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Abstract

Side effects are an essential part of many programs. However, side effects
make it harder to understand program behavior, because expressions no
longer can be treated as mere values. Pure expressions have no side effects,
and research in different areas has demonstrated that purity aids program
specification, optimization, testing, debugging, and maintenance.

Determining side effects is useful for program comprehension and opti-
mization, but it is a difficult problem and particularly so in the presence
of objects and higher-order procedures that may flow freely through a pro-
gram. In practice it is not sufficient to detect the presence of side-effecting
expressions in a program. The dynamic extent of the side effect must also
be accurately established to obtain useful information. A side effect in
one particular context, e.g. a procedure application, may not be observable
outside that context. In this regard, manual or crude approaches to establish
the extent of side effects are too imprecise and error-prone.

This dissertation explores and evaluates techniques for statically com-
puting the side-effecting behavior of higher-order imperative programs to
determine procedure purity.

We base our approach on an abstract state machine that is an interpreter
for a core Scheme language, instrumented to register read and write effects
on resources. Resources in our semantics are variables and objects, which are
allocated in a store at a specific address. Following the AAM approach, the
machine is parameterized to be able to express both concrete and abstract
semantics. The result of program interpretation is a flow graph that is
consumed by client analyses interested in program properties involving
control flow, value flow, and effects.

Our first contribution is a procedure side-effect analysis that computes for
each procedure application the side effects that are observable by direct and
indirect callers. Applications and associated callers are found by traversing
all reachable application contexts on the call stack at the point where an
effect occurs. Observability of effects is based on freshness of resources. A
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resource is fresh in a particular context if it was created in that context.
Effects on fresh resources can never be observed outside that context. For
example, if during procedure application an object is allocated, then that
object is fresh in that application context, and any effects on it can never
be observed by callers. We discuss three characterizations of freshness. The
first, address freshness, is attractive because it is a close fit with the store-
semantics of the abstract machine. However, this is not always ideal because
termination of static analysis is primarily guaranteed by allocating resources
at addresses that are already in use, and therefore not fresh. For example,
a variable is typically allocated at the same address throughout an entire
abstract interpretation. To improve the precision of side-effect analysis, we
introduce two additional scope-based characterizations of freshness. Variable
freshness is based on locality of variables, i.e. whether they are local or
free with respect to a procedure’s scope, and object freshness keeps track
of the flow of objects in and out of scopes through object references. Their
formalization forms the second contribution of this work.

Our third and final contribution is the design of a purity analysis on
top of procedure side-effect analysis. Purity analysis classifies procedures
as either pure, observer, or procedure. A procedure is pure if none of its
applications generate or depend upon externally observable side effects. A
procedure is an observer as soon as one of its applications depends on an
external side effect, but none of its applications generate observable side
effects. Otherwise, a procedure is classified as a procedure.

We apply the analyses presented in this work to a set of programs, and
discuss the outcome in terms of four key aspects: correctness, soundness,
precision, and performance. We find that our purity analysis is capable
of uncovering purity in a variety of programs. Also in this setting our
experiments show that our analysis is capable of correctly classifying functions
in terms of the side effects they generate and depend upon.



Samenvatting

Neveneffecten zijn een essentieel onderdeel van veel programma’s. Toch
maken ze het moeilijker om het gedrag van programma’s te voorspellen,
omdat expressies niet langer enkel een waarde voorstellen. Pure expressies
hebben geen neveneffecten, en onderzoek in verschillende domeinen heeft
aangetoond dat puurheid helpt bij de specificatie, optimalisatie, en het
testen, debuggen, en onderhoud van programma’s.

Het bepalen van neveneffecten is nuttig voor het begrijpen en optima-
liseren van programma’s, maar is erg moeilijk, zeker in aanwezigheid van
objecten en hogere-orde procedures die vrij doorheen een programma mo-
gen vloeien. Daarenboven volstaat het niet om enkel de aanwezigheid van
expressies met neveneffecten in een programma aan te tonen. Ook de dy-
namische reikwijdte van elk neveneffect moet zo precies mogelijk worden
vastgesteld om bruikbare informatie te bekomen. Een neveneffect in een
bepaalde context, bijvoorbeeld de toepassing van een procedure, is mis-
schien niet waarneembaar buiten die context. Manuele of ruwe benaderingen
om de reikwijdte van neveneffecten vast te stellen zijn te onprecies en erg
foutgevoelig.

Deze verhandeling onderzoekt en evalueert technieken om het optreden
van neveneffecten in een programma statisch te berekenen, om zo puurheid
van procedures te bepalen. We baseren onze aanpak op een abstracte
state machine die een interpreter van een basis Scheme taal voorstelt, en
geïnstrumenteerd is om lees- en schrijfeffecten van en naar resources te
registreren. Resources in onze semantiek zijn variabelen en objecten die
worden gealloceerd op bepaalde adressen in een store. We volgen de AAM
techniek door de machine te parameterizeren zodanig dat deze zowel abstracte
als concrete semantiek kan uitdrukken. Het resultaat van programma-
interpretatie is een graaf die geconsumeerd kan worden door client-analyses
geïnteresseerd in programma-eigenschappen omtrent control flow, value flow,
en effecten.

iii
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Onze eerste bijdrage is een analyse voor het berekenen van procedure
neveneffecten die voor elke procedure-toepassing de neveneffecten berekent
die waarneembaar zijn door directe en indirecte oproepers. Toepassingen en
bijbehorende oproepers worden gevonden door alle bereikbare toepassing-
contexten op de stack te overlopen op het punt waar een effect zich voordoet.
De waarneembaarheid van een effect is gebaseerd op de versheid van de
betrokken resource. Een resource is vers in een bepaalde context als deze
werd gecreëerd in deze context. Effecten op verse resources kunnen nooit
waargenomen worden buiten deze context. Bijvoorbeeld, als tijdens een
procedure-toepassing een object wordt gealloceerd, dan is dat object vers in
de context van die toepassing, en alle effecten op de resource kunnen nooit
waargenomen worden door oproepers. We bespreken drie karakterisaties
van versheid. De eerste, versheid van adressen, is attractief omdat het
nauw aansluit met de store-semantiek van onze abstracte machine. Maar
versheid bepalen aan de hand van adressen is niet altijd ideaal omdat de
eindigheid van statische analyse vooral gegarandeerd wordt door het toestaan
van resource-allocatie op adressen die reeds in gebruik zijn, en daarom niet
vers. Bijvoorbeeld, variabelen worden typisch op hetzelfde adres gealloceerd
doorheen een abstracte interpretatie van een programma. Om de precisie van
de analyse van neveneffecten te verbeteren, introduceren we twee bijkomende
karakterisaties van versheid gebaseerd op scope. Versheid van variabelen is
gebaseerd op de localiteit van variabelen, d.w.z. of ze vrij of gebonden zijn
in de scope van een procedure, en versheid van objecten wordt bijgehouden
door te kijken hoe ze worden doorgegeven tussen verschillende scopes en
object-referenties. Hun formalisatie vormt de tweede bijdrage van dit werk.

Onze derde en laatste bijdrage is het ontwerp van een puurheidsanalyse
bovenop de neveneffecten-analyse voor procedures. De puurheidsanalyse
classifieert procedures als zijnde puur, observer, of simpelweg procedure.
Een procedure is puur als geen van haar toepassingen een waarneembaar
effect genereert of afhankelijk is van externe neveneffecten. Een procedure
is een observer van zodra een van haar toepassingen afhankelijk is van een
extern neveneffect, maar geen enkele een waarneembaar neveneffect genereert.
Anders wordt de procedure beschouwd als een gewone procedure.

We passen de analyses besproken in dit werk toe op een verzameling
programma’s en bespreken het resultaat in termen van vier belangrijke crite-
ria: correctheid, deugdelijkheid, precisie, en performantie. We concluderen
dat onze puurheidsanalyse in staat is om puurheid bloot te leggen in een
diverse verzameling programma’s. We hebben onze aanpak ook toegepast
voor het detecteren van pure functies in JavaScript. Ook in dit kader tonen
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onze experimenten aan dat onze analyse in staat is om correct functies
te classifiëren in termen van neveneffecten die ze genereren of waarvan ze
afhankelijk zijn.
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Chapter 1

Introduction

This dissertation presents and evaluates techniques for statically computing
the side-effecting behavior of higher-order imperative programs to determine
procedure purity.

1.1 Research Context

Most of the popular contemporary programming languages are imperative.
For example, among the more than 2 million open-source projects hosted on
repository site github.com, JavaScript is used most frequently. It is followed
by Java, Python, PHP, and Ruby—all of which are imperative programming
languages.

The imperative programming paradigm is characterized by the execution
of ordered sequences of instructions that modify program state through side
effects. Imperative programs can be difficult to reason about, as reasoning
about an individual instruction requires considering the entire execution
history of the program [Backus, 1978].

Even though popular contemporary languages are imperative, these lan-
guages are increasingly featuring concepts from the functional programming
paradigm, either by design or through evolution.

The functional programming paradigm is characterized by higher-order
programming without side effects. Higher-order programming improves
the expressivity and modularity of programs [Abelson and Sussman, 1983,
Hughes, 1989]. The absence of side effects, a property called purity, facilitates
reasoning about the behavior of functional programs.

Languages such as JavaScript, Python, and Ruby, have adopted higher-
order programming and its advantages. However, unlike functional programs,

1
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imperative programs in these languages still contain side effects. Higher-order
imperative programs therefore cannot take full advantage of the benefits that
purity can bring, such as a more elegant and solid foundation for program
comprehension and automated verification.

To enable higher-order imperative programs to profit more fully from
the advantages of functional programming, we propose a static analysis for
detecting side effects and for determining their dynamic extent as precisely
as possible. The results of the analysis enable reasoning in a more functional
way over larger parts of an imperative program.

Static analysis of higher-order imperative programs is challenging. How-
ever, recent advances in static analysis have made it possible to analyze
programs containing imperative and functional features with sufficient preci-
sion [Gilray et al., 2016, Johnson and Van Horn, 2014]. In this dissertation,
we build upon these recent advances, and present techniques for statically
computing the side-effecting behavior of higher-order imperative programs
with the goal of determining procedure purity.

Side Effects

Expressions evaluate to values, and everything else an expression does is
called a side effect of that expression. Side effects are used to efficiently
update data structures or perform I/O, and therefore an essential part of
many programs. However, side effects make it harder to understand program
behavior, because expressions can no longer be treated as only the values they
evaluate to. Instead, it becomes more difficult to reason about the interaction
between expressions, and the program evaluation history has to be taken
into account when determining the outcome of evaluating expressions.

Purity

Pure expressions have no side effects. Research in different areas has demon-
strated that purity aids program specification, optimization, testing, debug-
ging, and maintenance [Finifter et al., 2008]. Purity facilitates establishing
security and confidentiality guarantees about applications. It also has the
potential to reduce the number of bugs in programs, and makes it easier to
reproduce bugs. Pure procedures can be more safely called from assertions
and contracts. It is often necessary to enforce purity in order to ensure
modularity, and compilers and runtimes can use purity to optimize program
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performance. In summary, detection or verification of purity is useful for a
variety of software engineering purposes.

The absence of side effects is in general not sufficient for expressions
and procedures to be regarded as safe and deterministic. Other factors, like
non-termination and resource starvation also play a role, but are out of the
scope of this dissertation.

Extent of Side Effects

In practice it is not sufficient to only detect the presence of side-effecting
expressions in a program. To effectively make use of side effect information,
it is as important to determine where in the program a side effect can actually
be observed. Consider for example a library for creating and manipulating
immutable data structures. When performing a batch insert, the library may
decide that it is more beneficial to transform an immutable data structure
into a mutable copy. The mutable copy can then be more efficiently updated
using side effects, instead of applying a succession of functional updates
on the immutable original. After updating, the updated mutable copy
is converted into an immutable data structure and returned to the caller.
Although clearly side effects are involved in this scenario, the user of the
library cannot observe these effects and can reason about the library as
being side-effect free.

Therefore, instead of determining whether side effects occurs, it is often
more interesting to know where in a program side effects occur, and to
which extent they have consequences. Constraining side effects as tightly as
possible makes it less difficult to reason about a program as a whole.

Procedure Side Effects

Procedures are at an interesting level of code granularity to determine side
effects. Procedure applications establish contexts in a program that enable
us to distinguish between effects that are local and therefore not observable
outside that context, and all other effects that are observable outside that
context. Additionally, procedures are units of code that often are executed
many times during program execution, and they can be named, exported,
and memoized. For these reasons it is interesting to treat side effects at the
level of procedures and procedure calls. A procedure side effect then is a
effect that is observable during at least one application of that procedure.
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1.2 Problem Statement

Information about side effects and their extent is useful for program com-
prehension and optimization, but it is difficult to obtain this information
statically, and particularly so in the presence of objects and higher-order
procedures that may flow freely through a program.

While side effects may be straightforward to determine for most individ-
ual expressions in isolation, procedure calls complicate matters. Obviously,
it is possible to do a crude approximation of procedure side effects that
occur during program evaluation. For example, one could look for syntactic
expressions that mutate a variable or object, and then mark the enclosing
procedure as having observable side effects. However, procedures can call
other procedures. To determine the extent of the side effect, it is necessary
to inspect all procedures that directly and indirectly call the side-effecting
procedure to examine whether the side effect is observable at call sites. Fol-
lowing the same principle, if the examined procedure calls other procedures,
which in turn call other procedures, the effects of those procedures also have
to be taken into account.

Even if we can compute calling information, then there is still the problem
of objects that are created and manipulated during procedure application.
Objects can be created during an application, passed to procedures as
parameters, referenced through a free variable, or retrieved from a data
structure. Variables, although governed by lexical scoping, can be non-local
(or free) in certain procedures. If the procedure in which a variable is free
behaves like a value, then the free variable can be considered to be similar
to an object field.

In summary, determining side effects and their extents requires detailed
knowledge of the control flow and value flow of a program. It is not feasible
nor desirable to obtain this information by naive approximations that offer
no useful precision.

1.3 Thesis

Procedure purity can be effectively approximated statically in a higher-order,
imperative program by performing an abstract interpretation of that program
to detect side effects and determine their extent through stack reachability.
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This dissertation supports the thesis by presenting and evaluating tech-
niques for statically computing the side-effecting behavior of higher-order
imperative programs to determine procedure purity.

1.4 Approach

We base our approach on an abstract state machine that is an interpreter for
a core Scheme language scheme0. We chose Scheme because it is an elegant
functional language with support for imperative programming. Following the
AAM approach (Abstracting Abstract Machines) [Van Horn and Might, 2010],
the machine is abstracted using abstract interpretation, and parameterized
so that it can be configured to express either concrete or abstract semantics.
Abstract interpretation is a good match for static analysis, because it provides
a theory to develop static analyses that are correct and provide meaningful
results about the runtime behavior of programs. The resulting machine
interpreter is also instrumented to register read and write effects on resources,
which in the context of this work we consider to be variables and objects.
The result of program interpretation is a flow graph that is consumed by
client analyses interested in program properties that involve control flow,
value flow, and effects.

Resources are stored at specific memory locations, and this memory
is modeled as a store (essentially a heap) mapping addresses to values.
Reading from and writing to memory locations by expressions are considered
to be effects. Procedure side effects are latent in nature, and are therefore
linked to the behavior of applications of a particular procedure at runtime,
which can be obtained from a program’s flow graph. A procedure side
effect is observable when the effect is on a resource that is reachable by a
caller of that procedure. When it can be determined that a side effect is
unobservable in a certain context, we say that the effect can be masked.
Our notion of procedure purity allows unobservable side effects, therefore
allowing procedures that allocate and mutate memory locations or depend
on mutable memory locations to still be considered free from side effects. To
increase the usefulness of side-effect analysis, its goal is to soundly mask as
many effects as possible.

Determining the observable extent of side effects in terms of application
contexts has to happen for all procedures that are in the process of computing
a result when an effect occurs [Might and Prabhu, 2009]. The set of active
application contexts can be obtained by traversing the call stack. For every
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effect that occurs, the observability of that effect will be examined in the
context of every active application context. If the effect is not observable
in a particular application context, then all application contexts that are
reachable from that context will also not observe the effect.

1.5 Contributions

This dissertation presents a framework for side-effect and purity analysis
and purity analysis for higher-order imperative programs using abstract
machines. The framework is modular because we present several analyses
that operate over a flow analysis and work together.

Our first contribution is a procedure side-effect analysis that computes
for each procedure application the side effects that are observable by direct
and indirect callers. Observability of effects is based on freshness of resources.
A resource is fresh in a particular context if it was created in that context,
i.e., it did not exist before. Effects on fresh resources can never be observed
outside that context. For example, if during procedure application an
object is allocated, then that object is fresh in that application context,
and any effects on it can never be observed by callers. We discuss three
characterizations of freshness. The first, address freshness, is attractive
because it is a close fit with the semantics of the abstract machine in which
resources are mapped in the store by addresses. However, address freshness is
not always ideal because termination of static analysis is primarily guaranteed
by allowing the analysis to allocate resources at addresses that are already
in use, and therefore not fresh. For example, a variable is typically allocated
at the same address throughout an entire abstract interpretation.

To improve the precision of side-effect analysis in an abstract setting, we
introduce two additional scope-based characterizations of freshness. Variable
freshness is based on locality of variables, i.e., whether they are local or free
with respect to a procedure’s scope. Object freshness keeps track of the flow
of objects in and out of scopes through object references. The formalization
of freshness analysis for variables and objects forms the second contribution
of this work.

Our third and final contribution is the design of a purity analysis on top
of procedure side-effect analysis. Our purity analysis classifies procedures
as either pure, observer, or procedure. A procedure is pure if none of
its applications generate or depend upon externally observable side effects.
A procedure is an observer as soon as one of its applications depends on



1.6. DISSERTATION OUTLINE 7

an external side effect, but none of its applications generate observable side
effects. Otherwise, a procedure is classified as a procedure.

We summarize the main contributions this dissertation makes.

• A procedure side-effect analysis that computes observable side effects
for each procedure application (Chapter 3).

• A freshness analysis for addresses, variables, and objects (Chapter 4),
coupled with escape analysis for increased precision (Chapter 5).

• A purity analysis for higher-order, imperative programs (Chapter 6).

In addition to the main contributions, we also perform an extensive
evaluation of the analyses presented in this dissertation (Chapter 8). We
apply the analyses to a set of benchmarks, and discuss the outcome in terms
of four key aspects: correctness, soundness, precision, and performance. We
find that our purity analysis is capable of detecting purity in a variety of
programs.

Finally, we transpose our approach for detecting procedure purity for
Scheme to JavaScript (Chapter 9). Like Scheme, JavaScript has both a
functional and an imperative core, but the language also supports object-
oriented programming with prototypal inheritance. JavaScript is a dynamic
and complex language that makes static analysis challenging. Porting our
approach to JavaScript therefore enbles us to evaluate how our ideas and
techniques can be realized in this more dynamic and complex setting.

1.6 Dissertation Outline

This dissertation is structured as follows.

Chapter 2: Syntax and Semantics of scheme0

We begin our discourse with a discussion of the features of higher-order
imperative languages. We then introduce our core Scheme input lan-
guage scheme0, which we use throughout most of this dissertation.
To model the semantics of scheme0, we formalize an abstract state
machine that is an interpreter for scheme0. The result of program
interpretation is a flow graph representing runtime program behav-
ior, which can be consumed by client analyses interested in program
properties involving control flow and value flow. The abstract machine
can be configured to express either concrete or abstract semantics.
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With concrete semantics, the graph has full precision but can become
unwieldingly large, or even infinite. With finite abstract semantics,
the graph becomes finite, although as a result it may overapproximate
program behavior.

Chapter 3: Side-Effect Analysis
The side-effect analysis presented in this chapter is the first main
contribution of this dissertation. We instrument the abstract machine
from the previous chapter to register read and write effects on variables
and object properties. These effects are also reflected in the flow graph,
enabling client analyses to reason about effects. Procedure side-effect
analysis computes for each procedure application the side effects that
are observable by direct and indirect callers. The analysis does so by
considering all effects in a flow graph, and for every effect it traverses
all reachable application contexts on the call stack at the point where
the effect occurs. If an effect targets a resource that is reachable in the
store of the caller in a particular application context, then the effect is
observable in that context; else the effect can be masked by the analysis.
We call this form of observability address-based observability. The
chapter ends by proposing abstract garbage collection as a technique
to increase the precision of address-based observability by reducing
the store to only contain reachable addresses in a certain state.

Chapter 4: Freshness Analysis
A resource is fresh in a particular context if it was created in that
context. Effects on fresh resources can never be observed outside that
context. We start this chapter with the observation that address-based
observability from the previous chapter can be restated in terms of
address freshness. Basing observability on address freshness is not
always ideal because in a typical static analysis setting termination is
primarily guaranteed by allowing resources to be allocated at addresses
that are already in use, and therefore not fresh. To improve the
precision of side-effect analysis, this chapter introduces two additional
scope-based characterizations of freshness. Variable freshness is based
on locality, and object freshness is an analysis that keeps track of the
flow of objects between scopes and through object references. Their
formalization forms the second main contribution of this work. We
conclude the chapter by showing how to extend procedure side-effect
analysis from the previous chapter with variable and object freshness.
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Chapter 5: Escape Analysis
Variable and object freshness both rely on variables, which restricts
freshness analysis of the previous chapter to the most recent application
context. The reason is that procedure side-effect analysis uses stack
reachability, and the stack embodies dynamic scope, while variables
are lexically scoped. To allow scope-based freshness of variables and
objects in underlying application contexts, this chapter formalizes an
escape analysis. Escape analysis detects procedures that potentially
escape their defining lexical scope. As long as no applied procedure
escapes when traversing the stack, we are guaranteed that variables
identify the same memory locations in the encountered stack frames.
The chapter ends by showing how to incorporate the escape analysis
into procedure side-effect analysis.

Chapter 6: Purity Analysis
This chapter presents our third main contribution, purity analysis, as
an application of procedure side-effect analysis. The goal of purity
analysis is to summarize the side-effecting behavior of procedures with
respect to the rest of the program. The analysis identifies procedures
that generate observable write effects, and procedures that depend on
external side effects. Based on their side-effecting behavior, we classify
procedures as either pure, observer, or procedure. A procedure is
pure if none of its applications generate or depend upon externally
observable side effects. A procedure is an observer as soon as one
of its applications depends on an external side effect, but none of its
applications generate observable side effects. Otherwise, a procedure
is classified as procedure.

Chapter 7: Implementation
In this chapter we present a broad overview of our proof-of-concept
implementation of the analyses of the previous chapters. We discuss
the design and architecture of the resulting tool, and the techniques
required to improve performance over a naive implementation. We
zoom in on implementation details that are important to understand
how different analysis configurations are realized.

Chapter 8: Evaluation
We applied our proof-of-concept implementation to a set of benchmarks.
In this chapter we discuss the outcome of these experiments in terms of
correctness, soundness, precision, and performance. We establish two
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configurations for experimentation: a concrete configuration in which
fully precise answers are obtained, and an abstract configuration that
is guaranteed to be finite, but at the cost of introducing imprecision.
We also give an overview of the benchmarks used for testing and
evaluation.

Chapter 9: Purity Analysis For JavaScript
This chapter explains how our approach for purity analysis can be
transposed to JavaScript. Although Scheme and JavaScript share
some features such as higher-order procedures (“functions”), JavaScript
adds features such as dynamic property expressions and prototypal
inheritance. Although we follow the same general outline as for Scheme,
we discuss the differences in design and implementation. Using a
proof-of-concept implementation, we not only experiment on several
JavaScript benchmarks, but also on some benchmarks we found in
related work for comparison.

Chapter 10: Conclusion
We conclude this dissertation by restating the contributions and limi-
tations of this work, guided by the outcome of our experiments. We
discuss technical and applicative avenues of future work. On the
technical side, we identify shortcomings of the current approach and
possible improvements for the analyses and techniques we introduced.
In terms of applications, we envision that analyses and techniques for
parallelization, memoization, and referential transparency would fit
well in our modular framework as client analyses.

1.7 Supporting Publications

There are two publications that support this dissertation directly. We discuss
them briefly and highlight their relevance to this dissertation.

Detecting Function Purity in JavaScript [Nicolay et al., 2015]

This paper was presented at the 15th IEEE International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM2015) in Bremen,
Germany, and was awarded the “Best Paper Award” at that same conference.
It introduces the central idea to base a side-effect analysis and related analy-
ses on an effect-tracking pushdown flow analysis that enables reasoning over
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the stack to discover how and to which extent effects are linked to procedures.
The main ideas of this paper appear in Chapter 3, but using Scheme instead
of JavaScript. It also introduces freshness analysis for variables and objects,
which is the subject of Chapter 4. The goal of [Nicolay et al., 2015] is to
detect function purity in JavaScript, where function purity is defined as the
absence of observable write effects. Chapter 6 in this dissertation reuses
some of these ideas, but widens the scope considerably by also dealing with
dependence on external side effects. The results reported on in this work
are also more fine-grained, given our use of a ternary rather than a binary
classification scheme for purity.

Automatic Parallelization of Side-Effecting Higher-Order Scheme
Programs [Nicolay et al., 2011]

This paper was presented at the 11th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM2011) in Williamsburg,
VA, USA. It describes a program transformation that automatically paral-
lelizes higher-order, side-effecting Scheme programs. The transformation
has to be instantiated with an interprocedural dependence analysis that ex-
poses parallelization opportunities in a sequential program. The dependence
analysis is based on the observation that whenever a read or write effect
occurs, every procedure on the call stack has a dependence on that resource.
This insight plays a crucial role in the side-effect analysis of Chapter 3.
The paper builds on a static analysis technique (AAM) that is less precise
than the techniques employed in this dissertation (AAC) when it comes to
call/return precision. In Chapter 10 we conjecture that the parallelization
technique from the paper can be implemented in terms of the framework of
this dissertation without much difficulty.

Other Publications

There are five additional publications we mention [Marr et al., 2012, Nicolay
et al., 2013, Stievenart et al., 2015, Van Es et al., 2016, Vandercammen
et al., 2015] that document our academic track record with respect to topics
that are treated in this dissertation. These topics include abstract machines,
interpreters, and static analysis in the context of higher-order, imperative
languages.
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1.8 Technical Contributions

Two technical artifacts support the techniques and experimental results in
this dissertation.

purity.rkt

purity.rkt is the main artifact specifically developed for this dissertation.
It is a Racket implementation that contains all analyses presented in this
work. Its ANF Scheme input language and semantics are a superset of
scheme0, which we present in Chapter 2. Additionally, it also contains the
benchmark programs, test suites for mechanical verification, and code for
the experiments as described in Chapter 8.

We provide more details about this implementation in Chapter 7. The
artifact is publicly available at https://github.com/jensnicolay/purity/
tree/phd.

protopurity.js

A second artifact supporting this dissertation is protopurity.js. This
artifact is a module of JIPDA, a static analysis framework for JavaScript,
written in JavaScript.

protopurity.js implements the same ideas and techniques we cover
in this dissertation, but for a challenging subset of JavaScript instead of
Scheme.

It was used as the supporting implementation for published work [Nico-
lay et al., 2015], and for performing the evaluation in Chapter 9 of this
dissertation.

The artifact is publicly available at https://github.com/jensnicolay/
jipda/tree/phd/protopurity.

https://github.com/jensnicolay/purity/tree/phd
https://github.com/jensnicolay/purity/tree/phd
https://github.com/jensnicolay/jipda/tree/phd/protopurity
https://github.com/jensnicolay/jipda/tree/phd/protopurity


Chapter 2

Syntax and Semantics of scheme0

2.1 Introduction

This chapter presents a formal overview of the syntax and semantics of
scheme0, our core Scheme language which we use throughout most of this
dissertation.

We start with an informal definition of the features of scheme0, and
explain how they relate to program evaluation (Section 2.2). We then specify
the syntax of scheme0 (Section 2.3). To simplify the presentation, the syntax
is in administrative normal form, and the side-effecting primitive procedures
we are interested in are special forms. The semantics of scheme0 are
expressed as an abstract machine that explores reachable states (Section 2.4).
The machine is parameterized with heap and stack allocators so that it can
be configured to express concrete and abstract semantics. The result of state
exploration is a flow graph, which is a representation of the runtime behavior
of a program (Section 2.5). Before concluding the chapter, we present a fully
worked-out example of program evaluation and stack traversal.

2.2 Informal Overview of scheme0

The majority of this dissertation uses scheme0 as the language of discourse,
with only Chapter 9 devoted to JavaScript. scheme0 was designed to be a
close variant of R5RS Scheme [Abelson et al., 1998]. It features higher-order,
first-class procedures, compound data structures, and side effects. Despite
this rich set of features, scheme0remains a small, consistent, and elegant
language.

13
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scheme0is a higher-order language, meaning that all values, including
procedures, can be passed as an argument and returned as a result. It is
also an imperative language that models a heap or store in which values
can be accessed and modified. A store maps locations (often represented as
addresses) to values, and expressions in an imperative language are allowed
to change the store.

Side effects are all effects that occur when an expression is evaluated
besides producing the resulting value itself. While non-termination and
out-of-memory errors are considered side effects as well, we limit effects to
the reading and writing of store locations.

Procedures are treated as first-class values in scheme0, meaning that
procedures can be stored in and retrieved from the store.

scheme0 has pairs as the basic building block for creating compound
data structures. A pair corresponds to an object with two fields named
car and cdr. Although not always the most convenient solution in practice,
theoretically speaking a pair is the simplest possible component from which
to construct a data structure, and it is possible to express any other structure
in terms of pairs [Strachey, 2000].

Name resolution is defined in terms of the static structure of the program,
making scheme0 a lexically scoped language. Certain constructs such as
procedures (lambda expressions) introduce new scopes or binding contexts
that are nested into their surrounding (parent) scope. All named declarations
are added to the innermost (“current”) scope. Name lookup also starts at
the innermost scope and proceeds outward until the name is found.

At runtime, an environment allows names to be substituted with their
value, indirectly, by mapping identifiers to locations in the store. Manip-
ulation of environments honors lexical scoping by extending and restoring
them at scope entry and exit. When evaluation steps into a scope, the
environment is extended to allow binding of formal parameters and local
variables in the extended environment, without touching previous bindings.
When leaving a scope, the previous environment is restored.

Because procedures in scheme0 are first-class values that can freely flow
through a program, care must be taken that a procedure’s free variables
remain lexically scoped. Free variables of a procedure are variables that are
not local to a procedure, but that are declared in an outer lexical scope. To
ensure that the static lookup chain is respected, a procedure evaluates to a
closure, which is the procedure itself coupled to the environment in which it
is defined. When the procedure is applied, it is this environment which is
extended instead of the environment of the caller.
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In the context of scheme0, we use the term procedure to signify a
syntactic occurrence of the lambda special form in a program, and prefer
the use of the term closure to designate a lambda expression coupled to its
static environment.

Finally, scheme0 is an applicative-order language, so upon procedure
application the arguments are evaluated and bound to parameters before
entering the body of the procedure.

One notable omission in the semantics of scheme0 is support for first-
class control operators, of which Scheme’s call-with-current-continuation
is the exemplar. We revisit this limitation in Section 2.6, where we provide
more technical details of why this limitation exists and why it is not so
severe in practice.

Although we focus on scheme0 in this dissertation, the ideas and tech-
niques we present are applicable in other higher-order, imperative languages
as well. In Chapter 9 we transpose our work to JavaScript.

2.3 Syntax

We work on scheme0, a core Scheme language with first-class procedures,
let binding, mutable variables, and mutable pairs. Although scheme0 is a
small language, it contains the essential features of a higher-order imperative
programming language. The syntax of scheme0 is depicted in Figure 2.1.

To simplify the presentation, scheme0 is in Administrative Normal Form
(ANF). Also for ease of exposition, we turn some constructs that are usually
implemented as primitive procedures into syntax. We briefly discuss these
qualities in the next two sections.

2.3.1 Administrative Normal Form

scheme0 (Figure 2.1) is in Administrative Normal Form (ANF) [Flanagan
et al., 1993]. ANF restricts a language by restricting most expression positions
to atomic expressions. Only let-bound expressions and expressions in tail
position are allowed to be non-atomic, or compound, expressions. This
restriction is only cosmetic, because all programs in direct style can be
expressed in ANF.

Atomic expressions help simplify the operation of the abstract machine.
As we explain in Section 2.4, atomic expressions can be immediately evaluated.
Unlike compound expressions, an interpreter does not need to step into
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e ∈ Exp ::=æ [atomic expression]
| (f æ) [application]
| (let ((v e0)) e1) [binding]
| (set! v æ) [set variable]
| (cons æ1 æ2) [pair]
| (car v) | (cdr v) [get field]
| (set-car! v æ) | (set-cdr! v æ) [set field]

f,æ ∈ Atom ::=v [variable]
| lam [lambda expression]

lam ∈ Lam ::=(λ(v)e)

v ∈ Var = a set of identifiers

Figure 2.1: Syntax of input language scheme0.

atomic expressions, and “remember” where to continue after evaluating a
subexpression. For function applications, for example, ANF ensures that all
operands are atomic expressions, greatly simplifying the semantics. The same
advantage of atomic expressions simplifies the semantics of set!, set-car!,
etc.

A transformation to ANF breaks complex expressions down into a se-
quence of simpler intermediate subexpressions by introducing unary let

expressions (i.e., containing one binding). It also imposes an order of evalua-
tion. Due to the simplification that ANF brings, the abstract machine we
define in Section 2.4 only has to remember something when it has to evaluate
a let expression. The machine has to remember that after evaluating the
value to be bound, it has to continue with the body of the let. Example 2.1
shows an input program in direct style, and the resulting program after
conversion into ANF.

Example 2.1. An expression for calculating the n-th Fibonacci number
is shown in Figure 2.2a. The normalized result is depicted in Figure 2.2b.
In this example, variables with prefix _p are unique variables introduced
by the transformation. In a similar manner ANF conversion also breaks
down other types of conditional expressions, declarations, mutations and
procedure bodies by explicitly naming subexpressions.
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1 (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))

(a) Input program in direct style.

1 (let ((_p0 (< n 2)))

2 (if _p0

3 n

4 (let ((_p1 (- n 1)))

5 (let ((_p2 (fib _p1)))

6 (let ((_p3 (- n 2)))

7 (let ((_p4 (fib _p3)))

8 (+ _p2 _p4 )))))))

(b) Program after conversion to ANF.

Figure 2.2: Example of ANF conversion.

2.3.2 Side-effecting Special Forms

In scheme0, all side-effecting constructs are implemented as special forms.
Scheme implementations already implement the set! construct for variable
mutation as a special form. In our syntax, the primitives operating on
pairs (cons, car, set-car!, . . . ) are special forms too, instead of first-class
primitive procedures. This enables our abstract machine specification to treat
these special forms as syntax, i.e., at the same level as other expressions.
Otherwise, a distinct category of primitives would be required, further
complicating procedure application, which usually is already one of the most
complicated semantic operations in an abstract machine.

Treating primitives as syntax renders scheme0 less expressive, but in
practice this is not a problem, as the following example makes clear.

Example 2.2. Suppose we are confronted with the following fragment of
code, in which primitive car, passed as an argument to procedure map, is
used as a first-class value.

(map car lst)

This fragment can be transformed into the equivalent, but more verbose
fragment shown below.

(map (lambda (x) (car x)) lst)
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This transformation works for other primitives as well.

2.4 Semantics

The small-step semantics of scheme0 is defined as an abstract machine
that transitions between states [Felleisen and Friedman, 1987]. As the
abstract machine describes the individual steps required to evaluate programs
expressed in scheme0, this type of semantics is referred to as small-step
operational semantics. The abstract machine is constructed in a manner that
allows functional reasoning about imperative constructs in the language.

Starting from an initial state, which represents the program to be eval-
uated, the machine continually transforms machine states into possible
successor states, generating a graph of all potentially reachable states (Sec-
tion 2.5). Every state corresponds to a snapshot of the program state while
the machine is evaluating the program. Examining the resulting graph
therefore enables us to determine runtime properties of the program that the
machine interpreted. If a property of interest is not immediately captured
by regular program interpretation, then the semantics can be instrumented
by maintaining the derived property throughout the abstract machine states.
We do this in our side-effect analysis of Chapter 3, when we extend our
abstract machine to register effects that occur during evaluation. An analysis
can traverse the resulting graph of program states, collecting the results of
interest.

In the remainder of this section we detail the operation of the abstract
machine.

2.4.1 State Space

Figure 2.3 depicts the state space of the abstract machine. The machine is
a variation on the CESIK?Ξ machine described by Johnson and Van Horn
[2014]. Our core flow analysis adds configurable stack allocation to their
Abstracting Abstract Control (AAC) approach.

The abstract machine is in eval-continuation style (ev–ko). A machine
state is either an evaluation state (ev), or a continuation state (ko). In
an evaluation state, the machine evaluates an expression e of scheme0 in
environment ρ. In a continuation state, the machine is ready to continue
evaluation with a value d it has just computed.
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ς ∈ State ::= ev(e, ρ, σ, ι, κ,Ξ) [eval state]
| ko(d, σ, ι, κ,Ξ) [kont state]

ρ ∈ Env = Var ⇀ Addr [environment]
σ ∈ Store = Addr → D [store]

d ∈ D = P(Clo + Addr + Pair) [value]
clo ∈ Clo ::= clo(lam, ρ) [closure]
p ∈ Pair ::= cons(dcar, dcdr) [pair]

ι ∈ LKont = Frame∗ [frame]
φ ∈ Frame ::= let(v , e, ρ) [binding frame]
κ ∈ Kont ::= ε | τ [application context]

Ξ ∈ KStore = Ctx → P(LKont ×Kont) [stack store]
a ∈ Addr = a set of addresses
τ ∈ Ctx = a set of stack addresses

Figure 2.3: Abstract state-space of the flow analysis.

Environment and Store

An environment ρmaps variables to addresses. Addresses represent a location
in the store σ, and the store maps addresses to values. Looking up the value
of a variable therefore consists of first looking up that variable’s address,
and then referencing this address in the store.

Values

Values in our semantics are closures (clo), addresses (a), and pairs (p). A
closure is a lambda expression coupled to an environment. An address is a
pointer to a pair, so addresses in general serve as handles to objects. Closures
and addresses are first-class values that can be manipulated directly in a
program. A pair is a tuple of values, and is manipulated by the syntax
operating on pairs. We only need to model the car and cdr fields for pairs in
our language. In a more general setting, which for example supports vectors
and objects, the set of field names can be considerably larger, or infinite.
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Stacks

The stack is modeled as a local continuation (ι) delimited by a meta-
continuation (κ). The local continuation is a (possibly empty) list of frames,
and acts like a “regular” stack, on top of which frames can be pushed and
from which topmost frames can be popped. The meta-continuation is either
empty (ε), or a stack address (τ) pointing to underlying stacks stored in a
stack store (Ξ). Traversing the stack from top to bottom happens by first
traversing the local continuation ι (if not empty), and then looking up the
underlying stacks by dereferencing the stack address τ in the stack store
Ξ. This process repeats until the meta-continuation is not a stack address
but the empty meta-continuation ε, which means the bottom of the stack is
reached.

2.4.2 Abstract Semantics

In this dissertation, the information we want to extract from a program’s
flow graph is the following:

• Value flow: what are the possible values that expressions in a program
may attain?

• Control flow: what are the possible paths through a program?

• Effects: what resources are read and written by the evaluation of
expressions?

• Freshness: which resources are created during a particular evaluation
context, and which resources existed beforehand?

To be able to extract this program information from a flow graph, the graph
has to be finite. The problem with computing a flow graph using an abstract
machine as described above, is that the graph can become unpractically
large, or even infinite. We therefore need a technique to ensure termination
of evaluation, while still obtaining useful and consistent results about the
behavior of programs.

Abstract interpretation is a theory and a framework that offers a solu-
tion to the problem of costly or uncomputable runtime properties. It was
pioneered as a formal method for the analysis of programs in Cousot and
Cousot [1977]. Although the concrete semantics of a non-trivial program
are not computable with finite resources, abstract interpretation neverthe-
less offers a framework for getting useful answers to non-trivial questions
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about programs. The answers we obtain from abstract interpretation will
necessarily be approximations due to the undecidability of the questions
asked.

In the context of this dissertation we want static analysis to conservatively
approximate control flow, value flow, effects, and freshness. Conservative
means erring on the safe side in order to remain faithful to the original
semantics. For example, if during procedure application a resource is accessed
or modified, the analysis must reflect this possibility, but the analysis may
be imprecise in the sense that it overestimates the set of resources read or
written at a specific call site.

The state machine we presented is actually an abstraction (Appendix B.1)
of an abstract state machine that is a concrete interpreter for scheme0. The
telltale sign of this is the fact that the range of the value store and stack store
are powersets, which are lattices (Example B.6). This is necessary, because
allocators are allowed to choose addresses that are already in use, leading
to weak updating of values in these stores. Weak updating pigeonholes old
and new values at the same address by joining them through join operator
t, requiring the values to form a lattice (Appendix B.2). The store address
allocator and stack address allocator are parameters of the machine, and
can be used to vary the abstractions and resulting semantics.

2.4.3 Concrete Semantics

The semantics we present in this chapter are the abstract semantics, using
weak updates through lattice operator t. However, the abstract machine
simulates concrete semantics when configured with stack and store allocators
that always allocate fresh addresses, and when strong update is used for both
stores. Strong updating replaces the previous value with a new value. In
this setting the powersets in the range of the stores are guaranteed to be
singleton sets. Concrete semantics has full precision in that joins in control
and value flow are avoided, almost always resulting in a flow graph that is a
linear sequence of states.

2.4.4 Program Injection

The injection function I : Exp→ State turns an expression into an initial
evaluation state with empty environment, store, local continuation, meta-
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continuation, and stack store.

