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Abstract

A Configuration System or Configurator is a software tool that guides users
to specify products by selecting options and preventing conflicts among these
choices. Configuration Systems for complex products such as Cars or Electri-
cal Transformers are usually hard to model and create. First, these products
comprise multiple domains of the concern of different domain experts. In a
car, for instance, there are subsystems for the motor, the power train, the sen-
sors for the car periphery, and the lighting. Second, these domains very often
have interactions among them, e.g., modern lighting such as the automated
leveled lights and the adaptive cornering lights of cars require specialized sen-
sors. Third, which features in each domain must be present or not may be
determined by standards and regulations that vary from one country to the
other. For instance, the mentioned automated leveled lights are required in all
the new cars in Europe but required only in cars equipped with high intensity
headlights in the USA. Finally, these domains and standards may be shared
across multiple product families. Trying to use a single model that represents
all the domains, standards and families results in a model with a large number
of elements, that is consequently, hard to create, process, and maintain.

Feature-based Configuration uses Feature Models to represent the configu-
ration options and constraints. Feature models have been found easy to under-
stand by non-technical users and easy to analyze using automated tools and
solvers. A complex product may be modeled using a single feature model for
all the domains, or a different model for each domain and concern. There are
several operations to process and merge these models when multiple models
are used. Regretfully, these approaches and operations aim to support (al-
most) orthogonal feature models that represent different domains, even in the
presence of complex interactions, but are not intended to support crosscutting
concerns such as feature models representing standards and regulations com-
prising mainly constraints on features that already exist in the other domains.

This dissertation aims to overcome some limitations of the existing ap-
proaches for modeling and creating configuration systems in the presence of
multiple domains and standards:

Modeling: First, we propose an approach where the diverse domains and
standards are modeled using multiple artifacts: feature models for each
domain, constraint sets representing the interactions among the domains,
and feature models for the standards.
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ii Abstract

A standard may restrict which features can be selected or not in the other
domains, can define valid combinations of features and specify concrete
feature values. Using a different feature model, each standard can be mod-
eled by experts on the standard using the easy-to-understand structure of
the model instead of a set of constraints. We have defined a systematic
process to create and review the models with different experts. These
models can be reused and combined to support diverse product families.

Model Processing: Second, we propose a new set of operations for feature
models mainly aimed to combine feature models for domains and for stan-
dards. Considering that standards are crosscutting concerns that can be
enforced or not depending on the customer requirements, we define op-
erations for Conditional Intersection Merge, that can enforce a standard
only when it is selected, and for Partial Conditional Intersection Merge,
that can enforce only the part of a standard related to a domain. We
define an operation for Combination that performs multiple operations to
combine properly the diverse models for the domains and the standards
of a product family.

Configuration Systems Derivation: Third, we propose a strategy to de-
rive Configuration Systems. Our approach comprises, on one hand, a set
of automated model transformations that takes feature models of a prod-
uct family and specifications of the desired user interface to produce the
corresponding configuration system. On the other hand, it comprises a
set of runtime components that processes the user decisions and updates
the user interface consequently. In contrast to other proposals, our user-
decision processor exploits the previous decisions of the user to perform
tasks such as undoing and changing decisions more efficiently.

Experimental Implementation: In addition, we build a complete imple-
mentation of tools that: (1) help users to combine the models and analyze
the feature models for domains and standards, (2) derive automatically
configuration systems from those models, and (3) process decisions during
the configuration process.

Finally, we have applied our approach in an industrial case study. We
worked in a joint research project between Siemens Colombia and Universidad
de los Andes to model and create multiple configuration systems for Electrical
Transformers using our approach and tools.

The main contributions of this dissertation are: (1) An approach to model
features of products involving multiple technical domains and standards, (2) a
set of automated operations to combine multiple models representing diverse
domains and standards, (3) a model-driven approach to derive configuration
systems from these models, (4) a complete implementation of all the tech-
niques we propose, and (5) a case study on modeling Configuration Options of
Electrical Transformers.

Keywords: Configuration Systems, Variability Management, Feature Models,
Model-driven engineering.



Samenvatting

Een Configuratiesysteem of Configurator is een software tool dat gebruik-
ers helpt om producten te specifiëren door opties te selecteren en daarbij con-
flicten tussen gemaakte keuzes te vermijden. Configuratiesystemen voor com-
plexe producten zoals auto’s of transformatoren zijn doorgaans zeer moeilijk
te modelleren en creëren. Vooreerst bestrijken deze producten in het algemeen
meerdere domeinen waarvan de bekommernissen typisch door verschillende
domein experten worden afgedekt. In een auto bijvoorbeeld zijn er subsystemen
voor de motor, de aandrijving, de omgevingssensoren, de verlichtingssystemen,
etc. Daarnaast interageren deze domeinen dikwijls. Bijvoorbeeld moderne ko-
plampen die zichzelf automatisch uitlijnen of meedraaide hoeklichten vereisen
dat gespecialiseerde sensoren aanwezig zijn. Daarbovenop kunnen standaar-
den en regelgeving, die van land tot land kunnen verschillen, verplichtingen of
beperkingen opleggen aan welke opties aanwezig moeten of kunnen zijn. Bi-
jvoorbeeld de zelf-uitlijnende koplampen zijn binnen Europa verplicht op alle
nieuwe wagens terwijl ze in de USA maar verplicht zijn als de wagen is uitgerust
met lampen met hoge intensiteit. En tenslotte moeten deze domeinen en stan-
daarden kunnen gedeeld worden over verschillende productfamilies. Proberen
om al deze domeinen, standaarden en productfamilies te vatten in één enkel
model leidt onvermijdelijk tot een model met zeer veel elementen en relaties
dat moeilijk te maken is, moeilijk te verwerken is en moeilijk te onderhouden
is.

Kenmerk-gebaseerde Configuratie gebruikt Kenmerk Modellen (Engels: Fea-
ture Models) om alle configuratie opties en beperkingen te representeren. Van
deze modellen wordt vooropgesteld dat ze gemakkelijk te begrijpen zijn door
niet-technische gebruikers en dat ze daarnaast ook een goede basis vormen voor
geautomatiseerde analyse en verwerking. Een complex product kan gemod-
elleerd worden door één enkel model dat alle deeldomeinen afdekt of door een
aantal verschillende modellen voor elk deeldomein of bekommernis. Wanneer
verschillende modellen worden gebruikt zijn er een aantal operatoren nodig om
deze modellen met elkaar te integreren. De benaderingen en operatoren die op
dit moment worden voorgesteld in het gerelateerd onderzoek veronderstellen
dat de verschillende modellen quasi orthogonale deeldomeinen representeren,
zelfs indien er complexe interacties tussen de deelmodellen aanwezig zijn. Zij
schieten tekort wanneer elkaar doorkruisende modellen moeten gecombineerd
worden zoals bijvoorbeeld de modellen die standaarden voorstellen en die typ-
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iv Samenvatting

isch beperkingen opleggen aan de elementen die al voorkomen in de domein
modellen.

Ons onderzoek heeft als doel om limitaties van bestaande benaderingen om,
in de aanwezigheid van meerdere domeinen en meerdere standaarden, configu-
ratiesystemen te modelleren en te creëren weg te werken.

Modelleren: We stellen een benadering voor waar de diverse domeinen en
standaarden gemodelleerd worden door meerdere artefacten:
domein-specifieke kenmerk modellen voor elk technisch deeldomein, con-
straint sets om interacties tussen verschillende technische domeinen te vat-
ten, en standaard-specifieke kenmerk modellen. Een standaard kan ver-
plichtingen of beperkingen opleggen aan welke kenmerken uit technische
domeinen wel of niet kunnen geselecteerd worden, hoe ze mogen gecom-
bineerd worden, of welke concrete waarden sommige kenmerken moeten
aannemen. Anders dan een domein-specifiek model zal een standaard-
specifiek model daarom typisch model elementen uit de andere domein-
modellen hergebruiken. Ook voor standaarden stellen we voor om per
standaard een apart model te gebruiken dat beheerd wordt door een ex-
pert ter zake. Het model neemt ook de vorm aan van een weliswaar
specifiek type van kenmerk model en is daardoor ook makkelijk te begri-
jpen voor die expert. We hebben een systematisch proces gedefinieerd om
de modellen te maken, inclusief stappen om ze te valideren met meerdere
experten. De modellen kunnen dan hergebruikt en gecombineerd worden
om meerdere productfamilies voor te stellen.

Modellen verwerken: We stellen een aantal nieuwe operatoren voor op ken-
merk modellen, in het bijzonder om domein-specifieke en
standaard-specifieke modellen te combineren. Gezien standaarden doorsni-
jdende bekommernissen zijn die wel of niet moeten afgedwongen worden
afhankelijk van de gebruikerseisen of de regelgeving van toepassing in het
land waar het product zal in gebruik genomen worden zijn speciale op-
eratoren nodig. We definiëren Conditional Intersection Merge, om een
standaard af te dwingen als hij geselecteerd wordt en Partial Conditional
Intersection Merge, om alleen dat deel van een standaard af te dwingen
dat van toepassing is op een gekozen deeldomein. We definiëren daarnaast
een algemene Combination operatie die onze nieuwe operatoren combi-
neert met gekende operatoren om de diverse domein-specifiek modellen
en standard-specifieke modellen voor een productfamilie samen te stellen.

Configuratie systemen afleiden: We ontwikkelen een model-gedreven be-
nadering om van een set van domein- en standard-specifieke kenmerk
modellen automatisch een configuratie systeem af te leiden. Deze be-
nadering behelst, aan de ene kant, model-transformaties die alle modellen
voor een productfamilie en een specificatie van gebruikersinterface compo-
nenten vertalen naar een corresponderend configuratie systeem. Aan de
andere kant worden een aantal run-time componenten ingezet om keuzes
van de gebruiker te verwerken en de gebruikersinterface overeenkomstig
aan te passen. In tegenstelling tot gerelateerd onderzoek kunnen onze run-
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time componenten taken zoals het ongedaan maken of veranderen van een
keuze meer efficiënt aanpakken.

Experimentele implementatie: We bouwden complete implementaties voor
tools die (1) gebruikers helpen om domein- en standaard-specifieke ken-
merk modellen te combineren en te n=analyseren, (2) automatisch con-
figuratie systemen af te leiden van deze modellen, en (3) gedurende een
configuratieproces beslissingen en keuzes te verwerken,

We hebben ons onderzoek toegepast in een industriële gevalstudie. In een
gemeenschappelijk onderzoeksproject tussen Siemens Columbia en de Univer-
sidad de los Andes werden met onze benadering en onze tools meerdere config-
uratie systemen voor elektrische transformatoren gerealiseerd.

De belangrijkste bijdragen van ons onderzoek zijn: (1) Een benadering om
kenmerken van complexe producten waarin meerdere domeinen en standaarden
een rol spelen te modelleren met kenmerk modellen (2) Een aantal operatoren
om die diverse kenmerk modellen te combineren (3) Een model-gedreven be-
nadering om configuratie systemen automatisch uit deze modellen af te leiden
(4) Een volledige implementatie van alle voorgestelde technieken (5) Een reële
wereld, industriële gevalstudie rond de configuratie van elektrische transforma-
toren

Sleutelwoorden: Configuratie Systemen, Variabiliteit Management, Kenmerk
Modellen, Model-gedreven Engineering





Resumen

Un Sistema de Configuración es una herramienta de software que gúıa a los
usuarios en la especificación de productos, permitiéndoles seleccionar opciones
y previniendo conflictos entre las escogencias. Los Configuradores para produc-
tos complejos como carros o transformadores eléctricos son usualmente muy
dif́ıciles de modelar y crear. Primero, estos productos comprenden múltiples
dominios de interés para distintos expertos de dominio. En un carro, por ejem-
plo, hay subsistemas para el motor, la transmisión, los sensores periféricos del
carro, y las luces. Segundo, estos dominios muy frecuentemente tienen interac-
ciones entre ellos. Por ejemplo, en un carro, modernos sistemas de luces como
los sistemas de nivelación de luz automática o las luces que giran a medida que
el carro da vuelta, requieren sensores especializados. Tercero, estándares y reg-
ulaciones que vaŕıan de páıs a otro pueden definir cuáles de estas caracteŕısticas
deben estar o no. Por ejemplo, los sistemas para nivelar luces automáticamente
son requeridos en todos los carros nuevos en Europa, pero requeridos solo en
los carros equipados con lámparas de alta intensidad en Estados Unidos. Final-
mente, estos dominios y estándares pueden ser compartidos a través de varias
familias de productos. Tratar de utilizar un único modelo que represente todos
los dominios, estándares y familias resulta en un gran modelo con una gran
cantidad de elementes, consecuentemente, este es dif́ıcil de crear, procesar y
mantener.

La Configuración basada en caracteŕısticas usa modelos de caracteŕısticas
para representar las opciones y las restricciones de configuración. Los modelos
de caracteŕısticas son fáciles de entender por usuarios no técnicos y fáciles de
analizar usando herramientas automáticas y solvers. Un producto complejo
puede ser modelado utilizando un único modelo de caracteŕısticas para todos
los dominios o un modelo diferente para cada dominio. Existen operaciones
para procesar y fusionar estos modelos. Infortunadamente, estos enfoques y
operaciones presuponen que los dominios son ortogonales. Estos enfoques no
soportan preocupaciones transversales como los modelos de caracteŕısticas que
representan los estándares y regulaciones, que incluyen principalmente restric-
ciones que involucran caracteŕısticas presentes en los otros dominios.

Esta disertación pretende superar estas limitaciones de los enfoques ex-
istentes para modelar y crear sistemas de configuración en la presencia de
múltiples dominios y estándares:
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Modelamiento: En primer lugar, proponemos un enfoque en el que los di-
versos dominios y estándares se modelan usando múltiples artefactos:
modelos de caracteŕıstica para representar cada dominio, modelos rep-
resentando cada estándar y conjuntos de restricciones que representan las
interacciones entre los dominios. Un estándar puede restringir qué car-
acteŕısticas pueden ser seleccionadas o no en otro dominio, puede definir
combinaciones válidas de caracteŕısticas y especificar valores espećıficos de
las caracteŕısticas. Utilizando un modelo de caracteŕısticas diferente, cada
estándar puede ser modelado por expertos en la norma tomando ventaja
de la estructura del modelo, que es de fácil comprensión, en vez de modelar
solo restricciones. Hemos definido un proceso sistemático para crear los
modelos, incluyendo pasos para revisarlos con diferentes expertos. Estos
modelos pueden ser reutilizados y combinados para crear diversas familias
de productos.

Procesamiento de los modelos: En segundo lugar, proponemos un nuevo
conjunto de operaciones sobre los modelos de caracteŕısticas principal-
mente destinadas para combinar modelos de dominio y estándares. Con-
siderando que las normas son preocupaciones transversales que pueden
ser impuestas o no dependiendo de los requisitos del cliente y de las reg-
ulaciones nacionales en los que se van a desplegar los productos, defini-
mos operaciones que permiten fusionar los modelos de manera condicional
(Conditional Intersection Merge) para obligar a que se cumpla el estándar
cuando éste es seleccionado o la operación de fusión condicional parcial
(Partial Conditional Intersection Merge) para obligar el estándar en algún
dominio particular. Definimos una operación de Combinación que realiza
múltiples operaciones como la reducción de la agregación de productos
y la combinación de intersecciones condicionales parciales para combinar
adecuadamente los diversos modelos espećıficos de dominio y de estándar
de una familia de productos.

Derivación de un Sistema de Configuración: En tercer lugar, también pro-
ponemos una estrategia para derivar Sistemas de Configuración. Nuestro
enfoque abarca, por un lado, un conjunto de transformaciones de mode-
los automatizadas que toma modelos de caracteŕısticas de una familia de
productos y unas especificaciones de la interfaz de usuario deseada, para
producir el sistema de configuración correspondiente. Por otra parte, com-
prende un conjunto de componentes en tiempo de ejecución que procesa
las decisiones del usuario y actualiza la interfaz de manera consecuente.
En contraste con otras propuestas, nuestro procesador de decisiones de
usuario utiliza las decisiones anteriores del usuario para realizar tareas
tales como deshacer y cambiar decisiones de manera más eficiente.

Implementación Experimental: Además, construimos una implementación
completa de herramientas que: (1) ayudan a los usuarios a combinar los
modelos y analizar los modelos de caracteŕısticas tanto de dominio como
de estándar, (2) derivan de manera automática Sistemas de configuración
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de esos modelos, y (3) procesan las decisiones del usuario durante el pro-
ceso de configuración.

Finalmente, hemos aplicado nuestro enfoque en un estudio de caso indus-
trial. Trabajamos en un proyecto conjunto de investigación entre Siemens
Colombia y la Universidad de los Andes para modelar y crear múltiples sistemas
de configuración para Transformadores Eléctricos utilizando nuestro enfoque y
herramientas.

Las principales contribuciones de esta tesis son: (1) un enfoque para mod-
elar caracteŕısticas de productos que involucran múltiples dominios técnicos
y estándares, (2) un conjunto de operaciones automatizadas para combinar
múltiples modelos que representan caracteŕısticas en diversos dominios y
estándares, (3) un enfoque basado en modelos para derivar sistemas de config-
uración a partir de estos modelos, (4) una implementación completa de todas
las técnicas que proponemos, y (5) un caso de estudio sobre el modelamiento
de las caracteŕısticas de Transformadores Eléctricos.

Palabras clave: Sistemas de Configuración, Gestión de la Variabilidad, Modelos
de Caracteŕısticas, Ingenieŕıa Basada en Modelos.
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Chapter 1

Introduction

1.1 Feature-based Configuration Systems

Configuration Systems (or Configurators) are used in industries such as auto-
motive, electronics and furniture to allow sellers and clients to customize the
products according to their needs and expectations[47].

Companies such as Renault1 and Audi2 provide Web-based Configurators
where customers can customize a vehicle before purchase. Figure 1.1 shows
a screenshot of the Audi Configurator. The software captures user decisions
and validates if the Product Configuration (i.e., the set of selected features)
satisfies already defined constraints about which features can be included in
the same product. When a user decides that a configuration complying with the
constraints is complete, usually she can request for the corresponding product.
Depending on the company, the product is then manufactured, assembled and
delivered according the the specifications of the client.

Figure 1.1: Screenshots of the Audi web configurator

1https://www.renault.co.uk/vehicles/configure.html
2http://configurator.audi.co.uk/

1

https://www.renault.co.uk/vehicles/configure.html
http://configurator.audi.co.uk/
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In Feature-based configuration, configuration options and constraints are
specified using Feature Models [19][67]. These models represent products as a
hierarchy of features whose selection is ruled by constraints. They have been
found easy to understand by non-technical users [80] and easy to analyse using
automated tools and solvers [87][92].

Figure 1.2: Example Feature Model of a Car [38]

For instance, Figure 1.2 shows a Feature Model representing a Car [38].
It comprises a tree where the root is the concept, i.e., the element to config-
ure, and the branches and leaves are features, i.e., user-selectable options. The
model includes mandatory features, such as the Body and the Engine, that
are represented using a filled circle on top, and optional features such as the
keyless-entry and the power-locks, represented using a hollow circle. The fea-
ture Engine is an or-group including Electric and Gas engines. That means
that a user can select only one or both. In contrast, the feature Gear is an
alternative group. Thus, a user can select either manual- or automatic-gear but
not both. Finally, the feature model includes an cross-tree constraint at the
bottom indicating that the feature keyless-entry requires the feature power-
locks. If a user selects the first, the software must select automatically the
other if the user has not selected it yet.

Although there are many proposals aimed to help, creating Feature-based
Configuration Systems remains as a challenge. This is specially true for com-
panies manufacturing multiple families of products in different countries that
require configuration systems considering multiple domains and diverse stan-
dards and regulations. In such systems, the required Feature Models become
large and hard to create and maintain. In addition, these companies may re-
quire multiple Configuration Systems, each one targeting a different market or
product line. It is not easy (1) to create and manage the diverse models for the
different domains and regulations, neither (2) to determine which subset of fea-
tures must be used for each configuration system to develop the corresponding
software.

Our work is focused on creating Feature-based Configuration Systems in
presence of multiple domains and regulations. Next section presents first some
concepts we use in all this document and then introduces the challenges we
want to tackle.
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1.1.1 A Motivation Case: Feature-based Configuration for
Cars

It is well known that creating the Feature Models for Configuration Systems
in the automotive industry is not easy because the complexity of the prod-
ucts [26][50][145]:

Multiple domains: First, cars are complex products where multiple systems
co-exist. A typical car may include more than 300 different subsys-
tems [50]. A correctly configured car implies a lot of correctly defined
elements such as its engine, its power train and its set of electronic con-
trol components. In addition, a single component, such as one of the
“Electronic Control Units (ECU)” of a car, may be instantiated in more
than 10.000 different ways [106]. A typical car network, with more than
50 ECUs, may be instantiated in millions of different configurations. It
is practically impossible for a single person to model the configuration
options for all the car. The configuration options belongs to different
technical domains that must be specified by different domain experts.

Multiple domain interactions: Second, although there are many subsys-
tems, these subsystems are not fully independent one of the others. Some
features require complex interactions among completely different subsys-
tem. For instance, including a “park assistant” in a car requires the
presence of a sensor to measure the relative position of the car to the
parking space [50]. On some cars this sensor is a camera while on others
it may be a sonar detector. Park assist also requires brakes that accept
software control, and may require particular versions of steering controls.
Modeling (and designing) these complex features requires the coordina-
tion of the groups that are responsible of the involved subsystems.

Multiple standards and regulations: Third, complex products usually must
comply with diverse standards and regulations around the world. For in-
stance, “Daytime Running Lights” are required equipment in Canada,
Norway, and Sweden, prohibited in Japan and China and optional in the
United States, Europe, Australia, and the rest of the world [50]. In the
“Headlamps”, the “low-beams (or dipped-beams)” that are standard in
USA do not comply the regulations of Europe [56]. There are so many
differences in the regulations for elements such as high beams, brake
lamps and fog lamps that impede to produce a single type of lighting
for all the countries [56]. The configuration options for a car must be
constrained by the specific regulations imposed by the country where the
product will be sold. If the modelers create separate feature model for
each country considering only the product options and the regulations
that apply, the resulting models will include redundancies and may lead
to inconsistencies [29][113].
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Multiple product lines: Finally, these industries define multiple product lines
sharing components among them. For instance, these companies usually
define technological platforms to support multiple families of products.
The Volkswagen A series platform is used in models such as the Audi
A3, Audi Q3, VW Golf, VW Jetta, SEAT León and SEAT Toledo [73].
Although the platform itself has a definition of all its configuration alter-
natives, creating a configuration system for one of its car families require
to define the specific subset of options that must be considered.

The intrinsic complexity of the cars introduces, at least, two sets of chal-
lenges: On one hand, challenges about how to create, review and analyse fea-
ture models that represent the diverse domains, domain interactions, regula-
tions and product lines. On the other hand, challenges about how to specify
and create configuration systems based on that models.

1.1.2 Challenges Modeling multiple Domains

Given the complexity of the cars, creating the corresponding models is not an
easy task [50][105]. A typical process involves multiple technical domains and
domain experts [105]. In addition, the proliferation of standards and regula-
tions introduce new complexities. We will describe here challenges of modeling
multiple domains using the existing approaches.

Many authors have proposed techniques and strategies to create and struc-
ture the corresponding feature models. According to a recent study from Oli-
inyk et al. [104][105], these proposals can be classified into two categories:

1. Proposals using Monolithic Feature Models, that use a single feature
model to represent all the products, and

2. Proposals using Multiple Feature Models, that use multiple feature models
to represent the product. These proposals are known as Modular Feature
Models, when the models are used to represent just one family of products,
or Multiple Product Lines, when some feature models represent parts and
subsystems that can be reused in multiple product lines.

Monolithic Feature Models. Historically, the first proposals tried to create
a single feature model representing the whole system [80][37]. The resulting
feature model is typically organized in multiple abstraction levels. For instance,
it may include a level including features representing customer features, another
level with subsystem features and another level with component functions. The
feature model included traceability links and constraints relating the features
in the diverse levels.

Regretfully, creating a single feature model for complex products such as a
car is not easy. Several studies have identified many problems related to use
a single feature model [26][105][111]. First, the resulting feature model is hard
to review. A feature model for a car may include thousands of features and
constraints. Although there are means to automatically detect errors [19], it is
necessary that the modelers review the models to determine if they represent
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the features and constraints of the real products. This semantic quality of the
models cannot be analysed without human review. Second, features cannot be
reused. If a feature (or a set) is required multiple times or can be applied for
other product lines, the feature should be duplicated [105]. This creates unnec-
essary complexity; the resulting model turns hard to maintain and understand.
And third, there is not any mechanism for separating concerns, complicating
the division of the work [67][105]. Any modification of any user may affect the
features that are of the concern of other users. A user modifying some part
of the model may introduce an error or inconsistencies on other parts of the
model without notice it.

Modular Feature Models More recently, other approaches aim to create
multiple feature models to represent complex products [58][67][111][120]. Each
model represents a different subsystem or a different concern [67]. Additional
models can be used to capture the variability in the context [58], e.g., to repre-
sent the multiple standards that may apply. In these approaches, relationships
between features may be used to represent constraints and dependencies in-
volving diverse concerns and standards. As a result, the models are smaller
and easier to review, debug and reuse.

1.1.3 Challenges Modeling Standards and Regulations

Monolithic Feature Models. The challenges mentioned above using a sin-
gle feature model are exacerbated by including standards and regulations in
the monolithic model. For instance, despite recent efforts of many govern-
ments, car regulations may be quite different across the world. Almost all
of the countries have different norms that must be considered. Modeling all
the standards in the same model implies including a lot of features and con-
straints. Consequently, the models are even harder to review and debug. In
addition, considering that many regulations may be similar among them, some
constraints may result being repeated many times. Modellers creating or up-
dating a standard may alter inadvertently other standards. Finally, using a
single model impedes that experts on each standard may specify the corre-
sponding constraints independently of the other domains and standards for
the product.

Modular Feature Models Modelling the standards and regulations with
multiple feature models may be challenging as well. The standards constitute
cross-cutting concerns that affect features in more than one technical domain.
A single regulation may restrict features in domains such as the lighting, i.e., by
prohibiting a type of lamp, and in the Car Periphery System, i.e., by enforcing
the installation of some type of parking or driving sensors or applications.
Trying to model the standard using models for each domain may result in a
large number of rules scattered in all the models.

