that enable the development of ambient applications. Then we show the challenges
where every ambient application has to deal with, independently of the programming
language used. Starting from those general challenges we give an overview of the core
ambient-oriented programming paradigm. This paradigm has been concretized in a
programming language called AmbientTalk. This is also the main programming lan-
guage that has been used to prototype the AmbientTalk/C contract framework. Once
we have shown how to deal with the general challenges when writing ambient-oriented
applications we show the specific challenges for the definition of an ambient contract
system. The work described in this dissertation builds upon both the concepts behind
ambient-oriented programming as well as its technical foundation laid by the Ambient-
Talk language. Therefore, it is crucial to explain both the paradigm and the language
before presenting ambient contracts in the later chapters of this dissertation.

2.1 Middleware for Ambient-Oriented Programming

In this section, we give a bird’s-eye view of current middleware solutions for the de-
velopment of distributed and ambient applications. We argue that most middleware
solutions are not ideal as the starting point for the development of an ambient con-
tract system. Most middleware solutions either introduce a significant overhead for the
programmer or are not flexible enough to express common ambient-oriented concepts.
We argue that these limitations are not present in the AmbientTalk language which
has been used as a research vehicle for the development of ambient contracts. The
AmbientTalk language allows us to focus on the essential parts of developing a con-
tract system for ambient applications while minimizing the overhead of dealing with
low-level concerns.

To understand why we opted to use the AmbientTalk language, it is important to
know that in software engineering a problem can be divided into its accidental com-

13

14 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

plexity and its essential complexity [Bro87]. Accidental complexity relates to the diffi-
culties a programmer faces because of their choice of software engineering tools. This
complexity can be decreased by selecting or developing better tools. On the other hand,
essential complexity is caused by the characteristics of the problem to be solved. Such
essential complexity is intrinsic and thus cannot be reduced. While the accidental com-
plexity encountered when writing today’s desktop applications is being addressed by
the use of high-level programming languages such as Java or C#, we have not witnessed
the same software engineering support for the development of ambient applications in
mainstream programming languages.

Mainstream solutions for the development of distributed applications can be roughly
divided into explicit communication abstractions and transparent communication ab-
stractions. Explicit communication abstractions can be found in the use of sockets, or
channels as adopted in the .Net languages. Such abstractions allow programmers to set
up a communication link with other distributed components by means of an explicit
communication address (i.e. IP address) or by making use of a centralized naming
server (i.e. a DNS server). Unfortunately, as the exact communication partners of an
ambient interaction are not known beforehand explicit addressing is rendered useless in
an ambient context. Moreover, sockets are fragile and even common ambient-oriented
operations like discovering other communication partners on the network requires a
significant amount of complex code. Writing ambient applications in such a frame-
work thus introduces a significant amount of accidental complexity that has to be han-
dled by the programmer. A first prominent example of such accidental complexity can
be found in the amount of exception handling code that is required to appropriately
deal with temporary disconnections. A second difficulty for ambient programmers is
to manually serialize and deserialize the interchanged values.

Implicit communication abstractions, on the other hand, try to hide the distributed
nature of the application by making communication with remote components transpar-
ent. By far the most adopted technique for distribution transparency are systems based
on the principle of remote procedure calls (RPC) such as Java RMI. A remote proce-
dure call is similar to a normal procedure call but the arguments passed to a remote
procedure call are marshaled and sent to a remote device. This remote device then
executes a piece of code and sends back the result. All this is made completely trans-
parent for the programmer. In the myth of transparent distribution |[GF99]], Gerraoui
and Fayad point out that the illusion of distribution transparency is both impractical
and dangerous. They point out that such an illusion introduces a wide range of prob-
lems that can only be solved by breaking distribution transparency. One example they
describe is caused by latency. Distribution transparency can only be achieved when the
processing time for distributed operations is similar to the processing time for local op-
erations. Such a requirement is hard to amalgamate with the volatile nature of wireless
connections.

In summary, when using low-level communication links to develop ambient-oriented
applications the programmer is confronted with a lot of accidental complexly. On the
other hand, systems trying to hide the communication in favor of distribution trans-
parency have been shown to be impractical and dangerous. Our approach for program-
ming ambient applications consists of language abstractions that address challenges
that are directly derived from the hardware characteristics of mobile ad hoc networks.
Programmers have to deal with these challenges independently of the ambient appli-
cation they write. We built further on the ambient-oriented programming model that
has focused on high-level language abstractions that tackle the accidental complexity
(due to the hardware) of writing ambient applications so that the programmer can focus

2.2. WIRELESS NETWORK APPLICATIONS 15

on the essential complexity. In particular it provides a set of abstractions that allows
the programmer to reason at a high level about the distributed concepts of an ambient
application. Infrastructure-less object discovery, buffered asynchronous communica-
tion and marshaling of objects are all primitive abstractions in an ambient-oriented
programming language.

As the problems of dealing with the accidental complexity of mobile ad hoc net-
works are now well understood bringing the developed abstractions to a mainstream
programming language would be a matter of manpower rather than brainpower. To
avoid reinventing the wheel while formulating an ambient contract system we have
chosen to make use of the AmbientTalk language which already embodies ambient-
oriented abstractions. It is important though, to realize that the use of the AmbientTalk
language as a research vehicle for the development of ambient contracts is a means to
an end, not the end itself.

2.2 Wireless Network Applications

Advances in wireless technology have enabled the realization of a new brand of dis-
tributed applications in which mobile devices spontaneously interact with each other
without the need of a centralized server. The network technology that enables such
spontaneous interactions is called mobile ad hoc networks. Such mobile ad hoc net-
works in combination with the miniaturization of mobile devices are the key enablers
for the development of ambient applications. Recent technological advances such as
personal area networks (bluetooth), wireless LAN networks (Wi-Fi & Wi-Fi Direct)
and digital short range communication (UWB) only confirm the need for specialized
network infrastructure to connect distributed devices wirelessly.

While technological advances at the network layer are spectacular, a similar evolu-
tion at the software level is required to take full advantage of this new technology. The
change from wired to wireless ad hoc communication has repercussions that percolate
up to the level of the programming language [DVM™03]. The hardware characteris-
tics of mobile ad hoc networks render main stream programming languages unsuited
for the development of ambient applications. For example, traditional distributed pro-
gramming languages consider network disconnections as an exception rather than the
rule. Therefore, the programmer has to constantly deal with intermitted network dis-
connections which leads to code that is polluted with if-tests and/or exception handling
code.

In the following section, we give an overview of current wireless technology and
show that the hardware characteristics of this mobile ad hoc networks must be handled
at the software level.

2.2.1 Technological Advances

In the last years, wireless technology has been embedded in a wide range of devices
and applications. Wireless technology is embedded in numerous mobile phones, music
devices, e-readers, home automation etc. Not all these devices use the same wireless
technology. For a particular application domain, certain wireless technology is better
suited than other. For example, the requirements for wireless network technology of a
mobile phone is very different form the technology needed for a smart fridge. While it
is very likely that a user moves with his mobile phone it is rather unlikely that a smart
fridge needs to communicate with the rest of the house while being moved. Therefore,

16 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

the technology used for wireless phones differs from those used for home-automation.
Many mobile phones today embed a multitude of wireless technology to better suit the
needs of the user depending on what he/she is doing.

To give an intuitive feeling of the landscape of wireless technology we present an
overview of the wireless communication technologies that are commercially available
toda An overview of mainstream wireless network technology is shown in figure
[2.1] The y-axis shows the bandwidth while the x-axis indicates the mobility of the
users in terms of connection speed. As can be expected, when the user is very mobile
the bandwidth is limited (1 Mbits/s). When the user is rather stationary by making
use of Ultra-wide-band technology (UWB) the data-rate can be as high as 100 Mbits/s.
UWRB technology was developed during the second world war and initially it has been
mainly used by the US army. Nowadays, commercial applications include streaming
of high definition video streams.

A
100

% uwB
2 49 802.11a/g
o
© 802.11b
& 1
a UMTS
GSM
O Ll
Stationary Walking Driving

Users Mobility
Figure 2.1: Comparison of wireless communication technology [BCO6].

The use of the ether as communication medium brings a number of complications
that are not present in wired communication technology. Examples of such compli-
cations include thermal noise, signal power attenuation (due to variations in the dis-
tance between transmitter and receiver), multi-path propagation, and interfering signals
(multiple users using the same technology). Such channel characteristics are inherent
to wireless communication and due to physical limitations will never change. Nev-
ertheless the problems introduced by these characteristics can be minimized by using
more advanced technology. For example, to minimize the problems of saturation, one
promising approach is the use of adaptive radio technology [BC06]. Current main-
stream wireless technology only saturates the ether at certain highly utilized frequen-
cies. At the same time certain frequencies are used less frequently. To improve this
situation and use all available frequency bands, adaptive radio technology adapts its
communication frequency depending on the saturation level of the available frequen-
cies.

While the utilization of the frequency band, the data rate, and the area coverage
are expected to increase in the future, the inherit problems of wireless communication
channels are not likely to be solved any time soon. Whenever a user communicates with
another user over a wireless connection, at the application level, programmers have to
deal with communication links that can disconnect at any moment in time. Therefore,

IDecember 2012

2.2. WIRELESS NETWORK APPLICATIONS 17

the challenges introduced by the hardware characteristics of mobile ad hoc networks
must be handled at the software level. In the next section, we give a detailed overview
of those challenges.

2.2.2 Integration at the Application Level

The hardware characteristics that influence the development of ambient applications at
a software level have been identified and refined by a number of researchers includ-
ing, Dedecker [Ded06], Van Cutsem [Van08] and Lombide Carreton [Loml11]]. In the
following sections we give a summary of the hardware characteristics and which chal-
lenges they induce. We mostly follow the definition as given by Van Cutsem [Van08]].

Zero Infrastructure. Mobile ad hoc networks are formed by mere co-location of mo-
bile devices without the need for any preexisting infrastructure [Ded06l]. In con-
trast, WANS like internet employ routing devices and naming servers to make
sure that services can be reached with a predetermined address (e.g. URL). In a
mobile ad hoc network, devices can not know the location of any service before-
hand. It is up to the devices in the network to autonomously determine their own
routing, addressing, clustering and power control. Moreover, due to device mo-
bility, the topology of the network is constantly fluctuating. At the application
level, programmers can not assume that a service is available at any moment in
time.

Volatile Connections. Mobile devices equipped with wireless communication tech-
nology only have a limited communication range. Because of the limited com-
munication range and the mobility of the devices, the wireless connections be-
tween mobile devices can become disconnected at any moment in time. Such
disconnection can be either permanent or transient. Quite often, a transient
disconnection should not have a significant impact on the distributed interac-
tion, and the application should simply continue whenever the connection is re-
established. At the application level, users expect their applications to be re-
sponsive and continue to work in the presence of transient failures. Dealing with
failures due to volatile connections is not a new concept in distributed networks.
However, the rate of disconnection to which mobile ad hoc networks are exposed
is much higher than in traditional distributed systems. As such, the volatility of
the connection should be considered the rule, rather than the exception.

Other challenges at the application level introduced by the hardware characteris-
tics of mobile ad hoc networks are autonomy and concurrency. Dedecker [Ded06]
considers these challenges to be at the same level as zero infrastructure and volatile
connections. Van Cutsem [[VanO8] on the other hand, argues that they can be deduced
from the two previous ones.

Autonomy Most distributed applications follow a client-server approach. In this ap-
proach a server has the responsibility to coordinate the clients which connect to
it. However, in a mobile ad hoc network such a server might not be available.
Therefore, every device should act autonomously. Van Cutsem argues that auton-
omy follows directly from the lack of shared infrastructure [VanOS|]: when the
application programmer cannot rely on any shared infrastructure, applications
necessarily need to be autonomous. We follow the view of Van Cutsem.

18 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

Concurrency Ad hoc networking applications have to deal with concurrency at a va-
riety of levels. First, as Van Cutsem pointed out MANET applications are nat-
urally concurrent, simply because they are deployed on a distributed network.
Second, they have to be able to be responsive for the user while communicating
with other clients in the network. Therefore, the programmer of an ad hoc net-
work application is also confronted with the difficulties of writing a concurrent
application.

2.2.3 Ambient-Oriented Programming

The hardware characteristics of mobile ad hoc networks affect the application com-
ponents in such a profound way that they cannot be hidden from the application pro-
grammer [VanO8|]. The programmer is confronted with these effects by the way the
application has to be structured, on how distributed application components interact
and on how application data needs to be represented. As a result, software technolo-
gies for mobile ad hoc networks need to support application programmers by intrinsi-
cally offering support for the hardware characteristics of mobile ad hoc networks. In
this section we give an overview of the three main software engineering principles as
proposed by the ambient-oriented programming paradigm to address these hardware
characteristics, as given by Van Cutsem [Van08].

Network Resilient Communication. The fact that there are disconnections should
not have a high impact on the application components that use these connec-
tions, i.e. the application components should be resilient to frequent disconnec-
tions. This does not imply that the programmer should not be aware of changes
in the network connectivity. The connections in a mobile ad hoc network signify
a physical connection between colocation of mobile devices and whether there is
a communicant link or not, can be important for the application logic. Therefore,
while most of the application components should be ignorant for disconnections,
there should still be abstractions available for the programmer to be notified of
changes in the network connection.

Loosely-Coupled Application Components. Applications for mobile ad hoc networks
can not assume any infrastructure. This implies that mobile ad hoc network ap-
plications cannot designate certain services to an a-priori set of known services
because the presence of these services cannot be guaranteed. In order to deal
with the uncertainty of the services that will be available at runtime, mobile ad
hoc network applications need to be structured in a loosely-coupled way both at
the architectural level and at the execution level. A loose coupling at the archi-
tectural level, means that the application should be composed in such a way that
services can be spontaneously discovered without relying on any infrastructure.
Moreover, the discovered services must be able to be discarded and replaced by
other (equivalent) services at runtime. On the execution level, a loose coupling
is needed to guarantee responsiveness. Applications that lose connectivity with
some required service should not be blocked. All distributed application compo-
nents in the mobile ad hoc network should run autonomously and only commu-
nicate using non-blocking communication primitives. Blocking and waiting for
the reappearance of an unavailable service would halt the entire application.

Decentralized Discovery. Since mobile ad hoc network application cannot assume
any infrastructure, the components themselves are responsible to announce which

2.3. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK 19

service they offer. Similarly, it is the responsibility of the clients to listen to
these announcements and in response trigger the appropriate actions. In an
infrastructure-less network setup, services have to be announced to interested
parties by means of broadcasting advertisements.

In this section, we gave an overview of the hardware characteristics of mobile ad
hoc networks and their implications on software engineering. This overview did not
commit to any specific implementation technique or programming model. Neverthe-
less, there are general abstractions that a suitable programming model should have:
communication abstractions that are resilient to volatile connections, loosely-coupled
components, and decentralized discovery.

2.3 Ambient-Oriented Programming in AmbientTalk

The work on ambient contracts builds upon the principles of the ambient-oriented pro-
gramming paradigm (described in section [2.2.3)) and its technical realization: the Am-
bientTalk language. The AmbientTalk language has been the main research vehicle in
which ambient contracts have been designed and implemented. Although our proposed
abstractions could have been realized in other middleware, the use of AmbientTalk en-
ables us to minimize the accidental complexity of dealing with volatile connections. In
this section we give an overview of the most important AmbientTalk language features.
We explain its distribution and communication model and give a short overview of its
reflective capabilities. While this overview gives an introduction to the main principles
of the AmbientTalk language we limit our explanation to those features of the language
that are necessary in order to understand the code excerpts and technical contributions
shown in the following chapters. A complete introduction to the AmbientTalk language
can be found online [DGM™Q7]. In this section we provide an informal introduction to
the AmbientTalk language, the operational semantics of a core subset of the Ambient-
Talk language is presented in chapter 4.

2.3.1 A Prototype-Based Language

The object model of AmbientTalk is inspired by prototype-based programming lan-
guages such as SELF [US87]. In AmbientTalk, objects are not instantiated from
classes. Instead, they are created ex-nihilo or by cloning and adapting existing objects.
In prototype-based languages, objects are reused and extended by means of delega-
tion [Lie86l| (also known as object-based inheritance).

An example of defining an object in AmbientTalk is shown in Figure The
object is created ex-nihilo and bound to the Point variable (line 1). The definition
of this prototypical object contains a number of fields and methods that represent the
object’s state and behavior respectively. Cloning an object is done by sending the
message new to an existing object. The receiving object creates a clone of itself and
initializes the clone by invoking its init method. The init method thus has a similar
purpose as the “constructor” methods known from class-based languages.

Message Sending and Inheritance. Messages are used both to invoke fields and
methods of an object. AmbientTalk treats field access as a method invocation with
zero arguments, also known as the uniform access principle [Mey00]. Looking up the
field x in the Point object is syntactic sugar for Point.x(). Similarly, assigning the

O 001NN AW -

AN B W=

20 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

def Point := object: {
def x := 0;
def y := 0;
def init(aX,aY) {
X aXx;
y ay;
}
def distance(p) {
sqrt(square(x - p.x) + square(y - p.y))

’

}

def Point2 = Point.new(4,0);
Point2.x;
Point2.distance(Point);
Point2.x :=5;

Figure 2.2: Object definition in AmbientTalk.

x field to the value 5 is syntactic sugar for Point.x:=(5). Because Point.x applies
the method x, different syntax is needed in order to select the method. In AmbientTalk
the & operator can be used to select a method from an object, i.e. Point.&x selects the
method x from the object Point.

An object that receives a message looks up the corresponding method and applies
it. In case a message is sent to an object that does not understand this message, the mes-
sage is transitively and automatically delegated to its parent object. Each AmbientTalk
object has a special slot called super that represents the parent. The default value of
super is bound to nil. When a message is sent to the value nil an exception is thrown.
Important to note is that the super field of an object is a regular field. Therefore, the
parent field of an object can be changed at runtime, this enables dynamic inheritance
reminiscent to inheritance in Self [US87|]. Creating a new object that extends an exist-
ing one can be done at once by making use of the extend:with: function. Figure 2.3]
shows an example of extending the Point object defined in Figure[2.2]

Because the super field is a regular field, invoking a method directly on the super
field is not what is traditionally understood by a super send. When invoking methods
on the super field the self variable is not bound to the sender of the message but as
regularly to the receiver of the message. To explicitly delegate a message to another
object AmbientTalk supports the delegate (*) operator. When sending a message using
the delegate operator, the self variable is left bound to the sender of the message.

def Circle := extend: Point with: {
def r := 0;
def init(r,x,y) {
super~init(x,y);
}
}

Figure 2.3: Extending an object in AmbientTalk.

Scoping. Variables in AmbientTalk are looked up in the lexical scope. When they are
not found in the lexical scope they are looked up in the delegation chain of the object
in which the variable was refereed. The programmer can explicitly choose to ignore
the lexical scope of a variable by qualifying the object in which the variable needs to

2.3. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK 21

be looked up, i.e. self.x.

Block Closures. Anonymous functions or blocks are extensively used in Ambient-
Talk i.e. to implement delayed computations in the branches of an if-then-else expres-
sion. Figure [2.4] shows an example of a basic block to sum two numbers. Blocks are
created using curly braces and the expected arguments are listed between bars (I). In the
example the block requires two numbers which are bound to the variables a and b when
the closure is applied. If the block does not require any argument, the |<varlist>|
can be omitted.

>{|a, b| a+b }(3,2)
>>5

Figure 2.4: Defining and applying a block.

Keyworded messages. AmbientTalk supports keyworded messages as in
Smalltalk [GR89] and Self [US87]. In Figure 2.5 the definition of the key-
worded function map:onto: is shown. This function takes a closure and a table as
arguments and applies the closure to each element of the table. In the example, we
explicitly create a block that increments its argument. This closure is passed to the
map:onto: function together with the table [1,2,3]. As expected, the result of this
function application is [2,3,4].

>def map: clo onto: tbl {

}

>> <closure:map:onto:>

>map: {|x]|x+1} onto: [1,2,3]
>>[2,3,4]

Figure 2.5: Keyworded function definition in AmbientTalk.

Type Tags. All objects in AmbientTalk have a set of type tags. A type tag categorizes
the object to which it is attached in a certain group. A type tag can be best compared
with an empty Java interface. All primitive objects such as numbers, strings and tables
have type tags to indicate to which category they belong. The programmer can create
new type tags with the keyword deftype. For example, deftype Circle; creates a
new Circle type tag that can be used in order to tag new objects. Tagging an object is
done with the object:taggedAs: construct. Once an object is created it is impossible
to change the tags of the object, i.e. the type tags of an object are immutable. The
most important use of type tags is to define in which way objects are passed to remote
objects as shown in section[2.3.3]

2.3.2 A Concurrent Language

The AmbientTalk’s concurrency model is based on the model of the E language’s com-
municating event loops [Mil06]], which is itself an adaptation of the well-known actor
model [[Agh86]. In this model, an actor is a container of regular objects encapsulating

22 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

a single thread of execution called an event loop. Throughout this text, the terms event
loop and actor are used interchangeably and always refer to the “actors” as defined in
the communicating event loop model. An event loop perpetually takes a message from
its message queue and invokes the corresponding method of the object denoted as the
receiver of the message. The method is then run to completion denoting a furn. A turn
is executed atomically, i.e. an actor cannot be suspended or blocked while processing
a message. Messages are processed serially and to completion to avoid low-level race
conditions on the mutable state of the contained objects.

N

Actor (Actor Message from Ato B

~_ Event -
CTTTI% ier (T
A Y A Y

’ ’
Message ~=

queue O\>®\ /

Object Far reference

\ J \ J

Figure 2.6: Communicating event loop model.

Figure[2.6]illustrates actors as communicating event loops. In the AmbientTalk ac-
tor model, there is no sharing of objects between actors and each object is owned by
exactly one actor. The event loop (represented by dashed lines) processes incoming
messages one by one and synchronously executes the corresponding methods on the
actor’s owned objects. Only an object’s owning actor may directly execute one of its
methods. Objects owned by the same actor may communicate using standard, sequen-
tial message passing or using asynchronous message passing. It is possible for objects
owned by one actor to refer directly to individual objects owned by another actor. Such
references that span different actors are named far references. The terminology stems
from E [Mil06]. Far references only allow asynchronous access to the remote object.
Any messages sent via a far reference to an object are enqueued in the message queue
of the owner of the object and processed by the owner itself. For example, when A
sends a message to B, the message is enqueued in B’s message queue, which eventu-
ally processes it. A turn consists of the execution of a number of synchronous method
invocations and asynchronous message sends. The method invocation stack is empty
both at the start and at the end of a turn.

Message Passing. There are two types of messages that can be sent to an object, syn-
chronous or asynchronous. Synchronous messages can only be sent to objects which
reside on the same actor. Communication with an object in another actor happens asyn-
chronously by means of far references: object references that span different actors. In
AmbientTalk asynchronous method invocations are indicated by the arrow operator <.
An asynchronous message is enqueued in the receivers’ message queue, which eventu-
ally processes it. Important to note is that AmbientTalk guarantees message ordering on
the outgoing messages, i.e. messages sent from one actor to another actor are received
in the same order as they are sent.

When a far reference to a remote object A is passed in a message a new far reference
is created at the receiver side which points directly to the object A. When a far reference
pointing to an object B is sent to the actor that owns the object B it is resolved back to
a local reference.

NN B W =

2.3. AMBIENT-ORIENTED PROGRAMMING IN AMBIENTTALK 23

By default, the objects in AmbientTalk are passed by far reference. In order to
pass objects by copy, they have to be created with the isolate: construct instead of
the object: construct. The name isolate comes from the fact that isolates do not have
a surrounding lexical scope i.e. they are isolated pieces of code. Lexically visible
variables have to be manually copied into the isolate’s scope. When an objects tagged
as an Isolate is sent in an asynchronous message a copy of the object is created and
all the objects that are referenced by the isolate are also copied according to their own
type tags. Primitive types such as strings and numbers are all tagged as Isolate.

Future-type Message Passing. Synchronous and asynchronous messages are not
only different in how arguments are passed, they also differ in how the result of process-
ing the message is obtained. Sending a synchronous message evaluates to the result of
processing the message immediately. The result of sending an asynchronous message
is a future [YBS86]. A future acts as the placeholder for the return value of processing
an asynchronous message. Special about the futures in AmbientTalk is that retrieving
the result where the future resolves to is also a non-blocking operation.

Figure shows a concrete example of using future-type message passing. First,
an asynchronous message getName is sent to a remote messenger application. The
result of this message is a future which is bound to the variable fut. Retrieving the
value where the futures resolves to is done by registering a callback function with the
when:becomes: construct. This construct expects a future and a block that is registered
to the future as an observer. When the future resolves to a value the registered callback
is applied to the resolved value. In the example, the future is expected to resolve to
a string representing the name of the remote messenger application, which is printed
when the future resolves (line 5). The when:becomes: construct returns a future on its
own which is resolved to the return value of evaluating the registered callback function.

def fut := messenger<-getName();

when: fut becomes: { |name]|
system.println("Buddy Name = " + name);
+

Figure 2.7: Future type message passing in AmbientTalk.

As will be shown in the operational semantics of the AmbientTalk (Chapter 4), fu-
tures in AmbientTalk allow asynchronous messages to be sent to the return value of
a remote computation even when it is not computed yet. Messages sent to an “unre-
solved” future are stored in the queue of the future. When the future resolves, the queue
of messages is forwarded to the resolved value.

2.3.3 A Distributed Language

Now that we have shown the object-oriented and concurrent language constructs of
AmbientTalk, we can show the distributed language constructs. We start by showing
how objects can be published in the network and how a remote client can discover
objects without having to rely on a centralized server. We then show how the remote
object references can be used to communicate values over the network.

24 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

Publishing Objects. AmbientTalk provides language support to make an object avail-
able to other objects that reside in remote actors by means of the export:as: construct.
The export:as: construct takes two arguments: the object that is made remotely ac-
cessible and a service type under which the object can be discovered. For example, in a
distributed chat application the messenger service of one node in the network is made
accessible to the other nodes as shown in Figure 2.8]

deftype InstantMessenger;
def messenger := object: {
getName() { ... };

}....

’
export: messenger as: InstantMessenger;

Figure 2.8: Publishing objects in the Ambient for remote discovery.

When an object is exported by its actor, it becomes discoverable by other actors by
means of its service type. In this example the messenger object is made accessible to
other nodes in the proximity by means of the InstantMessenger type tag. Internally,
the object is placed in the export table of the actor. As shown in the example, a ser-
vice type is represented by a type tag. Services types denote an abstract publication
topic. The export:as: construct returns a publication object that responds to a cancel
method that can be used to cancel the publication, i.e. unexport the object.

Registering for Object Discovery. AmbientTalk has a decentralized object discov-
ery mechanism. When exporting an object it is advertised in the network by means of
its service type as specified in the export construct. AmbientTalk allows the program-
mer to register an observer that is triggered when a remote object of a certain service
type becomes available in the network. For example, one can discover an object ex-
ported with the InstantMessenger service type by means of the when:discovered:
construct, as shown in Figure @} Similar to export:as: it returns a subscription ob-
ject that responds to a cancel method that can be used to cancel the subscription so that
the callback is no longer invoked.

when: InstantMessenger discovered: { |messenger|
when: (messenger<-getName()) becomes: { |name]|
buddyList.put(name, messenger);
system.println("Added buddy: " + name);

I

I

Figure 2.9: Object discovery in AmbientTalk.

The callback to execute when the service type becomes available receives as pa-
rameter the actual remote reference to the discovered service object. In Figure 2.9
messenger is a remote reference to the remote object exporting the InstantMessenger
service type (defined in figure[2.8).

Imagine the interaction between the instant messenger applications executing on
the mobile devices of two persons, e.g. Chris and Lisa. When Chris’ instant mes-
senger and Lisa’s instant messenger come into one another’s communication range,
Chris will discover Lisa and vice versa since both are exporting and discovering the
InstantMessenger service type. Both obtain a far reference, which is bound to the

2.4. AN EARLY PREVIEW OF AMBIENTTALK/C 25

variable messenger, over which only asynchronous messages can be sent. The when
:discovered: callbacks are triggered only once when an InstantMessenger service
type becomes available in the network. To be able to discover all other instant mes-
senger buddies available in the network, the whenever:discovered: construct can be
used. The block of code specified in whenever:discovered can be fired multiple times
upon discovering several exported objects. Note that objects exported by an actor do
not trigger the actor’s own when:discovered: nor whenever:discovered: observers.

Network Failures. The communication model of AmbientTalk makes intermittent
disconnections transparent for the programmer. Whenever an asynchronous message
is sent to a disconnected far reference the message is buffered and sent when the con-
nection is reestablished. However, in certain situations it is important to make the
user aware of a disconnection. For example, in the messenger application the GUI
could gray out disconnected communication partners. Figure shows how this
functionality can be encoded in AmbientTalk. In order to be notified of the state of
a far reference the programmer can register observers to be notified of disconnections
and reconnections. The two constructs whenever: disconnected: and whenever:
messenger reconnected: both expect a far-reference and a block which is applied
when the far reference disconnects or reconnects respectively.

whenever: messenger disconnected: {
//update the gui

whenever: messenger reconnected: {
//update the gui
}

Figure 2.10: Dealing with disconnections in AmbientTalk.

2.4 An Early Preview of AmbientTalk/C

In this section, we scratch the surface of our ambient contract system called Ambi-
entTalk/C. We start by showing the general validation strategy used for the validation
of ambient contracts. Subsequently, we show the expressiveness of our contract system
by how ambient contracts can validate functions, methods and object in the presence
of ambient-oriented language abstractions. Ambient contracts in this section are ex-
plained from an end programmer’s perspective. The overview in this section is not
detailed and only serve as a sneak preview of the kind of contracts explored in this
dissertation.

2.4.1 Ambient Contracts Validation Strategy

As mentioned in the introduction chapter, ambient contracts are validated at runtime
because static techniques to verify the properties of an ambient contract system would
either require: extensive annotations, a lot of computation or both. Contracts in Am-
bientTalk/C validate the operation of runtime values such as objects, functions, far
references, futures etc. In contrast to early contract systems such as adopted in Eif-
fel [Mey91]] AmbientTalk/C has support for complex first-class values. The validation

_ =

— OO 00NN B W=

26 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

strategy to validate complex first-class values is adopted from the research on contracts
for higher-order functions [FF02|]. In the following sections we exemplify why the
validation of higher-order functions is more complex and explain the concept of blame
assignment.

Runtime Errors and Contract Systems. Many times when an error is detected at
runtime, the point in the program where the error is detected (e.g. line number) is not
related to the point in the program where the problem is caused. Contract systems
help the programmer in relating the point where the error is detected to its cause. An
example of an error that is difficult to relate to its cause is shown in figure 2.T1} Each
code snippet shows two pieces of code, the top part of the examples shows pseudo code
for a supplier module, which exposes two functions: set and increment. The bottom
part of the examples shows pseudo code for the clients of the supplier modules. When
a client applies the set function the supplier stores this value in a variable x. When the
client applies the increment method the value stored in the variable x is assigned to its
value incremented by one.

//suplier 1 //suplier
def x := 0; 2 def x :=0;
3 //int -> int
def set(y) { x :=y; }; 4 def set(y) { x :=y; };
def increment() { 5 def increment() {
X =X+ 1; « ERROR 6 X 1= X + 1;
I 7 %
8
//client 9 //client
set("Wrong"); < CAUSE 10 set("Wrong"); < ERROR,CAUSE
increment(); 11 get();

Figure 2.11: Errors signaling without contracts (left) and with Contracts (right)

On the left side of figure[2.T1] the client code first applies the set function provided
by the server to the value "wrong". The server stores the value "wrong" in the variable
x. Subsequently, the client applies the function increment. The server then tries to
increment the value stored in the variable x which at that moment in time is still the
value "wrong" (line 6). In many languages this program crashes with an error message
informing the programmer that strings can not be added to numbers. Note that the
error is inside of the body of the function increment (line 6) while the responsibility
actually lies at the caller of the function set (line 10). Finding such an error in a large
program is not trivial because the programmer needs to verify all paths in the code
through which the value x can be assigned.

Using a contract system significantly improves the programmer’s understanding of
where the error was caused. Figure 2.11] on the right shows exactly the same code
as shown on the left but now a contract (int — int) over the function set is defined.
This contract validates that the argument over the function set is an integer and that
the result is an integer. The contract system uses this information and can detect the
problem when the set function is applied. Therefore, the place in the code where the
error is signaled and the cause of the problem are now synchronized. A contract system
thus helps the programmer in relating the point where the error is detected and which
part of the software is responsible for the error.

The kind of contracts shown in figure 2.1T|define trivial properties, i.e. is the value
an integer ?. Such contracts are called flat contracts [FF02]. Note that, Rice’s theorem

——

— OO0 XIN N B W=

2.4. AN EARLY PREVIEW OF AMBIENTTALK/C 27

has shown that it is undecidable whether an algorithm implements a partial function
with a non-trivial property [Ric53]. Therefore, contract systems can not deal with
higher-order functions in the same way as with data. Contracts that can also deal with
higher-order functions and objects are called higher-order contracts.

Higher-Order Contracts. Higher-order contracts deal with the validation of com-
plex first-class values such as functions by postponing the validation of the contracted
functions until they are used. When an error occurs during the execution of the pro-
gram the cause of an error is no longer directly related to where the error is detected.
At first sight this reduces the usability of a contract system significantly, as again the
cause of the error and where the error manifests itself are drifting apart. However, by
making use of a technique called blame assignment the contract system can still point
out the responsible of the violation.

Consider the example shown in figure The contract defined over the function
set is now changed to indicate that set should be applied to a function. This func-
tion should be applied to a number and should return a number. The server simply
assigns this function to the variable y. The second function of the server is the function
getResult. This function applies the function stored in the variable x to the number
42.

//supplier

def x;

//(int -> int) -> int
def set(y) { x :=y; };
def getResult() {
x(42); < ERROR
+

//client
set({|x| "Wrong"}); + BLAME,CAUSE
getResult();

Figure 2.12: Contracts in a system with first-class functions.

The client shown at the bottom of figure [2.12] first applies the function set with
a function that always returns the string "wrong". Subsequently, the client applies
the function getResult and a violation is detected. What a contract system for higher-
order functions does is to keep track of the responsibilities of the server and the client in
order to point out the responsible when a contract violation is detected. In the example
this means that the contract system can assign blame to the client module when the
variable x is applied to the value 42.

Summary. Ambient contracts are validated at runtime and allow the specification of
contracts over higher-order functions, objects, far references, and futures. For all these
values the contract system points out the responsible party when an error is detected,
i.e. the party to blame. As we show in the following sections the introduction of such
values introduces a number of problems that were not studied before.

2.4.2 Behavioral Validation: Computational Contracts

Ambient contracts allow the programmer to express that certain events should or should
not happen during the execution of the contracted value. We call such contracts compu-

O 01NN AW -

28 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

tational contracts. In order to give an intuitive feeling of a computational contract, con-
sider the widely known observer pattern [GHJVO9S]. In this pattern, observers can be
registered to a subject which notifies the observers of interesting events. Imagine a sub-
ject called eventSource with an addMeasurement method. When the addMeasurement
method is invoked the eventSource should notify all registered observers. With com-
putational contracts the programmer can ensure that the notifyAll method is invoked
during the execution of the addMeasurement. The way to specify such a contract is
shown in figure 2.13] In this figure, there are two object contracts defined with the
ObjectContract construct. An object contract is defined similarly to how an object
is defined. The methods of an object contract define the interface that the contracted
values should support. The bodies of these methods define the contracts that should be
satisfied by the methods of the contracted object.

def measurment := ObjectContract: {
def getMeasurement() { void -> int }
}

def eventSource := ObjectContract: {

def addMeasurement(m) {
int -ensure_c(notifyAll)-> void;
}i
I

def moduleInterface := object: {
def contractedSource := export: source withContract: Ref(eventSource);

I

Figure 2.13: A computational contract example.

The first object contract measurement validates whether an object has a
getMeasurement method. The contract (void -> int) defined over this methods
specifies that the method does not take any arguments and must return an integer value.

The second object contract is called eventSource. The contract over the method
addMeasurement, (int -ensure_c(notifyAll)->nothing), specifies that the method
must be applied to a integer value and should not return any value. The computa-
tional contract is defined over the arrow (ensure_c(notifyAll)). It specifies that the
notifyAll method should be applied during the execution of the method over which
it is defined, i.e. addMeasurement. When the addMeasurement method does not apply
the notifyAll method blame is assigned.

In AmbientTalk, the interface of a module is the latest object defined in the module.
All the fields of that object are accessible to modules that import the module. In our
example, this interface is shown from lines 12 till 14. Contracts are deployed over
objects when they are exported by the module. For example, the code to export an
object called source is shown at line 13. Note that the object contract is instantiated
with the function Ref in order to indicate that this is a local object. Later another
instantiation function FarRef is shown to indicate that the contract is defined over a far
reference.

As we will show in chapter [5] computational contracts go beyond single invoca-
tions, they also allow the validation of a sequence of function applications and object
protocols. For example, an object protocol over a file object can specify that the write
method can only be applied after an invocation of the open method.

QNN BN =

2.4. AN EARLY PREVIEW OF AMBIENTTALK/C 29

Summary Ambient contracts allow the validation of internal behavior of the con-
tracted entities. This is important in the light of ambient-oriented applications where
messages are being sent as the effect of receiving messages. Ambient contracts sup-
port contracts that can validate these messages by means a novel contract system called
computational contracts. These contracts are the main subject of chapter 5]

2.4.3 Validation of Event-Driven Applications

To minimize the effects of volatile connections on the program code all communication
with remote entities is asynchronous. The result of sending an asynchronous message
is a non-blocking future. The AmbientTalk/C framework allows the programmer to
define contracts over where such futures should resolve to. Such contracts are created
with a contract constructor Fut. For example the contract Fut[nat] creates a new
contract that can validate whether or not a future resolves to an natural number. We
will show in chapter [6] that future values invert the responsibilities of the supplier and
the client of the contract. This inverted responsibility also inverts the blame assignment
strategy.

As an example consider again the observer pattern shown in the previous section
but instead of receiving a measurement object directly, the eventSource receives a
future that should resolve to a measurement object. The code for this example in
AmbientTalk/C is shown in figure 2.14] This example combines object contracts, fu-
ture contracts and computational contracts. The contract on line 4, specifies that the
addMeasurement method should receive a future that resolves to a value that satisfies
the measurement contract. The computational contract on line 4, again validates that
the notifyAll method is applied during the execution of the addMeasurement and
finally it specifies that the method should not return anything.

def eventSource := ObjectContract: {

def addMeasurement(m) {
fut[measurment] -ensure_c(notifyAll)-> nothing;
}
}i

Figure 2.14: Supplier Module

Summary The use of futures and their callbacks is omnipresent in the development
of ambient applications. In the AmbientTalk/C framework we have provided abstrac-
tions specifically for defining contracts over futures and their callbacks. These con-
tracts are explained in chapter|[§]

2.4.4 Validation of Distributed Applications

As previously explained, AmbientTalk is a distributed language that employe a non-
blocking communication model.

Figure [2.15]depicts two communicating actors. The server actor hosts an object A,
the client actor has a far-reference to this object A. When we refer to the server-side
of a distributed ambient contract, we refer to the module that hosts the object under
contract. When referring to the client-side of a distributed ambient contract, we refer
to that module which receives a far reference i.e. a reference to an object hosted by

O 001N WU B W -

30 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

another actor. Note that the server-side and client-side view depends on the object over
which the contract is defined. It is perfectly possible for an actor to be a server for one
object and a client of another object.

In an ambient application programmers should be able to define contracts both at
the server or at the client-side. From the server’s perspective, the idea is to protect the
incoming messages to the exposed objects. From the client’s perspective, the idea it to
protect the themselves from receiving misbehaving far references.

Server A
~ Event
[TTT1% rooe Q)
N\,
Message ~-7
queue O\‘
@ Far reference
Object

Server Contract

Client Contract

Figure 2.15: Server side and client side contracts over objects.

Object contracts can be defined over local objects (server side) with Ref as shown
in section [2.4.2] but they can also be used to specify contracts over far references with
FarRef (client side). As an example of a distributed ambient contract, consider the
instant messenger application previously explained in section[2.3.3] Figure[2.16|shows
two object contracts called user and chat. The user contract specifies that the user
should should have a method getName that does not take any arguments and returns a
string. The chat contract specifies that the instant messenger understands a message
method that receives a far reference that satisfies the user contract and a value satisfy-
ing the string contract.

Assume that there is a messenger object that satisfies the chat contract. This ob-
ject is exported a line 13 so that clients in the network can discover this object. The
actor shown in figure[2.16)is the server of the chatApplication object. Therefore, ex-
porting the object to the network is performed with a Ref contract constructor. When
the chatApplication receives a message from a remote actor, the actor shown in fig-
ure 2.16] is the client of the remoteUser. Therefore, the incoming message is con-
structed with farRef.

def user := ObjectContract: {
def getName() {
void -> string;
}
I

def chat := ObjectContract: {

def message(remoteUser, message) {
farRef(user) * string -> nothing;
I
I

export: messenger as: InstantMessenger withContract: Ref(chat);

Figure 2.16: Distributed ambient contracts

2.4. AN EARLY PREVIEW OF AMBIENTTALK/C 31

Summary The AmbientTalk/C framework supports both server-side and client-side
(distributed) contracts. Server-side contracts are the subject of chapter [while client-
side contracts are discussed in chapter[7]

2.4.5 Ambient Contracts Overview

In this section, we give an overview of the design space of the AmbientTalk/C contracts
system. For a long time, contracts were limited to flat contracts which can be expressed
as simple predicates. With the introduction of higher-order contracts [FF02] the design
space became bigger. It was no longer necessary to limit contracts to be simple pred-
icates. Therefore, contracts could also be defined over higher-order functions and ob-
jects. Ambient contracts apply higher-order contracts to distributed ambient-oriented
programming and introduce two other dimensions. A first dimension allows contract
systems to capture meaningful properties over the execution of a contracted entity. The
second dimension is the exploration of contracts over remote object references.

The design space explored for the definition of the AmbientTalk/C framework is
shown in figure The figure summarizes the 3 dimensions of an ambient contract
system: the distribution, the contract type and the value over which the contract is de-
fined. For the values dimension we consider, data, functions, objects and future values.
We consider non-blocking futures apart from objects because they require a different
validation strategy as we show in chapter[6] For distribution we consider whether the
contract is a server-side contract or a client-side contract. Finally, we consider flat,
higher-order and computational contracts as the different kind of contracts.

The sum of all these variations shown in figure 2.17]is what we called ambient
contracts. While the main contribution of this dissertation are those contracts which
were not explored before, ambient contracts also allow the programmer to encode con-
tracts that were already studied before. As such, ambient contracts subsume a number
of previously studied contract systems.

Contract
Futures >

Objects

S

/(QQJ6

Functions &
@

S O
.soé\ Data
&8
y Flat HigherOrder Computational

Figure 2.17: The ambient contracts design space.

In the rest of this dissertation, we explore each of the variations shown in fig-
ure In chapter [5] we focus on computational contracts over functions. Chapter [6]

32 CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING

shows object contracts at the server-side and the exploration of non-blocking future
contracts. In chapter[7|we give an overview of client-side contracts on far references.

2.5 Conclusion

In this chapter, we have given an overview of the ambient-oriented programming pa-
radigm. We have shown the basic requirements that a programming language should
support to be applicable for the development of ambient applications. Subsequently,
we have shown an overview of the AmbientTalk language, an ambient-oriented pro-
gramming language that adheres to the requirements distilled from the hardware char-
acteristics of mobile ad hoc networks.

The ambient-oriented programming paradigm and its concrete instantiation in the
AmbientTalk language form the foundations on which we have developed our ambient
contract framework called AmbientTalk/C. We have shown the design decisions taken
for the development of the AmbientTalk/C framework and briefly introduced the design
space explored. In the next chapter, we discuss related work and show that many
of existing contract systems, have support for some of the variations in our design
space. However, for other variations in this grid no previous work was conducted. The
contribution of the AmbientTalk/C framework lies in the development of a contract
system that supports all the variations necessary to operate in an ambient environment.

Chapter 3

Related Work: Software
Verification Techniques

The goal of this dissertation is to define a contract system which is applicable for
ambient-oriented programming languages. This chapter starts with an overview of
existing systems for design-by-contract. We categorize contracts based on the kind of
properties that are stated over the exchanged values. Once the different categories of
contracts are shown, we zoom in on the challenges of ambient contracts and present the
focus of our work with respect to the different categories of contracts system. With this
focus in mind, an overview of related contract systems is given. The related work is
presented by giving a description of the advantages and disadvantages of each existing
system with respect to monitoring an ambient system. Finally, we conclude the related
work with a short summary about which elements of the related work provide us with
the best starting point for the definition of ambient contracts.

3.1 Categorization of Software Contracts

Software contracts can be applied for verifying different aspects of the execution of
a program. In this dissertation, we follow the categorizations introduced by Beug-
nard et al [BJPW99]. An overview of the categorization is shown in figure [3.1] There
are basically four levels at which contracts can be applied with increasing negotiable
properties. At the lower level, contracts are not flexible and consist of the basic require-
ments that make a program work, i.e. the type signature of functions. At the highest
level, non-functional requirements such as the quality of return values of functions are
incorporated. The grey zone in between these extremes consists of behavioral and syn-
chronization contracts which in certain situations maybe negotiable or not. A detailed
description of these categorizations is given in the remainder of this section.

Syntactic Contracts (or basic contracts). The goal of a syntactic contract is sim-
ply to help ensuring that a program works. One possibility of specifying syntactic
contracts is by means of an Interface Definition Language (IDLs). In typed program-
ming languages syntactic contracts are defined by the specification of types. Syntactic
contracts are not negotiable as failing to adhere to the contract results into a system that
does not work.

Figure [3.2] shows an example of a syntactic contract in the form of an interface
in a typed language. The example shows the interface for a specific stack where the

33

34 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

Quality-of-service

Synchronisation
[path expressions,
synchronisation counters]

Behavioral
[pre and postconditions]

Syntactic
[typing]

Figure 3.1: Overview of the categorizations of contracts by Beugnard et al [BJPW99]

elements that can be pushed must be integer values. This is indicated by the type
declaration of the push method. Similarly, the type declaration of the pop method
indicates that its return value must be an integer. The interface also specifies that any
IntStack must implement a clear method. Depending on the expressiveness of the
type system these contracts can be verified statically.

public interface IntStack {
void push(int x);

int pop();

void clear();

}

Figure 3.2: Example: Interface Contract in a Java Like Language.

Behavioral Contracts. Unfortunately, syntactic contracts do not say anything
about the effect of executing an operation. The pop operation of the stack example
will probably return an integer value, but the syntactic contract does not specify what
happens in case that the stack is empty. Influenced by abstract data type theory, Beug-
nard et al. defined behavioral contracts by using boolean predicates over the provided
operations [BJPW99]. Such boolean predicates are executed before and after the op-
erations are executed and, hence, are called pre and post-conditions. The goal of such
pre and post-conditions is to capture the effect of executing each operation. While syn-
tactic contracts ensure compatibility at a syntactic level, behavioral contracts also try
to capture semantic compatibility.

An example of a behavioral contract over the IntStack is shown in figure [3.3]
Pre-conditions are indicated by the keyword Require and specify requirements for the
client. For example, the pre-condition of the pop operation specifies that the client can
only call the pop operations in case the size of the stack is bigger than zero. Post-
conditions are indicated by the keyword Ensure and specify requirements for the sup-
plier. The post-condition of the pop operation specifies that the size of the stack after

3.1. CATEGORIZATION OF SOFTWARE CONTRACTS 35

executing the pop operation should be the old value (indicated with @pre) decreased by
one.

public interface IntStack {
void push(int x){

Ensure size() = size()@pre + 1;
I
int pop() {

Require size() > 0;

Ensure size() = size()@pre - 1;

I

void clear() {
Ensure size() = 0;
I

}

Figure 3.3: Example: Behavioral Contract in a Typed Language.