I(e) = ev(e, [], [], 〈〉, ε, [])

2.4.5 Atomic Evaluation

The atomic evaluation function A : Atom × Env × Store → D evaluates
atomic expressions into a value. Atomic expressions (Section 2.3.1) are
expressions that can be evaluated in a bounded number of steps without
modifying the environment, store, or stack.

In the semantics of scheme0, there are two kinds of atomic expressions:
procedures and variables.

1. A procedure evaluates to closure, which is a tuple of the procedure
and the environment.

A(lam, ρ, σ) = {clo(lam, ρ)}

2. Looking up the value of a variable happens by first looking up the
address of the variable in the environment, and then looking up the
value associated with that address in the store.

A(v , ρ, σ) = σ(a)

where a = ρ(v)

2.4.6 Address Allocation

The address allocation functions allocVar and allocPair choose store ad-
dresses for newly bound variables and pairs, respectively. The address
allocation functions are opaque parameters in this semantics, and can be
used to tune performance and precision of the abstract machine and resulting
flow analysis. For maximum flexibility in choosing addresses, we pass almost
the entire program state to the allocator functions.

allocVar : Var × Exp× Store × LKont ×Kont ×KStore → Addr

allocPair : Exp× Store × LKont ×Kont ×KStore → Addr

Concrete semantics can be defined by letting the allocator return fresh
addresses, for example by choosing addresses from the set of natural numbers
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and returning a number that is not in use.

Addr = N
allocVar(v , e, σ, ι, κ,Ξ) = 1 + max(Dom(σ))

allocPair(e, σ, ι, κ,Ξ) = 1 + max(Dom(σ))

For defining finite abstract semantics, the allocator can use the involved
variables or expressions (i.e., syntax) directly as addresses. This allocation
strategy is called 0CFA [Shivers, 1991].

Addr = Exp

allocVar(v , e, σ, ι, κ,Ξ) = v

allocPair(e, σ, ι, κ,Ξ) = e

2.4.7 Stack Address Allocation

The stack address allocation function allocCtx is also a parameter of the
language semantics, and returns stack addresses for allocating stacks in
the stack store. Stack addresses are generated at call sites, and therefore
represent application contexts. A call stack can be obtained by tracing out
all reachable stack addresses in the stack store, starting from the topmost
context directly contained in the state. Stack traversal terminates when the
empty meta-continuation (or root context) ε is reached. A program starts
evaluation and, if evaluation terminates normally, finishes evaluation in the
root context. In scheme0, the root context corresponds to the top-level
part of a program that is not within any procedure. Example 2.3 on page 29
visualizes some of the terminology.

As with the store allocator, we pass a large part of the program state to
the stack store allocator function for flexibility reasons.

allocCtx : Exp× Clo ×D × Store × Env → Addr

We next discuss two stack address allocators, AAC and P4F, used in related
works.

AAC Stack Allocation

The original Abstracting Abstract Control (AAC) approach [Johnson and
Van Horn, 2014] uses an allocation function that returns stack addresses
consisting of all components that influence the outcome of a procedure
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application, i.e., the entire calling context (assuming the absence of first-
class control). To avoid unnecessary merging in return flow, our approach
adds an additional component corresponding to the syntactic call expression
e. This more refined allocation strategy defines the concrete semantics of
the language completely, while ensuring maximal call/return precision for
its semantics, i.e., full precision modulo any abstraction.

Ctx = (Exp× Clo ×D × Store)

allocCtx (e, clo, d, σ, ρ) = (e, clo, d, σ)

P4F Stack Allocation

A more lightweight representation of the calling context has recently been
proposed in the P4F1 approach by Gilray et al. [2016]. P4F refines the AAC
approach by using a different stack allocator that offers the same precision
as the original AAC allocation strategy when both the value store and stack
store are global, but only includes the applied procedure and its definition
environment extended with parameter bindings. As a result, the worst-case
computational cost of flow analysis drops from O(n8) for AAC to O(n3) for
P4F when using 0CFA and global stores (Section 7.4.1).

Ctx = (Lam× Env)

allocCtx (e, (lam, ρ), d, σ, ρ′) = (lam, ρ′)

2.4.8 Transition Relation

Using the auxiliary functions from previous sections, we can now define the
transition relation ( 7−→) ⊆ State × State of our abstract machine. Rules
for transitions from evaluation states (ev) correspond with the different
syntactic cases, while rules for transitions from continuation states (ko)
correspond with the different kinds of continuations. We list the different
cases for 7−→.

1. Evaluation of an atomic expression æ continues with the value of the
atomic expression computed by the atomic evaluator A (Section 2.4.5).

ev(æ, ρ, σ, ι, κ,Ξ) 7−→ ko(d, σ, ι, κ,Ξ) [e-atom]

where d = A(æ, ρ, σ)

1P4F stands for “pushdown control-flow analysis for free”
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2. To evaluate a variable binding, the machine moves to a state that will
evaluate the value expression e0, while pushing a frame to remember
to continue with the evaluation of body expression e1.

ev([[(let ((v e0)) e1)]], ρ, σ, ι, κ,Ξ) 7−→ ev(e0, ρ, σ, let(v , e1, ρ) : ι, κ,Ξ)

[e-let]

3. Evaluating a variable mutation requires atomically evaluating value
expression æ and assigning the obtained value d to a name. In our
semantics, the result of variable mutation is the assigned value d.

ev([[(set! v æ)]], ρ, σ, ι, κ,Ξ) 7−→ ko(d, σ′, ι, κ,Ξ) [e-set]

where d = A(æ, ρ, σ)

a = ρ(v)

σ′ = σ t [a 7→ d]

4. Evaluating a function call involves atomically evaluating the operator
f to a closure and the operand æ to a value, and binding the operand
value darg by extending the static environment of the closure ρ′′ and the
store. The current stack (ι, κ) is allocated in the stack store at freshly
allocated stack address τ , and evaluation moves to the body of the
lambda-term within the closure e0 with an empty local continuation
and application context τ .

ev([[

e︷ ︸︸ ︷
(f æ)]], ρ, σ, ι, κ,Ξ) 7−→ ev(e0, ρ

′, σ′, 〈〉, τ,Ξ′) [e-app]

where clo ∈ A(f, ρ, σ)

darg = A(æ, ρ, σ)

clo([[(λ(v)e0)]], ρ′′) = clo

a = allocVar(v , e, ρ, σ, ι, κ,Ξ)

ρ′ = ρ′′[v 7→ a]

σ′ = σ t [a 7→ darg]

τ = allocCtx (e, clo, darg, σ, ρ
′)

Ξ′ = Ξ t [τ 7→ (ι, κ)]
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5. Evaluating the allocation of a pair requires atomically evaluating the
car and cdr value.

ev([[

e︷ ︸︸ ︷
(cons æ1 æ2)]], ρ, σ, ι, κ,Ξ) 7−→ ko({a}, σ′, ι, κ,Ξ) [e-cons]

where dcar = A(æ1, ρ, σ)

dcdr = A(æ2, ρ, σ)

a = allocPair(e, ρ, σ, ι, κ,Ξ)

σ′ = σ t [a 7→ {cons(dcar, dcdr)}]

6. To take the car field of a pair, the abstract machine first atomically
evaluates expression v to obtain a pointer dcar to a pair, and then
returns the first field of the pair. (The rule for getting the cdr field is
similar.)

ev([[

e︷ ︸︸ ︷
(car v)]], ρ, σ, ι, κ,Ξ) 7−→ ko(dcar, σ, ι, κ,Ξ) [e-car]

where a ∈ A(v , ρ, σ)

cons(dcar,_) ∈ σ(a)

7. To evaluate a mutation of the car field of a pair, the abstract machine
atomically evaluates the pair d and value expression æ, and replaces
the first field of the obtained pairs with the computed value. (The rule
for setting the cdr field is similar.)

ev([[

e︷ ︸︸ ︷
(set-car! v æ)]], ρ, σ, ι, κ,Ξ) 7−→ ko(dcar, σ

′, ι, κ,Ξ)

[e-set-car]

where a ∈ A(v , ρ, σ)

dcar = A(æ, ρ, σ)

cons(_, dcdr) ∈ σ(a)

σ′ = σ t [a 7→ {cons(dcar, dcdr)}]

8. When the machine has to continue with a value d and the local
continuation is empty, the machine dereferences the stack address κ to
obtain an underlying stack (ι′, κ′). If no stacks are found in the stack
store, then the machine has reached a program exit and halts, and
d is the result value of the program. In all other cases the machine
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has reached a function exit, and will keep popping the stack until a
non-empty local continuation is available.

ko(d, σ, 〈〉, κ,Ξ) 7−→ ko(d, σ, ι′, κ′,Ξ) [k-ret]

where (ι′, κ′) ∈ Ξ(κ)

9. With a let-created continuation as the topmost frame, execution
returns to the body of the let that created it, with an extended
environment and store.

ko(d, σ, let(v , e, ρ) : ι, κ,Ξ) 7−→ ev(e, ρ′, σ′, ι, κ,Ξ) [k-let]

where a = allocVar(v , e, ρ, σ, ι, κ,Ξ)

ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ d]

2.5 Flow Graph Construction

Program properties can be determined by reasoning about all reachable
machine states. We therefore construct a flow graph representing program
evaluation, in which nodes are reachable states, and edges are transitions
between states. Evaluation of an expression e can be expressed as computing
the reflexive transitive closure of 7−→ after injection (Section 2.4.4).

E(e) = {ς | I(e) 7−→∗ ς}

The definition of flow graph Ge for expression e then is as follows:

(ς −→ ς ′) ∈ Ge ⇐⇒ ς ∈ E(e) and ς 7−→ ς ′

Static analysis requires a finite flow graph for the program under analysis.
Finiteness is guaranteed by plugging in finite sets for Var, Addr , and Ctx

into the state space of the analysis (Figure 2.3). The entire state space then
becomes finite as well, and the function computing the reflexive transitive
closure of 7−→ is monotonic and therefore has a least fixpoint.

2.5.1 Evaluation Example

Before concluding the chapter, we give an extensive example of program
evaluation using the abstract machine we presented. We also show how stack
traversal is performed.
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1 (let ((h (lambda (y)

2 y)))

3 (let ((f (lambda ()

4 (let ((g (lambda (x)

5 (x x))))

6 (g h)))))

7 (f)))

(a) Example program in which procedure f calls procedure g, and procedure g

calls procedure h.

states-example

�3�2
�1

ϵ

(b) Flow graph of the program, with dynamic extents of application contexts
drawn below (details of states and contexts in the running text). Unshaded states
are evaluation states (ev), and shaded states are continuation states (ko).stack terminology

ϵ

top

bottom

root context (program entry)

topmost application context

(c) Call stack in state ς12, when evaluating expression y on line 2.

Figure 2.4: Example program and depiction of flow graph and call stack for
Example 2.3.
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Example 2.3. Consider the program depicted in Figure 2.4a. Assume the
abstract machine from Section 2.4 has been configured to express abstract
semantics, with 0CFA as allocator for store values, and P4F as allocator
for stacks. 0CFA uses AST nodes as addresses (variables or cons expres-
sions). P4F allocates a stack using the applied procedure and the extended
environment.

Injecting this program into the machine results in an initial state ς0. The
machine then explores all reachable states starting from the initial state,
leading to the graph depicted in Figure 2.4b. The detailed composition of
the states, together with the transitions between them, is given at the end
of this example.

Figure 2.4c shows the call stack in state ς12. The call stack in a state can
be obtained by only considering the reachable meta-continuations, ignoring
local continuations. This indeed yields the call stack because continuations
are delimited at procedure calls, and meta-continuations are represented
as stack addresses allocated at call sites (transition rule [e-app]). A stack
address therefore corresponds to an application context.

The topmost application context κ3 is the meta-continuation of ς12. We
can move “down” the stack by dereferencing κ3 in the stack store, which
yields underlying stack (〈〉, κ2), i.e., a pair of the empty local continuation 〈〉
and meta-continuation κ2. Repeating this process of dereferencing leads to
the bottom of the stack (〈〉, ε). Because P4F adds the applied procedure to
the application context, it is straightforward to determine that expression y

in ς12 is evaluated in the dynamic extent of procedures h, g, and f.
We end the example by giving the exploration of states worked out in

full detail.

0. ev([[(let ((h (lambda (y) y))) (let ((f . . . )))))))]], ρ0, σ0, 〈〉, ε,Ξ0)

where ρ0 = []

σ0 = []

Ξ0 = []

7→

[e-let]

1. ev([[

λ2︷ ︸︸ ︷
(lambda (y) y)]], ρ0, σ0, φ2 : 〈〉, ε,Ξ0)

where φ2 = let(h, [[(let ((f (lambda () (let ((g . . . )))))))]], ρ0)

7→

[e-atom]
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2. ko(clo2, σ0, φ2 : 〈〉, ε,Ξ0)

where clo2 = (λ2, ρ0)

7→

[k-let]

3. ev([[(let ((f (lambda () (let ((g . . . )))))))]], ρ1, σ1, 〈〉, ε,Ξ0)

where ρ1 = ρ0[h 7→ h]

σ1 = σ1[h 7→ {clo2}]

7→

[e-let]

4. ev([[

λ7︷ ︸︸ ︷
(lambda () (let ((g . . . ))))]], ρ1, σ1, φ3 : 〈〉, ε,Ξ0)

where φ3 = let(f, [[(f)]], ρ1)
7→

[e-atom]

5. ko(clo7, σ1, φ3 : 〈〉, ε,Ξ0)

where clo7 = (λ7, ρ1)

7→

[k-let]

6. ev([[(f)]], ρ2, σ2, 〈〉, ε,Ξ0)

where ρ2 = ρ1[f 7→ f]

σ2 = σ1[f 7→ {clo7}]

7→

[e-app]

7. ev([[(let ((g (lambda (x) (x x)))) (g h))]], ρ1, σ2, 〈〉, κ1,Ξ1)

where κ1 = (λ7, ρ1)

Ξ1 = [κ1 7→ {(〈〉, ε)}]

7→

[e-let]

8. ev([[

λ10︷ ︸︸ ︷
(lambda (x) (x x))]], ρ1, σ2, φ4 : 〈〉, κ1,Ξ1)

where φ4 = let(g, [[(g h)]], ρ1)

7→

[e-atom]
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9. ko(clo10, σ2, φ4 : 〈〉, κ1,Ξ1)

where clo10 = (λ10, ρ1)

7→

[k-let]

10. ev([[(g h)]], ρ3, σ3, 〈〉, κ1,Ξ1)

where ρ3 = ρ1[g 7→ g]

σ3 = σ2[g 7→ {clo10}]

7→

[e-app]

11. ev([[(x x)]], ρ4, σ4, 〈〉, κ2,Ξ2)

where ρ4 = ρ1[x 7→ x]

σ4 = σ3[x 7→ {clo2}]
κ2 = (λ10, ρ4)

7→

[e-app]

12. ev([[y]], ρ5, σ5, 〈〉, κ3,Ξ3)

where ρ5 = ρ0[y 7→ y]

σ5 = σ4[y 7→ {clo2}]
κ3 = (λ2, ρ5)

Ξ3 = Ξ2[κ3 7→ {(〈〉, κ2)}]

7→

[e-atom]

13. ko({clo2}, σ5, 〈〉, κ3,Ξ3) 7→

[k-ret]

14. ko({clo2}, σ5, 〈〉, κ2,Ξ3) 7→

[k-ret]

15. ko({clo2}, σ5, 〈〉, κ1,Ξ3) 7→

[k-ret]

16. ko({clo2}, σ5, 〈〉, ε,Ξ3)



32 CHAPTER 2. SYNTAX AND SEMANTICS OF SCHEME0

2.6 Related Work

Felleisen and Friedman [1987] introduced the CESK abstract machine to
express the semantics of higher-order, functional programs with side effects.

Shivers [1988] developed the first control-flow analysis for higher-order
languages, k-CFA, using abstract interpretation. He developed k-CFA in the
context of Scheme programs expressed in continuation-passing style. 0CFA is
at the bottom of the k-CFA hierarchy, and is the simplest abstract allocation
policy to implement. We describe and employ 0CFA as an abstract store
allocator throughout this dissertation,

Might and Shivers [2006b] reformulated Shiver’s denotational semantics
into a small-step operational semantics, expressed as an abstract machine,
and added garbage collection as an optimization.

Van Horn and Might [2010] devised the “Abstracting Abstract Machines”
(AAM) approach to systematically construct static analyses based on abstract
machine semantics.

Vardoulakis and Shivers [2010] formulated the first precise flow analysis
for higher-order languages based on a pushdown model. Unlike a finite-
state analysis, which typically only keeps track of a small number of called
procedures, a pushdown analysis models call/return precisely.

At around the same time Earl et al. [2010] developed an alternative
pushdown flow analysis (PDCFA) featuring a more explicit pushdown sys-
tem at its core, which was extended afterwards to enable stack inspection
(IPDCFA) [Earl et al., 2012].

Johnson and Van Horn [2014] revised the AAM approach into the “Ab-
stracting Abstract Control” (AAC) approach, in order to tackle first-class
control in the setting of pushdown flow analysis. AAC is based on abstract
machines but does not require pushdown automata theory, and generalizes
over both CFA2 and IPDCFA.

scheme0 does not have support for control operations that actually
require saving and restoring continuations in the store (e.g., Scheme’s
call-with-current-continuation). Control operations that respect a
“proper” stack discipline (i.e., which can be expressed as one or more pop
operations) do not present a problem in our approach. Statements and
constructs like return, try–catch, exit continuations in general (Racket’s
call-with-escape-continuation), and basically all control-flow operations
that can be implemented using some form of continuation marks [Clements
and Felleisen, 2004] all fall within this category.



2.7. CONCLUSION 33

In the semantics we presented, saving continuations in the store is prob-
lematic because continuations can contain elements of the store, leading to
structural recursion and non-terminating analyses. Johnson and Van Horn
[2014] solves this problem by (re-)applying AAM (by indirecting through
the store) to those continuations that need to be saved in the store.

Gilray et al. [2016] refines the AAC approach by choosing the smallest
possible stack addresses that still result in maximal stack precision in the
presence of global stores.

2.7 Conclusion

In this chapter we specified scheme0 and its semantics. We expressed
the semantics as an abstract state machine that transitions between states.
These transitions are captured in a flow graph, which then can be examined
to compute program properties of interest.

In order to simplify the development and formalization of the techniques
described in the remainder of this dissertation, we presented scheme0, a
functional Scheme language with assignment and pairs. Although it is a
small language, it contains the essential features of higher-order imperative
programming languages, and therefore is sufficiently challenging for per-
forming static analysis. Prototype implementations of ideas and techniques
developed in the upcoming chapters (Chapter 7) support additional syntax,
built-in data types such as vectors, and built-in primitives.

In Chapter 3 we extend the base semantics of this chapter by instrument-
ing the interpreter with effects.





Chapter 3

Side-Effect Analysis

Happy is he who from effects
can ascend to their causes.

— Virgil

3.1 Introduction

In functional programming languages, an expression only has a value. In a
language with imperative constructs, expressions not only compute values
but are also allowed to affect the store. Effects describe how expressions
affect the store, providing intensional information about what takes place
during evaluation of the program [Nielson et al., 1999, Talpin and Jouvelot,
1992]. Everything else an expression does besides computing a value, is
called a side effect of that expression.

While side effects may be straightforward to determine for most individual
expressions in isolation, the interesting but difficult case is when procedure
calls are involved.

• Procedures only generate effects upon application. Therefore our notion
of procedure side effects — a procedure as a syntactic entity appearing
in a program — is linked to the behavior of all of its applications at
runtime.

• Procedures can call other procedures, and when an effect occurs an
effect analysis necessarily need to traverse the stack to find all “active”
procedures, i.e., procedures that are in the process of computing a

35
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result. This is what Might and Prabhu [2009] formulated as Harrison’s
dependence principle [Harrison, 1989], which, reformulated in the
context of side-effect analysis, states that a side effect occurs for all
procedures on the call stack.

• Procedure applications establish contexts in a program that enable
distinguishing between effects that are local to an application context
and therefore not observable to the outside world, and all other effects
that are observable outside that context. A procedure side effect is
observable when the effect is on a resource that exists in the store of a
caller. When side effects cannot be observed by callers of a procedure,
they are unobservable for those callers. When it can be determined
that a side effect is unobservable in a certain context, we say that the
effect can be masked.

• Procedures are units of code that are executed frequently during
program execution, and they can be named, exported, and memoized.

For these reasons, procedures are at a suitable level of code granularity to
determine side effects, and therefore we primarily treat side effects at the
level of procedures and procedure calls.

In this chapter we present an approach to detect procedure side effects
in higher-order, imperative programs. We consider variables, objects, and
object fields as resources. Variables and objects are stored at specific memory
locations, and reading from and writing to memory locations are considered
to be effects. To increase the effectiveness of side-effect analysis, the goal is
to soundly mask as many effects as possible. This implies that observability
of a side effect must be examined for every procedure application on the
call stack. Therefore, our approach can, depending on the context, consider
procedures that mutate memory locations or depend on mutable memory
locations to be free from side effects.

We develop a formal definition of resources, effects, and observability
through stack reachability in Sections 3.2 to 3.4.

3.1.1 Challenges

Procedure side-effect analysis involves determining for every effect whether
it is observable by any caller on the stack at the point the effect occurs.
Computing observability of side effects at compile-time is challenging, and
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particularly so in the presence of objects and higher-order procedures that
may flow freely through a program, as the following examples illustrate.

Example 3.1. The following program defines procedure f, which has two
nested procedures g and h.

1 (define (f) ; no observable write effect

2 (define (g p) ; generates observable write effect

3 (h p))

4 (define (h q) ; generates observable write effect

5 (set-car! q 3))

6 (let ((o (cons 1 2)))

7 (g o)))

8 (f)

Procedure f creates a pair o (line 6) and passes this object to procedure g

(line 7), which in turn passes it to procedure h (line 3). Function h then
modifies the car field of the pair on line 5, which constitutes an observable
side effect, as writes to this field are observable to the caller g. This means
that the mutated pair exists in the caller store that is in effect when the
application at line 3 is evaluated.

When the write to q occurs, not only procedure h is active, but procedures
g and f are also on the call stack. For the same reason as before, the caller
of g (i.e., procedure f) also observes this effect, so the field write is also an
observable side effect of procedure g. However, the effect is not observable
by the callers of f, as f created the pair and holds the only reference to it.
This example demonstrates that determining whether an effect is observable
in the context of a procedure application requires traversing the full call
stack that is in place when the effect occurs.

The propagation of an effect along the call stack “stops” at the point
where the effect is or becomes unobservable. In Example 3.1, no caller of f
will ever observe the write effect generated by set-car!, so all procedures
on the call stack “below” a particular application of f are not impacted by
this effect.

Example 3.2. The following program features a higher-order procedure f

that applies its parameter h.

1 (define (f h) ; generates observable write effect

2 (h))

3 (let ((z #t))
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4 (define (g) ; generates observable write effect

5 (set! z #f))

6 (f g))

Procedure g mutates its free variable z, which results in a side effect that is
observable by callers of g. Procedure f receives a closure of procedure g as
argument (line 6) and applies it on line 2. Because variable z existed in the
caller store at the time that f was applied on line 6, the write effect of g
on z is also observable by the caller of f, although f itself cannot directly
access z. This illustrates that our side-effect analysis needs to be able to
handle first-class procedures, closures, and lexical scopes.

The previous example shows that our definition of observability does not
depend on accessibility of the resource in the program. Instead, observability
is defined on the level of the entire program state. We also use the term
“observable” in a conditional way: an effect can be observable without ever
actually being observed. Although the write effect of procedure f to variable
z cannot be masked, it is inconsequential in the example. Our purity analysis
(Chapter 6) determines if a procedure actually observes the modification of
a resource it depends on.

3.1.2 Approach

The examples in the previous section demonstrate that a procedure side-
effect analysis for a higher-order, imperative program requires reasoning
about control flow, value flow, and effects in that program. We therefore
base our side-effect analysis on an abstract interpretation of the program
that integrates control flow, value flow, and read and write effects. We
extend the abstract machine from Section 2.4, which already performs flow
analysis, to generate read and write effects that are caused by reading from
and writing to variables and object fields (Section 3.2). Starting from an
initial evaluation state, all possible successor states are explored, resulting
in a flow graph annotated with effects (Section 3.2.3).

We formalize a procedure side-effect analysis for scheme0 defined in
Chapter 2. The procedure side-effect analysis is parameterized with a
function observable that determines whether an effect is observable in a
particular application context (Section 3.3). We tie a particular procedure
to its side effects by collecting all side effects that are involved in all of its
applications.
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In this chapter, we define observable solely in terms of store addresses
(Section 3.4). We say that an effect is observable to a caller if the address
that is read or written exists in the caller store, i.e., the store that exists
at procedure application (after evaluating procedure arguments, but before
binding parameters in the environment and store). Slightly abusing termi-
nology, we will refer to both read and write effects as “observable” when the
address of the involved resource exists in the caller store.

3.1.3 Contributions

This chapter makes the following contributions:

• We extend the abstract machine for scheme0 so that it tracks read
and write effects generated by assigning and accessing variables and
object fields during interpretation (Section 3.2).

• We develop a procedure side-effect analysis based on store addresses
that takes as input flow graph annotated with effects (Section 3.3).

• We define observability of effects based on store addresses (Section 3.4).

3.2 Side-Effect Analysis

3.2.1 Design Motivation

While side-effect analysis can be fully incorporated in the abstract machine
semantics, we opt for a more modular design in which the machine emits the
necessary information for a subsequent effect analysis to consume. Emitting
effects minimizes the changes to an abstract machine, and decouples the
side-effect analysis from the actual machine. The extra effect information the
abstract machine has to generate serves as an interface between machine and
client effect analyses. This scheme reduces overall complexity, and enables
modular reasoning over the different components that make up the resulting
analysis. It also makes it possible to run certain analyses a la carte on the
same input flow graph. We will do this in Chapters 4 and 5, where we add
freshness and escape analysis to our side-effect analysis.

Side-effect information can also be recovered from a flow graph that lacks
effect annotations. In the abstract machine semantics for scheme0, the delta
between registering effects during interpretation and deducing them from
the state graph after interpretation is small. However, for more complex
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languages (e.g., the semantics for JavaScript of Chapter 9) recovering these
effects after interpretation can lead to a significant amount of duplicate code
and coupling at design time, and redundant computation at runtime.

3.2.2 Extending the Base Semantics of scheme0

We describe the changes that are necessary to the state space of the original
abstract machine semantics for scheme0 presented in Section 2.4.

The state space, depicted in Figure 3.1, extends the one of Figure 2.3
with effects (Eff ). Four types of effects are tracked: reading and writing
of variables (Rv, Wv), and reading and writing of object fields (Rf , Wf).
They are generated by transitions between states. Effects on object fields
require a field name (FName). scheme0 only model the car and cdr fields
of a pair. In a more general setting, the set of field names can be considerably
larger or, when the abstract machine is configured for concrete semantics,
infinite. For example, to add vectors to the semantics, every value that
represents a legal vector index must have a counterpart in the set of field
names.

Program injection and address allocation

The injection function (I) and store address allocation functions (allocVar ,
allocPair) remain unchanged.

Atomic evaluation

The extended atomic evaluation function now also has to return a set of
effects. Its signature therefore becomesA : Atom×Env×Store ⇀ D×P(Eff ).
If the atomic expression is a variable, then the set of effects is a singleton
set containing a variable read effect (Rv), else the set of effects is empty.

A(lam, ρ, σ) = ({clo(lam, ρ)},∅)

A(v , ρ, σ) = (σ(a), {Rv(v , a)})
where a = ρ(v)

Stack address allocation

In principle, stack address allocation does not need to be modified to track
side effects. However, subsequent analyses built on top of our side-effect-
tracking abstract machine that treat stack addresses as application contexts,
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ς ∈ State ::= ev(e, ρ, σ, ι, κ,Ξ) [eval state]
| ko(d, σ, ι, κ,Ξ) [kont state]

ρ ∈ Env = Var ⇀ Addr [environment]
σ ∈ Store = Addr → D [store]

d ∈ D = P(Clo + Addr + Pair) [value]
clo ∈ Clo ::= clo(lam, ρ) [closure]
p ∈ Pair ::= cons(dcar, dcdr) [pair]

ι ∈ LKont = Frame∗ [frame]
φ ∈ Frame ::= let(v , e, ρ) [binding frame]
κ ∈ Kont ::= ε | τ [application context]

Ξ ∈ KStore = Ctx → P(LKont ×Kont) [stack store]
eff ∈ Eff ::= Wv(a, v) [variable write effect]

| Wf(a, n, v) [field write effect]
| Rv(a, v) [variable read effect]
| Rf(a, n, v) [field read effect]

n ∈ FName = {"car", "cdr"} [field names]
E ∈ P(Eff ) = a set of effects
a ∈ Addr = a set of addresses
τ ∈ Ctx = a set of stack addresses

Figure 3.1: Abstract state space of the flow analysis with effects.
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may impose additional requirements. For example, procedure side-effect
analysis with address-based observability (Section 3.4) requires that every
application context can be linked to its caller store, and procedure purity
analysis (Section 6.2) requires that the procedure being applied can be
determined from an application context. We revisit these assumptions when
discussing those analyses in the remainder of this dissertation.

Transition relation

Side effects are produced by read and write effects that occur as a result
of accessing and mutating variables and object fields during evaluation.
We therefore model read and write effects explicitly on the relation that
transitions between states: (7−→) ⊆ State × State × P(Eff ). Every time
the machine transitions and accesses or modifies a resource, it adds the
appropriate effect to the set of effects for that transition. The effects of
allocating or initializing variables and objects are not modeled, as they do
not constitute side effects in our approach. Creation or initialization of a
resource can never be observed outside the context of its creation, because
the resource did not exist before entering that context. We now give the
transition rules extended with effect tracking.

1. [e-atom] Evaluation of an atomic expression continues with the com-
puted value and returns the set of effects that occurred during atomic
evaluation.

ev(æ, ρ, σ, ι, κ,Ξ) 7−→ ko(d, σ, ι, κ,Ξ), E

where (d,E) = A(æ, ρ, σ)

2. [e-let] Evaluating a variable binding does not generate effects.

ev([[(let ((v e0)) e1)]], ρ, σ, ι, κ,Ξ) 7−→ ev(e0, ρ, σ, let(v , e1, ρ) : ι, κ,Ξ),∅

3. [e-set] Variable mutation generates a variable write effect that is
added to the set of effects resulting from atomically computing the
value.

ev([[(set! v æ)]], ρ, σ, ι, κ,Ξ) 7−→ ko(d, σ′, ι, κ,Ξ), E ′

where (d,E) = A(æ, ρ, σ)

a = ρ(v)

σ′ = σ t [a 7→ d]

E ′ = E ∪ {Wv(a, v)}
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4. [e-app] Evaluating a procedure call combines the effects of the atomic
evaluations of operator and operand.

ev([[

e︷ ︸︸ ︷
(f æ)]], ρ, στ , ι, κ,Ξ) 7−→ ev(e0, ρ

′, σ′, 〈〉, τ,Ξ′), E ′′

where (d,E) = A(f, ρ, στ )

(darg, E
′) = A(æ, ρ, στ )

clo ∈ d
clo([[(λ(v)e0)]], ρ′′) = clo

a = allocVar(v , e, ρ, στ , ι, κ,Ξ)

ρ′ = ρ′′[v 7→ a]

σ′ = στ t [a 7→ darg]

τ = allocCtx (e, clo, darg, στ , ρ
′)

Ξ′ = Ξ t [τ 7→ (ι, κ)]

E ′′ = E ∪ E ′

5. [e-cons] Allocation of a pair combines the effects of the two atomic
evaluation steps for the car and cdr field.

ev([[

e︷ ︸︸ ︷
(cons æ1 æ2)]], ρ, σ, ι, κ,Ξ) 7−→ ko({a}, σ′, ι, κ,Ξ), E ′′

where (dcar, E) = A(æ1, ρ, σ)

(dcdr, E
′) = A(æ2, ρ, σ)

a = allocPair(e, ρ, σ, ι, κ,Ξ)

σ′ = σ t [a 7→ {cons(dcar, dcdr)}]
E ′′ = E ∪ E ′

6. [e-car] Taking the car field of a pair adds the appropriate field read
effect to the set of effects of the atomic evaluation for obtaining the
pair.

ev([[

e︷ ︸︸ ︷
(car v)]], ρ, σ, ι, κ,Ξ) 7−→ ko(dcar, σ, ι, κ,Ξ), E ′

where (d,E) ∈ A(v , ρ, σ)

a ∈ d
cons(dcar,_) ∈ σ(a)

E ′ = E ∪ {Rf(a, "car", v)}
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7. [e-set-car] Setting the car field of a pair combines the effects of the
atomic evaluations of the pair and value expression with a field write
effect. (The rule for setting the cdr is similar.)

ev([[

e︷ ︸︸ ︷
(set-car! v æ)]], ρ, σ, ι, κ,Ξ) 7−→ ko(dcar, σ

′, ι, κ,Ξ), E ′′

where (d,E) = A(v , ρ, σ)

(dcar, E
′) = A(æ, ρ, σ)

a ∈ d
cons(_, dcdr) ∈ σ(a)

σ′ = σ t [a 7→ cons(dcar, dcdr)]

E ′′ = E ∪ E ′ ∪ {Wf(a, "car", v)}

8. [k-ret] No effects are involved when the stack is popped on program
or procedure exit.

ko(d, σ, 〈〉, κ,Ξ) 7−→ ko(d, σ, ι′, κ′,Ξ),∅
where (ι′, κ′) ∈ Ξ(κ)

9. [k-let] Because we do not consider allocation as a side effect, contin-
uing with a let-created continuation involves no effects.

ko(d, σ, let(v , e, ρ) : ι, κ,Ξ) 7−→ ev(e, ρ′, σ′, ι, κ,Ξ),∅
where a = allocVar(v , e, ρ, σ, ι, κ,Ξ)

ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ d]

3.2.3 Constructing the Annotated Flow Graph

We determine procedure side effects by reasoning about read and write
effects that happen during program evaluation. We therefore construct a
flow graph representing program evaluation, in which nodes are reachable
states, and edges are transitions between states that are labeled with the
effects that occur on transition. Let ↪→ be the transition relation 7−→ with
the effects removed: ς ↪→ ς ′ ⇐⇒ ς 7−→ (ς ′, E). Evaluation can be expressed
as computing the transitive closure of ↪→ after injection.

E(e) = {ς | I(e) ↪→∗ ς}
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The definition of flow graph Ge for expression e is then as follows:

ς
E−→ ς ′ ∈ Ge ⇐⇒ ς ∈ E(e) and ς 7−→ (ς ′, E)

In the unmodified semantics of Chapter 2 we guaranteed termination by
plugging in finite sets for Var, Addr , and Ctx into the state space of the
analysis. Extending the state space with effects (Figure 3.1 on page 41) adds
components consisting of elements from the original state space, except for
field names, which is a finite set in our semantics. Therefore the extended
state space is finite under the same conditions as the original one, although
when generalizing the semantics an additional condition is that the set of
field names must also be finite. If these conditions are met, then the function
computing the reflexive transitive closure of ↪→ is monotonic and therefore
has a least fixpoint.

3.3 Procedure Side-Effect Analysis

Section 3.2 introduced a general side-effect analysis for scheme0. We now
shift our focus to procedures and procedure applications. The goal of
procedure side-effect analysis is to compute all observable side effects that a
procedure exhibits. Using the flow graph in which edges are annotated with
effects, we are able to determine all side effects that occur during procedure
applications. Aggregation of observable side effects has to happen along two
dimensions: we have to traverse all states and their effects (Section 3.3.1),
and for every effect we have to traverse the call stack (Section 3.3.2) because
observability has to be determined in the context of every application context
reachable on the stack.

Procedure application introduces boundaries for effects, making it possible
to define a limit on a side effect’s extent. Any side effect that is not observable
to callers can be masked, and it is possible that a particular effect is observable
in some application contexts but not in others. The goal of procedure side-
effect analysis therefore is to collect all read and write effects, and for each
effect and application context in which it occurs, decide whether the effect is
observable. Side-effect analysis relies on a predicate observable ⊆ Eff ×Kont

that answers whether an effect eff in application context κ is observable or
not.

The result of side-effect analysis is a mapping se from states to observable
side effects per application context seς . This mapping determines which
observable side effects occur in a particular application context reachable
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in a particular program state. Informally speaking, procedure side-effect
analysis first takes the product of all application contexts and all effects for
every state, and then prunes those combinations that are not observable.

se ∈ Se = State→ Seς [state side effects]
seς ∈ Seς = Kont → P(Eff ) [context side effects]

We now define our two traversal functions: one for traversing states
(travGraph) and one for traversing stacks (travStack).

3.3.1 Graph traversal

We define a function travGraph : P(ς)×P(ς)× Se → Se that navigates flow
graph Ge . The first parameter passed to travGraph is the set of seen states.
The second parameter is the “work list”, which actually is a set of states that
still need to be visited. Function travGraph only needs to visit every state
once. The third parameter keeps track of procedure side effects per state
and context, and forms the global state of the analysis. The bottom element
of the side-effect analysis domain is (∅, {ς0}, []).

Function travGraph has to handle three possible cases.

1. If the work list of states W is empty, the analysis has finished and
returns the map of side effects.

travGraph(S,∅, se) = se

2. If a state is pulled from the work list that is already in the set of
seen states S, the state is removed from the work list and traversal
continues.

travGraph(S ∪ {ς},W ] {ς}, se) = travGraph(S ∪ {ς},W, se)

3. When a state ς in the work list has not yet been visited, the stack
is traversed for every effect in the set of effects E associated with an
outgoing transition ς

E−→ ς ′. The result of traversing the stack is a
map of context side effects seς that associates traversed application
contexts with their set of observable effects, and this mapping in turn
is associated with the current state. The current state is added to the
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set of seen states. The work list is updated with successor states, and
graph traversal continues.

travGraph(S,W ] {ς}, se) = travGraph(S ′,W ′, se ′)

where seς =
⊔
{travStack(eff , ς) | eff ∈ E

∧ (ς
E−→ ς ′) ∈ Ge}

se ′ = se[ς 7→ seς ]

W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge)}
S ′ = S ∪ {ς}

Procedure side-effect analysis terminates if the underlying flow graph is finite.
The state and context effect maps of procedure side-effect analysis only use
elements (states, application contexts, effects) from the state space of flow
analysis, and each state is only visited once.

3.3.2 Stack traversal

Procedure side-effect analysis needs to determine observability of an effect
for every procedure that is computing a return value at the point where
the effect occurs. For this the analysis need to find all the dynamic extents
in which the effect occurs, and it does so by traversing the stack. Because
continuations in scheme0 are delimited, local continuations are ignored
entirely, and instead the analysis focuses on meta-continuations and stack
addresses in the stack store.

Function travStack sets up stack traversal for an effect produced in a
state, by delegating to function travStack ′.

travStack : Eff × State→ Seς

travStack(eff , ς) = travStack ′(eff ,Ξ,∅, {κ}, [])
where (. . . , κ,Ξ) = ς

travStack ′ : Eff ×KStore × P(Kont)× P(Kont)× Seς → Seς

The first argument passed to travStack ′ is an effect. The second argument
is the stack store of the state in which the effect was produced, and it is
required for dereferencing underlying stack addresses. The third argument
is the initially empty set of seen contexts. The fourth argument is the work
list of contexts that need visiting. Stack traversal starts with the application
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context on top of the stack. The fifth argument maps contexts to observable
side effects, and is initially empty.

Function travStack ′ actually propagates a read or write effect down the
stack and updates the side effects for reachable application contexts. If an
effect is observable in an application context, then travStack ′ adds the effect
to the set of observable side effects for that context. Function travStack ′

considers five distinct cases.

1. If the work list of active application contexts is empty, then stack
traversal is finished, and the map of side effects is returned.

travStack ′(_,_,_,∅, seς) = seς

2. An application context that was already encountered, is not processed
again.

travStack ′(eff ,Ξ, S ∪ {κ},W ] {κ}, seς)

= travStack ′(eff ,Ξ, S ∪ {κ},W, seς)

3. The empty meta-continuation ε signals that the bottom of the stack
has been reached. We do not treat the root (program) context as an
application context, so the map seς is not updated.

travStack ′(eff ,Ξ, S,W ] {ε}, seς) = travStack ′(eff ,Ξ, S,W, seς)

4. An observable effect eff in an application context τ that has not yet
been encountered, causes the effect to be added to the set of the side
effects seς for τ . The current application context τ is added to the set
of seen contexts, and τ is dereferenced in the stack store to add all
underlying application contexts to the work list.

travStack ′(eff ,Ξ, S,W ] {τ}, seς) = travStack ′(eff ,Ξ, S ′,W ′, se ′ς)

if observable(eff , τ)

where S ′ = S ∪ {τ}
W ′ = W ∪ {κ′ | (_, κ′) ∈ Ξ(τ)}
se ′ς = seς t [τ 7→ {eff }]

5. An effect eff that is not observable in a previously unencountered
application context τ , is masked by not adding eff to the set of
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observable side effects for τ in seς . Because the effect also cannot be
observed in underlying application contexts, the analysis does not need
to examine underlying stacks to add contexts to the work list. The
current application context τ is added to the set of seen contexts.

travStack ′(eff ,Ξ, S,W ] {τ}, seς) = travStack ′(eff ,Ξ, S ′,W, seς)

where S ′ = S ∪ {τ}

3.4 Address-Based Observability

Section 3.3 defines a side-effect analysis in terms of observable effects, and
for this reason is parameterized with function observable. In this section,
we actually provide a definition for observable that can be plugged into the
side-effects analysis.

At the start of this chapter we informally introduced side effects in terms
of read and write effects on variables and object fields. Our abstract machine
semantics represents these resources as addresses in the store. The most
direct translation of our definition of side effects is therefore expressed in
terms of reading and writing store addresses.