Recently, Hartmann et al. [58] modeled standards in an independent feature
model for context variability. This model represents parameters that are global
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for the whole system and take their value according to the type of customer
or the market to which the products are targeted. It may include information
of which standards and regulations can be enforced in a product line. Regret-
fully, this approach has its drawbacks too. First, the resulting model includes
all the related standards and difficults the division of the work among multiple
experts. Second, the model may result with a lot of constraints relating stan-
dards with features in diverse feature models, making it hard to review and
debug. And finally, during the modeling of the standard, it is possible that
modelers introduce rules that contradict the constraints defined in the other
feature models.

1.1.4 Challenges Creating the Configuration Systems

Car companies such as Audi and Renault build multiple configuration systems.
For instance, they have a different web-based software for Europe than for USA.
The car models and configuration options in each system are different.

To create multiple configuration systems, companies may opt for one of
two alternatives: On one hand, they could create a different feature model for
each system. However, this approach result in models including redundancies
that may lead to inconsistencies [29][113]. On the other hand, they could
define feature models representing all the products and specify a subset of these
models for each configuration system [66]. Regretfully, this approach is not easy
either. Once selected which features to include in a configuration system, it
is necessary to review that the subset of the models represent correctly the
products that must support. In addition, if the feature models changes, it is
necessary to update the subset of features and the corresponding configuration
accordingly. Existing software tools for managing feature models offer limited
support for these activities.

1.1.5 Our Case Study: Feature-based Configuration for
Electrical Transformers

Problems creating Feature Models and Configuration Systems are not exclusive
to the Automotive Industry. Part of our research was performed in a joint
research project between Siemens Colombia and Universidad de los Andes [32].
Our work was focused on modeling and creating configuration systems for
Electrical Transformers, complex products that must comply with different
standards and regulations across the world. As with the car example, we must
dealt with multiple domains, multiple standards and multiple configuration
systems.

Models for multiple domains are hard to build and review In our ex-
perience, creating a single model for complex products such as Electri-
cal Transformers is tough [32]. Mainly, the domain experts were over-
whelmed by the number of domains, features and constraints. For in-
stance, defining a single structure of the features is not easy because each
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expert may conceive the product using a different point of view and tak-
ing in account different concerns. In addition, during the development of
the models, sometimes experts may not understand why some features
are deactivated after a user select others. They spend time trying to
understand how some features affect the others by looking not only for
the constraints that they defined, but also the constraints defined by the
other experts. Furthermore, if they find a constraint that causes a un-
desired behaviour, sometimes they do not recognize if the constraint is
imposed by the technical domain, by the inter-domain interactions or by
some country- or client-specific standard.

Standards impose a lot of constraints to all the domains Electrical
Transformers must comply with a large variety of standards. Each power
transmission and distribution network owner may define its own set of
standard specifications for transformers. Currently, almost all the coun-
tries have different standards (e.g., IEEE Std C57.12 [72] is the standard
in USA, IEC 60076 [71] applies in Europe and ICONTEC NTC 819 [69]
in Colombia). Additionally, private portions of the networks created by
industries can also define their own standards (e.g., Ecopetrol, the oil
company from Colombia, has its own standards). Each of these stan-
dards imposes constraints such as enforcing some values for voltage or
prohibiting some components or accessories in all the other techical do-
mains. In addition, a single standard may apply to different types of
transformers (e.g., the NEMA TR-1 [98] applies to pole-mounted, pad-
mounted and many other types of transformers). Trying to create and
maintain all these constraints turn the models into artifacts hard to re-
view and maintain.

Specifying multiple Configuration Systems is not easy Siemens Colom-
bia wants to create different systems for specific markets and product
lines. For instance, they are trying to use different systems for each type
of transformer in each country. The software to configure a medium-size
transformer in Colombia may be different to the one used for transformers
with the same size in North America. In addition, it is possible that the
software that uses a customer in the company’s website is different than
the software used by engineers or specialized sellers. When the engineers
in Siemens tried to create the configuration systems using a single model,
they ended with systems where a lot of features in the model are not rel-
evant. When they tried to create multiple models, they ended with a lot
of models with redundant, and possible inconsistent, features and con-
straints. It was not easy to specify and maintain the diverse configuration
systems they were interested in.
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1.2 Regulations as a special case of external constraints

Above mentioned challenges to create configuration systems are not exclusive
to products involving standards and regulations. In our experience, technical
domains of a product are defined internally by the companies while standards
and regulations are defined by external organizations. Basically, these regu-
lations impose additional constraints to the products of the companies. We
consider standards as a special case of externally defined constraints.

We consider that the challenges found working with standards and regula-
tions are also present in externally defined constraints with three distinctive
characteristics:

Introduce additional constraints Standards and regulations may enforce
or prohibit features, components and configurations of products in ways
not considered in the original design. Intuitively, these regulations enforce
restrictions not imposed by the company or the designers of the product.
It is very likely that a product may be built being not compliant to the
standard.

Reuse the product vocabulary Instead of introducing new elements to the
product, standards and regulations reuse the vocabulary (i.e., reuse the
elements of the product design) to add new constraints.

Are Cross-cutting concerns These constraints affect many, if not all, the
technical domains of the product. In addition, it is possible that affect
many families of products as well. Considering that a company may
have multiple configuration systems, an externally defined constraint may
affect the options of more than one of these systems. In fact, it is possible
that (1) only a subset of the options of a configuration system is affected,
or (2) only a subset of the constraints affects a specific configuration
system.

In addition to standards and regulations, there are other examples of ex-
ternally defined constraints where above mentioned challenges must be tackled
to create the corresponding feature models and configuration systems:

• Customer-defined policies and regulations. There are customers
that impose restrictions to the products they acquire or integrate to their
systems. For instance, telecommunication companies and data-centers
usually define rules for the products they install in their infrastructure.
Companies manufacturing these products must consider not only the con-
straints imposed internally by their design but also the constraints defined
by these customers.
• Local Factory and provider limitations. Companies manufacturing

the same products in multiple factories and countries, are usually affected
by their local limitations. It is possible that some components are not
available or are too expensive. Companies may represent these limitations
as externally defined constraints not included in the product design nor
its technical domains.
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1.3 Problem Statement

To tackle the complexity of creating feature models and configuration systems,
this thesis addresses three research questions that remain as a challenge despite
the related work. Several of these questions are refined in the next chapters as
we delve in each problem:

RQ1 How to model the features of multiple technical domains and externally
defined constraints such as standards and regulations in a way that they
can be later used to produce configuration systems for different product
lines?

RQ2 How to process automatically models representing multiple domains and
externally defined standards and regulations to combine them, detect po-
tential errors and simplify the resulting combined model?

RQ3 How to process automatically these models representing multiple domains
and externally defined standards and regulations and derive corresponding
Configuration Systems that can process user decisions and update the user
interface consequently?

1.4 Contributions

The main contribution of this thesis is a comprehensive approach to model,
build and evolve feature-based configuration systems that involve multiple
stakeholders, multiple domains and multiple standards and regulations. Specif-
ically, it consists of:

C1 An approach to model features of products involving multiple technical
domains and standards. We extend existing approaches by using multiple
feature models and constraints among feature models. Instead of creating
a single feature model, domain experts create a model for each domain
standard and regulation independently. Interactions among the domains
are represented using sets of constraints among the corresponding feature
models. The experts may analyse and test these models by combining
them. We propose an iterative process to specify all the options for the
configuration system by creating, combining and testing models of the
domains and standards.

C2 An automated process to combine multiple models representing features
in diverse multiple domains and standards. These models represent, on
one hand, configuration options and constraints defined by the techni-
cal properties and designs of the products, and on the other hand, con-
straints imposed by organizations for standardization and governments.
Engineers interested on creating configuration systems must be able to
combine them in different arrangements according to the product family
to configure and the market where the products will be sold. We propose
a set of automated operations to analyze and merge such models.
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C3 An automated approach to derive configuration systems from models rep-
resenting multiple technical domains and standards. Considering that
companies are interested on creating Configuration Systems for specific
markets and countries, it is important to produce the software based on
the correct combination of models. We propose a model-driven approach
where feature models are used to generate the software components that
interact with the user during the configuration process. It comprises a
set of runtime components that processes the user decisions and updates
the user interface consequently.

C4 A case study on modeling Configuration Options of Electrical Transform-
ers. We have developed part of our approach in a two-years research
project aimed to create configuration systems for Electrical Transform-
ers to be sold in diverse countries of North, Central and South America.
Our experience in that project was used to improve, test and validate
our approach. We present here a report of our experience including some
lesson learned during the process.

C5 A complete implementation of all the techniques we propose. We have
developed the FaMoSA toolset, a set of software tools to (1) model, test
and analyze models representing multiple domains and standards (2) an-
alyze and test these models (3) combine these models according to the
intended configuration process, and (4) derive automated configuration
systems that stakeholders can use to decide and select features for a
product.

1.5 Organization of the Document

This thesis document is organized in four parts. There is an Introduction, a
part describing the State of The Art, other part describing our Proposal and
a final part with the Conclusions. The Figure 1.3 shows the structure and
chapters.
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Introduction Ch 1 Introduction

State of the Art Ch 2 Background

Ch 3 Related Work

Our Approach

Ch 4 Modeling Features of multiple Domains and
Standards

Ch 5 Weaving Feature Models representing
multiple Domains and Standards

Ch 6 Deriving Configuration Systems from Models
representing multiple Domains and Standards

Ch 7 Experimental Implementation

Ch 8 Case Study: Modeling Configuration Options of Elec-

trical TransformersConclusions Ch 9 Conclusions

Figure 1.3: Structure of the Document

In the State of the Art, Chapter 2 presents a background on Feature-based
Configuration. It describes the Feature Models, the Automated Analysis and
Merging of these types of models, and the use of these models as a foundation
for the Configuration Systems. Chapter 3 describes related work on Feature
Models and Feature-based Configuration Systems involving multiple domains
and standards.

Our Approach is presented in five chapters. Chapter 4 discusses our ap-
proach to model multiple domains and standards, Chapter 5 discusses the
automated combination of these models, Chapter 6 the automated derivation
to produce configuration systems and the strategy to process user decisions.
Chapter 7 the experimental implementation that supports the approach, and
Chapter 8 presents a case study on modeling configuration options for Electrical
Transformers.

The final part presents the Conclusions of this thesis. Chapter 9 includes
a discussion of our work and considers future work.





Chapter 2

Background

Configuration Systems can be found in a large number of industries in dif-
ferent forms. For instance, in 2015, researchers of the Configurator Database
Project [23] reviewed 1050 different web-based configuration systems in 16 dif-
ferent industries. Companies selling products such as musical instruments,
footwear and food offer systems where users may select features and compo-
nents, and a specialized software assist them to find and buy the products most
suitable for their interests.

Our work focuses on using Feature-based Configuration, i.e., configuration
systems where users decide on the features to be included in a product. In such
systems, the features that can be selected by a user are usually represented us-
ing Feature Models, a compact representation of the configuration options and
the constraints that rule which combinations are valid. This section presents
an overview of the concepts related to Feature-based configuration, the Feature
Models and the automated processing of Feature Models and Configurations.

2.1 Configuration Systems

A Configuration System (or Configurator) is a software application for
specifying products matching the individual needs and expectations of the cus-
tomers [23][47].

A Configuration System assists users in the selection of the features and
components for a product [15]. The system presents the user with the set
of options that she can decide, and infers necessary decisions based on her
decisions [77]. It relies on a series of pre-defined rules or constraints to deter-
mine which features can be included in a product at the same time and which
not. It uses these constraints to discourage the user from making inconsistent
decisions, and to suggest decisions that are necessary to satisfy them.

According to Sabin et al. [117], there are three types of configuration sys-
tems according to the technique they use to represent and reason about the
configuration options and constraints: (1) rule-based configurators that vali-
date selections using if-then style rules, (2) case-based configurators that use

13
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the user selections to find and adapt existing products based on their similar-
ity, and (3) model-based configurators that use model-based representations to
describe the configuration rules and reasoner libraries (e.g., CSP, BDD or SAT
solvers) to validate user selections.

In contrast to other types of software, creating a Configuration Knowl-
edge representation is an essential part of the development of Configuration
Systems[47]. These models are not used not only as a specification of require-
ments but also as an internal structure that support the automated analy-
sis [47][137]. Engineers and developers typically use libraries and solvers that
may analyse automatically user decisions using that knowledge representation
as an input.

2.2 Feature-based Configuration Systems

A Feature-based Configuration System is a model-based configuration
system that uses (1) Feature Models to represent configuration rules, and
(2) Automated Analysis on Feature Models and Configurations to reason on
user decisions [64]. In such systems, the users do not specify product parts or
components but product features. A user can specify expected properties and
attributes such as the final color or size of the product. Usually, at the end
of the process, the system take the features selected by the user to find the
corresponding product, calculate a Bill of Materials or provide the input for an
automated process that derives the product.

One of the first steps when developing a Configuration System is to col-
lect and organize the required domain knowledge and build the corresponding
models [47]. Engineers and developers must identify the different stakehold-
ers and sources of information to acquire and model that knowledge. We say
that a Configuration involves multiple domains when the information
regarding the options and constraints belongs to multiple domains and diverse
stakeholders must be consulted.

Once the engineers capture and model the configuration knowledge, they
must check and test those models to ensure their quality [47]. Many researchers
have proposed automated techniques to analyse and detect errors in Feature
Models [19]. The Automated Analysis of Feature Models are the auto-
mated techniques aimed to detect errors and extract information from Feature
Models before engineers create the configuration system and users configure
products [19].

Feature-based Configuration systems are usually built using libraries and
solvers such as FaMa [20], Familiar [7] and SPLOT [93] that recognize the
feature models and the constraints therein. These tools can take the selections
of a user (i.e., a configuration) and a feature model and determine if the former
satisfies the constraints in the latter. The Automated Analysis of Feature
Models and Configurations aims to assist users and detect conflicts among
the features selected by a user and the options and constraints defined in a
Feature Model.
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2.3 Feature Models

Feature Models were proposed by Kang et al. [79] to specify the similarities
and differences among the members of a family of products. They are widely
used in Software Product Lines to analyse the variations in a family of products
as well as the options that can be used to configure each product.

2.3.1 Concrete Syntax

A Feature Model represents the features of a product and their dependen-
cies [118] using a hierarchical structure: a tree with a root feature known as
the concept (i.e., the product to configure), a set of child features that form
the branches and leafs, and a set of feature groups and feature relationships
representing configuration constraints.

Element Graphic Description

root Concept or Product to configure. It
must be selected.

mandatory if X is selected, Y must be selected

optional if X is selected, Y can be selected (or
not)

or group if X is selected, one or more of Y1, ..., Yn
must be selected (at least one of them)

alternative if X is selected, one and only one of
Y1, ..., Yn must be selected

requires if X is selected, Y must be selected

excludes if X is selected, Y must be not selected

Table 2.1: Feature Model elements

Table 2.1 shows the elements that a feature model may comprise. Basically,
in a feature model:
• the Root feature represents the concept depicted in the model,
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• Mandatory features represent commonalities, features that must be se-
lected when the parent feature is already selected,
• Optional features capturing variations, features that may be selected or

not when the parent is selected,
• Or (inclusive-or) groups, represent a set of features where one or more

features can be selected, and
• Alternative (exclusive-or) groups, are groups where just one of the fea-

tures can be selected.
Feature relationships are:
• requires relationships that indicates that one feature must be selected

when the other is selected, and
• excludes representing that two features cannot be selected at the same

time.

Figure 2.1 shows an example feature model for Cellular Phones. The fea-
ture model has the root feature of Cellular Phone which has three mandatory
subfeatures: LCD, Input Device and Battery and one optional subfeature of
External Memory. In turn, an LCD can be Normal or Touch Screen but not
both. The Input Device can be a Keypad, a Stylus, or both. There is a excludes
relationships indicating that when a cell phone includes a Stylus, cannot include
a Normal LCD (it must include a Touch Screen). Finally, the Battery can be
of Small Size or Large Size. There is also a requires relationship denoting that
the use of a Touch Screen requires the inclusion of a Large Size Battery.

Figure 2.1: Example Feature Model, adapted from [83]

2.3.2 Semantics

The semantics of a Feature model is given by the corresponding set of Feature
Configurations.

A Feature Configuration (or Configuration) is a set of the features
of a FM. A configuration is valid if the set of features satisfies the constraints
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defined in the model. For instance, considering the above feature model, a
valid configuration for a Cellular Phone is C = { CellularPhone, LCD, Normal,
InputDevice, KeyPad, Battery, SmallSize }

The Feature Model Semantics can be represented using a set of con-
figurations or a Feature Matrix. For instance, considering the feature model
fm depicted in the Figure 2.1, the semantics JfmK can be represented using
the matrix in the Table 2.2. In that matrix, all the valid configurations are
represented as a row where the selected features are marked with a check mark
(X).
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P1 X X X X X X X
P2 X X X X X X X
P3 X X X X X X X X
P4 X X X X X X X X
P5 X X X X X X X X
P6 X X X X X X X X X
P7 X X X X X X X
P8 X X X X X X X
P9 X X X X X X X X
P10 X X X X X X X X

Table 2.2: Feature Matrix representing Semantics for the Example Feature
Model

Note that not all the combinations of features are valid configurations. For
instance, if a configuration includes LCD Normal and LCD Touch Screen, it is
invalid because the model states that the user must select one of them but not
both. In addition, if a configuration does not include neither Keypad or Stylus,
the configuration is invalid because the user must select an Input Device with
at least one of Keypad or Stylus.

2.4 Automatic Processing of Feature Models

In real families of products, feature models may grow to hundreds or thousands
of features [93][87]. Manipulating and detecting problems in these models be-
comes a hard task for humans. In the last decades, an increasing set of oper-
ations have been proposed to analyse feature models to detect problems and
extract relevant information [19].
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There are two types of operations for processing automatically Feature
Models. On one hand, some researchers have focused on Model Analysis Op-
erations aimed to answer questions that may be of use to the people creating
or debugging a Feature Model [19]. On the other hand, other researchers have
focused on Model Processing Operations that allow modelers to decompose,
combine or simplify models according to their intended applications [9][2].

2.4.1 Model Analysis Operations

A Feature-Model Analysis Operation copes with the extraction of infor-
mation from feature models[19]. A great deal of analysis operations have been
proposed to determine if a feature model is valid or if it contains errors such
as contradictory constraints. For instance, there is an operation to detect dead
features, i.e., features that cannot be included in any product, and core fea-
tures (a.k.a., full mandatory features), i.e., the set of features included in all
the products. Additional operations haven been proposed to explain and fix
the errors found.

Benavides et al. [19] present a very comprehensive catalog of analysis oper-
ations in their systematic review. Among these operations, we can mention:

• Validating a Feature Model (or detecting FM satisfiability), i.e., de-
tecting if there is at least one valid configuration regarding the model.
An invalid model is synonym of an over-constrained model from which
no valid configuration can be defined.
• Obtaining Core Features (or obtaining the full-mandatory features),

i.e., finding the features that appear in all the valid configurations. For
instance, consider the Feature Model semantics presented in Table 2.2.
The LCD is a core feature that appears in all the valid configurations.
• Obtaining Dead Features, i.e., finding the features that never appear

in any valid configuration. Note that a feature model may not include
any dead feature. For instance, considering the above example, all the
features appear at least in one valid configuration in the Table 2.2.
• Obtaining Free Features, i.e., finding the features that are neither

core or dead features. In the above example, the Touch Screen is a free
feature because it may appear (or not) in a valid configuration.
• Obtaining Explanations of invalid models or dead features, i.e.

providing explanations about why a feature model is invalid or a feature
is dead.
• Proposing Fixes to invalid models or dead features, i.e. providing

suggestions on how to modify a feature model to make it valid or to make
a feature not dead.

2.4.2 Approaches to implement Analysis Operations

To implement operations that analyse feature models, many authors rely on
formal semantics that allow straightforward translations of these models into
well-established formalisms like propositional logics [21][54][88][118][97]. These
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approaches implement the analysis operations by (1) translating the feature
models into a formal representation, (2) analysing the alternative representa-
tion using solvers, and (3) presenting the results translating the solver response
to the elements in the feature model.

Benavides et al. [19] made a systematic review of the diverse approaches
that implement operations to analyse feature models. They identified four cat-
egories according to the reasoning technology they use. There are approaches
(1) that translate Feature Models to Propositional-logic and use Satisfiabil-
ity (SAT) or Binary Decision Diagram (BDD) solvers, (2) that translate the
models to Constraint-Satisfaction Problems and use Constraint Satisfaction
Programming (CSP) solvers, (3) that use Description Logics, and (4) others
that implement ad-hoc algorithms for analysis. More recently, other authors
have proposed new approaches that translate the models into Optimization
Problems [142] and approaches that use technologies such as Satisfiability Mod-
ulo Theory (SMT) [95], Quantified Boolean Formula Solvers (QBF Solvers or
QSAT) [82] and Answer Set Programming (ASP) solvers [96].

Implementing Analysis Operations using SAT solvers. For example,
in order to analyse a Feature Model, it is possible to translate the features and
constraints in the model into propositional formulae and use a SAT solver to
perform the analysis.

A Propositional Formula is a logic expression defined over boolean variables,
using operators such as conjunctions (i.e., AND, ∧), disjunctions (OR, ∨),
and negation (NOT, ¬). A Satisfiability Problem (SAT) is the problem of
determining for a given formula whether there is a set of logical values (i.e.,
TRUE or FALSE) for the variables where the complete expression evaluates
to TRUE. A problem is said to be satisfiable if exists at least one solution.
A Satisfiability solver (SAT solver) is a software able to take an propositional
formula, usually expressed as a CNF formula, and check whether it is satisfiable.

A Encoding for Feature Models describes how to translate a given feature
model into a propositional formula. There are many proposals on how to
perform this encoding [92][87]. In general, all these encoding have the following
general form:
• each feature is encoded as a boolean variable,
• and each feature, group and relationship are encoded as a propositional

sub-formula.
Table 2.3 summarizes how to encode each type of feature and relationship
according to Mendonca et al. [92].
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Element Graphic PL encoding

root r (i.e., r = true)

mandatory x⇔ y

optional y ⇒ x

or group x⇒ (y1 ∨ y2 ∨ . . . ∨ yn)
(y1 ⇒ x) ∧ (y2 ⇒ x) . . . ∧ (yn ⇒ x)

alternative x⇒((y1 ∧ ¬y2 ∧ . . . ∧ ¬yn)

∧ (¬y1 ∧ y2 ∧ . . . ∧ ¬yn)

. . . ∧ (¬y1 ∧ ¬y2 ∧ . . . ∧ yn))
(y1 ⇒ x) ∧ (y2 ⇒ x) . . . ∧ (yn ⇒ x)

requires x⇒ y

excludes (x⇒ ¬y) ∧ (y ⇒ ¬x)

Table 2.3: Feature Model encoding in Propositional Logic, based on Mendonca
et al.[92] and Janota et al. [74][75]

For instance, consider the feature model for Cell Phones presented above
in Figure 2.1. The corresponding propositional formula is the following:

φ =CellularPhone

∧ CellularPhone ⇔ LCD

∧ LCD ⇒ ((TouchScreen ∧ ¬Normal) ∨ (¬TouchScreen ∧Normal))

∧ (TouchScreen ⇒ LCD) ∧ (Normal ⇒ LCD)

∧ CellularPhone ⇔ InputDevice

∧ InputDevice ⇒ (KeyPad ∨ Stylus)

∧ (KeyPad ⇒ InputDevice) ∧ (Stylus ⇒ InputDevice)

∧ ExternalMemory ⇒ CellularPhone

∧ CellularPhone ⇔ Battery

∧ Battery ⇒ ((Small ∧ ¬Large) ∨ (¬Small ∧ Large))

∧ (Small ⇒ Battery) ∧ (Large ⇒ Battery)
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Once we have translated a Feature Model fm into a corresponding formula
φ, it is possible to determine if the model is valid by determining if the formula
is satisfiable. We can use a SAT solver to find a solution. If a solution exists,
the feature model has (at least) one valid configuration. We write SAT (φ) to
denote a invocation to a SAT solver. That function will return TRUE if the
formula φ is satisfiable or FALSE otherwise.

In addition to determine if a feature model is valid, we can use the SAT
solver to perform other analysis operations. For instance, we can use a solver to
determine if a feature is dead or if it is a core feature. Algorithm 2.1 describes
how to obtain the set of core features. Considering that core features are those
that are included in all the valid configuration, we know that a feature is core
if a solver cannot find a configuration that do not include that feature.

Algorithm 2.1 Obtaining the set of core features

1: procedure CalculateCoreFeatures(fm)
2: Fcore ← {}
3: for all f ∈ Ffm do . for each feature in the model
4: φ = encode(fm) ∧ ¬f . force the feature f to be disabled
5: if ¬SAT (φ) then . if the resulting φ is not satisfiable
6: Fcore ← Fcore ∪ {f} . then f is a core feature
7: end if
8: end for
9: return Fcore

10: end procedure

There is a large number of analysis operations that can be performed in the
same way [18]. A more complete description of the corresponding algorithms
exists in the works of Benavides [18] and Henneberg [61].

2.4.3 Model Processing Operations

Besides the operations to analyse Feature Models, there are other operations
aimed to process and alter the models.

A Feature Model Processing Operation is an operation that takes a
feature model or other type of inputs, and yields to a new feature model which
is more simple, represent a different set of products or exhibit a different value
for some property. For instance, there are operations to reverse engineer [125],
specialize [36][37], slice [6] and merge feature models [9][2].

The Processing Operations that modify a feature model (i.e., that edit a
feature model) may affect the set of products that the model represents. For
instance, it is possible that a configuration valid against a feature model results
invalid against the modified model. Thum et al.[135] classifies these operations
according to the resulting modification to the set of valid configurations of the
feature model (i.e., modifications to the semantics of the model):
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• Refactoring operations are those operations that do not modify the
semantics. For instance, a modification in the structure of the feature
model or its constraints where the resulting set of valid configurations is
the same set of valid configurations of the original.
• Generalization operations, operations where the resulting set of valid

configuration is a superset of the original.
• Specialization operations, operations where the resulting set of valid

configuration is a subset of the original. And
• Arbitrary edit operations, when the resulting set of valid configura-

tion is neither the same, a superset nor a superset of the valid configura-
tions of the original.