Synchronization Contracts. The goal of a synchronization contract is to specify
the coordination of the exposed operations. Often such synchronization contracts can
be expressed by a labeled transition system which ensures that the operations are used
in the proper order. Some systems define a domain-specific language in order to specify
such constraints in the form of path expressions. In systems that do not have direct
support for synchronization contracts, the programmer often has to fall back to low-
level synchronization techniques like locks and semaphores.

An example of a synchronization contract for the stack example is shown in figure
The goal of this contract is to make sure that threads access the stack are mu-
tually exclusive. This is achieved by defining all the methods of the IntStack to be
synchronized.

public interface IntStack {
void synchronized push(int x);
int synchronized pop();

void synchronized clear();

}

Figure 3.4: Example: Synchronization Contract in a Java like Language.

Quality of Service Contracts. The goal of a quality of service contract is to vali-
date certain qualitative aspects of the operations. Examples of such quality of service
contracts may include the duration of the operation, leasing time, precision of the reply,
the resolution of a video stream etc. Unlike the other levels the quality of the service is
subject to negotiation in many situations.

3.1.1 Design considerations for AmbientTalk/C

In this dissertation, we focus on the formulation of a contract system to validate the
behavioral and synchronization aspects of an ambient application.

Syntactic Contracts. The focus of this dissertation is to define a contract system
for a dynamically typed language. In particular, in this dissertation ambient contracts
are investigated in AmbientTalk. The AmbientTalk language does not have a static
type-system for the verification of ambient-oriented programs. However, many ad-
vanced static verification techniques have been proposed in order to verify the behav-
ioral or synchronization properties of distributed applications. In the following sec-

36 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

tions, we highlight static verification techniques, show their advantages and show why
it would be difficult to incorporate them in an ambient-oriented programming language.

Behavioral Contracts. The core of the ambient contracts system presented in this
dissertation is focused on the behavioral verification of ambient applications. Am-
bient contracts provides the programmer with pre and post-conditions that allow the
programmer to capture the behavior of the ambient application in a contract. When
programming ambient applications programmers make extensive use of language con-
structs such as non-blocking futures and callbacks. The combination of these properties
into a single contract system introduces problems that have not been investigated in the
related work.

Synchronization. As explained in section the core of the ambient-oriented
paradigm is based on the well known actor model. At the heart of this model lies a
synchronization model that helps the programmer to deal with certain problems intro-
duced by concurrency. One of the major design decisions for synchronization when
ABCL [Yon90] proposed active objects as an extension to the actor model was:

“One at a time: An object always performs a single sequence of actions
in response to a single acceptable message. It does not execute more than
one sequence of actions at the same time.”

Since then sequentiality of processing messages, has been one of the main rules
in stateful actor languages such as Erlang [AVWWO96|, Akka and Scala [HOQ7],
Kilim [SMOS8], ProActive [BBCT06|], E [Sti04], Salsa [VAOI] and Ambient-
Talk [DVM™05]. In all these languages execution of parallel messages within a single
actor is disallowed by construction, e.g., every actor has only one thread of control and
data cannot be shared between actors. Therefore, the synchronization over individual
objects within an actor is dealt with by the underlying paradigm. Besides the concur-
rent access of one specific object there is also synchronization needed to manage the
order of individual messages sent by one actor to another actor. Such synchronization
properties are not easy to encode in an event-loop concurrency model as adopted in
AmbientTalk. Therefore, the focus of ambient contract with respect to synchroniza-
tion is on the order of the outgoing and incoming messages. For other synchronization
issues such as deadlocks and low-level race conditions, we rely on the underlying con-
currency model of AmbientTalk that precludes such issues by design.

Quality of Service The quality of service of the different components of an ambient
applications has been studied in the context of ambient systems [ZBS97, [FK99||ILN99J.
The focus of most of those systems is to guarantee a certain quality of service accord-
ing to the fluctuations in the context of the application. As shown in the introduction
the research on context-oriented programming for ambient systems is still under in-
vestigation and contract systems to validate the quality of service would certainly be a
valuable asset. However, most of the quality of service contracts are defined for sys-
tems that assume that mobile devices are very slow and have very limited resources. In
the design and implementation of the ambient-oriented paradigm, none of those char-
acteristics are taken into account because they are likely to be solved by technological
advances. The focus of ambient contracts is not on the negotiable properties nor on
how to adapt the applications according to the context. Nevertheless, we also survey
the more interesting frameworks for quality of service validation.

3.2. SURVEY OF RELATED WORK 37

3.1.2 Conclusion

In this section, we have shown an overview of the categorizations of design by contract
systems. We have shown that contracts can be categorized in four levels depending
on their functionality and negotiability. Subsequently we evaluated these categories
and showed on which of these categories ambient contracts have focused. Contracts
have proven to be applicable in a wide range of software engineering concepts such
as components, testing and debugging of distributed real-time systems and even high
performance computing. In the following section an overview of the most related work
is given.

3.2 Survey of Related Work

In this section, we give an in depth overview of systems (contracts, session types, in-
teraction protocols, process calculi, etc.) with the common goal to verify or monitor
the behavior of a program. The overview is not limited to systems that have been de-
signed to operate in an ambient environment. We broaden our scope because many
of the interesting design decisions that constitute ambient contracts are adopted from
contract systems that were not specifically designed for an ambient environment. The
discussion of the systems that are not designed for ambient applications puts the atten-
tion on the differences of both kind of systems. We evaluate these systems against the
specific requirements for the development of ambient applications, i.e. we highlight
the advantages of those systems and we explain their limitations for the deployment in
an ambient environment.

3.2.1 Higher-Order Behavioral Verification Techniques

The use of higher-order programming languages makes the design and implementation
of many systems easier, more reusable and more general. The development of ambient
systems is no exception in that regard. Object references are sent from one node to
another and sending messages to objects transitively results in receiving more object
references. In this context we discuss the related work that deals with contracts for
higher-order functions and objects.

3.2.1.1 Runtime Verification Techniques

We start by giving an outline of the work that has been conducted for runtime verifica-
tion followed by the work that has been done using static verification.

Contracts for Higher-Order Functions A decade ago Findler and Felleisen [FF02]
introduced higher-order contracts in a Scheme like language [KCROS|. It differen-
tiates between contracts defined over simple values and contracts defined over func-
tions. Contracts over simple values are predicates for example, a predicate that checks
whether a value is bigger than ten. Such contracts are called flat contracts while con-
tracts over functions are called function contracts.

Function contracts are of the form C; — C,. where Cj; is a contract over the domain
of the function and C. is a contract defined over the range of the function. C,; and
C, can be either a flat or a function contract as the contract system supports higher-
order contracts. Higher-order contracts are specified over the set of functions provided

38 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

(exported) by a module. At all other parts in the program’s code the use of contracts
is transparent. Prior research showed that this way of specifying contracts is the most
effective [FF02].

At the core of their contract system lies a validation mechanism that allows the
programmer to define contracts over higher-order functions. As shown in section [2.4]
higher-order function contracts are validated by postponing the validation of the con-
tract until the contracted function is used. Because the validation of contracts over
functions is postponed, it is no longer clear (for the programmer) which party violated
the contract when a violation is detected. Therefore, the contract system tracks the
responsibilities of the supplier and the client in order to point out the responsible party
upon detecting a contract violation. This mechanism, called blame assignment, is one
of the main contributions of their work. An in depth explanation of this mechanism is
shown in section[3.1]

Recall from section that in ambient systems the problems of volatile con-
nections are mitigated by using asynchronous message passing in combination with
futures. When the result of an asynchronous message is available the future is resolved
with that value. Findler and Felleisen do not consider applications dealing with (asyn-
chronous) communication but in their original paper they do point out the importance
of dealing with callbacks. Their solution is based on a concept called dependent con-
tracts. Dependent contracts allow the programmer to specify contracts that depend
on the value of the function’s argument. The signature of a dependent contract is as

follows: Cy % (Ma)C}). In this signature Cy is a contract over the domain of the
function and C, is the range contract. The lambda expression is a function that is ap-
plied to the original arguments of the function and is expected to return the contract
over the range. Because the range contract is nested in the lambda expression, it can
access the arguments.

Findler and Felleisen propose to validate callbacks with dependent contracts by
capturing the state S, of the system relevant to validate the contract before the function
is applied and then validate it against the state S, of the system after the function is
applied. This is possible with dependent contracts because the lambda expression of
the dependent contracts is applied before the function is applied. After the contracted
function is finished the range contract C, is applied. This contract can then inspect the
state S, saved and validate it against the current state .S, of the system.

In later publications it becomes clear that the use of dependent contracts is not en-
tirely satisfactory [BMO6]. The main problem is that the arguments accessed in the
postconditions are not subject to contract validation. Therefore, violations against the
contracts defined over the arguments are not captured by the contract system. More-
over, it is not immediately clear how to define a contract over the arguments used in the
post-condition. The reason is that a dependent contract itself may introduce violations
against the arguments defined in the contract that can not be attributed to the supplier
nor to the client of the contracted entity. The solution proposed by Dimoulas et al.
in later publications [DF11, IDEFEF11] is to look at the contract validation code as an
independent party and assign blame to the contract itself when a violation is detected
during contract validation.

Temporal Higher-Order Contracts. Synchronization contracts in the presence of
higher-order values have also been investigated. Higher Order Temporal (HOT) con-
tracts [DEM11]] extend prior higher-order contract systems to also express and enforce
temporal properties between modules. In their formalization, a module’s behavior is

3.2. SURVEY OF RELATED WORK 39

modeled as a trace of events such as function calls and returns. A HOT contract mon-
itors this trace and validates it against a protocol. An important observation is that the
monitored trace does not include internal module calls. When dealing with temporal
behavior, it is not only important to check that a client respects a given protocol, but
also that a provider of the contracted value obeys the protocol. This makes it possible to
define a module that internally violates its own HOT contract but will never be blamed
for it. A second drawback is the way in which HOT contracts are monitored. In their
monitoring mechanism important primitive operations (for example message sending)
fall outside of the scope of the contract system.

Relationally Parametric Polymorphic Contracts. Other extensions based on the
original higher-order contracts work includes the introduction of universal quanti-
fiers [GMEKQ7]. For example, the definition of a map function can be expressed by two
polymorphic contract variables o and 8: (V(c, 8)((a — B)(listof o) — (listof j))).
With this contract definition, the contract system verifies three important things: First
of all, that the values in the list of o’s are indeed homogenous; Second that these a’s
are transformed to a homogenous list of 8’s; And finally, that the map function indeed
returns a homogenous list of 3 values i.e. that the map function does not invent some
arbitrary values as a return value. Note that while these polymorphic values, look like
primitive values they can be also functions. This means that when the map function
returns a list of functions (3 the use of these functions is also monitored for consistent
usage. This work has not been applied for object-oriented languages nor does it ex-
plore ambient-oriented concepts. Nevertheless, the basic concepts introduced in this
work are very valuable in a distributed system. For example, it can validate that the
values returned by a server (i.e. a distributed supplier) are constructed by the values
given by the client.

Object-Oriented Higher-Order Contracts. Other work has looked into inheritance
in combination with higher-order contracts [FLFO1]. The key point of this work is to
enforce a correct inheritance relationship and assign blame to the contract in case that
the inheritance relationship of the contract is violated. This leads to the introduction of
hierarchical contracts which validate that the subtyping relationship follows the Liskov
substitution principle [LW94]]. In case that this principle is violated blame is assigned
to the hierarchy.

Higher-Order Contract Satisfaction A large body of spin-off research has been
conducted inspired by the initial work on higher-order contracts. In particular, a large
group of research has dealt with the fundamental question of what it means to satisfy
a higher-order contract. In the original Findler and Felleisen paper they do not pro-
vide an independent definition of what it means for a component to satisfy its contract.
Blume and McAllester [BMO6] are the first to provide a definition of contract satisfac-
tion. In their work they point out that the original proposal by Findler and Felleisen
misses a number of contract violations. Findler and Blume [FBO6| redefine the orig-
inal higher-order contract system as a pair of projections and explain the discrepancy.
Hinze et al. [HJLO6] and Chitil et al. [CMRO3|] add contracts to lazy languages and
propose with two different systems in terms of contract satisfaction. Greenberg et al.
[GPW10] notice that contract satisfaction with the addition of dependent higher-order
contracts complicates the picture. Dimoulas and Felleisen [DF11, IDFFF11] use the
idea of observational equivalence and establish the notion of independent contracts.

40 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

With independent contracts the contracts themselves are seen as an independent party
which can be blamed for violating other contracts.

This concludes our overview of contract systems which are dynamically validated
in a higher-order setting. One of the challenges of designing an ambient contract sys-
tem is to deal with values beyond data types. The work on contracts for higher-order
functions is thus very valuable. Spin-off research spawned from the work on contracts
for higher-order functions has not focussed on ambient-oriented systems. Language
features such as non-blocking futures have not been considered. The existing work on
contracts for higher-order values also does not explore the scope of contract validation
in the presence of an event-driven system.

3.2.1.2 Static Verification Techniques

We now turn our attention to contract systems which statically verify contracts.

Higher-Order Static Verification. There has been a significant amount of research
in the field of specification languages that deal with the (static) veriﬁcation[ﬂof higher-
order functions.

Ernst et al. [ENOS82] have proposed a verification system in order to prove the cor-
rectness of programs with functions that take other functions as one of their arguments.
In their framework, the pre and post-conditions of a function can refer to the pre and
post-conditions of the function’s arguments. While this allows a certain functionality
to be verified, it requires a considerable effort from the programmer. First, the pro-
grammer must be able to (re)construct the arguments passed to the contracted function.
Second, the programmer must be able to (re)construct all the invocations to the func-
tion argument in the body of the contracted function. This is particularly difficult in
case of control structures such as if statements or loops. Finally, in order to define such
specifications, the specification language needs to be a higher-order logic as the pre
and post-conditions themselves refer to pre and post-conditions. Verification of such
higher-order logic is a process that usually needs human intervention, for example, in
interactive proof systems. However, in their work they show that the higher-order logic
can be often be reduced to a classical logic. Another limitation of this work is that they
only consider a semantics where parameters are passed by copy. Furthermore, they
only support the verification of functions that receive other functions as an argument,
i.e. they do not specify the semantics of returning functions.

A similar system based on Hoare-Logic has been proposed by Damm et al [DJ83].
In their system, they explicitly limit the language to one that does not have global
variables in a procedure body. The reason for this limitation (already proven by
Clarke [Cla77]]) is that a language that has: procedures as arguments, recursion, static
scope global variables in procedure bodies and nested procedure declarations can not
have a sound and relative complete Hoare-Logic. More surprisingly, Clarke showed
that whenever one of these language constructs is removed, a sound and relative com-
plete Hoare-Logic can be derived [Cla77|]. He showed this for most variations but did
not show it for the elimination of global variables. In their paper, Damn et al., derive
a system where it is possible to refer to the Hoare Triples of functional arguments,
resulting in a system with similar limitations as the one of Ernst et al.

'We use verification instead of validation to make the distinction with the systems discussed before.

3.2. SURVEY OF RELATED WORK 41

In short, although there is quite a lot of work on the static verification of higher-
order functions, the work does not take into account many of the standard language
features of modern programming languages. Finally in order to truly work, severe
restrictions must be put on the underlying language.

Abstract Interpretation. Abstract interpretation is a program verification technique
that allows the concrete values of a program to be mapped on abstract ones in such a
way that the subsequent interpretation with abstract values gives some useful informa-
tion about the concrete values [[CC77]. The prototypical example is the rule of signs.
For example the text -42 * 28 can be mapped on the abstract domain {(+), (—), (£)}.
The abstract interpretation —42 % 28 = (—) * (+) = (—) effectively proves that the
result of the example will be a negative number. Abstract interpretation however, is not
always as accurate as one would want it to be. For example, the abstract interpretation
—42 4 28 = (=) 4+ (+) = (&) only concludes that the result can be positive or
negative.

Extensions of abstract interpretation have been applied in the context of higher-
order contracts by Tobin-Hochstadt et al. [THVHI2|]. The focus of this work is to
use higher-order contracts as the specification of abstract values. This technique has
the advantage that the programmer no longer needs to do a whole programing analysis
as the modules on which the program depends can be abstracted by their contracts. In
their work, they describe a tool that uses their abstract interpretation for the verification
of Scheme programs. Similar work has been performed in the Haskell research com-
munity [XPJCO09] with the use of compiler optimization techniques. Another similar
approach can be found in Clousot for the verification of contracts written in the .NET
languages [FL11]. Those approaches, however, still need a whole program analysis
and they do not support higher-order contracts on argument values.

Object-Oriented Higher-Order Contracts. Many of the static verification systems
discussed so far do not take into account object-orientation whatsoever. In this section,
we give an overview of systems that do deal with contracts over values in an object-
oriented setting.

In the context of behavioral specifications, Soundarajan et al. propose a contract
system that allows the programmer to specify constraints over the execution traces of
a method [SFO4]. In their work, they show several examples of how to use their sys-
tem in order to specify traces that enforce behavioral subtyping. Unfortunately, these
execution traces are difficult to specify and reason about and they require a significant
amount of effort in order to deduce proofs for them.

Extensions to the Java Modeling Language (JML) language have dealt with higher-
order methods (HOM) as proposed by Shaner et al. [SLNQO7]. They define a higher-
order method as any method whose behavior critically depends on one or more manda-
tory calls. Their approach to this problem is to adopt a gray box abstraction and make
use of model programs in order to specify the mandatory method calls. While their
approach is simple, it can encode a number of interesting patterns such as for exam-
ple the observer design pattern. Unfortunately, their approach is not very flexible in the
sense that the model program is entangled with the base-level functionality. The reason
for this is that the matching of mandatory function calls from the model program hap-
pens in a purely syntactic way. This implies that even the smallest variation may lead
to a violation. Moreover, it does not differentiates programs that make two or more
mandatory method calls instead of one. A related approach by Tyler and Soundara-

42 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

jan [TSO3] allows trace-based specifications, but suffers from similar limitations as
Shaner’s system.

While JML approaches allow contracts to be defined over classes they do not allow
true higher-order contracts in the sense of Findler and Felleisen [FF02]. Contracts in
JML and other contract languages depend on the nominal type when defining object
contracts. Therefore, is possible to define contracts at the class and interface level but
it is not possible to specify a contract over an object received as argument other than to
define a new interface or class. Often, however, the programmer that wants to impose a
stronger contract is not the programmer that originally created the class. In such cases,
it is possible for the programmer to write an entirely new class that bridges the gap
between the two components that are being composed. However, in such a case, the
programer needs to manually maintain the adaptor, validate the interactions between
the composed components and signal errors. The programmer thus has the task to man-
ually identify violations and assign blame in case of a violation. Dealing with blame
assignment in such an ad-hoc fashion is less trustworthy than when blame assignment
is validated by a dedicated contract system. This problem was put forward by Robert
Findler et al. [FEFO4] and their solution is to allow the refinement of contracts on the
method arguments with a construction called semantic casts.

3.2.1.3 Conclusion

An overview of the contract systems dealing with higher-order values is shown in fig-
ure [3.1] From this overview it can be seen that the runtime verification of object-
oriented higher-order contracts exhibit many of the properties that are required for the
specification of an ambient contract system. Unfortunately, these systems have not
been applied in an event-driven distributed language. Furthermore, we observe that
static systems both for the verification of higher order functions and objects require
a substantial amount of programming effort from the programmer compared to run-
time validation. Moreover, the static verification of object-oriented programs is mostly
investigated in class-based languages. As shown by Dedecker et. al. [DedO6]], class-
based languages have proven to be difficult to reconcile in an ambient-oriented setting.
Therefore, we conclude that these systems are less appropriate as a starting point for
the definition of an ambient contract system.

Higher-Order Verification

Higher-Order Values | Protocols | OO Class Event

Dom | Range
Runtime Verification
Higher-Order Contracts N N N N
HOT Contracts N N N
Semantic Casts N N
Static Verification
Ernst et al. N N N N N
Clarke N N N N
JML extensions N N N N
Abstract Interpretation
Racket N N N N
Haskell N N N N

Table 3.1: Higher-Order Contract Validation.

3.2. SURVEY OF RELATED WORK 43

3.2.2 Behavioral Contracts for Concurrent and Distributed Sys-
tems

In this section, we provide an overview of contract systems for the use in concurrent
and distributed systems.

3.2.2.1 Concurrency

Pre and post-condtions as defined by Hoare [Hoa72|| can be chained together using
inference rules so that the programmer can compose contracted components in a correct
way. In a sequential setting, testing a component in isolation is enough to be sure that
this component will behave the same when used in a composition. Unfortunately, in
a concurrent language this assumption no longer holds. For example, consider a stack
which has a pre-condition defined over the pop operation which specifies the stack
can not be empty. In a single threaded environment the client can easily ensure this
property by verifying that the stack is not empty before executing a pop operation. In
a concurrent setting, it is impossible for a client to ensure this property. Other clients
of the stack might execute a pop operation concurrently while the client invokes the
isEmpty operation. Therefore, the client can never be sure that the stack is not empty
before executing the pop operation. Even more severe is the fact that the evaluation of
the precondition can be executed concurrently with another pop operation leading to a
system where a runtime exception within the pop operation is thrown while the intent
of the programmer was to avoid this runtime exception by constraining the stack with
the precondition. The phenomenon that during the execution of a concurrent system
the precondition can be violated during the execution of an operation is known as the
concurrent precondition paradox [NMOOQ9].

As shown in the previous chapter, such concurrency issues are eliminated by design
in the event-loop concurrency model since concurrency is limited to the concurrent
execution actors. The pre and post-conditions of ambient contracts over objects are
always executed within a single actor. As there can only be one thread of execution the
programmer does not need to be concerned with the concurrent precondition paradox
found in other concurrent languages.

3.2.2.2 Distribution

The bulk of advanced contract systems for distributed systems can be summarized by
systems for wireless sensor networks and web services.

Sensor Networks. Sensor Networks are a popular kind of network with character-
istics similar to mobile ad-hoc networks. Although the sensors in such a network are
typically stationary, they have a high rate of failure e.g. because the sensor runs out
of battery power. A difference with mobile ad-hoc networks is that the computational
power available in a sensor network is much less than the one of a mobile phone. Pas-
sive distributed assertions (PDA) are introduced to cope with the distributed assertions
in the context of wireless sensor networks [RM0Y]. The programmer can specify as-
sumptions over the program variables of several distributed sensors. He has the ability
to do this in a declarative manner as in PDA there are abstractions for location desig-
nation. While the underlying abstractions are interesting in the light of mobile ad hoc
networks, unfortunately the design of this contract system assumes the availability of a
centralized server.

44 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

Web services. Work on distributed contracts has focused on the development of web
services. As summarized by Castagna et al most of this work finds it roots in the
formal framework of contracts for process calculi [Mil82]], and session types [CGPOS].
Carbone et al. allow the programmer to capture web service choreographies by means
of a global calculus [CHYO07]. The individual processes are obtained as projections of
the global description. Fournet et al. [FHRRO4|] make extensions to CSS in order to
derive that certain substitutions of processes will lead to a deadlock free composition
or not.

Many of these formalisms have found their entrance at the industrial level in lan-
guages such as the Web Service Description Language (WSDL) and the Web Ser-
vice Conversation Language (WSCL). While WDSL only allows asynchronous and
synchronous request reply style interactions, WSCL allows more extensive protocols
which can even include cycles. For example, Hollunder [Hol] added code contracts
to the web-service description language so that .Net programs can reap the benefits of
design by contract while developing web-services. These code contracts are, however,
limited to invariants, pre and post-conditions, they do not support higher-order con-
tracts. Moreover, they do not specify how programmers can express synchronization
contracts.

3.2.3 Systems for Synchronization Verification

In the previous sections we have mainly shown systems for behavioral validation. We
now turn our attention to systems for dealing with synchronization. There is a large
body of work in type systems that allows the programmer to state specific properties
over the execution of his program. In general, a type system allows the programmer
to annotate his program to express certain properties over the annotated entities. For
example, the programmer can annotate a variable to express that it will always refer
to an integer. A type system then constructs a proof from the program text in order to
make sure that all these annotations are consistent. For example, when a program is
correctly typed and a variable is annotated as an integer, the type system ensures that
at runtime this variable never refers to any other value than an integer. Under certain
conditions it is also possible to alleviate the task of placing annotations and let the type
system infer the types for the programmer. In recent years, there has been a tremendous
progress in the kind of properties for which a type system can provide guarantees. For
example, type systems have been used for interaction protocols and to verify the state
of objects. While these type systems are not specifically designed to act as contracts
they have similar goals as we show in the remainder of this section.

3.2.3.1 Session Types.

A session is an ordered set of communication interactions between two parties [MYQ7].
Session types have been combined with the w-calculus [Mil99]], and have even been
added to a distributed Java [DCMYDO06]. At the industry level, a well known adapta-
tion of session types is the WC3 Choreography Web Description Language.

Basic session types describe the sequence of input and the output values that the
client or the server has to send and receive over a shared communication channel. A
session type is basically a sequence of primitive types such as int, string, bool etc.
together with the sequencing operator indicated with a dot (.). In a session type S, ?
implies receive, ! send, dot (.) sequencing and End indicates the closing of the chan-
nel. For example, a possible specification of a protocol for the server which receives

3.2. SURVEY OF RELATED WORK 45

two integers and returns their sum could be encoded as: (?Int.?Int.!Int.End) For
basic protocols, the client protocol and the server protocol are each others dual and
can be obtained by changing all sends (!) into receives (?) and all receives (?) into
sends (!). Consequently the session type of the client for the multiplication service is:
(Unt\Int.?Int.End)

Next to sequences of input and output values, session types also support the tra-
ditional internal (&) and external choice (+) operators. For example the session type
shown below specifies that the server has the internal choice to transition to OK or to
NOK. When the server selects OK it waits for two numbers and returns a number (their
sum), when the server selects NOK the session is closed immediately.
®(OK —?Int.7Int!. End; NOK — End)

Consequently the client has to be able to anticipate both state transitions, i.e. the dual
session type of the client is as shown below.
+(OK —!Int\Int?.End; NOK — End)

Session types are typically integrated into a concrete language by introducing prim-
itives to make and type explicit channels. Type checking of session types is done by
going over the program text and verifying that the successive operations over the chan-
nel follow the session type specification. Both branches of an if statement have to leave
the channel in the same state, so that the channel is in the same state independently of
which branch is taken at runtime.

Object-oriented Session Types. Session types have also been explored in the context
of object-oriented languages. Moose [DCMYDO06, [DCGDYOQ7] is a multi-threaded
object-oriented language with support for session types based on channels. In their
description of future work, the authors of Moose mention that it would be interesting
to merge remote method invocations (Java RMI) with session types instead of using
explicit channels. As shown before programing languages based on RPC such as (Java
RMI) introduce blocking communication primitives that can easily lead to deadlocks
and thus are not considered to be applicable in an ambient environment. Their systems
first requires further research to be truly object-oriented as well as extra research to be
combined to a non-blocking communication model.

In STOOP [DDCCO07]] and SAMY [CCDC™09] the integration of object-orientation
with session types has been taken further and channels are made implicit in the lan-
guage. However, in their system values can be exchanged within the body of a method
with primitives send and receive that operate on an implicit channel. This forces the
programer to think in a channel-oriented style instead of an object-oriented style.

The work on session types that is the most interesting for an ambient contract sys-
tem is “modular session types for distributed object-oriented programming” [GVR™10)]
by Simon J. Gay et al. In their work they developed a distributed object-oriented lan-
guage with type-state where the availability of methods must follow the session-type of
a channel accessible from within the object. Even though this channel is hidden within
the verified object, the programmer still needs to write his code using a channel-based
communication model.

Session Type Limitations Session types suffer from a number of limitations in order
to adopt them in an ambient-oriented programming model. The main issue is that the
use of explicit communication channels in traditional session types is hard to combine
with an object-oriented (ambient) programming language. First, distributed object-
oriented languages already have a means to send and receive values by means of re-

46 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

mote object references. The introduction of a communication channel requires the
programmer to think in two different paradigms, channel-based and an object-oriented
based one. Moreover, distributed objects and channel-based communication can inter-
fere with each other. For example, what should happen with an active channel when an
object that encapsulates it is sent over another communication channel ? Finally, the
primitives defined over the communication channels usually block the thread in which
they are executed. As shown in section [2.2.2] in ambient applications the use of such
blocking operations significantly increases the impact of disconnections on the appli-
cation. For example, a service waiting for a value from a disconnected client may be
blocked forever.

3.2.3.2 Contracts for Process Calculi

Behavioral contracts for process calculi [CP09, |ABZ10]] are very similar to session
types. The main difference is that instead of describing the type of a single commu-
nication link they describe the type of a whole process. While this difference may not
seem to be paramount at first sight, it has important implications with respect of the
kind of global properties that can be proven by the type system. The main advantage
of process calculi over session types is that there are less restrictions over the commu-
nication channels in order to ensure global properties such as progress.

A process type T is either deadlocked (0) successfully terminated (1) or can make
infinite internal progress (£2). Processes can send («!x) or receive (a?x) a value x
over a communication channel alpha. As usual the dot operator is used as sequencing
operator i.e. first sent x over « and then behave as T is indicated as a!x.T Processes
can be combined by the parallel composition operator (I). Processes can make internal
() and external choices (+). External choices are based on the communicated value
for example: (a?string + a?int). Just like it is an open research question how session
types can be integrated into an object-oriented system, it is not clear how process calculi
with channels can be fitted into an object-oriented system.

3.2.3.3 Grey Box Verification Techniques.

There exists a group of research frameworks that focuses on grey box verification tech-
niques. These verification mechanisms allow the programmer to define more expres-
sive verification statements than simple pre/post conditions. Helm et al. [HHG90] and
Holland [Hol92] were among the first ones to investigate such advanced mechanisms.
Their approach uses model programs in order to describe contractual specifications,
but they do not present a method for automatic conformance monitoring.

MaC [DJLSO08] is a runtime verification system where program executions points,
such as the application of a function, are reified as events. Over these events the pro-
gramer can write rules in order to verify the program execution. While it is likely that
the expressive power of the MaC system allows computational contracts to be defined
it has not been designed for higher-order functions. Moreover, blame assignment is
also not considered.

State invariants also known as integrity constraints in the world of databases are
constraints over how certain operations are allowed to affect the state of the program.
Early specification languages suffered from the inability to express that a certain oper-
ation only modifies what it should modify and leaves everything else untouched. This
problem has been called the frame problem and finds its origins in the field of artificial
intelligence. When a logical system is built for a certain world, there is an implicit

3.2. SURVEY OF RELATED WORK 47

specification that when a certain change in this world takes place, all the rest remains
the same. However, in many proof systems the specification of such rules requires ex-
plicit statements about the fact that everything else is not affected. The specification of
all the unaltered states is tedious and difficult to extend when, for example, new ele-
ments are added that also remain unaltered. Similarly, in the specification of integrity
constraints the frame problem has manifested itself. As a solution to the frame problem
languages as JML have introduced the notion of frame axioms. A frame axiom consists
of a constraint over an operation which specifies which state might be altered by the
operation. Such frame axioms can be used for the specification of disallowing certain
state to be altered.

A remarkable contract system that goes beyond pre- and post-conditions was re-
cently proposed by Heidegger et al. [HBT12]. They propose access permission con-
tracts, which allow programmers to annotate methods with a set of read and write
access paths. During the execution of a contracted function the dynamic extent of the
contracted function can only read and write to those variables in their access paths.
Access permission contracts are a particular instantiation of computational contracts as
shown in chapter [5]

A very related approach by Fischer [FII00] introduces trace-based assertions. These
contracts allow the verification of code to follow a certain protocol. However, trace-
based assertions do not support functional contracts to be defined over the argument
values of a function.

3.2.3.4 Typestate-Oriented Programming.

In typestate-oriented approaches object methods are restricted depending on which
state the receiving object is currently in [SY86, ISNST11]]. The prototypical exam-
ple of typestate-oriented programming is the verification of a file handle. When the
file is closed the write operation should not be applicable and when it is opened the
write operation becomes applicable. Typestate-oriented programming allows the pro-
grammer to express such concerns and — under certain restrictions — verify them stat-
ically. With typestate-oriented programming, it is thus possible to govern the interac-
tions between objects in a similar way as session types. The main difference between
typestate-oriented approaches and session types is that session types unify typing and
interactions into one global type while this is not the case in typestates. Their limita-
tions, however, are very similar: in order to enforce multi-party interactions they resort
to restrictions such as linear typing. This means that program variables x can only be
used once and simple programs such as f(z, z) can not be verified. Despite these lim-
itations, typestate-oriented programming is valuable technique that is able to statically
verify highly complex programs [[SNS™11|]. However, it has not been investigated how
typestate-oriented programming can be applied in a system where the objects commu-
nicate over (volatile) connections using asynchronous message passing.

3.2.3.5 Type and Effect Systems.

There is a branch of type systems that is able to express which effects a certain com-
putation exhibits and in which context it may have these effects. A simple example of
a well-known type and effect system is the validation of exceptions. Functions have
to declare that they might throw an exception and the functions that apply an excep-
tion throwing function have to catch these exception or declare that they might throw
this exception themselves. However, the example of exception throwing is relatively

48 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

simple, type and effect systems can be used for the static verification of a range of
effects [MMOQ9]]. Type and effect systems thus allow programmers to verify certain
protocol like constraints over their programs. However, type and effect systems are
usually very specific about the effects that a function can have for example, to throw
an exception. How these systems can account for arbitrary effects such as invoking a
certain method is not clear.

3.2.3.6 Conclusion

There is a significant progress in the kind of synchronization properties that can be ver-
ified statically. However, many of the static verification mechanisms shown for dealing
with complex first-class values are not clear in how they could be used in a practical
prototype-based ambient programming language. First, many of the proposed solutions
have opted for a (blocking) channel-based communication model which has proven
to be incompatible with the volatile connections of mobile ad hoc networks. Typed
asynchronous communication channels have been explored but it is unclear how such
models can be used in a distributed object-based language. Finally, typestate-oriented
programming and type and effect systems are two widely known techniques, which (to
some extend) allow local synchronization contracts to verified statically. However, it is
unclear how these techniques could be scaled to operate in a distributed environment.

3.2.4 QoS Contracts

In the component-based middleware community, contracts have been incorporated in
order to compose and adapt applications in order to meet a certain quality of service.
QoS frameworks such as QuO [ZBS97]], QML [FK99] and 2KQ+ [LN99]|], provide
abstractions in order to enforce a contract over the bindings between a client and a
server component. Depending on the implementation, a QoS contract verifies quality
constraints such as latency, duration of a computation, throughput etc. The contracts
in such systems mainly describe how the component should adapt itself depending on
these quality constraints. The typical example of such frameworks is to switch between
compressing an image when the connection is slow or sending the uncompressed im-
age when the connection is fast. Monitoring such QoS constraints can happen on the
application of certain functionalities of the component or during their execution. Sev-
eral QoS contracts have made use of aspect technology in order to adapt the application
according to the context [FK99, HBGT01]. The focus of these contract systems is to
adapt the application such that a certain QoS can be offered. Such QoS contracts can be
very useful in the context of ambient-applications in order to make sure that the appli-
cation adapts itself in a well-defined way. However, in this dissertation the focus lies on
a contract system that monitors the flow of values between the different modules of the
ambient-application. Validating how the application adapts itself to the current context
in order to meet certain QoS is an orthogonal dimension that has not been explored in
this dissertation.

3.2.5 Aspect-Oriented Programming and Contracts

Many contract systems use aspect-oriented technology in order to validate contracts.
In our work we have also explored aspect-oriented programming in order to validate
contracts. Therefore, we give a short overview of the related work on aspect-oriented
programming in relation to contracts.

3.3. CONCLUSION 49

Aspect-oriented programming allows the specification of crosscutting concerns in
a modular way so that they are no longer scattered through the code but localized
in one place of the code. These modular crosscutting expressions are defined by the
specification of additional behavior called advice on particular points in the programs
execution called join points. The developer specifies on which set of join points the
advice has to be executed by specifying a pointcut.

Dutchyn et al. have explored the semantics and scoping of aspects in a dynamically
typed higher-order languages [DTKO06]. Ambient contracts have built on top of their
results in order to allow the interception of critical points in the program that will be
subject to contract verification. While their scoping mechanism has proven extremely
valuable during the implementation of our system, their aspect language does not allow
the programmer to express contracts nor to assign blame in case of a violation.

Frameworks such as Barter [[Sza02], Jose [FBT06] and Contract4] [WamO06] have
also used aspect-oriented programming as an implementation technique in order to pro-
vide design-by-contract. However, these techniques do not support blame assignment
in the context of higher-order programming languages. Several systems have added
contracts for aspects [BRLM11} [SL04]] where the focus lies on the definition of con-
tracts over an aspect. For example, Pipa [ZR03] extends JML [LCC™ 05| to support
DbC for programs written with Aspect]. However, they do not focus on using aspects
in order to verify certain properties of the computation. Finally, Contract-Based Ver-
ification for Aspect-Oriented Refactoring [UPSTOS] uses aspects in order to specify
contracts over refactoring. Scoping strategies for distributed aspects are investigated
by Tanter et al. [TFD™10].

Aspect-oriented programming has also proven to be useful for dealing with context-
awareness [[FG09, TGDBO6|. This is not the focus of this thesis, where we have used
aspects as an interception abstraction to intercept interesting points in the execution of
a certain function application.

3.3 Conclusion

There is a large body of related work on contract frameworks for a wide variety of
applications. In this chapter we have shown an overview of the systems which have
similar goals as ambient contracts. We have first showed that related work on contract
systems in general has been categorized in four levels: syntactic, behavioral, synchro-
nization and quality of service. We evaluated these four categories and outlined the
focus of our ambient contract system which mainly focuses on behavioral contracts.
From our survey of related work we conclude that:

e Syntactic contracts would require a lot of annotations in order to be able to verify
properties over objects, far-references and future values. Most of the static veri-
fication mechanism can not deal with the appearance of random communication
partners at runtime. As the ad-hoc nature of ambient applications precisely re-
quire a contract system that maintains such ad hoc interactions static verification
techniques have not been considered as a suitable starting point for the defini-
tion of ambient contracts. Moreover, as we showed in the related work static
verification techniques in the presence of higher-order functions requires strong
restrictions over the underlying programming language.

e Runtime behavioral contracts support some of the necessary properties for the
development of ambient-oriented programs but not all of them. Nevertheless, the

50 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

higher-order contracts systems developed from the work on higher-order func-
tion [FFO2] contracts seem to be the best starting point for the development of an
ambient contract system. This is also the approach followed in this dissertation.

e Synchronization contracts do not make a lot of sense for the definition of an am-
bient contract system because many of the concurrency issues such as low level
race conditions and deadlocks are precluded by the ambient-oriented program-
ming model. Therefore, most of the work on concurrent contract validation is
not applicable for the definition of an ambient contract system. We therefore
focused in the related work on synchronization contracts over the messages in a
protocol like fashion. Within an actor synchronization is dealt with by the un-
derlying programming paradigm. Synchronization over the messages has been
dealt with by session types, CCS extensions. However, these systems introduce
severe restrictions in order to deal with higher-order communication channels.
Most systems require that communication channels are used exactly once (lin-
early typed). In an object-oriented language, the objects themselves are used as
communication channels. Sending an object to a remote communication part-
ner in a linearly typed language would thus leave a hole in the object graph of
the sender. Typestate-oriented programming requires similar restrictions. It is
thus unclear how higher-order communication channels can be transparently in-
tegrated in a distributed object-oriented language.

e Quality of service contracts are more related to the work in context aware pro-
gramming as opposed to building bigger and more robust ambient applications
which is the focus of this dissertation. Most of the work on quality of service
actually does not monitor the flow of values between the different components.
Instead they formulate a system that is dynamically adapted in order to con-
form to a certain specification. While such systems are very useful, they go far
beyond the responsibility of what normally constitutes a contract system. A con-
tract system as interpreted in this dissertation should not adapt the execution of
the underlying program.

Figure [3.5] provides an overview of the related work compared to the design space
that we outlined in section [2.4.5] In this overview we do not consider contract sys-
tems which do not have support for blame assignment because we investigate contract
systems that are validated at runtime. At each intersection of the three axes there is a
different kind of contract for example: a computational contract over an object at the
server-side. We colored each of these intersection points in order to give an overview
of the contract systems that are explored by the related work. Red squares indicate that
related work does not have support for such contracts and green squares indicate that
they have been explored. White squares indicate non applicable systems. For example,
a contract to monitor the behavior of a number does not make a lot of sense. As can be
seen in this overview, related work has left open many questions for the design of an
ambient contract system. At the top we can also see that the use of non-blocking fu-
tures in combination with their callbacks is not explored. However, as we argue in the
rest of this dissertation, the contract system proposed by Findler and Felleisen [FFO2]]
provide a good basis on which we have built ambient contracts.

In the next chapter, we first give an overview of communicating event loops to
clearly specify the underlying programming model in which ambient contracts are de-
signed. In the chapters following our exposition of communicating even loops, we give

3.3. CONCLUSION 51

Values 1

Futures

Objects,

Contract
Function:

4
o®
[explored
Flat HigherOrder Computational [not explored
[not applicable

Figure 3.5: Overview of the design space of ambient contracts explored by the related
work.

an overview of how ambient contracts are able to deal with each of the points in the
ambient contracts design space.

52 CHAPTER 3. RELATED WORK: SOFTWARE VERIFICATION TECHNIQUES

Chapter 4

Communicating Event-Loops:
Formal Specification

In this dissertation we advocate the use of ambient contracts in order to specify the
behavior of a volatile group of distributed objects communicating over an uncertain
network. This chapter gives a formal treatise of the ambient actor model which is
the computational model for concurrency and distribution, that adheres to the AmOP
criteria presented in chapter 2. The formal semantics of the programming kernel we
present in this chapter is further used in the remainder of this dissertation to define the
language constructs that constitute ambient contracts. The explanation given in this
chapter closely follows the technical report as shown in [VCSHDM].

4.1 AmbientTalk Operational Semantics

Our exposition of the semantics of a subset of AmbientTalk, named AT-LITE, is based
primarily on that of the Cobox model [SPH10]. Coboxes feature a similar runtime
model, but differ on important points such as the ability to execute multiple coroutines
inside a single actor, and the ability to block (suspend) on a future. Our notion of futures
as presented here is significantly different from the notion of futures as presented in the
Cobox model as our notion of futures does not involve any blocking operation.

Our operational semantics models objects, isolates (pass-by-copy objects), far ref-
erences, actors as event loops, non-blocking futures, asynchronous message sending
and inter-actor parameter-passing. In Section[d.1.3] we extend AT-LITE with the nec-
essary primitives for service discovery and buffered communication.

4.1.1 Syntax

Figure [.1] lists the different semantic entities of AT-LITE. Caligraphic letters like F
and M are used as “constructors” to distinguish the different semantic entities syntac-
tically. Actors, futures, resolvers and objects each have a distinct address or identity,
denoted ¢4, tf, ¢, and ¢, Tespectively.

Configurations are sets of concurrently executing actors. Each actor is an event
loop consisting of an identity ¢4, a heap O denoting the set of objects, futures and
resolvers owned by the actor, a queue () containing a sequence of messages to process
in the future, and the expression e that the actor is currently executing.

53

54CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

K € Configuration := A Configurations
a€ ACActor == A(,,0,Q,e) Actors
Object := O, t, F, M) Objects

Future := F(i5,Q,v) Futures
Resolver = Rt tf) Resolvers

m € Message = M(v,m,7) Messages
Q € Queue = m Queues

M CMethod := m(z){e} Methods
F C Field = fi=v Fields
vE€Value == r|nullle Values

r € Reference = lglo | Loty | La-tr References
teTag == O]I Object tags

0 € O C Object U Future U Resolver
Lo € Objectld, , € Actorld
1y € Futureld C Objectld
tr € Resolverld C Objectld

Figure 4.1: Semantic entities of AT-LITE.

Objects consist of an identity ¢,, a tag t and a set of fields F' and methods M. The
tag ¢ is used to distinguish objects from so-called isolate objects, with ¢ = O denoting
an object and ¢ = I denoting an isolate. Isolates differ from regular objects in that they
are parameter-passed by-copy rather than by-reference in inter-actor message sends,
but otherwise behave the same.

AT-LITE supports futures, which are first-class objects that are placeholders for
a value that is asynchronously awaited. Futures consist of an identity ¢, a queue of
pending messages () and a resolved value v. A future is initially unresolved, in which
case its resolved value v is set to the unique empty value €. As long as the future
is unresolved, any messages sent to the future are queued up in (. When the future
becomes resolved, all messages in () are forwarded to the resolved value v and the
queue is emptied.

A resolver object provides the right to assign a value to its unique paired future. Re-
solvers consist of an identity ¢, and the identity of their paired future ¢ ¢. The resolver
is the only means through which a future can be resolved with a value. Our notion
of future-resolver pairs descends directly from E’s promise-resolver pairs [MTSO0S],
which are themselves inspired by logic variables in concurrent constraint program-
ming [Sar93].

Messages are triplets consisting of a receiver value v, a method name m and a
sequence of argument values v. They denote asynchronous messages that are enqueued
in the message queue of actors or futures.

All object references consist of a global component ¢, that identifies the actor own-
ing the referenced value, and a local component ¢,, ¢y or ¢,. The local component
indicates that the reference refers to either an object, a resolver or a future. We define
Futureld and Resolverld to be a subset of Objectld such that a reference to a
future or a resolver is also a valid object reference. As such, ¢,.¢, can refer to either an
object, a resolver or a future, but ¢,..¢ can refer only to a future.

4.1. AMBIENTTALK OPERATIONAL SEMANTICS 55

Syntax Figure .2] shows the syntax of the AT-LITE language. AT-LITE features
both object-oriented and functional elements. The functional elements descend directly
from the A-calculus. Anonymous functions are denoted by AZ.e. Variable lookup in
AT-LITE is lexically scoped. Local variables can be introduced via let z = e ine.

AT-LITE is also an imperative classless object-oriented language. It features object
and isolate literal expressions to define fresh, anonymous objects. Objects consist
of a set of fields and methods. Fields may be accessed and updated. Methods can be
invoked either synchronously via e.m(€) or asynchronously via e < m(€).

In the context of a method, the pseudovariable this refers to the enclosing object
or literal. this cannot be used as a parameter name in methods or can not be redefined
using let.

New actors can be spawned using the actor literal expression. This creates a
new object with the given fields and methods in a fresh actor that executes in parallel
with the creating actor. Actor and isolate literals may not refer to lexically enclosing
variables, apart from the this-pseudovariable. That is, they must satisfy FV (e) C
{this} for all field initialiser and method body expressions e. Isolates and actors are
literally “isolated” from their surrounding lexical scope, making them self-contained.

New futures can be created explicitly using the expression let z 7, x,. = futureine.
This binds a fresh future to the variable x ¢ and a fresh, paired resolver object to z,. A
resolver object denotes the right to assign a value to its paired future. The expression
resolve x,. e resolves the future x ¢ via its paired resolver x, with the value of e. The
value of a future x; can be awaited using the expression when(z; — z){e}. When
the future becomes resolved with a value v, the expression e is evaluated with « bound
tov.

AT-LITE supports two forms of asynchronous message passing. Expressions of the
form e < m(€) denote one-way asynchronous message sends that do not return any
value. If a return value is expected, the expression e <y m(€) denotes a two-way
asynchronous message send that immediately returns a future for the result of invoking
the method m.

Syntactic Sugar Functions are defined as objects with a single method called apply
as shown in Figure[d.2] Note that function definitions can appear at arbitrary positions
within the code, also within methods. Therefore care has to be taken in order to make
sure not to alter the semantics of this in such a context. In AT-LITE the substitution
[x¢nis/this]e is necessary to ensure that within function bodies nested inside object
methods, the this-pseudovariable remains bound to the original enclosing object, and
not to the object representing the function. In order to make sure that this substitution
works for top-level defined functions the this variable is bound to null when the
actor is initialized. Function application e(€) is desugared into invoking an object’s
apply method.