To determine whether an effect is observable or not, we need to couple
every application context with its caller store, which is the store that was in
effect after argument evaluation but before parameter binding. If an effect
occurs on an address that is mapped in the caller store, then the effect is
observable. If the address is not in the domain of the caller store, then the
effect is local to the application and can be masked.

As scheme0 adheres to ANF, operator and arguments are atomic expres-
sions and do not mutate the store. Therefore the caller store in ANF seman-
tics is identical to the store before evaluating the application that is involved.
Either the caller store is part of the application context ((. . . , στ , . . .) = κ),
as is the case in the AAC approach for example (Section 2.4.7), or we can
implement a simple pre-analysis on a flow graph to collect caller stores for
every context. In Section 7.5 we give an implementation of a caller-store
analysis.

Address-based observability predicate observableA ⊆ Eff × Kont deals
with read and write effects of both variables and objects uniformly by
considering only the address of the effect. If the address is mapped in the
caller store of a procedure application context, then the effect is observable
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from the point of view of the caller.

observableA(Wv(a,_), (. . . , στ , . . .)) ⇐⇒ a ∈ Dom(στ )

observableA(Wf(a,_,_), (. . . , στ , . . .)) ⇐⇒ a ∈ Dom(στ )

observableA(Rv(a,_), (. . . , στ , . . .)) ⇐⇒ a ∈ Dom(στ )

observableA(Rf(a,_,_), (. . . , στ , . . .)) ⇐⇒ a ∈ Dom(στ )

Under concrete semantics (Section 2.4.3), in which store and stack addresses
are allocated with full precision, our definition of observable side effects is
also fully precise, meaning that all effects that are produced during program
execution are reported by the analysis, and no spurious effects are reported.

For completeness, we mention the subtle issue of idempotent writes, as
in e.g. (set! x x). Our analysis reports every observable write effect as
such, regardless of whether the write is idempotent.

3.5 Abstract Garbage Collection

In Section 3.4 we defined address-based observability in terms of addresses
that are mapped in the caller store. During the course of evaluating a
program, an interpreter allocates addresses to map values in the store. As
program evaluation proceeds, it may be the case that certain addresses are
no longer in use and point to garbage. In a concrete setting (Section 2.4.3),
this poses no problem with respect to precision: the store can contain any
amount of garbage, because addresses are never reused and therefore truly
unreachable. In an abstract setting (Section 2.4.2), however, precision can
suffer because an address can be reused and become reachable again, leading
to the previous value mapped at that address being joined with a new value.

Abstract garbage collection is a powerful technique for increasing the
precision of flow analyses by collecting addresses that become unreachable
in the course of evaluation, thereby avoiding unnecessary merging of val-
ues [Might and Shivers, 2006a]. To perform abstract garbage collection, the
collector first needs to determine the set of addresses directly referenced
in a certain state (the root set). Then it computes the set of all addresses
reachable from that root set; all other addresses in the store are considered
unreachable.

In an abstract setting, garbage collection can improve the precision of
address-based observability. The definition of observableA in Section 3.4 on
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page 49 checks whether an address is an element of the domain of the caller
store. By removing unreachable addresses from the store, the domain of
the store is kept as small as possible. This eliminates the possibility that a
freshly allocated address collides with an already allocated, but no longer
used address in the caller store.

Example 3.3. In the following program, procedure f mutates its parameter.

1 (define (f p)

2 (set! p 123)

3 (f 456))

4

5 (f 0)

Procedure f does not generate any observable write effects. With concrete
semantics, every instantiation of parameter p receives a fresh, unused address.
In an abstract setting in which 0CFA is used as an address allocation policy,
however, every syntactic variable is its own address. This means that every
instantiation of p (one for every application of f) is allocated at the same
address, namely p itself. Without garbage collection, when calling f on line
3, the first instantiation of p remains mapped in the store (and therefore
caller store), although at that point it has become unreachable. Therefore
side-effect analysis will flag the mutation of the second instantiation of p
on line 2 as an observable write effect, since the first instantiation of p is
mapped in the caller store at the same address. With garbage collection,
the first instantiation of p becomes unreachable at the call to f on line 3,
and therefore will not be in the caller store. In this case, side-effect analysis
will not deem the write effect generated on line 2 as observable, since the
previous instantiation of p is not mapped in the caller store.

3.5.1 Abstract Garbage Collection Semantics

We now define abstract garbage collection for scheme0. Starting from a
root set of addresses obtained for a particular state, all reachable addresses
are computed by transitively referencing addresses in the store of that state.
The store in question is then to be narrowed to the set of reachable addresses.

Referenced addresses

The overloaded function T : X → P(Addr) returns the set of addresses
directly referenced by components in the state space.
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1. The root set of an evaluation state is obtained by joining the addresses
referenced by its different components. The environment is narrowed
to the set of free variables in the evaluated expression.

T (ev(e, ρ,_, ι, κ,Ξ)) = T (ρ|free(e)) ∪ T (ι) ∪ TΞ(κ)

where TΞ(ε) = ∅

TΞ(τ) =
⋃

(ι,κ′)∈Ξ(τ)

{T (ι) ∪ TΞ(κ′)}

2. The root set of a continuation state is obtained by joining the addresses
referenced by its different components. Function TΞ is the same function
as defined in the preceding case for evaluation states.

T (ko(d,_, ι, κ,Ξ) = T (d) ∪ T (ι) ∪ TΞ(κ)

3. A closure value references the set of addresses referenced by the closure’s
static environment.

T ((lam, ρ)) = T (ρ)

4. An address immediately references itself.

T (a) = {a}

5. Function T steps into the two fields of a pair, and joins the resulting
sets of referenced addresses.

T (cons(dcar, dcdr)) = T (dcar) ∪ T (dcdr)

6. Environments immediately reference their range.

T (ρ) = Range(ρ)

7. A let frame references addresses that are referenced by its environment
narrowed to the set of free variables in the expression of the let.

T (let(_, e, ρ)) = T (ρ|free(e))

8. Function T recurses down a local continuation, aggregating the ad-
dresses referenced by stack frames.

T (φ : ι) = T (φ) ∪ T (ι)

9. All other components do not yield any referenced addresses.

T (_) = ∅
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Reachable addresses

Function R : P(Addr)× P(Addr)× Store → P(Addr) computes the set of
all addresses that are reachable from a given root set of addresses. The
first parameter of R is the work list of addresses to be visited. The second
parameter is the set of visited (and therefore reachable) addresses. The third
parameter is the store in which addresses are dereferenced.

1. If the work list is empty, the set of reachable addresses is returned.

R(∅, A, σ) = A

2. An address that has already been visited, is removed from the work
list without further processing.

R(W ] {a}, A, σ) = R(W,A, σ)

if a ∈ A

3. An address that has not yet been visited, is looked up in the store,
and added to the set of seen addresses. Helper function T extracts the
directly referenced addresses from the looked up value. The addresses
are added to the work list, and processing continues.

R(W ] {a}, A, σ) = R(W ′, A′′, σ)

where A′ =
⋃
T (σ(a))

W ′ = W ∪ A′

A′′ = A ∪ {a}

Garbage Collector

The garbage collector GC : State→ State restricts the domain of the store
to the set of reachable addresses for a certain program state. We define the
garbage collector for a state as follows:

GC (

ς︷ ︸︸ ︷
ev(e, ρ, σ, ι, κ,Ξ)) = ev(e, ρ|free(e), σ|A, ι, κ,Ξ)

GC (

ς︷ ︸︸ ︷
ko(d, σ, ι, κ,Ξ)) = ko(d, σ|A, ι, κ,Ξ)

where A = R(T (ς),∅, σ)

In this definition, A is the set of reachable addresses in state ς , and function
free : Exp→ P(Var) returns the set of free variables in an expression.
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3.5.2 Extending Address-Based Observability

An address-based side-effect analysis can benefit from abstract garbage
collection in two ways.

1. If the underlying flow analysis is garbage-collected, then address-based
observability automatically benefits from garbage collection. This
is because the definitions of observableA from Section 3.4 operate
directly on the store. In a garbage-collected semantics, the exploration
algorithm either garbage-collects every successor state before adding it
to the work list, or every state pulled from the work list is garbage-
collected before being explored.

2. In case the underlying flow analysis is not garbage-collected, the caller
store must be garbage-collected before observableA from Section 3.4
is applied in order to benefit from increased precision. Address mem-
bership testing happens using the garbage-collected set of addresses
R(T (ς),∅, στ ) instead of Dom(στ ), where ς = ev([[(f æ)]], . . . , στ , . . .)

is the program state evaluating the corresponding procedure applica-
tion.

The two options require that not just the caller store, but the entire caller
state be available. This means that adding abstract garbage collection to
address observability requires some form of state-based analysis that precedes
(or coincides with) side-effect analysis. We discuss how we approached this
in our implementation in Section 7.5.

In Section 8.5.3 we evaluate the impact of abstract garbage collection on
the precision of address-based procedure side-effect analysis.

3.6 Related Work

3.6.1 Type and Effect Systems

The majority of related work is situated in the realm of type and effect
systems. Types describe the form of values that flow through programs,
and type systems associate types with expressions in a program. Effect
systems refine the type information by annotating the types to express further
intensional or extensional properties of the semantics of the program [Nielson
et al., 1999]. Effect systems can range over many such properties of a program
semantics, but in the context of the discussion in this section by effects we
mean the allocating, reading, and writing of store locations.
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The goal of type and effect systems is to statically determine the types
and effects of expressions in a program [Talpin and Jouvelot, 1992]. In
terms of this goal and of traditional type and effect systems in general, the
configuration of the side-effect analysis presented in this chapter with a
concrete value lattice in which the elements are concrete values that are
implicitly typed (see Section 7.3.1) or an abstract type lattice in which the
elements are types (Section 7.3.2), constitutes a close approximation.

Type and effect systems first appear in Gifford and Lucassen [1986] in
the context of integrating functional and imperative programming. While
this dissertation does not explicitly state this as a goal, it shares the same
philosophy by making it possible to detect and exploit side effects in func-
tional languages extended with imperative constructs. The goal of the effect
system introduced in Gifford and Lucassen [1986] is to determine effect
classes for procedures. We take a similar approach when developing purity
analysis on top of side-effect analysis in Chapter 6. Effects are determined
only syntactically in Gifford and Lucassen’s early work, and there is no
support for masking unobservable effects.

Lucassen and Gifford [1988] builds upon the work of Gifford and Lucassen
[1986], and introduces a static type and effect system to perform side-effect
analysis. The system supports first-class procedures, effect polymorphism,
and effect masking, and as such the work can be considered as seminal in
its domain. Besides types and effects, the work adds a third kind of notion
called a region, which is described as an area of the store in which side
effects may occur. Regions allow the distinction between local and non-local
side effects. The approach in Lucassen and Gifford [1988] relies on static
declarations of effect and region parameters. A private expression exists
to declare fresh, private regions, and it can be explicitly or implicitly (if
typing allows) wrapped around expressions. To actually guarantee freshness,
program states are extended with an additional component that tracks used
regions. The side-effect analysis presented in this chapter does not require
manual annotations, and infers everything from the original input program.

Nielson et al. [1999, Example 5] presents a side-effect analysis expressed
as a type and effect system. Like our approach, they start from a simple
functional language and then proceed to add imperative constructs resem-
bling those of ML. Nielson defines a region as a set of program points at
which variables could have been created, and describes effect masking as
a technique to obtain sets of effects that are as small as possible. Effect
masking enables removing those effects that deal with externally invisible
regions. The 0CFA store address allocation policy, defined in Section 2.4.6
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and used throughout this dissertation in the abstract setting, corresponds
closely to this notion of regions.

The address-based instantiation of our side-effect analysis does not in-
troduce a separate concept of regions. Instead, we reuse store and stack
addresses (application contexts) from the underlying flow analysis for similar
purposes as regions, namely to establish boundaries for effects and enable
effect masking. Allocation is a parameter of our analysis, which enables
tuning of context-sensitivity [Might and Manolios, 2009] and the use of
allocators for both store addresses and (especially) stack addresses that draw
from much richer sets than only syntactic sets.

Store and stack addresses are also a natural byproduct of program
evaluation, and therefore no additional manual annotations or specialized
constructs are required to introduce regions in our approach.

Talpin and Jouvelot [1992] presents a static approach to reconstruct
maximal types and minimal effects of expressions in languages that combine
functional and imperative constructs. Their work improves on previous
efforts by inferring effect and region parameters instead of requiring them to
be statically declared in programs.

3.6.2 Flow Analyses

This dissertation uses flow analysis computed by abstracted abstract ma-
chines as framework for approximating runtime behavior of programs with
regard to effects. The advantage of our flow analysis over a type and effect
system is that the precision of calling or application contexts can be con-
figured. Using AAC or P4F as stack address allocation policy yields more
control-flow precision than type-and-effect approaches that merge all calling
contexts of a procedure together [Tang and Jouvelot, 1994]. Johnson and
Van Horn [2014] proposes extensions to the AAC approach to flow analysis
for dealing with first-class continuations, so that support for complex control-
flow (e.g., through call-with-current-continuation) can be envisioned.
A disadvantage of our approach is that we require a whole-program flow anal-
ysis, while type and effect systems support a more modular approach [Tang
and Jouvelot, 1994].

Vouillon and Jouvelot [1995] formally relates type and effect systems
and abstract interpretation by proving that a program complexity analysis
expressed in the two frameworks are equivalent.

Talpin and Jouvelot [1992] mentions that although abstract interpretation
is the “usual” framework used to approximate runtime properties of a program,
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the interprocedural case “incurs a heavy computational cost”. Since then,
the field of abstract interpretation, especially of higher-order, functional
languages, has advanced considerably (see e.g. Gilray et al. [2016] for a short
overview of recent advances). Based on our experience and experiments, we
find that abstract interpretation, and our particular implementation of it
based on the AAC approach [Johnson and Van Horn, 2014], offers a useful
tradeoff between speed and precision (see Chapter 8 and Section 9.6 for
evaluation).

Similarly to Vouillon and Jouvelot [1995], Nielson et al. [1999] distin-
guishes between “flow based” approaches, including abstract interpretation,
and “inference based” approaches, including type and effect systems. Both
works stress the fact that type and effect systems are syntax-directed, while
our use of abstract machine interpreters is more operational in nature and
enables more precision fine-tuning.

3.6.3 Monads

Effect systems can be recasted into equivalent monad systems [Wadler and
Thiemann, 2003]. However, in this setting it is unclear how to combine
effects from different monads, and how to perform effect masking [Benton
et al., 2002, Park and Harper, 2004].

3.7 Discussion

While we only consider variables and objects as resources, our approach can
be generalized by considering consoles, printers, streams, etc. as resources.
For example, display could generate a write effect on an abstract resource
representing the current (console) output port.

We do not treat the root context as an application context, but our
approach could be modified to treat this program entry context as any other
application scope. The root context then can be considered to be the result
of calling an implicit main procedure whose body is the entire program.
Runtime state that persists between program runs and is modified by the
program, or other outside resources (e.g., IO channels) that the program
affects, generate observable side effects.
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3.8 Conclusion

This chapter constructed a side-effect analysis for scheme0 by extending the
flow analysis from Section 2.4 with effects. The result of side-effect analysis
is a flow graph representing all possible program states, and the transitions
between them annotated with effects that occur on those transitions. Effects
occur when resources are read from or written to. Resources are identified
by store addresses, and in case of objects also field names.

If the abstract machine generates application contexts that contain the
applied procedure, the annotated flow graph can be queried to determine
procedure side effects. Every effect that occurs is added to all application
context on the call stack.

If additionally an application context is linked to a caller store, then it
becomes possible to remove unobservable side effects. Unobservable effects
are effects that are not observable to callers of a particular procedure, and
can be masked. An effect is observable with respect to an application context
if the address of the resource involved exists in the store at the point of
application. The precision of address-based observability can be increased
by applying abstract garbage collection.



Chapter 4

Freshness Analysis

4.1 Introduction

In Chapter 3 we present a side-effect analysis for scheme0 that is parame-
terized with a predicate observable. The predicate answers whether an effect
is observable in a particular application context. An effect on a resource that
is reachable (visible, accessible,. . . ) by a caller is observable. If the resource
exists, but is not reachable by callers, then it must have been created in
the application context where it is used, and we call these resources fresh.
Effects on fresh resources are unobservable by callers [Rytz et al., 2013]. In
this chapter, we make these informal definitions precise when we formalize
different characterizations of freshness.

We already encountered freshness of store addresses in Section 3.4, where
we instantiate procedure side-effect analysis with observability based on store
addresses, resulting in an address-based procedure side-effect analysis. In
our abstract machine setting, with variables and objects as store-allocated
resources, the address-based characterization of side effects corresponds
closely with the notion of what exactly constitutes a side effect. However,
in this chapter we show that this characterization is problematic in a static
analysis setting in which resources can be allocated at addresses that are
already in use. We therefore need to find and exploit other indicators for
freshness, independent of store addresses.

In this chapter we show, after revisiting address freshness (Section 4.2),
that locality of variables (Section 4.3) and tracking of object flow between
different scopes (Section 4.4) are additional ways of determining freshness.
We conclude by showing how to integrate scope-based variable and object
freshness into procedure side-effect analysis (Section 4.5).

59
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4.1.1 Contributions

• We define scope-based freshness for variables and objects (Sections 4.3
and 4.4).

• We extend procedure side-effect analysis to make use of scope-based
variable and object freshness (Section 4.5).

4.2 Address Freshness

The address-based characterization of observability in Section 3.4 is attractive
because it closely corresponds to our notion of side effects in the store
semantics of scheme0. Resources are represented as addresses, coupled to
field names for field effects, and side effects are determined based on the
addresses read from and written to. When an address is not in the caller
store στ of an application context τ , then that address is fresh with respect
to that context. When a procedure accesses or modifies a fresh address
during its application, then that side effect cannot be observed by callers of
the procedure, and the effect can be masked.

freshAddress(a, τ) ⇐⇒ a /∈ Dom(στ )

where (. . . , στ , . . .) = τ

4.2.1 Problem: Limited Precision for Addresses

While effect masking based on addresses is attractive, it is also problematic
in a typical static analysis setting.

In concrete semantics, resources that should be distinct are treated as
such, because they are referenced through distinct addresses. When the
abstract machine from Section 3.2 is configured with concrete value and stack
store allocators, addresses are generated with full precision, and the machine
allocates just like a regular interpreter for scheme0 would at run-time. As
a result, concrete side-effect analysis determines procedure side effects with
full precision, i.e., with no false positives or negatives. It follows that effect
masking based on addresses then also is fully precise.

However, in order to guarantee that an analysis runs in reasonable (finite)
time and space, our compile-time analysis sacrifices precision primarily by
limiting the number of addresses the abstract machine’s allocator may choose
from while analyzing the input program. This strategy is at the heart of
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static analysis techniques for higher-order languages like AAM [Van Horn
and Might, 2010], of which AAC [Johnson and Van Horn, 2014] and the
semantics in this dissertation are direct descendants. For example, 0CFA is
an address allocation policy for abstract semantics in which every syntactic
variable is its own address (Section 2.4.6 on page 22). When effect masking
hinges on addresses, we need to assess the impact of this precision loss on
our approach. As it turns out, the precision loss can be problematic, as the
following examples illustrate.

Example 4.1. Consider the following program.

1 (define (f)

2 (let ((x 1))

3 (set! x 2)

4 (f)

5 x))

Even though procedure f loops forever, it does not generate observable side
effects. Side-effect analysis with address-based masking, when configured
with a concrete memory allocation policy, concludes correctly that the side
effect on line 3 is not observable, as the address for x does not exist in
the caller state and therefore is fresh. This is because a concrete memory
allocator always allocates a fresh address for variable x for every application
of f. However, configured with 0CFA as an abstract memory allocation
policy, side-effect analysis with address-based masking will conclude that
variable x does exist in the caller state at the time of the second application
of f, and therefore is unfresh. This is because variable x is always allocated
at the same address. The side effect on line 3 will therefore be reported,
conservatively but imprecisely, as observable.

Example 4.2. The second example program is similar to the first one, and
demonstrates that the same problem exists for object allocation.

1 (define (f)

2 (let ((o (cons 1 2)))

3 (set-cdr! o 3)

4 (f)

5 x))

The second time we enter the loop, address-based freshness analysis in
combination with 0CFA considers setting the cdr field of object o on line 3
an observable side effect, although o is always fresh in the context of f.
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The examples—involving write effects, but read effects suffer the same
fate—show that effect masking based solely on addresses suffers from inherent
imprecision introduced by selecting addresses from a finite set. We say
“inherent”, because while it is always possible to recover some loss of precision
by for example generating context-sensitive addresses (e.g. using 1CFA
allocation [Shivers, 1991]), at one point or another the machine will run out
of fresh addresses for a particular resource. Increasing context-sensitivity
may cause more applications to be considered free from observable side effects
by our analysis, but it takes only a single application with an observable side
effect for a procedure to be marked as exhibiting side effects, and increasing
context-sensitivity only delays the inevitable.

4.2.2 Solution: Scope-based Variable and Object
Freshness

The precision of side-effect analysis can be improved by taking into account
other characterizations of freshness than addresses or state-space components
containing addresses. There are other freshness invariants that hold during
concrete interpretation, which are independent of actual addresses and
therefore independent of the actual choice of address allocation policy.

In the remainder of this chapter we propose two such invariants that are
closely related to lexical scoping and object flow. Unlike an address-based
characterization, which considers where in the store a resource is allocated,
these invariants focus on the location in the program a resource is allocated.

The goal of variable and object freshness is to determine which variables
and objects are fresh in a given application context. The main idea of
variable and object freshness is depicted in Figure 4.1. We take the point of
view of an inner scope nested inside an outer scope. Whenever a resource
from an outer scope, fresh or unfresh, is accessed from (variables) or flows
into (objects) a nested inner scope, then that resource is unfresh in the inner
scope. This is because the resource has definitively been created before the
nested scope was entered. On the other hand, whenever a resource leaves
a scope, then its freshness (fresh or unfresh) is maintained. Due to lexical
scoping, variables from inner scopes are not accessible, so this last point only
pertains to object flow.
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Figure 4.1: Idea behind variable and object freshness based on lexical scoping
and flow.

Limitation: Topmost Application Context Only

The store and its addresses are “global” to a program state, and an address
always represents the same resource (abstracted or not) when moving “down”
the call stack. The same does not hold for variables, as environments in
underlying stack frames may bind the same syntactic variable to different
runtime copies, irrespective of the address at which the variable is allocated
in the store.

Freshness analysis for variables and objects primarily operates on vari-
ables, both directly, and also indirectly because variables can reference
objects. For the reasons outlined before, we can only consider variable and
object freshness in the application context on top of the stack—i.e., the
meta-continuation that is in effect in a particular program state—unless we
perform additional analysis. We explain this limitation more in detail in
Chapter 5, when we lift this restriction to be able to also consider freshness
for underlying application contexts (Section 4.5.1).

4.3 Variable Freshness

Whenever an interpreter for scheme0 enters a scope, every variable that
is bound in that scope is allocated in the store. With concrete semantics,
every variable is bound using a fresh (unused) address, so that different
runtime environments corresponding to the same scope are guaranteed
to have different bindings for these variables. However, as discussed in
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Section 4.2.1, freshness of addresses typically does not carry over to a static
analysis setting with finite abstract semantics. We therefore have to resort
to other strategies to determine whether variables are fresh or not.

4.3.1 Examples

We show how variable freshness can be determined independently of actual
addresses by giving some examples. As explained in Section 4.2.2, we only
inspect freshness in the topmost application context.

Example 4.3. In the program below, variable z is bound and accessed in
the scope of procedure g.

1 (define (g)

2 (let ((z . . .))

3 z)) ; fresh in `g`

4

5 (define (f)

6 (g))

This means that when reading from z on line 3, the variable is always freshly
allocated in the scope of procedure g. Consequently, z is fresh when it is
read during the application of procedure g.

Example 4.4. In the program below, variable z is not bound in the scope
of procedure g where it is accessed.

1 (define (f)

2 (let ((z . . .))

3 (define (g)

4 z)) ; not fresh in `g`

5 (g))

Therefore, z is allocated at some point before the call to g, and z is not fresh
in g.

4.3.2 Variable Freshness Analysis

As the examples demonstrate, considering the manner in which variables
are allocated with respect to their scope already answers the question of
how to determine variable freshness without looking at store addresses. A
variable is fresh with respect to a scope if the variable is local to that scope.
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A variable is local to a procedure scope if it is declared in the lexical scope
established by that procedure.

Because we examine side effects at the level of procedures, we are in-
terested in locality of variables only with respect to the lexical scope of
procedures, ignoring scopes introduced by other forms like for example let.
Additionally, variable freshness is not concerned with variables defined in
inner procedure scopes, because they are not visible outside their defining
scopes. We assume that an application context corresponds with an applied
procedure, and therefore also to a procedure scope (Section 4.3.3). Therefore,
a variable is fresh with respect to an application context if the variable is
fresh in the procedure scope associated with that application context. Con-
sequently, a free variable of a procedure is never fresh during applications of
that procedure.

When a local (fresh) variable is an object reference, and the object the
local variable points to is mutated, then this may or may not be visible
outside that variable’s scope—this is the topic of Section 4.4.

Given predicate isLocal ⊆ Var × Lam that answers whether a variable is
local to the scope established by a procedure, then we can formalize variable
freshness of a variable v in application context τ as follows.

freshVariable(v , τ) ⇐⇒ isLocal(v , lam)

where (. . . , lam, . . .) = τ

4.3.3 Assumptions

Freshness analysis for variables assumes that application contexts at least
contain the syntactic procedure lam that is applied. This is necessary
because our approach to variable freshness requires the scope of the applied
procedure. Together with the extended environment, the applied procedure
is a direct component of P4F stack addresses. It can be derived from AAC
stack addresses because they contain the invoked closure. (We discussed
AAC and P4F stack address allocators in Section 2.4.7 on page 23). Because
a procedure corresponds to a syntactic lambda, and variables and their
declarations are syntactic entities as well, there is no loss of precision when
moving from concrete to abstract semantics.
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4.4 Object Freshness

Besides variables, our side-effect analysis also treats objects as resources.
Objects differ from variables in that object references are first-class values.
Object references are not statically anchored by scopes like variable references
are. Instead, references to objects are allowed to flow freely throughout a
program. Whenever an object is allocated, a reference to that object is
returned in the form of an address. This reference is a first-class value that
can be stored, either by binding to variables or parameters, or assignment
to variables and object fields.

With concrete semantics, every distinct object is allocated at a fresh
(unused) address. This guarantee no longer exists in an abstract setting in
which address can be, and typically often are, reused (Section 4.2.1). As
was the case with variables, we resort once more to other strategies than
inspecting an object’s address for determining object freshness.

4.4.1 Informal Overview and Examples

In this section we present the ideas underlying the freshness analysis for
objects through an informal overview and a series of illustrative examples.
We still limit ourselves to the topmost application context (Section 4.2.2).

Informal Overview

The goal of our object freshness analysis is to determine whether expressions
only reference fresh objects or not, without involving object addresses.
Instead, object freshness is attached to expressions. In our abstract machine
semantics of Section 2.4, cons is a source of fresh objects, since it creates and
returns a reference to a fresh pair ([e-cons]). Expressions such as (set-car!
(cons 1 2) 3) do not generate observable side effects, because it is clear
that expression (cons 1 2) only references fresh objects. However, because
object references (addresses) are first-class values, it is usually no longer
straightforward to determine whether an expression such as (set-cdr! p

3) generates an observable write effect or not, i.e., whether p only references
fresh objects or not. This requires our analysis to propagate and update the
object freshness of variables. Figure 4.1 depicts the idea of what happens
when variables are bound (parameters, let) or assigned (set!). If a variable
is bound or assigned to objects that exist in an outer procedure scope, then
the bound or assigned variable references unfresh objects. In all other cases,
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object freshness is propagated from the value expression to the bound or
assigned variable. Even though the use of object freshness is limited to the
topmost application context in this chapter, object freshness of variables
is tracked per active application context per state. Binding the result
of procedure application returning values or assignment of free variables
potentially impacts the object freshness of variables in other application
contexts than the topmost context.

In summary, object freshness analysis enables deciding for every expres-
sion, and variables in particular, whether they reference fresh objects or not
in the topmost context of a program state.

Examples

Fresh objects are created at object allocation sites (cons), so this type of ex-
pression is unconditionally fresh. Object freshness is propagated throughout
the program, and updated by variable binding and assignment.

Example 4.5. The following program binds local variable o to a fresh pair.

1 (define (f)

2 (let ((o (cons 1 2)))

3 (set-car! o 3)))

cons returns a freshly allocated object. Therefore, o references a fresh object
on line 3, and no observable write effect is generated.

When an object is referenced through a free variable, that object is
considered unfresh.

Example 4.6. In this example variable p is a free variable of procedure f.

1 (define p . . .)

2 (define (f)

3 (set-car! p 3)))

If variable p is bound to an object, that object has necessarily been allocated
before the dynamic extent of the applied procedure. Therefore p is not fresh
on line 3, and the write effect is observable to callers of f.

Objects flowing to a nested procedure scope are unfresh. The two cases
we have to consider are parameter binding and assignment to free variables.

Example 4.7. The next program features a field effect on a parameter.
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1 (define (f p)

2 (set-cdr! p 3)))

If parameter p is bound to an object, that object has been necessarily
allocated before the dynamic extent of the applied procedure. Therefore p

can never point to a fresh object on line 2, and the write effect is observable
to callers of f.

Freshness analysis does not track individual objects flowing into proce-
dures (as parameters) or into other objects (due to field stores). In these
cases, the analysis conservatively assumes that the objects become unfresh.
On procedure exit however, if the applied procedure returns a fresh value,
then the procedure application itself is considered fresh.

Example 4.8. Consider the identify function id in the program below,
which immediately returns its argument.

1 (define (id x)

2 x)

3 (let ((p (cons 1 2))) ; p fresh

4 (let ((q (id p)))

5 (set-car! q 4))) ; q unfresh

Even though it is clear in this example that variable q references a fresh
object, our freshness analysis does not track object flow through the call to
id. Instead, it considers that id returns parameter q, which points to an
unfresh object.

Example 4.9. In the program below, procedure g returns a fresh object.

1 (define (g)

2 (cons 1 2))

3 (define (f)

4 (let ((p (g)))

5 (set-cdr! p 3)))

Consequently, variable p points to a fresh object in the body of the let, and
no observable write effect is generated on line 5.

Even though freshness information about variables is only considered
for the topmost application context, we still need to propagate freshness for
variables for every active application context on the stack. The reason is
that on procedure exit, we need to restore freshness of variables associated
with an underlying application context.
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Example 4.10. In the program below variable p is free in procedure g and
local to procedure f.

1 (define (f)

2 (let ((p (cons 1 2)))

3 (define (g)

4 (set-car! p 3))

5 (g)

6 (set-cdr! p 4)))

The fact that the object of p is unfresh in the dynamic extent of g should in
and by itself not impact the freshness of the same object referenced through
p inside f. Therefore, after returning from the call to g, p is again a fresh
object when its cdr field is set.

Mutation of free variables has consequences not only in the topmost
application context, but also in underlying application contexts. Because
of the limitations explained in Section 4.2.2, updating freshness has to be
conservative and must follow a weak update scheme. This means that object
freshness of variables is monotonic in the sense that once a variable becomes
unfresh in a context, it remains so.

Example 4.11. As in the previous example, variable p is free in procedure
g and local to procedure f in the program below.

1 (define (f q)

2 (let ((p (cons 1 2)))

3 (define (g)

4 (set! p q))

5 (g)

6 (set-car! p 4)))

During the application of procedure g, the assignment on line 4 causes p to
point to an unfresh object in the context of not only g but also f.

As discussed in Section 4.3, we need to separate two notions of freshness:
variable freshness, and freshness of the objects referenced by variables. It is
for example possible that a fresh (local) variable points to an unfresh object,
or (less likely) that an unfresh variable points to a fresh object.

4.4.2 Object Freshness Analysis

The examples illustrate that object freshness can be determined by tracking
freshness from expressions in the program where freshness can be established
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(allocation sites, parameters, . . . ) to sites where side effects occur. Object
references are first-class values, and we track freshness of objects by examining
variable binding and assignment. Any variable that is bound to a value
originating in an outer scope, is marked as pointing to an object that is not
fresh. A value that is passed around in the same scope or returned from an
inner scope propagates its freshness as is.

Freshness analysis is not concerned with the actual references, including
the flow of other values than object references. This means that when a
variable is marked as pointing to a fresh or unfresh object, it does not
actually matter whether the variable is or will ever be bound to an object.
The analysis assumes that the value that flows to an expression representing
the object to be mutated in set-car! or set-cdr!, is an object reference.
In any case, this is checked by the runtime type system.

In the next sections we formalize object freshness analysis. We do not
associate freshness with an object value itself. Freshness depends on the
application context, and if we link these contexts to objects, then we are
operating “after” address abstraction. Abstracted application contexts poten-
tially map to multiple concrete contexts, and we cannot simply link object
allocation to application contexts. Instead, we want to augment precision
by taking into account certain concrete invariants that address abstraction
destroys. Therefore, our freshness analysis more closely resembles a type
system, in which freshness of referenced objects is attached to expressions,
including and foremost variables.

State space

An object is either fresh (⊥F ) or unfresh (unfr). The set Freshness forms
a join-semilattice in which ⊥F @ unfr and ⊥F t unfr = unfr. Variables
may reference objects, and we track freshness for objects referenced by
variables in a mapping from variables to freshness (Freshκ). Freshness of
objects referenced by variables depends on the application context, so every
application context has its mapping of variables to the freshness of referenced
objects (Freshς). Finally, in a flow-sensitive setting, every state must be
associated with freshness information for its application contexts (Fresh).
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The state space of the analysis looks as follows.

ψ ∈ Freshness = {⊥F ,unfr} [object freshness]
Fκ ∈ Freshκ = Var ⇀ Freshness [variable object freshness]
Fς ∈ Freshς = Kont → Freshκ [context object freshness]
F ∈ Fresh = State→ Freshς [state object freshness]

Atomic object freshness

Function fresh : Atom× Freshκ → Freshness returns the object freshness of
an atomic expression.

1. A variable is looked up in the mapping from variables to freshness.

fresh(v , Fκ) = Fκ(v)

2. All other atomic expressions only reference fresh object.

fresh(_, Fκ) = ⊥F

Binding

The resulting value of every expression is potentially bound to a variable
using let. Function handleBindingF : Freshness×Freshς×LKont×Kont×
KStore → Freshς propagates freshness ψ of the bound expression to bound
variables. Binding occurrences are represented by let-continuation on the
stack. Function handleBindingF pops the stack to discover all such binding
occurrences using function pop explained below. The object freshness of
a bound variable v is updated in the application context κ′ of the let-
continuation.

handleBindingF (ψ, Fς , ι, κ,Ξ) = F ′ς

where F ′ς = Fς t
⊔
{[κ′ 7→ F ′κ] | (ι′, κ′) ∈ pop(ι, κ,Ξ)

∧ let(v ,_,_) : _ = ι′

∧ F ′κ = Fς(κ
′) t [v 7→ ψ]}

Popping the stack

Function pop : LKont ×Kont ×KStore → P(LKont ×Kont) pops the stack
until a non-empty local continuation is available, using auxiliary function
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pop∗.

pop(ι, κ,Ξ) = pop∗(ι, κ,Ξ,∅)

Function pop∗ : LKont × Kont × KStore × P(Ctx ) → P(LKont × Kont)

guards against infinite recursion by keeping a set of seen contexts ctxs . This
is necessary because in an abstract setting the stack may contain loops.

1. No pop occurs when the stack is empty, or when a local continuation
is coupled to a context that was already encountered.

pop∗(〈〉, ε,Ξ, ctxs) = ∅

pop∗(〈〉, τ,Ξ, ctxs ∪ {τ}) = ∅

2. When popping with an empty local continuation 〈〉 and a context τ ,
the context is dereferenced in the stack store and added to the set of
seen contexts ctxs .

pop∗(〈〉, τ,Ξ, ctxs) =
⋃

(ι′,κ′)∈Ξ(τ)

pop∗(ι′, κ′,Ξ, ctxs ∪ {τ})

3. A pop with a local continuation returns the stack as is.

pop∗(ι, κ,Ξ, ctxs) = {(ι, κ)}

Graph traversal

Like side-effect analysis, freshness analysis extracts control flow information
from the underlying flow graph of a program. It superimposes its own flow of
freshness information by examining variable scope, binding, and assignment.

Function travGraphF : P(State) × P(State) × Freshς × Fresh → Fresh

propagates object freshness of variables in every application context from
program state to program state in a flow graph. The first two parameters
of travGraphF are the set of visited states, and the work list of states to be
visited. The third and fourth parameters are freshness maps: context (Fς)
and state (F ) object freshness, respectively. It is Fς that is actually updated
and propagated when a state is visited, and then mapped to the state in Fς .
The bottom element of the freshness analysis domain is (∅, {ς0}, [], []). We
define travGraphF in three rules.
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1. If the work list of states W is empty, the analysis has finished and
returns map F .

travGraphF (_,∅,_,F ) = F

2. If the stated pulled from the work list is already in the set of seen
states S, it is removed from the work list, and traversal continues.

travGraphF (S ∪ {ς},W ] {ς}, Fς ,F ) = travGraphF (S ∪ {ς},W, Fς ,F )

3. The analysis delegates to handleStateF when it encounters a state it
has not yet seen. The result of handling a state is a potentially updated
mapping Fς from application contexts to variable freshness for that
state. If F ′ς is different from Fς , then traversal continues with an empty
set of seen states. This is to ensure that, when the analysis has finished,
the analysis has visited every state with the maximum configuration
of object freshness of all variables. Else, the state is added to the
set of seen states. In both cases map F is updated by associating
the potentially updated F ′ς with the current state. Successor states
obtained from the flow graph Ge are added to the work list.

travGraphF (S,W ] {ς}, Fς ,F ) = travGraphF (S ′,W ′, F ′ς ,F
′)

where F ′ς = handleStateF (ς, Fς)

F ′ = F [ς 7→ F ′ς ]

W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge}

S ′ =

{
∅ if Fς 6= F ′ς

S ∪ {ς} else

State Handler

Freshness information is propagated through states, and is potentially up-
dated when an evaluation state is encountered. State handler handleStateF
dispatches on the different syntactic cases of expressions appearing in eval-
uation states (ev). We distinguish between expressions that immediately
produce a value (evaluation state immediately followed by a continuation
state), and expressions that the abstract machine steps into (evaluation state
immediately followed by another evaluation state). The latter kind do not
modify the freshness maps, because there is no value produced. Continuation
states (ko) also do not modify the freshness maps, because we track freshness
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through expressions rather than values. For the first kind of expressions,
we determine the freshness based on invariants and propagated information:
allocation sites return a fresh object, parameters reference an object that is
unfresh, and variable freshness is looked up. Freshness is propagated when
the states that immediately produce a value have a binding (or, in a more
general semantics like Section 9.2.2, assignment) continuation on the top of
the stack. In case the local continuation is empty, the stack is popped.

1. [e-atom] When a state evaluates an atomic expression, the object
freshness of the atomic expression is propagated to any variable to be
bound.

handleStateF (ev(æ,_,_, ι, κ,Ξ), Fς) = F ′ς

where F ′ς = handleBindingF (ψ, Fς , ι, κ,Ξ)

ψ = fresh(æ, Fς(κ))

2. [e-set] When a state evaluates a variable assignment, first the object
freshness of the assigned variable is updated with the freshness of the
assigned expression for all application contexts on the call stack, using
stack-traversing function travStackF defined below. This results in
context freshness map F ′ς . Then, because in scheme0 semantics the
result of evaluating set! is the assigned value itself, object freshness
from this expression is propagated to every variable to be bound with
this value (F ′′ς ).

handleStateF (ev([[(set! v æ)]],_,_, ι, κ,Ξ), Fς) = F ′′ς

where F ′ς = travStackF (v ,æ, κ, Fς)
F ′′ς = handleBindingF (ψ, F ′′ς , ι, κ,Ξ)

ψ = fresh(æ, Fς(κ))

3. [e-cons] When a state evaluates cons, a fresh pair is returned.

handleStateF (ev([[(cons æ1 æ2)]],_,_, ι, κ,Ξ), Fς) = F ′ς

where F ′ς = handleBindingF (⊥F , Fς , ι, κ,Ξ)

4. [e-car] Object freshness analysis does not track objects flowing in
and out of pairs. When a state evaluates taking the car field of a pair,
the analysis conservatively assumes that the result is unfresh. (The
case for cdr is similar.)

handleStateF (ev([[(car v)]],_,_, ι, κ,Ξ), Fς) = F ′ς

where F ′ς = handleBindingF (unfr, Fς , ι, κ,Ξ)
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5. [e-set-car] In scheme0 semantics, the result of a set-car! is the
value assigned to the "car" field. When a state evaluates setting
the car field of a pair, the object freshness of the value expression
is propagated to variables to be bound. (The case for set-cdr! is
similar.)

handleStateF (ev([[(set-car! v æ)]],_,_, ι, κ,Ξ), Fς) = F ′ς

where F ′ς = handleBindingF (ψ, Fς , ι, κ,Ξ)

ψ = fresh(æ, Fς(κ))

6. [e-app] When a state evaluates an application, the state handler looks
at all successor states in flow graph Ge . These successor states repre-
sent entries to all application contexts that arise from evaluating the
application. For every entry state, every variable in the environment
must be marked as unfresh in the entered application context. The
environment at procedure entry is the static environment of a closure,
which binds the free variables of the procedure, extended with param-
eter bindings. Therefore when a variable in the extended environment
references an object, then that object has been created before the
procedure application.

handleStateF (ev([[(f æ)]], . . .), Fς) = F ′ς

where F ′ς = Fς t
⊔
{F ′κ | (ς −→ ς ′) ∈ Ge

∧ ev(_, ρ′,_,_, κ′,_) = ς

∧ F ′κ = Fς(κ
′) t

⊔
{[v 7→ unfr] | v ∈ Dom(ρ′)}}

7. In all other cases, freshness map Fς remains unchanged.

handleStateF (_, Fς) = Fς

Stack Traversal

Function travStackF : Var×Atom×Kont×Freshς → Freshς calls travStack ′F :

Var×Atom×P(Kont×{true, false})×P(Kont×{true, false})→ Freshς to
initiate stack traversal with an empty set of seen contexts (third parameter)
and a work list containing the topmost application context (fourth parameter).
The context is tagged with a flag (top) to determine whether it can be precise
in updating freshness (top = true) or it should be conservative in doing so
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(top = false). Traversal starts with top = true, since freshness information
can be used in the topmost application context. It is important that this
flag be coupled to application contexts in both the work list and the set of
seen states, because in the abstract it is possible that the same application
context is on top of the stack and reachable as an underlying context.

travStackF (v ,æ, κ, Fς) = travStack ′F (v ,æ,∅, {(κ, true)}, Fς)

Because function travStackF needs to traverse all application contexts
on the stack for a particular state, it differs from function pop in that it does
not “stop” at the first non-empty local continuation. It also returns updated
context freshness for all encountered application contexts instead of stacks.
We describe the different cases of travStack ′F .