Some of the Feature Model Processing Operations are relevant to create
Configuration Systems. For instance, Czarnecki et al. [37] proposed operations
to specialize a Feature Model to select or deselect a specific feature. These
operations may be used during a staged configuration, after a user makes a
decision, to obtain a feature model representing only the options she can select
afterwards.

Among the operations to process Feature Models, we can mention:

• Reverse Engineering a Feature Model, i.e., given a set of valid con-
figurations or a propositional formulae, calculating one or more feature
models that represent that set.
• Specializing a Feature Model, i.e., given a feature model, calculating

another feature model which set of valid configurations is a subset of the
original. The subset of features may be determined by some user provided
criterion or decision [37].
• Slicing a Feature Model, i.e., given a feature model and a slicing

criterion, calculating a new feature model that includes a subset of the
features and constraints of the original [6][86].
• Merging two Feature Model, i.e., given two feature models, calcu-

lating a new feature model that combines their features and constraints.
How these features are combined is determined by a merging semantics.
For instance, it is possible to merge the models in a way that the re-
sulting that the set of valid configurations of the new feature model is
the union or the intersection of the valid configuration of the constituent
models [2].

2.4.4 Approaches to implement Processing Operations

Model Processing Operations can be implemented in different ways [9][11]. On
one hand, There are syntactic-based approaches that take the inputs and pro-
duce a new the feature model by applying transformation rules or by adding or
removing features and relationships to or from an existing model. On the other
hand, there are semantic-based approaches that compute a logical representa-
tion of the model (e.g., in propositional logic), operates on this representation,
and compute a new feature model from the results of the operations [6][2].
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Operations based Syntactic Modifications exploit the graph-oriented
structure of the model to introduce o remove features and constraints, change
the type of features or feature groups, or altering the hierarchy and the feature
relationships. [6]. For instance, a syntactic-based operator to slice a Feature
Model may simply extract a sub-tree of the model taking an arbitrary feature
as the root of the new model and removing all the features that are not a
descendant of it. However, operators implemented is such way usually have
preconditions in order to assure their semantics. For instance, the merge oper-
ators proposed by Segura et al. [122], Van den Broek et al. [143][144] and Aydin
et al. [16] require that the feature models to combine are parent-compatible, i.e.,
all the features included in both models must have the same parent in both
models. The algorithms they propose should be adapted to handle proposi-
tional constraints and deal with different hierarchies [2].

Operations based on processing the semantic representation mod-
ify the formal representation of the feature models and synthesize a resulting
feature model from the modified representation. These approaches exploit ex-
isting techniques to create feature models from a set of valid configurations [124]
or a propositional formulae [38][125]. For instance, Acher et al. [2] implement
operations to merge and slice feature models by combining and processing the
encoding of feature models in propositional logic and synthesizing a new model
from the resulting propositional formula.

Acher et al. [2][11] point out that the processing based on the semantic
representation may achieve, by construction, the semantics of the operations.
That means that the operations may work even with feature models that cannot
be processed with syntactic modifications. For instance, operations based on
logic techniques can be used to merge not parent-compatible models while
operations based on model modifications can not.

2.5 Automatic Processing of Interactive Configurations

Finally, there are other operations aimed to analyse and process feature con-
figurations. These operations are relevant for creating Configuration Systems
where a user may decide on features from a model. Those operations can be
used by the software to validate the user decisions, explain the conflicts found,
and propose fixes to the configuration. Additional operations may be used to
auto-complete the configuration or to optimize the decisions based on some
criterion.

2.5.1 Operations for Interactive Configuration

There are many operations that are key for the implementation of Configura-
tion Systems. For instance, it is important to determine if a configuration is
complete or is partial. A configuration is complete if there is a decision for all
the features. It is partial if the user has not decided on some of the features.
A system may use an operation to auto-complete a partial configuration by
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deciding on the features not decided by the user. We say the the system op-
timize a partial configuration when the system decide on these features based
on some criterion.

Among the operations for Interactive Configuration, we can mention:

• Validating a Configuration, i.e., detecting if a configuration or a state
of an interactive configuration is valid regarding the features and con-
straints defined in a Feature Model.
• Validating a Partial Configuration, i.e., detecting if a set of features

does not include any contradiction regarding the Feature Model.
• Propagating User Decisions, i.e., taking user decisions and selecting

and removing automatically the features that depend on them.
• Auto-completing a Partial Configuration, i.e., selecting and remov-

ing automatically undecided features in order to turn a partial configura-
tion into a complete valid configuration. This is equivalent to find a valid
complete configuration that is a superset of a given partial configuration.
• Optimizing a Partial Configuration, i.e., auto-completing a partial

configuration in a way that one or more properties or functions on the
selected features are maximized or minimized.
• Recommending a Configuration, i.e., finding valid configurations

that are similar to a given partial configuration. Usually, these recom-
mendations try to find the closest configurations by using a predefined
distance function that may work even with invalid partial configurations.
• Obtaining Explanations of Configuration Conflicts, i.e., providing

explanations about why a configuration is invalid.
• Proposing Fixes to Configuration Conflicts, i.e., providing sug-

gestions on how to modify the configuration, by selecting or removing
features, to make it valid.

2.5.2 Approaches to implement Interactive Configuration

The Literature review from Benavides et al. [19] surveyed techniques to imple-
ment operations on feature models and configurations. They found that the
operations for Interactive Configurations have been implemented using Propo-
sitional Logic and Constraint Programming mainly. Usually, the Configuration
Systems translate the Feature Model and the Configuration to a propositional
formula or a Constraint-Satisfaction Problem and use a specialized solver to
perform the operations.

Processing user decisions Almost all the approaches for processing user de-
cisions during Interactive Configurations are based on seminal works from
Batory [17] and Czarnecki [36][36]. First, Batory [17], proposed the use
of a Logic Truth Maintenance System (LTMS), in order to validate and
propagate the users decisions. Then, Mendonca [90] proposed a hybrid
Reasoning System for Feature Models (FMRS) combining techniques for
propagating user decisions with SAT and CSP solvers. Janota [75] pro-
posed a complete reasoning system based on SAT solvers. And Finally,
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more recently, other authors have proposed techniques based on CSP [21],
QSAT [82], SMT [95] and Answer Set Programming [96].

Operations to determine why a configuration is invalid and, optionally, ob-
tain suggestions on how to fix it may rely on explanations or diagnosis.

Explanations Approaches based on explanations look for the cause of the con-
flict. Considering that feature models and configurations can be trans-
lated to boolean formulae and constraints, it is possible to use many
techniques that determine which operators or constraints are conflict-
ing. QuickXplain [78] can be used to determine a minimal (irreducible)
set of faulty constraints with a CSP solver. Options to find Minimal
Unsatisfiable Sets (MUS) can be used in modern SAT solvers [77]. A
configuration can be repaired by excluding all the faulty constraints [101].
The result is a partial valid configuration that a user can complete. Note
that retracting these decisions may result in deselecting features that the
user wants but have conflicts with other decisions.

Diagnoses and Fixes Approaches for diagnosis look for an alternative valid
configuration that maximize the user preferences. These approaches uses
as input not only the configuration but also which subset of that config-
uration the user wants to keep. They usually look first for explanations
and perform additional processing to determine an alternative configura-
tion. While some approaches are based on FastDiag [49], an algorithm
proposed by Felfernig et al. for CSP; others such as the proposed by
White et al. [147] and Xion et al. [148] are based on the Reiter’s Theory
of Diagnosis [115][55] or on the CURE strategy proposed by White et
al. [146] specially for Feature Models. Some of these approaches deter-
mine a set of fixes and let the user to decide which use to repair the
configuration.

Configuration Systems can implement the operations in different ways
depending on their intended use [100]. Usually, they are backtrack-free sys-
tems designed to prevent conflicts. When a user makes a decision, the deci-
sion is propagated to select and disable other features and prevent that the
user may cause a conflict by selecting the wrong feature [77]. More recently,
some Configuration Systems have been designed to tolerate conflicts. These
systems allow users to pick features even if they cause conflict with other deci-
sions. Additional processes are performed when the user decides to determine
configurations without conflicts that maximize the user selections [100][101].
Other systems allow users to define selections and preferences as hard and soft
constraints. In such systems, conflicts are not permitted among selections but
are tolerated among preferences. An automated process may look for valid
configurations that includes the selections and maximizes the preferences.
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2.6 Summary

Recently, many proposals use Feature Models as a foundation for engineering
configuration systems. The Feature Models are used to specify a hierarchy
of the features in a product and define the set of legal combinations of these
features. Engineers can take these Feature Models to define which options and
constraints must be considered to configure a product. In addition, there are
many analysis operations that can be used to extract information of the models
and detect potential errors in the configuration systems before building them.
Other manipulating operations can be used to combine or slice the models
during the specification of the systems. Furthermore, there are algorithms and
operations for interactive configuration that can be used at runtime to process
the user decisions and determine which features must be automatically selected
during a configuration process.

In this chapter we sketched the major concepts of feature-based configura-
tion systems and the syntax and semantics of feature models. We also high-
lighted the existence of automated techniques to analyse and manipulate these
models such as the operations to validate a model and to merge multiple mod-
els into a new one. Finally, we also described automated operations that can
be used during the interactive configuration of a product such as propagating
user decisions and auto-completing configurations based on feature models.
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Related Work

There is a large number of proposals related to Feature Models and Feature-
based Configuration Systems. Several authors have systematically reviewed
the literature on using Feature Models to represent variability in multiple
domains [67], on analysing Feature Models [19], on composing and decom-
posing Feature Models [9], and on creating Feature-based Configuration Sys-
tems [1][117].

In this chapter, we introduce the state-of-the-art in approaches to create
Configuration Systems for complex products in three areas: (1) the modeling of
complex products considering multiple domains and standards, (2) the compo-
sition of feature models representing different concerns, and (3) the derivation
of configuration systems from feature models, namely the activities that are
the subject of our research.

3.1 Modeling multiple Domains and Standards

Modeling configuration options for complex products have been of special inter-
est in industries such as the automotive [132][145] and consumer electronics [57].
In these industries, realistic models tend to include hundreds and even thou-
sands of features and, therefore, tend to be hard to be created and debugged by
humans. Many authors have propose different strategies to create and structure
the feature models trying to facilitate the process [22][67][140][44][105].

Approaches aimed to create feature models for complex products can be
classified into three categories: (1) Proposals that organize all the product fea-
tures in a single monolithic feature model, (2) Proposals that use a single model
but define views for the diverse stakeholders or concerns, and (3) Proposals that
use multiple feature models. The following sections will give a short overview
of representative proposals in each category describing how they support the
modeling of multiple domains and standards.

27
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3.1.1 Proposals using a Monolithic Feature Model

Initial proposals aimed to define a single model to represent all the features of
the products. They organized the features using different strategies to facilitate
the creation and maintenance of the models.

Feature Categories In the Feature-Oriented Reuse Method (FORM), Kang
et al. [80] organize the features in a model according to a set of cat-
egories. Each feature belongs to a unique category. For instance, the
examples included in FORM classify features into four categories: capa-
bilities, domain technologies, implementation techniques, and operating
environments. To create a Configuration System, the products are mod-
eled by specifying the features in each one of these categories. Although
the authors do not provide a similar example, this approach can be use
to structure the model considering each technical domain as a category
in the model. To model standards, modelers must choose to create a
category for all standards or model the standard scattered across all the
categories.

Feature Levels Buhne et al.[29] and Svahnberg et al. [130] organize the fea-
tures in levels. Features in the higher levels are further specified in fea-
tures in the lower levels. In the Svahnberg et al.’s examples, the features
at the top level are user requirements. These features are decomposed
into features of the architecture, then into features of the software design,
later into features of the code, and finally into features of the running
system. Buhne et al.’s examples define a level for the Vehicle at the top,
a level for the systems, another for the functions and a lower level for
the software features. During a configuration process, if a user selects
a high-level feature, she must decide on the corresponding low-level fea-
tures. This approach does not consider subsystems nor technical domains
as a way to structure the model. Standards are not considered either.
The final models include the standards and the corresponding constraints
scattered across all the levels.

Summary. There are many proposals to structure the features of complex
products in a single model. They may use feature categories or levels to or-
ganize the models according to technical domains or a decomposing hierarchy.
Table 3.1 presents a comparison. Although they aim to reduce the complexity
of models involving multiple subsystems or sequence of decisions, they do not
consider standards explicitly. Standards may be modeled as a category where
each feature represents a standard and has a lot of cross-cutting concerns to
the other categories, or as a set of features and constraints scattered across all
the levels.
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Modeling of
domains

Modeling of
standards Comments

Feature
Categories.
Kang et al. [80]

• all in a single fea-
ture model.

• there are sub-
trees represent-
ing categories or
subsystems.

• as features and
constraints in
the same model.

• standards end
scattered along
all the model.

• Hard to create
and maintain.

Feature Levels.
Buhne et al.[29]
Svahnberg et
al. [130]

• all in a single fea-
ture model.

• there are sub-
trees represent-
ing concerns or
subjects to de-
cide.

• as features and
constraints in
the same model.

• standards end
scattered along
all the model.

• Hard to create
and maintain.

Table 3.1: Related work on Modeling Multiple Domains and Standards using
a Monolithic Feature model
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3.1.2 Proposals using Views on a Feature Model

In Feature Model Views, each view includes a subset of the features of the
model. Usually it includes the features that are of concern of a group of stake-
holders. They are used primarily in a Configuration Process allowing each
stakeholder to configure parts of the feature model in his own view until all
variability is bound. Views can be used during modeling to reduce the com-
plexity and present stakeholders only the features where they are experts.

Representative proposals using views on Feature Models are:

Multi-Criteria Product Lines: Buhne et al [29] model vehicle product lines
in DaimlerChrysler using multiple levels on a single model. The feature
model comprises the features for all the vehicles. To facilitate the un-
derstanding and maintenance, they create different views according to
different criteria such as geographical location, cost, or the vehicle line.
These views are used to facilitate the review of the models. For instance,
they can be used to display only the features that are of the concern of
a stakeholder. However, because standards define rules for features in all
the concerns, a view representing a standard may be not very useful be-
cause it will include (1) features of multiple domains and (2) constraints
related to these features that do not belong to the standard. Other draw-
backs of this approach is the need of using the complete feature model
for editing the model and the absence of supporting tools [105].

Multiple Perspectives on Feature Models: Schroeter et al. [120][119] in-
troduced feature cluster models that comprise a feature model, a view and
a mapping between both. In their approach, each view is a filtered feature
model. One of these views is FM-consistent if each configuration that is
valid in the view is also a valid partial configuration of the original feature
model. They defined a view composition operator to aggregate multiple
views of the same feature model into perspectives (FM-consistent view
aggregations) for different stakeholders.

View-based Configuration Processes: Hubaux et al. [65][67] proposed al-
gorithms to define and extract views (sub-models) from an existing fea-
ture model. They also define some operations to simplify the views and
validate if combining the configurations for a set of views results into
a complete configuration of the original model. This proposal is used
to support configuration processes with multiple stakeholders. Basically,
they use the views to present each stakeholder the features that are of
her concern.

Summary. Several proposals use multiple views to model complex products.
Each view usually comprises the subset of features that are of the concern of
one of the stakeholders. There is a single feature model that represent all the
products and their features, and the set of views are excerpts of that model
used to display, review or configure the models. Table 3.2 presents a summary.
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These approaches do not consider standards explicitly. A standard may be
defined as an additional view that comprises features and constraints scattered
across the model.

Modeling of
domains

Modeling of
standards Comments

Multi-Criteria
Product Lines.
Buhne et al. [29]

• in a single fea-
ture model.

• a stakeholder
can review the
features of a
single domain.

• as features and
constraints in
the same model.

• A stakeholder
can review the
features of a
standard.

• operations are
performed on
a model inte-
grating all the
views.

• standards end
scattered along
all the model.

Multiple
Perspectives on
Feature Models
Schroeter et
al. [119][120]

• in a feature
model and in a
view.

• a mapping
among the mod-
els and their
views must be
defined.

• as features and
constraints in
the models or
the views.

• domains and
views are inde-
pendent models
and may be
inconsistent.

• standards end
scattered along
all the model.

View-based
Configuration
Processes
Hubaux et
al. [65][67]

• in a single fea-
ture model.

• a stakeholder
can review and
configure the
features of a
single domain.

• as features and
constraints in
the same model.

• operations are
performed on
a model inte-
grating all the
views.

• standards end
scattered along
all the model.

Table 3.2: Related work on Modeling Multiple Domains and Standards using
Views on Feature models



32 Chapter 3. Related Work

3.1.3 Proposals using multiple Feature Models

Other proposals represent complex products using multiple feature models.
Each feature model represent a technical domain or a concern. Relationships
among the feature models are used to specify dependencies between features in
different domains and concerns. Additional processing is required to combine
the feature models to represent a specific product line.

Multi-level feature trees: Reiser et al. [113][112] model vehicles in Daimler-
Chrysler using multiple feature models. Each model represent a technical
domain or a decomposition level of the product. They use Configuration
Links [111][110] between the feature models to describe how a configu-
ration decision on a source feature model affect the configuration on a
target feature model. Using these links, it is possible to specify how a set
of decisions in one side must affect the decisions in the other.

Context Variability Modeling: Hartmann et al. [59] consider the modeling
of multiple product lines using a set of feature models. Which models are
part of a specific product line depends on the intended scenario or context.
In their approach, there is a feature model for the context variability, a
feature model for each Multi-product line, a model for each provider of
product components, and a set of relationships to features in the other
feature models that define which models and features in those models
must be considered for a specific scenario. The authors describe multiple
scenarios where the models are merged in different ways depending on
the task to perform, e.g., scenarios where the models for many products
are merged to a MPL-feature model or where the models of multiple
suppliers are merged together. In addition, they describe the merging
operators but do not include a formal specification of the algorithms.

Feature Models for System Composition: Friess et al. [52] aim to sup-
port modular embedded systems where each module (i.e., component)
has its own variability. In their approach, a set of composition rules de-
scribing how the variability in the modules must be integrated to the
system. They provide a Composition Checker that takes a configuration
for the system and the related modules, creates a new composite feature
model and validates the validity of the selected options. Their approach
merges the feature models as an intermediary step in the validation pro-
cess.

Summary. There are other proposals using multiple feature models to repre-
sent complex products. These models usually represent subsystems or compo-
nents that have their own variability independently of the product variability.
These proposals usually aim to model products that compose or assemble com-
ponents and subsystems created by third parties. As shown in Table 3.3, these
approaches do not consider standards and regulations explicitly. Considering
that standards may impose constraints to different elements and subsystems
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of the product, they must be modeled using features and constraints scattered
across all the set of the models.

Modeling of
domains

Modeling of
standards Comments

Multi-level
feature trees.
Reiser et
al. [113][112]

• as independent
feature models.

• as features and
constraints in
the feature
models

• standards may
end scattered
along several
models.

• modelers must
review and up-
date the models
to incorporate a
standard.

Context
Variability Mod-
eling.
Hartmann et
al. [59]

• as independent
feature models.

• the standards
are modeled as
features in a
Context Feature
Model and re-
lationships to
features in the
other models.

• standards are
represented as
relationships to
features in all
the models.

• domains must
be modeled first
than standards
to create the
relationships.

• hard to create
and maintain.

Feature Models
for System
Composition.
Friess et al. [52]

• as independent
feature models.

• as features and
constraints in
the feature
models

• standards may
end scattered
along several
models.

• hard to create
and maintain.

Table 3.3: Related work on Modeling Multiple Domains and Standards using
multiple Feature models

3.1.4 Proposals using multiple Types of Models

Other approaches represent complex products by combining Feature Models
with other types of Models. Feature Models may be used to represent a tech-
nical domain while other types of models may represent other domains. For
instance, Feature Models may represent the user-selectable features of a prod-
uct, while other types of models such as class diagrams or component models
may represent the variability of the internal components or the constraints in-
dicating which of these components can be combined or not. Similarly to the
approaches using multiple feature models, additional processing is required to
combine these models to represent or analyse a specific product line.
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Heterogeneous Variability Modeling Dhungana et al. provide support
for modeling complex software products using diverse types of variability
models [42][43]. Galindo et al. [53] provide additional support for dis-
tributed configuration of products using these heterogeneous models. In
addition to Feature Models, they support Orthogonal Variability Mod-
els [94][108] and Decision Models [40][39] to represent the variability of
the different domains of multiple product lines. The authors describe how
these models can be related and combined to analyze the variability or
to configure products. They define a set of cross-type relationships (such
as “extends model”, “extends feature”, and “provides features” relation-
ships) to represent equivalences and relationships among the models and
features. However, the authors do not consider the use of different models
for standards.

Integration to Goal Models Many authors have proposed integrations of
Feature Models to Goal Models. Asadi et al. [14], Silva et al. [127]
and Clotet et al. [34] have presented approaches that relates features
in Feature Models to goals and requirements in i* models. They pro-
vide automated processes that may take goals and requirements defined
by stakeholders and create an initial product configuration by selecting
the corresponding options of the feature model. A standard may be in-
cluded in an i* model as a client requirement. Which features must be
enforced or prohibited when a standard is required must be defined as
relationships between the goal and feature models. It is possible that
models representing product lines that must support multiple standards
end with a large number of relationships scattered along these models.

Integration to Architectural Models Other authors have proposed
integrations of Feature Models to Architectural Models. Janota et al. [76]
and Acher et al. [4][5] presented formal approaches to integrate Feature
Models and Component Models. They provide means to introduce the
constraints defined in the component models into the corresponding fea-
ture models. In addition, they provide means to extract and evolve fea-
ture models from the source code of applications based on plug-ins. Al-
though these approaches may introduce new constraints to the feature
models, these constraints correspond to internally defined design con-
straints but not to externally defined constraints such as standards and
regulations.

Summary. There are some other approaches that integrate feature models
to other types of models. Table 3.4 presents a summary. They relate the
variability represented in feature models to the variability and the constraints
defined in other types of models. These approaches aim to support different
representations of the domains and components of a product line. While some
approaches consider different types of models that represent the variability of
the products, other proposals relate the variability to other design artifacts to
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include or compare the constraints defined in these models. However, these
approaches do not consider standards explicitly. Considering that standards
may impose constraints to multiple elements and subsystems of the product,
standards must be considered in all the different type of models. It is possible
that a single standard must be modeled using multiple elements scattered across
all these models.

Modeling of
domains

Modeling of
standards Comments

Heterogeneous
Variability
Modeling.
Dhungana et
al. [42][43][53]

• the domains
can be modeled
using Feature
Models, Orthog-
onal Variability
Models or Deci-
sions Models.

• as features, de-
cisions and con-
straints in the di-
verse models.

• standards may
end scattered
along several
models.

• hard to create
and maintain.

Integration to
Goal Models
Asadi et al. [14],
Silva et al. [127]
and Clotet et
al. [34]

• all the domains
in a single fea-
ture model

• as features and
constraints in
the goal model
or the feature
model

• standards must
be modeled as
relationships
scattered along
the models.

• hard to create
and maintain.

Integration to
Architectural
Models
Janota et al. [76]
and Acher et
al. [4][5]

• all the domains
in a single fea-
ture model

• probably, as fea-
tures and con-
straints in the
feature model

• It is focused on
including design
constraints into
the feature mod-
els.

• it is not well
suited to ex-
ternally defined
constraints.

Table 3.4: Related work on Modeling Multiple Domains and Standards using
multiple types of models

3.1.5 Discussion

Existing proposals do not support standards explicitly. The standards may be
modeled as feature categories, feature levels, an independent view or an inde-
pendent feature model depending on the approach. However, the constraints
defined by the standards end up scattered across all the models, difficulting
their creation and maintenance.
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3.2 Composing multiple Feature Models

Approaches to merge feature models can be classified into: (1) Proposals that
describe how to merge feature models using transformation rules on the struc-
ture of the model, and (2) proposals that use semantics instead of structure to
merge models.

3.2.1 Structure-based Merging of Feature Models

There are many authors proposing rules to merge parent-compatible feature
models:

Feature Model Refactorings: Alves et al. [12] defined a set of rules and op-
erations, that they named refactorings, to modify feature models. These
operations included operators such as one to insert a feature into a model,
convert a feature group from one type to the other and merge feature
groups.

Feature Model Merge by Transformation: Segura et al. [122], inspired
on the operations defined by Alves et al.[12], defined a set of ACG trans-
formation rules to merge feature models. They defined rules (30 in total)
to merge different types of features, different types of feature groups
and different types of requires and excludes relationships. The result-
ing model of merging two models represent, as a minimum, the union
of the products of both models. Although it is not mentioned in their
work, these transformations rules assume that the models to merge are
parent-compatible and include only cross-tree constraints represented as
relationships.

Viewpoint Oriented Variability Modelling: Mannion et al. [89] proposed
a method to use different feature models to represent the diverse view-
points of the stakeholders of a product. In contrast to Segura et al. [122],
they do not define rules to merge the features but rules to resolve incon-
sistencies between the input feature models. They determined a set of
conflict resolution rules (24 in total), each one describing the inconsis-
tency that may exist and their resolution. Some of these rules (5) require
user intervention and cannot be solved automatically. Their approach
does not aim to implement a single coherent model as a result of merg-
ing, instead they want delay inconsistency resolutions until the rationales
which cause distinctive choices are better understood.

ViewPoint Integration: Niu et al.[99] extend the work of Mannion et al. [89]
to take advantage of a lattice ordering to support late binding of vari-
ability and stakeholder traceability.

Parent-Compatible Feature Model Merge and Intersection: Van den
Broek et al. [144][143] proposed methods not based on rules to merge
and intersect feature models. Their approach starts by taking two input
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parent-compatible feature models with excludes and requires relation-
ships, removing their dead features and transforming them into gener-
alised feature trees. Then, it determines requires and excludes relation-
ships among all the features in both models and, finally, uses those rela-
tionships to determine the types for each feature and the cross constraints
that must be included.