A two-way message send e <, m(€) is syntactic sugar for a one-way message
send that carries a fresh resolver object x,, added as a hidden last argument. The
message m is marked my such that the recipient actor can decode the argument list,
knowing that it has to pass the result of the method invocation to x,. The two-way
message send itself evaluates to the future x ; paired to the passed resolver x,..

The desugaring of “when” and “resolve” make use of special messages named
resolve,, and register,. The u (for “meta”) suffix identifies these messages as spe-
cial meta-level messages that should be interpreted differently by actors. A regular
AT-LITE program cannot fabricate these messages other than via the “when” and “re-

56CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

Syntax
[1
e € E C Expr this |z |null | e; e | AT.e | e(€) |letz =eine|e.f|e.f:=e
e.m(e) | actor{f := e,m(@){e}} | object{f := e,m(z){e}){6}}
isolate{f := e,m(7){e}} | let x4, x, = futurein e | resolve e e
e < m(e) | e < m(€) | when(e — z){e}
z,zf, 2, € VarName, f € FieldName, m € MethodName
Syntactic Sugar
; def . ’ /
e; ¢ = letz=cine x ¢ FV(e)
e et Z¢nis = this in object { ZTenis ¢ FV(e)
apply (Z){[¢nis /this|e}
_ def _
e(e) = e.apply(e)
e <y m(e) ECH x s, x, = futurein xp,x. ¢ FV(e) UFV(e)
e« mys(€-x,); xf
when(e — z){e'} et zy, 2, = futurein zs,zr ¢ FV(e) UFV(€)
let 2; = Az.(z,.resolve,(€')) in x; ¢ FV(e)
e < register, (2;) ; ¢
resolvee e’ < letw, =ein x. ¢ FV(e')
let z; = Az.(x, « resolve,(x)) in x; ¢ FV(e)

e’ < register, (x;)

Evaluation Contexts and Runtime Syntax

eqg == Olletx = eginelen.f|en.f:=el|v.f:=eg|egm(e) | v.m(v,en,e)
| eg <« m(e)| v+ m(v,eq,e)

e n= L

solve” expressions.

Figure 4.2: AT-LITE Syntax

The expression when(e — x){e’} is used to await the value of a future. It is
syntactic sugar for registering a “listener” function with the future. The expression as
a whole returns a dependent future x ; that will become resolved with the expression e’
when the future denoted by e eventually resolves.

The expression resolve e €’ is used to resolve a future with a value, where e must

4.1. AMBIENTTALK OPERATIONAL SEMANTICS 57

Substitution Rules
[

[v/z]a’ = a [v/zlm(z){e} = m@){e}ifxex
[v/z]z = v [v/zlm(T){e} = m@){[v/z]e}ifx ¢ T
[v/zle.f = ([v/ale).f [v/zle.f:=e = ([v/z]e).f:=[v/z]e
[v/z]null = null [v/x]e.m(€) = ()[v/x]e).m([v/z]e)
[v/alr = r [v/zle = m(e) = ([v/z]e) < m([v/xe)
[v/z]let ' = eine = leta’ =[v/zlein[v/x]e

let z = [v/x]eine
actor{f := e, m(z){e}){6}}
isolate{f := e, m(z){e}}

[v/x]letz =eine
[v/z]actor{f := e, m(z){e}}
[v/x]isolate{ f := e, m(x){e}}
[v/z]object{f := e,m(z){e}} object{f := [v/x]e, [v/x])m(T){e}} if x # this
[v/this]object{f := e, m(zZ){e}} object{f := e, m(T){e}}
[v/z]let ¢, x, = futureine = let zy,x, = futurein [v/xle
[v/z]let z, x, = futureine let z, x,, = futureine
[v/z]let xy,x = futureine = letxzy,x = futureine

Figure 4.3: Substitution rules: x denotes a variable name or the pseudovariable this.

reduce to a resolver and e’ to any value. If ¢’ reduces to a non-future value, the listener
function x; will be called with = bound to the value of ¢’. If ¢’ reduces to a future
value, the listener function will be called later, with 2 bound to the resolved value of
the future. Thus, this definition ensures that futures can only be truly resolved with
non-future values.

Evaluation Contexts and Runtime Expressions We use evaluation contexts [FH92]|
to indicate the subexpressions of an expression that have to be fully reduced before the
compound expression itself can be further reduced. e denotes an expression with a
“hole”. Each appearance of e indicates a subexpression with a possible hole. The
intent is for the hole to identify the next subexpression to reduce in a compound ex-
pression.

Our reduction rules operate on “runtime expressions”, which are simply all expres-
sions including references r, as a subexpression may reduce to a reference before being
reduced further.

4.1.2 Reduction Rules

Notation Actor heaps O are sets of objects, resolvers and futures. To extract values
from a set O, we use the notation O = O’WW{o}. This splits the set O into a singleton
set containing the desired object o and the disjoint set O’ = O \ {o}. The notation
Q@ = @Q’-m deconstructs a sequence @ into a subsequence @’ and the last element m. In
AT-LITE, queues are sequences of messages and are processed right-to-left, meaning

58CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

that the last message in the sequence is the first to be processed. We denote both
the empty set and the empty sequence using (). The notation eg[e] indicates that the
expression e is part of a compound expression e, and should be reduced first before
the compound expression can be reduced further. In our semantics we distinguish
between local and global reduction rules. Local reduction rules are evaluated in the
context of a single actor while global reduction rules affect more than one actor.

Actor-local reductions Actors operate by perpetually taking the next message from
their message queue, transforming the message into an appropriate expression to evalu-
ate, and then reducing this expression to a value. When the expression is fully reduced,
the next message is processed. As discussed previously, the process of reducing such
a single expression to a value is called a furn. It is not possible to suspend a turn and
start processing a next message in the middle of a reduction.

If no reduction rule is applicable to further reduce a reducible expression, this sig-
nifies an error in the program. The only valid state in which an actor cannot be further
reduced is when its message queue is empty, and its current expression is fully reduced
to a value. The actor then sits idle until it receives a new message.

In order to keep the semantics concise we make extensive use of auxiliary func-
tions, as shown in Figure @ We now summarize the actor-local reduction rules in

Figure 4.4

e LET: a “let’-expression simply substitutes the value v for z in e according to the
substitution rules outlined in Figure d.3]

e NEW-OBJECT, NEW-ISOLATE: these rules are identical except for the tag of the
fresh object, which is set to O for objects and 1 for isolates. The effect of evalu-
ating an object or literal expression is the addition of a new object to the actor’s
heap. The fields of the new object are initialised to null. The literal expression
reduces to a sequence of field update expressions. The this pseudovariable
within these field update expressions refers to the new object. The last expres-
sion in the reduced sequence is a reference 7 to the new object.

e INVOKE: a method invocation simply looks up the method m in the receiver
object and reduces the method body expression e with appropriate values for
the parameters T and the pseudovariable this. Method invocations are only
possible on /ocal objects (the receiver’s global component ¢, must match that of
the current actor).

e FIELD-ACCESS, FIELD-UPDATE: a field update modifies the actor’s heap such
that it contains an object with the same address but with an updated set of fields.
Again, field access and field update apply only to local objects.

e MAKE-FUTURE: a new future-resolver pair is created such that the future has
an empty queue and is unresolved (its value is €), and the resolver contains the
future’s identity ¢ s. The expression e is further reduced with zy and x,. bound to
references to the new future and resolver respectively.

e LOCAL-ASYNCHRONOUS-SEND: an asynchronous message sent to a local ob-
ject (i.e. an object owned by the same actor as the sender) simply appends a new
message to the end of the actor’s own message queue. The message send itself
immediately reduces to null.

4.1. AMBIENTTALK OPERATIONAL SEMANTICS 59

e PROCESS-MESSAGE: this rule describes the processing of incoming asynchro-
nous messages directed at local objects or resolvers (but not futures). A new
message can be processed only if two conditions are satisfied: the actor’s queue
() must not be empty, and its current expression cannot be reduced any further
(the expression is a value v). The auxiliary function process shown in Figure[4.6|
distinguishes between:

— aregular message m (or the meta-level message resolve,,), which is pro-
cessed by invoking the corresponding method on the receiver object.

- a two-way message m, as generated by the desugaring of e <, m(e).
Such a message is processed by invoking the corresponding method on the
receiver object, and by sending the result of the invocation to the hidden
last parameter r, which denotes a resolver object.

— a meta-level message register,, which indicates the registration of a lis-
tener function v, to be applied to the value of a resolved future. Since
process is only invoked on non-future values ¢,.¢,, the listener function v
is asynchronously applied to ¢,.¢, directly.

e PROCESS-MSG-TO-FUTURE: this rule describes the processing of incoming asyn-
chronous messages directed at local futures. The processing of the message de-
pends on the state of the recipient future, as determined by the auxiliary function
store shown in Figure This function returns a tuple (m, e) where m denotes
either a message or the empty sequence, and e denotes either an asynchronous
message send expression or null. The message m is then appended to the fu-
ture’s queue, and the actor will continue reducing the expression e. store deter-
mines whether to store or forward the message m, depending on the state of the
future and the type of message:

— If the future is unresolved (its value is still €), the message is enqueued and
must not be forwarded yet (e is null).

— If the future is resolved and the message name m is not register,,, the
message need not be enqueued (m is (J), but is rather immediately forwarded
to the resolved value v.

— If the future is resolved and the message is register,,, which indicates a
request to register a listener function ¢,.¢, with the future, the function is
asynchronously applied to the resolved value v. This request need not be
enqueued (m is 0).

e RESOLVE: this rule describes the reduction of the meta-level message resolve,,,
as used in the desugaring of the “when” and “resolve” expressions. This message
can only be reduced when directed at a resolver object ¢, whose paired future ¢
is still unresolved (the resolved value of the future is still €). The paired future
is updated such that it is resolved with the value v, and its queue @’ is emptied.
The messages previously stored in Q" are forwarded, as described by the auxil-
iary function fwd shown in Figure This function generates a sequence of
message sends as follows:

— If the queue is empty, no more messages need to be forwarded and the
expression reduces to null.

60CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

— If the queue contains a normal message m (or a meta-level message resolve,,),
that message is forwarded to v.

— If the queue contains a meta-level message register,,, indicating the request
to notify the listener function ¢,.t, when the future becomes resolved, the
function is asynchronously applied with the future’s resolved value v.

Actor-global reductions We summarize the actor-global reduction rules in Figure[d.5}

e NEW-ACTOR: when an actor ¢, is reducing an actor literal expression, a new ac-
tor ¢,/ is added to the configuration K. The new actor’s heap consists of a single
new object ¢, whose fields and methods are described by the literal expression.
As in the rule for NEW-OBJECT, the object’s fields are initialized to null. The
new actor has an empty queue and will, as its first action, initialize the fields of
its only object. The actor literal expression itself reduces to a far reference to the
new object, allowing the creating actor to communicate further with the newly
spawned actor.

o FAR-ASYNCHRONOUS-SEND: this rule describes the reduction of an asynchro-
nous message send expression directed at a far reference, i.e. a reference whose
global component ¢+ differs from that of the current actor ¢,. A new message
is appended to the queue of the recipient actor ¢,/. The arguments v of the mes-
sage send expression are parameter-passed as described by the auxiliary function
pass. This function, described in Figure returns a set O” of copied isolate
objects that must be added to the recipient’s heap and an updated sequence of
values v/ with updated addresses referring to the copied isolates, if any. The
full details of the parameter passing semantics are given in the next section. As
in the LOCAL-ASYNCHRONOUS-SEND rule, the message send expression itself
evaluates to null.

e CONGRUENCE: this rule simply connects the local reduction rules to the global
reduction rules.

An AT-LITE program e is reduced in an initial configuration containing a single
“main” actor K;pn;t = {A(tq, 0,0, [null/this]e)}. The this-pseudovariable is bound
to null to ensure that there is always a this variable present in the environment when
a top level function is desugared.

Parameter-passing rules The auxiliary function pass(t,, O, T, 1,/) describes the rules
for parameter-passing the values T from actor ¢, to actor ¢, where O is the heap of
the originating actor (.

The parameter-passing rules for AT-LITE values are simple: objects are passed by
reference, isolates are passed by copy, and null is passed by value. When an isolate
is passed by copy, all of its constituent field values are recursively parameter-passed as
well.

The auxiliary function reach(O, ¥) returns the set of all isolate objects reachable in
O starting from the root values ©. The first two cases define base case for the inductive
definition. In the third case, an isolate object o is encountered and added to the result.
All of o’s field values are added to the set of roots, and o itself is removed from the set
of objects to consider, so that it is never visited twice. The fourth rule skips all other

4.1. AMBIENTTALK OPERATIONAL SEMANTICS 61

(NEW-OBJECT)

(LET) L, fresh
Alta, 0,Q, egllet z = vinel) 0= 0,0, fi=null,m(T){e'}) r=t4-to
—a Alta, 0, Q, enl[v/a]e]) Alia, 0,Q, eplobject{f = e, m(@){e'}}])

—a Alta, O U {0}, Q, eq[r.f := [r/this|e; r])

(NEW-ISOLATE)
Lo fresh
0= 0,1, f :=null,m@){e'}) r=rta-to

Alia, O, Q, eglisolate{ f := e, m(T){e'}}])
—a Alla, O U {0}, Q, eq[r.f := [r/this]e; r])

(INVOKE)

O, t, F, M) € O
r=lg.lo m(Z){e} € M
Alta, 0, Q, eqlr-m(v)])

—a Ala, O, Q, en|[r/this|[v/Z]e])

(FIELD-UPDATE)

(FIELD-ACCESS) O = O'U{O(to, t, FU{f :== "}, M)}
Oy, t, F, M) € O f==veF 0" =0"U{0(,t, FU{f:=v}, M)}
A<La7 07 Q7 e [LaJ’O-fD A<La, O7 Q, ED[La.LO.f = U]>

—a Alta; O, Q, env]) —a Afta,; 0", Q, eq[v])

(MAKE-FUTURE)
Lf, iy fresh
O' =0 U{F(s,0,€,R{tr,s)}
Altq, O, Q, egllet x5, z, = futurein e])
—a Alta, 0',Q, en[ta-ts /T f][ta-tr/r]e])

(LOCAL-ASYNCHRONOUS-SEND)
A<La7 07 Q7 6[:‘ [LG'LO «— m(ﬁ)D
—a Alta, O, M{ig.to,m,T) - Q, eg[null])

(PROCESS-MESSAGE) (PROCESS-MSG-TO-FUTURE)
to ¢ Futureld O =O0"HF(y,Q' V)
e = process(tg.Lo, M, V) (m, e) = store(m,v,v’)
AL, 0,Q - M{tq.Lo,m, V), v) Altq,0,Q - M{tq.Lf, m,7),v)
—a Alta, 0,Q; €) —ra Ata, 0" U{F (1, m- Q',0")}, Q)
(RESOLVE)

Ritrytp) €0 O=0"UH{F(y,Q)} vF gy
Alta, O, Q, eqtq.Ly.resolve, (v)])
—a Alta, O"U{F (1, 0,v)}, Q, en[fwd(v, Q)])

Figure 4.4: Actor-local reduction rules.

62CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

(NEW-ACTOR)
La’s Lo fresh

T = Lgs-lo a' = Ata, {O{to, 0, f := null, m(Z){e’'})}, 0, r.f := [r/this]e)

KUA(tq,0,Q, eqlactor{f := e,m(Z){e'}}]) =1 K U Altq,0,Q,eqr]) Ud

(FAR-ASYNCHRONOUS-SEND)
K =KUA{,,0",Q ")
(0",7') = pass(ta, 0,0, t0r) Q" = M{tar.to,m, V) - Q'

KUA(ta,0,Q, egltar-to < m(0)]) = K' U AL, O, Q, egnull]) U A, O'UO", Q" €

(CONGRUENCE)
a—ga
Ku{a} —r KU{d'}

Figure 4.5: Actor-global reduction rules.

values and applies when v is null, a far reference ¢,/.t,/, an object that was already
visited (v = t4-Lo, Lo ¢ O) or a non-isolate object (v = t4.L0, O{to, 0, F, M) € O).
The mapping o simply defines fresh identities for each isolate in O’. The function
pass then returns the set of isolates O/ which is simply the set O’ with all isolates
renamed according to o. The function o, replaces references to parameter-passed iso-
lates with references to the fresh copies, and is the identity function for all other values.

4.1.3 Service Discovery

We now extend AT-LITE with the primitives necessary to give the operational seman-
tics of “service discovery”, i.e. the ability for objects in different actors to discover one
another by means of a publish/subscribe-style mechanism.

We extend AT-LITE actors with a set of exported objects £ and a set of import
listeners /. We extend values to include type tags 6. Objects can be exported, and
callbacks can be registered by means of a type tag. When the type tag of a listener
matches the type tag of an exported object in another actor, the callback is applied.

The AT-LITE syntax is extended with syntax to export objects (export e e), to reg-
ister callbacks for discovery (discover e e) and syntactic sugar whenDiscovered(e —
x){e'}.

Figure[4.7]lists the additional reduction rules for service discovery:

e PUBLISH: to reduce an export expression, the first argument must be reduced
to a type tag 6 and the second argument must be reduced to a reference (which
may be a far reference). The effect of reducing an export expression is that the
actor’s set of exported objects E is extended to include the exported object and
type tag. An exported object is serialized as if it were included in an inter-actor
message. Hence, if the object is an isolate, a copy of the isolate is made at the
time it is exported.

e SUBSCRIBE: to reduce a discover expression, the first argument must be re-
duced to a type tag 6 and the second argument must be reduced to an object

4.1. AMBIENTTALK OPERATIONAL SEMANTICS

Auxiliary functions and predicates
I

63

process(tg-Lo, M, D)
process(Lq.Lo, Mg, T - 1)

process(tq.Lo, register,,, v)

store(m,, €)
store(m,T,v)

store(m, tg.Lo, V)

fwd(v,0)
fwd(v,Q - M{e,m, 7))
fwd(v,Q - M{e,m, tq.Lo)

pass(ta, 0,0,1))

La-to-m (D)
r < resolve, (tq.Lo.m(7))

v 4 apply(tq-Lo)

(M{e,m, D), null)
(0,v < m(v))
(0, ta-to < apply(v))

null
v+ m(v); fwd(v,Q)
La-to < apply(v) ; fwd(v, Q)

0
0
reach(0,7-7") U {o}
reach(O,7)

(05, 04(0))
where O’ = reach(O,)

m # my, m # register,,

m # register,, v # €

m = register,,v # €

m # register,,

m = register,,

if o=0(tp,1, f :=0", M)

otherwise

o={to—=)| Oto,t, F, M) € O, fresh }
O, ={0(c(to), 1, [:== 0y (v), M) | Olio,1, f :=v,M) € O'}
L

! H — /
. ale V=14, Lo+ 1, €0
ou(v) = v

otherwise

Figure 4.6: Auxiliary functions and predicates

reference. The effect of reducing a discover expression is that the actor’s set
of import listeners I is extended to include the local callback, and the type tag.

e MATCH: this rule is applicable when a configuration of actors contains both an
actor ¢,/ that exports an object under a type tag #, and a different actor ¢,, that has
registered a listener under the same type tag 6. The effect of service discovery is
that an asynchronous apply message will be sent to the registered listener object
in ¢,. The listener is simultaneously removed from the import set of its actor so
that it can be notified at most once. The exported object v is parameter-passed
again, this time to copy it from the publication actor ¢, to the subscription actor

La.

64CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

Extensions for Service Discovery
[

Semantic Entities
a€AC Actor == A(,,0,Q,E, I ¢e)
v € Value == ...|0
0 € TypeTags

Syntax
e == ...|exportee|discover e e | whenDiscovered(e — x){e}

Evaluation Contexts
eqg == ...|exporteqe |exportven | discover eg e | discover v em

Syntactic Sugar

whenDiscovered(e — z){e’} ' discover e (Ax.e)

(PUBLISH)
(O, 0") = pass(ta, O, tar Loy La)
Alta, 0,Q, E, I, eqlexport 0 1y .10])
—q Altq, 0,Q, EU (O, v, 0),I,eq[null])

(SUBSCRIBE)
Alq,0,Q,E, I, D[dlscoveré‘ La-to)])
—a <Lll’ 7Q7 a (Lu,Jzo,e),@D[l’luHD

(MATCH)
Altar, O',Q", E'U(0" ,v,0),I' ¢') € K
(O///7 UI) = paSS(La'a ON) v, La) QH = M<La'LO7 applya U/> . Q
KUA(14,0,Q, B, 1J(14-10,0),€) =1 KU A(1e,OUO", Q" E, I, e)

Figure 4.7: Reduction rules for service discovery

4.1.4 Robust time-decoupled message transmission

In the calculus presented so far, actors are assumed to be permanently connected to all
other actors. The real world, however, shows that devices almost always reside in sep-
arate networks and only occasionally meet to exchange messages. In this extension to
the calculus, we introduce networks that completely isolate their actors from other net-
works but still allow full communication between actors in the network. Each network
has an identifier, which we shall model as a natural number.

Isolating actors from other actors introduces a problem: how can they communi-
cate? Over time actors will move about and join other networks, opening up new mes-

4.1. AMBIENTTALK OPERATIONAL SEMANTICS 65

sage transmission opportunities. We formalize this by splitting the message-sending
process into two parts: message creation and message transmission. Whenever an actor
executes the <— operator, the message is created and stored in a message outbox (called
Qout), to be transmitted at a later stage. We call this time-decoupled message trans-
mission, as actors do not have to be connected to each other to create asynchronous
messages.

Extensions for time-decoupled message transmission
[

Semantic Entities

ac AC Actor = .A(La, 0,Q, Qout,m, €>
n € Network := N
m € Message = M(v,m,v,0)

In the reduction rules, we replace asynchonous message sends (FAR-ASYNCHRONOUS-
SEND) by rules for message creation (CREATE-MESSAGE) and message transmission
(TRANSMIT-MESSAGE).

(PROCESS-MESSAGE)
Lo ¢ Futureld
e = process(tg.Lo, M, V)
A<L(L7 Oa Q : M<[/a'b()7 m767 Ol>7 Qout7 n, U>
—a A<L(La O U 0,7 Qa Qouta n, 6>

(FAR-ASYNCHRONOUS-SEND)
This rule is removed.

(CREATE-MESSAGE)
(0, 7") = pass(ta, 0,0, La) m = Mty .to,m, 0 ,0")
KUA<La7 07 Q7 Qouta n,eg [La’-bo — m(E)D —a Ku A<Laa Oa Q7 m - Qouta n,eg [HUHD

(TRANSMIT-MESSAGE)
Ifirstm € Qpur : m = M{1gr.Lo, m, T, Opy,)
K = KIUA<La/7 O’, le Q;ut’ n, 6/>

KUA<LG7 07 Qa Qouta n, €> —k K/ U -’4<[/a7 07 Q7 Qout \ m,n, €> U -’4<L(L’a O/a m - le Q:)uw n, €/>

Figure 4.8: Reduction rules for time-decoupled message transmission

Figure[d.§]lists the additional reduction rules for time-decoupled message transmis-
sion:

e CREATE-MESSAGE: This rule creates a message object and appends it to the
outbox @,,:. It also stores a copy of the object graph returned by pass into the
message object. This must be done at message creation time, as the objects in this
object graph might change between message creation and message transmission

66CHAPTER 4. COMMUNICATING EVENT-LOOPS: FORMAL SPECIFICATION

time. This rule is actor-local, so it can be invoked regardless of whether the
actors are in the same network.

e PROCESS-MESSAGE: This rule is adapted to import the objects contained in the
message into the actor’s object heap.

o TRANSMIT-MESSAGE: This rule can fire whenever an actor is in the same net-
work for which the actor has undelivered messages. If this is the case, this rule
will extract the first of these undelivered messages, append it to the destination
actor’s message inbox and remove it from the outbox.

This extension to the rules diminishes the guarantees AT-LITE gives about message
ordering. Assume the following scenario: actor A sends a message to actor C attime ¢ 4
and an actor B also sends a message to actor C at time 75 (assume t4 < tp). Without
the extension, actor C will process the message from A first, then the message from
B. With the extension, the ordering depends not on the time of message creation, but
message reception. The ordering of sequences of messages between two given actors
is still maintained, as messages are transmitted in a FIFO manner.

4.2 Conclusion

We have presented an operational semantics for a key subset of the AmbientTalk pro-
gramming language under the form of a calculus for communicating event loops. The
operational semantics provides a formal account of AmbientTalk actors as commu-
nicating event loops, objects, isolates, futures, asynchronous message sends and ser-
vice discovery. With the communicating event loop calculus we have given a formal
overview of the event loop concurrency model in which we have formulated ambient
contracts. This event-loop concurrency model forms the basis of the concurrency and
distribution model that adheres to the AmOP criteria presented in chapter[2]

Novel about our semantics is the operational description of non-blocking futures. A
future is a first-class value that acts as the placeholder for a value that is asynchronously
awaited. While the future is unresolved, any messages sent to the future are queued.
When the future becomes resolved, all messages in the queue are forwarded to the
resolved value and the queue is emptied. In the semantics we give a formal account of
future pipelining and show how futures can be used in a distributed environment. Our
semantics also includes the primitives necessary for service discovery, i.e. the ability
for objects in different actors to discover one another by means of a publish/subscribe-
style mechanism. Finally, our semantics shows how to encode robust time-decoupled
message transmission. The semantics of the communication event loop calculus has
been validated by using the PLT-Redex [FFEQ9] tool.

Chapter 5

Computational Contracts for
Functions

In this dissertation, we propose the use of ambient contracts in order to specify the
behavior of a group of distributed objects communicating over a volatile network. In
this chapter, we present computational contracts; a first step towards the development
of ambient contracts. Computational contracts allow the specification of behavioral
constraints such as: does a module write certain values to a file? does a module send
out appropriate messages? etc.

The aim of contracts is to specify and validate well-defined properties over the
values that are exchanged between the different modules of a system. As explained
in chapter [3] Beugnard et al. [BIPW99] categorize contract systems in four levels:
syntactic (type systems), behavioral contracts (pre/post conditions), temporal contracts
(temporal ordering, time based synchronization) and quality of service contracts (e.g.
time and space guarantees). In this chapter we focus on runtime-validation of tempo-
ral contracts for dynamically-typed languages. How computational contracts can be
applied to objects and how they deal with distribution, is the subject of chapter [6] and
chapter|[7]

We have found that most contract systems do not provide mechanisms to check
temporal aspects in a higher-order setting. A very simple example of the lack of expres-
siveness of current higher-order contract systems can be observed when implementing
a temporal contract that disallows a function to write to a file. For example, with the use
of dependent contracts as shown in section [3.2.1.1] it would require the programmer
to manually save the state of the file before executing the contracted function and later
validate that the state of the file has not changed. While this functionality on its own
requires a substantial amount of work, other functions might open, write, and close
files in the system concurrently. These writes are possibly allowed and thus should
be ignored when validating the postcondition. Even more importantly, checking this
particular contract in the (post-condition) is too late; i.e. the damage has already been
done. Finally, most contract systems do not provide abstractions for the programmer
to easily detect that a file was read.

In this chapter we propose the use of computational contracts in order to over-
come the limitations of current contract systems. The explanation given in this chapter
is a heavily revised version of our computational contracts for Scheme as explained
in [STM11]]. Computational contracts are an extension to the higher-order contract
systems defined by Findler and Felleisen (2002) [FF02] with the ability to specify tem-

67

68 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

poral constraints. Computational contracts allow the programmer to define and check
contracts over a function or an object and its (possibly) higher-order arguments.

A computational contract C.. is denoted over a function as follows, Cy Ce, C,,
where Cy and C,. are the contracts specified over the the domain and range of the
function. The computational contract is active during the execution of the function
over which it is defined. During the execution of the contracted function the contract
system validates that certain events should or should not happen. In order to intercept
these events, computational contracts make use of scoped aspects [DTKO6].

The focus of this chapter is to define the concept of computational contracts for
higher-order functions. However, as our contract system also supports flat and higher-
order contracts we also explain these concepts in detail. The main contract systems
explained in this chapter are outlined in the design space of ambient contracts as shown
in figure[5.1] Green squares indicate contracts that have been adopted by related work
but will be explained in detail. The yellow square shows the novel contract system
presented in this chapter and red squares indicate contracts that are not discussed here.

Values Chapter 5

% Contract
'

Functions

&S
y Flat HigherOrder Computational

Figure 5.1: Situation of Chapter 5 in the ambient contract design space for functions.

Concretely, in this chapter we present:

e An expressive mechanism to specify and validate computational contracts based
on scoped aspects.

e Various examples of computational contracts including permission contracts and
protocol contracts.

e A concrete implementation with a mechanism to determine to whom to assign
blame in case of a violation.

e The impact of computational contracts on other language constructs such as
function identity.

e An executable operational semantics of computational contracts.

We have implemented the existing higher-order contracts (Section[5.1]) from Findler
and Felleisen in AmbientTalk and we extended them so that they support the specifi-
cation of computational contracts (Section[5.2). We present various examples of com-
putational contracts including mandatory function calls and protocol contracts (Sec-
tion[5.2). We describe an expressive model to specify and validate higher-order com-

NN R W=

5.1. HIGHER-ORDER CONTRACTS IN A NUTSHELL 69

putational contracts, including proper blame assignment (Section [5.3). We discuss
interactions between computational contracts and existing contracts in Section[5.5]

5.1 Higher-Order Contracts in a Nutshell

Computational contracts are based upon Findler and Felleisen seminal work on higher-
order pre/post contracts [FFO2]. Recall from from section that their system
differentiates between contracts defined over simple values, called flat contracts, and
contracts defined over functions dubbed function contracts. Function contracts are of
the form Cy — C,. where Cj is a contract over the domain of the function and C.
is a contract defined over the range of the function. Cy and C'. can be either flat or
function contracts as the contract system supports higher-order pre/post contracts. In
the following sections we show examples of function contracts (Cy — C).) where Cy
and C, are flat contracts followed by an example where C; is a function contract.

5.1.1 First-Order Function Contracts

The prototypical example of contract frameworks is to define a contract over the sqrt
function. The purpose of the contract is to ensure that the argument passed to the sqrt
function is a positive number (pre-condition) and that the result of the sqrt function
is also a positive number (post-condition). A possible specification of this contract in
AmbientTalk is shown in Figure[5.2] The AmbientTalk module system supports ex-
porting functions and at the same time defining a contract over them by using provide
:withContract:. In the example, the MathModule provides (i.e. exports) the function
sqrt with a function contract that is composed out of two flat contracts. The positive
contract is constructed by making use of the flat: contract constructor which, given a
predicate function, returns a flat contract. The flat contract over the domain of the sqrt
function positive verifies that the arguments passed to the sqrt function is positive
(left from the arrow). Similarly the result of the function (after the arrow) must also
pass the same flat contract. These flat contracts are composed into a function contract
using the arrow operator (->).

Modern contract systems have a mechanism that allows the responsible party to
be blamed in case a contract violation is detected. The process of pointing out the
responsible party that violated the contract is called blame assignment [FF02]. For flat
contracts, if the pre-conditions are violated the caller is blamed, if the post-condition is
violated the callee is blamed (the MathModule in our example). An example of using
the contracted sqrt function provided by the MathModule is shown in Figure[5.3] This
figure shows the AmbientTalk interaction prompt. Lines starting with a single larger-
than symbol (>) are typed in by the programmer. Lines starting with two larger-than

def MathModule :
def positive :

{
flat: {|x| x > 0};

def sqrt(x) { ... };
def moduleInterface := object: {

def sqrt := provide: sqrt withContract: positive -> positive;
};

+i

Figure 5.2: Example math module providing a contracted sqrt function.

AW N =

70 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

> import MathModule;
>>nil
> sqrt("wrong");

>>(1:1:REPL) sqrt("wrong") violated the contract, expected positive given "wrong"

Figure 5.3: The AmbientTalk prompt: signaling a contract violation.

def MathModule := {
def map_pos(f, a) {

a.map: f;
}
def moduleInterface := object: {
def map_pos := provide: map_pos withContract:

(positive -> positive) * arrayOf(positive) -> arrayOf(positive);
+
I

Figure 5.4: Higher-order pre/post contract over the function map_pos.

symbols (>>) are the return values of evaluating the previous line. In our example,
the math module is imported (line 1), then the sqrt function is applied to the string
"wrong" (line 3). The contract system verifies the precondition and assigns blame to
the read-eval-print loop (1:1:REPL) as expected (line 4).

For a long time researchers agreed that assigning blame was simply a matter of
determining where the violation took place. If pre-conditions are violated it is the
callers fault, if post-conditions are violated it is the callee’s fault (the sqrt function in
our example). However, in the context of dynamic languages (such as Ruby, Python
or Scheme) the use of higher-order functions makes blame assignment challenging. In
the next sections, we show why higher-order values complicate blame assign.

5.1.2 Higher-Order Pre/Post Contracts

Higher-order contracts define contracts over higher-order functions, i.e. functions that
receive other functions as an argument or return functions. A prototypical example
of a higher-order function is the map function. The map function expects a function
f:a->b and an array of elements a. The map function when applied creates a new
array of elements b by applying the function f on each element of the array given as an
argument. Figure[5.4]shows a higher-order contract that can be used to define a contract
over a variation of the map function. This code excerpt specifies that the first argument
of the map_pos function is a function that should be applied to a positive number and
should return a positive number. The second argument of the map_pos function should
be an array of positive numbers. Finally, the return value of the map_pos function
should also be an array of positive numbers. Given this contract the contract system
tracks the use of the contracted function map_pos and assigns blame in case a violation
is detected.

As an example of the use of the map_pos function consider Figure[5.5] In this ex-
ample the map_pos function is first applied correctly. Then the map function is applied
again, however this time the function passed as an argument does not produce integer
values. This is clearly a violation of the contract as the contract stipulates that the func-
tion map_pos should only be applied to functions that return integer values. While the
map function is being evaluated the contract system detects this violation and correctly

5.2. COMPUTATIONAL CONTRACTS 71

>map_pos({|x| x+1 }, [1,2,3])
>>[2, 3, 4]
>map_pos({|x| "wrong" }, [1,2,3])

>> (1:1:REPL) map_pos({ |x| "wrong"}, [1, 2, 3]) violated the contract,
expected positive given "wrong"

Figure 5.5: The AmbientTalk prompt: signaling a higher-order contract violation.

assigns blame to the caller of the map function, in this case the REPL.

Assigning blame in case of higher-order contracts is not as straightforward as with
flat-contracts. Predicates defined over functions are in general undecidable, and vali-
dating them before starting the execution of the function under contract is in general
impossible [FF02]. In the example, at the moment that the map_pos function is applied
to another function it is in general undecidable to know whether this function behaves
according to the specified contract. Instead the verification of a higher-order contract
is postponed by the contract system until the functional arguments under contract are
used during the execution of the contracted function. This is in contrast to flat contract
systems, which are only active before and after the function is applied. Therefore, sim-
ple flat contract systems can not check higher-order contracts. Similar to how simple
flat contract systems can not express contracts over functional argument or return val-
ues, higher-order contracts can not express behavioral constraints over values. How to
specify behavioral constraints over values is the first contribution of this chapter and is
explained in the following section.

5.2 Computational Contracts

A computational contract is a higher-order contract over the execution of a contracted
entity. Computational contracts are applicable over functions, objects and their higher-
order arguments. In contrast to traditional higher-order contracts, they are not restricted
to only validating the inferface of an applicable value, but they can also express asser-
tions over the computation that is associated with that value. Programmers can specify
what has to happen or what should not happen during the execution of the computation.

As an example of a high-level computational contract consider again the sqrt
function shown in Section @ This time, we want to express that the sqrt function
should not display anything to the user. With computational contracts this behavior

can be enforced by specifying a contract over the sqrt function, for example positive
lcall(system.printin)

positive. The contract defined over the sqrt function again spec-
ifies that the argument has to be a positive number and that the return value has to be
positive. In addition, the computational contract denoted by !call(system.printin)
disallows all invocations of system.println during the execution of the sqrt func-
tion. The computational contract is active during the dynamic extent of the function
application. Internally, the computational contract consist of two parts. First, the inter-
ception component is a description of when validation of the function under contract
is needed, in our example when the method system.println is invoked. Second,
the blame assignment component is applied when the interception component inter-
cepts a potentially disallowed event. In general when a blame assignment component
is applied it can decide to assign blame, update internal state and/or proceed with the
computation, etc. In later sections, we show that the computational contract system

72 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

A single function application | Sequence of function applications
Mandatory ensure_c(function) ensure_c(protocol)
Disallow prohibit_c(function) prohibit_c(protocol)

Table 5.1: Overview of the high-level functional computational contracts provided in
AmbientTalk.

provides high-level abstractions, which make it easy for the end programmer to specify
temporal constraints.

Prohibition of certain function applications within the dynamic extent of a func-
tion application is only one type of computational contract. Specifying that a certain
function application is mandatory or that a sequence of function calls should satisfy a
certain protocol are other examples that are directly supported by our computational
contract system. To make it easy for the end programmer, all these variations can be
expressed by two functions ensure_c and prohibit_c. These functions create ba-
sic computational contracts. Table[5.1] gives an overview of the functionality of these
contract constructor functions. Depending on their arguments they either create a com-
putational contract that prohibits or ensures that a certain function is applied or that
a protocol is followed during the execution of the contracted function. How to make
such protocols is shown in section [5.2.3] In the next sections we show how to define
and use high-level computational contracts. In the rest of this section we do not make
the distinction between high-level and basic computational contracts and just use the
term “‘computational contracts”.

Module Examples Recall that contracts are defined on the module boundaries, i.e.
when a function is provided by a module for use by another module. The definition of a
module always follows the same pattern. Consider again the listing shown in figure[5.2]
In most cases to explain our contracts, the only interesting line of the module is line 5.
Consequently, in the rest of our examples, instead of showing the entire listing[5.2] we
only show line 5. As it would become confusing to know which module we are refer-
ring to, all definitions are assumed to be defined in a module called "defs.at". These
functions then are imported and applied from a different module called "uses.at".

5.2.1 Prohibit Contracts

Prohibiting a function call with computational contracts is done by generating a con-
tract with the function prohibit_c. In order to create a computational contract that
prohibits a function to be applied during the execution of a contracted function, the
developer only has to pass the function that is disallowed to the prohibit_c function.
Le. prohibit_c(f) prohibits the function f to be applied within the dynamic extent
of the contracted function. There are two main mechanisms active during the enforce-
ment of a prohibit contract: the interception mechanism and the blame assignment
mechanism. The interception mechanism intercepts all applications of the prohibited
function before they are actually applied. At that moment, control is transferred to
the blame assignment mechanism which stops the entire computation and presents the
programmer with an error message explaining who violated the prohibit contract.
Note that computational contracts are defined over values, not over variables. In
our conceptual example f denotes applications of the function that the variable f refers
to when the contract is created. When the variable f is destructively changed to point

N=-CREN B N R A

5.2. COMPUTATIONAL CONTRACTS 73

to another function g after defining the contract, applications of the function g will not
be intercepted.

Figure [5.6] shows a concrete example of how the prohibit_c function can be
used to contract exported functions. In this example, the function sqrt is exported
with the prohibit contract that ensures that the function system.println is not ap-
plied. The prohibit contract assigns blame to the function sqrt whenever the function
system.println is applied in the dynamic extent of the sqrt function.

Note that figure [5.6]is not pseudo code. The arrow notation of the computational
contracts is implemented by overriding the minus - operator and the minus greater than
operator (->) for contracts. The - operator binds a domain contract to a computational
contract and returns a new contract. This new contract can then be bound to the range
contract by using the -> operator.

def sqrt_c := provide: sqrt withContract: positive -prohibit_c(system.println)-> positive;

Figure 5.6: Using a prohibit contract to prevent the sqrt to display text.

The same prohibit_c contract constructor can also be used to contract functional
arguments. Let us revisit the example of the map_pos function from Section [5.1.7]
and add a prohibit contract over the provided function as shown in Figure[5.7} In this
contract the * is used to indicate that the map function receives two arguments. When

def map_pos := provide: map_pos withContract:
(positive -prohibit_c(system.println)-> positive) * arrayOf(positive) -> arrayOf(positive);

Figure 5.7: Defining a prohibit contract over the argument of the map_pos function.

using the contracted map_pos function correctly it behaves like any other function.
Figure [5.8] shows a transcript where the function map_pos is applied to the increment
function and the array [1,2,3]. As expected, the result of this function is the array
[2,3,4].

Interactive AmbientTalk Shell, version 2.19 Contracts
>import ~/.defs;

>>nil

>map_pos ({|x| x+1}, [1,2,3]);

>>[2, 3, 4]

> map_pos({ |x| system.println(x); x+1; }, [1,2,3])

1:8:uses.at violated the contract prohibit_c(system.println)
computational contract violation

origin:

at system.println(x) (1:16:REPL)

at a.map:(f) (44:17:defs.at)

at map_pos({ |x| system.println(x); x.+(1)}, [1, 2, 3]) (1:1:REPL)

Figure 5.8: Using the contracted map_pos function (from uses.at).

Subsequently (line 6) the map_pos function is applied to a function that violates
the computational contract, i.e. applies system.println. Therefore, blame is as-
signed to the caller of the map_pos function. The resulting error message (line 7 —
12) shows that the violation was caused by the file uses.at. As the transcript was
taken from the interaction window of the uses.at module, it can be easily deduced

74 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

def display_average(a) {
((a.inject: 0 into: {|x,y| x+y})/a.length);
}

def moduleInterface := object: {
def display_average := provide: display_average withContract:
array0f(pos) -ensure_c(system.println)-> any;

Figure 5.9: Exporting the function display-average with a promise contract.

that the blame is assigned to the call made from the prompt. It is important to note
that blame is assigned when the argument function is applied within the body of the
map_pos function. When map_pos is applied it is not possible to determine that the
function passed as an argument behaves according to the contract. This is also the main
reason why blame assignment is needed in the context of higher-order functions. For a
programmer it would not always be clear which module to blame even when he knows
that a certain contract is violated during the execution of a function under contract.
The contract system keeps track of the responsibilities of the provider and user of the
contracted function and assigns blame in case a violation is detected.

The stack trace can be used to pinpoint which line caused the violation of the com-
putational contract (shown after the word origin:). It reveals that the origin of the
violation was in the read-eval-print-loop on line 1, character 16. Note that the func-
tion system.println was never applied. The blame assignment of the computational
contract stops the current evaluation and prevents the function system.println to be
applied completely.

5.2.2 Ensure Contracts

The dual of prohibiting an action is to ensure that an action is performed. An ensure
contract verifies that a certain promise is kept during the dynamic extent of the con-
tracted function. For example, a function g can promise to apply another function f.
An ensure contract does not specify the exact moment when the function f needs to be
applied; it only specifies that at some moment during the execution of the contracted
function f needs to be applied. Verifying an ensure contract is thus more subtle than
verifying a prohibit contract as blame can only be assigned affer the contracted func-
tion has been entirely executed. After all, the application of the function f could be
the last statement of the contracted function. From a programmers perspective, defin-
ing an ensure contract with computational contracts is as simple as defining a prohibit
contract. Ensure contracts are created with the function ensure_c.

To illustrate the use of an ensure contract, consider the function display_average
shown in Figure[5.9] This function takes an array of numbers and displays the average
of the numbers in the array. It is exported with an ensure contract that assigns blame
when the promise of applying the function system.println is not held.

This function display_average correctly computes the average of the argu-
ment list. Unfortunately, the function under contract does not apply the func-
tion system.println. Therefore applying the list [10, 20] to the function
display_average leads to a violation of the ensure contract. A transcript
of this example is shown below. As highlighted in the transcript the function
display_average violates the ensure_c(system.println) contract.

O 0NN W —

5.2. COMPUTATIONAL CONTRACTS 75

def OpenCloseProtocol() {
UsageProtocol: {

def start() { closed(); };

def closed() { (on: openFile) => { opened(); }};
def opened() { (on: closeFile) => { end(); I3
def end() { (on: any) => { false; I3

}
}
def readCharFromFile(s) {
openFile(s).readChar()

Y

def moduleInterface := object: {
def readCharFromFile := provide: readCharFromFile withContract:
string -ensure_c(OpenCloseProtocol)-> char;

}

Figure 5.10: Ensure protocol contract over the readCharFromFile function.

> display_average([10,20]);

47:13:defs.at violated the contract ensure_c(system.println)
origin:
at display_average([10, 20]) (1:1:REPL)

5.2.3 Usage Protocols

Until now we have only considered computational contracts that are suppose to validate
whether or not a certain function is applied once. In this section we show computational
contracts that enable the programmer to describe a specification of the order in which
certain functions have to be applied. In our implementation these orderings (protocols)
are expressed by means of a finite state machine.

An example of a finite state machine is shown at the top of Figure [5.10] This finite
state machine describes a protocol that specifies that the contracted function should
perform exactly one application of the function openFile followed by one application
of the function closeFile. The mandatory start state of the finite state machine
indicates that the finite state machine has to be initialized to the state closed. Besides
the start state the finite state machine has three states: closed, opened, end. In
each of these states there is one possible transition, for example, when the finite state
is in the closed state, function invocations to the function openFile will transition
the finite state machine to the opened state. Each state can have multiple transitions
and are denoted with the following syntax (on: f)=> B; where f refers to a function
and B is a code-block which can contain arbitrary AmbientTalk code. The result of
evaluating this code block is used as the next state of the finite state machine. In case
the returned value is false, a contract violation is detected. States can also receive
arguments which can be used in the transition code in order to decide to which state to
transition next.

Functions that are not specified in the protocol can always be applied. For example
the application sequence openFile, system.println, closeFile leads to the end
state. In the end state the special wildcard qualifier any is used. This wildcard matches
any function mentioned in the usage protocol. Therefore, calling a function mentioned
in the protocol while in the end state results in a violation of the protocol. When an
application sequence does not follow the protocol, blame is assigned. For example, the
application sequence openFile, closeFile, openFile is not allowed as the end
state does not allow any applications to openFile.

76 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

In the example protocol, sequentiality of opening and closing files is ensured. Pro-
tocols are not limited to deterministic sequential sequences. They can also express
non-deterministic choice, in our implementation this is expressed by adding multiple
transitions in a single state.

Ensure Protocols Once a protocol is defined it can be used to create a computational
contract with the ensure_c function. The resulting computational contract assigns
blame to the contracted function when the internal function applications in the dy-
namic extent of the contracted function do not satisfy the usage protocol. This happens
when functions are applied in the wrong order or when the finite state machine is not
in the end state when the contracted function returns.

To show the use of the OpenCloseProtocol consider the readCharFromFile
function shown in Figure This function opens a file and reads one character from
this file (line 10). A version of the readCharFromFile function is exported with a
contract that ensures that the OpenCloseProtocol is followed. Additionally, it is
specified that the argument of the function should be a string and the return value a
char.

Applying the exported readCharFromFile function results in an error mes-
sage as shown below. Blame is assigned to the module defs.at because the
readCharFromFile function did not close the file. The error message also shows
that the violation was an ensure_protocol_c contract violation.

> readCharFromFile("testFile.at");

52:13:defs.at violated the contract ensure_protocol c
origin:
at readCharFromFile("testFile.at") (1:1:REPL)

Prohibit Protocols A computational contract that prohibits a given protocol can be
created with the function prohibit_c. Such a computational contract assigns blame
to the function over which it is defined whenever the function applications in the dy-
namic extent of the contracted function satisfy the usage protocol. This happens when
all function applications are applied in an order such that the finite state machine does
reach the end state when the contracted function returns. To show a use of a prohibit-
protocol contract consider the protocol shown in Figure [5.11] This protocol reaches
the end-state after exactly two applications of the createWindow function. When ap-
plying the prohibit_c function to this protocol it returns a contract that prohibits a
function to create more than one window. As soon as the contracted function creates a
second window it violates the prohibit contract because this application sequence leads
to the end state of the finite state machine.

The function readAndShow, shown in Figure expects a filename and shows
the content to the user. In order to make sure that this function does not create more than
one window it is exported with a prohibit contract: prohibit_c(window-Protocol).
Using the function readAndShow leads to a violation of the prohibit contract.