1. If the work list of active application contexts is empty, then stack
traversal is finished, and the map of freshness per context for the state
is returned.

travStack ′F (_,_,_,∅, Fς) = Fς

2. A combination of application context with a top flag that was already
encountered, is not processed again.

travStack ′F (v ,æ, S ∪ {(κ, top)},W ] {(κ, top)}, Fς)
= travStack ′F (v ,æ, S ∪ {(κ, top)},W, Fς)

3. When the empty meta-continuation ε is reached, we are at the bottom
of the stack. Since we do not track freshness for the global application
context, only the set of seen states is extended.

travStack ′F (v ,æ, S,W ] {(ε, top)}, Fς) = travStack ′F (v ,æ, S ′,W, Fς)
where S ′ = S ∪ {(ε, top)}

4. For a not previously seen combination of application context and top
flag, we assign freshness of the variable in that context. If the top
flag is false, then we conservatively mark the variable as unfresh in
the context. Otherwise, the flag is true and the assigned variable’s
freshness is updated with the freshness of the atomic expression. The
application context coupled to the top flag is added to the set of seen
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combinations, The immediately underlying application contexts are
added to the work list, coupled to the flag updated to false.

travStack ′F (v ,æ, S,W ] {(τ, top)}, Fς) = travStack ′F (v ,æ, S ′,W ′, F ′ς)

where F ′ς = Fς [τ 7→ F ′κ]

F ′κ = Fς(τ) t [v 7→ ψ]

ψ =

{
fresh(æ, Fς(τ)) if top = true

unfr else

W ′ = W ∪ {(κ′, false) | (_, κ′) ∈ Ξ(τ)}
S ′ = S ∪ {(τ, top)}

The result of object freshness analysis can be encapsulated in a predicate
freshObject . This predicate returns whether a variable in a stack-reachable
context of a state is fresh or not. Assume that ς0 is the initial state of a flow
graph, and F = (∅, {ς0}, [], []). Then freshObject is defined as follows:

freshObject(v , ς, τ) ⇐⇒ fresh(v ,F (ς)(τ)) = ⊥F

Predicate freshObject only needs to handle variables, because the object that
is the target of a field effect (car, set-car!, . . . ) is passed in as a variable.

4.5 Extending Procedure Side-Effect Analysis

Freshness can increase the precision of procedure side-effect analysis by
masking unobservable side effects. Procedure side-effect analysis therefore
needs to be extended to check variable freshness for effects on variables, and
object freshness for effects on objects.

We equipped the procedure side-effect analysis from Section 3.3 with
address-based observability (Sections 3.4 and 3.5.2). We now make the
following modifications to the stack-traversing part of procedure side-effect
analysis.

• We phrase observability entirely in terms of freshness, using predicates
freshAddress, freshVariable, and freshObject . For addresses, this is
just a change in perspective and adds nothing new.

• During stack traversal, we propagate a flag indicating whether we are
looking at the topmost application context or not. The mechanism is
similar to Section 4.5.1.
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Our definition of variable and object freshness assumes that the variable
involved in a variable effect, or through which a object field effect occurs, is
contained in the effect. The side-effect analysis from Chapter 3 fulfills this
assumption.

4.5.1 Stack traversal

As we have seen in the examples at the start of this chapter, procedure
side-effect analysis needs to determine observability of an effect on every
procedure that is computing a return value at the point at which the effect is
produced. For this we need to find all the dynamic extents in which the effect
occurs, and we do this by traversing the stack. Because continuations are
delimited in scheme0 semantics, we can ignore local continuations entirely,
and instead focus on meta-continuations and stack addresses in the stack
store.

We now adapt function travStack of procedure side-effect analysis (Sec-
tion 3.3). As before, it delegates to travStack ′ for the actual stack traversal,
but there are two changes:

• Because function observableF takes a state (freshness is flow-sensitive),
the entire state is passed to travStack ′ instead of just the stack store.

• The work list is populated with the topmost application context tagged
with a flag indicating that it is the topmost context.

travStack(eff , ς) = travStack ′(eff , ς,∅, {(κ, true)}, [])
where (. . . , κ, . . .) = ς

Function travStack ′ propagates a read or write effect down the stack
and updates the side effects for active application contexts, but this time
the topmost flag is updated and propagated along. As in object freshness
analysis, it is important that the application context and flag are coupled in
the work list and the set of seen states, because in an abstract setting the
topmost application context may be reachable as underlying stack context
as well. Five distinct cases need to be considered.

1. If the work list of active application contexts is empty, then stack
traversal is finished, and the map of side effects is returned.

travStack ′(_,_,_,∅, seς) = seς
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2. An application context in combination with a top flag that was already
encountered, is not processed again.

travStack ′(eff , ς, S ∪ {(κ, top)},W ] {(κ, top)}, seς)

= travStack ′(eff , ς, S ∪ {(κ, top)},W, seς)

3. When the empty meta-continuation ε is reached, we are at the bottom
of the stack. We do not treat the entry (program) context as an
application context, so no further actions are taken.

travStack ′(eff , ς, S,W ] {(ε,_)}, seς) = travStack ′(eff , ς, S,W, seς)

4. An effect on a resource that is observable in a combination of application
context τ and top flag top not previously seen, causes the effect to
be added to the set of the side effects for τ . The application context
coupled to the current flag is added to the set of seen contexts. Then
τ is dereferenced in the stack store to add all underlying application
contexts coupled to the updated flag (which becomes false) to the
work list.

travStack ′(eff , ς, S,W ] {(τ, top)}, seς) = travStack ′(eff , ς, S ′,W ′, seς)

if observableF (eff , ς, τ, top)

where S ′ = S ∪ {(τ, top)}
W ′ = W ∪ {(κ′, false) | (_, κ′) ∈ Ξ(τ)}
se ′ς = seς t [τ 7→ {eff }]

(. . . ,Ξ) = ς

5. An effect that is not observable in a previously unencountered com-
bination of application context and top flag, is masked. Because the
effect can never be observed by underlying application contexts, the
underlying stacks do not need to be examined, and no contexts are
added to the work list. The application context with flag is added to
the set of seen contexts.

travStack ′(eff ,Ξ, S,W ] {(τ, top)}, seς) = travStack ′(eff ,Ξ, S ′,W, se ′ς)

where S ′ = S ∪ {(τ, top)}
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4.5.2 Observability

The original signature of predicate observable, as defined in Section 3.3, is
now extended to also receive the state and top flag as extra information.
The top flag is used to determine whether variable or object freshness can
be employed when deciding about observability.

Predicate observableF ⊆ Eff × State × Ctx × {true, false} combines
address freshness with variable and object freshness. From its definition it is
apparent that address freshness does not depend on the position in the call
stack. Observability for variable effects in the topmost application context
only depends on locality for that variable with respect to the procedure being
applied. For objects, we need to perform a separate object freshness analysis
before running the procedure side-effect analysis with object freshness.

observableF (Wv(a, v), ς, τ, top)

⇐⇒ ¬((top = true ∧ freshVariable(v , τ)) ∨ freshAddress(a, τ))

observableF (Wf(a, n, v), ς, τ, top)

⇐⇒ ¬((top = true ∧ freshObject(v , ς, τ)) ∨ freshAddress(a, τ))

observableF (Rv(a, v), ς, τ, top)

⇐⇒ ¬((top = true ∧ freshVariable(v , τ)) ∨ freshAddress(a, τ))

observableF (Rf(a, n, v), ς, τ, top)

⇐⇒ ¬((top = true ∧ freshObject(v , ς, τ)) ∨ freshAddress(a, τ))

4.6 Related Work

Pearce [2011] introduces JPure, a purity analysis based on annotations that
express purity, freshness, and locality. Annotation @Fresh is used to indicate
that a method returns a fresh object, and therefore maps closely onto our
notion of object freshness. Annotation @Local is used to indicate state
owned by an object, as opposed to state only referenced by an object. If an
object is fresh, and only its local state is modified, then these effects are not
observable by callers. Our freshness analyses of addresses, variables, and
objects also masks effects on local state. We do not explicitly differentiate
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between freshness and locality, but use scope-based freshness of resources
(both variables and objects) as the overarching concept.

JPure is rooted in Java, and can automatically infer annotations. Because
it is in Java, it does not have to deal with variable binding and closures.
JPure is meant for maintaining and inferring purity, and we revisit this work
when we treat purity in Chapter 6.

The work of Rytz et al. [2013] is strongly influenced by JPure, and works
with the same concepts, also expressed as annotations, but for Scala instead
of Java. Their approach handles closures and higher-order procedures, but
relies on explicit annotations for effects and ownership.

4.7 Conclusion

This chapter started with the observation that effects on resources that are
fresh in a given application context are unobservable outside that application
context. We already encountered an instance of resource freshness in Sec-
tion 3.4 when defining address observability. A store address is fresh in the
context of an application, if it is not mapped (or, more precisely, reachable)
in the caller store.

However, relying on freshness of addresses is problematic in a typical
static analysis setting. Because a static analysis has to terminate in finite
space and time, the set of addresses is made finite, decreasing the precision
of effect masking based on addresses. The abstract machine can run out
of fresh addresses for a particular resource, which causes fresh resources to
be considered as being reachable by a caller. In this chapter we therefore
looked at other sources of freshness that do not directly involve addresses.

We find that certain concrete invariants concerning scope can be exploited.
First, when evaluation enters a scope, variables local to that scope are fresh,
irrespective of where in the store these variables are allocated. Second,
certain constructs are known to be sources of fresh objects, again regardless
of where in the store these objects are allocated. We can track the flow
of object freshness through variables that reference objects. By exploiting
these scope-based invariants, the precision of effect masking in procedure
side-effect analysis can be increased (Section 8.5.3).

One important limitation of the scope-based freshness analysis presented
in this chapter is that the analysis is limited to the topmost application
context. We explain and lift this limitation in the next chapter. It may
be considered overkill that we encoded this limitation in the framework by
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propagating a flag when traversing the stack. Indeed, during procedure
side-effect analysis, graph traversal initiates stack traversal and starts with
the top of the stack, so any logic concerning the topmost application can be
injected at this point (as we will do in Section 9.4). The reason for choosing
a flag here becomes clear in the next chapter, when we adapt the update
rule for this flag to allow scope-based freshness to be used in underlying
application contexts.



Chapter 5

Escape Analysis

5.1 Introduction

The procedure side-effect analysis of Section 3.3 traverses the stack to
determine whether a side effect is observable or not in the context of every
active procedure application. Freshness was based on store addresses in
Section 3.4: if the target address of an effect is not reachable in a caller
store, then the address is fresh in the associated application context.

Traversing the stack is sound for addresses, because the store is “global”
to each state and an address always represents the same resource, no matter
in which component of a state it appears.

Chapter 4 adds scope-based variable and object freshness, but variable
and object freshness analysis itself was confined to the topmost application
context, with the procedure side-effect analysis only relying on address fresh-
ness when traversing the stack. The reason for this limitation is that what
is true for addresses not necessarily holds for variables when traversing the
stack. Every scope in a program can correspond to multiple environments
during interpretation, so that the same lexical variable can have multiple
runtime copies allocated in the store. With concrete semantics, every al-
location of the same variable must have a different address. This is no
longer the case when the abstract machine is configured to run with abstract
semantics. Even when in the abstract variables are allocated at an identical
address, they can still represent multiple concrete variables. The application
contexts on the stack, even when equal in the abstract, therefore potentially
correspond to different concrete environments.

The chain of environments, starting at the top of the stack, constitutes
the dynamic scope. If the same variable appears more than once in the
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dynamic scope, then that variable no longer uniquely identifies a runtime
memory location. Traversing the different application contexts on the stack
therefore means that a variable itself no longer uniquely identifies a resource.

In this chapter, we first illustrate by example that traversing the stack
is also useful for freshness (Section 5.2. We then restate the problem in
terms of divergence between static and dynamic scope, and give examples of
cases in which stack traversal for variable and object freshness is unsound
(Section 5.2.1). To guarantee that static and dynamic scope coincide, we
propose to use escape analysis (Section 5.2.2). The goal of escape analysis is
to determine the procedures that potentially escape their defining lexical
scope. We formalize escape analysis for our semantics (Section 5.3) and
extend our procedure side-effect analysis (Section 5.4) of the previous chapter
with escape information to enable sound stack traversal for all types of
freshness.

5.1.1 Contributions

• We define an escape analysis for our semantics (Section 5.3).

• We extend side-effect analysis to make use of escape information
(Section 5.4).

5.2 Motivation

Extending scope-based freshness to underlying application contexts can
improve the precision of procedure side-effect analysis by masking more
effects, as illustrated by the following example. The example shows that
while precision-improving freshness information is available in an underlying
application context, it is not accessed.

Example 5.1. Assume that the following program is evaluated with 0CFA
as address allocation policy.

1 (define (f)

2 (let ((o (cons 1 2)))

3 (let ((g (lambda () (set-cdr! o 3))))

4 (g)

5 (f)

6 o)))

7 (f)
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escape example

(\texttt{p}_4&;\rho_4)\\[0.6em]
(\texttt{f}_5&;\rho_5)\\[0.6em]
(\texttt{f}_6&;\rho_6)\\[0.6em]
(\epsilon&;\rho_0)

\rho_4 &= \rho_6\\
\rho_5 &= \rho_0[\texttt{z}\mapsto z_5]\\
\rho_6 &= \rho_0[\texttt{z}\mapsto z_6]

Figure 5.1: Simplified depiction of the call stack and environments when executing
set! on line 5 in example Example 5.2. Frames on the call stack are represented
as tuples of the procedure that is applied with the line number as suffix, and the
dynamic environment.

Procedure f is applied on line 7, and recursively on line 5. Address-based
purity (Section 3.4) concludes that the side effect on line 3 is observable to
callers of procedures g and f, because every copy of variable o is allocated
at the same address. Topmost-only object freshness analysis (Section 4.4)
does not improve address-based procedure side-effect analysis in this case.
When the field write effect is generated on line 3, an application context for
g is on top of the stack. Object freshness analysis concludes that variable
o points to a pair that is not fresh in this application context, because o

is a free variable in g. Below the application context for g on the stack
is an application context for f. Freshness analysis will not step into this
application context for f, in which o does point to a fresh object. As a result,
procedure side-effect analysis concludes that f also produces an observable
side effect, while inspection of the program shows that no side effect should
escape f.

5.2.1 Problem: Escaping Procedures

The example of the previous section illustrates that procedure side-effect
analysis would benefit from a scope-based freshness analysis that is allowed
to inspect underlying call frames. It is therefore useful to investigate why
scope-based freshness analysis is limited to the top of the stack. We clarify
this by discussing two programs that show that treating a variable as a
unique resource identifier across the entire call stack is unsound.

The first example illustrates the problem for variable effects.
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Example 5.2. Suppose that the following program is executed with concrete
semantics.

1 (define (f p)

2 (let ((z #t))

3 (if p

4 (p)

5 (f (lambda () (set! z #f ))))))

6 (f #f)

In the program above, procedure f is called twice, first on line 6 and then on
line 5. A distinct copy of variable z is allocated for each call. During the first
call to f, the closure created on line 5 closes over the first copy of z, allocated
at, say, z6. During the second call, z is allocated at a different address, say
at z5. Figure 5.1 depicts the call stack with associated environments at the
time that the variable assignment on line 5 happens. The assignment inside
the closure does not assign the copy of z allocated at z5, but rather the first
copy allocated at z6. This makes z6 an unfresh resource in the context of
(f5, ρ5). Because variable z is local to f, variable freshness analysis based
only on locality would therefore unsoundly consider z fresh in the context
(f5, ρ5).

Traversing the stack to look up a variable means that the variable is
treated as having dynamic scope. The problem in Example 5.2 is that
dynamic lookup of variable z is different from lexical or static lookup during
assignment. The static lookup chain follows the extensions of static environ-
ments during application. This chain, encoded by ρ4, can be thought of as
ρ4 → ρ6 → ρ0. The dynamic lookup chain, embodied by the call stack, is
ρ4 → ρ5 → ρ6 → ρ0. Note that in this example both ρ5 and ρ6 correspond
to the procedure scope of f.

Example 5.2 was explained in a concrete setting. In an abstract setting
with 0CFA, the problem remains. In this setting, it is the case that z5 = z6, so
that ρ5 = ρ6, and contexts (f5, ρ5) and (f6, ρ6) collapse into a single abstract
context (f, ρ) representing the first and the second call to f. Because variable
z is local to f, stack-traversing variable freshness based only on locality would
also unsoundly consider z fresh in context (f, ρ).

Object freshness is tracked through variable binding and assignment.
Therefore the situation is similar for objects and field effects, as in the
example below.

Example 5.3. Suppose again that the following program is executed with
concrete semantics.
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1 (define (f p)

2 (let ((o (cons 1 2)))

3 (if p

4 (p)

5 (f (lambda () (set-cdr! o 3))))))

6 (f #f)

In this example variable, o in the closure created at line 5 does not point to
local variable o associated with the underlying application context, but to
the local variable allocated during the first call to procedure f. Therefore
stack-traversing object freshness analysis would unsoundly consider that o
references a fresh object on line 5.

In conclusion, we cannot simply traverse the stack to update or use
freshness for variables and objects, because these types of freshness depend
on concrete invariants concerning variables, but the same variable does not
necessarily correspond to the same concrete resource when moving down the
stack.

5.2.2 Solution: Escape Analysis

Variable and object freshness analysis operate on variables. Therefore, as
we have shown in the examples, if during freshness analysis the stack has
to be traversed, static and dynamic variable lookup must be in agreement.
This is the case as long as the procedures giving rise to application contexts
do not escape their defining lexical scope, for example by being returned
from another procedure, or by being assigned to a variable. Non-escaping
procedures do not flow through the program, and in principle do not need
to be coupled to a static environment, but instead can just extend the
dynamic (caller) environment upon application. This is why static and and
dynamic variable lookup coincide when procedures do not escape. Escaping
procedures are actual first-class values and need to close over the environment
in which they are created.

In the remainder of this chapter we formalize an escape analysis for
our semantics that maps every procedure appearing in a program onto a
binary domain that tells us whether the procedure potentially escapes or not
(Section 5.3). Using the results from escape analysis, we extend procedure
side-effect analysis (Section 5.4) to make use of escape information when
the analysis has to decide whether effects are observable or not in every
application context on the call stack. As long as all procedures encountered
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during stack traversal are non-escaping, freshness of variables and objects
can be used. Else, the analysis has to be conservative, and fall back on
address freshness for the remainder of stack traversal.

5.3 Escape analysis

The goal of escape analysis is to determine whether a procedure can escape
its defining lexical scope or not. For this purpose the analysis defines a
binary domain Esc that represents these two possibilities, and the analysis
map every procedure that appears in the input program onto this domain
(Ω). A non-escaping procedure is mapped onto ⊥E. An escaping procedure
is mapped onto dyn.

esc ∈ Esc = {⊥E,dyn}
ω ∈ Ω = lam → esc

The set Esc forms a join semi-lattice in which ⊥E t dyn = dyn.
For our purposes, we are only interested in procedures that escape their

defining procedure scope. Therefore we do not mark a procedure that escapes
a scope created by let as escaping.

5.3.1 Graph traversal

Escape analysis, like procedure side-effect analysis and freshness analysis,
uses the flow graph computed for an input program, but escape analysis,
unlike the previous analyses, is flow-insensitive. Function travGraphE :

P(State) × P(State) × Ω → Ω inspects all possible states, and checks all
values that expressions at certain program points may evaluate to. Program
points of interest are those where a closure value potentially flows outside of
its defining lexical procedure scope. The first two parameters of travGraphE
are a set of seen states and a work list of states. The final parameter
is escape map ω, which maintains the escape status for every procedure.
This map is updated for every traversed state, and the update depends on
values for expressions in the state itself. The bottom element of the escape
analysis domain for a program with initial state ς0 is (∅, {ς0}, []). We define
travGraphE in three rules.

1. If the work list of states W is empty, the analysis has finished and we
return map ω.

travGraphE(_,∅, ω) = ω
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2. A state that has already been visited, is not visited again.

travGraphE(S ∪ {ς},W ] {ς}, ω) = travGraphE(S ∪ {ς},W, ω)

3. We delegate to handler handleStateE for a state in the work list, and
continue traversal with the remainder of states in the work list.

travGraphE(S,W ] {ς}, ω) = travGraphE(S ′,W, ω′)

where ω′ = handleStateE(ς, ω)

S ′ = S ∪ {ς}

5.3.2 State handler

State handler handleStateE : State × Ω → Ω only considers evaluation
states, ignoring continuation states. For every program point in an expression
through which procedures associated with closures could escape their defining
lexical scope, the handler delegates to function updateE. Function updateE
checks for actual closure values flowing to an expression, and updates escape
map ω accordingly.

1. For a state that evaluates an application, closures reachable from
operand values are potentially escaping.

handleStateE(ev([[(f æ)]], ρ, σ,_,_,_), ω) = updateE(æ, ρ, σ, ω)

2. For a state that evaluates variable mutation, closure reachable from
the assigned value are potentially escaping.

handleStateE(ev([[(set! v æ)]], ρ, σ,_,_,_), ω) = updateE(æ, ρ, σ, ω)

3. For a state that evaluates pair construction, closures from the values
stored in the constructed pair are potentially escaping.

handleStateE(ev([[(cons æ1 æ2)]], ρ, σ,_,_,_), ω)

= updateE(æ1, ρ, σ, ω) t updateE(æ2, ρ, σ, ω)

4. For a state that evaluates assignment to the "car" field of a pair,
closures reachable from the value expression are potentially escaping.
(Similar rule for set-cdr!).

handleStateE(ev([[(set-car! v æ)]], ρ, σ,_,_,_), ω) = updateE(æ, ρ, σ, ω)
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5. For a state evaluating procedure exit, closures reachable from return
values are potentially escaping. Only atomic expressions in return posi-
tions need to be handled. If expressions set!, set-car!, or set-cdr!
are in a return position, then their resulting value is the value of an
atomic expression that is already checked for reachable closures in one
of the previous rules.

handleStateE(ev(æ, ρ, σ, 〈〉,_,_), ω) = updateE(æ, ρ, σ, ω)

6. All other states, including evaluation of a let form, cannot generate
procedures that escape their defining procedure scope.

handleStateE(_, ω) = ω

5.3.3 Updating Escape Information

Function updateE : Atom×Env×Store×Ω→ Ω determines the closures that
flow to a given atomic expression æ, and marks the associated procedures
as “escaping” (dyn) in escape map ω. It delegates to helper function TE to
obtain all procedures that an atomic expression may evaluate to.

updateE(æ, ρ, σ, ω) = ω t
⊔
{[lam 7→ dyn] | lam ∈ TE(d)}

d = A(æ, ρ, σ)

Referenced Procedures

Function TE : D → P(Lam) returns the set of procedures that are directly
referenced by a value.

1. A closure value references its procedure.

TE((lam, ρ)) = {lam}

2. No other values yield referenced procedures.

TE(_) = ∅
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5.4 Extending Procedure Side-Effect Analysis

Procedure side-effect analysis traverses the stack to determine the observabil-
ity of an effect in every application context. Section 4.5 extended procedure
side-effect analysis from Section 3.3 a first time by considering scope-based
freshness of variables and objects in the topmost application context. The
topmost context was distinguished from underlying application contexts by
a “top” flag.

We now extend procedure side-effect analysis a second time by allowing
variable and object freshness to be used in underlying application contexts
as well, under the condition that no application context higher up the stack
results from the application of an escaping procedure.

Instead of coupling contexts to a top flag indicating whether a context
is the topmost context or not, we now couple application contexts to an
escape flag which determines whether it is sound to use variable and object
freshness in a particular application context. The escape flag is updated
during stack traversal with the escape status (⊥E or dyn) of the procedure
associated with the currently inspected application context each time the
analysis moves to an underlying application context. Whenever the flag is
equal to dyn, no previously encountered application context on the stack
was for an escaping procedure, and scope-based freshness can be soundly
used. The logic for checking this flag to decide which types of freshness can
be used, is pushed down into predicate observableE (Section 5.4.2).

5.4.1 Stack Traversal

Function travStack sets up stack traversal by delegating to travStack ′, which
performs the actual traversal. Stack traversal starts with an empty set of
seen contexts, the application context on top of the stack as work list, and
seς as an empty map. The stack store is required for dereferencing underlying
stack addresses.

travStack(eff , ς) = travStack ′(eff , ς,∅, {(κ,⊥E)}, [])
where (. . . , κ, . . .) = ς

Function travStack ′ propagates a read or write effect down the stack
and updates the side effects for active application contexts. If an effect is
observable in an application context, then travStack ′ adds the effect to the
set of observable side effects for that context. Function travStack ′ considers
five distinct cases.
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1. If the work list of active application contexts is empty, then stack
traversal is finished, and the map of side effects is returned.

travStack ′(_,_,_,∅, seς) = seς

2. An application context in combination with an escape flag that was
already encountered, is not processed again.

travStack ′(eff , ς, S ∪ {(κ, esc)},W ] {(κ, esc)}, seς)

= travStack ′(eff , ς, S ∪ {(κ, esc)},W, seς)

3. When the empty meta-continuation ε is encountered, the analysis has
reached the bottom of the stack. The entry (program) context is not
treated as an application context, so no further action is required.

travStack ′(eff , ς, S,W ] {(ε,_)}, seς) = travStack ′(eff , ς, S,W, seς)

4. An effect on a resource that is observable in a combination of application
context and escape flag not previously seen, causes the effect to be
added to the set of the side effects for the applied procedure. The
pair of application context and current flag is added to the set of seen
contexts. The stack store is dereferenced to add all pairs of underlying
application contexts and updated flag to the work list.

travStack ′(eff , ς, S,W ] {(τ, esc ′)}, seς) = travStack ′(eff , ς, S ′,W ′, seς)

if observableF (eff , ς, τ, esc)

where S ′ = S ∪ {(τ, esc)}
W ′ = W ∪ {(κ′, esc ′) | (_, κ′) ∈ Ξ(τ)}
se ′ς = seς t [τ 7→ {eff }]

esc ′ = esc t escapes(lam)

(. . . ,Ξ) = ς

5. An effect that is not observable in a previously unencountered com-
bination of application context and escape flag, is masked. Because
the effect can never be observable for underlying application contexts,
the underlying stacks do not need to be examined, and no contexts
are added to the work list. The application context with flag is added
to the set of seen contexts.

travStack ′(eff , ς, S,W ] {(τ, esc)}, seς) = travStack ′(eff , ς, S ′,W, se ′ς)

where S ′ = S ∪ {(τ, esc)}
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5.4.2 Observability

In Section 4.5.2 we extended the signature of observableA with the state
and top flag, and obtained observableF . We now replace the top flag with
the escape flag, and call the resulting function observableE . The escape flag
determines whether it is sound to use variable or object freshness. If the
escape flag is ⊥E, then this means that no application context higher up
the stack is the result of the application of an escaping procedure. In this
case it is sound to, in addition to address freshness, use variable and object
freshness. Else, the flag is dyn, and only address freshness can be used.
Because static scope trivially agrees with dynamic scope in the topmost
context, the initial value for the escape status is ⊥E (i.e., it is safe to use
freshness in the topmost application context).

observableE (Wv(a, v), ς, τ, esc)

⇐⇒ ¬((esc = ⊥E ∧ freshVariable(v , τ)) ∨ freshAddress(a, τ))

observableE (Wf(a, n, v), ς, τ, esc)

⇐⇒ ¬((esc = ⊥E ∧ freshObject(v , ς, τ)) ∨ freshAddress(a, τ))

observableE (Rv(a, v), ς, τ, esc)

⇐⇒ ¬((esc = ⊥E ∧ freshVariable(v , τ)) ∨ freshAddress(a, τ))

observableE (Rf(a, n, v), ς, τ, esc)

⇐⇒ ¬((esc = ⊥E ∧ freshObject(v , ς, τ)) ∨ freshAddress(a, τ))

5.5 Discussion

The escape analysis presented in this chapter only detects potentially escap-
ing procedures. Detecting procedures that actually escape at call sites is
more difficult. In addition to determining the flow of closure values, this
also requires inspecting operator positions to verify whether the applied
procedure is a procedure that escaped its defining scope. The results of our
analysis therefore conservatively overapproximate the set of actual escaping
procedures.

Our escape analysis is also conservative on another level. In order to keep
the implementation of the abstract machine simple, certain primitive proce-
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dures such as map are implemented in scheme0 itself. If map is implemented
as a primitive at the level of the interpreter, a procedure passed to map does
not escape just because it is an argument to this primitive. However, map
implemented as a procedure is necessarily a higher-order procedure, so that
any procedure passed to it is marked as potentially escaping by our analysis.

We also experimented with extending object freshness analysis with
escape analysis. In theory, this extension enables a more precise handling of
mutation of free variables. However, enabling this extension did not impact
the precision of procedure side-effect analysis for any of our benchmark
programs (Section 8.1.3). For this reason, the object freshness analysis of
Section 4.4.2 does not use the results of escape analysis.

5.6 Related Work

Escape analysis is often used as a technique for deciding which resources
can be stack allocated. In an object-oriented language such as Java, objects
that do not escape a method can be allocated inside the frame of an invoked
method, reducing heap allocation and garbage collection overhead [Choi
et al., 1999].

Functional languages, which tend to implicitly allocate many objects
such as lists and closures on the heap, can use escape analysis to improve
memory management by determining the lifetime of these objects [Whaley
and Rinard, 1999].

To the best of our knowledge, escape analysis for Scheme was first
described as a compilation pass of the Rabbit compiler [Steele Jr, 1978].
The Rabbit compiler uses escape analysis to decide whether procedures
should be coupled to an environment or not. Because closures are prevalent
in functional programming, it is important to choose the most efficient
closure representation. Non-escaping procedures, and applications thereof,
are cheaper to implement [Adams et al., 1986].

We designed our simple escape analysis along the same lines: we detect
which procedures are used as first-class values, and tag them as escaping.

Other techniques exist to perform a more elaborate escape analysis that
result in points-to [Whaley and Rinard, 1999] or connection [Choi et al.,
1999] graphs that capture the relation between heap objects. In our approach,
escape analysis is a means to an end. Therefore freshness analysis can be
instantiated with (the result of) any escape analysis that is able to determine
escaping procedures.
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The terminology concerning escape analysis and closure analysis is not
standard. In Steele Jr [1978] and other related work, escape analysis is
sometimes referred to as closure analysis. Closure analysis in Banerjee and
Schmidt [1994] is defined as “a static program analysis that approximates
the set of textual lambdas that a program point can evaluate to.” This
definition of closure analysis still needs to be complemented with a distinct
treatment of program points to arrive at our notion of escape analysis.

5.7 Conclusion

This chapter lifted the limitation of being able to use scope-based freshness of
variables and objects in the topmost application context only. We presented
examples that illustrate that procedure side-effect analysis can benefit from
traversing the stack.

Variable and object freshness analysis from Chapter 4 rely on variables.
Reasoning about variables in conjunction with stack traversal can be problem-
atic when procedures escape, because the dynamic lookup chain represented
by the call stack does not necessarily agree with the static lookup of vari-
ables. Escape analysis enables us to determine which procedures potentially
escape, and therefore under which circumstances variables can be assumed
to represent the same resources when traversing the stack.

We adapted procedure side-effect analysis by replacing the top flag with
an escape flag. The escape flag keeps track of whether procedures higher on
the stack might have escaped when reaching a certain application context
during stack traversal. Escape information renders procedure side-effect
analysis more precise by allowing variable and object freshness to be used
in application contexts reachable from the topmost calling-context, thereby
possibly masking more effects involving free variables than address freshness
alone (Section 8.5.3).





Chapter 6

Purity Analysis

Functions and routines are as
different in their nature as
expressions and commands. It is
unfortunate, therefore, that
most programming languages
manage to confuse them very
successfully.

— Christopher Strachey

6.1 Introduction

Mathematically speaking, the only effect of a function is turning input
arguments into a resulting value that only depends on those input argu-
ments. However, in most programming languages callable entities (procedure,
method, function, constructor, subroutine, . . . ) can do more than that, even
in programming languages that de-emphasize assignment (e.g. Scheme,
Scala), and even in languages that refer to these entities as “functions” (e.g.,
FORTRAN, Erlang, JavaScript). Anything else a procedure does besides
producing a value, is called a side effect of that procedure.

Side effects impact the purity of a procedure. When the procedure
modifies a resource reachable by the caller, the procedure generates an
observable side effect. Side effects external to the procedure also play a role.
When a procedure accesses a program resource other than one of its input
arguments, and this resource is modified in between applications of that
procedure, then that procedure depends on an external side effect.

97
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We can summarize the behavior of a procedure w.r.t. side effects occurring
in the program. A procedure can:

• generate a side effect,

• depend on an external side effect,

• or both,

• or none of the above.

Based on the side-effecting behavior of procedures, different classifications
of purity are possible. The strictest (mathematical) definition of purity
considers a procedure as pure if it does not generate observable side effects
and it does not depend on external side effects. A weaker notion of purity
considers a procedure pure if it does not generate observable side effects, i.e.,
it is allowed to depend on external side effects. Procedures that allocate and
mutate memory locations, or that depend on mutable memory locations, can
still be considered pure when these effects can not be observed. Additionally,
in our approach pure procedures may return procedures and objects allocated
by those procedures.

In this chapter we present an approach to determining procedure purity
in scheme0. Our purity analysis builds on the side-effect analysis and
observability from Chapters 3 to 5. Procedure purity is linked to the side
effects that occur during and in between procedure applications:

• Procedure side-effect analysis of Section 3.3, and its refinements in
Sections 4.5 and 5.4, is used to determine all observable read and write
effects of procedures.

• Regular side-effect analysis of Section 3.2 is used to identify write
effects in between applications, regardless of the actual context in
which they occur.

As with procedure side effects, the behavior of all the applications of a
procedure determines overall procedure purity. For example, we consider a
procedure pure only if all its applications are pure. We develop a formal
definition of purity in Section 6.2.
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6.1.1 Terminology

A procedure is not a function in the mathematical sense if it either generates
side effects, or depends on external side effects, or both. However, the
term “function” is widely used both in the literature and by programmers
to designate a callable entity that contains executable code, whether the
code is allowed to produce or depend on side effects or not. As mentioned
before, some languages use the terminology, or even the syntactic function

keyword, to designate callable entities, again irrespective of any side effects
that may or may not be present. As a reminder, in the context of scheme0

we use the term procedure to signify a syntactic occurrence of the lambda

special form in a program, and prefer the use of the term closure to designate
a lambda expression coupled to its static environment.

6.1.2 Motivation

Side effects make programs more difficult to understand, as they prevent
one from treating procedures as only mappings from input to output. This
means that we lose the ability to abstract procedure calls into resulting
values, rendering programs more difficult to understand for both humans and
tools. Purity as a property of procedures appearing in a program constrains
these procedures into the mathematical meaning of functions.

Research in different areas has demonstrated that purity information
aids program understanding, specification, testing, debugging, and mainte-
nance [Finifter et al., 2008]. Therefore, determining or verifying purity is
useful for software engineering purposes.

Security Purity facilitates establishing security and confidentiality aspects
of applications [Barnett et al., 2006]. Pure procedures are more secure
than impure ones, because they interfere less with the rest of the
application. Pure procedures only communicate with the rest of the
program through their return values, and otherwise are not able to
leak information though side-channels [Finifter et al., 2008].

Bug reduction Purity also has the potential to reduce the number of bugs
in programs, and makes it easier to reproduce bugs [Hughes, 1989].
Because they present less of a mental burden for programmers than
procedures with observable side effects, pure procedures are usually
easier to reason about in isolation. When things do go wrong it
is possible to call or “restart” a pure procedure with the arguments
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causing unwanted behavior, without having to reset or recreate external
program state. Determinism of pure procedures ensures that, given
the same argument values, these procedures will behave in exactly
the same way, making it more straightforward to reproduce and solve
bugs.

Assertions and contracts Pure procedures can be safely called from as-
sertions and contracts, thereby augmenting the expressivity of these
constructs [Jacobs et al., 2011]. Assertions and contracts should not be
allowed to impact a program of which they are guarding some specific
behavior. Purity can help rule out unwanted behavior and guarantee
transparent semantics of any executable program annotation.

Modularity Observable procedure side effects introduce dependence on
resources outside those procedures. Therefore it is often necessary to
enforce purity in order to ensure reuse.

Program optimization Compilers and runtimes can use purity to opti-
mize program performance [Rytz et al., 2013]. Pure expressions relax
ordering constraints for code generators, thereby enabling several opti-
mizations such as parallelization, memoization, and laziness [Nicolay
et al., 2011, Pitidis and Sagonas, 2011, Shirako et al., 2007].

As Finifter et al. [2008] argues, security and privacy requirements of real-
world programs are often expressed in terms of reproducibility, invertibility,
non-interference, or containment of untrusted code. Determining the purity
of certain procedures helps in verifying these security properties. The authors
then give the example of electronic voting software, in which presenting voting
information and manipulating a voter’s actions should be performed by pure
procedures. The absence of side effects during a voting session ensures that no
sensitive information is leaked for example. Ensuring that the voting session
is independent of effects caused by previous voters’ interactions makes sure
that voter privacy is respected and malicious interference from the outside
is avoided. Finifter et al. [2008] concludes by stating that verifying whether
a computation is deterministic and free of side effects is a difficult task that
typically requires careful examination of a program’s entire source code.
The authors mention that this task is especially challenging in imperative
languages commonly used to write real-world programs, and which permit
side effects and data dependencies that are difficult to reason about.

Besides security and the other properties we already mentioned, proving
the absence of (observable) side effects has other advantages and applications,
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which are discussed more extensively in related work on purity and side-effect
analysis (Section 6.5).

Although purity is an important step in determining whether expressions
and procedures can be regarded as safe and deterministic, it is in principle not
sufficient. Other non-functional factors, like non-termination and resource
starvation also play a role, but are out of the scope of this dissertation.

6.1.3 Examples

Purity analysis for procedures involves determining how a procedure behaves
in terms of side effects with respect to the rest of the program. Purity
analysis relies on general side-effect analysis, and on procedure side-effect
analysis to compute observable side effects of procedures at compile-time. We
revisit some of the examples from procedure side-effect analysis (Chapter 3
and recast them into a purity analysis setting.

Because the purity of a procedure is determined by side effects occurring
during its applications, every side effect that occurs is examined in every
application context on the call stack.

Example 6.1. The example program below is identical to the program in
Example 3.1 on page 37.

1 (define (f) ; pure

2 (define (g p) ; generates side effect

3 (h p))

4 (define (h q) ; generates side effect

5 (set-car! q 3))

6 (let ((o (cons 1 2)))

7 (g o)))

8 (f)

Procedure f creates a pair and passes this object to procedure g, which in
turn passes it to procedure h. When function h modifies the car field of the
pair, this results in a write effect for procedures h and g that is observable
by their callers on lines 3 and 7, respectively. Because procedures g and h

generate an observable side effect, they are not pure. However, the write
effect is not observable to callers of procedure f. Because procedure f does
not depend on external side effects, f is a pure procedure.

It is not sufficient to examine effects in the context of every active
application. Write effects in between applications, independent of the context
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in which they appear, also play a role. Our purity analysis reasons about
generating observable effects on the level of variables or objects. Example 6.2
illustrates that field names are also taken into account when the analysis
reasons about dependence on external side effects and objects are involved.

Example 6.2. Consider the following program, in which procedure f reads
from the pair referenced by variable z.

1 (let ((z (cons 1 2)))

2 (define (f) ; depends on external side effect

3 (cdr z))

4 (f)

5 (set-cdr! z 3)

6 (f))

Procedure f is applied twice, with a mutation of the cdr field in between the
two applications. Procedure f is impure because its resulting value depends
on the value of an object field that is mutated during program execution. If
in the above program f would read the car field on line 3, or the car field
would be mutated on line 5, then f would not depend on an external side
effect.

As a final example, we look at a higher-order procedure.

Example 6.3. We revisit the program from Example 3.2 on page 37.

1 (define (f h) ; generates observable write effect

2 (h))

3 (let ((z #t))

4 (define (g) ; generates observable write effect

5 (set! z #f))

6 (f g))

Procedure g is impure because it mutates its free variable z. Procedure f

receives procedure g as argument and invokes it. Therefore, the write effect
of g on z is also visible to callers of f, making procedure f also impure.