Feature Model Merge by Local Rules: Aydin et al. [16] defined a merg-
ing by conformance process that is similar to the method proposed by
Broek et al. [144]. Their proposal merges the models processing a single
parent feature with its children features each time. It creates a feature
selection map that describes, for each feature, the effect that it has on
the others (e.g., if a feature forces, prohibits or do not affect the selection
of other feature). This information is later used to determine the type
of variability for each feature in the resulting model. Their work repro-
duced the rules defined by Mannion et al. [89] and proposed some auto-
matic solutions for situations which that approach cannot solve. Their
method supports basic feature models and feature models with cross-tree
constraints relationships, is based on local rules and only considers one
abstraction level at every step.

Summary. There are many proposals aimed to merge feature models ex-
ploiting their tree-based structure. They propose different merge semantics
and techniques. However, these approaches apply only on feature models that
comply with some pre-conditions: they must be parent-compatible models and
must include only cross-tree constraints specified using requires and excludes
relationships.

3.2.2 Semantic-based Merging of Feature Models

To overcome the limitations of the structure-based merging of feature mod-
els, the Acher et al. proposal aims to merge feature models considering the
equivalent formulae in propositional logic. It is based on previous works from
Czarnecki [38], She et al.[125][126] that support transforming feature models
into propositional logic and transforming back from these representations to
new feature models.

Feature Model Composition Operators: Acher et al. [9][2] defined a set
of merge operations where the user may specify if the resulting feature
model will represent an intersection, a strict union or a reduced product.
In addition, they defined algorithms that rely on structural modifications
[8], and can be applied to parent-compatible feature models, and others
that rely on propositional logic and solvers and can be applied to a large
number of models [10]. These operations are implemented as part of
FAMILIAR, a DSL for processing feature models.
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Operations Comments

Structure-based Merging of Feature Models
Feature Model
Refactorings
Alves et al. [12]

• Unidirectional
Refactorings

• Bidirectional
Refactorings

• Structural modifications to the models
• Only bidirectional refactorings main-

tain the set of valid configurations
• It is focused on reflecting changes and

refactorings on programs to changes on
the FMs.

Feature Model
Merge by
Transformation
Segura et al. [122]

• Merge • Graph Transformations (ACG rules)
to combine the structure of the input
models

• The resulting semantics contains the
union of the semantics of the inputs

• It applies to parent-compatible feature
models that include only cross-tree con-
straints represented as relationships.

Viewpoint
Oriented
Variability
Modelling
Mannion et al. [89]

• Merge • Set of Rules to resolve differences
among the feature models. Some cases
require user intervention to solve the
conflict.

• The intended resulting semantics is the
union of the semantics of the inputs. It
may depend of the user interventions.

• It applies to parent-compatible feature
models that include only cross-tree con-
straints represented as relationships.

ViewPoint
Integration
Niu et al.[99]

• Merge • A lattice ordering that determine how
to resolve differences among the feature
models.

• The intended resulting semantics is the
union of the semantics of the inputs.

• It applies to parent-compatible feature
models that include only cross-tree con-
straints represented as relationships.

Table 3.5: Related Work on Composing Feature Models
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Operations Comments
Parent-
Compatible
Feature Model
Merge and
Intersection
Van den Broek et
al. [143][144]

• Merge
• Intersection

• An algorithm that transform the input
models into Generalised Feature Trees,
match the features that exists in both
models and combine their children fea-
tures.

• The intended resulting semantics is the
union or the intersection of the seman-
tics of the inputs.

• It applies to parent-compatible feature
models that include only cross-tree con-
straints represented as relationships.

Feature Model
Merge by Local
Rules
Aydin et al. [16]

• Merge • An algorithm that transform the input
models into Generalised Feature Trees,
match the features that exists in both
models and combine their children fea-
tures.

• The intended resulting semantics is the
union of the semantics of the inputs.

• It applies to parent-compatible feature
models that include only cross-tree con-
straints represented as relationships.

Semantic-based Merging of Feature Models
Feature Model
Composition
Operators
Acher et al. [2][9]

• Insert
• Aggregate
• Merge
• Union Merge
• Strict Union

Merge
• Intersection
• Diff
• Slice

• An algorithm that (1) matches the fea-
tures of the input models, (2) calcu-
lates a propositional formula for the se-
mantics of the resulting model, and (3)
creates a tree for the resulting feature
model. The tree is created based on
the implication graph of the calculated
propositional formula. The parts of the
formula not represented in the tree are
added as additional constraints to the
model.

• The resulting semantics is a well de-
fined operation (e.g., union or intersec-
tion) of the semantics of the inputs.

• It applies to non-parent compatible
feature models that may include con-
straints as formulae

Table 3.5: Related Work on Composing Feature Models
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3.2.3 Discussion

As with the approaches to model complex products, existing approaches to
merge feature models do not consider standards or additional constraints as a
special case. There are many proposals of operations to merge feature models
representing different domains or concerns of a complex products. To use these
operations, standards must be specified as part of the constituent models. Re-
gretfully, modeling the standards in this way ends including the corresponding
constraints as relationships and rules in the feature models for each domain, but
not in an independent model. The use of feature models mixing domains and
standards makes difficult the analysis, maintenance and reuse of the standard.

3.3 Deriving Configuration Systems from Feature
Models

The development of correct Product Configuration Systems remains as a chal-
lenge. On one hand, it is necessary to create a software that enforces completely
the options and constraints in the feature model. And, on the other hand, it is
necessary to process the user decisions during an interactive configuration to
provide proper feedback and update correctly the user interface.

There are multiple studies focused on best practices and issues to develop
Configuration Systems. Streichsbier et al. [129] evaluated 126 web configura-
tors to determine de-facto standards in user interface design. Rogoll et al. [116]
evaluated 12 configurators to report usability and visual representation prob-
lems. Trentin et al. [136] surveyed 63 users to determine UI characteristics
that reduce the effort during product configuration. More recently, Abbasi et
al. [1] evaluated 111 Product Configurators to determine how these systems
represent the configuration options, handle their constraints and support the
configuration process. This study revealed some issues in the real configurators
used by people everyday in the web. We present here three issues detected by
the Abbasi et al.

Correct handling of constraints : Problems in constraint handling lead to
Product Configurators that allow erroneous configurations because they
do not detect some conflicts. In their study, Abbasi et al. found that
the 97% of the configurators propagate automatically the decisions, only
the 3% identified conflictual decisions and the 11% provide explanations
about the conflict to the user. The 26% of the configurators do not check
constraints involving multiple features and the 4% do not even check if
the mandatory options are indeed selected.

Correct updating of the user interface : Even if the Product Configu-
rator is able to determine correctly which features are enabled or not,
this information must be used to update the user interface consistently.
Studies from Rabiser [109] and Hubaux et al. [68] show that many Prod-
uct Configurators provide incomplete or incorrect information and ad-
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vices. Abbasi et al. found that the 11% of the configurators with cross-
constraints do not support hiding or disabling options.

Ability to revise the decisions : Including options to reset the configura-
tion and undo actions is one of the recommended capabilities for user
guidance in Product Configurators [109]. However, these options are
hard to implement if the reasoning mechanism is not properly imple-
mented. Abbasi et al. found that the 69% of the analysed configurators
allow users to revise their decisions and only the 11% provide undo last
decision functionality. Configurators without that options force users to
start from scratch each time they want to alter their configuration.

3.3.1 Automated Derivation of Configuration Systems

Recently, several approaches aim to create automatically the software from a
feature model and a specification of the intended configuration system. Two
of the most representative are:

Model-driven generation of Web Configurators: Boucher et al. [25][24]
proposed a model-driven approach to generate web configuration tools1.
They use multiple DSLs to specify the models: Feature models written in
Textual Variability Language (TVL) to represent configuration options,
models in Textual View Definition Language (TVDL) to specify the user
interface elements, and models in Featured Cascading Style Sheets (FCSS)
to represent the visual appearance of these elements. Once created the
models, they are processed in Acceleo2 to generate an HTML-based con-
figuration tool. The proposal aims to create a single configuration system
from a single feature model. They do not consider that multiple inde-
pendent systems can be created from the models.

Model-driven generation of Multi-view Configurators: Sottet et al. [128]
propose a model-driven approach where multiple views of the same model
can be defined. In their approach, the resulting Configuration System al-
lows a multi-step configuration process where each stakeholder decide on
the features of her concern. As the above, this proposal do not consider
the creation of multiple configuration systems based on the same models.

3.3.2 Existing libraries to process Feature Configurations

There are many tools and libraries that can be used as a foundation to create
Configuration Systems. For instance, software systems such as Familiar, FAMA
and SPLOT can be used to analyse feature configurations and determine their
validity against a feature model and, therefore, to update the configuration
user interface after a user makes a decision.

1https://staff.info.unamur.be/qbo/Tools/
2https://eclipse.org/acceleo/

https://staff.info.unamur.be/qbo/Tools/
https://eclipse.org/acceleo/
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For instance, to validate configurations, Familiar provides two operations:isComplete and isValid to determine if a configuration is complete and valid.
FaMa provides other two: ValidProduct and ValidPartialConfiguration
to determine the validity of configurations and partial configurations. SPLOT
provides an isValidConfiguration method to determine if a configuration is valid
and a ConfigurationEngine class to interactively select and deselect options.

However, these libraries are not intended to provide complete support,
through a user interface, to interactive configure a product. For instance, FaMa
does not support directly configuration processes and does not provide options
to undo selections. Familiar provides operations to deselect and unselect
options that support other types of user decisions, but do not maintain infor-
mation of which features are selected or disabled by the user or the software,
difficulting the implementation of the undo operation and the update of the
user interface. SPLOT provides a ConfigurationEngine class that support
decision changes and undo last selection, but does not support undo of the
other decisions.

3.3.3 Discussion

There are many proposals and works to support configuration systems using
Feature Models [1][44][117]. A few of these proposals aim to derive automati-
cally configuration systems. In these proposals, developers specify user inter-
faces and views on a feature model and a software system takes that information
and produce source code for the corresponding configuration system. Regret-
fully, these proposals are based on a single model and do not support explicitly
the existence of multiple domains and standards therein. For instance, if the
feature model is created by merging other models for multiple standards and
domains, each time one of the constituent models changes, it is necessary to
determine if the feature models is affected and a new configuration systems
must be generated.

Regarding the existing software that can be used to support the config-
uration tasks, tools and libraries such as Familiar, FaMa and SPLOT offer
methods to analyze configurations against a feature model. A Configuration
System may take a configuration provided by a user and perform some analy-
ses on her decisions. However, Familiar and FaMa are not aimed to support
interactive configuration processes and do not report information about the se-
quence of decisions made by the user and the features that have been selected
or deselected automatically. SPLOT maintains more information about the
configuration steps but does not offer options to undo decisions that are not
the last one.

3.4 Summary

There is a lot of related works. The number of proposals aimed to use feature
models to represent complex products and configuration systems has increased
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in the last years [67][19][9][1][117]. However, a few of them support explicitly
the modeling of standards and regulations that may introduce or affect the
constraints. Almost all the proposals consider the standards and regulations
as additional features that do not require special handling. In this chapter we
surveyed proposals in the state-of-the-art highlighting the difficulties caused by
the confluence of multiple domains and standards.

Modeling using a single Feature Model represents standards and regula-
tions as features and constraints in the same model used for the technical
domains of the product. The resulting models end including features and
constraints for each standard. For the modelers, it is hard to determine
if a constraint is defined by the domain or by the standard. When a stan-
dard changes, it is hard to determine where the model must be modified.
At the end, these approaches difficult the maintenance of the models and
division of the work.

Modeling using Views on a Feature Model uses a single feature model
to represent all the product and concerns. Modelers can define multiple
views to focus on a single concern during the creation and review of the
models. For instance, it is possible to define a view including only the
elements related to a single standard. However, a view belongs to a single
models and cannot be reused for other products. This is an inconvenience
for industries where the same standard may apply to multiple products.
In addition, because there is a single model behind the scenes, using
views may not reduce all the problems associated to the maintenance. A
change on a standard may introduces additional changes, and possibly
errors, in the other views. It is necessary to use specialized tools that
support views on feature models.

Modeling using Multiple Feature Models uses different feature models
to represent each technical domain and concern. Merge operations are
used to compose the models and create the combinations that are of the
interest of the stakeholders. This approach not only allows the separa-
tion of concerns but also the reuse of the models across multiple product
lines. However, existing tools provides support to merge orthogonal (or
almost-orthogonal) feature models where each model includes a different
set of features or has very few in common with the others. The result-
ing model includes the union of these features. This is an inconvenience
for modeling standards as independent feature models. Standards and
regulations are mostly sets of constraints. A single standard may impose
restrictions on features in multiple of the other feature models. In conse-
quence, existing model merging operations may end introducing features
that are not of the interest for a specific domain.

Creating Configuration Systems from Feature Models implies the cre-
ation of programs that takes user decisions and use the information in the
feature models to reason on these decisions. Nowadays, these programs
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are created by hand in almost all the related work. Few approaches take
the models and derive source code for the corresponding configuration
system. In addition, the existing approaches take a single feature model
or a view on that model but do not consider the existence of multiple
models. This may result in an inconvenience if the products are mod-
eled using multiple feature models. For a specific product family, when
a domain or a standard is modified, it is possible that the configuration
system must be build again. It is desirable a comprehensive approach
that consider the constituent models, the required merge operations and
the derivation of the configuration systems.

The following chapters present our proposals to tackle these difficulties and
offer a better support for creating Feature-based Configuration Systems con-
sidering multiple standards.



Chapter 4

Modeling Features of multiple
Domains and Standards

Representing complex products using a single Feature Model results in large
models hard to create and maintain by humans [67][81][114][140]. Instead of
creating a single feature model, we propose a modeling approach where each
technical domain and each standard and regulation of the product are modeled
independently: Feature Models for Domains are used to model each domain,
Feature Constraint Sets are used to represent interactions between the models,
and Feature Models for Standards are used to represent standards and regula-
tions. These models are later combined in different ways for reviewing by the
stakeholders and generating the corresponding software.

This chapter describes our modeling approach. First, Section 4.1 introduces
the diverse types of models using an example of the Automotive Industry.
Section 4.2 presents how these models can be automatically combined and
analysed according to the different needs of the stakeholders. Finally, Section
4.3 presents a discussion and Section 4.4 summarizes the chapter.

Contribution: Main contribution of this chapter is a novel modeling ap-
proach that (1) uses feature models for domains, inter-domain constraint sets,
and feature models for standards to represent complex products, (2) relies on
specialized operations to combine and analyse these models, and (3) derives
the corresponding configuration system based on these combined models.

4.1 Modeling Domains and Standards

An important objective of our approach is to allow domain experts to create
models of their own area of expertise without being distracted or worried by
features and constraints of other domains. Relationships among different do-
mains are discussed by multiple experts. If a feature in a domain constrains
features in other domain, the experts in these domains must work collabora-
tively to precise the interactions. In addition, standards and regulations are
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modeled independently by experts. As a benefit, each domain expert creates
and debugs smaller models that represent only elements that she dominates.

4.1.1 Overview

The following list describes, for each concern, which type of models we use:

Domains: Each domain is modeled using an independent feature model. Each
model includes only the features and constraints that correspond to that
domain. These models for the domains are disjoint. Thus, the features
included in a model cannot be included into another other model rep-
resenting a different domain. In addition, the constraints included in a
model comprise only references to features on that model and cannot
refer to features in other models.

Domain interactions: Relationships and dependencies among feature mod-
els are specified using sets of constraints independently of the feature
models. Each constraint set is created independently. It includes a defi-
nition of which feature models are being related. In addition, it includes
propositional formulae where each term coincide with features in these
models.

Standards and Regulations: Externally defined constraints are modeled in-
dependently. Each standard and regulation is specified in a different fea-
ture model. However, in contrast to the feature models for the domains,
the models for the standards include features that are references to fea-
tures in other models. These references can be used to define constraints
affecting features in the other domains.

Configuration Systems: Features that are part of a configuration system are
specified by a set of commands that slice, merge, and combine feature
models. The result of executing these commands is a new feature model
that includes only the features and constraints to include in the system.
Additional files specifying valid and invalid configurations can be used to
test if the resulting model is able to represent real products.

4.1.2 Running Example: Feature-Based Configuration for
Cars

To illustrate our approach, we will use a running example based on the auto-
motive industry. Another case study modeling Electrical Transformers is pre-
sented in Chapter 8. We prefer to introduce our approach using a case study
on modeling cars because this domain has been well-studied in the literature
and may result more amenable to understand by non-experts.

As mentioned by many authors [50][132], designing and manufacturing au-
tomobiles require the specification of multiple subsystems, of the interactions
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of these subsystems, and the multiple standards that these products must com-
ply with around the world. It is an excellent scenario to describe our approach
for modeling multiple domains, standards and configuration systems.

4.1.3 Modeling Multiple Domains

Nowadays, cars are very complex systems: A typical car comprise more than
50 different subsystems [50] distributed in a network of more that 80 electronic
control units (ECUs) [26]. Modeling all these subsystems, components and
their interactions is key for engineering cars.

In our approach, a first decision is to determine which domains to model.
There are many alternatives to structure the feature models [41][105]. For
instance, it is possible to use a structure that mimics the organizational units
by creating a feature model for the diverse department stakeholders in the
company. Many examples in the literature model cars considering a functional
architecture, i.e., creating a model for each key subsystem and component [105].

Once we have defined the domains to model, we create an independent
feature model, we named A Feature Model for Domains, to represent each
one. Here we describe models to represent the systems for car lighting [50] and
periphery supervision [131], systems that have been subject of many studies.

Car Lighting System One of the car systems is the lighting system, a
critical part for the safety of both the driver and the other road users to see
and to be seen [141].

Figure 4.1: Elements in a Car Lighting System [141]

Figure 4.1 shows typical elements in the lighting system [141]. On one hand,
there are lighting elements aimed to project light and illuminate the road: a
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typical Head-lamp may include high-beams, low-beams (or dipped-beams), fog-
beams, cornering-lamps and spot-lights; while a Rear-Lamp includes a reverse-
beam. These beams can be projected using Incandescent Lamps (Halogen), Gas
Discharge Lamps (Xenon) or LED Lamps. On the other hand, there are other
signaling elements that allow light to inform car activities to other drivers
and pedestrians: Head-lamps may include parking-lights, front-direction indi-
cators and day-time running lights; Side-lights may include side-direction indi-
cators; and Rear-lamps may include rear-fog lamps, stop-lamps, rear-position
lamps and rear-direction indicators. A car may also include other lamps such
as a license plate light and a third stop lamp. In addition, emergency cars such
as fire engines, ambulances and police cars may include special warning lights.

Modern Car Lighting does not include lamps only. They also include addi-
tional devices to improve the driver’s safety and comfort. For instance, there
are “Automated Leveling Systems” that keep the headlights aimed down to
the road. These systems use level sensors in the car to determine if the car is
tilted forward or back and electric servomotors to move the lamp accordingly.
Similarly, “Adaptive headlights” monitor the car’s speed and rotation, as well
as the angle of the steering wheel, to turn the headlights projects by up to
around 15 degrees to match the car’s intended direction. In addition, “Auto-
mated cornering lights” are activated when the car is parking or in a sharp
turn at low speeds.

Figure 4.2: Feature Model of a Car Lighting System

In our approach, we create a Feature Model for Domains to specify the
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elements that comprise the Car Lighting. Figure 4.2 shows an excerpt of the
feature model for a Car Lighting System. It comprises features that represent
the diverse alternatives for beams, types of lamp and assistance systems that
can be included in a car. In addition, it describes constraints on which elements
can be combined into the same car. For instance, it states that a car with
“Xenon High-beams” and “Combined High-Low Beams” must be configured
including ”Xenon Low Beams”.

Car Periphery Supervision System A different domain is the Car Pe-
riphery Supervision, a complex subsystem that monitors the local environment
of a car on the basis of sensors installed around a vehicle [131]. It comprises
diverse type of sensors that may be installed in many locations of a car. Figure
4.3 depicts the diverse ranges of measurements of the sensors in a car may
exhibit. Engineers select which location and type of sensors include in a car
depending on the applications they want to support.

Figure 4.3: Sensors in a Car Periphery Supervision System [133]

Measurements and sensor data are used by Electronic Control Units (ECUs)
in the car to enable different kinds of applications. These can be grouped into
safety-related applications such as pre-crash detection, blind spot detection,
and adaptive control of airbags and seat belt tensioners; and comfort-related
applications such as parking assistance and adaptive cruise control [131] There
are applications that require a specific sets of sensors. For instance, an appli-
cation for parking assistance require sensors at the rear.

A feature model different that the one used for the Lighting is created to
represent the Car Periphery Supervision. Figure 4.4 shows a simplified Feature
Model based on others that exist in the literature [60][131][132][133]. There
are some features representing the applications to include in the system. For
instance, there is a module for parking assistance that determine the distance
of the car to a wall or another car behind. In addition, besides the modules,
the model includes other features representing the type and the location of the



50 Chapter 4. Modeling Domains and Standards

sensors in the car. There are Low-end and High-end sensors for the front and
the rear of the car. In addition, there are light-sensors that can detect the
conditions of visibility outside the car.

Figure 4.4: Feature Model of a Car Periphery Supervision System

4.1.4 Modeling Domain Interactions

Car subsystems do not exist in isolation. There are many interactions that
impose cross-domain constraints. In our approach, these domain interactions
are specified using Constraint Sets.

For instance, the Automated Leveling Systems imply relationships among
the Lighting and the Car Periphery Supervision systems. Figure 4.5 shows key
elements of an Automated Leveling System. There is a Leveling actuator that
is part of the Lighting system and a set of Leveling sensors included in the Car
Periphery Supervision.

Figure 4.5: Key elements in an Automated Leveling System [141]

A constraint set is a propositional formulae that specifies the relationships
between the features in one domain to the features in other domains. For
instance, we can define a constraint set to represent the dependencies between
the Car Lighting and the Car Periphery Supervision Subsystems. A rule may
state that the Automated Leveling System in the Lighting system requires
Front- and Back-leveling sensors in the Periphery Supervision system.
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AutomatedLeveling ⇒ FrontLevelingSensor ∧ BackLevelingSensor
AutomatedLights HB LB ⇒ LightSensors
AdaptiveCorneringLights⇒ HighEndFrontSensors

Figure 4.6: An example Constraint Set

Figure 4.6 shows a set of constraints relating these subsystems. Note
that it comprises expressions where terms represent features in multiple mod-
els. For instance, in the first expression, the term AutomatedLeveling corre-
spond to a feature in the Car Lighting and the terms FrontLevelingSensor and
BackLevelingSensor belongs to the Periphery Supervision system.

4.1.5 Modeling Standards

Car specifications and functions are defined and designed according to stringent
regulations around the world. Despite recent efforts of many governments, car
regulations are quite different across the world. A large number of countries
follow the regulations of the United Nations Economic Commission for Europe
(UNECE)1. Around 50 countries formally participate in the WP-29 agreement
to adopt uniform technical regulations. In 2015, that agreement comprised
135 UN regulations, most of them covering a single vehicle component or tech-
nology. United States, on the other hand, has its own Federal Motor Vehicle
Safety Standards and Regulations (FMVSS)2 that does not recognise the UN
regulations. Other countries such as Canada3 and Japan4 recognise or either
mirror some of the UN and USA regulations in their own requirements. A
recent study counted around 25 different country-specific regulations only for
the Standard Emissions in cars [102].

To mention some differences among the regulations, Automated Leveling
Systems are required in all the new cars in Europe, but required only in
cars equipped with bi-xenon headlights in USA. Daytime Running Lights are
mandatory in Canada but optional in Europe and USA. Side-lights have dif-
ferent sizes and colors in Europe than in USA. A Configuration System aimed
to these markets must consider the additional constraints imposed by the cor-
responding regulations.

We create a separate feature model to represent each standard. Our Feature
Models for Standards represent a single standard and may be specified by an
expert on the standard without worrying about other regulations.

1http://www.unece.org/trans/main/wp29/meeting_docs_wp29.html
2http://www.nhtsa.gov/cars/rules/import/FMVSS/
3http://www.tc.gc.ca/eng/acts-regulations/regulations-crc-c1038.htm
4http://www.bookpark.ne.jp/jsae/book_e.asp

http://www.unece.org/trans/main/wp29/meeting_docs_wp29.html
http://www.nhtsa.gov/cars/rules/import/FMVSS/
http://www.tc.gc.ca/eng/acts-regulations/regulations-crc-c1038.htm
http://www.bookpark.ne.jp/jsae/book_e.asp
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For instance, Table 4.1 shows some differences in the regulations of Europe
and USA regarding the side-lights. Instead of creating a single model, we define
a Feature Model for the European Regulations and another for the American
Standards related to the Car Lighting. Figure 4.7 and 4.8 shows excerpts of
the corresponding Feature Models for Standards

EU regulations and US end-outline marker lamps [clearance lamps] at 2015

(R48: UN Regulation No. 48; F108: FMVSS Standard No. 108; R7: UN Regulation No. 7; SAE Standard No.

J2042)Property EU(UN Regulations) US(FMVSS/SAE Stds) Comparison
Applicability Optional, option of

AM/RM1/RM2 category

lamps

Optional Identical for applicability The EU

permits the use of variable in-

tensity rear end outline marker

lamps, while the US prohibits their

useNumber 4–8 2x Front

2x Rear

Number of side marker lamps can

range from 4–8 in the EU, but must

be 4 (2x rear and 2x front) in the USColor Front: White

Rear: Red

Front: Amber

Rear: Red

Color must be white at the front

and red at the rear in the EU, while

the color must be amber at the

front and red at the rear in the USPosition
Height Front: Upper edge not

lower than upper edge of

wind-screen

Rear: At maximum height

possible

As near the top as practi-

cable

Minimum height at front is lower

in the EU Identical for the rear

Width Outer: ≤ 400 mm and

as close as possible to the

extreme outer edge of the

vehicle

Indicate the overall width

of the vehicle and sym-

metric about the vertical

center line

Widths are more prescriptive in

the EU, while the US is more sub-

jective

Length Front: On the front

Rear: On the rear Other:

Any other location to en-

sure that overall width of

vehicle is indicated

Lengths are not defined in the EU,

while the US provides subjective

length definitions

Other Distances must be ≥ 200
mm vertically from posi-

tion lamps

Minimum vertical distance from

position lamps are prescribed in

the EU, while the US does not de-

fine these minimum distances

Table 4.1: Differences in regulations between EU and USA side turn-signal
lamps, based on a study from Freund and Oliver [51]

Figure 4.7: Feature Model for the Standard of UN regulations for Car Lighting
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Figure 4.8: Feature Model for the Standard of FMVSS (USA) regulations for
Car Lighting

Note that the Feature Models for the Standards reference features that exist
in the other models. The root of each model is the Standard itself. The other
features are references to features in the model for the Car Lighting. This
model represent constraints on the selections of that features that only applies
when the standard must be obeyed.