In summery, protocols provide the developer with the necessary machinery in order
to express certain quality of service contracts. For example, in order to avoid service
abuse the programmer can define a protocol that states that a function must be called at
least twice and at most five times.

5.3. CONTRACT VERIFICATION AND BLAME ASSIGNMENT 77

def windowProtocol :=
UsageProtocol: {
def start() { checkWindow(1l) };
def checkWindow(x) {
(on: createWindow) => {
if: (x == 1) then: { checkWindow(0); } else: { end(); }
}
h
}

def readAndShow(filename) {

createWindow(...);
createWindow(...);

}

def moduleInterface := object: {
def readAndShow := provide: readAndShow withContract:
string -prohibit_c(windowProtocol)-> any);

Figure 5.11: Defining a prohibit protocol contract over the readAndShow function.

5.3 Contract Verification and Blame Assignment

In this section we describe the inner workings of the computational contract system
by presenting a didactical implementation In particular we discuss the algorithm to
validate computational contracts and show how to assign blame when a violation is de-
tected. As computational contracts are an extension to higher-order pre/post contracts,
we first start with a detailed explanation of the higher-order pre/post contract system
as presented in [FB06]. Readers who are already familiar with higher-order pre/post
contract systems are still encouraged to read this section in order to get familiar with
our notation. After explaining higher-order pre/post contracts, we show how we extend
them in order to support computational contracts.

5.3.1 Flat and Higher-Order Pre/Post Contracts

Our higher-order pre/post contract system consists of three AmbientTalk functions,
flat, ho (higer-order) and guard (reminiscent to the contract system as presented
in [FBO6]). These functions are shown in Figure @} The function flat consumes
a predicate and creates a contract that verifies this predicate. As mentioned before,
flat contracts are used to define contracts over simple values. The function ho creates
a function contract given a contract for the domain and a contract for the range (i.e.
the -> operator). Finally the function guard applies contracts over values. The first
argument is a contract, created with either flat or ho. The second argument is the
value over which the contract is defined. Finally, the last two arguments, pos and neg
, are blame labels, i.e., textual representations of the supplier and consumer of the
contracted value. These labels are passed to the contract in order to assign blame in
case of a violation. Note that in the actual implementation of a higher-order contract
system these blame labels are filled in by the contract system.

In order to get a better understanding of the contract verification mechanism in
combination with blame assignment consider the example shown in Figure [5.13] In

IThe complete code of this didactical implementation is available at http://soft.vub.ac.be/
~cfscholl/index.php?page=at_cc

http://soft.vub.ac.be/~cfscholl/index.php?page=at_cc
http://soft.vub.ac.be/~cfscholl/index.php?page=at_cc

O 001NN AW -

78 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

def flat(pred) {
{ Ipos, neg|
{ |val|
if: (pred(val)) then: {
val
} else: { blame(pos); }
}
I
}

def ho(dom, rng) {
{ |pos,neg|
{ |val|
if: (is: val taggedAs: Closure) then: {
{ |x] rng(pos, neg)(dom(neg,pos)(x)) }

}
else: { blame(pos); }
}
}
I

def guard(ctc, val, pos, neg) {
ctc(pos,neg) (val);

b

Figure 5.12: Higher-Order pre/post contract constructors.

def fixTen(f) { f(10) == 10 };

def neg(x) { system.println(x); -x; };
def nat := flat({|x| x > 0});
def bool := flat({|x| is: x taggedAs: Boolean; });
def cf := guard(ho(ho(nat, nat), bool),
fixTen,
"fixTen",
"prompt");

Figure 5.13: A higher-order contract definition over the function fixTen.

this example two functions fixTen and neg are defined. The function fixTen takes
a function and verifies whether or not 10 is a fix point of that function. The function
neg returns the negative value of an integer argument. The example also shows the
creation of two flat contracts, one with the predicate {|x| x > 0} and one with the
predicate {|x| is: x taggedAs: Boolean;}. Finally a contracted version of
fixTen, cf, is defined by making use of the function guard, ho, and the newly created
flat contracts. This function contract states that the argument of fixTen is a function
that takes a natural number and returns a natural number. The contract also states that
the function fixTen returns a boolean value.

The function guard applies the higher-order pre/post contract over the function
fixTen given the blame labels. The result is a contract verification function that be-
haves almost exactly the same as the function fixTen with the difference that it verifies
the domain (nat — nat) and range (bool) contract of its argument.

In our notation, wrapping a function into a contracted function is represented by a
box drawn around the function. Wrapping of the function fixTen into a contracted
function is represented as follows:

‘ l1,I15] (nat — nat) — bool | fixTen ‘

5.3. CONTRACT VERIFICATION AND BLAME ASSIGNMENT 79

where [; and [, are the blame labels textually representing the supplier and the con-
sumer of the contracted function respectively.

In order to show how blame assignment of contracted functions works consider the
following example of applying the contracted version of fixTen to the function neg:

‘ l1,15] (nat — nat) — bool? | fixTen ‘(neg)

Here [; is the blame label of the supplier of the function fixTen, and l5 is the blame
label of the consumer of the function fixTen, i.e. the prompt.

When the contracted function fixTen is applied it verifies the domain contract,
namely that the supplied function neg transforms natural numbers into natural num-
bers. Because this cannot be checked immediately when fixTen is applied, the neg
function is wrapped into a new contracted function. This corresponds to line 15 of the
ho function shown in Figure[5.12] where the argument dom is bound to the higher-order
contract (nat — nat). Note that for this new contracted function, the blame labels
are swapped. An intuitive explanation for this blame label swapping is that within the
function body of the function fixTen the prompt is the supplier of the function neg,
and the contracted function is the client. After wrapping the function neg into a con-
tracted function, the original function fixTen is applied as shown below:

fixTen(‘ lo,l1] nat — nat | neg ‘)

As shown in Figure within the body of fixTen the function neg is applied to
the value 10. Since the argument is passed to the wrapped function, the domain con-
tract is verified first:

‘ la,l4] nat — nat | neg‘(lO)

In this case the argument is a simple value (10) and the domain contract nat verifies
that this value is indeed a positive integer value. As the supplied value, 10 in the
example, passes the domain contract nat, the function neg is applied and the return
value (-10) is verified by the range contract, nat again. This value does not pass the
flat contract nat. Therefore blame is assigned to the prompt, as the prompt was the
supplier of the function neg, which violated the contract.

In summary, when calling a contracted higher-order function i with a function f,
the original higher-order function A calls the contracted version of the function f with
blame labels swapped.

5.3.2 Aspect Extensions for Computational Contracts

This explained functional contracts as introduced by Findler and Felleisen [FE02]. We
now turn our attention towards extending this system to support computational con-
tracts. An important aspect of computational contracts is how to define and intercept er-
roneous behaviour during the execution of a computation. Therefore, we have focused
our effort on making this interception mechanism as independent from the base level
code as possible. To this end we have used aspect-oriented programming [KLM™97].
In this section we describe the aspect-oriented language constructs relevant for our def-
inition of computational contracts. The implementation of the computational contracts
itself is shown in section[5.3.3

80 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

In computational contracts, the concepts of pointcut and advice are used to specify
at which point the contract has to be verified. By using the techniques established in
aspect-oriented programming this can be done without having to make any intrusive
changes to the contracted entity. In order to achieve the particular behavior of only
enforcing the computational contract in the dynamic extent of the function over which
it is defined, dynamically-scoped aspects [DTKO6|| are used. Instead of being statically
and globally defined at the beginning of the program, aspects can be deployed over
certain parts of the execution of the program.

The join points of an aspect language are highly determined by the underlying pro-
gramming language and the particular aspect model at hand. In the semantics described
here, only function applications are reified as join points. As there are only function
applications, join points are represented by the intercepted functions. Sometimes it is
important to know which functions were already applied in the past, for example when
validating protocol contracts. Therefore, when the programmer defines a join point de-
scriptor, the programmer has access to a stack of join points instead of only the current
joint point.

An aspect consists of a pointcut descriptor and a corresponding advice. The advice
is executed whenever the pointcut descriptor matches the current join point stack. An
aspect descriptor is represented by a predicate function which is applied to a stack
of join points. When the aspect descriptor returns true the corresponding advice is
executed. The programmer can alter the execution of the program by executing other
functionality before, after or instead of the intercepted function application. Advice
is implemented as a closure that is applied by the underlying system with a function
p. This function p allows the programmer to continue with the originally intercepted
function application. The advice is expected to return a function that is applied by the
underlying system to the arguments of the intercepted function application.

Now that it is clear how an aspect can be defined, there is still the question of how
to deploy an aspect and how to limit its scope. Moreover, there also is the question
whether the aspect should be active in the static or dynamic scope of evaluation. Full
fledged aspect languages have constructs for both dynamic and static aspect deploy-
ment [DTKO6, Tan08l]. As the semantics of computational contracts depends only on
dynamically deployed aspects we limit the rest of the explanation to the specification of
dynamic aspects. In AmbientTalk/C, fluid: A deploy: B, deploys an aspect A
in the dynamic extent of executing the body B.

To exemplify how a programmer can define a pointcut and an advice, consider
the code listed in Figure In this example, the idea is again to intercept all ap-
plications of the sqrt function and to validate that the argument is a positive num-
ber. The descriptor matches all join points when there is a call to the sqrt function
(call(&sqrt)). The advice receives a function proceed that will proceed with the
normal execution of the program when applied. The advice must return a function that
is applied to the arguments of the intercepted function. When the advice is applied,
it verifies that the argument is a positive number. In case that the argument is not a
positive number an error is thrown. Otherwise, the proceed function is applied to the
original arguments. In line 11 of the code, the aspect is fluidly deployed. In the body
of the aspect deployment, an application of the sqrt function to the number -2 will
cause the aspect to be triggered. As the argument to the sqrt function is smaller than
0 an error is thrown. Note that the body of the sqrt function is never applied in this
example. The aspect intercepts the call to the sqrt function and verifies the arguments
before the body is executed. As shown in the example, aspects already help in captur-
ing violations. However, writing contracts like this would be cumbersome and error

— OO0 NN R W —

——

O 0NN AW —

5.3. CONTRACT VERIFICATION AND BLAME ASSIGNMENT 81

def a := aspect: call(&sqrt) advice: { |proceed, arguments|
if: (0 > arguments[1l]) then: {
error: "Calling sqrt with an argument less than zero";
} else: {

proceed(@arguments);
I
+

fluid: a deploy: {
sqrt(-2);
+

Figure 5.14: Aspect to validate the argument of the sqrt function.

def cc(pc, adv, dom, rng) {
{lpos, neg|
{ |val|
if: (is: val taggedAs: Closure) then: {
{1x1
def verified := dom(neg, pos)(x);
def adv := adv(pos,neg);
def asp := aspect: pc advice: { |proceed, args|
adv(proceed,args);
+;
def result := nil;
fluid: asp deploy: {
result := val(verified);
+i

rng(pos,neg) (result);

}
} else: {
blame (pos);
}i
}
}
I

Figure 5.15: Computational contract constructor.

prone.

5.3.3 Verification and Blame Assignment of Computational Con-
tracts

Now that we have explained traditional higher-order contracts in section and
the aspect-oriented language features necessary for computational contracts in sec-
tion [5.3.2] we can show the internal workings of our computational contract system.
We first show the didactical implementation of computational contracts followed by a
step-by-step example to explain how blame assignment works.

In Figure[5.15] the computational contract constructor function cc is shown. This
function is used to create a computational contract (i.e. it implements the (-) and ->
operators). The first argument of this function is the interception component of the
computational contract. The interception component specifies the exact points where
the contract needs to be validated. The second argument is the blame assignment com-
ponent and is almost the same as an advice. The difference is that a blame assignment
component also receives blame assignment labels. The two last arguments are the do-
main contract and the range contract. A computational contract verifies its contracted

82 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

def prohibit_c(pc) {
cc(pc,
{Ipos,neg| {|p,a| blame(pos)}},
flat({|x| true;}),
flat({|x| true;}))
}

def ensure_c(pc) {
def called := false;
cc(pc,
{|pos,neg| {|p,a| called := true; p(a); }},
flat({|x| called := false; true;}),
flat({|x| called;}));

Figure 5.16: High-Level Abstraction for Computational Contracts.

def cfc := guard(ho(prohibit_c(call(system.println)), nat, nat), bool),
fixTen,
"fixTen",
"Prompt");

Figure 5.17: Computational contract implementation in use.

function very similarly to the way higher-order contracts are verified conform sec-
tion First, the domain contract is verified (line 6). Second, the blame assignment
component is initialized and an aspect is created (line 7-10). This aspect is used to
intercept interesting events in the dynamic extent of the applied contracted functiorﬂ
Subsequently, this aspect is deployed and the function over which the contract is de-
fined is applied (12-14) The blame assignment component is applied when a matching
join point is encountered in the dynamic extent of applying the contracted function,
as specified in the advice (line 9). When there is no violation of the computational
contract during the execution of the contracted function, the computational contract
behaves exactly like a higher-order contract.

The definition of a prohibit and ensure contracts can now be defined in terms of
our general computational contract definition, as is shown in Figure [5.16] A prohibit
contract simply assigns blame in case the blame assignment component is applied. An
ensure contract initializes a variable called to be false in the precondition and sets this
variable to true in the blame assignment component. The postcondition returns this
variable and blame is assigned when the variable was not set to true.

5.3.4 Computational Contracts: Step by Step Example

In order to show the impact of computational contracts on the execution of a con-
tracted function let us revisit the fixTen example shown in Figure [5.13] However,
now the contract defined over the argument of the fixTen function prohibits calls to
system.println during its execution as shown in Figure[5.17]

In order to show how blame assignment of computational contracts works, consider
the following example of applying the contracted function fixTen to the function neg:

2In practice, we have implemented the basic concepts of LAScheme as a mini aspect language for Am-
bientTalk [TanlOb]. LAScheme is directly based on AspectScheme [DTKO06|, but integrates a number of
improvements, such as execution levels [Tanl0a].

5.4. OPERATIONAL SEMANTICS OF COMPUTATIONAL CONTRACTS 83

leall(system.printin)

l1,ls] (nat nat) — bool | fixTen |(neg)

Recall that I; and [, are the blame labels textually representing the supplier (I1) and
the consumer (l2) — in our example the prompt — of the contracted value respec-
tively. When the contracted function fixTen is applied it verifies the contract, namely
that the supplied function neg does not apply the function println. As explained
before, this can not be verified when the contracted function is applied (Rice theorem).
Therefore, the argument (neg) is wrapped into a new contracted function. The function
fixTen is thus applied to the contracted neg as shown below.

lcall(system.println)

fixTen(| I3,l1] nat

nat | neg|)

Within the body of the fixTen function this contract-verification function is applied to
the value 10. This results in validating the domain contract nat and as in the previous
example the value 10 passes this contract. Finally the computational contract is applied.

leall(system.printin)

l2, 11| nat nat | neg|(10)

Applying the computational contract corresponds to deploying a dynamic aspect. The
active pointcut is shown in superscript (Icall(system.printin)) and the responsible to
blame in subscript (I2):

neg(10) Zall(system.println)

In this example the function neg violates the computational contract by applying the
function system.println. This matches the pointcut, and the blame advice is exe-
cuted. The blame in this case is assigned to the prompt. This is correct because the
prompt supplied the function (neg) which does not satisfy the contract.

5.4 Operational Semantics of Computational Contracts

In this section we precisely describe the inner workings of the computational contract
system by presenting an operational semantics. In order to concentrate on the specific
mechanism for checking computational contracts we do not consider objects, refer-
ences or distribution at this point. Instead we describe the operational semantics of
computational contracts in a simple higher-order functional language a la Scheme. An
executable specification of the semantics is also available for PLT Redex [FEEFQ9] El
We start our explanation by describing the CEK model of a Scheme-like language, and
then explain how to extend it to support computational contracts.

5.4.1 CEK Model and Syntax Definition

The definition of our semantics follows the definition of the AspectScheme language
as given by Dutchyn et al. [DTKO06]. The semantics is defined as a variation on a CEK
machine. The CEK machine defines program behavior by defining transition relations
from one program state to the next. The state of a computation consists of a tuple:

3http://soft.vub.ac.be/~cfscholl/index.php?page=at_contracts

http://soft.vub.ac.be/~cfscholl/index.php?page=at_contracts

84 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

1. The control string (C) and its environment (E).
2. The continuation code (K).

Reduction rules of the machine are written in the form ((C E) K) = ((C' E') K).
Environments are finite maps from the set of variables = to values v. If E is an envi-
ronment, then E[z := v] is like E except the point = where it is v.

v u= (A(x)e) | true| false |empty | (cons VC VC)

¢ z= (flate) | (—=ce) | (—ccee)
ex=wvz|(ee)|(pime---) | (ifeee)|(set! xze)|(monZce)| (blame z z)
prim ::= eq? | cons | first | rest |empty? | > | <
MC := (eE)
VC = (vE)

E == ((zMC) --+)

K ::= stop | (ifk MC MCK) | (apppriml-k MC K) | (appprim2-k VC K) |
(op-k primE e K) | (op-k2 prim VC K)

x = Symbolx

Figure 5.18: Core syntax of the A\, language

Higher-Order Contracts Figure shows the core syntax of the A. language (c
for contract). A. is a simple Scheme-like language with booleans, numbers and lists,
together with the primitive operations applicable to them. The basic expressions con-
sists of values, variables, function applications, if expressions, and assignments. There
are three syntactical expressions for the definition of contracts. Flat contracts are rep-
resented by (flat e) where e evaluates to a predicate function. For example, the
definition of a flat contract that validates whether a value is greater than 10 can be
represented as: (flat (A (z) (> x 10))). Composing flat contracts in order to define
a functional contract is done by using the arrow operator: (— ¢, ¢,). In this repre-
sentation ¢, is the contract defined over the arguments of the function under contract,
and ¢, is the contract over the return value of the function under contract. Note that
the definition of contracts is recursive and therefore, both ¢, and ¢, can be functional
contracts.

Computational Contracts Computational contracts represented as: (— ¢ ¢ e; ep),
extend functional contracts with: an interception component e; and a blame assignment
component e,. Similar to the approach by Dimoulas et al. [DE11]] guarding an expres-
sion with a contract is expressed by a monitor construct (mon? ¢ e). The two labels
1, j respectively indicate the supplier of the expression and the client of the expression.
Finally, blame is expressed by (blame i j).

CEK-Machine Reductions Rules The rules that govern the CEK machine are shown
in Figure [5.19] There are four groups of rules: a first group governs initialization
and termination, a second governs if statements, the third group deals with function
applications and the last group deals with higher-order contracts and computational
contracts. In this section we discuss how these rules evaluate simple expressions. In
the next sections we extend this basic CEK machine with the reduction rules to evaluate
computational contracts.

5.4. OPERATIONAL SEMANTICS OF COMPUTATIONAL CONTRACTS 85

(INIT) (TERM) (IF)
e ((VE) stop) ({(ifeepes) BEYK)
{(e Eo) stop) TermV ((eE)(ifk (e1 E) (e2 E) K))
(IF_TRUE) (IF_FALSE)
((true E)(ifk MC; MC; K)) ((false E)(ifk MC; MC; K))
(MC; K) (MC2 K)
(APP/PRIM) (APP/PRIM-ARG)l
(((app/prim € fun €arg) E) K) (VCiun (apppriml-k MCarg K))
({efunk) (apppriml-k{eq,q E) K)) (MChayg (@appprim2-k VCpy, K))
(APP/PRIM-FUN) (MON)
(VCarg(appprim2-k ((A(z)) epody) Efun) K)) ({((mon z, zf ce) B) K)
({ebody E funlt := VCarg]) K) {((e E){chk E z), x5 cK))
(FLAT)

(VC (chk E z), zy (flat e) K))
(((if (e cv) cv (blame z, z¢))) E[cv := V(]) K)

(HO)
(VC (chkE zp zf (— c1 c2) K))

(A (p) (mon zp, ¢ c2 (f (mon x5 x, c1 p)))) E[f := VC]) K)

Figure 5.19: Basic reduction rules of the CEK machine for higher-order contracts.

Initialization and Termination

e INIT: In order to evaluate a program e, the machine is started with the initial
environment E(and the stop continuation stop. In the initial environment Eg
there are no bindings, and the set of variables are all mapped to error, i.e. Eg =
z +— error for all variables x. After initialization, the machine steps through a
number of reductions until it reaches a terminal state.

e TERM: When a terminal state is reached the machine stops and the final value
TermV is returned as the answer of the evaluation.

If expressions

e [F: The first rule moves the predicate of the if expressions to the control string
and builds a new continuation (ifk). This continuation saves the old continua-
tion together with the two expression for the true and the false branch. De-
pending on whether the predicate evaluates to true or false the reduction rule
IF_TRUE or IF_FALSE is applicable.

e IF_TRUE: In case that the IF_TRUE rule is applicable the evaluation moves the
expression closure of the true branch to the control string and restores the old
continuation.

86 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

o IF_FALSE: The IF_FALSE rule is analogous but moves the focus of evaluation
to the false branch MC,.

Function Applications

o APP/PRIM, APP/PRIM-ARG: These rules first evaluate the function and sub-
sequently evaluate the argument.

o APP/PRIM-FUN: After the argument is evaluated, the body of the function
is evaluated in the environment of definition extended with the binding of the
formal parameter to the actual parameter.

Contracts

o MON: The monitor reduction rule moves evaluation to the body of the expres-
sion under contract and remembers the contract that is defined over the value
in the continuation chk. This continuation chk can be both matched by the re-
duction rules for flat and higher order contracts. When the contracted value is
evaluated the evaluation continues with either the rule to evaluate flat contracts
or higher order contracts.

o FLAT: When the expression is evaluated to a value and there was a flat contract
defined over this value the flat contract is transformed into an if test. This if
test validates whether the predicate of the flat contract is satisfied. When the
contracted value does not satisfies the contract blame is assigned. Note that
contracted value is put in the environment under the variable name cv which is
expected to be fresh.

e HO: Higher-order contracts are recursively translated into a wrapper function
that expects one argument p. When applied the wrapper function creates two
new monitors with the contracts ¢; and co. One for the received argument with
c1. The other monitor is created with cy and monitors the return value of applying
the contracted function to the monitored argument. Note that the blame labels
are switched for the monitor applied over the argument.

5.4.2 Higher-Order Aspect Language

In the reduction semantics for computational contracts there is a mechanism in between
the evaluation of the arguments and the actual function application that allows the pro-
grammer to monitor function applications and to intercept them whenever necessary.
In this section we give an overview of the language constructs adopted from aspect-
oriented programming that are used in order to define computational contracts. The
definition of the aspect language follows Dutchyn et al. [DTKO6].

5.4.2.1 Syntax Extensions

The syntactic extensions for aspect-oriented programming required to support compu-
tational contracts are specified in figure This syntax is defined as an extension
of the syntax shown in Figure[5.18] Non-terminals appearing in the body of extended
syntax replace those with the same name as in figure [5.18] unless an ellipsis (...) ap-
pears. In that case the syntax rule is extended. For example, expressions e are extended

5.4. OPERATIONAL SEMANTICS OF COMPUTATIONAL CONTRACTS 87

(¢
|

= ... | (fluid-aroundeee) | (app/prime e)

J(chkEAzzzcK) | (appl-k MCE AK) | (app2-k VCE AK) |
aroundl-k MC MCK) | (around2-k VC MCK) | (markapp-k VC K) |
eE A)

A)

Zvc VC)--)

~
if

(
= {
= {
= (
Figure 5.20: Syntax of the \. language

with the syntax to define fluid-around advice. Continuations are also extended in
order to support the intermediate evaluation steps during aspect deployment.

When the programmer deploys an advice, the CEK machine needs to keep track of
all the aspects that are currently active. Therefore value and expression closures are
extended with a special aspect environment A. Such an aspect environment consist out
of tuples (VCypeq VCyqay), where VC,,q and VC,4, represents the pointcut descriptor
and the corresponding advice respectively.

5.4.2.2 Deployment of Aspects

In AspectScheme [DTKO6], two different scoping mechanisms for aspects are con-
sidered. For the definition of computational contracts we only need the dynamically
scoped semantics, which is defined with fluid-around. There are three reduction
rules involved in the evaluation of a fluid-around aspect.

e FLUID-AROUND: Evaluates the pointcut descriptor to a value closure and
saves the advice e, 4, and the body of the fluid-around expression €p,4y into the
continuation to be evaluated next.

e AROUNDI-K: Evaluates the advice to a value closure and saves the body of
the fluid-around expression to be evaluated next.

e AROUND2-K: Applies when both the pointcut and advice have been evaluated
to values. It moves the evaluation to the body of the fluid-around expression
with the currently active aspect environment A together with the newly deployed
aspect.

5.4.2.3 Primitive Function Application

In the definition of the semantics there are two types of function applications. Prim-
itive function applications denote the classical function applications as shown before.
Regular function applications are different and inject the aspects into the computation.
It is this mechanism that allows computational contracts to intercept and validate the
function under contract. The three reduction rules that specify the semantics of prim-
itive function application, shown in Figure [5.21] are almost the same as shown before.
The only difference with the previous rules is the presence of the aspect environment.

5.4.2.4 Regular Function Application

At the heart of the semantics of the aspect language lies the mechanism that allows
to invoke aspects during function application. During the reductions of a function

88 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

(FLUID-AROUND) (MARK)

{((fluid-around ey €adv €pody) E A) K) (VC (markapp-k VCp, K))
<<€pc E A> (a roundl-k <eadv E A> <ebody E A> K>> <VC K>
(AROUNDI1-K) (AROUND2-K)

(VCpe (aroundl-k MC,gqy MChody K)) (VCagy (around2-k VCp. (€poay E A K))

(MCadV<a round2-k VCpC MCbody K>> <<€body E (A U { < VCpc VCadV)>}> K>>

(APP/PRIM) (APP/PRIM-ARG)'
(((app/primegun eqrg) E A) K) (VCrun(apppriml-k MCarg Aapp K))

((efun E A)(apppriml-k (earg E A) AK)) (MCarg(appprim2-k VCeyn Aapp K))

(APP/PRIM-FUN)
<VCarg <appprim2' k <()\(.’E) ebody) Efun Afun> Aapp K>>

<<€body Efun [(E = VCarg] Aapp> K>

(APP) (APP_ARGS)
({((efun €arg) E A) K) (VCpun(appl-k MCarg Eapp Aapp K))

({efun E A)(appl-k (earg EA) EAK)) (MC,,4(app2-k VCiun Eapp Aapp K))

(APP_WEAVE)
(VCarg (app2-k ((A(®) €body) Etun Afun) Eapp Aapp K))
(((@app/prim (W, |) arg) E' Aapp) (markapp-k (A () €pody) Efun Agun) K))

E' = Eapp[fun := (((A () epody) Etun Agun)]

[arg := VCarg]

[ips == J(K)]

[pCN = VCpcMava = VCava|<VCch Vcava> € Aapp]

Figure 5.21: Reduction rules for aspects.

application there are three main things happening at the same time. First, a join point
has to be created that represents the actual function application. Second, the join point
stack has to be constructed. Finally, all deployed aspects have to be woven into the
computation. All these things together are needed to execute the corresponding advice
when an active aspect matches the join point stack.

There are three rules and two meta functions for the evaluation of regular function
applications:

o APP,APP_ARGS: These rules are similar to the rules for primitive function
applications, i.e. evaluate the function and the arguments of the function.

o APP_WEAVE: This rule moves the evaluation to the woven function applica-
tion in an extended environment E’. Weaving is done by applying the function W
as we explain later. Important to note here is that the function W has a subscript
indicating how many aspects are in the environment i.e. |A,pp|. The environ-

5.4. OPERATIONAL SEMANTICS OF COMPUTATIONAL CONTRACTS 89

J(stop) = (empty Eqg Ag)

J({markapp-k VC K)) = ((stop VC J(K)) Eg Ag)
J(({... K)) = J(K)

Wo def fun

Wy 4 (app/prim (A (f) (if (app/prim pey jps) (app/prim advy f) f)

Wn_1)

Figure 5.22: Meta functions to weave aspects.

ment E’ is extended with with a function fun that is used in order to weave the
aspects. This function when applied evaluates eyoqy. The environment is fur-
ther extended with the evaluted arguments bound to arg. E’ also contains the
joinpoint stack bound to the varibale jps. This joinpoint stack is created with
the meta function J explained later. The environment is further extended with
bindings for every pointcut pcy and advice advy in the aspect environment.
Every time a regular application is evaluated, a special continuation markapp - k
is constructed. This continuation mark has no other use than marking the join
point. The evaluation of a continuation mark is to simply remove it from the
continuation stack, as shown in rule MARK.

Figure[5.22]shows the auxiliary functions that are needed in order to create the join
point stack and weave the aspects. The function J creates the join point stack from a
continuation stack K. It simply goes over the whole continuation stack and collects all
marked continuations.

Once this join point stack is built, every aspect in the aspect environment must be
applied. When weaving functions there are a number of variables that are assumed
to be in the environment: pcy, advy,fun and jps, these variables are created by the
APP_WEAVE rule. The weaving function Wy creates a new primitive application
for each number N bigger than zero. Each of the primitive applications validates that
pcy matches the join point stack jps. If this is the case the corresponding advice advyy
is executed, with the function f (proceed). If this is not the case the next primitive ap-
plication is returned. Wy returns the variable fun created by the rule APP_WEAVE.
This implies that when no aspect is applicable the function fun is applied.

5.4.3 Computational Contracts

Now that the necessary infrastructure for building computational contracts has been
presented we can define the reduction rule for computational contracts as shown in

Figure[5.23]

e CC: The definition of a computational contract is similar to higher-order con-
tracts but requires two extra parameters: the interception component and the
blame assignment component. Like a higher-order contract it returns a wrapper
function that — when applied — validates the arguments. The blame assignment
component is first initialized with the correct blame labels. The computational
contract then deploys a fluid aspect with the interception component, the ini-
tialized blame assignment component, the original function and the validated

90 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

(cc)
(VC (chkEA zp 25 (= 1 €2 €pe €adv) K))

({((X (p) (mon z 5 1, ca (mcc epe (€adw zn xf) f (MON 2 21, ¢1 p)))) E[f := VC] A) K)

def
(mcc €Epc €adv f earg) =

((A (pc adv arg) (fluid-around pc adv (f arg))) epc €adv €arg)

Figure 5.23: Reduction rule for computational contracts.

def

(call f) =
A () (X (Gp) (eq? f (first jp))))
(prohibit. f) def
(= (flat (X (z) true)) (flat (A (z) true)) (call f)
A (@) (X (n) (A (Gp) (A (a) (blame p n))))))

(ensure. f) def
(let ((c false))
(— (flat (X (z) (set! ¢ false))) (flat (A (z) ¢)) (call f)

A (@) (A (n) (A (Gp) (A (a) (set! c true) (jp a)))))))

Figure 5.24: Syntactic sugar for the definition of Computational Contracts.

arguments. As before, the blame labels of the postcondition of a computational
contract are switched around as explained in section

The definition of a prohibit and ensure contract can now be defined in terms of the
computational contract definition, as shown in Figure[5.24] A prohibit contract simply
assigns positive blame in case the blame assignment component is applied. An ensure
contract initializes a variable c to be false in the precondition and sets this variable to
true in the blame assignment component. The postcondition returns this variable and
blame is assigned when the variable was not set to true.

5.5 Discussion

Before concluding this Chapter we highlight some subtleties that arise in the interac-
tion between computational contracts and higher-order contracts. We also highlight
a subtlety in the blame assignment process that might otherwise be overlooked when
using computational contracts. For both issues we present our solution and the design
decisions taken to overcome these problems.

5.5.1 Identity, Sameness, and Difference

It is possible that a function is subject to verification by both a computational con-
tract and a function contract at the same time. In that case, the question of which has
precedence appears.

To exemplify this issue, consider the code example show in Figure[5.25] There are
two functions defined, namely process and remove. For the discussion it suffices to

5.5. DISCUSSION 91

know that process applies the function f given as argument. The function remove
destructively deletes a file from the harddisk. Both functions are exported with a con-
tract. process has a computational contract that prohibits the function remove to
be applied. The function remove has a higher-order contract that states that the argu-
ments of the function remove should be a st ring and that the return value should be a
boolean. Let us assume that the exported function process is applied to the exported
function remove from the prompt. Remember that exporting a function with a contract
creates a new function that acts and behaves almost exactly like the original function,
with that difference that the contract is verified. Following the notation introduced in
Section the function process in that application is represented as follows (/; is
the blame label for process, and [for the prompt):

lcall(remove)

l1,15] (any/c any/c) | process

Similarly the function remove is represented as follows (I3 is the blame label for
remove):

‘ l3,l5] (string? — boolean?) | remove‘

Applying the exported function process to the exported function remove results in
the computational contract to be verified. After deploying the computational contract
the function body of process is executed (line 1). In the body, the function argument
f is applied to the number 4. Graphically, we have:

lcall(remove)

‘ l3,la] (string? — boolean?) | remove‘(4)l1

Note that the function remove is still contracted by the function contract (string?
— boolean?). At the same time a computational contract that prohibits applications
of the function remove is also active (indicated in superscript). Evaluating either con-
tract leads to a violation. The question is: which contract has precedence?

When precedence is given to the computational contract, blame is assigned to the
function process and a computational contract violation is presented to the developer.
For the developer it will be clear that some piece of code attempted to remove parts of
his hard-disk while the contract clearly prohibits this.

When precedence is given to the function contract, blame is assigned to the module
where the function remove was applied from. In this case the developer is presented
with a precondition violation as the function remove is applied to a number instead
of a string. A developer presented with this error message could be tempted to correct
this error. Of course such an attempt would be futile as applications of the function

def process(f) { ... (f4) ...}

def remove(path) { ... }

def modulelInterface := object: {

def process := provide: process withContract: any -prohibit_c(remove)-> any;
def remove := provide: remove withContract: string -> bool;

+

Figure 5.25: Example where a computational contract and a function contract can be
active over the same function.

92 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

remove are prohibited by the computational contract anyway.

In our implementation, by default, pointcuts like (call f) select applications of
a function f, whether or not it is contracted; it relies on a equals function, which
makes equality oblivious to contracts. This means that in the previous example, the
programmer would get a computational contract violation. We also provide a call-eq
pointcut designator, which relies on the low-level pointer equality function eq. In that
case, the computational contract is not applied before the function contract. Hence the
programmer gets a precondition violation.

Finally, note that a function can also be subject to verification by multiple compu-
tational contracts at the same time. In our implementation, we always give precedence
to the computational contract that has been deployed last. The rationale behind this
decision is that in case of multiple applicable violations the computational contract
which is the “closest” to the violation will be presented to the programmer. We have
not yet encountered any scenario where changing the precedence of the computational
contracts makes sense. However, it would not be hard to support custom precedence
declarations.

5.5.2 Who will Guard the Guards?

An important aspect of contract systems is whether they assume that the contracts
themselves are trustworthy or not. Dependent contracts as described in Findler and
Felleisen’s original paper [FFO2] do not enforce the domain contract defined over the
arguments during the evaluation of the postcondition. Dependent contracts thus fall
into the category of contracts where a contract is assumed to be always correct. This
was criticised by Blume and McAllester [BM06] who extended the work on dependent
contracts so that the domain contract is enforced both in the precondition and in the
postcondition of the dependent contract. Blume and McAllester’s contract system is
dubbed picky while Findler and Felleisen’s original dependent contracts are called lax.
While picky contract systems capture more violations they do not assign blame to the
contract. Recently, Dimoulas et al. [DEEE11] proposed picky blame assignment. This
system dubbed indy, treats the contract as an independent party and in case that the
postcondition violates the domain contract, blame is assigned to the contract.

Similar to lax contracts, during the verification of a computational contract the pre/-
post contract might violate the computational contract. An example of this is shown
below.

‘ I1,15] (printArgument — int) | foo ‘(1)‘C“ll(sy5tem'p”i”tl”)

The precondition, printArgument simply allows any argument to pass but also
prints the argument. The computational contract however disallows any application
of the system.println function. Our implementation provides lax computational
contracts, as they would allow the above behavior. Adapting the notion of indy con-
tracts to computational contracts is an important avenue of future work.

5.6 Conclusion

In this chapter we have shown that traditional contracts fall short in defining and vali-
dating concerns about the computation over which they are defined. As these concerns
could not be expressed even on a single node, a first step towards ambient contracts

5.6. CONCLUSION 93

was the exploration of how to define and validate concerns over the internal working
of the computation. To this need we have presented a model called computational con-
tracts. In this chapter we have limited the discussion of computational contracts to
those defined over functions. The three main contributions presented in this chapter
are:

e The definition and the concept of a novel contract system called computational
contracts.

e A mechanism to specify and validate computational contracts based on scoped
aspects.

e A concrete implementation of computational contracts in AmbientTalk with blame
assignment.

e An executable operational semantics of computational contracts.

Computational contracts form the fundamental abstraction on top of which we will
build ambient contracts. How computational contracts can be applied to prototypes and
how they are sculpted towards distribution is the topic of the next chapter.

94 CHAPTER 5. COMPUTATIONAL CONTRACTS FOR FUNCTIONS

Chapter 6

Server Side Ambient Contracts

In the previous chapter we have shown how computational contracts allows us to ex-
press temporal constraints over functions. In this chapter we show how computational
contracts can be integrated with language constructs for ambient-oriented program-
ming. First, we give an overview of how computational contracts can be integrated
with an object-oriented model. Subsequently, we give an overview of how computa-
tional contracts are integrated with the event-loop concurrency model. More concretely
in this chapter we show how computational contracts can be unified with the following
characteristics of ambient-oriented programming:

A Prototype-Based Object Model As argued by Dedecker et al, classes are difficult
to reconcile with the distributed nature of mobile applications [DVM™03]. The main
issue is to keep the classes consistent amongst the distributed nodes so that objects are
self contained. We therefore focus on how computational contracts can be reconciled
with a (classless) prototype-based object model (section[6.I). We also give an overview
of how the concepts of parametric polymorphism and dynamic contract inference can
be used in combination with prototype-based objects (section[6.3).

The focus of this part of the chapter is to bring the concept of computational con-
tracts to the object level. As our contract system also supports flat and higher-order
contracts over objects we first give an overview of our implementation of these con-
tracts in AmbientTalk/C. The contracts outlined at the start of this chapter are shown in
figure[6.1} Green squares indicate contracts that have been adopted by related work but
are explained here in the context of AmbientTalk/C. The yellow square shows the novel
contract system presented and red squares indicate contracts that are not discussed here.

Event Loop Concurrency In order to mitigate the problems of volatile connections
the ambient-oriented programming paradigm prescribes a non blocking communica-
tion event-loop concurrency model. A prominent characteristic in this model, is the
extensive use of event handlers. Most of the time, these event handlers are triggered by
an external source e.g. as reaction to distributed communication. The registration of
these callbacks inverts the control flow of the application [HOO6]. In such a model the
control flow of the application is driven by the arrival of external events instead of be-
ing driven by the control flow of the program text. At the moment that an event handler
is registered a temporal contract might be active. When at a later moment in time this
event handler is triggered the contracts that were active during the registration of the

95

96 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

Values SeCtIOl‘l 61 '65

% Contract
>

i) Flat HigherOrder Computational

Figure 6.1: Situation in the ambient contracts design space for objects.

event handler should be restored. Current (temporal) higher-order contracts do not take
such callbacks into account [FF02, [SF10, DEMI1, [SHT* 11} DFT1]. In section [6.6.2]
we show how computational contracts can be combined with event-handlers.

Future Contracts In order to synchronize concurrent processes the programmer can
make use of future values. We will show that future values invert the responsibility of
the supplier and the client of the contract. This inverted responsibility makes that the
current strategies for assigning blame for higher-order values [DF11] are not suitable
for the definition of contracts over future values. In section we show that futures
and their callbacks not only invert the control flow of the application, they also invert
the blame assignment strategy leading to the notion of blame inversion.

The introduction of futures together with the use of callbacks is the main topic of
the second part of this chapter as shown in figure [6.2] Futures as defined in Ambi-
entTalk have not been investigated before; as such the design space of (non-blocking)
futures was not explored. In this chapter we show how to define and validate flat,
higher-order and computational contracts over non-blocking futures. While the focus
in this chapter is on the server side of the ambient contract, futures in AmbientTalk are
transparent. Therefore the future contracts shown in this section both account for the
server and client side.

A Section 6.6-6.8

Values

Contract

N Futures,

N
y Flat HigherOrder Computational

Figure 6.2: Situation in the ambient contracts design space for futures.

6.1. OBJECT-LEVEL CONTRACTS 97

6.1 Object-Level Contracts

In the previous chapter, we described contracts defined over functions. In this section
we show how (higher-order) contracts can be defined over objects. There are basically
two ways to look at an object contract. First, an object contract can be a flat contract
created with a simple predicate. For example, a predicate over the field of an object.
Such a predicate can be immediately validated. Second, an object contract can be a
specification for each of the methods of the contracted object. Each of these method
contracts is similar to a higher-order function contract. The difference with a higher-
order function contract is that a (higher-order) method contract allows the programmer
to refer to the object over which the contract is defined. For example, the pop method
of a stack can specify a pre-condition to ensure that the stack is not empty.

Ambient contracts are defined at the object-level. This means that a different object
contract can be applied over each instance. Our ambient contract system has support for
both flat, higher-order and computational object contracts as we show in the following
sections.

6.1.1 Flat Object Contracts

Many contracts defined over objects can be expressed as simple predicates. For ex-
ample, a contract could require that certain fields of an object are initialized. The
programmer defines such a contract by constructing a predicate. This predicate takes
as argument an object and checks whether all the required fields are not null. Flat
object contracts can be validated before (as a precondition) or after (as a postcondition)
executing the contracted entity and are very similar to the first-order function contracts.
In fact, defining such a contract does not require any extra functionality than the one
presented in the chapter 5. The only difference is that up till now the values passed to
flat contracts were expected to be primitive values. However, our contract system also
allows the creation of flat contracts which receive an object as argument instead of a
simple value.

Figure [6.3] shows a flat object contract sizeField that specifies that the size field
of an object has to be a number greater than zero. Recall that in the example snippets,
exported functions are defined in a module called “defs.at” and imported by a module
called “uses.at” as shown in section [5.2] This contract can then be used in order to
define a contract over the argument of the checkout function as shown in Figure [6.3]
In this example, the function checkout is exported with a contract that specifies that
the size field of the shoppingList object should be greater than zero.

def sizeField := flat: {|object| object.size > 0};
def checkout(shoppingList) { ... };

def checkout := provide: checkout withContract: sizeField -> bool;

Figure 6.3: Flat Object Contract.

Importing a contracted function is transparent for the client module as shown in
Figure[6.4] In this example, the "uses.at" module applies the function checkout to an
object with a size field equal to zero. This application violates the contract because the
argument passed to the checkout function should be an object with a field size bigger

98 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

than zero. The "uses.at" module is blamed because it supplied a wrong argument to
the contracted checkout function.

>checkout (object:{ def size := 0; });

1:8:uses.at violated the contract type not respected, expected
sizeField given <obj:2037510537{size,size:=}>

at raise: (ContractException) (249:32:ComputationalContracts.at)
at checkout(object: ({ def size := 0 })) (1:1:REPL)

Figure 6.4: Flat Object Contract Usage.

In general, the programmer would like to specify more detailed properties about
objects. For example, a flat object contract cannot express anything about the behavior
of the methods of an object. In the next section we present higher-order object contracts
which allow the programmer to specify contracts over the individual methods of an
object.

6.1.2 Higher-Order Object Contracts

Our approach for defining object contracts is similar to how object-level contracts were
defined in Racket [SF10]. Higher-order object contracts can not be defined by using
flat contracts for exactly the same reason that flat contracts are not sufficient for func-
tion contracts as explained in section[5.1] Similar to how function contracts can only
be verified when the function is used in the body of the contracted function, object
contracts can only be verified when the contracted object is used.

An object contract is defined by a protocol that defines a number of methods de-
noting the minimal interface that the object over which the contract is defined has to
implement. As an example, consider Figure[6.5] which shows a contract for a stack of
integers. The object contract specifies that there should be three methods implemented
by the object, namely push, pop and isEmpty. The body of these methods denote
the contract that is applied over the individual methods of the contracted object. The
contract defined over the push method states that the argument should be an integer.
Similarly, the values that are popped of the stack should be integers.

It is often important to access the fields of the object in order to specify object
contracts. Therefore, flat contracts over methods receive next to the value over which
they are defined a reference to the contracted object as an optional second argument.
Such an optional argument allows flat contracts for functions to be reused in method
contracts. Pre- and post-conditions that do not take any arguments are created with
the keyword function contract:. The precondition of the pop operation states that the
stack should not be empty. The last line in Figure[6.5] shows how the stack is exported
so that it can be imported from other modules. Note that the stack contract needs to
be initialized by giving it to the function Ref in order to indicate that the object is
local to the actor. In the chapter [7] another initialization function FarRef is shown in
order to define object contracts over far references. AmbientTalk/C also has support
for isolates, with the contract constructor IsolateRef.

It is important to remark that object contracts are defined independently from the
objects over which they are applied. Decoupling contract definition from application
has the advantage that the same contract definition can be reused for multiple objects.
In addition, it allows for better modularity since the concern of specifying the contract

6.1. OBJECT-LEVEL CONTRACTS 99

def notEmpty := contract: { |s| !s.isEmpty() };

def StackC := ObjectContract: {

def push(o) { int -> void; };

def pop() { notEmpty -> int; };

def isEmpty() { void -> int; };
}

def intStack := provide: stack withContract: Ref(StackC);

Figure 6.5: Object contract definition and deployment.

>import /.experimental.lang.defs;
>> null
>intStack.push("wrong");

intStack.push("wrong");

1:8:uses.at violated the contract expected Integer given "wrong"
origin:

at raise: (ContractException) (249:32:ComputationalContracts.at)
at intStack.push("wrong") (1:1:REPL)

Figure 6.6: Violation of the stack contract by the module uses.at.

is clearly separated from the functional requirements which are defined in the object
itself.

Using the object contract from a different module works analogously to using a
contracted function. Figure[6.6|shows an example of importing a contracted object and
using it. First, the defs module is imported which makes the intStack visible in the
module uses. Then the programmer invokes the method push with the string "wrong
" on the intStack. As expected this results in blame being assigned by the contract
system. As shown in the trace the contract system informs the programmer that an
integer was expected instead of the string "wrong". The error trace also shows that the
blame of violating the contract needs to be assigned to the uses module. Note that the
use of contracted values is again completely transparent for the client. It is up to the
programmer of the client to read the contracts of the imported modules and abide by
them.

The definition of our stack contract is sufficient for the definition of a stack of
positive numbers but it is not very general. For example, in order to define a stack where
the elements of the stack are integers greater than ten the programmer has to rewrite
the whole contract. This is clearly not ideal and it would be better if the contract would
be parameterized with another contract that defines the elements that can be pushed on
and popped from the stack. In the section [6.3| we describe how we cater for these cases
by making contracts first class values. Further, we give an overview of how in certain
situations contracts can be inferred at runtime. In section [6.5] we show the semantics
of object-level contracts. In the next section we first focus on the use of computational
contracts in combination with object-level contracts.

O 001NN AW -

100 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

def stack := object: {
def storage := [];
def push(object) { ... };
def pop() { ... };

def StackContract(pos) {
ObjectContract: {
def push(arg) { pos -prohibit_c(system.&println)-> any };
def pop() { any -> pos };

};'

def stack := object: {
def storage := [];
def push(arg) {
system.println("pushed " + arg);
storage := [arg] + storage;
}i
def pop() {
/]
}
I

Figure 6.7: Computational contract over methods

73:21:defs.at violated the contract computational contract.

Figure 6.8: Methods with a computational contract blame assignment.

6.2 Computational Contracts over Objects

The object contracts shown up till now are an extension of the higher-order contracts for
functions. They do not capture behavioral properties over the execution of the methods
of the contracted object or the object itself. In this section we give an overview of how
computational contracts can be defined over methods and over objects.