6.1.4 Approach

We base our purity analysis on the side-effect analysis of Section 3.2, which
is capable of identifying all side effects that occur during and in between
procedure applications, and on the procedure side-effect analysis of Sec-
tion 3.3 and its refinements in later chapters, which is able to determine the
observability of those effects with respect to application contexts.
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eff ∈ Eff = {gen,obs} [side-effecting behavior]

E ∈ P(Eff ) = a set of side-effecting behaviors

P ∈ Purity = Lam⇀ P(Eff ) [procedure purity]
R ∈ Read = Res ⇀ P(Lam) [read table]
O ∈ Obs = Res ⇀ P(Lam) [observer table]

res ∈ Res = Addr + (Addr × FName) [resource]

Figure 6.1: State-space of puirty analysis.

Purity analysis examines the side effects that occur in a program by
traversing a flow graph of that program annotated with effects, and by
traversing the call stack that is in effect in states. The analysis summarizes
the side-effecting behavior of each procedure, i.e., how each procedure behaves
during program execution in terms of side effects (Section 6.2). Purity
analysis considers two types of side-effecting behavior: generating observable
side effects, and depending on external side effects. The result of purity
analysis is a mapping from procedures to side-effecting behavior. We can
further classify procedures by mapping effect summaries to specific effect
classes (Section 6.3), thereby supporting different definitions of purity that
exist in the literature. For example, to determine whether a procedure is pure
in the mathematical sense, we consider all applications of that procedure,
and if for any such application it generates no observable side effects, and
does not depend on external side effects, then the procedure is declared pure.

6.1.5 Contributions

This chapter makes the following contributions:

• A purity analysis that determines whether procedures generate observ-
able side effects or depend on external side effects (Section 6.2).

• A classification of side-effecting behavior according to different defini-
tions of purity found in related work (Section 6.3).
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6.2 Purity Analysis

Figure 6.1 depicts the state-space for purity analysis. The goal of purity
analysis is to map each procedure onto a set of side-effecting behaviors in
Eff . Purity analysis requires two sources of side effects. First, it uses a flow
graph in which edges are annotated with effects to be able to determine
all side effects that occur during and in between procedure applications
in a flow-sensitive manner (Section 3.2). Second, it uses the result of
procedure side-effect analysis to determine which of these side effects are
observable in the context of active procedure applications (Section 3.3).
Purity analysis examines all side effect information, and summarizes the
side-effecting behavior of each procedure (Purity). There are two types of
behavior we are interested in.

Generation of side effects When a procedure generates an observable
write effect, gen is added to the set of side-effecting behaviors of that
procedure.

Dependence on external side effects Side-effecting behavior obs for a
procedure signifies that the procedure depends on an external side
effect. To be able to determine this kind of dependence, purity analysis
employs two tables. A read table (Read) tracks the procedures that
have a read dependency on a resource. An observer tables (Obs) tracks
the procedures that become observers upon a read of a resource. For
dependence on external effects, purity analysis looks for read–write–
read sequences involving the same resource (for reading and writing)
and the same procedure (for the initial and subsequent read). If
a procedure reads an external resource, this is tracked in the read
table. If that resource is mutated, then all procedures that have a
read dependency on that resource are added to the observer table
as potential observers. If a procedure reads a resource, and is a
potential observer for that resource, then a read–write–read sequence
is completed, and that procedure becomes an actual observer of an
external effect. If this is the case, then obs is added to the procedure’s
set of side-effecting behaviors.

While Eff is the set of effects (Figure 3.1), we denote the set that
summarizes the side-effecting behavior of procedures as Eff . A resource is
either an address of a variable, or an address of an object together with a
field name.
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As a brief reminder, we captured side-effect information in a structure
Se that enables us to retrieve all observable effects in application contexts
reachable in a certain state (Section 3.3).

se ∈ Se = State→ Seς [state side effects]
seς ∈ Seς = Kont → P(Eff ) [context side effects]

6.2.1 Graph traversal

We define a function travGraphP that navigates flow graphGe and propagates
information about effects per procedure.

travGraphP : Se × P(State)× P(State)× Purity × Read ×Obs → Purity

The first parameter of this function are the state side effects, computed by
procedure side-effect analysis (Section 3.3). It is a mapping from states to
side effects per active application context in a state. The second and third
parameter are the set of seen states and the work list, respectively. The
final three parameters are the purity maps of the analysis, namely P , R,
and O. The bottom element of purity analysis domain is (se,∅, {ς0}, [], [], []).
Function travGraphP has to handle three possible cases.

1. If the work list of states W is empty, the analysis terminates and the
map of side-effecting behaviors per procedure P is returned.

travGraphP (_,_,∅,P ,_,_) = P

2. If a state in the work list is already in the set of seen states S, it is
removed from the work list and traversal continues.

travGraphP (se, S ∪ {ς},W ] {ς},P , R,O)

= travGraphP (se, S ∪ {ς},W,P , R,O)

3. The interesting case is when the analysis encounters a state that it
has not yet seen in the current purity maps. For every effect in the
set of effects E associated with an outgoing transition, the analysis
delegates to a handler for that effect. Besides the actual effect and the
purity maps of the analysis, the effect handler also receives a mapping
from all active contexts to their set of observable side effects seς . The
handler returns potentially updated purity maps, and if any of these
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maps increases, the set of seen states is cleared to make sure that at
the end of graph traversal the analysis has visited each state with
the maximum attainable purity maps. If the purity maps remains
unchanged, the current state is added to the set of seen states. The
work list is then updated with successor states, and traversal continues.

travGraphP (se, S,W ] {ς},P , R,O) = travGraphP (se, S ′,W ′,P ′, R′, O′)

where (P ′, R′, O′) =
⊔
{handleEffect(eff , seς ,P , R,O) |

eff ∈ E ∧ (ς
E−→ ς ′) ∈ Ge}

seς = se(ς)

W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge)}

S ′ =

{
∅ if P 6= P ′ ∨R 6= R′ ∨O 6= O′

S ∪ {ς} else

The analysis is finite if the underlying flow graph is finite, because the
different maps of the analysis monotonically increase with values chosen
from finite sets. Procedures that are mapped onto ⊥ in the resulting behavior
map are procedures that never were applied during abstract interpretation.

6.2.2 Effect handlers

Function handleEffect is an intermediate dispatcher that forwards to
handleRead and handleWrite.

handleEffect : Eff × Seς × Purity × Read ×Obs → Purity × Read ×Obs

The first parameter of this function is an effect eff that occurs in a particular
state. The second parameter is the set of observable side effects per active
application context seς for the same state in which the effect occurs. In case
of effects on objects, the function combines the address of the object and the



6.2. PURITY ANALYSIS 107

field name into a resource, else the resource is just the address of a variable.

handleEffect(Wv(a,_), seς ,P , R,O)

= handleWrite(eff , a, seς ,P , R,O)

handleEffect(Wf(a, n,_), seς ,P , R,O)

= handleWrite(eff , (a, n), seς ,P , R,O)

handleEffect(Rv(a,_), seς ,P , R,O)

= handleRead(eff , a, seς ,P , R,O)

handleEffect(Rf(a, n,_), seς ,P , R,O)

= handleRead(eff , (a, n), seς ,P , R,O)

Handling a read potentially updates the side-effecting behavior for a proce-
dure and the read table. The effect handler handleRead delegates to helper
function travStackPR to inspect all active procedure applications.

handleRead(eff , res , seς ,P , R,O) = (P ′, R′, O)

where (P ′, R′) = travStackPR(eff , res , seς ,P , R,O)

Handling a write potentially updates the side-effecting behavior for active
procedures and the observer table for the affected resource. The effect
handler handleWrite delegates to helper function travStackPW to inspect all
active procedure applications.

handleWrite(eff , res , seς ,P , R,O) = (P ′, R,O′)

where O′ = updateObs(res , R,O)

P ′ = travStackPW (eff , res , seς ,P)

Updating observers does not depend on the observability of the write effect,
i.e., it does not matter where and how the write effect occurs. If a resource is
written, then every procedure that has a read dependency on that resource
is unconditionally moved to the observer table. Every procedure that has
a read dependency on the written resource, is added to the observer table
under that same resource, regardless of whether the write effect is observable
or not.

updateObs(res , R,O) = O′

where O′ = O t
⊔
{[res 7→ {lam}] | lam ∈ R(res)}
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The following example illustrates the unconditionality of the write effect in
a read-write-read sequence.

Example 6.4. Procedure g reads variable z that procedure f mutates in
between calls to g.

1 (define (f)

2 (define z #f)

3 (define (g)

4 z)

5 (g)

6 (set! z #t)

7 (g))

8 (f)

In the application context of f, all read effects (line 4) and the write effect
(line 6) on z are local and can be masked. However, for detecting dependence
of procedure g on external side effects, it does not matter that the write
effect can be masked in the context of a call to f. The write effect has to be
taken into account to determine that g depends on this write to z.

6.2.3 Stack traversal

Effects impact all procedures on the call stack. Therefore, like procedure
side-effect analysis, purity analysis must traverse the stack to find all active
procedure applications in a given state, and determine the observable effects
they generate for each application. For this purpose, we parameterized purity
analysis with the result from side-effect analysis.

Instead of doing a proper stack traversal of its own, purity analysis can,
for a particular state, reuse the information already computed by procedure
side-effect analysis for that state. Purity analysis can inspect the domain
of the mapping from contexts to the set of observable effects. We define
function procsObservable : Eff × Se → P(Lam) that, given an effect, crawls
the side-effect information of a state and returns the set of procedures for
which this effect is observable.

procsObservable(eff , seς) = {lam | τ ∈ Dom(seς)

∧ seς(τ) = E

∧ eff ∈ E
∧ (. . . , lam, . . .) = τ}
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Now that we have our implicit stack traversal encapsulated by
procsObservable, we explain how to propagate read and write effects down
the stack.

Read effect

Propagating a read effect down the stack potentially marks active procedures
as observers, and checks whether the read table needs to be updated for the
read resource. If the read effect is observable in an application context on
the stack, and the applied procedure is registered in the observer table for
the read resource, then obs is added to the set of side-effecting behaviors of
that procedure. Additionally, if the read effect is observable in an application
context on the stack, then a read dependency is registered in the read table
for the applied procedure.

travStackPR(eff , res , seς ,P , R,O) = (P ′, R′)

where P ′ = P t
⊔
{[lam 7→ {obs}] | lam ∈ O(res)

∧ lam ∈ procsObservable(eff , seς)}

R′ = R t
⊔
{[res 7→ {lam}] | lam ∈ procsObservable(eff , seς)}

Write effect

Propagating a write effect down the stack potentially marks active procedures
as generating an observable write effect. If the write effect is observable
in an application context on the stack, then gen is added to the set of
side-effecting behaviors of the applied procedure.

travStackPW (eff , res , seς ,P , R,O) = P ′

where P ′ = P t
⊔
{[lam 7→ {gen}] | lam ∈ procsObservable(eff , seς)}

6.3 Purity Classification

The side-effecting behavior of a procedure (gen and obs) can be mapped to
an effect class for the procedure, depending on the definition of purity.

class ∈ Class = a set of effect classes

classify : P(Eff )→ Class

P ∈ Purity = Lam→ Class
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The related work on purity can be divided into two categories: those that
take dependence on external effects into account, and those that do not. The
majority of related work [Huang et al., 2012, Madhavan et al., 2011, Pearce,
2011, Rytz et al., 2013, Salcianu and Rinard, 2005] considers a procedure to
be pure if it does not generate observable write effects.

Class = {pure, impure}

classify(E) =

{
impure if gen ∈ E
pure else

Our definition of purity, and of other related work [Finifter et al., 2008,
Pitidis and Sagonas, 2011], considers a procedure pure if additionally it does
not depend on external side effects.

Class = {pure, impure}

classify(E) =

{
impure if E 6= ∅
pure else

We adopted the term effect class from Gifford and Lucassen [1986]. In
their work on combining functional and imperative programming languages,
they look at all possible combinations of reading, writing, and allocation of
memory locations by expressions with the goal of classifying these expressions
accordingly. Because we do not consider allocation effects in this work (pure
procedures are allowed to allocate), the adapted classification scheme of
Gifford and Lucassen looks as follows, with the additional observer class
of procedures that do not generate observable side effects but do observe
external side effects.

Class = {procedure,observer,pure}

classify(E) =


procedure if gen ∈ E
observer if E = {obs}
pure else

6.4 Discussion

Dependence of a procedure on an external side effect (obs) is checked by
detecting a read–write–read sequence on the same resource: a procedure
first reads from a resource that subsequently is modified and read again by
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the same procedure. Yet the occurrence of a single observable write effect
suffices for a procedure to be considered as generating an observable side
effect (gen).

Requiring only a single observable read effect to determine dependence
on external side effects would be too conservative: whenever a procedure
applies another procedure for example, it would already be considered as
being (potentially) dependent on the applied procedure, although chances are
low that procedures—especially primitives—are ever reassigned. Verifying a
read–write sequence of a resource would be more precise, but with concrete
semantics in mind we opted for a read–write–read sequence to best capture
the notion of dependence on an external side effect. A procedure has to
observe the external write effect to be dependent on it.

It could be argued that a write–read sequence must be used to detect
whether a procedure generates an observable side effect: a procedure first
writes to a resource that subsequently is read somewhere. In this case, we
decided that the rest of the program does not have to observe the write effect
for the procedure to be considered as generating an observable write effect.
The fact that the store reflects the modification in a part that is reachable
by the rest of the program is sufficient.

6.5 Related work

There exists a large body of work on purity and closely related concepts
such as side-effect analysis, referential transparency, and memoization. We
compare the most closely related existing work to our approach.

Salcianu and Rinard [Salcianu and Rinard, 2005] present a purity analysis
that is based on an underlying pointer analysis (JPPA). Their analysis first
constructs parameterized points-to graphs for every method, in which nodes
are objects and edges are heap references. A later interprocedural step
instantiates these points-to graphs at every call. The goal of the analysis is
to distinguish objects allocated during invocation of a method from objects
that already exist in the caller state.

Pearce introduces JPure [Pearce, 2011], a modular purity analysis based
on annotations that express freshness and locality, two concepts that map
closely to how we use these terms in this work. When the focus is on
maintaining purity of methods that are annotated as being pure, no whole-
program interprocedural analysis is required. JPure is rooted in Java, and can
automatically infer annotations. Somewhat similar to our freshness analysis,
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JPure starts from an intraprocedural dataflow analysis to model freshness
and locality of object references. Purity inference then interprocedurally
propagates information using static class hierarchy.

Rytz et al. [Rytz et al., 2013] present a modular type-and-effect system
for purity in Scala, which is strongly influenced by JPure. Their system adds
support for closures, but annotations cannot be inferred. Their effect system
is flow-insensitive to avoid complex event orderings in higher-order functions,
while our work is both flow-sensitive and capable of handling higher-order
constructs.

Madhavan et al. [Madhavan et al., 2011] present the pointer analysis
used in Salcianu and Rinard [Salcianu and Rinard, 2005] as an abstract
interpretation. Our work is also based on abstract interpretation, but is
different from the original JPPA formulation and thus also from its abstract
interpretation reformulation.

Huang et al. [Huang et al., 2012] present ReImInfer, a type inference
analysis for reference immutability in Java. ReIm, the underlying type
system, qualifies references as being readonly, mutable, or polyread, the latter
signifying that a reference is immutable in the current context but may not
be in other contexts. Methods are pure if none of their parameters, including
this, are inferred to be mutable. Like the purity analysis we present in this
chapter, ReImInfer is context-sensitive when applying viewpoint adaptation.
Viewpoint adaptation adapts the type of properties based on the receiver on
field access [Dietl et al., 2007]. Application contexts generated by AAC and
P4F are more precise than approaches discussed in [Huang et al., 2012], but
at the expense of running time and scalability. ReImInfer does not handle
higher-order language constructs.

Pitidis and Sagonas [Pitidis and Sagonas, 2011] treat purity in the setting
of a functional language (Erlang), and they take the stricter definition of
purity where a function may not depend on external side effects either.
Their static analysis tool detects different flavors of purity that map to our
classification of functions. Higher-order functions are supported, but the
analysis is based on a “pretty simple dataflow analysis”, while in this work
we employ a state-of-the-art flow analysis that offers maximal call/return
precision.

The approach in Finifter et al. [Finifter et al., 2008] is based on static
typing. Purity of methods can be enforced by statically declaring all param-
eters as having an immutable type. Declaring parameters as immutable is
sufficient in a language that does not have closures, but would not apply in
our setting of a semantics with closures. It is unclear what the impact is of
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static restrictions (types, annotations, object capabilities) in systems where
pure and impure (or untrusted) code has to be composed. This is potentially
impossible or becomes more difficult, or the system has to provide wildcards
to make programs pass the static checker.

Naumann [2007] discusses degrees of purity in the context of program
specification and verification, which we translate to the procedure purity
setting of this chapter. A strongly pure procedure has no effects. A weakly
pure procedure does not mutate caller state but is allowed to allocate objects.
Observational purity allows modification of the caller state as long as the
effects involved are encapsulated “in a suitable sense”. In our approach
allocation itself does not directly impact purity, so the notion of purity
characterized as “does not generates observable side effects” in this chapter
corresponds to weak purity in the work of Naumann. The encapsulation
that Naumann mentions with respect to observational purity is realized in
this dissertation by reasoning about observability of side effects in terms of
application contexts.

6.5.1 Advantages Over Existing Approaches

Compared to existing techniques and tools, we believe the purity analysis
we presented offers a number of conceptual and practical advantages. Some
individual features such as support for closures, using stack reachability
when determining extents of side effects, and detection of dependence on
external side effects, are rare or absent in existing work. Combining these
features results in a purity analysis that, to the best of our knowledge, is
unique in its approach. We now discuss these advantages.

Based on an abstract machine approach Our approach is based on an
abstract machine that performs an abstract interpretation of a program.
We use the AAM technique [Van Horn and Might, 2010], which is a
simple method for abstracting these abstract machines so they can
be used for static analysis. The same abstract machine can also be
parameterized to implement different concrete and abstract semantics,
which is useful for correctness and testing purposes [Johnson and
Van Horn, 2014]. Abstract machine interpreters are close to regular
interpreters, and are therefore well suited to express and instrument
the semantics of a language. We believe our approach inherits or at
least is positively influenced by these properties of abstract machines
and the AAM method.
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Our work is the only purity analysis that bases itself on abstract
machines and the AAM method. Related work that explicitly mentions
abstract interpretation as a foundation is sparse. As we have mentioned
in Section 3.6, side-effect and purity analysis is mostly carried out in
the setting of type systems.

Support for first-class closures A large part of existing work related
to purity targets languages that do not have closures and first-class
procedures, such as Java. [Finifter et al., 2008, Huang et al., 2012,
Madhavan et al., 2011, Pearce, 2011, Salcianu and Rinard, 2005].
Scheme0, however, does have first-class closures, meaning that any
purity analysis for scheme0 must treat variables as proper resources,
as is the case in our approach.

Related work that does handle higher-order functional languages in-
cludes Rytz et al. [Rytz et al., 2013] (Scala) and Pitidis and Sago-
nas [Pitidis and Sagonas, 2011] (Erlang). Our approach was designed
with explicit support for closures as first-class values.

No dependence on static typing or other annotations Our ap-
proach does not require users or module developers to annotate their
code, for example by indicating which procedures return fresh objects
or by adding static type annotations. Some of the existing approaches
such as JPure [Pearce, 2011] require explicit annotations to maintain
purity, although the annotations can be inferred. The work of Rytz et
al. [Rytz et al., 2013] is strongly influenced by JPure, and therefore
also relies on annotations, while our analysis does not.

Determining extent of side effects through stack reachability
Traversing the stack to determine the extents of side effects is a
novel approach. While some approaches such as JPPA distinguish
between the topmost application context and all others when for
example masking effects on objects created by a method, our approach
potentially examines the entire stack to determine the extent of a side
effect. After a straightforward conversion of the simple program in
Example 6.1 to Java, JPPA imprecisely reports that all three methods
are impure. JPure only explicitly tags method h as impure. These
results demonstrate that these tools do not perform stack traversal for
precisely determining the observability of side effects.
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Detection of dependence on external side effects The majority of re-
lated work considers a procedure as pure if it does not generate ob-
servable side effects. Our purity analysis is able to detect a stricter
definition of purity in which a procedure may also not depend on
external side effects either. Pitidis and Sagonas [Pitidis and Sagonas,
2011] and Finifter et al. [Finifter et al., 2008] also consider this stricter
definition of purity, and the latter accomplishes this by restricting the
language and enforcing immutability of the global scope for example.
In our analysis we take an optimistic approach by allowing unrestricted
access and mutability and detecting when this leads to impurity.

6.5.2 Limitations

An inherent limitation of the purity analysis we presented is that it is a
whole-program analysis that—given the requirements for determining side
effects and their extent and depending on the actual parameterization—can
be costly to perform. A modular analysis, on the contrary, can be performed
on parts of the program. This usually results in a more performant analysis,
especially in scenarios where an input program is reanalyzed after only
parts of it are modified. At this point it is unknown whether and how the
techniques proposed in this work can be modularized.

Other related work also describes tools that require an underlying whole-
program analysis [Madhavan et al., 2011, Salcianu and Rinard, 2005], while
alternate approaches—primarily those rooted in type systems—are modular
in nature [Finifter et al., 2008, Huang et al., 2012, Pearce, 2011, Rytz et al.,
2013].

6.6 Conclusion

We presented a purity analysis for scheme0 based on effects reported by
general side-effect analysis, and observability determined through stack
reachability by procedure side-effect analysis. Purity analysis summarizes the
side-effecting behavior of procedures with respect to the rest of the program.
For each application of a procedure, we determine whether the application
generates observable effects. For dependence on external side effects, we
check for a sequence where two applications of the same procedure read the
same resource that is modified in between those applications. Based on their
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side-effecting behavior, we classify procedures as either pure, observer, or
procedure.

Purity analysis is useful for a number of software engineering and opti-
mization purposes. Determining the side-effecting behavior of procedures
facilitates reasoning over imperative programs for both humans and tools.
As a result, our work can serve as the foundation for further techniques and
analyses for program parallelization, function memoization, and detection of
referential transparency.



Chapter 7

Implementation

7.1 Introduction

As a proof of concept, we implemented our purity analysis in the Scheme
dialect Racket. The resulting tool for determining procedure purity in Scheme
programs is called purity.rkt, and incorporates all analyses presented in
this dissertation. Compared to input language scheme0 for the abstract
machine described in Section 2.3, the tool supports a more extensive input
language featuring conditionals, vectors, and additional primitives. Any
differences between the formalisms presented in earlier chapters and the
actual implementation do not fundamentally change the results our analyses
produce. The tool’s implementation, including benchmark programs and test
setup, is publicly available at https://github.com/jensnicolay/purity/
tree/phd.

We use purity.rkt to evaluate our approach by performing a number
of experiments described in Chapter 8. In these experiments we make use
of two abstract machine configurations: a concrete configuration, and an
abstract configuration. The concrete configuration offers full precision, and
semantically overlaps with the underlying Scheme runtime. The abstract
configuration uses a set lattice in which atomic values are abstracted to their
types. The parameters that make up a machine configuration are a lattice,
a store update policy, and address allocators for the value and stack stores.

In this chapter, we sketch the general architecture and design of
purity.rkt (Section 7.2), and how it can be configured. We also discuss
the implementation of the two lattices aligning with the configurations used
during experimentation: a concrete lattice, and an abstract type lattice
(Section 7.3).
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We describe how the flow analysis is configured, and describe three
optimizations of the abstract machine that improve performance: global
stores, stack pop with a metafunction, and atomicity checks (Section 7.4).

The largest deviation from the formalization of the previous chapters
constitutes the use of a global value store and global stack store in the
abstract machine. If the value store is not updated monotonically, as is
the case in concrete semantics, then the value store is a component of the
machine states. We give an operational definition of state space exploration
in Section 7.4.4.

To decide address freshness, application contexts need to be linked to
caller stores (Section 3.4). When using allocation strategies like P4F [Gilray
et al., 2016], which produce addresses that do not contain a caller store, a
caller-store analysis is required to link application contexts to caller stores.
We give our implementation of a caller-store analysis in Section 7.5.

We discuss the implementation of procedure side-effect analysis (Sec-
tion 7.6), which is parameterized by both observability and escape informa-
tion, and explain how the implementation of the observability predicate is
more generic than and able to simulate its formal counterparts observableA,
observableF , and observableE .

We end this chapter by discussing purity analysis, which we implemented
in a flow-sensitive manner with per-state widening for the read and observer
tables (Section 7.7).

7.2 Architecture and Design

Figure 7.1 depicts the analyses, and the flow of information between analyses
that are part of the proof-of-concept implementation. The overall purity
analysis comprises the execution of a series of analyses that starts with flow
analysis instrumented with effects (Section 3.2). On top of the flow graph
produced by the flow analysis, we run escape analysis (Section 5.3), object
freshness analysis (Section 4.4.2), procedure side-effect analysis (Section 3.3),
and purity analysis (Section 6.2). The results from purity analysis are
mapped to effect classes (Section 6.3).

Variable freshness analysis is not implemented as a separate analysis, but
has been incorporated in the predicates for observability used to configure
the procedure side-effect analysis.

The result of each analysis is captured in a data structure (most often a
map), which is consumed by one or more subsequent analyses. Often, the
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Flow Analysis 
with Effects

Procedure Side-
Effect Analysis

Escape Analysis Object Freshness 
Analysis

Purity Analysis

analyses

Figure 7.1: Organization of the different analyses that make up purity analyses.
Arrows indicate flow of information.

interface between the analyses is a predicate that encapsulates the raw result
map. Varying the implementation of these predicates enables the testing
of different configurations of the analyses that make up our overall purity
analysis. For example, procedure side-effect analysis is parameterized by
predicate escapes? that answers whether a procedure has been recognized
as escaping or not. The result of our escape analysis is a set of potentially
escaping procedures, which can be wrapped in a predicate and passed to
procedure side-effect analysis. If escape information is unavailable, then
the predicate is defined as (lambda _ #t), which conservatively makes all
procedures escape.

7.3 Lattices

Structure lattice encodes lattices (Appendix B.2) and consists of fixed
lattice operations, the bottom value, and a global environment of additional
lattice operations.

(struct lattice (α γ ⊥ t v true? false? eq? global ))

Lattice operations α, γ, ⊥, t, and v operate on lattice values and corre-
spond to the operations discussed in Appendix B.2. At the implementation
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level, there are some important subtleties that have to be taken into account
by a lattice that stem from the fact that some values are created by the
lattice (e.g., as the result of abstraction), while others are created outside
the lattice—in the abstract machine or one of its parameters in purity.rkt.
Essentially, we distinguish between three kinds of values.

Atomic values are all values that have an atomic Scheme data type. In
purity.rkt these are booleans, symbols, characters, numbers, and
strings (but not the empty list). A lattice operates directly on these
values, and is allowed to substitute them with abstractions that lose
precision. This means that concretization is possibly undefined for
these values.

External values are all other values, and are treated as opaque by a
lattice. External values are created and manipulated outside the
lattice and only “pass through” the lattice. External values are repre-
sentations of addresses, closures, pairs, vectors, etc. A lattice must
represent external values with full precision, meaning that abstraction
and concretization for these values are each other’s inverse. External
values often contain abstracted atomic values.

Lattice values are composed of atomic values and external values, and
implement the actual lattice operations such as join and subsumption.

Predicates true? and false? are used to test whether a lattice value
represents a true and false (#f) value, respectively. These predicates are
used for the evaluation of conditionals (e.g., if) in the abstract machine. In
an abstract semantics, it is possible that an abstract lattice value is both
true? and false?.

Predicate eq? encodes equivalence semantics of atomic values only.
Equivalence of lattice values is implemented at the level of the abstract
machine, which knows how to do this for its own values (i.e., addresses, pairs,
etc.), and delegates to lattice for all other values.

The lattice operations true?, false?, and eq? in the definition of
lattice are the minimal set of operations required by the abstract machine
to implement Scheme semantics. All other operations on lattice values not
provided by the machine are registered in the global environment of the
lattice, mapping names to Scheme primitives. Examples of primitive opera-
tions contained in the global lattice environment are arithmetic operations
(+, modulo, even?, . . . ), atomic type tests (symbol?, char?, . . . ), etc., but
not cons, vector-set!, or eq? for example.
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We have implemented two lattices for experimentation and evaluation: a
concrete lattice to support concrete semantics, and a type lattice to support
abstract semantics.

7.3.1 Concrete Lattice

The concrete lattice borrows from the underlying Racket language for its
atomic values. This is both possible and useful because Racket is a dialect
of Scheme.

(define conc-lattice
(lattice conc-α conc-γ conc-⊥ conc-t conc-v

conc-true? conc-false? conc-eq? conc-global ))

• The abstraction function is the identity function.

(define (conc-α d) d)

• The concretization function turns a lattice value into a singleton set
containing that value.

(define (conc-γ d) (set d))

• The bottom element is a value different from all other values.

(define conc-⊥ (gensym ))

• Joining two distinct values leads to a precision loss. Because concrete
values are always fully precise, join is not defined for concrete values.

(define (conc-t d1 d2) (error "illegal operation"))

• The set of concrete values is a flat order. A concrete value subsumes
only the least element conc-⊥ and itself.

(define (conc-v d1 d2)
(or (eq? d1 conc-⊥)

(eq? d1 d2)))

• The predicate for recognizing true values semantically overlaps with
the underlying Racket semantics, i.e., all values except #f are true.

(define (conc-true? d) d)
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• The predicate for detecting the false value also overlaps with the
underlying Scheme semantics.
(define (conc-false? d) (not d))

• Equality of concrete atomic values has Scheme’s eq? semantics.
(define conc-eq? eq?)

• The global environment, mapping names to Scheme primitives, directly
wraps primitives from underlying Racket in a prim structure, which
takes a name and a procedure. It is possible to use Scheme primitives
directly from Racket because concrete atomic values are Scheme values.
(define conc-global

`(
. . .

("+" . ,(conc-α (prim "+" +)))
. . .

))

7.3.2 Abstract Type Lattice

The abstract lattice implementation encodes atomic values as types, and
lattice values as sets.
(define type-lattice

(lattice type-α type-γ type-⊥ type-t type-v
type-true? type-false? type-eq? type-global ))

• The abstraction function abstract an atomic value into a singleton
set representing its type. External values are also converted into a
singleton set, but the value itself is not modified.
(define (type-α v)

(cond
(( number? v) (set NUM))
(( boolean? v) (set BOOL))
(( symbol? v) (set SYM))
(( string? v) (set STR))
((char? v) (set CHAR))
(else (set v)))) ; external value

• The concretization function returns the lattice value.
(define (type-γ d) d)
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• The bottom element is the empty set.
(define type-⊥ (set))

• The join of two lattice values is set union.
(define type-t set-union)

• Lattice values are ordered by set inclusion.
(define type-v subset?)

• Every lattice value is considered true, because type-α(#f) = (set

BOOL), which does not distinguish between non-false values and #f.
(define (type-true? d) #t)

• Every lattice value is also false. This is more imprecise than need
be, since lattice values that do not contain BOOL can never be an
abstraction of a set of concrete values containing #f. The usefulness
of the more precise encoding is however limited in practice, since an
analysis of a non-trivial program eventually visits all branches of a
conditional anyway.
(define (type-false? d) #t)

• The equality test for atomic values returns an abstracted boolean.
(define (type-eq? v1 v2) (set BOOL))

• The global environment abstracts a Scheme primitive essentially into
a function that encodes the return type of that primitive.
(define type-global

`(
. . .

("+" . ,(type-α (prim "+" (lambda _ (set NUM )))))
. . .

))

7.4 Flow Analysis with Side Effects

Now that we have discussed the architecture and lattice configurations of
purity.rkt, we will look at the implementation of some of the individual
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analyses in the remainder of this chapter. We start with flow analysis, the
first analysis performed on scheme0 programs by our tool.

Flow analysis is performed by the abstract machine (Section 2.4) con-
figured with a lattice, a value store address allocator, a stack store address
allocator, and a flag indicating whether value store updates are monotonic
(using t) or use assignment.
(define (make-machine lattice alloc kalloc mono-store)
(struct system (initial graph state-σ Ξ))

The result of flow analysis is a graph, represented as an initial state (initial)
and a map of transitions from states to successor states annotated with
effects (graph), and the global stack store (Ξ). Function state-σ extracts
the value store from a state, abstracting over the location where value stores
are kept: inside states, or as a single global store.

We implemented three important optimizations in purity.rkt at the
level of flow analysis and the abstract machine: the use of global stores and
store widening (Section 7.4.1), the avoidance of administrative pop steps
(Section 7.4.2), and atomicity checks (Section 7.4.3). We end the section
by giving an operational definition of the state-space exploration algorithm
(Section 7.4.4).

7.4.1 Global Stores

The following structs define evaluation and continuation states in
purity.rkt.
(struct ev (e ρ σ ι κ))
(struct ko (v σ ι κ))

All states contain a value store (σ) component, even though the values
store is a global component of the abstract machine. The reason is that
states need to refer to a specific instance of a value store when the value
store is not updated monotonically (Section 7.4.1).

The stack store (Ξ) is not a part of an individual state. Like the value
store, the stack store is a global component of the abstract machine, but
states never need a reference to a specific instance of a stack store because
it grows monotonically (Section 7.4.1).

Value Store

We implemented flow analysis with a global value store. We opted for a
global store because this choice has no impact on the results of the concrete
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semantics, and with abstract semantics maintaining a separate store per
state takes the machine longer to reach a fixpoint if it exists [Gilray et al.,
2016].

In concrete semantics, a single global value store poses no additional
difficulties. The sets of states to be explored (the “frontier”) always consists
of a single state, because the machine only explores a single path through
the code at a time (no transition rule yields more than one successor state).
Therefore, the global store is the store of the single frontier state. How-
ever, concrete semantics uses strong updating when modifying the store
(Section 2.4.3), replacing existing values by new values, which can result in
non-monotonic updates. As a consequence, visited states in the seen set
must be paired with the global store that was in effect at the time of their
exploration.

With abstract semantics, a global value store is used to implement store
widening [Van Horn and Might, 2010]. The global store is shared between all
states, and only updated monotonically during state exploration by joining
existing values with new values. At any time during exploration it subsumes
the stores of all the states explored so far. Because the final store then
subsumes all intermediary stores, the store can be omitted in the states. As
with the stack store, the set of visited states must be cleared when the global
value store increases to guarantee that every state is visited with its largest
attainable store.

Flag mono-store controls the behavior of the value store only (the stack
store is global and updated monotonically by default). If the flag is true,
then individual states do not contain a store (σ inside states is set to #f),
and during exploration the set of visited states is cleared when the global
store increases. Requesting the store for a state using state-σ returns the
global store. When mono-store is false, then the global store at the time
of exploration becomes the store of the visited state, and function state-σ

returns this store.

Stack Store

The stack store is also a global component of the abstract machine in
purity.rkt. Because the stack store represents control flow, which is mono-
tonic in nature (the machine can only discover additional paths through
a program). Contrary to the state-space given in Figures 2.3 and 3.1 on
page 19 and on page 41, the stack store is not implemented as a component
of a state. Instead, whenever the stack store increases, the set of seen states
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is cleared so that every state eventually will be visited with the largest
attainable stack store for that state.

7.4.2 Pop Metafunction

The abstract machine from Section 2.4, and its instrumented version in Sec-
tion 3.2, has a transition rule [k-ret] for continuation states with an empty
local continuation. The rule looks up underlying stacks by dereferencing the
state’s stack address in the stack store, and produces a successor continuation
state per underlying stack. As suggested in Johnson and Van Horn [2014], it
is more optimal to delegate to a metafunction for popping the stack instead
of using an “administrative” pop step [k-ret] on the level of the machine.

Function pop from Section 4.4.2 is the metafunction we are looking for,
and in purity.rkt the transition rule [k-ret] delegates to pop instead of
doing a single stack address dereference. The metafunction pops the stack
until the local continuation is not empty, or the bottom of the stack is
reached.

For tail calls, using an administrative machine step for popping the stack
produces more states than using metafunction pop. These extra states have
to be considered in the fixpoint computation, which then needs to perform
more expensive “seen” checks than pop—the latter only needing to keep track
of a generally small set of seen contexts [Johnson and Van Horn, 2014].

Example 7.1. In Figure 2.4b on page 28, the machine has computed
the result value of the program in ς13. It then takes three consecutive
administrative pops to reach the program exit in ς16, reflecting the fact
that all applications on the call stack are in tail position when the program
ends. Using metafunction pop in transition rule [k-ret], the machine would
transition directly from ς13 to final state ς16.

7.4.3 Atomicity Checks

Input language scheme0 (Figure 9.1 on page 171) allows any kind of expres-
sion in certain subexpression positions, for example in the binding expression
of a let. Transition rule [e-let] of the abstract machine evaluates the
binding expression, while pushing a continuation to bind the resulting value
and continue with the evaluation of the let body. This requires at least
an evaluation state and a continuation state for the binding expression and
its value. However, if the binding expression is atomic, it can be evaluated
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using the atomic evaluator, in which case no continuation needs to be pushed
(Section 2.3.1). This is computationally less expensive, and moreover the
benefit is accumulative because fixpoint computation generally takes more
time with more states in the graph.

However, there is an important downside to checking for atomicity of an
expression to avoid more complex non-atomic evaluation. It forces clients of
the flow analysis to also check whether certain syntax positions are atomic
expressions, rendering this optimization “leaky”. As the results of atomic
evaluation are not directly reflected in the graph, clients need to invoke the
atomic evaluator to reconstruct them.

We chose a pragmatic solution in purity.rkt, balancing performance
gains against the disadvantages for client analyses that operate on flow
graphs, of which there are four in our approach. Due to the prevalence of
atomic binding expressions in let and especially letrec—the latter used
almost exclusively to bind recursive procedures—the abstract machine checks
the atomicity of the binding expression in only those constructs.

Example 7.2. In Figure 2.4b on page 28, the machine needs 16 steps to
compute the result. Using metafunction pop instead of an administrative
pop step (Example 7.1) reduces the number of steps to 14. Adding atomicity
checks as described in this section further reduces the number of steps to
8. Evaluation and continuation states binding lambdas to variables are no
longer in the graph, but instead are performed atomically during the [e-let]
transition. This means states ς1, ς2, ς4, ς5, ς8, and ς9 are no longer present in
the graph.

7.4.4 State Exploration

Unlike Section 2.5, which intensionally defined state exploration as a reflexive
transitive closure of the transition relation, this section takes an operational
look at state exploration.

Figure 7.2 contains the implementation of procedure explore, which
performs the main state exploration loop. State exploration keeps a set of
seen states S, a set of states to explore W, and the graph that accumulates
edges annotated with effects graph. If the work list is empty, then the flow
graph is returned (line 3). Otherwise, the algorithm pulls a state from the
work list (line 4). If it is a state that was previously encountered, exploration
continues with the seen state removed from the work list (line 5). Lines 6
and 7 save the current value of the global timestamps σi and Ξi for value
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1 (define (explore S W graph)
2 (if (set-empty? W)
3 graph
4 (let* ((s (set-first W)))
5 (if (set-member? S s)
6 (explore S (set-rest W) graph)
7 (let* ((old-σi σi)
8 (old-Ξi Ξi))
9 (let-values (((W* graph*)

10 (handle-transitions (set-rest W)
11 graph
12 s)))
13 (let ((S* (if (or (> Ξi old-Ξi)
14 (and mono-store (> σi old-σi)))
15 (set)
16 (set-add S s))))
17 (explore S* W* graph *))))))))

Figure 7.2: Implementation of the state exploration algorithm with global stores
and timestamps.

store and stack store, respectively. In case the store grows monotonically,
the timestamp represents the number of times the store has increased. This
allows for efficient comparison of stores by checking equality of integers. On
line 10 the algorithm delegates to handle-transitions, passing in the work
list with the currently visited state removed, the current graph, and the
visited state. This results in an updated work list W* and graph graph*.
On lines 13 and 14 the current timestamps are compared with the saved
timestamps. If they have increased, the set of seen states S is cleared;
otherwise the visited state is added to S. The timestamp check for the value
store only happens if that store grows monotonically, which is denoted by flag
mono-store. On the last line of the algorithm, state exploration continues
with the updated components. State exploration starts with an empty set of
seen states S, a set of states to process W containing the initial state obtained
after injecting the program, and an empty graph graph.
(explore (set) (set initial) (hash))

When the abstract machine steps a state using procedure step, this
returns a set of transitions. A transition contains a successor state and a set
of effects that occur on transition to the successor.
(struct transition (s E))
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Procedure handle-transitions steps a state and iterates over every
outgoing transition (line 2). For each transition, it adds the successor state
s* to the work list (line 5). It also adds the set of effects E of the transition
to the (possibly empty) set of effects that was already seen for the transition
(lines 7–9).

1 (define (handle-transitions W graph s)
2 (for/fold ((W W) (graph graph)) ((t (step s)))
3 (match t
4 (( transition s* E)
5 (let ((W* (set-add W s*))
6 (graph*
7 (let* ((hs (hash-ref graph s (hash )))
8 (E* (set-union E (hash-ref hs s* (set )))))
9 (hash-set graph s (hash-set hs s* E*)))))

10 (values W* graph *))))))

purity.rkt uses two representations for graphs. During state exploration,
graphs are represented as a map from source states to another map from
successor states to effects. This representation is computationally less
expensive to update and maintain during analysis. After state exploration,
this graph is transformed into a map from source states to a set transitions
consisting of successor states and effects.

7.5 Caller-Store Analysis

Caller-store analysis is required if the application context does not contain
caller stores (Section 3.4). The stack address allocator in the original AAC
approach [Johnson and Van Horn, 2014] generates application contexts that
do include the caller store, but the more recent P4F approach [Gilray et al.,
2016] does not. Since we used the P4F allocator for our experiments in
Chapter 8, we therefore run caller-store analysis prior to procedure side-effect
analysis.