4.2 Reviewing and Analysing the Models

4.2.1 Motivation

In our approach, each model is created by experts in each domain: While the
Feature Models for Domains are created by experts in the technical domains,
the Feature Models for Standards are created by experts in each standard and
regulation. However, there is a need to review the interactions of the diverse
technical domains in light of the standards that must comply. For instance,
it is desirable to review (1) how the constraints defined for a domain affect
the features of other domain, (2) how a constraint set affects the features of
multiple domains, and (3) how a standard affects the features of one or more
domains.

Experts of different domains can work collaboratively to review the models
and their interactions. For instance, a typical car can be modelled considering
additional domains such as the engine, the power train and the alarm/security
system. An expert in the alarm system may be interested on working with the
experts in the Car Lighting and the Periphery Supervision systems. An alarm
may require sensors and use the lighting as part of its operation. We allow
modelers to combine and analyse the models in arbitrary arrangements.

An important element of our proposal is the ability to combine and analyse
the diverse feature models we define. We have extended the Epsilon family of
languages5 to accomplish these tasks. Epsilon is a family of domain specific

5http://www.eclipse.org/epsilon/

http://www.eclipse.org/epsilon/


54 Chapter 4. Modeling Domains and Standards

languages to manage different types of models, including options to transform
them into other models or into source code. We created a set of drivers to load
the diverse feature models, constraint sets and configurations in our proposal;
and modified the language runtime to support feature model analyses. The
resulting DSL allow modelers to process the diverse models of our proposal, to
combine the feature models in different ways, and to perform a set of analyses
on them.

4.2.2 Analysis of the Models

Analysing multiple Domain-Specific Feature Models To analyse the
interactions among the multiple domains, we can use Epsilon or a library such
as Familiar DSL to combine the corresponding Domain-specific Feature Models
and Constraint Sets and perform analyses on the resulting models.

For instance, consider domain experts trying to analyse the interactions
between the Car Lighting and the Periphery Supervision systems. They might
be interested on a model that combines the features and constraints of both
systems. The resulting model can be used to perform multiple types of analysis.
For instance, it is possible to determine if some features are dead and cannot
be included into any product because the existing constraints impede to do it.

Figure 4.9 shows the result of combining the models representing the Car
Lighting, the Periphery Supervision System and the related Constraint Set (see
Figures 4.2, 4.4 and 4.6 respectively). Note that the resulting model has a new
root feature named Car and includes the features and constraints defined in
the source models and constraint sets.

Analysing Feature Models for Standards To analyse the interactions
among domains and standards, we combine the corresponding models. We first
combine the domain-specific models and the constraint sets. Later, we use an
additional operation to combine the resulting model with a feature model for
standard. The resulting models include the features of all the domain-specific
models plus the constraints defined in the standard.

Figure 4.10 shows a model combining the example Car Lighting and Car
Periphery Supervision systems with the related USA standards. Note that the
model is similar to the model that combines the domains depicted in Figure 4.9.
It includes an additional optional feature FMSSRegulation USA that represents
the standard. In addition, it includes a set of constraints that coincide with
the restrictions defined in the feature model for a standard.

Note that the resulting model includes new constraints imposed by the
standard. If the USA standard is selected and the car has xenon lamps for the
high- and the low beams, the car must include a Automated Levelling System.



4.2. Reviewing and Analysing the Models 55

Figure 4.9: Model combining the example Car Lighting and Car Periphery
Supervision systems.
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Figure 4.10: Model combining the example Car Lighting and Car Periphery
Supervision systems with the related USA standards.
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4.2.3 Testing of the Models

Review and Testing of Feature Models We must mention that the au-
tomated analysis of the Feature Models and their combination is not enough
to assure their quality. It is necessary to perform reviews and tests to validate
if the models represents correctly the products that a company produces and
the constraints imposed by a standard [134].

There are many techniques that can be used to review and test the Models.
For instance, domain and standard experts can meet together to perform a
walkthrough. In addition, they can perform manual tests using a configuration
system to check if the model constraints allow the specifications of real products
from the factory. Other tests may include faulty products to determine if the
problems can be detected. Finally, engineers can use techniques for automated
testing to check if the models can validate correctly the configuration of the
products in the catalog and historic databases of the company. They can use
generated tests based on distinguished configurations and mutations on valid
configurations [13]. As part of a modeling process, experts and engineers can
define which combination of these techniques must be performed to produce
models with a high level of quality.

This chapter presents a set of models as an example of our approach. These
models were built based on other models from the literature and cannot be
checked against a real product catalog of a company. Instead, these models were
reviewed by peers. The Chapter 8 presents a case study where we participated
in the modeling of real products for a company, and describes the techniques
for review we used.

4.3 Discussion

There are many approaches to model complex products using Feature Models.
Some of them focus on creating a single feature model and others on creating
multiple feature models [67][105]. A few use an additional context feature model
that maintains parameters and standards that the products must obey [58].
Our approach is different in three concrete aspects: we (1) Use a model for
each standard, (2) Use constraint sets in addition to relationships and graphs
to represent dependencies between domains, and (3) Combine the models using
different arrangements depending of the intended application or the type of
analysis to perform. This section discusses these differences in more detail by
comparing them to the related work.

A Model for each Standard We use a model for each domain and for each
standard. We agree with many authors that consider using a single feature
model brings more problems than benefits [50][111][105]. However, in contrast
to existing approaches we use a feature model for each standard. Hubaux et
al. [66] structure the feature models according to the stakeholder’s concerns.
Reiser et al. [111] use a model for each subsystem. They do not make a special
consideration for the standards and, therefore, their rules may result scattered
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on the diverse models. Hartmann et al. [58] defines an independent context
variability model. This model includes all the product’s parameters and stan-
dards that may constrain the features in the other models. In this approach,
all the standards are specified in a single model and cannot be modeled or re-
viewed independently. Using a model for each standards, our approach allows
experts on each standard to create the corresponding model. This improves
the separation of concerns and division of the work.

We use Feature Models for Standards to represent the standards. These
models do not specify new features of the product. Instead, these models
define constraints on the features in the other domains. A Feature Model for
Standard has the standard as the root. The other features in the model are
references to features in the models for domains. We defined a new operation
that takes a feature model for a domain and a feature model for standard and
produces a feature model with the structure and the constraints of the first
and including additional constraints representing the information conveyed in
the second. This operation, described in the Chapter 5, is different from the
existing operations to merge feature models [2].

Constraint Sets In contrast to other approaches, we use constraint sets in-
stead of relationships or graphs to specify dependencies amongst features in
different domains. Bruin et al. [27] use Feature-Solution graphs that relate
features in the problem space to features in the solution space. Hartmann et
al. [58] use Feature-relationships to relate features in the context to features
of the product. Reiser et al. [111] use Configuration Links to relate features
in different domains. Instead of, we use sets of constraints expressed as propo-
sitional formulae. These constraints may involve more than two features and
are more suitable to represent elaborated constraints such as those included in
complex products such as a car.

Multiple Arrangements for the Models We may combine and analyse
the feature models for domains and for standards in different ways. Depend-
ing on the intention of the modellers, it is possible to combine and analyse
only some feature models for domains, many feature models for domains and
standards, or all the models. Other approaches define a unique way to inte-
grate the models. Hubaux et al. [66] use multiple models, but they are views
of the same model and cannot be combined in a different way. Hartmann et
al. [58] combines the context variability model with the other models varying
only a set of pre-selected features. Our approach is similar to the proposals of
Reiser et al. [111] and Acher et al. [2]. We use a domain specific language like
the Familiar DSL proposed by Acher et al. [2]. However, we have introduced
new operations to combine and analyse constraint sets and feature models for
standards.
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4.4 Summary

In this chapter, we presented the diverse elements of our modeling proposal:

Feature Models for Domains A set of disjoint feature models that repre-
sent the technical domains of the product. Each model represents a single
domain and is created and reviewed by experts on that model.

Constraint Sets Propositional formulae that relate features in different domain-
specific feature models. These formulae are used to express relationships
and dependencies amongst the domains. For instance, they are used to
specify, after selecting a feature in a domain, which features in other do-
mains must be selected or deselected automatically during a configuration
process.

Feature Models for Standards Feature Models that represent standards
and Regulations. Each model represents a single standard. In a model,
the root represents the standard and the other features are references to
features in the diverse domains of the product. The model is used to
specify the constraints over the product features that the corresponding
standard defines.

Operations to Combine Models A domain-specific language to combine,
merge and weave feature models for domains, feature models for stan-
dards and constraint sets. These operations can be used in different ways
according to the intentions of the modelers and engineers. For instance,
there are operations that can be used to combine multiple domain-specific
feature models to allow domain experts to analyse the interactions of
multiple domains. In addition, there are operations that can be used
to combine the models and create a feature model that represent the
products for a specific configuration system.

This chapter illustrates our approach using an example of the automotive
industry. It includes models for a Car Lighting and a Car Periphery Super-
vision Systems, a sample of UN and USA standards, and their relationships.
The example also presents how these models can be combined to analyse the
domains. Finally, the chapter includes a discussion of the differences with other
proposals in the related work.





Chapter 5

Combining Feature Models
representing Multiple Domains
and Standards

In our approach, complex products are modeled using multiple feature models.
On one hand, the options and features of each technical domain are specified
using feature models for domains. On the other hand, the constraints and
restrictions defined by the standards and regulations are modeled using feature
models for standards. These models are first created independently by diverse
experts on each domain and standard. Later, they are combined to (1) analyse
and review the models, and (2) create the models used for specific applications
such as family-specific configuration systems and product recommenders.

This chapter presents the techniques we use to combine feature models for
domains with feature models for standards. First, Section 5.1 presents a back-
ground, introducing some concepts fo feature models and describing existing
operations to merge feature models. Then, Section 5.2 introduces an example
to illustrate why the existing techniques cannot be used to combine feature
models for domains and for standards. Section 5.3 describes our approach and
implementation, Section 5.4 presents a discussion, and Section 5.5 concludes
the chapter.

Contribution: Main contribution of this chapter is a set of new operators to
combine feature models for domains and for standards: (1) Conditional inter-
section merge, an operator for conditional enforcing of standards, (2) Condi-
tional partial intersection merge, for enforcing only a subset of a standard, and
(3) Sequences of union merge and conditional intersection merge, to combine
multiple technical domains and standards.
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5.1 A Glimpse to the Background

There are many proposals for merge operations that allow modelers to com-
bine feature models using different semantics [9][16][144]. They are used, for
instance, to combine models representing diverse views of the same product
created for different people. This section presents an overview of the feature
models, the operations to merge these models and their possible application
for supporting standards.

5.1.1 Feature Models

Mentioned in Chapter 2, a Feature Model is a compact representation of a set
of products [35][79]. It describes the common and variable features of these
products along with constraints that determines which of these features can be
and/or must be present in a product at the same time.

For instance, consider the feature model depicted in Figure 5.1. The root
element r represent the product for the model and, therefore, is present in all
the products. The feature A is an optional feature, i.e., a product may not
include it. The feature B is a mandatory feature and must be included in all
the products. The features C and D are in an alternative-group. A product
must include one of them but not both.

Figure 5.1: Example Feature Model

We use Ffm to denote the set of features in a model. Considering the feature
model fm1 in Figure 5.1, the set Ffm is:

Ffm1 = {r, A,B,C,D}

A Feature Configuration is a set of the features of a Feature Model. It is
Valid if the set satisfies the constraints defined in the Model. For instance,
considering the model in the Figure 5.1, the configuration c = {r,A,B,C} is
valid against the model because it satisfies all its constraints.

Semantics for a Feature Model is defined by the corresponding set of valid
configurations. Considering the above model fm1 , the semantics JfmK is:

Jfm1 K = {{r,A,B,C}, {r, A,B,D}, {r,B,C}, {r,B,D}}
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5.1.2 Operations to merge Feature Models

Intuitively, the set of features of the model resulting of combining multiple
feature models is the super-set of the features of all the constituent models.
However, considering that feature models represent the set of products (i.e.,
configurations) in a product line [118][63], the semantics of the resulting model
may vary from one approach to the other.

In their work on Feature Model semantics, Schobbens et al. [118] defined
three kinds of operations to merge feature models:

• intersection when the merge results into a feature model that represents
only the products that exist on the constituent models,

• (strict) union when the merge results into a model that represents the
union of the products of all the models, and

• reduced product when the resulting feature model includes products
that combine the features of each valid product of a model with the
features of the valid products of the other model.

Definition 5.1. (Union-merge operation) The (strict) union merge
operation takes two feature models fm1 and fm2 and produces a resulting
feature model fmr such that the set of configurations that are valid against
the resulting model is the union of all the valid configurations of the source
models,i.e., Jfmr K = Jfm1 K ∪ Jfm2 K �

∪ =
r =⇒ A ∨B
E =⇒ A

Figure 5.2: Example Union Merge

For example, consider the union merge of the feature model presented in
Figure 5.1 with another one that includes the same mandatory root feature
r. This model also includes the feature A as mandatory and the feature B
as optional. In addition, B comprises the features C and E in an alternative
group. Note that, for this fm2 feature model, the semantics Jfm2 K is:

Jfm2 K = {{r,A}, {r,A,B,C}, {r,A,B,E}}

The union merge of these models, depicted in Figure 5.2, is a new feature
model which set of valid configurations is the union of the valid configura-
tions of the others. Note that the merge operation combined the features in
both models and introduced new constraints to invalidate the combination of
features that are not valid in the source models.
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Jfmr K = {{r, A}, {r, A,B,C}, {r, A,B,D}, {r, A,B,E},
{r,B,C}, {r,B,D}}

Definition 5.2. (Intersection-merge operation) The intersection merge
operation takes two feature models fm1 and fm2 and produces a result-
ing feature model fmr such that the set of configurations that are valid
against the resulting model is the intersection of the valid configurations
of the source models,i.e., Jfmr K = Jfm1 K ∩ Jfm2 K �

∩ =

Figure 5.3: Example Intersection Merge

Figure 5.3 shows an example of the intersection merge. Note that the
resulting model represent only the configurations that are valid to both source
models:

Jfmr K = {{r,A,B,C}}

∩ = ∅
Figure 5.4: Example of Intersection Merge producing an error

Intersection merge may fail (or produce an empty feature model) when the
intersection of the valid configurations of the models to merge is empty. For
instance, consider the feature models depicted in Figure 5.4. The first is the
same used in previous examples. The second includes the root feature r and a
mandatory feature E, i.e., Jfm2 K = {{r, E}}. Considering that the intersection
of the configurations of these models is empty, i.e., Jfm1 K ∩ Jfm2 K = ∅ , the
intersection merge fails.
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Definition 5.3. (Reduced Product Aggregation) The reduced prod-
uct aggregation takes two feature models fm1 and fm2 and produces a
resulting feature model fmr such that the configurations that are valid
against the resulting model is the reduced producta of the valid configura-
tions of the source models, i.e., Jfmr K = Jfm1 K⊗ Jfm2 K = {C1 ∪C1 | C1 ∈
Jfm1 K ∧ C2 ∈ Jfm2 K}.

�
aWe reuse here the reduced product term introduced by Schobbens et al. [2][118]

⊗ =

Figure 5.5: Example of Reduced Product Aggregation

For example, consider the same models presented before. The reduced
product (or aggregation) will produce a feature model where the set of valid
configurations is the combination of the valid configurations of both models.
Figure 5.5 shows the result of the aggregation.

Jfmr K = {{r, A,B,C,E}, {r,A,B,D,E}, {r,B,C,E}, {r,B,D,E}}

In contrast to the other merge operations, the reduced product aggregation
can be used to combine orthogonal (or almost-orthogonal) feature models that
represent different aspects or technical domains of the same products.

5.2 Challenges Merging Feature Models for Standards

Existing techniques for merging feature models, i.e., the union-merge, intersection-
merge and reduced product merge, cannot be used to combine feature models for
domains and for standards allowing the conditional enforcing of one or more
of the standards.

5.2.1 Example

Consider a set of feature models for domains representing a family of electrical
transformers: Some experts may model the electrical features of the trans-
former, other experts the mechanical properties and others its thermal and
acoustic properties [32]. The feature model for the whole family may result
from combining (e.g., by merging) the models for each domain. Existing com-
positional operations [9] aim to combine correctly these models.
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Electrical Transformers may obey one or more standards depending of the
country or the specific electric distribution network where it will be installed.
The options and constraints of each standard may be specified using feature
models for standards. However, these models must be handled differently than
the above feature models representing technical domains, for three reasons:

• First, a feature model representing a standard may affect more
than one domain of the product. For instance, a single standard
for electrical transformers (e.g., the IEEE Std C57.12 [72]) imposes fea-
tures and constraints to aspects such as their electrical features, their
mechanical characteristics and their acoustic properties.
• Second, a product may comply with more than one standard. A

medium-size electrical transformer may comply with multiple standards
such as the ICONTEC NTC 3997 [70], NTC 819.4 [69] or the NEMA-
TR1 [98].
• And Third, when a product is being specified, the standards may

be optional features. For instance, a customer may request an electri-
cal transformer that does not adhere to any standard. In consequence,
the constraints defined in a standard such as the IEEE Std C57.12 must
be enforced only when the product must adhere to it.

5.2.2 Unconditional enforcing of standards

Consider the example in the domain of electrical transformer depicted in Figure
5.6. On one hand, suppose that a feature model for domain states that the
transformers can support a Power of X, Y or Z. On the other, suppose that
a standard states that the transformers should support Power with one of W,
X and Y. If we perform an intersection merge with these models, the resulting
model will enforce the constraints defined in the standard. Note that the
resulting model excludes the W feature that is not included in the domain and
the Z that is not included in the standard.

Figure 5.6: Unconditional Enforcing (Intersection) of standards

Note that the intersection merge enforces the standard. The resulting model
includes only the features of the domain that obey the constraints of the stan-
dard. The standard is not an option.
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5.2.3 Conditional enforcing of Standards

In companies selling products for different markets, standards cannot be not
enforced in all the products. For instance, electrical transformers for United
States must enforce standards that should not be enforced in transformers for
Colombia, and vice-versa. Standards must be modeled as optional features
that may be included (or not) in a product.

We say that optional standards introduce conditional constraints. Basically,
if a product should not be compliant to a standard, the product does not require
to satisfy the constraints defined in the standard. The product should satisfy
the constraints in the standard only if the product must be compliant.

Figure 5.7: Conditional Enforcing of standards

Consider the example presented in Figure 5.7. If the standard is optional,
(1) the constraints defined in the feature model for the domain must be en-
forced all the time, but (2) the constraints defined in the feature model for the
standard must be enforced only when the standard is also included in the con-
figuration. The resulting model includes a feature representing the standard.
In addition, it includes a new constraint that enforce the rules for the standard,
e.g., it states that, when the standard is selected, the Power should be one of X
and Y. We say the the feature representing the standard is the selector feature
because the constraints are enforced only of that feature is selected by a user
and included in a configuration.

Note that the conditional enforcing of standards presented above cannot be
implemented using the intersection merge. We need a new operation that com-
bines the feature models for the domain and the standard but not invalidates
the features in the domain not present in the standard. The standard must be
enforced only when a selector feature is included in the configuration.

We named this new operation Conditional Intersection Merge. Intu-
itively, this operation must:

1. Introduce a selector feature for the standard into the domain (if it does
not exist), and

2. Introduce new constraints to enforce the standard when the selector fea-
ture is selected.
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5.2.4 Conditional Partial enforcing of Standards

Standards may affect only a subset of the features in the domains. For instance,
in electrical transformers, a standard such as NEMA-TR1 only refers to the
noise level of the devices and does not include constraints for accessories or
mechanical properties. This represent a problem for using the union and the
intersection merge operations where both feature models must represent all the
features in the product.

For instance, consider the example shown in the Figure 5.8. While the
feature model for the domain includes options for Power and Noise Level, the
feature model for the standard defines only options for Power. Note that the
Noise Level is a mandatory feature in the first model but is not included in
the second one and, in consequence, there is not any configuration that is valid
against both models. On one hand, if we perform an intersection of these
models the result will be an empty set. On the other hand, if we perform
a conditional enforcing of the standard as introduced above, the result will
include a model where the standard cannot be selected. Note in the example
the constraint: StandardX ⇒ ¬NoiseLevel . A user cannot select the selector
feature, i.e., StandardX, because it conflicts to a core feature of the model, the
NoiselLevel.

Figure 5.8: Conditional Enforcing of a technical domain and a standard

We need a new operation that determines which subset of the feature model
for the domain must be considered during the enforcing of the standard. Fea-
tures not related with the standard should not be removed by enforcing the
standard. The Figure 5.9 shows the conditional partial intersection of
the same models of the above example. Note that a user can select the Stan-
dardX selector feature because the model does not include any constraint to
the features not included explicitly in the standard.
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Figure 5.9: Conditional Partial Enforcing of a technical domain and a standard

Figure 5.10 shows a conditional enforcing of standards for a technical do-
main and two standards. Note that the operations introduce two new selector
features to the first model, one for each standard. In addition, it introduce
new constraints to enforce the standards when these selectors are selected.
Note also that a modeler can combine multiple standards, one after the other,
in any order, without affecting the final result.

Figure 5.10: Conditional Partial Enforcing of a technical domain with multiple
standards

We named this new operation: Conditional Partial Intersection Merge.
Intuitively, this new operation:

1. Introduces a selector feature for the standard into the domain (if it does
not exists),

2. Determines the set of common features in standard and domain feature
models, and

3. Introduces new constraints to enforce the standard on the common fea-
tures when the selector feature is selected.
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5.2.5 Combination (with conditional enforcing) of Standards

Multiple technical domains may be affected by multiple standards. For in-
stance, in a medium-size electrical transformer, the values for many properties
in the electrical and the mechanical domains may be restricted by the IEEE
Std C57.12, ICONTEC NTC 819.4 and NEMA-TR1 standards. If modelers
define different models for the domains and the standards, it is necessary that
the combination of models applies correctly the rules defined in the standards
on the related features in all the domains.

Consider, for example, the feature models depicted in Figure 5.11. Combin-
ing the feature models for these domains and standards must produce a single
feature model with selector features representing the standards and constraints
that enforce the corresponding standards when one of these selector features is
included in a configuration. To obtain the correct result, the models must be
combined and conditionally intersected in the correct order.

(a) Electrical Domain (b) Mechanical Domain

(c) A Standard (d) Another Standard

Figure 5.11: Example Domains and Standards

It is necessary to combine first the technical domains before the standards.
The technical domains are combined using the Reduced Product Aggregation
operation. This operation introduces the features for each domain into the
result. Then, the feature models of standards are combined using the Con-
ditional Partial Intersection Merge operation. This operation introduces the
constraints of the standards that are related to features that already exists in
the combined domains. The Figure 5.12a shows the aggregation of the domains
and the Figure 5.12b shows the model after combining the standards.
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(a) Combination of Electrical and Mechanical
Domains

(b) Combination of Domains and Standards

Figure 5.12: Combination of Domains and Standards

5.3 New Merge Operations

We have implemented new merge operations to support the combination of fea-
ture models for domains and for standards. We define three new operations that
extend the existing operations to support the requirements presented above:

• Conditional Intersection Merge supports the Conditional enforcing
of Standards.

• Conditional Partial Intersection Merge supports the Conditional
Partial enforcing of Standards, and

• Combination of feature models for domains and for standards
supports the combination of multiple domains and standards.

This section presents the operations and describes their implementation.
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5.3.1 Conditional Intersection Merge

5.3.1.1 Definitions

We defined the Conditional Intersection Merge operation to combine (1) a fea-
ture model of a domain with (2) a feature model of a standard . This operation
yields a feature model that represents all the valid configurations for the fea-
ture model for the domain that do not include the standard and the subset of
configurations that include the standard and satisfy the constraints defined in
the feature model for that standard.

Definition 5.4. (Conditional Intersection Merge) The Conditional
Intersection Merge is an operation that takes two feature models fm1 and
fm2 and produces a feature model fmr that includes an optional Selector
Feature fs and its semantics Jfmr K represents the union of (1) the products
of the first model Jfm1 K (where fs is not included), and (2) the reduced
product aggregation of the selector feature and the intersection of the
products of both models {fs} ⊗ (Jfm1 K ∩ Jfm2 K).

Jfmr K = Jfm1 K ∪ ({fs} ⊗ (Jfm1 K ∩ Jfm2 K))

�

Conflicts in Conditional Intersection Merge. This operation produces
a valid feature model if the first feature model is valid, The resulting model
includes, at least, the same set of valid configurations of that model.

However, there are some circumstances where the resulting model is invalid
or has inconsistencies:
• when the second model is invalid, the selector feature in the resulting

model is a dead feature; and
• when the intersection of both models is an empty set, the selector feature

in the resulting model is a dead feature.
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Conditional Intersection Merge using an existing selector. We de-
fined a variation of the above operation that can be applied to combine fea-
ture models for standards with legacy feature models combining domains and
standards. These legacy models may include a feature representing the same
standard that is represented in an independent feature model for a standard.
In such situations, the Conditional Intersection Merge must not introduce a
new feature but use the existing feature that represent the standard.

The Conditional Intersection Merge using an existing selector is used when
the selector feature fs already exists in the first feature model (i.e., fs ∈ Ffm1

).

Definition 5.5. (Conditional Intersection Merge using an exist-
ing selector) The Conditional Intersection Merge using an existing se-
lector is an operation that takes (1) two feature models fm1 and fm2 , and
(2) a selector feature included in the first model fs ∈ Ffm1

, and produces
a feature model fmr which semantics Jfmr K represents the union of (1) all
the products of the first model Jfm1 K where fs is not included, and (2) the
intersection of the products of both models Jfm1 K ∩ Jfm2 K that includes
fs.

