
A Declarative Approach for Engineering
Multimodal Interaction

Lode Hoste

26th June 2015

Jury Members:

• Prof. Dr. Theo D’Hondt (chair)
SOFT DINF, Vrije Universiteit Brussel

• Prof. Dr. Olga De Troyer (secretary)
WISE DINF, Vrije Universiteit Brussel

• Prof. Dr. Beat Signer (promoter)
WISE DINF, Vrije Universiteit Brussel

• Prof. Dr. Wolfgang De Meuter (promoter)
SOFT DINF, Vrije Universiteit Brussel

• Prof. Dr. Bart De Boer
AI DINF, Vrije Universiteit Brussel

• Prof. Dr. Bart Jansen
ETRO, Vrije Universiteit Brussel

• Prof. Dr. Jean Vanderdonckt
Louvain Interaction Laboratory (LiLab), Louvain-la-Neuve, Belgium

• Prof. Dr. Judith Bishop
Director of Computer Science, Microsoft Research, Redmond, USA

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / Fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 9789492312006
NUR 989

All rights reserved. No part of this publication may be repro-
duced or transmitted in any form or by any means, print, photoprint,
microfilm, electronic, mechanical, recording, or otherwise, without the
prior permission from the author.

Alle Rechten voorbehouden. Niets van deze uitgave mag worden
vermenigvuldigd en/of openbaar gemaakt worden door middel van druk,
fotokopie, microfilm, elektronisch of op welke andere wijze ook, zonder
voorafgaande schriftelijke toestemming van de auteur.

Copyright © 2015 Lode Hoste

Abstract

The communication between human and machine is rapidly changing
with the introduction of new commodity hardware, such as Apple’s iPad,
HP’s Sprout, Microsoft’s PixelSense and Kinect. This hardware embeds
novel input sensors to facilitate a more natural user interaction (NUI)
paradigm. The development of NUI applications, where the machine tries
to understand and anticipate the user’s interaction, typically relies on
a continuous monitoring of multiple input channels. The collection of
events, the detection of relevant patterns and the embedding of these
concerns into the application engenders significant challenges because
relevant information is hidden in a continuous stream of events. Moreover,
the implementation of the detection process in imperative programming
languages is excessively difficult.

In this dissertation we present novel programming abstractions to
describe multimodal interaction patterns. Our approach consists of two
major efforts: a programming language and a compatible runtime platform
with an extensible architecture. The first effort consists of a domain-
specific language, called Midas, which allows developers to express their
multimodal tasks in a declarative manner. A declarative programming
style allows the programmer to think about what the fundamental condi-
tions are, instead of analysing how to process input events one by one, as
would be necessary with an imperative language. Midas uses declarative
rules to express multimodal interaction patterns. These conditions rely
on the existence and the spatio-temporal relation of input events that
were obtained from various input modalities. Midas provides adequate
programming abstractions to help developers express these conditions in
a modular and composable manner.

Midas programs are interpreted by Mudra, an efficient multimodal
interaction architecture and processing engine. Mudra is centred on a
global information storage, called the fact base, which is populated by
multimodal input events from various devices. As these events arrive in a

i

continuous manner, rules and other processes actively react to changes in
the fact base. In order to do this efficiently, Mudra progressively filters
and combines facts in order to derive a conclusion. Our high-level Midas
programming language and its efficient Mudra runtime platform allows
developers to fuse information across the data-level, feature-level and
decision-level.

We have successfully deployed our solution in the real world, includ-
ing live programming sessions and live music performances. Using the
programming abstractions presented in this dissertation, we foresee the
rapid prototyping of a whole range of novel natural user interfaces in a
modular and composable manner.

“Knowledge not shared, is wasted.” - Clan Jacobs.

Samenvatting

Innovatieve apparaten zoals Apple’s iPad, HP’s Sprout, Microsofts Pixel-
Sense en Kinect bieden nieuwe manieren om te interageren met computers
ten opzichte van de klassieke toetsenbord- en muisopstelling. Deze hard-
ware bevat een groot assortiment van sensoren om een meer natuurlijke
interactie (NI) met de gebruiker te bekomen. NI toepassingen worden
gekenmerkt door het begrijpen van en anticiperen op de interactie van de
gebruiker en vertrouwt typisch op een voortdurende analyse van meerdere
invoermodaliteiten. Het verzamelen van gebeurtenissen, de detectie van
relevante patronen en de inbedding van deze interpretatie in toepassingen
brengt echter grote uitdagingen met zich mee, omdat de relevante inform-
atie verborgen zit in een continue stroom van gebeurtenissen. Bovendien
is het programmeren van deze analyse in imperatieve programmeertalen
buitengewoon complex.

In dit proefschrift introduceren we nieuwe programmeer abstracties om
multimodale interactiepatronen eenvoudig te beschrijven. Onze aanpak be-
staat uit twee grote inspanningen: een programmeertaal en een bijhorend
uitvoerplatform met een uitbreidbare architectuur. Ten eerste introdu-
ceren we een nieuwe domein-specifieke taal, genaamd Midas, waarmee
ontwikkelaars multimodale interactiepatronen kunnen uitdrukken op een
declaratieve manier. Het gebruik van een declaratieve programmeerstijl
laat de programmeur toe om te denken over wat basisvoorwaarden van
de interactie zijn, in plaats van hoe gebeurtenissen één voor één moeten
worden afgehandeld, zoals noodzakelijk is met imperatieve programmeer-
talen. Midas maakt gebruik van declaratieve regels om multimodale
interactiepatronen uit te drukken. Regels bevatten voorwaarden die
uitgedrukt worden aan de hand van tijd en ruimtelijke relaties tussen
gebeurtenissen die verkregen werden uit verschillende invoer modaliteiten.
Midas biedt de nodige programmeer abstracties om deze voorwaarden uit
te drukken op een modulaire en compositionele manier.

iii

Midas programma’s worden gëınterpreteerd door Mudra, een efficiënte
multimodale interactie architectuur en uitvoermachine. Centraal in Mudra
staat een feitenbank die multimodale invoergebeurtenissen bevat. Bij elke
wijziging in deze feitenbank zal de uitvoermachine elke regel aftoetsen.
Om de nodige efficiëntie te bekomen, gebruikt Mudra een incrementeel
algoritme waarbij de combinatie tussen feiten in een tijdelijke opslag
wordt bijgehouden. De combinatie van onze hoog-niveau Midas program-
meertaal en de efficiënte Mudra architectuur stelt ontwikkelaars in staat
om informatie over data-, feature- en besluitvormingsniveau te fusioneren.

We hebben met succes onze oplossing toegepast in de echte wereld,
onder andere voor live programmeer sessies en live muziek optredens. Met
behulp van de programmeer abstracties gepresenteerd in dit proefschrift,
kan men snel prototypes ontwikkelen die modulair kunnen worden opge-
bouwd waardoor er een hele reeks van nieuwe applicaties met natuurlijke
interactie mogelijk wordt.

Table of Contents

1 Introduction 1

1.1 Research Context . 3

1.2 Research Goals . 5

1.3 Methodology . 7

1.3.1 Language-oriented Approach 7

1.3.2 Architecture and Execution Engine 8

1.3.3 Towards a Solution 9

1.4 Contributions . 10

1.5 Supporting Publications and Demonstrators 11

1.5.1 Publications . 11

1.5.2 Demonstrators 15

1.6 Dissertation Outline . 16

2 Multimodal Interaction 19

2.1 Multimodal Concerns . 19

2.2 Multimodal Fusion Levels 21

2.2.1 Data-Level Fusion 21

2.2.2 Feature-Level Fusion 22

2.2.3 Decision-Level Fusion 22

2.3 Criteria for Expressing Multi-Level Multimodal Fusion . 23

2.3.1 Language Features 24

2.3.2 Multimodal Processing Concerns 26

2.3.3 Multimodal Disambiguation 32

2.3.4 Accessibility and Tooling 35

v

vi TABLE OF CONTENTS

2.4 Conclusion . 36

3 Related Work 39

3.1 Data Streams and Semantic Inferencing 39

3.1.1 Data Stream-oriented Solutions 40

3.1.2 Semantic Inferencing Solutions 40

3.1.3 Irreconcilable Approaches? 43

3.2 Positioning of Related Work 43

3.3 Multimodal Languages . 47

3.3.1 Data-level Gesture Languages 47

3.3.2 Gesture Authoring 59

3.3.3 Template Matching and Machine Learning 60

3.3.4 Decision-level Multimodal Languages 62

3.4 Multimodal Architectures 67

3.4.1 Data Stream-oriented Architectures 67

3.4.2 Semantic Inferencing Architectures 70

3.5 Conclusion . 73

4 Midas: A Programming Language for Multimodal Inter-

action 75

4.1 A Declarative Language 76

4.1.1 Formal Grammar of Midas 76

4.2 Interpreting Midas . 76

4.2.1 Templates, Modules, Facts and Events 78

4.2.2 Rules with Conditional Elements, Tests, Attempts

and Functions . 79

4.2.3 Rules with Modifiers 82

4.2.4 A Midas Implementation of the Hold-and-Rotate

Gesture . 83

4.3 Multimodal Language Features 84

4.3.1 Modularisation and Abstraction 84

4.3.2 Inheritance as Composition of Modules 88

4.3.3 Customisation and Extensibility 89

4.3.4 Negation . 92

TABLE OF CONTENTS vii

4.3.5 Application Symbiosis 92

4.3.6 Unbound Variables and Unification 94

4.3.7 Event Expiration 95

4.4 Data-level Fusion . 96

4.4.1 Spatial Specification 97

4.4.2 Temporal Specification 100

4.4.3 Spatio-Temporal Specification 100

4.4.4 User-defined Attempts and Functions 100

4.4.5 Identification and Grouping 101

4.4.6 Segmentation and Control Points 103

4.5 Feature-level Fusion . 107

4.5.1 Synchronising Streams 108

4.5.2 Dynamic Service Instantiation 109

4.5.3 Asynchronous Tests 111

4.5.4 Verification . 112

4.5.5 Cross-level Fusion 113

4.6 Decision-level Fusion . 114

4.6.1 Shadow Facts . 114

4.6.2 Alternating Between Conditions and Modifiers . . 116

4.6.3 Conflict Resolution 117

4.7 Multimodal Language Patterns 121

4.8 Developer Feedback . 124

4.9 Conclusion . 125

5 Mudra: A Unified Multimodal Interaction Architecture 127

5.1 Conceptual Architecture of Mudra 129

5.1.1 Motivating Examples 129

5.2 Mudra’s Unified Fusion Architecture 133

5.2.1 The Infrastructure Layer 134

5.2.2 The Distribution Layer 138

5.2.3 The Core Layer 142

5.2.4 The Service Layer 145

5.2.5 The Application Layer 153

viii TABLE OF CONTENTS

5.3 Multimodal Processing Concerns 154

5.3.1 Online Processing 154

5.3.2 Offline Processing 155

5.3.3 Partially Overlapping Matches 155

5.3.4 Segmentation . 157

5.3.5 Long Term Reasoning 159

5.3.6 Concurrent Interaction 161

5.3.7 Portability, Serialisation and Embeddability . . . 162

5.3.8 Runtime Definitions and Device Instantiation . . 162

5.3.9 Reliability and Scalability 163

5.4 Authoring Tools . 164

5.4.1 Inferencing and Refining Control Points 164

5.4.2 A Graphical Full-Body Development Environment 166

5.4.3 Summary . 167

5.5 Compilation and Runtime Model 167

5.5.1 Compilation Flow 167

5.5.2 Midas 2.0 ANTLR Compiler 169

5.5.3 Midas 1.9 Ruby Compiler 169

5.5.4 Midas 1.0 Core Engine 172

5.6 Conclusion . 173

6 Midas & Mudra at Work 175

6.1 Midas and Mudra: A Qualitative Evaluation 175

6.1.1 Language Features 176

6.1.2 Multimodal Processing 178

6.1.3 Multimodal Disambiguation 180

6.1.4 Accessibility and Tooling 182

6.1.5 Conclusion . 182

6.2 Comparing Software Engineering Abstractions for Mul-

timodal Interaction . 183

6.2.1 Comparing the Data-Level Language Abstractions

of Midas and Proton 183

TABLE OF CONTENTS ix

6.2.2 Comparing the Decision-Level Language Abstrac-

tions of Midas and SMUIML 187

6.3 Case Study #1: The Kinect Presenter 190

6.4 Case Study #2: Live Gesture Programming Session 191

6.5 Case Study #3: Declarative Gesture Spotting 194

6.6 Case Study #4: Augmented Live Music Performance . . 196

6.6.1 Constraints . 198

6.6.2 Expressive Control 200

6.6.3 Discussion and Conclusion 205

6.7 Case Study #5: Hand Grip Assessment for Effort Discount-

ing Tasks . 205

6.8 Case Study #6: Water Ball Z 206

6.8.1 Electronic Schema 208

6.8.2 Solenoid Valves and Nozzles 209

6.9 Conclusion . 209

7 Conclusions 211

7.1 Summary and Contributions 212

7.1.1 Analysis of Criteria, Challenges and Open Issues in

Multimodal Fusion Frameworks 214

7.1.2 Midas . 214

7.1.3 Mudra . 215

7.1.4 Shadow Facts . 215

7.1.5 Control Point-based Gesture Spotting 216

7.2 Shortcomings and Future Work 216

7.2.1 Forgiving Interfaces 218

7.3 Overall Conclusion . 218

Appendices 223

A Terminology in Multimodal Interaction 225

B Transcript of the Formal Grammar of Midas 229

C Positioning and Discussion of Related Work 231

x TABLE OF CONTENTS

D ANTLR Specification of Midas 251

E Reused Attempts and Functions 263

F Built-in Mudra Templates 265

G Compatibility of Criteria Defined by Cirelli et al. 267

H SMUIML XPaint Implementation 271

1
Introduction

Starting in the late sixties, human-computer interaction has shifted from
command line interfaces (CLI) to graphical user interfaces (GUI). In
recent years this trend is taken one step further by expanding human-
computer interaction beyond the typical keyboard and mouse setup in a
trend called natural user interfaces (NUI) [8]. A NUI is an interaction
methodology which incorporates human skills such as touch, sight and
body movement to enable human-computer interaction. Many NUIs rely
on interaction patterns that are also used in everyday life. For example,
a virtual deck of cards can be dealt by swiping towards players, as if
performed with real cards on a table1. In a similar way, a baseball game
with a NUI interface enables players to hit the ball by swinging their
arms2.

New commodity hardware facilitates the expansion of NUI applications.
Devices such as Apple’s iPad3, HP’s Sprout4 and Microsoft’s PixelSense5

add a new dimension to human-computer interaction because one can
touch, move and manipulate virtual digital objects in a natural way.
Moreover, physical objects, in the form of tangibles, can be placed on
a multi-touch table to initiate interaction. A nice application of such

1wePoker: http://wepoker.info
2Kinect Sports Season Two: https://marketplace.xbox.com/Product/66acd000-77fe-1000-

9115-d8024d5309d6
3Apple iPad: https://www.apple.com/ipad
4HP Sprout: https://sprout.hp.com
5Microsoft PixelSense: https://www.microsoft.com/en-us/pixelsense

1

http://wepoker.info
https://marketplace.xbox.com/Product/66acd000-77fe-1000-9115-d8024d5309d6
https://marketplace.xbox.com/Product/66acd000-77fe-1000-9115-d8024d5309d6
https://www.apple.com/ipad
https://sprout.hp.com
https://www.microsoft.com/en-us/pixelsense

2 Chapter 1. Introduction

tangibles is Reactable, which is used to compose music by carefully
positioning multiple physical cubes representing musical effects, filters
and generators [79].

Input sources, such as the Wii Remote6 or Samsung’s Smart Remote7,
allow users to interact with computers by performing arm movement in
the air. These remotes embed accelerometers accompanied by optical
sensors to capture their movement and direction. Air gestures can also be
captured by depth sensors, as popularised by SoftKinetic’s DepthSense8

and Microsoft’s Kinect9 in Smart TVs10 and Xbox consoles11.
The development of NUI applications is hindered by the fact that

sensors used for NUIs are typically much noisier than traditional in-
put devices. This means that we need to invest in systems that can
receive different streams of information, such as touch, speech, pen and
visual signal, in order to obtain effective interpretation of the human’s
interaction [41,100].

Besides noise, NUI sensors often provide a continuous stream of
information, which is in big contrast to discrete input found in traditional
applications. In traditional applications, a single key or mouse press
typically results in a single directly connected command. Keyboard
shortcuts such as copy + c and paste + v are amongst the most
complex operations humans can perform using a keyboard, but are still
relatively easy to interpret in computer code. Likewise, movement of the
mouse is characterised by its sensitivity and enables pointing with good
accuracy and very little noise, causing few apparent issues in today’s input
handling code [111]. In extreme contrast, novel input modalities that
are based on accelerometers, touch-sensitive capacitive sensors, depth
sensors or microphones generate an abundance of information. Such
sensors are active all the time and generate a continuous stream of
data, with an inverted signal-to-noise ratio compared to traditional input
sensors. Therefore, to extract meaningful information from this sensor
technology, we need developer support to combine input sources, to
segment continuous streams and to reduce noise [27, 97,142].

The implementation of traditional applications relies on stateless event
handlers to process input one by one. This process is already complex and

6Wii Remote: http://www.nintendo.com/wiiu/accessories
7Samsung Smart Remote: https://www.samsung.com/us/video/tvs-accessories/SEK-1000/ZA
8SoftKinetic DepthSense: http://www.softkinetic.com/Products/DepthSenseCameras
9Microsoft Kinect: https://www.microsoft.com/en-us/kinectforwindows

10Samsung Smart TV: https://www.samsung.com/global/microsite/tv/2013_vi
11Microsoft Xbox: https://www.xbox.com

http://www.nintendo.com/wiiu/accessories
https://www.samsung.com/us/video/tvs-accessories/SEK-1000/ZA
http://www.softkinetic.com/Products/DepthSenseCameras
https://www.microsoft.com/en-us/kinectforwindows
https://www.samsung.com/global/microsite/tv/2013_vi
https://www.xbox.com

1.1. Research Context 3

error prone [111] and will be further complicated with the introduction
of additional input device types. Existing applications for instance rely
on a mouse cursor that can manipulate a single object at once. Multi-
touch technology already allows the use of multiple fingers to manipulate
multiple elements of a graphical user interface in parallel.

These observations lead us to the conclusion that although the in-
dustry has made important steps in terms of hardware technology, the
development of sophisticated human-computer interaction is currently
hampered by the lack of adequate programming abstractions. We argue
that developers use inadequate programming abstractions to process this
multitude of sensor input data.

It is essential to support developers with adequate programming
abstractions to solve these problems. In the following sections we discuss
existing approaches and summarise the need for additional means to
properly address the challenges of today and tomorrow’s human-computer
interaction.

1.1 Research Context

This dissertation is positioned at the crossroad of two major computer
science domains, namely Human-Computer Interaction and Programming
Language Design. This is due to the fact that the complexity to extract
information coming from input devices is increasingly higher. Today’s
software-related limitations severely hinder the ability to experiment with
novel interaction techniques. Additionally, the robustness of every day’s
use of these devices compared to traditional input methods decreases due
to the inability to program user interface code at an adequate abstraction
level.

To extract meaningful information, such as gestures12, from multiple
sensors, the literature uses the term multimodal fusion. Sharma et al. [144]
distinguish three levels of multimodal fusion, namely data-level fusion,
feature-level fusion and decision-level fusion. In data-level fusion tasks,
developers focus on the fusion of identical or tightly linked types of
multimodal data. The goal is to (1) remove the excess of noise and to
(2) provide feature candidates in (3) a real-time manner [41]. Feature-level
fusion tasks rely on derived information from the data-level to fuse closely
coupled modalities. A classical feature-level example is the integration

12A gesture in the context of this dissertation is based on the definition of Rhyne et al, namely a
configuration of strokes, including handwritten text, pointing, and others [133].

4 Chapter 1. Introduction

of speech (captured by a microphone) and lip movement (captured by a
camera) to improve speech recognition results [128]. Finally, decision-level
fusion is the highest abstraction level of multimodal fusion, as it focuses on
correlating information coming from loosely coupled modalities, such as
speech and gestures. For example, the well-known put that there example
by Bolt [11] fuses speech input such as “that” and “there” with pointing
information to identify an object and a new location.

Unfortunately, mainstream programming languages do not align very
well with the continuous event-driven nature of modern sensors, such
as multi-touch surfaces and accelerometers. Imperative languages are
designed with the assumption that the control flow is decided by the
programmer and the state of the computer, and not driven by external
events. The complexity to collect events, detect relevant patterns and to
embed these into the application therefore engenders enormous challenges.
The situation is further aggravated when more than one sensor is involved.

Various multimodal solutions have been proposed in literature. How-
ever, these research approaches are narrowly focused on a single fusion
level, resulting in incompatibilities with one another. On the one hand,
data-level fusion solutions are characterised by a focus on performance,
noise filtering and typically provide abstraction in the form of composition
boxes that need to be chained together [5, 97,142]. This means data-level
solutions lack high-level language abstractions and need to implement the
logic inside composition boxes [41,102]. On the other hand, decision-level
fusion solutions focus on bridging the gap between input data and the
application layer by providing abstractions in the form of dialogue man-
agement and high-level programming languages. Unfortunately, these
high-level abstractions cannot cope with the vast amount of input data.

Due to the inability to properly describe multimodal interaction pat-
terns, many researchers resort to machine learning solutions. Therefore,
in general, many advantages of programming the interaction are lost,
including the ability to control the result of the model (i.e. which con-
ditions are crucial), to verify the model (i.e. is there a risk of accidental
activations), to comprehend the model (i.e. will this work for other users)
and to manually manipulate its preciseness (although there exist machine
learning algorithms that partially allow this). Similarly, we argue that
there needs to be a way to describe multimodal fusion concerns without
having to resort to mainstream imperative programming languages. The
use of an imperative programming style to implement event-driven fusion
results in the inversion of control (i.e. the user, and not the code, dictates

1.2. Research Goals 5

the program flow) [73], requires a complex manual state management and
lacks modularisation and composition abstractions.

The lack of adequate high-level language abstractions to properly
describe multimodal fusion processes has been highlighted in recent sur-
veys [41,100]. Lalanne et al. explicitly state that engineering aspects of
fusion engines must be further studied. As stated by Cuenca et al. [31] the
ultimate goal of multimodal frameworks is to minimise the programming
effort and allow for a faster creation of prototypes. To the best of our
knowledge, this concern has not been adequately addressed. These sur-
veys further argue that there is a need to efficiently manage the large
amount of input data, to provide abstraction and composition of gestural
interaction implementations, and to allow for a proper symbiosis between
the application logic and the inherent continuous processing of multimodal
events.

1.2 Research Goals

The extraction of meaningful information from multiple continuous input
streams is a challenging task. In this work, we focus on two basic
principles of software engineering, namely the separation of concerns and
the reduction of accidental complexity by providing adequate abstractions.

Implementing multimodal interaction patterns is complex because
it requires the concurrent processing of multiple event streams, the seg-
mentation of endless input information and dealing with an abundance
of noise. Even the recognition of a simple multimodal interaction de-
mands for a major amount of work when using traditional programming
languages. Furthermore, the reasoning over interaction from multiple
users and devices significantly increases the complexity. Therefore, we
need a clear separation of concerns between the multimodal application
developer and the designer of new multimodal interactions to be used
within these applications. The user experience designer must be supported
by a set of programming abstractions that go beyond simple low-level
input device event handling. Application developers on the other hand
should be able to properly integrate these designed building blocks into
their applications. Therefore, the direct beneficiaries of our work are
developers who wish to rapidly prototype novel multimodal interaction
patterns. Additionally, we consider that our approach should satisfy
requirements to deploy these prototypes in the real world by gradually
refining the multimodal interaction patterns. Finally, we wish to improve

6 Chapter 1. Introduction

the programming code of existing multimodal applications by exploiting
the novel programming abstractions our approach offers. Indirectly, we
target an improved human machine interaction by leveraging these new
input sensors to drive numerous applications.

In software engineering, a problem can be divided into its essential and
accidental complexity [18]. Accidental complexity relates to the difficulties
a programmer faces due to the choice of software engineering and problem
modelling tools. Other research fields, for example mathematics and
natural sciences, have made great strides by designing simplified models
of complex phenomena. These models are then verified with the help of
experiments. This paradigm works because the complexities ignored in
the model were not the essential characteristics of the phenomena. The
modelling does not work if the complexities are of essence.

Essential complexity is caused by the inherent characteristics of the
problem to be solved and cannot be reduced. Selecting or developing
better tools can reduce the accidental complexity because the view and
implementation of the model can be simplified. While the accidental
complexity of today’s traditional keyboard and mouse applications is
partially addressed by the use of high-level programming languages such as
Java, C# or XAML, we have not witnessed the same software engineering
support for the development of multimodal applications. Furthermore,
the few existing high-level multimodal languages cannot cope with the
vast amount low-level input events, making existing multimodal languages
not suitable for processing low-level input events.

To summarise, the practical problem this dissertation wants to address
is the following:

How much can the accidental complexity of engineering multimodal
interactions be reduced by using a non-imperative approach?

In this dissertation, we aim to provide a high-level programming
language to describe multimodal fusion with the ability to process a vast
amount of incoming information in real time. Concretely, the research
goals for this approach are:

• To reduce the accidental complexity, the approach must facilitate
the implementation of multimodal interaction patterns through
high-level programming abstractions.

1.3. Methodology 7

• To cope with the vast amount of low-level input events in soft real-
time, the approach must facilitate an execution engine and react
accordingly to the given multimodal descriptions. This includes
dealing with segmentation (i.e. the process of extracting meaningful
bits from continuous streams), and supporting overlapping matches
(i.e. where input data can be shared between multiple multimodal
descriptions).

• To fuse low-level data with high-level data, the approach must
facilitate cross-level multimodal fusion. This is challenging due
to the fact that low-level data and high-level data operate at different
frequency rates. Additionally, the approach must integrate with
existing fusion processes, such as feature extractors, in order to reuse
existing specialised methods with a small amount of development
effort.

• The applicability of this approach must be demonstrated in real
world settings. This verifies the ability to describe the functionality
defined by customers, as well as the real-time processing properties
of the engine and its robustness against noise in real world settings.

1.3 Methodology

To address the aforementioned challenges, we rely on the design science
research methodology defined by Peffer et al. [127]. This methodology is
based on six steps: problem identification and motivation (Chapter 2),
definition of the objectives for a solution (Chapter 2 and 3), design
and development (Chapter 4 and 5), demonstration (Chapter 6), evalu-
ation and communication (Chapter 6 and 7). The challenges to express
multimodal interaction patterns transcend the traditional focus of the
Human-Computer Interaction domain and involve advanced computa-
tional resources. Therefore, in order to pursue our research goals, the
approach consists out of two major design and development artefacts: a
programming language and a compatible runtime platform with a unified
architecture.

1.3.1 Language-oriented Approach

In order to ease the application development process, we need tools that
let developers focus on the essential complexity of the multimodal fusion

8 Chapter 1. Introduction

problem. Existing frameworks mostly rely on imperative programming
paradigms that do not align well with the event-driven nature of HCI. This
complexity translates into poor abstraction levels, inadequate recognition
rates, and ad-hoc solutions. Therefore, we propose a language-oriented
approach that allows developers to express their multimodal tasks in
a declarative manner. A declarative programming style allows the
programmer to think about what the fundamental conditions are, instead
of analysing how to process input events one by one as necessary in an
imperative approach. Our research shows that our declarative language
approach offers a number of important benefits, including the reuse
of existing code through modularisation and composition. This reuse
of existing code is not limited to linking components as is commonly
done in pure data stream approaches, but actually allows case-specific
customisation without the need to modify existing code. Our declarative
approach corresponds to an implicit programming flow [139], where the
execution engine translates the descriptions into a Rete network [54]. This
execution engine and its overarching architecture form the second part of
our work.

1.3.2 Architecture and Execution Engine

An important aspect of our work is to apply the proposed solution in real
world scenarios. This requires (1) an efficient processing engine and (2)
an extensible architecture to incorporate existing work (e.g. practical
solutions that have been derived with machine learning). Additionally,
many other multimodal concerns, including cross-level fusion, overlapping
matches or event expiration, form part of our focus. We describe a
unified fusion architecture that interprets our declarative high-level
language and enables the processing of real-time sensor data. Such a
unified architecture should support multi-level fusion across low- and high-
level data and be extensible to enable the incorporation of existing feature
processes. This integration is based on existing techniques, including the
publish/subscribe [49] model.

The core idea of our unified architecture is the use of a central fact
base. The fact base, in combination with a declarative language and the
Rete algorithm, allows developers to easily share information between
various fusion processes. A main characteristic of the Rete network is
the ability to efficiently cache intermediate results. This means that if an
input event satisfies one condition of a multimodal description consisting
out of two conditions (i.e. event a and event b need to happen), an

1.3. Methodology 9

intermediate representation of the result is temporarily kept in memory.
This information is maintained for some time until the event expires to
free memory for newer input events.

The central fact base also allows for extensibility and sharing of
information with other processes. Each process can access all available
information, including intermediate results, application information and
share its derived knowledge with all other processes.

Finally, we provide novel mechanisms to incorporate application in-
formation. For instance, the x, y position of particular GUI components
or the current interaction state provide precious information for the
multi-touch gesture recognition processes. Context, such as application
information, is of utmost importance to properly process multimodal
input data.

1.3.3 Towards a Solution

Listing 1.1 provides a preview of our language abstractions. It describes
that a multi-touch pinch gesture (Pinch, line 2) should be interpreted as
a basic zoom operation (scale, line 5) when performed on top of a digital
image (inside, line 4, a Image, line 3). The runtime interpretation of
this declarative description is illustrated in Figure 1.1. Our approach
transforms declarative conditions into a directed acyclic graph using the
Rete algorithm [54]. Input events are progressively filtered and joined
with other events in order to derive a conclusion. This process is reactive
because the input drives the computation.

Listing 1.1: Shrink an image
1 rule shrinkImage
2 p = Pinch
3 i = Image
4 p←inside i
5 call i.scale(p.difference)
6 end

Join p and i such that

p←inside i

Scale the image

Filter
Pinch facts

Filter
Image facts

Figure 1.1: Rete graph

10 Chapter 1. Introduction

1.4 Contributions

In the following section we would like to highlight the main contributions
of this dissertation.

Analysis of Criteria, Challenges and Open Issues in Multimodal
Fusion Frameworks
Based on a literature study of the broad domain of multimodal fusion
and our expertise, we propose a set of 30 criteria. These criteria unify
a number of concepts from existing work and expose a large number of
issues that received little attention. A first analysis was discussed at
the first international workshop on Engineering Gestures for Multimodal
Interfaces (EMGI 2014) [46, 69]. In this dissertation, we provide a second
iteration of these criteria which is used as a guideline throughout the text.

A Multimodal Programming Language
We define a new multimodal programming language, called Midas. Midas
aims to reduce the accidental complexity of developing multimodal interac-
tion and therefore enables developers to focus on the essential complexity.
Midas is a declarative programming language providing a number of
multimodal-specific constructs to ease the modularisation and composi-
tion of fusion processes. Furthermore, it supports customisation, negation
and an application symbiosis which remained rather primitive in existing
approaches. Our programming language therefore significantly increases
the expressiveness in contrast to existing solutions.

A Multimodal Fusion Engine
Mudra is a unified and extensible multimodal architecture focusing on
the real-time processing of input events. Mudra reconciles data stream
and semantic inferencing approaches by relying on a central information
storage, in the form of a fact base and an efficient Rete network algorithm
to process the raw data. This approach offers inherent support for
fusion across low-level data and high-level semantic information. Our
architectural design further enables the incorporation of existing solutions
through the use of a publish/subscribe and actor model.

Declarative Description of 2D and 3D Gestures
We introduce a novel method to declaratively describe complex 2D and

1.5. Supporting Publications and Demonstrators 11

3D gestures based on control points. With this method, gesture traject-
ories are split into multiple points that need to be traversed. Control
points enable the automated segmentation of continuous input data and
unyieldingly deal with noise by ignoring irrelevant events. Automated
gesture segmentation is a valuable asset for many cases where begin and
end points of gesture input cannot be clearly defined. Segmentation
problems are fundamental when processing continuous input streams and
are prevalent in novel, always-on sensors.

Real World Deployment of the Presented Abstractions
We performed a real world deployment of our proposed solution in multiple
scenarios and discuss the results. Firstly, we performed a live gesture pro-
gramming session as a demo during the TEI 2011 conference. At the same
conference, we controlled the interaction of our presentation via a Kinect
sensor, only a few weeks after it was released. Secondly, we deployed our
multi-touch abstractions in a NoiseTube demonstrator showcased at the
“Brussels Innovates!” exhibit. Thirdly, we provided expressive control of
indirect augmented reality during live music performances. Finally, we
designed and tested an augmented fighting game using water as tactile
feedback. A more in-depth description of our demonstrators can be found
in Section 1.5.2.

1.5 Supporting Publications and Demon-
strators

1.5.1 Publications

We disseminated our work in one journal, 7 conferences and 5 workshops.

Software Engineering Abstractions for the Multi-Touch Revolu-
tion Proceedings of ICSE 2010, 32nd ACM/IEEE International Confer-
ence on Software Engineering, Microsoft Student Research Competition.
Lode Hoste [63]. This short paper describes the first approach to a de-
clarative language to express multi-touch gestures. It uses declarative
rules to modularise and compose gesture implementations. The goal is
to disentangle code found in existing imperative approaches that rely on
event callbacks.

12 Chapter 1. Introduction

Midas: A Declarative Multi-Touch Interaction Framework
Proceedings of TEI 2011, 5th International Conference on Tangible, Em-
bedded and Embodied Interaction. Christophe Scholliers, Lode Hoste, Beat
Signer and Wolfgang De Meuter [141]. The work in this paper extends the
previous paper and proposes additional spatial and temporal operators to
describe multi-touch gestures. Furthermore, shadow facts are introduced
that allow gestures to be linked to GUI components. We need to clarify
that the language presented in this paper is named Midas but refers to
an older incarnation. In this dissertation we present a second iteration of
the Midas programming language.

Mudra: A Unified Multimodal Interaction Framework Proceed-
ings of ICMI 2011, 13th International Conference on Multimodal Inter-
action. Lode Hoste, Bruno Dumas and Beat Signer [64]. In this paper
we describe our unified architecture to perform multimodal fusion across
low-level data and high-level semantic information.

SpeeG: A Multimodal Speech- and Gesture-based Text Input
Solution Proceedings of AVI 2012, 11th International Working Confer-
ence on Advanced Visual Interfaces. Lode Hoste, Bruno Dumas and Beat
Signer [65]. SpeeG is a multimodal speech- and body gesture-based text
input system targeting media centres, set-top boxes and game consoles.
It provides a controller-free zoomable user interface that combines speech
input with a gesture-based real-time correction of the recognised voice
input.

Parallel Gesture Recognition with Soft Real-Time Guarantees
Proceedings of the compilation SPLASH 2012 workshops, AGERE! work-
shop, 2nd International Workshop on Programming based on Actors,
Agents, and Decentralized Control. Thierry Renaux, Lode Hoste, Stefan
Marr and Wolfgang De Meuter [131]. In collaboration with co-authors,
we designed a parallel and scalable variant of Mudra, called PARTE.
PARTE is a complex event-processing engine and is compatible with the
Midas Language. It detects event patterns and provides soft real-time
guarantees for the computational processes.

Declarative Gesture Spotting Using Inferred and Refined Con-
trol Points Proceedings of ICPRAM 2013, 2nd International Confer-
ence on Pattern Recognition Applications and Methods. Lode Hoste,

1.5. Supporting Publications and Demonstrators 13

Brecht De Rooms and Beat Signer [66]. In this work we propose a novel
gesture spotting approach for processing continuous streams of two- or
three-dimensional Cartesian coordinates. This approach translates into
declarative Midas code and offers fine-grained control over the gesture
trajectory.

Expressive Control of Indirect Augmented Reality During Live
Music Performances Proceedings of NIME 2013, 13th International
Conference on New Interfaces for Musical Expression. Lode Hoste and
Beat Signer [67]. In this paper we present a real world application of
Midas and Mudra that uses explicit gestures and implicit dance moves to
control the visual augmentation of a live music performance. The focus
of this work is to evaluate our abstractions in a challenging environment.
Firstly, only a single sample is available for each of the five 3D gestures.
Secondly, there was no ‘noise’ data available that contains other movement
of the artists during the song. Thirdly, the 3D input data needs to be
processed in real-time and finally there was little room for recognition
errors.

Cloud PARTE: Elastic Complex Event Processing based on Mo-
bile Actors Proceedings of AGERE! 2013, 3rd International Workshop
on Programming based on Actors, Agents, and Decentralized Control. Jan-
willem Swalens, Thierry Renaux, Lode Hoste, Stefan Marr and Wolfgang
De Meuter [151]. In collaboration with co-authors, we extended PARTE
to dynamically distribute the processing load on multiple machines. It
involves data and code mobility of rete networks [54] and automated
load-balancing mechanisms.

SpeeG2: A Speech- and Gesture-based Interface for Efficient
Controller-free Text Input Proceedings of ICMI 2013, 15th Inter-
national Conference on Multimodal Interaction. Lode Hoste and Beat
Signer [68]. In this paper we present a second version of SpeeG, a
multimodal text entry solution combining speech recognition with gesture-
based error correction. Four innovative prototypes for the efficient
controller-free text entry have been developed and evaluated. A quantitat-
ive evaluation of our SpeeG2 text entry solution revealed that the best of
our four prototypes achieves an average input rate of 21.04 WPM (without
errors), outperforming current state-of-the-art solutions for controller-free
text input.

14 Chapter 1. Introduction

Water Ball Z: An Augmented Fighting Game Using Water as
Tactile Feedback Proceedings of TEI 2014, 8th International Confer-
ence on Tangible, Embedded and Embodied Interaction. Lode Hoste and
Beat Signer [70]. In this paper we present a second real world application
of Midas and Mudra in the form of a game. Water Ball Z is a novel
interactive two-player game that allows kids and young adults to “fight”
in a virtual world with water-based physical feedback. The focus lies on
the online processing capabilities of Mudra and the integration of Midas
with the application layer to deliver incremental feedback.

Parallel Gesture Recognition with Soft Real-Time Guarantees
Science of Computer Programming. Stefan Marr, Thierry Renaux, Lode
Hoste and Wolfgang De Meuter [113]. In collaboration with co-authors, we
evaluated the scalability of PARTE on machines with up to 64 cores. The
presented evaluation indicates that gesture recognition can benefit from
the exposed parallelism with superlinear speedups. The paper demon-
strates the scalability of a declarative approach for gesture recognition
and multimodal fusion processes.

Criteria, Challenges and Opportunities for Gesture Program-
ming Languages Proceedings of EGMI 2014, 1st International Work-
shop on Engineering Gestures for Multimodal Interfaces. Lode Hoste and
Beat Signer [69]. The work described in this paper summarises a large
number of criteria, challenges and opportunities for gesture programming
languages. In this dissertation, we have elaborated on these concerns and
extended them for multimodal fusion solutions.

Software Engineering Principles in the Midas Gesture Specific-
ation Language Proceedings of PRoMoTo 2014, 2nd International
Workshop on Programming for Mobile and Touch. Thierry Renaux, Lode
Hoste, Christophe Scholliers and Wolfgang De Meuter [132]. In this paper
we present our second and latest iteration of the Midas programming
language. In this dissertation, we have elaborated on these concerns and
extended them for multimodal fusion solutions.

Next to these publications, I co-organised the first international
workshop on Engineering Gestures for Multimodal Interaction (EGMI
2014) [46]. Additionally, I have been invited to review papers for several
journals and conferences, including Science of Computer Programming,
International Conference on Tangible, Embedded and Embodied Interac-

1.5. Supporting Publications and Demonstrators 15

tion, European Conference on Object-Oriented Programming, Interna-
tional Conference on Distributed Applications and Interoperable Systems,
Journal on Software: Practice and Experience, Computers in Biology and
Medicine.

1.5.2 Demonstrators

Our software engineering abstractions for expressing multimodal interac-
tion have been used in real world setups. The following demonstrators
form part of our validation of the applicability and robustness of our
approach.

Live Gesture Programming Session. In this session, participants of
the TEI 2011 conference were able to spontaneously propose novel multi-
touch gestures. We then implemented these gestures within a few minutes
using initial incarnations of Midas and Mudra. Challenging gestures
during this session have been a driving force for vast improvements
and numerous extension of the multimodal framework presented in this
dissertation.

Multi-Touch-enabled NoiseTube. A multi-touch enabled demon-
strator was showcased at the exhibit “Brussels Innovates!” which ran
from October 17 to 29 (2011) in the Woluwe Shopping Centre in Brussels.
We presented this exhibition along with innovative actors in Brussels such
as BMW Motors, Solar Impulse, PlantDesign, and others.

Expressive Control of Indirect Augmented Reality During Live
Music Performances. The Midas and Mudra abstractions have been
used to program and recognise complex 3D gestures. During multiple live
music performances at the ArtCube13 and the International Convention
Center Ghent14, our expressive control of indirect augmented reality was
received with great enthusiasm by the audience. The artist was able to
control the visualisations via 3D gestures as part of a dance act. Four
live performances took place in 2012 and 2013 with an audience of about
1800 people.

13ArtCube: http://artcube.be
14International Convention Center Ghent (ICC): http://www.iccghent.com

http://artcube.be
http://www.iccghent.com

16 Chapter 1. Introduction

1.6 Dissertation Outline

The remainder of this dissertation is structured as follows:

Chapter 2. Multimodal Interaction. In this chapter we discuss
and analyse the three multimodal fusion levels [144]: data-level fusion,
feature-level fusion and decision-level fusion. As the multimodal domain
is broad, we also define the terminology used throughout this disserta-
tion. We further enumerate and discuss criteria for expressing multi-level
multimodal fusion.

Chapter 3. Related Work We provide an overview of the landscape
of existing multimodal frameworks. Existing work is categorised into two
main strands, namely data stream and semantic inferencing solutions. We
then focus on the expressiveness of multimodal and gesture programming
language support.

Chapter 4. Midas: A Programming Language For Expressing
Multimodal Interaction. This chapter defines the Midas program-
ming language and discusses its features on the various multimodal fusion
levels. We analyse our language using the language feature criteria ex-
pressed in Chapter 2.

Chapter 5. Mudra: A Unified Multimodal Interaction Frame-
work We present the architecture of our proposed framework. It demon-
strates how events drive the computation expressed in the Midas language
with various examples. We discuss the capabilities of the framework over
the multimodal fusion criteria and show which abstractions are available
on different fusion levels. Finally we conclude with the implementation
details of the proposed framework.

Chapter 6. Midas & Mudra at Work In this chapter we analyse
the applicability of our approach with a number of use cases. These
use cases serve as the validation of our work with respect to real-time
execution properties.

Chapter 7. Conclusion. The last chapter revisits the research goals
to argue that the combination of Midas and Mudra forms an adequate
solution to solve a number of important challenges in the multimodal

1.6. Dissertation Outline 17

fusion domain. This chapter further discusses a number of limitations
and proposes an interesting body of future work. For example, the
notion of transactional user interfaces, originating from limitations in our
experiments is discussed.

2
Multimodal Interaction

In this chapter we discuss the features of multimodal interaction and
multimodal fusion processes. We present three multimodal fusion levels
and a list of 30 criteria for multimodal frameworks we observed during
the literature study during the last four years. The goal of this chapter
is twofold: (1) we contextualise our research in the vast amount of
multimodal literature and (2) the definition of distinguishing criteria in
order to identify missing abstractions and compare related work.

2.1 Multimodal Concerns

In their survey, Lalanne et al. [100] express four important concerns a
fusion engine needs to deal with: (1) probabilistic input, (2) multiple and
temporal combinations, (3) adaptation to context, tasks and users, and
(4) error handling. In the following, we elaborate on these four concerns.

Probabilistic input Traditional applications rely on deterministic
events such as keystrokes or mouse clicks. However, in most multimodal
solutions developers rely on sensor information that should be interpreted
first. This interpretation needs to deal with a high degree of uncertainty
due to sensor noise, such as background noise or convoluted image frames.
Multimodal frameworks aim to reduce this uncertainty by ignoring noise,
allowing relaxation parameters (such as spatial approximation via inter-

19

20 Chapter 2. Multimodal Interaction

vals) or by embedding probabilistic information within the events. Dealing
with probabilistic input is therefore a key concern for multimodal fusion
engines.

Multiple and temporal combinations The CASE model is used to
classify multiple and temporal combinations from a machine point of
view. The CASE model [123] categorises different usage of modalities in
concurrent, alternate, synergistic and exclusive. The concurrent category
is defined as the parallel use of modalities without the need for time syn-
chronisation between the two modalities. If this information is combined,
such as the fusion of audio input with lip information to increase recog-
nition rates [17, 128], the fusion process is synergistic. In the alternate
category, modalities are used in a sequential manner and information will
be fused when the interaction is completed. An example is shown by
Kuijpers et al. [98]: the user can enter text in natural language with word
references (for instance the user types “what is the size of this disk?”)
and then clicks with the mouse on the graphical object representing a
physical disk. Exclusivity can be enforced to reduce accidental activations.
For example users cannot turn the page via a swipe gesture while actively
writing notes with the pen. Without exclusiveness, a moving palm on the
touch interface might accidentally trigger the swipe gesture.

From a human perspective, the CARE properties [29] characterise and
assess the usability and fusion in multimodal interaction. Complementary
modalities are used when an interaction is best achieved with two or more
combined modalities. This allows for a more natural interaction such as
using speech and pointing at the same time. The assignment property
indicates the absence of a choice. The user is forced to use a single
modality to reach their goal. On the other hand, when two modalities
with the same expressiveness are required to be used to achieve one goal,
we talk about redundancy. This can be used to limit unintentional actions,
for example to deleting a movie on a smart TV requires a voice command
and the confirmation of the head nodding. Finally, equivalence defines
that users can choose between modalities to express their intention.

Fusion engines should support the CASE and CARE properties to
deal with various multimodal scenarios, however this requires the ability
to express advanced temporal relations between multiple input sources.

Adaptation to context, tasks and users Adaptation to context can
be an important factor to increase recognition rates. The interpretation of

2.2. Multimodal Fusion Levels 21

a gesture might be different, different clues might be used (such as the gaze
direction) or a lower threshold can be used to activate commands when
the user is increasingly nervous. In order to deal with these adaptations,
fusion engines require access to application-level information and need to
react to inferred cues from other modality input.

Error handling Multimodal frameworks aid developers to handle input
containing noise and missing information. However, obtaining error-free
results will be very hard. This is also the case for human-to-human
interaction. Therefore multimodal solutions should provide mechanisms
to correct mistakes and learn from them.

2.2 Multimodal Fusion Levels

The previously mentioned multimodal concerns span the entire fusion
process. However, the transformation of low-level input data to high-level
semantic information is complex and typically happens in multiple stages.
Sharma et al. [144] distinguish three levels of abstraction to characterise
multimodal input data fusion: data-level fusion, feature-level fusion and
decision-level fusion. In this section, we present these different levels with
some classic use cases.

2.2.1 Data-Level Fusion

Data-level fusion focuses on the fusion of identical or tightly linked types
of multimodal data. The goal is to (1) remove the excess of noise to
(2) provide feature candidates in (3) a real-time manner [41]. This is
challenging due to the fact that information continuously arrives at a
high frequency. The classic illustration of data-level fusion is the fusion
of two video streams coming from two cameras filming the same scene at
different angles in order to extract the depth map of the scene. Data-level
fusion rarely deals with the semantics of the data but tries to enrich or
correlate data that is potentially going to be processed by higher-level
fusion processes. As data-level fusion works on the raw data, it has access
to the detailed information but is also highly sensitive to noise or failures.
Data-level fusion frequently entails some initial processing of raw data
including noise filtering or very basic recognition.

22 Chapter 2. Multimodal Interaction

2.2.2 Feature-Level Fusion

Feature-level fusion is one step higher in abstraction than data-level fusion.
Feature-level fusion of modalities is typically applied to closely coupled
modalities with possibly different representations. A classic example is
speech and lip movement integration [128], where data comes from a
microphone that is recording speech as well as from a camera filming the
lip movements. The two data streams are synchronised and in this case the
goal of the feature fusion is to improve speech recognition by combining
information from the two different modalities. Feature-level fusion is less
sensitive to noise or failures than data-level fusion and conveys a moderate
level of information granularity. Typical feature-level fusion algorithms
include statistical analysis tools such as Hidden Markov Models (HMM),
Neural Networks (NN) or Dynamic Time Warping (DTW), which translate
a sequence of events into feature-level information based on previously
annotated data (i.e. training data). For example, DTW returns the
classification label (i.e. name) of a sample that corresponds most closely
to a given sequence of events.

2.2.3 Decision-Level Fusion

Decision-level fusion focuses on deriving interpretations based on semantic
information. It is the most versatile kind of multimodal fusion, as it can
correlate information coming from loosely coupled modalities, such as
speech and gestures. The well-known put that there example by Bolt [11]
fuses speech input such as “that” and “there” with pointing information
to identify an object and a new location. Decision-level multimodal fusion
includes merging high-level information obtained by data- and feature-
level fusion as well as modelling human-computer dialogues. Decision-level
fusion is assumed to be highly resistant to noise and failures by relying
on the quality of previous processing steps. Therefore, the information
that is available for decision-level fusion algorithms may be incomplete or
distorted. Typical classes of decision-level fusion algorithms are meaning
frames [158], unification-based algorithms [78], finite-state machines [76]
or symbolic-statistical algorithms [22].

Surprisingly, existing multimodal interaction frameworks often excel at
one specific fusion level but encounter major difficulties at other levels. We
argue that the reason for these limitations lies on the architectural level
and in particular how the initial data from different modalities is handled.
In particular, each fusion level comes with its own requirements. Data-

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 23

level fusion focuses on performance in order to keep pace with the vast
amount of input information. Feature-level fusion requires robust feature
extraction methods that filter out the final noise. Finally, decision level
requires contextual information to properly manipulate application-level
information.

We argue that a unified fusion framework is required to enable fusion
of information at all levels, while retaining high-level software engineering
abstractions. In the next section we provide an extensive list of criteria
which multimodal fusion engines need to cope with.

2.3 Criteria for Expressing Multi-Level
Multimodal Fusion

In this dissertation we focus on a unified fusion framework with both
high-level programming language and architectural support. Multimodal
programming languages are designed to support developers in specifying
their multimodal gesture interaction requirements more easily than with
general purpose programming languages [40, 47, 97]. General purpose
programming languages such as Java often require an excessive amount
of code to express a developer’s intention which makes them hard to read
and maintain. A domain-specific language (DSL) might help to reduce
the repetitive boilerplate that needs to be written in existing languages as
described by Van Cutsem [154]. Van Cutsem argues that languages can
shape the thought (earlier attributed to “The limits of my language means
the limits of my world”, Ludwig Wittgenstein). For instance, interaction
patterns can be declaratively described by its requirements versus an
imperative implementation with manual state management. This impacts
the way of thinking during design and implementation. A programming
language can also be seen as a simplifier that omits complex features, such
as memory pointers, which are not helpful to describe gestural interaction.
Finally, domain-specific languages can be used as a law enforcer. For
example, the Proton [95] gesture language analyses gesture descriptions
and informs the developer about unintentional gesture overlaps at compile
time. Law enforcement further enables the inference of properties that help
domain-specific algorithms to obtain better classification results or reduced
execution time. Next to these concerns related to the programming
language, the execution model and architecture also require deep thought
as they need to coordinate the vast amount of input events and keep up
the computational effort to perform fusion.

24 Chapter 2. Multimodal Interaction

Criteria We define a number of criteria that characterise (1) the choice
of a particular framework, (2) the implementation of the multimodal
interaction and (3) the open issues in the multimodal engineering do-
main. These criteria combine features proposed by different approaches,
including domains such as machine learning, multimodal architectures,
multimodal languages and template matching. They are compatible
but defined on a more fine-grained level, than with previously estab-
lished fusion criteria [41, 116]. Together with our experiments and the
reuse of core criteria of existing work, these requirements offer a refined
view of multimodal fusion frameworks. We split the criteria up in four
main categories: language features, multimodal processing, multimodal
specification and accessibility as well as tooling.

2.3.1 Language Features

The following criteria have an effect on the software engineering aspects
of the multimodal interaction specification. We argue that they might
require corresponding features to be implemented in the processing engine.

Modularisation

By modularising multimodal definitions we can reduce the effort to gradu-
ally increase the number of interaction scenarios. Modularisation is based
on the separation of concerns principle, one of the main principles in
software engineering, which dictates that different modules of code should
have as little overlapping functionality as possible. Therefore, in modular
approaches, each multimodal specification is written with its own separate
linguistic component, such as a separate function, rule or definition.

Composition

Composition allows programmers to tame complexity by building complex
interactions from simpler building blocks. For instance, a tap gesture
is defined by a touch down event followed shortly by a touch up event
and with limited spatial movement in between. A double tap gesture can
then be defined by the composition of two tap gestures with a defined
maximum time and space interval between them. Composition thus allows
developers to abstract and reuse multiple modular specifications to define
more complex interaction.

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 25

Customisation

Customisation is concerned with the effort a developer faces to modify
a multimodal interaction gesture specification for use in a different con-
text. How easy is it, for example, to adapt the existing definition of an
interaction when an extra condition is required or the order of events
should be changed? For graphical programming toolkits, the customisa-
tion aspect is broadened to how easy it is to modify the automatically
generated code (if possible at all). Note that in many machine learning
approaches customisation is limited due to the lack of a decent external
representation [82].

Negation

Negation is a feature that allows developers to express a context that
should not be true in the definition of a particular interaction. Many
approaches partially support this feature by requiring a strict sequence of
events, thereby implying that no other events should happen in between.
However, it is still crucial to be able to describe explicit negation for some
scenarios. Suppose one wants to express that there should be no other
user in the proximity in order to preclude unintended actions or that the
dominant hand should not be located near the waist before the beginning
of a gesture.

Application Symbiosis

The integration of application information in the fusion process allows
developers to inspect the application state before execute certain func-
tionality. For instance, a multi-touch scroll gesture can only happen when
both fingers are inside the GUI region that supports scrolling [47]. This
means application-specific information such as the location of graphical
components is required to precisely constrain the multi-touch scroll ges-
ture. This further aids the disambiguation process and thus increases the
recognition quality. Another example is when a GUI widget needs to be
rescaled or rotated. The gesture can be defined by requiring that one
finger should be on top of the GUI component while the other two fingers
are executing a pinch or rotate gesture in the neighbourhood.

26 Chapter 2. Multimodal Interaction

Activation Policy

Whenever a multimodal interaction is recognised, an action is typically
executed. In some cases the developer may want to provide a more detailed
activation policy such as trigger only once or trigger when entering and
leaving a particular state. Another example is the sticky bit [47] option
that activates the gesture for a particular GUI object. A shoot-and-
continue policy [70] denotes the execution of a complete gesture followed
by online gesture activation. The latter can for example be used to define
a lasso gesture where at least 360o circular movement is required and
afterwards each incremental part (such as every 90o) causes a gesture
activation.

Unbound Variables and Unification

An unbound variable allows developers to define a variable which is
instantiated by a value from an input event at runtime. For example, an
unbound variable l can be used to capture the x value of an event if it is
included in the spatial interval (i.e. the x coordinate should be between 10
and 50, and an example runtime value of the coordinate bound to l is 12).
An unbound variable can also be used to describe dependencies to other
values (i.e. bind l to the average of the x coordinates of two events). This
is particularly useful to correlate different events if the specification of
concrete values is not feasible and when the runtime value is meaningful
for the rest of the program. Unification, in the context of this dissertation
is used to enforce equality between two unbound variables.

2.3.2 Multimodal Processing Concerns

Multimodal processing concerns impact the design of a multimodal fusion
engine. For example, does the engine need to be reactive such that it
executes code for every input event or can it wait for certain characteristic
events (i.e. as done in offline processing tasks)? Can the engine adapt
to runtime changes, such as (dis)connecting devices or additional code
provided by the user? A combination of the concerns targeted by the
engine therefore decides its main architecture and implementation.

Online Processing

Interactions such as a multi-touch pinch gesture for zooming require
feedback while the gesture is being performed. These so-called online in-

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 27

teractions can be supported in a framework by allowing concise definitions
(i.e. interactions defined by hard-coded raw values) or by providing con-
structs (i.e. high-level features) that offer advanced callback mechanisms
to monitor the progress of a larger interaction.

Offline Processing

Offline definitions are executed when an interaction is completely finished
and typically represent a single command. This type of interaction is
easier to support in multimodal programming languages, as they need
to pass the result to the application only once after it has been detec-
ted. This is in constrast to online processing which typically require
an incremental evaluation for performance reasons. Offline definitions
increase the robustness due to the ability to validate the entire setting. A
complete collection of events increases the correctness of the detection
when compared to online processing where decisions are made when large
parts are yet unknown.

Partially Overlapping Matches

Several conditions of a multimodal interaction definition can be partially
or fully contained in another definition. The manifestation of this concern
is shown in two ways by the well-known put that there example by Bolt [11].
On the one hand, in the data-level fusion, the speech recogniser component
recognising the put word should be capable of dealing with other word
candidates that begin with the same pronunciation. This is the case when
other words such as push and pull are alternative commands. These
overlapping initial conditions increase the complexity in the processing
engine, as it has to keep track of multiple candidate solutions from the
same input events. Furthermore, the initial sounds of a word might not
be distinctive enough and will need to be reconsidered when the word
has been fully pronounced or the context became clear. On the other
hand, at a higher-level fusion layer, keeping track of partially overlapping
matches is required to deal with user stuttering or background noise
(i.e. multiple events satisfy the same constraint). If the speech recogniser
provides the word that multiple times, the most interesting one related to
the pointing gesture should be chosen. However one cannot know this as
soon as the first that candidate arrives and therefore it is crucial for the
processing engine to be able to keep track of the partial matches until
they are either rejected or accepted. Keeping track of multiple partial

28 Chapter 2. Multimodal Interaction

matches is a complex mechanism that is supported by several approaches
and intentionally blocked or ignored by others.

Segmentation

Typically, streams of sensor input events do not contain explicit hints
about the beginning and the end of a gesture. This is known as segment-
ation or gesture spotting. Segmentation gains importance given the trend
towards the continuous capturing and free-air interaction in which a single
event stream can contain many potential begin events. The difficulty of
gesture segmentation manifests itself when one cannot know beforehand
which potential “begin” events should be used until a “middle” or even an
“end” candidate event is found to form decisive gesture trajectory. It is
possible that potential begin and end events can still be replaced by better
future events. For instance, how does one decide when a free-air swipe
right gesture begins or ends without reasoning about past (i.e. starting
poses) or the future (i.e. trigger a narrow swipe right or wait for a wider
swipe right gesture)? This lack of explicit begin- and end-points generates
a lot of gesture candidates and increases the computational complexity.
Several approaches tackle this issue by means of a velocity heuristic with
a slack variable (i.e. a global constant defined by the developer) or by
programming incremental processing code. Many solutions make use of a
garbage gesture model to increase the accuracy of the gesture segment-
ation process. Other segmentation problems include the distinction of
background noise versus conversations to invoke the speech recogniser at
the correct time.

Figure 2.1 illustrates a continuous event stream from a multi-touch
device with two segmentation candidates. The first candidate begins
after a couple of events and is identified by a heuristic detection for
characteristic turning points. The extraction of this candidate from the
continuous stream is crucial for higher level processing components to
classify the gesture. In this case a gesture classifier later rejects the
first candidate. Unfortunately, initial phase of the second candidate
happens before the final phase of the previous candidate. In this example,
sophisticated engine support is required that supports both segmentation
and overlapping matches.

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 29

Rejected candidate

Accepted overlapping
gesture

Figure 2.1: Segmenting and overlapping matches in a Z gesture

Synchronising Streams

The time at which events are received by the fusion engine frequently
differs from the time they are produced. This happens due to physical
properties, input frequency, sensor latency or an interpretation delay. For
example, a stream containing camera-based lip tracking will be ahead in
time compared to a stream with audio cues such as phonemes because
speech recognisers have an inherently high latency. In order to fuse these
two streams, the programmer needs to resynchronise these input streams
such that events that were produced at the same time are processed
together. The resulting synchronisation process is illustrated in Figure 2.2.
In this example, events from streams e and f should be combined based
on their timestamp (denoted as a number in subscript). However more
complex configurations are possible when dealing with addtional streams
and sequences of events.

1e 2e 3e 4e 5e 6e 7e 8e

4f 5f 6f 7f 8f

Time

1e 2e 3e 4e 5e 6e 7e 8e

4f 5f 6f 7f 8f

Time

Figure 2.2: Synchronising streams

30 Chapter 2. Multimodal Interaction

Event Expiration

The expiration of input events is required to keep the memory requirements
and processing complexity within limits. The manual maintenance of
events is a complex task and most frameworks offer at least a simple
heuristic to automatically expire old events. In multi-touch frameworks,
a frequently used approach is to keep track of events from the first touch
down event to the last touch up of any finger. This history tracking method
introduces problems when dealing with multiple users as there might
always be at least one active finger touching the table and therefore no
events will be removed. Another approach is to use a timeout parameter,
thus creating a sliding window solution. An advantage of this approach
is that the maximum memory usage is predefined, but a slack value is
required.

Long-Term Reasoning

When events are managed by a sliding time window technique, the
reasoning capabilities of rules become limited to events during that period.
In order to retain valuable information for future extraction, a long-term
reasoning alternative must be provided. Long-term reasoning can be used
to store characteristic events (e.g. the user entered a room at time t),
discover frequently occurring patterns (e.g. an employee makes tea every
morning) or persist information for future profiling (e.g. a gesture from
user a is frequently unintentionally activated).

Concurrent Interaction

In order to allow concurrent interaction, one has to keep track of multiple
partial instances of a multimodal recognition process. For instance,
multiple fingers, hands, limbs or users can perform the same gesture at
the same time. To separate these instances, the framework can offer
constructs or native support for concurrent multimodal processing. In
some scenarios, it is hard to decide which touch events belong to which
hand or user. For example, Proton splits the gesture execution surface
in half to support two player games. Each player is therefore limited
to execute gestures on their private zone, otherwise gestures will be
invalidated by the touches from the other player. This STATIC split
of the surface only works for a limited number of use cases. A better
method is to set a maximum bounding box of the gesture [47] or to

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 31

define the spatial properties of each gesture condition. The use of GUI-
specific contextual information can also serve as a separation mechanism.
However, for some cases it is not possible to know beforehand which
combination of fingers will form a gesture, leading to similar challenges
as discussed in the partially overlapping matches criterion where multiple
candidates need to be tracked at the same time.

Portability, Serialisation and Embeddability

Concerns such as portability, serialisation and embeddability reflect the
platform independence of an approach. Portability is defined by how
easy it is to run the framework on different platforms. Some approaches
are tightly interwoven with the host language, which limits portability
and the transfer of multimodal interaction definitions over the network.
Such code mobility could be used to exchange multimodal definition sets
between users or even to offload the recognition process to a dedicated
server with more processing power. The exchange requires a form of
serialisation of the interaction definitions that is usually already present
in some domain-specific languages. Embeddability deals with technical
challenges to embed a multimodal framework in existing applications.
For instance, a framework can be delivered as a daemon process or a
library. Embeddability also involves an assessment on how compatible
the abstractions are with existing programming languages.

Runtime Definitions and Device Instantiation

Refining multimodal parameters or outsourcing definitions to multimodal
services requires runtime modification support by the framework. The
refinement can be instantiated by an automated algorithm (such as an
optimisation heuristic) by the developer (during a debugging session) or by
the user to provide their preferences. Multimodal scenarios that occur in
dynamic environments where devices become available and disconnected
at any time require a dynamic device instantiation mechanism.

Reliability and Scalability

The dynamic nature of user input streams implies the possibility of an
abundance of information in a short period of time. In order to be
reliable, a framework might offer a maximum computational boundary
for a given setting, such as a maximum amount of events per second [113].
Without such a boundary, users might flood the system with input events,

32 Chapter 2. Multimodal Interaction

thereby introducing latency. Reliability also involves security measures,
such as the encapsulation of low-level functionality to reduce attack
vectors. Scalability deals with the ability to increase the computational
boundary of a framework to support additional sensors and users using
multiple cores and distribution across machines. In recent years, access to
many machines and whole data centres became a commodity and enables
frameworks to perform more complex fusion by tapping into this vastly
increased processing power. However, a scalable approach must still offer
some reliability guarantees to deal with latency.