Caller-store analysis takes a system sys (the result of flow analysis,
see Section 7.4), and returns a map ctx->addr from context to the set of
addresses reachable in the caller store for that context. Lines 2–5 obtain
the necessary functions and data from the system, needed by the analysis.
The analysis itself is defined as an iteration over all states in the flow graph
(line 6), and a nested iteration over the outgoing transitions of a state (line
9). It looks for an application evaluation state (line 8), followed by a body
evaluation state (line 11). Lines 12–15 compute the set of reachable addresses
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in the caller store, and add it to the set of already reachable addresses A for
the entered application context κ̂*. Procedures reachable and referenced

correspond to functions R and T , respectively (Section 3.5). Concretization
function γ is required by R to obtain a set of non-atomic concrete values
from a lattice value in the store that need to be traced.

1 (define (caller-store-analysis sys)
2 (define graph (system-graph sys))
3 (define state-σ (system-state-σ sys))
4 (define Ξ (system-Ξ sys))
5 (define γ (lattice-γ (system-lattice sys)))
6 (for/fold ((ctx- >addrs (hash ))) (((s ts) (in-hash graph )))
7 (match s
8 ((ev (? «app»? e) ρ σi ι κ)
9 (for/fold ((ctx- >addrs ctx- >addrs)) ((t (in-set ts)))

10 (match t
11 (( transition (ev _ _ _ '() κ*) _)
12 (let* ((A (hash-ref ctx- >addrs κ* (set)))
13 (σ (state-σ σi))
14 (A* (set-union A (reachable (referenced s Ξ)
15 σ γ))))
16 (hash-set ctx- >addrs κ* A*)))
17 (_ ctx- >addrs ))))
18 (_ ctx- >addrs ))))

7.6 Procedure Side-Effect Analysis

Observability

The implementation contains a parameterized observability predicate
observable?. By providing appropriate implementations of its three fresh-
ness predicate parameters, it can be configured to behave like any of the three
central observability predicates described in this dissertation: observableA

from Section 3.4, observableF from Section 4.5.2, and observableE from
Section 5.4.2.

(define (observable? fresh-addr? fresh-var? fresh-obj?)
(lambda (eff κ ς stat)

(match eff
((wv a v)
(not (or (and stat (fresh-var? v κ))

(fresh-addr? a κ))))
((wf a _ v)
(not (or (and stat (fresh-obj? v ς κ))
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(fresh-addr? a κ))))
((rv a v)
(not (or (and stat (fresh-var? v κ))

(fresh-addr? a κ))))
((rf a _ v)
(not (or (and stat (fresh-obj? v ς κ))

(fresh-addr? a κ)))))))

The structures wv, wf, rv, and rf represent variable and field reads and writes,
respectively. Any type of freshness can be disabled by passing (lambda _

#f) as its predicate. Unlike in the formalization, the implementation allows
variable freshness and object freshness to be enabled or disabled separately.

The flag stat indicates whether the dynamic scope still agrees with the
static scope for an application context, and therefore whether variable or
object freshness can be used. The flag simulates the top flag (Section 4.5.1)
if its value is true only for the topmost application context. The flag can
also behave as the escape flag from Section 5.4 when it is updated using
the results from escape analysis. Updating stat is the responsibility of
procedure side-effect analysis, which actually performs stack traversal.

Procedure Side-effect Analysis

Procedure side-effect analysis takes a system and two predicates observable?
and escapes? for determining effect observability and escaping of procedures.
It checks the observability of every effect in every application context. A side
effect in the context of an application is observable if it is on a resource that
is not fresh in that context. If the effect is not observable outside a particular
application context, then it is masked in that context. Predicate escape?

is used as additional contextual information for predicate observable?. It
can be implemented as a thin wrapper around the result of escape analysis,
which returns a set of escaping procedures. In principle, the logic of escape?
can be folded into observable? (in that case passing the traversed portion
of the stack to observable?), but for simplicity we kept the two predicates
separated.

(define (side-effect-analysis sys observable? escapes? ))

The analysis returns a map from states to application contexts to a set of
observable side effects. As mentioned before, the term “observable” is used
for both read and write effects.
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7.7 Purity Analysis

Purity analysis takes a flow graph as input in order to examine all effects
that are produced during program execution. This flow graph is combined
with effect observability computed by the procedure side-effect analysis in
order to determine whether procedures generate observable side effects or
depend on external side effects. The result of purity analysis is a map from
procedures to a summary of their side-effecting behavior.

The purity analysis in Section 6.2 uses a global read table and observer
table, thereby implicitly implementing a global widening strategy for these
tables. This has a negative impact on precision for observers: reads and
writes in completely unrelated branches of the program can mark procedures
as (potential) observers. We therefore chose to implement purity analysis
in a flow-sensitive manner: instead of containing states, the work list and
set of seen states contain triples consisting of a state, a read table, and
an observer table. Although flow-sensitivity is more precise, it is more
expensive to compute. Therefore we added per-state widening of these tables
to accelerate fixpoint computation. When pulling a state table, read table,
and observer table from the work list, the tables are joined with the previous
tables seen for that state, before effects are handled. Because widening
happens on a per-state basis, flow-sensitivity is maintained, and we did not
observe any loss in precision due to widening.

7.8 Conclusion

This chapter presented an overview of our main technical artifact,
purity.rkt, which is a purity analysis for Scheme implemented in Racket.
We discussed the extensions that purity.rkt makes over scheme0 used
in the formalization in preceding chapters. We also mentioned important
performance and precision considerations that make the implementation
more efficient and precise. The main optimizations in purity.rkt are the
use of global stores and store widening, the avoidance of administrative
pop steps, and atomicity checks. We also described a flow-sensitive purity
analysis with widening of its tables.

In the next chapter we use purity.rkt to evaluate the analyses presented
in this dissertation. This chapter introduced an overview, and some configu-
ration and implementation details of these analyses required to understand
the experiments we performed.



Chapter 8

Evaluation

8.1 Introduction

In this chapter, we report on several experiments we ran to evaluate correct-
ness, soundness, performance, and precision of the techniques and analyses
presented in this dissertation. Experiments were run on a machine equipped
with a quad-core 2.8 GHz Intel Core i7 processor, and 16 GB of DDR3 mem-
ory. We used Racket v6.4 [Flatt, 2010] as the runtime. Although there were
4 physical (8 logical) cores available on the test machine, our implementation
is single-threaded and does not benefit from additional cores.

All results presented in this chapter are produced by a test runner
that analyzes each program in a set of benchmarks and computes the test
results. The analysis phase consist of the execution of a series of analyses
described in this dissertation (Figure 7.1), starting with flow analysis and
ending with purity classification. This series of analysis is run using different
configurations (concrete vs. abstract) and combinations of the analyses
involved (with or without freshness, etc.). In addition to the direct analysis
result, analyses also compute basic statistics such as their duration. More
complex processing is done by the test runner in between and after analyses
have completed.

We did not measure memory consumption in detail, but it was possible
to execute the test runner for the complete set of benchmarks when the
available memory was limited to 4 GB. Increasing the limit to more than
4 GB did not significantly impact timings. Limiting available memory to
2 GB still allowed the test setup to finish, but significantly increased the
running time of our test runner due to garbage collection overhead.

133
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We start by defining the terminology we use when evaluating our approach
(Section 8.1.2). We also give an overview of the test configurations used
by the test runner (Section 8.1.1), and discuss the benchmark program
and the general test setup (Section 8.1.3). The remainder of the chapter
is devoted to describing the experiments we performed with the different
analyses presented in this dissertation, and a discussion of the obtained
results. We end this chapter with a number of general conclusions supported
by the outcome of the experiments.

8.1.1 Configurations

The abstract machine from Chapter 3 is parameterized by a lattice, value and
stack store allocators, a store update policy, and a flag indicating whether
the store is updated monotonically. This enables configuring the machine
to express concrete and different abstract semantics for scheme0 without
having to modify the abstract machine or any of the analyses.

For the purpose of our experiments, we define two configurations: a
concrete configuration and an abstract configuration. Most of the details of
these configurations were given in Chapter 7, but we summarize them here.

Concrete configuration (conc) In the concrete configuration, the ab-
stract machine is configured with a concrete address allocator that uses
an integer counter, which is incremented with each allocation. Stack
addresses are generated using the P4F allocation [Gilray et al., 2016]
strategy extended with a counter to generate unique addresses. The
concrete configuration uses a concrete lattice for values and operations,
which borrows from the underlying Racket runtime (Section 7.3.1).
The store is updated using strong updating instead of joining. The
value store is kept inside the machine states, while the stack store is
global.

Abstract configuration (abst) The abstract configuration uses the
0CFA abstract address allocator [Shivers, 1991] that uses syntactic
elements as addresses. The AST node representing the declaration
of a variable is that variable’s address, and the node responsible for
creating an object is the created object’s address. Stack addresses
are generated using the P4F approach, so they contain the applied
procedure and the extended environment. The abstract configuration
uses the type lattice described in Section 7.3.2. The store is updated
using weak updating through join, as presented in the formalization
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of the flow analysis in Chapter 3. Both the value and stack store are
global, and are not represented as state components.

8.1.2 Terminology

We evaluate our approach by examining the following properties of analyses
results.

Correctness When testing correctness, we check that the actual outcome
of an experiment is equal to the expected outcome. The expected
outcome is specified manually. We test correctness when running our
analyses under the concrete configuration, because this configuration
most closely reflects actual program semantics and provides the most
precision.

Soundness The result of an analysis run under the abstract configuration
is sound when it reflects all possibilities that are computed by that
same analysis under the concrete configuration. We test soundness by
examining the concrete result after abstraction, and then check whether
there is a corresponding abstract result that subsumes (i.e., is as precise
or less precise ) the abstracted concrete result (Appendix B.1).

Precision Precision is tested using a similar setup as used for soundness. A
sound abstract analysis is allowed to overapproximate, i.e., it is allowed
to reflect possibilities that may never occur under concrete semantics.
We quantify overall analysis precision by measuring the amount of false
positives, which are abstract results that have no concrete counterpart.
The fewer false positives, the higher the precision of the abstract
analysis. Precision can also be measured in a relative way, between
abstract results of different static analyses that compute the same
information.

Performance The performance of an analysis is measured as the time it
takes for an analysis to compute an answer, and the memory it takes
to do so. We test the performance of our implementation to evaluate
how it performs on current off-the-shelf hardware, which is a machine
equipped with a quad-core 2.8 GHz Intel Core i7 processor, and 16
GB of DDR3 memory. We already discussed memory requirements
in the introduction, and we will evaluate the running times of the
analyses. For running times, we use ε to indicate a duration of less
than a second.
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8.1.3 Benchmark Programs

Type of Benchmark Programs

We distinguish between two types of benchmarks.

Unit tests Unit tests are short programs that test the various challenges
our analyses have to deal with. They are typically focused on testing
one single aspect or feature of the language, such as free variable
access, different procedure calling sequences, a procedure being passed
as argument, etc. The defining characteristic of these programs is
that they are designed in such a way that it is possible to manually
specify the expected outcome of an analysis. A unit test for an analysis
therefore consists of a program paired with its expected outcome.

Another important characteristic is that coverage of the flow analysis
in the concrete configuration is near or at 100%. Such a high coverage
implies that the abstract machine visits all or nearly all expressions in
the program. There is therefore little to no unreachable code in the
program. High coverage is important when checking soundness and
precision of abstract results by comparing them with concrete results.
Because abstract results should overapproximate the concrete results,
higher coverage under the concrete configuration increases confidence
in soundness and precision of the approach for each benchmark, and
therefore of the overall approach.

Most of the unit tests are hand-crafted programs, although some
existing smaller and well-known benchmark programs such as fib and
nqueens are also in the set of unit tests. There are over 80 unit tests
in our collection of test programs.

Larger, existing benchmark programs We also included larger, exist-
ing benchmark and real-world programs in our set of test programs.
In general, these benchmarks are too large to verify manually for cor-
rectness, or the confidence in doing so would be low. We performed
limited manual inspection during the implementation and evaluation
of the analyses for these larger programs.

Existing benchmarks come from a variety of sources: the Gabriel
performance benchmarks [Gabriel, 1985], PDCFA benchmarks typically
used to challenge control-flow analyses (e.g., [Earl et al., 2012]), JOlden
performance benchmarks for Java which we converted to Scheme [jol],
and benchmarks from the Computer Language Benchmarks Game
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(CLBG) [Fulgham and Gouy, 2009]. There are also some benchmark
programs that are not considered to be part of any well-known suite.

The test runner was executed on all benchmark programs (unit tests and
larger programs) every time the implementation changed. During each test
run, correctness is mechanically verified for unit tests which have a manually
specified expected outcome. Additionally, soundness of abstract results with
respect to concrete results is mechanically verified for all benchmarks by
checking that the abstract results subsume the concrete results.

The test runner was also used to automatically produce the results from
experiments we report on in the upcoming sections. We report results for a
selected set of 13 benchmark programs, consisting of 3 hand-crafted and 10
existing benchmark programs. We chose programs that contain non-trivial
side-effecting behavior, or, in the case of fib and nqueens, programs that
are free from side effects. The hand-crafted programs give an idea of how
our techniques perform on the edge cases that are typically not present in
real-world benchmarks. The larger and existing benchmarks evaluate how
well our techniques perform on real-world programs.

Benchmark Programs

Table 8.1 lists the set of 13 programs on which we evaluate our analyses in
the remainder of this chapter, together with their size, and the number of
times a special form or expression appears in the program that is relevant in
terms of side effects. We give a short description of these benchmarks.

1. fib is the smallest program in our set and implements a tree-recursive
Fibonacci function. This function is an often used example of a
procedure that benefits from memoization, because it is pure and
performs a lot of redundant computation.

2. purity65 is a hand-crafted program that implements a recursive pro-
cedure that modifies a locally constructed pair bound using a let with
another let as value expression.

3. purity73 is a hand-crafted program containing two nested procedures
that implement loops, with the outer procedure calling the inner and
the inner calling both inner and outer procedures. The inner procedure
mutates its local variables and also variables from the outer procedure.
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4. purity75 is a hand-crafted program containing two procedures rep-
resenting loops, in which one procedure takes the other procedure as
argument. Both procedures mutate locally constructed pairs.

5. treeadd is a program from the JOlden benchmark suite [jol] that
we ported from Java to Scheme and extended. It implements three
different variations on constructing a binary tree, inspired by the
static constructor method and constructors found in the original Java
benchmark. After construction, all integer node values of the binary
tree are summed through a tree traversal.

6. nqueens is a combinatorial problem in which n queens need to be placed
on an n × n chessboard such that no two queens attack each other.
The implemented algorithm uses backtracking and no destructive
operations.

7. dderiv is a Gabriel benchmark program [Gabriel, 1985] that imple-
ments table-driven symbolic derivation. Tables are represented using
association lists.

8. destruc is a Gabriel benchmark program [Gabriel, 1985] that features
many destructive list operations.

9. grid is a program that implements a multidimensional array package
based on vectors [Norskog, 1993].

10. matrix is a CLBG benchmark program [Fulgham and Gouy, 2009]
that multiplies matrices represented as vectors. We based ourselves on
the implementation for Chicken Scheme [chi].

11. fannkuch is a benchmark program that performs permutations and
reversing of vectors [Anderson and Rettig, 1994]. We again based
ourselves on the implementation for Chicken Scheme.

12. mceval is a PDCFA benchmark program [Earl et al., 2012] that imple-
ments a Scheme interpreter evaluating a tree-recursive Fibonacci.

13. scm2java is a PDCFA benchmark program [Earl et al., 2012] that
implements a Scheme to Java compiler. The input language of the
compiler is close to the input language scheme0 supported by our
abstract machine.
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8.2 Flow Analysis With Effects

All analyses presented in this dissertation, except for variable freshness anal-
ysis and flow analysis itself, rely on the results of flow analysis instrumented
with effects from Section 3.2. This flow analysis computes a flow graph of
the program, which then can be queried to obtain the program properties of
interest for determining procedure purity.

Our flow analysis is a variation on the flow analysis by Johnson and
Van Horn [2014], which itself is the latest analysis in a line of analyses
for higher-order programs starting with Shivers [1988] (see related work
in Section 2.6 for more details). Soundness of these analyses has been proved
in the publications that introduce each of these analyses. However, we
also perform experiments to evaluate the correctness and soundness of our
particular flow analysis implementation.

8.2.1 Correctness

To evaluate correctness of the implementation of our flow analysis, we ran
each benchmark program under the concrete configuration, and checked that
the abstract machine produced a single answer that is equal to the answer
computed by Racket for the same benchmark program. When configured
with a concrete value lattice, atomic values used by the abstract machine
semantically overlap with the underlying Racket runtime. Other, non-atomic
values such as lists cannot be compared directly. For these values we compare
their string representations instead, or query certain fields of the resulting
compound values.

From this evaluation, we conclude that our implementation is correct
with respect to the programs used in our benchmarks.

8.2.2 Soundness

For each program, we checked that the abstract result value subsumes the
concrete result value after abstraction (Appendix B).

Result values are obtained from end states in the flow graph, which
are continuation states (ko) with an empty stack (i.e., 〈〉 as local and ε as
meta-continuation). While a finite benchmark produces a linear flow graph
with a single result state under concrete configuration, in the abstract it
may be necessary to join multiple result states to compute a single abstract
result value for the entire program.
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Benchmark Size lam set! cons set-car! set-cdr! make-v v-set!

fib 42 1 0 0 0 0 0 0
purity65 29 1 0 1 1 0 0 0
purity73 60 2 2 0 0 0 0 0
purity75 80 2 0 2 1 1 0 0
treeadd 392 8 6 5 2 2 0 0
nqueens 247 6 0 4 0 0 0 0
dderiv 616 20 1 29 0 2 0 0
destruc 420 11 0 3 4 3 0 0
grid 382 5 3 3 0 0 1 2
matrix 385 11 3 3 0 0 4 4
fannkuch 465 16 3 0 0 0 2 7
mceval 1687 87 0 28 3 1 0 0
scm2java 1972 64 6 66 0 0 0 0

Table 8.1: Size of 13 selected benchmark programs and the number of times a
certain type of expression or special form appears in their program text. Size is
the number of AST nodes in the program. lam stands for a lambda expression,
make-v for make-vector, and v-set! for vector-set!.

— abst —
Benchmark States Edges Coverage Time
fib 20 30 100.0% ε

purity65 20 27 100.0% ε

purity73 29 34 100.0% ε

purity75 42 52 100.0% ε

treeadd 216 310 100.0% ε

nqueens 133 189 100.0% ε

dderiv 356 1460 90.42% ε

destruc 238 337 100.0% ε

grid 237 424 93.46% ε

matrix 188 239 97.92% ε

fannkuch 215 350 100.0% ε

mceval 1224 12103 97.45% 27”
scm2java 1384 13981 95.79% 30”

Table 8.2: Abstract flow analysis results. States is the number of states in the
computed flow graph, Egdes the number of edges. Coverage is the percentage of
AST nodes visited by the abstract machine interpreter. Time is the running time
of the flow analysis.
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Example 8.1. Running the fib program under the conc configuration
produces a single result state with integer 21 as result value. Running the
same program under the abstract configuration using a type lattice, produces
{Num} as a result. The abstract result is sound with respect to the concrete
one, because {Num} w α(21).

8.2.3 Precision

We use a state-of-the-art flow analysis with pushdown precision [Gilray et al.,
2016, Johnson and Van Horn, 2014], so we are confident that precision in
terms of control flow and value flow is on par with existing flow analyses.

We did not specifically experiment with the precision of the flow analysis
itself. The precision of the flow analysis influences the precision of any client
analysis built on top of that flow analysis, in our case procedure side-effect
analysis, object freshness analysis, escape analysis, and purity analysis. We
therefore measure the precision of the flow analysis indirectly through the
client analyses, and we do so in the different experiments that follow. These
later experiments show that the flow analysis is precise enough to produce
results that can be used by client analyses.

We can however give a rough estimate of the precision of flow analysis.
Table 8.3 lists the number of states and edges in the flow graph computed
by the concrete flow analysis. When the number of states is n, then the
number of edges is invariably n − 1, which means that the flow graph is
linear (in a connected graph, which is the case). Table 8.2 is the abstract
counterpart of the previous table. Here, the previous relation between the
number of states and edges breaks down, with the flow graph containing
more edges than states in all cases. This means that states have multiple
successors instead of maximally one as in the concrete case, indicating a loss
of precision in the abstract control flow. As a rough measure of control flow
precision, we can state that the more the edges outnumber the states, the
less control flow precision is obtained. Because control flow and value flow
are strongly intertwined, this results in an overall loss of precision.

Generally speaking, abstract control flow is computed relatively precisely.
The analysis exhibits the least precision on benchmark programs mceval

and scm2java, with roughly 10 times as many edges as there are states.
Inspecting these programs and their computed flow graph indicates that the
loss of precision is due to a combination of heavy pair allocation (through
cons and quoted lists) and heavy branching (through conditionals) during
program execution. Pairs are allocated based on their allocation site, and
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the abstract type lattice does not distinguish between true and false values.
Because lower precision in handling pairs incurs a precision loss in control
flow and vice versa, the overall precision is low in the mentioned programs.
In the following experiments, we will see that client analyses do not recover
from this loss of precision, especially in the case of mceval.

8.2.4 Performance

We measured the time it takes for flow analysis to complete, and how
many states and edges the resulting flow graph is comprised of. We are
primarily interested in the results for the abstract configuration. This is
the configuration in which the analysis is meant to be used, as it generates
a flow graph that represents a finite overapproximation of every possible
concrete program execution.

Table 8.2 shows the number of states and edges in the flow graph com-
puted by the abstract flow analysis, and how long it takes to compute the
graph. If we assume that subsecond running times are required for scenarios
in which on-the-fly flow information is required, for example as part of a
developer feedback mechanism in an IDE, then we conclude that the flow
analysis, and therefore any client analysis that consumes a flow graph, is
too slow to be used in such a scenario. However, the size of the resulting
graph and the time it takes to compute it are reasonable when the graph is
to be used as the starting point of an on-demand analysis pipeline.

The flow analysis is a whole-program analysis, and our implementation is
expensive to run on large programs. However, abstract flow analysis analyzes
all benchmark programs, except mceval and scm2java, in less than a second.
We therefore conjecture that modularizing the flow analysis and making
it incremental would enable it to be fast enough to be used in a scenario
in which on-the-fly feedback is required. We consider modularizing and
incrementalizing the analysis, to the extent that this is possible, as future
work.

Because an evaluation of correctness and soundness depends on concrete
results, Table 8.3 shows the number of states and edges computed by the
concrete flow analysis, together with the coverage and duration. In general,
coverage is high, except for dderiv which only has 63.15% coverage in the
concrete. The reason is that the expression that is derived in the benchmark
program does not contain a quotient, while the program supports this
(incorrectly—according to an accompanying comment in the source code).



8.3. ESCAPE ANALYSIS 143

8.3 Escape Analysis

The goal of escape analysis (Chapter 5) is to determine which procedures
potentially escape their defining lexical scope. Our procedure side-effect
analysis can make use of this knowledge to increase its precision. If, during
stack traversal, it is the case that no previously encountered application
context is associated with an escaping procedure, scope-based variable and
object freshness can be used (Section 5.4).

Table 8.4 lists some statistics concerning procedure application and
escaping procedures for the concrete and abstract configurations. In general,
comparing the number of called procedures (Called) to the number of
syntactic procedures (Procs) supports our earlier observation that code
coverage in our set of benchmarks is high under both configurations, except
for dderiv (see also Tables 8.2 and 8.3).

Column Escaping of Table 8.4 represents the number of procedures
reported as potentially escaping by the analysis. Out of the 13 benchmarks,
only 5 benchmarks feature escaping procedures, of which only 4 stem from
existing (non-synthetic) benchmark suites. Although Scheme is a higher-
order language with first-class closures, we found that many existing Scheme
benchmarks actually do not feature escaping procedures.

8.3.1 Correctness

For the smaller benchmark programs and unit tests, we manually classified
each procedure as escaping or non-escaping, and checked that the escape
analysis produced the expected outcome. We found that this is always the
case. The escape analysis from Section 5.3 is a straightforward analysis that
checks the presence of reachable closure values at program points where they
may escape, without requiring a fixpoint computation. These two points
make us confident that our escape analysis is correct.

8.3.2 Soundness

We mechanically checked that the set of called procedures under the abstract
configuration always is a superset of the set of called procedures in the
concrete. Likewise, we verified that the set of escaping procedures under the
abstract configuration always is a superset of the set of escaping procedures
in the concrete. We found no procedures that were marked as potentially
escaping by the abstract analysis, but not by the concrete analysis.
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— conc —
Benchmark States Edges Coverage Time
fib 735 734 100.0% ε

purity65 20 19 100.0% ε

purity73 253 252 100.0% ε

purity75 111 110 100.0% ε

treeadd 2571 2570 100.0% ε

nqueens 2704 2703 100.0% ε

dderiv 2871 2870 63.15% ε

destruc 2292 2291 95.95% ε

grid 2019 2018 89.53% ε

matrix 9401 9400 97.92% ε

fannkuch 8969 8968 99.78% ε

mceval 9223 9222 83.17% ε

scm2java 10610 10609 91.43% ε

Table 8.3: Concrete flow analysis results. Concrete counterpart of Table 8.2.

— conc — — abst —
Benchmark Procs Called Escaping Called Escaping
fib 1 1 0 1 0
purity65 1 1 0 1 0
purity73 2 2 0 2 0
purity75 2 2 1 2 1
treeadd 8 8 0 8 0
nqueens 6 6 0 6 0
dderiv 20 10 6 14 6
destruc 11 11 0 11 0
grid 5 5 0 5 0
matrix 11 10 0 10 0
fannkuch 16 16 1 16 1
mceval 87 72 2 85 2
scm2java 64 60 8 61 8

Table 8.4: Called versus total number of procedures, and results from escape
analysis for the concrete and abstract configurations. Procs is the number of
procedures in the benchmark program. Called is the number of actually applied
procedures during interpretation. Escaping is the number of potentially escaping
procedures as determined by escape analysis.
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8.3.3 Precision

Our escape analysis only detects potentially escaping procedures, and also
for reasons outlined in Section 8.3.1 our escape analysis is very precise in
this regard and in all configurations.

Moreover, in smaller benchmark programs, as well as in programs in the
set of 13 benchmark programs on which we report, we found that procedures
that are reported as potentially escaping, actually do escape, i.e., are applied
outside of their defining environment.

8.3.4 Performance

Relative to the overall running time (Table 8.14), and to the running times
of the other individual analyses, escape analysis finishes fast. No benchmark
took more than one second to analyze.

8.4 Scope-Based Freshness Analysis

Chapter 4 introduced variable and object freshness analysis based on scopes.
The goal of scope-based freshness analysis is to improve the precision of
address-based procedure side-effect analysis. Under the abstract configura-
tion, address-based side-effect analysis loses precision because addresses in
this configuration are chosen from a limited set to guarantee termination
of a static analysis. In Sections 8.5 and 8.6 we carry out experiments to
measure how much precision scope-based freshness can recover for abstract
procedure side-effect and purity analysis.

Based on scopes of variables, variable freshness is less challenging than
object freshness analysis, which tracks object freshness through variables,
assignments, and bindings. We therefore focus on testing object freshness
analysis in this section.

Scope-based freshness analysis was designed as a supporting analysis for
procedure side-effect analysis. Object freshness analysis does not feature a
precise lookup and update mechanism for variables, and therefore does not
offer full precision in the concrete configuration (Section 4.4.2). Moreover,
the analysis (Section 4.4.2) maintains object freshness per stack-reachable
application context in every state. This makes it less straightforward to
evaluate the results of object freshness analysis as a standalone analysis.

However, soundness, correctness, and precision of scope-based freshness
are nevertheless evaluated indirectly when testing procedure side-effect
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— abst —
Benchmark Fresh/Ref % Fresh Time
fib 74 /167 44% ε

purity65 74 /130 57% ε

purity73 218 /518 42% ε

purity75 395 /829 48% ε

treeadd 8214/19876 41% ε

nqueens 3102/8928 35% ε

dderiv 22003/99405 22% ε

destruc 10416/46942 22% ε

grid 9150/24206 38% ε

matrix 8948/31587 28% ε

fannkuch 11946/52213 23% ε

mceval 192361/4730670 4% 3”
scm2java 307567/3021958 10% 4”

Table 8.5: Results of running object freshness analysis under the abstract config-
uration. Fresh/Ref is the number of variables referencing fresh objects over the
total number of variables, computed over all variables in all application contexts
that are in the flow graph. % Fresh is the percentage corresponding to the previous
fraction. Time is the running time of the abstract object freshness analysis.
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analysis (Section 8.5) and purity analysis (Section 8.6). For example, if
freshness analysis would incorrectly determine that a resource is fresh, so that
procedure side-effect analysis would incorrectly mask a certain effect, then
this error is likely to be caught in one of the many unit tests for procedure
side-effect analysis.

8.4.1 Correctness

For the reasons outlined before, we performed limited correctness tests for
object freshness analysis under the concrete configuration.

For a set of unit test programs, we manually specified freshness of
references in all topmost application contexts arising during the concrete
execution of the program. We checked that the analysis correctly determines
the freshness of these references by comparing the expected outcome with the
actual analysis result after joining the freshness information of all references
in all topmost application contexts. We found that object freshness analysis
produced the correct results for the tested programs.

8.4.2 Soundness

For soundness testing, as in our correctness tests, we only considered object
freshness of references in the topmost application context. For every reference,
we mechanically checked whether freshness reported by concrete object
freshness analysis is subsumed by the abstract freshness result. Since both
configurations use the same lattice for freshness, concrete results need not be
abstracted first. Therefore, the soundness test consists in checking that the
abstract freshness of a reference is not reported as fresh when its concrete
freshness is reported as unfresh. We did not encounter unsound results in
our set of test programs.

8.4.3 Precision

For an extensive set of small and large benchmarks, we performed precision
tests of object freshness analysis in the topmost application context by
counting false positives. False positives are object references that are reported
as unfresh in the abstract, while being reported as fresh in the concrete.

We found no false positives, which means that abstract precision is equal
to concrete precision for our benchmark programs. This is not surprising,
given that object freshness analysis by design does not rely on addresses
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Mnemonic Configuration Combination of analyses
conc conc address freshness
a abst address freshness
va abst variable and address freshness
ova abst object, variable, and address freshness
eova abst object, variable, and address freshness,

combined with escape analysis

Table 8.6: Meaning of mnemonics representing different configurations and
combinations of analyses.

but on lexical scopes instead, which are not affected by abstraction. Object
freshness analysis is also designed as a fast but imprecise analysis, with pre-
cision loss in the concrete. In practice, the analysis’ lower concrete precision
is not a problem because address-based procedure side-effect analysis, which
object freshness analysis aims to improve, already has full precision under
the concrete configuration.

To have an indication of how many variables are determined as referencing
fresh objects, Table 8.5 lists the results of running abstract object freshness
analysis on our set of benchmark programs. The first observation is that
the larger benchmarks tend to have low freshness percentages. Benchmark
mceval has the lowest percentage of variables reported as referencing fresh
objects. Manual inspection of the source code indicates that there are indeed
many unfresh object references, but that the reported percentage of 4% is
probably too low. We conjecture that the lower precision of the underlying
flow analysis for this benchmark program, in combination with the limited
precision of object freshness analysis, are to blame for the lower percentages.

8.4.4 Performance

Column Time in Table 8.5 lists the running time of abstract object freshness
analysis. Relative to the running times of other individual analyses, and
the overall running time (Table 8.14), object freshness analysis finishes fast.
Only mceval (3 seconds) and scm2java (4 seconds) take more than a second
to analyze.
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8.5 Procedure Side-effect Analysis

The procedure side-effect analysis of Section 3.3 determines the observable
side effects of a procedure in the context of procedure applications. The
result of procedure side-effect analysis can be thought of as a database in
which every program state and an application context stack-reachable in
that state is linked to its set of observable effects.

Chapter 3 describes a procedure side-effect analysis using address fresh-
ness. Chapter 4 extends procedure side-effect analysis by including variable
and object freshness based on scopes. Finally, Chapter 5 extends scope-based
freshness so that it can be used in those application contexts on the stack
for which no higher-up procedure on the stack escapes.

Table 8.6 represents the mnemonics for the different combinations of
analyses we used to evaluate procedure side-effect analysis using the concrete
and abstract configurations. Using the concrete configuration, we only use
address freshness, so mnemonic conc stands for both the configuration and
concrete address-based procedure side-effect analysis.

8.5.1 Correctness

Running address-based procedure side-effect analysis under the concrete
configuration results in side-effect information for application contexts that
is fully precise in our approach.

We mechanically checked that extending procedure side-effect analysis
with scope-based freshness and escape analysis yields identical results as in
the address-based case.

We therefore conclude that, for all benchmarks, scope-based freshness
analysis is correct with respect to address freshness in a concrete setting.
Consequently, when evaluating soundness and precision, we only need to
compare abstract results of procedure side-effect analysis with results of the
conc configuration, which only uses address freshness.

8.5.2 Soundness

For all benchmark programs, we verified that a computes observable side
effects per procedure that subsume those computed using conc after ab-
straction. This means that all observable side effects that occur in conc
are also reported by a. Both concrete and abstract effects are abstracted
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by removing their address, and application contexts are abstracted to the
applied procedure.

Next, we checked that adding scope-based freshness (va, ova) and escape
analysis (eova) still yields results that subsume conc.

From these experiments we conclude that, for all benchmarks, all combi-
nations of abstract procedure side-effect analysis are sound: every side effect
reported by the concrete analysis is also reported by every abstract analysis
combination.

8.5.3 Precision

We tested the precision of abstract procedure side-effect analysis by counting
the number of false positives in the resulting sets of observable side effects of
all procedures that are applied in the concrete. A false positive is an effect
that is reported as observable in the abstract, but for which there exists no
concrete effect it subsumes, after abstraction.

Table 8.7 contains the results of this experiment. For every abstract
analysis combination, we report the number of false positives (numerator)
with respect to the total number of observable side effects (denominator)
reported by procedure side-effect analysis, aggregated over all procedures
applied in the concrete.

From the resulting percentages, we conclude that the most precise abstract
combination (eova) is very precise for smaller benchmark programs, but
less precise for larger benchmark programs. The analysis performs worst on
programs scm2java (28%) and dderiv and mceval (39%). This is likely a
consequence of the lower precision of the underlying flow analysis for these
programs.

Impact of scope-based freshness

Table 8.7 shows the impact of extending procedure side-effect analysis with
scope-based freshness and escape analysis on precision.

We observe that, starting from address-based observability and extending
it with scope-based freshness and escape analysis, results in a reduction in
the reported number of observable side effects (denominator). This means
that the precision of the analysis increases, because it is able to mask more
side effects.
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— a — — va — — ova — — eova —
Benchmark fp/obs % fp fp/obs % fp fp/obs % fp fp/obs % fp

fib 8
14

57% 0
6

0% 0
6

0% 0
6

0%

purity65 4
5

80% 1
2

50% 0
1

0% 0
1

0%

purity73 8
22

36% 3
17

18% 3
17

18% 0
14

0%

purity75 18
27

67% 3
12

25% 0
9

0% 0
9

0%

treeadd 73
116

63% 5
48

10% 2
45

4% 2
45

4%

nqueens 36
125

29% 0
89

0% 0
89

0% 0
89

0%

dderiv 456
881

52% 271
696

39% 271
696

39% 271
696

39%

destruc 39
214

18% 19
194

10% 19
194

10% 19
194

10%

grid 75
241

31% 24
190

13% 24
190

13% 18
184

10%

matrix 11
151

7% 5
145

3% 5
145

3% 2
142

1%

fannkuch 22
260

8% 1
239

0% 1
239

0% 0
238

0%

mceval 12608
31257

40% 11978
30627

39% 11978
30627

39% 11961
30610

39%

scm2java 6131
21124

29% 5715
20708

28% 5715
20708

28% 5715
20708

28%

Table 8.7: Impact of scope-based freshness analysis and escape analysis on the
precision of procedure side-effect analysis. Obs represents the number of observable
side-effects for all effects in all application contexts, as reported by procedure
side-effect analysis.
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However, for some benchmarks the reduction in the reported number of
observable side effects is insignificant. Especially mceval and scm2java see
virtually no improvements.

Also, the number of false positives (nominator) decreases by the same
amount when going from a to eova, demonstrating that the analysis pro-
duces sound results and scope-based freshness only additionally masks false
positives.

Scope-based freshness is required to have high precision in most cases.
Extending procedure side-effect analysis with escape analysis has only a
limited impact.

Figure 8.1 visualizes the impact on precision of extending procedure
side-effect analysis with scope-based freshness and escape analysis. The
data on which this chart is based can be found in Table C.1. The bar
chart depicts, for each abstract analysis combination, the total number of
procedure side-effects reported as observable in all states and stack-reachable
application contexts (i.e., not limited to contexts for procedures that are
effectively called during concrete interpretation). The lower the number of
observable side-effects, the better the precision.

Figure 8.1 confirms our previous observations that scope-based freshness
improves precision, but the impact of escape analysis is limited.

Impact of Abstract Garbage Collection

In our approach for determining procedure side effects, the goal of ab-
stract garbage collection is to increase the precision of address freshness
(Section 3.5), by collecting addresses that are no longer in use.

Figure 8.2 visualizes the impact of abstract garbage collection on the
precision of procedure side-effect analysis. The bar chart depicts, for abstract
analysis combinations a and eova, the total number of procedure side-effects
reported as observable in all states and stack-reachable application contexts.
The data on which this chart is based can be found in Table C.2.

For our least precise combination (a), we see that abstract garbage
collection significantly improves precision. Address-based procedure side-
effect analysis and abstract garbage collection work exclusively on store
addresses, and therefore the greatest potential for improvement is for this
combination.

When adding scope-based freshness and escape analysis (eova), proce-
dure side-effect analysis no longer exclusively relies on address freshness, but
still abstract garbage collection is beneficial in 6 out of 13 benchmarks.
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Figure 8.1: Impact of scope-based freshness analysis and escape analysis on the
precision of procedure side-effect analysis. The vertical axis represents the number
of reported observable procedure side effects for all application contexts in all
states, normalized against a (lower is better). (Data for this chart in Table C.1 on
page 213).
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Figure 8.2: Impact of abstract garbage collection on the precision of procedure
side-effect analysis using two abstract combinations a and eova. GC means that
abstract garbage collection is enabled when determining address freshness. The
vertical axis represents the number of reported observable procedure side effects
for all application contexts in all states, normalized against a without GC (lower
is better). (Data for this chart in Table C.2 on page 214).



8.5. PROCEDURE SIDE-EFFECT ANALYSIS 155

Observable versus unobservable effects

So far we have evaluated precision only in terms of observable effects. We
also performed an experiment to evaluate how many side effects are masked
by the different combinations of procedure side-effect analysis.

Table 8.8 depicts the percentage of observable effects with respect to the
total number of effects in every stack-reachable application context in every
program state, if the procedure associated with the application context is
applied in the concrete.

From the percentages in this table, we conclude that our procedure
side-effect analysis is capable of masking side effects. For the abstract
combinations, extending address-based procedure side-effect analysis with
scope-based freshness and escape analysis results in a decrease of the per-
centage of observable side effects. This confirms that the precision of the
analysis increases when going from a to eova, because each subsequent
analysis is able to mask more side effects. However, for some benchmarks
the decrease is insignificant.

Although a direct comparison between the concrete and abstract config-
urations is impossible, the final column shows the percentage of observable
side effects under the concrete configuration. The percentage of concrete
observable procedure side-effects is a rough indication of the precision of
abstract procedure side-effect analysis. We observe that often precision of ab-
stract procedure side-effect analysis is high whenever the abstract percentage
is close to the concrete percentage.

8.5.4 Performance

Table 8.10 depicts the running time of procedure side-effect analysis for the
different abstract combinations. We only list the running times for those
benchmarks for which the overall running time (Table 8.14) is greater than
one second. Comparing the duration of procedure side-effect analysis with
the overall running time for the different benchmarks and combinations, we
observe that procedure side-effect analysis represents between about 5% and
8% of the overall running time.

Our abstract configuration uses the P4F allocation strategy in which
addresses consist of the applied procedure and the extended environment
(Section 2.4.7), so caller-store analysis is required (Section 7.5). Table 8.9
lists the duration of caller-store analysis for the three benchmark programs
with the longest overall running time. While caller-store analysis is not the
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Benchmark Obs a Obs va Obs ova Obs eova Obs conc
fib 93.75% 37.5% 37.5% 37.5% 37.61%
purity65 85.71% 28.57% 14.29% 14.29% 12.5%
purity73 52.38% 40.48% 40.48% 33.33% 28.93%
purity75 60.87% 26.09% 19.57% 19.57% 22.84%
treeadd 83.55% 31.58% 29.61% 29.61% 31.2%
nqueens 41.32% 28.44% 28.44% 28.44% 28.52%
dderiv 77.08% 63.89% 63.89% 63.89% 35.53%
destruc 34.19% 30.94% 30.94% 30.94% 34.01%
grid 80.88% 65.55% 65.55% 63.66% 28.61%
matrix 29.46% 28.33% 28.33% 27.77% 35.37%
fannkuch 34.85% 32.04% 32.04% 31.9% 36.85%
mceval 93.77% 93.17% 93.17% 93.16% 35.32%
scm2java 93.49% 92.92% 92.92% 92.92% 35.69%

Table 8.8: Results of procedure side-effect analysis. Obs represents the percentage
of observable procedure side effects, as computed by procedure side-effect analysis
using the different abstract analysis combinations and the conc configuration.
The percentage is computed for all effects in all application contexts of procedures
effectively applied in the concrete.