6.2.1 Method-level Computational Contracts

In this section, we show how computational contracts can be used in the definition
of object contracts to define behavioral properties over the methods. The syntax and
semantics of these contracts is identical to the syntax and semantics of computational
contracts for functions, except that these contracts are now defined over methods in-
stead of over functions.

All the high-level computational contract constructor functions defined for func-
tions as shown in table are also applicable over the methods of an object. This
allows the programmer to prohibit or ensure that certain functions and methods are
applied in a specific order when a method is executed. Figure shows an example
where the push method of a stack is prohibited to apply the system.println method.
This contract is very similar to the one shown in Figure [6.5] However, now the push
contract has a computational contract defined over it. This contract is created with the
prohibit_c constructor function and prohibits push to invoke system.println (line
9). In order to show an example of a violation of this contract, we added an extra line
in the push method that prints the objects that are being pushed on the stack (line 17).
Figure[6.8shows that when pushing elements on this stack, blame is correctly assigned

6.2. COMPUTATIONAL CONTRACTS OVER OBJECTS 101

to the "def.at" module.

In certain situations, the order in which the methods of an object are applied can
also be important. In the next section we give an overview how the programmer can
specify the order of method invocations over an object by making use of object protocol
contracts.

6.2.2 Computational Contracts for Object Protocols

In this section we show the use of computational contracts in order to restrict temporal
orderings of method calls on an object. Such temporal orderings over method calls are
known as object protocols and is the subject of many research in the field of validation.
In [BKAI1], Beckman et al. analyze the use of object protocols in a large number
of open-source projects, comprising almost two million lines of code. A remarkable
result from this study is that about 90% of the protocols found, fit into the following
five categories: Initialization (28.1%), Deactivation (25.8%), Type Qualifier (16.4 %),
Dynamic Preparation (8.0%) and Redundant Operation (7.3%) [BKALl]. Each of
these object protocols is a specification of the order of the methods that have to be
invoked on an object. They are similar in nature to a computational contract but are
active during the entire lifetime of the object. Moreover, they refer to a single object
while computational contracts can express protocols spanning multiple objects.

We now show an extension to computational contracts in order to express object
protocols. We show the applicability of our approach by showing the implementation of
five computational contract constructor functions corresponding to the five categories
given by Beckman et al. For each category, we first explain which protocol the category
aims to validate. Then we show how we implemented the constructor function for
the object contracts using computational contracts. We start our exposition of object
protocols with then initialization protocol.

Object Protocol: Initialization The first object protocol category concerns the ini-
tialization of objects. In certain situations an objects must be initialized after construc-
tion time but before the object is meant to be used. An example of this category can be
found in the AlgorithmParameters class of Java. Only after one of its three init meth-
ods has been invoked, calls to its getEncoded method are allowed. In the initialization
category, calls to an instance method m after construction-time result in an error unless
some particular initializing method i has been invoked at least once [BKAI11].

Figure [6.9] shows the implementation of this object protocol in AmbientTalk/C.
Object protocols are defined with the keyword function ObjectProtocol and are very
similar to usage protocols as shown in section[5.2.3] The methods defined in an object
protocol represent the states of the object protocol and their bodies define the possible
transitions. In an object protocol the transitions are only triggered by method invo-
cations on the object over which the object protocol is defined. In the initialization
protocol there are three states defined: initState, endState and the obligatory start
state. When the object protocol is applied over an object the start state is applied.
An object protocol transitions from one state of the protocol to the next depending on
which methods are applied on its object. In the initState there are two transitions
defined. The first transition indicates that when the initMethod is invoked the state ma-
chine transitions to the endState. The second transition moves the state machine to the
false state when any other method is applied by means of the predefined anyMethod
selector. The value false is used by the programmer to encode invalid transitions and

102 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

def InitializationProtocol(initMethod) {
ObjectProtocol: {

def initState() { (on: initMethod) => { endState() };
(on: anyMethod) => { false b
def endState() { (on: anyMethod) => { endState() }; };

def start() { initState(); };
}
}

provide: filter withContract:
ensure_c(InitializationProtocol("initWithPredicate"));

Figure 6.9: Initialization Protocol.

def DeactivationProtocol(deactivation) {
ObjectProtocol: {

def initState() {
(on: deactivation) => { endState() };
(on: anyMethod) => { initState(); };

}

def endState() {
(on: anyMethod) => { false; };

1

def start() {
initState();

}

Figure 6.10: Deactivation Protocol.

transitioning to the false state results in a contract violation. When the state machine
is transitioned to the endState no violations can occur anymore because any method
invocation simply transitions the state machine back to the endState.

Method names in the object protocol are matched using regular expressions, i.e.
to select all methods that start with set, the following expression can be used (on:
"set.*"). Transitions are encoded by a block (after the => operator) that invokes the
next state of the protocol. Note that this transition code block can contain AmbientTalk
code in order to determine the next state.

In order to use the InitializationProtocol, the programmer needs to provide
the regular expression that selects the initialization methods. An example where the
InitializationProtocol only allows method invocations to the contracted object af-
ter the method initWithPredicate is invoked is shown at the bottom of figure
A simple variation on the InitializationProtocol where calls to the init method
are only allowed once, only requires adding another case in the endState, i.e. (on:
initMethod)=> false;

Object Protocol: Deactivation The deactivation object protocol category validates
that certain method invocation on a deactivated object instance results into an excep-
tion. A simple example of such an object is a file handler, after its close method is
invoked method calls to its write method result into an exception. Like the Initializa
tionProtocol, object protocols may or may not permit the deactivation method to be
called more than once. The implementation of the deactivation protocol is very similar
to the initialization protocol as shown in Figure [6.10] The initState has two transi-
tions. The first transition moves the state machine to the endState when the deactiva-

6.2. COMPUTATIONAL CONTRACTS OVER OBJECTS 103

tion method is invoked. The second moves the state machine back to the initState
when any other method is invoked. In the endState invoking any method results into
a contract violation.

Object Protocol: Type Qualifier Some object protocols disable certain methods for
the lifetime of the object. An example of where such an object protocol is applicable is
an unmodifiable list that inherits from a modifiable list. During the lifetime of an un-
modifiable list any calls to the methods that modify the list should be disallowed. In the
type qualifier category, an object instance thus enters an abstract state at construction-
time which it never leaves [BKA11[]. Calls to methods which are disabled after invok-
ing the initialization method always fail. Many times the disallowed methods depend
on the parameters that are passed to the initialization method. This case is shown in
Figure[6.11] This object protocol is instantiated with an initializer method, a predicate
and a regular expression describing the disallowed methods. When the initMethod is
invoked in the initState the predicate is applied to the argument of the initialization
method. This argument is accessible from within the protocol and bound to the arg
variable. Depending on the predicate, the state machine transitions to the allAllowed
or to the disallowedState. In the allAllowed state any method may be invoked. In
the disallowedState any invocation of a method matching the disallowed regular
expression result in a contract violation.

def TypeQualifierProtocol(initMethod,predicate, disallowed) {
ObjectProtocol: {
def initState() {
(on: initMethod) => { |arg]|
if: !predicate(arg) then: {
allAllowed();
} else: {
disallowedState();
}
}i
(on: anyMethod) => { initState(); };
}i

def disallowedState() {

(on: disallowed) => { false; };

(on: anyMethod) => { disallowedState(); };
I

def allAllowed() {
(on: anyMethod) => { allAllowed(); };
}i

def start() {
initState();
I

Figure 6.11: TypeQualifierProtocol.

Object Protocol: Dynamic Preparation In the dynamic preparation category, an in-
stance method m fails unless another instance method p was invoked earlier [BKA11].
This protocol can again be applied over the file handler example. Method invocations
to the write method must be preceded by an invocation to the open method. Objects
in this category have two states, ready and not ready and the object may dynamically

104 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

change from ready to not ready at numerous points in its lifetime (i.e. it is not mono-
tonic). Implementing this category boils down to adding transition relations to the
protocol shown in Figure [6.9] that move the object protocol from the not-ready state
to the ready state when certain methods are applied. Figure shows one possible
implementation. In the notReady state invocation to the disallowed method violate the
object protocol. In the ready state the disallowed method can transition the finite state
back to the notReady state.

def DynamicPreparationProtocol(prepare, disallowed) {
ObjectProtocol: {

def notReady() {

(on: disallowed) => { |@args| false; };
(on: prepare) => { |@args| ready() };
(on: anyMethod) => { |@args| notReady(); };

I

def ready() {

(on: disallowed) => {|@args| notReady(); };
(on: anyMethod) => {|@args| ready();};
};

def start() {
notReady();
}

Figure 6.12: Dynamic Preparation Protocol.

Object Protocol: Redundant Operation In the redundant operation category, a
method invocation fails if it is invoked more than once on a given instance [BKA11].
For example, the programmer could specify that a file object can be only opened once.
We found that this abstraction can be expressed as a type qualifier protocol where the
initMethod and the disallowed method are the same method and the predicate always
returns true.

Summary In this section we showed the applicability of computational contracts for
checking object protocols by implementing the 5 object protocol categories as pre-
sented by Beckman et al [BKA11]. These categories account for 90 % of the object
protocols currently found in the wild. Current practices to implement object protocols
are low level and interwoven with the base functionality of the object, whereas we
show that the implementation of these object protocols with computational contracts
is concise and straightforward. Moreover, the use of computational contracts for the
implementation of object protocols has the advantage that the validation code can be
separated from implementation. Direct support for object protocols also has the advan-
tage that the programmer is able to define more complex object protocols. Finally, our
contract system assigns blame and gives information about where the violation against
the object protocol took place and which module is the responsible for a violation.

6.3. PARAMETRIZED AND PARAMETRIC POLYMORPHIC CONTRACTS FOR OBJECTS105

6.3 Parametrized and Parametric Polymorphic Contracts
for Objects

In this section, we show how the programmer can encode and use parametrized and
parametric polymorphic contracts. We also show how a limited subset of parametric
polymorphic contracts can be dynamically inferred by the contract system. The design
and the implementation of the parametric polymorphic contracts in AmbientTalk/C
mostly follows the work of Guha et. al [GMFKO7].

6.3.1 Parameterized Contracts

Many statically typed languages provide language constructs which allow functions or
class methods to work for many argument types without having to be rewritten for each
type. Such types that can be specified or parameterized are called parametrized poly-
morphic types. These types were mainly introduced to improve code reuse. Many mod-
ern programming language have adopted these ideas. For example, in Java parametrized
types are called generics. Parametrized types in static languages are often used for
containers such as a list, a vector or a stack. In such generic containers the type of the
elements in the container does not have to be defined in the implementation itself. The
advantage of these generic containers is that the same implementation can be used for
different types.

Similar to how generic containers are defined in a statically typed language, con-
tracts can also be defined in a generic way. For example, consider the generic contract
of a stack where the contract abstracts over the elements that can be pushed on and
popped off the stack. The implementation of this generic contract is shown in Fig-
ure [6.13] The function makeStackContract expects a contract which verifies what is
pushed on the stack and what is popped of the stack. Its return value is an instantiated
object contract which can be applied on an exported object.

def makeStackContract(contract) {
ObjectContract: {

def push() { contract -> void };
def pop() { void -> contract };

}

I

Figure 6.13: Parametrized contract constructor function for stack contracts.

As shown above the definition of a generic contract is nothing more than a con-
structor function which takes as argument the generic part of the contract. Once the
parametrized contract constructor is defined it can be instantiated and used similarly to
how templates are used in C++. The difference is that instead of parameterizing types,
contracts are parameterized.

Figure [6.14] shows a snippet of a concrete use-case for the generic stack contract.
The stack module interface has a function makeStack which expects a contract that
is used as a parameter for the stack contract constructor function. This contract is
applied over the newly created stack which is subsequently provided to the calling
module. Once the stack is exported we can use this generic stack contract as shown
in Figure [6.15] We can now define an arbitrary contract which should be satisfied by
the elements that are pushed on and off the stack. In the example, we specify that the

106 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

def ModulelInterface: {

def makeStack(contract) {
provide: stack.new() withContract: Ref(makeStackContract(contract))
}i
I

Figure 6.14: Stack module making use of a parametric contract.

import /.at.collections.stack;
def stack := makeStack(arrayOf(maxStringSize(10)));
stack.push(["1","2",3]);

uses.at violated the contract type not respected, expected maxStringSize 10 given number 3

origin:
at raise:(ContractException) (249:32:ComputationalContracts.at)
at string_stack.push(["1", "2", 3]) (5:1l:uses.at)

Figure 6.15: Parametric object contract violation.

elements of the stack should be a homogenous array where all the elements of the array
satisfy the maxStringSize(10) contract. This contract validates that the strings in the
array all have a size equal or larger than 10. Subsequently the programmer invokes the
push method of the newly created stack. The supplied argument is an array of which
the first two elements are strings but whose last element is the number three. This is a
violation of the contract and as expected the contract system assigns blame to the the
uses module.

To conclude, contract constructor functions are a very useful abstraction in order
to reuse contracts. The main reason of the simplicity of parametrized contracts is that
contracts are first-class values that can be passed to and returned from functions. In
the next section we elaborate on how to automate the process of instantiating contracts
automatically.

6.3.2 Relationally-Parametric Polymorphic Contract Inference

In the parametrized contracts shown in the previous section the client module manually
specifies which contract the elements on the stack have to satisfy. The client however,
does not have any guarantee that the values that are popped of the stack are actually
values that were previously pushed on the stack.

In order to facilitate for contracts that encode a certain relation between the para-
-metrized contracts we have adopted a technique known as relationally-parametric
polymorphic contracts [GMFKO7|| and extended this technique for a prototype-based
object model. The difference between a parametric and a parameterized polymorphic
contract is that a parametric contract validates that the function does not depend on the
type of the parametric variables.

In order to clearly illustrate the difference between a parametrized contract and
a parametric contract consider the example shown in figure [6.16] In this example a
function id_function is defined and exported with a contract forAll(a)=> (a > a).
This contract specifies that the id_function should work for all instantiations of the
contract variable a. In the example this is clearly not the case as the id_function
always returns the number five. As expected when using this function from another
module as shown in figure blame is assigned to the definitions module. The big
difference is that a parametrized contract where the contract variable a is instantiated

6.3. PARAMETRIZED AND PARAMETRIC POLYMORPHIC CONTRACTS FOR OBJECTS107

with the Int contract would not assign blame as parametrized contracts do not validate
the “relational” part of the contract.

def id_function(x) {
5;
+i

def interface := object: {
def id := provide: id_function withContract: forAll(a) => (a -> a);
}i

Figure 6.16: Parametric polymorphic identity function.

>id(5)
"defs.at" violated the contract id_function is not polymorphic
(created a parametric return value) [5]

Figure 6.17: Applying the parametric polymorphic identity function.

In AmbientTalk/C parametric contracts can also be inferred similarly as described
by Guhaetal. [GMFKQ7]. Unlike the contracts in Guha et al. [GMFKO7| the inference
mechanism of AmbientTalk/C can not be detached from the forAll form.

Figure [6.18] shows the map example shown in section [5.1.2] but now specified as
a relationally-parametric polymorphic contract in AmbientTalk/C. The contract should
be read as: for all contracts a and b given a function from a to b and an array of a’s,
the map function returns an array of b’s. In this contract, a and b are contract variables
and for each invocation of the map function the contract system infers contracts for
a and b. These contracts can be flat contracts, higher-order contracts or higher-order
object contracts. The limitation of the inference mechanism is that the flat contracts
that are combined in order to make higher-order contracts and method contracts are all
primitive contracts such as Int and String. For example, the contract system cannot
infer that a certain value has to be within a certain range.

def map := provide: map withContract: forAll(a,b) => ((a -> b) x array0f(a)) -> arrayOf(b);

Figure 6.18: Parametric polymorphic contract for the map function.

An example of using the contracted map function is shown in Figure [6.19] In this
example the user applies the map function with a closure and a table containing the
numbers 1 till 4. The closure that is passed to the map function is a function that
excepts as argument a number (x) and returns a function. This function expects another
number y and either gives the number back or when the number is bigger than 3 returns
the string "wrong". The result of applying the map function is thus a table of functions.
In our example there is a contract violation as the return value should be an array of
values all obeying the same contract b. The reason why it is a contract violation is that
the functions in the table return either a string or an integer.

Let us show this in more detail by explaining how the contract system validates
the contract. In this case the contract system deduces that the contract variable b is
a higher-order contract (x->y) where x and y are again contract variables. When one
of these functions (x->y) is applied to a number, the contract system determines that x

O 01N A W~

108 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

should be an integer and when the function returns an integer the contract system infers
that y has to be an integer. However, when a function of the returned array is applied to
a number higher than 3 the function returns the string "wrong", at that moment in time
the contract system can not unify the two different contracts for the contract variable y
and signals an error.

In the example the function in the array at index one is applied to the number two.
Subsequently, the function at index two of the array is applied to the number four. The
contract system infers that this is an error and presents the programmer with a blame
assignment message indicating that the contract variable b is not obeyed by the client.

>def table := map({ [x| { |y| if: y > 3 then: { "wrong" } else: {y } } }, [1,2,3,4]);
>table[1](2);

table[1](4);

Check parametric varibale name -result--from-functional-parameter :: --b--

uses.at violated the contract expected Integer given string: "wrong".

Figure 6.19: Applying Parametric Polymorphic Contract Functions

Figure [6.20| shows a second example of applying the contracted map function. The
difference is that instead of creating functions an array of objects is created. All these
objects have a method foo, which has the same implementation as the function returned
in the previous example. Line 6 shows how the foo method of the object sitting at
index 1 is applied to the number 2. Line 7 shows another invocation of the method
foo but now on the object sitting at index 4. As expected, the contract system infers a
contract violation. The reason is that the objects in the array do not behave in a uniform
way. The contract system signals a contract violation against the use of contracted map
function and assigns blame to the uses.at module. Note that the contract system
presents the programmer with a stack-trace of the inferred contracts. It first hints the
programmer to look at the return value of the method foo. The second line of the error
output hints the programmer to look at the parametric variable b, which the contract
system has inferred to be an object with the method foo. This helps the developer in
finding out what went wrong so that he/she can fix the problem.

>def table := map({ |x|
object: {
def foo(y) { if: y >3 then: { "wrong" } else: {y}; };

I

[1,2,3,41);
>table[1].foo(2);
2
>table[3].foo(4);

(Check parametric varibale name -result--from-method- :: foo)
(Check parametric object varibale name --b--)
uses.at violated the contract expected Integer given string: "wrong".

Figure 6.20: Applying Parametric Polymorphic Contract with Objects

6.3.3 Executable Semantics

The implementation of relational parametric polymorphic contracts is presented in Fig-
ure [6.21} Every contract maintains a variable inferred_contract to keep track of

6.3. PARAMETRIZED AND PARAMETRIC POLYMORPHIC CONTRACTS FOR OBJECTS109

the inferred contract (line 2). Like higher-order and flat contracts, parametric con-
tracts are created by passing the blame labels pos and neg (line 3). The implemen-
tation also keeps track of whether the variable is instantiated by the supplier or the
client explicitly. The contract system does this by keeping track that the variable is
used in an even or an odd position with the variable even (line 3). This is an impor-
tant addition because parametric variables can be used both as provided by the sup-
plier or by the client in the same contract. In order to make this more clear consider
the contract signature of the map where the variables are annotated with subscripts
s and c to indicate whether this variable is provided by the client or the supplier:
Vo, B i (as = Be) * array(a.) — array(Bs). As can be seen in this signature
the variable « is both used as the responsible of the client and of the supplier. The first
occurrence « is in the function fE] given by the client to the map function. Here it
indicates that the supplier passes values that satisfy the « contract to the function f.
The second occurrence «.. indicates that the map function receives from the client an
array of values all satisfying the o contract. What the contract system ensures is that
the values passed from the client o are the same variables that the supplier inputs to
the function f (i.e. this part of the validation checks that the function is truly polymor-
phic). In our implementation this is conceptually done by putting the values a, into
a coffer and unpacking these values before giving them back to the function f. If at
a certain moment a value that is not packed into a coffer is given to the function f a
contract violation is detected and blame is assigned.

Contract validation is split up in two conceptual cases, either the contract is in an
even (supplier) or an odd position (client) as annotated to the right of Figure We
first explain the case when a contract, in an odd position, is applied over an array of
values val (line 5). For simplicity, assume that there is exactly one argument value, and
thus this value can be taken out of the array (line 7). When there was a contract inferred
already we simply apply that contract over the value (line 9). Otherwise we check if
the argument is a simple type, for example a number or a string (line 12-13). If this is
the case the contract system has inferred that the contract should be an Int contract or
a String contract. It could also be the case that the value was a closure (line 16). In
case the value is a closure, it is impossible to derive how the contract of this closure
looks like. Therefore, a new higher-order contract is created where the arguments and
return values are again parametric contracts variables. The concrete contracts for these
variable are deduced when the higher-order function is used.

Finally, val can also be an object (line 22). The creation of such a contract is very
similar to the creation of a function contract. However, instead of creating a higher-
order contract a parametric higher-order object contract is created with the function
parRef. This function returns a proxy object that intercepts all the method invocations
and works very similar to how a parametric contract works. Every time a method is
invoked on the proxy it checks if there was already a contract deduced for that method.
If this is not the case then a new higher-order contract is created for that method. Once
again the argument and return value of that contract are parametric contracts. If a
contract was already deduced it is simply applied.

Irrespectively of which contract is applied over the value the contracted value is
wrapped into a coffer (line 27). This is just a normal object with a method get that
returns the original value and a name method that returns the name of the contract.
Note that wrapping values into a coffer as shown in the code is not entirely secure.
However, it is our expectation that programmers using contracts do so to detect errors

'We arbitrarily gave it the name £ to easily refer to it in the continuation of our explanation.

110 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

def makeParametricContract(name) {
def inferred_contract;
{ |pos, neg, even|
{ |val|

if: 'even then: {
def val := val[l];
if: (inferred_contract != nil) then: {
val := inferred_contract.contract(pos,neg,even)(val);
} else: {

if: (is: val taggedAs: Number) then: { inferred_contract
if: (is: val taggedAs: Text) then: { inferred_contract
//..

Int; };
String; };

Primitive

if: (is: val taggedAs: Closure) then: {
inferred_contract:=
makeParametric("-argument-to-functional-parameter:: "+name) ->
makeParametric("-result--from-functional-parameter :: "+name)));
val := inferred_contract.contract(pos,neg,even)(val);
I
if: (is: val taggedAs: Object) then: {
inferred_contract := parRef(val);
val := inferred_contract.contract(pos,neg,even)(val);
+i
1
object: { def get() { val }; def name() {name;} } taggedAs: [coffer]
} else: {

if: (is: val[l] taggedAs: coffer.and:{ coffer.name() == name }) then: {
inferred_contract.contract(pos, neg, even)(val[l].get());

} else: {
blame(pos);

Closure
Odd

Wrap Objects

Unwrap
Even

Figure 6.21: Parametric Polymorphic Contract Inference

and are not deliberately trying to circumvent the contract system. In our code there
are a few measurements taken in order to prevent the programmer from accidentally
breaking the contract validation. First the variable val is looked up in the lexical scope
of the wrapper object. Therefore base-level programmers can not change this value by
accidentﬂ Second the type tag coffer is local to the module where the contracts are
defined. Therefore, the chance that the programmer accidentally defines objects tagged
with the same type-tag are minimal.

We now focus on the case where the contract is in an even position (line 29). An
even position means that the value is given by the supplier. As this computation should
itself behave in a polymorphic way, it is impossible for the value to be created inside
the supplier function itself. To make sure that it only returns polymorphic values it
must be verified that even positioned values are wrapped coffers. Note that coffers
can be only unwrapped by contracts with the same name. If this is not the case blame
is assigned. Otherwise the inferred contract is applied over the value.

2In AmbientTalk, the meta programmer can still do this through the reflective layer.

6.4. BLAME ASSIGNMENT IN OO HIGHER-ORDER CONTRACTS 111

6.4 Blame Assignment in OO Higher-Order Contracts

In this section we highlight the adjustments that we have made to the blame assignment
mechanism shown in section [5.4] in order to incorporate contracts into a prototype-
based language. Previous contract systems do not validate recursive applications. This
implies that when a entity under contract applies itself recursively those recursive ap-
plications are delegated to the original value which is not under contract. The blame
assignment mechanism explained so far does not verify these invocations. For the defi-
nition of module contracts the idea is that self applications within the same module can
be easily validated by the programmer [SE10]. However, in the context of object pro-
tocols the temporal ordering of the applied methods is often crucial. Failing to monitor
self applications can easily lead to a contract system that blames the wrong party. In
the following sections we focus on explaining recursive blame assignment and why it
is important.

6.4.1 Recursive Higher-Order Object Contacts

As illustrated in Figure [6.22] a contract is active between the boundaries of the value
under contract and the client who uses the value. When a client module invokes a
method on a contracted object exported by the supplier module, the contract intercepts
this invocation. The contract then applies the contracts defined over the argument of
the invocation and forwards the invocation to the contracted object.

Invoke Invoke

Client Contract Interface >

Module

Supplier
Module

A4

Figure 6.22: Data structure under contract.

The way the supplier module interacts with contracted entities is shown in Fig-
ure Current contract systems only affect the way external components act with
the entity under contract. This implies that self applications are not subject to any con-
tract and thus are allowed to violate the same contracts that the client has to satisfy. As
can be observed self applications resulting from an external application are not subject
to contract verification.

. Invoke Invoke .
Client g Supplier self
Module »| Contract Interface > Module

Figure 6.23: Unfair contract validation.

In the context of object protocols this is troublesome because internal self appli-
cations can leave the object protocol in an inconsistent state. For example, one of the
methods of a file object could close the file. Because internal self applications are not
monitored the state machine of the object protocol is not transitioned. When the client
module at a later time invokes the write function, this application would not be seen as
a contract violation. For the contract system the file was never closed. In the context of
object protocols it is thus important to also monitor self applications. Because there is
different judging strategy for the value under contract and the client who uses the value
under contract we call these contracts unfair.

112 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

In order to achieve a fair contract validation, self references within the recursive
structure have to be routed through the contract interface. In order to assign blame
in case of a violation, the contract system needs to differentiate between recursive
applications and applications coming from the client. This situation is shown in Figure
[6.24] The following sections outline how we have achieved this in our contract system.

Invoke Invoke

Client Contract Interface

Module

Supplier
Module

self

Figure 6.24: Fair contract validation.

6.4.2 Blame Assignment for Recursive Higher-Order Contracts

Assigning blame in the face of recursion is fairly straightforward. When a client mod-
ule invokes a contracted method of the supplier, self is rebound to refer to the contract
interface. In a sense, the module instantiates a contract with itself. It is important to
note that the recursive invocations can sometimes pass on higher-order values passed
from a client in a recursive call. In this section, we show that our recursive blame as-
signment strategy assigns blame correctly even when functions or objects passed from
the client are used as arguments of recursive method invocations.

In order to make this more concrete consider the example shown in Figure[6.23] In
this example, an object math is defined. This object has two methods, even and odd.
Both methods expect two arguments: a function and an integer, they apply the given
function to the given integer and check whether the returned value is even or odd. In
the example implementation, even is implemented by means of a recursive invocation
of the odd method. This object is then provided by the module. At the end of the
example, the even method of the math object is invoked (from within another module)
with a function that always returns the string "wrong" and the number four. In this
example, the contract systems assigns blame to the uses.at module as expected.

We now show that the order in which the contracts are validated is crucial in order
to assign blame correctly. The precedence of the contracts over the function f within
the body of the odd function is shown in Figure[6.26] As can be seen in this example
there are two contracts defined over the function f. A first contract is applied when the
function f moves the module boundaries from the uses module to the defs module. The
second contract is applied when the function f is applied to the odd function. As said
before the contract system also monitors self sends and so another contract is applied.
When the function f is applied within the body of the odd function the contract system
first validates all the preconditions. Preconditions are validated from newest contract
to the oldest contract. Therefore, first the self contract is validated. The supplied
integer (4) passes the contract and the contract systems moves the validation to the
second contract. This contract is also satisfied and the function is applied. When the
function returns the result "wrong" the contract system validates the contracts. Post
conditions are validated from oldest deployed contract to newest deployed contract.
The contract thus starts with evaluating the oldest deployed contract and assigns blame
to the uses.at module. In case this order would be the other way around the math
module would be blamed.

This concludes our exposition of recursive blame assignment. We have shown that

6.5. OPERATIONAL SEMANTICS OF OBJECT CONTRACTS 113

//defs.at

def mathC := ObjectContract: {

def even(f,i) { (int -> int) % int -> boolean };
def odd(f,i) { (int -> int) % int -> boolean };
+i

def math := object: {
def even(f,i) { not: { self.odd(f,i); } };
def odd(f,i) { is0dd(f(i)); };

+i

//uses.at
math.even({ |x| "wrong" }, 4);

Figure 6.25: Object contract definition.

Figure 6.26: Blame order in the math example.

the order in which higher-order functions are evaluated is important for the correct val-
idation of recursive contracts. As we have shown in this section pre-conditions have to
be evaluated from newest to oldest deployed contract while this is the other way around
for post-conditions. If the contract system validates contracts in that order, passing
along higher-order functions in recursive invocations does not pose any problem for
the correct validation of the contracts.

6.5 Operational Semantics of Object Contracts

The semantics of object contracts is not very different from the semantics as shown in
chapter[5] However, in this chapter we showed that recursive calls should be captured
by the contract system. In order to illustrate this point we present the semantics of
recursive object-level contracts.

In chapter] we introduced communicating event loops and their semantics. In fig-
ure we extend this model with the syntax extension for object contracts. Guard-
ing an expression with a contract is expressed by a monitor construct mon? (s, e). The
two labels ¢, 7 respectively indicate the supplier of the expression and the client of
the expression. Blame is expressed by error!. There are three syntactical expression
for the definition of contracts. Flat contracts are represented by flat(e) where e is
expected to evaluate to a predicate function. For example, the definition of a flat con-
tract that verifies that a value has to be greater than 10 can be represented as follows:
flat(Az.x > 10). Composing flat contracts in order to define a functional contract
is done by using the arrow operator, ¢, — c,. In this representation c, is the con-
tract defined over the arguments of the function under contract and ¢, the contract over
the return value of the function under contract. Note that the definition of contracts is
recursive, therefore both ¢, and ¢, can be functional contracts too. Object protocols
are expressed with protocol{m(x){ky}} where &, represents the contract over the
individual methods.

114 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

Terms e n= ... |monl(k,e) | error!

Contracts K flat(e) | k — K | protocol{m(z){Km }}
M. Contracts «,, == K>k
E. Contexts FE ... | mon}(E, €) | monl(k, E) | flat(E)

Figure 6.27: Extension for Contract Syntax.

Reductions Rules In this section we describe the reduction rules that govern the
evaluation of object contracts. There are three groups of rules that govern objects,
higher-order contracts and object contracts. We do not repeat the standard rules shown
in chapter [that govern if statements, function application etc.

Higher-Order Objects Contracts Note that there is no explicit higher-order contract
reduction rule for functions in AT-LITE. Functions are represented as objects with an
apply method, the use of a higher-order contract over functions is thus expressed in
terms of object contracts.

o FLAT: The reduction rule for flat contracts replaces the expression in the hole
with an if expression. It either returns the monitored value untouched or assigns
blame.

e OBJECT CONTRACT: An object contract creates a new proxy object that for-
wards all method invocations to the contracted object. Note that the contract
defined over the object x,, is saved in the monitor. As shown in the next reduc-
tion rule this is necessary to reapply the contract.

e METHOD CONTRACT: A method contract is similar to a higher-order contract. It
places a new monitor over the argument value z in order to validate the contract
k1. Note that again the blame labels [and k are switched. The return value of
executing the method is guarded with a monitor for the contract xo. Further a
method contract rebinds the variable this to a newly created contracted version.
This rebinding is necessary to ensures that internal contract violations are also
validated in the face of recursion (as shown in section[6.4.T).

This concludes the overview of the semantics for object contracts. We have not
shown how to incorporate aspects in our object-oriented language as the introduction
of future contracts requires a few extensions to the aspect language that we have shown
in chapter 5} In the following sections we first show the concepts of future contracts
and subsequently show their operational semantics in section [6.§]

6.6 Future Contracts for Event Loop Concurrency

In the previous sections, we showed how to combine the concepts of computational
contracts with a prototype-based object model. Now we turn our attention to the ab-
stractions of the event loop concurrency model and show how computational contracts
can be integrated with those abstractions as introduced in section[2.3.2]

Ne=lie I e Y R N N

6.6. FUTURE CONTRACTS FOR EVENT LOOP CONCURRENCY 115

(FLAT)
Alta,0,Q, egfmony (flat(e), v)])) —a Alta, O, Q, eqlif (e v) v errort)))

(OBJECT CONTRACT)
Kp = protocol{m(x){k1 — Ka}}
A(LG,O,Q,eg[monf(ﬂp,%)])) —a

A{ia,0,Q, epobject{m(z){monf (kp, K1 — K2, to.m(x))}}])

(METHOD CONTRACT)
0=0(,0,f =v,M) €O m(Z){e} e M
A<La7 07 Q7 eD[mon;c(HP’ K1 > K2, LOm(@))D —a
Alta, 0, Q, emonf (r2, [monf (i, Lo) /this][mony,(r1,7)/Z]e)])

Figure 6.28: Recursive Contract Semantics

6.6.1 Contracts for Futures

Recall from section [2.3.2] that the result of sending an asynchronous message in an
event loop concurrency language is a future [YBS86]. A future acts as the placeholder
for the return value of the asynchronous message. This mechanism greatly reduces
the programing effort of the programmer because he no longer needs to write code to
explicitly retrieve the result of an asynchronous message. As futures are an essential
mechanism used in any ambient application, the ambient contract system has direct
support for future values. A future contract is denoted as Fut(C,). In this contract
Fut is a contract constructor and C,. denotes the contract that the resolved value of the
future must satisfy. Future contracts can be used both for the domain and for the range
of a function. For example, a contract defined over a function that expects a future
that resolves to a string and returns a future that resolves to a natural number can be
expressed as: Fut[string] — Fut[nat].

Future Contracts: Example An example of a contract making use of future con-
tracts is shown in Figure [6.29] The supplier first defines a function sum. This function
expects two future values and returns the sum of the two resolved values. The exact
workings of this code is explained after the client code is shown. The contract defined
over the function sum (line 9) states that the function must be applied to two future
values and returns a future value. All these futures are futures that must be resolved
with an integer value.

def sum(fl, f2) {
when: fl becomes: { |a|
when: f2 becomes: { |b]|
a+b;
}i
}
i

def sum := provide: sum withContract: Fut[int] * Fut[int] -> Fut[int];

Figure 6.29: Server providing a function with a future contract.

o e R R S

116 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

Figure [6.30| shows a client that imports the sum function from the supplier. The
client first creates a future-resolve pair f1 and r1 with the function makeFuture (line
1). The result of the function makeFuture is a table where the first element is a fresh
future and the second element the corresponding resolver, as outlined in section[d.1.2]
The result of this table is deconstructed using a parallel assignment. The client then
proceeds and makes a second future-resolver pair (line 2). Then the sum function is
applied and the returned future is stored in the variable result. When the result
future resolves to the sum of the resolved futures f1 and f2 the client prints this value
(line 5). At line 7 and 8 the client explicitly resolves the futures with the values 5 and
10. Notice that futures are typically created transparently (see section[2.3.2). However
in AmbientTalk futures are first class objects. Here we use them explicitly for the sake
of the example.

def [f1l,rl] := makeFuture();
def [f2,r2] := makeFuture();
def result := sum(fl,f2);

when: result becomes: { |sum|
system.println("The sum is " + sum);

rl.resolve(10);
r2.resolve(5);

Figure 6.30: Client using a future contract.

Reconsider the sum function shown in Figure [6.29] Note that this code makes ex-
tensive use of future pipelining. First, the outer when:becomes block returns a first
future, which we will call f, (line 2). This future is returned as the result of applying
the sum function and bound to the variable result, as shown in Figure Second,
when the client resolves the future f1 to a value the inner when: becomes block (line 3)
is registered which returns a new future lets say f;. At that moment in time the future
fo is resolved to the future f;. Finally, when at a later moment in time the client also
resolves the future f2, the inner block is triggered and the future f; is resolved. This
triggers a cascading effect where the future f; is resolved to the value 15 which triggers
resolving f, with the value 15 which in his turn triggers the when:becomes: block of
the client shown in figure[6.30] (line 4). As future pipelining is used extensively when
writing ambient applications, it is important to take into account future pipelining in
the definition of an ambient contract system.

In the example all the contracts are satisfied and thus the client simply prints the
“The sum is 15”. When the client would resolve the future f2 with the value "wrong"
the contract system detects the violation and assigns blame as shown in Figure [6.31]
Note that the contract system needs to be aware of the fact that future values are the
responsibility of the client. How blame assignment and future contract validation is
performed is detailed in section[6.7.1]

Note that the contracts that are used in a future contract can be any contract that we
have previously defined. Therefore the values which futures can be resolved to are not
limited to simple integers. They can be functions, objects and even other futures.

>1:8:uses.at violated the contract, expected integer given wrong

Figure 6.31: Future blame.

O 01N W —

6.7. CONTRACT VALIDATION AND BLAME ASSIGNMENT IN EVENT LOOP CONTRACTS117

6.6.2 Callbacks and Computational Contracts

In event loop concurrency languages such as AmbientTalk and E, the use of callbacks
is omnipresent. Every time a when:becomes: block is registered there is an entry point
created in the code that can be triggered in a later turn of the actor (see [2.3.2). It
is important to take such callbacks into account when specifying computational con-
tracts. In order to see why, consider the example shown in Figure The function
makeMove has a computational contract defined over it that disallows applications of
system.println. Inside of the definition of the makeMove function a callback is reg-
istered that awaits the answer of an asynchronous message. At a later time when this
future resolves to a value the callback is applied. However, this future is always re-
solved in a different turn than the application of the makeMove function. Therefore the
computational contract that was active during the application of the makeMove function
is no longer active. This means that the makeMove function can violate the computa-
tional contract simply by evaluating it in a callback function.

The use of a when:becomes: block in combination with sending an asynchronous
message is the equivalent of a remote method invocation. Therefore the code in the
when:becomes: block is a logical extension of the ongoing program. Programmers
thus expect that contracts defined over such blocks are also active when the when:
becomes:block is triggered, i.e. right after the remote method invocation. In most
cases the programmer expects computational contracts to be active within the body
of the registered callbacks. Therefore the contract system needs to be able to capture
violations beyond single turns of the actor. How computational contracts are validated
and how blame is assigned in the presence of callbacks and futures is the subject of the
next section.

def makeMove(player) {
when: player<-getName() becomes: {

};”
b

def makeMove := provide: makeMove withContract: any -prohibit_c(system.println)-> any;

Figure 6.32: Example of callbacks in combination with a computational contract.

6.7 Contract Validation and Blame Assignment in Event
Loop Contracts

In this section we give a detailed overview of how contracts are validated and how
blame is assigned in the context of event loop contracts.

6.7.1 Future Type Message Contract: Blame Inversion

The use of futures inverts the responsibility of the supplier and the client compared
to higher-order functions. To make this clear consider Figure [6.33] To the left of
this figure, the client module passes a future over the module boundaries to the server
module. For example, by applying a function exported by the server module. Assume

118 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

that the server module has a contract defined over this function and thus wraps the
future value into a contract. The server then registers callbacks that are triggered when
the future resolves (not shown in the figure). Later in time the client module resolves
the future with a value as shown to the right of Figure At that moment in time
the resolved value also crosses the module boundaries and is applied to the callbacks
in the server module.

It is crucial to realize that the value under contract (the future) is resolved from
outside the module that has a contract defined over it. Normally, contracted values are
applied from inside the module which have a contract over them. For future values
this is the other way around. In the case of futures, it is always the external module
that resolves the future. It is also the external module that should be blamed when the
resolved future does not satisfy the contract C...

1) Passing 2) Resolving
Client Fut ‘ Fut Server Client Fut Server
Module ; ‘ [int] Module Module "wrong" fint] Module

Module Boundary Module Boundary

Figure 6.33: Passing (left) and resolving (right) a future from the client module to the
server module.

As shown in the previous examples, it is the responsibility of the client that passes
the future value to resolve the future as specified by the contract. Because of the re-
versed responsibility, the current blame assignment strategy for higher-order values is
no longer applicable for the definition of future contracts. Future values and their call-
backs not only invert the control flow of the application, they also invert the blame as-
signment strategy. While current contracts defined over higher-order functions switch
around the blame labels contracts for future values do not require the blame to be
switched.

6.7.2 Executable Semantics of Future Contracts

In order to show the internal workings of the blame assignment strategy for future
values we extend the didactical contract system shown in section As future con-
tracts do not effect the definition of the guarding functions, higher-order contracts and
computational contracts we do not repeat them here.

The definition of the future contract is built on the concept of future pipelining.
When a future contract F'ut(C') is defined over a future f, the contract installs a call-
back on this future, and returns another future f.. When the future f resolves to a value
v the future contract applies the contract C' over the value v. It then resolves the future
fc with the contracted value v or assigns blame.

The contract constructor function for future constructs is shown in Figure [6.34] It
takes as an argument a contract that restricts the values to which the future resolves.
It returns a closure that expects the blame assignment labels pos and neg. When this
function is applied it instantiates the contract with the correct blame labels. Note that
although a future contract is a higher-order contract the blame labels are not switched,
i.e. blame is inverted. After creating the contract it returns a new closure that is applied
by the contract system with the future value over which the contract is defined. When

OO 0NN W —

6.7. CONTRACT VALIDATION AND BLAME ASSIGNMENT IN EVENT LOOP CONTRACTS119

def fut(contract) {
{ |pos,neg|
def contractp := contract(pos, neg);
{ |future|
when: future becomes: { |val]
contractp(val);

I

Figure 6.34: Future contract constructor.

this closure is applied it registers a callback on the future. The return value is the result
of the when:becomes: block (line 5). Recall that this is a future value on its own that
resolves when the when:becomes: block is triggered. When this when :becomes: block
is triggered the contract is applied over val, i.e. the value to which the future resolves
to. The contracted value is then propagated in the future pipeline.

6.7.3 First-Class Aspect Environments for Validating Callbacks

In the definition of computational contracts the validation of temporal properties relies
on aspect-oriented techniques as shown in section[5.3.2] When using callbacks the con-
trol flow in which the callback is registered and the control flow in which the callback
is triggered are different. The reason for this is that futures are always resolved in a
different turn of the actor. Computational contracts as defined before, are only active in
the dynamic extent of the applied contracted entity (a function or a method). In many
applications this limited reach of computational contracts is counter intuitive. There-
fore we have extended our aspect language with language constructs that allow the
programmer to arbitrary extend the reach of aspects, even beyond a single turn of the
actor. The way in which this is made possible is by allowing the programmer to capture
the aspect environment and reify it as a first class value. It is also possible to re-apply
these aspects at a later moment in time. In order to guarantee the programmer that his
contracts can not be removed, re-applying an aspect environment does not remove the
currently active aspects. Applied aspects can not be removed by the programmer they
can only be extended, or in terms of contracts we allow the programmer to make the
temporal contracts more restrictive but we do not allow the programmer to loosen the
contracts.

The aspect language provides two functions to reify the aspect environment, as
shown in Table[6.1] withCurrentAspects expects a block and applies this block to an
array containing all the aspects in the current aspect environment. restoreAspects ex-
pects an array of aspects and a code block. It deploys the aspects in the dynamic scope
of applying the block. Note that the aspect environment is a set and that reapplying
the same aspect multiple times will not result in weaving of the same aspect multiple
times. This is similar (both in spirit and implementation) to statically-scoped aspects
in AspectScheme [DTKO6].

The formulation of a specialized when:becomes: variant that captures the aspect
environment and restores this environment when its closure is triggered is shown in
Figure [6.35] When loading the contracts in AmbientTalk the normal when:becomes:
function is overwritten with this definition. As can be seen in the figure the aspect

120 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

Operation Operation Signature
withCurrentAspects | arrayO f(Aspects) — a — «
restore Aspects arrayO f(Aspects) = 0 — 8 —

Table 6.1: Aspect Extensions for First Class Aspect Environments.

def with_aspects_when: future becomes: block {
withCurrentAspects: { | currentAspects |
when: future becomes: { |value|
restoreAspects: currentAspects in: {
block(value);
+

Figure 6.35: Definition of a variant on the when:becomes: block.

environment is captured when the callback function is registered and before executing
the callback block, the aspects are restored. As computational contracts are encoded
as aspects and aspects are captured, the callback block of this when:becomes: variant
is also validated.

In order to support such contracts, the underlying aspect language, shown in chapter
5, needs to be extended so that aspects outlive multiple turns of the actor. In Figure[6.36]
an example of the this construct is shown. In this example the programmer first defines
an aspect that intercepts all applications of system.println. Then a new future value
is made and the aspect is deployed over the registration of a with_current_aspects
:becomes: block. The operation of this construct is exactly the same as the when:
becomes: block but it captures all the aspects. As shown in the output at the end of
Figure [6.36] an error is thrown even though the when:becomes: block is triggered in a
different turn of the actor.

In brief, AmbientTalk allows the registration of callbacks on a future which will
be triggered when the future is resolved to a value. The combination of callbacks and
computational contracts requires a scoping mechanism that allows the computational
contracts that were active during the creation of the callback to be restored when the
callback is invoked. We have shown that by adapting the underlying aspect language
with an aspect capturing when:becomes: block the semantics of computational con-
tracts is as would be expected from the programmer.

6.8 Operational Semantics of Higher-Order Event Loop
Contracts

The definition of future contracts does not require us to adjust the operational seman-
tics as it can be implemented with the current constructs in the language. Callbacks
however, rely on a mechanism to reify the aspect environment which is not possible in
the semantics shown so far. In this section we show how to support first class aspect
environments.

In figure the syntactic extensions for the definition of aspects are shown.
fluidBefore(e, e){e} is used to deploy an aspect, withCurrentAspects{e} reifies

O 0NN AW —

6.8. OPERATIONAL SEMANTICS OF HIGHER-ORDER EVENT LOOP CONTRACTS121

def c := aspect: call(&system.println) advice: { |proceed, arguments|
error: "Printing text is not allowed in this code block!";

+

def [future, res] := makeFuture();

fluid: c deploy: {
with_current_aspects: future becomes: { |value|
system.println(value);

’

+

res.resolve(2);

[futures.at] Warning: future has no listeners to catch exception:

"Printing text is not allowed in this code block!"

origin:

at error:("Printing text is not allowed in this code block!") (43:16:AspectsTest.at)
at system.println(value) (9:17:AspectsTest.at)

Figure 6.36: Aspect capturing registration construct.

the aspect environment and deployAspects(e){e} redeploys the aspects.

Terms e == .| fluidBefore(e,e){e}
| withCurrentAspects{e}
| deployAspects(e){e}

E.Contexts FE 1= ..|fluidBefore(F,e){e}
| fluidBefore(v, E){e}
| deployAspects(E){e}

Figure 6.37: Extension for Event Loop Contracts Syntax.

Object-Oriented Aspect Language Extending the object-oriented language with the
necessary aspect-oriented language extensions is similar to how the functional lan-
guage show in chapter 5 is extended. The reduction rules that make up the basic
object-oriented aspect language are shown in Figure [6.38]

e FLUID-BEFORE: Extends the aspect environment with the pointcut descriptor
and the advice. It then continues to evaluate the corresponding closure eyo4y-

e INVOKE-PRIM: In order to make the distinction between a regular method in-
vocation and a method invocation coming from the underlying system there are
two rules for method invocations. This rule is used for method applications by
the contract system.

e INVOKE-WEAVE: This rule weaves the aspects into the method application. It
only weaves in those aspects that are in the aspect environment.

e W: The weaving function W weaves in the current aspects by applying each of
the pointcut descriptors and when the result is positive the corresponding advice
is applied. After matching the aspect environment to the current point cut the
original function method is applied.

In Figure [6.39] the rules for reifying the aspect environment are shown.