2.3.3 Multimodal Disambiguation

Developers need a way to disambiguate noise from multimodal interaction
patterns. Often, expressing such conditions is difficult as a single event
does not convey the necessary information. Therefore, disambiguation
criteria focus on spatial and temporal relations between events from
(potentially) different input sources. Furthermore, multimodal frameworks
need to deal with decision making processes, which includes criteria such
as prioritisation and verification. These criteria have an impact on the
language and the architecture of an approach.

Spatial Specification

The role of spatial specification is to describe spatial relations between
events. A key ingredient in the context of multimodal fusion is the ability
to specify spatial approximation. Spatial approximation is required to
support the variability of a gesture execution, to deal with noise or
to accommodate imprecise sensor measurements. For instance, spatial
specifications can be used to describe a virtual line between the pointing
gesture of person to a target person. When this specification becomes
true based on the input events, the system can conclude that one person
is indicating another person. The movement of a finger or body part can
also be described using spatial relations. These relations consist of the
travelled path to which a gesture has to adhere. The path can be formed
by constraining events in a spatial dimension such as 10 < event1.x < 50.
The use of relative spatial specifications, such as event1.x > event2.x,
are also useful to describe fusion. Other spatial relations such as scale
invariance deal with the recognition of a single gesture trajectory regardless
of its scale. Similarly, rotation invariance is concerned with the rotation.

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 33

Spatial operators are domain specific and therefore need to be extendible
by developers.

Temporal Specification

The fusion of events from multiple sources can depend on their temporal
relation. An example of such a temporal relation is that two events should
(or should not) happen within a certain time period. They are required
in nearly all stream input such as audio, video and accelerometers [116].
For example, to select a person, one can confirm a pointing gesture with
a speech utterance of “him” (or “her”) in parallel.

Spatio-temporal Specification

An arbitrary mix of spatial and temporal operators allows for an advanced
spatio-temporal specification. Such a spatio-temporal specification allows
one, for example, to distinguish between slow and fast walking [116].
Another example offering a closed loop spatio-temporal feature to describe
that the beginning and end event of a gesture should be approximately
at the same location, is provided by Khandkar et al. [91]. This spatio-
temporal feature can be used to describe a recurring movement such as
a circle dance. Other spatio-temporal fusion processes exist to analyse
accelerometer data (i.e. velocity) and other input modalities [86,116].

Identification and Grouping

The identification problem is related to the fact that sensor input does not
always provide enough details to disambiguate a scenario. For example,
Echtler et al. [45] demonstrate that two fingers from different hands cannot
be distinguished from two fingers of the same hand on a multi-touch table
due to the lack of shadowing information. Furthermore, when a finger is
lifted from the table and put down again, there is no easy way to verify
whether it is the same finger. Therefore, a double tap gesture cannot easily
be distinguished from a two-finger roll. Similar problem emerge with
other types of sensors such as when a user leaves the viewing angle of a
sensor and comes back later. In these cases, the fusion of redundant input
sensors (Section 2.1) can be used to address the identification problem.

The grouping problem can be considered as the simultaneous identi-
fication of two or more events. For instance, when multiple people are
dancing in pairs, it is sometimes hard to see who is dancing with whom.

34 Chapter 2. Multimodal Interaction

Therefore the system needs to keep track of alternative combinations for
a longer time period to group the individuals.

Prioritisation and Toggling

Whenever two multimodal descriptions overlap, developers want to pri-
oritise one above the other. The annotation of multimodal definitions
with various priority levels is a first form of prioritisation. However, this
requires knowledge about existing definitions. In case there are many, it
might not be possible to maintain a one-dimensional priority schema. Na-
centa et al. [119] for instance demonstrate that we should not distinguish
between a scale and rotate multi-touch gesture on the frame-by-frame level
but by using specialised prioritisation rules such as magnitude filtering
or visual handles. As an alternative to prioritisation, the developer can
decide to enable or disable (i.e. toggle) certain interactions based on the
application context or input data.

Prediction

One of the major issues with multimodal disambiguation is that informa-
tion in the near future can lead to a completely different interpretation of
the interaction. An interaction definition can, for instance, fully overlap
with a larger, higher prioritised definition. At a given point in time, it
is difficult to decide whether the application should be informed that a
particular interaction has been detected or that it is better to wait a
bit longer. If future events show that the long-term interaction does not
match, users might perceive the execution of the short-term interaction
as unresponsive. Late contextual information might also influence the
fusion process of primitive events that are still in the running to form
part of more complex interactions.

Verification

A second pass can be applied to the combination of events which match a
multimodal description. For example, an efficient segmentation approach
may be combined with statistical analysis tools to verify whether the
segmentation is accurate. Verification can also be used to further separate
critical interactions. For example, deleting a movie from your hard
drive is more critical than scaling a picture. Note that the concept of
bundling classifiers (also known as ensembles) is already frequently used

2.3. Criteria for Expressing Multi-Level Multimodal Fusion 35

in the machine learning domain, but it is underexplored in multimodal
programming frameworks.

Uncertainty

Uncertainty can be explicitly supported in a framework by annotating
all events with a confidence value. For instance sensors could provide
the confidence level of multi-touch locations or limb positions. The
fusion of those events could then combine these uncertainties to form a
proper threshold. Confidence values can also trickle through higher levels.
Unfortunately, this increases the complexity for developers.

User Profiling

To ease decision making, a multimodal framework should keep track of
previous results in order to provide user profiling. User profiling is benefi-
cial for multimodal descriptions which are known to cause confusion. For
example, a multimodal description can be specified too precisely (i.e. when
using exact temporal relations or without room for spatial approximation),
causing poor recognition rates when used by many different users. The
description can also be specified too loosely, causing accidental activations.
Therefore, the profiling of users, such as tracking undo operations, could
lead to an adaptation of the multimodal definition for that particular
user.

2.3.4 Accessibility and Tooling

The final category deals with the accessibility and tooling support of an
approach. A programming API can be provided in the form of a textual
or graphical programming language. A programming language provides
abstraction to a particular level of complexity. For example, does the
language aim to support a wide variety of multimodal fusion tasks or is
it a minimal language targeted for end users? In this category, we also
assess the support for adequate tooling in order to debug and refine the
multimodal processing tasks.

Readability

Kammer et al. [84] identified that multimodal and gesture definitions
are more readable when concise terms are used (i.e. D instead of Down).
They present a statistical evaluation of the readability of various gesture

36 Chapter 2. Multimodal Interaction

languages that has been conducted with a number of students in a
class setting. In contrast to the readability, they define complexity
as the number of syntactic rules that need to be followed for a correct
gesture description, including the number of brackets, colons or semicolons.
Languages with a larger number of syntactic rules are perceived to be
more complex.

Debuggability

In order to debug multimodal descriptions, developers apply pre-recorded
positive and negative sample sets to see whether the given definition is
compatible with the recorded data. This kind of simulation is rather
primitive and lacks information to properly debug multimodal descriptions
as it merely returns accuracy numbers. In order to increase debuggability,
it might be interesting to explore more advanced debugging support
such as notifying the developer of closely related (or overlapping) gesture
trajectories. In this case developers could be informed that a particular
gesture was rejected because a particular value (i.e. the x coordinate or
timestamp) was off by a few units [107].

Authoring Support

Graphical authoring frameworks for defining multimodal interaction pat-
terns provide tooling for both expert and non-developers. On the one
hand expert developers use editor support to maintain an overview of
the descriptions or use them to refine descriptions of audio processing or
3D gesture extraction tasks. Non-developers on the hand use graphical
tools to express their multimodal interaction patterns without having to
resort to powerful programming constructs. Authoring tools can provide
an external representation [82], such as provided when using tablatures [95]
or hurdles [92]. This external representation allows developers to further
refine graphically defined constraints in programming code. When dealing
with 3D input events from a Kinect, a graphical representation is valuable
to get to the correct spatial coordinates, while temporal relations are
easier to express in text.

2.4 Conclusion

In this chapter, we defined the terminology used throughout this disser-
tation. Furthermore, we contextualised our work and introduced three

2.4. Conclusion 37

levels of multimodal fusion, namely data-, feature-, and decision-level
fusion, based on existing literature. Finally, we defined 30 criteria in
four categories that characterise (1) the choice of a particular framework,
(2) the implementation of the multimodal interaction and (3) novel ap-
proaches to solve open issues in gesture programming languages. These
criteria will be used to evaluate the related work in the next chapter, as
well as to reflect on the proposed solution in this dissertation.

3
Related Work

The goal of this dissertation is to design and implement a unified mul-
timodal framework that enables fusion across the data, feature and
decision levels. The contribution lies in the combination of a novel mul-
timodal architecture, a high-level multimodal specification language and
novel concepts to define interaction. In this chapter, we categorise two
main strands of multimodal frameworks: data stream-oriented and se-
mantic inference-based approaches. The former approach is better suited
to continuously process a large number of input events. The latter provides
abstractions for decision-level fusion and application integration. We then
zoom into gesture specification languages as they expose many issues
related to multimodal fusion. Afterwards, we generalise these gesture
languages concerns to multimodal fusion descriptors. We conclude with
a discussion on the different kinds of architectures used for multimodal
interaction and show what challenges are still subject to research.

3.1 Data Streams and Semantic Inferen-
cing

In this section we discuss two strands of multimodal frameworks, namely
data stream-oriented frameworks and semantic inference-based frame-
works. We show that existing fusion engines tend to rely on an ad

39

40 Chapter 3. Related Work

hoc approach when confronted with pieces of information coming from
different abstraction levels, thereby losing their generality.

3.1.1 Data Stream-oriented Solutions

One approach to build multimodal interaction architectures is to assume
a continuous stream of information coming from different modalities
and to process them via a number of chained filters, as illustrated in
Figure 3.1. This is typically done to efficiently process streams of high
frequency data and to perform fusion on the data and/or feature level.
Typical representatives of this strategy are OpenInterface [103,142] and
Squidy [97]. Each data-source is filtered by a data stream-pipeline and
the resulting information is fused with other sources on an event-per-event
basis.

Data stream approaches advocate the use of composition boxes in
the form of a pipeline architecture [122]. Although this provides a form
of composition, data stream approaches do not provide a fundamental
solution to interlink temporal relations between multiple input sources.
All incoming events are handled one by one and the programmer manually
needs to take care of the intermediate results. This leads to difficulties
in the management of complex semantic interpretations. Data stream-
oriented architectures show their limits when high-throughput information
such as accelerometer data (typically more than 25 events per second)
should be linked with low-throughput semantic-level information such as
speech (usually less than one event per second).

Figure 3.1: A pipeline architecture for data stream-oriented fusion

3.1.2 Semantic Inferencing Solutions

A second type of framework for multimodal interaction focuses on support-
ing fusion of high-level information at the decision level. These approaches

3.1. Data Streams and Semantic Inferencing 41

offer constructs to specify sets of information that is required before an
action is triggered. Information gathered from the different input modal-
ities is assumed to be classified correctly beforehand. These approaches
work best with relatively low data frequency and highly semantic data.

Four classes of fusion algorithms are used to perform fusion at the
decision level:

• Meaning frame-based fusion [158] uses data structures called
frames for representing semantic-level data coming from various
sources or modalities. In these structures, objects are represented
as attribute value pairs.

• Unification-based fusion [78] is based on recursively merging at-
tribute value structures to infer a high-level interpretation of user
input.

• Finite-state machine-based approaches [76] model the flow of
input and output through a number of states, resulting in a better
integration with strongly temporal modalities, such as speech, be-
cause of their sequential flow. However, describing a flow of events
with a non-trivial temporal ordering is much more difficult using
state machines.

• Symbolic/statistical fusion, such as the Member-Team-Commit-
tee (MTC) algorithm used in Quickset [164] or the probabilistic
approach of Chai et al. [22], is an evolution of standard symbolic
unification-based approaches, which adds statistical processing tech-
niques to the fusion techniques described above. These kinds of
hybrid fusion techniques have been demonstrated to achieve robust
and reliable results. However, the lack of support for segmentation
is problematic to process information from novel sensors as they
provide a continuous input stream.

These approaches have been shown to work well for fusing semantic-
level events [39]. However, when confronted with lower level data, such
as streams of 2D or 3D coordinates or data coming from accelerometers,
semantic inference-based approaches encounter difficulties in managing
the high frequency of input data [43]. In order to show their potential,
these approaches assume that the different modalities have already been
processed at the data level and therefore can reason over semantic-level
information.

42 Chapter 3. Related Work

However, even when confronted with semantic-level data, several
shortcomings can arise with existing approaches. First, they rely on the
results of the modality-level recognisers without having the possibility to
exploit the actual raw data. This can lead to problems in interpretation.
For example, consider continuous gestures such as pointing in thin air.
On the one hand, low level recognisers need to decide on a single pointing
event, without contextual information or hints on the timing. This unlikely
result in an appropriate event which can be used at a higher level. On
the other hand, when continuous data is provided at a high frequency,
decision-level fusion algorithms cannot handle the computational load.
Therefore, existing decision-level algorithms only keep track of the latest
events, which is problematic when fusing input from speech recognisers,
which are known to introduce a lot of latency.

Second, as decision-level fusion engines assume that the creation of
semantic events happens at a lower level, there is no (or very limited)
control on what the refresh rate of these continuous gestures is. The
typical solution for this scenario is to create a single pointing event every
time the hand is detected to be in a steady state. Unfortunately this
considerably slows down the interaction and introduces usability issues.

A third issue that arises when employing meaning frames or similar
fusion algorithms is related to the previously discussed problem of overlap-
ping matches. When a user aborts and restarts their interaction, thereby
reissuing their command, the slot in the meaning frame is already occupied.
For example, when a speech utterance of “hello” is repeated, the second
event is refused by the algorithm. This results in a false negative as the
time gap between the first speech utterance and newer pointing gesture
becomes too large. The second speech utterance could also overwrite
the first one, however, this means that another valid combination will be
rejected without verification to the context.

Next to these three generic issues, we observe that finite-state machine-
based approaches such as presented by Johnston et al. [76], typically lack
the constructs to express advanced temporal conditions. The reason for
this is that a finite-state machine (FSM) enforces the input of events in
predefined steps (i.e. event x triggers a transition from state a to b). When
fusing concurrent input, all possible combinations need to be expressed
manually.

3.2. Positioning of Related Work 43

3.1.3 Irreconcilable Approaches?

In conclusion, data stream-oriented architectures are very efficient when
handling data streams and semantic inference-based approaches process
semantic-level information with ease. However, none of the presented
approaches is efficient in handling both high-frequency data streams at a
low level of abstraction and low-frequency semantic pieces of information
at a high abstraction level. Moreover, the possibility to use data-level,
feature-level and decision-level information on same stream of data at
the same time is hindered by today’s frameworks. By designing a unified
fusion framework, the development of fusion across levels is encouraged,
which allows the influence of decision-level information to make decisions
at the lower-level. For example, derived user identification at the decision
level can improve gesture or speech input. A second example is the
analysis of target objects during free-air pointing to influence skeleton
tracking. In the next section, we position the related work according
to the criteria devised in Chapter 2. Afterwards, we describe a number
of gesture and multimodal languages and emphasise their position in a
few criteria. We then continue with a discussion on the architecture of
multimodal fusion engines.

3.2 Positioning of Related Work

In this section we evaluate the related work to our criteria defined in
Section 2.3. We performed a best-effort evaluation for the most relevant
frameworks to our work. All results use the latest information available for
each approach albeit some of them bundled (for example GDL (Echtler)
and GiSpL are bundled as they are based on the same approach from
the same authors). The goal of these figures is to identify the focus
of existing work and to visualise open issues in multimodal framework
design. As mentioned in Section 2.3, we devised 30 criteria by keeping
track of features proposed by different approaches, including domains
such as machine learning and template matching.

In Figures 3.2(a) to 3.2(h) we provide an indicative classifica-
tion of existing gesture language-oriented frameworks, including GDL
(Khandkar) [91], GeForMT [84–86], GDL (Echtler) [44,47], Proton [94,95],
GestureAgents [80], EventHurdle [92, 93], GestIT [148] and ICO [61].
In the context of this dissertation, we consider gesture frameworks as
data-level frameworks.

44 Chapter 3. Related Work

Figures 3.3(a) to 3.3(g) demonstrate an indicative classification
of generic multimodal frameworks, including QuickSet [27, 74, 164],
MIML [102], PATE [129], OpenInterface [103, 142], Squidy [97], Hep-
haisTK [39,40,42,43] and DynaMo [5,6].

The frameworks are sorted chronologically according to the date of
their first publication. For each approach, we provide a score ranging from
0 (no support) to 5 (fully supported by a high level of abstraction) for
every individual criteria, together with a short explanation (found in the
dataset). The dataset and an up-to-date discussion of the axes is available
online1. A snapshot of the dataset is provided in Appendix C. It should
be noted that most of our criteria can only be evaluated subjectively.
However, results for the most recent approaches, including GeForMT,
GDL (Echtler), GestIT, ICO, were peer reviewed and discussed with the
corresponding authors during the workshop on Engineering Gestures for
Multimodal User Interfaces (EGMI) [46]. An interactive visualisation of
the criteria for each of the approaches can be accessed online2.

1Dataset for the evaluation of the criteria: http://soft.vub.ac.be/~lhoste/research/

multimodal/criteria/radarchart-mm/data.js
2Interactive visualisation of the dataset: http://soft.vub.ac.be/~lhoste/research/

multimodal/criteria

http://soft.vub.ac.be/~lhoste/research/multimodal/criteria/radarchart-mm/data.js
http://soft.vub.ac.be/~lhoste/research/multimodal/criteria/radarchart-mm/data.js
http://soft.vub.ac.be/~lhoste/research/multimodal/criteria
http://soft.vub.ac.be/~lhoste/research/multimodal/criteria

3.2. Positioning of Related Work 45

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(a) GDL (Khandkar)

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(b) GeForMT

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(c) GDL (Echtler)

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(d) Proton

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(e) GestureAgents

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(f) EventHurdle

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(g) GestIT

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(h) ICO

Figure 3.2: Indicative classification of gesture frameworks. The labels are
defined as follows: (1) modularisation, (2) composition, (3) customisation
and extensibility, (4) negation, (5) application symbiosis, (6) activation
policy, (7) unbound variables and unification, (8) online processing, (9) off-
line processing, (10) partial overlapping matches, (11) segmentation, (12)
synchronising streams, (13) event expiration, (14) long-term reasoning,
(15) concurrent interaction, (16) portability, serialisation and embeddab-
ility, (17) runtime definitions and device instantiation, (18) reliability
and scalability, (19) spatial specification, (20) temporal specification, (21)
spatio-temporal specification, (22) identification and grouping, (23) prior-
itisation and toggling, (24) prediction, (25) verification, (26) uncertainty,
(27) user profiling, (28) readability, (29) debuggability, (30) authoring
support.

46 Chapter 3. Related Work

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(a) QuickSet

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(b) MIML

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(c) PATE

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(d) OpenInterface

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(e) Squidy

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(f) HephaisTK

1

2

3

4

5

130

29

28

27

26

25

24

23

22

21

20

19

18

17 16 15

14

13

12

11

10

9

8

7

6

5

4

3

2

(g) DynaMo

Figure 3.3: Indicative classification of multimodal frameworks. The
labels are defined as follows: (1) modularisation, (2) composition, (3)
customisation and extensibility, (4) negation, (5) application symbiosis,
(6) activation policy, (7) unbound variables and unification, (8) online
processing, (9) offline processing, (10) partial overlapping matches, (11)
segmentation, (12) synchronising streams, (13) event expiration, (14) long-
term reasoning, (15) concurrent interaction, (16) portability, serialisation
and embeddability, (17) runtime definitions and device instantiation,
(18) reliability and scalability, (19) spatial specification, (20) temporal
specification, (21) spatio-temporal specification, (22) identification and
grouping, (23) prioritisation and toggling, (24) prediction, (25) verification,
(26) uncertainty, (27) user profiling, (28) readability, (29) debuggability,
(30) authoring support.

3.3. Multimodal Languages 47

3.3 Multimodal Languages

The goal of multimodal frameworks is to abstract the complexity of
extracting meaningful information from multiple input event streams.
These abstractions are found in various flavours, such as programming
languages, application programming interfaces (APIs) and visual editors.
In this section we first discuss a number of data-level fusion languages, in
particular DSLs for gesture specification. Generic data-level multimodal
frameworks focus on architectural abstractions instead of novel program-
ming abstractions (Section 3.4). We then proceed with a discussion of
feature- and decision-level programming abstractions.

3.3.1 Data-level Gesture Languages

Expressing data-level fusion is hard due to the low-level information
and high-frequency of the data throughput. We further observe that
programming languages for data-level fusion are underrepresented in
existing multimodal solutions. Therefore this section discusses more
general related work for fusing multiple raw touch streams, accelerometer
data and full-body streams. We focus on these sensor inputs because their
complex multi-stream behaviour (i.e. multiple fingers and limbs) resembles
multimodal processing [61]. Similar to multimodal input, multi-touch
events can vary according to the context, task, user and time [100].

Running Example

We present an example of a simple hold-and-rotate multi-touch gesture
which we will use throughout this discussion in order to assess various
aspects of existing gesture languages. The example is visualised in Fig-
ure 3.4 and is defined by the following low-level specification in plain
English:

Find three events of three different fingers touching the surface in any
order at about the same time. All these fingers should be located near each
other (in a bounding circle). Two fingers should be approximately vertically
aligned and the third finger should be on the left of the others. Find follow-
up events of the two vertically aligned fingers such that it corresponds to
a movement to the right (i.e. with a minimum and maximum x and y
displacement). The third finger should remain approximately stationary,
without lifting up during the time interval defined by the movement of the
two other fingers.

48 Chapter 3. Related Work

Figure 3.4: The hold-and-rotate multi-touch gesture

The hold-and-rotate gesture can, for instance, be used in 3D drawing
applications such as AutoDesk3 to rotate objects along a fixed centre.
The following paragraphs discuss existing gesture languages with respect
to this running example.

Gesture Definition Language The Gesture Definition Language of
Khandkar et al. (GDL-K) [91] focuses on four mains areas: modularisation,
flexibility, extensibility and hardware independence (the Gesture Defin-
ition Language was originally abbreviated to GDL, but we use GDL-K
to differentiate between another approach called Gesture Description
Language by Echtler et al. [47] later described in this section). The
authors propose a DSL that allows developers to describe multi-touch
gestures as pattern definitions rather than implementing them manually.
Unfortunately we have been unable to draft an implementation for the
running example due to the lack of information about the built-in func-
tionality and lack of support for user-defined operators. An example
lasso gesture is shown in Listing 3.1. It specifies a name (line 1) enabling
the modularisation of gestures, a validate block (lines 2 to 8) which
contains the logic for detecting the multi-touch gesture from raw data
and a return command (lines 9 and 10) to express the result. Multiple
primitive conditions are connected via an implicit logical AND operation,
allowing easy customisation and refinement. We further observe the use
of built-in functionality such as Closed loop, length, and Enclosed

area to reduce the complexity for the programmer. However, this im-
plies that many gestures require extensions (with a complex imperative
implementation) to the interpreter. A single gesture can be composed
of multiple validate blocks, which is useful to describe multi-stroke

3AutoDesk: http://www.autodesk.com

http://www.autodesk.com

3.3. Multimodal Languages 49

gestures. However, multiple gesture definitions cannot be combined,
thus severely limiting the composition of complex multi-touch gestures.
Khandkar et al. acknowledge that the order of conditions can significantly
affect the overall performance of the system, as it evaluates the conditions
in order in a lazy manner. A short discussion of GDL-K’s position within
the criteria outlined in Chapter 2, can be found in Appendix C.

Listing 3.1: Lasso GDL-K implementation
1 name: Lasso
2 validate
3 Touch state: TouchUp
4 Touch limit: 1
5 Closed loop and
6 Touch path bounding box: 200x200..1000x1000 and
7 Touch path length: 600..100000 and
8 Enclosed area: 5000x1000000
9 return

10 Touch points

GeForMT GeForMT [84–86] positions itself as a high level and access-
ible language for defining multi-touch gestures. The language offers a
number of atomic building blocks such as shapes (for example a circle
or line) and directions (such as north and southeast) that can be com-
bined with relational operators (such as cross or spread). Custom shapes
are supported by relying on the $1 dollar recogniser [162] which is a
template matcher (Section 3.3.3). However specific constraints such as
the maximum horizontal displacement of a swipe right gesture or the
vertical alignment of two fingers is not possible. Listing 3.2 demonstrates
that the GeForMT language is a readable language [84] providing concise
definitions of multi-touch gestures. Unfortunately, its simplicity allows
too much variation on the gesture execution, which lowers the precision.
For example, one cannot specify most spatio-temporal relations in the
hold-and-rotate gesture such as the spatial neighbourhood and vertical
alignment of the fingers or time intervals. Furthermore, the composition of
gestures, segmentation and dealing with overlapping matches is currently
not supported [84]. It should also be noted that the identification and
grouping problem is inherently problematic due to the lack of references.
For example, expressing a line up by finger a, followed by a line up by
finger b, followed by a line up by finger a is not possible.

Listing 3.2: Hold-and-rotate GeForMT implementation
1 1F(HOLD(o)) + 1F(LINE(a)) ∗ 1F(LINE(a))

50 Chapter 3. Related Work

GDL-E The Gesture Description Language (GDL-E, originally abbrevi-
ated as GDL but we suffix it due to the overlap with a previously discussed
approach) by Echtler et al [44,47] is another early approach that allows
the decoupling of low-level touch gestures from the user interface code.
A gesture definition consists of three main elements: regions, gestures
and features. Rectangles or arbitrary shapes filter touch events based on
its spatial coordinates. A region can then enable local gestures that in
their term are defined by a number of features. For example, a two-finger
horizontal swipe right gesture can be defined by means of a combination
of the ObjectCount feature (expressing the need for two fingers) and a
motion feature (to define a movement to the right). The implementation
of the running example is finalised by describing the stationary finger
using the ObjectDelay feature, as shown in Listing 3.3 (lines 4 to 6).
Unfortunately, specifying spatio-temporal relations or dealing with finger
identification is not supported.

Listing 3.3: Hold-and-rotate GDL-E implementation
1 hold−and−rotate
2 Flag OneShot
3 Region 0 0 100 20
4 ObjectDelay 255 1 1 0
5 Filter 131072 // object type
6 1000
7 ObjectCount 255 2 2 0
8 Motion 255
9 100 0 0 // lower boundaries

10 1000 10 10 // upper boundaries
11 0 0 0 // result (empty)

GDL-E offers a number of built-in features such as the path feature.
It can be used to specify a gesture trajectory in greater detail. The
patch feature enables a declarative specification of the trajectory in a
number of points and calculates an overall distance score on how well
a given gesture matches the definition. However, there is no refined
control over minimum and maximum thresholds for each individual point.
Furthermore, GDL-E does not support segmentation. GDL-E can process
concurrent gestures and has a tight GUI integration with the application
level with dynamically changing region specifications at runtime.

The Gestural Interface Specification Language (GISpL)4 [44] is a
second iteration of GDL-E that focuses on providing the unambiguous
description of gestures used in different multimodal interfaces. This
includes multi-touch, digital pens, hand-held controllers or free air gestures.

4Gestural Interface Specification Language (GISpL): http://www.gispl.org/

http://www.gispl.org/

3.3. Multimodal Languages 51

GISpL provides additional features, such as an advanced delay operator,
access to historical data and novel activation policies. The language is
based on JSON to allow an easier integration with existing applications.
However, it still lacks spatio-temporal operators between multiple features,
which are required to implement the running example. In Listing 3.4
we show our best effort with GISpL. Unfortunately, due to the use of
preprocessed features the Scale feature on line 15 will never reach the
intended behaviour since one cannot express that it should exclude the
hold finger to calculate the relative position between the two moving
fingers. Without this exclusion the scale feature will erroneously result in
a match if a finger moves towards the holding finger. We further elaborate
on the necessity of user-defined spatio-temporal operators in the next
approach on our list, namely Proton.

Listing 3.4: Hold-and-rotate GISpL implementation
1 { ”name”: ”hold and rotate”,
2 ”flags”: ”oneshot”,
3 ”region”:{
4 ”id”:”max region”,
5 ”flags”:”poly”,
6 ”filters”:2,
7 ”points”:[[0, 0], [0.2, 0.2]] // an array of x, y coordinates specify a region
8 },
9 ”features”:[

10 { ”type”:”Count”,
11 ”filters”:3, // 3 fingers required
12 ”constraints”:[2,2,2], // 3 times bitmask '2' to represent touch events
13 ”result”:[]
14 },{
15 ”type”:”Scale”,
16 ”filters”:2,
17 ”constraints”:[−5,5], // two fingers should move without scaling
18 ”result”:[]
19 },{
20 ”type”:”Delay”,
21 ”filters”:1,
22 ”constraints”:[10,50], // temporal interval
23 ”result”:[]
24 }]}

Proton Regular expressions are a common way to match text patterns.
Proton [94,95] extends the regular expressions semantics to multi-touch
gestures. Developers can use Kleene operators to specify multiple occur-
rences and vertical bars to express the logical OR. The most important
aspect of Proton is the detection of gesture conflicts at compile time.
This vastly improves debugging capabilities and removes dealing with
uncertainty at runtime. However, it also restricts a lot of potential gesture

52 Chapter 3. Related Work

definitions that could coexist without problems. Proton further assumes
that only one gesture can be active at a particular time, limiting the
runtime interaction. When a gesture cannot be expressed in a linear
temporal relation, regular expressions quickly reach their limitations. For
example, developers cannot express that the movement of a finger should
overlap in time with another finger movement. Additionally, when defin-
ing gestures where multiple conditions are allowed to be executed first
(a before b or b before a), Proton definitions suffer from a combinatorial
explosion. This does not scale well for multi-stream processing where more
than three fingers can move at the same time. Therefore the definition of
the running example would require a major engineering effort and lose its
readability.

To clarify the need for unbound variables and spatial and temporal
operators, we analyse a simplified gesture shown by the Kin et al. [94]
in Listing 3.5. In this example, two fingers should move towards each
other. In Proton this can be denoted by concatenating different states
of touch events, namely D when touching down on the surface with the
finger, M for an arbitrary movement and U when lifting the finger up.
These states can be superscripted and subscripted with attributes such
as cardinal directions (i.e. north, east, south, west). Therefore, MN

expresses a movement to the north, ME to the east, MS to the south,
MW to the west, and no movement is defined as MO. A second attribute
is an incremental number for each finger on the display. For example,
the expression ME

1 M
W
2 means that finger 1 should move east followed by

the movement of finger 2 to the west. When either finger can move first,
the developer needs to enrich the definition using the OR (|) operator:
(ME

1 |MW
2)(ME

1 |MW
2). However this allows the first finger to move twice

to the east and thus does not define that both fingers should be moving
towards each other. In order to specify that both fingers should move, we
need to introduce an explicit ME

1 and MW
2 between the code resulting in

a manual expansion of the definition (line 2 in Listing 3.5). The Kleene
star operator (∗) in the code allows capturing multiple move events from
the same finger. The additional prefix attributes in Listing 3.5, such as
ML: and (MR:) are used to split the screen in a left and right part.

Listing 3.5: A Proton implementation of two fingers moving towards each
other

1 DL:O
1 ML:O

1 ∗DR:O
2 (ML:O

1 |MR:O
2)∗

2 (ML:E
1 (ML:E

1 |MR:O
2) ∗MR:W

2 MR:W
2 (ML:O

1 |MR:W
2) ∗ML:E

1)

3 (M
L:O|E
1 |MR:O|W

2) ∗ (U
L:O|E
1 M

R:O|W
2 ∗ UR:O|W

2 |UR:O|W
2 M

L:O|E
1 ∗ UL:O|E

1)

3.3. Multimodal Languages 53

We can observe multiple facts from the declarative Proton code in
Listing 3.5:

1. The developer needs to express that a finger needs to move to the
east. Unfortunately, Proton does not provide scoping mechanisms
to express a spatial constraint about the movement of a particular
finger. Therefore, the first character in the superscript (E) and the
number in the subscript attribute (1) are repeated for every state
(this is similar for the other finger, namely W and 2). This is error
prone, redundant and makes the code hard to read. This example
shows why custom expressions are necessary: developers want to
express that a certain finger identifier should be linked to a certain
attribute for the whole gesture (or a part of it).

2. Identifying fingers by an explicit number leads to limitations on
concurrent gesture execution. When a second user puts down extra
fingers on the touch screen at the wrong time, the combination
of fingers number 1 and 2 can map to different users. At another
time, fingers of the second user get assigned the numbers 3 and 4,
which are not supported by the definition. The presence of finger
numbers in Proton code is caused by a leaky hardware abstraction.
In terms of Chapter 2, this problem is attributed to the lack of
unbound variables and the possibility to easily identify and group
events because the numbers have to be explicitly written down in
the code.

3. Line 1 is incomplete because DL:O
1 specifies that the left finger

should touch the surface first. Ideally, the statement should be
replaced with (DL:O

1 |DR:O
2) to also allow the touch down of the right

finger before the left. However, this requires an update the second
and third statement (ML:O

1) with a combinatorial expansion. This
problem is attributed to the lack of temporal operators. Whenever a
combination of events can happen at the same time, a combinatorial
expansion of the current and potentially following code is required.
Therefore, the accidental complexity of Proton increases when the
execution order of a gesture needs to be flexible.

4. The use of cardinal directions is suboptimal. It forces developers to
use explicit labels (i.e. south or west), abstracts too much informa-
tion (i.e. the distance and speed is not accessible for the developer)
and requires a system-wide slack variable to segment the event

54 Chapter 3. Related Work

stream into pieces. This limits the ability to specify crucial proper-
ties such as the minimum and maximum distances. Furthermore,
cardinal directions are not sufficient to express curvy gestures. This
is a common problem with approaches that rely on quantisation
processes. Quantisation processes transform a set of input values
into a particular value, thereby losing potentially valuable informa-
tion, especially when performed system-wide without support for
customisation.

5. In Proton, cardinal direction attributes are calculated between two
frames causing sensitive sensors to invalidate the definition due to
jittering (i.e. a single noise event such as MN

1 or MS
1 invalidates the

entire gesture presented in Listing 3.5). Many sensors are susceptible
to this behaviour and gesture languages should therefore deal with
this form of uncertainty. Proton does not.

6. To support a pinch gesture, Proton provides additional superscript
attributes (i.e. MP for pinch and MS for spreading). However
these attributes are preprocessed on a global level without context,
meaning that they will not work when three or more fingers are
on the screen since most movement with three fingers results in
both pinching and spreading. This issue can be solved by providing
spatio-temporal operators that can be defined by the developer,
rather than providing a limited set of quantisation features5.

7. Extending Proton with additional attributes is done in the host
language. However, implementing these attributes is hard in im-
perative languages, as discussed in Chapter 2, as they require to
manually manage intermediate states [141,148].

8. The left (ML:) and right (MR:) attributes are used when splitting
the screen in two. This is Proton’s primitive manner of grouping.
In this case it supports the left and right finger. However, statically
splitting the screen is not flexible enough to support multiple users
in many other scenarios.

9. A final observation from this code is about the typability of Proton.
Most programming languages require ASCII- or Unicode-based code.
Therefore the integration of these definitions in existing code bases

5Furthermore, the attribute S for spreading is overloaded in the existing Proton examples, as the S
symbol was already used to denote the south direction.

3.3. Multimodal Languages 55

reduces the readability of Proton code. Listing 3.6 demonstrates
the LATEX variant of the programming code.

Listing 3.6: Demonstrating the typeability of a Proton implementation of
two fingers moving towards each other in LATEX

1 $D 1ˆ{L:O} M 1ˆ{L:O}∗D 2ˆ{R:O}(M 1ˆ{L:O}|M 2ˆ{R:O})∗...$
2 $(M 1ˆ{L:E}(M 1ˆ{L:E}|M 2ˆ{R:O})∗M 2ˆ{R:W}M 2ˆ{R:W}
3 (M 1ˆ{L:O}|M 2ˆ{R:W})∗M 1ˆ{L:E})...$
4 $(M 1ˆ{L:O|E}|M 2ˆ{R:O|W})∗(U 1ˆ{L:O|E}M 2ˆ{R:O|W}
5 ∗U 2ˆ{R:O|W}|U 2ˆ{R:O|W}M 1ˆ{L:O|E}∗U 1ˆ{L:O|E})$

These nine observations give a detailed insight on some of the remain-
ing challenges of gesture language research. In particular, readability [84],
temporal expressions and concurrent interaction are poorly supported
in Proton. Therefore Kin et al. [94] additionally present tablatures, a
graphical interface to define gestures, as further discussed in Section 3.3.2.

GestureAgents GestureAgents [80] is a framework that primarily fo-
cuses on gesture disambiguation on a single multi-touch table. Developers
can coordinate input events to obtain concurrent multi-user multi-tasking
interaction. It is one of the few frameworks providing programming
abstractions for gesture disambiguation as observed in the comparison
figures (Figure 3.2(e)). The basic concept consists of of an agent and a
recogniser. Every agent emits events to a recogniser and is responsible for
maintaining the axiom that one input event can only be part of one ges-
ture. Agents can be composed of other agents to support modularisation
and composition. The authors assume the existence of the implementation
of a gestures and therefore do not provide any abstractions to specify
gestures. Their focus lies on the disambiguation between gestures by
proposing four recognition states, as illustrated in Figure 3.56.

1. The initial state is used when the recogniser is waiting for new
agents. Agents control the event sources and make it possible to
define that an input event can be part of only one gesture.

2. When an agent is acquired and provides an event source, the recog-
niser starts matching potential gestures. This is called the evaluation
state. This state should be as short as possible because it blocks the
activation of other recognisers that are eager to transition to the
recognition state using the same events. Therefore the evaluation
state can be seen as an early spotting process.

6Figure 3.5 reproduced with permission of Carles Fernández Julià

56 Chapter 3. Related Work

3. The recognition state is used when a recogniser is confident that the
input events match its gesture definition. The engine sticks to the
decision and waits for final events or activates the gestures callbacks
in an online manner.

4. Recognition fails or finishes when incompatible events are captured
or when a timeout expires.

Initial State Evaluation
Recognition

do/ Feed own Agent

Finished/Failed

Acquire Agent

Confirm Agents

Finish

Fail

Acquire Agent

Figure 3.5: State diagram of GestureAgents recognisers

With these abstractions is it possible to disambiguate between a tap
and double tap gesture since the double tap agent will not release the
input events to trigger a tap as long as the double tap is a potential
gesture candidate. Therefore the timeout slack variable should be as low
as possible. To detect a double tap in a multi-user scenario, additional
abstractions are required. The tap of a second user right after the tap
of the first user might incorrectly invalidate the double tap recogniser
because the spatial distance between the taps is too large. Therefore
GestureAgents provides a technique of competition called Agent Exclus-
ivity. When considering alternative gestures duplicates of the recogniser
instances are taken and each of these instances must compete for exclus-
ivity. Acquiring contextual information can also be used to discriminate
between gestures. Exclusivity abstractions and duplication features allow
developers to deal with future events, prioritisation and offers a primitive
form of grouping. However, it requires quite complex code logic in order to
know whether a given event is a potential candidate for grouping. A lot of
combinations are possible, potentially affecting the performance. Further-
more implementing and evaluating all these combinations at design time
is a challenging task. Unfortunately there are no abstractions for gesture
specification and therefore we are unable to provide an implementation
for the running example without major engineering effort. Developers
are required to implement their gestures in an imperative programming
language (Python) without additional language or API support.

3.3. Multimodal Languages 57

GestIT Proton detects conflicting gestures at compile time by scanning
for identical prefixes. However when conflicts are detected the developer
is required to adapt (and typically unify) their implementation to remove
the ambiguity. This ruins composition as argued by Spano et al. [148] as
multiple gesture definitions are merged. GestIT uses a Proton-compatible
declarative language with the following operators: iterative, sequence,
parallel, choice, disabling and order independence. The disabling operator
can be used to stop iteration and the order independence operator par-
tially solves the manual combinatorial expansion problem Proton suffers
from. However, expressing temporal relations such as defining a minimum
or maximum time range between constraints is still not supported. Fur-
thermore, GestIT proposes a different solution than Proton in order to
deal with partial overlapping gesture definitions. The overlapping gesture
definitions are executed in parallel and as soon as a gesture activates it
will inform the application. When the slower gesture also activates using
similar input events, it will activate with an extra parameter to list the
gestures it conflicts with. This solves (1) the problem of implementing
partial overlapping gestures; (2) latency problems from the user perspect-
ive; and (3) the context-less execution of two different gesture activations
at the application side. This implies that developers may have to revert
state at the application level. This results in non-trivial code and might
not be possible for some cases.

In Listing 3.7 an implementation of the hold-and-rotate gesture is
presented. Line 1 uses the order independence operator to allow every
finger to touch first. However it should be noted that the numbering of
the fingers directly maps to the identification schema of the underlying
multi-touch sensor. The authors propose to extend the library to verify all
combinations to resolve the identification and unbound variable problem.
Custom spatial operators such as bbox (a rectangular bounding box
boolean function), vc (checking the vertical alignment) and others are
used to express the movement of the fingers. These boolean functions
are implemented in the host language and have access to historical data
within a predefined time window.

Listing 3.8 shows the integration of GestIT into a XAML user interface
application7. Line 6 registers a callback function that will be triggered as
soon as the first part of the gesture gets detected. In this way fine-grained
incremental feedback can be sent to the application level. However it

7Extensible Application Markup Language (XAML): http://msdn.microsoft.com/en-us/

library/ms752059.aspx

http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx

58 Chapter 3. Related Work

does reduce the reusability of the gesture definition because it is highly
case specific.

Recently, the authors of GestIT validated their abstractions with
the CARE [147] properties. They model complementary, assignment,
redundancy and equivalence using the available operators in GestIT,
paving the way to incorporate additional input modalities.

Listing 3.7: Two fingers moving towards each other GestIT implementa-
tion

1 (Start1[bbox] |=| Start2[bbox ∧ vc] |=| Start3[bbox ∧ vc]) >>
2 (Move∗2[rx ∧ dist] || Move∗3[rx ∧ dist])[>
3 (End1 |=| End2 |=| End3)

Listing 3.8: Integrating GestIT code into a XAML application
1 <g:GestureDefinition x:Name=”moveSelection”>
2 <g:Sequence Iterative=”True”>
3 <!−− turn (front of the screen) −−>
4 <g:Change Feature=”ShoulderLeft” Accepts=”screenFront”>
5 <g:Change.Completed>
6 <g:Handler method=”screenFront Completed”/>
7 </g:Change.Completed>
8 </g:Change>
9 <g:Disabling>

10 <!−− grab gesture −−>
11 <g:Disabling Iterative=”True”>
12 <g:Change Feature=”HandRight” Iterative=”True”>
13 <g:Change.Completed>
14 <g:Handler method=”moveHand Completed” />
15 </g:Change.Completed>
16 </g:Change>
17 <g:Change Feature=”OpenRightHand” Accepts=”rightHandClosed”>
18 <g:Change.Completed>
19 <g:Handler method=”rightHandClosed Completed”/>
20 </g:Change.Completed>
21 </g:Change>
22 </g:Disabling>
23 <!−− turn (not in front of the screen) −−>
24 <g:Change Feature=”ShoulderLeft” Accepts=”notScreenFront”>
25 <g:Change.Completed>
26 <g:Handler method=”notScreenFront Completed”/>
27 </g:Change.Completed>
28 </g:Change>
29 </g:Disabling>
30 </g:Sequence>
31 </g:GestureDefinition>

ICO Interactive Cooperative Object (ICO) is a formal description tech-
nique based on Petri nets to model multi-touch and multimodal interaction.
ICO offers reachability graphs, invariants, liveness, consistency and pre-
cedence properties to assist the developer in debugging. It also increases

3.3. Multimodal Languages 59

the reliability of the system. By offering explicit fork and join operations,
ICO supports overlapping gestures and concurrent interaction. A final
interesting property of ICO is the use of dynamic finger clustering to deal
with the grouping problem. Unfortunately due to the use of Petri nets, the
modelling of all possible transitions has to be complete. Therefore ICO
is labour intensive and requires a visual editor to keep track of all cases.
On the data-level, ICO does not offer spatial abstractions to ease the
development of gestures. The ICO editor is not freely available. Therefore
we cannot provide an implementation of our hold-and-rotate example.

3.3.2 Gesture Authoring

When input events can be visualised in an accessible manner, visual
programming abstractions can be used to define patterns. Such tools
allow developers to visually define and modify gesture definitions, as
discussed in the following paragraphs.

Event Hurdle With Event Hurdle [92], programmers use a visual
markup language to draw directed line segments (i.e. a so-called hurdle is
represented by a blue line in Figure 3.6) that the sensor trajectory should
pass. This is useful for quick prototyping as it requires no programming
knowledge and the concept is easily understood [92]. An example of the
coding process is shown in Figure 3.6. Additional compositions such
as serial, parallel and recursive are supported. Furthermore, the use
of false hurdles allows developers to express that certain trajectories
should be avoided (i.e. negated). The recognition engine is based on
finite-state machines but it is unclear how accessible and modifiable the
generated code is. Unfortunately the support for multi-touch and multi-
stream gestures is very limited and our running example could not be
implemented due to the lack of temporal abstractions to link multiple
finger strokes. This is caused by the fact that hurdles have a strict
ordering.

Tablatures As mentioned before, gestures implemented in Proton can
be challenging to read. Therefore the authors proposed a visual alternative
called tablatures [94]. A tablature is the visual representation of a Proton
implementation and helps developers in identifying temporal patterns in
a gesture. An example is shown in Figure 3.7. In this gesture, the first
finger touches a delete icon (represented by label d) while the second finger

60 Chapter 3. Related Work

Figure 3.6: A gesture implementation based on two event hurdles

selects (s) one or multiple items (∗) that should be removed. In their
evaluation Kin et al. [94] show that tablatures are easier to understand
than the regular expressions of Proton and its Objective-C variants.

Figure 3.7: Implementing a delete gesture using tablatures

3.3.3 Template Matching and Machine Learning

Instead of relying on a language to describe gestures, algorithms such
as Rubine [137], Dynamic Time Warping [32], the $1 recogniser [162]
and Protractor [106] recognise gestures by calculating a distance score
between a set of input events and one or more pre-recorded samples.
These samples form the template of a gesture. A benefit of template

3.3. Multimodal Languages 61

matching is that no programming knowledge is required. The user can
register a new gesture by executing it multiple times and labelling it with
a name. A user then needs to set a threshold that will trigger the action
of the gesture if the distance between the input and the sample is lower
than that threshold. However, the recognition process slows down with
an increasing number of samples. Template matching is frequently used
for single or multi-stoke [4] but does not perform well for multi-touch
gestures [109].

In contrast to template matchers, machine learning solutions distil a
single model from the set of samples. A training procedure tries to extract
the most characteristic features for each gesture. Neural Networks (NN),
Hidden Markov Models (HMM) and Support Vector Machines (SVM) are
typical examples of such learners. These approaches are very popular due
to their ability to learn complex patterns. Furthermore, they perform
well if many samples are available since a single model of the gesture is
distilled which avoids comparing the given input events to all templates
at runtime. However, learning approaches require an extensive amount of
training data [48,104].

In terms of multimodal interaction, Van Seghbroeck et al. [155] target
the entire chain, from the creation of profiles for various input modalities
to classification using HMM. A major disadvantage of their approach is
that they do not allow human developers to verify nor modify the results
produced by classification algorithms. This is due to the lack of an external
representation [82]. Furthermore example-based approaches provide little
control to developers [108]. Lü et al. [108] argue that developers should
be able to provide more information about the gestures. A first example
is given in Figure 3.8 where a triangle and a sector can be disambiguated
by describing that they exists out of 3 lines versus two lines and an arc.
Lü continues with a second example about a spring gesture that may
contain a varying number of zigzags. In order to recognise this gesture,
all variations must be part of the sample set, which requires a lot of
effort and often results in poor definition. Finally, some gestures require
that some attributes such as the direction of an arrow need to be part of
the recognition result. Template matchers and machine learning-based
approaches often fail to provide this kind of valuable information, as they
only return a score.

A number of frameworks, such as iGesture [145] and Weka [59] provide
a uniform API for a number of template matchers and machine learning
solutions. In particular, the iGesture framework bundles classification
algorithms such as DTW, Rubine [137], SiGeR [152] and Hidden Markov

62 Chapter 3. Related Work

Triangle Sector
Figure 3.8: A triangle and a sector gesture

Models. This enables developers to experiment with multiple algorithms
to obtain the best classification results.

3.3.4 Decision-level Multimodal Languages

In this section we broaden the scope to decision-level multimodal fusion
language abstractions. In a recent survey, Dumas et al. [41] demonstrate
the lack of higher-level programming tools for multi-level multimodal
interaction. The most notable decision-level approaches are QuickSet [27],
MIML [102], XISL [88,89] Emma [75], HephaisTK [39] and Ensemble [15].

QuickSet QuickSet [27,78,164] offers unification operators to denote
unbound variables. These unification operators allow developers to fuse
partial information from multiple input modalities and provide four
main benefits: partiality, mutual compensation, structure sharing, and
multimodal discourse. A partial description can be used when certain
aspects are underspecified such as the location of a pointing gesture
when pronouncing here. In this case both the pointing gesture and the
speech command are required but the location is not specified. Mutual
compensation is active when certain aspects of the combination of gesture
and speech are meaningful or used in a redundant manner. For instance
it is common for speech recognition to falsely recognise words, but these
can be rejected if there is no corresponding pointing gesture. The authors
describe structure sharing as an advantage when additional information
can be extracted from the unification. For instance when a user utters
facing this way while gesturing an arrow, the orientation feature of the
gesture is automatically instantiated. Finally, Quickset offers a conflict
resolution schema called Members-Teams-Committee that uses multiple

3.3. Multimodal Languages 63

agents to calculate different recognition candidates in order to obtain a
weighted decision. A similar approach is used by Flippo et al. [53].

Listing 3.9 shows an example of a QuickSet rule. In this example,
we observe limited expressiveness on the spatial, temporal and spatio-
temporal criteria, as operators (such as overlap and follow) are built-in
instead of user-defined. Additionally, unbound variables are offered via
numbers, which makes the code prone to errors and hard to understand.
The authors demonstrated that unification is a fundamentally powerful
construct in multimodal interaction, but major improvements on the
language expressivity are still open for future research.

Listing 3.9: QuickSet rule

lhs :

cat : command
content : [1]
modality : [2]
time : [3]
prob : [4]

rhs :

dtr1 :

cat : located command
content : [1] [location : [5]]
modality : [6]
time : [7]
prob : [8]

dtr2 :

cat : spatial gesture
content : [5]
modality : [9]
time : [10]
prob : [11]

constraints :

overlap([7], [10]) ∨ follow([7], [10], [4])
total time([7], [10], [3])
combine prob([8], [11], [4])
assign modality([6], [9], [2])

MIML Latoschik [102] demonstrates the use of temporal Augmented
Transition Networks (tATNs) for multimodal interaction. These temporal
extensions support complex temporal relations in multimodal descriptions,
as Vanderdonckt et al. [100] argued: “finite-state automata or Augmented
Transition Network do not allow for the representation of concurrent
behaviour and thus do not make it possible to express constraints such
as ev1 and ev2 can occur at the same time”. This is related to the
combinatorial expansion observed in approaches as Proton (Section 3.3.1).

64 Chapter 3. Related Work

However, manually constructing and maintaining tATNs turned out to be
difficult and was limiting the expressiveness of the interaction. Therefore,
a multimodal markup language (MIML) was developed to significantly
expand the vocabulary as well as the grammar [102].

An example of a multimodal description in MIML is shown in List-
ing 3.10. The temporal relations can be found on lines 2 and 15. However,
nesting temporal expressions quickly becomes complex for nontrivial
examples. This is similar as the GestIT approach explained before. Fur-
thermore, when customising interaction patterns, the order of nesting
conditions becomes inherently difficult as a deep understanding of all sub-
components is required. Other abstractions to deal with spatial relations
or user-defined constraints need to be implemented in the host language.
However, such a host language does not provide adequate abstractions
to minimise the accidental complexity. As shown on line 4, developers
need to call functionality of the host language to describe that both the
‘rotate’ and ‘turn’ utterances can be used as a valid speech input. For
the same reason we argue that the specification of spatial relations is not
properly supported in MIML.

The implementation engine of MIML supports properties such as
negation, access to historical information for long-term reasoning and
the processing of concurrent interaction. These elements ease the fusion
of decision-level multimodal input. However, adequate programming
abstractions and an architecture to support fusion on data- and feature-
levels are still lacking, as mentioned in the paper:

(. . .) Whether such a (multimodal) grammar exists is still
an active research topic (. . .) The problem of finding a clean
structure in the gesture stream8 might be one of the reasons
for the sometimes vague or even contradictory results reported
in the context of cross-modal temporal relations. Nevertheless
there are some relations that hold and that should be con-
sidered when developing tools for the design of multimodal
interfaces. This includes support for temporal constraints9

between input streams of varying granularity, incorporation
of integration methods based on the inputs semantic content,
and — regarding the HCI utilization — access to information
from the application context level10.

8Also known as segmentation
9Corresponds to the temporal specification criterion defined in Chapter 2.

10Corresponds to the application symbiosis criterion defined in Chapter 2.

3.3. Multimodal Languages 65

(Latoschik, 2002)

Listing 3.10: MIML
1 <description>
2 <temporalrelation type=”sequential”>
3 <speech>
4 <function name=”rotateAction”/> <!−− This function returns true if −−!>
5 </speech> <!−− event.equals(”rotate”) || event.equals(”turn”) −−!>
6 <requires>
7 <function name=”objectDescription”/>
8 <fill−slot source=”identifier” target=”object”/>
9 </requires>

10 <select>
11 <choice>
12 ...
13 </choice>
14 <choice>
15 <temporalrelation type=”overlap”>
16 <speech>
17 <function name=”modalAdverb”/>
18 </speech>
19 <gesture>
20 <function name=”rotating”/>
21 <exec−on−start>
22 <apiCommand name=”rotateObjectByHand−On”/>
23 </exec−on−start>
24 <exec−on−end>
25 <apiCommand name=”rotateObjectByHand−Off”/>
26 </exec−on−end>
27 </gesture>
28 </temporalrelation>
29 </choice>
30 </select>
31 </temporalrelation>
32 </description>

PATE PATE [129] is a goal-oriented rule-based approach with support
for conflict resolution. Rules are written in XML form. They contain
conditional elements and built-in temporal functions. The conditional
elements are satisfied when a corresponding event is found in the working
memory. Temporal functions such as before and sameTime are provided
by the engine. They cannot be extended. An example is shown in
Listing 3.11 where the content of a speech utterance is unified with a
gesture. It is interesting to note that working elements can be contained
within each other. For instance the type ‘Speech’ may contain an element
of the type ‘Word’ in the slot ‘content’ which provides a string of the
uttered word. PATE further provides an authoring tool to inspect the
working memory and which rules are activated. This is useful for debugging
and fine-tuning. Each rule has a weight parameter to define its priority.

66 Chapter 3. Related Work

When multiple rules are satisfied, only the one with the highest score
will be activated. When two rules have an equal score, the behaviour
is randomized but consistent until the system restarts. Unfortunately,
due to the missing functionality such as composition, spatio-temporal and
user-defined operators, PATE fails to provide abstractions that transcends
the decision-level fusion.

Listing 3.11: PATE
1 <rule name=”redundantInput”>
2 <comments>identifies redundant information</comments>
3 <activation>0.8</activation>
4 <conditions>
5 <condition name=”goal”>
6 <object type=”Speech”>
7 <slot name=”content”>
8 <variable name=”content”/>
9 </slot>

10 </object>
11 </condition>
12 <condition name=”wme1”>
13 <object type=”Gesture”>
14 <slot name=”content”>
15 <variable name=”content”/>
16 </slot>
17 </object>
18 </condition>
19 </conditions>
20 <actions>
21 <action name=”pop”/>
22 <action type=”output” name=”content”/>
23 </actions>
24 </rule>

HephaisTK Dumas et al. [39] present an XML-based language (Syn-
chronized Multimodal User Interfaces Markup Language: SMUIML) to
describe advanced dialogue interaction. In their work, the focus lies
on describing qualitative temporal relations and state transmissions for
multimodal decision fusion. Recently, the authors have extended this
approach with quantitative temporal relations that can be trained using
HMMs [42]. Furthermore, a graphical user interface was built to overcome
the verboseness of the XML descriptions. However, this approach is
focused on decision-level fusion and does not provide abstractions for
data- or feature-level fusion. Required characteristics such as overlapping
support, or stream-oriented algorithms are not provided. In general, we
observe that existing decision-level frameworks fall short on the ability
to ignore events that at first sight fit the description but can later be
replaced by an event even better suited for fusion.

3.4. Multimodal Architectures 67

Multimodal Authoring Tools

As an alternative to programming interaction patterns, visual author-
ing tools can be used. Prime examples are IMBuilder/MEngine [13]
ICARE [12], OpenInterface/Skemmi [103,116,142] and HephaisTK [43].
As argued by Dumas et al. [43] ‘graphical tools for designing multimodal
interfaces can be broadly separated in two families: stream-based ap-
proaches and event-driven approaches’. The former approaches typically
use processing blocks to filter information, which can be graphically linked
in multiple ways as shown in Figure 3.9. The latter approaches focus on
low-frequency decision-level data and are represented by state machines or
meaning frames (see Figure 3.10). Dumas et al. further note that graphical
editors are built without an underlying formal language except for Petshop
for ICO [120], MultimodaliXML [149] and HephaisTK. For instance the
XML format of NiMMiT is defined based on the functionality offered by
the authoring tool [33]. The importance of an external representation of
authoring tools is confirmed by a recent survey on graphical toolkits for
multimodal systems by Cuenca et al. [31]. Cuenca et al. further conclude
that the ease of use of authoring tools has not been extensively studied.
Additionally, we are not aware of the existence of authoring tools for a
particular input modality based on multimodal abstractions. Either au-
thoring tools are modality-specific without the ability to fuse information
from other input devices (such as EventHurdle [92]) or tooling is provided
to build an entire multimodal architecture without a focus on processing
single modalities (for instance Squidy and HephaisTK).

3.4 Multimodal Architectures

As mentioned in Section 3.1, multimodal frameworks can be classified
in two main strands: data stream-oriented architectures and semantic
inferencing methods. In this section we focus on the architecture and
implementation of these two variations.

3.4.1 Data Stream-oriented Architectures

Data stream solutions rely on a pipeline architecture whereby composition
boxes are chained together. The focus lies on processing input events
as efficiently as possible. Therefore, these approaches are well suited for
data-level fusion. In this section we discuss OpenInterface and Squidy,
two prime examples of data-level fusion frameworks.

68 Chapter 3. Related Work

Figure 3.9: Filtering Wii remote data to simulate mouse input using
Squidy

OpenInterface OpenInterface [142] interconnects “components” (i.e. a
composition box) via pipes. Components such as built-in filters
(e.g. thresholds and averages), libraries and external TCP/IP services are
supported. This allows the framework to reuse the existing functionality
of a large kernel. This has been validated by integrating various input
modalities such as sketch recognition, finger tracking, stylus input and
speech recognition.

Unfortunately, the internal implementation of composition boxes can
become highly complex. Existing data-level fusion frameworks do not
provide adequate programming APIs to implement these composition
boxes and therefore developers need to rely on the host language to
implement a complex fusion process. Firstly, such a composition box
relies on a single event callback method in the host language. This
callback method is reactive since it is called when new information is
available. However, the development complexity originates from the state
management where developers need to keep track of previous events from
single or multiple sources. Secondly, clearing older events is another task
developers need to perform as few approaches provide an automatically
maintained list of historical data. Finally, resetting current states during
the cleanup task might lead to false negatives.

3.4. Multimodal Architectures 69

Figure 3.10: A meaning frame which requires the ‘play’ command via
speech and RFID using HephaisTK

Another challenge when implementing such composition boxes is
dealing with out-of-order event input . Assume one needs to detect the
pattern sequence ‘A,B,C’. After event A and event B have been received
it is expecting the event C. However, due to external causes, such as
unreliable network connectivity or failing sensor nodes [105], event A2

arrives before C. In this case many implementations will reset the state
back to the beginning. Therefore it will ignore event C as it is not
part of the correct sequence, even if information provided by event C
indicates that it happened before event A2. The cost of manually main-
taining the potential combinations of fusion candidates introduces a lot
of accidental complexity for the developer. Additionally, they need to be
implemented in an incremental state in order to deliver real-time efficiency.
Additionally, when taking into consideration that some patterns are not
sequential, for instance when using a complex temporal specification, or
when streams need to be synchronised, this challenge can clearly benefit
from architectural abstractions to reduce the accidental implementation
complexity.

Squidy In a similar way, Squidy [97] provides nodes with sources and
sinks which can be connected. In contrast to OpenInterface, which
allows the integration of external components, Squidy is limited to a
predefined set of nodes. To communicate the processed information to the
outside world the TUIO protocol [83] is used. TUIO relies on the Open
Sound Control (OSC) [163] which in its turn is based UDP. UDP-based
communication implies that messages might get lost and the protocol
needs to accommodate this issue. TUIO is an efficient way to transmit
continuous data such as multi-touch, tangible and accelerometer data.

70 Chapter 3. Related Work

The TUIO protocol is defined such that the difference between the current
and last received value can be calculated. However it should not be
used to transmit single events such as speech utterances or actions the
application should perform. The architecture also limits the ability to
support concurrent interaction. Whenever an additional sensor input
is required, the developer has to replicate the entire pipe, causing code
duplication. Without this separation, input from two devices would sink
into a single node that would mix the content and confuse the fusion
process.

Finally, most data stream-oriented architectures cannot fuse across
levels. For instance, it is difficult to use results from feature-level or
decision-level fusion, such as user identification, to influence data-level
fusion. When fusion across levels is orchestrated using pipes, it means a
further increase in complexity inside composition boxes, as the developer
need to process input events in combination with higher level events
through the same event handler. Unfortunately these streams are not
synchronised, which means introducing manual delay operations if neces-
sary. In general, data-stream approaches do not cope well with high-level
data and decision making. In the next section we analyse a second strand
of architectures, namely semantic inferencing architectures, which are
more suitable to process high-level data and dialogue management.

3.4.2 Semantic Inferencing Architectures

Semantic inferencing architectures focus on aggregating a limited number
of events by means of high-level programming abstractions. As shown in
Section 3.1.2, multiple approaches have been explored in the literature,
such as meaning frames, unification-based fusion, finite-state machines
and symbolic/statistical fusion. In this section we discuss the overall
architecture of these approaches.

A Central Hub Architecture A prime example of a decision-level
fusion architecture is described by Dumas et al. [39]. As illustrated in
Figure 3.11, the architecture is built around a centralised component which
receives data from many input sources, including lower-level recognition
engines. It is assumed that these lower-level recognisers deliver high-level,
mostly unambiguous information, which can be directly used to make
informed decisions at the application side. This assumption is not always
valid, hence problems arise when conditions are partially satisfied or
state transitions have to be undone. Furthermore, existing central hub

3.4. Multimodal Architectures 71

architectures do not provide access to historical data as the structures
(such as meaning frames or state machines) are only interested in the
latest data. With an ATN architecture [102], tokens are the result of
a partial fusion and subsequent nodes need to reason over their own
constraints.

Figure 3.11: HephaisTK architecture

"Put"

"That"

"There"

User ID

ON

Figure 3.12: A semantic inferencing structure

PATE [129] offers a global working memory structure with a few
built-in temporal operators that allow more complex dialogue decisions.
However the developer is entirely responsible for clearing event data.
Furthermore, each event requires a complete reevaluation of the goal and
its conditions. Without an incremental evaluation mechanism, the system
is not designed to cope with a high load of event information.

Existing central hub architectures assume the existence of high-level
events, delivered by data- and feature-level fusion processes. Unfortu-
nately, for continuous interaction such as pointing, it is hard to control the

72 Chapter 3. Related Work

frequency to make it compatible with semantic inferencing architectures.
The continuous pointing in Bolt’s put that there scenario [11] is a simple
example to illustrate this issue. The refresh rate of the pointing gesture
is declared at the data-level processing. A high refresh rate introduces
the problem of occupied slots in meaning frames, while a low refresh rate
can lead to skipped decision-level integration since they are invalidated
by the temporal constraints. Therefore, ad hoc solutions are required
to deal with this issue. However, for more complex scenarios such as a
multi-user environment, current semantic inferencing architectures do not
scale well. Figure 3.12 illustrates this problem by showing a partial match
(i.e. occupied slots) for a number of constraints (i.e. put, that, point
and a toggle).