Jfmr K = {C ∈ Jfm1 K | fs /∈ C} ∪ {C ∈ Jfm1 K ∩ Jfm2 K | fs ∈ C}

�

Conflicts in Conditional Intersection Merge using an existing selec-
tor. This operation produces valid models if both feature models are valid
and the selector feature is truly optional (it is neither full mandatory nor dead)
in the first feature model, The resulting model represents, at least, the valid
configurations of the first model that do not include the selector feature.

It may produce models that are invalid or have inconsistencies:
• when the selector feature is truly optional in the first model and the

second model is invalid, the selector feature in the resulting feature model
is a dead feature.

• when the selector feature is truly optional in the first model and the
intersection of the semantics of both models is empty, the selector feature
in the resulting feature model is a dead feature.

• when the selector feature is full mandatory in the first model and the
second model is invalid, the resulting feature model is invalid.
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5.3.1.2 Implementation

Conditional Intersection Merge The Conditional Intersection Merge re-
ceives two feature models fm1 and fm2 and yields a new model fmr. It intro-
duces to the first model: 1. a feature, the selector feature fs, and 2. a set of
constraints to produce the result. In the resulting model, the selector feature
is always an optional child feature of the root feature in fm1, and the con-
straints are determined automatically to enforce the constraints in fm2 when
the selector feature fs is selected.

As mentioned before, the Conditional Intersection Merge aims to combine
feature models for domains and for standards. It applies to standards defines
restrictions to the features in the domain and does not consider features in
other domains. In such scenarios, the feature model of the domain is fm1 and
the model for the standard is fm2. At the end, the resulting model fmr will
include a selector feature fs representing the standard and a set of constraints
that enforce the standard when fs is included in a configuration.

FAMILIAR implementation The operation can be easily implemented
using FAMILIAR [7], a domain specific language for managing feature models.
This language provides sentences to perform operations on feature models such
as the intersection merge and the union merge. The implementation of our
operator can be a script that uses that operations implementing the semantics
presented in the Definition 5.4.

1 // given fm1 and fm2
2

3 // define a feature model for the selector
4 fms = FM ( fs )
5

6 // intersect the input models
7 fmTemp = merge intersection { fm1 fm2 }
8

9 // insert the selector as mandatory in the resulting intersection
10 f2root = root fmTemp
11 insert fms into f2root with mand
12

13 // merge the fm1 with the temporary result
14 fmr = merge sunion { fm1 fmTemp }

Listing 5.1: Example FAMILIAR Implementation of the Conditional
Intersection Merge

Note that FAMILIAR provides data types for feature models and features,
and functions to find the root of model and perform the diverse merge and
intersections required by our operator. Each operation is executed one after
the other. Internally, the merge operations performs three tasks: the match of
the feature models, the calculation of the propositional formula that represent
the result, and the calculation of the tree that will be used in the resulting



5.3. New Merge Operations 75

model. After the propositional formula is calculated, the tree is generated by
creating a implication graph of the formula and determining a spanning tree
in the graph [7][11].

An alternative implementation We have considered an alternative
implementation based on some properties of the intersection merge operation
on feature models. Instead of creating a new structure for the resulting feature
model, we are interested on a solution that may reuse the structure of the input
models.

Intersection Merge. According to Definition 5.2, the result of intersect-
ing two feature models is a new model which semantics is the intersection of
the valid configurations of the input models. Each configuration that is valid
against the result is valid against both input feature models. On one hand, this
means that these valid configurations can include only the features that exists
on both models. The set of features in the result models is the intersection,
i.e., a subset, of the features in each one of the input models. On the other
hand, that means that the set of valid configurations of the result is a subset
of the valid configurations of the input models.

The intersection of feature models can be defined using propositional logic.
Acher et al. [2] named Configuration Semantics of an operation to the intended
semantics of the result. For each operation, there is a Formula Calculation that
may take the semantics of the input models and determine the configuration
semantics of the result. According to the them, the formula calculation for the
intersection merge is the following:

Definition 5.6. (Formula Calculation for Intersection Merge)
Given a feature model fmr resulting of the intersection of two feature
models fm1 and fm2 , the corresponding propositional formula φr is:

φr = (φ1 ∧ not(Ffm1
\ Ffm2

)) ∧ (φ2 ∧ not(Ffm2
\ Ffm1

))

where,
not({f1 , f2 , . . . fn}) =

∧
i=1...n

¬fi

�

The Formula Calculation for the intersection combines the formulas of the
input models but negates all the features that exists in one feature model
that do not exist in the other. Negating these features, the resulting formula
prevents the inclusion of these features in the configurations of the resulting
model.

Note that the resulting feature model of an intersection can be one of the
input feature models after adding some new constraints. Considering that
the model fm1 is equivalent to φ1, we can conclude that the resulting model
fmr may be the same input model fm1 after adding the constraints for: φ2 ∧
not(Ffm2 \ Ffm1 ) ∧ not(Ffm1 \ Ffm2 ).
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To intersect the feature models fm1 and fm2 , we can take the first model
fm1 and add to it a set of constraints: Algorithm 5.1 describes how to obtain
the set of constraints to add. On one hand, in line 3, it adds clauses to negate
all the features in fm1 that do not exist in fm2 . On the other hand, starting
at line 3, it adds the constraints in φ2 but negating the features of fm2 that
do not exist in fm1 . It translates the feature model fm2 into a corresponding
propositional formula φ2, using an operation encode(fm). The resulting formula
comprises a set of clauses c. It is possible to determine the features in the clause
using the operation vars(c). The algorithm add the clauses c after negating
the features vars(c) that do not exist in fm1 .

Algorithm 5.1 Obtaining the set of constraints to add to fm1 to produce the
intersection of fm1 and fm2

1: procedure determineIntersectionConstraints(fm1, fm2)
2: φr ← {}
3: for all f ∈ (Ffm1 \ Ffm2 ) do . adding: not(Ffm1 \ Ffm2 )
4: φr ← φr ∪ {¬f}
5: end for
6: φ2 ← encode(fm2) . adding: φ2 ∧ not(Ffm2

\ Ffm1
)

7: for all c ∈ φ2 do
8: for all f ∈ (vars(c) \ Ffm1 ) do
9: c← negateVariable(c, f) . equivalent to: c← (c ∧ ¬f)

10: end for
11: φr ← φr ∪ {ci}
12: end for
13: return φr
14: end procedure

In the algorithm we want to add to fm1 only constraints on features that
exists on that model. We do not want to add a constraint c ∧ ¬f where f is
not part of fm1. Algorithm 5.1, in line 9, uses a negateVariable(c, f) operation
that takes the clause c, set the variable f in false and yields a new clause that
do not include that variable. There are many techniques to simplify CNFs that
can be used to achieve this.

Note that there are cases where the process to obtain the constraints to add
can be simplified. For instance, consider two feature models fm1 and fm2 with
the same set of features or where the set of features in the second is a subset
of the features of first, i.e., Ffm2

⊆ Ffm1
. All the features in the second feature

model exist in the first, i.e., Ffm2
\ Ffm1

= ∅. In such cases, it is possible to
take the constraints in the second feature model fm2 and add it to the first
without the need of negating variables.
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Partial Intersection Merge1. We are proposing an operation that com-
bines two models enforcing the constraints of the second feature model only
when a feature is selected. For instance, to enforce the constraints of a stan-
dard when the feature represented the standard is selected. The resulting model
must include an optional selector feature and a set of constraints that enforces
the new rules.

Considering the semantics presented above, we can determine the formula
to calculate the Conditional Intersection Merge using the well-known formulas
for the intersection and the union merge [2].

Definition 5.7. (Formula Calculation for Union Merge) Given two
feature models fm1 and fm2 with the corresponding formulas φ1 and φ2,
the model fm∪ resulting of the union merge Jfm∪K = Jfm1 K ∪ Jfm2 K is the
formula φ∪ such that:

φ∪ = (φ1 ∧ not(Ffm2 \ Ffm1 )) ∨ (φ2 ∧ not(Ffm1 \ Ffm2 ))

where
not({f1 , f2 , . . . fn}) =

∧
i=1...n

¬fi

�

We defined the Conditional Intersection Merge (see Definition 5.4) as:

Jfmr K = Jfm1 K ∪ ({fs} ⊗ (Jfm1 K ∩ Jfm2 K))

Letting fm1∩2 = Jfm1 K ∩ Jfm2 K, the corresponding φ1∩2 is determined by

φ1∩2 = (φ1 ∧ not(Ffm2
\ Ffm1

)) ∧ (φ2 ∧ not(Ffm1
\ Ffm2

))

= φ1 ∧ φ2 ∧ not(Ffm2
\ Ffm1

) ∧ not(Ffm1
\ Ffm2

)

Letting fmf⊗1∩2 = {fs} ⊗ (Jfm1 K ∩ Jfm2 K), the corresponding formula
φf⊗1∩2 is

φf⊗1∩2 = fs ∧ φ1 ∧ φ2 ∧ not(Ffm2
\ Ffm1

) ∧ not(Ffm1
\ Ffm2

)

and the set of features of fmf⊗1∩2 is:

Ff⊗1∩2 = fs ∪ (Ffm2
∩ Ffm1

)

Note that Ff⊗1∩2 includes the fs feature and the features that are common to
both models. In consequence,

Ff⊗1∩2 \ Ffm1 = fs ∪ (Ffm2 \ Ffm1 )

Ffm1 \ Ff⊗1∩2 = Ffm1 \ Ffm2

1Appendixes A and B discuss on other alternative implementations for the Intersection
and Partial Intersection merge operations.
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Now, considering Jfmr K = Jfm1 K∪ ({fs}⊗(Jfm1 K∩Jfm2 K)), the correspond-
ing formula φr is:

φr = (φ1 ∧ not(Ff⊗1∩2 \ Ffm1
)) ∨ (φf⊗1∩2 ∧ not(Ffm1

\ Ff⊗1∩2))

= (φ1 ∧ ¬fs ∧ not(Ffm2
\ Ffm1

)) ∨ (φf⊗1∩2 ∧ not(Ffm1
\ Ffm2

))

= (φ1 ∧ ¬fs ∧ not(Ffm2
\ Ffm1

))

∨ (fs ∧ φ1 ∧ φ2 ∧ not(Ffm2
\ Ffm1

) ∧ not(Ffm1
\ Ffm2

))

= φ1 ∧ not(Ffm2
\ Ffm1

) ∧ (¬fs ∨ (φ2 ∧ not(Ffm1
\ Ffm2

))

= φ1 ∧ not(Ffm2
\ Ffm1

) ∧ (fs ⇒ (φ2 ∧ not(Ffm1
\ Ffm2

))

Definition 5.8. (Formula Calculation for Conditional Intersec-
tion Merge) Given two feature models fm1 and fm2 with the corre-
sponding formulas φ1 and φ2, the model fmr resulting of the conditional
intersection merge can be represented with a formula φr such that:

φr = φ1 ∧ not(Ffm2 \ Ffm1 ) ∧ (fs ⇒ (φ2 ∧ not(Ffm1 \ Ffm2 ))

�

This formula denotes that:

(1) The resulting set of configurations contains all the configurations valid
against the first model, i.e., φ1.

(2) None of the configurations include features in fm2 not included in fm1 ,
i.e., not(Ffm2

\ Ffm1
).

(3) And, when fs is included in the configuration, only the configurations
valid against the second model that not include features of fm1 not in-
cluded in fm2 are valid, i.e., (fs ⇒ (φ2 ∧ not(Ffm1

\ Ffm2
)).

To implement the Conditional Intersection Merge, we must add to fm1 the
constraints that correspond to: φc1 = not(Ffm2

\ Ffm1
), φc2 = (fs ⇒ φ2) and

φc3 = (fs ⇒ not(Ffm1 \ Ffm2 ))

• φc1 = not(F fm2 \F fm1 ): In the original formula, there is not any feature
f ∈ (Ffm2

\ Ffm1
). We can implement φc1 without adding constraints.

We must maintain the features of fm1 without adding new features from
fm2 . It is possible that some clauses in φc2 include these features. For
each clause, we can take all the features in (Ffm2

\ Ffm1
), set them to

false and remove them before add the corresponding constraint to fm1 .

• φc2 = (fs ⇒ φ2): φc2 can be determined easily from the formula φ2
that represents fm2 . As mentioned before, in our implementation, we set
to false and remove the variables that correspond to (Ffm2 \ Ffm1 ).

• φc3 = (fs⇒ not(F fm1 \F fm2 )): Here we must determine the features
in fm1 that do not exist in fm2 . φc3 can be determined easily from that
set.
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An algorithm to implement the Conditional Intersection Merge may add
(1) an optional feature for the standard, (2) a set of constraints denoting that
the feature representing the standard implies the constraints defined in the
model of the standard (the second model) after setting to false and removing
the variables that do not exist in the model of the domain (the first model), and
(3) constraints denoting that the standard implies the negation of the features
in the domain that do not exist in the standard.

Note that the Algorithm 5.1 obtains the constraints that determines the
intersection of both models. That function can be used to determine which
constraints to add to the first model for the Conditional Intersection. We must
take each constraint c in that set and add to the feature model that the selector
feature implies that constraint, i.e., fs ⇒ c.

Algorithm 5.2 describes the process. First, in the line 4, it introduces a new
optional child feature of root representing the selector feature. And then, in
the line 4, it introduces additional constraints stating that the selector feature
implies the constraints that implement the intersection of both models.

Algorithm 5.2 Conditional Intersection Merge of fm1 and fm2

1: procedure conditionalIntersectionMerge(fm1, fm2)
2: fmr ← fm1

3: fs ← nameOfRoot(fm2)
4: addOptionalFeature (fmr, fs)
5: for all c ∈ determineIntersectionConstraints(fm1, fm2) do
6: addConstraint(fmr, (fs =⇒ ci))
7: end for
8: return fmr

9: end procedure

Note that the Algorithm introduces a new feature with the name of the
root of the second model. Here we are assuming that this is the name of the
standard and does not exists any other feature with the same name in the first
model, i.e., the domain model.. The algorithm is presented in this way for the
sake of simplicity. A real implementation may define a different strategy to
name this new feature. For instance, it may be asked to the user.
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5.3.2 Conditional Partial Intersection Merge

5.3.2.1 Definitions

We defined the Conditional Partial Intersection Merge operation to combine
(1) a feature model of a domain with (2) a feature model of an standard that
includes constraints for features in other domains. Intuitively, this operation
obtains first the subset of the standard that is directly related to the domain
and performs a Conditional Intersection Merge of both models.

Our Conditional Partial Intersection Merge relies on the slice operation.
This operation, defined and formalized by Acher et al. [2][6], aims to obtain
a subset of a feature model which valid configurations are also partial valid
configurations of the original.

Definition 5.9. (Slice of a Feature Model,
∏

F (fm)) The slice is
an operation that take a feature model fm and a set of features Fslice ⊆
Ffm and yields a new feature model fmr =

∏
Fslice

(fm) which semantics
represents the projected set of configurations of fm over Fslice ,

Jfmr K = JfmK|Fslice
= {C ∩ Fslice | C ∈ JfmK}

�

We define the Conditional Partial Intersection Merge operation as follows:

Definition 5.10. (Conditional Partial Intersection Merge) The
Conditional Partial Intersection Merge as an operation that takes two fea-
ture models fm1 and fm2 and produces a feature model fmr that includes
an optional Selector Feature fs and which semantics Jfmr K represents the
union of (1) the products of the first model Jfm1 K (where fs is not in-
cluded), and (2) the reduced product aggregation of the selector feature
and the intersection of the products of the first model and the slice of the
second model with the features in the first model, {fs}⊗(Jfm1 K∩

∏
Ffm1

Jfm2 K).

Jfmr K = Jfm1 K ∪ ({fs} ⊗ (Jfm1 K ∩
∏
Ffm1

Jfm2 K))

�

Note that a valid configuration of the feature model for a standard may be
not valid against the subset of the standard directly related to the features in
the domain because the former may have more features and constraints than
the latter.
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Conflicts in Conditional Partial Intersection Merge. It produces a
valid feature model if the first model is valid. The resulting model includes, at
least, the same set of valid configurations of that model.

However, there are some circumstances where the resulting model is invalid
or has inconsistencies:
• when the second model is invalid, the selector feature in the resulting

model is a dead feature; and
• when the intersection of both models is an empty set, the selector feature

in the resulting model is a dead feature.

Conditional Partial Intersection Merge using an existing selector.
As with the Conditional Intersection Merge operation, we have defined a vari-
ation of this operator that allow us to use an existing feature in the first model
as the selector feature. The Conditional Partial Intersection Merge using an
existing selector is an operation used when the feature fs exists in fm1 (i.e.,
fs ∈ Ffm1

) and should not be added in the process.

Definition 5.11. (Conditional Partial Intersection Merge using
an existing selector) The Conditional Partial Intersection Merge using
an existing selector is an operation that takes (1) two feature models fm1

and fm2 , and (2) a selector feature included in the first model fs ∈ Ffm1
,

and produces a feature model fmr which semantics Jfmr K represents the
union of (1) all the products of the first model Jfm1 K where fs is not
included, and (2) the set of products in the intersection of the products
in the first model with the slice of products of the second model with the
features in the first model, (Jfm1 K ∩

∏
Ffm1

Jfm2 K) that includes the fs.

Jfmr K = {C ∈ Jfm1 K | fs /∈ C} ∪ {C ∈ (Jfm1 K ∩
∏
Ffm1

Jfm2 K) | fs ∈ C}

�

Conflicts in Conditional Partial Intersection Merge using an existing
selector. This operation produces valid models if both feature models are
valid and the selector feature is truly optional (it is neither full mandatory
nor dead) in the first feature model, The resulting model represents, at least,
the valid configurations of the first model that does not include the selector
feature.

It may produce models that are invalid or has inconsistencies:
• when the selector feature is truly optional in the first model and the

second model is invalid, the selector feature in the resulting feature model
is a dead feature.

• when the selector feature is truly optional in the first model and the
intersection of the semantics of both models is empty, the selector feature
in the resulting feature model is a dead feature.
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• when the selector feature is full mandatory in the first model and the
second model is invalid, the resulting feature model is invalid.

5.3.2.2 Implementation

Conditional Partial Intersection Merge The Conditional Partial Inter-
section Merge receives two feature models fm1 and fm2 and yields a new feature
model fmr. It introduces to the first model a selector feature fs and a set of
constraints. In contrast to the previous operation, this operation does not in-
clude all the constraints in fm2 that do not exists in fm1. It only introduces
the constraints in fm2 that affect directly the features that exists in fm1.

To implement this operation, we use the slice operation defined by Acher
et al. [2] to remove safely all the occurrences of the features that does no exists
in fm1. The slice operation takes a feature models and a set of features and
yields a new feature model. We use that to remove from the second model
fm2, the set Fremove with the features in fm2 that does not exists in fm1, i.e.,
Fremove = Ffm2

\ Ffm1
. Algorithm 5.3 describes our implementation.

Algorithm 5.3 Conditional Partial Intersection Merge of fm1 and fm2

1: procedure conditionalPartialIntersectionMerge(fm1, fm2)
2: fmr ← fm1

3: fs ← nameOfRoot(fm2)
4: fremove ← Ffm2

\ Ffm1

5: fm ′2 ← slice (fm2, fremove)
6: addOptionalFeature (fmr, fs)
7: for all ci ∈ determineIntersectionConstraints(fm1, fm

′
2) do

8: addConstraint(fmr, (fs =⇒ ci))
9: end for

10: return fmr

11: end procedure
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5.3.3 Combination of Domains and Standards

5.3.3.1 Definitions

To combine multiple feature models for domains and for standards, we defined
an operation for Combination of Domains and Standards.

Definition 5.12. (Combination of Domains and Standards) The
Combination of Domains and Standards is an operation that takes (1) a
set of feature models for domains dfm1 . . . dfmn, and (2) a set of feature
models for standards sfm1 . . . sfmm, and produces a feature model fmr

which corresponds to the conditional partial intersection of (1) the reduced
product of all feature models for the domains, and (2) all the models for
standards.

fmr = ((dfm1 ⊗ . . .⊗ dfmn)⊗partial∩ sfm1 ⊗partial∩ . . .⊗partial∩ sfmm)

�

5.3.3.2 Implementation

Combination of Domains and Standards The combination of multiple
feature models for domains and for standards is performed by using the previ-
ously defined operations. The combine operation (1) takes a set of feature mod-
els for domains dfm and a set of feature models for standards sfm, (2) perform
a reduced product aggregation of all the models for domains, and (3) perform
a conditional intersection merge of all the models for standards. Algorithm 5.4
describes the implementation.

Algorithm 5.4 Combination of Domains and Standards

1: procedure combine(dfm, sfm)
2: fmr ← dfm1

3: for all dfmi ∈ dfm do
4: fmr ← fmr ⊗ dfmi

5: end for
6: for all sfmi ∈ sfm do
7: fmr ← fmr ⊗partial∩ sfmi

8: end for
9: end procedure
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5.4 Discussion

5.4.1 Classification of the Operations

Thum et al. classifies the modifications on feature models according to the
effect on the semantics [135]. Acher et al. uses this classification to characterize
the operations on feature models [2]. According to them, operations can be
classified into: (1) refactorings, when the semantics of the model remains the
same; (2) specializations, when the resulting set of configurations is a subset of
the original; (3) generalization, when the result is a superset; and (4) arbitrary
edit, otherwise.

As pointed out by other authors [2], an intersection merge is a special-
ization. Given two feature models, the intersection produces a feature model
which semantics, i.e., the set of valid configurations, is a subset of the semantics
of the originals.

In contrast, although our operations introduces constraints to the feature
models and they are named as “intersections”, not all of the them can be
classified as specializations:

Conditional Intersection Merge is a generalization. The resulting feature
model of the operation includes all the configurations of the first feature
model and a set of new configuration according to the existent in the
second model. The operation generalizes the first feature model.

Conditional Intersection Merge with an existing selector is a
specialization. Considering that the first feature model includes the se-
lector feature, it includes configurations that include the selector. The
operation will produce a new model that restrict these configurations
with the selector feature with additional constraints defined in the sec-
ond model. The operation specializes the first feature model.

Conditional Partial Intersection Merge is a generalization. As with the
Conditional Intersection Merge, this operation maintains the configura-
tions of the first feature model and introduces new configurations with
the selector feature. This operation generalizes the first model.

Conditional Intersection Merge with an existing selector is a
specialization like the Conditional Intersection Merge with an existing
selector. This operation specializes the first feature model.

We must mention that our operators may produce a feature model with the
same semantics of first of their inputs depending on properties of the operands.
For instance, if we have two feature models fm1 and fm2 , perform a conditional
intersection merge of these models fma = fm1 ⊗partial∩ fm2 and perform an-
other conditional intersection merge with an existing selector of the result with
the second feature model fmb = fma ⊗partial∩ fm2 , the result of the first oper-
ation is the same of the second, i.e., fma = fmb
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As another difference among the operations, the intersection merge is com-
mutative regarding the cofiguration semantics but our operators are not. Our
operations produce a feature model that maintain all the configurations of the
first model and introduces new configurations, e.g., representing those products
that comply with a standard. The order of the models determine which set of
configurations will be maintained in the result.

5.4.2 Implementation of the Operations

The operations to merge feature models are implemented in two phases: (1) a
matching phase that identifies which elements (e.g., features) in the models to
be composed represent the same concept, and (2) a merging phase where the
matched elements are grouped together and a new feature model is generated
according to the intended semantics.

There are many strategies for these matching and merging phases:

For matching: the most simple strategy is to match features that have the
same name or the same id. This strategy is plausible for models created
by the same company or the same modelers where the names of the
features can be standardized [2]. More sophisticated strategies such as
correspondence tables or inter-model relationships [53] are required when
the models are created by different suppliers and it is unlikely that the
features get the same name.

For merging: it is possible to merge the models manipulating the structure
of the models or by processing the semantics of them2. The semantic-
based operations usually overcomes the limitations of the structure-based
ones and can be applied to a larger number of feature models [2][9]. For
a given operation, a semantic-based operation consider, on one hand, its
configuration semantics i.e., the intended set of valid configurations of
the resulting model, and on the other hand, its ontological semantics i.e.,
the intended tree-based structure of the result.

We have developed an implementation of our operations using Epsilon and
Java. This implementation matches the features that have the same name in
the input models. At the moment we have been working with models created
by a single modeller or by a modellers of a single company. The use of the
name is plausible because we can define rules and reviews to check that all the
features are consistently identified in all the models. However, we know that
this may be a problem if we try to use models created by different companies
and suppliers.

Regarding the merge of the models, we define the operators considering the
semantics of the models. Instead of the strategy proposed by Acher et al. [2]
where the structure of the model is created from an implication graph, we were

2A more extensive discussion exists in the Section 3.2.2 in the Background chapter and
in the works of Acher et al. [2][9]
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interested on reusing the structure of one of the input models for two reason:
On one hand, we believe that modelers feel more comfortable with models that
are similar to those that they have created. On the other hand. we consider
that adding constraints instead of generating the tree may result more efficient.
We are exploiting the semantics of the intersection that allow obtain a result
by adding constraints. The same strategy of just adding constraints may be
not appropriated to implement other operators.

We must mention that we rely on the implementation of the slice included
in FAMILIAR. FeatureIDE has another implementation. Recently, some work
has been done to optimize these implementations [86]. These optimizations
may be a source of inspiration for improving our work.

5.5 Conclusions

In this chapter we presented three operations we defined to combine feature
models for domains and for standards. Instead of enforcing the constraints
in the standard with the existing operations, these new operators allow us
to define the standards as optional elements. The constraints defined in the
standard are enforced only when the standard is selected by the user during a
configuration.

The operations we defined are:

Conditional Intersection Merge An operation that takes a feature model
for a domain, a model for a standard and a common selector feature
that represents the standard. The operations yields a new model where
all the valid configurations of the first model that do not include the
selector, i.e., the standard, are valid; and where only the configurations
that contain the standard and are in both the domain and the standard
are valid. This means that the configurations that contain the selector
feature but are not valid against the feature model for the standard are
invalid in the resulting model.

This operation can be used to combine a feature model for a domain with
a model for a standard that only includes features of that domain. It
cannot be used in scenarios where the standard applies to many domains
and, therefore, the model includes more features than the existing in the
model for the domain.