122 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

(FLUID-BEFORE)
Tpe € O Tady € O
Altq, O, Q, A, ep[fluidBefore(rye, Todv){€}])
—a AL, O,Q, AU{(rpe, Tadv) }, enle])

(INVOKE-PRIM) (INVOKE-WEAVE)
Ofto,t, F,M) € O O(to,t, F,M) € O
= lg-lo m(ZT){e} € M = lg-lo m(ZT){e} € M
Alia, 0, Q, A, ep[prim(r.m(7))]) Aliq,0,Q, A, eqlr.m(v)])
—a A<La’ 0,Q, A, eg [[r/this] [ﬁ/ﬂeb —a A<La7 0,Q,A eq [W(A, T, m75)}>

Figure 6.38: Object-Oriented Aspect Language

(WITH-ASPECT-ENVIRONMENT)
Thlock € O
Alia, O,Q, A, eq[withCurrentAspects{ryiock })
—aq Alta, O,Q, A, ea[rbiock-apply(A)])

(DEPLOY-ASPECTS)
Tblock € O
Alta, 0,Q, A, en[deployAspects(A) {Tbiock }])
—q Alte, 0,Q, AU A’ eq[rpiock-apply()])

Figure 6.39: Extensions for reifying the aspect environment.

o WITH-ASPECT-ENVIRONMENT: This reduction rule applies the block with the
current aspect environment.

e DEPLOY-ASPECTS: This reduction rule moves the evaluation to the given block
in an extended aspect environment. Note that the aspect environment is extended
and not overwritten. This is important when evaluating contracts because over-
writing the aspect environment would give the programmer the power to remove
or loosen contracts. In our semantics we do not allow such an operation.

6.9 Conclusion

In this chapter we have shown extensions to the computational contract model shown
in chapter [} First we have studied the concepts of computational contracts for object-
oriented and synchronous message passing. Important to note is that violations against
the defined contract can also be caused by self applications. Traditional contract sys-
tems based on wrappers do not take into account self applications which can lead to
misleading blame assignments. Later we have shown how computational contracts can
deal with asynchronous concepts introduced by futures and their callbacks. This has
lead to the notion of blame inversion. The main contributions presented in this chapter
are:

6.9. CONCLUSION 123

e An expressive mechanism to specify and verify computational contracts based
on scoped aspects in combination with prototype based objects.

e Relational parametric polymorphic contracts for prototype based objects

e The concept of blame inversion as a consequence of the inversion of control
associated with the use of futures and callbacks.

e The introduction of first class aspects environments and their application for the
specification of computational contracts that can be active over multiple turns of
an actor.

In the next chapter we give an overview of how contracts can be applied in a distributed
manner and more specifically over far references.

124 CHAPTER 6. SERVER SIDE AMBIENT CONTRACTS

Chapter 7

Client Side Ambient Contracts

The contracts defined in previous chapters of this dissertation express properties over
the objects owned by a single actor. In chapter 5| we showed how higher-order con-
tracts can be extended in order to also specify behavioral properties over the contracted
value leading to the notion of computational contracts. Subsequently we detailed how
computational contracts can be extended in order to validate properties in an object-
oriented event loop concurrency model. In this chapter we show how the concepts
of flat, higher-order and computational contracts can be extended in order to validate
contracts that express properties over objects owned by another actor. With these con-
tracts, clients can protect themselves from getting misbehaving far references from the
server. Before giving a detailed overview of these concepts we give a sneak preview of
each of these extensions:

Flat Far Reference Contracts We start our overview of the distributed aspects of
ambient contracts with flat far reference contracts, i.e. predicates over far references. A
flat far reference contract validates a predicate over an object hosted by another actor.
Validating flat reference contracts thus requires asynchronous communication with the
remote object over which it is defined. This is in contrast with flat contracts in a local
synchronous model where predicates can be validated immediately. Because commu-
nication is involved in the validation of flat far reference contracts, it is significantly
more complex to guarantee inference-free contract validation. In section[7.2] we show
that contract validation algorithms that make use of blocking can introduce deadlocks
and when they do not introduce deadlocks they can alter the order in which messages
are processed. We propose a novel asynchronous contract system where the validation
of flat contracts over far references are postponed until a message is sent to the con-
tracted remote object. By postponing the verification of the flat far reference contract,
deadlocks can be avoided and the message ordering semantics can be preserved.

Higher-Order Far Reference Contracts Sending a message to a far reference can
result in transitively receiving more far references therefore there is a need to support
higher-order far reference contracts. A higher-order far reference contract is similar
to a higher-order object contract but specifies properties over a remote object, i.e. it
validates the messages that are sent across actor boundaries. When an asynchronous
message is sent to a remote object the result is a future. Higher-order far reference
contracts also validate the values to which these futures resolve to. Finally, we also

125

126 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

show how computational contracts can be defined over far references.

Computational Message Contracts We give an overview of how computational
contracts can be used in order to validate the messages that are being sent during the ex-
ecution of a contracted entity. This is significantly different than specifying a contract
over a far reference. When a contract is defined over a far reference it only validates
the messages that are sent to that far reference. With computational contracts we ver-
ify the outgoing messages as the effect of evaluating a message. These messages can
be sent to arbitrary nodes in the network. With computational contracts we allow the
programmer to validate these outgoing messages and prevent that these messages are
being sent in the first place.

With flat, higher-order and computational contracts over far references we fill the
last parts of the ambient contracts design space as shown in figure In this figure,
green squares indicate contract system that have been discussed in previous chapters.
The yellow squares show the novel contract system presented in this chapter.

Values SeCtIOI’] 71 '75

% Contract
>

N
y Flat HigherOrder Computational

Figure 7.1: Situation in the ambient contracts design space.

7.1 Flat Far Reference Contracts

In this section, we give an overview of the extensions we have made to the computa-
tional contract system in order to define flat contracts over far references. We show a
number of variations of flat far reference contracts with respect to the contract lifetime.
We show how our contract system allows the programmer to express these different
variations of flat far reference contracts depending on the requirements of the applica-
tion at hand.

7.1.1 Flat Far Reference Contracts in Action

We explain the use of flat far reference contracts by means of a small example applica-
tion. Consider an ambient game where the players register themselves by sending an
asynchronous message to a coordinator. Assume that in this game, one of the require-
ments is that players are not allowed to participate in two different games at the same
time (the player could be involved in a game hosted by another coordinator). We now
show that validating this requirement can be done by making use of a flat far reference
contract.

O 0NN WN—

7.1. FLAT FAR REFERENCE CONTRACTS 127

The relevant snippet of the coordinator of the ambient game is shown in figure
As shown in the figure, the coordinator is implemented as an object which has a method
addPlayer (line 2). The coordinator actor sends an asynchronous message getName to
the peer and prints information to the screen that a new player has been added to the
game (line 4).

Coordinator := object: {

def addPlayer(p) {
when: p<-getName() becomes: {|name|
system.println("Added Player: " + name);
I
}
+
def CoordinatorContract := objectContract: {
def addPlayer(p) {
Assert: {|p| p<-notInGame() } -> any;
}
I
deftype CoordinatorType;

export: Coordinator as: CoordinatorType withContract: Ref(CoordinatorContract);

Figure 7.2: Defining and exporting the coordinator object on the server actor.

The Coordinator object is contracted with an object contract CoordinatorContract
shown at line 11. This object contract specifies that the contracted object should have at
least an addPlayer method. It also specifies a flat contract over the addPlayer method.
Flat far reference contracts are expressed with the keyworded message Assert: which
— just like a flat contract — expects a predicate. However, as flat reference contracts
are defined over remote objects the result of evaluating the predicate is not a boolean
but a future that resolves to a boolean. The flat far reference contract shown in the ex-
ample, expresses that the addPlayer method expects a player p which is not involved
in another game. Validating this predicate is done by sending an asynchronous mes-
sage notInGame to the newly added player. Further, the contract over the addPlayer
method specifies that the return value can be anything, indicated by the any contract.

The server then defines a type tag, CoordinatorType, for exporting the coordinator
(line 19). Finally, the coordinator object is contracted by the CoordinatorContract
and exported with the type tag CoordinatorType (line 21).

Player := object: {
def notInGame() { ... };
def getName() { "Playerl" };

+
when: CoordinatorType discovered: { |coordinator

coordinator<-addPlayer(Player)

Y

Figure 7.3: Discovering and registering with the coordinator by the client actor.

Figure shows the definition of a player object defined in the client actor. The

128 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

player object has two methods notInGame and getName. When the coordinator ob-
ject is discovered in the proximity the when:discovered: block is applied to a far
reference pointing to the coordinator object hosted by the server actor. Inside the when
:discovered: block an asynchronous message is sent that adds the player object to the
newly discovered coordinator.

When the object on the server actor processes the addPlayer message it sends an
asynchronous message getName to the player. As there is a contract defined over this
far reference, the contract system validates that the player is not yet in game. Assume
that in our example the notInGame method returns that the player is already in a game.
In this case a violation of the contract is detected by the contract system. The blame
message as presented to the programmer is shown in Figure [7.4] Blame is assigned to
the module that hosts the player object.

<78:5:uses.at> violated the contract,expected
the far reference to pass: {|p| p<-notInGame()} given
<far ref:<obj:984103443{notInGame,getName}>>

Figure 7.4: Asynchronous contract violation.

In this section we have shown an example of a flat far reference contract. Contrary
to traditional flat contracts a flat reference over a far reference requires the asynchro-
nous communication. In section[7.2] we explain why validating such contracts is diffi-
cult. In the next sections we first show how the programmer can control the lifetime of
flat far reference contracts.

7.1.2 The lifetime of a Far Reference Contract

Flat contracts in a synchronous world are validated only once. Normally this validation
is performed before the contracted message is processed. As we will show in section
[7.2)this is not always feasible in an asynchronous world. Therefore, in order to validate
flat far reference contracts the asynchronous contract system exploits the asynchro-
nous nature of the event-loop system and validates the flat contract at the moment the
contracted far reference is used.

Delaying contract validation in an asynchronous message passing model poses a
number of questions which do not manifest themselves in a synchronous world. Vali-
dating the flat far reference contract once might be enough in certain situations, in other
situations it might be worthwhile to validate the asynchronous contract every time the
far reference is used, i.e. when an asynchronous message is sent to the contracted far
reference. Therefore we have opened up the interface of the flat far reference contracts
to allow for variations in the lifetime of the contract. In Figure [7.5|two contract con-
structors, ForeverAssert and OnceAssert are specified. ForeverAssert validates the
flat contract whenever an asynchronous message is sent to the contracted far reference.
OnceAssert validates the flat contract only once, i.e. the first time an asynchronous
message is sent to the contracted far reference.

In order to define a flat far reference with a custom validation lifetime the program-
mer can create a new variation by using the keyword message Assert:withLifeTime:.
This function expects the predicate over the far reference and an object which has at
least one method called validate. A new lifetime object is initialized for every flat
contract that is applied to a far reference. From that moment on, the lifetime object’s

7.1. FLAT FAR REFERENCE CONTRACTS 129

def ForeverAssert: block {
def lifeTimeObject : = object: {
def validate(message) { true; };
+
Assert: block withLifeTime: lifeTimeObject;
I

def OnceAssert: block {
def lifeTimeObject : = object: {
def count := 0;
def validate(message) {
count := count + 1;
count == 1;
I
I
Assert: block withLifeTime: lifeTimeObject;
+

Figure 7.5: Specifying remote-object assertion constructors with a custom validation
lifetime.

method validate is invoked for every asynchronous message which is sent to the con-
tracted far reference.

This validation lifetime of ForeverAssert, is implemented by always returning
true when the validate method of the lifeTimeObject is invoked. This validation
strategy is also the default validation lifetime when creating a far reference assertion
with the keyworded function Assert. Note that our default strategy is not implemented
by means of a lifetime object as in this particular variation the test can be omitted
entirely leading to a more efficient implementation. OnceAssert keeps track of the
amount of messages that are being sent to the contracted remote object. Every time a
message is sent to the far reference the local variable count is increased. By comparing
the count variable with 1 the only time that validation takes place is when the first
message is sent.

The variations related to when to validate the assertion, once or forever, are ex-
tremes of the spectrum and other factors can play an important role in determining the
lifetime of the flat contract over the far reference. One factor is time, for example when
the programmer knows that certain guarantees are subject to a lease. Another factor
is the messages which are sent to the far reference. For example, in a virtual shop
a flat far reference could validate a certificate only before sending the payment mes-
sage. By opening up the interface of the flat far reference contracts the programmer
can implement his own variations in the lifetime of the contract.

7.1.3 Atomicity

The actor model of AmbientTalk guarantees that when an actor A sends two successive
messages (M,1 and M,2) to an actor B, the actor B processes these two messages
in the same order i.e. M, is always processed before message M,>. However, the
AmbientTalk actor model does not guarantee that the actor B processes these messages
without interleaving. For example, when a third actor C also sent a message to the
actor B there are three ways in which the messages can be processed: M..M,1.M o,
Mg1.Mao. M. and My1.M..Mgo. In this last ordering the message M,; and Mo are
interleaved with the message M. Interleaving of messages poses a problem for the
validation of far reference assertions that does not manifest itself in a synchronous
world.

130 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

AtomicAssert: {|p| p.notInGame() } -> any;

Figure 7.6: Specifying a contract with an atomically executed assertion.

Recall that flat far references are validated when they are used, i.e. when a message
M, is sent to the contracted far reference. Instead of sending this message directly
the contract system first sends a validation message M,,, when this validation message
is processed the actual message M, is sent. Therefore it is possible that a message
alters the state of the actor between the validation of the assertion and sending the
asynchronous message M,. The message that is processed in between can potentially
violate the assertion. Only when the assertion is defined over an immutable value this is
not a problem. However, in case the assertion depends on mutable values it is necessary
to guarantee that validating the assertion and processing the first asynchronous message
is executed without interleaving.

Therefore in our contract system we have defined a language construct that allows
the programmer to define assertions that are atomically evaluated at the server side.
The way we have done this is by embedding the validation of the far reference con-
tract in the message M,.. In figure the contract for the coordinator is rewritten by
making use of such AtomicAssert. Note the use of the synchronous dot operator in-
stead of the asynchronous arrow operator. Because, the assertion is evaluated at the
server side there is direct access to the coordinator and the assertion can be executed
synchronously.

The use of non-atomic assertions is still useful for the specification of assertions
that involve multiple client objects. An example of such an assertion is a predicate that
defines that two players can only shoot each other when they are in opposite teams.
As this assertion depends on more than one far reference it is impossible to execute it
synchronously. Note that in such a case the teams of the contract should be immutable.

7.1.4 Flat Far Reference Contracts Overview

There are two dimensions that we have explored for the formulation of flat far reference
contracts, the validation lifetime and the atomicity guarantees. Each dimension leads
to a different variation of the basic flat far reference contract. In Table [Z7] these two
dimension are summarized.

Flat atomic, means that the contract is validated once and that the system guarantees
that when the first message is processed the contract holds. For flat asynchronous
assertions there is no guarantee from the system that the contract still holds when the
first message is processed. It is the programmer’s responsibility to ensure that the
assertion only depends on immutable values.

Invariant atomic means that the contract is validated whenever an asynchronous
message is sent and the system guarantees that the contract holds when the asynchro-
nous message of the client to the server is processed. Finally, invariant asynchronous
is a contract that is validated whenever an asynchronous message is sent. The system
does not guarantee that the contract holds when the flat contract is defined over mutable
values. Note that this table only shows those contracts which are supported out of the
box. Our implementation allows the meta programmer to make variations on these flat
contracts by specifying a custom validation lifetime object.

AN AW —

7.2. FAR REFERENCE CONTRACTS: THE PROBLEMS 131

Atomic Asynchronous
Flat First message First message
No interleaving | No guarantees for interleaving
Invariant | Each message Each message
No interleaving | No guarantees for interleaving

Figure 7.7: Assertion variations supported by flat far reference contracts.

def coordinator := object: {

// (p.team() == this.team) -> bool;
def makeMove(p) { ... };

def getTeam() { ... };

}.

//exporting code omitted

Figure 7.8: Coordinator (Actor)

7.2 Far Reference Contracts: The Problems

In this section we give an overview of the problems that arise when validating a contract
over a far reference. We show three (naive) approaches and verify whether they intro-
duce deadlocks or change the message ordering. From these approaches we infer that
the validation of assertions defined over far references before executing a contracted
message is not possible. In section[7.3]we present our solution to validate far reference
contracts.

7.2.1 Running Example

Consider the ambient game application again. After enough players have joined the
game, players can make a move by sending a message makeMove to their coordinator.
Pseudo code for the makeMove method of the coordinator and the contract defined over
this method is shown in Figure @ The precondition of the contract p.team()==
this.team specifies that the provided player should be from the same team as the
coordinator (assume that in this variation of the game the player could be involved in
a game hosted by another coordinator with another team). The postcondition of the
contract, bool, specifies that the return value has to be a boolean. Recall that while
the precondition of this contract is a simple predicate, in an distributed asynchronous
model verifying a precondition over a remote object requires an asynchronous message
to be sent to this object.

7.2.2 Coarse-Grained Blocking: Delay all Message Processing

A first approach for the validation of an asynchronous contract consists of blocking
all incoming messages of the actor until the contract is validated[ﬂ Unfortunately this
validation strategy can introduce deadlocks which are not present in the non-contracted
code. A client that introduces a deadlock in the validation of the contract over the
makeMove method can be easily created as shown in Figure To clearly show why
there is a deadlock in this example we step through the validation process step by

"Note that this would require us to break the AmbientTalk concurrency model.

NV AW~

132 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

/...

def player := object: {

def getTeam() { currentCoordinator<-getTeam() };
I

//discovery code omitted
currentCoordinator<-makeMove(player);

Figure 7.9: Deadlock Example: Client (Actor)

step. In this example we deliberately use server instead of supplier to emphasize the
distributed nature of the example.

1. The client discovers the server (currentCoordinator) (line 6).
2. The client sends an asynchronous message makeMove to the server (line 7).
3. The server receives the message makeMove(line 3, of the server).

4. The contract system of the server blocks all incoming messages to validate the
contract.

5. In order to validate the contract, the contract system sends a message getTeam to
the player hosted by the client in order to retrieve the team of the player.

6. Upon receiving the message getTeam the player object — hosted by the client
— sends a message getTeam back to the coordinator (line 3).

7. The contract system however, blocks all incoming messages and the system is in
a deadlock.

We conclude that coarse-grained blocking is not a viable option for the valida-
tion of flat reference contracts because they can easily introduce deadlocks. Worse,
even more clever coarse-grained blocking techniques to support reentrance would not
provide a viable option because the remote player could disconnect and leave the coor-
dinator in a blocked state.

7.2.3 Fine-Grained Blocking: Delay the Contracted Message

A less radical approach does not block the entire actor but only delays processing the
asynchronous message until the contract is validated. The advantage of this approach
is that, when we assume that there are only two parties, it correctly validates the con-
tract shown in the previous section i.e. (in step 7) the message getTeam from the player
to the coordinator is processed and the deadlock situation is resolved. However, most
actor systems [Yon90, DVM ™05, IMTS03] provide a minimal guarantee on the order-
ing of the messages which is known as the transmission ordering law as shown in
section[3.1.11

This law is violated when the contract system delays processing the contracted
message until the contract is verified. In order to illustrate this issue, consider the
code to add and remove players from a game, shown in Figure and In this
example addPlayer has a flat far reference contract that states that the (remote) player
should not be in a game when added. Further, the contract also states that the return
value of the addPlayer method has to be a boolean value. When a client sends a

7.2. FAR REFERENCE CONTRACTS: THE PROBLEMS 133

message addPlayer, the contract system validates the contract. In order to validate
this contract, the contract system is forced to send an asynchronous message back to
the (remote) player. As this approach tries to avoid the deadlock situation the server
(coordinator) starts processing the rest of its inbox until the answer is retrieved.

def coordinator := object: {
// p.notInGame() -> bool
def addPlayer(p) { ... };
def removePlayer(p) { ... };
} .

//exporting code omitted

Figure 7.10: Transmission ordering: Server side (Actor)

Consider now the situation in Figure the client sends two messages to the
coordinator: addPlayer and removePlayer. The coordinator postpones the execution
of the addPlayer message until the contract is validated. Therefore, the coordinator
processes the message removePlayer first. This is clearly unwanted behavior because
removing a player that was not added could lead to errors or at least to unexpected
behavior when at a later moment in time the addPlayer message is processed.

With this small example, we have illustrated that this validation strategy can alter
the semantics of the underlying programs in a significant way. We conclude that fine-
grained blocking is not a viable option to validate flat far reference contracts because
this validation strategy violates the transmission ordering law.

//discovery code of omitted
currentCoordinator<-addPlayer(p);
currentCoordinator<-removePlayer(p);

Figure 7.11: Transmission ordering: Client side (Actor)

7.2.4 Contract Decomposition

The last implementation strategy consists of decomposing the asynchronous contract
into a number of synchronous contracts. Instead of validating the contract at the server-
side of an object the contract is decomposed into two synchronous contracts, one for the
sender and one for the receiver of the message. The contract verifies the preconditions
synchronously at the sender side and the postconditions are validated at the receiver of
the asynchronous message.

(Actor X) (Actor Y Ato B) [Actorz g toC

I R A=
] [] T N !
’ o N 7 ~-’

/4>""/ p
OANG — o1 @

. J \ J \ J

Figure 7.12: Transitively passing far references.

134 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

The advantage of this strategy is that it allows the previous asynchronous code to be
executed synchronously. This approach works well in the examples that we have given
but fails when the arguments passed in an asynchronous message are also remote to the
sender of the message. Figure[/.12|illustrates this situation by showing the interactions
between 3 actors X, Y and Z. An object reference of the object A owned by actor X is
transitively passed from actor X to actor Y and finally to actor Z. When a contract is
defined over the message sent from object B to C it is impossible to decompose the
contract in a synchronous part which is executed on actor Y before the message is sent.
The reason is that the object A is not local for the sender, i.e. actor Y. We conclude that
decomposing contracts into synchronous parts is also not a viable option.

7.2.5 Conclusion

A summary of all the options in order to validate assertions over remote object refer-
ences is shown in Figure The only approach that can offer non-inference with
respect to deadlocks and message ordering is contract decomposition. However this
approach is not a general solution as it can not deal with transitively passed references.
The main problem of the approaches shown is that they try to validate the contract
before processing the asynchronous message. 7o solve these issues we propose a con-
tract system that postpones the validation of far reference contracts until they are used.
As we show in the next section such a contract system can deal with assertions over
far references while staying inference-free with respect to deadlocks and message or-
dering. Moreover our system does not have any problems with transitively passed far
references.

Deadlock Free | Ordering | Transitivity

Blocking Actor no yes yes
Blocking Message | yes no yes
Contract Decomp. | yes yes no

Figure 7.13: Validating asynchronous contracts before processing a contracted mes-
sage.

7.3 Validation and Blame Assignment of Flat Far Ref-
erence Contracts

In this section we introduce the semantics of the flat far reference contract system by
presenting a minimal implementation.

7.3.1 Far Reference Contracts Overview

They key point of the asynchronous message contract systems is to postpone the val-
idation of far reference assertions until the far reference is actually used in a message
expression. Concretely this implies that a function that has a far reference contract
defined over one of its arguments is always executed immediately without validating
the contract immediately. The contract system postpones the validation of far reference
assertions until the first asynchronous message is sent to the contracted far reference.

7.3. VALIDATION AND BLAME ASSIGNMENT OF FLAT FAR REFERENCE CONTRACTS135

Figure shows the sequence diagram of a typical asynchronous contract. In
this example the server is the actor that hosts the object over which the client defines
a contract. The server first sends a message M to an object over which the client
has defined a contract. This contract defines an assertion over the far reference R
contained in the received message. Before processing the message from the server, the
client first processes the messages in its inbox which were received before the server’s
message. Afterwards the client takes the server’s message from his inbox and starts
processing the message. Processing of the message proceeds without verifying the
assertion defined over the far reference R. The assertion is verified as soon as the
first asynchronous message (M) is sent to the far reference R. Instead of sending
this message (M) immediately the contract system verifies the assertion by sending
an asynchronous message M, to the contracted far reference. When the assertion is
verified the contract system either signals a violation of the contract or continues with
sending the original asynchronous message M. Successive messages to the same
contracted entity are handled in a FIFO manner in order to preserve the transmission
ordering law.

sd Asynchronous Contract /
M(R) M(R)
-_-‘
Mc

A Y

=== S Mc
\
Resolve \
|

o = - i \

s Mf -

—lA" Resolve \

1
~

Figure 7.14: Asynchronous Contract: Sequence Diagram

The programmer can not distinguish the execution with contract validation from a
run without contract validation other than observing a small delay in which the asyn-
chronous messages are processed. As our contract system does not block the reception
of successive messages at any moment in time there is no possibility that deadlocks are
introduced nor that the transmission ordering law is violated. Finally as our validation
strategy postpones the validation of the assertion until the far reference is actually used
our approach scales for multiple communication partners that transitively exchange far
references.

7.3.2 Flat Far Reference Contracts Implementation

The constructor function of the flat reference assertion is shown in Figure

O 001NN AW -

136 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

def Assert: pred {
{ Ipos, neg|
{ Ival|
if: (is: val taggedAs: FarReference) then: {
eventualref: { |rcv,msg]|
when: (pred(val)) becomes: { |res|
if: (res) then: {
val <+ msg;
} else: { blame(pos); };
};
}
} else: { blame(pos); }
+
+

Figure 7.15: Flat far reference contract constructor.

Analogous to the constructor function for a flat contract (c.f. section [5.1) the re-
turn value of this function is a closure which expects two blame labels (line 2). When
this closure is applied it returns a new closure that expects a far reference as argument
(line 3). The far reference assertion verifies that the argument val is a far reference
by inspecting the type-tag of val (line 4). When a non-far reference value is supplied
it assigns blame to the positive label (line 12). Instead of verifying the predicate im-
mediately the flat far reference contract returns a proxy to the reference constructed
by the keyword message eventualref: (line 5). The closure passed as an argument
is applied whenever a message is sent to the newly created reference. The arguments
of this closure are the receiver (rcv) of the message and the message itself (msg). The
proxy reference verifies the predicate (line 6) and only when the predicate returns a
future that resolves to true, the message is sentE](line 8). Otherwise blame is assigned
(line 9). The flat far reference contract shown in Figure is thus the non-atomic
verify-forever variant.

Step-by-step Example In order to exemplify the internal working of the flat far ref-
erence contracts consider the example shown in Figure again. We now give an
overview of how this contract is validated by using the box notation introduced in sec-
tion [5.3.1] In this notation the contract defined over the addPlayer method can be
represented as follows:

‘ l1,l3] 'InGame — any? | addPlayer‘(p)

The blame labels [; and l» represent the supplier and the consumer of the contracted
value respectively. When this method is applied to a far reference p it verifies the do-
main contract, namely that the supplied far reference is a player which is not yet part of
a game. Because this can not be checked immediately when addPlayer is applied, the
far reference p is wrapped in a new contracted far reference as shown below. Recall that
inside of the body of the addPlayer method an asynchronous message getName is sent.

‘ l2,11] 'InGame | p‘<-getName()

When sending the message getName the code is conceptually expanded to the code

2The <+ operator is used to sent first class messages.

7.4. HIGHER-ORDER FAR REFERENCE CONTRACTS 137

when: (p<-notInGame) becomes: { |res|
if: (res) then: {
p<-getName();
} else: { blame(l2); };
+

Figure 7.16: AddPlayer contract validation example.

shown in Figure As can be seen in this figure, in case that the player was already
in a game blame is assigned to blame label /5, namely the user of the coordinator ob-
ject. This is correct as it was the client of the coordinator object that supplied a player
who was already in a game.

This concludes the basic exposition of flat far reference assertions. In the next
section we show how flat far reference contracts can be extended to support higher-
order far references.

7.4 Higher-Order Far Reference Contracts

In the previous sections we explored the definition of flat contracts over far references.
In contrast to flat contracts in a synchronous world, the validation of flat contracts
in an asynchronous world needs a validation strategy that is similar to the validation
of higher-order contracts. Instead of validating the contract immediately, validating
the contract is postponed until the contracted value is used. The specification of flat far
reference contracts has been limited to validating simple predicates over a far reference.
Now we show how we can also define properties over the messages that are sent to a
far reference. Higher-order far reference contracts are very similar to object contracts
in a synchronous program as shown in chapter[6} In this section, we give an overview
of how to define and validate higher-order far reference contracts.

7.4.1 Higher-Order Far Reference Example

A higher-order far reference contract specifies the asynchronous messages that need to
be supported by the far reference over which the contract is defined i.e. its interface.
Contrary to the contracts shown in chapter[6} a higher-order far reference contract is
specified by the client, i.e. the client defines a contract over an object hosted by a
remote actor. We explain higher-order far reference contracts by means of a distribu-
ted example where a far reference to a stack of integers is sent from the server to a
client. Imagine that the client wants to protect himself from getting a bad far refer-
ence. Therefore, the client defines a higher-order far reference contract over the stack
received from the client. In the next sections we explain how such a contract can be
encoded in AmbientTalk/C.

Client receiving a stack in an asynchronous message The code of the client that
defines a higher-order far reference contract over the remote stack is shown Figure([/.17
At lines 6 till 10 a client object c is defined, it has one method receiveStack which
takes a single argument, a far reference to a stack s. At line 8, the client sends an
asynchronous message push with the argument 1 to the remote stack.

At line 13 till 17, a contract for the elements that can be pushed and popped from
a stack is shown. The definition of this contract follows exactly the same syntax as

138 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

the definition of an object contract as shown in chapter [6] It is only when instantiation
this contract that the difference between a local object contract and a higher-order far
reference contract becomes visible. The contract specifies that there should be two
methods available namely push and pop. The contract defined over the push method
states that the argument should be an integer. Similarly, the values that are popped from
the stack should be integers.

The client needs to export the object c in order for the server of the stack to discover
the client. The client thus specifies a second object contract (clientContract) for the
exported object ¢ (lines 19-24). This contract specifies that the object over which
the contract is define needs to support the method ReceiveStack. The ReceiveStack

method contract specifies that the argument must be a far reference to an object
obeying the StackContract. The higher-order far reference contract is created with
the contract constructor FarRef. The programmer first specifies object contracts with
ObjectContract but in order to create either a local object contract or a higher-order
far reference contract he needs to apply the Ref contract constructor seen in chapter|6]
or the FarRef contract constructor shown here.

Finally, at the end of the module the client object is exported to the network with
the previously defined client contract (line 27). Note that exporting the object is done
with a Ref contract not a FarRef contract (line 27). The reason is that the object ¢
is local to the client, which exports the contract. From that moment that the object is
exported, collocated nodes in the network can discovered this object and send messages
to it, given that they follow the contract. In the next paragraph, we show how the server
discovers the client and sends an asynchronous message to the client.

Server sending an asynchronous message to the client. The server side of the
higher-order far reference contract example is shown in Figure In this exam-
ple, first a stack object is defined (line 4 till 11). Then a when:discovered: listener is
registered to discover the client. Once the client object is discovered the server sends
this client object a message receiveStack with the newly created stack. When this
message is sent the client receives a far reference to the stack. At the client side a con-
tract is applied to this far reference in order to validate which messages are sent over
the far reference.

Blame Imagine that in the example we made a trivial error by sending a message
push with the argument "Wrong" (line 8 in Figure[7.17). As the higher-order far ref-
erence contract specifies that this argument should be an integer the contract system
stops the ongoing computation and throws a contract validation exception. Blame is
assigned to the "Far-ref-Uses.at" module.

7.4.2 Computational Far Reference Contracts

Recall from chapter [5 that a computational contract allows the programmer to define
properties over the internal execution of the contracted entity. AmbientTalk/C allows
computational contracts to be defined over far-references. This allows the programmer
to prohibit or ensure that certain functions and methods are applied when a asynchro-
nous message to a far reference is processed. Figure [7.19] shows an example where
the push method of a far reference stack is prohibited to apply the system.println
method. This contract is very similar to the one shown in Figure However,
now the push contract has a computational contract defined over it. This contract is

O 0NN AW —

M=l BEN N N R O S

L O R S

7.4. HIGHER-ORDER FAR REFERENCE CONTRACTS

139

//Far-ref-Uses.at

//Implementation

deftype Client;

def c := object: {

def receiveStack(s) {
s<-push(1l);

’

+i

//Contracts

def StackContract :=
ObjectContract: {

def push(arg) { int -> any };
def pop() { any -> int };
+

def clientContract :=

ObjectContract: {

def receiveStack(s) {
FarRef(StackContract) -> any;
I

+i

//Exporting the client
export: c as: Client withContract: Ref(clientContract);

Figure 7.17: Far Reference Contracts: Stack Example (Uses)

//Far-ref-Defs.at
deftype Client;

def stack := object: {

def storage := [];

def isEmpty() { storage.size == 0; };

def push(arg) { storage := [arg] + storage; };
def pop() {
/]

I

+i

when: Client discovered: { |c]|
c<-receiveStack(stack);
}i

Figure 7.18: Far Reference Contracts: Stack Example (Defs)

created with the prohibit_c constructor function and prohibits push to invoke system
.println (line 3). Note that the selector of a far reference computational contract
needs to be an isolate in order to be sent by copy to the server. When the prohibit_c
contract constructor receives such an isolate it creates a computational contract that is
copied to the client when an asynchronous message to the contracted far reference is

sent.

def StackContract :=
ObjectContract: {

def push(arg) { int -prohibit_c(isolateClosure: { system.&println })-> any };

def pop() { any -> int };

’

Figure 7.19: Computational Far Reference Contract: Stack Example (Defs)

Nelie RN e Y R N T R

140 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

In order to show an example of a violation of this contract, we added an extra line
in the push method at the server side (figure that prints the objects that are being
pushed on the stack (line 7). Figure [7.20] shows that when pushing elements on this
stack, blame is correctly assigned to the "FarrefDefs.at" module.

14:21:Far-ref-Defs.at violated the contract computational contract.

Figure 7.20: Computational far reference contract violation.

7.5 Validation and Blame Assignment of Far Reference
Contracts

The implementation of higher-order far reference contracts is shown in Figure
Higher-order far reference contracts closely resemble the implementation of object
contracts. The difference is that instead of making a wrapper object a wrapper ref-
erence is created. Such a wrapper reference is created with the keyworded message
eventualref: block to: value (line 4). Every time a message is sent to the wrap-
per reference the block is applied with the receiver (rcv) of the message (the original
reference) and the message (msg) itself.

def farRef(ObjectContract) {
def contract(pos, neg) {
{ Ival|
if: (is: val taggedAs: FarReference) then: {
/.at.lang.firstclassrefs.eventualref: { |rcv,msg|
def mContract ObjectContract.getContract(msg.selector)

def dom := mContract.domain.contract(neg, pos);

def rng 1= mContract.range.contract(pos, neg);

def cc := mContract.computation.contract(pos, neg);
msg.arguments := dom(msg.arguments);

msg 1= cc(msg);

when: (rcv <+ msg) becomes: { |value|
rng(value);
};
} to: val;
} else: {
this.blame(pos, " A far reference contract over a non far reference:: " + val);
}
}
}

Figure 7.21: Implementation of Far Reference Contracts

When the contract is applied to a value val (line 3), the type tags of the value are
inspected in order to make sure that the value is indeed a far reference (line 4). If this
is not the case positive blame is assigned (line 18). When the value was a far refer-
ence a wrapper reference is created to intercept all asynchronous message sends (line
5). Every time a message is sent to the wrapper reference the contract defined over
this message is extracted from the ObjectContract (line 6). From this contract the
domain, range and computational contract are initialized with the appropriate blame

3This is pseudo code but it closely follow the actual implementation.

7.6. COMPUTATIONAL MESSAGE CONTRACTS 141

labels (line 7-9). Then the domain contract is applied over the arguments of the mes-
sage (line 10). A modified asynchronous message is created, which when received by
the server applies the computational contract (line 11). The modified message is sent to
the original reference rcv with the first class message operator (<+) (line 12). Sending
an asynchronous message returns a future which will be resolved when the message is
processed. The when:becomes: construct is used in order to retrieve this value. The
range contract is applied when the when:becomes: block is triggered (line 13).

Recall that the result of a when:becomes: block is a future. This future resolves
to the value of evaluating the callback block. Since the when:becomes: block at line
11, is the last expression of the wrapper reference interception block, this is also the
value that is returned when sending a contracted asynchronous message. By making
use of future pipelining, the use of the wrapped reference is made transparent for the
programmer.

7.6 Computational Message Contracts

Recall from chapter [5 that a computational contract allows the programmer to define
properties over the internal execution of the contracted entity. In a distributed context
one important aspect over the execution of a method is which messages are being sent
during the execution of this method. Just like making certain method calls mandatory
or disallowing method calls, it is important to be able to disallow or validate that certain
messages are sent asynchronously. In order to support such contracts we have extended
our aspect language from section with a special point-cut which allows the pro-
grammer to define aspects that intercept message sends. This hook makes it possible
to define computational contracts that validate which messages are sent. We first give
an overview of message contracts from a programmers perspective and then show the
aspect extensions that are needed in order to define message contracts.

7.6.1 Message Contracts

The AmbientTalk/C framework provides constructor functions in order to specify mes-
sage contracts similar to the ones shown in chapter[5] An overview of these constructor
functions is shown in Figure Ambient Contracts allow the programmer to spec-
ify contracts for mandatory message sends with ensure_m. Similarly, the programmer
can create a contract to disallow sending a certain message by means of the function
prohibit_m. These functions also make it possible to create a contract that monitors
a sequence of outgoing messages by means of a protocol. We start our exposition of
message contracts with prohibit message contracts in section Subsequently we
show ensure message contracts in section[7.6.3] Ensure and prohibit message contracts
by means of a protocol are shown in section [7.6.4]

A single message | Sequence of messages
Mandatory ensure_m (M) ensure_m(Mprotocol)
Disallow prohibit_m(Mp.) | prohibit_m(Mprotocor)

Table 7.1: Computational contracts over messages.

142 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

7.6.2 Prohibit Message Contract

With AmbientTalk/C creating a contract to prohibiting a message from being sent is
done with the contract constructor function prohibit_m. In order to create a contract
that prohibits a message to be sent during the execution of a contracted method, the
developer needs to specify which message is disallowed. This is done by means of the
keyworded function message:, which expects a string that is matched against the name
of the outgoing message. Figure shows an example of a prohibit message con-
tract. In this example, prohibit_m(message: "disallowed") prohibits the message
disallowed to be sent within the dynamic extent of the contracted function. Recall that
there are two main mechanism active during the enforcement of a prohibit contract: the
interception mechanism and the blame assignment mechanism. The interception mech-
anism intercepts all prohibited messages before they are actually sent. At that moment,
control is transferred to the blame assignment mechanism which stops the entire com-
putation and presents the programmer with an error message explaining who violated
the prohibit contract.

provide: f withContract: any -prohibit_m(message: "disallowed")-> any;

Figure 7.22: Providing a function f with a prohibit computational contract for mes-
sages.

When the contracted entity sends a message which is disallowed by the computa-
tional message contract, blame is assigned and the programmer is presented with an
error message similar to the one shown in Figure|7.23

65:5:defs.at violated the contract. Computational message contract violation:
Intercepted sending message "disallowed".

Figure 7.23: Computational message contract violation.

7.6.3 Ensure Message Contracts

The dual of prohibiting that a certain message is sent, is to ensure that a message is sent.
An ensure contract verifies that a certain promise is kept during the dynamic extent of
the contracted function. For example, a function g can promise to sent a message foo.
An ensure contract does not specify the exact moment when the message foo needs to
be sent, it only specifies that at some moment during the execution of the contracted
function foo needs to be sent. Verifying an ensure contract is thus more subtle than
verifying a prohibit contract as blame can only be assigned after the contracted method
has been entirely executed (after all sending the message foo could be the last state-
ment of the contracted method). From a programmer’s perspective, defining an ensure
contract with computational contracts is as simple as defining a prohibit contract. En-
sure contracts are created with the function ensure_m. Figure shows an ensure
message contract that verifies that the message buy is sent within the dynamic extent
of the function under contract.

When the contracted method does not sent the mandatory message the computa-
tional message contract blame assigns blame and the programmer is presented with an
error message similar to the one shown in Figure[7.25]

—_

O 00N B W —

7.6. COMPUTATIONAL MESSAGE CONTRACTS 143

provide: f withContract: any -ensure_m(message: "buy")-> any;

Figure 7.24: Providing a function f with an ensure computational contract for mes-
sages.

65:5:defs.at violated the contract. Computational message contract violation:
Did not sent message "buy".

Figure 7.25: Computational message contract violation.

7.6.4 Protocol Message Contracts

The message transmission ordering law states that the order in which messages are
being sent to a certain receiver is also the order in which these messages are being
received. Therefore it might be important for the programmer to explicitly capture
the order in which message are transmitted. Outgoing messages can be validated
by a message ordering protocol which is similar to the way in which object proto-
cols are encoded. An example of a sequence protocol to buy a product is shown in
Figure First, there is sequence protocol defined with the keyworded message
MessageProtocol (line 1-11). This protocol has four states init, next, end and the
mandatory start state. The init state has one transition login that is triggered when
there is an outgoing message with the same name (line 3). The next state transitions
the finite state machine to the end state when a message logout is sent (line 7). The
next state transitions again to the next state when a message buy is sent (line 8). The
end state does not allow any messages mentioned in the protocol to be send.

A function buyforme that satisfies this protocol is defined at lines 14 till 18. After
sending the messages login, buy and logout messages, the message protocol is in
the end state. In this state no messages are allowed to be sent. Finally, the function
buyforme is exported with the sequenceProtocol defined earlier.

def sequenceProtocol := MessageProtocol: {
def init() {
(on: "login") => { next() };
}i
def next() {

(on: "logout") => { end() };
(on: "buy") => { next() };
1
def end() { };
def start() { init(); };
+i

def buyforme(user,item) {
o<-login(user);
o<-buy(item);

o<-logout(user);

Y

def Interface := object: {
def seq := provide: seq withContract: any -ensure_m(sequenceProtocol)-> any ;

}

Figure 7.26: Message ordering contract example.

—_

N R W =

144 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

In case the buyforme function would send a buy message before sending the login
message blame would be assigned as shown in Figure

154:5:uses.at violated the contract
Message protocol violation possible transitions: [login], while sending message: buy

Figure 7.27: Message ordering contract example.

7.7 Validation of Messages Contracts

The validation and blame assignment of message contracts is exactly the same as the
computational contracts outlined in section [5.3.3] However, we have not shown how
messages can be intercepted by the underlying aspect language. In this section we show
how the underlying aspect language can intercept outgoing messages and subsequently
give the definition of a prohibit_m contract.

AmbientTalk has a strong reflective layer which allows the core language to be
extended with new programming constructions. The reflective layer of AmbientTalk is
based on mirrors [BU0O4, VMG™07], meta-level objects that allow the programmer to
reflect upon the actors state and behavior. In this reflective layer there is a method called
send which allows the programmer to intercept the outgoing message of an actor. This
function is applied whenever a message is sent. It receives two arguments: the receiver
and the outgoing message.

The way to intercept message sends is thus exactly the same as intercepting a reg-
ular method invocation. An example of defining an aspect that throws an error when
a message is sent is shown in Figure At line 1, the aspect specifies to intercept
all invocations of the send method of the actor mirror. This actor mirror is obtained
by calling the function reflectOnActor. Next this aspect is deployed (line 5) over a
block of code that sends an asynchronous message buy to an object o (o is not shown
in the figure). As expected an error is thrown when executing this piece of code.

def a := aspect: call(reflectOnActor().&send) advice: { |proceed, arguments]|
error: "Sending messages is not allowed in this code block!";
I

fluid: a deploy: {
o<-buy();

’

Figure 7.28: Aspect example of intercepting message sends

By making use of the reflective layer of AmbientTalk there are no special construc-
tions needed in order to define message contracts. The implementation of message
contracts thus follows the implementation of computational contracts as shown in sec-
tion[5.3.3] The didactical implementation of a prohibit message contract is shown in
figure @} As can be seen on line 2, it is a computational contract created with the
contract constructor cc shown in section This computational contract intercepts
all outgoing messages sends. When a message is intercepted the contract validates that
the name of this message equals to the prohibited message. If this is the case blame is
assigned. Otherwise the proceed function p is applied to the original arguments.

O 0NN W —

7.8. CONCLUSION 145

def prohibit_m(name) {
cc(call(reflectOnActor().&send),
{Ipos,neg|
{lp,a]
if: (a[2].selector == name) then: {
blame (pos)
}else: {
p(a)
+i
1,
flat({|x]| true;}),
flat({|x| true;}))
+i

Figure 7.29: Prohibit message contract constructor.

7.8 Conclusion

In this chapter we have shown that the use of contracts in an asynchronous context
poses a number of problems when flat contracts are defined over far references. Sub-
sequently we have shown that our solution validates far reference contracts without
introducing deadlocks while preserving the order in which messages are processed.
We have also shown that the ideas of higher-order object contracts can be extended to
support higher-order far reference contracts. Finally, we have shown how computa-
tional contracts can be extended in order to validate the trace of outgoing messages.
The main contributions presented in this chapter are:

e Flat contracts over far references.
e Higher-order far references contracts in an asynchronous distributed object model.
e Computational message contracts.

In the next chapter we give an overview of a concrete application of the contract
system developed in the context of this dissertation.

146 CHAPTER 7. CLIENT SIDE AMBIENT CONTRACTS

Chapter 8

Ambient Contracts at Work

In this dissertation, we propose AmbientTalk/C as a framework used to monitor the us-
age of object references that are exchanged between the distributed modules of an am-
bient application. Ambient contracts allow the specification of behavioral constraints
such as: are messages allowed to be sent during the execution of a certain method,
are files being accessed when applying certain methods, etc. In previous chapters we
have shown numerous small didactical examples which usually involved toy modules
that should or should not print some text on the prompt. These examples contribute
to the understanding of the basic concepts but are not representative of the actual use
of our contracts in a concrete application. In this chapter we evaluate the use of the
AmbientTalk/C framework for a concrete use case. The examples of computational
and ambient contracts that are shown in this chapter all revolve around the implemen-
tation of a framework for the development of ambient social applications called Urb-
iFlock [GBLCS™11]. The development of the UrbiFlock framework is a joint effort of
the Ambient Group at the Software Languages Lab. The explanation of the UrbiFlock
framework in this chapter follows the explanation as given in [GBLCS™11].

Our choice for applying ambient contracts over this framework is motivated by the
fact that this is the most sophisticated framework developed so far in the AmbientTalk
language. Not only is it the biggest (in lines of code) framework developed, it also
combines several previous research efforts w.r.t connectedness and context-awareness
into a single smart application.

In this chapter, we report on our experiences from applying ambient contracts over
the most important modules of the UrbiFlock framework. We show the different mod-
ules involved and give an overview of the contracts that are applied. As will be shown,
applying our contracts in UrbiFlock can be compared to writing detailed documen-
tation. In some cases it was even possible to make a one-to-one mapping of code
comments to actual contracts. We also give an initial assessment of the complexity of
using ambient contracts and show where they have aided in finding bugs in the Urb-
iFlock framework. Finally, we also mention those part of the AmbientTalk/C frame-
work where our contracts could be improved or have been improved by applying them
to the UbriFlock framework.