Service-oriented Architectures Other approaches such as
DynaMo [5] rely on a service-oriented architecture to help de-
velopers with modularisation, composition and self-management. The
latter feature forms the core contribution of DynaMo as it tries to
offer self-repair abstractions when services (for example due to network
communication issues) go down. In this case, the ‘autonomic manager’ as
depicted in Figure 3.13 will actively search for a compatible replacement
or wait for the service to come back. For instance, when detecting
pointing gestures, an unstable bluetooth connection of the Wiimote can
be replaced with a less precise RGB-D camera. However, the framework
does not provide any decision-level fusion abstractions. Furthermore,
existing work shows that centralised information storage is required to
perform informed decision-level fusion.

In most frameworks such as HephaisTK, Quickset and Match [77],
application information can be used to enhance the fusion process. In
HephaisTK’s architecture, which is shown in Figure 3.11, this is enabled
by the EventNotifier link. However no programming abstractions are
provided to enable a two-way synchronisation between the fusion engine
and the application state. A deeper application symbiosis is still subject to
research. Recent work on the plasticity of multimodal applications, such
as Sottet et al. [146] and Stanciulescu et al. [150], provide abstractions to
ease the development of user interfaces. However, these approaches focus
more on multimodal fission and less on the fusion process. n general,
we draw similar conclusions as stated by Lalanne et al. [100], namely
that “(...) the dynamic adaptation of fusion engines to usage patterns
and preferences should be further studied.”. This requires multimodal
architectures which support fusion across the three fusion levels.

3.5. Conclusion 73

Figure 3.13: Service-oriented architecture of DynaMo

3.5 Conclusion

On the one hand, frameworks positioned at the data level, such as OpenIn-
terface or Squidy rely on a linear chaining of composition boxes. Although
these composition boxes encapsulate the implementation complexity, the
internal implementation of such a box is far from trivial. As illustrated
in Section 3.2, data-stream approaches score poorly on language features
and multimodal disambiguation criteria.

On the other hand, semantic approaches provide higher-level language
features but lack adequate multimodal processing capabilities. Semantic
inferencing approaches rely on late fusion, where all high level informa-
tion is assumed to be gathered and correlated. Despite the introduced
robustness, typical decision-level frameworks cannot recover from the loss
of information that might occur at lower levels. A secondary limitation
of these frameworks is the lack of support for overlapping matches, which
is present when using continuous sensor input, complex definitions or
multiple users.

74 Chapter 3. Related Work

We argue that in order to scale high-level languages to fuse high-
frequent data-level information, an adequate language in combination
with a well-founded architecture is required. Furthermore, the symbiosis of
application-level information and the fusion process is of high importance
when developing tools for multimodal applications [102] (Section 3.3.4).
Finally, we observe that visual authoring tools are either device specific
without multimodal integration capabilities (Section 3.3.2) or allow de-
velopers to define a multimodal pipeline but lack device specific authoring
abstractions (Section 3.3.4).

The indicative classification of related work in Section 3.2 shows
that many important aspects such as segmentation, negation, event
expiration, grouping, scalability in terms of performance and others are
still challenging to implement in existing multimodal frameworks. In
the remainder of this dissertation we argue that these concerns can be
tackled by focusing on two main domains: software language engineering
abstractions and a performant architecture to process events across data,
feature and decision levels.

4
Midas: A Programming

Language for Multimodal
Interaction

In this chapter we present Midas, a high-level programming language
designed to express multimodal fusion based on well-founded software
engineering abstractions. We start by providing a formal grammar of
a core version of the Midas language, we introduce some terminology
and we gradually refine a running example. We then discuss our gen-
eric multimodal language features and continue with support for data-,
feature- and decision-level fusion processes. We demonstrate data-level
fusion constructs that are particularly interesting for processing low-level
events, including the discovery of patterns based on spatio-temporal re-
lations. Then we demonstrate feature-level fusion abstractions such as
the alignment of input streams, dynamic service instantiation for feature
extraction or verification, and asynchronous conditions. Afterwards, we
elaborate on language abstractions for decision level fusion such as shadow
facts, activation policies. We conclude with a discussion on abstractions
for commonly observed multimodal patterns.

75

76 Chapter 4. Midas: A Programming Language for Multimodal Interaction

4.1 A Declarative Language

As described in the previous chapter, various frameworks and architectural
abstractions have been proposed. Only a few of these provide adequate
software engineering abstractions and most of them lack composition
and negation. Furthermore, existing high-level languages, such as Ge-
ForMT [86] and SMUIML [40], offer only a narrow vocabulary for touch
or dialogue management. In contrast to approaches providing a simpler,
but highly constrained domain-specific programming language, we do
provide a high-level declarative programming language capable of pro-
cessing various input streams for data-, feature- and decision-level fusion.
Emphasis is put on providing software engineering abstractions such as
modularisation, composition, customisation and the ability to express
complex patterns. Developers should be able to describe their require-
ments declaratively and let the engine perform the state management and
computational complexity. Furthermore we encourage the development
of novel primitives such that the developers can share code and extend
the scope of this work.

4.1.1 Formal Grammar of Midas

A formal grammar of the basic Midas programming language is presented
in Figure 4.1. Syntactic text is represented in bold or by symbols. A pipe
(|) denotes choice while parentheses indicate optional usage. Overlined
entities implicate a repetition of zero, one or more. We provide a minimal
Midas specification to reduce the complexity. A complete ANTLR [126]
grammar can be found in Appendix (Appendix D), as well as a transcript
of Figure 4.1 (Appendix B). Subsequent sections will gradually introduce
each syntactic entity and highlight their benefits to the criteria defined in
Section 2.3.

4.2 Interpreting Midas

A Midas program is a declarative description of multimodal interaction
patterns. Therefore, the interpretation of the program is different from
mainstream programming languages where each line corresponds to a set
of processor instructions.

The computation starts when input events are captured by various
sensors. Each input event is represented as a fact at a particular point in

4.2. Interpreting Midas 77

mp ∈ Program ::= t | m | r | a | f | x programs
t ∈ Template ::= template tid templates

i a | f
m ∈ Module ::= module mid modules

i a | f
r ∈ Rule ::= rule rid c | x rules

a ∈ Attempt ::= attempt aid (lid) c (cf) attempts
f ∈ Function ::= function fid (lid) e functions
c ∈ Condition ::= ce | te | b | sf conditions
x ∈ Modifier ::= assert tid { sid ⇒ e } modifiers

| modify lid { sid ⇒ e }
| retract lid
| call (tid.)fid e

ce ∈ Cond. Element ::= tid { cv } ces
te ∈ Test ::= e <|≤|==|!=|≥|> e tests

| (lid ←)aid e
| (tid ←)aid e

b ∈ Bind ::= lid = (ce | aid e | e | ar) bindings
sf ∈ Special Form ::= no { c } specialforms

| async (tid ←)aid e
| wait lid nr

e ∈ Expression ::= (tid.)fid e | lid.sid expressions
| v | b | e δ e

cf ∈ Computed Fact ::= return { sid ⇒ e } with mid cfs
cv ∈ Constr. Value ::= sid ==|!= v cvs

i ∈ Include ::= include mid includes
v ∈ Value ::= nr | string | symbol | lid | nil values

ar ∈ Array ::= [lid | v] arrays
γ ∈ Type ::= int | float | string types
δ ∈ PrimF ::= + | - | * | / | mod | . . . primitives

lid ∈ VariableName
rid ∈ RuleName
sid ∈ SlotName

tid,mid ∈ Template- or ModuleName (Capitalised)
aid, fid ∈ Attempt- or FunctionName

Figure 4.1: Basic grammar of Midas

78 Chapter 4. Midas: A Programming Language for Multimodal Interaction

time. All facts are perpetually gathered in a database, called the fact base.
The goal of our approach is to discover a combination of facts that adheres
to a description of multimodal interaction, known as a rule, written by
the developer. Rules enable reactive fusion capabilities when they consist
of a number of conditions that should be met. These conditions express
spatial or temporal relations between facts and vary for each type of
input sensor. However, the reactivity of these conditions is important
because this allows the engine to discover patterns from new events as
they enter the system. The combination of this event-driven behaviour in
combination with high-level language abstractions form the basis of the
Midas programming language.

A Midas program consists of templates, modules, rules, attempts and
functions. The two former entities (i.e. templates and modules) structure
data and code, while the three latter (i.e. rules, attempts and functions)
involve calculation.

4.2.1 Templates, Modules, Facts and Events

A template represents a blueprint of which facts are instances of. It
is similar to a class definition in object-oriented languages. Templates
have a name and provide an extensible structure based on attribute-
value pairs, namely slots, for representing input data. For example,
Listing 4.1 describes a simple Touch2D template to represent 2D touch
events, containing the time, x and y slots. When an event from an
input sensor is delivered to the system it is represented as an instantiated
template. These instantiated templates are called facts and are used
throughout the entire system to communicate information.

Listing 4.1: Simple template description of 2D touch events
1 template Touch2D
2 finger, x, y, time # Define a finger, x, y and time slot
3 end

The slot time is a default slot and is therefore always part of a
template, even if the developer did not specify it. Timing information
can be provided by the input source or is automatically set at the time it
was asserted to the fact base.

Modules are similar to templates but cannot be instantiated. They
are used to group reusable functionality such as attempts, functions
and slot definitions (see later). Modules can be included inside other
modules and templates and act similar to mixins in object-oriented

4.2. Interpreting Midas 79

languages such as Ruby1. Mixins provide functionality similar to multiple
inheritance by mixing specialised functionality represented by abstract
classes (i.e. modules) into classes. Lines 1 to 12 in Listing 4.2 display two
reusable modules, namely Time and Space2D, which are embedded in a
more elaborate version of a Touch2D template2 on line 13.

Templates and modules hold attempts, functions and slots as shown
in lines 2 and 3. This allows developers to invoke functionality specialised
for a particular fact. Additionally, the self keyword, prefixed to attempts
or functions definitions as shown at line 9, provides the functionality on
a module or template level. This is similar to static class methods in
Java. For instance the function Math.sqrt (line 10) an invocation at
the module level while f.time (line 4) is an instance-based invocation
through a bound fact (f).

Listing 4.2: Template description of 2D touch events
1 module Time
2 time # Define a time slot
3 attempt beforeF(f, eps = 0) # this should happen before fact f
4 time + eps < f.time # Access time slot of fact f
5 end
6 end
7 module Space2D
8 x, y # Define x and y slots
9 function self.euclidean distance(x1, y1, x2, y2) # Calculate Euclidean distance

10 Math.sqrt ((x2-x1)∗∗2) + ((y2-y1)∗∗2) # Call sqrt function of the Math module
11 end # Returns an integer value
12 end
13 template Touch2D
14 include Time, Space2D # Include Time and Space2D functionality
15 finger, m, vx, vy # Define motion acceleration and x, y speed
16 end

4.2.2 Rules with Conditional Elements, Tests, At-

tempts and Functions

Each rule contains a number of conditions. One of type of conditions
are called conditional elements (CE) and express the need for content. A
conditional element abides by the definition of template and introduces
computation in a rule. For instance the rule matchTouch in Listing 4.3
matches any Touch2D fact instance and binds it to the variable t. This
computation is data driven and as soon as a new fact enters the fact base,

1Inheritance and Mixins in Ruby: http://ruby-doc.com/docs/ProgrammingRuby/html/tut_

classes.html#UA
2Based on the TUIO v1.1 Protocol Specification: http://www.tuio.org/?tuio11

http://ruby-doc.com/docs/ProgrammingRuby/html/tut_classes.html#UA
http://ruby-doc.com/docs/ProgrammingRuby/html/tut_classes.html#UA
http://www.tuio.org/?tuio11

80 Chapter 4. Midas: A Programming Language for Multimodal Interaction

the engine will look for rules whose conditional elements correspond to
its type. When the fact type and the conditional element match, the
condition is satisfied and the rule is activated. When multiple conditional
elements are listed and multiple matching facts are present in the fact
base, an extensive cross-product search is performed. It should be noted
that this process is highly optimised via a Rete network (Chapter 5) and
takes care of intermediate results for data-driven computation.

Listing 4.3: Conditional elements
1 rule matchTouch
2 t = Touch2D # Match any touch fact
3 end

Conditional elements can be accompanied by inline constraint values
(CV). CVs provide a shorthand syntax for filtering facts that match
conditional elements. Constraint values test the (in)equality (== or !=) of
a slot value with one or more values. An example is shown in Listing 4.6
(line 3), where the finger identity of a second Touch2D conditional element
is unified with the finger identity of the first one. The equality of slot
values between two facts without the use of explicit values, such as an
integer, string or symbol value, is called unification. This is particularly
useful for grouping events. However, CVs are limited in expressiveness
and cannot describe mathematical conditions such as smaller or greater
than.

While conditional elements introduce computation by matching to
new facts, tests filter facts based on their properties (i.e. slot values).

Tests

Tests filter matched conditional elements and consist of mathematical
expressions (<|≤|==|! =|≥|>) to express conditions on the slot values.
For example, the test t1.x > 5 filters all facts whereby the x slot value
of t1 is less than or equal to 5 (Line 3 of Listing 4.4). Tests also describe
relations, such as t.x > t.y, which express that the x value should be
greater than the y value. Tests can also express relations between matched
condition elements. Such a test looks like t2.x == t1.x (line 5), which
specifies a unification, meaning that two facts should exist with the same
x value. Multiple tests listed in a rule are chained by an implicit and. A
combination of attempts and tests can be bundled by attempts to provide
abstraction.

4.2. Interpreting Midas 81

Listing 4.4: Tests
1 rule matchTouchLT5
2 t1 = Touch2D # Match any touch fact (and . . .)
3 t1.x > 5 # with an x slot value greater than 5
4 t2 = Touch2D # Match another touch fact
5 t2.x == t1.x # with an x slot value equal to t1.x
6 end

Attempts

An attempt encapsulates a complex condition by bundling conditional
elements and tests in a named abstraction. They attempt to discover
facts to make their internal conditions true. Attempts allow developers to
abstract code whenever multiple rules share similar conditions. Examples
are temporal conditions such as Allen’s interval algebra [1] (line 3 of
Listing 4.2) and spatial relations. A common scenario is that two rules
only differ at a few spatio-temporal values. Code reuse and abstraction
is obtained by moving shared conditions into an attempt. Furthermore,
attempts provide parameterisation and therefore enable customisation. A
dedicated syntactic symbol, namely a left arrow (←), is used to explicitly
separate them from function calls. This is illustrated at line 4 of Listing 4.5
which expresses that the time of t1 is less than the time of t2.

The Midas syntax is designed such that attempts can only describe
conditions. Therefore they need to be embedded within rules to become
useful.

Listing 4.5: Attempts
1 rule matchTouchBefore
2 t1 = Touch2D # Match any touch fact
3 t2 = Touch2D # Match another touch fact
4 t1←beforeF t2 # and attempt to satisfy the beforeF attempt
5 end

Functions

Midas provides a number of primitive functions such as +,−,∗,/. Besides
these primitives, developers can implement their own functions. However,
functions are purely functional and cannot express conditions or modi-
fications. They are typically used for mathematical operations such as
the translation, rotation and scaling. A number of external functions can
also be invoked, albeit in an unsafe manner as we cannot verify if they

82 Chapter 4. Midas: A Programming Language for Multimodal Interaction

are purely functional. Impure function invocations should be preceded by
the call keyword and are tagged as modifiers.

Through the use of the self. prefix, developers can easily group
functions inside a module. For example, the Space2D module embeds the
euclidean distance function (defined by Listing 4.2, line 9 and used in
Listing 4.6, line 5). The self← construct is available for attempts as
well, and behaves similar to a static class method invocation in Java.

Listing 4.6: Detect movement
1 rule touchMovement
2 t1 = Touch2D # Match any touch fact
3 t2 = Touch2D { finger == t1.finger } # Match a second touch from the same finger
4 t1←beforeF t2 # Touch t1 should happen before t2
5 Space2D.euclidean distance(t1.x, t1.y, # and their Euclidean distance should be
6 t2.x, t2.y) > 5.px # greater than 5.px
7 assert Move { finger ⇒ t1.finger } # Movement detected
8 end

4.2.3 Rules with Modifiers

Midas provides four modify statements which can be executed whenever a
pattern is discovered. Modifiers are functions that change the state of the
fact base. They create (assert), change (modify) and remove (retract)
data or invoke external state changing function calls (call). Modify
statements are executed as soon as all conditions listed before them are
met. A common scenario is that a number of primitive conditions are
declared and when they are matched, a new higher-level fact is created.
This extends the knowledge of the system and abstracts from low-level
details. For instance Listing 4.6 matches a number of primitive Touch2D

elements with a spatio-temporal relation between them and creates a
high-level fact Move (line 7 of Listing 4.6).

In contrast to existing rule languages, Midas allows multiple alterna-
tions between conditions (traditionally known as left-hand side operators)
and modifiers (right-hand side operators). By supporting the mix of
conditions and modifiers inside a single rule, more advanced rules can
be created. This is particularly interesting when subsequent modifiers
require a few additional constraints in between. Existing approaches
cannot deal with this scenario as the left-hand side can only be followed
by a single right-hand side. However, based on our experiments, the
alternation between conditions and modifiers was prevalent in the context
of multimodal fusion due to the need to provide intermediate feedback
while conditions are gradually matched.

4.2. Interpreting Midas 83

4.2.4 A Midas Implementation of the Hold-and-

Rotate Gesture

To motivate our language abstractions, we implement the hold-and-rotate
example described in Chapter 3. The following, recapitulated textual
description has been annotated with roman numbers to link constraints
to the code in Listing 4.7: Find three eventsI of three different fingersII

touching the surface in any orderIII at about the same timeIV. All these
fingers should be located near each other (in a bounding circle)V. Two
fingers should be approximately vertically alignedVI and the third finger
should be on the left of the othersVII. Find follow-up events of the two
vertically aligned fingers such that it corresponds to a movement to the
right (i.e. with a minimum and maximum x and y displacement)VIII. The
third finger should remain approximately stationary, without lifting upIX

during the time interval defined by the movement of the two other fingersX.
The textual gesture description neatly corresponds to the declarative

implementation in Listing 4.7. Lines 2 to 4 match a combination of these
facts in the fact base, expressing the first concernI in the description.
These three matched facts should originate from different fingers (line 5)II.
Line 6 is a spatial attempt requiring that the stationary finger is located
near one of the moving fingersV. Furthermore, the two moving fingers
should be vertically alignedVI within a boundary. This implies that the
second moving finger is also near the stationary fingerV. The stationary
finger is ensured to be left of the moving fingerVII on line 8. Finally,
the temporal constraints on lines 9 to 11 express that the movement of
both fingers happens at the same timeIV while the third finger remains
stationaryX. It should be noted that Midas performs its recognition
regardless of the order of conditional elements in a ruleIII. All temporal
constraints are therefore explicitly specified by the developer, without
expressiveness limitations.

The remaining concernsVIII,IX are handled by abstraction through high-
level facts. This happens when existing rules hide processing complex
conditions by generating higher-level facts which can be used by other
rules. This is reduces complexity as rules become more concise and
modular.

84 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Listing 4.7: Hold-and-rotate gesture implementation in Midas
1 rule holdAndRotate
2 h = Hold # Match a stationary finger I

3 m1 = SwipeRight # Match a moving finger to the right I,VIII,IX

4 m2 = SwipeRight # Another moving finger to the right I,VIII,IX

5 diffs [h.finger, m1.finger, m2.finger] # Originating from different fingers II

6 h←near m1.x begin, m1.y begin, 50.px # The hold and m1 finger should be close V

7 m1←align beginF m2, 20.px, 5.px # Vert. align and ensure m2 is close to m1 VI

8 h.x < m1.x begin # The hold is left of the m1 VII

9 m1←duringF h # M1 happens during the hold IV,X

10 m2←duringF h # M2 happens during the hold IV,X

11 m1←startsF m2, 0.5.s # Equalise begin time of m1 and m2 III,IV

12 end

As a reflection with respect to related work, the hold-and-rotate
Midas implementation is not only quite concise, but also reflects all
gesture requirements. Therefore, Midas provides the ability to specify
requirements at a high level of detail based on user-defined spatial and
temporal conditions. In the following section we discuss more general
multimodal language features of Midas and demonstrate an even more
refined implementation of the hold-and-rotate example.

4.3 Multimodal Language Features

In this section we discuss the properties of Midas with respect to the
language features criteria presented in Section 2.3. These language features
form the basis for well-structured declarative programming that supports
multimodal fusion in a highly efficient way.

4.3.1 Modularisation and Abstraction

Midas fosters a modular approach to separate multimodal specifications
in multiple rules. By modularising definitions we can reduce the effort to
add extra interactions by not requiring a deep knowledge about previously
implemented rules. Each rule r can focus on its core functional concerns
and assert a new higher-level fact that improves understanding of the
sensor input. Then another rule r’ can abstract over the results from
the previous rule r and deal with other concerns. By modularising
and composing rules in this incremental manner, more complex types
of interaction can be built more easily. Midas encourages developers to
compose multimodal interaction rules instead of building ad-hoc solutions.

4.3. Multimodal Language Features 85

Abstraction Through High-level Facts

A first approach for abstraction is the use of high-level facts. In Midas,
each rule can assert a new fact which can be used by software components
that have access to the fact base. Rules can require the presence or absence
of a particular high-level fact without being concerned with when or how
the fact was created. Moreover, low-level details of such a high-level fact
are encapsulated by a number of slot values.

High-level fact abstraction as illustrated in Listing 4.7 works well for
small gesture vocabularies. In this case, each rule reacts to its specified
conditions and asserts a higher-level fact whenever a match is found.
However when the gesture vocabulary gets extended and reused, a lot of
aspects of lower-level rules can be changed. For example, when a new L

gesture wants to reuse the swipeRight gesture with a different spatial
relation. Modifying this spatial relation obviously has an impact on
other gestures that rely on the same facts, such as the hold-and-rotate

gesture. Existing approaches do not cope well with this problem and
developers typically would need to duplicate rules like the swipeRight

definition in order to customise it.
Code duplication should be avoided as every extra line of code incurs

maintenance costs. It is also error prone and introduces redundant com-
putation. Furthermore, these duplicate rule definitions require duplicate
templates in order to separate their assertion type and reuse in other
rules. This leads to poor software engineering as developers need to know
which type of fact to specify in their rules (i.e. SwipeRight, SwipeRight2
or SwipeRightLong).

Conversely, when multiple rules assert the same fact type, developers
face the problem of data entanglement (also known as the specialisation
versus generalisation problem for data types). Data entanglement arises
when multiple rules assert the same fact type, but use custom slots that
are only useful for some of the consuming gestures. For instance the L

gesture requires the finger identifier of the original Touch2D facts. Other
gestures require velocities or user identity, which might not be known
for all rules that assert this type of fact. The adaptation of existing
template definitions causes tight coupling between multiple rules. This is
harmful for reusability. Therefore, in Midas another form of abstraction
is available in the form of attempts.

86 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Abstraction Through Attempts and Computed Facts

Attempts are a novel type of abstraction that solves specialisation and data
entanglement concerns for multimodal languages. Existing abstraction
methods in multimodal interaction languages rely on the encapsulation
power of data types. However, multiple producers and consumers of such
data types cannot always be properly aligned. Firstly, some information
might be missing for a new consumer rule (i.e. a rule that is using the fact
type as a conditional element) which implies that all existing producer
rules (i.e. rules asserting the fact type) need to be updated to generate
this information. Secondly, the template needs to be extended with the
additional slot as well, which might be too consumer-specific and not
reflect the original intention of the template definition itself.

Through attempts, similar conditions can easily be shared amongst
rules. Furthermore, a rule can reuse multiple attempts and express
relations between them. Attempts can easily be customised through the
use of a parameter list. Attempts also have the ability to provide a return
value in the form of a computed fact. A computed fact is an untyped fact
(i.e. there is no corresponding template) containing slot-value pairs. They
replace the need for excessive template definitions, while still providing
allowing developers to exchange details of the attempt to the outer rule.
Listing 4.8 returns such a computed fact on lines 10 to 12. Line 14
requires the piezoTap attempt and binds the result (i.e. a computed fact)
to the variable tap. Consecutively, line 15 uses the two slot values of the
computed fact, namely value and time to display text on the screen3.

Listing 4.8: Tap attempt for piezoelectric sensors
1 attempt piezoTap(max time, min power) # Attempt to
2 v1 = Vibration # Match a vibration event
3 v2 = Vibration { sensor == v1.sensor } # Match another event from the same sensor
4 v1←meetsF v2, max time # v2 within time interval relative to v1
5 v1.value + min power < v2.value # with at least the ratiometric difference
6 v3 = Vibration { sensor == v1.sensor } # Match another event from the same sensor
7 v2←meetsF v3, max time # v3 within time interval relative to v2
8 v2.value - min power > v3.value # with at least the ratiometric difference
9 return { time ⇒ v2.time, # Return the relevant information

10 value ⇒ v2.value }
11 end
12
13 rule shortToughPiezoTap
14 tap = piezoTap 500.ms, 550 # At least a ratiometric power level of 550
15 display ”Tough tap via piezoelectric sensor: ”, tap.value, ” time: ”, tap.time
16 end

3The construct display is a built in modifier to output text to the standard output.

4.3. Multimodal Language Features 87

Computed facts can only be used within the scope of the rule and
cannot be serialised or asserted. Its function is to exchange detailed
information from inside the swipeRight attempt to the outer scope. It
retains the unification property, for instance when the outer rule would
define m1.x end == 5.px it will be mapped to a Touch2D conditional
element inside the swipeRight attempt. Alphanumeric values and fact
matches are also supported as return values.

Because computed facts are untyped, they do not provide instance-
based attempts and functions. This requires developers to use mod-
ule or template level invocations (i.e. Time<-beforeF tap1, tap2).
This is error prone for two reasons: (1) developers can easily con-
fuse Time<-beforeF with TimeInterval<-beforeF and (2) the com-
puted facts can be updated from a single timestamp to a time interval,
thus the call to Time<-beforeF can become incorrect when updating
code. Therefore, in order to allow a safer, instance-based invocation
(i.e. tap1<-beforeF tap2), computed facts can be extended with mod-
ules. The return value of Listing 4.9 provides instance-based invocation
access for the Time and TimeInterval modules. This enables a dynamic
composition when using multiple attempts while still providing compile-
time guarantees.

Listing 4.9 generates a compile-time error message because line 17
invokes the meetsF attempt which tries to access a local time end and
f.time begin value. Unfortunately, these two slot values are not defined
by the computed fact (line 10). Thus, computed facts rely on an explicit
list of provided slot values which enables this type of valuable compile-
time feedback. Computed facts can also not be asserted to the fact base
as they lack an actual type (i.e. template definition).

Midas provides attempts to solve the data entanglement problems of
existing abstraction methods while allowing for easier customisation and
compile-time feedback.

88 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Listing 4.9: Extending computed facts with modules
1 module TimeInterval
2 time begin, time end
3 attempt meetsF(f, eps = 0)
4 time end - f.time begin < eps
5 end
6 end
7
8 attempt piezoTap(max time, min power)
9 . . .

10 return { time ⇒ v2.time,
11 value ⇒ v2.value } with [Time, TimeInterval] # Extend with Time and TimeInterval
12 end
13
14 rule shortToughPiezoTap
15 tap1 = piezoTap 500.ms, 550
16 tap2 = piezoTap 500.ms, 550
17 tap1←meetsF tap2 # No slot ‘time end’ for #<ComputedFact>
18 end # No slot ‘time begin’ for #<ComputedFact>

4.3.2 Inheritance as Composition of Modules

As mentioned before, a module is a container for attempts, functions
and slots. This allows related functionality to be grouped together and
enables the usage of the overloaded identifiers in a scoped manner (such
as Time<-before and TimeInterval<-before). The definition of slots
inside modules reduces the number of parameters required to invoke
attempts, as attempts can refer to local slots. An example of this is shown
in Listing 4.10, where line 2 defines the slot time which is referenced on
line 4 via traditional static scoping rules. A complete implementation of
the attempts and functions used in the examples of this chapter is shown
in Appendix E.

Templates can be extended through module composition. As shown in
Listing 4.11, the template definitions of Touch2D, Hold and SwipeRight

are concise but provide a lot of functionality by including the modules
defined in Listing 4.10 and E.1. Similar to the mixin paradigm in object-
oriented composition [14], templates and modules can be composed from
modules. The order of include statements is important as the latest
definition is used when attempts or function names collide. However, this
causes a warning message during computation.

4.3. Multimodal Language Features 89

Listing 4.10: Reusable attempts and functions
1 module Time
2 time
3 attempt beforeF(f, eps = 0)
4 time + eps < f.time # time refers to the slot on line 2
5 end
6 attempt withinF(f, min, max)
7 f.time + min < time # f.time refers to the time value of
8 f.time + max > time # the fact f provided in the argument list
9 end

10 end
11 module Space2DInterval
12 include Space2D # Extend this module with another module
13 x begin, x end
14 y begin, y end
15 attempt align beginF(f, x diff, y diff)
16 Space2D←align x begin, y begin, f.x begin, f.y begin, x diff, y diff
17 end
18 end

Listing 4.11: Fact composition
1 template Touch2D
2 include Time, Space2D
3 m, vx, vy
4 end
5 template Hold
6 include Space2DInterval
7 end
8 template SwipeRight
9 include Space2DInterval

10 end

4.3.3 Customisation and Extensibility

Midas allows developers to easily adapt existing definitions via four
principles in order to use them in a different context:

1. The order of a rule’s conditions is decoupled from its semantics.
Therefore, to describe temporal relations, explicit temporal condi-
tions are used. This has the advantage that constraints can easily
be appended at a later point in time, without having to worry about
existing code. For example, the condition that a stationary finger is
on top of a figure, in the hold-and-rotate gesture, can be easily be
appended at the end of a rule. This is in contrast to most existing
approaches, such as GeForMT [85, 86] and Proton [94, 95], which
use an implicit temporal specification based on the order of the

90 Chapter 4. Midas: A Programming Language for Multimodal Interaction

condition. This hampers later customisation as existing code needs
to be modified.

2. Attempts allows the reuse of complex conditions with different
arguments. In this manner rules can be written that use slightly
different specification values.

3. Customisation of templates and modules is achieved through the
include keyword and the ability to extend existing template defin-
itions at multiple places. It is similar to Ruby’s class definitions,
Midas templates can be extended at multiple places allowing slots
to be added without adapting the original definition. In this manner
developers can define generic multimodal descriptions in core files
and write custom extensions in additional files which are (or are
not) included for a given scenario.

4. By providing generic user-defined conditions, advanced abstraction
capabilities and a formal grammar, Midas can be used as a rep-
resentation language for external tooling. For example, graphical
authoring tools can export their multimodal definitions to the Midas
language. This allows developers to further edit the rules (i.e. out-
side the authoring tool environment). In a similar way, multimodal
mining tools can offer an initial specification based on examples,
which can be further refined by the developer.

In Listing 4.12, we define a more precise implementation of the hold-
and-rotate example. It relies on attempts and computed facts instead of
abstraction through high-level facts and adds additional conditions such
as negation. The attempts hold and movingTouch abstract the primitive
spatial and temporal relations from the more complex holdAndRotate

rule. Furthermore, they allow easy customisation such that they can be
reused for other complex gestures.

4.3. Multimodal Language Features 91

Listing 4.12: Precise hold and rotate implementation in Midas
1 template Touch2D
2 UP = 3
3 end
4
5 attempt hold(min time, max time) # Attempt to
6 t1 = Touch2D # Match a finger event
7 t2 = Touch2D { finger == t1.finger } # Match another event from the same finger
8 t2←withinF t1, min time, max time # t2 within a time interval relative to t1
9 t1←nearF t2, 3.px # t1 and t2 should be close

10 no { nt = Touch2D { finger == t1.finger }
11 nt.state == Touch2D.UP # No touch up from the same finger:
12 nt←during t1.time, t2.time # - during the interval
13 }
14 no { nt = Touch2D { finger == t1.finger } # No fact from the same finger:
15 nt←awayF t1, 10.px # - far away from the initial match
16 nt←during t1.time, t2.time # - during the interval
17 }
18 return { time begin ⇒ t1.time, # Return the relevant information
19 time end ⇒ t2.time,
20 x begin ⇒ t1.x, y begin ⇒ t1.y } with [TimeInterval, Space2DInterval]
21 end
22
23 attempt movingTouch(min x, max x, min y, max y)
24 t1 = Touch2D # Match a finger event
25 t2 = Touch2D { finger == t1.finger } # Match another event from the same finger
26 t1←beforeF t2 # t1 happens before t1
27 t2.x > t1.x + min x # t2 within a bounding box relative to t1
28 t2.x < t1.x + max x
29 t2.y > t1.y + min y
30 t2.y < t1.y + max y
31 return { time begin ⇒ t1.time, time end ⇒ t2.time,
32 x begin ⇒ t1.x, x end ⇒ t2.x,
33 y begin ⇒ t1.y, y end ⇒ t2.y } with [TimeInterval, Space2DInterval]
34 end
35
36 rule holdAndRotate
37 h = hold 0.5.s, 2.s # Hold at least 0.5s
38 m1 = movingTouch 10.px, 20.px, -3.px, 3.px # Move at least 10px to the right
39 m2 = movingTouch 10.px, 20.px, -3.px, 3.px # Move at least 10px to the right
40 h←nearF m1, 5.px # The hold and m1 finger should be close
41 m1←align beginF m2, 20.px, 5.px # Vert. align and ensure m2 is nearby m1
42 h.x begin < m1.x begin # The hold is left of the m1
43 h←duringF m1 # M1 happens during hold
44 h←duringF m2 # M2 happens during hold
45 m1←startsF m2, 0.5.s # Equalise begin time of m1 and m2
46 assert HoldAndRotate { x ⇒ h.x begin, # Assert the gesture
47 y ⇒ h.y begin, diff ⇒ Math.abs(m1.x end - m1.x begin) }
48 end

92 Chapter 4. Midas: A Programming Language for Multimodal Interaction

4.3.4 Negation

Negation is a language feature to express that certain patterns should not
be true in a rule. This means a rule should not activate in a particular
context (i.e. do not accidentally detect a swipe right while scrolling a
document) or with particular sensor values (i.e. the gesture is invalid
when seated). Midas provides a keyword for negation (no) that provides
a view over the entire fact based to verify that certain patterns should
not occur.

Two examples of negation are shown in Listing 4.12, lines 10 to 13
and 14 to 17. The former expresses that there should be no touch up from
the same finger during the interval defined by the two matched Touch2D

facts. The latter expresses that there should be no Touch2D fact from the
same finger which is far away from the matched coordinates during the
matched interval. Note that this implementation is quite different from
mainstream imperative programming solutions and allows the declarative
processing engine to perform the complex pattern matching without
having to manually track intermediate state. Indeed, many combinations
are possible and constraining them in imperative code might not always
be trivial. For instance, the time relation on line 12 does not consist
of a particular value but uses the relative time of potential matching
facts. In this example, the negated expression further allows touches of
other fingers in the neighbourhood to be match to other gestures without
additional coding effort.

Negated patterns can be arbitrary complex but it should be noted
that expressing negated conditions on future events is difficult. This is
because related facts can expire and future facts are not available to be
checked when the rule is partially matching. The problem of missing
future events can be mitigated using the wait construct to delay the
matching process, such that “future” information can be consulted.

4.3.5 Application Symbiosis

In multimodal applications, the varying state of the appication may
be important to be consulted. In this section we distinguish two main
operations to properly interoperate with applications. This requires a
foreign function interface between Midas and the language the application
is written in. On the one hand, when meaningful information for the
application is inferred, the knowledge has to be transferred from the fusion
engine to the application. On the other hand application context could

4.3. Multimodal Language Features 93

provide meaningful information during the fusion process. Therefore the
exchange of information is a two-way process. State-of-the-art multimodal
language abstractions, such as HephaisTK, offer a two-way information
exchange service but are limited to simple event exchange. Events are
unfortunately not well suited to offer a deep application integration as
they merely trigger a callback function to inform the application of novel
information. This callback function is problematic for three reasons: (1)
it needs a generic type to support different kinds of events, (2) it is
called by a stateless function (i.e. a callback without access to contextual
information) that runs in a parallel with the main application thread, and
(3) it causes the inversion of control. This inversion of control happens
when the procedural code is not driven by the program, but by events
coming from outside the application.

Midas provides different strategies to provide the two-way exchange
of data. We enlist them from the simplest to the most advanced solution.

1. As provided by most approaches, we offer a primitive callback-based
event interface. An application can register for particular facts
types by using a topic-based subscribe API. Our Java topic-based
publish/subscribe API is illustrated in Listing 4.13 where an event
callback is subscribed for the SwipeRight fact type (line 1). The
processEvent event handler in the Java application is invoked every
time Midas “detects” a new SwipeRight fact.

2. The topic-based publish/subscribe API passes all events into a
single event handler. A more fine-grained solution is to use a
context-based subscription method, which is inherently provided by
rules. For instance, an application can only be notified whenever
a particular event was added to the fact base, given that slots
obtain a particular value or other complex patterns are satisfied. A
context-based subscription method is thus written as a rule, which
invokes the publish modifier to inform the interested party.

3. It may be difficult to confine all information into a single event
which should be understood by the application-level code. Therefore,
it might sometimes be appropriate to invoke the application API
directly. In Midas, this is done through the call construct. The
call modifier exposes application functions to rules, and allows
developers to pass the relevant arguments required by the application
function. It thus provides a way to invoke a sequence of functions

94 Chapter 4. Midas: A Programming Language for Multimodal Interaction

to properly set the application state. A downside of this approach
is that the compatibility breaks when API functions get updated.

4. The most refined integration between Midas and an application can
be obtained via shadow facts. Shadow facts are a symbiotic abstrac-
tion to provide a fully synchronised representation of application
objects in the fact base. Modifications to attributes of a shadow
facts (via the modify construct) will immediately be percolated to
the application. Conversely, whenever the application modifies the
state of an object, its shadowed fact is updated as well. Shadow facts
are powerful because they can be used as conditional elements in a
rule. This allows developers to program multimodal descriptions
while relying on the dynamic state of the application. For example,
one can express that a rule can only be activated if there exist a
shadow fact. This, amongst other things, improves performance as
results that are bound to be omitted by the application, will not be
computed. We elaborate on the use of shadow facts in Section 4.6.1
where they benefit decision-level fusion processes.

Listing 4.13: Topic-based subscribe API
1 mudra.subscribeEventListener(”SwipeRight”, new EventListener() {
2 public void processEvent(Event e) { ... } });

4.3.6 Unbound Variables and Unification

It is often not possible to choose precise values for each spatial or temporal
condition. In many cases, intervals or multiple values provide a solution
to this problem. However, this does not suffice when multiple conditions
should be true for a particular value, regardless of which value it actually
is. For example, multiple conditions can be matched to events from a
single user, regardless of the user’s identity.

In Midas, developers use unbound variables and unification to describe
values without a concrete instantiation. This makes it possible to bind
a particular value at runtime when it conforms to a given interval. For
example, Listing 4.14 binds the new x variable to x + 5.px of a matched
Touch2D fact. As seen from the example, these variables can reference
runtime slot values of other conditional elements (i.e. t1.x). The ability
to bind relative values can be used in additional conditions, such that
relations to the x value of another matched Touch2D can be tested (line 6).
Line 5 of this example demonstrates the use of unbound variables to unify

4.3. Multimodal Language Features 95

values. As previously shown in Listing 4.12 (lines 7 and 10), the finger
identity of the matched Touch2D events is ensured to be equal, without
requiring an actual value. In a similar way, developers can use this feature
to easily support multi-user descriptions without having to manually
separate the state of each individual user.

Listing 4.14: Unbound variables and unification in Midas
1 rule unboundVariablesAndUnification
2 t1 = Touch2D
3 new x = t1.x + 5.px # Bind the result to new x

4 t2 = Touch2D
5 t2.finger == t1.finger # Unify the touch identity
6 t2.x > new x # Reference the relative new x variable
7 end

4.3.7 Event Expiration

Input streams continuously provide data that is represented as facts added
to the fact base. However, memory is not infinite and facts also need to
be removed. In Midas this is done by rules or via a timespan parameter.
In rules, the retract modifier can be used on any fact that is matched
by a conditional element to explicitly remove it from the fact base. This
is shown in Listing 4.15 that compares Touch2D facts to other Touch2D

facts and if the timespan between them is larger than 10 seconds the older
fact is removed. Without the need for a global clock, this rule effectively
creates a sliding time window that removes old events solely when new
events enter the system. However, our experiments indicate that manual
retraction likely leads to unintentional activations, for instance when
negated conditions become true due to retracted knowledge. Furthermore,
manual retraction leads to state management, which should be reduced as
much as possible in the context of multimodal fusion. Therefore, Midas
provides a second event expiration abstraction based on a sliding time
window.

Listing 4.15: Retracting expired facts
1 rule gcTouch2D
2 t1 = Touch2D
3 t2 = Touch2D
4 t1←beforeF t2, 10.s
5 retract t1
6 end

The sliding time window method uses a combination of the time and
timespan slot of a fact. The Mudra engine, presented in Chapter 5,

96 Chapter 4. Midas: A Programming Language for Multimodal Interaction

tracks these slots of each fact and compares it to new facts that enter
the system with the same template (Section 5.2.2). This behaviour is
similar to what one can write in a rule, but is more efficient due to the
native C implementation and the use of a sorted data structure. A short
timespan allows for a fast expiration of many noisy low-level events, while
long timespans preserve important events for a long period. A default
value for the timespan is specified in the template definition, as shown in
Listing 4.16. During the assertion of a fact this can overwritten.

Listing 4.16: Setting a default timespan value
1 template Touch2D
2 timespan 10.s
3 end

It is generally assumed that every fact type originates from the same
input source (being a hardware device, external service or rule) or at least
has a synchronised time, which makes it feasible to retract based on the
difference between the time values of the new and older events.

Without relying on a global clock, we can gather events from multiple
devices with different time values. Furthermore, it eases debugging and
allows benchmarking at maximum performance (i.e. facts can be asserted
faster than real-time). When logging input events for testing purposes,
time values are persisted and therefore facts can be used as is when loading
them into the Mudra engine. Most CEP systems depend on either a
global clock or work without sliding time-windows. Drools4 supports both
cases but requires a switch between a cloud (without a notion of time)
and steam (forced synchronisation based on a clock) mode5. However, the
dependency on a clock makes benchmarking more difficult and implies
that different versions of the rules might be needed (ones that reason time
versus timeless facts).

In the next sections we introduce Midas language features for each of
the three fusion levels. The subsections in the discussion of these fusion
levels are based on the criteria defined in Chapter 2.

4.4 Data-level Fusion

The process of transforming raw data into more meaningful information
is characterised by (1) removing the excess of noise to (2) provide feature

4Drools: http://www.drools.org/
5Drools Event Processing Modes http://docs.jboss.org/drools/release/5.2.0.CR1/drools-

fusion-docs/html/ch02.html#d0e1044

http://www.drools.org/
http://docs.jboss.org/drools/release/5.2.0.CR1/drools-fusion-docs/html/ch02.html#d0e1044
http://docs.jboss.org/drools/release/5.2.0.CR1/drools-fusion-docs/html/ch02.html#d0e1044

4.4. Data-level Fusion 97

candidates in (3) a real-time manner [41]. This is a challenging problem
since a continuous stream of information containing overlapping patterns
from multiple users needs to be segmented at a high frequency. When an
engine is not capable of processing the information in an efficient manner,
the amount of data might quickly result in a memory and processing
bottleneck. Usually data-level fusion focuses on a high recall in order
to limit information loss. A higher-level fusion process will then focus
on reducing the false positive information. An advanced example of
data-level fusion is the multi-touch gesture presented earlier in Listing 4.7.
In this example, the combination of spatial and temporal functions allows
a declarative specification of a complex gesture with a highly reduced
complexity for the developer (i.e. state maintenance, segmentation and
overlapping matching is taken care of by the engine). In this section we
will go into more details about the spatial and temporal specification, the
identification and grouping problem and the use of control points used to
specify data-level fusion in Midas.

4.4.1 Spatial Specification

Peak thresholding, 2D and 3D gestures, localisation and other properties
can be extracted from raw data streams by means of a declarative spatial
specification. A spatial specification can be as simple as expressing
that a particular value should be equal, higher or lower than a concrete
value. For example, depth sensors such as the Leap Motion6 enable
hand-based human-computer interaction. Using a spatial peak threshold,
developers can specify a minimum depth value of the hand to form a
virtual interactive surface (i.e. the z coordinate should be greater than
5.cm), as illustrated in Listing 4.17. A slightly more complex spatial
specification is based on spatial intervals (i.e. the z coordinate should
be between 2 to 10). The most interesting spatial specification offered
by Midas is a relative spatial condition. This is used to declare spatial
relations between slot values of multiple conditional elements.

Listing 4.17: Spatial threshold
1 rule spatialThreshold
2 hand = Hand
3 hand.z < 5.cm
4 end

6Leap Motion: https://www.leapmotion.com

https://www.leapmotion.com

98 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Relative spatial relations were used in the rotate-and-hold gesture
specification in Listing 4.12. A swipeRight rule defined that multiple
touch points have an increasing x coordinate value compared to a previous
point in time. The first point is special as it has no actual conditions.
Midas uses this point to automatically segment continuous input streams.
In this case, any Touch2D fact can serve as a potential first point and
only when follow-up facts are found with an increasing x coordinate, the
rule will activate.

We note that the function .cm in Listing 4.17 represents a conversion to
centimetres. This function is part of the Space module which is included
by all literal numbers (i.e. fixnums and floats) to provide handy access to
spatial dimension. Conversions such as px, dam, meter, dm, cm, mm

are built-in and can be extended by the programmer. These functions
allow developers to use and extend existing code in a standardised manner.

A number of built-in 2D and 3D spatial operators, such as
euclidean distance, euclidean similarity, angle degrees and
translated near, have been embedded in the engine. Table 4.1 provides
an overview of several spatial operations with their definition. The vari-
ables f1, f2 refer to facts and are the first and second argument when
invoking the operator. The symbol εs can be set to an arbitrarily small
positive spatial distance. The symbol σx,y represents user-defined x,y
coordinates used for translation (i.e. transforming coordinates along the
x and y axis).

Operator Definition
Space2D.distance sqrt((f2.x− f1.x)2 + (f2.y − f1.y)2)
Space2D.similarity 1/(1 + distance(f1, f2))
Space2D.angle degrees acos(n1x ∗ n2x+ n1y + n2y) ∗ 180/π

with m1 = sqrt(f1.x ∗ f1.x+ f1.y ∗ f1.y)
n1x = f1.x ∗ (1.0/m1)
n1y = f1.y ∗ (1.0/m1)
and similar for m2, n2x and n2y

Space2D←near εs > distance(f1, f2)
Space2D←near left εs > (f2.x− f1.x) > 0
Space2D←near right εs > (f1.x− f2.x) > 0
Space2D←translated near near(f1, translate(f2, σx,y))

Table 4.1: Embedded spatial functions and attempts for 2D

User-defined spatial functions and attempts are typically required to
express the gestural interaction. This approach is different from existing

4.4. Data-level Fusion 99

multimodal and gesture specification languages where the language itself
consists of primitive spatial entities tailored to specific sensors (for instance
the North attribute of Proton for multi-touch sensors). The spatial
dimensions of attributes in existing languages such as Proton introduces
two problems: (1) it cannot be easily modified as it requires changing
the internals of Proton; and (2) it operates on a system-wide level, which
means that the minimum and maximum displacement of the attributes
are the same for all gestures. This makes it difficult, or even impossible,
to distinguish between short and long swipes.

In Midas, developers need to implement these spatial entities them-
selves. However, their implementation can easily be reused and customised
for multiple gestures and scenarios. For example, the implementation of
a swipe up gesture only requires a single line (see Listing 4.18) by reusing
the movingTouch attempt of Listing 4.12. Due to the accessibility to low-
level data in combination with user-defined high-level abstractions, Midas
allows a fine-grained solution. This is necessary to properly distinguish
many gestures, as Chui [25] puts it about the misidentification of a curve
as a straight line and vice versa:

For example, if a short J-curve is misidentified as a vertical
line, the character is classified as a ‘T’. In other cases, a long
straight line is misidentified as a curve. The reason for these
errors is that the two parameters T and k of pre-processing
routine are optimally set for characters of a particular size.
For characters that are smaller, the T and K should really
be decreased to yield optimal performance. (. . .) Since T is
too large for small characters, a curve, for example, would be
misidentified as a straight line. Misclassification at this stage
causes failure later in properly classifying a character. [25]

Listing 4.18: Attempt for north
1 attempt north(min y)
2 north = movingTouch -3.px, 3.px, min y, min y ∗ 2
3 end

Given the fine-grained spatial specification ability of Midas, fluid
gestures such as a pigtail or a left curly brace can be also implemented
(Section 6.5). In Section 4.4.6 we discuss a novel technique to express
fluid 2D and 3D gestures in declarative programming languages. The
spatial specification in Midas is broader than the gesture scope and can
also be used to express distances between persons or objects.

100 Chapter 4. Midas: A Programming Language for Multimodal Interaction

4.4.2 Temporal Specification

Lalanne et al. [100] distinguish temporal behaviour at the quantitative
and qualitative levels. Quantitative time is used to express a precise time
(for instance at 10.00 am) or exact temporal relation (the maximum time
between two taps to form a double tap is 300 milliseconds). Qualitative
time deals with the order of events, such as precedence, succession or
simultaneity.

In Midas these temporal relations can be expressed by means of
constraints on the value of the time slot. In contrast to many existing
multimodal languages which express time by ordering conditions, Midas
uses explicit temporal conditions which can be listed at any line within a
rule. This is important because it allows the developer to easily refine
rules with additional conditions without requiring deep knowledge of the
existing code. It also allows developers to group a type of constraints into
several lines, such as spatial relations are followed by temporal relations.
This makes the code easier to read and understand.

Listing 4.19: Attempt for before
1 attempt before(f1, f2, eps = 0)
2 f1.time + eps < f2.time
3 end

Midas provides temporal dimension for numbers, similar to the
space dimensions. Temporal conversions such as day(s), h/hour(s),
min/minute(s), s/second(s) and ms/millisecond(s) are built-in to
enable expressions such as 5.seconds. Midas also embeds Allen’s tem-
poral operators [1], as shown in Table 4.2. The Time←before operator
is implemented in Listing 4.19.

4.4.3 Spatio-Temporal Specification

Spatial and temporal conditions can be nested arbitrarily in Midas. This
enables the development of custom spatio-temporal specifications to
distinguishing between slow and fast walking or a short and long Piezo
tap (Listing 4.8). Attempts embed arbitrary conditions and therefore
encapsulate spatio-temporal features.

4.4.4 User-defined Attempts and Functions

As mentioned before, Midas encourages the development of user-defined
attempts and functions. Therefore, instead of restricting the developers

4.4. Data-level Fusion 101

Operator Definition
Time←equal |f1.time− f2.time| < εt
Time←meets f1.time− f2.time < −εt
Time←before f1.time+ εt < f2.time
Time←after f1.time > f2.time
Time←within f1.time+ εmin < f2.time

f1.time+ εmax > f2.time
Time←contains f2.time < f1.time < f3.time
TimeInterval←equal |f1.time begin− f2.time begin| < εt

|f1.time end− f2.time end| < εt
TimeInterval←meets f1.time end− f2.time begin < εt
TimeInterval←before f1.time end− f2.time begin
TimeInterval←overlaps f1.time end < f2.time begin
TimeInterval←starts |f1.time begin− f2.time begin| < εt
TimeInterval←during f2.time begin < f1.time begin

< f1.time end < f2.time end
TimeInterval←finishes |f1.time end− f2.time end| < εt

Table 4.2: Temporal operators

to a small vocabulary of built-in functions, the language is open for
custom functionality. This enables a lot of functionality outside the
scope of our examples without having to modify the engine. However,
it also implies that reasoning over properties for optimisation is limited.
The current strategy is to identify common patterns and then provide a
built-in alternative that can be optimised. An example is the use of a
Space2D←translated near spatial operator that checks if a 2D point is
nearby a second translated 2D point. This operation has been adopted
as a general design pattern to declaratively describe complex 2D and
3D gestures. Therefore a built-in variant has been provided to reduce
the computation costs. Similarly, Dynamic Time Warping [32] has been
adopted in the C codebase rather than the Midas language.

4.4.5 Identification and Grouping

Certain input sensors provide information related to identity. For instance
a multi-touch sensor groups a number of activated pixels to detect a
single touch event. This touch event is accommodated with a unique
number that remains assigned to the movement of that particular finger
in subsequent events. In a similar way, depth cameras with body tracking

102 Chapter 4. Midas: A Programming Language for Multimodal Interaction

software identify limbs. For many fusion processes, identity information is
crucial. Identity can either be known (e.g. a fingerprint scanner provides
a unique label of a person), partially known (most multi-touch sensors
provide a numeric finger identification but it is unknown which finger is
actually used) or unknown. Even when identity information is completely
missing, as in the case of audio sensors, it is possible to distinguish
speech input based on the fusion of input from a microphone array. The
user identification can even be further enhanced by relying on the audio-
inferred spatial location of the user combined with vision-based face
recognition that returns the name of the person speaking.

Another example is the combination of touch and video to identify
the type of a finger (such as the index finger of the right hand). A
key component of identification processes is grouping. As with most
multimodal sensor input, information is incomplete and a number of
different combinations are possible that need to be resolved in subsequent
steps. For instance when mapping the unique touch number to an actual
finger, it might be uncertain during the early fusion process whether it
should be mapped to the index or middle finger. Additional information
such as video frames or additional sensors can aid this decision.

Unfortunately, existing multimodal languages provide very little pro-
gramming abstractions to deal with identification and grouping. In Midas
we provide identity and grouping abstractions on three levels: instantiated
filters, unification-based filters and scoping filters.

Instantiated Identity Filtering The simplest form of identity fil-
tering is achieved by providing concrete values for the attributes on a
conditional element. For instance RFID tags can be filtered on the iden-
tity level. To match a single RFID tag, one can use an inline constraint
value, such as RFID { id == "L9870I1050S2800ELIA" }. When condi-
tions need to operate on a known group identity, a similar expression
can be used, such as RFID { kind == "UHF-433" }. This will match all
RFID tags from the same kind.

Unification-based Identity Filtering Unification is used when mul-
tiple conditional elements should share a common slot value, but whereby
the actual slot value is unknown at development time. As argued in
Section 4.3.6, unbound variables and unification allows developers to
automatically group a number of events. This is in contrast to imperative
languages where all potential combinations need to be manually stored.

4.4. Data-level Fusion 103

Listing 4.20 specifies that two RFID facts from the same kind should be
matched. This rule triggers for all pairs of RFID facts from the same
kind.

Listing 4.20: Unify the RFID type
1 rule unifyRFIDType
2 r1 = RFID
3 r2 = RFID { kind == r1.kind }
4 end

Scoped Identity Filtering As rules become more complex, ensuring
the identity over multiple conditional elements requires a lot of attention.
Indeed, the identity relation has to be repeated for each condition element
and is easily forgotten. Therefore, Midas provides a scoped identity
construct, namely group. Listing 4.21 exemplifies a rule that matches
users which smile while walking. The group construct unifies the user

attribute of the conditional elements in its scope (i.e. Walk and Smile).
When a conditional element does not provide the slot, the check is omitted
(i.e. if an additional conditional element would be specified in this group
(between lines 3 and 5), but the conditional element does not provide a
user slot, the compiler will still validate the rule).

Listing 4.21: Scoped identity grouping
1 rule walkAndSmiles
2 group user
3 walk = Walk
4 smile = Smile
5 smile←duringF walk
6 end

4.4.6 Segmentation and Control Points

In this following section we describe the segmentation properties of Midas,
together with a control points design pattern to segment 2D and 3D ges-
tures.

Midas rules are event driven and activate as soon as a combination of
facts matches its description. This is an important strategy to support
segmentation (also known as spotting). Our engine provides an advanced
way of segmenting fusion candidates from continuous event streams. For
example, the tap gesture using piezoelectric sensors described in Sec-
tion 4.2.2 and Listing 4.8 matches the sequence of low vibration power
level, followed by a short peak, followed again by a low vibration value.

104 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Instead of defining a simple peak threshold (i.e. value > 550) to seg-
ment the stream, we described three conditional elements relative to
each other (such as second.value > first.value + 500). This accom-
modates noise from the sensor (i.e. the power level is never 0), noisy
environments (for instance when an engine is running in the neighbour-
hood) and unanticipated events (such as the vibration caused by a spin up
from a rotational hard drive). The problem of segmentation is prevalent
when processing input streams from various input sources. A detailed
analysis of how our engine copes with the complex segmentation patterns
is discussed in Section 5.3.4.

Control Point-based Gesture Spotting

During experiments for segmenting raw data of 2D and 3D input events,
we identified a novel design pattern called control points. Control points
are based on the relative spatial location of multiple facts compared to a
first, underspecified, fact. This implies that the first conditional element is
unconditioned to particular spatial requirements. Subsequent conditional
elements then define a relative spatial relation to this initial conditional
element. This spatial relation is typically represented as a translation of
an ellipse (2D) or ellipsoid (3D), however many variations are possible.

To define control points, a single, well-formed sample is analysed by an
expert. This expert defines a number of control points that characterise
the gesture. Figure 4.2 shows four control points to describe a swipe right
gesture. In this example, the control points c2, c3 and c4 are described
with an x and y translation relative to c1 and with a maximum radius.
The size of the radius provides the rate of flexibility to match of sloppy or
noisy gesture executions. By matching any Touch2D fact as the starting
point (i.e. c1 is unrestricted) automated segmentation is obtained.

c1 c2 c3 c4

277 px 5 px 370 px 5 px
-4 px

229 px

Figure 4.2: Control points for a swipe right gesture

Additionally, the declarative definition of control points in Midas will
ignore all “noise” facts in between (i.e. Midas extracts a combination of

4.4. Data-level Fusion 105

facts in the fact base that adheres the description). This implies that
noisy facts during the gesture execution between these control points
are completely ignored. With this flexibility, control points are highly
optimised for high recall. Additional constraints can be encoded as well,
for example Figure 4.3 adds a maximum ∆y displacement relative to c1.
Segmented gesture candidates can also be verified using an additional
classifier such as Protractor or Dynamic Time Warping.

p3 p4

p2

∆Y

c2 c3
c4

Figure 4.3: Curved line

Listing 4.22 shows a code sample of the control points pattern by
implementing a swipe right gesture. The swipeRight rule starts with the
open control point c1 and searches for a second point c2, which matches
the temporal and spatial constraint based on the distance between c1

and c2 (lines 4 and 5). Line 5 attempts to satisfy translated nearF,
which performs a translation of the x and y coordinates of the first
argument (point c1) with the given values of 277 and 5 pixels. The
attempt succeeds if the second argument (point c2) lies within a circular
area around point c1 with a radius of 76 pixels. The same strategy is used
for the remaining m-2 control points. For three-dimensional gestures, an
equivalent translated near attempt is provided in the Space3D module.

106 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Listing 4.22: Swipe right gesture spotting rule
1 rule swipeRight
2 c1 = Touch2D
3 c2 = Touch2D
4 c1←beforeF c2
5 c1←translated nearF c2, 277.px, 5.px, 76.px
6 c3 = Touch2D
7 c2←beforeF c3
8 c1←translated nearF c3, 647.px, 10.px, 76.px
9 c4 = Touch2D

10 c3←beforeF c4
11 c1←translated nearF c4, 876.px, 6.px, 76.px
12 c4←withinF c1, 100.ms, 1000.ms # Maximum time
13 no { b = Touch2D # Bounding boxes
14 b←afterF c1
15 b←beforeF c4
16 Math.abs(c1.y - b.y) > 245.px } # ∆y
17 assert SwipeRight { x begin ⇒ c1.x, y begin ⇒ c1.y,
18 x end ⇒ c4.x, y end ⇒ c4.y,
19 time begin ⇒ c1.time, time end ⇒ c4.time }
20 end

Lines 13 to 16 implement additional constraints on top of this pattern
and express that there should be no Touch2D fact that happens between
the time of the matched c1 and c4, where the difference of the y coordinate
compared to c1 is larger than 245.px. The effect of this refinement is
visualised by the top and bottom bounding boxes. Therefore, the noisy
execution, represented by the curvy line, will match all four control points
but the rule will not activate to the negated condition. Note that in
standard scenarios, 2D multi-touch values are normalised in an interval
between [0..1] to accomodate various screen sizes.

The control points pattern works for many gestures, including more
fluid gestures such as a Z as shown in Figure 4.4. In this case, the expert
developer can increase the radius of the fourth control point to allow
for more flexibility. The use of control points allows for a highly precise
segmentation definition without resorting to lossy approximation methods.
Many existing approaches tend to either (1) smoothen input and thereby
losing valuable information or (2) require a few distinctive cues to enable
segmentation (for example peaks or obvious angles). However, gestures
with few distinctive spatial cues, such as the swipe right example, are
problematic for many techniques. When using control points, a developer
has full control over which parts of a gesture should be matched closely
and where variation can be tolerated.

In traditional, state machine-based implementations, segmentation is
challenging due to the fact that state transitions need to be performed at

4.5. Feature-level Fusion 107

c2

c3
c4

c1
c2

c3
c4

c1

Figure 4.4: Control points for a Z gesture

s1 s2 s1 ?
s3 ? s2 s3 s4

Figure 4.5: Overlap within a single gesture definition

the event level. Whenever a new event triggers the transition to the next
state, subsequent data will not be used as a potential start transition.
This is illustrated in Figure 4.5 showing the gesture to be spotted on the
left-hand side and the ongoing processing on the right-hand side. Initially,
the transition from state s1 to state s2 is valid. However, at state s3

the state machine, each incoming event requires a decision to reset the
state machine to s1 or continue to wait for future data such that s4

might still be reached. As future data is not available at this point, state
machine approaches are stuck in local decision making and potentially
miss candidates.

4.5 Feature-level Fusion

Fusion at the feature level is used to disambiguate between candidates
when a single modality falls short. For example, in multi-touch technology,
every finger gets assigned a unique identifier. However this does not

108 Chapter 4. Midas: A Programming Language for Multimodal Interaction

provide information whether the fingers originate from the same hand or
from different users. The fusion of existing techniques is a task typically
performed at the feature level. For example, the Diamond Touch table
uses small amounts of electrical current to identify touches from individual
users [36]. It is important to stress that Midas does not enforce a strict
separation between the data and feature level. This is advantageous
for data-level recognisers requiring feature-level information. In this
case, a data-level speech recogniser can for example benefit from user
identification at the feature level.

4.5.1 Synchronising Streams

At the feature-level, it is common that input from different sources is not
always perfectly aligned. In order to resynchronise streams in existing
solutions, the programmer has to manually insert a delay parameter for
one of the streams. This delay parameter is usually defined at compile
time and does not always reflect runtime behaviour.

In Midas, time is handled explicitly through the use of temporal
operators. Therefore, the fusion of two facts depends on their timestamps
and the relative relation between them. This means that the engine will
take care of the pattern matching state and no manual resynchronisation
is needed. In effect, a skewed sliding window is created such that facts
are matched with facts that are produced at the same time.

Our sliding window approach with a declarative approximation solves
the problem found in existing systems which rely on a “current” state [41].
To discard old facts from stream e, a cross-template event expiration
method can be used.

Therefore, different time units can be employed between templates.
For instance, the time unit of Touch2D uses milliseconds since the Unix
epoch (1/1/1970) while application or context facts can use incremental
counters.

Cross-template Event Expiration As explained in Section 4.3.7,
facts can be expired using rules and the automated expiration method. If
we slightly adapt the rule, we can expire facts across templates to describe
the intended behaviour as illustrated in Figure 2.2. Listing 4.23 retracts
accelerometer facts which became too old relative to the gyroscope facts.
Additionally, distinctive cues from other input streams, such as peaks or
characteristic events (e.g. Touch2D.state == Touch2D.UP, meaning the
finger is lifted from the touch surface), can also be used to expire facts.