Conditional Partial Intersection Merge An operation that takes a fea-
ture model for a domain, a model for a standard and a common selector
feature representing the standard and yields a new feature model. In the
new feature model, all the valid configurations of the model of the do-
main that do not include the selector feature are valid too. In addition,
all the valid configurations of the first model that include the selector
and the subset of features included in both models is valid against the
second model, are valid in the resulting model.
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This operation is used to combine a feature model for a domain with a
feature for a standard that includes features of other domains.

Combination of models for domains and standards An operation that
takes one or more feature models for domains, inter-domain constraint
sets and feature models for standards and yields a new feature model
that represent the subset of the reduced product of the models for the
domains that satisfies all the rules defined in the constraint sets and that
enforces the constraints of the standards when the corresponding selector
features are included in the configuration.

This operation is used to produce a feature model for a product family
according to a set of models created by multiple stakeholders.

This chapter includes examples to illustrate the need of the new operators,
and presents a formal definitions of these operations





Chapter 6

Deriving Configuration Systems
from Models representing
multiple Domains and Standards

The development of Product Configuration Systems is not an easy task. A
recent study [1] evidences the multiple issues that exist in contemporary web
Product Configurators: Many of these tools omit constraints or erroneously up-
date the user interface. In addition, some tools do not provide advanced options
to undo or to reconsider the value of a decision previously made. Furthermore,
only a few notify users when a change affects already made decisions and the
user has to revise some of the choices.

This chapter presents our proposal to tackle these problems: On one hand,
a model-based approach to derive automatically, from a given feature model, a
Product Configuration system. On the other hand, a set of runtime components
to process user decisions during the configuration process.

Rest of this chapter is organized as follows: Section 6.1 describes how we
use feature models and a user-interface definition models (UI-definitions) to
derive the user interface. Section 6.2 details the model-transformations we use
to process user decisions and update the user interface at runtime. Section 6.3
discusses our approach and compares it with other proposals and libraries, and
Section 6.4 concludes the chapter.

Contribution: As main contributions, this chapter (1) introduces a mod-
el-based approach to engineer user interfaces for Configuration Systems that
support these operations, and (2) describes how the models can be used at
runtime to process user decisions, determine the impact of these decisions, and
update the user interface accordingly

89
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6.1 Deriving the User Interface

This section presents our proposal for model-driven derivation of configuration
systems. In our approach, each Configuration System is created from a set
of models. On one hand, the options and constraints are defined in a feature
model. For product families specified using multiple domain- and standard-
specific models, it is necessary to combine first these models into a single feature
model. On the other hand, the elements of the user interface are defined in
a UI-definition model. To explain how we derive the user interface, we use a
simple Car Configurator example.

6.1.1 Example

Here we present a Configurator inspired on the Car Configurator offered by
Audi in its web site1. The example configurator depicted in Figure 6.1 supports
only a few of the configuration options to configure the Audi A4 and A6 models:
the A4Saloon, A4Avant, S4Saloon, S4Avant, A6Saloon and A6Avant models.

Figure 6.1: User interface of our Car Configurator

In our example, a user configuring an Audi Car must select a ModelLine, a
BodyStyle, and some Exterior features. The ModelLine can be one of AudiA4
or AudiA6. The BodyStyle can be either Saloon (a.k.a., Sedan) or Avant (a.k.a.,
Station-Wagon). In the Exterior, the user must select the type of Tires (one
of 17inches, 18inches, 19inches or 20inches). A user can, optionally, select a
BlackStyling package.

However, some features cannot be selected at the same time. Regarding
the car models, the selection of the AudiA4 model line implies the selection
of one of the A4Saloon, A4Avant, S4Saloon or S4Avant models. Selecting the
AudiA6 model line implies one of the A6Saloon or A6Avant models. In turn,
the Saloon body style implies the selection of one of the A4Saloon, S4Saloon
or A6Saloon. And finallu, selecting the Avant body style implies the selection
of A4Avant, S4Avant or A6Avant.

Regarding the other features: selecting A4Saloon or A4Avant models im-
plies the use of 17inches tires. The S4Saloon and S4Avant models can use
18inches or 19inches tires, the A6Saloon and A6Avant only use 19inches or
20inches tires. Finally, only models in the AudiA4 model line can include the
optional BlackStyling.

1http://configurator.audi.co.uk/

http://configurator.audi.co.uk/
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6.1.2 Modeling Configuration Options

We use Feature Models to specify the configuration options and constraints.

AudiA4 → (A4Saloon ∨ S4Saloon

∨A4Avant ∨ S4Avant)

AudiA6 → (A6Saloon ∨A6Avant)

Saloon → (A4Saloon ∨ S4Saloon

∨A6Saloon)

Avant → (A4Avant ∨ S4Avant

∨A6Avant)

17inches → (A4Saloon ∨A4Avant)

18inches → (S4Saloon ∨ S4Avant)

19inches → (S4Saloon ∨ S4Avant

∨A6Saloon ∨A6Avant)

20inches → (A6Saloon ∨A6Avant)

BlackStyling → (A4Saloon ∨ S4Saloon

∨A4Avant ∨ S4Avant)

Figure 6.2: Feature Model for our Audi Car Configurator

Figure 6.2 shows a feature model representing the configuration options in
the Car Configurator described above. Note that mandatory features (e.g.,
BodyStyle) are beside a filled circle, while optional features (e.g., BlackStyling)
are beside a hollow circle. In addition, note that some features include an
alternative group marked with an “[1..1]” text. For instance, the BodyStyle
contains an alternative group with the Saloon and Avant grouped features.
It is worth to note that, because BodyStyle is a mandatory feature, a car
configuration is valid only if the user select one of the Saloon or the Avant
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6.1.3 Mapping Configuration Options to User Interface

We use a UI-definition model to describe how the configuration options (i.e.,
the features) must be presented in the user interface.

Each feature in the feature model can be displayed using some type of
widget [1]. The developers of the Configuration System must map each feature
to a type of widget. The following list describes the best practices defined by
Boucher et al. [24] on which widgets use according to the type of each feature.

Or-groups can be presented as a list-box or multiple check-boxes that allow
multiple selections.

Alternative groups can be presented using radio buttons or combo-boxes
that prevent multiple choices.

Mandatory features can be hidden (because they must be selected all the
time) or presented as a notification text.

Optional features can be presented using a check-box where the user can
select (or not) an option.

Besides a specific type of widget, each feature is presented using their name,
a descriptive text or an image. Figure 6.3 summarizes the mentioned alterna-
tives.

Figure 6.3: Summary of widgets to represent features

A UI-definition model specifies the presentation for each feature. For in-
stance, consider the feature model in Figure 6.2 and the example product
configurator in Figure 6.1. There are many alternative groups: the BodyStyle
is represented with radio buttons with images, the FuelType as radio buttons
with texts, and the Tires as a combo-box.

Table 6.1 presents the mappings for our example configurator. Note that
the type of widget must be defined for FeatureGroups and Features. For in-
stance, the ModelLine feature group uses a Radio Button widget. All the
GroupedFeatures in that group are displayed using the same type of widget.
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Also note that the representation for all the elements visible in the UI must
be defined. While some are represented using a description (i.e., the AudiA4
feature) and other are presented with an image (i.e., the Saloon feature).

Table 6.1: Feature model to widget mappings for our Car Configurator

Element Widget
Type Type Representation

ModelLine FeatureGroup RadioButton desc=“Model Line”
AudiA4 GroupedFeature desc=“A4”
AudiA6 GroupedFeature desc=“A6”

BodyStyle FeatureGroup RadioButton desc=“Body Style”
Saloon GroupedFeature img=“saloon.png”
Avant GroupedFeature img=“avant.png”

Tires FeatureGroup ComboBox name
17inches GroupedFeature desc=“17””
18inches GroupedFeature desc=“18””
19inches GroupedFeature desc=“19””
20inches GroupedFeature desc=“20””

BlackStyling Feature CheckBox name

6.1.4 Deriving the Configurator User Interface

We derive the user interface from the feature model and the UI-definition
model. Basically, a model-to-text transformation generates the HTML code
traversing the elements in the feature model and checking the widget to use in
the UI-definition model.

The appearance of the widgets depends on the type of feature, the state of
the feature and the type of the widget used to display. For instance, Figure
6.4 presents alternative presentations for the Tires and the BlackStyling in our
example Configurator. According to the mappings defined above, the Tires
must be presented using a combo-box with the 17inches, 18inches, 19inches
and 20inches features. Because Tires is a mandatory feature, it is presented
using an asterisk as a visual indicator. The BlackStyling is displayed using
a check-box and, because it is not mandatory, without the mentioned visual
indicator.

The state of the feature affects how it is presented. When the user has not
selected any option (i.e., the feature has the Undecided state) the widgets are
presented in blank and with all the options available. Figure 6.4b shows the
presentation when the user selects the 17inches feature, that feature changes
its state and is presented as selected in the user interface. Because the user
can undo their decisions in our configurators, the corresponding undo icon is
enabled. In addition, all the other options for Tires remains enabled to allow
users change their decision.

The widgets are presented differently when they have been selected or dis-
abled by the Configurator. For instance, our configurators hide the options
disabled automatically. Consider a situation where the Configurator Logic has
selected automatically the 19inches option (i.e., has the Configurator Selected
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(a) Undecided (b) User Selected
17inches

(c) Configurator
Selected 19inches

Figure 6.4: Example visualizations of the Tires Feature Group and the Black-
Styling feature

state) and disabled the BlackStyling (i.e., has the Configurator Disabled state).
As shown un Figure 6.4c, the 19inches is presented selected and all the other
options for Tires and the BlackStyling are hidden from the user interface.

Figure 6.5 presents alternative presentations for the ModelLine. This fea-
ture group is mapped to be presented as a radio-button with the AudiA4 and
AudiA6 options. When the feature has the Undecided state, the widgets are
presented with both options unselected. When the user selects AudiA6 (i.e.,
has the User Selected state), that option is presented as selected and with an
enabled undo decision icon. The AudiA4 option remains enabled to allow users
change their decision. If the Configurator selected the AudiA4 option (i.e., has
the Configurator Selected state) and disabled the AudiA6 (i.e., has the Con-
figurator Disabled state) the former is presented selected while the latter is
hidden from the user interface.

(a) Undecided (b) User Selected
AudiA6

(c) Configurator
Selected AudiA4

Figure 6.5: Example visualizations of the ModelLine Feature Group

In our approach, the HTML-code for the user interface includes a Javascript
application to update the user interface according to the changes of the state
of the features during the configuration process.
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6.2 Processing User Decisions during Configuration

Our Configuration Systems are web applications where, each time the user
performs an action, the User Interface invokes a User Decisions Processor
to validate and propagate the user decision. Internally, each User Decisions
Processor uses a Reasoner library (e.g., a CSP or a SAT solver) to determine
which other features must be selected or disabled. After processing the decision,
the User Interface in the browser is updated to reflect which features were
selected or disabled automatically. In addition, our Configuration Systems
maintain the state of the configuration process (i.e., the configuration steps the
user has carried out) in order to implement advanced options such as undoing
and revising decisions.

Figure 6.6: Schematic of the transformations to process user decisions

A User Decisions Processor is a model-transformation that processes user
decisions and updates the feature models and the configuration steps conse-
quently. Figure 6.6 shows schematically the processor for an operation op: It
is a transformation Top that is invoked when an operation op on a feature f is
triggered from the UI; this Top uses the current feature model FM, calls the
Reasoner and produces a new feature model FM’.

We have defined processors for user decisions such as (1) selecting and dese-
lecting a feature, (2) undoing a decision, (3) revising a decision, and (4) forcing
the change a decision removing any other decision that may conflict.

6.2.1 The Reasoner

A Reasoner is an external library used by the User Decision Processors. It may
be one of many well-known libraries for processing feature models. We have
defined an API and a set of adapters to rely on a single interface independently
of the library.

The Reasoner API comprises operations on a feature model to:

Validate a Configuration, i.e., to determine if a selection of features, in a
feature model, do not violate any constraint defined in the model.

Propagate a Configuration, i.e., given a set of features and a selected fea-
ture, to determine which additional set of features must be automatically
selected and disabled, and
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Detect Conflicts, i.e., given an invalid partial configuration, to determine
the subsets of features that have conflicts (i.e., the subsets of features
that cannot be included at the same time in the configuration).

We defined adapters to use this API with SPLOT [93], FAMA [138], and
FAMOSA [30] (our own implementation of these operations).

6.2.2 The User Decision Processors

Each time a user makes a decision, a processor is invoked to validate the deci-
sion, determine the set of selected and deselected features, and update the user
interfaces consequently. Next sections describe the decision processors for the
Select, Undo and Force Change operations.

6.2.2.1 Select and Deselect Feature Operation

Figure 6.7 shows a feature selection operation. In this case, the user selects the
feature BlackStyling, and, as a consequence, a propagation occurs. In the figure,
the AudiA6 is disabled and the AudiA4 is automatically selected because the
BlackStyling only can applied to AudiA4 cars. In addition, the 20inches are
disabled because these cars do not use that tires.

Figure 6.7: Example user interface sequence for a Select operation

In the example, the resulting state of BlackStyling is User Selected, while
the state of AudiA4 is Configurator Selected and the AudiA6 is Configurator
Disabled.

The transformation for the Select operation invokes the Propagate opera-
tion of the Reasoner. This transformation takes the selected feature, invokes
the reasoner and obtains the other features that must be selected or disabled
to abide the constraints in the feature model. The transformation changes
the state of the affected features accordingly: The feature selected by the user
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changes its state to User Selected, the features selected by the propagation
change to Configurator Selected and those disabled to Configurator Disabled.

In our Product Configurators, this transformation stores in the feature
model not only the new states but also information about the Configuration
Step. For each selection, it keeps a history of which feature was selected by the
user and which others were selected or disabled by the Decision Processor.

6.2.2.2 Undo Feature Operation

The Undo operation retracts a previous user decision in the Configuration Ses-
sion. It occurs when the user wants to remove a feature from the Configuration
and make that feature undecided. This operation does not generate any con-
flict because a subset of a valid partial configuration is also a valid partial
configuration. However, this operation has to recalculate the propagation.

Consider the example depicted in Figure 6.8. The user has selects first
BlackStyling (like the previous example) and then 19inches. Later, he undoes
the BlackStyling. Instead of returning the feature model to the state before
BlackStyling (i.e., the initial screen), the configurator applies all the user se-
lections except BlackStyling

Figure 6.8: Example user interface sequence for a Undo operation

This transformation must consider all the configuration steps performed by
the user except that to be undone. It may take initializes an empty configu-
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ration, include the remaining user selections and invoke the Propagate of the
Reasoner.

6.2.2.3 Revise Feature Operation

The Revise operation modifies a previous selection. It occurs when the user
wants to deselect (i.e., to disable) an already selected feature. A new propaga-
tion has to be performed considering the change. This propagation may cause
conflicts because the new selection may contradict other user decisions.

Figure 6.9 presents an example of a conflict caused by revising a decision.
In this sequence, the user first selects the AudiA4 and then the 17inches tires.
These selections are consistent because some AudiA4 cars use these tires. How-
ever, later the user wants to change the model from AudiA4 to AudiA6. There
is a conflict because none of the AudiA6 use 17inches tires.

Figure 6.9: Example user interface sequence for a Revise operation

This transformation takes all the configuration steps performed by the user
except that to be changed and invokes the DetectConflicts operation. If there is
a conflict, a notification is issued to the user. If the change does not cause con-
flicts, the operation invokes the Propagate operation with all the user selection
except that to be changed.
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6.2.2.4 Force Change Feature Operation

When a conflict occurs after revising a decision, the user may confirm or cancel
the change. The Force operation is invoked when the user confirms the change.
It removes all the decisions that cause a conflict. It may invoke the Detect
Conflicts operation to determine which features cause conflicts, remove these
conflicting features from the configuration, and invoke the Propagate operation.
At the end, the configuration includes all the features previously selected by
the user except those in conflict with the change.

6.2.3 Our Implementation of User Decision Processors

We have implemented two sets of processors for user decisions. As other li-
braries, our processors use off-the-shelf solvers to perform tasks such as the
validation and propagation of user decisions. However, in contrast to the oth-
ers, our implementations maintain information of previous decisions to allow
users retract decisions during the configuration process. While one implementa-
tion uses that information to determine which features consider at the moment
of invoking the solvers, the other uses that information to process some types
of decisions using with fewer calls to the solvers.

6.2.3.1 Representation of the Configuration State.

A configuration system keeps a track of the options selected and deselected
by a user. This state of the interactive configuration is used to determine
which other features select or deselect automatically. Before presenting our
algorithms, we present here a formal definition for the state of an interactive
configuration based on the existing literature [75][139].

Definition 6.1 (State of an Interactive Configuration). The state for an
interactive configuration ic of a feature model fm is a 2-tuple ic = (S,R)
such that
• S ⊆ Ffm is the set of selected features
• R ⊆ Ffm is the set of removed features

In addition, each ic must satisfy
• S ∩R = ∅, there is not a feature that is selected and removed at the

same time.

Undecided Features: In a state of configuration ic, (Ffm \ (S ∪R))
is the set of undecided features.

Partial Configuration: A state of configuration ic is partial (or in-
complete) when it has undecided features, i.e., (Ffm \ (S ∪R)) 6= ∅

Complete Configuration: A state of configuration ic is complete
when all the features are decided, i.e., (Ffm \ (S ∪R)) = ∅

�
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6.2.3.2 Select and Deselect Feature Operation

Each time a user makes a decision and selects or deselects a feature, the Con-
figuration System performs, at least, two operations: First, it validates if the
selection performed by the user is valid. This is a backtrack-free system, i.e.,
user selections are valid because invalid selections are removed or disabled in
the user interface. Second, the configuration system propagates the decision to
determine which other features must be selected and deselected automatically.

Algorithm 6.1 describes how to validate a user decision using off-the-shelf
solvers [21][75]. The software encodes the feature model into a propositional
formula (e.g., using an encode operation), adds constraints that sets the value
of selected variables to true and deselected variables to false, and uses the solver
to determine if the formula is valid. The configuration (partial or not) is valid
if the corresponding formula is valid.

Algorithm 6.1 Validating a configuration

1: procedure ValidateConfiguration(ic, fm)

2: φ = encode(fm) ∧
∧
s∈S

s ∧
∧
r∈R
¬r

3: return SAT (φ)
4: end procedure

During an interactive configuration, a user may select or deselect some of
the undecided features. Algorithm 6.2 propagates decisions by checking if the
other undecided features can be set to true or false after adding the constraints
that correspond to the state of the interactive configuration [75][77][31][30].

Algorithm 6.2 Propagating Decisions

1: procedure PropagateDecisions(ic, fm)
2: for all f ∈ (Ffm \ (S ∪R)) do . for each undecided feature f
3: CanBeTrue ← TestLiteral(ic, fm, f)
4: CanBeFalse ← TestLiteral(ic, fm,¬f)
5: if ¬CanBeTrue ∧ ¬CanBeFalse then
6: error “Internal error: Invalid model or configuration state”
7: end if
8: if ¬CanBeFalse then . if the feature f cannot be set to false
9: S ← S ∪ {f} . select the feature f

10: end if
11: if ¬CanBeTrue then . if the feature f cannot be set to true
12: R← R ∪ {f} . remove the feature f
13: end if
14: . remain undecided f if it can be true or false
15: end for
16: return ic′ ← (S,R)
17: end procedure
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The algorithm computes for each undecided feature whether there are satis-
fying valuations having the corresponding variable set to true and false. There
are four possible outcomes:
• if the variable can be neither true nor false, the feature cannot be

selected or removed. That means that the φ formulae representing the
state of the configuration is unsatisfiable, i.e., the feature model or the
sets of selected and removed features are invalid before the user selection.
Note that this must occur only if the implementation has some error. This
breaks the assumption that φ is satisfiable at all the times because our
configuration system is backtrack-free [75][77].

• if the variable cannot be false, the feature must selected during the
propagation.

• if the variable cannot be true, the feature must be removed.
• if the variable can be both true and false, the corresponding feature

must remain undecided.
Note that the above algorithm must check if a undecided feature can be

true or false. This is done by checking if the conjunction of the encoding of the
partial configuration and the possible value for the feature [77][75]. Algorithm
6.3 shows the helper function.

Algorithm 6.3 Propagating Decisions Helper

1: procedure TestLiteral(ic, fm, l)

2: φ = encode(fm) ∧
∧

s∈(S−l)

s ∧
∧

r∈(R−l)

¬r ∧ l

3: return SAT (φ)
4: end procedure

Optimizations to the Algorithm. In order to propagate a decision, Al-
gorithm 6.2 may be inefficient because it calls the SAT solver twice for each
undecided feature. This may be improved by reducing the number of calls to
the solver [75][77]. There are many strategies that can be used. For instance,
• Exploiting the Atomic Sets i.e., sets of features that must be selected

or removed at the same time [121]. It is possible to reduce the number
of variables to evaluate by consolidating all the features in an atomic set
in a single variable. This require a pre-processing of the feature model to
determine its atomic sets before the configuration process.

• Exploiting Structural Properties of the Feature Models. There
are some properties that can be exploited to reduce the number of in-
vocations to the solver. For instance, when a feature is removed, all the
descendant features in the model are also removed [36][31]. When a fea-
ture is selected, all the ascendant features in the model must be selected
too [31]. It is possible to determine the values for other features using
the output of the solver and the structure of the feature model [90]. And

• Ignoring non-relevant features. When a feature is selected or re-
moved, this decision affect only to the features that have some direct or
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indirect relationship with it by the model structure or by its constraints.
It is possible to pre-process the feature model to determine “propaga-
tion spaces” [90] and ignore these features that are not relevant to the
verification [149].

6.2.3.3 Undo Feature Operation

To undo the last user decision, it is possible to take all the previous user
decisions, remove the last one and propagate the remaining. However, this ap-
proach implies invoking the solver multiple times: one to determine the validity
of the new decision, and two for each not-decided feature to propagate the deci-
sion. Instead of it, one of our implementations caches the results of processing
the previous decisions (i.e., use memoization) to improve the performance.

Our approach requires information about the sequence of configuration
steps performed by the user. In the literature, a Configuration Path is the
sequence of configuration step that transform an feature model with all its
features undecided into a fully-configured feature model [33]. We named Con-
figuration Sequence to a valid sequence of configuration steps at any point of
time of the process. That means that the last step of a configuration sequence
may result into a partial configuration instead of a complete one.

Definition 6.2 (Configuration Step). In an interactive configuration,
the i-th configuration step csi is a 4-tuple cs = (f, op, S,R) such that
• f ∈ Ffm is the feature selected or deselected by the user,
• op ∈ {SELECT ,DESELECT} is the type of decision made,
• S ⊆ Ffm is the set of selected features after propagating the decision.
• R ⊆ Ffm is the set of removed features after propagating the deci-

sion.
�

Definition 6.3 (Configuration Sequence). In an interactive configura-
tion, a configuration sequence CS is a finite sequence CS = cs1 . . . csn of
length n > 0, such that
• each csi is a configuration step, and
• ∀i ∈ {2 . . . n}, each csi is the result of propagate the decision fcsi

over the previous configuration step csi−1.
�

In our approach, Undoing the last decision is straight forward. We use the
information of the configuration sequence to restore the interactive configura-
tion to the previous state of the configuration step.
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Algorithm 6.4 Undoing Last Decision

1: procedure UndoLastDecision(CS , fm)
2: CS ′ ← CS ′ − last(CS ) . Remove last decision
3: return CS ′

4: end procedure

Undoing another decision (i.e., a decision that is not the last one) requires
more processing. In such case, it is necessary to recalculate the configuration
steps starting from the decision to retract in order to maintain the information
of the configuration sequence, Suppose that you want to undo the i-th decision.
It is necessary to restore the configuration to the state before the i-th decision
(i.e., return to the step i−1) and recalculate the states from i+1 to n, applying
again the corresponding decisions.

Algorithm 6.5 applies a configuration step cs to an existing configuration
sequence CS . Depending on the operation in the step, it includes the feature
in the step fcs to the selected or removed features and propagates the decision.

Algorithm 6.5 Apply a Decision

1: procedure ApplyDecision(CS , fm, cs)
2: csn ← last(CS ) . Get the last state
3: if opcs = SELECT then . If operation is Select
4: ic ← (Scsn ∪ {fcs}, Rcsn) . Include feature fcs into S
5: else . If operation is Deselect
6: ic ← (Scsn , Rcs ∪ {fcsn}) . Include feature fcs into R
7: end if
8: ic′ ← PropagateDecision(ic, fm)
9: cs ′ ← (fcs , opcs , Sic′ , Ric′)

10: CS ′ ← CS + cs ′ . Append the configuration step
11: return CS ′ . Return the updated sequence
12: end procedure

Algorithm 6.6 shows how to undo the i-th operation. It takes the state
before that step and applies the other operations. The procedure returns the
sequence without applying the i-th configuration step.

Algorithm 6.6 Undoing Another Decision

1: procedure UndoDecision(CS , fm, i)
2: CS ′ ← subSequence(CS , 0, i− 1) . Previous decisions
3: for all cs ∈ subSequence(CS , i+ 1, size(CS )) do . Further decisions
4: CS ′ ← ApplyDecision(cs)
5: end for
6: return CS ′

7: end procedure
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Note that the Undo operation does not produce errors. Removing a deci-
sion at any point of the configuration sequence cannot produce a conflict with
the following decisions. We can propagate the following configuration steps
omitting their validation. Conflicts arise when a decision is changed for other.

6.2.3.4 Revise Feature Operation

We define a Revise operation to modify a previous decision, i.e., to deselect
a previously selected feature or to select an already deselected feature. In
contrast to the Undo operation, the revise operation can cause an error because
the changed feature can conflict decisions made after.

Changing the decision in a configuration step without taking care of the
other decisions is very simple. It only requires to change the operation included
in the configuration step. Algorithm 6.7 shows the procedure.