147

148 CHAPTER 8. AMBIENT CONTRACTS AT WORK

Profile Flockr GUI
Fields Name makeWindow(titie)
addField(propName, propVal, propType) [1 1 | addApplication(application) 1 showWindow(window)
removeField(propName) registerBuddyListListener(buddyListner) addActionListener(window, Listener)
setField(propName, propVal) registerFlocksListener(flocksListner) ’
fieldMatches(field, value) updateProfile()
1 J
A
Flock Name
Name registerApplicationListener(type, Listener)
Flockr remoteApplicationInterface()
Proximity locallnterface()
makeFlock(theName, theProximity, owner) owner()
e 1 S
[Proximity | Local Interface Remote Interface
makeProximity(Flockr) start() <Application Specific>
stop()
pause()
IsFriend isNearby | [ProfileMatch resume()

Listener
notifyApplicationJoined(*flockr,profile, *application)
notifyApplicationLeft(*flockr,profile, “application)

Figure 8.1: UrbiFlock Design Diagram

8.1 UrbiFlock Framework

UrbiFlock is a framework designed for the development of applications that enable
spontaneous interactions of people by exploiting new technologies such as wireless
networks and mobile devices. As in Facebook, users that join Urbiflock (called flockrs)
can meet other users and interact with them, for example by sending each other mes-
sages. Flockrs have a profile which can be browsed by other flockrs that are in prox-
imity. The Urbiflock framework takes care of managing a flockr’s friends lists, called
flocks. A flock can be compared to a Facebook group (for example, a group of old class-
mates). Urbiflock additionally allows for the definition of groups of proximate flockrs
(for example, a group of all friends that are currently nearby). Unlike current main-
stream social network sites, Urbiflock allows the specification of flocks both in terms
of physical proximity (defined by for example the bluetooth communication range of
the flockr’s cellular phones) and semantic proximity (e.g. in terms of being friends of
other flocrks).

Similar to Facebook, third parties can build applications and plug them into the
Urbiflock framework. Several core applications are currently available in the Urbiflock
framework, such as flock creators and profile viewers. In the remainder of this section,
we describe the main concepts of the Urbiflock framework. Subsequently, we describe
how ambient contracts are applied to the different modules of the framework.

8.1.1 Architecture

Figure [8.1) shows a UML diagram of the parts of the UrbiFlock framework to which
we have applied ambient contracts. Note that in this diagram many of the details are
omitted.

Flockr. As can be seen the Flockr abstraction plays a central role in this design. A
flockr has exactly one profile and can be registered to multiple Flocks. In addition,
a Flockr can have various applications installed. Applications need to be explicitly
added to a Flockr before they can be used. When an application is added to the Flockr
with addApplication, the application is added to a dashboard (similar to the Home

8.1. URBIFLOCK FRAMEWORK 149

screen on the Apple iPhone). Running applications have controlled access to ﬂockr
information via the framework such as the flockr profile. This is a common function-
ality found in a wide range of social networking applications. In addition, Urbiflock
applications have access to the user’s flocks (so they can talk to nearby flockrs) and the
flockrs who have installed the same application on their devices.

Profile. Profiles in UrbiFlock are highly extensible and besides a number of manda-
tory fields, flockrs can add as many custom fields as they like (for example, they could
add their year of graduation). The fields of a profile can be used to match other users
in the proximity by grouping them in flocks. For example, a flockr could create a flock
of nearby flockrs which graduated in the same year. When adding custom fields to the
profile, the user can specify the type of the field (e.g. a number, a piece of text, a date,
a choice etc.). Furthermore, the framework provides some infrastructure that makes it
easy to add new custom types without having to write too much boiler plate code.

Flock. A Flock consists of a list of flockrs and a proximity function that determines
whether or not a certain Flockr belongs to that list. There are several predefined prox-
imities in the Urbiflock framework: isFriend encodes a friendship relationship (i.e.
if a flockr is a friend of another flockr), isNearby encodes physical proximity rela-
tionship (currently defined by the communication range of their cellular phones) and
doesProfileMatch tests an attribute of a flockr’s profile.

Users can define their own proximity functions as combinations of existing prox-
imities by combining them using logical operators. For instance, a user could specify
a flock consisting of all female people in the neighbourhood who like to drink belgian
beers. This can be encoded in Urbiflock with a proximity function that combines the
physical proximity to discover nearby flockrs and matches their profile to select the
nearby flockrs that are female and like drinking belgian beers.

A proximity function is recomputed whenever there is an event that alters the type
of encoded relationship. These events become visible to the user as an addition or
removal of a flockr in a flock. For example, if a flockr moves out of communication
range, the proximity function in the nearby flock is recomputed and as a result the
disconnected flockr is removed. The same happens when any of the connected flockrs
adapts his or her profile, since this change may cause a flockr to enter or leave the
proximity as defined by the corresponding proximity function.

The Urbiflock framework provides programmers with the necessary infrastructure
to deal with the highly dynamic environment to which pervasive social networking ap-
plications running in mobile ad hoc networks are exposed. Programmers do not need
to manually track the appearance and disappearance of flockrs in their environment (by
means of the AmbientTalk service discovery constructs), or changes in their profiles.
In addition, plug-in applications themselves can be notified of the appearance or disap-
pearance of nearby flockrs running the same application, making it easy to have small
applications interact with each other.

Application. As shown in figure[8.1|every application has two interfaces: a local and
aremote one. This distinction between local and remote interfaces has been introduced
for reasons of security: methods defined in the local interface can only be called by

"Here we refer to flockr as the user not the module.

150 CHAPTER 8. AMBIENT CONTRACTS AT WORK

local objects. Remote objects can only invoke methods defined in the application’s re-
mote interface. Applications can have a local interface, which can be trusted, to call dif-
ferent operations on the application than remote objects (e.g. changing the application’s
settings). Applications can register listeners that are notified when other flockrs enter or
leave communication range, when they change their profile (e.g. when they update their
status) or when flockrs running the same application appear in the proximate environ-
ment (e.g. to enable application-specific interaction). The latter event can be detected
by registering a listener by using the registerApplicationListener method on an
Application. The listener must implement two methods notifyApplicationJoined
and notifyApplicationLeft which are invoked by the underlying framework when
applications move in and out of reach.

8.1.2 Software Specifications in UrbiFlock before AmbientTalk/C

It has to be noted that the development of the UrbiFlock framework was developed
before the AmbientTalk/C framework. After developing the AmbientTalk/C we applied
ambient contracts in order to validate the applicability of our contract system by a
concrete use case. However, before applying contracts for the development of the
UrbiFlock framework programmers were already aware of the importance of specifying
the rights and obligations of the objects that flow from one module to another. This is
reflected in the code documentation dispersed all over the UrbiFlock framework. Many
of this documentation are simple specifications that can easily be encoded as contracts.
We have transformed these specifications into contracts and added more sophisticated
(behavioral) contracts that were not documented as well.

A representative example of the documentation found in UrbiFlock is shown in
Figure [8.2] This piece of documentation is taken from the application module and
more specifically it is defined over the function registerApplicationListener. The
comment informs the programmer which properties an application listener object (1)
should adhere to. It specifies that such a listener object should implement two methods
notifyApplicationJoined and notifyApplicationLeft. Furthermore, it details that
the first and last arguments are far-references. Such documentation is very useful for
the programmers because from this documentation they can deduce that his code should
not contain any synchronous method invocations to the first and last arguments.

There are two major drawbacks of using such documentation as specifications of
the software. First, the code comments are not subject to validation, which means that
the code does not necessarily implements the documentation. The second problem
with this code documentation is that it is mainly written as a reminder for the devel-
oper of the module. Therefore, it is written in the middle of the implementation of the
module where the callback is registered. This implies that the user of the application
module still needs to browse through the code in the hope that there is some interesting
information in the comments that helps understanding how the module works. More-
over, when changes are made to the code, the comments can get out of sync with the
implementation.

In the next sections, we show that the programming effort for applying ambient
contracts is comparable with the effort required from the programmer to write docu-
mentation such as the one shown in Figure 8.2} Moreover when using ambient con-
tracts, the programmer is less likely to give an incomplete specification such as the one
shown in Figure[8.2] In this example the programmer did not specify that both methods
are not expected to return any meaningful value. While this might be intuitive, a pro-
grammer confronted with the documentation can not be sure that this is the case and is

8.2. CONTRACTS OVER THE GRAPHICAL USER INTERFACE MODULE 151

/* U should understand:

invoked whenever an application was discovered

notifyApplicationJoined(flockr : farref to flockr, buddyProfile : profile,
app : farref to application)

invoked whenever an application is no longer present

notifyApplicationLeft(flockr : farref to flockr, buddyProfile : profile,
app : farref to application)

*/

Figure 8.2: Comments in the Application Module.

forced to obtain this information from the implementation. In the next section we start
by showing how contracts are applied in the code that implements the graphical user
interface of UrbiFlock.

8.2 Contracts over the Graphical User Interface Mod-
ule

The graphical user interface of the UrbiFlock framework is implemented by making
use of the foreign function interface between AmbientTalk and Java. The GUI module
of the UrbiFlock framework provides a small layer between the AWT classes and the
rest of the UrbiFlock framework. The example of creating a window and showing it to
the user is shown in Figure 8.3]

import /.urbiflock.gui;
def window := makeWindow("Hello World!");
showWindow(window) ;

Figure 8.3: Graphical User Interface, Hello World example.

First the gui module is imported and then a new window is created with the makeWindow
function. The argument of this function is the string "Hello World"!. The last line
of the example presents the window to the user by applying the showWindow function.
Besides creating windows the GUI layer provides abstractions to create buttons, labels,
etc. A screenshot of the window that is created when evulating the code in figure[83)is
shown in figure[8.4]

Hello World !

Figure 8.4: Graphical User Interface, Hello World example screenshot.

O 001NN B W -

152 CHAPTER 8. AMBIENT CONTRACTS AT WORK

The contracts applied to the graphical user interface module are shown in Fig-
ure [8.5] We first show the custom made flat contracts followed by the computational
contracts used in the module. At the end we show the “module contracts”, i.e. those
contracts that are applied over the provided objects of the module.

def isWindow(w) { w.getClass == jlobby.java.awt.Frame; };
def window := flat(&isWindow);

def actionListener := ObjectContract: {
def actionPerformed(event) { any -ensure_c(&updateWindow)-> any; };

}

def guiInterface := object: {

/7.
def makeWindow := provide: &makeWindow withContract: string -> window;
def showWindow := provide: &showWindow withContract: window -> bool;
def addActionListener := provide: &addActionListener
withContract: window * Ref(actionListener) -> bool;
//. ..

Figure 8.5: Contracts defined over the graphical user interface module.

Flat contracts. Flat contracts are used in order to make sure that the correct Java
classes are used. For example the window contract (line 1 and 2) is a flat contract
that tests whether a given value is an instance of the Java Frame class. Note that in
the definition of the isWindow predicate no explicit error handling code is installed.
This is because the contract framework assumes that all exceptions thrown during the
evaluation of a flat contract are due to improper values. For example, if the user would
pass an object that does not understand the getClass accessor an exception is thrown.
This exception is caught by the contract framework and blame is assigned.

By using flat contracts for the development of the UrbiFlock framework we found
out that writing correct predicates is difficult. For example the isWindow predicate
should actually first check that the given value is an object. Subsequently it should
(through reflection) validate that the object has a field getClass and finally do the test
that this field equals to jlobby.java.awt.Frame. Needless to say such code would
complicate the process of writing simple flat contracts.

We also found that it is still useful to make the programmer aware that the contract
fails either due to an error in the evaluation of a flat contract or because the contract
failed normally.

Computational Contracts In the GUI module, programmers can register event lis-
teners to be notified when an interesting event happens. For example, the programmer
can register an event listener to be notified when a user clicks in a window. Contracts in
the GUI module are used to verify that the event listeners are correctly applied i.e. that
they implement the correct callback method. The actionListener contract shown
in Figure [8.5] (line 4 — 6) specifies that an actionListener should have at least one
method called actionPerformed.

Often it is important to update the GUI (repaint) when the actionListener event
handler is triggered. This protocol is validated by a computational contract over the
actionPerformed method of the actionListener (line 5). This computational con-
tract ensures that in the dynamic extent of applying the actionPerformed method the

8.2. CONTRACTS OVER THE GRAPHICAL USER INTERFACE MODULE 153

method updateWindow is applied. While this contract is specified for the UrbiFlock
framework, this pattern is often seen when developing GUI frameworks. Therefore,
it could be reused for example, to validate that the GUI is redrawn when the model
changes in the MVC design pattern.

Module Contracts. The module exports the functions makeWindow with a function
contract (line 10) that validates that the first argument is a string and that a window
is returned. The showWindow function also has a functional contract defined over it.
This contract (line 11) specifies that the argument should be a window and that a
boolean value is returned. Finally, the addActionListener contract (line 12) vali-
dates that the first argument is a window and the second argument an object obeying
the actionListener contract. The return value is a boolean.

8.2.1 Experiences

The use of contract in the graphical user interface has been useful in a number of ways.

e The use of the flat contracts during the development of the library has led us to
detect that the order of the arguments when registering a listener was wrong in
the original code. The use of contracts helps to detect errors early. In a fully
dynamic library without contracts the error would have been manifested itself in
the GUI library. The use of contracts showed us immediately which module to
fix.

e The use of the AmbientTalk/C framework detected a spelling mistake in the
source code. The method name actionPerformed of one of our event listen-
ers was written without uppercase p. The contract system detected this error and
assigned blame to the Chat module. This was extremely useful because without
the contract system an error is triggered by a callback from within the Java AWT
framework. Event listeners can be registered from various places within code
which means that without the contract system the programmer has to search the
whole code for the wrong event listener.

e The use of computational contracts aided for detecting errors in the mandatory
calls in the callbacks to the updateWindow function. This is was mainly because
this requirement was introduced later in time to make sure that the GUI is always
updated. When introducing this requirement, some places did not implement it
yet and those cases were detected by the contract system during testing.

o In the testing phase of applying contracts in the UrbiFlock framework it became
clear that writing flat contracts is not as trivial as it might seem. In order to
specify a flat contract over the field of an object the predicate o| o.field ==
10|o| o.field == 10 is not sufficient. The programmer should actually first
validate that the given value is indeed an object. Subsequently, the programmer
should validate through reflection that this object has the field that he wants to
inspect. And finally the programmer can access that field and to test that it equals
to 10.

154 CHAPTER 8. AMBIENT CONTRACTS AT WORK

Usually, the programmer is concerned with writing a (partial) predicate that
works for a value that satisfies the predicatei.e. o| o.field == 10|o| o.field

== 10. Itillustrated writing a (complete) predicates that work for every possible
value is not trivial. Therefore, exceptions thrown from the evaluation of the pred-
icate associated with the flat contract are treated as contract violations.

o Finally, some of the contracts have currently not aided in finding bugs but they
have certainly helped the programmer in understanding the responsibilities of
the graphical user interface elements.

8.3 Contracts over the Application Module

The application module of the UrbiFlock framework provides the constructor function
to make new UrbiFlock applications. This module is not explicitly shown in Figure[8.1]
It is a module that acts as a factory to create the kind of applications shown in the UML
diagram. In order to create an application, the programmer has to provide a name for
the application and the flockr that owns the application. When an application is cre-
ated it is registered to the list of applications of which the user can choose. After an
application is registered, the user can open the application and at later moment in time
close the application. In the Android version of the UrbiFlock framework, applications
can also be paused. Applications are paused by the Android operating system when
the user switches back and forth between the UrbiFlock application and other applica-
tions on his phone. Whenever an application is paused, it is the responsibility of the
programmer to save the state of the application and to restore this state at the moment
the application is resumed.

In the remainder of this section we give an overview of the contracts applied to the
applications module. Since the application module serves as template code offered to
the programmer in order to develop his own UrbiFlock applications. Therefore, many
of the contracts defined in this module are quite general and should be refined by the
programmer when implementing custom applications.

Computational Protocol Contracts A computational contract is applied in order to
validate the lifetime of an application. The state diagram that depicts the lifetime of an
UrbiFlock application is shown in Figure[8.6] When the application is initialized it can
be transitioned to the running state by applying its start method. In the running state
the application can be either stopped or paused by applying the stop or pause method
respectively. In the paused state the application can be either resumed by invoking the
resume method or stopped by invoking the stop method.

\ start() resume()

Figure 8.6: State diagram of an UrbiFlock application.

8.3. CONTRACTS OVER THE APPLICATION MODULE 155

def ApplicationProtocol() {
ObjectProtocol: {
def init() {
(on: start) => { running() };

b

def running() {

(on: stop) => { init() };
(on: pause) => { paused() };
+i

def paused() {
(on: stop) => { init() };
(on: resume) => { running() };
}i
def start() {
init();

b

Figure 8.7: Application contracts protocol implementation.

A protocol contract that implements this protocol by means of the object protocols
shown in section [6.2.7] is shown in Figure 8.7] As can be seen, the states and the
transitions of the diagram are in a one-to-one relationship with the transitions shown in
the contract code.

Ambient Contracts UrbiFlock applications can register a callback object in order
to be notified when other applications are discovered in the network. This object has
to understand two methods notifyApplicationJoined and notifyApplicationLeft
. These callback functions are invoked when applications join or leave the proxim-
ity of the user. Figure shows that the developers of the UrbiFlock framework al-
ready specified some requirements over such callback objects by using code comments.
The direct translation of this contract from the code comments into AmbientTalk/C, is
shown in Figure [8.8] (lines 1 — 8). For the notifyApplicationJoined method (line
3), it specifies that the first argument is a far-reference obeying the flockr contract,
the second argument is a locally accessible object obeying the profile contract and
finally the last argument is a far-reference to an object implementing the remote inter-
face of a custom application. The contract over the notifyApplicationLeft method
is identical.

Note that the return values of both notifyApplicationJoined and
notifyApplicationLeft should be the value nil indicated by the nothing contract.
Remember that AmbientTalk does not have an explicit return statement and any value
that happens to be the the last statement of the function or method is returned to the
caller. Therefore there is always a return value and another correct (weaker) contract
could have been the any contract. The use of the nothing contract thus makes it
explicit that the application listener callback functions should not accidentally leak
any return values.

What the code comments did not specify is how the profile itself should behave.
Figure [8.8| shows an object contract for the profile object (lines 10 — 13). It specifies
that a profile contract should have at least two methods, setField and fieldMatches.
The profile contract validates an important property of the fields of a profile, namely
that all the elements must be passed by copy. This is validated by the isolate contract

O 001NN AW -

156 CHAPTER 8. AMBIENT CONTRACTS AT WORK

def applicationListener := ObjectContract: {

def notifyApplicationJoined(flockr, buddyProfile, app) {

farRef(flockr) * IsolateRef(profile) * far -> nothing;

}i

def notifyApplicationLeft(flockr, buddyProfile, app) {
farRef (flockr) = IsolateRef(profile) * far -> nothing;
}
}

def profile := ObjectContract: {
def setField(propName, propVal) { symbol * isolate -> any; };
def fieldMatches(field, value) { symbol * isolate -> boolean; };
}

Figure 8.8: Contracts defined over the application listener.

as shown on lines 11 and 12.

Object Contracts. Figure [8.9] first shows two helper contracts (line 1 — 10). The
first helper contract, cancelObject is used in order to cancel a subscription (see sec-
tion [2.3.3). It simply specifies that objects over which it is defined need to support a
cancel method. The second helper contract, remoteAppInterface is used in order to
specify how to retrieve the flockr and its profile by remote applications. This is done
by sending an asynchronous message getOwnerAndProfile. This method returns an
array with two objects: the flockr and its profile. Note that both contracts are object
contracts. The profile is always passed by copy to remote peers, in the contract this
behavior is validated by the IsolateRef contract (line 8).

Figure[8.9]also shows how the application contract can be constructed with the two
helper contracts shown before (line 12 — 22). The contracts defined over the application
object make sure that the name is a string (line 13) and that the owner is a flockr (line
14). The contract defined over the export method of the application object specifies
that an object has to be exported. This is validated with an ensure contract (line 15).
The rest of the contracts defined over the application object define contracts about
retrieving the remote interface and registering application listeners.

Module Contract. Finally, the previously defined contracts are applied to the con-
structor function that is exposed to other modules. The contract defined to the make-
Application function (line 26) validates that the arguments are a string and a flockr. It
also validates that the return value satisfies the application protocol and finally that the
application obeys the application contract shown before.

8.3.1 Experience

The use of AmbientTalk/C to specify the behavior of the application module has aided
both in the development of the contract system itself and to find bugs in the develop-
ment of the UrbiFlock framework.

e Homogeneous table contracts have always been part of the contract framework
by means of the contract constructor array0f. In the application module it be-
came clear that tables are often used to return multiple values from a function.
Hence, in many cases these tables contain heterogeneous values. For example,
in the application module the getOwnerAndProfile function returns two values:

O 0NN W —

8.4. CONTRACTS OVER THE APPLICATION IR8U MODULE 157

def cancelObject := ObjectContract: {
def cancel() { void -> nothing ; }

+

def remoteAppInterface := ObjectContract: {

def name() { void -> string };

def getOwnerAndProfile() {

void -> arrayOf([Ref(flockr), (IsolateRef(profile)) 1);

}

}

def application := ObjectContract: {

def name() { void -> string };

def owner() { void -> Ref(flockr) };

def export(asType) { typeTag -ensure_c(&export:as:)-> exportPublication; };
def remoteApplicationInterface() {

+

}

void -> Ref(remoteAppInterface);

i

def registerApplicationListener(type, 1) {

b

typeTag * applicationListener -> Ref(cancelObject);

// the module object of this file
def Interface := object: {
def makeApplication := provide: &makeApplication withContract: string * Flockr ->

(ensure_c(AppliactionProtocol) + Ref(application));

Figure 8.9: Contracts defined over the application module.

a remote interface and a profile. As this pattern is often used by AmbientTalk
programmers, the primitive contract constructor array0f was extended to also
support heterogeneous tables. The array0f contract constructor when given a
table of contracts 7. creates a contract that verifies that a table of values 7}, pair-
wise obey the contracts in 7.

When writing generic code, it is sometimes the case that the contract defined can
be very general. These contracts then need to be refined by the programmer when
possible. For example, the interface of an application is specific for each custom
application. As we show in the next section, in order to export (contracted)
applications in the network the programmer needs to manually overwrite the
contract of the parent object. It would be interesting to find a more general
mechanism to overwrite such generic contracts by the child object.

8.4 Contracts over the Application IR8§U Module

As explained in section 8.1} UrbiFlock is a toolkit for the rapid development of perva-
sive social network applications that run on mobile ad hoc networks. When making use
of UrbiFlock framework, programmers do no longer have to be concerned about dis-
covery of services or failures in the network layer. Instead they can work with different
notions of proximity that make sense for pervasive social networking applications. To
plug additional applications into the framework that make use of its offered infrastruc-
ture, UrbiFlock developers only have to implement a small set of methods.

In this section we first explain the implementation of a simple UrbiFlock applica-
tion called I rate you (IR8U) and then we show how ambient contracts are used in order

158 CHAPTER 8. AMBIENT CONTRACTS AT WORK

0 O O Flock...

| My Profile) Flocks FriendsFlock
A NearbyFlock

Rate Me! M Delete

|

Figure 8.10: Screenshot of IR8U application in Urbiflock

to validate the correct execution of the application.

8.4.1 IRS8U Overview

This IR8U application allows users to ask proximate users to rate them on a certain
subject. Figure[8.10|shows a screenshot of the IR8U application in Urbiflock. It depicts
the Urbiflock screen launcher for a flockr called “xtofs”, which consists of buttons to
access its profile, its defined flocks and its installed applications (only IR8U in this
case). The figure also shows the flock viewer (launched when the user clicks the flocks
button) with the two predefined flocks (corresponding to the isNearby and isFriend
proximities). The bottom part of the figure shows the GUI for IR8U which consists
of a list of pending ratings. In this example, the flockr has an ongoing rate about his
guitar skills (with one reply from a flockr called Elisa). In IR8U, other users can rate
the subjects by giving a rating between 0 and 5 stars.

The first step in the creation of the IR8U application is to extend the prototypical
UrbiFlock application with custom infrastructure as shown in the code snippet below.
We define the necessary data structures to keep track of who is connected in the prox-
imity and who rated certain subjects. A vector connectedRaters stores the flockrs
who are connected in the proximity while a hashmap ratingSubjects stores the sub-
jects (as keys) and their ratings (as values). Each rating itself consists of a pair of a
far reference referring to the flockr who rated the subject and an integer between 0
and 5 representing the flockr’s rating. Notice that in order to identify applications in
Urbiflock, every application is associated with a type tag. Therefore, we create one for
IR8U with the same name as the application itself. Last we define a variable to contain
a reference to the GUI. This variable is not initialized here yet.

def locallnterface := extend: makeApplication("IR8U", aFlockr) with: {
def connectedRaters := Vector.new();

def ratingSubjects := HashMap.new();

deftype IR8U;

def ui;

}...

The next step is to implement the two mandatory methods start and stop which
are called by the framework when the user starts and stops the application (see sec-
tion[8.3). The main purpose of these functions is to initialize and clean up the applica-

O 0NN W —

0NN AW =

8.4. CONTRACTS OVER THE APPLICATION IR8U MODULE 159

tion’s listeners and internal data structures. The code snippet below shows the original
start method for the IR8U application.

def start() {
super”~start();
ui := jlobby.at.urbiflock.ui.ir8u.IR8U.new(self);
self.export(IR8U);
subscription := self.registerApplicationListener(IR8U,
object:{
def notifyApplicationJoined(flockr, profile, ir8uApp){
connectedRaters.add(ir8uApp);
}
def notifyApplicationLeft(flockr, profile, ir8uApp){
connectedRaters.remove(ir8uApp);
}i
1)
I

First the GUI is initialized (line 3) after which the application is exported to the
network by calling the export method with its type tag (line 4). The framework
takes care of exporting the application on the network and notifying listeners for this
application. Finally, a listener is registered that updates the vector when connected
IR8U users enter or leave the proximity (lines 5 — 13). This is done by calling the
registerApplicationListener method with the type tag IR8U and a listener ob-
ject. This listener object implements two methods notifyApplicationJoined and
notifyApplicationLeft which are called when another application in the proximity
is discovered or decides to leave, respectively. Both of these methods are called with
a reference to the flockr in the proximity, a copy of his profile, and a reference to the
remote interface of the IR8U application of the remote flockr. The code snippet below
shows the implementation of the stop method.

def stop(){
super”stop();
if: (subscription != nil) then: {
subscription.cancel();
subscription := nil;
connectedRaters := nil;
}
+i

The stop method is responsible for cleaning up the IR8U application. It first issues
a super-send to invoke the default cleanup code defined in the prototypical UrbiFlock
application (which takes the application offline by unexporting it). Application listen-
ers are then removed (by invoking subscription.cancel()) and its data structures are
set to nil such that they can be garbage-collected (lines 4 — 6).

Now that we have explained how to start and stop the application as well as the data
structures that it uses, we can explain the implementation of the basic functionality of
IR8U. A user can ask all proximate users to rate a certain subject as implemented in
the askRatingFor method. When this method is called it first creates a new subject
and adds it to the ratingSubjects hashmap. Next, it sends an asynchronous message
rateMe to all connected raters asking them to give a rating on the subject. A flockr can
give this rating by calling the rateFlockr method. This method sends the asynchro-
nous message rate to the remote application. Note that rateMe and rate must be send
asynchronously to the connected ir8uapp applications since they are remote objects.

def askRatingFor(subject) {
ratingSubjects.put(subject, []);
connectedRaters.each: { |ir8uapp|
ir8uapp<-rateMe(remoteInterface, aFlockr.getProfile(), subject);

I

160 CHAPTER 8. AMBIENT CONTRACTS AT WORK

def rateFlockr(ir8uApp, subject, rating) {
ir8uApp<-rate(aFlockr, aFlockr.getProfile().username, subject, rating);

I

All previously shown method definitions are contained in the local interface as
these methods and data structures should not be accessible from remote devices. Now
we describe the remote interface by which remote devices can interact with the applica-
tions in the proximity. As mentioned earlier, this remote interface defines the methods
rate and rateMe. The rate method is invoked when a remote Flockr issues a rating on
this flockr’s subject. It simply records the rating given by the Flockr and updates the
GUI. The rateMe method is called when a remote Flockr asks this Flockr to rate him
on a subject. The method sends a message to the GUI to ask the user for a rating.

def remoteInterface := extend: locallnterface.remoteApplicationInterface with: {
def rate(ratingFlockr, ratingFlockrName, subject, rating) {
ratingSubjects.put(subject, prevRatings + [[ratingFlockr, rating]]l);

ui.updateRating(ratingFlockrName, subject, rating);

}

def rateMe(ir8uApp, profileToRate, subject) {

ui.askToRate(ir8uApp, profileToRate, subject);

}

}

8.4.2 Contracts

The IR8U application has many connections to other modules in the UrbiFlock frame-
work. An overview of all the contractual bindings between the IR8U application and
the rest of the framework is shown in Figure The UrbiFlock module creates the
application and adds it to the list of applications. From this module the application
is started and stopped. Further the IR8U application crosses the language boundaries
by passing a reference to itself to the graphical user interface which is written in Java.
And finally IR8U applications communicate with other instances of the same applica-
tion by their remote interface. At all these module interactions there are opportunities
to validate the operation of the IR8U application against the contracts as we show in
the remainder of this section.

Java GUI Java GUI

AmbientTalk Application AmbientTalk Application

IR8U

A\
|UrbiFIoc'?]<—>| local ‘;Jl Remote‘ﬁ
/

IR8U

\J
[UrbiFlock)«—[local "][Remote

Figure 8.11: Overview of contractual bindings of the IR8U application.

Contractual Bindings with remote Applications The IR8U application exposes it-
self to other devices in the network proximity. This is done by applying the export
method of the application that it extends. When the inheriting application — the IR8U
application in this case — wants to define a contract over the exported module it can
do this by setting the field contract. The code for exporting an application over the

8.4. CONTRACTS OVER THE APPLICATION IR8U MODULE 161

network as defined in the application module is shown in Figure[8.12] As can be seen
in the code, the application module exports the module with a contract when it is not
nil. Note that this object contract is exported with the Ref contract constructor as seen
in chapter 6]

def export(asType) {

if: (self.contract !'= nil) then: {
exportPublication := export: self.remoteApplicationInterface
as: asType withContract: Ref(self.contract);
} else: {
exportPublication := export: self.remoteApplicationInterface as: asType;
};

I

Figure 8.12: Exporting an application.

Once exported, other devices that discover the IR8U application can send mes-
sages to the newly discovered application. The contract used when exporting a IR8U
application (exportIR8U) is shown in Figure[8.13] It defines a contract over the rateMe
method of the application. The first argument should be a far reference to a remote
IR8U application. Note that from the perspective of the exporting IR8U application the
receiving argument app is a far reference. Therefore, the contract constructor FarRef
(shown in chapter [/]) is used to create this object contract. The contract also validates
that the name of the remote IR8U application equals "IR8U" with a flat far reference
contract. This contract is combined with the contract operator + which applies both
contracts.

The second argument of the rateMe method is a profile object which is passed
by copy. Finally, the subject is a string. Note again the use of the nothing contract to
express that the rateMe method does not returns the value nil. In this case, the use
of the nothing contract is more important as it prevents accidental leaking of objects
across the network.

A second contract (lines 9-13) describes how a far reference to a remote IR8U ap-
plication should behave. Note that the arguments that are being sent to this remote
reference have to be seen from the perspective of the local IR8U application. There-
fore the first argument to the rate message is a local object flockr. The arguments
ratingFlockrName and subject are both strings and the rating is a number between 0
and 5. This last contract is created with the interval function as shown from lines 15
till 17 of Figure [8.13] This interval function returns a flat contract that given a number
x verifies that the number is between the min and maximum values.

Contractual Bindings on the local IR8U application. The contract defined on the
application module seen in section[8.3|makes sure that the start and stop methods are
applied in the correct order. However, the IR8U application must not forget to make
the mandatory super calls to the application it inherits. By making use of computa-
tional contracts it is possible to ensure these mandatory super calls. The computational
contract which can validate such super calls is shown in Figure[§.14] Such mandatory
super-calls are also interesting in other cases aside from the UrbiFlock framework and
a new computational contract constructor function superCall was added to the set of
primitive contract constructor functions. This contract constructor function makes use
of reflection in order to grab the method of the super object of the contracted object
(line 2). Once this method has been determined an new ensure contract is created. Two

O 001NN AW -

SO 0NN AW —

—_

162 CHAPTER 8. AMBIENT CONTRACTS AT WORK

def isIR8U := Assert:{|r| r<-getName() == "IR8U"; };

def exportIR8U := ObjectContract: {

def rateMe(app, profileToRate, subject) {

(FarRef(remoteIR8U)+isIR8U) * IsolateRef(profile) * string -> nothing;
}i
I

def remoteIR8U := ObjectContract: {

def rate(ratingFlockr, ratingFlockrName, subject, rating) {
Ref(flockr) * string * string * interval(0,5) -> nothing;
+
}

def interval(min,max) {
flat({|x| (min <= x).and:{ max >= x } });
}

Figure 8.13: Ambient contracts over the remote application interface of IR8U.

mandatory super calls for the start and the stop method of the IR8U application are
shown at the bottom of the code example (lines 7-8).

def superCall(method) {
occ: { |o| ensure_c((reflect: o.super).getMethod(method)) };

ObjectContract: {

def stop() { void -(superCall(‘stop))-> nothing; }
def start() { void -(superCall(‘start))-> nothing; }

};...

Figure 8.14: Computational contracts for mandatory super calls.

Contractual Bindings with the GUL. The IR8U application creates the graphical
user interface by directly creating a Java class for a window. From within the GUI, two
contracted methods can be applied to the IR8U application (as shown in figure [8.15):
rateFlockr and askRating. The first contract (lines 3-5) specifies that the application
should be a far-reference to an IR8U application, the second a string and the rating a
number between 0 and 5. The askRating contract (lines 7-9) is a bit more interesting.
It determines that the number of outgoing messages should equal the amount of con-
nected raters. This is done by the message contract defined over the execution of the
askRating method.

8.4.3 Experience

o In the definition of the contracts for the IR8U application it became apparent that
we needed a contract dedicated to checking whether or not a value falls within
a certain interval. While it is not a difficult contract to define oneself, it is a
general abstraction and it was decided to add it to the set of standard contracts in
AmbientTalk/C.

e For some reason, the comments in the original UrbiFlock framework specified
that ratings should be between 0 and 4 while the development team clearly de-

8.5. CONCLUSION 163

def GUIContract := ObjectContract: {

def rateFlockr(app, subject, rating) {
farRef (remoteIR8U) * string * interval(®,5) -> any;
};

def askRating(subject) {
string -(occ:{|o| atMost: { o.connectedRaters } outgoingMessagesFor: ‘rateMe })-> nothing;
};

Figure 8.15: Message contract for asking ratings.

cided on having values between 0 and 5. While this is not a severe error, it shows
that the use of textual documentation is prone to errors. Further, there was no er-
ror checking code installed to make sure that the input from the user was indeed
a value between 0 and 5.

e The use of computational contracts for enforcing super calls for the start and
stop functions of the application was extremely useful. Such behavior can be
enforced in languages like Java by making the stop method in the superclass
final, and creating a protected abstract method base_stop which is invoked from
the stop method. However, in languages like AmbientTalk which do not have
abstract or final methods computational contracts certainly provide a solutionﬂ

e When starting to use AmbientTalk/C it might be difficult for the programmer
to know whether a certain value should have a local object or a far-reference
contract. The reason why this might be confusing from time to time is that there
are always two sides for a remote interaction. The correct perspective in order
to determine that something should be an object contract created with Ref or
FarRef is to take into account where the contracted object is hosted. If the object
is hosted by the actor applying the contract Ref should be used; otherwise, the
object is hosted by a remote actor and FarRef should be used.

e We found confusing documentation in the IR8U application for the rate method:
// rate(ratingFlockr : farref<Flockr>, subject : Text, rating: int 0-4)
First the comments imply that the contract should be a far reference over the
flockr. Because the contract is applied over a local object this should be an object
contract created with Ref. When applying our contracts at first we followed
the documentation and suddenly got a lot of contract violations. We found out
quickly that the previous documentation was in fact wrong. Furthermore, the
documentation forgot to specify that the name of the flockr is sent.

8.5 Conclusion

In this chapter, we applied ambient contracts to UrbiFlock, framework for the rapid de-
velopment of social ambient applications. We applied flat far reference contracts, local
object contracts (with Ref) and remote object contracts (with FarRef). Furthermore,
we have applied computational contracts in order to monitor that object protocols are

2 A similar effect as the Java solution can be encoded by making use of traits but that would have required
a substantial redesign of the UrbiFlock framework.

164 CHAPTER 8. AMBIENT CONTRACTS AT WORK

respected. We deduce three main conclusion from applying AmbientTalk/C for the
development of UrbiFlock.

e First, we have found that many of the distributed specifications could be easily
encoded with the developed contracts. A remarkable example of this can be
seen by the direct translation of the documentation in comments into an actual
contract.

e Second, it can be concluded that when developing interesting contracts which
we did not anticipate will emerge. The proof of the pudding is in the eating. One
example of this can be found in the definition of heterogeneous array contracts
(with array0f), it was only when we started applying our contracts in a bigger
application that the generalization of such a contract became useful. While the
definition of this contract is not too complex for an expert contract program-
mer we do not expect end users of the contract system to write contracts in that
manner. Furthermore, applying contracts to UrbiFlock framework has been an
extremely useful tool to understand the flow of objects within the ambient ap-
plication. For example, we noticed that in the IR8U application a remote object
is passed from the AmbientTalk module up to the Java GUI and back to the
AmbientTalk module without ever being used.

e A final conclusion is that it is extremely important for the contract program-
mer to understand where the object over which the contract is hosted. Depend-
ing on where the object is hosted, the perspective of remote or local reference
changes. This also has an impact on the specification of the contracts them-
selves. When developing ambient application keeping this perspective is always
important. With ambient contracts we make this perspective explicit.

Chapter 9

Conclusion

In this final chapter, we reflect on the challenges for ambient contracts stated in the in-
troduction and highlight how the AmbientTalk/C framework address those challenges.
We discuss the rough edges of AmbientTalk/C and give an overview of future research
directions.

9.1 Summary and Contributions

Weiser envisioned a future where computers are no longer on the foreground but instead
embedded in everyday objects [Wei91]]. Today, we can say that technological advances
have transformed the bulky machine that a computer used to be into a small piece of
art which fits in your pocket. Ever since Weiser formulated his vision — now almost
two decades ago — technological advances in software and hardware have rapidly
improved. An everyday mobile phone today is much more powerful than a desktop
computer 10 years ago and consumes only a fraction of the energy.

The development of software for this new technology has been confronted with
three main challenges. The first challenge was how to connect all those devices over
a wireless network. The second challenge was the question of how to make devices
adapt themselves to their environment. And finally, the third unsolved challenge is how
to make bigger and smarter ambient applications. Ambient contracts are a research
contribution in context of the third generation of research challenges for ubiquitous
computing. It is motivated by the observation that contract systems have not focused
on the particular language abstractions that have been proposed for the development of
ambient applications. This includes the use of futures, first-class remote references and
event-driven language constructs. As a result, it was unknown how a contract system to
validate applications for mobile ad hoc networks should look like. In this dissertation,
we have formulated a first answer to this question under the form of ambient contracts.
We now revisit the contributions of ambient contracts outlined in this dissertation.

Survey of existing contract systems. Our first contribution is an extensive survey
of related contract systems presented in chapter [3] We started from the fact that the
landscape of contract systems can be roughly divided into four categories: static con-
tracts, behavioral contracts, synchronization contracts, and contracts for quality of ser-
vice. We first concluded that static systems are ill fitted for the hardware properties of
mobile ad hoc networks as they would either require the programmer to use a lot of

165

166 CHAPTER 9. CONCLUSION

annotations and/or require a lot of computation. Secondly, we found that synchroniza-
tion contracts are less interesting for the development of an ambient contract system
because ambient-oriented languages already exclude many synchronization violations
by design. Finally, we also conclude that quality of service as understood in the con-
text of mobile ad hoc networks is highly related to context awareness. The focus in this
dissertation is on contract systems that monitor the flow of values between the different
(distributed) modules of the system.

From the survey it became clear that most contract systems that adhere to cer-
tain properties needed for the development of ambient applications fall in the cate-
gory of behavioral contracts. Such contracts specify pre and post-conditions which
are validated at runtime. The work which turned out to be the most interesting for
the development of an ambient contract system is the work inspired by Findler and
Felleisen [FE02]. The work described in their papers form the foundations on top
of which ambient contracts have been built. Before the start of our research it was
unclear how this contract system could be combined with ambient-oriented language
constructs. From the survey of related work in chapter [3] we concluded that previous
contract systems are not expressive enough to deal with complex higher-order values
in the presence of highly volatile connections.

The Communicating Event Loop Calculus. The second contribution outlined in
this dissertation is the communicating event loop calculus. This model gives a formal
overview of the event-loop concurrency model in which we have formulated ambient
contracts. This event-loop concurrency model forms the basis of the concurrency and
distribution model that adheres to the AmOP criteria presented in chapter[2} We believe
this is the first formal account of an actor language that is based on communicating
event loops. Hence, it is not only the formal foundation for AmbientTalk but also for
other languages based on the event loop model like for example E [MTS05]. To a
lesser extend it also forms the formal foundation for the many event loop frameworks
found in for example OS X Core Foundation run loops, GLib event loops, Ruby’s Event
Machine, Python’s Twisted etc.

A novelty of our semantics is the operational description of non-blocking futures. A
future is a first-class value that acts as the placeholder for a value that is asynchronously
awaited. While the future is unresolved, any messages sent to the future are queued.
When the future becomes resolved, all messages in the queue are forwarded to the
resolved value and the queue is emptied. In the semantics, we give a formal account of
future pipelining and show how futures can be used in a distributed environment. Our
semantics also includes the primitives necessary for service discovery, i.e. the ability
for objects in different actors to discover one another by means of a publish/subscribe-
style mechanism. Finally, our semantics shows how to encode robust time-decoupled
message transmission. The semantics of the communication event loop calculus has
been validated by using PLT-Redex [FEEQ9] tool.

Capturing Ubiquitous Behavioral Properties. The third contribution is the design
and implementation of a novel contract framework called AmbientTalk/C. This frame-
work combines several types of contracts amongst which flat and higher-order con-
tracts. These contracts can be define over data values, functions, objects and future
values and even work in the presence of event handlers. In AmbientTalk/C, contracts
can be defined both over objects hosted by the actor or objects hosted by remote actors.

In order to capture the internal behavior of a certain entity, we proposed a novel

9.1. SUMMARY AND CONTRIBUTIONS 167

contract type called computational contracts. A computational contract validates the
execution of a contracted entity. With computational contracts the developer can de-
fine a function contract that verifies a single event or a sequence of events during the
execution of the contracted function. We have defined computational contracts that
can be used in combination with object-oriented language concepts and event-loop
language constructs. Computational contracts are built upon aspect-oriented language
techniques that we precisely describe by presenting an operational semantics.

When an actor receives a message, it does some computation and as a response can
sent new messages in its turn. The AmbientTalk/C framework has support to moni-
tor the trace of outgoing messages that are a consequence of processing an incoming
message. Analogous to how a single method invocation or a sequence of method invo-
cations can be monitored by a computational contract, a message contract monitors the
trace of outgoing messages.

Scoping of Behavioral Contracts The fourth contribution deals with the scope of
behavioral contracts. In event loop concurrency languages such as AmbientTalk and
E [MTSO035], the use of callbacks is omnipresent. Every time a callback is registered
there is an entry point created in the code that can be triggered in a later turn of the
actor. The validation of computational contracts in combination with an event-driven
programming model poses questions about the scope of behavioral contracts. In most
cases the programmer expects computational contracts to be active within the body of
the registered callbacks. Therefore, the contract system needs to be able to capture
violations that transcend a single turns of an actor.

In order to achieve such a scoping mechanism the underlying aspect-oriented pro-
gramming language had to be extended with a novel mechanism called first-class as-
pect environments. First-class aspect environments allow the programmer to capture
the currently active aspects. It is possible to re-apply these aspects at a later moment
in time. As contracts are encoded with aspects, allowing the programmer to arbitrary
alter the deployed aspects would be dangerous. Overwriting the aspect environment
would give the programmer the power to remove or loosen contracts. In our semantics
we disallow such an operation.

Complex Values and Blame Assignment. In an expressive language such as Am-
bientTalk, distributed programmers are able to exchange objects, functions, futures,
and remote references between distributed communication partners without having to
worry about the serialization or about the way messages are actually distributed by the
underlying runtime. The AmbientTalk/C framework is able to monitor such higher-
order functions, futures, remote references etc. The definition of our contract system
can even deal with objects hosted by remote actors. While we defined contracts over
such complex values we have found that some of these values require special attention.

First, we showed how a contract system can deal with the use of non-blocking fu-
tures. We found that futures conceptually invert the responsibility of the server and
the client leading to the notion of blame inversion. The main reason is that the con-
tracted value (the future) is resolved from outside the module that has a contract defined
over it. Normally, contracted (higher-order) values are applied from inside the mod-
ule which have a contract over them. For future values this is the other way around.
In chapter [6] we described a technique — called blame inversion — to validate future
contracts which is closely related to future pipelining. In our contract system a future
contract forms one of the pieces of a future pipeline. When the resolved value obeys

168 CHAPTER 9. CONCLUSION

the contract it simply forwards this value in the pipeline. Otherwise blame is assigned.

Second, we showed how to deal with assertions over far references in chapter
In order to account for such assertions we introduced the notion of flat far reference
contracts. A flat far reference contract validates a predicate over an object hosted by an-
other actor. Validating flat reference contracts requires asynchronous communication
with the remote object over which it is defined. This is in contrast to flat contracts in a
local synchronous model where predicates can be validated immediately. We showed
how flat far references can be validated and how to assign blame in case of a violation.

Third, we showed how a contract system can deal with higher-order far reference
contracts. A higher-order far reference contract is similar to a higher-order object con-
tract but specifies properties over a remote object. When an asynchronous message is
sent to a remote object the result is a future. A higher-order far reference contract mon-
itors all outgoing messages to the contracted far reference and monitors the resulting
future values as the result of sending messages. Note that the values that are being sent
in these messages can again be complex first-class values such as objects or futures.

Validation Our final contribution is the validation of the AmbientTalk/C contract sys-
tem by deploying it in the context of an existing framework called UrbiFlock (shown in
chapter[§). From this use case, we found that many of its informal specifications could
be easily encoded with the developed contracts. We found that the specification of am-
bient contracts are similar to writing extensive documentation in comments. In certain
cases we could almost make a one to one mapping from code comments onto an actual
contract. The use of contracts during the development of the UrbiFlock framework has
been an extremely useful tool to understand the flow of objects within the framework.
We also found out that it is extremely important to understand where the contract is
validated. Depending on where the contract is validated the perspective of remote or
local reference changes i.e. whether the concepts of chapter|[6| or chapter[7] apply.

9.2 Shortcomings and Future Work

After mentioning our achievements, it is time to reflect on what can be done next.
We present future research opportunities and show where ambient contracts can be
improved.

Ownership. In recently published work Dimoulas [DF11]] proposes a correctness
verification for contracts based on ownership. It would be interesting to see how these
techniques can be adopted in an ambient contract system. It could, for example, warn
the programmer of values that are not subject to contract verification — and thus dan-
gerous objects — received from remote parties.

Interaction Protocols. Ambient contracts allow the programmer to monitor the out-
going messages and even implement a protocol in order to see which messages are
being sent. We have not investigated how the programmer can make use of these proto-
cols in order to monitor the traffic between two or more objects in a distributed setting.
Currently, it would be up to the programmer to manually encode a contract that tran-
sitions a state machine when a message is received and transitions that state machine
when a message is sent. There is a large body of research that deals with the specifica-
tion and verification of complex interaction protocols. As described in chapter 3] one

9.3. CONCLUSION 169

promising technique deals with the interactions between distributed processes. Such
interactions can even be captured in the type signature of a communication channel.
However, these communication channels are difficult to reconcile with object-oriented
languages. Nevertheless, there has been a significant amount of work that has tried
to combine session types and object-orientation [DCMYDO06, DCGDY07, IDDCCO7,
CCDC™09,IGVR™"10]. However, none of them have managed to completely eliminate
the concept of the communication channel. It would be interesting to combine session
types and object-oriented model in a unified framework.