4.5. Feature-level Fusion 109

Listing 4.23: Cross-template event expiration
1 rule crossTemplateEventExpiration
2 a = Accelerometer
3 g = Gyroscope
4 a←beforeF g, 4.ms # ∆time
5 retract a
6 end

4.5.2 Dynamic Service Instantiation

Dedicated components for feature-level fusion are common and can be
embedded within the Midas language and Mudra architecture. Many of
these components rely on learning approaches such as [17, 50, 121] and
can therefore be treated as black-box services. A longer-term vision is
that many of these machine learning components can be accommodated
by declaratively specified features, thus relying on higher-level features
with more contextual and higher-level attributes instead of primitive
features and their limited implementation capabilities. Additionally,
certain applications aim to provide a user interface with a dynamic set
of available modalities. For instance, when a digital pen is connected
it can be used as an alternative to the keyboard to write text in text
forms. However, translating 2D pen input into characters requires a
handwriting recognition process. It is often difficult for developers to
define a particular value for the number of services that will need to
run [6].

Midas has the ability to manage services at runtime. Services are
small dedicated programs to fuse facts, but are implemented outside
the Midas programming language. These services are orchestrated by
the Mudra architecture, which are split in internal and external services.
Internal services are part of the Mudra runtime and consist of algorithms
implemented in C, such as Dynamic Time Warping, Protractor [106], $1
recogniser and other tools such as peak thresholding. External services
rely on network communication such that solutions which exist outside
the Mudra runtime can be reused. Information exchange happens in the
form of facts or serialised key-value pairs (i.e. JSON or XML) and is
transparent to the developer.

In listing 4.24, we demonstrate the activation of PeakCardinal-

Directions3DService, which transform accelerometer input into car-
dinal direction features based on peaks in the 3D acceleration data. Note
that the dynamic instantiation is performed through rules, meaning that

110 Chapter 4. Midas: A Programming Language for Multimodal Interaction

as soon as a new accelerometer sensor is attached, a peak thresholding
service providing cardinal directions is instantiated. Services can be sub-
scribed to receive facts (such as Accelerometer, line 6) and can then
publish results back to the fact base (in this case the cardinal direc-
tions). Note that services can be allocated to process input from a single
sensor. This greatly reduces the internal complexity of the peak detection
algorithm.

Listing 4.24: Initialise cardinal direction service
1 rule cardinalDirectionService
2 a = Accelerometer
3 no { PeakCardinalDirections3DService { sensor == a.sensor } }
4 assert PeakCardinalDirections3DService { sensor ⇒ a.sensor }
5 s = call PeakCardinalDirections3D.initialise(”cd3d”)
6 call s.subscribe Accelerometer # Subscribe to Accelerometer facts
7 end

In Listing 4.25, the service RelativePositioning is responsible for
creating relative coordinates between two joints of a human body. Relative
coordinates between joints are useful during the description of 3D gestures.
During our first experiments, relative joint coordinates were expressed
via rules. However we transformed it into a service implemented in
the C programming language to optimise performance as the pattern
was used for nearly all 3D descriptions. In Listing 4.25, the service
is used to calculate the relative position of an event from the right
shoulder to an event from the right hand. The service then asserts
RelativeJoint facts, which can be used in rules. The final parameter of
the startNormalisedJoint function call (line 6, s.distance) denotes a
linear interpolation step such that two consecutive events should have at
most 1 centimetre distance gap.

4.5. Feature-level Fusion 111

Listing 4.25: Initialise normalised relative joint service
1 rule start RelativePositioning
2 s = StartRelativePositioning
3 j = Joint
4 no { RelativePositionService { id == s.id && sensor == j.sensor && user == j.user } }
5 assert RelativePositionService { sensor ⇒ j.sensor, user ⇒ j.user, id ⇒ s.id }
6 call RelativePositioning.startNormalisedJoint(Joint, j.sensor, j.user, s.parent, s.child, s.distance)
7 end
8
9 rule foundRelativeJoint

10 r = RelativeJoint
11 display ”Relative joint for #{r.user} (#{r.parent}, #{r.child})”
12 end
13
14 assert StartRelativePositioning { id ⇒ ”RShoulder-RHand”, parent ⇒ 12,
15 child ⇒ 15, distance ⇒ 1.cm }

4.5.3 Asynchronous Tests

The rule foundRelativeJoint in Listing 4.25 relies on a conditional
element, RelativeJoint, to process results from services. Conditional
elements in rules are by default asynchronous, as they wait for a match
from the fact base. However, a function invocation is synchronous, which
means that it stalls the pattern matching process until the execution is
completed. Therefore, Midas provides abstractions to asynchronously
wait for a computation. This is similar to the async/await programming
style advocated by the Microsoft .NET framework7.

An async construct is useful to offload calculations from the main
inference loop to a background thread, such as computationally intensive
functions or remote procedure calls. Many of the feature-level calculations
consume a lot of processing power and in the current implementation,
a continuous stream of input events would cause memory and latency
problems. In an async case, the matching of following conditional elements
will wait until the computation is completed. Thus the async command
allows other input events and pattern matching processes to continue until
the asynchronous computation is completed. An example of this feature
is provided in the next section, which asynchronously verifies candidate
fusion results.

7Asynchronous Programming with Async and Await: http://msdn.microsoft.com/en-us/

library/hh191443.aspx

http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx

112 Chapter 4. Midas: A Programming Language for Multimodal Interaction

4.5.4 Verification

The following language construct to ease the programming of feature-
level fusion focuses on verifying candidate results. At the feature-level,
candidate results from the data-level fusion are (1) ignored if they do
not match the higher-level rules, (2) fused with other sensor input or
contextual results from other data-level processes or (3) verified by more
heavyweight classification solutions such as Dynamic Time Warping
(DTW) and Hidden Markov Models. In our hold-and-rotate example,
the multi-touch gestures can be verified using the DTW and Protractor
classification algorithms. These algorithms cannot be used directly on
continuous input data as they do not support segmentation. However,
data-level fusion processes from Midas, such as the SwipeRight gesture,
provide segmented gesture candidates, which can be verified by existing
classifiers. An example is shown in Listing 4.26 where the SwipeRight
fact is matched and its details (such as the touch identity and the begin
and end time segment) are used to verify the swipe right movement
with a DTW template matcher. Line 1 initialises such a DTW template
matching service with an existing dataset (i.e. data/directions.json).
Then, a global $dtw variable can be used to refer to that service and call
the recognise function. Midas and Mudra also support a dynamic service
instantiation mechanism, which is explained in Section 5.2.4.

Listing 4.26: Asynchronous verification
1 $dtw = call DTW2D.initialise(”data/directions.json”)
2
3 rule verifyRight
4 r = SwipeRight
5 async $dtw←recognise(”right”, ”Touch2D”, r.finger, r.time begin, r.time end)
6 end

Fusing results from different classification methods, such as DTW, is
called coupled recognition. This process is useful to obtain high F-scores
(Equation 4.1) as the rules are capable of providing candidate segments
out of continuous streams with a high recall, while the verification step
of these candidates provides high precision.

F-score = 2 ∗ precision ∗ recall
precision+ recall

(4.1)

4.5. Feature-level Fusion 113

4.5.5 Cross-level Fusion

The feature-level fusion of two partially related sensors can improve
results of the data-level fusion processes. In contrast to pipeline solutions,
Midas can easily exchange information across fusion levels by relying on
a unified fact base, thereby blurring the distinction between fusion levels
(this is also known as multi-level fusion). A simple example is the use of
RFID data to personalise Touch2D facts. This identity information can be
used to write user-specific gesture rules. In Listing 4.27, a decision-level
rule personalises Touch2D facts (line 11) whenever user information is
missing (line 7) and an RFID tag was scanned in the neighbourhood
(lines 8 and 9). If the RFID value contained the name Christophe, the
data-level rule personalTouch will trigger. This enables developers to
specify user-specific rules without having to worry where the data comes
from.

Listing 4.27: Feature fusion influencing data fusion
1 rule personalTouch
2 t = Touch2D.user ”Christophe”
3 display ”Christophe touched it”
4 end
5
6 rule userIdentification
7 t = Touch2D.user nil
8 tag = RFID.source ”Multi-Touch Table”
9 t←nearF tag, 20.cm

10 t←equalF tag, 500.ms
11 modify t { user ⇒ tag.value }
12 end

Often high-level information such as application context, derived
information from other fusion processes or historical decisions can also
be used in order to improve the recognition rate of lower-level fusion.
In Midas and Mudra, the data flow between fusion levels is therefore
not strictly unidirectional. Descriptions matching high-level facts can be
listed in the same rule as facts from the raw data, without the difficulty
of manually maintaining intermediate results or manually aligning high
frequency and low frequency streams. The cross-level fusion capability of
Midas and Mudra is therefore extremely valuable and progresses beyond
state-of-the-art fusion frameworks.

114 Chapter 4. Midas: A Programming Language for Multimodal Interaction

4.6 Decision-level Fusion

At the highest level of multimodal fusion, processes decide whether or
not to deliver information to the application layer or to invoke APIs. As
explained in Sections 2.2.3 and 3.1.2, decision-level fusion is difficult due
to the integration of various high-level events, contextualisation, error
handling and switching between dialogues. Additionally, developers need
to deal with overlapping matches. For example, when two candidates
based on facts f1, f2 and f1, f3 both form valid combinations for the same
interaction pattern. Furthermore fusion results need to be tested with
the application state or their relation with specific GUI components.

The Midas programming language provides a number of abstractions
to describe the fusion of high-level events. Midas provides dialogue
management capabilities, based on the abstractions provided by the
SMUIML [40] language, as well as a number of activation policies to deal
with overlapping matches. However, obtaining error-free results is hard
and currently Midas does not provide abstractions for error handling
(Section 2.1). Therefore, to aid developers with proper decision making,
Midas provides a number of language abstractions on the decision level.

4.6.1 Shadow Facts

A first decision-level specific abstraction are shadow facts. As explained
in Section 4.3.5, the details of GUI components from the application level
can be represented by a corresponding fact in the fact base. As soon as
information, such as the location or colour, from such a GUI component
is updated, the fact is instantaneously updated with this information as
well. The concept of synchronising replicating application state as facts
is known as shadowing.

A shadow fact is a fact that represents the state of an application
object. For the programming language Java, we use annotations to denote
shadowing. Therefore, when a class is annotated as Shadow, the framework
automatically reifies the instances as facts with the class name as type
and the fields of the class as slots. The field annotation Ignore is used
to exclude specific fields from being automatically reified as attributes
of the fact. This accommodates synchronisation issues found in related
work as discussed in Section 3.4.2. An example of how to use the Java
annotation mechanism is shown in Listing 4.28. Since the Image class
is annotated as Shadow, Midas will reify object instances as facts. The
Image class has the five fields x, y, w, h, path and the last field has been

4.6. Decision-level Fusion 115

annotated as Ignore. This implies that the path field will not be reified
as an attribute of the fact. From within the rules, the programmer can
match application objects of type Image by using them as conditional
elements.

Listing 4.28: Shadowing GUI elements
1 public @Shadow class Image {
2 int x, y;
3 int w, h;
4 @Ignore int path;
5 Image(String path, int x, int y, int w, int h) { ... }
6 }

We revisit the running hold-and-rotate example that is characterised
by a stationary finger and a two-finger move to the right to rotate a
particular GUI image. Listing 4.29 integrates application awareness via
an application symbiosis. The symbiosis allows for a proper contextu-
alisation, as the Hold-and-rotate gesture can only occur on top of an
image (line 4), and filters many false positive fusion results. Listing 4.29
also demonstrates the customisation capabilities of Midas, as existing
implementations, such as the HoldAndRotate gesture, can be reused in a
separate context with additional customised conditions without having
to modify the original code.

Listing 4.29: Contextualisation of rules
1 rule holdAndRotateImage
2 h = HoldAndRotate # Match a complex gesture
3 i = Image # Match a shadowed image
4 h←inside i # which was held w.r.t its boundaries
5 call i.rotate(h.diff) # Call the Java rotate API
6 end

The symbiosis also allows more complex decision logic. For instance
when images i1, i2 are present on the screen and a user drags the image i1
while crossing i2, the drag gesture should stick to image i1. This should
also be possible when image i2 is layered on top of image i1 (i.e. image
i2 floats above image i1 across the Z-axis). This behaviour is illustrated
in Figure 4.6 and demonstrates that the integration between applica-
tion information and fusion processes is crucial. Existing multi-touch
approaches are mostly limited to pinning a touch event to a particular
GUI component without reasoning about the history of these touch events.
Therefore they have difficulties to support this scenario. An exception is
the approach of Echtler et al. [47] which provides an ad-hoc sticky flag to
specifically deal with this situation. A different scenario is when gestures
are defined on the background GUI component but their activation is

116 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Figure 4.6: Sticky drag

intended for smaller regions. For example to implement a strike-through
gesture, Echtler provides a ubiquitous flag such that gesture events are
delivered to all participating GUI components. Unfortunately, these flags
cannot be easily generalised and therefore shadow facts are much more
flexible.

The combination of shadow facts, activation policies (Section 4.6.3)
and pattern matching reduces the accidental complexity of mapping input
to GUI components. As recently described in a LWN article [159], it
is straightforward for window managers to decide which window should
receive the mouse events in traditional keyboard and mouse setups. Fur-
thermore, if the window refuses the input, it can be propagated to lower
layered windows. The mechanism to decide propagation for every incom-
ing event has been working for decades. However, multi-touch input, and
therefore multi-touch gestures, introduce a level of uncertainty and delayed
decision process. Thus, the concept of shadow facts within a multi-touch
recogniser or multimodal fusion engine is increasingly important.

4.6.2 Alternating Between Conditions and

Modifiers

The ability to alternate between conditions and modifiers is particularly
useful to provide intermediate feedback to the application. However,
existing rule languages, such as CLIPS [57], Jess [55] and Drools [7]
explicitly separate the conditional side from the modifier side. This
implies that working with intermediate results becomes difficult, as adding
additional conditions after a modifier requires one to split the logic
into multiple rules. Additionally, the intermediate state from the first
rule needs to be manually propagated to the next. This is exemplified
in Listing 4.30 where the goal is to display text as soon as the user
Christophe enters the coffee room, followed by another text notice after
a second entrance. Therefore, the control flow of this program is as follows:
wait for a condition c1, execute m1, wait for c2 and execute m2. Existing
rule languages do not support this scenario well and therefore explicit

4.6. Decision-level Fusion 117

intermediate state facts are required to test for additional conditions after
a modifier was used.

Listing 4.30: Alternating between conditions and modifiers (1)
1 rule intermediate1
2 u = User.name ”Christophe” # c1
3 u.state == User.ENTERS
4 display ”Christophe enters the coffee room” # m1
5 assert Intermediate { time ⇒ u.time } # Store intermediate state
6 end
7
8 rule intermediate2
9 i = Intermediate # Load intermediate state

10 u = User.name ”Christophe” # c2
11 u.state == User.ENTERS
12 u←afterF i, 150.ms
13 display ”Christophe probably forgot his coffee” # m2
14 end

Midas resolves this problem on the language level by relying on the
type of the statements, being either a condition or a modifier. Whenever
a modifier is followed by a condition, the Midas compiler automatically
splits the rule (i.e. r1 and r2) and stores all bound variables of r1 into
an intermediate fact. This intermediate fact is then listed as the first
conditional element of r2 which restores the scope without additional
developer effort. Furthermore, the intermediate fact is automatically
retracted. The result is shown in Listing 4.31.

Listing 4.31: Alternating between conditions and modifiers (2)
1 rule entersTwice
2 u1 = User.name ”Christophe” # c1
3 u1.state == User.ENTERS
4 display ”Christophe enters the coffee room” # m1
5 u2 = User.name ”Christophe” # c2
6 u2.state == User.ENTERS
7 u2←afterF u1, 150.ms
8 display ”Christophe probably forgot his coffee” # m2
9 end

4.6.3 Conflict Resolution

Rules activate whenever a combination of facts matches their conditionals.
In many scenarios a more fine-grained control over the activation of rules
is needed [47]. Echtler et al. exemplify that a press gesture should only
activate once, namely when the finger touches a region8. It should not

8This is the typical behaviour of click and double click in today’s GUI toolkits

118 Chapter 4. Midas: A Programming Language for Multimodal Interaction

reactivate while the user continues touching it. This is true for many
types of input sensors where the stream of information is decided by a
refresh rate rather than a distinctive event such as a mouse-click. In the
next sections we describe multiple activation policies, namely priorities,
bookkeeping facts and activation flags.

Priorities

When designing gestures, parts of interaction patterns might overlap. For
example, the gesture for a single tap overlaps with the gesture for a double
tap. In Midas, priorities can be assigned to rules. For example, when
the priority of the double tap is higher than a single tap (and the double
tap rule retracts the matched event), the single tap rule is only triggered
once when a user taps twice. Depending on the intended behaviour, a
single tap rule can wait for the existence of a second tap in the future
and block itself from activating at all.

Rules with a higher priority will always be matched before rules with
a lower priority. An example of how to use priorities in rules is shown in
Listing 4.32. Midas uses the keyword salience to denote priority levels.
Unfortunately, prioritisation only works when facts are retracted from
the fact base. If they were not, the current implementation would also
activate the nonPrioritisedTap rule.

Listing 4.32: Priorities
1 rule prioritisedDoubleTap
2 salience 100
3 t1 = Tap
4 t2 = Tap
5 t1←meetsF t2, 150.ms
6 retract t2
7 display ”Double tap”
8 end
9

10 rule nonPrioritisedTap
11 t = Tap
12 display ”This will not happen for a double tap”
13 end

Bookkeeping Facts

Another strategy to resolve conflicts is by manually bookkeeping the
current state in a fact. This pattern uses facts to influence the activation

4.6. Decision-level Fusion 119

of rules9. For example, rule r can express that a particular fact should
not exist using the negation construct. At the same time, another rule
r′ expresses the assertion of such a fact, for example when the context
of the application changes. When r′ activates, rule r is blocked from
activating due to the existence of this bookkeeping fact. This example is
implemented in Listing 4.33. Shadow facts are also a particular form of
bookkeeping facts. Bookkeeping facts are a powerful method to control
the activations of rules, but can become quite complex to manage.

Listing 4.33: Bookkeeping Facts
1 rule r
2 t = Tap
3 no { ContextFact }
4 display ”Tap”
5 end
6
7 rule rPrime
8 a = Image { state == Image.SHOW }
9 assert ContextFact

10 end

Rule Activation Flags

Based on related work on activiation flags [47] and our experiments, we
identified the necessity for a number of different types of rule activations,
including the one-shot, default, shoot-and-continue, sticky and a hold flag.
The one-shot flag is a commonly used type of activation, meaning that
a single particular interaction pattern results in a corresponding single
action. For example, the put that there example performs a single action.

Activation flags are annotated to a callback function. For example,
a Ruby program can register a callback on a rule activation using the
shoot-and-continue (i.e. :sac) flag. This is illustrated in Listing 4.35,
line 1 as part of the register call on the lasso rule (i.e. rule(:lasso)).

The shoot-and-continue activation flag means that an interaction
should be matched at least once and that following activations are activ-
ated in an online manner. To illustrate the functionality of this flag, we
describe a lasso gesture. The movement performed while performing a
lasso gesture (i.e. to throw a rope) consists out of a rotation of the arm
above the head. This is expressed by Listing 4.34, which defines lasso as
a sequence of relative 3D positions of the hand compared to the shoulder
moving in a clockwise circle. To be more precise, line 9 to 12 expresses

9Bookkeeping facts correspond to an existing concept, named control facts in expert systems [56]

120 Chapter 4. Midas: A Programming Language for Multimodal Interaction

that a combination of four EnterEllipsoid facts (i.e. front, right, back
and left) should be found. Further, line 13 describes that the control
points should be matched in a sequential temporal relation with a max-
imum timeout parameter. The existence of these EnterEllipsoid control
facts stems from separate rules, such as the one listed on lines 1 to 6.
The coordinates in lines 3 to 4 are obtained by transforming, scaling
and rotating the ellipsoid in a graphical editor. A boolean function
(i.e. enterEllipsoid) checks whether a relative joint falls inside the
given ellipsoid coordinates.

The subscription to the lasso rule in Listing 4.35 is annotated with
the shoot-and-continue (sac) flag (line 1). This means that the spray

function will be called when a user performs a lasso gesture (i.e. one
full rotation) and from then on, after every consecutive quadrant of the
rotation. Each consecutive step is defined by a conditional element. The
parameter p on line 1 is an approximate percentage (0..1] of the entire
set of conditions met in a rule and can be used to provide intermediate
feedback of the matching progress. Alternatively, developers can opt for
application symbiosis to implement the same behaviour.

Listing 4.34: Lasso gesture
1 rule enterLassoC0HandRight0
2 r = RelativeJoint { parent == Joint.HAND RIGHT && child == Joint.SHOULDER RIGHT }
3 r←enterEllipsoid 0.09754365, -0.45139461,
4 0.00097420, 0.1444336, 0.5310212, 0.4756404, 0, 0, 0
5 assert EnterEllipsoid { id ⇒ ”HR0”, time ⇒ r.time }
6 end
7
8 rule lasso
9 e0 = EnterEllipsoid { id == ”HR0” }

10 e1 = EnterEllipsoid { id == ”HR1” }
11 e2 = EnterEllipsoid { id == ”HR2” }
12 e3 = EnterEllipsoid { id == ”HR3” }
13 Time←meets4F e0, e1, e2, e3, 0.5.seconds
14 assert Lasso { time begin ⇒ e0.time, time end ⇒ e3.time }
15 end

Listing 4.35: Shoot-and-continue callback registration
1 rule(:lasso).register(:sac, 500.ms) { |p|
2 spray(p ∗ sprays, 100.ms)
3 }

Finally, the hold flag allows developers to register an event handler to
rules which are active over a longer period of time (such as a pose). As
long as the conditions are satisfied, a callback will be triggered every x
milliseconds (with parameter x defined by the developer).

4.7. Multimodal Language Patterns 121

Based on the requirements of our experiments and related work [47],
Midas provides the following activation flags:

• A one-shot activation means that a single interaction should corres-
pond to single action. An optional argument defines the minimum
time interval in which the action can be re-executed.

• The default policy will execute the modifiers whenever a combination
of the facts in the fact base matches the conditions of a rule.

• The shoot-and-continue (sac) means that an interaction should be
matched at least once and that subsequent changes that are in
line with the gesture definition should be processed in an online
manner. Midas provides an additional (approximate) percentage
of the online interaction with respect to the number of conditions
that are matched.

• The sticky flag is a spatial-aware policy to limit the activation
of other rules within a 2D or 3D distance. An optional spatial
argument defines the minimum spatial interval in which another
gesture cannot be triggered.

• When an interaction is matched and remains valid when new in-
formation enters, the hold flag will trigger the action for every
x milliseconds. This allows developers to filter duplicate informa-
tion.

4.7 Multimodal Language Patterns

During our experiments we observed a number of common multimodal
interaction patterns. These patterns are translated into language abstrac-
tions to further reduce the development effort and rule complexity. In
this section we highlight a number of these abstractions and show how
they simplify the design of common multimodal interactions.

Inline Constraints

Inline constraints allow developers to express multiple filters in a single
statement. For example, we can abbreviate the pattern presented on
lines 2, 3 and 4 of Listing 4.36 to e0 = EnterEllipsoid { id == "HR0"

&& user == "Lia" } using inline constraints.

122 Chapter 4. Midas: A Programming Language for Multimodal Interaction

Listing 4.36: Implementation of a lasso gesture
1 rule lasso
2 e0 = EnterEllipsoid
3 e0.id == ”HR0”
4 e0.user == ”Lia”
5 e1 = EnterEllipsoid
6 e1.id == ”HR1”
7 e1.user == e0.user
8 e2 = EnterEllipsoid
9 e2.id == ”HR2”

10 e2.user == e0.user
11 e3 = EnterEllipsoid
12 e3.id == ”HR3”
13 e3.user == e0.user
14 e0←meetsF e1, .5.seconds
15 e1←meetsF e2, .5.seconds
16 e2←meetsF e3, .5.seconds
17 assert Lasso {
18 time begin ⇒ e0.time, time end ⇒ e3.time }
19 end

Unification and Arrays

Existing rule languages such as CLIPS use unbound variables to enable
unification between slot values. Listing 4.37 shows an example on how to
unify the name slot of two conditional elements. It is important to stress
that the ?name variable has to be exactly the same for both conditional
elements. Unfortunately, developers easily introduce typing errors in
unbound variable names and these are particularly challenging to spot
during debugging. Therefore, Midas introduces the use of slot access on
conditional elements via the dot (.) operator. This allows the compiler
to identify invalid slot access and therefore invalid unifications. This is
illustrated in Listing 4.37 on line 8. Unbound variables in their original
form are still supported but rarely used.

Listing 4.37: Unification using explicit unbound variables
1 rule unifyName
2 EnterEllipsoid { name == ?name }
3 EnterEllipsoid { name == ?neme } # Oops (e != a)
4 end
5
6 rule unifyNameImproved
7 e = EnterEllipsoid
8 EnterEllipsoid { name == e.neme } # Causes compile-time error
9 end

4.7. Multimodal Language Patterns 123

Next to these accidental typing errors, unification in existing sys-
tems can still be improved. In particular, Listing 4.36 and 4.37 intro-
duce a lot of variable names to bind the various matched conditional
elements. This is an additional source for errors. Therefore, Midas
provides the concept of arrays to group a number of values or condi-
tional elements. We observed that many multimodal patterns describe
a sequence of conditional elements from the same template. Therefore
helper operators such as times(n) and sequence(n) are introduced
that expand to n conditional elements. The sequence(n) operator
further adds a temporal constraint on each conditional element such
that they can only be matched in order (of time). Thus, the expres-
sion e = EnterEllipsoid.sequence(4); e←time intervals [.5.s,

, .5.s] expresses the need for four EnterEllipsoid conditional ele-
ments that happen in order with a maximum interval of 0.5 seconds
between the first and second, and between the third and fourth match.
The underscore () can be used to omit a particular value in this
time intervals operator. The sequence operator is also frequently
used to describe gesture control points.

Optional Arguments

Midas supports default values for parameters in attempts and functions
as illustrated in Listing 4.38. Rules or attempts that reuse this leftF

spatial operator can therefore omit the second parameter. Default values
for parameters in the middle of the argument list are also supported
(i.e. leftF(f, min = 5.px, max) where f and max are required and min

is optional).

Listing 4.38: Optional arguments
1 module Space2D
2 attempt leftF(f, min = 5.px)
3 x + min < f.x
4 end
5 end

Extending Modules and Templates

Modules and templates can be extended with additional slots, attempts
and functions by reopening the entity. Therefore modules such as Space3D
can easily be implemented spread across multiple files. To load other files,

124 Chapter 4. Midas: A Programming Language for Multimodal Interaction

the require primitive can be used. Furthermore, the self, super, lexical
scoping rules work by leveraging the Ruby language as an internal DSL.

4.8 Developer Feedback

The presented version of Midas has been developed based on knowledge
gained from experiments with a former Midas incarnation [63,141]. Often,
the lack of compile-time feedback was problematic during the development
of prototypes. Issues such as accidental typing errors were frequently
present in the analysed code fragments. Further, the improper use of
domain-specific functionality, type mismatches and duplicate binding
were common mistakes that we identified.

The current Midas language and compiler provides a number of
compile-time guarantees to prevent or reduce accidental mistakes in
multimodal descriptions such as illustrated in Listing 4.39, including:

• An invalid number of arguments for attempts and functions is
detected at compile time (line 24).

• Unification through slot access gives additional compile-time guar-
antees, as the use of inexistent slot access will result in an error
message (line 25). This also works across attempts as all code paths
are traversed during compilation.

• The use of inexistent local variables is detected and reported
(line 26).

• Slot values cannot be equal to two values at the same time. Therefore
the combination of lines 13, 23 and 27, which defines that the user

slot should be both equal to "Lode" and "Christophe", is invalid
and results in a duplicate binding error.

• Slots can be optionally typed, which means that expressions such as
the one on line 28 can be caught at compile time. This is because
the x slot of a Touch2D template is defined as a float, while the
user slot is inferred to be of type string (as defined in the Speech

template). Furthermore, types can be inferred at compile time. In
this example, lines 13 and 23 allow us to infer that s.user is of type
string. Therefore, line 28 still raises an exception at compile-time
when the user slot would be untyped.

4.9. Conclusion 125

• The syntactic distinction between attempts (←), functions (.) and
modifiers (assert/modify/retract/call) improves the correct-
ness of the interpretation. Attempts can only consist of conditions
and function calls that do not modify the state of the application.
This maintains the declarative nature of the language and ensures
that no state will change when relying on existing attempts or
functions in conditions.

Listing 4.39: A code sample that cause errors at compile time
1 template Touch2D
2 float x, y
3 end
4 template Speech
5 string user
6 end
7 module Space2D
8 attempt self←leftF(p1, p2)
9 p1.x < p2.x

10 end
11 end
12 attempt lodeSpeaksF(f)
13 f.user == ”Lode”
14 end
15 attempt checkXF(f, min = 5.px, max)
16 f.x > min
17 f.x < max
18 end
19
20 rule someCompileTimeErrors
21 t = Touch2D
22 s = Speech
23 lodeSpeaksF s
24 checkXF t # wrong number of arguments (1 for 2)
25 Space2D←leftF t, s # no slot ‘x’ for Speech
26 r←beforeF s # undefined local variable ‘r’
27 s.user == ”Christophe” # slot ‘user’ already bound to ”Lode”
28 t.x == s.user # invalid type for ‘x’, expecting float
29 end

4.9 Conclusion

In this chapter we presented Midas, a novel declarative language to express
multimodal interaction patterns. The core idea is that developers can
focus on the essential complexity of describing their interaction patterns
and have to deal with less accidental complexity such as handling irrelevant
events, storing intermediate state and dealing with inversion of control.

126 Chapter 4. Midas: A Programming Language for Multimodal Interaction

The Midas language consists of five primitive entities: templates
(and facts), modules, rules, attempts and functions. An input event is
translated into a fact and stored in the fact base. Rules can then try to find
a combination of facts that matches their conditions in a reactive manner.
Modules, attempts and functions modularise the multimodal description
logic into small reusable parts such that they can be composed to form
more complex interaction descriptions, without requiring a developer to
have a deep knowledge of all particular details [63,64,141].

We have explored how complex gestural interaction can be described
in 2D and 3D space using a technique called control points [66]. This
allows developers to automatically segment candidate gestures from a
continuous stream of data while retaining full expressive control over the
recognition process (which is normally lost in existing machine learning-
based solutions).

Furthermore, we have shown how developers can seamlessly express
cross-level fusion [64] using Midas. There is no manual chaining of
composition boxes required (such as required by data stream-oriented
solutions), and there is no loss of expressiveness compared to semantic
inferencing solutions. Additionally, shadow facts, alternating between
conditions and modifiers and the application symbiosis provide adequate
language constructions to integrate declarative multimodal interaction
patterns with application logic. Unification is improved through direct
slot access and our syntactic distinction between attempts, functions and
modifiers should improve the mental model of the programmer when
implementing declarative rules.

Finally, the Midas specification allows us to provide compile-time
developer feedback for many of the mistakes that can be made when
declaratively implementing multimodal interaction patterns.

5
Mudra: A Unified

Multimodal Interaction
Architecture

To extract meaningful information from the vast amount of events pro-
duced by hardware sensors, a multimodal framework requires a number of
components. This includes a programming API as presented in Chapter 4,
an infrastructure to connect hardware devices to the framework, a fusion
engine and an application interface to deliver results to the outside world.
The three latter components form the basis of a multimodal architecture.

Existing multimodal architecture designs can be generalised in two
main strands: the data stream-oriented solutions (Section 3.1.1) and
the semantic inferencing solutions (Section 3.1.2). On the one hand,
data stream-oriented solutions advocate a pipelining architecture where
events get filtered and aggregated in a chain of composition boxes. These
composition boxes need to process event per event and produce higher-
level information to be used by the next composition box in the chain.
Figure 5.1 demonstrates the pipeline architecture in a graphical way.
This type of architecture is efficient to process many low-level events but
typically lacks high-level programming abstractions [41].

On other hand, semantic inferencing solutions propose a high-level
API where a number of conditions that define a valid interaction can be

127

128 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

Figure 5.1: Data stream architecture

specified. Each condition is a form of requirement that can be matched
with a particular event. Whenever the conditions match incoming events,
a high-level event can be created. A graphical representation of these
types of architectures is shown in Figure 5.2. Unfortunately, this model
does not scale well to process raw input as each requirement can only
be matched with a single event and therefore several combinations are
not considered. Semantic inferencing architectures typically lack support
for dealing with concerns such as online processing, overlapping matches,
segmentation, event expiration and concurrent interaction.

"Put"

"That"

"There"

Figure 5.2: Semantic inferencing architecture

In the previous chapter we described a programming language that
allows developers to express data-level, feature-level and decision-level
fusion. In this chapter we discuss our unified architecture which makes
the real-time execution of that language possible. We first present a
conceptual architecture to illustrate the general idea. We then describe
the unified architecture in more detail, including its infrastructure, dis-
tribution, core, service and application layer. Next, we analyse generic
multimodal processing features of our solution, followed by specific data-
level, feature-level, and decision-level fusion features. Afterwards we
discuss how external multimodal tools can benefit from our approach
when compiling their results into the abstraction we provide. We conclude
with implementation details of Mudra.

5.1. Conceptual Architecture of Mudra 129

5.1 Conceptual Architecture of Mudra

A multimodal fusion architecture must facilitate an execution engine which
reacts to events according to the conditions specified by the developer. In
our work, multimodal descriptions are provided in the form of declarative
rules (Chapter 4) or implemented by services (Section 4.5.2, 5.2.4). Declar-
ative rules are interpreted by a reactive execution engine (Section 5.2.3)
which incrementally matches facts with the conditional elements of rules.
Whenever a rule is activated, its inferred results can be asserted to the
fact base. This creates a modular and flexible system as the execution en-
gine automatically manages the event flow, whereas existing data-stream
solutions require manual wiring of the boxes in a pipeline.

Our conceptual Mudra architecture is illustrated in Figure 5.3 and
shows the aggregation of input events and results of various fusion-level
processes into a single entity, the fact base. Color gradients are used to
illustrate the fact that Mudra blurs the distinction between data- (red),
feature- (green) and decision-level (yellow) fusion.

The fact base allows developers to combine low-level data, produced at
a high rate, with high-level data produced at a low rate. This facilitates
cross-level multimodal fusion and the integration of services regardless of
their multimodal fusion level. We illustrate fusion across levels through
six examples.

5.1.1 Motivating Examples

In this section we demonstrate six short examples with a focus on mul-
timodal fusion across the three fusion levels. Their explanation is an-
notated with forward references to concepts that are discussed in this
chapter. The examples are sorted from low-level to higher-level fusion
tasks:

1. Swipe Right In the first example of Figure 5.3, we extract swipe
right gestures from a raw touch input source. Its implementation is
shown in Listing 5.1, which defines a data-level fusion rule. This
rule uses four control points (as defined by Section 4.4.6) to express
the gesture in a declarative manner. This example uses negation
(Section 4.3.4), supports concurrent multi-user and multi-touch
input (Section 5.3.6), sliding windows (Section 5.2.2) and partially
overlapping matches (Section 5.3.3).

130 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

R
FI

D

Sp
ee

ch

In
fe

rre
d

C
on

te
xt

...

Ar
du

in
o

W
ii

C
am

er
a

To
uc

h

Input Sources

Event

Data-level fusion Decision-level fusion

Feature-level fusion

6. Put That
There

5. User
Augmentation

4. Multi-user
Throw-Catch

3. Coupled
Recognition

2. User-specific
Swipe Right

1. Swipe Right

Fact
Base

Figure 5.3: Conceptual architecture of Mudra

Listing 5.1: Swipe Right gesture
1 rule swipeRight
2 group finger
3 c1 = Touch2D
4 c1.user != nil
5 c2 = Touch2D
6 c1←beforeF c2
7 c1←translated nearF c2, 277.px, 5.px, 76.px
8 c3 = Touch2D
9 c2←beforeF c3

10 c1←translated nearF c3, 647.px, 15.px, 76.px
11 c4 = Touch2D
12 c3←beforeF c4
13 c1←translated nearF c4, 946.px, 11.px, 76.px
14 c4←withinF c1, 100.ms, 1000.ms
15 no { b = Touch2D
16 b←afterF c1
17 b←beforeF c4
18 Math.abs(c1.y - b.y) > 245 }
19 assert SwipeRight { user ⇒ c1.user,
20 x begin ⇒ c1.x, y begin ⇒ c1.y,
21 x end ⇒ c4.x, y end ⇒ c4.y,
22 time begin ⇒ c1.time, time end ⇒ c4.time }
23 end

5.1. Conceptual Architecture of Mudra 131

2. User-specific Swipe Right In the second example (Listing 5.2),
we ensure that a SwipeRight gesture was executed by a particular
user within a short timespan. The QuickSwipeRightChristophe is
therefore a special gesture dedicated to an expert user. This example
shows that existing rules can easily be reused and customised for
new purposes. It also highlights the expressiveness and flexbility of
temporal operators.

Listing 5.2: User-specific Swipe Right gesture
1 rule swipeRightChristophe
2 s = SwipeRight { user == ”Christophe” }
3 Time←meets s.time begin, s.time end, 500.ms
4 assert QuickSwipeRightChristophe { time ⇒ s.time end }
5 end

3. Coupled Recognition The third example fuses two Circle ges-
tures from different recognisers, as discussed in Section 4.5.4. Line 3
of Listing 5.3 matches a Circle gesture detected by a rule-based
recogniser while line 4 matches a Circle detected by the dynamic
time warping algorithm. The fusion process relies on two classifiers
as a form of verification to increase the precision.

Listing 5.3: Unify template matching and rules
1 rule startPresentation
2 group finger
3 rCircle = Circle { recogniser == ”Rule” }
4 dCircle = Circle { recogniser == ”DTW” }
5 dCircle.score > 0.7 # Score at least 0.7
6 rCircle.id == dCircle.id # Same finger identifier
7 rCircle←withinF dCircle, 15.ms, 15.ms # Similar spotting
8 call PowerPoint.startPresentation # Start Presentation
9 end

4. Multi-User Throw-Catch The next example detects a “throw
and catch” gesture between two users (Listing 5.4)1. This collabor-
ative gesture is defined by relying on more primitive gestures such as
Throw and Catch. The temporal relation (line 4) specifies the order
and the spatial relation (line 5) ensures that the throw is directed
towards catch. This rule, in combination with our execution engine,
illustrates how to enable the concurrent interaction of many users

1The term Hoccer refers to an Android application using this gesture to share data: https:

//youtu.be/2Fn1t8culTc?t=24s

https://youtu.be/2Fn1t8culTc?t=24s
https://youtu.be/2Fn1t8culTc?t=24s

132 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

throwing and catching towards each other without requiring further
implementation effort.

Listing 5.4: Multi-user throw-catch scenario
1 rule hoccer
2 throw = Throw
3 catch = Catch { user != throw.user }
4 throw←meetsF catch, 2.s
5 throw←in direction offF catch
6 call Hoccer.exchangeData(throw, catch)
7 end

5. User augmentation Example 5 (Listing 5.5) augments low-level
multi-touch events with user identification. In this case, a fusion
process identifies users by combining camera and RFID sensor
information. Note that the RFID rate is much lower than the rate
of multi-touch input devices. However, no manual re-alignment was
necessary from the developer, as explained in Section 4.5.1. This
example enables user-specific interaction patterns at lower levels,
as for example the gesture defined in example 2, which assumes the
user slot is known. Example 5 therefore highlights the ability of our
approach to fuse information across layers.

Listing 5.5: User augmentation
1 rule userIdentification
2 t = Touch2D { user == nil }
3 tag = RFID.source ”Multi-Touch Table”
4 t←nearF tag, 20.cm
5 t←equalF tag, 500.ms
6 modify t { user ⇒ tag.value }
7 end

6. Put That There Bolt’s “Put That There” interaction pattern [11]
is a decision-level fusion process which combines pointing gestures
and speech input (Listing 5.6). As discussed in Section 2.3.2, there
is a duality between continuous (pointing) and discrete (words)
input, which causes problems in existing fusion frameworks. It is
challenging to decide which pointing event should be used, and how
to keep track of them while the speech recogniser is still analysing
its input. However, in our approach, each potential combination is
analysed in an incremental manner, thereby efficiently processing
both a low and high rate of input events.

5.2. Mudra’s Unified Fusion Architecture 133

Listing 5.6: “Put That There”
1 rule bolt
2 put = Speech { word == ”put” }
3 that = Speech { word == ”that” }
4 p1 = Point
5 that←equalF p1, 400.ms
6 there = Speech { word == ”there” }
7 p2 = Point
8 there←equalF p2, 400.ms
9 put←meetsF that, 3.s

10 that←meetsF there, 3.s
11 end

These examples illustrate the need for various criteria to enable a
unified fusion architecture. In the next sections we explain how Mudra, a
unified fusion architecture, supports these criteria.

5.2 Mudra’s Unified Fusion Architecture

We now discuss the basic building blocks of the Mudra unified fusion
architecture. We propose a shared bus architecture to accommodate the
need for performance and fusion across multiple fusion levels. Figure 5.4
illustrates our five-layered architecture with the fact base as a central
information hub. However, it should be noted that these layers are used
to separate the functionality in a conceptual manner, as all components
communicate using facts.

At the infrastructure layer, we support the collection of arbitrary input
modalities. Their low-level event details are translated into facts, which
are enqueued in the fact queue of the distribution layer. The distribution
layer is responsible for distributing facts across the interested services. It
consists of an event broker that manages the subscriptions of services to
particular fact types. The distribution layer is also responsible for tracking
event expiration times and for automatically retracting facts from the fact
base as soon as they expire. In the core layer, the rule execution engine
matches facts to the conditional elements of rules reactively. The service
layer enables the reuse of external fusion implementations such as ad-hoc
code, various template and machine learning algorithms as well as other
functionality including persisting data to disk. Finally the application
layer provides a bridge between the fusion processes and the application
context. It consists of a service interface for external applications and a
shadow fact abstraction. Shadow facts enable an automated synchron-

134 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

isation of information between Mudra and the application. Furthermore,
rules can also invoke function calls on shadowed objects. In what follows,
we explain each of the five layers in more detail.

Service Layer

Distribution Layer

Event
Broker

Application
Layer

Core Layer

Execution Engine

Data
Level

Feature
Level

Decision
Level

Application

Shadows

Classifiers

DTW $1 NN HMM

Ad-hoc

C(++)

Infrastructure
Layer

Hardware
Bridge

Translator

*
Fact Queue Event

Expiration

Other

Conversions iGesturePersistency

Fact baseNotification
API

Figure 5.4: Mudra architecture

5.2.1 The Infrastructure Layer

The infrastructure layer is responsible for receiving input events from vari-
ous hardware sensors (i.e. producers) and translating them into facts. On
arrival, input data is converted into a uniform representation, called facts,
and time stamped by the translator (as seen in Figure 5.4). For efficiency
reasons, the translation of events to facts is done in a multithreaded
fashion. Each translator operates in its own thread of execution and
forwards the fact to the distribution layer. In the following, we discuss
implementation details of the infrastructure layer.

Data Formats and Communication Protocols

Often information from hardware sensors can only be obtained through
platform-specific or language-specific software development kits (SDKs).
For example, the Microsoft Kinect SDK2 is only available on Microsoft
Windows3. This makes it hard to use the Microsoft Kinect in com-
bination with sensors or applications that are only supported on other
platforms such as Ubuntu Linux4. Therefore, Mudra provides a platform-
independent network infrastructure which is used as a hardware bridge

2Microsoft Kinect SDK: https://www.microsoft.com/en-us/kinectforwindows/develop/

default.aspx
3Microsoft Windows: https://windows.microsoft.com
4Canonical Ltd. Ubuntu: https://www.ubuntu.com

https://www.microsoft.com/en-us/kinectforwindows/develop/default.aspx
https://www.microsoft.com/en-us/kinectforwindows/develop/default.aspx
https://windows.microsoft.com
https://www.ubuntu.com

5.2. Mudra’s Unified Fusion Architecture 135

(see Figure 5.4) to accommodate all kinds of modalities and to support
remote sensor capturing machines, such as IP cameras or wireless RFID
readers. Mudra supports the following content formats:

• S-Expressions [134] are a notation for code and nested data based on
the programming language Lisp [114]. The main advantage of using
S-Expressions in Mudra is that both the code (Section 5.5.4) as
well as the data are expressed in the same format. This is generally
referred to as homoiconicity. Therefore, rules and input data can be
transmitted over the same connection without additional protocol
wrappers.

• Comma-separated values (CSV) [143] are frequently used to ex-
change data. Mudra supports template and fact definitions in the
form of CSV in order to ease the loading of existing datasets and
benchmarks.

• JavaScript Object Notation(JSON) [30] has become the dominant
content format in recent years. It allows mainstream web services
to provide and retrieve information from Mudra.

• Extensible Markup Language (XML) [16] is still widely used today
and it enables the integration of many libraries that provide ad-
ditional functionality such as remote procedure calls by means of
XML-RCP [161].

These content formats are transmitted over a variety of networking
protocols supported by Mudra:

• TCP sockets [21]. Raw UTF-8 [165] TCP connections are supported.
Therefore, exchanging information with Mudra can be as simple as
opening a TCP/IP socket and transmitting data in a particular input
format. Heuristics are used on the receiver side to automatically
recognise the input format, such that producers and consumers can
rely on existing libraries without any format annotations or prefixes.

• HTTP POST Requests [52]. For example, to as-
sert the x, y coordinates of a hand captured by a
video stream, we can issue a HTTP POST requests
as follows: wget --post-data=‘type=Hand&x=1&y=2’

http://localhost:4337/midas

136 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

• WebSockets 0.9 [51]. Websockets enforce HTTP requests with
full-duplex communication. This allows two-way communication
between Mudra and a webpage by means of a single socket.

• ZeroMQ Message Transport Protocol 2.0 [20]. ZeroMQ is a com-
munication framework that provides in-process, inter-process, TCP
and multicast functionality. It has an asynchronous I/O model
and supports fan-out, pub-sub, task distribution, and request-reply
tasks. ZeroMQ helps integrating external services and applications
that require advanced communication patterns.

• Open Sound Control (OSC) [163]. Open Sound Control is a content
format together with an UDP protocol to share data between elec-
tronic musical instruments. However, it has been widely adopted
to exchange input data, including multi-touch [83] and skeleton5

events. As part of our artefact, we maintain three OSC producers
that are widely used in the community. The first application is
an up-to-date OSCeleton for Microsoft Kinect SDK6 application
captures the body joint coordinates (i.e. the hand of user 1 is located
at x, y, z) from the Kinect SDK and writes them to an OSC client.
The second application is the OSCeleton for NITE and OpenNI7

and provides the same OSC skeleton input stream based on the
OpenNI SDK8. The third application is a cross-platform multi-touch
bridge for Stantum based on the TUIO protocol9.

External producers (i.e. input modalities) and consumers (i.e. ser-
vices and applications) can connect to Mudra through one of the above-
mentioned protocols. These protocols and content formats were imple-
mented based on the requirements of our use cases. However additional
protocols can be easily added in the future. A set of Mudra interoperabil-
ity abstractions are available as libraries for the programming languages
C, Java, C# and Ruby. The libraries abstract these communication
details and can easily be ported to other languages. For example, a simple
assert procedure call can automatically serialise an object into one of
the data formats and send it to Mudra over a preferred communication
protocol. Our libraries provide support for asserting facts and calling
functions wit an automated serialisation strategy.

5OSCeleton: https://github.com/Sensebloom/OSCeleton
6OSCeleton for Microsoft Kinect SDK: https://github.com/Zillode/OSCeleton-KinectSDK
7OSCeleton for NITE and OpenNI: https://github.com/Zillode/OSCeleton-OpenNI
8OpenNI: https://github.com/OpenNI/OpenNI
9Stantum TUIO bridge: https://github.com/Zillode/Stantum-TUIO-bridge

https://github.com/Sensebloom/OSCeleton
https://github.com/Zillode/OSCeleton-KinectSDK
https://github.com/Zillode/OSCeleton-OpenNI
https://github.com/OpenNI/OpenNI
https://github.com/Zillode/Stantum-TUIO-bridge

5.2. Mudra’s Unified Fusion Architecture 137

Mudra currently supports multiple modalities including skeleton track-
ing via Microsoft’s Xbox Kinect in combination with the NITE package
or the Microsoft SDK10, cross-device multi-touch data via TUIO11, speech
recognition via CMU Sphinx12 or Microsoft’s Kinect SDK, accelerometer
data via SunSPOTs13, infrared control via IR Toy14 and various other
sensors via Phidgets15.

Embedded Midas Templates

Mudra embeds several Midas template definitions in its core to bootstrap
new fusion processes and to interoperate with existing input producers
such as OSCeleton and TUIO. For example, the Joint template defines
which sensor was used, the user, the joint, the x, y and z coordinates
and its confidence, along with built-in constants such as Joint.HEAD and
Joint.TORSO16. These built-in embedded template definitions are listed
in Appendix F.

Notification API

Mudra provides a notification API to inform producers about a completed
translation of a particular event. This is particularly useful for load
balancing between a set of services and guaranteeing the quality of
service. Our notification API is compatible with Quality of Service
(QoS) input devices and protocols such as TUIO. These input sources are
robust against network loss or overloaded consumers in a similar way as
TUIO. Protocols such as TUIO and OSCeleton use unreliable low-latency
UDP communication but address packet loss by including redundant
information. For example, TUIO appends a list of active fingers on the
multi-touch surface and a frame sequence (i.e. incremental numbering)
to each packet. In this manner, important events such as the lifting of
a finger from the surface will not be omitted. In contrast to TUIO, our
API additionally allows producers to track the time it takes before their
events are processed by Mudra. This offers the ability to reduce the event

10OSCeleton for Microsoft Kinect SDK: https://github.com/Zillode/OSCeleton-KinectSDK
11Stantum TUIO bridge: https://github.com/Zillode/Stantum-TUIO-bridge
12CMU Sphinx: http://cmusphinx.sourceforge.net
13SunSPOT: http://www.sunspotworld.com
14IR Toy: http://dangerousprototypes.com/docs/USB_Infrared_Toy
15Phidgets: https://www.phidgets.com
16Each body joint is part of an enum defined by the OpenNI API: https://github.com/OpenNI/

OpenNI/blob/1e9524ffd759841789dadb4ca19fb5d4ac5820e7/Include/XnTypes.h#L614

https://github.com/Zillode/OSCeleton-KinectSDK
https://github.com/Zillode/Stantum-TUIO-bridge
http://cmusphinx.sourceforge.net
http://www.sunspotworld.com
http://dangerousprototypes.com/docs/USB_Infrared_Toy
https://www.phidgets.com
https://github.com/OpenNI/OpenNI/blob/1e9524ffd759841789dadb4ca19fb5d4ac5820e7/Include/XnTypes.h#L614
https://github.com/OpenNI/OpenNI/blob/1e9524ffd759841789dadb4ca19fb5d4ac5820e7/Include/XnTypes.h#L614

138 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

rate by bundling or skipping some information or to increase the event
rate. Vatavu et al. [157] show that a lower event resolution for finger
tracking can still provide adequate recognition results.

5.2.2 The Distribution Layer

Mudra’s distribution layer is responsible for three main tasks: the assertion
of facts coming from the infrastructure layer, the bookkeeping of sub-
scriptions and event expiration. We now explain each of its architectural
components in more detail.

Fact Queue

Fact assertions are handled sequentially. In the current implementation,
the fact base consists of a highly optimised single-threaded implementation.
Therefore a synchronised fact queue is required to guarantee thread safety.
Producers of facts (i.e. translations of the infrastructure layer or services)
can inspect the size of the fact queue in order to assess the load of the
system. For example, a TUIO translator checks the size of the fact queue
and asserts or omits multi-touch events accordingly.

Event Broker

The distribution layer is implemented according to the publish/subscribe
model [49]. Facts are automatically transformed into the content format
requested by the consumer. The event broker will efficiently copy the data
(i.e. memcpy) if more than one component is subscribed. Each service can
subscribe and publish facts (i.e. consumer and producer). This aligns
with our goal to infer knowledge from facts, whereby the knowledge itself
can be represented by a fact and be consumed in its turn. Mudra’s fact
base automatically subscribes to all facts, but fact types can be excluded
by invoking an unsubscribe call.

Filters Mudra’s event broker system supports filters in order to block
the distribution of facts based on a simple content predicate. Often, a
consumer is only interested in a small selection of facts. Therefore, the
copying of facts and their needless distribution (possibly over the network)
causes overhead for Mudra, the communication bus and the consumer.
This is substantial when many subsribers are interested in a fact type with
particular slot values, such as a user or finger identifier. Consumers can

5.2. Mudra’s Unified Fusion Architecture 139

therefore install native content-based filters on top of each subscription.
These filters cannot modify the message as it is annotated with a const

declaration (in C), thereby reducing the cost of memcpy. However, filters
can have state (i.e. using a dedicated void *aFreeReference reference)
to keep track of previous facts. Alternatively, developers can opt for
content-based filtering. Content-based filtering is described by rules as
demonstrated in Listing 5.7.

Listing 5.7: Content-based filtering
1 rule filterTouch
2 t = Touch2D # All Touch2D facts
3 s = Touch2DService { id == t.finger } # with a particular finger ID
4 call s.publish t # are published to the interested consumer
5 end

Communication The protocols and content formats presented in the
infrastructure layer (Section 5.2.1) are also supported by the event broker.
I/O communication between Mudra and external services is unidirectional.
However, multiple connections can be opened from a single service to
provide bidirectional communication as illustrated in Figure 5.5. By
default all connections are registered as input (i.e. a producer), except
when the first message by a consumer specifies otherwise, as shown in
Listing 5.8 on lines 2 to 3. Producers can explicitly register as shown on
lines 6 to 7.

MudraExternal
Service

(register-output (name “service1-output”))

(call (subscribe “Joint” “service1-output"))

Sensor

[type: “Joint”, id: 1]

(Joint (id 1))

Figure 5.5: Communication protocol

140 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

Listing 5.8: Registration and communication protocol
1 # Register a consumer with the name ”service1−output” using S−Expressions
2 (register−output (name ”service1−output”) (retries−on−fail 3)
3 (recover−timeout 60000) (result−router ”my−result−router1”))
4
5 # Register a producer with the name ”service2−input” using JSON
6 [”register−input”, { ”name”: ”service2−input”, ”recover−timeout”: 60000,
7 ”notify−router”: ”my−notify−router1”, ”result−router”: ”my−result−router1” }]

The registration functions shown in Listing 5.8 accept a number of
optional arguments:

• The option retries-on-fail specifies the number of retries when
transmitting a message. When Mudra fails to transmit the message
three times, as specified in Listing 5.8 (line 2), it will be omitted.

• Recover-timeout defines a timeout in milliseconds before the ser-
vice registration is removed in case of disconnection between Mudra
and the producer or consumer. When the producer or consumer
does not reconnect within the given period of time, all queued
messages and subscriptions will be removed.

• The notify-router option defines the name of a second connection
that will receive the notification message when a particular event
has been received (Section 5.2.1). This can be used to monitor
processes on remote machines.

• A result-router option specifies the output connection to which
results of a function call need to be transmitted.

The two former optional arguments enable developers to deal with
volatile network connectivity, while the two latter arguments provide
bidirectional communication capabilities.

Event Expiration

Event expiration is a form of garbage collection for multimodal fusion.
Event expiration is challenging in a multimodal environment where seg-
mentation and context-aware reasoning is required. In these cases, one
cannot simply discard events as soon as a something happens (e.g. the
user leaves the room) or whenever a rule is activated. As discussed in
Section 4.3.7, our approach uses template-local relative time event expira-
tion: older facts are discarded when a newer fact exists which exceeds

5.2. Mudra’s Unified Fusion Architecture 141

the timespan of the old fact. Our expiration mechanism is formulated in
Listing 5.9, where F0 represents the old fact and Fn any newer fact.

Listing 5.9: Template-local relative time event expiration
1 discard(F0) if ∃Fn : F0.time + F0.timespan < Fn.time

The use of a relative event expiration mechanism, in the context of
multimodal fusion, is beneficial for following reasons:

• By discarding events based on relative time, no global clock is
required. This allows Mudra to distribute and receive events to
and from multiple machines without precise time synchronisation.
This happens in the context of remote input devices, when fusion is
performed by external services that exist on other machines.

• It enables developers to use exactly the same setup between bench-
marks, debugging sessions and production. Existing fusion and
rule engines often require slight modifications to the multimodal
descriptions for benchmarking and experimentation purposes where
the input event rate is higher in comparison to the production case.
This involves rewriting rules, modifying benchmark data and chan-
ging system flags in order to eliminate the global clock dependency.
In Mudra, time is specified optionally which allows time-annotated
benchmarks and experiments to run at full processing performance
without affecting the outcome.

• It supports the alignment of non-synchronised streams. Some mul-
timodal input sources introduce a bigger latency than others. For
example, speech input sources would be hampered by a high-latency
speech recogniser (i.e. a speech recogniser waits until a word or
sentence is pronounced completely). Existing fusion approaches use
a delay construct to address the latency mismatch between multiple
input sources. However, (1) the delay parameter is hard-coded and
needs to be defined at compile-time, (2) this requires modification
from developers when applying the system in another setup and
(3) it implies that unstable streaming, for instance due to network
latency, results in further misalignment of the data. Using rules,
no time synchronisation of facts is required. In Mudra, facts are
discarded based on the relative time between multiple event sources.
This event expiration was described in Section 4.5.1 and is an al-

142 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

ternative for the hard-coded expiration mechanism described in this
section.

• Facts produced at a low rate can exist much longer in the fact base
without having a major impact on the memory usage. As event
expiration is relative for each template, templates with a low rate
of instantiation can be configured with a high default timespan
to remain present in the fact base for a longer period of time.
Therefore, it is easy for developers to store high-level information
such as context or previous recognition results to increase accuracy
for the future fusion.

• Developers can annotate individual facts that contain highly valu-
able information manually with a high timespan. The timespan
value is part of a first-class slot and allows any fact to outlive the
standard expiration time for its template.

Mudra’s automated event expiration is implemented using a double
linked priority (heap-based) queue for each template. For each new fact
the relative timing is compared to the nearest fact to expire. In practice,
the fact base evolves using a sliding window for every individual fact
template.

Next to the relative time event expiration method, Mudra offers a
sliding window based on a bounded size. This option expires the oldest
fact of a particular template in case a new fact is asserted that no longer
fits in the window size. This method is used in combination with the
relative time event expiration method in order to improve reliability on
machines with a limited amount of volatile memory (i.e. DRAM). However,
in contrast to time-based reasoning, a bounding size offers no correctness
guarantees as potentially matching facts can be discarded prematurely.

5.2.3 The Core Layer

The Mudra core layer consists of an inference-based execution engine in
combination with a rule base. As discussed in Chapter 4, rules are driving
the reactive computation and allow the description of complex multimodal
interaction patterns via small reusable attempts. The execution engine
matches facts against conditional elements of a rule. It is based on the
C Language Integrated Production System (CLIPS) [57]17. CLIPS is an

17CLIPS: http://clipsrules.sourceforge.net

http://clipsrules.sourceforge.net

5.2. Mudra’s Unified Fusion Architecture 143

inference engine and expert system tool developed by the Technology
Branch of the NASA Lyndon B. Johnson Space Center. We have substan-
tially extended its codebase in order to support a continuous, reactive
evaluation mechanism. The Midas language presented in Chapter 4 is an
abstraction on top of the CLIPS language, as discussed in the compil-
ation process (Section 5.5.1). We adopted CLIPS because of its highly
optimised implementation which is based on the Rete algorithm [54].

A Rete Network

Rules provide many-to-many matching functionality. Therefore, they in-
volve a search through all possible combinations of facts which correspond
to conditional elements. A naive brute force implementation is infeasible
when matching a massive amount of input events to many multimodal
rules. Rete is an algorithm designed to speed up the pattern matching
problem in logical rules by trading computation time for storage space.
Additionally, the eager evaluation semantics of the Rete algorithm, in
constrast to related algorithms such as TREAT [117], LEAPS [118] and
Constraint Handling [156], makes it an excellent fit to our problem domain.
This means that every new input event that satisfies a rule, will trigger
as fast as possible. This is at the cost of additional processing power
and memory consumption for computing intermediate results. However
practise and research shows that reducing latency (i.e. the delay between
input action and output response) is extremely important for human
interaction with computers [110].

Rete analyses the conditions of all rules to create a direct acyclic
graph, such that:

• Conditions shared between the antecedent of multiple rules are
unified in the Rete graph in order to reduce (or eliminate) redundant
computation.

• Partial matches are cached in memory to avoid re-evaluation of all
facts whenever a change (i.e. assertion, modification or retraction)
to the fact base happens. This implies that Rete works best when
the majority of facts in the fact base is stable. This assumption
is true in our multimodal fusion context, which involves matching
events over a period of time. Only a few new facts are asserted at
each point in time, compared to the vast amount of facts already
present in the current sliding window.

144 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

• Retraction is optimised by retaining pointers to the partial matches.

This direct acyclic Rete represents a graph with filter and join opera-
tions to match facts to rules. This allows us to feed input facts at the top
which are then filtered and combined with other events to extract more
meaningful information. As an example, we derive a Rete graph based
on a declarative description of Bolt’s multimodal interaction rule as seen
in example 6 presented in Section 5.1.1). The Rete graph corresponding
to Listing 5.6 is shown in Figure 5.6 and consists of four types of nodes:
a template node, an alpha node, a join node and a terminal node. A
template node is used as an entry point for dispatching facts based on
their type. Alpha nodes are used as a simple filter for concrete slot val-
ues. In this example, this corresponds to filter facts based on the words
“put”, “that” and “there”. Join nodes (also known as beta nodes) perform
joins between “left” and “right” input provided by other nodes. These
correspond to the implicit “and” operation that connects two conditions
in the antecedent of a rule. For example line 9 of Listing 5.6 defines a
temporal relation between the time slot of the put and that conditional
elements. This relation is translated into a join operation that defines the
cross product of all put and that elements and only passes those that
satisfy the temporal condition. Join nodes also keep track of their joint
matches, which means that they retain partial matches. This is done by
storing a token which is a pair that refers to both conditional elements
for which the join is successful. Finally, terminal nodes are triggered
when all conditions are met and invoke the necessary modifiers. Duplicate
matches are filtered by performing verification (Section 4.5.4) and conflict
resolution (Section 4.6.3).

The Rete algorithm has been implemented in many rule engines, in-
cluding CLIPS, Drools, Open Rules18, Jess19, IBM Operational Decision
Management20, BizTalk21, Nools22. Mudra relies on the Rete implementa-
tion of CLIPS, which is designed as a forward chaining (thus reflecting an
data-driven system) and provides many enhancements, such as hashed
alpha and beta memory in order to speed up lookup.

18Open Rules: http://openrules.com
19Jess: http://herzberg.ca.sandia.gov
20IBM Operational Decision Management: http://www.ibm.com/software/products/en/odm
21Microsoft BizTalk: https://www.microsoft.com/en-us/server-cloud/products/biztalk
22Nools: https://github.com/C2FO/nools

http://openrules.com
http://herzberg.ca.sandia.gov
http://www.ibm.com/software/products/en/odm
https://www.microsoft.com/en-us/server-cloud/products/biztalk
https://github.com/C2FO/nools

5.2. Mudra’s Unified Fusion Architecture 145

Propagate primitive Speech facts Propagate primitive Point facts

Select Speech if

word == "Put"

Select Speech if

word == "That"

Select Speech if

word == "There"

Join put and that such that

put.time - that.time < -3s

Join there and p2 such that

|there.time - p2.time| < 400ms

Join (put, that) and p1 such that

|that.time - p1.time| < 400ms

Select Point Select Point

Join (put, that, p1) and (there, p2) such that

that.time - there.time < 3ms

Modifiers

Legend
Template Node

Alpha Node

Join Node

Terminal Node

Figure 5.6: Rete network for Bolt’s interaction rule

5.2.4 The Service Layer

The goal of Mudra’s service layer is to integrate third-party fusion
processes and gesture recognisers. Each such process or recogniser is
called a service. Services can subscribe to one or more fact types (such
as Tuio2DCursor or Vibration) in order to receive a copy of any future
fact assertion for that particular type. The delivery of facts and notific-
ations is handled asynchronously by the event broker, as explained in
Section 5.2.2. In Figure 5.4 this is illustrated via the dashed arrow from
the event broker to various integrated services. We assume that external
code can be wrapped in a service component which can send and receive
facts.

We first discuss the ability of Mudra to instantiate and discover services
at runtime. We then demonstrate the integration of existing processes

146 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

into the Mudra architecture and we illustrate its interoperability with
external frameworks such as iGesture [145].