Benchmark Time
dderiv ε

mceval 12”
scm2java 2”

Table 8.9: Running times of caller-store analysis.

Benchmark a va ova eova
dderiv ε ε ε ε

mceval 13” 13” 13” 14”
scm2java 9” 9” 9” 14”

Table 8.10: Running times of procedure side-effect analysis for the different
abstract combinations.
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most expensive analysis in the set of individual analyses, timings show that
its duration is not negligible for larger benchmarks. For all other programs,
the running time of caller-store analysis was less than a second.

Finally, disabling abstract garbage collection during caller-store analysis
significantly speeds up caller-store analysis, but the overall running time of
purity analysis actually increases because of the overall reduction in precision
of address freshness.

8.6 Purity Analysis

Purity analysis is the final analysis in a series of analyses, and the goal
of this work (Chapter 6). Purity analysis consumes the results of side-
effect analysis to determine when and where side effects occur, and the
outcome of procedure side-effect analysis to determine when these side
effects are observable in a particular application context. Purity analysis
then summarizes the side-effecting behavior of a procedure by determining
whether it generates observable side effects or depends on external side
effects. This behavior can then further be classified according to different
definitions of purity.

8.6.1 Correctness

For a set of unit test programs, we manually specified the expected outcome
of purity analysis (sets of side-effecting behaviors gen and obs) when run
under the concrete configuration. We then checked that the actual sets
returned by purity analysis are identical to the expected outcome. From
this we conclude that concrete address-based procedure side-effect analysis
is correct for our set of unit tests.

Similar to correctness testing for procedure side-effect analysis, we checked
that adding scope-based freshness and escape analysis under the concrete
configuration yields identical side-effecting behavior per procedure as in the
address-only case. From this we conclude that, in the concrete and for our
set of benchmark programs, scope-based freshness and escape analysis are
correct with respect to address-based purity analysis.

As with procedure side-effect analysis, when evaluating soundness and
precision, we only need to compare the results of abstract purity analysis
with results of the conc configuration, which only uses address freshness.
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8.6.2 Soundness

For all benchmark programs, we verified that the side-effecting behavior
computed per procedure by a subsumes the behavior computed using conc.
This means that all side-effecting behavior reported by conc is also reported
by a. Since both the concrete and abstract configurations use the same
lattice for expressing side-effecting behavior, additional abstractions are not
required.

Next, we checked that adding scope-based freshness (va, ova) and escape
analysis (eova) still yield abstract results that subsume conc.

From these experiments we conclude that, for all benchmarks, all com-
binations of abstract purity analysis are sound: all side-effecting behavior
reported by the concrete analysis is also reported by every abstract analysis
combination.

8.6.3 Precision

For evaluating precision, we look at the results of purity analysis after
classification. We use the the final and most precise classification scheme of
Section 6.3, which distinguishes between pure, observer, and procedure.

Table 8.11 lists the number of procedures in each effect class as reported
by both conc and eova purity analysis. We choose to compare with eova,
because this is the most precise abstract combination. Only procedures that
are actually applied in the concrete are considered.

The results show that our approach is able to classify procedures according
to their side-effecting behavior with high precision for small programs. Our
approach has difficulty in distinguishing pure procedures from observers in
three larger benchmark programs: dderiv, mceval, and scm2java. These are
also the programs that contain the most cons constructs, and which exhibit
the least precision in terms of control flow. Observers are characterized
by the occurrence of read–write–read sequences, which are hard to detect
with sufficient precision when control-flow precision is low. Under concrete
semantics, the first and second read are always distinct states, while in the
abstract this might not always be the case. This leads to a high number of
procedures that are identified as observer while in fact they are pure.

When we take a weaker definition of purity (the first classification scheme
of Section 6.3), adding observer to pure), we see that our approach is able
to detect procedures that do not generate side effects with high precision.
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— conc — — eova —
Benchmark Called pure obs proc pure obs proc

fib 1 1 0 0 1 0 0
purity65 1 1 0 0 1 0 0
purity73 2 1 0 1 1 0 1
purity75 2 2 0 0 2 0 0
treeadd 8 8 0 0 7 0 1
nqueens 6 6 0 0 6 0 0
dderiv 10 9 0 1 3 6 1
destruc 11 3 1 7 3 1 7
grid 5 2 1 2 2 1 2
matrix 10 4 0 6 3 1 6
fannkuch 16 5 2 9 5 2 9
mceval 72 60 2 10 10 49 13
scm2java 60 58 0 2 46 3 11

Table 8.11: Absolute precision of abstract purity analysis. Called is the num-
ber of called procedures using the conc configuration. pure, observer, and
procedure counts the number of procedures in the corresponding classification.
Only procedures that are effectively applied using the conc configuration are
taken into account.
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Impact of scope-based freshness

Evaluating the effect of scope-based freshness and escape analysis on the
precision of abstract purity analysis gives mixed results.

Table 8.12 shows that the precision of the analysis on smaller hand-
crafted benchmarks (purity65, purity73, purity75), and existing bench-
marks (treeadd, grid, matrix), improves by adding scope-based freshness.

On the other hand precision, mostly in the larger benchmarks (fannkuch,
mceval, scm2java), and some smaller ones (nqueens, destruc), is not im-
proved by scope-based freshness.

Impact of abstract garbage collection

We found that disabling abstract garbage collection results in purity analysis
reporting fewer pure procedures in 4 benchmark programs (destruc, matrix,
fannkuch, and mceval) when using the most precise abstract combination
(eova).

8.6.4 Performance

Table 8.13 depicts the running time of purity analysis for the different
abstract combinations. As before, we only list the running times of those
benchmarks for which the overall running time (Table 8.14) exceeds one
second. Classification itself is a straightforward and lightweight process, so
we only report running times for the purity analysis itself.

Comparing the duration of purity analysis with the overall running time
for the different benchmarks and combinations, we observe that procedure
side-effect analysis represents between 68% and 78% of the overall running
time. From this we conclude that the overall running time of the overall
purity analysis is dominated by the final analysis, individual purity analysis
itself, which maps each procedure onto a set of behaviors in terms of side
effect.

8.7 Conclusion

In this chapter we evaluated our approach examining the individual analyses
that comprise a purity analysis for higher-order imperative programs. We
evaluated the results of the analyses in terms of correctness, soundness,
precision, and performance.
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— a — — eova —
Benchmark Called pure obs proc pure obs proc

fib 1 1 0 0 1 0 0
purity65 1 0 0 1 1 0 0
purity73 2 0 0 2 1 0 1
purity75 2 0 0 2 2 0 0
treeadd 8 3 0 5 7 0 1
nqueens 6 6 0 0 6 0 0
dderiv 10 3 6 1 3 6 1
destruc 11 3 1 7 3 1 7
grid 5 1 1 3 2 1 2
matrix 10 2 0 8 3 1 6
fannkuch 16 5 2 9 5 2 9
mceval 72 10 49 13 10 49 13
scm2java 60 46 3 11 46 3 11

Table 8.12: Impact of scope-based freshness analysis and escape analysis on
the precision of purity analysis. Called is the number of called procedures using
the conc configuration. pure, observer, and procedure counts the number of
procedures in the corresponding classification.

Benchmark a va ova eova
dderiv 1” ε ε ε

mceval 113” 147” 147” 143”
scm2java 147” 115” 116” 116”

Table 8.13: Running time of individual purity analysis of the three longest-
running benchmarks for the different abstract combinations.

Benchmark a va ova eova
dderiv 2” 1” 1” 1”
mceval 165” 199” 202” 199”
scm2java 188” 156” 161” 167”

Table 8.14: Running time of overall purity analysis of the three longest-running
benchmarks for the different abstract combinations.
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The experiments support the following important conclusions, stated in
terms of the resulting abstract purity analysis.

• The purity analysis is capable of determining whether procedures are
pure or observers in higher-order, imperative Scheme programs.

• The purity analysis produces correct results for a large set of bench-
marks that express various challenges for the analysis.

• The abstract purity analysis produces results that are sound with
respect to the concrete results.

• Precision of purity analysis is high for programs for which flow analysis
is precisely computed. The precision of distinguishing pure procedures
from observers is low for larger benchmarks in which the precision
of flow analysis is low. Scope-based freshness analysis and garbage
collection improves the precision of the purity analysis. Adding escape
analysis to increase the opportunities for using scope-based freshness
modestly improves precision in only a few benchmarks programs.

• Performance is suitable for use by clients that do not require on-the-fly
results, such as on-demand static analysis tools.

In conclusion, the purity analysis realizes most of the goals we set out for
it at the beginning. There are however some important limitations when it
comes to the precision of detecting observers and the improvements brought
by some analyses that aim to increase precision.

In the next chapter, we develop a purity analysis for JavaScript along
the same lines as the one we have presented so far for Scheme. Based on
the conclusions from this chapter, we made some different choices when
designing the JavaScript analysis.



Chapter 9

Purity Analysis For JavaScript

9.1 Introduction

In this chapter, we transpose our techniques for determining side effects and
purity to JavaScript. Like Scheme, JavaScript has both a functional and
an imperative core, but also supports object-oriented programming with
prototypal inheritance. The goal of porting our approach to JavaScript
therefore is to evaluate if and how our ideas and techniques can be realized
in a more dynamic and complex setting.

The approach we follow for JavaScript is similar to the approach for
Scheme we presented in previous chapters. We focus on a core JavaScript
language js0, and define the semantics of this language as a configurable ab-
stract machine instrumented with effects. Based on the flow graph computed
by the abstract machine for a program, we define a scope-based freshness
and purity analysis.

There are, however, also important differences with our approach for
Scheme. Some of these are the result of the differences in semantics between
Scheme and JavaScript. Others are due to deliberate choices with regard to
design and configuration of our analyses, motivated by the evaluation our
purity analysis for Scheme (Section 8.7).

9.1.1 Differences with Purity Analysis for Scheme

There are a number of differences between our purity analysis for JavaScript
and the one we developed for Scheme in the preceding chapters. First,
there are differences stemming from the differences in the semantics between
Scheme and JavaScript. Second, we also made a number of explicit design and
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configuration decisions pertaining the analyses that make up our JavaScript
purity analysis.

Semantic Differences

To formalize our approach, we present a core language js0 that represents a
subset of JavaScript.

While scheme0 only supported pairs, js0 supports objects as mappings
from names to values. Conform to JavaScript semantics, each object features
two dedicated fields proto and call. The former is used to implement
prototypal inheritance [Crockford, 2008]. The latter enables object to be
treated as function objects that can be called (the equivalent of closures).

Related to objects and prototypal inheritance, js0 also supports the this
keyword and constructor calls through the new keyword.

Finally, js0 supports an explicit return statement.
Compared to the formalization, our proof-of-concept implementation is

closer to full-fledged JavaScript with support for arrays, computed properties,
the try–catch construct, and implicit type coercions (Section 9.5).

Design and Configuration Differences

Our analysis for js0 also differs from the analysis for scheme0 in a number
of design and configuration decisions.

• We use AAC as an allocation policy for stack addresses (Section 2.4.7),
rather than P4F. AAC generates stack addresses that contain the caller
store. Consequently, caller-store analysis (Section 7.5) is not required.
Because this can be viewed as an implicit parameter of every method,
it is also part of the application context.

• The stack store is global, but value stores are kept inside states, so
there is no need for global widening (Section 7.4.1) for value stores.

• Abstract garbage collection is enabled during flow analysis. Before
being added to the graph, every successor state is garbage collected.
Therefore stores, including caller stores, only contain reachable ad-
dresses, and no separate reachability computation (Section 3.5.2) is
required to increase the precision of address freshness.

• We implemented scope-based variable and object freshness (Chapter 4),
but limited it to the topmost application context, without an extension
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with escape analysis to increase the opportunities for using scope-based
freshness (Chapter 5). This decision was motivated by the limited
impact on precision of extending procedure side-effect analysis for
scheme0 with escape analysis (Section 8.3).

• Scope-based freshness analysis is not a separate analysis, but is imple-
mented at the level of the effect handler, which is invoked on every effect
in the flow graph during state traversal. Being limited to the topmost
application context, the effect annotations produced by the abstract
machine do not need to contain variables, because this information is
contained in the program state.

• In addition to being restricted to the most recent application, we
also simplified variable and object freshness analysis by not having
it compute freshness per application context. Instead, freshness is
maintained as a mapping from variables to freshness. As a consequence,
no stack traversal is required when mutation occurs, because freshness
of a variable represents its freshness in all application contexts.

9.1.2 Challenges

In this section we enumerate the challenges that a purity analysis for
JavaScript has to overcome. Given that JavaScript shares a number of
features with Scheme, such as first-class and higher-order functions, we
already discussed some of the challenges in Section 6.1.3. We now discuss
how these challenges manifest themselves in JavaScript, and also highlight
some specific challenges that only arise for JavaScript.

The analysis still classifies functions as either pure, observer, and
procedure, as described in Section 6.3.

Example 9.1. In the example program below, function f is pure, but g
and h are not.

1 function f() // pure

2 {

3 var o={};

4 function g(p) { h(p) } // procedure

5 function h(q) { q.x=4 } // procedure

6 g(o)

7 }

8 f()
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Because functions h (directly) and g (indirectly) mutate an object o that
exists in the caller state of their applications, they are both procedures.
This example demonstrates that, when discovering a property write effect
such as the one on line 5, the analysis has to traverse the call stack to
correctly handle the effect for every function application that is active.

While control flow is straightforward to determine in the previous example,
JavaScript features higher-order functions that complicate control flow and
which purity analysis must be able to handle.

Example 9.2. In the following example, function g is passed as an argument
to function f.

1 var z=0;

2 function g(p) { z=z+1; p.x=z} // procedure

3 function f(h) { var o={}; h(o)} // procedure

4 f(g)

It is clear that function g is not pure, since it not only writes to global
property z, but also mutates an object through its parameter. However, the
purity analysis has to determine that the application of h in the body of
f on line 3 applies function g. It therefore has to classify function f as a
procedure as well, because f indirectly mutates z.

Due to the semantics of JavaScript, it is not always straightforward to
determine all effects of expressions.

Example 9.3. In the following example, variable x is actually a property
of the global object (i.e., the value of this in the global scope).

1 var x;

2 this.x = 10; // property write effect

3 function f()

4 {

5 var y;

6 x = 10; // property write effect

7 y = 20; // variable write effect

8 }

The assignment to x on line 6 should be recognized as a property write
effect on the global object, identical to the effect generated on line 2, instead
of a variable write effect. It is important to distinguish between variables
and properties because variables and objects behave and therefore influence
purity differently.
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Another example of effects that are not obvious to determine, happens
when an array is assigned at an index that is equal or greater than the
current length of the array. This generates an additional write effect on the
length property of that array.

JavaScript features closures, and unlike purity analyses for more tra-
ditional object-oriented languages without closures, purity analysis for
JavaScript has to be able to handle free variables.

Example 9.4.1 function f() // pure

2 {

3 function g() // pure

4 {

5 var z = 10;

6 function h() { z = 20 }; // procedure

7 h()

8 }

9 g()

10 }

11 f()

In the above example, when z is assigned on line 6, the call stack consists
of function applications of h, g, and f. Function h is a procedure because
it mutates z, which is a free variable of h and therefore exists in the caller
state in this example. Function g is pure, because z is local to g. Function
f is also pure, because z is not part of its scope.

Functions that depend on external side effects are classified as observers.
In order to determine which functions are observers, purity analysis needs
to detect resources read by functions that are modified in between two
applications.

Example 9.5. In the following example, object o defines a property x (line
1), and object p inherits this property through its prototype o (line 2).

1 var o = {x:123};

2 var p = Object.create(o);

3 function f() // observer

4 {

5 return p.x

6 }

7 f();



168 CHAPTER 9. PURITY ANALYSIS FOR JAVASCRIPT

8 o.x = 456;

9 f()

Function f is applied twice, with a mutation of property o.x in between
the two applications. Procedure f is an observer because its resulting value
depends on the value of an object property that is mutated in between two
applications of f. This example also illustrates that when property read
effects are involved, we not only take the object but also the property name
into account. If the property read by f on line 5 would be different from the
property mutated on line 8, then f would not depend on an external side
effect and be considered pure in this example.

A final challenge we mention concerns the fact that, unlike Scheme which
only features procedure application, functions in JavaScript are treated as
constructors when invoked through new.

Example 9.6. In the following program, function f is invoked as a con-
structor (line 2) and as a regular application (line 3).

1 function f() { this.x = 10 } // procedure

2 new f(); // no observable side effects

3 f(); // generates observable write effect

When f is invoked as a constructor (line 2), then it is a pure application
as this in the body of f is bound to a fresh object. The regular function
application (line 3) is impure because this is bound to the global object.
As a result, function f is a procedure.

9.1.3 Approach

Our approach for purity analysis is analogous to the the one for Scheme
presented in previous chapters.

In JavaScript, observable side effects are a consequence of reading from
and assigning to variables, and loading and storing object properties. Our
approach for designing a purity analysis is based on an abstract interpretation
of the program that integrates control flow, value flow, and effects.

We define a core imperative language js0 that corresponds to a repre-
sentative and non-trivial subset of standard JavaScript (Section 9.2). The
semantics of js0 is expressed as an abstract machine that transitions between
states. The abstract machine generates appropriate read and write effects
caused by reading from and writing to variables and object properties.
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Purity analysis then examines the flow graph to determine whether a
given function can be classified as pure, observer, or procedure by considering
all effects during and in between applications of the function (Section 9.3).
For every effect, the analysis traverses the call stack to obtain all active
function applications at that point. When in the context of an application
an observable write effect is generated, then the applied function becomes
a procedure. For dependence on external effects, purity analysis looks for
read–write–read sequences in the program involving the same resource, with
the initial and subsequent read occurring in an application of the same
function.

The purity analysis uses scope-based freshness of variables and object
references to mask certain read and write effects, thereby increasing the
precision of the purity analysis. Compared to the object freshness analysis
for Scheme (Section 4.4.2), we simplified the formulation of object freshness
analysis incorporated in our purity analysis for JavaScript. Using variable
and object freshness is explicitly limited it to the application context on
top of the stack in the program state at which the effect occurs. This
simplification improves running times, yet does not seem to result in a loss
of precision for our benchmark programs.

After explaining our approach in detail, the remainder of this chapter
discusses our implementation (Section 9.5) and experiments (Section 9.6).

9.1.4 Contributions

The contributions presented in this chapter are the following:

• We present an abstract machine for a core JavaScript-like language js0

that tracks read and write effects generated by accessing and modifying
variables and object properties during interpretation (Section 9.2.2).

• We introduce a purity analysis for js0 over a flow graph annotated
with effects (Section 9.3).

• We define a scope-based freshness analysis for variables and objects to
improve the precision of this purity analysis (Section 9.4).

• We implement a purity analysis for a substantial subset of JavaScript
(Section 9.5), and experiment with it on several JavaScript benchmarks
(Section 9.6).
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9.2 Setting

Because function call and return is the dominant pattern in higher-order,
functional programs, an analysis needs to model call/return precisely. For
this reason, we use a pushdown analysis [Johnson and Van Horn, 2014] and
not a more classic finite-state analysis.

9.2.1 Input Language

In order to simplify the formalization of our approach, we work on js0,
a core functional language with assignment. js0, depicted in Figure 9.1,
most notably features objects as maps, higher-order functions, prototypal
inheritance, and assignment.

Like our Scheme input language scheme0, js0 distinguishes between sim-
ple (atomic) and compound expressions, and only allows simple expressions
in most positions where regular JavaScript allows any kind of expression.
Functions are not simple expressions, because they evaluate to an address
pointing to a function objects in the store, and thus require store allocation.

Although js0 is a small language, its set of features is sufficiently challeng-
ing for performing purity analysis. Our implementation (Section 9.5), used
to validate our approach, supports a larger subset of traditional features like
variable declarations, iteration, non-local return flow, and typical features
of JavaScript, including type coercions and parts of the standard built-in
functions and objects.

9.2.2 Semantics

The small-step semantics of js0 is expressed as an abstract machine [Felleisen
and Friedman, 1987] that transitions between evaluation (ev) and continua-
tion (ko) states. The resulting machine is another variation on the CESIK?Ξ

abstract machine described in Johnson and Van Horn [Johnson and Van Horn,
2014]. This machine also is an abstract abstract machine since it operates on
abstract values (Section 2.4.2), although it can be parameterized to express
concrete semantics (Section 2.4.3).

In what follows, we further detail the operation of the abstract machine.

State Space

Figure 9.2 shows the abstract state-space. The control (e), environment
(ρ), store (σ), and value (d) components of the machine are standard (see
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e ∈ Exp ::=s [simple expr]
| f [function]
| v(s) [function call]
| s0.v(s1) [method call]
| new v(s) [new expr]
| v=e [assignment]
| s.v [property load]
| s.v=e [property store]
| return s [return]

s ∈ Simple ::=v [variable]
| this [this expr]

f ∈ Fun ::=λ(v){e}

v ∈ Var = a set of identifiers

Figure 9.1: Input language js0.

Section 2.4). As in the abstract machine for scheme0, stacks consist of
a local continuation (ι) delimited by a meta-continuation (κ). The local
continuation is a (possibly empty) list of frames, while the meta-continuation
is a calling context. Calling contexts are generated at call sites, except for
the root calling context that is created at the start of program evaluation.

Calling contexts serve as stack addresses pointing to underlying stacks
that are stored in a stack store (Ξ). For the semantics of js0 we use the AAC
stack address allocator (Section 2.4.7), generating stack address that contain
five components: a call expression (e), a callable (c), an argument (darg), a
this pointer (athis), and a caller store that is in effect at function entry (σ).
Allocating stacks with this kind of precision describes unbounded stacks in
a finite way with maximally attainable call/return precision depending on
the employed abstractions, and full precision under concrete semantics.

Value dundefined represents the unique value for undefined.
Objects are represented as maps from properties to values. Properties

call and prototype are two special properties that are distinct from all
other properties, and are used to implement function objects and object
prototypes, respectively. Compared to JavaScript semantics, the handling of
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object property lookup is simplified in js0. js0 does not distinguish between
properties that must be present and properties that may be present. The
latter case arises after joining two objects, in which only one of the objects
has a particular property.

Program Injection

The injection function I : Exp→ State turns an expression into an initial
evaluation state with empty environment, initial store σ0, empty local
continuation, and the root context κ0 as meta-continuation.

I(e) = ev(e, [], σ0, 〈〉, κ0, [])

where κ0 = (e,⊥,⊥, a0, σ0)

σ0 = [a0 7→ []]

The initial store σ0 maps the global object at address a0, which we assume
to be globally available.

Address Allocation

Address allocation is a parameter of the semantics that can be used to control
the context-sensitivity of the resulting analysis. We assume the presence of
allocation functions allocVar for allocating variables, allocCtr for allocating
constructor objects, allocFun for allocating function objects, and allocProto

for allocating prototypes of objects. Any address allocation scheme is
sound [Might and Manolios, 2009], although to simplify the semantics we
assume that addresses for objects (in Obj ) are distinct from addresses for
all other values (in D).

To express concrete semantics, we can take Addr = N and

allocX (e, ρ, σ, ι, κ) = 1 + max(Dom(σ)),

where allocX is one of the allocation functions and Dom returns the domain
of a function.

For abstract semantics, a monovariant allocation scheme (0CFA) would
be Addr = Exp with

allocVar(e, ρ, σ, ι, κ) = e,

and similar definitions for the other allocators.
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ς ∈ State ::= ev(e, ρ, σ, ι, κ,Ξ) [eval state]
| ko(d, σ, ι, κ,Ξ) [kont state]

ρ ∈ Env = Var ⇀ Addr [environment]
σ ∈ Store = Addr ⇀ (D + Obj ) [store]

d ∈ D = P(Addr + dundefined) [value]
ω ∈ Obj = (Var ⇀ D) [object]

× (proto 7→ D)

× (call 7→ P(Callable))

c ∈ Callable ::= (f, ρ) [callable]
ι ∈ LKont = Frame∗ [frame]
φ ∈ Frame ::= as(v , ρ) [assignment frame]

| st(s, v , ρ) [property store frame]
κ ∈ Kont ::= (e, c, darg, athis, σ) [meta-continuation]

Ξ ∈ KStore = Kont ⇀ P(LKont ×Kont) [stack store]
a ∈ Addr is a set of addresses [address]
eff ∈ Eff ::= Wv(a, v) [variable write effect]

| Wf(a, v) [property write effect]
| Rv(a, v) [variable read effect]
| Rf(a, v) [property read effect]

E ∈ P(Eff ) is a set of effects [effects]

Figure 9.2: Abstract state-space of the flow analysis.
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Simple Expressions

Simple expressions are the equivalent of atomic expressions in scheme0

semantics. The primary difference with scheme0 is that functions do not
atomically evaluate to a closure, but to an equivalent function object in which
the call property contains the closure. Because function evaluation allocates
objects (the function object and its prototype), it cannot be considered as a
simple expression.

Simple expressions in our JavaScript semantics are variables and this

expressions. Function evalSimple : Simple×Env×Store×Kont 7→ D×P(Eff )

evaluates simple expressions and returns the resulting value, as well as the
set of generated effects.

To evaluate a variable reference, first the address of the variable is looked
up in the lexical environment. Then the value associated with that address
in the store is returned, and a variable read effect is generated.

evalSimple(v , ρ, σ, κ) = (σ(a), {Rv(a, v)})
if v ∈ Dom(ρ)

where a = ρ(v)

If the variable is not available in the environment, a property lookup is
performed on the global object at address a0, and a property read effect is
generated.

evalSimple(v , ρ, σ, κ) = (ω(v), {Rf(a0, v)})
where ω = σ(a0)

The value for a this expression is retrieved from the current calling context,
and no effects are generated.

evalSimple([[this]], ρ, σ, (e, c, darg, athis, σ)) = (athis,∅)
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Property Lookup

Relation lookupProp looks up a property by traversing the prototype chain of
an object. If the property is not found in the chain, undefined is returned.

lookupProp(v , a, σ)

=


(ω(v), {Rf(a, v)}) if v ∈ Dom(ω)

({dundefined},∅) if ω(proto) = ∅
lookupProp(v , a′, σ) else

where ω = σ(a)

a′ ∈ ω(proto)

Function Call

Function evalCall applies a function to an argument in a given context. It
extends the procedure’s static environment by binding the argument, and
moves evaluation to the body of the function. Parameter κ is the application
context of the caller, while parameter κ′ represents the application context
for the call itself.

evalCall((f, ρ), darg, σ, ι, κ,Ξ, κ
′) = ev(e, ρ′, σ′, 〈〉, κ′,Ξ′)

where f = [[λ(v){e}]]

ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ darg]

a = allocVar(v , ρ, σ, ι, κ)

Ξ′ = Ξ t [κ′ 7→ {(ι, κ)}]

Transition Relation

In order to determine function purity, we need to be able to reason about
effects that occur as a result of reading and mutating variables and object
properties during evaluation. We make write effects explicit by modeling
them on the transition relation that transitions between states: (7−→) v
State× State× P(Eff ).

1. A simple expression is evaluated by delegating to evalSimple.

ev(s, ρ, σ, ι, κ,Ξ) 7−→ (ko(d, σ, ι, κ,Ξ), E)

where (d,E) = evalSimple(s, ρ, σ, κ)
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2. Evaluating a function expression yields a reference to a function object
(ωf) that is allocated in the store. Following JavaScript semantics, a
function object has a fresh object assigned to its prototype property.

ev([[

f︷ ︸︸ ︷
λ(v){e}]], ρ, σ, ι, κ,Ξ) 7−→ (ko({a}, σ′, ι, κ,Ξ),∅)

where a = allocFun(f, ρ, σ, ι, κ)

a′ = allocProto(f, ρ, σ, ι, κ)

σ′ = σ t [a 7→ ωf , a
′ 7→ ωproto]

ωf = [call 7→ {(f, ρ)},
proto 7→ ∅
prototype 7→ {a′}]

ωproto = [proto 7→ ∅]

3. A function call is evaluated by first evaluating operator and argument,
and then applying the evalCall helper function with a reference to the
global object (a0) as this value.

ev([[

e︷︸︸︷
v(s)]], ρ, στ , ι, κ,Ξ) 7−→ (evalCall(c, darg, στ , ι, κ,Ξ, κ

′), E)

where (df , Ef ) = evalSimple(v , ρ, στ , κ)

(darg, Earg) = evalSimple(s, ρ, στ , κ)

af ∈ df
ωf = στ (af )

c ∈ ωf (call)
κ′ = (e, c, darg, a0, στ )

E = Ef ∪ Earg
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4. For a method call additionally the method is looked up in the receiver,
and the receiver is set as value for this in the new calling context.

ev([[

e︷ ︸︸ ︷
s0.v(s1)]], ρ, στ , ι, κ,Ξ) 7−→ (evalCall(c, darg, στ , ι, κ,Ξ, κ

′), E)

where (dthis, Ethis) = evalSimple(s0, ρ, στ , κ)

(darg, Earg) = evalSimple(s1, ρ, στ , κ)

athis ∈ dthis
(df , Ef ) ∈ lookupProp(v , athis, στ )

af ∈ df
ωf = στ (af )

c ∈ ωf (call)
κ′ = (e, c, darg, athis, στ )

E = Ethis ∪ Earg ∪ Ef

5. A constructor call allocates a new object on the heap, and sets a
reference to this object as value for this in the new calling context.
The internal prototype of the new object is the value of the prototype
property of the invoked constructor. The caller store in the context is
the store without the newly created object.

ev([[

e︷ ︸︸ ︷
new v(s)]], ρ, στ , ι, κ,Ξ) 7−→ (evalCall(c, darg, σ

′, ι, κ,Ξ, κ′), E)

where (df , Ef ) = evalSimple(v , ρ, στ , κ)

(darg, Earg) = evalSimple(s, ρ, στ , κ)

af ∈ df
ωf = στ (af )

c ∈ ωf (call)
athis = allocCtr(e, ρ, στ , ι, κ)

ω = [proto 7→ ωf (prototype)]

σ′ = στ t [athis 7→ ω]

κ′ = (e, c, darg, athis, στ )

E = Ef ∪ Earg

6. Variable assignment pushes a continuation to assign the value of the
right hand side to the variable. No effects are generated during this
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step.

ev([[v=e]], ρ, σ, ι, κ,Ξ) 7−→ (ev(e, ρ, σ, φ : ι, κ,Ξ),∅)

where φ = as(v , ρ)

7. Loading a property involves evaluating the receiver, and looking up
the property in that receiver.

ev([[s.v ]], ρ, σ, ι, κ,Ξ) 7−→ (ko(d, σ, ι, κ,Ξ), E)

where (dr, Er) = evalSimple(s, ρ, σ, κ)

a ∈ dr
(d,E ′) ∈ lookupProp(v , a, σ)

E = Er ∪ E ′

8. Like assignment, storing a property requires evaluating the right hand
side and pushing a continuation to perform the actual property update.

ev([[s.v=e]], ρ, σ, ι, κ,Ξ) 7−→ (ev(e, ρ, σ, φ : ι, κ,Ξ),∅)

where φ = st(s, v , ρ)

9. Function return computes a return value and clears the local continua-
tion.

ev([[return s]], ρ, σ, ι, κ,Ξ) 7−→ (ko(d, ρ, σ, 〈〉, κ,Ξ), E)

where (d,E) = evalSimple(s, ρ, σ, κ)

10. When the machine has to continue with an assignment frame on top
of the stack, it assigns the value computed for the right hand side to
the variable on the left, if the variable is in scope. It then continues
with this value, generating a variable write effect.

ko(d, σ, as(v , ρ) : ι, κ,Ξ) 7−→ (ko(d, σ′, ι, κ,Ξ), E)

if v ∈ Dom(ρ)

where a = ρ(v)

σ′ = σ t [a 7→ d]

E = {Wv(a, v)}
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11. If the variable is not found in the environment, the machine performs
a property update on the global object, generating a property write
effect.

ko(d, σ, as(v , ρ) : ι, κ,Ξ) 7−→ (ko(d, σ′, ι, κ,Ξ), E)

where ω = σ(a0)[v 7→ d]

σ′ = σ t [a0 7→ ω]

E = {Wf(a0, v)}

12. Storing a property always happens directly on the receiver and does
not require traversing prototype links. It generates a property write
effect.

ko(d, σ, st(s, v , ρ) : ι, κ,Ξ) 7−→ (ko(d, σ′, ι, κ,Ξ), E)

where (dr, Er) = evalSimple(s, ρ, σ, κ)

a ∈ dr
ω = σ(a)[v 7→ d]

σ′ = σ t [a 7→ ω]

E = Er ∪ {Wf(a, v)}

13. When the machine reaches a state with an empty local continuation,
the machine dereferences the stack address to obtain an underlying
stack. If no stacks are found in the stack store, then the machine has
reached a program exit and halts, and the current value is the result
value of the program. Else, the machine has reached a function exit.
When exiting a constructor call, a reference to the newly created object
is returned.

ko(d, σ, 〈〉, κ,Ξ) 7−→ (ko(d′, σ, ι′, κ′,Ξ),∅)

where (ι′, κ′) ∈ Ξ(κ)

d′ = {athis}
([[new v(s)]],_,_, athis,_) = κ

14. When exiting a regular function call, the current value is returned.

ko(d, σ, 〈〉, κ,Ξ) 7−→ (ko(d, σ, ι′, κ′,Ξ),∅)

where (ι′, κ′) ∈ Ξ(κ)
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Flow Graph

We determine function purity by reasoning about effects that happen during
program evaluation. We therefore construct a flow graph representing
program evaluation, in which nodes are reachable states, and edges are
transitions between states that are labeled with the effects that occur on
transition. Let ↪→ be transition relation 7−→ with the effects removed:
ς ↪→ ς ′ ⇐⇒ ς 7−→ (ς ′, E). Evaluation can be expressed as computing the
transitive closure of ↪→ after injection.

E(e) = {ς | I(e) ↪→∗ ς ′}

The definition of flow graph Ge for expression e then is as follows:

ς
E−→ ς ′ ∈ Ge ⇐⇒ ς ∈ E(e) and ς 7−→ (ς ′, E)

Static analysis requires a finite flow graph for every possible program. We
can guarantee finiteness by plugging in finite sets for Var and Addr into the
state-space of the analysis (Figure 9.2). For finite programs the entire state
space is then finite as well, and ↪→, which is monotonic, has a least fixpoint.

9.3 Purity Analysis

Using the flow graph from the previous section, we are able to determine the
purity of a function by examining all of its applications. This examination has
to happen along two dimensions: we have to traverse all states (Section 9.3.1),
and in every state we have to traverse the call stack (Section 9.3.2) because
every effect occurs for every active function. The result is a map P from
functions to their effect class.

class ∈ Class = {pure,observer,procedure} [effect class]
P ∈ Purity = Fun 7→ Class [function purity]
R ∈ Read = Res 7→ P(Fun) [read table]
O ∈ Obs = Res 7→ P(Fun) [observer table]

res ∈ Res = Addr + (Addr × Var) [resource]

Following the classification scheme of Gifford and Lucassen [1986] (Sec-
tion 6.3), the effect class (Class) is a join semi-lattice in which ⊥ @ pure @
observer @ procedure, so that for example puretobserver = observer

and pure t procedure = procedure. The effect class of a function is
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procedure if an application of that function generates observable side ef-
fects, observer if an application depends on external side effects but none
generate observable side effects, and pure otherwise.

Purity analysis navigates the flow graph Ge , and updates maps P , R
and O. Map P maps functions onto their effect class, and initially every
applied function is pure. The effect class of unapplied functions remains ⊥.

When during an application an observable write effect is generated, then
the applied function becomes a procedure (procedure) in P .

For dependence on external effects, purity analysis looks for read–write–
read sequences involving the same resource, with the initial and subsequent
read occurring in an application of the same function. If a function reads an
external resource, this is tracked in the read table (R). If that resource is
mutated, then all functions that have a read dependency on that resource
are added to the observer table (O). If a function reads a resource, and is
mapped in the observer table as a potential observer for that resource, then
that function becomes an actual observer of an external effect, and its effect
class at that point is joined with observer in P .

As before, the analysis considers variables and object properties to be
resources (Res) on which read and write effects are possible.

The purity analysis we present in this section is finite if the underlying
flow graph is finite, because the purity maps monotonically increase in a
finite domain.

9.3.1 Graph Traversal

Traversal over a flow graph Ge is handled by travGraphP , which delegates
every newly encountered state to handleEffect and joins the result back in
the maps P , R, and O. If any of the maps are updated by handleEffect ,
then the set of visited states is cleared to ensure we visit every state with
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the maximal configuration of these maps.

travGraphP (S,∅,P , R,O) = P

travGraphP (S ∪ {ς},W ] {ς},P , R,O) = travGraphP (S ∪ {ς},W,P , R,O)

travGraphP (S,W ] {ς},P , R,O) = travGraphP (S ′,W ′,P ′, R′, O′)

where (P ′, R′, O′) =
⊔
{handleEffect(ς, eff ,P , R,O)

| eff ∈ E ∧ (ς
E−→ ς ′) ∈ Ge}

W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge}

S ′ =

{
∅ if P 6= P ′ ∨R 6= R′ ∨O 6= O′

S ∪ {ς} else

The state handler dispatches to handleWrite and handleRead after build-
ing the resource.

handleEffect(ς,

eff︷ ︸︸ ︷
Wv(a,_),P , R,O) = handleWrite(eff , a, ς,P , R,O)

handleEffect(ς,

eff︷ ︸︸ ︷
Wf(a, v),P , R,O) = handleWrite(eff , (a, v), ς,P , R,O)

handleEffect(ς,

eff︷ ︸︸ ︷
Rv(a,_),P , R,O) = handleRead(eff , a, ς,P , R,O)

handleEffect(ς,

eff︷ ︸︸ ︷
Rf(a, v),P , R,O) = handleRead(eff , (a, v), ς,P , R,O)

When a read effect is encountered, the stack is traversed to update the
maps R (in case of a new read effect) and P (in case of a read-write-read
sequence being detected).

handleRead(eff , res , ς,P , R,O) = (P ′, R′, O)

where (P ′, R′) = travStackR(eff , res , ς,∅, {κ},P , R,O)

(. . . , κ,_) = ς

When a write effect is encountered, the stack is traversed to update the map
P , and functions performing read operations on the resources are joined in
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the O map.

handleWrite(eff , res , ς,P , R,O) = (P ′, R,O′)

where O′ = O t [res 7→ R(res)]

P ′ = travStackW (eff , res , ς,∅, {κ},P)

(. . . , κ,_) = ς

9.3.2 Stack Traversal

Purity analysis needs to determine observability of an effect for every function
that is computing a return value at the point at which the effect is produced
(Section 3.3.2). For this it needs to find all the active application contexts
in which the effect occurs, and does so by traversing the stack. Because
continuations are delimited by applications, the analysis only has to look at
meta-continuations.

The stack-traversing operation travStackR propagates a read effect down
the stack, while remembering the application contexts it has already seen
to avoid infinite recursion. The caller store is used to check whether effects
that occur during function application are observable or not.

1. Stack traversal terminates when the work list is empty. The purity
and read maps are returned.

travStackR(eff , res , ς, S,∅,P , R,O) = (P , R)

2. An application context that was already visited, is not visited again.

travStackR(eff , res , ς, S ∪ {κ},W ] {κ},P , R,O)

= travStackR(eff , res , ς, S ∪ {κ},W,P , R,O)

3. If a read effect occurs on an address that is mapped in the caller store,
then the effect is on a resource that is reachable by the caller. In
this case the function is marked as read-dependent on the resource
(by adding it to R). If the function being applied is registered as a
potential observer for the read resource, then the function is marked
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as an observer in P .

travStackR(eff , res ,ς, S,W ] {κ},P , R,O)

= travStackR(eff , res , ς, S ′,W ′,P ′, R′, O)

if a ∈ Dom(στ )

where S ′ = S ∪ {κ}
W ′ = W ∪ {κ′ | (_, κ′) ∈ Ξ(κ)}

P ′ = P t
⊔
{f 7→ observer | f ∈ O(res)}

R′ = R t [res 7→ {f}]
(. . . ,Ξ) = ς

(_, (f,_),_,_, στ ) = κ

4. If the read address is not in the domain of the caller store, then the
effect is local to the application and can be masked.

travStackR(eff , res , ς, S,W ] {κ},P , R,O)

= travStackR(eff , res , ς, S ∪ {κ},W,P , R,O)

Function travStackW similarly traverses the stack, using the caller store
to check whether write effects are observable or not.

1. Stack traversal terminates when the work list is empty. The purity
map is returned.

travStackW (eff , res , ς, S,∅,P) = P

2. An application context that was already visited, is not visited again.

travStackW (eff , res , ς, S ∪ {κ},W ] {κ},P)

= travStackW (eff , res , ς, S ∪ {κ},W,P)

3. If the address of the written resource is mapped in the caller store of
an active function application, then the effect is observable from the
point of view of the caller, and the function is marked as a procedure
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in P .

travStackW (eff , res ,ς, S,W ] {κ},P)

= travStackW (eff , res , ς, S ′,W ′,P ′)

if a ∈ Dom(στ )

where S ′ = S ∪ {κ}
W ′ = W ∪ {κ′ | (_, κ′) ∈ Ξ(κ)}
P ′ = P t [f 7→ procedure]

(. . . ,Ξ) = ς

(_, (f,_),_,_, στ ) = κ

4. If the written address is not in the domain of the caller store, then the
effect is local to the application and can be masked.

travStackW (eff , res , ς, S,W ] {κ},P)

= travStackW (eff , res , ς, S ∪ {κ},W,P)

9.4 Freshness Analysis

The address-based purity analysis for js0 presented in the previous section,
suffers from the same drawback as the one we identified for address-based
observability for scheme0 (Section 4.2.1). When the abstract machine from
Section 9.3 is configured with a concrete allocator, addresses are generated
with full precision. As a result, purity analysis will determine function purity
with full precision as well, without false positives or negatives. However, to
guarantee that the analysis runs in finite time and space, we sacrifice full
precision primarily by allowing the abstract machine to allocate addresses
that are already in use while it is evaluating the input program. As was
the case for scheme0, this address allocation scheme results in a loss of
precision for address-based purity analysis, as Example 9.7 illustrates.