Performance. In the definition of our contract system we have not focused on effi-
ciency. A large part of the performance overhead of the ambient contract system is
due to the inefficient implementation of the underlying aspect language. Fortunately,
there has been a significant body of related work which has focused on the efficient
implementation of aspect-oriented languages. For example, in the work of Masuhara
et al. [MKDO3] they make use of partial evaluation to remove unnecessary run-time
checks of programs that make use of aspects. Hilsdale et al. [HHO4] show that auto-
matic advice weaving in Aspect] can be as efficient as a hand-crafted approach. This
work can thus serve as a starting point for optimizing ambient contracts. However,
our aspect language has support for first class aspect environments in order to be able
to express contracts that span more than one turn of the actor. How these optimization
techniques can be combined in order to support first-class aspect environments is future
work.

Static, Dynamic and Hybrid Verification. In this thesis, we have argued for the dy-
namic validation of contracts. As shown in chapter [3] there is a large body of work
which deals with the static validation of contracts. For a limited subset of flat con-
tracts it would indeed be possible to validate them statically in a dynamic language.
However, it is clear that purely static techniques today are not expressive enough. One
avenue of future work could be to adopt hybrid validation techniques as proposed by
Flanagan [F1a06].

Higher-Order Message Contracts. In the current state of our work we have provide
the programmer with message contracts that allow the programer to intercept outgoing
messages. The programmer can prohibit or ensure that certain messages are sent. Many
times, however, these messages contain values such as functions and objects which
can not be validated with a simple predicate. Therefore, one avenue of future work
would be to provide the programmer with abstractions to apply (higher-order) contracts
over the arguments of the outgoing messages. As the infrastructure to intercept and
alter the arguments of the outgoing messages is already there (see section[7.7), we do
not foresee any fundamental difficulty to implementation such a higher-order message
contract system. However, it remains to be seen what the impact of such a contract
system would have on the application and in which context such contract would really
contribute.

9.3 Conclusion

Just like object-oriented techniques have gained popularity in the nineties, the use of
ambient-oriented programming is steadily gaining ground in the world of every day

170 CHAPTER 9. CONCLUSION

software development. For example, the Android platform already has a model of ac-
tivities that is akin towards an actor like concurrency model. Mobile ad hoc networking
technology has provided us with a window on the future. It showed us a glimpse of
what future ambient applications might bring. At the same time, it also has shown us
the difficulties that future generation programmers will need to deal with. The prior
research on ambient-oriented programming has formulated answers for the two fun-
damental research challenges of connectedness and awareness. Before mainstream
programming languages adopt the software abstractions that have been developed in
order to overcome the challenges of connectedness and awareness there are still ques-
tions to be answered. As put forward in the third generation challenges of ambient
applications, ambient programmers are more and more in need for a methodology for
ambient-oriented software construct. In the absence of such methodology it is unclear
how programmers will be able to write large scale (smart) ambient applications.

In this dissertation, we brought the design by contract methodology to ambient-
oriented software development. The ultimate goal of the AmbientTalk/C contract sys-
tem is to ease the development of large scale ambient applications and to improve
the reliability of ambient-oriented software systems. Where reliability should be un-
derstood as a combination of correctness and robustness or simply as minimizing the
presence of bugs. It is a given that minimizing the amount of bugs in software is a very
important property of all software systems. Therefore, it is surprising that few research
has specifically focused on how to make the development of ambient-oriented systems
more reliable. Our answer is the notion of ambient contracts and their implementation
in a framework called AmbientTalk/C.

The main research problem that ambient contracts addresses, is how to build an
expressive contract system that can deal with complex first-class values in the presence
of highly volatile connections. Ambient contracts can deal with the validation of func-
tions, objects, far references, futures and their callbacks. With this framework we give
ambient programmers a set of tools that enable them to specify the requirements of
their ambient applications as code contracts.

In the introduction chapter we have shown that there is a need for software tools
that help the programmer to write more robust ambient applications. We stress now,
that ultimately, our research is about bridging the gap that prevented programmers
to apply the design by contract methodology in order to write more robust ambient
applications. The contract system described in this dissertation is a state of the art
research vehicle. However, we argue that when mainstream languages are ready to
adopt ambient-oriented programming techniques, ambient contracts can be the basis of
a solid design by contract methodology for the development of robust ambient appli-
cations.

Appendix A

Communicating Event Loop
Calculus in PLT-Redex

This appendix complements the presentation of the communicating event loop calcu-
lus that describes the operational semantics of a key subset of the AmbientTalk pro-
gramming language. The subset focuses on its support for asynchronous, event-driven
programming. In this appendix, we present the implementation of the operational se-
mantics in PLT-Redex. We first give some basic examples followed by more elaborate
examples. Our implementation is freely available and can be run in DrRacket.

A.1 Basic Example of the PLT-Redex Semantics

The parser of the PLT-Redex semantics is not compatible with the syntax of Ambient-
Talk. In order to try out examples the syntax has to be translated into s-expressions
which are understood by the PLT-Redex evaluator. As an example consider the follow-
ing AmbientTalk code:

def x := 3 + 2;
X;

Figure A.1: Example AmbientTalk code snippet.

In the example shown in Figure[A.2]the variable x is assigned to the value of adding
the number 3 to the number 2. Then the variable x is returned. Following the syntax
outlined in the semantics, this code snippet can be translated into s-expressions as
follows.

(let (x (+ 3 2))
in
X)

Figure A.2: Plt-Redex: AmbientTalk code snippet.

Currently, the PLT-Redex evaluator can only evaluate actor configurations. There-
fore, the example has to be written as an actor configuration. The most simple actor

171

172APPENDIX A. COMMUNICATING EVENT LOOP CALCULUS IN PLT-REDEX

configuration to test the example is a configuration consisting of one actor which is
currently evaluating the let expression. This is written down as follows:

((actor id () ()
(let (x (+ 3 2))
in

X)))

Figure A.3: Plt-Redex: Actor code snippet.

In this actor configuration there is one actor with the id id. Finally in order to show
the reduction steps that the evaluator takes in order to reduce this term into a value the
function traces can be used. This function takes a reduction relation and a term and
shows the reduction graph. The reduction relation defined for AmbientTalk is called
AmbientTalk-Red.

(traces AmbientTalk-Red
(term
((actor id () ()
(let (x (+ 3 2))
in

x)))))

Figure A.4: Tracing the execution of an AmbientTalk program

Evaluating this code results in the following reduction graph.

{{actor
id { (actor
() id .
) { lactor
0 [:
(let (= -
PR ()
{ {let (x
5) ()
2)) in >))
in ®x)))
®) 1)

Figure A.5: Plt-Redex Reduction graph.

A.2 Syntactic Sugar

Some expression of AmbientTalk are syntactic sugar for more basic expressions. For
example, lambda expressions are transformed into objects with an apply method. Ap-
plying a lambda expression to a value is consequently transformed into invoking the
apply method of the object. This syntax expansion is modeled in the PLT-Redex se-
mantics by the function expand-syntax. As an example consider the application of a
function r to the value p, i.e. r(p).

A.3. ADVANCED EXAMPLE OF THE PLT-REDEX SEMANTICS 173

In order to use the syntactic sugar as defined in the paper make sure to apply the
function expand-syntax to the evaluating term.

(expand-syntax (term ((actor id () () (r(p))))))
;evaluates to
((actor id () () ((r $ apply) p)))

Figure A.6: Syntactic sugar

A.3 Advanced Example of the PLT-Redex Semantics

In this section we show that the semantics models the creation of actors, isolates, asyn-
chronous message sends with futures and registering code blocks that are triggered
when a future resolves to a value. More concretely, first a new actor is created with a
method foo, then a isolate is created and a future message is send to the newly created
actor. When the actor receives this isolate it takes the myfield field of the isolate and
returns the double. Finally, when the future resolves, the value 24 is added to the result
and printed. The AmbientTalk code for this example is shown in Figure

import /.at.lang.futures;
enableFutures(true);

def newactor := actor: {
def x := 2;
def foo(isolate) {
isolate.myfield + isolate.myfield;
}
}

def newisolate := isolate: {
def myfield := 9;
}

when: newactor<-foo(newisolate) becomes: { |x|
system.println(x + 24);

’

Figure A.7: AmbientTalk, sending an asynchronous message

Again we need to translate this example to s-expressions in order to be able to run
the AmbientTalk PLT-Redex semantics as shown in Figure[A.§]

(let (new-actor
(actor
(field x 2)
(method foo x (+ (x $ my-field) (x $ my-field)))))
in
(let (new-isolate (isolate (field my-field 9)))
in
(when (sendf new-actor foo new-isolate) x (+ x 24))))

Figure A.8: Plt-Redex: sending an asynchronous message

Evaluating this expression with the trace functionality of PLT-Redex results in the
following reduction graph. Note that after sending the asynchronous message the re-

174APPENDIX A. COMMUNICATING EVENT LOOP CALCULUS IN PLT-REDEX

duction graph splits up. This exemplifies the non-deterministic nature of AmbientTalk
when more than one actor is active at the same time. As our example involves only two
actors and one message all these interleaving eventually merge together into a single
solution. This can be seen in the graph as all solutions merge together at the end. [1_-]

107y
;0pinpll
DDDDDH

Figure A.9: Plt-Redex Reduction graph of an asynchronous message.

A.4 Reduction Rules

The reduction rules as implemented in the PLT-Redex semantics are shown in fig-
ure [A.T0] While we wanted to keep them as close as possible to the reduction rules
shown in the dissertation they are currently differing in the following aspects.

e The PLT-Redex semantics of AmbientTalk only support single argument meth-
ods and lambda’s.

e Initialization of the self variable with lambda expression is currently wrong.

e We currently have two rules for sending asynchronous messages, this is a tech-
nical detail and should be resolved.

o Differentiating between a future message send and a normal asynchronous mes-
sage send is currently clumsy, we plan to write a meta-function to make this more
elegant.

o We make use of the function variable-not-in, it would be more elegant to make
use of the fresh function.

UIn the digital version of this graph, the code in the boxes and the labels on the arrows can be made clear
by zooming in.

A.4. REDUCTION RULES 175

KU/ number, 0)] — [{exzor /) [emor
KI(+ number number:)) —> Ki{@number [Mumber 1] 1
KI(* number number:)] — K[(* number)_number:)] 0
KI(number) number:)] — K{(/ number,_number:) | n
K{(- number; number:)] — K[(= number,|_number:) | [l
KI(seq any, any)] — Kl(let (x, any,) in any:)] [syntax-expansion-seq]
where x, = ((variable-not=in e some-var)
KI(et (x; v In e)] — KIsubstl(x vy e)1l] flet)
KI(actor id objects q El (amecl/)] — Kactor id Ullobjects. (new-object)] ¢ Elfield-assignersi[(f ... reference. reference]]])] [new-object]

where io,., = {(variable-
(actor id ul)/cuv L El(object/—..m .)])
id)

KI(actor id abjects g El(isolate. /
whee io,.. = (varizble-no
(actor id nl)/alv q Fitisolate .
id)
Kactor id, — Kactor id,
(obj-c (obj-entity
{ODjoct i anY 1 .. (MEINOT 10 2) . (MENOE o .) (MEAROC 1 1.,) {oblect i any e (MEMNOT s s @) ... (MEANOT s X) (MEANOT s Lo)
objrentity, ...) objeentity, .

ref id io,...). new-object = (object ia,., obj initialise-fields([(...».)] m

m ...)])] — Kactor id Ullobjects. (new-object) | ¢ E[field-assigners([(/ ...). reference. reference]])] [new-isolate]
reference = (ref id io,..). new-object = (object io,.., iso initialise-fields[[(f ...). ()] m

[invoke]

q q
E[(((ref id, id,) $ x0) VD] E[subst[(this (ref id, id.) Subst (x, v)IDT)]

Kacor id, > Kactor id,
(obj-entitya .. (Object id: any (field x; vi) .. (field x; vi) (fleld x. v.) ... m ..) obj-entiry, ... (obj-entitys .. (Object id: any (field x; vi) ... (field x, v.) (f1eld x. v.) ... m ...) obj-entity,

q q
E[((ref id, idz) $ x))] ElvD)]

Kactor id, — Kaclor id, [field-update]
(obj-entitys .. (Object id: 1 (fleld x, vi) ... (fleld 1 v) (f1€ld x. v) ... m ...) obj-entiry .. (obj-entitys .. (Object id: (field x, vi) ... (fleld 1, v2) (fleld x, v.)) objeenity, ...

q q
E[(sett ((ref id) id:) $) v:)])] E:D]

KICactor id, objects q E[(et () future In o)])] — Ki(actor id, [make-fuure]
Uil Ullobjects. ((fut i, nuID)IL. ((res i, i)l

[field-access]

q
E[SUDSH[(x; (ref id, i) Subst[(x- (ref éd, i))DIDI
where iy i, fres
Kactor id, — Kactor id,
objects abjects
q Ull((message (ref id, i
EN(SeNd (ref id, iduy) Xownore Ov) D] EInull]
Hactor id, — Kactor id,
(obj-entity, ... (ODIEOL id, 1 .o m .) abj-cniity, ... (abj-entity,
(380 - (MESSAGE (161 e,) Xy (1)) (M3
vl processil(ref id. id.). xean. (v
Kactor id, — Kactor id,
(r€s id, id) obj-eniity, ..y (abj-entity,
message (1ef id; id,) snm (v2

[locakasynchronous-send]

o)) qll

[process-message]

)
g
=
:_

<) abj-entity, ...)
1

[process-message-resolve]

1S id, id;) obj-entity,

SI(ref id, id). o, (v

id, i, [process-message-to-future]
(objeentity, ... (UL id, (msgy, ...) Vi) obj-entity,, (abj-entity,

MeSSage (1ef ids i) v (v,

(fut id, Ul (s .

messagell v,.) obj-entity,

(L .
el
where message = (£izrst storellunam, (Vs ..), vull), € = (Second StOre(lxmamo, (Varss «e.), vell)
Kactor id, — Kactor id, [resolve]
(obj-entitys ... (WUt idy gu NN (1€S id, id) obj-cniiry, ... (obj-entitys ... (UL idy () v) (1eS id, id) obj-eniry. ...)
Gorar
E[(((ref id, id,) $ resolve-mu))] Etwall(ref id, id), q,.]1])]
((actor id, objects, q, any,) ... > ((&Ctor id, objects., g, any,) .. [new-actor]
(actor id, objects. q. E[(actor f ... m ...)]) (actor id, nl)/ulv,q, [(el e idl,)])
{actor i object, 4, amy)) (BGHO i, ((ODJEG id, OD f ... m ..)) () null)

(actor id, objects, ‘,, any)
Where idy, id,

((@ctor id, objects, go any, > ((actor id, objects, g, any, {asynchronous-send-d]
(actor id. (obj-entiny . y‘,,, EN(SeNd (e i idisa) Yoo (s vz) (actor i, (obj-eniy.; ..)q,, “Elnuil)
(actor id, objects; q, any,) .. (actor id, uh,mr,) an

(BCIOT i objects.. g anye:) (actor id,; U[[p:
5

ass-0iates, ohjects]| U (new-message), q.] an)
(actor id, objects, qn anys))

(actor id, objects, q. any,) .
. ()l p = sigmal (fresh-id .11
pass-value = (£irst Sigma-Vil(v.). (). idu. id.:, reachable-isolates. (fresh-id ...} new-message = (Message (ref id: idusz) tuue (PASSValUE v: ...)). (freshrid...) fresh

where

((actor id; objeciss gs any, > ((actor id, objects; 4s any) .. {asynchronous-send-u]
(@CIOF id,; olrjects,: o anys:) (actor id,: Ullpass-i |sma|as nb,am.ll Ull{new-message). g.:Il any.:)

(actor id, objects; q, any,) (actor id; objects, q; any

(actor idy (obj-entityur . D E[(sena (1€ e idotys) Xoosce (vr v2 .)]) (BCIOF i (oby-entity. -)q,, Emuun

(actor id, objects, gn any (actor id, objecis, 4. an
where =sigm: reshi

). (el i lI
pass-value = (£izst sigma-Vi(v.). () m,,, fd.. eachable-isolates, (freshid ..)[]) NeW-MEsSage = (MESSAge (Tef i idv.) vmser (PASSValUE v: ..), (ITesh-id..) fresh

Figure A.10: Plt-Redex reduction rules for the AmbientTalk language.

176 APPENDIX A. COMMUNICATING EVENT LOOP CALCULUS IN PLT-REDEX

Bibliography

[ABZ10]

[ADB199]

[Agh86]

[AVWWO06]

[BBCT06]

[BCO6]

[Ben86]

[BJPWI9]

[BKA11]

[BMO6]

Lucia Acciai, Michele Boreale, and Gianluigi Zavattaro. Behavioural
contracts with request-response operations. In Proceedings of the 12th
international conference on Coordination Models and Languages, CO-
ORDINATION’ 10, pages 16-30, Berlin, Heidelberg, 2010. Springer-
Verlag.

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In HUC '99: Proceedings of the Ist international
symposium on Handheld and Ubiquitous Computing, pages 304-307,
London, UK, 1999. Springer-Verlag.

Gul Agha. Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams.
Concurrent Programming in ERLANG. Prentice Hall, 1996.

Laurent Baduel, Francoise Baude, Denis Caromel, Arnaud Contes, Fab-
rice Huet, Matthieu Morel, and Romain Quilici. Grid Computing: Soft-
ware Environments and Tools, chapter Programming, Deploying, Com-
posing, for the Grid. Springer-Verlag, January 2006.

Paolo Bellavista and Antonio Corradi. The Handbook of Mobile Mid-
dleware. Auerbach Publications, Boston, MA, USA, 2006.

Jon Bentley. Programming pearls: little languages. Commun. ACM,
29(8):711-721, August 1986.

Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeau, and Damien
Watkins. Making Components Contract Aware. Computer, 32(7):38—
45, July 1999.

Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical study
of object protocols in the wild. In Proceedings of the 25th European
Conference on Object-oriented Programming (ECOOP 2011), pages 2—
26. Springer-Verlag, July 2011.

Matthias Blume and David McAllester. Sound and complete models
of contracts. Journal of Functional Programming., 16:375-414, July
2006.

177

178

[BRLM11]

[Bro87]

[BUO4]

[CCTT]

[CCDC109]

[CDY6]

[CDDS9%4]

[CGPO8]

[CHO5]

[CHYO07]

[Cla77]

BIBLIOGRAPHY

Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, and Sean
Mooney. Translucid contracts: expressive specification and modu-
lar verification for aspect-oriented interfaces. In Proceedings of the

tenth international conference on Aspect-oriented software develop-
ment, AOSD ’11, pages 141-152, 2011.

Frederick P. Brooks, Jr. No Silver Bullet: Essence and Accidents of
Software Engineering. IEEE Computer, 20(4):10-19, April 1987.

Gilad Bracha and David Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In Proceed-
ings of the 19th annual Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 331-343, 2004.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL *77, pages
238-252, New York, NY, USA, 1977. ACM.

Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia
Drossopoulou, and Elena Giachino. Amalgamating Sessions and Meth-
ods in Object Oriented Languages with Generics. Theoretical Computer
Science, 410:142-167, 2009.

Michael J. Carey and David J. DeWitt. Of objects and databases: A
decade of turmoil. In Proceedings of the 22th International Conference
on Very Large Data Bases, VLDB 96, pages 3—14, San Francisco, CA,
USA, 1996. Morgan Kaufmann Publishers Inc.

Wim Codenie, Koen D’Hont, Theo D’Hondt, and Patrick Steyaert.
Agora: Message passing as a foundation for exploring OO language
concepts. SIGPLAN Notices, 29(12):48-57, 1994.

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory
of contracts for web services. In Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’08, pages 261-272, New York, NY, USA, 2008.
ACM.

Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming: an overview of ContextL. In DLS 05,
pages 1-10, New York, NY, USA, 2005. ACM.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. A calculus of
global interaction based on session types. Electron. Notes Theor. Com-
put. Sci., 171(3):127-151, June 2007.

Edmund Melson Clarke, Jr. Programming language constructs for
which it is impossible to obtain good hoare-like axiom systems. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages, POPL °77, pages 10-20, New York,
NY, USA, 1977. ACM.

BIBLIOGRAPHY 179

[CMRO3]

[Coml1]

[CP09]

[CRO6]

[DCGDY07]

[DCMYDO06]

[DDCCO07]

[Ded06]

[DF11]

[DFFF11]

[DFEM11]

Olaf Chitil, Dan McNeill, and Colin Runciman. Lazy assertions. In Im-
plementation of Functional Languages, 15th International Workshop,
IFL 2003, volume 3145 of Lecture Notes in Computer Science, pages
1-19. Springer, 2003.

Th. Sc. Community. Towards Social-ICT Organisms. In Perva-
sive Adaptation. The Next Generation Pervasive Computing Research
Agenda. Institute for Pervasive Computing, Johannes Kepler University
Linz, Austria, May 2011.

Giuseppe Castagna and Luca Padovani. Contracts for mobile processes.
In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR 2009 -
Concurrency Theory, volume 5710 of Lecture Notes in Computer Sci-
ence, pages 211-228. Springer Berlin Heidelberg, 2009.

Lori A. Clarke and David S. Rosenblum. A historical perspective on
runtime assertion checking in software development. SIGSOFT Sofiw.
Eng. Notes, 31(3):25-37, May 2006.

Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia
Drossopoulou, and Nobuko Yoshida. Bounded session types for
object oriented languages. In Proceedings of the 5th international
conference on Formal methods for components and objects, FMCQO’ 06,
pages 207-245, Berlin, Heidelberg, 2007. Springer-Verlag.

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida,
and Sophia Drossopoulou. Session types for object-oriented languages.
In Proceedings of the 20th European conference on Object-Oriented
Programming, ECOOP’06, pages 328-352, Berlin, Heidelberg, 2006.
Springer-Verlag.

Sophia Drossopoulou, Dezani Dezani-Ciancaglini, and Mario Coppo.
Amalgamating the Session Types and the Object-Oriented Program-
ming Paradigms. In Multiparadigm Programming with Object-Oriented
Languages 2007 (an ECOOP workshop), August 2007.

Jessie Dedecker. Ambient-Oriented Programming. PhD thesis, Faculteit
Van Wetenschappen, Programming Technology Lab, Vrije Universiteit
Brussel, May 2006.

Christos Dimoulas and Matthias Felleisen. On Contract Satisfaction in
a Higher-Order World. ACM Transactions on Programming Languages
and Systems (TOPLAS), 33(5):16:1-16:29, November 2011.

Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. Correct blame for contracts: no more scapegoat-
ing. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), volume 46,
pages 215-226, New York, NY, USA, January 2011. ACM.

Tim Disney, Cormac Flanagan, and Jay McCarthy. Temporal higher-
order contracts. In International Conference on Functional Program-
ming, pages 176-188, 2011.

180

[DGM07]

[DH98]

[DJ83]

[DJLSO08]

[DSAO1]

[DTKO6]

[DVMT05]

[ENOS2]

[FBO6]

[FBTO06]

[FFO1]

[FFO2]

BIBLIOGRAPHY

Jessie Dedecker, Elisa Gonzalez Boix, Stijn Mostinckx, Stijn Tim-
bermont, Jorge Vallejos, and Tom Van Cutsem. The Ambienttalk/2
Tutorial, 2007. http://soft.vub.ac.be/amop/at/tutorial/
tutorial.

Andrew Duncan and Urs Hoelzle. Adding contracts to Java with Hand-
Shake. Technical Report TRCS98-32, University of California at Santa
Barbara, Santa Barbara, CA, USA, 1998.

Werner Damm and Bernhard Josko. A sound and relatively complete
hoare-logic for a language with higher type procedures. Acta Informat-
ica, 20:59-101, 1983.

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky. Reason-
ing about conditions and exceptions to laws in regulatory conformance
checking. In Proceedings of the 9th international conference on Deon-
tic Logic in Computer Science, DEON 08, pages 110-124. Springer-
Verlag, 2008.

A. K. Dey, D. Salber, and G. D. Abowd. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applica-
tions. Human-Computer Interaction, 16(2):97-166, December 2001.

Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi. Se-
mantics and scoping of aspects in higher-order languages. Sci. Comput.
Program., 63(3):207-239, December 2006.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Wolfgang De
Meuter, and Theo D’Hondt. Ambienttalk : A small reflective kernel
for programming mobile network applications. Technical report, Vrije
Universiteit Brussel, 2005.

George W. Ernst, Jainendra K. Navlakha, and William F. Ogden. Verifi-
cation of programs with procedure-type parameters. Acta Informatica,
18:149-169, 1982.

Robert Findler and Matthias Blume. Contracts as pairs of projections.
Functional and Logic Programming, 3945:226-241, 2006.

Yishai A. Feldman, Ohad Barzilay, and Shmuel Tyszberowicz. Jose:
Aspects for design by contract. I[EEE International Conference on Soft-
ware Engineering and Formal Methods, pages 80—89, 2006.

Robert Bruce Findler and Matthias Felleisen. Contract soundness for
object-oriented languages. In Proceedings of the 16th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, OOPSLA °01, pages 1-15, New York, NY, USA, 2001.
ACM.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order
functions. In Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, ICFP 02, pages 48-59, 2002.

http://soft.vub.ac.be/amop/at/tutorial/tutorial
http://soft.vub.ac.be/amop/at/tutorial/tutorial

BIBLIOGRAPHY 181

[FFF04]

[FFF09]

[FGO9]

[FH92]

[FHRRO4]

[FII00]

[FK99]

[FL11]

[Fla06]

[FLFO1]

[GBLCS™11]

Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. Seman-
tic casts: Contracts and structural subtyping in a nominal world. In
ECOOP’04, volume 3086 of Lecture Notes in Computer Science, pages
364-388. Springer, June 2004.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. The MIT Press, 1st edition, 2009.

Lidia Fuentes and Nadia Gdmez. Modeling the context-awareness ser-
vice in an aspect-oriented middleware for Aml. 3rd Symposium of
Ubiquitous Computing and Ambient Intelligence 2008, pages 159-167,
2009.

Matthias Felleisen and Robert Hieb. The revised report on the syn-
tactic theories of sequential control and state. Theor. Comput. Sci.,
103(2):235-271, 1992.

Cédric Fournet, Tony Hoare, SriramK. Rajamani, and Jakob Rehof.
Stuck-free conformance. In Rajeev Alur and DoronA. Peled, editors,
Computer Aided Verification, volume 3114 of Lecture Notes in Com-
puter Science, pages 242-254. Springer Berlin Heidelberg, 2004.

Clemens Fischer, Fachbereich Informatik, and Des Fachbereichs Infor-
matik. Combination and Implementation of Processes and Data: from
CSP-OZ to Java, 2000.

Svend Frglund and Jari Koistinen. Quality of service aware distributed
object systems. In Proceedings of the 5th conference on USENIX Con-
ference on Object-Oriented Technologies & Systems - Volume 5, pages
69-83, Berkeley, CA, USA, 1999. USENIX Association.

Manuel Fihndrich and Francesco Logozzo. Static contract check-
ing with abstract interpretation. In Proceedings of the 2010 interna-
tional conference on Formal verification of object-oriented software,
FoVeOOS’ 10, pages 10-30, Berlin, Heidelberg, 2011. Springer-Verlag.

Cormac Flanagan. Hybrid type checking. SIGPLAN Not., 41(1):245-
256, January 2006.

Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. Be-
havioral contracts and behavioral subtyping. In Proceedings of the Sth
European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engi-
neering, ESEC/FSE-9, pages 229-236, New York, NY, USA, 2001.
ACM.

E. Gonzalez Boix, A. Lombide Carreton, C. Scholliers, T. Van Cutsem,
W. De Meuter, and T. D’Hondt. Flocks: Enabling Dynamic Group
Interactions in Mobile Social Networking Applications. In Proceedings
of the 2011 ACM Symposium on Applied Computing (SAC), Taichung,
Taiwan, March 21-25, 2011, volume 1, pages 425-432. ACM, 2011.

182

[GF99]

[GHIV95]

[GMFKO07]

[GPW10]

[GR&89]

[GSL*10]

[GVR10]

[HBG01]

[HBT12]

[HCNO§]

[HHO4]

[HHG90]

BIBLIOGRAPHY

R. Guerraoui and M. E. Fayad. OO Distributed Programming is
Not Distributed OO Programming. Communications of the ACM,
42(4):101-104, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krish-
namurthi. Relationally-parametric polymorphic contracts. In Proceed-
ings of the 2007 symposium on Dynamic languages, DLS *07, pages
29-40, New York, NY, USA, 2007. ACM.

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Con-
tracts made manifest. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL *10, pages 353-364, 2010.

Adele Goldberg and David Robson. Smalltalk-80: The Language.
Addison-Wesley Longman Publishing Co., Inc., 1989.

Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Scripting
mobile devices with ambienttalk. pages 202-224. IGI Global, 2010.

Simon J. Gay, Vasco T. Vasconcelos, Anténio Ravara, Nils Gesbert, and
Alexandre Z. Caldeira. Modular session types for distributed object-
oriented programming. In Proceedings of the 37th symposium on Prin-
ciples of programming languages, POPL ’10, pages 299-312, New
York, NY, USA, 2010. ACM.

Franz J. Hauck, Ulrich Becker, Martin Geier, Erich Meier, Uwe
Rastofer, and Martin Steckermeier. Aspectix: A quality-aware, object-
based middleware architecture. In Proceedings of the IFIP TC6 / WG6. 1
Third International Working Conference on New Developments in Dis-
tributed Applications and Interoperable Systems, pages 115-120, 2001.

Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access per-
mission contracts for scripting languages. SIGPLAN Not., 47(1):111-
122, January 2012.

Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3):125-151,
March-April 2008.

Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In Proceed-
ings of the 3rd international conference on Aspect-oriented software de-
velopment, AOSD 04, pages 26-35, New York, NY, USA, 2004. ACM.

Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
specifying behavioral compositions in object-oriented systems. In Pro-
ceedings of the European conference on object-oriented programming
on Object-oriented programming systems, languages, and applications,
OOPSLA/ECOOP ’90, pages 169-180, New York, NY, USA, 1990.
ACM.

BIBLIOGRAPHY 183

[HILO6]

[HOO06]

[HOO07]

[Hoa72]

[Hol]

[Hol92]

[KCRIS]

[KHB99]

[KLM*97]

[LCCT05]

[Lie86]

Ralf Hinze, Johan Jeuring, and Andres Loh. Typed contracts for func-
tional programming. In FLOPS, volume 3945 of Lecture Notes in Com-
puter Science, pages 208-225. Springer, 2006.

Philipp Haller and Martin Odersky. Event-based programming with-
out inversion of control. In Proc. Joint Modular Languages Confer-
ence, volume 4228 of Lecture Notes in Computer Science, pages 4-22.
Springer, 2006.

Philipp Haller and Martin Odersky. Actors that unify threads and
events. In Proc. of the 9th inter. conf. on Coordination models and
languages, COORDINATION’07, pages 171-190, Berlin, Heidelberg,
2007. Springer-Verlag.

C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1:271-281, 1972.

Bernhard Hollunder. Interface contracts for wcf services with code con-
tracts. International Journal On Advances in Software, 4:275-285.

Tan M. Holland. Specifying reusable components using contracts. In
European Conference on Object-Oriented Programming (ECOOP’92),
volume 615 of Lecture Notes in Computer Science, pages 287-308,
Berlin, Heidelberg, 1992. Springer-Verlag.

R. Kelsey, W. Clinger, and J. Rees. Revised® report on the algorith-
mic language scheme. Higher-Order and Symbolic Computation, Vol.
11, No. 1, August, 1998 and ACM SIGPLAN Notices, Vol. 33, No. 9,
September, 1998, 1998.

Murat Karaorman, Urs Holzle, and John L. Bruno. jContractor: A re-
flective Java library to support design by contract. In Proceedings of the
Second International Conference on Meta-Level Architectures and Re-
flection, Reflection *99, pages 175-196, London, UK, 1999. Springer-
Verlag.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Aksit and Satoshi Matsuoka, edi-
tors, Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP 97), volume 1241 of Lecture Notes in Com-
puter Science, pages 220-242, Jyvaskyld, Finland, June 1997. Springer-
Verlag.

Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both runtime
assertion checking and formal verification. Sci. Comput. Program.,
55:185-208, March 2005.

Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In Conference proceedings on

Object-oriented Programming Systems, Languages and Applications
(OOPSLA), pages 214-223. ACM Press, 1986.

184

[LKPO2]

[LN99]

[Lom11]

[LSAS77]

[LW94]

[Mey88]

[Mey91]

[Mey92]

[Mey00]

[Mil82]

[Mil99]

[Mil06]

[MKDO3]

[MMO09]

[MSP*07]

BIBLIOGRAPHY

Martin Lackner, Andreas Krall, and Franz Puntigam. Supporting design
by contract in Java. Journal of Object Technology, 1(3):57-76, 2002.

Baochun Li and Klara Nahrstedt. A control-based middleware frame-
work for quality of service adaptations. IEEE Journal on Selected Areas
in Communications, 17:1632-1650, 1999.

Andoni Lombide Carreton. Ambient-Oriented Dataflow Programming
for Mobile RFID-Enabled Applications. PhD thesis, Vrije Universiteit
Brussel, Faculty of Sciences, Software Languages Lab, October 2011.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert.
Abstraction mechanisms in CLU. Commun. ACM, 20:564-576, August
1977.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of sub-
typing. ACM Trans. Program. Lang. Syst., 16(6):1811-1841, November
1994.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

B. Meyer. Eiffel : The Language. Prentice Hall Object-Oriented Series,
1991.

Bertrand Meyer. Applying Design by Contract. Computer, 25(10):40—
51, October 1992.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
March 2000.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

Robin Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1st edition, June 1999.

M. Miller. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. PhD thesis, John Hopkins Univer-
sity, Baltimore, Maryland, USA, May 2006.

H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and opti-
mization model for aspect-oriented programs. In Proceedings of the
12th international conference on Compiler construction, CC’03, pages
46-60, Berlin, Heidelberg, 2003. Springer-Verlag.

Daniel Marino and Todd Millstein. A generic type-and-effect system.
In Proceedings of the 4th international workshop on Types in language
design and implementation, TLDI ’09, pages 39-50, New York, NY,
USA, 2009. ACM.

Stijn Mostinckx, Christophe Scholliers, Eline Philips, Charlotte
Herzeel, and Wolfgang De Meuter. Fact spaces: Coordination in the
face of disconnection. In Proceedings of 9th International Conference
on Coordination Models and Languages, volume 4467 of Lecture Notes

BIBLIOGRAPHY 185

[MTSO05]

[MYO07]

[NMOO09]

[Ric53]

[RM09]

[RSAT12]

[Sar93]

[SBMD10]

[SFO4]

[SF10]

[SGDO09]

in Computer Science, pages 268-285, Heidelberg, June 2007. Springer-
Verlag.

M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers:
Programming in E as plan coordination. In Symposium on Trustworthy
Global Computing, volume 3705 of LNCS, pages 195-229. Springer,
April 2005.

Dimitris Mostrous and Nobuko Yoshida. Two session typing systems
for higher-order mobile processes. In Proceedings of the 8th interna-
tional conference on Typed lambda calculi and applications, TLCA 07,
pages 321-335, Berlin, Heidelberg, 2007. Springer-Verlag.

Piotr Nienaltowski, Bertrand Meyer, and Jonathan S. Ostroff. Contracts
for concurrency. Form. Asp. Comput., 21(4):305-318, July 2009.

H. G. Rice. Classes of Recursively Enumerable Sets and Their Deci-
sion Problems. Transactions of the American Mathematical Society,
74(2):358-366, 1953.

Kay Romer and Junyan Ma. Pda: Passive distributed assertions for
sensor networks. In Proceedings of the 2009 International Conference
on Information Processing in Sensor Networks, IPSN ’09, pages 337—
348, Washington, DC, USA, April 2009. IEEE Computer Society.

Coen De Roover, Christophe Scholliers, Wouter Amerijckx, Theo
D’Hondt, and Wolfgang De Meuter. CrimeSPOT: a language and run-
time for developing active wireless sensor network applications. Sci-
ence of Computer Programming, 2012.

Vijay A. Saraswat. Concurrent constraint programming. MIT Press,
Cambridge, MA, USA, 1993.

Christophe Scholliers, Elisa Gonzalez Boix, Wolfgang De Meuter, and
Theo D’Hondt. Context-aware tuples for the ambient. In Proceedings of
the 12th International Symposium on Distributed Objects, Middleware,
and Applications, pages 745-763. Springer, 2010.

Neelam Soundarajan and Stephen Fridella. Incremental reasoning for
object oriented systems. In Olaf Owe, Stein Krogdahl, and Tom Lyche,
editors, From Object-Orientation to Formal Methods, volume 2635 of
Lecture Notes in Computer Science, pages 302-333. Springer Berlin /
Heidelberg, 2004.

T. Stephen Strickland and Matthias Felleisen. Contracts for First-Class
Classes. In Proceedings of the 6th symposium on Dynamic languages
(DLS), pages 97-112, 2010.

Christophe Scholliers, Elisa Gonzalez Boix, and Wolfgang De Meuter.
Totam: Scoped tuples for the ambient. In Proc. of the CAMPUS Work-
shop collocated with DisCoTec’09 federated event, volume 19, pages
19-34. EASST, 2009.

186

[SHSDM11]

[SHT*11]

[SLO4]

[SLNO7]

[SMO8]

[SNST11]

[SPH10]

[Sti04]

[STM11]

[SYS86]

[Sza02]

BIBLIOGRAPHY

Christophe Scholliers, Lode Hoste, Beat Signer, and Wolfgang
De Meuter. Midas: a declarative multi-touch interaction framework.
In Proceedings of the fifth international conference on Tangible, em-
bedded, and embodied interaction, TEI *11, pages 49-56, New York,
NY, USA, 2011. ACM.

Christophe Scholliers, Dries Harnie, Eric Tanter, Wolfgang De Meuter,
and Theo D’Hondt. Ambient Contracts: Verifying and Enforcing Am-
bient Object Compositions 4 La Carte. Personal Ubiquitous Computing,
15(4):341-351, April 2011.

Therapon Skotiniotis and David H. Lorenz. Cona: aspects for contracts
and contracts for aspects. In Companion to the 19th annual ACM SIG-
PLAN conference on Object-oriented programming systems, languages,
and applications, OOPSLA °04, pages 196-197, New York, NY, USA,
2004. ACM.

Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular
verification of higher-order methods with mandatory calls specified by
model programs. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications,
OOPSLA ’07, pages 351-368, New York, NY, USA, 2007. ACM.

Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors
for java. In Proceedings of the 22nd European conference on Object-
Oriented Programming (ECOOP’08), volume 5142 of Lecture Notes in
Computer Science, pages 104-128, Berlin, Heidelberg, 2008. Springer.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Eric
Tanter. First-class state change in plaid. In Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications., pages 713-732, 2011.

Jan Schifer and Arnd Poetzsch-Heffter. Jcobox: generalizing active
objects to concurrent components. In Proceedings of the 24th European
conference on Object-oriented programming, ECOOP’ 10, pages 275—
299, Berlin, Heidelberg, 2010. Springer-Verlag.

Marc Stiegler. The E language in a walnut.
www.skyhunter.com/marcs/ewalnut.html, 2004.

Christophe Scholliers, Eric Tanter, and Wolfgang De Meuter. Compu-
tational contracts. In Proceedings of the 2011 Workshop on Scheme and
Functional Programming, Portland, Oregon, October 2011.

R E Strom and S Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157-
171, January 1986.

V. Szathmary. Barter - beyond design by contract.
http://barter.sourceforge.net/, 2002.

BIBLIOGRAPHY 187

[Tan08]

[Tan10a]

[Tan10b]
[TFD*10]

[TGDBO06]

[THVHI2]

[TS03]

[UBPUO8]

[UPSTOS]

[US87]

[VAO1]

[VanO8]

[VCSHDM]

Eric Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th international conference on Aspect-oriented soft-
ware development, AOSD 08, pages 168—179, New York, NY, USA,
2008. ACM.

Eric Tanter. Execution levels for aspect-oriented programming. In Pro-
ceedings of the 9th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2010), pages 37-48, Rennes and Saint
Malo, France, March 2010. ACM Press.

Eric Tanter. LAScheme. http://pleiad.cl/research/lascheme, 2010.

Eric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario
Siidholt. Scoping strategies for distributed aspects. Sci. Comput. Pro-
gram., 75(12):1235-1261, December 2010.

Eric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware aspects. volume 4089 of LNCS, pages 227-249. Pro-
ceedings of the 5th International Symposium on Software Composition
(SC 2006), 2006.

Sam Tobin-Hochstadt and David Van Horn. Higher-order symbolic ex-
ecution via contracts. In Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applica-
tions, OOPSLA 12, pages 537-554, New York, NY, USA, 2012. ACM.

Benjamin Tyler and Neelam Soundarajan. Black-box testing of grey-
box behavior. In FATES 03, pages 1-14, 2003.

Aitor Urbieta, Guillermo Barrutieta, Jorge Parra, and Aitor Uribarren.
A survey of dynamic service composition approaches for ambient sys-
tems. In SOMITAS ’08, pages 1-8, ICST, Brussels, Belgium, Belgium,
2008.

Naoyasu Ubayashi, Jinji Piao, Suguru Shinotsuka, and Tetsuo Tamai.
Contract-based verification for aspect-oriented refactoring. In Proceed-
ings of the 2008 International Conference on Software Testing, Verifi-
cation, and Validation, pages 180-189, Washington, DC, USA, 2008.
IEEE Computer Society.

David Ungar and Randall B. Smith. Self: The power of simplicity.
In Conference proceedings on Object-oriented Programming Systems,
Languages and Applications, pages 227-242. ACM Press, 1987.

Carlos Varela and Gul Agha. Programming dynamically reconfigurable
open systems with SALSA. ACM SIGPLAN Notices. OOPSLA’2001,
36(12):20-34, December 2001.

Tom Van Cutsem. Ambient References: Object Designation in Mobile
Ad Hoc Networks. PhD thesis, Vrije Universiteit Brussel, Faculty of
Sciences, Programming Technology Lab, May 2008.

Tom Van Cutsem, Christophe Scholliers, Dries Harnie, and Wolfgang
De Meuter. An Operational Semantics of Event Loop Concurrency in
Ambienttalk. Technical Report VUB-SOFT-TR-12-04.

188

[VMG07]

[WamO06]

[Wei91]

[XPICO09]

[YBS86]

[Yon90]

[ZBS97]

[ZRO3]

BIBLIOGRAPHY

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. Ambienttalk: object-oriented
event-driven programming in mobile ad hoc networks. In Inter. Conf.
of the Chilean Computer Science Society (SCCC), pages 3—12. IEEE
Computer Society, 2007.

Dean Wampler. Contract4] for design by contract in Java: Design
pattern-like protocols and aspect interfaces. Fifth AOSD Workshop on
ACPAIS, 2006.

M. Weiser. The computer for the twenty-first century. Scientific Ameri-
can, pages 94—100, september 1991.

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static con-
tract checking for haskell. In Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL °09, pages 41-52, New York, NY, USA, 2009. ACM.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in ABCL/1. In Conference proceed-
ings on Object-oriented programming systems, languages and applica-
tions, pages 258-268. ACM Press, 1986.

Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent Sys-
tem. Computer Systems Series. MIT Press, 1990.

John A. Zinky, David E. Bakken, and Richard E. Schantz. Architectural
support for quality of service for CORBA objects. Theory and Practice
of Object Systems (TAPOS), 3(1):55-73, 1997.

J. Zhao and M. Rinard. Pipa: A behavioral interface specification
language for Aspect]. In Fundamental Approaches to Software Engi-
neering (FASE 2003), pages 150-165, Berlin, Heidelberg, April 2003.
Springer-Verlag.

	Introduction
	Research Context
	Design by Contract
	Problem Statement
	Research Approach
	Language Oriented Approach
	Runtime Verification

	Contributions
	Supporting Publications
	Dissertation Roadmap
	Summary

	Ambient-Oriented Programming
	Middleware for Ambient-Oriented Programming
	Wireless Network Applications
	Technological Advances
	Integration at the Application Level
	Ambient-Oriented Programming

	Ambient-Oriented Programming in AmbientTalk
	A Prototype-Based Language
	A Concurrent Language
	A Distributed Language

	An Early Preview of AmbientTalk/C
	Ambient Contracts Validation Strategy
	Behavioral Validation: Computational Contracts
	Validation of Event-Driven Applications
	Validation of Distributed Applications
	Ambient Contracts Overview

	Conclusion

	Related Work: Software Verification Techniques
	Categorization of Software Contracts
	Design considerations for AmbientTalk/C
	Conclusion

	Survey of Related Work
	Higher-Order Behavioral Verification Techniques
	Behavioral Contracts for Concurrent and Distributed Systems
	Systems for Synchronization Verification
	QoS Contracts
	Aspect-Oriented Programming and Contracts

	Conclusion

	Communicating Event-Loops: Formal Specification
	AmbientTalk Operational Semantics
	Syntax
	Reduction Rules
	Service Discovery
	Robust time-decoupled message transmission

	Conclusion

	Computational Contracts for Functions
	Higher-Order Contracts in a Nutshell
	First-Order Function Contracts
	Higher-Order Pre/Post Contracts

	Computational Contracts
	Prohibit Contracts
	Ensure Contracts
	Usage Protocols

	Contract Verification and Blame Assignment
	Flat and Higher-Order Pre/Post Contracts
	Aspect Extensions for Computational Contracts
	Verification and Blame Assignment of Computational Contracts
	Computational Contracts: Step by Step Example

	Operational Semantics of Computational Contracts
	CEK Model and Syntax Definition
	Higher-Order Aspect Language
	Computational Contracts

	Discussion
	Identity, Sameness, and Difference
	Who will Guard the Guards?

	Conclusion

	Server Side Ambient Contracts
	Object-Level Contracts
	Flat Object Contracts
	Higher-Order Object Contracts

	Computational Contracts over Objects
	Method-level Computational Contracts
	Computational Contracts for Object Protocols

	Parametrized and Parametric Polymorphic Contracts for Objects
	Parameterized Contracts
	Relationally-Parametric Polymorphic Contract Inference
	Executable Semantics

	Blame Assignment in OO Higher-Order Contracts
	Recursive Higher-Order Object Contacts
	Blame Assignment for Recursive Higher-Order Contracts

	Operational Semantics of Object Contracts
	Future Contracts for Event Loop Concurrency
	Contracts for Futures
	Callbacks and Computational Contracts

	Contract Validation and Blame Assignment in Event Loop Contracts
	Future Type Message Contract: Blame Inversion
	Executable Semantics of Future Contracts
	First-Class Aspect Environments for Validating Callbacks

	Operational Semantics of Higher-Order Event Loop Contracts
	Conclusion

	Client Side Ambient Contracts
	Flat Far Reference Contracts
	Flat Far Reference Contracts in Action
	The lifetime of a Far Reference Contract
	Atomicity
	Flat Far Reference Contracts Overview

	Far Reference Contracts: The Problems
	Running Example
	Coarse-Grained Blocking: Delay all Message Processing
	Fine-Grained Blocking: Delay the Contracted Message
	Contract Decomposition
	Conclusion

	Validation and Blame Assignment of Flat Far Reference Contracts
	Far Reference Contracts Overview
	Flat Far Reference Contracts Implementation

	Higher-Order Far Reference Contracts
	Higher-Order Far Reference Example
	Computational Far Reference Contracts

	Validation and Blame Assignment of Far Reference Contracts
	Computational Message Contracts
	Message Contracts
	Prohibit Message Contract
	Ensure Message Contracts
	Protocol Message Contracts

	Validation of Messages Contracts
	Conclusion

	Ambient Contracts at Work
	UrbiFlock Framework
	Architecture
	Software Specifications in UrbiFlock before AmbientTalk/C

	Contracts over the Graphical User Interface Module
	Experiences

	Contracts over the Application Module
	Experience

	Contracts over the Application IR8U Module
	IR8U Overview
	Contracts
	Experience

	Conclusion

	Conclusion
	Summary and Contributions
	Shortcomings and Future Work
	Conclusion

	Communicating Event Loop Calculus in PLT-Redex
	Basic Example of the PLT-Redex Semantics
	Syntactic Sugar
	Advanced Example of the PLT-Redex Semantics
	Reduction Rules

	Bibliography