Dynamic Service Instantiation

Mudra allows developers to instantiate as many services as needed based
on runtime requirements. For example, input sources can become avail-
able dynamically. As explained in Section 4.5.2, rules can be used to
describe dynamic service instantiation. However, for other scenarios,
service instantiation can depend on more refined information based on
the details of input events. This includes the number of users or the num-
ber of fingers on a multi-touch surface. This means that the number of
input sources does not map directly to the number of services, but rather
depends on a particular data pattern, as presented in Listing 5.10. In
Listing 5.10 services are instantiated whenever the calculation of the relat-
ive position of the left hand and the left shoulder for each individual user
is needed. The call of RelativePositioning.startNormalisedJoint

initialises the service and this service subscribes to fact types it is in-
terested in. Such a highly dynamic service instantiation is particularly
useful in a multi-touch scenario where every finger should be monitored
for gestures. Existing gesture recognisers such as DTW, Protractor or
the $1 Unistroke Recogniser require a new recogniser instance for each
finger on the multi-touch surface.

Listing 5.10: Dynamic instantiation of services (line 8)
1 rule startRelativePositioning
2 s = StartRelativePositioning
3 j = Joint
4 no { RelativePositionService { id == s.id && sensor == j.sensor && user == j.user } }
5 service = String.concat(”RP-”, s.id, ”-”, j.sensor, ”-”, j.user)
6 assert RelativePositionService { sensor ⇒ j.sensor, user ⇒ j.user,
7 id ⇒ s.id, service ⇒ service }
8 call RelativePositioning.startNormalisedJoint(service, ”Joint”, j.sensor, j.user,
9 s.parent, s.child, s.distance)

10 end

Service Pooling

When a consumer gets saturated by an excessive amount of received facts,
an ever increasing latency bottleneck is created. This is a well-known
problem of publish/subscribe systems and can be overcome by balancing
tasks over redundant subscribers [72]. In this manner, Mudra provides a
pooling service which distributes tasks across replicated services. Service

5.2. Mudra’s Unified Fusion Architecture 147

pooling can, for instance, be used to delegate classification tasks to a pool
of machine learning classifiers. This eliminates potential bottlenecks and
improves responsiveness.

Service Discovery

The Mudra architecture supports spontaneous service discovery. Services
can announce themselves in the network through the ZeroConf protocol [23,
24], which is based on multicast DNS technology. Whenever Mudra
discovers a service on the local network, it translates the name and
connection properties into a fact such that its presence can be detected
by rules. Mudra also announces itself as a ZeroConf service, thereby
enabling the connection of multiple Mudra instances across a network.
Note that the orchestration of multiple instances in combination with the
subscription model can become complex. Additional research is being
conducted to automatically load balance and distribute the interpretation
process of rules [151].

Ad-Hoc Services

Mudra integrates a number of built-in ad-hoc services based on C/C++
code, such as:

• The peak detection service monitors a stream of events using a
moving average over a time window and asserts a fact whenever a
particular threshold is crossed.

• The vectorisation service transforms 2D and 3D events into cardinal
directions.

• The translation service moves x,y (and z) coordinates by the
provided parameters.

• A scaling service scales x,y (and z) coordinates so that they fit in a
corresponding interval. This allows developers to use normalised
spatial measurements across rules and services. For example, the
x and y coordinates of multi-touch events can all be confined to a
2D bounding box between 0 and 1.

• An ad-hoc rotation service rotates the x,y (and z) coordinates by
a given angle. Currently Mudra only supports principal rotations
(i.e. across the x, y or z axis).

148 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

• Linear interpolation is available as a service to artificially increase
the rate of input data. Due to hardware specifications or networking
issues, input sources may not always be able to provide a stable
data rate. Linear interpolation is often beneficial for peak detection,
control points and other mechanisms that require a stable input
rate.

• The calculation of relative positions can be offloaded to an ad-hoc
service. Relative positions are used for different purposes including
the analyses of 3D gestures (i.e. to describe movement from the
hand relative to the shoulder).

It should be noted that other spatio-temporal ad-hoc functional-
ity can be embedded in Mudra. For example, Time←before and
Space2D.similarity are integrated in the language runtime and do
not require a service abstraction. Extending the built-in functionality
of Mudra is relatively easy, as these services were implemented in a few
hours in order to run our experiments.

Classification Services

A classification service assigns a list of facts to a particular class (also
known as a label), thereby raising the abstraction level. Mudra integrates
a number of existing classification methods as a service, in particular
DTW, the $1 Unistroke Recogniser and Protractor. These three template
classifiers output a label for which the distance between an incoming
sequence and a pre-recorded labelled sequence is the smallest. Therefore,
this method requires annotated training data to be persistently stored.

In contrast to template classifiers, learning-based methods, such as
neural networks (NN) or Hidden Markov Models (HMM) can be used.
These are currently not integrated in Mudra, but are available as an
external service by frameworks such as iGesture or Weka (Section 3.3.3).
Mudra provides the built-in template for representing classification results
shown in Listing 5.11. Each classification task and its result are linked
using a unique query identifier (i.e. line 3). This unique query identifier
is used to know which classification task has been completed.

5.2. Mudra’s Unified Fusion Architecture 149

Listing 5.11: Asynchronous verification
1 template Classification
2 label # the classification result (i.e. label)
3 query # original query identifier
4 time begin # the time of first relevant fact
5 time end # the time of last relevant fact
6 score # score given by the classifier
7 ratio # score interval defined by the classifier
8 recogniser # the type of classifier
9 origin # the type of input data

10 extra # additional information by the classifier
11 end

Most classification services rely on segmented data. Therefore the
combination of Midas and classification services provides a powerful
platform to describe multimodal interaction patterns. On the one hand,
Midas rules typically focus on extracting meaningful patterns from large
continuous streams of input data while providing software engineering
constructs such as modularisation and composition. On the other hand,
classification techniques offer the ability to verify the results obtained
by rules (as seen in Section 4.5.4). It also allows developers to detect
patterns which are too irregular to describe using rules.

Other Services

In this section we discuss three remaining built-in services of Mudra,
including a conversion service, a persistency mechanism and an integration
service with the iGesture classification framework.

Conversions Often facts need to be converted from one format into an-
other. For example, TUIO-based multi-touch information (i.e. Tuio2DCur)
is converted into a Touch template in order to be compatible with existing
rules. This conversion can be done by rules or by a built-in conversion
service, which is more time efficient thanks to the use of multi-threading.
Moreover, such a conversion service can use existing C programming code
for translation, rotation, scaling and interpolation without communication
or interpretation overhead.

Persistency As volatile memory is rather limited, the fact base needs
to expire old data, thereby providing a limited scope of facts in time. In
order to offer developers the ability to persist old facts and later recall
them, Mudra provides two persistent services based on text files and an

150 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

SQLite database. Storing facts onto disk is useful for debugging purposes:
event input is gathered and later replayed in order to verify the dynamic
behaviour of the multimodal fusion process.

In the text-based persistent service, facts are serialised to a file using
one of the supported data formats defined in Section 5.2.1. The developer
simply has to subscribe the persistent service to the intended fact type.
Developers can also use content-based filters for more fine-grained storing.

Alternatively, facts can also be stored to a relational database through
the SQLite persistent service [125]. Such an SQLite database service is
initialised with a filename as shown in Listing 5.12. Facts published to
an SQLite service are translated into database records whereby every
template corresponds to a database table and each slot to a column. Facts
can later be retrieved through dedicated select and import methods.
The select method simply retrieves facts from the database, while
the import method also asserts them into the fact base. Note that
imported facts will expire using the same expiration mechanism described
in Section 5.2.2. However, many options are available to deal with this
issue, such as overriding the timespan of imported facts, convert them
into a separate template or publish them to a service outside the fact
base.

Listing 5.12: SQLite persistent service
1 $sqlite = call SQLite.initialise(”data/storage.sqlite”)
2 rule importantLesson
3 s = Speech { user == ”Beat” || user == ”Wolf” }
4 # Persist everything uttered by Beat or Wolf
5 call $sqlite.publish s
6 end
7 rule recallLessons
8 u = User
9 # (Re-)Assert all speech between yesterday and now

10 call $sqlite.import Speech, u.time - 24.hours, u.time
11 # Select all speech in a list (i.e. without assertion)
12 ss = call $sqlite.select Speech, u.time - 24.hours, u.time
13 # Assert facts according to a custom SQL statement
14 call $sqlite.importWhere ”SELECT ∗ FROM Speech WHERE user == ?”, u.id
15 end

The combination of rules and persistent data storage provides an
elegant interface to capture training data as all functionality of Mudra
can be used during data gathering and annotation. For example, rules
can filter noise by analysing contextual information, either from the
application logic or multimodal sensor input. Likewise, input data can be
automatically annotated by rules in order to easily bootstrap machine
learning services.

5.2. Mudra’s Unified Fusion Architecture 151

A Generic Service-oriented Classification API

In order to accommodate these machine learning services, Mudra offers a
generic service-oriented classification API. This API generalises common
properties of classification frameworks, such as Weka and Orange [35].
These classification frameworks typically consist of three basic methods,
namely initialise, recognise and remove. A client of this frame-
work instantiates and configures classification algorithm by using the
initialise method which configures the parameters. The recognise

method transforms a set of events into a classification label. The remove

method is used inform the framework that a particular service will no
longer be used. The service API is presented as a Java interface, as
shown in Listing 5.13. In this section we focus on the classification of
2D gestures, but the same API can be used for other data types.

Listing 5.13: Interface definition of a gesture classification service
1 public interface GestureServiceAPI {
2 public boolean initialise(String identifier, // Service identification name
3 String algorithm, // Name of the classifier
4 Map configuration);
5 public boolean recognise(String identifier,
6 int queryId,
7 List<Map> trajectory, // key-value pairs (i.e. x, y coordinates)
8 int maximumResults = 1,
9 double minimumScore = 0);

10 public boolean remove(String identifier);
11 }

The Initialise Method Each classification algorithm requires a
number of parameters, such as which features to be used, a minimal
threshold for a successful recognition of a gesture or the set of gesture
samples to be used. Therefore, our API supports the initialisation of ges-
ture recognisers with a number of parameters which may vary for different
algorithms. As shown in the initialise function signature in List-
ing 5.13, the method accepts a unique identifier to specify the service
name, together with the name of the algorithm and its configuration.
This configuration is list of key-value pairs to configure the classifier.
The initialise method will set up a communication channel to the
service and return whether or not the classifier was created.

The Recognise Method In order to classify a segmented gesture
candidate (i.e. a trajectory), the recognise method is used. The method
takes as parameters an identifying name for the initialised service, a query
identifier (i.e. queryId), a list of points and optionally a maximum number
of results to be returned, as well as a minimal threshold for gestures to be

152 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

recognised. Note that the recognise method returns a boolean instead
of a classification result. It indicates whether the message was well-formed,
queued correctly and if an instance of the specified classifier is active. Our
Mudra wrapper for this classification API supports the async construct,
presented in Section 4.5.3, to hide the queryId and boolean details.
Through the queryId, which is copied into the results, we are able to
resolve the asynchronous requests with their values.

The Remove Method Finally, initialised gesture classifiers can
be removed through an explicit invocation of the remove method. This
method simply takes the registered name of the classifier. The service is
then responsible for cleaning up all algorithm-specific resources.

This service-oriented classification API provides a simple mechanism
to integrate various existing classification algorithms. We implemented
DTW, the $1 Unistroke Recogniser, Protractor and iGesture framework
extensions using the same three basic methods.

iGesture The iGesture framework [145] focuses on helping developers
to parameterise the gesture classification process. It offers various gesture
classification algorithms, such as Rubine [137], SiGeR [152] and Hidden
Markov Models [160], that perform well on 2D segmented trajectories.
Most services discussed in this chapter rely on the data-centric approach
(i.e. publish and subscribing facts). However, we integrated iGesture by
using an XML-RPC API to demonstrate the extendibility of the Mudra
architecture [99]. In the next section we define a simple generic service-
oriented gesture computing API to accommodate the integration needs
of existing classifiers in multimodal frameworks.

Distributed Mudra Mudra instances running on different machines
can be discovered and can act as a service to each other. This way, rules
and facts can be transmitted to other Mudra instances to offload the
computation from a single node to another. In order to connect Mudra
instances via IPv4 [71] or IPv6 [34], three Mudra.connect* operators are
provided, as shown in Listing 5.15. When a connection was successful, a
fact is created in the fact base which can be used to offload data to the
new Mudra service. Listing 5.14 demonstrates the offloading of pen input
data to a Mudra instance called ly-1-11.

5.2. Mudra’s Unified Fusion Architecture 153

Listing 5.14: Offload pen input data to a specific Mudra instance
1 rule offloadToLy111
2 m = Mudra { name == ”ly-1-11” }
3 p = Pen
4 call m.publish p
5 end

Listing 5.15: Connecting to a remote Mudra instance
1 call Mudra.connect ”mudra-ly-1-11”, ”ly-1-11”, 4337, Mudra.DATA FORMAT SEXPR V1
2 # Mudra.connect ipv6 <router-name>, <hostname>, <port>, <format>
3 # Mudra.connect2 <router-name>, <hostname>, <port>, <format>,
4 # <retries>, <retry-sleep>, <retry-timeout>

5.2.5 The Application Layer

Finally, Mudra’s application layer allows multimodal applications to com-
municate with Mudra by subscribing and publishing facts. An interesting
consequence is that at any multimodal fusion level, rules can benefit from
application context in order to improve accuracy. For example:

• At the data level, multiple fingers can be grouped together based
on their spatial relation to GUI components that exist underneath.
This simplifies the grouping problem when processing raw data to
form gesture candidates. This was illustrated in Listing 4.29.

• When the application provides user identification information, spe-
cific features can be enabled or disabled for input of that particular
user, as illustrated in Listing 5.2. Such user-specific features allow
developers to process pen, accelerometer or eye input for users with
a form of tremor [138].

• At the decision level, application state allows the adaptation of dia-
logue rules (Section 3.4.2). Therefore multimodal fusion can adapt
to a context of use (e.g. car, home or work), type of task (e.g. in-
formation search or entertainment) or type of user (e.g. visually
impaired or elderly) [38].

Shadows

As mentioned in Section 4.3.5, Mudra’s application layer provides the
ability to replicate application objects as shadow facts. This allows

154 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

the developer to reason over application level entities, such as GUI
components, inside the multimodal fusion architecture. Whenever a
class is annotated with Shadow, the Mudra library automatically reifies
its instances as facts with the class name as type and the fields of the
class as slots.

Currently, shadowing is supported for the Ruby and Java pro-
gramming languages. The synchronisation process between Ruby and
Mudra is implemented using Ruby’s reflection properties. For Java,
we rely on the JavaBeans technology [60]. Note that the shadow
facts are not automatically kept consistent with their corresponding
object. Therefore, for every change in state, developers have to call the
firePropertyChange(oldValue, newValue) method. This notifies the
shadowing process and activates synchronisation. Fortunately, the Java
Mudra library provides an option to rely on the Java reflection API, which
automatically propagates changes from (and to) Java objects using get*

and set* methods. A publish/subscribe pattern is used (as defined by
JavaBeans) to synchronise information. For Ruby, we wrap all fields to
intercept state changes whenever an assignment is used.

5.3 Multimodal Processing Concerns

In this section we discuss the multimodal processing concerns of the Mudra
framework based on the criteria we defined in Chapter 2 (Section 2.3).

5.3.1 Online Processing

The ability to process input data in an online manner allows applications
to provide user feedback in a responsive manner. Mudra enables online
fusion processing in three ways:

• Rules trigger immediately as soon as their conditions are satisfied.
A developer is thereby equiped with fine-grained control over the
feedback process. Additionally, the Midas language provides the
ability to seamlessly alternate between conditions and modifiers
within a single rule. Moreover, through abstraction and composition
of attempts and modules (Sections 4.3.1 and 4.3.2), developers are
encouraged to modularise as much code as possible, thereby enabling
the use of modifiers for fine-grained, online user feedback.

5.3. Multimodal Processing Concerns 155

• The Mudra engine offers a number of activation flags to control the
execution of rule modifiers, as shown in Section 4.6.3. These flags,
such as the shoot-and-continue flag, specify standard behaviour to
implement online user feedback.

• When multiple rules match after the assertion of a fact, rules with a
higher priority value (i.e. salience) gain priority. When the priority
is equal or undefined, the order in which the rules are defined is
used as an ordering mechanism. This helps developers to prioritise
rules in an online manner.

5.3.2 Offline Processing

Offline analysis happens based on distinctive cues which indicate that
the mandatory input data is available to make an informed decision. In
rules, simple cues such as a pen down and up event, can be expressed
as conditions to initiate an offline processing task on the data captured
between both events. As rules are able to describe complex patterns, more
complex offline cues are also supported. Mudra embeds several services,
such as peak detection (Section 5.2.4) to further ease the implementation
of offline processing tasks. Additionally, the wait keyword (Section 4.1.1)
allows developers to specify explicit delays even after conditional elements
are matched. This is useful to ensure that all data (i.e. input and GUI)
is available to negated patterns.

5.3.3 Partially Overlapping Matches

Frequently developers write rules that rely on the same conditions. There-
fore, a single fact can match multiple candidates from different rules.
Figure 5.7 demonstrates the partial overlap of two candidate gestures in
the middle of an event sequence. In this case, each event following c1 is
potentially part of the S as well as the Circle gesture.

In related work, stateful implementations require developers to reject
the potential start of the Circle gesture. One way to overcome missing
overlapping matches is to extend Alon et al.’s [2] approach, which uses an
offline classifier that automatically generates this subgesture list during
the training phase. However, there are still two cases where potential
candidates are incorrectly rejected. Firstly, in Alon et al., only the best
scoring candidate gesture is added to a candidate list for each input
event. Secondly, in many cases the subgesture does not follow the exact

156 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

c1

Figure 5.7: Overlapping within multiple gesture definitions

trajectory of the supergesture and if the supergesture is for example
rejected at a later stage, subgestures might be incorrectly missing from
the candidate list.

In Mudra, the Rete network automatically keeps track of all candidate
solutions from the same input data using tokens. Like this, a particular
input event can be shared between multiple rules, allowing partial overlap.
This feature enables the processing of concurrent multi-user interaction
and adequately deals with the identity and grouping problem by validating
all potential combinations. Bolt’s example (Example 6 described in
Section 5.1.1) demonstrates the need to make a decision at the wrong
level of abstraction in many frameworks. As soon as an additional
pointing event comes in, a decision to overwrite the existing partial match
or to reject the new potential match has to be made without proper
information about the context or future events. This is illustrated in
Figure 5.8 where events e1 and e2 are mapped to the same condition.
Existing techniques rely on ad-hoc solutions without adequate software
engineering guarantees. In our work, both combinations will be matched
which means that subsequent conditions decide which combination to
execute. This disambiguation can be resolved by implementing additional
rules, configuring conflict resolution (Section 4.6.3) or encoding a solution
at the application level. Most importantly, no potential matches will be
filtered due to the partial overlap feature. In a similar way, segmentation
also requires keeping track of many alternatives until a decisive conclusion
is formed, as explained in the next section.

5.3. Multimodal Processing Concerns 157

"Put"

"That"

"There"

p1
e1

p1
e2

put
e

that
e

Join (put, that) and p1 such that

 |that.time - p1.time| < 400.ms

that
e

p1
e1

put
e

that
e

p1
e2

put
e

Figure 5.8: Meaning frames can only hold one item (left-hand side) while
Rete stores partial overlaps (right-hand side)

5.3.4 Segmentation

Segmentation is the process of extracting the begin and end points of
a particular pattern from a continuous input event stream. The Midas
language excels at defining complex patterns to discover segmented fusion
candidates. The Mudra engine performs the necessary pattern matching
to implement segmentation. Segmented candidates can then be verified
by more refined rules that include additional application context. The
candidates can also be verified by classification algorithms such as DTW
or HMM.

Segmentation is necessary to transform continuous streams of low-level
data into discrete high-level events. The presented method allows the
segmentation of multiple streams, containing information from multiple
users at the same time by caching each combination. This seamlessly
enables complex functionality such as identification and grouping. Fur-
thermore, it filters noise as many events that do not match the pattern
are automatically discarded. However, this noise filtering step is far from
trivial as Mudra provides the ability to match non-subsequent events.

We illustrate the process of segmentation in a Rete network by means
of Figures 5.9 and 5.10 and Listing 5.16. In this example we extract
a 2D Z gesture from a continuous input stream. This input stream
delivers events one by one. For performance reasons one needs to keep
track of intermediate results. Therefore, many events can be regarded as
potential starting points and need to be stored for future analysis. This
is illustrated in Figure 5.10 where the first join node (which joins the p1

and p2 conditional elements), uses all input events as a potential starting

158 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

point. Then, it stores the combinations that join p1 and p2 and satisfy
the given spatio-temporal conditions. Note that the code inside the join
nodes represents Listing 5.16 in a compiled form based on optimisations
such as constant folding and sparse conditional constant propagation (see
Section 5.5). Figure 5.9 illustrates various candidate combinations when
segmenting a Z gesture:

• (e1,e3), (e2,e4) are potential starting points that will not be
matched further because of a missing third control point. Note
that the combinations (e2,e7) and (e3,e8) are also found. This is
intentional because at that point in time (e8), these combinations
form potential gestures. However, in this case, these two candidates
will be rejected at a later stage.

• Both (e5,e7) and (e6,e8) will match with another fact in the
second and third join node. Therefore both are seen as potential
gesture candidates and will be filtered by activation policies (Sec-
tion 4.6.3) and verification processes. As intended, only a single
high-level Z gesture fact will be asserted for this example.

• The combination (e9,10) prepares a starting point for a potential
overlapping gesture. This necessary because were are dealing with
a continuous input stream which could consist of a valid Z gesture
in the near future.

e1 e2 e3 e4

e5
e6 e7

e8

e9
e10

Figure 5.9: The segmentation of a 2D Z gesture

5.3. Multimodal Processing Concerns 159

Listing 5.16: Declarative definition of a 2D Z gesture
1 rule z
2 c1 = Touch2D
3 c2 = Touch2D
4 c1←beforeF c2
5 c1←translated nearF c2, 409.px, -13.px, 52.px
6 c3 = Touch2D
7 c2←beforeF c3
8 c1←translated nearF c3, -14.px, 476.px, 52.px
9 c4 = Touch2D

10 c3←beforeF c4
11 c1←translated nearF c4, 483.px, 457.px, 76.px
12 c4←withinF c1, 100.ms, 1000.ms
13 assert Z { time begin ⇒ c1.time, time end ⇒ c4.time }
14 end

Non-Subsequent Event Matching One of the most challenging prob-
lems in segmentation is to identify patterns between noise facts. The
“noise” facts that do not match the specified conditions should be skipped.
This is called non-subsequent event matching. Unfortunately, in many
cases it is unclear whether or not to classify a particular fact as noise or
not. This depends on contextual information (such as the application
state), information from other input sources or the presence of previous
and future events from the same input source. The latter case is illus-
trated in Figures 5.11 to 5.13 which represent three simple subcases when
matching a swipe right gesture, namely (1) a few noise events can be
discarded (Figure 5.11); (2) a couple of events indicate a potential start
of the gesture but can later be discarded as the first pattern is contin-
ued (Figure 5.12); and (3) the continuation of the swipe right pattern is
noise itself as the subsequent events match a right square bracket gesture
(Figure 5.13).

In order to support non-subsequent event matching, it is important
to note that a skipped event is not discarded from the fact base as it can
form the starting point of another gesture or be part of an intermediate
match of combination with other events.

5.3.5 Long Term Reasoning

The ability to recall fusion results from patterns discovered in the past
can improve accuracy in the current situation. Long term reasoning is
supported in Mudra through the following options:

160 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

Propagate primitive Point facts

Join p1 and p2 such that

 p1.time < p2.time
 52.px > Math.sqrt(
 (p2.x + 409.px - p1.x) ** 2
 + (p2.y + -13.px - p1.y) ** 2)

Select Point p1 Select Point p2

Modifiers

Select Point p3 Select Point p4

Join (p1, p2) and p3 such that

 p2.time < p3.time
 52.px > Math.sqrt(
 (p3.x + -14.px - p1.x) ** 2
 + (p3.y + 476.px - p1.y) ** 2)

Join (p1, p2, p3) and p4 such that

 p3.time < p4.time
 76.px > Math.sqrt(
 (p4.x + 483.px - p1.x) ** 2
 + (p4.y + 457.px - p1.y) ** 2)
 p1.time + 100.ms < p4.time
 p1.time + 1000.ms > p4.time

e1 e2 e3 e4 e5

e6 e7 e8 e9 e10

e1 e2 e3 e4 e5

e6 e7 e8 e9 e10

e1 e2 e3 e4 e5

e6 e7 e8 e9 e10

e1 e2 e3 e4 e5

e6 e7 e8 e9 e10

e1 e3 e2 e4 e5 e7 e6 e8

e6 e8 e9

e5 e7 e9 e10

e9 e10

e3 e8e2 e7

e5 e7 e9

e6 e8 e9 e10

Figure 5.10: State of the Rete network during segmentation

• Developers can define a large timespan window for a few important
facts. These facts can originate from the input source or be inferred.

• Developers can employ multiple persistent services, which store a
list of facts outside the fact base. They are exempted from data
expiration and can be (re-)asserted to the fact base or transmitted
to a service at a later point in time.

• Facts can be serialised to and loaded from a text file using Mudra’s
text-based persistent service.

5.3. Multimodal Processing Concerns 161

Figure 5.11: A few noise events

Figure 5.12: Noise subpatterns Figure 5.13: Alternative patterns

• Facts can be stored and recalled from an in-memory SQLite rela-
tional database. This behaviour resembles the behavior of persistent
services but stores data in memory rather than on disk.

These four implementation strategies allow developers to access valu-
able information for a long period of time.

5.3.6 Concurrent Interaction

To support the concurrent interaction of multiple users, the fusion archi-
tecture needs a way to group events for each user. Existing data-stream
solutions replicate composition boxes for each user and require developers
to manually connect the input and output ports from these boxes for each
user.

In Mudra, Rete tokens inherently enable the interaction by multiple
users at the same time. As mentioned before, each token represents
its own combination of conditional elements that partially match the
multimodal description. Therefore, the put that there example shown
in Listing 5.6 can be satisfied by one user uttering the “put” while the
other user points his arm to a specific location. If this is not the desired
behaviour, developers can specify that each conditional element should
originate from the same user. In this example, user identification can
be achieved in fusing acoustic source localisation and 3D positioning

162 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

based on the camera feed, or additionally, using the voice timbre and face
recognition.

5.3.7 Portability, Serialisation and Embeddability

We implemented the Mudra architecture focusing on performance and
cross-platform compatibility. Currently it runs on the Linux kernel23

(compiled using GCC24), Mac OS X25 (LLVM26), Microsoft Windows27

(Visual Studio Compiler28), iOS (running on the ARM architecture)29,
Android (ARM, x86, x86 64)30 and other embedded hardware such as the
Raspberry Pi31.

Mudra is delivered as a background service (i.e. a daemon process) or
a library (both static or dynamically linked). Therefore it can easily be
embedded in existing programs. Unfortunately, there is no integration
or Midas rules in an existing language (such as achieved in LINQ [115])
which means that rules are represented as plain strings. On the positive
side, this allows rules and facts to be added at runtime by applications
implemented in any programming language.

5.3.8 Runtime Definitions and Device Instantiation

Mudra supports the addition, modification and removal of rules at runtime.
This helps the debugging process and allows developers to adapt a running
system without downtime. For each added, modified or removed rule,
the Rete network is automatically reorganised such that it will deliver
optimal performance for future matching.

Dynamically adding devices is trivial as well, since the infrastructure
layer can simply produce new templates or facts at any time (Section 4.3.1).
Furthermore, dedicated services for these new devices can be instantiated
using rules, as shown in Section 5.2.4.

23Linux: https://www.linux.com, and its Ubuntu flavour: https://www.ubuntu.com
24GNU GCC: https://gcc.gnu.org
25Mac OS X: https://www.apple.com/osx
26LLVM: http://llvm.org
27Microsoft Windows: http://windows.microsoft.com
28Visual Studio: https://www.visualstudio.com
29iOS: https://www.apple.com/ios
30Android: https://www.android.com
31Raspberry Pi: http://www.raspberrypi.org

https://www.linux.com
https://www.ubuntu.com
https://gcc.gnu.org
https://www.apple.com/osx
http://llvm.org
http://windows.microsoft.com
https://www.visualstudio.com
https://www.apple.com/ios
https://www.android.com
http://www.raspberrypi.org

5.3. Multimodal Processing Concerns 163

5.3.9 Reliability and Scalability

The Mudra architecture provides three simple reliability features, such as:

• APR thread pools32 are used whenever a new service is instantiated.
This means that thread creation can be statically defined at startup
or be adequately controlled at runtime.

• Mudra provides a set of compiler flags in order to improve sandbox-
ing, such as file I/O, in order to provide increased reliability and
safety. Applications can do little harm if its access to the underly-
ing operating system is appropriately restricted, as mentioned by
Goldberg et al. [58].

• Rules can be written to dynamically offload facts to multiple Mudra
instances or external services. This enables the manual control over
the amount of events processed on a single machine and caters to
scalability.

However, these features do not provide formal guarantees such as
actual real-time processing capabilities. Related research efforts have
achieved promising results on parallelisation and scalability with soft real-
time guarantees [113,131,151] based ideas from the Midas language and
Mudra architecture. In order to increase the reliability against network
communication delays, Mudra supports out-of-order event input.

Out-of-order Event Input

In practice, it not uncommon to receive events in a different order
(i.e. e1, e3, e2) than the one that was originally produced by an event
source (i.e. e1, e2, e3). However, most existing data-level fusion frame-
works assume a consistent order of events (see Section 3.4.1).

In Midas and Mudra, out-of-order event input is supported without
requiring any special code modification from developers. The Midas
semantics dictate that conditional elements are matched regardless of the
assertion order. This is because rules rely on explicit time tests, thereby
taking the problem of out-of-order input concerns out of the hands of the
developer.

Notice however that out-of-order events that are matched with tem-
plates whose timespan is more narrow than the time gap between the

32apr thread pool.h: http://ci.apache.org/projects/httpd/trunk/doxygen/apr__thread_

_pool_8h.html

http://ci.apache.org/projects/httpd/trunk/doxygen/apr__thread__pool_8h.html
http://ci.apache.org/projects/httpd/trunk/doxygen/apr__thread__pool_8h.html

164 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

normal order and the out-of-order events may result in a miss. List-
ing 5.17 demonstrates the data-level fusion of events from the accelero-
meter (i.e. a1, a3, a4, a2) and the gyroscope (i.e. g1, g2, g3, g4) in order
to improve direction- and motion-sensing. However, when the timespans
of gyroscope facts are specified too narrow such that g4 expired g2, a
potential match between a2 and g2 is lost. In practice, the timespan is
rarely set to such low values and it can easily be increased if support for
out-of-order event input is needed. Furthermore, as shown in Section 4.5.1,
cross-template event expiration can also be used to deal with this issue.

Listing 5.17: Potential missed match due to the combination of out-of-
order and event expiration

1 rule potentialMissingMatch
2 a = Accelerometer
3 g = Gyroscope
4 a←meetsF g, 2.ms
5 end

5.4 Authoring Tools

One of the main goals of our approach is to retain control over recognition
results and be able to verify and comprehend them (as opposed to machine
learning approaches). In order to further raise the abstraction level and
to demonstrate the flexibility of our language as a compilation target, we
implemented two authoring tools. An important aspect of these authoring
tools is that the resulting rule definitions are provided in a form that is
accessible to expert developers. Expert developers can further refine the
generated descriptions using hand-coded logic. Therefore our authoring
tools focus on generating an external representation in the form of the
Midas language.

5.4.1 Inferencing and Refining Control Points

As discussed in Section 4.4.6, rules can be used to describe 2D and 3D ges-
tures using the control points design pattern. In this section we describe
a method to automatically derive these control points from a single rep-
resentative sample which has been captured by the expert. This form of
inferencing is called one-shot learning. The current implementation uses
a tangent-based calculation where major changes in a small section of
the trajectory are stored as potential characteristic control points. The

5.4. Authoring Tools 165

top m points are then chosen while preserving a good spatio-temporal
distribution over the trajectory to ensure that not only distinctive curves
but also longer straight lines are used for differentiation.

By defining spatial and temporal constraints between detected control
points, a developer has full control over which parts of a gesture should be
matched closely and where variation is desired. Figure 5.14 demonstrates
inferencing results on four other gestures. Control points can be visualised,
translated, rotated and scaled using a graphical interface as shown in
Figure 5.15. The output of this application are rules, where additional
conditions can be programmed in a textual rule format. Default values for
the circular areas surrounding the control points can be easily modified
or additional strictness using spatio-temporal operators can be applied.

cA

Figure 5.14: Automatically inferred control points

Figure 5.15: Authoring tool for inferencing and refining control points

We opted for a simple but effective solution to automatically infer
control points where the result can be visualised and manually refined by
the gesture developer. Control points focus on segmentation rather than
classification, therefore they are used for high recall. We demonstrate
the recall and precision performance on a standard 2D gesture set in
Chapter 6 (Section 6.5).

166 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

5.4.2 A Graphical Full-Body Development Environ-

ment

A second graphical authoring tool, called VolTra [135], allows developers
to develop full-body 3D gestures in a similar way as discussed in the
previous section. Figure 5.16 demonstrates VolTra’s main interface where
captured 3D trajectories of each joint are visualised through an avatar.
A 3D gesture is specified by selecting a particular joint (such as the
right wrist, which is modelled as a “right hand” by the Kinect SDK), a
hierachical parent (such as the right shoulder or the waist) and a number
of control points (in the form of ellipsoids) to which the 3D trajectory
has to adhere. Control points can be translated, scaled and rotated.
Relations between 3D trajectories from multiple joints are also possible
by connecting time constraints between the control points in a graphical
manner. This allows developers to specify that a proper football kick is
defined by the movement of the right foot in combination with a backward
movement of the arm and the backward leaning of the upper body. These
graphically annotated constraints are compiled into Midas rules which
enables further refinement if needed. One such refinement consists of the
definition of joint orientations using hierarchical angles or quaternions.

Figure 5.16: A graphical full-body development environment

The generated code which implements the complex 3D gesture in
consise, modular and composable code, is illustrated in Listing 5.18. In
Section 5.5.3 we discuss the implementation of this gesture in detail and
show which parts of this definition are optimised at compile time.

5.5. Compilation and Runtime Model 167

Listing 5.18: Detecting a football kick gesture
1 rule kickRightFoot
2 r1 = RelativeJoint { parent == Joint.HIP RIGHT && child == Joint.FOOT RIGHT }
3 r1←enterEllipsoid 0.1288, 1.0314, -0.4319, 0.8219, 1.4056, 0.2, 6.1667, 0.0545, 6.2768
4 r2 = RelativeJoint { parent == Joint.HIP RIGHT && child == Joint.FOOT RIGHT }
5 r2←enterEllipsoid 0.1436, 0.3249, -1.0984, 0.7740, 0.2629, 0.7391, 0, 0, 0
6 r1←meetsF r2, 1.s
7 assert Kick { time ⇒ r2.time }
8 end

5.4.3 Summary

The presented authoring tools highlight the capabilities of Midas and
Mudra as a compilation target language. By means of an external rep-
resentation, developers can understand and modify code output from
these tools without much effort. This approach is fundamentally differ-
ent to many tools that output their knowledge in a data format which
cannot embed programming logic. As highlighted by Kadous [82], the
comprehensibility of existing spotting and recognition approaches is rather
limited. Additionally, it is hard to know when a black box classifier is
trained sufficiently in terms of generality or preciseness.

5.5 Compilation and Runtime Model

Mudra provides an extensible and modular architecture. At startup, each
layer is initialised in a few milliseconds and becomes ready to receive and
publish facts. Midas rules are handled through the Mudra compiler.

5.5.1 Compilation Flow

The Midas language is compiled in multiple steps before being executed
by the core engine based on CLIPS (see Section 5.2.3). Throughout this
dissertation, the term Midas refers to the latest version of our language
specification as presented in Chapter 4. However, the latest version
is actually labelled as v2.0, the second major release of our language
specification. This specification is an abstraction layer on top of previous
versions, as illustrated in Figure 5.17. As argued in a similar way by
Sarna-Starosta [140] for Constraint Handling Rules, this form of source-to-
source transformation is used to (1) specialise the syntax for the problem

168 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

domain, (2) improve static analysis and (3) optimise performance. The
compilation process works as follows:

Midas 1.0

Midas 2.0

Midas 1.9

ANTLR

Ruby evaluator

CLIPS evaluator

Figure 5.17: Midas compilation flow

1. The Midas 2.0 language is defined by an ANTLR 4 [126] grammar
(see Appendix D). A Java program transforms the Midas 2.0 code
using the ANTLR 4 libraries into Midas 1.9 program code.

2. Midas 1.9 exploits the metaprogramming capabilities of the Ruby
language. Therefore Midas 1.9 code is also legal Ruby 1.9 code
and gets evaluated by a standard Ruby interpreter (currently we
use JRuby 1.7.1233). By defining an internal DSL (i.e. creating a
new language through metaprogramming), we can rely on many
features provided by the host language, including object orientation,
functions, blocks, lambdas and scoping mechanisms. The evaluation
of Midas 1.9 code returns a single string, containing Midas 1.0 code.
This means that all potential evaluation paths of the Midas 1.9
code are executed. By evaluating all paths, we can detect many
common mistakes (such as type errors or missing values) and also
perform whole program optimisation. These compile-time measures
were discussed in Section 4.8. Several optimisation strategies are
discussed Section 5.5.3.

33JRuby 1.7.12: http://jruby.org

http://jruby.org

5.5. Compilation and Runtime Model 169

3. Midas 1.0 code is CLIPS code with additional functionality. This
additional code is responsible for initialising and communicating to
various services.

In the next sections we provide additional details about the goal of
each compilation step.

5.5.2 Midas 2.0 ANTLR Compiler

The main objective of the Midas 2.0 abstractions is to provide syntactic
sugar on top of the Midas 1.9 language. As Midas 1.9 relies on the
metaprogramming capabilities of Ruby, several syntactic operators of
Midas 2.0 cannot be supported in Ruby. Therefore, the Midas 2.0 ANTLR
compiler translates an attempt into a regular function and a ← into a
dot operator. It also wraps constructs that cannot be captured by the
metaprogramming capacities of Ruby, such as index access on arrays
(i.e. array[0]) and certain infix operators (i.e. (5 < 2)). Finally it allows
us to prohibit invalid semantic combinations through syntax, such as the
use of attempts inside a function (as presented in Chapter 4). Midas 2.0
also provides a require operator that allows one to load files from different
files.

5.5.3 Midas 1.9 Ruby Compiler

Midas 1.9 is implemented as an internal DSL. This concept is popular in
the Ruby and Lisp community and has been exploited by the well-known
Ruby on Rails (RoR) framework [153]. However, in contrast to RoR
where the web pages are served by the Ruby interpreter, the execution
of a Midas 1.9 program results in a single string containing Midas 1.0
(aka CLIPS) code. Therefore, Midas 1.9 compiles its programs into
another language using metaprogramming.

Most of the multimodal abstractions presented in this dissertation are
made possible through the Midas 1.9 compilation step. This includes, the
ability to compose and inherit modules, to alternate between conditions
and modifiers, to embed intermediate progress notifications, to allow
various activation flags, to provide compile-time errors and to recorder
conditions for optimisation purposes.

By relying on the Ruby interpreter we can program a compiler to
a high-level language and rely on many existing features. It allows for
rapid adaptations and extensions of the Midas language but due to the

170 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

extent of metaprogramming, the code is however quite complex. In what
follows, we demonstrate the inlining, unlinking and condition reordering
capabilities of the Midas language.

Constant folding

The Midas 1.9 compiler performs constant folding on as many values
as possible by evaluating primitive operations in the Ruby environment.
For example, the expression (5 + 2) is always 7, therefore it can be
folded at compile time. Several complex mathematical operations, such as
Space3D<-enterEllipsoid as shown in Listing 5.19 can also be partially
computed at compile-time. Listing 5.19 demonstrates a rule which specifies
the 3D movement of the right foot in order to recognise a football kick.
The highlighted fragments (lines 9 to 17) are operations that are folded
by the compiler by using the instantiated values of lines 29 and 32.
Operations such as cosine, sine and raising to the power are therefore
automatically calculated only once and not for every incoming event.
Constant folding has a big impact on runtime performance because of
the many spatial and temporal relations that are required in multimodal
fusion in the face of thousands of events that are entering the system.

Sparse Conditional Constant Propagation

The Midas compiler supports sparse conditional constant propagation by
traversing all execution paths. For example, when slot s1 is used in a
complex mathematical computation and it is later unified with another
slot s2, for which a value is known at compile-time, the inlining of 1 with
that value occurs. Additionally, tests that can be verified at compile-
time output a warning and are omitted from the compiled code. These
examples are illustrated by Listing 5.20, where the leftF attempt in
the deepInline rule is always true and therefore becomes irrelevant at
runtime.

5.5. Compilation and Runtime Model 171

Listing 5.19: Inlining mathematical operations of a football kick
1 module Space3D
2 x, y, z
3 previous x, previous y, previous z
4 # Arguments: ellipsoid, radius, rotation and a point
5 function self.distEllipsoid(cx, cy, cz, rx, ry, rz, degx, degy, degz, px, py, pz)
6 diff x = px - cx
7 diff y = py - cy
8 diff z = pz - cz
9 x = (Math.cos(-degz) ∗ diff x) + ((-Math.sin(-degz)) ∗ diff y)

10 y = (Math.sin(-degz) ∗ diff x) + (Math.cos(-degz) ∗ diff y)
11 x2 = (Math.cos(-degy) ∗ x) + (Math.sin(-degy) ∗ diff z)
12 z = ((-Math.sin(-degy)) ∗ x) + (Math.cos(-degy) ∗ diff z)
13 y2 = (Math.cos(-degz) ∗ y) + ((-Math.sin(-degz)) ∗ z)
14 z2 = (Math.sin(-degz) ∗ y) + (Math.cos(-degz) ∗ z)
15 result = ((x2 ∗∗ 2) / ((rx / 2) ∗∗ 2)) +
16 ((y2 ∗∗ 2) / ((ry / 2) ∗∗ 2)) +
17 ((z2 ∗∗ 2) / ((rz / 2) ∗∗ 2))
18 end
19 attempt enterEllipsoid(cx, cy, cz, rx, ry, rz, degx, degy, degz)
20 Space3D.distEllipsoid(cx, cy, cz, rx, ry, rz, degx, degy, degz, x, y, z) <= 1
21 Space3D.distEllipsoid(cx, cy, cz, rx, ry, rz, degx, degy, degz,
22 previous x, previous y, previous z) > 1
23 end
24 end
25
26 rule kickRightFoot
27 r1 = RelativeJoint { parent == Joint.HIP RIGHT && child == Joint.FOOT RIGHT }
28 r1←enterEllipsoid 0.1288, 1.0314, -0.4319,
29 0.8219, 1.4056, 0.2, 6.1667, 0.0545, 6.2768
30 r2 = RelativeJoint { parent == Joint.HIP RIGHT && child == Joint.FOOT RIGHT }
31 r2←enterEllipsoid 0.1435, 0.3249, -1.0984,
32 0.7740, 0.2629, 0.7391, 0, 0, 0
33 r1←meetsF r2, 1.s
34 assert Kick { time ⇒ r2.time }
35 end

Listing 5.20: Sparse conditional constant propagation
1 module Space2D
2 attempt leftF(p)
3 x < p.x
4 end
5 end
6
7 rule constantPropagation
8 a = Point
9 a.x == 0

10 b = Point
11 b.x == 3
12 a←leftF(b)
13 assert LeftOf { x1 ⇒ a.x, x2 ⇒ b.x }
14 end

172 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

Unrolling

All the language abstractions presented in Chapter 4, such as attempts
and functions, are unrolled to their most primitive form. This means
that all computation is translated into primitives as defined in the formal
grammar (Section 4.1.1). Therefore, attempts such as translated nearF

and beforeF are translated into a combination of simple mathematical
operations (see Section 4.4.1 and 4.4.2).

Unlinking

Attempts, functions or rules that are unused or have no external ef-
fect (i.e. without modifiers) are eliminated during compilation and will
therefore not be computed at runtime.

Condition Reordering

The order of conditions in the Midas language can be changed without
affecting the semantics of the rule. As mentioned by Khandkar et al. [91],
the order of conditions can significantly affect the overall performance of
a Rete system. Our compiler exploits this fact by reordering conditions.
Concretely, tests construct filter combinations (i.e. tokens in the Rete
network) and therefore reduce the time and space complexity of the
computation. Tests should therefore be executed as soon as possible.
However, most tests rely on values that are bound by conditional elements
at runtime. To optimise performance, tests should be reordered as close
to the conditional element that binds the required arguments. Thanks
to unrolling, the granularity of the conditions that can be reordered is
quite refined. Note that this is similar to query optimisation techniques
as performed by database engines.

The condition reordering is performed using a stable sort. Therefore,
tests that require values from the same conditional element and conditional
elements without annotated input rate retain their order. This allows the
expert developer to stay in control of the optimisations.

5.5.4 Midas 1.0 Core Engine

The matching of facts to the conditional elements of rules is performed
by a modified CLIPS interpreter. This highly optimised single threaded
interpreter is written in C and uses a LISP-based syntax to define rules.
CLIPS was intended as an expert system shell based on production

5.6. Conclusion 173

rules and has been modified into a reactive multimodal core engine.
Details on the CLIPS language and implementation are discussed by
Giarratano et al. [57]. G. Riley actively maintains CLIPS and we cherry-
pick34 these upstream changes.

5.6 Conclusion

We presented Mudra, a unified multimodal interaction framework for
processing low-level data streams as well as high-level semantic inferences.
Our approach is centred on a fact base that is populated with multimodal
input data coming from various devices. Various recognition and mul-
timodal fusion algorithms can actively react to changes in the fact base
and enrich it with their own interpretation.

Mudra’s shared bus architecture and efficient interpretation of de-
clarative Midas rules blurs the distinction between data-, feature- and
decision-level fusion. This is made possible by three main ingredients:
an event broker, a template-local event expiration mechanism and an
efficient execution engine which uses the Rete algorithm.

Through the use of the Rete algorithm we are able to provide high-level
language abstractions that result in a form of implicit data flow program-
ming. In contrast to existing data-stream approaches, the chaining of
components is done in an automated fashion with much more express-
iveness to tackle partially overlapping matches, segmentation, online
gestures and many other criteria. With respect to a recent categorisation
of toolkits performed by Cuenca et al. [31], we position our work as a
token-based approach. However, unlike existing token-based solutions,
Midas does not require the developer to exhaustively list all potential
state transitions.

The Midas language is a fifth generation programming language, which
until now, were only supported by decision-level architectures. However,
with declarative rules and Rete we obtain high-level abstractions with the
ability to also process a large number of low-level events. Furthermore,
our language and execution engine are extensible because they enable
user-defined conditions on raw input events and they allow developers
to integrate existing publish/subscribe services. Finally, our declarative
language facilitates compiler-based optimisations and seamless support
for multi-core and many-core extensions [113,151].

34Git cherry-pick: http://git-scm.com/docs/git-cherry-pick

http://git-scm.com/docs/git-cherry-pick

174 Chapter 5. Mudra: A Unified Multimodal Interaction Architecture

The Mudra infrastructure supports a wide variety of data formats
and communication protocols, which makes the integration of existing
solutions quite simple. Added services can be coordinated using rules
to respond dynamically to changing needs at runtime based on various
patterns in the input data. Mudra provides several powerful features
which are not present in other architectures, including the ability to
process out-of-order events, to process non-subsequent events and to deal
with partial overlap and segmentation. The combination of Midas and
Mudra also forms an adequate target platform for authoring tools that
want to generate a high-level external representation.

In the next chapter, we argue that our presented solution improves
upon existing work according to various criteria. We also show how well
Midas and Mudra perform when applied to real-world scenarios.

6
Midas & Mudra at Work

In this chapter we evaluate our approach based on 30 criteria defined
in Chapter 2. Besides this argumentation-based assessment, we perform
an in-depth comparison between Midas and two state-of-the-art domain-
specific programming languages. Afterwards, we present a number of
demonstrators of Midas and Mudra in real-world settings. These demon-
strators were exhibited at international conferences, science education
centres and public events.

6.1 Midas and Mudra: A Qualitative Eval-
uation

In the following section we discuss the scores that are assigned for each
criterion within the four categories defined in Section 2.3: Language
Features, Multimodal Processing, Multimodal Specification and Access-
ibility and Tooling. Figure 6.1 provides an indicative classification of
Midas and Mudra in contrast to existing multimodal solutions, including
QuickSet [27, 74, 164], MIML [102], PATE [129], OpenInterface [103, 142],
Squidy [97], HephaisTK [39,40,42,43] and DynaMo [5,6] (Section 3.2).
The scores were rated on a scale from 0 (not supported) to 5 (fully sup-
ported). The classifications of existing approaches are visualised through
a box-and-whisker plot, and the classification of Midas and Mudra is
visualised on the same plot in a diamond shape.

175

176 Chapter 6. Midas & Mudra at Work

authoring support
debuggability

readability
user profiling

uncertainty
verification
prediction

prioritisation and toggling
identification and grouping

spatio−temporal specification
temporal specification

spatial specification
reliability and scalability

runtime definitions and device instantiation
portability, serialisation and embeddability

concurrent interaction
long−term reasoning

event expiration
synchronising streams

segmentation
partial overlapping matches

offline processing
online processing

unbound variables
activation policy

application symbiosis
negation

customisation
composition

modularisation

0 1 2 3 4 5

Figure 6.1: Indicative classification of Midas and Mudra (score visualised
as a diamond) in comparison to existing approaches (visualised as box
plot)

6.1.1 Language Features

In the next subsections we analyse the capabilities of the Midas multimodal
language based on the seven language criteria defined in Section 2.3.1. For
clarity, the score of our approach is listed in brackets for each criterion.

Modularisation (5) The first criterion of the language features is mod-
ularisation. As described in Section 2.3, modularisation focuses on the
separation of concerns and allows for a reduced effort when gradually
increasing the number of fusion processes. In Midas, each fusion process
can be described in a rule (Section 4.3.1), thereby supporting additional
fusion processes easily. Furthermore, developers can easily group func-
tionality into attempts (Section 4.2.2, functions 4.2.2 and modules 4.2.1).
The former language construct, namely an attempt, allows developers
to group several conditions into a single construct, which can be reused
by any rule. The second construct, a function, provides an abstraction

6.1. Midas and Mudra: A Qualitative Evaluation 177

for computation without side effects. These side-effect free computations
are typically used to calculate spatial or temporal distances. The latter
module construct, groups attempts, functions and slot definitions to offer
a specialised functionality in a dedicated bundle.

Composition (4) In Midas, multimodal interaction pattern descrip-
tions can be composed using high-level facts (Section 4.3.1), attempts
and computed facts (Section 4.3.1) as well as module inheritance (Sec-
tion 4.3.2). We argue that attempts solve a fundamental problem with
data entanglement found in existing approaches, which typically compose
descriptions by exchanging high-level events. Additionally, Midas provides
module inheritance which allows developers to easily embed functionality
in templates (Sections 4.2.1 and 4.3.2). This enables access to attempts
and functions through their relevant conditional element (Section 4.2.2).
Midas’ composition constructs and their use in rules are also verified at
compile time (Section 4.8).

Customisation and Extensibility (4) Adapting functionality in
Midas is relatively easy based on four features: (1) rules decouple the
order of conditions from the semantics of the multimodal description
and their temporal relation; (2) attempts allow parameters to solve the
specialisation problem (Section 4.3.1); (3) Templates include modules
to provide additional functionality and can be extended multiple times,
even across files, such that customised functionality can be grouped; (4)
conditional elements, attempts and functions are user-defined and can
be expressed in the Midas language without having to escape to the host
programming language.

Negation (5) In Midas, negated patterns can be of arbitrary complexity
and be nested (Section 4.3.4). Midas also supports the inexistence of
future events. However, this requires the manual addition of a wait

condition.

Application Symbiosis (4) Midas offers various ways to integrate
application state in the fusion engine (Section 4.3.5). It consists of
traditional constructs such as callbacks and topic-based publish/subscribe
APIs, but through the use of rules, content-based subscriptions are also
an option. However, the most refined integration of application state
is provided by shadow facts (Section 4.6.1). Shadow facts represent

178 Chapter 6. Midas & Mudra at Work

application objects in the fact base and can therefore be used to express
advanced conditions in terms of rules. Furthermore, the state of an
application object is automatically synchronised with its respective shadow
facts and visa-versa.

Activation Policy (2) To control the activation of multimodal rules,
Midas supports simple activation flags, including one-shot, shoot-and-
continue and hold (Section 4.6.3). Additionally, the activation of rules can
be programmed by manually bookkeeping facts as shown in Section 4.6.3.
Although bookkeeping facts can be used to express a refined activation
policy, they can become quite complex to manage.

Unbound Variables and Unification (5) Midas makes extensive use
of variables that are bound to runtime information. The most prominent
example is that slot values of a condition element are modelled as unbound
variables. Complex runtime variable bindings, such as new x = t1.x +

t2.x + 5.px, are supported as well. Explicitly unbound variables are
denoted with a question mark, which is similar to QuickSet [27] and
PATE [129] (Section 4.7). However, in our experience, explicitly unbound
variables have been a source for bugs (Section 4.7) while references to slots
provide compile-time feedback (Section 4.8). When two unbound variables
should be equal (i.e. p1.x == p2.x), unification is used (Section 4.7) and
is optimised by the underlying CLIPS [57] Rete [54] engine (Section 5.2.3).

6.1.2 Multimodal Processing

We use the eleven multimodal processing criteria defined in Section 2.3.2
to analyse the capabilities of the Mudra unified multimodal interaction
architecture.

Online Processing (4) Whenever conditions in a rule are satisfied,
consecutive modifiers are executed. By allowing arbitrary conditions with
a fine-grained specification, Midas and Mudra support online processing
and feedback (Section 5.3.1). To enable online user feedback, Midas
allows an alternation of conditions and modifiers inside a single rule
(Section 4.6.2). Additionally, intermediate progress notifications can be
enabled (Section 4.6.3).

6.1. Midas and Mudra: A Qualitative Evaluation 179

Offline Processing (4) Midas and Mudra provide abstractions and
architectural support to ease offline processing. For example, the recog-
nition of multi-touch gestures can be delayed until a finger lifts or even
until all fingers are removed from the surface. Additionally, the wait

construct allows for a relative time delay (Section 4.1.1) and the async

abstraction eases the offline verification process (Sections 4.5.3 and 4.5.4).

Partially Overlapping Matches (3) The Mudra engine inherently
supports partially overlapping matches and even optimises them through
the Rete algorithm (Section 5.3.3). Unfortunately, in contrast to ap-
proaches such as Proton [94,95], developers are not informed when condi-
tions overlap.

Segmentation (5) Segmentation is an important aspect of multimodal
fusion. However, existing multimodal frameworks have largely neglect
this concern (Section 3.2, Section 3.5 and Figure 6.1). The combination of
Midas and Mudra hides the accidental complexity of segmentation when
describing multimodal interaction patterns. For example, complex 2D and
3D gestures can be defined in rules with automated segmentation (Sec-
tion 4.4.6). Furthermore, Mudra supports non-subsequent event matching,
thereby automatically discarding noisy events during the segmentation
process (Section 5.3.4).

Synchronising Streams (5) Mudra provides a number of abstrac-
tions to synchronise multiple input streams. Firstly, temporal relations
can be expressed in Midas, which allows an arbitrary ordering of input
events (including out-of-order event input, Section 5.3.9). Secondly, these
temporal relations make use of a time slot value time stamped by the
input source, which discards accidental complexities with network latency
(Section 4.2.1). Thirdly, Mudra uses non-subsequent event matching to
discard excess events when fusing streams with different input frequencies
(Section 4.5.1). Fourthly, automated fact expiration is handled per tem-
plate, which preserves information for streams with a higher input latency
(Section 5.2.2). Lastly, cross-template event expiration can be described
in rules to manually synchronise expiration across streams (Section 4.5.1).

Event Expiration (3) Mudra provides a template-local relative time
expiration mechanism (Section 5.2.2). Additionally, events can be retrac-

180 Chapter 6. Midas & Mudra at Work

ted in Midas rules as well, which allows for complex pattern-based event
expiration (Section 4.5.1).

Long-Term Reasoning (3) Long-term reasoning can be obtained
in multiple ways as described in Section 5.3.5. This includes memory
(DRAM) and disk (hard drive) persistency with manual recall operators.

Concurrent Interaction (4) Mudra matches any combination of facts
to conditions specified in rules. Therefore, if two users perform the same
2D gesture at the same time, the rule will activate twice. To separate the
actions of multiple users, identity unification can be used (Section 4.4.5).

Portability, Serialisation and Embeddability (3) Mudra has been
ported to multiple platforms and architectures as shown in Section 5.3.7.
Furthermore, Mudra is able to interpret serialised data and programming
code in order to offload data to services and enable code mobility (Sec-
tions 4.5.2, 5.2.4 and 5.2.4). Mudra is embedded as a library or runs as a
background daemon (Section 5.3.7).

Runtime Definitions and Device Instantiation (4) Mudra sup-
ports the runtime addition of rules (Section 5.3.8), templates, devices and
services (Section 5.2.4).

Reliability and Scalability (4) Our architecture provides a number
reliability features, such as thread pooling, sandboxing and offloading to
external nodes. However, it does not have built-in support to limit the
frequency of an input stream. Additional efforts, such as PARTE [113,131]
and Cloud-PARTE [151], provide in-place alternatives for the core engine
and achieve promising results to provide soft real-time guarantees and
scalability up to 64 cores and 8 machines (Section 5.3.9).

6.1.3 Multimodal Disambiguation

In this section we assess the disambiguation criteria of Midas and Mudra.

Spatial Specification (5) Midas and Mudra support arbitrary com-
plex spatial specifications by leveraging user-defined attempts and func-
tions. This user-defined spatial functionality can, for example, express

6.1. Midas and Mudra: A Qualitative Evaluation 181

distance between humans and objects, as well as orientation and move-
ment in various “proxemic dimensions” [112]. Additionally, we provide
a number of built-in 2D and 3D spatial operators and custom units
(Section 4.4.1).

Temporal Specification (5) Midas and Mudra support arbitrary com-
plex temporal specifications by leveraging user-defined attempts and func-
tions. Additionally, we embed Allen’s temporal operators [1] and custom
units (Section 4.4.2) to bootstrap temporal specifications.

Spatio-temporal Specification (5) The spatio-temporal specifica-
tion and nesting of spatial and temporal operators is supported by the
framework (Sections 4.4.3 and 4.4.4).

Identification and Grouping (3) Instantiation-, unification- and
scope-based identity features can be used to identify and group facts
(Section 4.4.5). Additionally, Mudra matches all combinations such
that uncertain identification or grouping can be decided when adequate
information becomes available.

Prioritisation and Toggling (2) Midas offers rule-specific prioritisa-
tion and bookkeeping facts to enable prioritisation and toggling (Sec-
tion 4.6.3). However, advanced conflict resolution abstractions are not
provided.

Prediction (2) Future information can lead to a completely different
interpretation of the input data. In Midas, each conditional element
delays the decision process until a fact matches its description, thereby
allowing disambiguation based on future information. Additionally, Midas
provides a wait construct to wait for (non-)existence of future events
based on a timeout. However, predictions based on heuristics are not
supported by the current implementation of our framework.

Verification (3) Mudra embeds a number of classifiers to verify can-
didates. These are accessible through services (Section 4.5.2) and an
async language construct (Section 4.5.4). External services can also be
integrated to verify results (Sections 5.2.4 and 5.2.4).

182 Chapter 6. Midas & Mudra at Work

Uncertainty (1) When the validity of information is uncertain, facts
can be extended with a probability slot. However, it is up to the developers
to deal with this and define what it means to fuse two uncertain facts.

User Profiling (1) Midas and Mudra do not provide user profiling
tools. A persistency service to access and store historical data is supported
which allows developers to implement user profiling as an extension
(Section 5.2.4).

6.1.4 Accessibility and Tooling

In this final category we evaluate the accessibility and tooling criteria of
Midas and Mudra.

Readability (2) Kammer [84] measured a low readability of Midas 1.0.
Since that work, we focused on raising the level of abstraction and
readability of Midas. This gave rise to the flavour of Midas presented
in this dissertation (Midas 2.0) which is less syntax intensive compared
to Midas 1.0. However, Midas 2.0 and the Mudra architecture remain
powerful tools for experts on which authoring tools for end users can be
built.

Debuggability (1) Midas provides a number of compile-time guaran-
tees to prevent common accidental mistakes in multimodal descriptions
(Section 4.8). Additionally, input events can easily be stored on disk
such that they can be replayed for debugging or benchmarking purposes
without having to modify any rule (Section 4.3.7).

Authoring Support (3) Besides being a high-level multimodal pro-
gramming language, Midas positions itself as a representation language
for external tooling (Section 4.3.3). We demonstrated this capability
with two authoring tools, namely the automated inferencing and manual
refinement of control points (Section 5.4.1) and an authoring tool for
full-body gestures (Section 5.4.2).

6.1.5 Conclusion

As observed in Figure 6.1, Midas improves on state-of-the-art in mul-
tiple criteria, such as composition, customisation, application symbiosis,

6.2. Comparing Software Engineering Abstractions for Multimodal Interaction 183

unbound variables, segmentation, synchronising streams, concurrent inter-
action, spatial specification, temporal specification and spatio-temporal
specification. Cirelli et al. [26] recently performed a survey of multi-touch
frameworks and analysed Midas in a similar positive manner on 14 cri-
teria (see Appendix G for a comparison between our and their criteria).
However, certain criteria, such as activation prioritisation, prediction
and user profiling are still open for future work. In the next sections we
highlight Midas and Mudra at work by comparing them to two existing
high-level domain-specific programming languages and demonstrating
several real-world applications.

6.2 Comparing Software Engineering Ab-
stractions for Multimodal Interaction

We perform an in-depth comparison between Midas and a representat-
ive gesture language (Proton) and decision-level multimodal language
(SMUIML).

6.2.1 Comparing the Data-Level Language Abstrac-

tions of Midas and Proton

In Section 3.3.1 we observed nine concerns with respect to the declarative
implementation of two fingers moving towards each other using Proton [94]
code (Listing 3.5, duplicated here as Listing 6.1). In this section we reflect
on these concerns using a Midas implementation.

Listing 6.1: A Proton implementation of two fingers moving towards each
other

1 DL:O
1 ML:O

1 ∗DR:O
2 (ML:O

1 |MR:O
2)∗

2 (ML:E
1 (ML:E

1 |MR:O
2) ∗MR:W

2 MR:W
2 (ML:O

1 |MR:W
2) ∗ML:E

1)

3 (M
L:O|E
1 |MR:O|W

2) ∗ (U
L:O|E
1 M

R:O|W
2 ∗ UR:O|W

2 |UR:O|W
2 M

L:O|E
1 ∗ UL:O|E

1)

The Midas implementation of the Proton abstractions is presented in
Listing 6.2. These abstractions allow us to define the gesture in a few
lines of code as shown in Listing 6.3.