Example 9.7. In the following program, a composite data structure is
constructed recursively.

1 function F(f) {

2 var a = this;
3 a.f = f;

4 }
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5

6 F.create =

7 function (n) {

8 var f;

9 if (n < 1) {

10 f = null;
11 } else {

12 f = F.create(n-1);

13 }

14 return new F(f);

15 }

16

17 F.create (3);

Suppose that every object created on line 14 is allocated at a single address
a. When constructor F on line 14 is called after the recursive call F.create
on line 12 in the else branch, that recursive call has already allocated an
object at address a. Therefore our purity analysis concludes that property
load a.f on line 3 in the constructor writes to an address that already exists
in the caller store. As a result, constructor F is considered to be impure,
although a constructor should be allowed to mutate the object referenced by
its this parameter without generating an observable side effect.

Example 9.8. In the program from Example 9.7, we identify a second
problem. Suppose that variable f on line 8 is always allocated at the same
address. Then in a recursive call to F.create both assignments to f (lines
10 and 12) are also considered to be a write to an address that exists in the
caller store.

The solution we apply is again adding scope-based freshness for variables
and objects. Variable freshness ensures that writing to a local variable does
not generate an observable side effect outside the application context in
which it is local. Object freshness for example ensures that mutating the
newly created object in a constructor call is never considered as an observable
side effect to callers.

Motivated by the evaluation of our purity analysis for Scheme (Chapter 8),
we limited variable and object freshness to the topmost application context
by design. Evaluation of our Scheme purity analysis indicates that few
real-world benchmarks exhibit the behavior that stack-traversing scope-
based freshness analysis aims to improve. This design decision enables
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some simplifications in the formalization and implementation of the analysis.
When the state handler of purity analysis delegates to the effect handler, it
passes the topmost application context. The effect handler can then check
for variable or object freshness, before initiating stack traversal using address
freshness.

9.4.1 Variable Freshness

A variable is fresh with respect to a calling context if it is a local variable
in that context. The handler for variable read and write effects can rely on
lexical scoping information offered by predicate isLocal instead of checking
the address of the read or written variable. Predicate isLocal ⊆ Var × Fun

returns whether a variable is declared in an enclosing scope of a given function
scope, or not. These new cases shortcut the previous cases of handleEffect .

handleEffect((. . . , κ,_),Wv(a,_),P , R,O) = (P , R,O)

if isLocal(v , f)

where (_, (f,_),_,_,_) = κ

handleEffect((. . . , κ,_),Rv(a,_),P , R,O) = (P , R,O)

if isLocal(v , f)

where (_, (f,_),_,_,_) = κ

9.4.2 Object Freshness

Freshness of objects referenced by variables is tracked in a map F that
indicates whether a referenced object is fresh (⊥F ) or not (unfr). Freshness

forms a join semi-lattice in which ⊥F @ unfr, and ⊥F tunfr = unfr. Unlike
object freshness analysis for scheme0 (Section 4.4.2), we do not separately
track freshness per application context. For the benchmark programs we
evaluate (Section 9.6) we observed no loss in precision when applying this
simplification.

ψ ∈ Freshness = {⊥F ,unfr}
F ∈ Fresh = Var ⇀ Freshness

An object reference is fresh with respect to the topmost calling context
if it points to an object that was created in that context. There are two
operations that need to come together: we have sources at which fresh
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objects are created and/or bound to variables, and we also have to propagate
object freshness.

js0 being a small language, sources for fresh objects are intuitive to
find. The following cases define predicate isFresh : Exp×Kont × Fresh that
captures our notion of object freshness. The application context is only
required to distinguish between regular function calls and constructor calls.

1. Suppose that F is a mapping from variables to freshness of the objects
they point to. Then the object a variable references is fresh if its
variable is mapped onto fr in F .

isFresh([[v ]], κ,F ) = (F (v) = fr)

2. The result of object construction through new is fresh.

isFresh([[new v(s)]], κ,F ) = true

3. An assignment expression is fresh if its right hand side is fresh.

isFresh([[v=e]], κ,F ) = isFresh(e, κ,F )

4. A reference to the newly constructed object through this in a con-
structor is fresh.

isFresh([[this]], ([[new v(s)]], . . .),F ) = true

5. All other expressions are not fresh.

isFresh(e, κ,F ) = false

Graph traversal

Propagation of object freshness happens through variable assignment only,
following the same idea as depicted in Figure 4.1 on page 63. Resources
that exist in an outer function scope with respect to some other scope are
considered unfresh in the latter. Freshness is propagated through assignment
within the topmost application context. As in Section 4.4.2, we do not track
freshness through for example function calls or property loading and storing:
for these kinds of object flow we rely entirely on the underlying abstract
interpretation and address freshness. In this simplied object freshness
analysis, we also do not propagate freshness of object return values.
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Like purity analysis, freshness analysis piggybacks on the underlying
flow graph Ge to determine control flow of a program. Function travGraphF
performs graph traversal, and delegates to handleF to update freshness map
F .

travGraphF (S,∅,F ) = F

travGraphF (S ∪ {ς},W ] {ς},F ) = F

travGraphF (S,W ] {ς},F ) = travGraphF (S ′,W ′,F ′)

where W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge}
F ′ = handleF (ς,F )

S ′ =

{
∅ if F 6= F ′

S ∪ {ς} else

State handler

For a variable assignment expression, freshness propagates from the right-
hand side to the variable on the left-hand side. The state handler uses
predicate isLocal to determine whether the variable being assigned is local.
If this is the case, then freshness is propagated from the right-hand side
to the left-hand side. Else, the variable becomes unfresh. For any other
expression, freshness remains the same.

handleF (ev([[v=e]], ρ, σ, ι, κ,Ξ),F ) = F ′

where F ′ =

{
F t [v 7→ F (e)] if isLocal(v , f)

F t [v 7→ unfr] else

handleF (ς,F ) = F

Extending Purity Analysis

We can extend purity analysis with object freshness analysis by defining
handlers for property effects that shortcut purity analysis when a fresh object
is involved.

A property read effect can be the consequence of an explicit property
access through lookupProp, or when reading from a top-level variable. Be-
cause the global object is never fresh during function application, we are
only interested in the former case. The machine looks up properties when
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evaluating property load and method call expressions.

handleEffect(ev([[s.v ]], ρ, σ, ι, κ,Ξ),Rf(_,_),P , R,O) = (P , R,O)

if isFresh(s, κ,F )

handleEffect(ev([[s0.v(s1)]], ρ, σ, ι, κ,Ξ),Rf(_,_),P , R,O) = (P , R,O)

if isFresh(s0, κ,F )

Similarly, property writes can happen through explicit property store, or
when assigning to a top-level variable. Again we only deal with the former
case.

handleEffect(

ς︷ ︸︸ ︷
ko(d, σ, st(s, v , ρ) : ι, κ,Ξ),Wf(_,_),P , R,O) = (P , R,O)

if isFresh(s, κ,F )

Prioritizing these handlers over the property effect handlers from Sec-
tion 9.3 ensures that freshness analysis for object references improves preci-
sion of the purity analysis.

9.5 Implementation

We implemented the purity analysis and freshness analysis discussed in
this chapter as a proof of concept called protopurity.js. The prototype
implementation is structured according to the approach we outlined in
this chapter. At the base level, we use JIPDA1 as the underlying abstract
interpreter for producing flow graphs. Our simplified object freshness analysis
runs on top of a program’s flow graph. Our purity analysis also consumes
this flow graph and (optionally) the results of freshness analysis that was
run over the same graph.

Our implementation significantly extends js0 and its semantics presented
at the beginning of this chapter.

Unlike the semantics formalized in this chapter, our implementation
supports computed properties. Instead of working with a set of names
(strings), the abstract interpreter used in our prototype works with abstract
names that come from the value lattice used to represent all primitive values
used during interpretation. Emitted read/write property events therefore
also contain abstract names, and looking up property names happens through
subsumption instead of equality.

1https://github.com/jensnicolay/jipda

https://github.com/jensnicolay/jipda
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We also added many of the built-in JavaScript functions and objects
required to run our benchmarks.

Our prototype implementation uses abstract garbage collection [Might
and Shivers, 2006a] as a technique to increase performance and precision of
abstract interpretation (Section 3.5). Abstract garbage collection reclaims
unused addresses, and increases the precision of an address-based purity
analysis of our Scheme procedure side-effect analysis (Section 8.5.3). For
our JavaScript purity analysis, however, the advantage of abstract garbage
collection in terms of precision was less pronounced. Disabling abstract
garbage collection on smaller and synthetic benchmarks only lead to a
small negative impact on precision, which was dominated by the absence
or presence of freshness analysis. However, abstract garbage collection was
required to run the larger benchmarks in a reasonable amount of time and
space. Scaling up the abstract interpreter and client analyses, also to better
assess the impact of garbage collection for protopurity.js, is future work.

Finally, we mention that our abstract machine implements abstract
counting [Might and Shivers, 2006a]. Abstract counting is a technique that
keeps track of whether an address is allocated exactly once or multiple times
in the store. If the address has only been allocated once, a strong update
can be used instead of a weak update (Section 2.4.3). When running our
JavaScript benchmarks, we found that abstract counting boosted precision
considerably. JavaScript hoists variable declarations to the top of their
defining function scope, and our abstract machine semantics initializes these
variables to undefined. Only afterwards is the variable assigned its “initial”
(from the perspective of the program) value. Because of abstract counting,
this happens using a strong update, thereby avoiding the precision loss
incurred by merging.

9.6 Experiments

We used our prototype implementation protopurity.js to analyze several
JavaScript programs using 0CFA allocation (Section 9.2.2).

We distinguish between two types of test programs: small unit test pro-
grams that test a specific feature which is challenging for purity analysis, and
larger existing benchmark programs. We report on the correctness, sound-
ness, precision, and performance of purity analysis results (Section 8.1.2)
on these programs. In contrast to the experiments with purity.rkt for
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— Without fresh — — With fresh —
Benchmark Functions pure obs proc pure obs proc

access-nbody 11 1 1 9 6 1 4
controlflow-recursive 3 3 0 0 3 0 0
crypto-sha1 8 6 0 2 7 0 1
math-spectral-norm 5 2 0 3 2 0 3
tree-add 6 1 0 5 3 1 2
navier-stokes 29 3 1 25 3 1 25
richards 32 4 1 27 8 1 23
bisort 13 4 1 8 5 1 7
em3d 13 3 0 10 4 0 9
mst 18 5 1 12 7 1 10

Table 9.1: Purity analysis results. For each benchmark, we report the number of
functions in each effect class as determined by our analysis. We ran the analysis
without and with using the results from scope-based freshness analysis. Functions
is the total number of functions called in the benchmark.

scheme0 (Chapter 8), we focus more on the precision of analysis results,
and on a comparison with existing techniques.

9.6.1 Correctness and Soundness

We manually specified the expected function classification (pure, observer,
or procedure) for an extensive set of unit tests and benchmark programs.
We mechanically checked that the actual results of concrete purity analysis
are equal to the expected outcome. From this evaluation we conclude that,
for the set of programs under test, our implementation is correct.

We also checked that the classification results of abstract purity analysis
subsume the results of the concrete analysis. From this we conclude that
the results for our set of test programs are sound.

9.6.2 Precision

We manually verified the result of function classification by our purity
analysis in a large set of programs, and found few false positives (i.e.,
functions reported as pure by concrete purity analysis but not by abstract
purity analysis).

Table 9.1 reports, for a selected set of 10 existing benchmark programs,
the number of pure functions detected, for both our purity analysis without
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— Without fresh — — With fresh —
Benchmark Flow time Purity time Purity time
access-nbody ε ε ε

controlflow-recursive ε ε ε

crypto-sha1 ε ε ε

math-spectral-norm ε ε ε

tree-add 0’01" ε ε

navier-stokes 2’50" 3’18" 3’08"
richards 4’33" 0’50" 0’37"
bisort 0’07" 0’03" 0’01"
em3d 0’02" 0’12" 0’10"
mst 0’04" 0’15" 0’12"

Table 9.2: Flow and purity analysis timing. Flow time is the running time of the
flow analysis creating a flow graph. Purity time is the running time of the purity
analysis on top of the flow graph. We use ε to denote a running time smaller than
1 second.

scope-based freshness analysis, and for our purity analysis combined with
scope-based freshness analysis.

crypto-sha1 is a Sunspider benchmark2 that tests cryptographic func-
tions. Our abstract purity analysis was able to detect that the majority of
the functions that are actually called in that benchmark are indeed pure
functions.

navier-stokes is an Octane benchmark3 that passes around arrays
between functions that update these arrays in place. Our abstract analysis
correctly predicted that almost all functions in this benchmark are impure.

Extrapolating from these results, we conjecture that protopurity.js is
capable of determining function purity with sufficient precision to be useful
to client applications.

Impact of scope-based freshness

From the benchmark results we see that incorporating scope-based variable
and object freshness analysis improves precision significantly.

tree-add is a JOlden benchmark [jol] that we converted from Java into
JavaScript. Although it is a relatively small benchmark, it exhibited poor
precision when analyzed without variable and object freshness: only 1 pure

2https://www.webkit.org/perf/sunspider/sunspider.html
3https://developers.google.com/octane

https://www.webkit.org/perf/sunspider/sunspider.html
https://developers.google.com/octane
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ReImInfer JPPA JPure
Program #Fun pp.js = + − = + − = + −
bisort 11 5 5 1 1 6 1 0 5 1 1
tree-add 6 3 3 0 0 3 0 0 2 0 1
em3d 14 6 5* 0 1 4 0 2 4 0 2
mst 18 6 5 0 1 5 0 1 5 0 1

Table 9.3: Comparison between multiple purity analyses on benchmarks from
the JOlden suite. #Fun is the number of functions in the Javascript benchmark.
Column pp.js shows the number of functions identified as pure (pure or observer
in our terminology) by protopurity.js. RemImInfer, JPPA and JPure show the
number of functions detected as pure by the other tools: = counts the methods
which are detected as pure by both protopurity.js and the other tool, + shows the
number of functions detected as pure by the other tool but not by protopurity.js,
and − shows the number of functions identified as pure by protopurity.js but
not by the other tool. An asterisk indicates that a tool incorrectly reported an
impure function as pure.

function was detected out of 4 functions that are determined pure with scope-
based freshness analysis enabled. The pattern in Example 9.7, illustrating
some of the weaknesses of address-only purity analysis, was distilled from
this benchmark.

9.6.3 Performance

We also report in Table 9.2 the time the underlying flow analysis and
the subsequent purity analysis took, again without and with scope-based
freshness analysis.

Table 9.2 lists, for our set of 10 benchmark programs, the running time
of flow analysis, and the running time of abstract purity analysis with and
without scope-based freshness.

We observe that incorporating scope-based freshness analysis improves the
overall running time of the analysis. This is because scope-based freshness in
protopurity.js avoids stack traversal when effects occur on fresh resources.

Comparison to Existing Work

Comparing our approach to existing approaches in terms of results is difficult.
To the best of our knowledge, our previous work [Nicolay et al., 2015] is the
first purity analysis that specifically targets JavaScript. The analysis we
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present here extends our original analysis into one that additionally handles
read effects and is therefore capable of classifying functions into a ternary
scheme instead of a binary one. Other related work, which we discussed
in Section 6.5, focuses primarily on method purity for Java, and analyzes
benchmarks from the JOlden suite.

Programs tree-add, bisort, em3d, and mst are JOlden benchmarks
that we manually converted to JavaScript. We compare our results
(protopurity.js) for these benchmarks with ReImInfer [Huang et al., 2012],
JPPA [Salcianu and Rinard, 2005] and JPure [Pearce, 2011] in Table 9.3.
We manually verified and compared the results reported by each tool on
every method or function that is present in both the original program and
the JavaScript translation of the benchmark. In the bisort benchmark, one
pure function is not detected by protopurity.js, but is detected by the
other tools. For the tree-add, em3d and mst benchmarks, protopurity.js
detects every pure function as pure, while none of the other tools detect
every pure function. One spurious result was reported by ReImInfer on the
em3d benchmark, and is not included in the listed counts.

From this experiment we conclude that for these benchmarks our tool
is as precise as existing approaches, and often is able to identify more pure
functions.

9.7 Related Work

To the best of our knowledge, our previous work [Nicolay et al., 2015] is the
first purity analysis that specifically targets JavaScript.

We use JIPDA4 as the underlying abstract interpreter for producing
flow graphs. There exist several other JavaScript analysis tools such as
WALA [wal], TAJS [Jensen et al., 2009], and JSAI [Kashyap et al., 2014].
We conjecture that it is possible to implement our approach in these tools.
JIPDA was constructed as a prototype for analyzing a small subset of
JavaScript following the AAC method [Johnson and Van Horn, 2014] based
on abstract machines, and therefore exposes the program representation and
information required for performing our purity analysis by design. Enabling
the implementation of our approach on top of existing tools therefore neces-
sitates the effort of extending or adapting these tools so that the required
program information becomes available.

4https://github.com/jensnicolay/jipda

https://github.com/jensnicolay/jipda
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Any implementation of our side-effect and purity analysis requires a flow
analysis that models store-allocated resources, effects on these resources,
and the call stack. It must also be able to associate the applied procedures
and caller stores with each application. Additionally, our object freshness
and purity analysis require a flow-sensitive program analysis. We formulated
our analyses on top of a flow graph that exposes the necessary information—
more specifically nodes in this graph represent program states and edges are
annotated with effects that occur on transition between states.

9.8 Conclusion

We presented a purity analysis for js0 that handles closures, higher-order
functions, and prototypal inheritance. The primary goal was to investigate
if our side-effect and purity analysis for scheme0 could be adapted to a
more dynamic and complex setting, and how it would perform. We were
also interested in evaluating the effect of simplifying some of the analyses on
precision and performance.

The design of the analysis follows the same outline as the one we developed
for Scheme in previous chapters. However, in the setting of js0, the analysis
has to deal with things like prototypal inheritance, computed properties,
constructor functions, and implicit updates of object properties. We also
added scope-based freshness analysis to our purity analysis, but restricted
the freshness checks to the topmost application context. This decision
simplified the design of scope-based freshness analysis significantly, but not
at the cost of performance and precision. Adding scope-based freshness
analysis improves precision of our purity analysis considerably, and reduces
execution time, as demonstrated in our experiments. When comparing our
purity analysis for JavaScript against existing solutions, we find that our
implementation is as precise or more precise than results produced by other
tools.
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Conclusion

10.1 Summary

Although side effects are essential to many programs, they encumber un-
derstanding a program’s behavior. Therefore, determining side effects, or
the absence thereof, is useful for software engineering purposes and program
optimization. It is, however, also a difficult problem, and particularly so in
the presence of compound data values, objects, and higher-order procedures.

This dissertation presented and evaluated techniques for statically com-
puting the side-effecting behavior of higher-order imperative programs to
determine procedure purity. Pure procedures do not generate observable
side effects and, depending on the definition of purity used, may or may not
depend on external side effects.

In practice it is not sufficient to merely detect the presence of side-
effecting expressions in a program. The dynamic extent of side effects must
also be established accurately to be useful for performing purity analysis.
In this dissertation, we used stack reachability and resource freshness to
determine the extent of side effects.

The principle of stack reachability [Might and Prabhu, 2009], transposed
to our side-effect analysis, states that a side effect occurs for all procedures
on the call stack. Every procedure call generates an application context, and
the stack represents all application contexts, from the most recent on top
of the stack to the root context at the bottom. A single side effect may be
observable by some callers and unobservable by others.

To determine observability with respect to application contexts, we used
the concept of freshness. If a resource is created in the application context
where it is used, then that resource is not reachable from callers, and we

197
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regard these resource as fresh. Effects on fresh resources are unobserv-
able by callers and can be masked. We identified and formalized three
characterizations of freshness.

• Address freshness When an address is not in the caller store of an
application context, then that address is fresh with respect to that
context.

• Variable freshness A variable is fresh with respect to an application
context if the variable is local to the procedure scope of the applied
procedure.

• Object freshness An object is fresh with respect to an application
context if the object was created in that application context.

In order to compute the program properties required for determining stack
reachability and resource freshness, we based ourselves on the Abstracting
Abstract Control approach [Johnson and Van Horn, 2014]. We defined
abstract state machines that are interpreters for core Scheme and JavaScript
languages, and which are instrumented to register read and write effects
on variables and objects. These machines are abstracted using abstract
interpretation, and parameterized to be able to express both concrete and
abstract semantics. The result of program interpretation is a flow graph
that can be consumed by client analyses which are interested in program
properties involving control flow, value flow, and effects.

We designed our purity analysis as a number of different analyses that
consume each other’s results, starting from a flow analysis. We applied these
analyses to a set of 13 benchmark programs, and discuss the outcome in terms
of correctness, soundness, precision, and performance. Our experiments
show that the purity analysis is capable of uncovering purity in a variety
of programs. Purity analysis is able to correctly classify procedures as
pure, observer, or procedure, based on the side effects they generate and
depend upon. In larger benchmarks, the precision for detecting observers
in larger benchmarks is sometimes low, and extending the analysis with
scope-based freshness does not significantly improve precision. Despite these
limitations, we find that in general the purity analysis detects side effects
and pure procedures with a precision that enables applications in software
engineering. The purity analysis is precise in distinguishing procedures that
generate observable side effects (procedure) from those that do not (pure,
observer). Incorporating scope-based variable and object freshness and
escape analysis generally yields significant improvements in precision.
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10.2 Restating The Contributions

We restate the main contributions this dissertation makes.
Our first contribution is a procedure side-effect analysis that computes for

each procedure application the side effects that are observable by direct and
indirect callers. Applications and associated callers are found by traversing
all reachable application contexts on the call stack at the point where an
effect occurs. Observability of effects is based on freshness of resources, and
we initially formulate an analysis based on address freshness.

However, address freshness does not always offer the best precision
because termination of static analysis is primarily guaranteed by allocating
resources at addresses that are already in use, and therefore not fresh. Our
second contribution is the introduction and formalization of two additional
scope-based characterizations of freshness to improve precision: variable
freshness and object freshness, in combination with escape analysis. Variable
freshness is based on locality of variables, i.e., whether they are local or
free with respect to a procedure’s scope. Object freshness tracks the flow of
objects in and out of scopes through object references to determine in which
application contexts the referenced objects are fresh.

Our final contribution is the design of a purity analysis on top of procedure
side-effect analysis. Purity analysis summarizes how each procedure behaves
during program execution in terms of side effects during its applications. It
considers two types of side-effecting behavior: generating observable side
effects, and depending on external side effects. The result of purity analysis
is a mapping from procedures to their side-effecting behavior, which we
use to further classify procedures by mapping effect summaries to different
definitions of purity that exist in the literature. The most precise classification
distinguishes between pure procedures, observers, and all other procedures.
A procedure is pure if none of its applications generate or depend upon
externally observable side effects. A procedure is an observer as soon as
one of its applications depends on an external side effect, but none of its
applications generate observable side effects. Otherwise, a procedure is
classified as simply a procedure.

In summary, this dissertation makes the following contributions.

• A procedure side-effect analysis that computes observable side effects
for each application context reachable on the stack (Chapter 3).

• A freshness analysis for addresses, variables, and objects (Chapter 4),
extended with escape analysis for increased precision (Chapter 5).
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• A purity analysis for higher-order, imperative programs (Chapters 6
and 9).

10.3 Limitations and Future Work

Despite the fact that our purity analyses for scheme0 and js0 are capable
of determining procedure purity with sufficient precision to be useful in a
number of software engineering scenarios, there is still room for improvement.
We identified the following limitations, primarily concerning the soundness
and precision of our approach. Overcoming these limitations is what we
consider to be future work.

10.3.1 Soundness of Analyses

We empirically demonstrated that the results produced by our implementa-
tions in Chapter 8 and Section 9.6 are sound for a large suite of challenging
benchmark programs. Empirical soundness was established by verifying that
every abstract analysis result subsumes the corresponding concrete result.
We believe that this enables the use of our implementation in a variety of
scenarios that require sufficient confidence in the soundness of the results.
Using the analysis in an optimizing compiler, however, would require a more
thorough soundness proof.

Assuming the flow analysis is sound, we believe that formally proving
soundness of address-based purity analysis (Section 3.4) would present no
major obstacles. This is because effects and address freshness represent
minor additions to the original abstract state-space and semantics of the
flow analysis, respectively.

Proving correctness of concrete scope-based freshness, especially the
object freshness analysis for scheme0 in its current form (Section 4.4.2),
and proving it sound in the abstract semantics, is more challenging future
work.

10.3.2 Precision of Flow Analysis

Evaluation of the implementation of our flow analysis demonstrated low
precision on large benchmark programs that are branch-heavy and contain
many allocation sites. The negative consequences of diminished precision in
both control flow and object allocation amplify each other, resulting in a
graph that has low overall precision.
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Improvements in the precision of the flow analysis would therefore benefit
the purity analysis. Possibilities for achieving this include more elaborate
resource allocation schemes (e.g., different forms of context-sensitivity [Mi-
lanova et al., 2002]), the application of heuristics during flow analysis, and
the development of additional supporting analyses.

10.3.3 Definition of Object Freshness Analysis

Object freshness analysis (Section 4.4.2) was designed as a supporting anal-
ysis for procedure side-effect analysis. However, the analysis for scheme0

attaches variables to application contexts. Therefore its mechanisms for vari-
able lookup and update are necessarily imprecise. This is because variables,
unlike addresses, do not necessarily represent the same resources in different
application contexts on the stack. For soundness reasons, object freshness
analysis uses weak updating for freshness, even in concrete semantics. There-
fore, object freshness analysis does not offer full precision, even when the
underlying flow graph does.

Compared to the object freshness analysis for scheme0, the analysis for
js0 was simplified by no longer tracking object freshness per application
context (Section 9.4). Evaluation of this approach for js0 (Section 9.6) shows
that this simplified object freshness analysis still improves the precision and
also improves the performance of purity analysis.

As future work, we propose to either look into simplifying object freshness
analysis for scheme0 in the same way as it was simplified for js0, or, on
the contrary, make object freshness analysis more precise. Inspiration for
improving object freshness analysis can come from existing flow and escape
analyses that identify or handle stack allocation of variables and escaping of
references. CFA2 [Vardoulakis and Shivers, 2010], for example, is a pushdown
flow analysis for higher-order languages that differentiates between stack and
heap references. The stack in CFA2 is therefore not only a control structure,
but also contains variable bindings. Stack references are looked up in the
top frame, and heap references in the store.

Modifying our object freshness analysis (or the underlying flow analysis)
so that freshness analysis becomes fully precise in the concrete, and evaluating
the impact on precision in the abstract, is an interesting but challenging
avenue for future work.
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10.3.4 Precision of Detecting Observers

The evaluation of our approach made it clear that purity analysis has
difficulty distinguishing pure procedures from observers in larger programs.
Observers are procedures of which at least one application depends on an
external side effect, but none of its applications generate observable side
effects.

Observers are identified by detecting read–write–read sequences on a
particular resource, in which the first and last read must happen by the
same procedure (i.e., the observer). This approach was chosen because in
the concrete, in which flow and effect information has full precision, that
particular sequence provides a close approximation of procedures for which
return values depend on resources other than their direct parameters.

Purity analysis on its own represents the largest part of the overall
running time. Detecting observable write effects is very fast because it
does not involve the detection of a sequence: one observable write effect
suffices for a procedure to be marked as procedure. However, detecting
observers is expensive in terms of running time, and does not result in high
precision. It would therefore be interesting to investigate other ways of
detecting observers, possibly with different tradeoffs between speed and
precision.

10.4 Future Research

In this section, we discuss some future avenues of research, aimed at improv-
ing the applicability of our approach.

10.4.1 Memoization

Memoization is a fundamental optimization technique that avoids recom-
puting previously computed results by storing them in a table from which
they can be looked up, effectively trading in space for time [Acar et al.,
2003]. In the context of programming languages, a typical memoization
target is a procedure call. If calling conditions match previously seen calling
conditions, then execution of the procedure body is skipped and cached
values are returned instead. If memoization is done at the program level (i.e.,
not in the interpreter) and only returned values are cached (but no other
program state), then the memoized procedure must be pure. Although the
goal of memoization is to increase performance, memoization itself introduces
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overhead because it needs to store cached results and requires lookups in
this cache.

A memoization analysis would build upon purity analysis by requiring
procedures that are candidates for memoization to be pure (Chapter 6)
in the strictest sense. Unlike the purity analysis presented in this work,
memoization also has to take fresh resources as return values of procedures
into account. For example, if a procedure returns a fresh pair, and that pair
is cached in the memo table, then the pair is shared between all callers of
the memoized procedure. This is problematic if the pair is subsequently
modified. Our freshness analysis (Chapter 4) could detect this situation. An
additional verification on procedures that do return fresh resources, would
be to disallow subsequent modification of the returned resource. This would
ensure that resources cached as return values are immutable.

Another difficulty for memoization analysis is the common scenario in
which resources are passed as arguments to procedures. Memoization has
to decide under which condition resources are equal. For example, if a pair
is passed as an argument, the memoization algorithm has to decide during
memo lookup whether the argument pair is equivalent to a cached entry.
This can happen by comparing memory locations (eq?) or by recursively
comparing the contents of the pair (eqv? or equal?). We agree with Finifter
et al. [2008] that equivalence of arguments is a parameter of procedure
memoization.

10.4.2 Referential Transparency

Expressions that are referentially transparent can always be replaced by
their value without changing the behavior of the program [Søndergaard
and Sestoft, 1990]. Referentially transparent expressions must be pure, but
additionally should not allocate resources.

Our approach can be extended to including tracking of allocation effects,
so that referential transparency can become a classification of procedures
in our purity analysis that is “above” purity: all referentially transparent
procedures are pure, but the inverse is not necessarily true.

10.4.3 Parallelization

In Nicolay et al. [2011], we describe a program transformation that automat-
ically parallelizes higher-order imperative Scheme programs. The approach
first transforms the input program into administrative normal form. This
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serves two purposes: it introduces many series of nested let expressions that
are the target of the automatic parallelization approach, and it renders the
program in a form that is suitable for dependence analysis by imposing an
order of evaluation.

The key idea is to look at every series of nested let expressions that
appear in a program, and decide where it is possible to evaluate binding
expressions in parallel. The approach must be instantiated with a sound and
sufficiently precise dependence analysis, for dependent expressions cannot
safely be evaluated in parallel. Expression e2 is dependent on expression e1

if e1 is evaluated before e2 and e2 accesses or modifies a resource that was
accessed or modified before by e1.

To generate parallel code, we construct a binding dependency graph that
models the temporal evaluation constraints imposed by the dependencies on
variable binding in a program. This binding dependency graph is a directed,
acyclic graph (DAG) in which each node represents a single variable binding
operation in a nested let.

The implementation of the underlying flow and dependence analysis
in Nicolay et al. [2011] has some limitations. It builds on the finite-state
dependence analysis by Might and Prabhu [2009]. It also does not separately
model the car and cdr fields of a pair, but considers pairs to be a single
resource, which leads to a precision penalty. Similarly, it does not model the
individual elements of a vector.

The approach presented in this dissertation overcomes these shortcomings.
We use a pushdown analysis that offers more precise call/return precision
than a classic finite-state analysis. Our side-effect analysis models the
individual fields of pairs, and the individual elements of a vector (up to
the precision offered by the value lattice). We are confident that the side-
effect analysis we presented in this work is capable of assuming the role of
dependence analysis in techniques for parallelizing Scheme programs.

10.5 Concluding Remarks

We started out this dissertation with the observation that popular imperative
programming languages have adopted higher-order programming, a feature
originating in the functional programming paradigm. Programs written
in these higher-order imperative languages gain some of the same benefits
from higher-order programming as functional languages, such as increased
expressivity and modularity. At the same time, these programs still contain
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side effects, rendering program comprehension and automated verification
more difficult.

To enable higher-order imperative programming to more fully exploit the
advantages of functional programming, we presented a static analysis for
determining side effects and their dynamic extent as precisely as possible,
with the goal of detecting procedure purity.

This dissertation demonstrates that procedure purity can be effectively
approximated statically in higher-order, imperative programs by using an
abstract machines approach.

We implemented a proof-of-concept of our purity analysis for relevant
subsets of both Scheme and JavaScript. Evaluation of our implementation
shows that purity analysis produces correct, sound, and precise results for a
large set of benchmarks.

We also identified a number of limitations in our approach, especially
concerning lower precision in larger programs containing many allocation
sites and conditionals.

Despite the limitations, we believe our side-effect and purity analyses
are a useful contribution to, and a promising foundation for applications in
software engineering.





Appendix A

Notation and Conventions

Disjoint union We use ] to denote disjoint union. If X = Y ] Z, then
Y = X \ Z.

Sequences The notation X = x : X ′ deconstructs a sequence X into its
first element x and the rest X ′. We write 〈〉 for the empty sequence.

Power domain The power domain of set X is denoted as P(X).

Empty function The empty function is denoted as [], and for all inputs
returns the bottom element ⊥ of its range.

Function extension The notation f [x 7→ y] yields a function f ′ such
that:

f ′(z) =

{
y if z = x,
f(z) else.

Function restriction We write the restriction (or narrowing) of a function
f to domain X as f |X, such that (f |X)(x) = f(x) if x ∈ X and (f |X)(x) =

⊥ else.

Function joining Joining of functions happens in a pointwise fashion. If
t is the join operator for the range of the function, then [x 7→ y1] t [x 7→
y2] = [x 7→ y1 t y2]. In particular,

⊔
{[x0 7→ y0], . . . , [xn 7→ yn]} = [x0 7→

y0] t . . . t [xn 7→ yn].
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Function cases When a function is defined using several (numbered)
cases, then it is assumed that the cases are considered in order and do not
fall through.



Appendix B

Abstractions, Lattices, and
Fixpoints

This dissertation presents an approach for detecting side effects in higher-
order programs that is based on an abstract interpretation of those programs.
We present an overview of the necessary background in this appendix.

B.1 Abstractions and Concretizations

Abstraction is the single most important tool of a programmer, and there-
fore every programming language essentially is a collection of abstraction
mechanisms at the disposal of the programmer. Abstraction allows one to
focus on one part of a problem while abstracting away other details.

Value abstractions are often encountered in computing [Schmidt, 2003].
An abstract value “names” or represents one or more concrete values. In
what follows, we denote abstract values with angle brackets that delimit a
set of concrete values (e.g., 〈2, 5〉 represents the set of concrete values 2 and
5), or as a named set (e.g., Int), sometimes with a “hat” (e.g., Înt) to stress
the fact that it is the abstract counterpart of the concrete set under the hat.

Example B.1. If x @ y denotes that y is less precise than x, then 〈2〉 @
〈2, 5〉 @ 〈0..9〉 @ Înt are all abstractions of the number 2.

An abstraction function α maps a set of concrete values to an abstract
value that offers the most precise approximation.

Example B.2. If the set of abstract values for number 2 from Exam-
ple B.1 are the only abstract values available, then α({2}) = 〈2〉 and
α({1, 2, 3, 42}) = Înt .

209
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Conversely, the concretization function γ maps an abstract value to the
set of concrete values it represents.

Example B.3. γ(〈2, 5〉) = {2, 5} and γ(Înt) = {. . . ,−1, 0, 1, . . . }.

When dealing with approximations, the abstraction mapping α introduces
imprecision, as the following example illustrates.

Example B.4. We can have α({2, 5, 6}) = 〈0..9〉 but γ(〈0..9〉) =

{0, 1, . . . , 9}, so that (γ ◦ α)({2, 5, 6}) 6= {2, 5, 6}.

Because {2, 5, 6} ⊆ {0, 1, . . . , 9} we say that α is sound.
While (γ ◦ α) is inexact, it is easy to verify that the inverse (α ◦ γ) never

loses precision.
More formally, if for a set of concrete values X, with P(X) denoting the

power set of X, and its abstract counterpart X̂ we have:

∀c ∈ P(X), a ∈ X̂ : c ⊆ γ(a) ⇐⇒ α(c) v a

then the abstraction is sound. The above relation between X and X̂ is called
a Galois connection.

Abstractions are not limited to values but also extend to operations.
Suppose we have a concrete operation f defined on concrete domain X. f̂ is
a sound abstraction of f if the following holds [Cousot and Cousot, 1992]:

∀x ∈ X : f(x) v γ(f̂(α(x)))

or, equivalently,
∀x̂ ∈ X̂ : α(f(γ(x̂))) v f̂(x̂)

Example B.5. (Sign abstraction) A widely used example is the abstraction
of integers to their sign [Cousot and Cousot, 1977, Might and Shivers, 2008].
The concrete values are the integers Z, while the abstract values are in the
power set of signs Ẑ =P({−, 0,+}). For every z ∈ Z we have

α(z) =


〈−〉 z < 0

〈0〉 z = 0

〈+〉 z > 0
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The addition operator + : Z× Z→ Z abstracts naturally to ⊕ : Ẑ× Ẑ→ Ẑ
following the rule of signs, so that for example:

〈0〉 ⊕ 〈0,+〉 = 〈0,+〉
〈+〉 ⊕ 〈+〉 = 〈+〉
〈+〉 ⊕ 〈−〉 = 〈−, 0,+〉
〈+,−〉 ⊕ 〈0〉 = 〈−,+〉

The abstract execution of 4 + (−4) yields 〈−, 0,+〉, while concrete execution
of 4 + (−4) and then abstracting would yield α(4 + (−4)) = 〈0〉, showing
that abstract interpretation strictly over-approximates. Furthermore, {4 +

(−4)} = {0} ⊆ {−, 0,+} = γ(〈+〉⊕〈−〉) supports the fact that ⊕ is a sound
abstraction of +.

B.2 Lattices and Fixpoints

Our example of abstracting the number 2 in Appendix B.1 uses a very simple
ordered set of abstract values. We now give a mathematical characterization
of the sets involved in abstract interpretation, following Schmidt [2003],
Schwartzbach [2008].

A partial order is a binary relation v over a set P such that for all a, b,
and c in P :

• a v a [reflexive]

• if a v b and b v a then a = b [antisymmetric]

• if a v b and b v c then a v b [transitive]

(P,v) is a partially ordered set (or poset) if P is a set with partial order v.
Let A be a subset of poset (P,v). An element p in P is an upper bound

for A if a v p for every a in A. If p is the smallest among the upper bounds,
then p is the least upper bound or supremum of A (supA). An element p
in P is a lower bound for A if p v a for every a in A. If p is the greatest
among the lower bounds, then p is the greatest lower bound or infimum of
A (inf A).

A join semilattice is a poset in which any two elements a and b have a
unique least upper bound or join, denoted a t b. A meet semilattice is a
poset in which any two elements a and b have a unique greatest lower bound
or meet, denoted a u b. A poset is a lattice if it is both a join semilattice
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and meet semilattice. A lattice (L,v) is bounded if there exists a maximum
element (top or >) and a minimum element (bottom or ⊥) in L such that
for every x in L:

• x v >

• ⊥ v x

In a bounded lattice, ⊥ is the identity element for t, and > is the identity
element for u.

A lattice (L,v) is complete if every subset A of L has both a join (denoted
tA) and a meet (denoted uA) in L. Any finite lattice is trivially a complete
lattice. If (L,v) is a complete lattice, then it is a bounded lattice with:

• > = tL

• ⊥ = uL

Example B.6. The powerset lattice (P(X),⊆) of a set X, with join ∪ and
meet ∩, is a complete lattice with infimum ∅ and supremum X.

A function f : L→ L is order-preserving or monotone if for all x and y
in X we have:

x v y implies f(x) v f(y)

In a complete lattice (L,v), every monotone function f : L→ L has a
unique least fixpoint, denoted lfp(f), such that:

lfp(f) = sup({fn(⊥) | n ∈ N})

This final result is called the Kleene fixpoint theorem.
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Tables

This appendix contains additional tables with results from the evaluation
of purity.rkt. These tables represent the numerical data on which the bar
charts in Chapter 8 are based.

Benchmark Obs a Obs va Obs ova Obs eova
fib 14 6 6 6
purity65 5 2 1 1
purity73 22 17 17 14
purity75 27 12 9 9
treeadd 116 48 45 45
nqueens 125 89 89 89
dderiv 1154 901 901 901
destruc 214 194 194 194
grid 241 190 190 184
matrix 151 145 145 142
fannkuch 260 239 239 238
mceval 32752 32108 32108 32091
scm2java 21129 20713 20713 20713

Table C.1: Impact of scope-based freshness analysis and escape analysis on the
precision of procedure side-effect analysis. Obs represents the number of observable
side-effects for all effects in all application contexts, as computed by procedure
side-effect analysis.
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— a — — eova —
Benchmark No GC GC No GC GC
fib 15 14 6 6
purity65 6 5 1 1
purity73 38 22 14 14
purity75 43 27 9 9
treeadd 141 116 45 45
nqueens 285 125 113 89
dderiv 1621 1154 901 901
destruc 596 214 229 194
grid 297 241 184 184
matrix 484 151 160 142
fannkuch 711 260 262 238
mceval 36230 32752 32939 32091
scm2java 24596 21129 20811 20713

Table C.2: Impact of abstract garbage collection on the precision of procedure side-
effect analysis using two abstract combinations a and eova. No GC represents the
number of observable side-effects for all effects in all application contexts without
abstract garbage collection when determining address freshness; GC represents
the same number but with abstract garbage collection enabled.
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