184 Chapter 6. Midas & Mudra at Work

Listing 6.2: A Midas implementation of Proton’s built-in features
1 module SplitScreen
2 attempt leftSide
3 moveRight.x begin < 0.5.display x # On the left side of the surface
4 end
5 attempt rightSide
6 no { leftSide }
7 end
8 end
9 module UpDown

10 attempt downBeforeF(f)
11 u = Touch2D { finger == f.finger && state == Touch2D.DOWN }
12 u←beforeF f
13 end
14 attempt upAfterF(f)
15 u = Touch2D { finger == f.finger && state == Touch2D.UP }
16 u←afterF f
17 end
18 end
19 module Touch2DSpatioTemporal
20 include Space2DInterval, TimeInterval
21 include SplitScreen
22 finger
23 attempt self←boundingBox(x diff, y diff)
24 no {
25 n = Touch2D
26 n.finger == finger
27 n←after time begin
28 n←before time end
29 x begin < n.x
30 x end > n.x
31 y begin < n.y
32 y end > n.y }
33 end
34 attempt self←eastStroke(min x)
35 movingTouchStroke min x, min x ∗ 2, -3.px, 3.px
36 end
37 attempt self←westStroke(min x)
38 movingTouchStroke -min x, -min x ∗ 2, -3.px, 3.px
39 end
40 attempt self←movingTouchStroke(min x, max x, min y, max y)
41 t1 = Touch2D { state == Touch2D.DOWN }
42 t2 = Touch2D { state == Touch2D.UP && finger == t1.finger }
43 t1←beforeF t2
44 t2.x > t1.x + min x
45 t2.x < t1.x + max x
46 t2.y > t1.y + min y
47 t2.y < t1.y + max y
48 st = { time begin ⇒ t1.time, time end ⇒ t2.time,
49 x begin ⇒ t1.x, x end ⇒ t2.x,
50 y begin ⇒ t1.y, y end ⇒ t2.y } with [Touch2DSpatioTemporal]
51 st←boundingBox 10.px, 5.px
52 return st
53 end
54 end

6.2. Comparing Software Engineering Abstractions for Multimodal Interaction 185

Listing 6.3: A Midas implementation of two fingers moving towards each
other

1 rule towards
2 e = Touch2DSpatioTemporal←eastStroke 10.px
3 w = Touch2DSpatioTemporal←westStroke 10.px
4 e←equalF w, 500.ms
5 e←leftSide
6 w←rightSide
7 e←align beginF w, 30.px, 5.px
8 end

In the following enumeration, we discuss Midas’ solution to nine
concerns raised in Section 3.3.1.

1. The excessive repetition of attributes in the superscript (E) and the
numbers in the subscript (1) is abstracted in Midas by bundling each
stroke (line 2 in Listing 6.3) in an attempt (line 34 in Listing 6.2).
Additionally, unification is used to group events from a particular
finger through the finger slot (line 42 in Listing 6.2). Therefore,
Midas provides better support for modularisation and composition.

2. Midas enables the concurrent execution of other gestures by relying
on unbound variables and unification instead of static numbers to
group events from one or more fingers (lines 42 and 26 in Listing 6.2).

3. In Midas, the order of conditions does not dictate the sequence of
events. Additionally, the flexibility of temporal operators allows
either finger to touch the surface first. They are aligned in time
with an approximate interval defined by line 4 in Listing 6.3.

4. The spatial specification in Midas caters a parametric customisation.
Line 2 in Listing 6.3 defines a spatial interval of 10 pixels which
is specific for this gesture. Proton does not provide abstractions
to refine a spatial specification of a gesture. Additionally, curvy
gestures can be expressed in Midas using the control points design
pattern (Section 4.4.6).

5. Midas allows an arbitrary mix of spatio-temporal operators such
that, for instance, cardinal direction can be calculated over a large
time window. This is in contrast to Proton where cardinal directions
are calculated per frame. Additionally, Midas’ non-subsequent event
matching filters noisy events which would cause false negatives in
Proton.

186 Chapter 6. Midas & Mudra at Work

6. Proton uses preprocessors to transform event input into cardinal
directions. However, these are global for all gestures and are unaware
of additional gesture-specific constraints. To extend Proton with a
pinch feature that specifies that no more than three fingers should
touch the screen, a new attribute needs to be added to the interpreter.
In contrast to this, Mudra uses rules to group conditions. Therefore,
additional conditions to existing rules can be appended to refine the
gesture implementation. Additionally, Mudra enables the concurrent
interaction of multiple fingers by default. Thus, the implementation
given in Listing 6.3 already supports multiple groups of fingers
moving towards each other. To specify that this gesture should only
activate when no other fingers touch the surface, negation can be
used.

7. We encourage the development of primitive features within the
Midas programming language. Midas hides several accidental com-
plexities, such as segmentation and partially overlapping matching
and allows developers to customise and extend existing definitions.
Additionally, modules bundle concern-specific features and resolve
the problem of conflicting names of functions or attempts when the
codebase grows.

8. Our approach is able to replicate Proton’s split screen behaviour
without relying on interpreter extensions, as shown in Listing 6.2
(lines 1 to 8) and used in lines 5 and 6 in Listing 6.3. Additionally,
Midas supports an advanced application symbiosis to group gestures
based on the state of the application or surrounding GUI objects.
Furthermore, relative spatial boundaries can also be used to group
gestures to local regions, as defined on line 7. Line 7 also refines
the gesture such that two fingers should be located near each other,
whereas in the Proton definition, a finger moving to the east at the
top of the surface and a finger moving to the west at the bottom of
the surface would also activate the gesture.

9. Midas code is Unicode-based (UTF-8 [165]) and can therefore be
edited with mainstream text editors.

To conclude, we solve a number of major issues observed in the code
presented by Kin et al. [94]. Besides these issues, our approach also scales
outside the domain of multi-touch gesture recognition, thereby supporting
data-level fusion tasks of other modalities. In the next section we compare

6.2. Comparing Software Engineering Abstractions for Multimodal Interaction 187

Midas to SMUIML [38], a state-of-the-art decision-level multimodal fusion
language.

6.2.2 Comparing the Decision-Level Language Ab-

stractions of Midas and SMUIML

HephaisTK [38, 39] offers a high-level Synchronized Multimodal User
Interfaces Markup Language (SMUIML) to define decision-level fusion.
In Listing 6.4, the general description of the SMUIML language is out-
lined. It consists of four main sections. The first section, labelled as
<recognizers> (lines 4 to 6), is used to bind input modalities to external
recognisers. This is similar to our approach, as defined in Section 4.5.2.
However, HephaisTK declares this binding in a static manner and thereby
does not support the dynamic creation of recognisers at runtime. The
following <triggers> and <actions> sections are used to specify and
convert data formats from input modalities. The final <dialog> sec-
tion defines the multimodal state transitions. Each state is defined by
<context> elements mapping triggers to transitions.

Listing 6.4: A generic SMUIML description
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <smuiml>
3 <integration description client=”client app”>
4 <recognizers>
5 <!−− Bind a modality to a recogniser −−>
6 </recognizers>
7 <triggers>
8 <!−− Groups information from recognisers −−>
9 </triggers>

10 <actions>
11 <!−− Group information for applications −−>
12 </actions>
13 <dialog>
14 <!−− Define multimodal state transitions −−>
15 </dialog>
16 </integration description>
17 <smuiml>

Listing 6.5 provides a concrete SMUIML implementation used in a
multimodal paint application [38]. The full implementation is provided in
Appendix H.1. We use this example to compare the SMUIML decision-
level fusion abstractions to our own unified solution.

The first three sections of SMUIML (<recognizers>, <triggers>
and <actions>) can be defined in a similar way by means of attempts and
functions in Midas (Listing 6.6). For example, the trigger tools one hand

188 Chapter 6. Midas & Mudra at Work

on lines 23 to 25 in Listing 6.5 can be translated to lines 12 to 14 in
Listing 6.6. SMUIML converts input data into a format compatible with
existing recognisers, as shown on lines 6 to 9 in Listing 6.5. This is
supported in Midas as well, as shown on lines 1 to 4 in Listing 6.6.

The fourth section of SMUIML (<dialog>) represents the dialogue
management capabilities of HephaisTK. In this section, a number of
conditions are enumerated and bound by a single temporal relation
(lines 44 to 53 in Listing 6.5). SMUIML supports four temporal relations,
designed to enable three out of four CARE properties [38]. The fourth
CARE property, assignment, is not supported in HephaisTK due to the
lack of support for negation. Midas provides negation and can therefore
express the assignment property of CARE. A final feature of the <dialog>
section is the ability to manage different contexts. Line 35 in Listing 6.5
defines the start context and when a state transfers, the context is modified
as illustrated on line 39. In Midas, contextual information can be handled
by relying on an application symbiosis (Section 4.3.5) or by manually
bookkeeping facts (Section 4.6.3). In Listing 6.6, we opted for bookkeeping
facts to keep the implementation as close as possible to the original
multimodal description in SMUIML. As observed on lines 16 and 18 in
Listing 6.6, contexts and transitions between contexts can be expressed
in Midas. In Listing 40 (Appendix H), we provide an implementation
of the SMUIML example using application symbiosis. We prefer this
second implementation because it automatically synchronises context
state between the multimodal descriptions and the application. Without
this automated synchronisation, code to manage context is replicated and
therefore becomes prone to errors.

With this analysis we conclude that the abstractions in Midas super-
sede the SMUIML abstractions and are therefore adequate to express
advanced decision-level fusion.

Listing 6.5: A SMUIML implementation of a multimodal paint application
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <smuiml>
3 <integration description client=”xpaint client”>
4 <recognizers>
5 (...)
6 <recognizer name=”reactivision” modality=”reactivision”>
7 <variable name=”posx” value=”xpos”/>
8 (...)
9 </recognizer>

10 <recognizer name=”phidgetrfid” modality=”rfid”>
11 (...)
12 <translate value from=”2342111” to=”filled circle”/>
13 (...)

6.2. Comparing Software Engineering Abstractions for Multimodal Interaction 189

14 </recognizer>
15 (...)
16 </recognizers>
17 <triggers>
18 (...)
19 <trigger name=”begin draw”>
20 <source modality=”speech” value=”begin draw”/>
21 </trigger>
22 (...)
23 <trigger name=”tools one hand”>
24 <source modality=”rfid” value=”select | line | freehand”/>
25 </trigger>
26 (...)
27 </triggers>
28 <actions>
29 <action name=”draw operation”>
30 <target name=”xpaint client” message=”draw $oper $shape $posx $posy”/>
31 </action>
32 (...)
33 </actions>
34 <dialog leadtime=”2100”>
35 <context name=”start”>
36 (...)
37 <transition>
38 <trigger name=”begin draw”/>
39 <result context=”drawing”/>
40 </transition>
41 (...)
42 </context>
43 <context name=”drawing”>
44 <transition name=”drawing one hand”>
45 <par and>
46 <!−− others : par or, seq and, seq or −−>
47 <trigger name=”tools one hand”/>
48 <trigger name=”color”/>
49 <trigger name=”thickness”/>
50 <trigger name=”position”/>
51 </par and>
52 <result action=”draw operation”/>
53 </transition>
54 (...)
55 </context>
56 (...)
57 </dialog>
58 </integration description>
59 </smuiml>

190 Chapter 6. Midas & Mudra at Work

Listing 6.6: A Midas translation of the multimodal paint application
1 rule translateReactivision
2 r = Reactivision
3 assert Touch { source ⇒ ”reactivision”, xpos ⇒ r.posx, ypos ⇒ r.posy, fudicial ⇒ r.sourceId }
4 end
5 rule translatePhidgetRFID
6 r = PhidgetRFID { value == ”2342111” }
7 assert RFID { source ⇒ ”phidgets”, value ⇒ ”filled circle” }
8 end
9 attempt beginDraw

10 Speech { word == ”begin draw” }
11 end
12 attempt toolsOneHand
13 RFID { value == ”select” || value == ”line” || value == ”freehand” }
14 end
15 rule start
16 c = Context { context == ”start” }
17 beginDraw
18 modify c { context ⇒ ”drawing” }
19 end
20 rule drawingOneHand
21 c = Context { context == ”drawing” }
22 t = toolsOneHand
23 cl = color
24 t = thickness
25 p = position
26 Time←equal4 t, cl, t, p, 2100.ms
27 call XPaintClient.draw t.operation, t.shape, p.fudicial
28 end

6.3 Case Study #1: The Kinect Presenter

The first incarnation of Midas [141] has been presented at the Fifth Inter-
national Conference on Tangible, Embedded and Embodied Interaction
(TEI 2011). On stage, our presentation was driven by gestures captured
by a Microsoft Kinect sensor. At the time, the Kinect was just released
for early adopters and our abstractions allowed for a rapid prototyping
of five hand gestures within this narrow time frame. We implemented a
double swipe left, double swipe right, two-handed swipe left, two-handed
swipe right and a number gesture. Figure 6.2 illustrates the double swipe
gesture with the right hand. This gesture was used to advance to the
next slide, while a double swipe gesture with the left hand switches to
the previous slide. A double swipe was used to reduce accidental activ-
ation (false positives) as the hands are moving frequently in a similar
way while presenting. Additionally, a spatial relation describes that the
gesture can only be activated when the hand is below the waist in order

6.4. Case Study #2: Live Gesture Programming Session 191

Figure 6.2: Double swipe right Figure 6.3: Swipe is blocked when
hands are above the waist

to further reduce false positives (Figure 6.3). The two-handed swipe left
and two-handed swipe right gestures were used to move to the beginning
and end of the presentation. Finally the two stroke Wave and Number
gesture illustrated in Figure 6.4 allows the user to switch to a particular
slide number. The implementation of this number gesture is given in
Listing 6.7. The definition of this gesture relied on a wave rule and on
the $1 recogniser with peak thresholding (Section 4.4.1) to recognise a
number. We received positive and encouraging comments and questions
by driving the Midas presentation with our kinect presenter application.

Listing 6.7: Wave and number gesture
1 rule showSlide
2 wave = Wave
3 nr = Number { joint == wave.joint }
4 wave←beforeF nr
5 call PowerPoint.showSlide(nr.number)
6 end

6.4 Case Study #2: Live Gesture Pro-
gramming Session

At TEI 2011, we presented Midas during the demo session in order
to demonstrate its rapid prototyping capabilities. During this session,
different multi-touch gestures were spontaneously proposed by conference
participants. The goal was to implement these gestures within a few

192 Chapter 6. Midas & Mudra at Work

Figure 6.4: Wave followed by a number gesture

minutes. One of the proposals was the ‘Ohm’ gesture outlined in Figure 6.5.
The implementation of this gesture is provided in Listing 6.8. The first
step to implement a new gesture is to analyse the characteristics of the
movement. In this example, the gesture consists of three strokes: two taps
and one curvy movement. Taps had already been implemented before the
start of the demo session and therefore we could simply reuse parts for our
new gesture to significantly speed up the development process. The curvy
movement was sampled five times such that new data could be matched
using the DTW algorithm (Section 5.2.4). Complex segmentation was
unnecessary as the curvy movement was performed as a single stroke
(i.e. the touch down and up events serve as begin and end points). The
composition of the ‘Ohm’ gesture outlined in Listing 6.8 specifies a spatial
relation of the two taps to capture the intended execution. It is important
to stress that the time interval definition used in this example does not
enforce a particular order on the gestures (lines 5 and 6). A few minutes
later, the conference participant who proposed the gesture was able to
successfully activate the gesture. We note that the participant performed
the gesture at a much slower rate than the recorded samples. However
thanks to the intrinsic time-varying properties of DTW and the flexible
temporal operators in Midas, this was not an issue

Figure 6.5: ‘Ohm’ gesture sketch

6.4. Case Study #2: Live Gesture Programming Session 193

Listing 6.8: Hybrid ‘Ohm’ gesture
1 rule ohmGesture
2 curl = HorizontalCurl
3 dot1 = Tap
4 dot2 = Tap
5 curl←equalF dot1, 3.s
6 curl←equalF dot2, 3.s
7 curl←relative insideF dot1, 1/3, 1.5
8 curl←relative insideF dot2, 2/3, 1.5
9 assert Ohm { time begin ⇒ curl.time, time end ⇒ Math.max(dot1.time, dot2.time) }

10 end

A second proposed gesture was the Japanese symbol shown in Fig-
ure 6.6. This symbol consists of a single stroke with a lot of spatial
movement, therefore it is a candidate to be recognised by the DTW
algorithm. After 30 seconds, the participant was successfully able to
trigger the gesture, although the threshold was set too strict for the first
couple of times.

Figure 6.6: Japanese symbol

We illustrate a last multi-touch example proposed by an attendee
of the TEI 2011 demo session. The gesture is illustrated in Figure 6.7
and consists of three curvy vertical lines. The three lines are performed
concurrently using three fingers. Five samples were taken for a single
line and their composition is handled via the rule shown in Listing 6.9.
The rule consists of three CurvyVerticalLine facts, each performed by
a different finger. These three conditional elements must happen within
a time window of 500 milliseconds. A spatial operator is used to ensure
they are performed close to each other.

Figure 6.7: Three curvy vertical lines symbol

194 Chapter 6. Midas & Mudra at Work

Listing 6.9: Three curvy vertical lines
1 rule threeCurvyVerticalLines
2 line1 = CurvyVerticalLine
3 line2 = CurvyVerticalLine
4 line3 = CurvyVerticalLine
5 line1←near leftF line2, 30.px
6 line2←near leftF line3, 30.px
7 Time←starts3F line1, line2, line3, 500.ms
8 assert ThreeCurvyVerticalLines { time begin ⇒ line1.time begin, time end ⇒ line1.time end }
9 end

6.5 Case Study #3: Declarative Gesture
Spotting

Our declarative 2D and 3D gesture spotting approach offers a comprehens-
ible representation of automatically inferred spatio-temporal conditions.
These conditions can be defined between characteristic control points
which are automatically inferred from a single gesture sample. In contrast
to existing solutions which are typically constrained to narrow time win-
dows, our gesture spotting approach offers automated reasoning over a
complete motion trajectory. Last but not least, we offer gesture developers
full control over the gesture spotting task and enable them to refine the
spotting process without major programming efforts. This evaluation and
the following description have been published at ICPRAM 2013 [66].

In order to evaluate our gesture spotting approach, we used the
experimental data set by Wobbrock et al. [162] consisting of 16 unistroke
gestures and a total of 1760 gesture samples which have been captured by
10 subjects on a pen-based HP Pocket PC. While the data set consists of
segmented unistroke samples, we concatenated the data with additional
noise (5%) to simulate a single stream of continuous two-dimensional data
input. Unfortunately, datasets containing 2D gestures in a continuous
streams of data are not available or are not widely used. Therefore,
these results cannot be directly compared to related approaches. However
related evaluations, such as performed by Amstutz et al. [3] are using a
continuous stream of accelerometer data and demonstrate an average recall
rate of 79% with a precision of 93%. This indicates our approach is useful
for segmenting continuous streams of data which can later be verified
using traditional classification algorithms as described in Section 4.5.4.

For each of the 16 gestures, we used a single representative sample
to infer the control points. Table 6.1 highlights the performance of our

6.5. Case Study #3: Declarative Gesture Spotting 195

Figure 6.8: Unistroke gestures part of the $1 data set

gesture spotting approach with 4 to 6 control points per gesture and a
sliding window of 160 events. The default spatial variance of the control
points is represented by the radius (r). The results in Table 6.1 consist of
the recall (RC) as well as the precision (PR). Columns RC-E and PR-E
represent the recall and precision of spotted gestures after applying expert
knowledge. This involves manipulating conditions of control points and
the addition of negation to invalidate certain trajectories.

r RC (%) PR (%) RC-E (%) PR-E (%)
22 77.50 52.10 78.75 56.50
24 83.13 47.16 84.38 52.53
26 90.63 42.40 91.25 46.79
28 93.75 39.47 94.38 43.26
30 97.50 35.37 97.50 39.29
32 98.75 32.78 98.75 36.41

Table 6.1: Declarative gesture spotting performance

As we can observe in Table 6.1, the automatically inferred control
points per gesture allow for a high recall. The few non-spotted gestures
originate from differences in the angle in which they were performed,
which is a current limitation of our approach. However, in the near future,
we plan to investigate methods to incorporate rotation invariant features.
Note that our approach reasons over the complete trajectory, while still
being able to process more than 400 times faster than real time for 60 Hz
input and a gesture set consisting of 16 different two-dimensional gestures.

196 Chapter 6. Midas & Mudra at Work

The relatively high number of wrongly spotted gestures is caused by
the fact that several gestures, such as the left curly bracket and right
curly bracket are similar to spot as the left square bracket and right
square bracket. Additionally, the check gesture is frequently found as
a partial match of other gestures. However, we argue that a gesture
spotting solution should be optimised for a high recall since the filtering
of submatches can be done at the classification level.

To demonstrate the power of expert refinements, we modified the right
curly bracket rule to prevent points between the first and final control point
to be too far off to the left and did some other small refinements for other
gestures. These minor changes to the model took only a few minutes but
resulted in an increase of the precision (PR-E) without reducing the recall
(RC-E). In a broader context, such as full-body gesture recognition where
multiple concurrent trajectories are to be processed, the expression of
additional conditions is of major importance for reducing invalid spottings
and to improve the performance.

Our control point-based gesture spotting approach automatically
matches a combination of events adhering to the defined constrained
trajectory at spotting time without any lossy preprocessing steps. It
further provides a number of powerful features described in the previous
chapters, such as offering an external representation 5.4.3, matching non-
subsequent events (Section 5.3.4) and dealing with partial overlapping
(Section 5.3.3).

6.6 Case Study #4: Augmented Live
Music Performance

Nowadays many music artists rely on visualisations and light shows to
enhance and augment their live performances. However, the visualisation
and triggering of lights in popular music concerts is normally scripted in
advance and synchronised with the music, limiting the artist’s freedom
for improvisation, expression and ad-hoc adaptation of their show. We
argue that these limitations can be addressed by combining emerging
non-invasive tracking technologies with an advanced gesture recognition
engine. This application and the following description have been published
at NIME 2013 [67].

In this section, we present a solution that uses explicit gestures and
implicit dance moves to control the visual augmentation of a live music
performance. We further illustrate how our framework addresses limit-

6.6. Case Study #4: Augmented Live Music Performance 197

ations of existing gesture classification systems by providing a precise
recognition solution based on a single gesture sample in combination with
expert knowledge. The presented approach enables more dynamic and
spontaneous performances and—in combination with indirect augmented
reality—leads to a more intense interaction between artist and audience.
Our goal was to address the limited interactivity and possibility for spon-
taneous adaptations and changes in live performances. The artists should
be given more possibilities to interact with and influence the audience
without the fixed scripted behaviour of visualisations. We argue that
through the use of innovative non-invasive technologies, such as depth
sensors, artists have a mean to perform expressive gesture control by
using their body.

The use of our gesture-based indirect augmented reality solution
during three live performances of the band Mental Nomad is shown in
Figures 6.10, 6.11 and 6.12. The mix between continuous augmented
reality and discrete activations of the visualisation layers provides an
interesting view on the two large screens that have been installed at the
sides of the stage as illustrated in Figure 6.9. The Kinect sensor was
positioned at the front of the runway and the optimal tracking area was
labelled on the ground as an aid for the artists. All Kinect skeleton data
was transmitted through OSC to a backstage laptop connected to the two
large screens. In total, five key gestures (G1 to G5) were used to activate
different visualisation stages.

Large
screen

Audience

Kinect area Kinect camera

Stage

Large
screen

Figure 6.9: Stage configuration

198 Chapter 6. Midas & Mudra at Work

Figure 6.10: Live performance (after gesture G3)

Figure 6.11: Live performance (gesture G4)

6.6.1 Constraints

The input stream contains a lot of non-relevant movement and the recog-
niser has to process this information in real time. Additionally, we did
not have access to all the dance moves due to the minimal time budget
for this part of the entire show. This constraint is problematic for many
learning-based gesture recognition approaches since the system needs to
“learn” both gestures as well as non-gestures [96]. In the discussed setup
where explicit gestures and implicit dance moves are used to control the
augmentation process, non-gestural movements form the norm rather than
the exception. The artists requested us to trigger specific visualisations
when a number of key moves are performed. Since a single song takes
about four minutes and multiple artists are dancing in a more or less

6.6. Case Study #4: Augmented Live Music Performance 199

Figure 6.12: Live performance (gesture G5)

controlled sequence, the key movements take up less than 5% of the
overall time. Furthermore, the sequence was not known and variations
are common due to the influence of the audience. To summarise, the
presented scenario resulted in the following constraints:

One-shot gesture sampling Due to time constraints, we were unable
to perform an iterative evaluation of the system together with the
artists. Hence, single samples of the five key gestures were recorded
and no garbage data was available to train a classifier with negative
examples.

No garbage data The artist’s choreography is scripted in a flexible
manner. The robustness in the case of unscripted and uncommon
moves was a requirement put up front by the artists. The lack of
full-body data for the entire choreography complicates the creation
of an idle state and the evaluation phase.

High precision The use of expressive control for a couple of key move-
ments asks for a high precision. The system should not trigger
its actions unintentionally as this would break the flow of the live
performance.

High recall On the other hand, a high recall should be obtained in order
to ensure that the actions are triggered when a key movement is
performed. Imagine an artist performing a special jump and no
visual feedback is delivered. The required nearly perfect precision
and recall complicates the task and because of the limited recorded

200 Chapter 6. Midas & Mudra at Work

data, the use of expert knowledge and reasoning over a larger time
period seems appropriate.

Real-time processing Any activation that is based on expressive move-
ments should happen nearly instantaneously and we should be able
to process the data as it enters the system.

Non-invasive sensor technology It was requested that the technology
should be non-invasive. The embedding of sensors in clothes was
not an option due to the indoor scene which implies lightweight
shirts and sweating which might negatively affect the sensors. We
requested that the movements should be executed in an area of
5m2. This allows a single Microsoft Kinect sensor to easily track
the artist performing the moves.

Multiple users In our scenario, four artists were moving on stage but
requested to be ignored in the dedicated camera area. As it was
risky to perform the recognition process on the first artist entering
the dedicated area at the beginning of the song, we decided to
enable a multi-user gesture recognition process that allows multiple
artists to trigger the actions.

6.6.2 Expressive Control

We present several guidelines on how an augmented reality system can be
implemented, specifically paying attention to the constraints introduced
in the previous section. There are two main parts of the application: the
input side with the corresponding real-time input stream processing and
the output side which takes care of the visualisation. The initial output
modality idea consisted of a virtual avatar which was directly controlled
by one of the artists. Key gestures would trigger additional visualisation
elements such as fire or electricity. However, this has relatively fast
been perceived infeasible due to the fact that many moves, such as a
360 degree rotation, cannot be tracked very accurately by the Microsoft
Kinect SDK1. Furthermore, existing avatar models did not fit well with
the overall visualisation concept. An alternative solution is indirect
augmented reality, where a live video feed of the artist is overlaid with
certain visualisation elements which are triggered by gestures. This allows

1Microsoft Kinect SDK: http://www.microsoft.com/en-us/kinectforwindows/develop/

overview.aspx

http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx

6.6. Case Study #4: Augmented Live Music Performance 201

us to deal with some of the inaccuracies of the Microsoft Kinect SDK
without noticeable visual artefacts.

Expressive control through non-invasive technologies creates the oppor-
tunity to enable specific visualisations as commanded by the artist. The
five gestures G1 to G5 which were used to trigger the indirect augmented
reality are highlighted in Figure 6.13 to Figure 6.17 as a sequence of
postures. Dealing with multiple postures over time is crucial when only
a very few samples are available. The reason for this is to optimise the
precision as gestures should not be unintentionally triggered. Without
time information, the artist might trigger several end postures while dan-
cing, taunting the audience or even trigger the change in augmentation
if the Microsoft Kinect SDK incorrectly tracks the user. Additionally,
when incorporating full-body gesture recognition, we do not prohibit the
artist from executing other similar moves. By defining a precise body
movement sequence to which the user must adhere in order to trigger the
intended actions, we can optimise the system’s recall and precision.

The interpretation of full-body movements over time requires advanced
software engineering features. To achieve the necessary segmentation in
gesture recognition, we relied on control points and used three-dimensional
ellipsoids as the basic form. This solution generates declarative code from
a single sample and allows expert users to further refine the gesture
definition to achieve the necessary precision requested by the artist.

Figure 6.13: Gesture G1

Listings 6.10 and 6.11 show a partial implementation of gesture G1
which has been introduced earlier in Figure 6.13. A couple of control points
per posture of a gesture and relationships of joints relatively to other joints
in space, are defined in Listing 6.10. The conditional elements require that
there should be a relative joint from the torso (parent) to the left foot (child)
that meets a number of conditions. Several spatio-temporal operators
are provided as built-in functionality but can be extended with custom

202 Chapter 6. Midas & Mudra at Work

Figure 6.14: Gesture G2

Figure 6.15: Gesture G3

conditions. A developer further adjusts the gesture definition according
to specialisation or flexibility requirements. For each control point such a
definition has to be created, whereby user-defined operators can help in
dealing with distance, angles or other spatio-temporal properties.

Listing 6.10: Control points for gesture G1
1 rule controlPoint3LeftFoot0
2 r = RelativeJoint { parent == Joint.TORSO && child == Joint.FOOT LEFT }
3 r←enterEllipsoid -0.1425, -1.6867, 0.1372,
4 0.6216, 1.5064, 0.6314, 0, 0, 6.1897
5 assert Ellipsoid { name ⇒ ”g1FootL0”, user ⇒ r.user, time ⇒ r.time }
6 end
7
8 rule controlPoint1RightHand1
9 r = RelativeJoint { parent == Joint.SHOULDER RIGHT && child == Joint.HAND RIGHT }

10 r←enterEllipsoid 0.1529, -1.1261, 0.0352,
11 0.4534, 1.6957, 0.3887, 0, 0, 0.1501
12 assert Ellipsoid { name ⇒ ”g1HandR1”, user ⇒ r.user, time ⇒ r.time }
13 end
14 . . .

In the definition of gesture G1 shown in Listing 6.11, control points
are combined to form a complex gesture. Notice how all feet (torso-foot
relative joint) and arms (shoulder-hand relative joint) are important in

6.6. Case Study #4: Augmented Live Music Performance 203

Figure 6.16: Gesture G4

Figure 6.17: Gesture G5

this movement (lines 3 to 9), even though the left arm remains steady
(Figure 6.13). For this gesture, the steady arm contains a lot of valuable
information as we optimise for a precise gesture definition to give the
artist the freedom to perform other, but similar movements that should
not activate the gesture definition. Lines 7 to 9 describe the movement of
the arm in three phases which could even be extended if higher precision
is required.

By relying on a declarative language, we can easily manually refine
various details without having to capture additional sample data. For
instance, the angle of the arm in the end move could be less strict
and the movement of the left leg can be used to optimise the precision.
Additional control points can be added to make the gesture sequence
stricter, including those based on other joints can be incorporated to
refine the definition. The further we go back in time, the more precisely
a gesture can be defined. However, this forces the user to perform the
gesture in the same exact sequence.

204 Chapter 6. Midas & Mudra at Work

Listing 6.11: Gesture G1: pointing up
1 rule pointingUp
2 group user
3 e1 = Ellipsoid { name == ”g1FootL0” }
4 e2 = Ellipsoid { name == ”g1FootL4” }
5 e3 = Ellipsoid { name == ”g1FootR5” }
6 e4 = Ellipsoid { name == ”g1HandL6” }
7 e5 = Ellipsoid { name == ”g1HandR1” }
8 e6 = Ellipsoid { name == ”g1HandR2” }
9 e7 = Ellipsoid { name == ”g1HandR3” }

10 e1←meetsF e2, 3.s
11 e1←meetsF e5, 1.s
12 e5←meetsF e6, 3.s
13 e6←meetsF e7, 1.s
14 e3←containsF e5, e7
15 e4←containsF e5, e7
16 assert PointingUp { user ⇒ e1.user,
17 time begin ⇒ e1.time, time end ⇒ e7.time }
18 end

Furthermore, the declarative gesture definition enables an easy ex-
planation to the artist on how a gesture is implemented and to what
constraints their movements have to adhere. We do neither require extens-
ive training data to implement new gestures, nor other non-gesture data.
The Mudra recognition engine is able to process continuous full-body
movements of multiple users over a period of time (i.e. related to online
processing, segmentation and concurrent interaction criteria defined in
Chapter 2). Furthermore, it allows precise detection (i.e. reducing false
positives) and also results in a high recall. In this application, gestures
occur in a fixed sequence which means that the activation of gestures can
be further refined by adding a previous gesture activation as a conditional
element (i.e. demonstrating customisation and extensibility).

In a declarative language, unification can be used to group certain
entities. In this case, by using a single unbound variable for conditional
elements on the user field, we automatically enable support for multiple
users. The user identifier that triggers the gesture will be passed to the
final application (line 16), such that the correct user will be augmented
with the appropriate visual elements (i.e. related to identification and
grouping).

Barry et al. [10] mention the “trade-off between recognition quality and
the delay of the real-time recognition” as one element of future work. By
using a declarative gesture spotting language, gestures can be recognised
precisely and in real time. It does not require a preprocessing step
that splits up the continuous stream into possible gesture candidates,

6.7. Case Study #5: Hand Grip Assessment for Effort Discounting Tasks 205

but rather computes the incremental gesture by using the efficient Rete
algorithm.

6.6.3 Discussion and Conclusion

We are happy to report that the artists were extremely satisfied with
the accuracy of the system and the added value it produced in terms of
an excited audience and more flexibility for improvisation. Indeed, the
reception from the audience was intense, partly due to the augmented
reality stream, but mainly also due to the matching visual overlays that
gradually increased during the song. We also received comments from the
audience that the visualisations were extremely accurate and synchronised
with the performed choreography. The combination of Midas and Mudra
performed flawlessly without any false positives or missed gestures during
all three live performances that took place in 2012 with an audience of
about 1500 people.

6.7 Case Study #5: Hand Grip Assess-
ment for Effort Discounting Tasks

In the context of a psychological study about effort cost decision making
and its association with negative symptoms in schizophrenia [37], Mudra
was used as a tool to implement an effort discounting task. An effort
discounting task assesses how steeply a certain reward loses its subjective
value with increasing effort. The experiment consisted of multiple phases,
for which we refer to Docx et al. [37]. In one phase, namely the execution
block, participants choose between a high effort task (i.e. squeezing the
dynamometer) with a particular reward and a low effort task (i.e. holding
the dynamometer) with a lower reward. The required grip strength is
indicated by a line on a thermometer as shown in Figure 6.18. In this
case, the high effort task corresponds to a minimum grip strength of 90%
with a reward of AC5 in virtual money. This assessment is performed by
Mudra, which includes user-specific calibration, real-time user interface
feedback and time constraints. The maximum strength of each user is
determined before the start of the experiment by asking the participant
three times to squeeze the dynamometer as hard as possible for a couple
of seconds. During the execution block, the squeezing effort is represented
by the level of the thermometer in real-time. Finally, temporal conditions
specify that a user should reach the intended effort within 5 seconds

206 Chapter 6. Midas & Mudra at Work

in order to obtain the corresponding reward. The experiment involved
40 patients with a DSM-IV diagnosis of schizophrenia and 30 age- and
sex-matched healthy controls. This application highlights the ability of
Midas and Mudra to describe and process data of a squeeze dynanometer
input modality.

Figure 6.18: A hand dynamometer and two effort levels with their reward

6.8 Case Study #6: Water Ball Z

A final application to demonstrate the real-world usage of our multimodal
framework is Water Ball Z. This application and the following description
have been published and demonstrated at TEI 2014 [70]. Water Ball Z is
a novel interactive two-player water game that allows kids and adults to
“fight” in a virtual world with physical feedback. The body movement of
a player is captured via an RGB-D sensor and analysed by a 3D gesture
recognition engine. In order to enable tactile feedback without the need
for wearable devices, a number of water nozzles are positioned around each
user’s play area. The idea is to translate the input gesture of one player to
the corresponding water spray hitting the other player. Besides severely
reducing the risk of injury in a fight, Water Ball Z engages people in a
real and fun experience where a hit is physically manifested via a water
spray. Furthermore, power up moves and a live scoreboard extension
bring the virtual world of Dragon Ball Z2 and Mortal Kombat3 cartoons
into real (augmented) life. In addition to our declarative description of

2Dragon Ball Z: http://www.dragonballz.com
3Mortal Kombat: http://www.imdb.com/title/tt0122355

http://www.dragonballz.com
http://www.imdb.com/title/tt0122355

6.8. Case Study #6: Water Ball Z 207

3D gestures used in the physically augmented game, we show the usage
of activation policies for mapping gesture input to haptic output.

Our proposed two-player Water Ball Z setup is illustrated in Fig-
ure 6.19. It consists of two circular play areas called battle stations. The
size of these stations is defined by the range of the Kinect sensor denoted
by (1) in Figure 6.19 and the water nozzle configuration (2). Each battle
station requires one Kinect sensor tracking the movement of the player.
The water nozzles are activated and deactivated by using solenoid valves, a
wireless Arduino board and a dedicated computer running Linux (located
near 3).

Figure 6.19: Water Ball Z setup

In our setup, the water sprayed out of the water nozzles shown in Fig-
ure 6.21 might easily reach the upper body of a player. For safety reasons,
we opted for a setup where the solenoid module with the 12V electronics
can operate wirelessly and fully disconnected from the electricity network
by using a battery. The Kinect sensor and the computer responsible
for the gesture recognition and wireless activation of water spays are
protected against water by covering them with plexiglas.

We currently distinguish seven key input gestures, including a regular
jab and a haymaker (wide punch) with the left and right arm, left and
right foot kicks as well as a circular motion gesture. Raising the hand to
the head level and performing a circular motion triggers the final gesture.
All gestures result in a water spray on the opponent’s battle station. For
instance, a regular jab with the right hand will inflict a short water spray
(100 ms) from the front left nozzle aiming at the head of the opponent.
As the spray is rather short, a double jab will have the effect of spraying

208 Chapter 6. Midas & Mudra at Work

twice. Similarly, a haymaker is bound to the two sideway water nozzles
at the opposite site. The foot kicks trigger a nozzle aiming to the back
of the opponent. Finally, the circular motion gesture is a special gesture
where all nozzles are enabled one-by-one in the same direction the gesture
is performed. However, this action is only activated after one full circular
motion has been performed. Note that we call this type of gesture a
shoot-and-continue gesture.

In order to detect different moves of a player, we need online gesture
processing without explicit segmentation. This implicit segmentation of
a real-time input data stream has two advantages. First, players are not
forced to perform explicit segmentation poses and can therefore try to
evade water sprays in many ways while trying to attack their opponent at
the same time. Second, by using a precise declarative gesture definition,
sprays will only be triggered when a valid move is executed. Declarative
reasoning over movement in time makes the recognition system more
robust to false positives. The sprays only trigger for the correct movements
which improves the feeling of a real battle compared to a system that
reacts to less focused movements. If necessary, the gesture rules can be
modified to support more variation.

Listing 6.12: Shoot-and-continue registration for the lasso gesture
1 rule(:lasso).register(:sac, 500.ms) { |p|
2 spray(p / 100 ∗ sprays, 100.ms)
3 }

In Listing 6.12, the option :sac is used to express that the gesture
should be completed at least once (i.e. shoot-and-continue) (Section 4.6.3).
Subsequent intermediate steps of the gesture trigger the callback and
make it behave like an online gesture. This results in a direct mapping
between the location of the hand and the activation of the respective
water nozzles installed at the battle station.

6.8.1 Electronic Schema

We used a wireless XinoRF Arduino board (similar to an Arduino UNO R3
with wireless connectivity) to digitally interface the solenoid valves with
our computer. However, the digital pins of an Arduino board do not
provide the necessary power to control the solenoid valves. In order to
solve this problem, we designed a PCB using N-channel power MOSFETs
(40V/23mΩ) and 1N4001 Diodes. We can then draw 12V from the Arduino
board using an external battery to drive ten plastic water solenoid valves

6.9. Conclusion 209

(12V-1/2” Nominal). The resulting Water Ball Z solenoid module is
highlighted in Figure 6.20.

Figure 6.20: Water Ball Z solenoid module

6.8.2 Solenoid Valves and Nozzles

For our prototype, we used off-the-shelf gardening hoses in combination
with plastic solenoid valves. The water input is split into multiple hoses
and is then switched by the solenoid valves. The final output of each
water hose is attached to a nozzle aiming at a player’s front, head, back
or other parts. An installation of our prototype is shown in Figure 6.21.

Water Ball Z demonstrates the intrinsic capabilities of future NUI
applications when developers are provided with adequate software engin-
eering abstractions to exploit the potential of novel input modalities.

6.9 Conclusion

Midas and Mudra reconciled a high-level language with a performant
architecture capable of fusing data-level, feature-level, and decision-level
information (Section 3.1.3). In this chapter we have shown how our Midas
and Mudra abstractions correspond to the criteria defined in Chapter 2.
These 30 criteria illustrate that our work improves the state-of-the-art
extensively in terms of language and architectural support for multimodal
fusion. Note that our findings have been replicated in a recent survey by

210 Chapter 6. Midas & Mudra at Work

Figure 6.21: Tests with an early Water Ball Z prototype

Cirelli et al. [26] by means of 14 compatible criteria (see Appendix G for
more details).

Furthermore, in Section 6.2, we compared language abstractions for
defining data-level gestures and decision-level multimodal fusion to our
approach. These discussions in combination with many experiments us-
ing input modalities such as touch, depth cameras, piezoelectric sensors
(Section 4.3.1), accelerometers and gyroscopes (Section 4.5.1), RFIDs
(Section 4.4.5), Speech (Section 4.8) and digital pens (Section 5.2.4),
demonstrate the applicability of our work in the multimodal domain.
Furthermore, Midas and Mudra enable rapid prototyping and the im-
plementation of complex gestures in challenging contexts, which are
problematic in previous work.

7
Conclusions

The human-machine interaction is rapidly changing with the introduction
of new commodity hardware, such as Apple’s iPad, HP’s Sprout and
Microsoft’s PixelSense and Kinect. This hardware consists of novel
input sensors which facilitate an interaction paradigm which is much
more advanced than the traditional keyboard and mouse setup. The
development of natural user interfaces (NUI), whereby the machine tries
to understand and anticipate the user’s interaction, typically relies on a
continuous monitoring of multiple input channels. In this context, the term
machine should be interpreted widely, including traditional computers
such as a laptop, embedded devices (in everyday tangible objects, such
as an interactive coffee table1) and seemingly invisible devices (such as
the Nest thermostat2 which detects the presence of people to regulate the
heating in a room). The big challenge of NUI applications is the ability
to correctly interpret a user’s intention from sensory input.

The correct interpretation of sensory information from such powerful
hardware sensors is complex [9, 38]. This is because relevant information
is hidden in a continuous stream containing noise. The implementation
complexity hinders the development and deployment of novel applications.
In literature, the term multimodal fusion is used to describe the process of
extracting relevant input information by combining multiple input mod-
alities. Multimodal fusion allows developers to provide complementary,

1Ideum’s Coffee Table: http://ideum.com/touch-tables/platform-coffee
2Nest’s Thermostat: https://nest.com/thermostat/life-with-nest-thermostat

211

http://ideum.com/touch-tables/platform-coffee
https://nest.com/thermostat/life-with-nest-thermostat

212 Chapter 7. Conclusions

assignment, redundancy or equivalent (CARE [29]) interaction modalities.
However, central to these multimodal fusion assumptions is the ability
to properly encode multimodal interaction patterns in a specification
language that the machine understands. Furthermore, the machine needs
to process the input in real-time such that the user’s intention results in
an appropriate action within a reasonable timespan.

Our analysis of related work revealed that existing multimodal frame-
works can be categorised in two main strands: data stream-oriented
architectures and semantic inferencing solutions. On the one hand, data
stream-oriented architectures are efficient in processing high-frequency
low-level input information but lack important programming abstrac-
tions needed by developers to express, reuse and combine multimodal
interaction patterns. On the other hand, semantic inferencing architec-
tures provide high-level abstractions but offer inadequate computational
processing capabilities for fusing the vast amount of raw data.

7.1 Summary and Contributions

In this dissertation we presented novel programming abstractions to
describe multimodal interaction patterns. For the first time, a high-level
declarative programming language provides adequate expressiveness to
specify fusion across the data, feature and decision levels. This domain-
specific language, called Midas, allows developers to focus on the essential
complexity when describing multimodal interaction patterns. Therefore,
developers need to deal with less accidental complexity, such as the
filtering of irrelevant events, updating intermediate states and garbage
collection. Midas uses declarative rules to express the conditions of a
multimodal interaction pattern. These conditions rely on the existence
and the spatio-temporal relation of input events that were obtained from
various input modalities. A spatio-temporal relation expresses a spatial
or temporal link between two or more events. Midas provides adequate
programming abstractions to help developers express these conditions in
a modular and composable manner.

Midas programs run on top of Mudra, an optimised unified multimodal
interaction architecture. Mudra is centred on a global information storage,
called the fact base, which is populated by multimodal input events
from various devices. Input events are transformed into facts. Facts
represent information that happened at a particular point in time. As
these facts arrive in a continuous manner, rules and other fusion processes

7.1. Summary and Contributions 213

actively react to changes in the fact base and enrich it with their own
interpretations based on combinations of facts. In order to do this
efficiently, Mudra transforms the declarative Midas definitions into a
directed acyclic graph that forms the basis for the Rete algorithm. Facts
are progressively filtered and joined with other facts in order to infer
knowledge. A main characteristic of the Rete network is the ability to
cache intermediate results. Therefore, when a fact satisfies only one
condition of a multimodal description that consist out of two conditions
(i.e. facts a and b need to happen), an intermediate representation of the
result is temporarily kept in memory. This information is maintained until
the event expires and memory can be freed for newer input events. This
allows the Mudra architecture to process low-level data streams as well
as high-level semantic inferences in one efficient specification language.

Mudra’s extensibility allows developers to incorporate existing fusion
processes and contextual application information. Additional support for
application integration is provided in the form of shadow facts, which is
a novel technique to synchronise state between the fusion and application
state. Mudra also enables cross-level fusion, which facilitates fusion of
low-level and high-level data.

We analysed Midas and Mudra based on 30 criteria and compared them
to the existing work. This analysis highlights important contributions
of our work compared to state-of-the-art multimodal abstractions and
opens novel opportunities for future work. Besides this, we performed
an in-depth comparison between Midas and a representative data-level
gesture language and a representative decision-level multimodal language.
This comparison revealed that Midas supersedes existing state-of-the-art
data-level and decision-level programming languages. Finally, Midas and
Mudra were deployed “in the real world”, including live programming
sessions or challenging environments for live music performances. To
summarise, we have succcesfully used our approach to process input data
originating from multi-touch surfaces, depth sensors, piezoelectric sensors,
accelerometers, gyroscopes, RFID readers, speech recognisers, digital pens
and hand dynamometers. This means we cover various input modes,
such as speech, pen, touch, gaze, and head and body movements. In the
following we discuss the contributions of this dissertation.

214 Chapter 7. Conclusions

7.1.1 Analysis of Criteria, Challenges and Open Is-

sues in Multimodal Fusion Frameworks

Our first contribution is the formulation of 30 criteria for assessing the
state-of-the-art capabilities of multimodal frameworks as well as to high-
light open research opportunities (Chapter 2). The goal of this analysis
was to categorise and explicitly expose design decisions to provide a better
understanding and foster a discussion around the challenges, opportunities
and future directions for multimodal frameworks. We observed that data
stream-oriented solutions are lacking high-level programming abstractions
to adequately describe multimodal interaction patterns. Furthermore,
we concluded that semantic inferencing tools are not well-suited for pro-
cessing vast amounts of raw data originating from novel hardware sensors.
In general, the indicative classification of multimodal processing tools
shows that it is still challenging to address many important aspects such
as segmentation, negation, event expiration, grouping and scalability with
the abstractions provided by existing solutions (Chapter 3).

7.1.2 Midas

Midas is a novel declarative domain-specific programming language with
a focus on the modularisation and composition of multimodal interaction
patterns. A Midas program consists of templates, modules, rules, attempts
and functions. Input events from different modalities are translated
into facts and stored in a central fact base. Rules can then try to
find combinations of facts that match their conditions in a reactive
manner. Modules, attempts and functions modularise the multimodal
description logic into small reusable parts. This allows composition
to form more complex interaction description without requiring a deep
knowledge by the developer on all particular details. More concretely, a
module groups attempts and functions under a single name. Modules can
be inherited by templates in a similar way as mixins in object-oriented
languages. This enables greater reusability in comparison to existing
multimodal languages where composition is poorly supported. Attempts
solve customisation and data entanglement concerns found in related work.
Firstly, attempts allow similar conditions to be easily shared amongst rules.
Secondly, they provide parameterisation of complex conditions to enable
fine-grained customisation. Thirdly, they can exchange resulting details to
the consuming rule through computed facts. Computed facts are untyped

7.1. Summary and Contributions 215

facts and replace the need for (over-)generic templates. Functions describe
purely functional computations, such as mathematical expressions.

Additionally, the syntactic distinction between attempts, functions
and modifiers allows the interlacing of conditions and modifiers within
a single rule. Existing rule languages explicitly separate the conditional
side from the modifier side, which requires developers to split their logic
into multiple rules without proper tools to propagate information. Finally,
the Midas language is designed to enable compile-time developer feed-
back for common mistakes when declaratively implementing multimodal
interaction patterns.

7.1.3 Mudra

Mudra is a unified multimodal interaction framework for processing low-
level data streams as well as high-level semantic inferences. The shared
bus architecture with template-local event expiration blurs the distinction
between data, feature and decision level fusion and offers a performant
and extensible architecture. Furthermore, the Midas language allows for
an easy coordination of the Mudra’s architectural components, including
the dynamic instantiation of many services according to the various
patterns of the input data. Multiple data formats and communication
protocols are provided to extend Mudra with services outside the Mudra
infrastructure. Mudra provides several powerful features that are not
present in other architectures, including out-of-order event processing,
non-subsequent event matching and partial overlap and segmentation.
The combination of Midas and Mudra forms an adequate platform for
authoring tools that want to provide a high-level declarative external
representation. Overall, it demonstrates that a high-level declarative
language can be used effectively to extract meaningful information from
a vast amount of input events.

7.1.4 Shadow Facts

To improve the awareness of multimodal fusion processes to contextual
information, such as application state, we introduced the notion of shadow
facts. A shadow fact is a fact that exists in the fact base but which
replicates the state of an application-level object. For example, when a
Java class is annotated with a @Shadow annotation, the Mudra library
automatically reifies its instances as facts with the classname as type and
the fields of the class as slots. In this manner, fusion processes can rely

216 Chapter 7. Conclusions

on the dynamic state of GUI components. For example, a multi-touch
gesture can only be activated when it is performed on top of a figure.

Shadow facts provide a solution for the difficult separation of state
in fusion engines and applications. Existing solutions provide a two-
way exchange of information using topic-based publish/subscribe APIs
and remote procedure calls. This results in the complex management of
stateless event handlers, which trigger programming code outside the main
application thread. Shadow facts avoid this complexity by integrating
application state in the fusion engine. This application symbiosis reduces
the accidental complexity and improves performance as candidate results
can be filtered as soon as possible.

7.1.5 Control Point-based Gesture Spotting

We identified a novel design pattern, called control points, for describ-
ing 2D and 3D gestures in a declarative manner. Control points are
based on the relative spatial location of multiple facts compared to a
first, underspecified, fact. Subsequent conditional elements then define a
relative spatial relation to this initial conditional element. This spatial
relation is typically represented as a translation of an ellipse (for 2D
gestures) or ellipsoid (for 3D gestures), but many variations are possible.
The control points design pattern enables an automated segmentation
strategy of a continuous stream of input data. It should be stressed that
segmentation (also known as spotting), is one of the main challenges of
always-on gesture recognition solutions.

To define control points, a single, well-formed sample is analysed by
an expert. The expert defines a number of control points that characterise
the gesture. A definition can be described in a declarative rule using
spatial and temporal relations. Our evaluation is based on a standard
2D benchmark and that control points are effective to optimise for recall.
Additional refinements to increase precision can be manually defined.

7.2 Shortcomings and Future Work

It would be interesting to explore a formal user study where the Midas and
Mudra abstractions are compared to traditional imperative programming
abstractions. In Chapter 1, we argued that declarative programming
style allows the programmer to think about what the fundamental con-
ditions are, instead of analysing how to process input events one by

7.2. Shortcomings and Future Work 217

one as necessary in an imperative approach. In Chapter 3, related re-
search also highlights why a declarative approach is best suited to reduce
the accidental complexity of programming multimodal interaction. In
Chapter 6, we have show considerably effective results with our approach.
These findings have been replicated by an independent survey, recently
performed by Cirelli et al. [26]. Their analysis shows that, in contrast
to imperative solutions, Midas is capable of addressing many criteria in
a single, uniform approach. However, measuring the learning curve and
productivity of our approach when used by a community of developers
would be interesting to explore in future work.

As observed in Section 6.1, there is still room for future improvements.
In particular, disambiguation criteria such as prioritisation, uncertainty
and user profiling need additional future effort. We believe that the
fundamental problem lies in a trade-off between latency and certainty of
fusion processes, as illustrated in Figure 7.1 by Julià et al. [81]3. It is
important for developers to provide a low-latency application. However,
the use of novel sensors increases noise and uncertainty. In order to reduce
incorrect interpretations from the machine, a wider scope of information
is needed. This means reasoning over events originating from multiple
input sources over a longer period in time. This increases accuracy, but
also latency, which should be avoided. Therefore, we introduce the notion
of forgiving interfaces, as explained in the next section.

Symbolic (Discrete, Offline) gestures Continuous (Online) gestures

Recognition Recognition

Control

Fail Fail

Recognize

Control

Disambiguation delay

Figure 7.1: Disambiguation delay occurs between the evaluation state
(black) and the recognition state (green)

3Figure 7.1 reproduced with permission of Carles Fernàndez Julià

218 Chapter 7. Conclusions

7.2.1 Forgiving Interfaces

Forgiving interfaces are interfaces that aim for low latency and can undo
certain operations when the interpretation of the commands of the user
seemed incorrect at a later point in time. Additionally, they assist users
in overcoming their own limitations. Moreover, as long as we are human,
we are bound to make mistakes (Anonymous).

Current programming languages do not embrace the notion of undo.
When a variable is reassigned, its previous value is gone for good. Some
programs, such as text editors support undo operators, but at the extent
of manually storing intermediate states in a list. Although this requires
some implementation, it does work well under the assumption that the
input information enters in a predictable way. Input information produced
by the user (e.g. mouse click) and the system (e.g. time) are indisputable
and will always be true.

However, we observe two problems:

• The GUI might change just before the user clicks a button. This
is especially common on mobile devices when browsing a website
which is still loading its DOM. Users frequently click a wrong link
because the browser just loaded a new image a few milliseconds
before.

• There is a new major trend towards multimodal information which
allows users to interact with the system using camera vision, multi-
touch technology and voice recognition all at the same time. Thus
applications will not only have to deal with dynamic, event-driven
information but also with the inherent uncertain nature of that
information. Consider the scenario presented in Figure 7.2.

In our envisioned forgiving interfaces paradigm, we can allow users
to easily undo and correct incorrectly applied behaviour. Not only will
these applications accommodate for human mistakes, it will also recover
from mistakes made by the machines while still providing a low-latency
interface which is preferred by all users.

7.3 Overall Conclusion

In an interview on the new era of Artificial Intelligence by Larry Larsen
on 28 Jan 2015, Eric Horvitz, a Director of the Microsoft Research lab

7.3. Overall Conclusion 219

Figure 7.2: A colouring task in a forgiving interface

replied as follows to the question about what developers do today and
how they prepare for the future with respect to AI and machine learning:

(. . .) One whole area that is very important for developers
is that what they call multimodal systems. Systems that can
take in different streams of information, anyone’s calendar,
visual signal, speech, pen and touch. How do you coordinate
these things, how do you write software that is open to multiple
sensory, perceptual input and data input at the same time. It
is worth thinking deeply about and worth building skills in
this space [101].

220 Chapter 7. Conclusions

In order to fuse events coming from multiple input streams, an in-
termediate state of “the current progress” needs to be maintained. Un-
fortunately, the complexity of maintaining such an intermediate state
is extremely high because it needs to capture complex spatio-temporal
relations between many events. Moreover, the implementation of the
update step needs to be efficient such that the system is ready to pro-
cess the following event in a timely manner. Accidental complexity,
such as segmentation (Section 2.3.2) and partially overlapping matches
(Section 2.3.2) increases this complexity even further. Therefore, many
proposed solutions offer a declarative language to describe complex pat-
terns with a focus on what they are and not how they should be found.
Unfortunately, these declarative approaches were limited to high-level
information processing because their interpretation could not cope with
the vast amount of raw events produced by sensors.

In this dissertation, we presented Midas and Mudra as a domain-
specific solution to ease the implementation of multimodal fusion processes.
Our declarative approach allows developers to focus on the essential com-
plexity of fusion, while being relieved from tedious accidental complexity
tasks, such as filtering irrelevant events, updating intermediate states
and garbage collection. Furthermore, it enables a quick prototyping of
promising multimodal interaction ideas.

We believe that Midas and its Mudra execution platform present a
major leap forward to ease the development of multimodal interaction
patterns. Our effort provides an answer to the overuse of statistical
learning-based solutions which sacrifice important properties, such as
control over the multimodal description, the ability to verify its results,
as well as the ability to move towards a true understanding. Additionally,
it allows developers to rapidly prototype complex multimodal interaction
patterns, without having to rely on a vast amount of training data.

Our experiments with multi-touch, depth cameras, piezoelectric
sensors, accelerometers and gyroscopes, RFIDs, speech and digital pens
show the versatility and applicability of the presented approach. Some
of them were performed in highly challenging environments where other
solutions would fall short, in particularly for the scenarios where data
gathering is not possible.

Finally, many criteria, such as composition, customisation, applica-
tion symbiosis, unbound variables, segmentation, synchronising streams,
concurrent interaction, spatial specification, temporal specification and
spatio-temporal specification, have been tackled, or at least improved
in contrast to related work. Remaining criteria, such as activation pri-

7.3. Overall Conclusion 221

oritisation, prediction and user profiling are interesting candidates to
solve in future work. However, we envision that a fundamental solution
to properly disambiguate multimodal fusion results can be provided by
developing forgiving interfaces, as explained in the future work section.

Midas is a fifth-generation programming language with a focus on
providing high-level programming abstractions for multimodal interaction.
Its Mudra execution engine caters a soft real-time, efficient incremental
processing of a vast amount of input events. The combination of Midas and
Mudra greatly simplifies the search for natural multimodal interactions
by providing the much needed programming abstractions.

Appendices

223

A
Terminology in

Multimodal Interaction

The following terminology is used throughout this dissertation to establish
an unambiguous semantic understanding.

Modality A modality refers to the use of a medium, or channel of
communication, as a means to express and convey information [19].

Multimodality A combination of modalities in order to improve
transparency, flexibility, efficiency and expressiveness of human-computer
interaction [124].

Multimodal Interaction Pattern A particular pattern executed by
the human to convey a message to the computer.

Multimodal Interaction Pattern Description An implementation
of a multimodal interaction pattern in a particular programming language.

Condition A part of the multimodal interaction pattern which
should be satisfied by input events. A condition has a technical
implication in the context of this dissertation and is similar to an if

statement in traditional programming languages. For example, a mul-
timodal interaction pattern description consists out of multiple conditions.

225

226 Appendix A. Terminology in Multimodal Interaction

Activation The activation of a multimodal description happens
when all conditions are satisfied.

Gesture A gesture in the context of this dissertation is based on
the definition of Rhyne et al., namely a configuration of strokes, including
handwritten text, pointing, and others [133]. This includes movement
of the hands, face and other body parts to communicate a meaning.
This includes the gesticulation, manipulations, semaphores, deictic and
language gestures defined by Karam et al. [87] which is an extension of
Quek et al. [130]

Single-stroke and multi-stroke gesture A gesture executed in
a single, unbroken movement is a single-stroke gesture. When a gesture
consists out of multiple strokes (i.e. when the pen or finger needs to lifted
to complete the gesture), it is called a multi-stroke gesture.

Segmentation Segmentation is the extraction process of a begin-
and end-point from a continuous stream of data [116]. For example, the
segmentation a single step of a walk is described by moving the leg in
front of the other leg.

F-measure An F-measure represents the accuracy of a classifica-
tion. It is based on a harmonic mean of precision and recall.

Precision The amount of true positives divided by all positively
classified samples. A high precision means that the algorithm returned
more relevant than irrelevant results.

Recall The amount of true positives divided by the actual posit-
ive samples. A high recall means that an algorithm returned most of the
relevant results.

True/False Positive A true positive sample is a positive sample
which is correctly classified. This means that an interaction pattern
existed and correctly extracted. A false positive sample is the detection
of an interaction pattern where it did not happen.

True/False Negative A true negative sample is a correctly clas-
sified negative sample. This means that no interaction pattern was

227

executed and nothing was detected. A false negative is the incorrect
negative classification of a sample which contained an actual interaction
pattern. In this case the multimodal fusion failed to detect a pattern
that happened.

Template matching The comparison between an unknown sample and
multiple known samples in order to classify the unknown sample.

Sample A segmented list of events, possibly conveying a mul-
timodal interaction pattern.

Classification The translation of a number of events into a meaningful
name.

Multimodal Fusion The combination of multiple events from
different modalities to reveal new information (e.g. a pattern).

Multimodal Fission Multimodal fission refers to the decomposi-
tion of information into several smaller chunks [28].

Multimodal Framework A multimodal framework is a tool, consisting
of an architecture and programming API, to ease the description of
multimodal interaction patterns.

Multimodal Architecture A multimodal architecture manages
the exchange of information between fusion processes.

Multimodal Programming API or Multimodal Language
A programming interface for a multimodal framework. This can be
provided in the form of a library with a number of preprogrammed
functions or as a domain specific programming language.

Multimodal Fusion Process An executable piece of code re-
sponsible for a single multimodal fusion task.

Garbage Gesture Model The representation of a non-gesture,
typically used in machine learning algorithms to diverge the learning
process from other meaningful gestures.

Unification The process of finding a combination two terms with a

228 Appendix A. Terminology in Multimodal Interaction

suitable substitution. This implies a search to a value which satisfies two
or more conditions.

Low-level Data Low-level data is raw information originating
from an input modality. Depending on the used sensor, it can contain a
lot of noise and operate at a high frequency.

High-level Data High-level data is processed, semantic informa-
tion.

Frequency Represents the amount of data being generated. A
commonly used unit is hertz (Hz), representing the amount of events
generated every second.

B
Transcript of the Formal

Grammar of Midas

A Midas program mp consists of a set of templates t, modules m, rules r,
attempts a, functions f and modifiers x. A template t has a mandatory
name tid, an optional mixin inclusion mid and contains a number of
slots, followed by attempts and functions. The mixin inclusion embeds a
particular module into a template or module. Like templates, modules
have a unique name, allow includes and supports slots, attempts and
functions. However, modules cannot be instantiated and are meant to
group functionality in a reusable namespace.

Slots are represented by a name sid, are optionally typed and can
contain a default value. Attempts (a) have a name aid, a parameter list
lid and a number of conditions. Attempts have access to lexically scoped
slots and optionally return computed facts cf. A computed fact is a local,
anonymous fact that cannot be asserted or modified. Computed facts
provide access to local information, such as conditional elements inside
an attempt, to the outer scope, such as a rule or another attempt.

Functions f have a name fid and an argument list lid. When invoked,
they execute a number of expressions e and provide a return value. They
can be embedded in modules or templates and have access to their lexical
scope. Functions are typically used to express calculations.

A rule r starts with a name rid and lists a number of conditions (c)
and/or modifiers (m). Rules form the main execution paradigm of the pro-

229

230 Appendix B. Transcript of the Formal Grammar of Midas

gram as they react by invoking modifiers as soon as the conditions are met.
Conditions (c) are composed from conditional elements (ce), tests (te),
bindings (b) and special forms (sf). A conditional element (ce) expresses
the need for a particular fact in the fact base. Conditional elements
introduce reactivity, as new facts will be matched against them. A fact
matched by such a conditional element can be bound to a local variable
(lid) using a bind. Optionally, inline constraint values (cv) can be used
to express equality and nonequality conditions on the slot values of the
matched fact. More sophisticated filtering can be achieved using tests (te).
These tests express relations between expressions (e <|≤|==|!=|≥|> e)
and can invoke global or template-scoped attempts. Template-scoped
attempts use the left-arrow symbol (←) and can be applied to bound
conditional elements, templates and modules.

Bound variables allow developers to refer to facts matched by a
conditional element, the result of an attempt or function invocation, a
particular fact slot value (by referring to lid.sid), a primitive value or
an array (a). Such an array is composed out of variables or primitive
values. Special forms (sf) are expressions that denote negation (no), an
asynchronous test (async) or a delayed verification (wait). Negation is
an advanced construct that inverts the meaning of its nested conditions.
When used in combination with conditional elements, the result is a
negation by failure (i.e. the negation is true when no fact was found that
satisfies the condition). It should be noted that binds from within such a
negation are limited to their scope (i.e. a developer cannot reuse ‘negated’
values outside the scope of the special form). Asynchronous tests offer a
way to obtain results asynchronously without relying on facts or callbacks.
Finally, the wait special form is a language feature to delay the matching
of the other conditions of a rule by a timeout value (v) which is relative
to the time of a matched fact lid.

Developers can use modifiers (m) to react when a number of conditions
are matched. New events can be created by asserting them in the fact base.
Matched facts can be modified by changing the slot values of conditional
elements, or be removed from the fact base by retracting them. The final
modifier is a call operator that invokes a function with side effects. For
example, this function can shadow application-specific procedures.

We conclude the core set of semantic entities in Midas with basic
values (v) such as numbers (-1,0,1,2), strings (“hello”), symbols (:sym)
and nothing (nil).

C
Positioning and

Discussion of Related
Work

Listing C.1: Gesture languages
1 /∗
2 Midas
3 [1] Hoste, L. Software Engineering Abstractions for the Multi-Touch Revolution. In Proc. of

ICSE 2010 (Cape Town, South Africa, May 2010)
4 [2] Scholliers, C., Hoste, L., Signer, B., and De Meuter, W. Midas: A Declarative Multi-

Touch Interaction Framework. In Proc. of TEI 2011 (Funchal, Portugal, January 2011)
5 [3] Hoste, L., Dumas, B. and Beat Signer, Mudra: A Unified Multimodal Interaction

Framework, In Proc. of ICMI 2011 (Alicante, Spain, November 2011)
6 [4] Hoste, L., Rooms, B. D., and Signer, B. Declarative Gesture Spotting Using Inferred and

Refined Control Points. In Proc. of ICPRAM 2013) (Barcelona, Spain, February 2013)
7 [5] Hoste, L., and Signer, B. Expressive Control of Indirect Augmented Reality During Live

Music Performances, In Proc. of NIME 2013 (Daejeon + Seoul, Korea Republic, May
2013)

8 [6] Swalens, J., Renaux, T., Hoste, L., Marr, S., and De Meuter, W. Cloud PARTE: Elastic
Complex Event Processing based on Mobile Actors. In Proc. of AGERE! 2013 (
Indianapolis, Indiana, USA, October 2013)

9 [7] Hoste, L., and Signer, B. Water Ball Z: An Augmented Fighting Game Using Water as
Tactile Feedback, In Proc. of TEI 2014 (Munich, Germany, February 2014)

10 [8] Marr, S., Renaux, T., Hoste, L., and De Meuter, W. Parallel Gesture Recognition with
Soft Real-Time Guarantees. Science of Computer Programming (February 2014)

11 [9] Docx, L., de la Asuncion, J., Sabbe, B., Hoste, L., Baeten, R., Warnaerts, N., and
Morrens, M. (2015). Effort discounting and its association with negative symptoms in
schizophrenia. Cognitive Neuropsychiatry.

12 GDL-K

231

232 Appendix C. Positioning and Discussion of Related Work

13 [10] Khandkar, S. H., and Maurer, F. A Domain Specific Language to Define Gestures for
Multi-Touch Applications. In Proc. of DSM Workshop (Reno/Tahoe, Nevada, USA, 2010)

14 GeForMT
15 [20] Kammer, D., Wojdziak, J., Keck, M., Groh, R., and Taranko, S. Towards a

Formalization of Multi-Touch Gestures. In Proc. of ITS 2010 (Saarbrucken, Germany,
2010)

16 [21] Kammer, D., Henkens, D., and Groh, R. GeForMTjs: A JavaScript Library Based on a
Domain Specific Language for Multi-touch Gestures. In Proc. of ICWE 2012 (Berlin,
Germany, 2012)

17 [22] Kammer, D. Formalisierung gestischer Interaktion fur Multitouch-Systeme. PhD thesis,
Technischen Universitat Dresden, 2013

18 GDL-E
19 [30] Echtler, F., Klinker, G., and Butz, A. Towards a Unified Gesture Description Language.

In Proc. of HC 2010 (Aizu-Wakamatsu, Japan, 2010)
20 [31] Echtler, F., and Butz, A. GISpL: gestures made easy. In Proc. of TEI 2012 (Kingston,

Ontario, Canada, 2012)
21 Proton
22 [40] Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton: Multitouch Gestures as

Regular Expressions. In Proc. of CHI 2012 (Austin, Texas, USA, 2012)
23 [41] Kin, K. Proton++: a customizable declarative multitouch framework. In Proc. UIST 2012

(Cambridge, Massachusetts, USA, 2012)
24 GestureAgents
25 [50] Julia, C. F., Earnshaw, N., and Jorda, S. Gestureagents: An agent-based framework for

concurrent multi-task multi-user interaction. In Proc. of TEI’13 (Barcelona, Spain, 2013)
26 EventHurdle
27 [60] Kim, J.-W., and Nam, T.-J. EventHurdle: Supporting Designers’ Exploratory Interaction

Prototyping with Gesture-based Sensors. In Proc. of CHI 2013 (Paris, France, 2013)
28 [61] Kim, J.-W., Nam, T.-J., and Park, T. CompositeGesture: Creating Custom Gesture

Interfaces with Multiple Mobile or Wearable Devices. International Journal on Interactive
Design and Manufacturing (June 2013)

29 GestIT
30 [70] Spano, L. D., Cisternino, A., Paterno, F., and Fenu, G. Gestit: a declarative and

compositional framework for multiplatform gesture definition. In Proc. of EICS 2013 (
London, UK, 2013)

31 ICO
32 [80] Hamon, A., Palanque, P., Silva, J. L., Deleris, Y., and Barboni, E. Formal description

of multi-touch interactions. In Proc. of EICS 2013 (London, UK, 2013)
33 ∗/
34
35 // Data
36 d = [
37 [// Midas
38 {axis: "modularisation", value: 5}, // Each description is contained in a rule
39 {axis: "composition", value: 4}, // Descriptions can easily be composed by relying on high-

level facts, attempts, computed facts and module inheritance
40 {axis: "customisation", value: 4}, // Rules can be copy/pasted, modified and extended;

Attempts further enable this via parameters.
41 {axis: "negation", value: 5}, // Supports complex negation, with the possibility to wait for

future events
42 {axis: "application", value: 4}, // Supports shadow facts to synchronise application info
43 {axis: "activation", value: 2}, // Bookkeeping facts (which are cumbersome but powerful)

and activation flags (easy but limited)
44 {axis: "binding", value: 5}, // Provides unbound variables
45

233

46 {axis: "online", value: 4}, // Supports online processing through alternation of conditions
and modifiers or intermediate progress notifications

47 {axis: "offline", value: 4}, // Supports offline processing although explicit state checks are
required

48 {axis: "overlapping", value: 3}, // Inherently deals with overlapping matching in the
processing engine but does not inform the developer

49 {axis: "segmentation", value: 5}, // Optimises for recall to optimally segment candidates
50 {axis: "synchronisation", value: 5}, // Out-or-order, realignment and synchronised

expiration supported
51 {axis: "expiration", value: 3}, // Offers a template-local relative time event expiration

mechanism as well as bounded size. However, this needs to be set manually
52 {axis: "long-term", value: 3}, // Offers persistency and DRAM containers to ease long-term

reasoning. However, this needs to be handled manually
53 {axis: "concurrent", value: 4}, // Requires few effort (i.e. user grouping) to support

concurrent interaction
54 {axis: "embeddability", value: 3}, // Can be embedded in all kinds of applications (C

library and networking APIs exists) but requires rules to be developed as a ”string” value
55 {axis: "runtime", value: 4}, // Supports adding rules at runtime but does not have an

automated refinement
56 {axis: "reliability", value: 4}, // Does not limit the event input rate but is sandboxed.

Extensions have shown to scale in terms of performance to 64 cores however the
approach is less flexible (no fusion across levels)

57
58 {axis: "spatial", value: 5}, // Offers extensive support for spatial operators
59 {axis: "temporal", value: 5}, // Offers extensive support for temporal operators
60 {axis: "spatio-temporal", value: 5}, // Spatio-temporal features and nesting of spatial and

temporal operators is not restricted by the engine
61 {axis: "identification", value: 3}, // Uses logical binds to ease the identification problem

and inherently supports the grouping problem. However, this results into multiple
candidates that need to be verified later

62 {axis: "prioritisation", value: 2}, // Offers rule-specific prioritisation and uses
bookkeeping facts to enable fusion. However it is hard to express a conflict resolution
between multiple rules

63 {axis: "prediction", value: 2}, // An additional condition implies waiting for future events.
Furthermore, developers can write delay statements but it not easy to manage

64 {axis: "verification", value: 3}, // Embeds other classifiers to verify candidates
65 {axis: "uncertainty", value: 1}, // Uncertainty can be part of a fact attribute but requires

additional effort
66 {axis: "profiling", value: 1}, // Does not offer user profiling tools, but does provide a

manual interface to access and store historical data
67
68 {axis: "readability", value: 2}, // Kammer[22] measured a low readability of Midas 1.0.

Midas 2.0 abstracts a LISP-based syntax with a Ruby-style flavour
69 {axis: "debugging", value: 2}, // Offers no special debugging support
70 {axis: "authoring", value: 3} // An visual editor exists both for multi-touch and for full-body

gestures
71],
72
73 [// GDL-K
74 {axis: "modularisation", value: 5}, // Separates all gesture descriptions
75 {axis: "composition", value: 2}, // Allows developers to describe gestures in multiple steps
76 {axis: "customisation", value: 3}, // Gestures can be copy/pasted, modified and extended
77 {axis: "negation", value: 0}, // Does not support negation
78 {axis: "application", value: 1}, // Allows bounding boxes
79 {axis: "activation", value: 0}, // No special activation policies
80 {axis: "binding", value: 0}, // No unbound variables allowed

234 Appendix C. Positioning and Discussion of Related Work

81
82 {axis: "online", value: 0}, // No support for online gestures
83 {axis: "offline", value: 5}, // Supports offline gestures by default
84 {axis: "overlapping", value: 2}, // Supports overlapping gestures but does not inform the

developer
85 {axis: "segmentation", value: 0}, // Explicit begin and end points are required
86 {axis: "synchronisation", value: 0}, // No synchronisation of streams supported
87 {axis: "expiration", value: 2}, // State is reset when stroke ends but supports multiple

strokes by storing the ’steps’
88 {axis: "long-term", value: 0}, // No support for long-term reasoning
89 {axis: "concurrent", value: 0}, // Stepwise finite-state machine is not replicated

automatically
90 {axis: "embeddability", value: 2}, // .Net-oriented and string-based programming
91 {axis: "runtime", value: 2}, // Probably not supported, unclear
92 {axis: "reliability", value: 3}, // Specifies touch limits, no performance boundaries, only

returns a set of points (sandboxed)
93
94 {axis: "spatial", value: 3}, // Primitive spatial operators available but not extendible to the

event level (website offline, no further details)
95 {axis: "temporal", value: 1}, // Simple chained expressions
96 {axis: "spatio-temporal", value: 2}, // Few spatio-temporal operators built-in but not

extendible (website offline, no further details)
97 {axis: "identification", value: 0}, // No support for identification and grouping
98 {axis: "prioritisation", value: 0}, // No support for prioritisation
99 {axis: "prediction", value: 0}, // No support for future event

100 {axis: "verification", value: 0}, // No support for verification
101 {axis: "uncertainty", value: 0}, // No support for uncertainty
102 {axis: "profiling", value: 0}, // No support for user profiling
103
104 {axis: "readability", value: 3}, // Few syntax rules and simple constructs increase the

readability
105 {axis: "debugging", value: 1}, // No support for additional debugging
106 {axis: "authoring", value: 0} // No support for editor
107],
108
109 [// GeforMT
110 {axis: "modularisation", value: 5}, // Separates all gesture descriptions
111 {axis: "composition", value: 2}, // Allows developers to compose events from atomic

building blocks but not from described gestures
112 {axis: "customisation", value: 2}, // Gestures can be copy/pasted, modified and extended,

however the order of relations might require some work
113 {axis: "negation", value: 0}, // No support for negation
114 {axis: "application", value: 3}, // Supports object regions via the HTML dom tree but

lacks expressiveness
115 {axis: "activation", value: 0}, // No special activation policies
116 {axis: "binding", value: 0}, // No unbound variables allowed
117
118 {axis: "online", value: 3}, // Online gestures are supported but only within a specific type of

gestures (few constructs available)
119 {axis: "offline", value: 5}, // Supports offline gestures by default
120 {axis: "overlapping", value: 2}, // Supports overlapping gestures but does not inform the

developer
121 {axis: "segmentation", value: 0}, // Explicit begin and end points are required
122 {axis: "synchronisation", value: 1}, // Maps each finger to a preprocessor, resulting in

limited support for synchronisation

235

123 {axis: "expiration", value: 2}, // State is reset when stroke ends but supports multiple
strokes using a global slack variable ’contiguityInterval’

124 {axis: "long-term", value: 0}, // No support for long-term reasoning
125 {axis: "concurrent", value: 0}, // Requires developers to split the canvas manually, no

inherent multi-user support
126 {axis: "embeddability", value: 0}, // JavaScript support but via string-based programming
127 {axis: "runtime", value: 4}, // Supports adding gesture definitions at runtime but does not

have an automated refinement
128 {axis: "reliability", value: 3}, // Specifies touch limits, no performance boundaries, only

returns a set of points (sandboxed)
129
130 {axis: "spatial", value: 4}, // No path-level spatial operators available, direction

preprocessors and template matching provide useful build-in constructs
131 {axis: "temporal", value: 2}, // Temporal expressions can be constructed using the build-in

relations but requires global slack variables
132 {axis: "spatio-temporal", value: 3}, // Spatial and temporal expressions can be combined,

albeit in a restricted format
133 {axis: "identification", value: 0}, // No support for identification and grouping
134 {axis: "prioritisation", value: 0}, // No support for prioritisation
135 {axis: "prediction", value: 0}, // No support for future event
136 {axis: "verification", value: 0}, // No support for verification
137 {axis: "uncertainty", value: 0}, // No support for uncertainty
138 {axis: "profiling", value: 0}, // No support for user profiling
139
140 {axis: "readability", value: 4}, // Clear and simple constructs make it a highly readable

approach
141 {axis: "debugging", value: 2}, // Is embedded in a test environment where multiple options

can be enabled. Can support further incremental matching feedback
142 {axis: "authoring", value: 0} // No graphical editor of the code is provided
143],
144
145 [// GDL-E
146 {axis: "modularisation", value: 5}, // Separates all gesture descriptions
147 {axis: "composition", value: 0}, // Does not support composition
148 {axis: "customisation", value: 3}, // Gestures can be copy/pasted, modified and extended
149 {axis: "negation", value: 0}, // No support for negation
150 {axis: "application", value: 2}, // Inherently supports regions but need to be manually

synchronised with the GUI
151 {axis: "activation", value: 2}, // Supports a number of flags to guide the activation process
152 {axis: "binding", value: 0}, // No support for unbound variables
153
154 {axis: "online", value: 2}, // Online gestures are supported by offering native filters
155 {axis: "offline", value: 5}, // Supports offline gestures by default
156 {axis: "overlapping", value: 2}, // Supports overlapping gestures but does not inform the

developer
157 {axis: "segmentation", value: 0}, // Explicit begin and end points are required
158 {axis: "synchronisation", value: 1}, // Maps each finger to a preprocessor, resulting in

limited support for synchronisation
159 {axis: "expiration", value: 1}, // Unclear how expiration of events is handled. Probably

there is a slack variable indicating the maximum number of events per filter
160 {axis: "long-term", value: 0}, // No support for long-term reasoning
161 {axis: "concurrent", value: 4}, // Concurrent gestures are supported and can be splitted by

region
162 {axis: "embeddability", value: 4}, // The format is compatible with JSON which allows for

native syntax development in Javascript
163 {axis: "runtime", value: 4}, // Gestures can be added and modified at runtime

236 Appendix C. Positioning and Discussion of Related Work

164 {axis: "reliability", value: 3}, // Does not limit the event input rate, but only returns a
set of points (sandboxed)

165
166 {axis: "spatial", value: 4}, // A template path can be used to define the gesture. Adding

new features are required to provide more spatial constructs. Relative spatial operators
are available.

167 {axis: "temporal", value: 0}, // No special support for expressing temporal relations
168 {axis: "spatio-temporal", value: 1}, // Spatio-temporal information can be embedded in

feature extractors (but lacks language support)
169 {axis: "identification", value: 0}, // A form of grouping is provided for GUI objects but it

is unrelated to the identification and grouping problem of multiple input streams
170 {axis: "prioritisation", value: 1}, // GUI regions can provide a priority level for gestures
171 {axis: "prediction", value: 1}, // A ’delay’ feature that expresses the time between events,

but waiting for future knowledge is not supported on the language level
172 {axis: "verification", value: 0}, // No support for verification
173 {axis: "uncertainty", value: 0}, // No support for uncertainty
174 {axis: "profiling", value: 0}, // No support for user profiling
175
176 {axis: "readability", value: 3}, // Quite some flags and a lot of string quoting reduce the

readability but the constructs are JSON compatible which is well known to many
developers

177 {axis: "debugging", value: 1}, // No support for additional debugging
178 {axis: "authoring", value: 0} // No support for editor
179],
180
181 [// Proton
182 {axis: "modularisation", value: 5}, // Separates all gesture descriptions
183 {axis: "composition", value: 0}, // Does not support composition
184 {axis: "customisation", value: 1}, // It is quite hard to extend the gesture due to the

importance of ordering the regular expression. Might cause an exponential increase in
complexity when adding a single requirement

185 {axis: "application", value: 3}, // The result of a hit test is returned as an attribute.
More complex GUI correlations are not supported

186 {axis: "activation", value: 2}, // A confidence calculator is provided
187 {axis: "binding", value: 0}, // No unbound variables supported
188
189 {axis: "negation", value: 0}, // Negation is not supported
190 {axis: "online", value: 3}, // Online gestures are supported, however of limited complexity
191 {axis: "offline", value: 3}, // Offline gestures are also supported, however of limited

complexity
192 {axis: "overlapping", value: 4}, // Explicitly blocks overlapping gestures to help the

developer deal with (potentially) problematic definitions
193 {axis: "segmentation", value: 0}, // Explicit begin and end points are required
194 {axis: "synchronisation", value: 0}, // No support for synchronisation, requires strict

ordering of conditions
195 {axis: "expiration", value: 1}, // State is reset when stroke ends
196 {axis: "long-term", value: 0}, // No long-term reasoning
197 {axis: "concurrent", value: 1}, // Simultaneous gestures are not supported. A possible

extension is described in the paper but might require quite some work and an extension
to the language. Furthermore there is no support for concurrent input streams

198 {axis: "embeddability", value: 1}, // It is challenging to describe the regular expressions
with the optional attributes within a plain ascii text code environment

199 {axis: "runtime", value: 2}, // Probably but unsure about the static analysis of conflicting
gestures

200 {axis: "reliability", value: 3}, // Does not limit the event input rate, but only returns a
set of points (sandboxed)

237

201
202 {axis: "spatial", value: 2}, // No path-level spatial operators available. A direction

preprocessor using the last two events is provided
203 {axis: "temporal", value: 2}, // Provides a sequential or parallel construct without support

for more complex temporal relations
204 {axis: "spatio-temporal", value: 0}, // Preprocessors compare the two latest input events
205 {axis: "identification", value: 0}, // No support for dealing with identification or complex

grouping problems. The canvas can however be split in to support two groups
206 {axis: "prioritisation", value: 3}, // Explicit prioritisation level required when conflicts

are detected
207 {axis: "prediction", value: 1}, // A hint to support a ’Z’ touch event is specified but

currently not supported. Additionally, all attributes must be decided on the event level
208 {axis: "verification", value: 0}, // No support for verification
209 {axis: "uncertainty", value: 0}, // No support for uncertainty
210 {axis: "profiling", value: 0}, // No support for user profiling
211
212 {axis: "readability", value: 2}, // Regular expressions are known for most programmers

however a multi-touch gesture definition rapidly becomes excessively long. It is also not
fully compatible with ascii based code fragments

213 {axis: "debugging", value: 3}, // Incremental visualisation of the gesture states
214 {axis: "authoring", value: 4} // Tablatures compiles into regular expressions which implies

the use of a modifiable external representation. Unfortunately it might be limiting for
certain gestures

215],
216
217 [// GestureAgents
218 {axis: "modularisation", value: 5}, // Every agent is responsible for one gesture
219 {axis: "composition", value: 5}, // Agents can be composed out of other agents
220 {axis: "customisation", value: 0}, // Poor customisation due the lack of abstractions to

specify gestures themselves. Imperative programming languages are no good fit for
defining gestures (not really the focus of the paper)

221 {axis: "application", value: 4}, // Allows agents to poll for GUI context
222 {axis: "activation", value: 0}, // No special activation policies
223 {axis: "binding", value: 1}, // Variable bindings are support in a manual manner
224
225 {axis: "negation", value: 1}, // Potentially possible when manually managing the gesture

state
226 {axis: "online", value: 3}, // The framework supports online gestures but does not aid in

coding them
227 {axis: "offline", value: 3}, // The framework supports offline gestures but does not aid in

coding them
228 {axis: "overlapping", value: 3}, // By design, only one input event can be part of one

gesture. However it is unclear how this can be tested at design time
229 {axis: "segmentation", value: 1}, // Each agent can evaluate a potential gesture candidate

and potentially acquire a lock to decide it. However segmenting a continuous stream
without dedicated gesture programming support is very complex

230 {axis: "synchronisation", value: 2}, // Ability to lock gesture activation until later
information arrives

231 {axis: "expiration", value: 0}, // Each implementation points are required to expire
temporal state manually

232 {axis: "long-term", value: 0}, // No support for long-term reasoning
233 {axis: "concurrent", value: 4}, // Offers duplication operators for agents to support

concurrent interaction
234 {axis: "embeddability", value: 1}, // The abstractions are part of a host language and

therefore hard to exchange

238 Appendix C. Positioning and Discussion of Related Work

235 {axis: "runtime", value: 2}, // Agents can be added at runtime but it requires Python meta
programming

236 {axis: "reliability", value: 3}, // Does not limit the event input rate, but only returns a
set of points (sandboxed)

237
238 {axis: "spatial", value: 0}, // No abstractions for spatial operators
239 {axis: "temporal", value: 0}, // No abstractions for temporal operators
240 {axis: "spatio-temporal", value: 0}, // No abstractions for spatio-temporal operators
241 {axis: "identification", value: 2}, // No support for expressing identification and grouping

. However by duplicating recognisers a primitive form of grouping can be supported
242 {axis: "prioritisation", value: 4}, // Supports priorities and multiple explicit conflict

resolution mechanisms. Furthermore, each agent can poll for additional context
information. However it might be perceived as slow by users due to waiting periods from
other agents

243 {axis: "prediction", value: 2}, // Requires to set a waiting time for each gesture, but
supports a compatibility mechanism

244 {axis: "verification", value: 0}, // No support for verification
245 {axis: "uncertainty", value: 0}, // No support for dealing with uncertain events
246 {axis: "profiling", value: 0}, // No support for user profiling
247
248 {axis: "readability", value: 0}, // Poor readability due the lack of abstractions to specify

gestures themselves
249 {axis: "debugging", value: 2}, // No support for additional debugging besides logging

potential conflicts at runtime
250 {axis: "authoring", value: 0} // No support for graphical editor
251],
252
253 [// EventHurdle
254 {axis: "modularisation", value: 5}, // Each gesture has its own hurdle chain
255 {axis: "composition", value: 3}, // Multiple hurdles can be combined into one gesture event

but it is unclear how this is done
256 {axis: "customisation", value: 4}, // Hurdles can be copy/pasted and easily be modified
257 {axis: "application", value: 0}, // No integration with GUI components
258 {axis: "activation", value: 0}, // No special activation policies
259 {axis: "binding", value: 0}, // No support for unbound variables
260
261 {axis: "negation", value: 4}, // False hurdles are supported but are required for each element

in the chain
262 {axis: "online", value: 1}, // Unclear but might be supported due to the simple temporal

state machine
263 {axis: "offline", value: 5}, // Supports offline gestures with simple constructs
264 {axis: "overlapping", value: 2}, // Supports overlapping gestures but does not inform the

developer
265 {axis: "segmentation", value: 4}, // Inherently supports the segmentation of continuous

input
266 {axis: "synchronisation", value: 0}, // Multiple streams are not supported
267 {axis: "expiration", value: 2}, // State is reset based on a slack timeout variable
268 {axis: "long-term", value: 0}, // No long-term reasoning
269 {axis: "concurrent", value: 0}, // Each gesture has one hurdle state and needs to be reset
270 {axis: "embeddability", value: 1}, // The generated code can be easily ported but required

development effort
271 {axis: "runtime", value: 1}, // Adding gestures at runtime depends on the host language
272 {axis: "reliability", value: 3}, // Does not limit the event input rate, but only returns a

gesture result (sandboxed)
273

239

274 {axis: "spatial", value: 4}, // Path-based spatial operators are provided in a graphical
manner.

275 {axis: "temporal", value: 2}, // Serial and parallel relations are supported
276 {axis: "spatio-temporal", value: 3}, // Works for acceleration data
277 {axis: "identification", value: 0}, // No support for identification and grouping
278 {axis: "prioritisation", value: 0}, // No support for prioritisation
279 {axis: "prediction", value: 0}, // No support for future event
280 {axis: "verification", value: 0}, // No support for verification
281 {axis: "uncertainty", value: 0}, // No support for uncertainty
282 {axis: "profiling", value: 0}, // No support for user profiling
283
284 {axis: "readability", value: 4}, // The hurdles are easy to understand due to their

graphical nature
285 {axis: "debugging", value: 4}, // Incremental debugging of which hurdles are taken and

which are not
286 {axis: "authoring", value: 4} // Visual editor is provided to edit the hurdles and it compiles

into a readable code due to the simple temporal logic
287],
288
289 [// GestIT
290 {axis: "modularisation", value: 5}, // Gestures are described in their own definition
291 {axis: "composition", value: 5}, // Gestures can be composed by their name
292 {axis: "customisation", value: 2}, // Gestures can be copy/pasted, modified and extended,

however the order of relations might require some work
293 {axis: "application", value: 3}, // Gestures are limited to a single region
294 {axis: "activation", value: 0}, // No special activation policies are provided
295 {axis: "binding", value: 0}, // Not supported. A good example of this issue can be related to

Table 6 in their paper with a small modification: the left or right hand should be closed
followed by the opening of the same hand ’(cHr[closed] [] cHl[closed]) >> (cHr[open] []
cHl[open])∗’. In this case to distinguish between the right and the left hand requires code
duplication.

296
297 {axis: "negation", value: 3}, // A disabling operator is provided but offers no additional

temporal logic
298 {axis: "online", value: 3}, // Online gestures are supported, however of limited complexity
299 {axis: "offline", value: 3}, // Offline gestures are supported, however of limited complexity
300 {axis: "overlapping", value: 4}, // Supports overlapping gestures without delay but requires

a compensation method
301 {axis: "segmentation", value: 0}, // Not supported. Requires the use of slack variables to

threshold a virtual screen using the Kinect sensor.
302 {axis: "synchronisation", value: 3}, // Supports an interactive statement to ignore

repetitive data in addition to order independence
303 {axis: "expiration", value: 1}, // State is reset when it becomes invalid to support the

gesture
304 {axis: "long-term", value: 0}, // No long-term reasoning supported
305 {axis: "concurrent", value: 0}, // Each gesture has one state and needs to be reset
306 {axis: "embeddability", value: 1}, // It is challenging to describe the GestIT expressions

with its attributes within a plain ascii text code environment
307 {axis: "runtime", value: 4}, // Supports adding gesture definitions at runtime but does not

have an automated refinement
308 {axis: "reliability", value: 3}, // Does not limit the event input rate, might cause many

compensating actions
309
310 {axis: "spatial", value: 3}, // Supports the use of boolean functions implemented in the host

language with a list of the event history (manual separation)
311 {axis: "temporal", value: 2}, // Limited set of built-in temporal oprators

240 Appendix C. Positioning and Discussion of Related Work

312 {axis: "spatio-temporal", value: 4}, // Spatial and temporal can be nested but in a
restricted manner

313 {axis: "identification", value: 0}, // No support for dealing with identification or complex
grouping problems.

314 {axis: "prioritisation", value: 0}, // The application level needs to decide between gestures
, potentially requiring to revert actions

315 {axis: "prediction", value: 0}, // No support for future event
316 {axis: "verification", value: 0}, // No support for verification
317 {axis: "uncertainty", value: 0}, // Uncertainty is not supported
318 {axis: "profiling", value: 0}, // No support for user profiling
319
320 {axis: "readability", value: 2}, // The language is dense and is not fully compatible with

ascii based code fragments which make it hard to read during development
321 {axis: "debugging", value: 4}, // Incremental debugging of the expression evaluation in a

graphical IDE
322 {axis: "authoring", value: 0} // Textual description of the gestures
323],
324
325 [// ICO
326 {axis: "modularisation", value: 4}, // Modularisation is supported, but becomes a bit

complex when extending the system
327 {axis: "composition", value: 4}, // Composition is supported, but becomes a bit complex

when extending the system
328 {axis: "customisation", value: 2}, // Modifying or extending definitions is not trivial as it

requires developers to check all transitions and be complete
329 {axis: "application", value: 0}, // No support for GUI specific relations
330 {axis: "activation", value: 0}, // No special activation policies
331 {axis: "binding", value: 0}, // No support for variable bindings
332
333 {axis: "negation", value: 3}, // It is unclear if negation is supported and how it can be used,

but petrinets can provide this functionality via weighted arcs, capacities, coloured tokens
and reset arcs

334 {axis: "online", value: 3}, // Online gestures are supported but require developer effort
335 {axis: "offline", value: 3}, // Offline gestures are also supported, however of limited

complexity
336 {axis: "overlapping", value: 5}, // Supports locally overlapping gesture definitions
337 {axis: "segmentation", value: 0}, // Segmentation is not supported
338 {axis: "synchronisation", value: 4}, // Maintains an arbitrary number of tokens until data

is available. However the global state needs to remain in a valid combination
339 {axis: "expiration", value: 3}, // It is unclear how events expire, but all state transitions

are required to be described by the developer (i.e. event expiration is tackled but similar
to other requirements it requires development time)

340 {axis: "long-term", value: 2}, // Can rely on long-term token activations but is limited to
DRAM memory

341 {axis: "concurrent", value: 5}, // Concurrent interaction is inherently supported
342 {axis: "embeddability", value: 0}, // It is unclear how the resulting code looks like and how

the models are stored
343 {axis: "runtime", value: 1}, // It is unclear if gestures can be added at runtime
344 {axis: "reliability", value: 4}, // Limits event rates via a ’FingerPool’, only triggers an

event at the application side (sandboxed), verifies all transitions
345
346 {axis: "spatial", value: 1}, // No path-level spatial operators available. Few built-in (simple)

movement operators
347 {axis: "temporal", value: 3}, // Supports complex temporal relations by writing code on the

transitions

241

348 {axis: "spatio-temporal", value: 3}, // Supports arbitrary combinations of spatial and
temporal operators

349 {axis: "identification", value: 4}, // Each activation (e.g. a finger) can cause an
individual token that can be passed through the network. The grouping problem is tackled
by providing a re-clustering phase

350 {axis: "prioritisation", value: 2}, // Provides a form of simple resolution rules to describe
relations between gestures

351 {axis: "prediction", value: 0}, // No support for future event
352 {axis: "verification", value: 1}, // Minor support for verification
353 {axis: "uncertainty", value: 0}, // Uncertainty is not supported
354 {axis: "profiling", value: 0}, // No support for user profiling
355
356 {axis: "readability", value: 2}, // The readability is low due to the completeness

requirements. However all possible transitions can be visualised and verified
357 {axis: "debugging", value: 4}, // Incremental debugging of which hurdles are taken and

which are not
358 {axis: "authoring", value: 4} // A graphical visualisation is provided to provide a way of

coding and keep an overview of all transitions
359]
360];

Listing C.2: Multimodal frameworks
1 /∗
2 QuickSet
3 [1] Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., and

Clow, J. (1997). Quickset: Multimodal interaction for distributed applications. In
Proceedings of the 5th international conference on Multimedia (MULTIMEDIA 1997),
pages 31--40, Seattle, Washington, USA.

4 [2] Wu, L., Oviatt, S., and Cohen, P. (2002). From members to teams to committee -a robust
approach to gestural and multimodal recognition. IEEE Transactions on Neural Networks,
13(4):972--982.

5 [3] Johnston, M., Cohen, P., McGee, D., Oviatt, S., Pittman, J., and Smith, I. (1997).
Unification-based multimodal integration. In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics (ACL 1997), pages 281--288, Madrid,
Spain.

6
7 MIML
8 [10] Latoschik, M. E. (2002). Designing transition networks for multimodal vr-interactions

using a markup language. In Proceedings of the 4th International Conference on
Multimodal Interfaces (ICMI 2002), pages 411--147, Pittsburgh, PA, USA.

9
10 PATE
11 [20] Pfleger, N. and Schehl, J. (2006). Development of advanced dialog systems with pate. In

Proceedings of the 9th International Conference on Spoken Language Processing (
INTERSPEECH ICSLP 2006), Pittsburgh, PA, USA.

12
13 OpenInterface
14 [30] Serrano, M., Nigay, L., Lawson, J., Ramsay, A., Murray-Smith, R., and Denef, S.

(2008). The openinterface framework: A tool for multimodal interaction. In Proceedings
of the 26th SIGCHI

15 Conference on Human Factors in Computing Systems (CHI 2008), Florence, Italy.
16 [31] Lawson, J.-Y. L., Al-Akkad, A.-A., Vanderdonckt, J., and Macq, B. (2009). An open

source workbench for prototyping multimodal interactions based on off-the-shelf
heterogeneous components. In Proceedings of the 1st SIGCHI symposium on Engineering
interactive computing systems (EICS 2009), pages 245--254, Pittsburgh, PA, USA.

242 Appendix C. Positioning and Discussion of Related Work

17
18 Squidy (Apr)
19 [40] Koning, W., Radle, R., and Reiterer, H. (2009). Squidy: A zoomable design environment

for natural user interfaces. In Proc. of CHI 2009, ACM Conference on Human Factors in
Computing Systems, pages 4561-4566, Boston, MA, USA.

20
21 HephaisTK (Nov)
22 [50] Dumas, B., Lalanne, D., and Ingold, R. (2009a). Hephaistk: a toolkit for rapid

prototyping of multimodal interfaces. In Proceedings of the 11th international conference
on Multimodal interfaces (ICMI-MLMI 2009), pages 231--232, Cambridge, MA, USA.

23 [51] Dumas, B., Lalanne, D., and Ingold, R. (2010). Description languages for multimodal
interaction: a set of guidelines and its illustration with smuiml. Journal on multimodal
user interfaces, 3(3):237--247.

24 [52] Dumas, B., Signer, B., and Lalanne, D. (2012). Fusion in multimodal interactive systems
: an hmm-based algorithm for user-induced adaptation. In Proceedings of the 4th SIGCHI
symposium on Engineering interactive computing systems (EICS 2012), pages 15--24,
Copenhagen, Denmark.

25 [53] Dumas, B., Signer, B., and Lalanne, D. (2014). A graphical editor for the smuiml
multimodal user interaction description language. Science of Computer Programming,
86:30--42.

26
27 Midas
28 (See previous listing)
29
30 DynaMo
31 [70] Avouac, P.-A., Lalanda, P., and Nigay, L. (2011b). Service-oriented autonomic

multimodal interaction in a pervasive environment. In Proceedings of the 13th
international conference on multimodal interfaces, ICMI’11, pages 369--376, New York,
NY, USA. ACM.

32 ∗/
33
34 // Data
35 d = [
36 [// QuickSet
37 {axis: "modularisation", value: 5}, // Each description is contained in a rule
38 {axis: "composition", value: 2}, // No rule composition supported but conditions can be

nested
39 {axis: "customisation", value: 3}, // Rules can be copy/pasted, modified and extended;

However an incremental integer is used for variable bindings
40 {axis: "negation", value: 0}, // Not supported
41 {axis: "application", value: 2}, // One-way information to the application
42 {axis: "activation", value: 5}, // Members to teams to committee (MTC) resolution

policy
43 {axis: "binding", value: 5}, // Provides unbound variables
44
45 {axis: "online", value: 1}, // Uses a backtracking algorithm, not suitable for event-driven

behaviour
46 {axis: "offline", value: 5}, // Supports offline processing
47 {axis: "overlapping", value: 3}, // Overlapping matches are supported but need to be

decided in every turn (MTC)
48 {axis: "segmentation", value: 1}, // Explicit segmentation is required as the approach

relies on internal features
49 {axis: "synchronisation", value: 4}, // Complex temporal operators with event tracking
50 {axis: "expiration", value: 4}, // Offers a timeout feature to remove stale data and ’self-

destructs’ data when new input arrives

243

51 {axis: "long-term", value: 3}, // ’Edges’ can be persisted to be used multiple times until
new data (from the same kind) arrives

52 {axis: "concurrent", value: 4}, // Requires few (e.g. user check) effort to support
concurrent interaction

53 {axis: "embeddability", value: 3}, // Rules are expressed in a graphical manner and a
one-way application API is provided

54 {axis: "runtime", value: 1}, // No rules can be added at runtime
55 {axis: "reliability", value: 2}, // Does not limit the event input rate and is not

sandboxed
56
57 {axis: "spatial", value: 2}, // Relies on internal features which cannot be extended

through the language
58 {axis: "temporal", value: 3}, // Offers support for built-in temporal operators
59 {axis: "spatio-temporal", value: 4}, // Spatial and temporal operators can be combined
60 {axis: "identification", value: 4}, // Uses logical binds to ease the identification problem

and inherently supports the grouping problem
61 {axis: "prioritisation", value: 0}, // No support for priorities
62 {axis: "prediction", value: 0}, // No support for future events
63 {axis: "verification", value: 3}, // Embeds other classifiers
64 {axis: "uncertainty", value: 4}, // Handled by MTC but limited to ML classifiers (no

rules)
65 {axis: "profiling", value: 0}, // Does not offer user profiling tools
66
67 {axis: "readability", value: 4}, // Few keywords and provides a graphical layout
68 {axis: "debugging", value: 1}, // Offers no special debugging support
69 {axis: "authoring", value: 1} // Rules are created in a graphical manner but no constructs

are provided to integrate with sample data
70],
71
72 [// MIML
73 {axis: "modularisation", value: 5}, // Separates all descriptions
74 {axis: "composition", value: 1}, // Descriptions are nameless and cannot be composed.

However, by escaping to functions a form of composition might be possible
75 {axis: "customisation", value: 3}, // Can be modified and extended through external

functions. However, reordering of conditions is problematic
76 {axis: "negation", value: 4}, // Supports negation
77 {axis: "application", value: 1}, // No application integration, except to call functions
78 {axis: "activation", value: 0}, // No special activation policies
79 {axis: "binding", value: 2}, // Variables allowed, but need to by manually filled. These

variables can only contain a single value for the entire program
80
81 {axis: "online", value: 0}, // No support for online processing
82 {axis: "offline", value: 5}, // Supports offline processing
83 {axis: "overlapping", value: 0}, // No overlapping matching
84 {axis: "segmentation", value: 0}, // Explicit begin and end points are required
85 {axis: "synchronisation", value: 0}, // No support provided by the framework
86 {axis: "expiration", value: 1}, // Single state variables (automated discarding
87 {axis: "long-term", value: 4}, // Access to historical data is possible
88 {axis: "concurrent", value: 3}, // Uses multiple tokens
89 {axis: "embeddability", value: 4}, // Embeddable engine with descriptions provided in

XML syntax
90 {axis: "runtime", value: 2}, // Probably not supported, unclear
91 {axis: "reliability", value: 3}, // Single value slots, but support for concurrent tokens
92
93 {axis: "spatial", value: 2}, // No spatial operations provided and one needs to escape to

the host language

244 Appendix C. Positioning and Discussion of Related Work

94 {axis: "temporal", value: 4}, // Advanced combinations of temporal operations are possible
but difficult to encode

95 {axis: "spatio-temporal", value: 3}, // Nesting conditions requires careful design
96 {axis: "identification", value: 1}, // No identification and grouping support except for

concurrent input
97 {axis: "prioritisation", value: 0}, // No prioritisation support
98 {axis: "prediction", value: 0}, // No future event support
99 {axis: "verification", value: 0}, // No verification support

100 {axis: "uncertainty", value: 1}, // No uncertainty support, but escape to host language is
possible

101 {axis: "profiling", value: 0}, // No user profiling support
102
103 {axis: "readability", value: 2}, // A lot of syntax characters and keywords
104 {axis: "debugging", value: 1}, // No support for additional debugging
105 {axis: "authoring", value: 0} // No support for editors
106],
107
108 [// PATE
109 {axis: "modularisation", value: 5}, // Separates all rules
110 {axis: "composition", value: 1}, // No composition supported and need to escape to the

host language
111 {axis: "customisation", value: 3}, // Descriptions can be copy/pasted, modified and

extended. The order of conditions does not matter
112 {axis: "negation", value: 0}, // No negation support
113 {axis: "application", value: 1}, // No application integration, except to call functions
114 {axis: "activation", value: 3}, // Turn-based activation policy
115 {axis: "binding", value: 5}, // Unbound variables supported
116
117 {axis: "online", value: 0}, // No support for online processing
118 {axis: "offline", value: 5}, // Supports offline processing
119 {axis: "overlapping", value: 4}, // Supports overlapping descriptions but does not inform

the developer
120 {axis: "segmentation", value: 2}, // Explicit begin and end points are not required, but no

abstractions are provided to aid the segmentation process
121 {axis: "synchronisation", value: 2}, // Realignment of streams can happen automatically

but requires proper use of temporal operators (and extensions)
122 {axis: "expiration", value: 2}, // Events discarded at each turn
123 {axis: "long-term", value: 1}, // No dedicated support for long-term reasoning
124 {axis: "concurrent", value: 3}, // Concurrent interaction possible when manually

separated
125 {axis: "embeddability", value: 5}, // XML Syntax and cross-platform
126 {axis: "runtime", value: 2}, // Single configuration file, but runtime addition of rules is

probably possible (unclear from the paper)
127 {axis: "reliability", value: 1}, // No reliability aspects
128
129 {axis: "spatial", value: 1}, // No spatial operators provided but can be extended (outside

the language)
130 {axis: "temporal", value: 4}, // Temporal expressions are provided and can be extended (

outside the language syntax)
131 {axis: "spatio-temporal", value: 3}, // Spatial and temporal conditions can be combined

but no internal features are provided
132 {axis: "identification", value: 4}, // Identification and grouping support through

unification
133 {axis: "prioritisation", value: 3}, // [0..1] range prioritisation levels
134 {axis: "prediction", value: 0}, // No future event support
135 {axis: "verification", value: 0}, // No verification support

245

136 {axis: "uncertainty", value: 0}, // No uncertainty support
137 {axis: "profiling", value: 0}, // No user profiling support
138
139 {axis: "readability", value: 4}, // Clear and simple constructs, but uses verbose XML

syntax
140 {axis: "debugging", value: 5}, // Advanced online debugging with editor support
141 {axis: "authoring", value: 4} // Editor support with external representation
142],
143
144 [// OpenInterface
145 {axis: "modularisation", value: 5}, // Separates implementation in composition boxes
146 {axis: "composition", value: 4}, // Boxes can be composed through pipelining
147 {axis: "customisation", value: 3}, // Routes can be redirected
148 {axis: "negation", value: 3}, // Negation is supported (typically used as an inversion

function)
149 {axis: "application", value: 2}, // Supported when the application delivers information as

a stream (or interweaves in a composition box)
150 {axis: "activation", value: 2}, // Each box can be configured autonomously
151 {axis: "binding", value: 0}, // No unbound variables supported
152
153 {axis: "online", value: 5}, // All data is processed in an online fashion. Rather difficult to

reason over a period of time
154 {axis: "offline", value: 1}, // Manual state management to gather data between begin-

and end- events
155 {axis: "overlapping", value: 2}, // Supports overlapping matching but requires duplication

of data (i.e. splitting pipes)
156 {axis: "segmentation", value: 2}, // Poor segmentation support as all logic needs to be

coded in an imperative host language
157 {axis: "synchronisation", value: 3}, // Pipes can be manually delayed based on time or

input from another source
158 {axis: "expiration", value: 3}, // Events expire as they are discarded by each step in the

pipeline.
159 {axis: "long-term", value: 3}, // Persistency can be incorporated (and queried) but no

details are presented in the paper
160 {axis: "concurrent", value: 1}, // Concurrent interaction need to be split on the event

level and pipelines need to be replicated manually
161 {axis: "embeddability", value: 4}, // Typically installed between the input source and the

application as a C++ daemon. Provides extensive TCP/IP support
162 {axis: "runtime", value: 3}, // Redirection of pipes is possible at runtime but no API/

language abstractions are provided to handle this properly
163 {axis: "reliability", value: 4}, // Pass-through semantics with the potential of limiting

event rates
164
165 {axis: "spatial", value: 2}, // Ad-hoc implementation of spatial operators. Few threshold

and averaging filters are provided
166 {axis: "temporal", value: 2}, // No abstractions for temporal logic, each event is handled

one by one
167 {axis: "spatio-temporal", value: 1}, // No abstractions to express spatio-temporal

relations
168 {axis: "identification", value: 1}, // No abstractions to perform identification (unless

ad hoc)
169 {axis: "prioritisation", value: 0}, // No details provided on prioritisation
170 {axis: "prediction", value: 1}, // A ’delay’ feature that expresses the time between events,

but waiting for future knowledge is not supported on the language level
171 {axis: "verification", value: 1}, // Output can be verified using multiple boxes, however

no details are provided in the paper

246 Appendix C. Positioning and Discussion of Related Work

172 {axis: "uncertainty", value: 1}, // Potentially event-based uncertainty handling, no
details provided

173 {axis: "profiling", value: 0}, // No user profiling support
174
175 {axis: "readability", value: 3}, // For data-level fusion tasks the pipelines are typically

easy to follow
176 {axis: "debugging", value: 1}, // No support for additional debugging
177 {axis: "authoring", value: 3} // Graphical authoring of pipelines, but without a focus on

particular modalities
178],
179
180 [// Squidy
181 {axis: "modularisation", value: 5}, // Separates all descriptions
182 {axis: "composition", value: 4}, // Boxes can be composed through pipelining
183 {axis: "customisation", value: 2}, // Routes can be redirected, but extensibility is limited

to the provided boxes
184 {axis: "negation", value: 0}, // Negation is not supported
185 {axis: "application", value: 1}, // No integration with the application
186 {axis: "activation", value: 2}, // Each box can be configured autonomously
187 {axis: "binding", value: 0}, // No unbound variables supported
188
189 {axis: "online", value: 5}, // All data is processed in an online fashion. Rather difficult to

reason over a period of time
190 {axis: "offline", value: 1}, // Manual state management to gather data between begin-

and end- events
191 {axis: "overlapping", value: 2}, // Supports overlapping matching but requires duplication

of data (i.e. splitting pipes)
192 {axis: "segmentation", value: 2}, // Poor segmentation support, limited to threshold filters

and not extensible
193 {axis: "synchronisation", value: 1}, // No details in the paper but potentially enabled by

a delay box with a slack parameter
194 {axis: "expiration", value: 3}, // Events expire as they are discarded by each step in the

pipeline.
195 {axis: "long-term", value: 0}, // No support for long-term reasoning
196 {axis: "concurrent", value: 1}, // Concurrent interaction need to be split on the event

level and pipelines need to be replicated manually
197 {axis: "embeddability", value: 2}, // Provides OSC support. No details on the description

format
198 {axis: "runtime", value: 2}, // Redirection of pipes is potentially possible at runtime
199 {axis: "reliability", value: 3}, // Pass-through semantics with the potential of limiting

event rates (no details in the paper)
200
201 {axis: "spatial", value: 1}, // No abstractions for spatial relations
202 {axis: "temporal", value: 1}, // No abstractions for temporal logic, each event is handled

one by one
203 {axis: "spatio-temporal", value: 1}, // No abstractions to express spatio-temporal

relations
204 {axis: "identification", value: 1}, // No abstractions to perform identification (unless

ad hoc)
205 {axis: "prioritisation", value: 0}, // No details provided on prioritisation
206 {axis: "prediction", value: 0}, // Waiting for future knowledge is not supported on the

language level
207 {axis: "verification", value: 1}, // Output can be verified using multiple boxes, however

no details are provided in the paper
208 {axis: "uncertainty", value: 1}, // Potentially event-based uncertainty handling, no

details provided

247

209 {axis: "profiling", value: 0}, // No user profiling support
210
211 {axis: "readability", value: 3}, // For data-level fusion tasks the pipelines are typically

easy to follow. Ad hoc code is written in Java
212 {axis: "debugging", value: 4}, // Visual aid to specify properties of composition boxes,

with an option to query historical data
213 {axis: "authoring", value: 4} // Graphical authoring tool for pipelines with additional aid

to specify properties
214],
215
216 [// HephaisTK
217 {axis: "modularisation", value: 5}, // Multimodal descriptions are separated
218 {axis: "composition", value: 0}, // No support for composition
219 {axis: "customisation", value: 2}, // Poor customisation support, limited to internal

triggers and actions
220 {axis: "application", value: 2}, // Dialogue management should be specified in the

SMUIML language. No synchronisation with the application level is provided
221 {axis: "activation", value: 3}, // Integration committee toggles activations
222 {axis: "binding", value: 0}, // Variable bindings are support in a manual manner
223
224 {axis: "negation", value: 0}, // Negation is not supported
225 {axis: "online", value: 2}, // Triggers can be embedded within transitions
226 {axis: "offline", value: 3}, // Triggers and results are omitted when conditions are met
227 {axis: "overlapping", value: 2}, // Input can be reused across descriptions but the

committee needs to decide on an per event basis
228 {axis: "segmentation", value: 0}, // No support for segmentation
229 {axis: "synchronisation", value: 2}, // Dialogs provide a lead-time with a slack

parameter
230 {axis: "expiration", value: 3}, // Events expire as they are overwritten by new events
231 {axis: "long-term", value: 0}, // No support for long-term reasoning
232 {axis: "concurrent", value: 0}, // No support for concurrent interaction
233 {axis: "embeddability", value: 3}, // Interweaving of specifications with the host language

is required. Cross-platform deployment is possible
234 {axis: "runtime", value: 2}, // Additional descriptions can be added at runtime, but

updating or removing is not possible
235 {axis: "reliability", value: 3}, // Does not limit the event input rate, but sandboxed
236
237 {axis: "spatial", value: 0}, // No abstractions for spatial operators
238 {axis: "temporal", value: 4}, // Few built-in temporal operations with can be nested
239 {axis: "spatio-temporal", value: 2}, // No spatio-temporal operators but conditions can

be interweaved with temporal information
240 {axis: "identification", value: 0}, // No support for expressing identification and

grouping
241 {axis: "prioritisation", value: 1}, // Integration committee can prioritise descriptions,

but this is outside the scope of the language
242 {axis: "prediction", value: 2}, // Requires to set a waiting time for each event, but

supports a compatibility mechanism
243 {axis: "verification", value: 0}, // No verification support
244 {axis: "uncertainty", value: 4}, // HMM-based extension allows dealing with uncertain

events and uncertain results
245 {axis: "profiling", value: 4}, // User profiling provided with an HMM-based extension
246
247 {axis: "readability", value: 3}, // Deep nesting of constructs using a verbose XML

syntax
248 {axis: "debugging", value: 4}, // Interactive visualisation with live support
249 {axis: "authoring", value: 3} // Graphical definition is possible (in a limited way)

248 Appendix C. Positioning and Discussion of Related Work

250],
251
252 [// Midas
253 {axis: "modularisation", value: 5}, // Each description is contained in a rule
254 {axis: "composition", value: 4}, // Descriptions can easily be composed by relying on high-

level facts, attempts, computed facts and module inheritance
255 {axis: "customisation", value: 4}, // Rules can be copy/pasted, modified and extended; ’

Attempts’ further enable this via parameters.
256 {axis: "negation", value: 5}, // Supports complex negation, with the possibility to wait for

future events
257 {axis: "application", value: 4}, // Supports shadow facts to synchronise application info
258 {axis: "activation", value: 2}, // Bookkeeping facts (which are cumbersome but powerful)

and activation flags (easy but limited)
259 {axis: "binding", value: 5}, // Provides unbound variables
260
261 {axis: "online", value: 4}, // Supports online processing through alternation of conditions

and modifiers or intermediate progress notifications
262 {axis: "offline", value: 4}, // Supports offline processing although explicit state checks

are required
263 {axis: "overlapping", value: 3}, // Inherently deals with overlapping matching in the

processing engine but does not inform the developer
264 {axis: "segmentation", value: 5}, // Optimises for recall to optimally segment candidates
265 {axis: "synchronisation", value: 5}, // Out-or-order, realignment and synchronised

expiration supported
266 {axis: "expiration", value: 3}, // Offers a template-local relative time event expiration

mechanism as well as bounded size. However, this needs to be set manually
267 {axis: "long-term", value: 3}, // Offers persistency and DRAM containers to ease long-

term reasoning. However, this needs to be handled manually
268 {axis: "concurrent", value: 4}, // Requires few effort (i.e. user grouping) to support

concurrent interaction
269 {axis: "embeddability", value: 3}, // Can be embedded in all kinds of applications (C

library and networking APIs exists) but requires rules to be developed as strings
270 {axis: "runtime", value: 4}, // Supports adding rules at runtime but does not have an

automated refinement
271 {axis: "reliability", value: 4}, // Does not limit the event input rate but is sandboxed.

Extensions have shown to scale in terms of performance to 64 cores however the
approach is less flexible (no fusion across levels)

272
273 {axis: "spatial", value: 5}, // Offers extensive support for spatial operators
274 {axis: "temporal", value: 5}, // Offers extensive support for temporal operators
275 {axis: "spatio-temporal", value: 5}, // Spatio-temporal features and nesting of spatial

and temporal operators is not restricted by the engine
276 {axis: "identification", value: 3}, // Uses logical binds to ease the identification problem

and inherently supports the grouping problem. However, this results into multiple
candidates that need to be verified later

277 {axis: "prioritisation", value: 2}, // Offers rule-specific prioritisation and uses
bookkeeping facts to enable fusion. However it is hard to express a conflict resolution
between multiple rules

278 {axis: "prediction", value: 2}, // An additional condition implies waiting for future
events. Furthermore, developers can write delay statements but it not easy to manage

279 {axis: "verification", value: 3}, // Embeds other classifiers to verify candidates
280 {axis: "uncertainty", value: 1}, // Uncertainty can be part of a fact attribute but requires

additional effort
281 {axis: "profiling", value: 1}, // Does not offer user profiling tools, but does provide a

manual interface to access and store historical data
282

249

283 {axis: "readability", value: 2}, // Kammer[22] measured a low readability of Midas 1.0.
Midas 2.0 abstracts a LISP-based syntax with a Ruby-style flavour

284 {axis: "debugging", value: 2}, // Offers no special debugging support
285 {axis: "authoring", value: 3} // An visual editor exists both for multi-touch and for full-

body gestures
286],
287
288 [// DynaMo
289 {axis: "modularisation", value: 5}, // Focus on proxy models
290 {axis: "composition", value: 4}, // Focus on device and output abstraction with the ability

to use alternatives on the fly. Thereby providing many layers of composition
291 {axis: "customisation", value: 3}, // Outsources customisation purposes to external tools

based on a Java implementation
292 {axis: "application", value: 4}, // Two-way communication between application and

fusion framework. Requires manual linking
293 {axis: "activation", value: 4}, // Uses an autonomic manager and administration layer

to make decisions. However no API/language abstractions are provided in the paper
294 {axis: "binding", value: 0}, // No (unbound) variables supported
295
296 {axis: "negation", value: 0}, // Negation is not supported in their models
297 {axis: "online", value: 2}, // Potentially possible to trigger in the middle of an execution,

but unclear from paper. Requires ad hoc implementation in Java
298 {axis: "offline", value: 3}, // The fusion process is outsourced to native services thereby

relying on processed data for offline decisions
299 {axis: "overlapping", value: 2}, // Supports overlapping fusion but does not inform the

developer
300 {axis: "segmentation", value: 1}, // No segmentation support except when outsourced to

services
301 {axis: "synchronisation", value: 2}, // Mentioned as a concern in the paper but unclear

how it works
302 {axis: "expiration", value: 3}, // Events expire are discarded by the following event
303 {axis: "long-term", value: 0}, // No support for long-term reasoning
304 {axis: "concurrent", value: 0}, // No support for concurrent interaction
305 {axis: "embeddability", value: 4}, // Deep integration based on OSGi for Java
306 {axis: "runtime", value: 5}, // DynaMo focuses on runtime adaptation and discovery
307 {axis: "reliability", value: 5}, // Does not limit the event input rate. Covers networking

problems with dynamic adaptation
308
309 {axis: "spatial", value: 0}, // No spatial abstractions provided
310 {axis: "temporal", value: 0}, // No temporal abstractions provided
311 {axis: "spatio-temporal", value: 0}, // No spatio-temporal abstractions provided
312 {axis: "identification", value: 0}, // No identification and grouping support
313 {axis: "prioritisation", value: 4}, // Prioritisation on fusion and fission level to provide

the best combination
314 {axis: "prediction", value: 0}, // No future event support
315 {axis: "verification", value: 0}, // No verification support
316 {axis: "uncertainty", value: 0}, // No uncertainty support
317 {axis: "profiling", value: 0}, // No user profiling support
318
319 {axis: "readability", value: 3}, // Graphical layout with illustrations and connected

actions. XML-base coding of proxy models
320 {axis: "debugging", value: 4}, // Incremental debugging
321 {axis: "authoring", value: 4} // Visual editor to link input sources with actions
322]
323];

D
ANTLR Specification of

Midas

Listing D.1: ANTLR 4 specification of Midas
1 grammar Midas2;

2

3 @header {

4 package midas2;

5 }

6

7 TEMPLATE: 'template ';
8 FUNCTION: 'function ';
9 ATTEMPT: 'attempt ';

10 MODULE: 'module ';
11 INCLUDE: 'include ';
12 RULE: 'rule';
13 TEST: 'test';
14 ASSERT: 'assert ';
15 MODIFY: 'modify ';
16 RETRACT: 'retract ';
17 DISPLAY: 'display ';
18 PRINTOUT: 'printout ';
19 CALL: 'call';
20 SELF: 'self';
21 SUPER: 'super ';
22 NO:'no';
23 ASYNC: 'async ';

251

252 Appendix D. ANTLR Specification of Midas

24 WAIT: 'wait';
25 GROUP: 'group ';
26 SALIENCE: 'salience ';
27 RETURN: 'return ';
28 WITH: 'with';
29 NIL:'nil';
30 TYPE_INTEGER: 'int';
31 TYPE_FLOAT: 'float ';
32 TYPE_STRING: 'string ';
33 BECOMES: '=>';
34 APPL_ATTEMPT: '<-';
35 NEQUALS: '!=';
36 EQUALS: '==';
37 PIPE: '|';
38 AMP:'&';
39 TILDE: '~';
40 DOLLAR: '$';
41 LT:'<';
42 LTE:'<=';
43 GT:'>';
44 GTE:'>=';
45 PLUS: '+';
46 MINUS: '-';
47 TIMES: '*';
48 EXP:'**';
49 DIV:'/';
50 BINDS: '=';
51 CHECK: 'check ';
52 END:'end';
53 LPAREN: '(';
54 RPAREN: ')';
55 QUESTION: '?';
56 FIRST: 'first ';
57 LAST: 'last';
58 DOT:'.';
59

60 /* Reserved keywords for Ruby */

61 OBJECT: 'Object ';
62 CLASS: 'Class ';
63 DEF:'def';
64 NOT:'not';
65

66 program

67 : entity* EOF

68 ;

69

70 entity

253

71 : declaration | constant | classe | module | function

| attempt | rulee | modifier | global_function_call

72 ;

73

74 declaration

75 : (DOLLAR l_name BINDS)? CALL? c_name DOT L_ID

arguments?

76 ;

77

78 classe

79 : TEMPLATE c_name inheritance? open_block include*

class_field* (attempt|function)* close_block

80 ;

81

82 module

83 : MODULE c_name open_block include* class_field* (

attempt|function)* close_block

84 ;

85

86 inheritance

87 : LT c_name

88 ;

89

90 include

91 : INCLUDE c_name (',' c_name)*

92 ;

93

94 class_field

95 : class_field_multiple

96 | class_field_single

97 | constant

98 ;

99

100 class_field_multiple

101 : type? l_name (',' l_name)+

102 ;

103

104 class_field_single

105 : type? l_name primitive_value?

106 ;

107

108 constant

109 : type? C_ID BINDS expression

110 ;

111

112 function

113 : FUNCTION (SELF DOT)? l_name parameters? open_block

expression+ close_block

254 Appendix D. ANTLR Specification of Midas

114 ;

115

116 parameters

117 : LPAREN parameter (',' parameter)* RPAREN

118 ;

119

120 parameter

121 : l_name (BINDS primitive_value)?

122 ;

123

124 attempt

125 : ATTEMPT (SELF APPL_ATTEMPT)? l_name parameters?

open_block attempt_condition* attempt_return?

close_block

126 ;

127

128 attempt_condition

129 : condition

130 | (l_name BINDS)? computed_fact

131 ;

132

133 attempt_return

134 : returne

135 | RETURN computed_fact

136 ;

137

138 rulee

139 : RULE l_name open_block rulee_declarations*

rulee_statement+ close_block

140 ;

141

142 rulee_declarations

143 : SALIENCE INT

144 | GROUP l_name

145 ;

146

147 rulee_statement

148 : condition | modifier

149 ;

150

151 condition

152 : conditional_element | test | bind | special_block

153 ;

154

155 conditional_element

156 : c_name literal_constraint?

157 | c_name DOT l_name value

158 ;

255

159

160 bind

161 : l_name BINDS (conditional_element | expression |

attempt_inline | array)

162 ;

163

164 test

165 : TEST? expression (LT|LTE|EQUALS|NEQUALS|GTE|GT)

expression

166 | TEST? attempt_inline

167 ;

168

169 expression

170 : special_form

171 | returne

172 | infix_expression

173 | MINUS? function_call

174 | LPAREN MINUS? expression RPAREN

175 | l_name BINDS expression

176 | MINUS? value

177 ;

178

179 special_form

180 : 'if' LPAREN expression RPAREN then_clause

elsif_clause* else_clause?

181 ;

182

183 then_clause

184 : '{' expression* '}'
185 ;

186

187 elsif_clause

188 : 'elif' expression '{' expression* '}'
189 ;

190

191 else_clause

192 : 'else' '{' expression* '}'
193 ;

194

195 global_function_call

196 : l_name (DOT l_name)? arguments?

197 | c_name DOT l_name arguments?

198 ;

199

200 function_call

201 : l_name (DOT l_name)? arguments?

202 | c_name DOT l_name arguments?

203 | SUPER DOT l_name arguments?

256 Appendix D. ANTLR Specification of Midas

204 | SELF DOT l_name arguments?

205 | DOLLAR l_name (DOT l_name)? arguments?

206 ;

207

208 function_call_paren

209 : l_name (DOT l_name)? arguments_paren?

210 | c_name DOT l_name arguments_paren?

211 | SUPER DOT l_name arguments_paren?

212 | SELF DOT l_name arguments_paren?

213 | DOLLAR l_name (DOT l_name)? arguments_paren?

214 ;

215

216 attempt_inline

217 : l_name (APPL_ATTEMPT l_name)? arguments?

218 | c_name APPL_ATTEMPT l_name arguments?

219 | SUPER APPL_ATTEMPT l_name arguments?

220 | SELF APPL_ATTEMPT l_name arguments?

221 ;

222

223 infix_expression

224 : infix_expression1

225 ;

226

227 infix_expression1

228 : infix_expression2 (infix_operator1 infix_expression2

)*

229 ;

230

231 infix_operator1

232 : PLUS | MINUS

233 ;

234

235 infix_expression2

236 : infix_expression3 (infix_operator2 infix_expression3

)*

237 ;

238

239 infix_operator2

240 : TIMES | DIV

241 ;

242

243 infix_expression3

244 : infix_expression4 (infix_operator3 infix_expression4

)*

245 ;

246

247 infix_operator3

248 : EXP

257

249 ;

250

251 infix_expression4

252 : LPAREN expression RPAREN

253 | value

254 | function_call_paren

255 ;

256

257 computed_fact

258 : attribute_values computed_fact_extends?

259 ;

260

261 computed_fact_extends

262 : WITH '[' c_name (',' c_name)* ']'
263 ;

264

265 returne

266 : RETURN expression

267 ;

268

269 arguments

270 : expression (',' expression)*

271 | LPAREN expression (',' expression)* RPAREN

272 ;

273

274 arguments_paren

275 : LPAREN expression (',' expression)* RPAREN

276 ;

277

278 literal_constraint

279 : '{' constraint_inline (',' constraint_inline)* '}'
280 ;

281

282 modifier

283 : ASSERT c_name attribute_values?

284 | MODIFY l_name attribute_values

285 | RETRACT l_name (',' l_name)*

286 | DISPLAY arguments

287 | PRINTOUT arguments

288 | (l_name BINDS)? CALL function_call

289 ;

290

291 special_block

292 : negation_block

293 | async_block

294 | wait_block

295 ;

296

258 Appendix D. ANTLR Specification of Midas

297 negation_block

298 : (NO|NOT) open_block condition+ close_block

299 ;

300

301 async_block

302 : ASYNC DOLLAR attempt_inline

303 | ASYNC open_block expression+ close_block

304 ;

305

306 wait_block

307 : WAIT variable ',' primitive_number

308 ;

309

310 attribute_values

311 : '{' l_name BECOMES expression (',' l_name BECOMES

expression)* '}'
312 ;

313

314 constraint_inline

315 : l_name (EQUALS|NEQUALS) constraint_value

316 ;

317

318 constraint_value

319 : value PIPE PIPE? constraint_inline

320 | value AMP AMP? constraint_inline

321 | TILDE value

322 | value

323 ;

324

325 value

326 : MINUS? logical_variable

327 | MINUS? primitive_value

328 | array

329 | MINUS? array_value

330 | MINUS? variable

331 | MINUS? (c_name DOT)? C_ID

332 | MINUS? SELF

333 ;

334

335 variable

336 : slot_variable

337 | array_variable

338 | l_name

339 ;

340

341 logical_variable

342 : QUESTION l_name

343 ;

259

344

345 slot_variable

346 : l_name DOT l_name

347 ;

348

349 array_variable

350 : (l_name|array) DOT (FIRST|LAST) DOT l_name

351 | (l_name|array) '[' MINUS? INT ']' DOT l_name

352 ;

353

354 array

355 : '[' value (',' value)* ']'
356 ;

357

358 array_value

359 : l_name '[' MINUS? INT ']'
360 ;

361

362 primitive_value

363 : primitive_number | primitive_string | NIL

364 ;

365

366 primitive_number

367 : MINUS? (INT|FLOAT) (DOT (TIME_HELPER|SPACE_HELPER))

?

368 ;

369

370 primitive_string

371 : STRING | SYMBOL

372 ;

373

374 type

375 : TYPE_INTEGER | TYPE_FLOAT | TYPE_STRING

376 ;

377

378 open_block

379 : ('{' | CHECK)?

380 ;

381

382 close_block

383 : '}' | END

384 ;

385

386 c_name

387 : C_ID

388 ;

389

390 l_name

260 Appendix D. ANTLR Specification of Midas

391 : L_ID

392 | TIME_HELPER | SPACE_HELPER

393 | FIRST | LAST

394 | FUNCTION

395 ;

396

397 TIME_HELPER

398 : 'd'|'day'|'days'|'h'|'hour'|'hours '|'m'|'min'|'
minute '|'minutes '

399 | 's'|'second '|'seconds '|'ms'|'millisecond '|'
milliseconds '

400 ;

401

402 SPACE_HELPER

403 : 'dam'|'decameter '|'decameters '|'meter '|'meters '|'dm'
|'decimeter '|'decimeters '

404 | 'cm'|'centimeter '|'centimeters '|'mm'|'millimeter '|'
millimeters '

405 | 'px'|'em'|'pt'|'in'|'ex'|'pc'|'rem'
406 ;

407

408 C_ID

409 : ('A'..'Z') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')* (':'('a
'..'z'|'A'..'Z'|'0'..'9'|'_')+)*

410 ;

411

412 L_ID

413 : ('a'..'z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')* (':
'('a'..'z'|'A'..'Z'|'0'..'9'|'_')+)*

414 ;

415

416 INT

417 : ('0'..'9')+
418 ;

419

420 FLOAT

421 : ('0'..'9')+ (DOT ('0'..'9')+)? EXPONENT?

422 | DOT ('0'..'9')+ EXPONENT?

423 | ('0'..'9')+ EXPONENT

424 ;

425

426 BLOCK_COMMENT

427 : '/*' .*? '*/' -> channel(HIDDEN)

428 ;

429

430 LINE_COMMENT

431 : ('//'|'#') ~[\r\n]* -> channel(HIDDEN)

432 ;

261

433

434 WS

435 : [\t\r\n\f]+ -> channel(HIDDEN)

436 ;

437

438 SYMBOL

439 : ':' (C_ID | L_ID | TIME_HELPER | SPACE_HELPER |

FIRST | LAST | TIMES)

440 ;

441

442 STRING

443 : '"' (ESC_SEQ | ~('\\'|'"'))* '"'
444 ;

445

446 CHAR: '’' (ESC_SEQ | ~('’'|'\\')) '’'
447 ;

448

449 fragment

450 EXPONENT : ('e'|'E') ('+'|'-')? ('0'..'9')+ ;

451

452 fragment

453 HEX_DIGIT : ('0'..'9'|'a'..'f'|'A'..'F') ;

454

455 fragment

456 ESC_SEQ

457 : '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'’'|'\\')
458 | UNICODE_ESC

459 | OCTAL_ESC

460 ;

461

462 fragment

463 OCTAL_ESC

464 : '\\' ('0'..'3') ('0'..'7') ('0'..'7')
465 | '\\' ('0'..'7') ('0'..'7')
466 | '\\' ('0'..'7')
467 ;

468

469 fragment

470 UNICODE_ESC

471 : '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

472 ;

E
Reused Attempts and

Functions

Listing E.1: Reusable attempts and functions
1 module Time
2 time
3 attempt beforeF(f, eps = 0)
4 time + eps < f.time
5 end
6 attempt afterF(f, eps = 0)
7 time + eps > f.time
8 end
9 attempt withinF(f, min, max)

10 f.time + min < time
11 f.time + max > time
12 end
13 end
14 module TimeInterval
15 time begin, time end
16 attempt duringF(f)
17 time begin < time end
18 f.time begin < f.time end
19 f.time begin < time begin
20 f.time end > time end
21 end
22 end
23 module Space2D
24 x, y
25 attempt self←align(x1, y1, x2, y2, x diff, y diff)
26 equal x1, x2, x diff
27 equal y1, y2, y diff

263

264 Appendix E. Reused Attempts and Functions

28 end
29 function self.euclidean distance(x1, y1, x2, y2)
30 Math.sqrt ((x2-x1)∗∗2) + ((y2-y1)∗∗2)
31 end
32 function euclidean distance(x2, y2)
33 Space2D.euclidean distance x, y, x2, y2
34 end
35 attempt self←near(x1, y1, x2, y2, r)
36 r > euclidean distance x1, y1, x2, y2
37 end
38 attempt near(x2, y2, r)
39 Space2D←near x, y, x2, y2, r
40 end
41 attempt self←away(x1, y1, x2, y2, r)
42 r < euclidean distance x1, y1, x2, y2
43 end
44 attempt away(x2, y2, r)
45 Space2D←away x, y, x2, y2, r
46 end
47 attempt awayF(f, r)
48 Space2D←away x, y, f.x, f.y, r
49 end
50 attempt self←translated near(x1, y1, x2, y2, x offset, y offset, r)
51 near x2, y2, x1 + x offset, y1 + y offset, r
52 end
53 attempt translated near(x2, y2, x offset, y offset, r)
54 Space2D←translated near(x, y, x2, y2, x offset, y offset, r)
55 end
56 attempt translated nearF(f, x offset, y offset, r)
57 Space2D←translated near(x, y, f.x, f.y, x offset, y offset, r)
58 end
59 end
60 module Space2DInterval
61 include Space2D
62 x begin, x end
63 y begin, y end
64 attempt near beginF(f, r)
65 Space2D←near x begin, y begin, f.x begin, f.y begin, r
66 end
67 attempt align beginF(f, x diff, y diff)
68 Space2D←align x begin, y begin, f.x begin, f.y begin, x diff, y diff
69 end
70 end

F
Built-in Mudra Templates

Listing F.1: Built-in Mudra templates
1 template Joint
2 sensor,user,joint,x,y,z,confidence
3 HEAD = 1
4 NECK = 2
5 TORSO = 3
6 WAIST = 4
7 COLLAR LEFT = 5
8 SHOULDER LEFT = 6
9 ELBOW LEFT = 7

10 WRIST LEFT = 8
11 HAND LEFT = 9
12 FINGERTIP LEFT = 10
13 COLLAR RIGHT = 11
14 SHOULDER RIGHT = 12
15 ELBOW RIGHT = 13
16 WRIST RIGHT = 14
17 HAND RIGHT = 15
18 FINGERTIP RIGHT = 16
19 HIP LEFT = 17
20 KNEE LEFT = 18
21 ANKLE LEFT = 19
22 FOOT LEFT = 20
23 HIP RIGHT = 21
24 KNEE RIGHT = 22
25 ANKLE RIGHT = 23
26 FOOT RIGHT = 24
27 end
28 template RelativeJoint
29 sensor,user,index,parent muid,parent,parent time,child muid,child,child time
30 x,y,z,time,distance,distance x,distance y,distance z

265

266 Appendix F. Built-in Mudra Templates

31 previous muid,previous time,previous x,previous y,previous z
32 end
33 template Hand
34 sensor,hand,x,y,z,confidence
35 end
36 template Face
37 sensor,user,x,y,z,pitch,yaw,roll
38 end
39 template FaceAnimation
40 sensor,user,lip raise,lip stretcher,lip corner depressor,jaw lower,brow lower,brow raise
41 end
42 template Tuio2DCur
43 id,i,state,x,y,vx,vy,m
44 end
45 template Tuio2DObj
46 id,i,state,x,y,a,vx,vy,ra,m,r
47 end
48 template Touch2D
49 DOWN = 1
50 MOVE = 2
51 UP = 3
52 end
53 template Accelerometer
54 x # The x acceleration
55 y # The y acceleration
56 z # The z acceleration
57 sensor # Sensor providing the value
58 end
59 template Speech
60 word # uttered word(s)
61 probability # probability value [0..1]
62 user # unique identifier for the user
63 origin # name of the voice recogniser
64 end

G
Compatibility of Criteria

Defined by Cirelli et al.

Cirelli et al. recently conducted a survey on multi-touch gesture recognition
and multi-touch frameworks. As shown in Figure G.1, they analysed
related data-level frameworks on 14 criteria [26]. Their criteria focus on the
user of a framework, while our criteria analyse fine-grained functionality
provided by a particular framework. In the following, we show that these
14 criteria are compatible with the criteria we defined in Chapter 2:

1. Be Flexible and Extensible This criterium analyses whether
developers can easily extend the existing gesture set with a new
gesture. This corresponds to the modularisation, composition and
customisation.

2. Be Fast In order to reduce the recognition latency, algorithms
“must be fast”. In our work this corresponds to the reliability and
online processing criteria.

3. Be accurate In the survey, this criteria analyses the potential for
false positives. In our work, we discuss the fundamental trade-off
between recall and precision.

4. Support Multi-Touch Multi-touch gestures rely on the simul-
taneous input from multiple fingers. Therefore, the detection of

267

268 Appendix G. Compatibility of Criteria Defined by Cirelli et al.

2. Be Fast Gestures recognition algorithms must be fast in
order to not harm the users interaction due to recognition
latency.

3. Be Accurate Misidentification of gestures may cause sev-
eral issues to the interaction, as users may lose their current
work or may waste time undoing unwanted actions trig-
gered by an incorrect recognition.

4. Support Multi-Touch and 5. Multi-Users Multi-touch
surfaces are most often used to support collaborative
applications. Thus, handling multi-touch gestures from
several users simultaneously is a requirement for recogni-
tion systems. Multi-touch gestures may cause the fingers
permutation problem, while multi-user environments
require identifying which fingers belong to each gesture
each user is performing.

6. Support Spatial Invariance Most multi-touch surface
applications must not enforce a fixed orientation and partic-
ipants may interact from any position around the table [26].
Also, gestures may be performed at any place around the
screen and at different scales. Thus scale, translation and
rotation invariances are also important requirements for in-
teractive table applications.

7. Provide Continuous Feedback Applications must be
continuously notified about gesture events when these
gestures are being used to manipulate objects on the
screen, such as rotating, moving or resizing them. Such
gestures should be cancelled when they become untrue.

8. Allow Easy Prototyping During the prototyping phase of
any multi-touch surface application, developers and inter-
action designers work together in order to run several user
experiments to identify which gestures will be used in their
applications. This is an iterative process which requires
making it easy to modify the gestures set and handle their
respective events at the application level.

9. Support Symbolic Gestures Symbolic gestures are often
used to execute single-shot actions in tabletop applications,
playing the role of command’s shortcuts or hotkeys, which
are common in other platforms. These gestures are defined
by their trajectory, both in spatial and time coordinates.

10. Allow Time-Constrained Gestures Most applications
uses tap or press and hold gestures in order to manipulate
objects on the screen. These gestures are examples of
spatially identical gestures, but very different from the
timing perspective.

11. Support Territories Users perform different actions in
different multi-touch surface territories [39]. Therefore, a
gesture framework must allow developers to define which
gestures are allowed in each territory, avoiding delegating
this decision to the application level.

12. Recognize Free-form Gestures Gestures such as drag
and lasso can not be described by their trajectories. There-
fore, recognizers must also handle such kind of free-form
gestures.

13. Support Sequential Gestures A well-defined sequence
of multi-touch gestures can trigger a new action at the ap-
plication level (combos of gestures). A gestures framework
must allow developers to specify these sequences and their
time constraints and must notify the application whenever
these sequences are detected.

14. Support Cooperative Gestures As multi-touch surfaces
are often used to support collaborative applications, frame-
works should support cooperative gestures.

Table 3 evaluates some of the multi-touch gestures frame-
works and recognizers discussed in this paper according to
the proposed criteria (•: supported; �: unsupported; �: not
enough data). Unfortunately, from Kammer et al. review on
multi-touch frameworks and our review on multi-touch ges-
ture recognizers, none of these solutions meets all of the pro-
posed criteria.

Table 3: Frameworks and Recognizers Analysis
Criteria Midas Proton++ $N-Protractor MT4J

1 • • • •
2 • � • �
3 � � • �
4 • • • •
5 • � � �
6 � � • �
7 • • � •
8 � • • �
9 • � • �
10 • • � •
11 • � � •
12 • • � •
13 • • � �
14 • � � �

CONCLUSION
We reviewed the state of art techniques and frameworks for
defining and recognizing multi-touch gestures for multi-touch
surface applications. We discussed their strengths and weak-
nesses, which we understand are important for both people
who are starting on this field and people who are interested in
addressing discussed issues in future researches.

Finally, from the concepts from the multi-touch surfaces in-
teraction field, such as territoriality, orientation and collabora-
tion, and the limitations of the current state of the art gestures
recognition systems, we proposed an extension to Kammer
et al. set of criteria that a framework should meet to provide
better support to multi-touch surface interaction.

Unfortunately, none of the state of the art techniques or
frameworks discussed in this paper meets all the proposed
requirements. We would like to point out that although some
new sensors, such as Kinect and Leap Motion have been re-
leased and have gained great attention from the tabletop com-
munity recently, interaction with multi-touch gestures is still
not fully supported and is an important and challenging area
for future researches.

ITS 2014 • Hardware, Sensing and Frameworks November 16-19, 2014, Dresden, Germany

42

Figure G.1: Frameworks and recognisers analysis by Cirelli et al.

multi-touch gestures can be seen as a data-level fusion process.
In our work, multi-touch support is analysed through the spatial,
temporal and spatio-temporal specification criteria. Additionally,
support for partial overlapping matches and segmentation criteria
is also relevant to overcome the fingers permutation problem the
authors mentioned.

5. Support Multi-User Support for multiple users corresponds to
the concurrent interaction criteria we defined.

6. Support Spatial Invariance Scale, translation and rotation in-
variance is important for developing multi-touch applications. In
our work, scale invariance depends on the spatial operators used
and defined by the developer.

7. Provide Continuous Feedback This criteria corresponds to the
online processing criteria we defined.

8. Allow Easy Prototyping Easy prototyping is important for op-
timally experimenting with novel sensors. In our work, this is
analysed by the readability, debugging and authoring criteria.

269

9. Support Symbolic Gestures This criteria corresponds to the
offline processing criteria we defined.

10. Allow time-constrained Gestures This criteria corresponds to
the temporal specification criteria we defined.

11. Support Territories The support for spatial territories is import-
ant to distinguish gestures before delegation to the application level.
In our work, territories are part of the spatial specification and
application symbiosis criteria.

12. Recognize Free-form Gestures This criteria corresponds to the
spatial specification criterion we defined.

13. Support Sequential Gestures A well-defined sequence of ges-
tures can be performed to trigger a single more important action.
In our work, this corresponds to the temporal and composition
criteria.

14. Support Cooperative Gestures Cooperative gestures are sup-
ported when frameworks support the unification, grouping and
concurrent interaction criteria we defined.

H
SMUIML XPaint
Implementation

Listing H.1: A SMUIML implementation of a paint application
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <smuiml>
3 <integration description client=”xpaint client”>
4 <recognizers>
5 <recognizer name=”speech” modality=”speech”/>
6 <recognizer name=”reactivision” modality=”reactivision”>
7 <variable name=”posx” value=”xpos”/>
8 <variable name=”posy” value=”ypos”/>
9 <variable name=”fiducial” value=”sourceId”/>

10 </recognizer>
11 <recognizer name=”phidgetrfid” modality=”rfid”>
12 <variable name=”shape” value=”source”/>
13 <variable name=”oper” value=”source”/>
14 <translate value from=”2342111” to=”filled circle”/>
15 <variable name=”rfid value” value=”tagID”/>
16 </recognizer>
17 <recognizer name=”phidget ikit” modality=”phidget ikit”/>
18 <recognizer name=”xpaint client” modality=”xpaint client”>
19 <variable name=”background selected” value=”data” type=”string”/>
20 </recognizer>
21 </recognizers>
22 <triggers>
23 <trigger name=”select shape”>
24 <source modality=”speech” value=”select shape”/>
25 </trigger>
26 <trigger name=”return”>
27 <source modality=”speech” value=”return”/>

271

272 Appendix H. SMUIML XPaint Implementation

28 </trigger>
29 <trigger name=”begin draw”>
30 <source modality=”speech” value=”begin draw”/>
31 </trigger>
32 <trigger name=”end draw”>
33 <source modality=”speech” value=”end draw”/>
34 </trigger>
35 <trigger name=”select background”>
36 <source modality=”speech” value=”select background”/>
37 </trigger>
38 <trigger name=”operation”>
39 <source modality=”speech” value=”erase shape | rotate shape | move shape”/>
40 </trigger>
41 <trigger name=”selected shape”>
42 <source modality=”xpaint client” value=”$shape selected”/>
43 </trigger>
44 <trigger name=”position”>
45 <source variable=”fiducial” value=”1 | 2” condition=”valid”/>
46 </trigger>
47 <trigger name=”position1”>
48 <source variable=”fiducial” value=”1” condition=”valid”/>
49 </trigger>
50 <trigger name=”position2”>
51 <source variable=”fiducial” value=”2” condition=”valid”/>
52 </trigger>
53 <trigger name=”tools one hand”>
54 <source modality=”rfid” value=”select | line | freehand”/>
55 </trigger>
56 <trigger name=”tools two hands”>
57 <source modality=”rfid” value=”filled circle | empty circle | filled rectangle |
58 empty rectangle | filled polygon | empty polygon”/>
59 </trigger>
60 <trigger name=”color”>
61 <source modality=”phidget ikit” condition=”valid”/>
62 </trigger>
63 <trigger name=”thickness”>
64 <source modality=”phidget ikit” condition=”valid”/>
65 </trigger>
66 <trigger name=”background type”>
67 <source variable=”fiducial” value=”1 | 2” condition=”valid”/>
68 </trigger>
69 <trigger name=”background selected”>
70 <source variable=”data” value=”$background selected”/>
71 </trigger>
72 </triggers>
73 <actions>
74 <action name=”draw operation”>
75 <target name=”xpaint client” message=”draw $oper $shape $posx $posy”/>
76 </action>
77 <action name=”selection of background”>
78 <target name=”xpaint client” message=”background selected”/>
79 </action>
80 <action name=”modif operation”>
81 <target name=”xpaint client” message=”modify $oper $shape $posx $posy”/>
82 </action>
83 </actions>

273

84 <dialog leadtime=”2100”>
85 <context name=”start”>
86 <transition leadtime=”2200”>
87 <trigger name=”select shape”/>
88 <result context=”modification”/>
89 </transition>
90 <transition>
91 <trigger name=”begin draw”/>
92 <result context=”drawing”/>
93 </transition>
94 <transition>
95 <trigger name=”select background”/>
96 <result context=”background”/>
97 </transition>
98 </context>
99 <context name=”drawing”>

100 <transition name=”drawing one hand”>
101 <par and>
102 <!−− others : par or, seq and, seq or −−>
103 <trigger name=”tools one hand”/>
104 <trigger name=”color”/>
105 <trigger name=”thickness”/>
106 <trigger name=”position”/>
107 </par and>
108 <result action=”draw operation”/>
109 </transition>
110 <transition name=”drawing two hands”>
111 <par and>
112 <trigger name=”tools two hands”/>
113 <trigger name=”color”/>
114 <trigger name=”thickness”/>
115 <trigger name=”position1”/>
116 <trigger name=”position2”/>
117 </par and>
118 <result action=”draw operation”/>
119 </transition>
120 <transition>
121 <trigger name=”end draw”/>
122 <result context=”start”/>
123 </transition>
124 </context>
125 <context name=”background”>
126 <transition name=”background frame”>
127 <trigger name=”background type”/>
128 <result action=”selection of background”/>
129 <result context=”start”/>
130 </transition>
131 </context>
132 </dialog>
133 </integration description>
134 </smuiml>

274 Appendix H. SMUIML XPaint Implementation

Listing H.2: A Midas translation of the multimodal paint application
1 rule translateReactivision
2 r = Reactivision
3 assert Touch { source ⇒ ”reactivision”, xpos ⇒ r.posx,ypos ⇒ r.posy, fudicial ⇒ r.sourceId }
4 end
5 rule translatePhidgetRFID
6 r = PhidgetRFID
7 assert RFID { source ⇒ ”phidgets”, shape ⇒ r.shape,
8 operation ⇒ r.operation, value ⇒ r.tagID }
9 end

10 rule translateRFID2342111
11 r = RFID { value == ”2342111” }
12 modify r { value ⇒ ”filled circle” }
13 end
14 # Add @Shadow annotation to XPaint class in Java
15 attempt operation
16 Speech { value == ”erase shape” || value == ”rotate shape” || value == ”move shape” }
17 end
18 attempt position
19 Touch { fiducial == 1 || fiducial == 2 }
20 end
21 attempt toolsOneHand
22 RFID { value == ”select” || value == ”line” || value == ”freehand” }
23 end
24 attempt toolsTwoHands
25 RFID { value == ”filled circle” || value == ”empty circle” ||
26 value == ”filled rectangle” || value == ”empty rectangle” ||
27 value == ”filled polygon” || value == ”empty polygon” }
28 end
29 attempt backgroundType
30 Touch { fiducial == 1 || value == 2 }
31 end
32 rule startModification
33 XPaint { context == ”start” }
34 Speech { value == ”select shape” }
35 call XPaint.beginModification
36 end
37 rule startDrawing
38 XPaint { context == ”start” }
39 Speech { value == ”begin draw” }
40 call XPaint.beginDraw # Context is managed by XPaint
41 end
42 rule startBackground
43 XPaint { context == ”start” }
44 Speech { value == ”select background” }
45 call XPaint.beginBackground
46 end
47 rule drawingOneHand
48 XPaint { context == ”drawing” }
49 t = toolsOneHand
50 c = color
51 t = thickness
52 p = position
53 Time←equal4F t, c, t, p, 2100.ms
54 call XPaint.draw t.operation, t.shape, p.fudicial
55 end

275

56 rule drawingTwoHands
57 XPaint { context == ”drawing” }
58 t = toolsTwoHands
59 c = color
60 t = thickness
61 p1 = position1
62 p2 = position2
63 Time←equal5F t, c, t, p1, p2, 2100.ms
64 call XPaint.draw t.operation, t.shape, p1.fudicial
65 end
66 rule drawingEnd
67 XPaint { context == ”drawing” }
68 Speech { value == ”end draw” }
69 call XPaint.endDraw
70 end
71 rule backgroundFrame
72 XPaint { context == ”background” }
73 b = backgroundType
74 call XPaint.selectBackground b.fudicial # Context is managed by XPaint
75 end

Bibliography

[1] Allen, J. F. Maintaining Knowledge About Temporal Intervals.
Communications of the ACM 26, 11 (November 1983).

[2] Alon, J., Athitsos, V., Yuan, Q., and Sclaroff, S. A
Unified Framework for Gesture Recognition and Spatiotemporal
Gesture Segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 31 (September 2009).

[3] Amstutz, R., Amft, O., French, B., Smailagic, A.,
Siewiorek, D., and Tröster, G. Performance analysis of
an HMM-based gesture recognition using a wristwatch device. In
Proceedings of the 17th International Conference on Computational
Science and Engineering (CSE 2009) (Vancouver, Canada, August
2009), pp. 303–309.

[4] Anthony, L., and Wobbrock, J. O. $ N-Protractor: A Fast
and Accurate Multistroke Recognizer. In Proceedings of 28th In-
ternational Conference on Graphics Interface (GI 2012) (Toronto,
Ontario, Canada, 2012).

[5] Avouac, P.-A., Lalanda, P., and Nigay, L. Service-Oriented
Autonomic Multimodal Interaction in a Pervasive Environment. In
Proceedings of the 13th International Conference on Multimodal
Interfaces (ICMI 2011) (Alicante, Spain, November 2011).

[6] Avouac, P.-A., Lalanda, P., and Nigay, L. Autonomic
management of multimodal interaction: DynaMo in action. In Pro-
ceedings of the 4th SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2012) (Copenhagen, Denmark, 2012).

[7] Bali, M. Drools JBoss Rules 5.0 Developer’s Guide. Packt Pub-
lishing Ltd, 2009.

277

278 BIBLIOGRAPHY

[8] Ballmer, S. CES 2010: A Transforming Trend – the
Natural User Interface. The Huffington Post, 2010.
http://www.huffingtonpost.com/steve-ballmer/ces-2010-a-

transforming-t_b_416598.html, Retrieved November 25, 2014.

[9] Barchunova, A. Manual Interaction: Multimodality, Decom-
position, Recognition. PhD thesis, Bielefeld University, Germany,
February 2014.

[10] Barry, M., Gutknecht, J., Kulka, I., Lukowicz, P., and
Stricker, T. Multimedial Enhancement of A Butoh Dance Per-
formance - Mapping Motion to Emotion with A Wearable Computer
System. In Proceedings of the 2nd International Conference on Ad-
vances in Mobile Multimedia (MoMM 2004) (Bali, Indonesia, 2004).

[11] Bolt, R. A. “Put-That-There”: Voice and Gesture at the Graphics
Interface. In Proceedings of the 7th International Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 1980)
(Seattle, USA, July 1980).

[12] Bouchet, J., and Nigay, L. ICARE: A Component-Based
Approach for the Design and Development of Multimodal Interfaces.
In Proceedings of the 22nd SIGCHI Conference on Human Factors
in Computing Systems (CHI 2004) (Vienna, Austria, 2004).

[13] Bourguet, M.-L. A Toolkit for Creating and Testing Multimodal
Interface Designs. In Proceedings of the 15th ACM Symposium on
User Interface Software and Technology (UIST 2002) (Paris, France,
2002).

[14] Bracha, G., and Cook, W. Mixin-Based Inheritance. ACM
SIGPLAN Notices 25, 10 (1990).

[15] Branton, C., Ullmer, B., Wiggins, A., Rogge, L., Setty,
N., Beck, S. D., and Reeser, A. Toward Rapid and Iterative
Development of Tangible, Collaborative, Distributed User Interfaces.
In Proceedings of the 5th SIGCHI Symposium on Engineering Inter-
active Computing Systems (EICS 2013) (London, United Kingdom,
2013).

[16] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. Extensible Markup Language (XML) 1.0 (Fifth

http://www.huffingtonpost.com/steve-ballmer/ces-2010-a-transforming-t_b_416598.html
http://www.huffingtonpost.com/steve-ballmer/ces-2010-a-transforming-t_b_416598.html

BIBLIOGRAPHY 279

Edition), 2008. http://www.w3.org/TR/2008/REC-xml-20081126,
Retrieved November 25, 2014.

[17] Brooke, N. M., and Petajan, E. D. Seeing Speech: Investiga-
tion Into the Synthesis and Recognition of Visible Speech Movement
Using Automatic Image Processing and Computer Graphics. In
Proceedings of the International Conference on Speech Input and
Output (March 1986), Inspec/Iee.

[18] Brooks, Jr., F. P. No Silver Bullet: Essence and Accidents of
Software Engineering. IEEE Computer 20, 4 (April 1987).

[19] Carbonell, N. Towards the design of usable multimodal inter-
action languages. Universal Access in the Information Society 2, 2
(2003), 143–159.

[20] Cerf, P. H., Hurton, M., and Colomiets, P. 15/ZMTP -
ZeroMQ Message Transport Protocol, 2009. http://rfc.zeromq.

org/spec:15, Retrieved November 25, 2014.

[21] Cerf, V., Dalal, Y., and Sunshine, C. SPECIFICATION
of INTERNET TRANSMISSION CONTROL PROGRAM, 1974.
https://tools.ietf.org/html/rfc675, Retrieved November 25,
2014.

[22] Chai, J., Hong, P., and Zhou, M. A Probabilistic Approach to
Reference Resolution in Multimodal User Interfaces. In Proceedings
of the 9th International Conference on Intelligent User Interfaces
(IUI 2004) (Funchal, Madeira, Portugal, 2004).

[23] Cheshire, S., and Krochmal, M. DNS-Based Service Dis-
covery, 2013. https://tools.ietf.org/html/rfc6763, Retrieved
November 25, 2014.

[24] Cheshire, S., and Krochmal, M. Multicast DNS, 2013. https:
//tools.ietf.org/html/rfc6762, Retrieved November 25, 2014.

[25] Chui, T. L.-k. Real-Time Computer Recognition of Handprinted
Characters. Master’s thesis, University of British Columbia, Canada,
July 1976.

[26] Cirelli, M., and Nakamura, R. A Survey on Multi-Touch
Gesture Recognition and Multi-Touch Frameworks. In Proceedings

http://www.w3.org/TR/2008/REC-xml-20081126
http://rfc.zeromq.org/spec:15
http://rfc.zeromq.org/spec:15
https://tools.ietf.org/html/rfc675
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762

280 BIBLIOGRAPHY

of the 9th International Conference on Interactive Tabletops and
Surfaces (ITS 2014) (Dresden, Germany, 2014).

[27] Cohen, P. R., Johnston, M., McGee, D., Oviatt, S.,
Pittman, J., Smith, I., Chen, L., and Clow, J. Quickset:
Multimodal Interaction for Distributed Applications. In Proceedings
of the 5th International Conference on Multimedia (MULTIMEDIA
1997) (Seattle, USA, 1997).

[28] Coutaz, J., Nigay, L., and Salber, D. Taxonomic Issues for
Multimodal and Multimedia Interactive Systems. In Proceedings
of the 1st Workshop on Multimodal Human-Computer Interaction
(ERCIM 1993) (Nancy, Francy, November 1993).

[29] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J.,
and Young, R. M. Four Easy Pieces for Assessing the Usability
of Multimodal Interaction: the CARE Properties. In Proceedings of
the Fifth International Conference on Human-Computer Interaction
(INTERACT 1995) (Lillehammer, Norway, June 1995), vol. 95.

[30] Crockford, D. The Application/JSON Media Type for JavaS-
cript Object Notation (JSON), 2006. https://www.ietf.org/rfc/
rfc4627.txt, Retrieved November 25, 2014.

[31] Cuenca, F., Coninx, K., Vanacken, D., and Luyten, K.
Graphical Toolkits for Rapid Prototyping of Multimodal Systems:
A Survey. Interacting with Computers (2014).

[32] Darrell, T., and Pentland, A. Space-Time Gestures. In
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 1993) (New York, USA,
June 1993).

[33] De Boeck, J., Vanacken, D., Raymaekers, C., and Coninx,
K. High-Level Modeling of Multimodal Interaction Techniques
Using Nimmit. Journal of Virtual Reality and Broadcasting 4
(2007).

[34] Deering, S. E., and Hinden, R. M. Internet Protocol, Ver-
sion 6 (IPv6) Specification, 1998. http://tools.ietf.org/html/
rfc2460, Retrieved November 25, 2014.

https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2460

BIBLIOGRAPHY 281

[35] Demšar, J., Zupan, B., Leban, G., and Curk, T. Orange:
From Experimental Machine Learning to Interactive Data Mining.
In Knowledge Discovery in Databases (PKDD 2004), vol. 3202 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2004.

[36] Dietz, P., and Leigh, D. DiamondTouch: A Multi-User Touch
Technology. In Proceedings of the 14th ACM Symposium on User
Interface Software and Technology (UIST 2001) (Orlando, Florida,
2001).

[37] Docx, L., de la Asuncion, J., Sabbe, B., Hoste, L., Baeten,
R., Warnaerts, N., and Morrens, M. Effort Discounting and
Its Association with Negative Symptoms in Schizophrenia. Cognitive
Neuropsychiatry (January 2015).

[38] Dumas, B. Frameworks, Description Languages and Fusion En-
gines for Multimodal Interactive Systems. PhD thesis, University of
Fribourg, Switzerland, November 2010.

[39] Dumas, B., Lalanne, D., and Ingold, R. HephaisTK: A
Toolkit for Rapid Prototyping of Multimodal Interfaces. In Proceed-
ings of the 11th International Conference on Multimodal Interfaces
(ICMI-MLMI 2009) (Cambridge, USA, November 2009).

[40] Dumas, B., Lalanne, D., and Ingold, R. Description Lan-
guages for Multimodal Interaction: A Set of Guidelines and its
Illustration with SMUIML. Journal on Multimodal User Interfaces
3, 3 (July 2010).

[41] Dumas, B., Lalanne, D., and Oviatt, S. Multimodal Inter-
faces: A Survey of Principles, Models and Frameworks. Human
Machine Interaction (March 2009).

[42] Dumas, B., Signer, B., and Lalanne, D. Fusion in Multimodal
Interactive Systems: An HMM-Based Algorithm for User-Induced
Adaptation. In Proceedings of the 4th SIGCHI Symposium on Engin-
eering Interactive Computing Systems (EICS 2012) (Copenhagen,
Denmark, 2012).

[43] Dumas, B., Signer, B., and Lalanne, D. A Graphical Editor
for the SMUIML Multimodal User Interaction Description Language.
Science of Computer Programming 86 (2014).

282 BIBLIOGRAPHY

[44] Echtler, F., and Butz, A. GISpL: Gestures Made Easy. In
Proceedings of the 6th International Conference on Tangible, Em-
bedded and Embodied Interaction (TEI 2012) (Kingston, Canada,
February 2012).

[45] Echtler, F., Huber, M., and Klinker, G. Shadow Tracking on
Multi-Touch Tables. In Proceedings of the International Conference
on Advanced Visual Interfaces (AVI 2008) (Napoli, Italy, 2008).

[46] Echtler, F., Kammer, D., Vanacken, D., Hoste, L., and
Signer, B. Engineering Gestures for Multimodal User Interfaces.
In Proceedings of the 6th SIGCHI Symposium on Engineering Inter-
active Computing Systems (EICS 2014) (Roma, Italy, June 2014).

[47] Echtler, F., Klinker, G., and Butz, A. Towards a Uni-
fied Gesture Description Language. In Proceedings of the 13th
International Conference on Humans and Computers (HC 2010)
(Aizu-Wakamatsu, Japan, December 2010).

[48] Elmezain, M., Al-Hamadi, A., and Michaelis, B. Hand
Gesture Spotting based on 3D Dynamic Features Using Hidden
Markov Models. Communications in Computer and Information
Science 61 (2009).

[49] Eugster, P. T., Felber, P. A., Guerraoui, R., and Ker-
marrec, A.-M. The Many Faces of Publish/Subscribe. ACM
Computing Surveys 35, 2 (June 2003).

[50] Fanelli, G., Dantone, M., Gall, J., Fossati, A., and
Van Gool, L. Random Forests for Real Time 3D Face Analysis.
International Journal of Computer Vision 101, 3 (February 2013).

[51] Fette, I., and Melnikov, A. The WebSocket Protocol, 2011.
https://tools.ietf.org/html/rfc6455, Retrieved November 25,
2014.

[52] Fielding, R. T., and Reschke, J. F. Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing, 2014. https:
//tools.ietf.org/html/rfc7230, Retrieved November 25, 2014.

[53] Flippo, F., Krebs, A., and Marsic, I. A Framework for Rapid
Development of Multimodal Interfaces. In Proceedings of the 5th

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230

BIBLIOGRAPHY 283

International Conference on Multimodal Interfaces (ICMI 2003)
(2003).

[54] Forgy, C. L. Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem. Artificial Intelligence 19, 1 (1982).

[55] Friedman-Hill, E. Jess in Action: Java Rule-Based Systems.
Manning Publications, July 2003.

[56] Giarratano, J. C. CLIPS User’s Guide, Version 6.30,
2014. http://clipsrules.sourceforge.net/documentation/

v630/ug.pdf, Retrieved November 25, 2014.

[57] Giarratano, J. C., and Riley, G. Expert Systems. PWS
Publishing Co., 1998.

[58] Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A
Secure Environment for Untrusted Helper Applications: Confining
the Wily Hacker. In Proceedings of the 6th Conference on USENIX
Security Symposium, Focusing on Applications of Cryptography
(Berkeley, USA, 1996), vol. 6.

[59] Hall, M., Frank, E., Pfahringer, G. H. B., Reutemann,
P., and Witten, I. H. The WEKA Data Mining Software: An
Update. ACM SIGKDD Explorations Newsletter 11, 1 (June 2009).

[60] Hamilton, G. JavaBeans(TM) Specification 1.01, 1996.
http://download.oracle.com/otndocs/jcp/7224-javabeans-

1.01-fr-spec-oth-JSpec, Retrieved November 25, 2014.

[61] Hamon, A., Palanque, P., Silva, J. L., Deleris, Y., and
Barboni, E. Formal Description of Multi-Touch Interactions. In
Proceedings of the 5th SIGCHI Symposium on Engineering Inter-
active Computing Systems (EICS 2013) (London, United Kingdom,
2013).

[62] Hamon, A., Palanque, P., Silva, J. L., Deleris, Y., and
Barboni, E. Formal Description of Multi-Touch Interactions. In
Proceedings of the 5th SIGCHI Symposium on Engineering Inter-
active Computing Systems (EICS 2013) (London, United Kingdom,
2013).

http://clipsrules.sourceforge.net/documentation/v630/ug.pdf
http://clipsrules.sourceforge.net/documentation/v630/ug.pdf
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec

284 BIBLIOGRAPHY

[63] Hoste, L. Software Engineering Abstractions for the Multi-Touch
Revolution. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE 2010) (Cape Town,
South Africa, May 2010).

[64] Hoste, L., Dumas, B., and Signer, B. Mudra: A Unified
Multimodal Interaction Framework. In Proceedings of the 13th
International Conference on Multimodal Interaction (ICMI 2011)
(Alicante, Spain, November 2011).

[65] Hoste, L., Dumas, B., and Signer, B. SpeeG: A Multimodal
Speech- and Gesture-Based Text Input Solution. In Proceedings of
the International Conference on Advanced Visual Interfaces (AVI
2012) (Capri Island, Italy, May 2012).

[66] Hoste, L., Rooms, B. D., and Signer, B. Declarative Gesture
Spotting Using Inferred and Refined Control Points. In Proceedings
of the International Conference on Pattern Recognition (ICPRAM
2013) (Barcelona, Spain, February 2013).

[67] Hoste, L., and Signer, B. Expressive Control of Indirect
Augmented Reality During Live Music Performances. In Proceedings
of the 3th International Conference on New Interfaces for Musical
Expression (NIME 2013) (Daejeon + Seoul, Korea Republic, May
2013).

[68] Hoste, L., and Signer, B. SpeeG2: A Speech- and Gesture-
Based Interface for Efficient Controller-free Text Input. In Proceed-
ings of the 15th International Conference on Multimodal Interaction
(ICMI 2013) (Sydney, Australia, December 2013).

[69] Hoste, L., and Signer, B. Criteria, Challenges and Opportunit-
ies for Gesture Programming Languages. In Proceedings of the 1st
International Workshop on Engineering Gestures for Multimodal
Interfaces (EGMI 2014) (Rome, Italy, June 2014).

[70] Hoste, L., and Signer, B. Water Ball Z: An Augmented Fighting
Game Using Water as Tactile Feedback. In Proceedings of the 8th
International Conference on Tangible, Embedded and Embodied
Interaction (TEI 2014) (Munich, Germany, February 2014).

BIBLIOGRAPHY 285

[71] Information Sciences Institute of the University of
Southern California. INTERNET PROTOCOL, 1981. http:
//tools.ietf.org/html/rfc791, Retrieved November 25, 2014.

[72] Jafarpour, H., Mehrotra, S., and Venkatasubramanian,
N. Dynamic Load Balancing for Cluster-Based Publish/Subscribe
System. In Proceedings of the 9th Annual International Symposium
on Applications and the Internet (SAINT 2009) (July 2009).

[73] Johnson, R. E., and Foote, B. Designing Reusable Classes.
Object-Oriented Programming 1, 2 (June 1988).

[74] Johnston, M. Unification-Based Multimodal Parsing. In Proceed-
ings of the 36th Annual Meeting of the Association for Computa-
tional Linguistics and 17th International Conference on Computa-
tional Linguistics (ACL and COLING 1998) (Montreal, Quebec,
Canada, 1998).

[75] Johnston, M. Building Multimodal Applications with EMMA.
In Proceedings of the 11th International Conference on Multimodal
Interfaces (ICMI-MLMI 2009) (Cambridge, USA, November 2009).

[76] Johnston, M., and Bangalore, S. Finite-State Methods
for Multimodal Parsing and Integration. In Proceedings of the
13th European Summer School in Logic, Language and Information
(ESSLLI 2001) (Helsinki, Finland, August 2001).

[77] Johnston, M., Bangalore, S., Vasireddy, G., Stent, A.,
Ehlen, P., Walker, M., Whittaker, S., and Maloor, P.
MATCH: An Architecture for Multimodal Dialogue Systems. In
Proceedings of the 40th Annual Meeting on Association for Compu-
tational Linguistics (ACL 2002) (Philadelphia, USA, 2002).

[78] Johnston, M., Cohen, P., McGee, D., Oviatt, S., Pittman,
J., and Smith, I. Unification-Based Multimodal Integration. In
Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics (ACL 1997) (Madrid, Spain, July 1997).

[79] Jordà, S., Geiger, G., Alonso, M., and Kaltenbrunner,
M. The ReacTable: Exploring the Synergy between Live Music
Performance and Tabletop Tangible Interfaces. In Proceedings of the
1st International Conference on Tangible and Embedded Interaction
(TEI 2007) (Baton Rouge, USA, February 2007).

http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791

286 BIBLIOGRAPHY

[80] Julià, C. F., Earnshaw, N., and Jordà, S. GestureAgents:
An Agent-Based Framework for Concurrent Multi-Task Multi-User
Interaction. In Proceedings of the 7th International Conference on
Tangible, Embedded and Embodied Interaction (TEI 2013) (Bar-
celona, Spain, 2013).

[81] Julià, C. F., and Jordà, S. Towards Concurrent Multi-Tasking
in Shareable Interfaces. Journal of Computer Supported Collab-
orative Work 25, Special Issue “Collaboration meets Interactive
Surfaces - Walls, Tables, Tablets and Phones” (March 2015).

[82] Kadous, M. W. Learning Comprehensible Descriptions of Mul-
tivariate Time Series. In Proceedings of 16th International Con-
ference on Machine Learning (ICML 1999) (Bled, Slovenia, June
1999).

[83] Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Costanza, E. TUIO: A Protocol for Table-Top Tangible User
Interfaces. In Proceedings of the 6th International Workshop on
Gesture in Human-Computer Interaction and Simulation (GW 2005)
(Ile de Berder, France, May 2005).

[84] Kammer, D. Formalisierung Gestischer Interaktion für Multitouch-
Systeme. PhD thesis, Technische Universität Dresden, September
2013.

[85] Kammer, D., Henkens, D., and Groh, R. GeForMTjs: A
JavaScript Library based on a Domain Specific Language for Multi-
Touch Gestures. In Proceedings of Web Engineering, the 12th
International Conference (ICWE 2012) (Berlin, Germany, July
2012).

[86] Kammer, D., Wojdziak, J., Keck, M., Groh, R., and
Taranko, S. Towards a Formalization of Multi-Touch Gestures.
In ACM International Conference on Interactive Tabletops and
Surfaces (2010).

[87] Karam, M., and m. c. schraefel. A Taxonomy of Gestures in
Human Computer Interactions. Tech. rep., University of Southamp-
ton, Southampton, United Kingdom, August 2005.

[88] Katsurada, K., Kirihata, T., Kudo, M., Takada, J., and
Nitta, T. A Browser-based Multimodal Interaction System. In

BIBLIOGRAPHY 287

Proceedings of the 10th International Conference on Multimodal
Interaction (ICMI 2008) (Chania, Greece, 2008), ICMI ’08, ACM,
pp. 195–196.

[89] Katsurada, K., Nakamura, Y., Yamada, H., and Nitta, T.
XISL: A Language for Describing Multimodal Interaction Scenarios.
In Proceedings of the 5th International Conference on Multimodal
Interaction (ICMI 2003) (Vancouver, Canada, 2003), ACM, pp. 281–
284.

[90] Khandkar, S. H., and Maurer, F. A Domain Specific Language
to Define Gestures for Multi-Touch Applications. In Proceedings
of the 10th Workshop on Domain-Specific Modeling (DSM 2010)
(Reno/Tahoe, USA, 2010).

[91] Khandkar, S. H., and Maurer, F. A Domain Specific Language
to Define Gestures for Multi-Touch Applications. In Proceedings
of the 10th Workshop on Domain-Specific Modeling (DSM 2010)
(Reno-Tahoe, USA, October 2010).

[92] Kim, J.-W., and Nam, T.-J. EventHurdle: Supporting Designers’
Exploratory Interaction Prototyping with Gesture-Based Sensors.
In Proceedings of the 31st SIGCHI Conference on Human Factors
in Computing Systems (CHI 2013) (Paris, France, 2013).

[93] Kim, J.-W., Nam, T.-J., and Park, T. CompositeGesture:
Creating Custom Gesture Interfaces with Multiple Mobile or Wear-
able Devices. International Journal on Interactive Design and
Manufacturing (IJIDeM) (2014).

[94] Kin, K. Proton++: A customizable declarative multitouch frame-
work. In Proceedings of the 25th Annual Symposium on User In-
terface Software and Technology (UIST 2012) (Cambridge, USA,
2012).

[95] Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: Multitouch Gestures as Regular Expressions. In Proceedings
of the 30th SIGCHI Conference on Human Factors in Computing
Systems (CHI 2012) (Austin, USA, November 2012).

[96] Kinect for Windows Team. Visual Gesture Builder:
A Data-Driven Solution to Gesture Detection. Tech.

288 BIBLIOGRAPHY

rep., Microsoft, Redmond, Washington, Verenigde Staten,
July 2014. https://onedrive.live.com/view.aspx?resid=

1A0C78068E0550B5!77743&app=WordPdf, Retrieved November 25,
2014.

[97] König, W., Rädle, R., and Reiterer, H. Squidy: A Zoomable
Design Environment for Natural User Interfaces. In Proceedings
of CHI 2009, ACM Conference on Human Factors in Computing
Systems (Boston, USA, 2009).

[98] Kuijpers, E., and Wilson, M. A Multi-Modal Interface for
Man Machine Interaction with Knowledge based Systems - MMI2.
Knowledge based Systems 2001 (1992).

[99] Laethem, B. V. Recognition of Deictic and Iconic Gestures for
Home Automation. Master’s thesis, Vrije Universiteit Brussel, June
2012.

[100] Lalanne, D., Nigay, L., Robinson, P., Vanderdonckt, J.,
and Ladry, J.-F. Fusion Engines for Multimodal Input: A Survey.
In Proceedings of the 11th International Conference on Multimodal
Interfaces (ICMI-MLMI 2009) (Cambridge, USA, November 2009).

[101] Larsen, L. Eric Horvitz on the New Era of Artificial Intelligence,
January 2015. https://channel9.msdn.com/Series/Microsoft-
Research-Luminaries/Eric-Horvitz-on-the-new-era-of-

Artificial-Intelligence, Retrieved January 29, 2015.

[102] Latoschik, M. E. Designing Transition Networks for Multimodal
VR-Interactions Using a Markup Language. In Proceedings of the
4th International Conference on Multimodal Interfaces (ICMI 2002)
(Pittsburgh, USA, 2002).

[103] Lawson, J.-Y. L., Al-Akkad, A.-A., Vanderdonckt, J.,
and Macq, B. An Open Source Workbench for Prototyping
Multimodal Interactions based on Off-The-Shelf Heterogeneous
Components. In Proceedings of the 1st SIGCHI Symposium on En-
gineering Interactive Computing Systems (EICS 2009) (Pittsburgh,
USA, July 2009).

[104] Lee, H.-K., and Kim, J.-H. An HMM-Based Threshold Model
Approach for Gesture Recognition. Transactions on Pattern Ana-
lysis and Machine Intelligence 21, 10 (October 1999).

https://onedrive.live.com/view.aspx?resid=1A0C78068E0550B5!77743&app=WordPdf
https://onedrive.live.com/view.aspx?resid=1A0C78068E0550B5!77743&app=WordPdf
https://channel9.msdn.com/Series/Microsoft-Research-Luminaries/Eric-Horvitz-on-the-new-era-of-Artificial-Intelligence
https://channel9.msdn.com/Series/Microsoft-Research-Luminaries/Eric-Horvitz-on-the-new-era-of-Artificial-Intelligence
https://channel9.msdn.com/Series/Microsoft-Research-Luminaries/Eric-Horvitz-on-the-new-era-of-Artificial-Intelligence

BIBLIOGRAPHY 289

[105] Li, M., Liu, M., Ding, L., Rundensteiner, E. A., and Mani,
M. Event Stream Processing with Out-Of-Order Data Arrival.
In Proceedings of the 27th International Conference on Distributed
Computing Systems Workshops (ICDCSW 2007) (Washington, USA,
June 2007).

[106] Li, Y. Protractor: A Fast and Accurate Gesture Recognizer. In
Proceedings of the 28th SIGCHI Conference on Human Factors in
Computing Systems (CHI 2010) (Atlanta, USA, 2010).

[107] Long Jr, A. C., Landay, J. A., and Rowe, L. A. Implications
for A Gesture Design Tool. In Proceedings of the 17th SIGCHI
Conference on Human Factors in Computing Systems (CHI 1999)
(Pittsburgh, Pennsylvania, USA, 1999).

[108] Lü, H., Fogarty, J. A., and Li, Y. Gesture Script: Recog-
nizing Gestures and Their Structure Using Rendering Scripts and
Interactively Trained Parts. In Proceedings of the 32nd SIGCHI
Conference on Human Factors in Computing Systems (CHI 2014)
(Toronto, Ontario, Canada, 2014).

[109] Lü, H., and Li, Y. Gesture Coder: A Tool for Programming
Multi-Touch Gestures by Demonstration. In Proceedings of the
30th SIGCHI Conference on Human Factors in Computing Systems
(CHI 2012) (Austin, USA, 2012).

[110] MacKenzie, I. S., and Ware, C. Lag As a Determinant of
Human Performance in Interactive Systems. In Proceedings of the
11th SIGCHI Conference on Human Factors in Computing Systems
(CHI 1993) (Amsterdam, The Netherlands, 1993).

[111] Maier, I., Rompf, T., and Odersky, M. Deprecating the
Observer Pattern. Tech. Rep. EPFL-REPORT-148043, Ecole Poly-
technique Fédérale de Lausanne, Lausanne, Switzerland, April 2010.

[112] Marquardt, N. Proxemic Interactions with and Around Digital
Surfaces. In Proceedings of the 8th International Conference on
Interactive Tabletops and Surfaces (ITS 2013) (St. Andrews, United
Kingdom, 2013).

[113] Marr, S., Renaux, T., Hoste, L., and De Meuter, W. Par-
allel Gesture Recognition with Soft Real-Time Guarantees. Science
of Computer Programming (February 2014).

290 BIBLIOGRAPHY

[114] McCarthy, J. Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I. Communications of the
ACM 3, 4 (1960).

[115] Meijer, E., Beckman, B., and Bierman, G. Linq: Reconciling
Object, Relations and XML in the .NET Framework. In Proceedings
of the International Conference on Management of Data (SIGMOD
2006) (2006), ACM.

[116] Mendonça, H., Lawson, J.-Y. L., Vybornova, O., Macq,
B., and Vanderdonckt, J. A Fusion Framework for Multimodal
Interactive Applications. In Proceedings of the 11th International
Conference on Multimodal Interfaces (ICMI-MLMI 2009) (Cam-
bridge, USA, November 2009).

[117] Miranker, D. P. Treat: A Better Match Algorithm for AI
Production Systems. In Proceedings of the 6th National Conference
on Artificial Intelligence (AAAI 1987) (Seattle, USA, 1987), pp. 42–
47.

[118] Miranker, D. P., Brant, D. A., Lofaso, B., and Gadbois,
D. On the Performance of Lazy Matching in Production Systems. In
Proceedings of the 8th National Conference on Artificial Intelligence
(AAAI 1990) (Boston, USA, 1990), pp. 685–692.

[119] Nacenta, M. A., Baudisch, P., Benko, H., and Wilson, A.
Separability of Spatial Manipulations in Multi-Touch Interfaces. In
Proceedings of Graphics interface 2009 (British Columbia, Canada,
2009).

[120] Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E.
ICOs: A Model-Based User Interface Description Technique Dedic-
ated to Interactive Systems Addressing Usability, Reliability and
Scalability. ACM Transactions on Computer-Human Interaction
(TOCHI) 16, 4 (November 2009).

[121] Niewiadomski, R., Mancini, M., Ding, Y., Pelachaud, C.,
and Volpe, G. Rhythmic Body Movements of Laughter. In
Proceedings of the 16th International Conference on Multimodal
Interaction (ICMI 2014) (Istanbul, Turkey, 2014).

BIBLIOGRAPHY 291

[122] Nigay, L. Design space for multimodal interaction. In Building the
Information Society, IFIP International Federation for Information
Processing. Springer, 2004, pp. 403–408.

[123] Nigay, L., and Coutaz, J. A Design Space for Multimodal
Systems: Concurrent Processing and Data Fusion. In Proceedings
of the 11th Conference on Human Factors in Computing Systems
(INTERACT 1993 and CHI 1993) (Amsterdam, the Netherlands,
1993).

[124] Oviatt, S. Multimodal Interfaces. The Human-Computer Interac-
tion Handbook: Fundamentals, Evolving Technologies and Emerging
Applications (2003).

[125] Owens, M., and Allen, G. The Definitive Guide to SQLite,
vol. 1. Springer, 2006.

[126] Parr, T. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2013.

[127] Peffers, K., Tuunanen, T., Rothenberger, M. A., and
Chatterjee, S. A Design Science Research Methodology for
Information Systems Research. Journal of Management Information
Systems 24, 3 (2007), 45–77.

[128] Petajan, E., Bischoff, B., Bodoff, D., and Brooke, N. M.
An Improved Automatic Lipreading System to Enhance Speech
Recognition. In Proceedings of the 6th SIGCHI Conference on
Human Factors in Computing Systems (CHI 1988) (Washington,
USA, June 1988).

[129] Pfleger, N., and Schehl, J. Development of Advanced Dialog
Systems with PATE. In Proceedings of the 9th International Con-
ference on Spoken Language Processing (INTERSPEECH ICSLP
2006) (Pittsburgh, USA, 2006).

[130] Quek, F., McNeill, D., Bryll, R., Duncan, S., Ma, X.-F.,
Kirbas, C., McCullough, K. E., and Ansari, R. Multimodal
Human Discourse: Gesture and Speech. ACM Transaction on
Computer-Human Interaction 9, 3 (September 2002), 171–193.

[131] Renaux, T., Hoste, L., Marr, S., and De Meuter, W.
Parallel Gesture Recognition with Soft Real-Time Guarantees. In

292 BIBLIOGRAPHY

Proceedings of the 2nd International Workshop on Programming
based on Actors, Agents, and Decentralized Control (AGERE! 2012)
(Tucson, USA, October 2012).

[132] Renaux, T., Hoste, L., Marr, S., and De Meuter, W.
Software Engineering Principles in the Midas Gesture Specification
Language. In Proceedings of the 2nd International Workshop on
Programming for Mobile and Touch (PRoMoTo 2014) (Portland,
USA, October 2014).

[133] Rhyne, J. Dialogue Management for Gestural Interfaces. SIG-
GRAPH Computer Graphics 21, 2 (April 1987).

[134] Rivest, R. S-Expressions, draft-rivest-sexp-00.txt. Network Work-
ing Group, Internet Draft, 1997. http://people.csail.mit.edu/
rivest/Sexp.txt, Retrieved November 25, 2014.

[135] Rooms, B. D. VolTra: A Development Environment for Extract-
ing and Defining 3D Full-Body Gestures. Master’s thesis, Vrije
Universiteit Brussel, August 2012.

[136] Rubine, D. Specifying Gestures by Example. In Proceedings
of the 18th International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1991) (Las Vegas, USA, August
1991).

[137] Rubine, D. Specifying Gestures by Example. In Proceedings of
the 18th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1991) (Las Vegas, USA, August 1991).

[138] Salojärvi, J., Puolamäki, K., Simola, J., Kovanen, L.,
Kojo, I., and Kaski, S. Inferring relevance from eye movements:
Feature extraction. Tech. rep., Aalto University, Espoo, Finland,
March 2005.

[139] Salvaneschi, G., Eugster, P., and Mezini, M. Programming
with Implicit Flows. Software 31, 5 (September 2014).

[140] Sarna-Starosta, B., and Schrijvers, T. Transformation-
based indexing techniques for Constraint Handling Rules. In Pro-
ceedings of the 5th Workshop on Constraint Handling Rules (July
2008).

http://people.csail.mit.edu/rivest/Sexp.txt
http://people.csail.mit.edu/rivest/Sexp.txt

BIBLIOGRAPHY 293

[141] Scholliers, C., Hoste, L., Signer, B., and De Meuter,
W. Midas: A Declarative Multi-Touch Interaction Framework.
In Proceedings of the 5th International Conference on Tangible,
Embedded, and Embodied Interaction (TEI 2011) (Funchal, Portugal,
January 2011).

[142] Serrano, M., Nigay, L., Lawson, J., Ramsay, A., Murray-
Smith, R., and Denef, S. The OpenInterface Framework: A
Tool for Multimodal Interaction. In Proceedings of the 26th SIGCHI
Conference on Human Factors in Computing Systems (CHI 2008)
(Florence, Italy, April 2008).

[143] Shafranovich, Y. Common Format and MIME Type for Comma-
Separated Values (CSV) Files, 2005. https://tools.ietf.org/

html/rfc4180, Retrieved November 25, 2014.

[144] Sharma, R., Pavlovic, V., and Huang, T. Toward Multimodal
Human-Computer Interface. Proceedings of the IEEE 86, 5 (August
1998).

[145] Signer, B., Kurmann, U., and Norrie, M. C. iGesture: A
General Gesture Recognition Framework. In Proceedings of the 9th
International Conference on Document Analysis and Recognition
(ICDAR 2007) (Curitiba, Brazil, September 2007).

[146] Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M.,
Vanderdonckt, J., Stanciulescu, A., and Lepreux, S. A
Language Perspective on the Development of Plastic Multimodal
User Interfaces. Journal on Multimodal User Interfaces 1, 2 (2007).

[147] Spano, L. D. Defining CARE Properties Through Temporal
Input Models. In Proceedings of the 1st International Workshop
on Engineering Gestures for Multimodal Interfaces (EGMI 2014)
(Rome, Italy, June 2014).

[148] Spano, L. D., Cisternino, A., Paternò, F., and Fenu,
G. GestIT: A declarative and compositional framework for mul-
tiplatform gesture definition. In Proceedings of the 5th SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS
2013) (London, United Kingdom, 2013).

[149] Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Mi-
chotte, B., and Montero, F. A Transformational Approach for

https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc4180

294 BIBLIOGRAPHY

Multimodal Web User Interfaces based on UsiXML. In Proceedings
of the 7th International Conference on Multimodal Interfaces (ICMI
2005) (Torento, Italy, 2005).

[150] Stanciulescu, A., and Vanderdonckt, J. Design Options for
Multimodal Web Applications. In Computer-Aided Design Of User
Interfaces V. Springer, 2007, pp. 41–56.

[151] Swalens, J., Renaux, T., Hoste, L., Marr, S., and De Meu-
ter, W. Cloud PARTE: Elastic Complex Event Processing based
on Mobile Actors. In Proceedings of the 3rd International Workshop
on Programming based on Actors, Agents, and Decentralized Control
(AGERE! 2013) (Indianapolis, USA, October 2013).

[152] Swigart, S. Easily Write Custom Gesture Recognizers for Your
Tablet PC Applications, 2005. https://msdn.microsoft.com/en-
us/library/aa480673.aspx, Retrieved November 25, 2014.

[153] Thomas, D., Hansson, D., Breedt, L., Clark, M., Dav-
idson, J. D., Gehtland, J., and Schwarz, A. Agile Web
Development with Rails. Pragmatic Bookshelf, 2006.

[154] Van Cutsem, T. Why Programming Languages?, Janu-
ari 2011. http://soft.vub.ac.be/~tvcutsem/invokedynamic/

node/11, Retrieved November 25, 2014.

[155] Van Seghbroeck, G., Verstichel, S., De Turck, F., and
Dhoedt, B. WS-Gesture, A Gesture-Based State-aware Control
Framework. In Proceedings of the IEEE International Conference
on Service-Oriented Computing and Applications (SOCA 2010)
(December 2010).

[156] Van Weert, P. Efficient Lazy Evaluation of Rule-Based Programs.
IEEE Transactions on Knowledge and Data Engineering 22, 11
(2010), 1521–1534.

[157] Vatavu, R.-D. The Effect of Sampling Rate on the Performance
of Template-Based Gesture Recognizers. In Proceedings of the 13th
International Conference on Multimodal Interfaces (ICMI 2011)
(2011).

[158] Vo, M. T., and Wood, C. Building an Application Framework
for Speech and Pen Input Integration in Multimodal Learning

https://msdn.microsoft.com/en-us/library/aa480673.aspx
https://msdn.microsoft.com/en-us/library/aa480673.aspx
http://soft.vub.ac.be/~tvcutsem/invokedynamic/node/11
http://soft.vub.ac.be/~tvcutsem/invokedynamic/node/11

BIBLIOGRAPHY 295

Interfaces. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 1996) (Atlanta,
USA, May 1996).

[159] Willis, N. Multi-Touch Support Landing in X, 2012. https:

//lwn.net/Articles/475886/, Retrieved November 25, 2014.

[160] Wilson, A., and Bobick, A. Parametric Hidden Markov Models
for Gesture Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 21 (September 1999).

[161] Winer, D. XML-RPC Specification, 1999. http://xmlrpc.

scripting.com/spec, Retrieved November 25, 2014.

[162] Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
Without Libraries, Toolkits or Training: A $1 Recognizer for User
Interface Prototypes. In Proceedings of the 20th ACM Symposium
on User Interface Software and Technology (UIST 2007) (Newport,
USA, October 2007).

[163] Wright, M., and Freed, A. Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers. In Proceed-
ings of the 23nd International Computer Music Conference (ICMC
1997) (Thessaloniki, Greece, September 1997).

[164] Wu, L., Oviatt, S., and Cohen, P. From Members to Teams
to Committee - A Robust Approach to Gestural and Multimodal
Recognition. IEEE Transactions on Neural Networks 13, 4 (2002).

[165] Yergeau, F. UTF-8, A Transformation Format of ISO 10646, 2003.
http://tools.ietf.org/html/rfc3629, Retrieved November 25,
2014.

https://lwn.net/Articles/475886/
https://lwn.net/Articles/475886/
http://xmlrpc.scripting.com/spec
http://xmlrpc.scripting.com/spec
http://tools.ietf.org/html/rfc3629