Algorithm 6.7 Change a Configuration Step

1: procedure ChangeStep(cs)
2: cs ′ ← cs
3: if opcs = SELECT then . Change the operation
4: opcs′ ← DESELECT
5: else
6: opcs′ ← SELECT
7: end if
8: return cs ′ . Return the modified step
9: end procedure

To check if the modified configuration step produces any conflict, it is nec-
essary to validate if the new operation can be applied as part of a configuration
sequence. Algorithm 6.8 describes how to validate a decision without invok-
ing the solver. Considering that the propagation updates the sets of selected
features and removed features, a decision is valid when it aims to select a
non-removed feature or deselect a non-selected feature.

Algorithm 6.8 Validate a Decision

1: procedure ValidateDecision(CS , cs)
2: csn ← last(CS ) . Get the last state
3: if opcs = SELECT then . If operation is Select
4: return fcs /∈ Rcsn . Check if fcs has not been removed
5: else . If operation is Deselect
6: return fcs /∈ Scsn . Check if fcs has not been selected
7: end if
8: end procedure

Note that redundant decisions can be detected using a similar approach. A
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redundant decision is a decision that aims to select an already selected feature
or deselect an already removed feature.

Algorithm 6.9 Check Redundancy of a Decision

1: procedure IsRedundantDecision(CS , cs)
2: csn ← last(CS ) . Get the last state
3: if opcs = SELECT then . If operation is Select
4: return fcs ∈ Scsn . Check if fcs has been selected
5: else . If operation is Deselect
6: return fcs ∈ Rcsn . Check if fcs has been deselected
7: end if
8: end procedure

Algorithm 6.10 implements the Revise operation: To revise the i-th decision,
it restores the configuration to the state before (i.e., returning to the state
i − 1), changes the operation for that configuration step (e.g., changing the
decision i from SELECT to DESELECT and vice versa), and recalculates
the remaining states applying again the corresponding decisions (i.e., applying
again decisions from i+ 1 to n). Considering that before the revise operation
all the decisions were valid, if there are conflicts, they exists between the new
decision i and the further decisions between i + 1 and n. If some of these
decisions cannot be applied, the procedure returns the original configuration
sequence (i.e., without adding a step) to indicate that the decision cannot be
changed without producing a conflict.

Algorithm 6.10 Revising a Decision

1: procedure ReviseDecision(CS , fm, i)
2: CS ′ ← subSequence(CS , 0, i− 1) . Takes previous decisions
3: cs ′ ← ChangeStep(CS i) . Change the i-th decision
4: CS ′ ← CS ′ + ApplyDecision(cs ′)
5: for all cs ∈ subSequence(CS , i+ 1, size(CS )) do . Other decisions
6: if ¬IsRedundantDecision(CS , cs) then
7: if ValidateDecision(CS , cs) then . If it can applied
8: CS ′ ← ApplyDecision(CS ′, fm, cs) . Add it to the sequence
9: else . If it cannot be applied

10: return CS . Error !! – return the unmodified sequence
11: end if
12: end if
13: end for
14: return CS ′

15: end procedure

The Revise operation a decision requires more processing than the Undo
operation. It requires to to validate the decisions made after the configuration
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step to be changed. However, an advantage of keeping a track of the configu-
ration steps is that, when a conflict occurs, we can reduce the set of decisions
where the conflict must be searched.

6.2.3.5 Force Change Feature Operation

When a conflict exists, a Force Change operation can be used to modify a
previous decision removing any further decision that may conflict.

Algorithm 6.11 implements the ForceChange operation: To change the i-th
decision, it restores the configuration to the state before (i.e., returning to the
state i − 1), changes the operation for that configuration step (e.g., changing
the decision i from SELECT to DESELECT and vice versa), and recalculate
the remaining states applying again the non-redundant and non-conflicting
decisions (i.e., applying again a subset of the decisions from i+ 1 to n).

Algorithm 6.11 Forcing the change of a Decision

1: procedure ForceChangeOfDecision(CS , fm, i)
2: CS ′ ← subSequence(CS , 0, i− 1) . Takes previous decisions
3: cs ′ ← ChangeStep(CS i) . Change the i-th decision
4: CS ′ ← CS ′ + ApplyDecision(cs ′)
5: for all cs ∈ subSequence(CS , i+ 1, size(CS )) do . Other decisions
6: if ¬IsRedundantDecision(CS , cs) then
7: if ValidateDecision(CS , cs) then . If it can applied
8: CS ′ ← ApplyDecision(CS ′, fm, cs) . Add it to the sequence
9: end if

10: end if . Ignore redundant and non-applicable decisions
11: end for
12: return CS ′

13: end procedure

The Force Change operation is usually performed after a Revise. Its im-
plementation may exploit the information obtained revising the decision to
determine redundant and invalid steps without processing them again.

6.3 Discussion

6.3.1 Addressing issues

Our approach aims at tackling the issues identified in the Related Work, in the
Section 3.3:

Correct handling of constraints we integrate in the Product Configurator
a Reasoner library that implements proven algorithms and techniques to
validate user selections (i.e., partial configurations) and propagate the
decisions. Instead of reinventing the wheel, this reasoning is entirely
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based on existing libraries to analyse feature models and configurations.
In addition, because these libraries use directly the feature models repre-
senting the configuration options, none constraint included there will be
omitted during the processing.

Correct updating of the user interface is achieved by the User Decision
Processor that maintains the state of the configuration process and the
models that map the features to user interface elements. Each time the
user selects some features or revise some decisions, the User Decision
Processor determines the new state for the features in the model and
notifies the user interface the changes. In addition, when some erroneous
behaviour is detected, the User Decision Processor notifies the interface
to refresh all the options and prevent displaying erroneous information.

Ability to revise the decisions is achieved by the User Decision Processor
that maintains not only the state of the configuration, but also a list of
the configuration steps performed by the user. The User Decision Pro-
cessor can use the information of these steps to undo and revise already
made decisions. Basically, these logic can identify which features were
selected by the user and which were propagated, and then calculate the
propagation of the user decisions except those to undo or revise.

6.3.2 Comparison to other proposals

There are many other proposals to support user decisions during interactive
configurations. Our proposal is based on the works from Janota et al. [75][74]
and Mendoca et al. [90] on using SAT solvers to validate and propagate these
decisions. However, it differs from the others in the implementation of the
operations to undo and revise decisions. This section discusses the coincidences
and differences with the related work.

Select and Deselect Operations Our implementation is based on the works
from Janota et al. [75][74] and Mendoca et al. [90]. The main difference
is that our implementation uses the state of the interactive configura-
tion to keep the selected and removed features, and to determine easily
the set of undecided features. The use of stateful feature models during
configuration was explored before by Trinidad et al. [137][139] but their
approach do not use the same algorithms.

Undo Operation Although this operation is not formally described in their
work [92], Mendonca et al. have an implementation in the SPLOT li-
brary [93]. As our implementation, they keep a history of the user
decisions and allow users to undo some of them. Our implementation
improves their work by exploiting that history to avoid unnecessary val-
idations of the decisions after the one that is undone.
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Revise Operation This operation is also implemented in the SPLOT library [93].
Our implementation exploits the history of decisions to reduce the num-
ber of user decisions that must be analyzed to determine a conflict. It
checks in the history which decisions are contrary to the change proposed
by the user. If a conflict occurs, it is only among the subsequent deci-
sions. It is possible to use algorithms for explaining conflicts [75][101]
that use specialized SAT solvers to determine the corresponding Mini-
mal Unsatisfiable Sets, i.e., the sets of constrains (and hence of decisions)
that cause a conflict. In contrast to other proposals, we use the history
of decisions to reduce the number of constraints where these algorithms
will look for the conflict.

Force Change Our implementation uses the set of conflicting decisions de-
tected on the Revise operation to force a change. Basically, it takes
the state of the configuration at the moment previous to the decision
to change and applies the new decision and all the subsequent decisions
that do not conflict with it. This operation does not produce a new
complete valid configuration. It is different than other operations that
provide diagnosis [48] [147][146] or fixes [148] that look for an alternative
configuration that maximizes the user preferences. Our approach forces
a change by removing all the other decisions that conflict with it, and
the user may require to make more decisions later. Other operations to
auto-complete [75][77] or optimize [142] can be used to assist in these
other decisions.

Our implementation is focused on “backtrack-free” configuration systems.
These systems, instead of tolerating conflicts, try to prevent them. There
are many works discussing the diverse strategies that exist to tolerate and fix
conflicts during an interactive configuration [100][48]. A possible extension to
our work is the implementation of some of these strategies that implement
conflicts and the incorporation of operations to propose diagnoses and fixes.

6.3.3 Comparison to existing libraries

As mentioned in Chapter 3, there are tools and libraries such as Familiar,
FaMa or SPLOT that can be used to analyze user provided configurations.
A Configuration System can use them to validate user supplied configurations
against a feature model and provide feedback. However, these libraries are not
intended to provide complete support, through a user interface, to interactive
configure a product.

In contrast to other libraries, our implementation of processors for user
decisions supports operations to undo and revise decisions: FAMA does not
support directly configuration processes and does not provide options to undo
selections. Familiar provides operations to deselect and unselect options
but does not maintain information of the user decisions during a configuration
and cannot undo user decisions.
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Similar to our implementation, SPLOT provides support for configura-
tion processes. It includes a ConfigurationEngine class that can be used
to maintain information of the user decisions, propagate decisions and undo
the last decision. We provide a similar support using our User Decision Pro-
cessors. However, in contrast to SPLOT, our implementation combines model-
transformations using the Epsilon languages [85] with existing solvers and li-
braries, giving use more flexibility to create or modify the algorithms used to
manipulate the models and configuration.

Familiar [7] defines a DSL that can be used to process feature models and
configurations. For instance, A developer can use Familiar to create scripts
that process feature models using diverse types of operations to merge and
slice these models. Our Epsilon extension is similar. We have defined built-in
objects for Epsilon that allow programmers create scripts and operations that
load feature models, validate configurations and support interactive configu-
ration processes. Contrary to Familiar, our Epsilon extensions allows to use
multiple libraries and redefine existing operations. In addition, because we are
extending Epsilon, we can use feature models and configurations directly in
model transformations and code generation.

6.3.4 Evaluation

In order to test and evaluate our approach, we have implemented three case
studies on Product Configurators2:

A Car Configurator based on the Audi Car Configurator. This is a super-
set of the example presented in this paper that includes 38 configuration
options for all the cars in the AudiA4 and AudiA6 model lines.

The TREK’s Bike Catalog implemented in the SPLOT website that in-
cludes 549 features and represents 376 products.

The DELL’s Laptop Catalog implemented in the SPLOT website too, that
includes 47 features, has 105 constraints and represents 2,319 products.

In addition, we have applied our approach to create configuration systems
for Electrical Transformers in an industrial case study. The solution is used
actually by tens of sellers and engineers to specify products and produce con-
figurations that are the foundation to create designs, budgets and proposals
for clients.

6.4 Conclusions

We have presented our approach to (1) specify product configurators using fea-
ture models for the configuration options and other additional models for the

2Web configurators and source code available at: http://goo.gl/9YG8gN, andhttp://github.com/FaMoSA respectively

http://goo.gl/9YG8gN
http://github.com/FaMoSA
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user interface, (2) derive the user interface taking these models and transform-
ing them into the corresponding HTML and Javascript code, and (3) support
the behaviour of the configurator using a model-based layer that obtains the
request from the user, use existing frameworks to validate the selected options
and update the user interface using model-transformation at runtime.

Our approach facilitates the development of Product Configurators that
support all the features and constraints defined in a feature model. It support
many options to display the configuration options consistently. For instance, it
supports combo-boxes, radio-buttons and check-boxes to represent the options.
However, it does not support advanced product visualizations such as pictures
obtained from a database or images modified according to the selected options.

Some complex products such as information systems, cars and industrial
machines tend to be modeled using views or multiple models for each techni-
cal domain. These scenarios introduce new challenges to product configurators
that must support collaborative configuration on the same domain or a simulta-
neous configuration of multiple domains. Future work is planned in supporting
configuration processes with multiple stakeholders and multiple feature models.
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Experimental Implementation

Using Feature Models to represent products and create configuration systems
requires a set of supporting tools. Different tools and libraries have been pro-
posed in the last 20 years. There are well established tools like SPLOT1,
FAMA2, Familiar3 and Feature-IDE4. However, these tools do not offer ap-
propriate support for managing feature models for domains and for standards.
While tools such as SPLOT allow engineers to create the models using a web-
based graphical user interface, they do not support merging and analysing
multiple models. Other tools such as Familiar, support processing multiple
feature models but the software does not support our operations to merge fea-
ture models (i.e., those described in Chapter 5). We create and extend tools
to support our approach.

This chapter describes: On one hand, our tools where multiple stakeholders
can create and merge feature models for domains, feature models for standards
and constraints. And, on the other hand, the tools we created to derive Con-
figuration Systems and to process user decisions.

Contribution: As main contributions, this chapter presents (1) an exten-
sible Epsilon runtime to process and transform models in web applications,
(2) a set of Epsilon extension to load and process feature models using custom
algorithms and using the existing SPLOT, FAMA and Familiar libraries, and
(3) a set of Epsilon-based libraries and programs to process and analyse feature
models for domains and for standards.

1http://www.splot-research.org/
2http://www.isa.us.es/fama/
3http://familiar-project.github.io/
4http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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7.1 Overview

We created a set of tools and libraries to support our approach. In turn, these
tools are based on our own extensions to Epsilon [84], a family of languages for
model transformations. Figure 7.1 shows an overview.

The main components of our solution are the following:

FM Studio, a web-based application used to create feature models for do-
mains and standards along inter-model constraints.

FM Operators, an Epsilon-based library that processes and merges these
domain- and standard specific feature models. The above mentioned
FM Studio depends on this library to process the diverse models of our
approach.

FM Configuration System Generator, a set of model transformations that
takes a feature model and a definition of the user interface and produces
the corresponding Configuration System.

FM Configuration Runtime, a set of model transformations that processes
the decisions made by a user during an interactive configuration. These
model transformations implement the User Decision Processors described
in Chapter 5.

Web-based Extensible Epsilon Runtime, a customized Epsilon runtime
aimed to process Feature models and configurations. And

FM abstraction layer, a set of additional objects that can be included in
our Epsilon runtime to to load feature models and invoke off-the-shelf
solvers.

Figure 7.1: Overview of the developed Tools and Components

The next sections describe these components.
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7.2 Tools to create Feature Models and Constraints

We built an integrated environment to create, edit and analyse the feature
models and constraints. It was developed using Javascript5 and Angular6 for
the front-end and a modified Epsilon runtime for the back-end. All the pro-
cessing of the models is performed at the backend using our Epsilon extensions
to process feature models.

Figure 7.2: Excerpt of the architecture of our web-based editor for Feature
Models and Constraints

Figure 7.2 shows the architecture of the application. On one hand, there are
Angular modules and directives. They send requests to the Epsilon runtime in
order to load, process and transform the models. A set of scripts in our runtime
are the User Decision Processors mentioned in Chapter 6. These processors
perform the tasks and return the updated models to the browser.

Figure 7.3 shows some screenshots. Once a user has entered into the appli-
cation, the application may display a list with the projects and models she has
access to. The user can edit the models and configure them in the application.
She can also use other options to create constraint sets and to combine the
models.

5http://www.ecmascript.org/
6https://angularjs.org/

http://www.ecmascript.org/
https://angularjs.org/
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Figure 7.3: Screenshots of the web-based editor for Feature Models and Con-
straints
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7.3 Operations to merge Feature Models

The operations to merge the Features Models and Constraint sets have been
implemented as Epsilon libraries. An Epsilon script for model transformation,
such as the one used in the above mentioned FM Studio, can use these libraries
to merge domain- and standard specific feature models. A developer can use
these libraries in other projects.

An example is the implementation of the merge operations described in
Chapter 5. We defined a famosa.eol library with them. There are operations
to perform traditional merge operations such as Insert and Intersection-Merge, and to perform our new operations such as conditionalIntersec-tionMerge and partialConditionalIntersectionMerge. Listing 7.1 shows
an example Epsilon script that use the conditionalIntersectionMerge op-
eration.

1 import "famosa.eol";
2

3 ModelManager.load(’fm1’, ’domain-model.xml’, ’Splot’);
4 ModelManager.load(’fm2’, ’standard-model.xml’, ’Splot’);
5

6 var fm_result = conditionalIntersectionMerge(fm1, fm2, ’standard’);
7

8 ModelManager.save(fm_result, ’output.xml’, ’Splot’);
Listing 7.1: Example Epsilon Script using theconditionalIntersectionMerge operation

7.4 Model-transformations to derive Configuration
Systems

We implement model-driven tools to derive configuration systems. One one
hand, we created Angular components (known as directives) that can be used
to display and configure feature models. Considering that all the processing is
performed at the back-end, these components must interact with our Epsilon
runtime and extensions. On the other hand, we created a model-driven ap-
proach to derive configuration systems from these models. Our tools may take
a feature model and derive the corresponding configuration system.
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7.5 An Extensible Web-based Epsilon Runtime

In order to implement the above tools, we created an extensible Epsilon runtime
that allow us (1) to invoke model transformations from Javascript in a browser,
and (2) to define additional extensions that invoke external libraries such as
CSP and SAT solvers.

Basically, our Epsilon Server runtime processes requests from a browser. It
extends an existing EGL Servlet that, depending on the request, executes an
EGL script that may load a model and produce an output that is sent back
to the browser. In the original EGL Servlet, the script may use a set of built-
in objects to access the information of the request and to load EMF models,
but not to load feature models and invoke external libraries. In addition,
this EGL Servlet has a predefined processing cycle that loads these objects
and executes the scripts but cannot load user-defined extensions and does not
consider the security information in the request. We modify the processing
cycle to introduce our extensions.

A new EGL-processing cycle Figure 7.4 shows the processing cycle of the
existing EGL Servlet and the our modified runtime. The original Servlet uses
the URL in the web request to determine the EGL Script to run. It creates
a EGL runtime and introduces built-in objects for the web request, the web
session and response. Then, it uses the runtime to execute the script. The
resulting content is included in the response and sent back to the browser.

In contrast, our runtime uses the URL not only to determine the EGL script
to run but also the configuration data for its execution. The configuration
includes, for instance, which web applications can invoke the scripts. The
runtime checks the request and the security configuration to abort or permit
the execution. It also uses the configuration to determine which built-in objects
and model loader drivers inject into the runtime. Finally, the runtime sets
security headers in the response, executes the script, and appends the result of
the script to the response.

Built-in Objects for Additional Functionality Our Epsilon runtime al-
lows the definition of built-in objects that Epsilon scripts can use. The original
EGL servlet includes some built-in objects to access information managed by
the web server, such as the data in the user requests and sessions. We define
a Java abstract class, EpsilonBuiltinObject that the classes for the built-in
objects must implement.

Figure 7.5 shows a diagram presenting the EpsilonBuiltinObject class
and an Example built-in object. The abstract getName() method of the super-
class must be implemented in the Example. There are other methods such assetContext, setSessionProvider and setFileNameConverter, aimed to
set the environment where the built-in object, that are final. The Example
built-in object inherits those methods.
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(a) Existing EGL servlet

(b) proposed runtime

Figure 7.4: Processing Cycle of the Epsilon runtime

Listing 7.2 shows an example class for a built-in object. That Example class
extends the EpsilonBuiltinObject. It includes a method named sayHello
that receives a String and produces a greeting using that input.

1 public class Example extends EpsilonBuiltinObject {
2

3 public String getName() {
4 return "example";
5 }
6

7 public String sayHello(String name) {
8 return "Hello " + name + " !!";
9 }

10

11 }
Listing 7.2: Example implementation of a Epsilon Built-in Object

If these classes for built-in object are included in a proper java library file,
i.e., a .jar file including a META-INF directory with the extension metadata,
our runtime detects these classes and creates the corresponding instances for
each user request. For instance, given the above mentioned Example class, our
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Figure 7.5: Class Diagram for the EpsilonBuiltinObject

runtime creates an example instance for each request. The name of the instance
is determined by invoking the getName() method of the class. Listing 7.3 shows
a script using that object. It uses the automatically instanced example object,
by invoking the sayHello method.

1 // uses the "example" built-in object by invoking the sayHello method
2 var x = example.sayHello("Alice");
3 x.println();
4

5 example.sayHello("Bob").println();
Listing 7.3: Use of the example Epsilon Built-in Object

We use these built-in objects to allow scripts access to external libraries.
For instance, they are used to invoke functions on libraries such as SPLOT and
FAMA. In addition, we use them to implement our improved model loader.

An improved Model Loader The original EGL servlet includes a Model-Manager built-in object that allow scripts load Eclipse EMF Models. It cannot
be used to load other types of files, such as XML files or spreadsheets. Consid-
ering that third-party libraries store feature models using file formats different
from EMF, we decide to create a more flexible way to load the models.
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Our ModelManager defines a consistent way to load models. It hides the
complexity of the existing Epsilon Modelling Connector that uses different
classes and methods depending of the type of model or file to load. In conse-
quence, a developer can use the same method to load different types of models.
Listing 7.4 shows an example using the same load function to load different
types of models. For instance, it loads an EMF mode in the line 2 and an XML
file in the line 5. The line 8 loads an XML file with an optional “hint” used
internally to determine which driver must be used.

1 // load an EMF Model
2 ModelManager.load("Sample", "Graph.ecore");
3

4 // load an XML file (as XML)
5 ModelManager.load("Fm1", "dell-computer.xml");
6

7 // load an XML file (as a SPLOT file)
8 ModelManager.load("Fm2", "dell-computer.xml", "Splot");
9

10 // load an Excel file
11 ModelManager.load("Tests", "dell-data.xls");

Listing 7.4: Use of the ModelManager Built-in Object

We defined a ModelLoader interface to integrate our ModelManager to ex-
isting or new Epsilon Model Connectivity drivers. Figure 7.6 shows a class
diagram. A ModelLoader class is required for each type of model or file. It
has a canLoad method to determine if it can load a specific file, load to load
a model and isHandlingModel to determine if it has loaded a specific model.
The ModelManager has a collection of loaders. Each time a script tries to load
a non-EMF model, it calls to each loader to determine which one is able to
load the model. The script can provide, as a hint, the name of the preferred
loader.

7.6 Epsilon extensions to process Feature Models and
Constraints

We created extensions to integrate our web-based Epsilon runtime to existing
libraries and tools that process feature models. In concrete, we (1) create a set
of model loaders for Feature Models, (2) define a unified API for reasoning and
configuring these models, and (3) create a solution that allow us to execute
additional Epsilon scripts when custom algorithms are provided.

Model loaders for Feature Models We created model loaders for feature
models in SPLOT, FaMa and FeatureIDE. Our loaders use the Java libraries
provided in the first two projects. An additional loader, based on an XML
parser, is used to load the FeatureIDE models.
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Figure 7.6: Class diagram including the ModelManager and ModelLoader
classes

Common Metamodel Our loaders use a common metamodel for all the
models of our approach. There are meta-classes for Feature Models, Feature
Configurations, Inter-model constraints.

Figure 7.7 shows an excerpt of the meta-classes Feature Model. There is
a FeatureModel that represent the whole model. It comprises Features. One
of the is the RootFeature. The others are GroupedFeatures or SolitaryFeatures.
There are FeatureGroups such as OrGroups and AlternativeGroups. The model
also includes a ConstraintSet, a collection of CNFConstraint, where each con-
straint is an ORClause of Literals.

Figure 7.7: Excerpt of Feature Model metamodel

Note that the Features have information about their state. During an in-
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teractive configuration, the state of the features are updated to reflect if they
are selected or deselected by a user or by the machine after propagating the
user decisions.

Figure 7.8: Excerpt of Configuration metamodel

Figure 7.8 shows additional classes used during an interactive configuration.
A Configuration references an existing FeatureModel and comprises an ordered
list of ConfigurationSteps. Each step describes the action performed by the
user and the features selected or deselected in consequence. Additionally, the
configuration may include a set of Conflicts. Each conflict describes a subset of
the ConfigurationSteps and Features that cannot be applied at the same time
because they violates the constraints defined in the model.

Unified API In addition to the common metamodel, to define a unified API,
we created two built-in objects to process the feature models and configura-
tions:

The Reasoner object provides operations to validate, propagate decisions
and detect conflicts. The object can use SPLOT as underlying library to
process feature models. In addition, it can use custom algorithms defined
in Epsilon.

The Configurator object provides operations to support an interactive con-
figuration. It provides operations to obtain and update the state of the
features and the configurations steps. It provides operations such as
getConfiguration and updateConfiguration. In addition, we have imple-
mented operations to select features, undo decisions, revise decisions and
forceChanges. These operations can use SPLOT as a underlying library
or custom algorithms in Epsilon.

In simple terms, the Reasoner and Configurator objects define functions
that implement operations for automated analysis of feature models and config-
urations [19]. Table 7.1 shows an excerpt of these functions. On one hand, the
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Reasoner includes methods for tasks such as detecting the validity of feature
models, checking if a feature is dead and obtaining all the valid configura-
tions for a model. On the other hand, the Configurator includes operations
such as selecting and deselecting features, detecting conflicts and completing a
configuration.

Object Operation Description
Reasoner isValid(fm): Boolean determines if the Feature Modelfm is valid

isDeadFeature(fm, f): Boolean Determines if a Feature f is dead,
i.e., if it is not included in any valid

configuration.

isCoreFeature(fm, f): Boolean Determines if a Feature f is a core
feature, i.e., if it is included in all

the valid configurations.

isFreeFeature(fm, f): Boolean Determines if the Feature f can be
selected, i.e., if the feature is nei-

ther dead nor core.

Configurator startConfiguration(fm): Interac-

tiveConfiguration

Starts an interactive configuration

based on the Feature Model fm.
All the subsequent configuration

steps will consider the features

and constraints defined in that

model.

select(cfg, f): ConfigurationStep Selects a Feature f trying to

change the state of that feature.

If everything is ok, it returns the

configuration step including infor-

mation of which other features are

selected or deselected in conse-

quence.

deselect(cfg, f) : ConfigurationStep Deselects a Feature f. If every-

thing is ok, it reutrns the configu-

ration step including which other

features are selected and dese-

lected in consequence.

autoComplete(cfg): Configura-

tionStep

Complete the configuration by tak-

ing a decision for all the undecided

features in the model fm.
Table 7.1: Excerpt of methods of the Reasoner and Configurator built-in
objects
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Support for custom algorithms In addition to using underlying libraries,
we were interested on supporting custom algorithms. Basically, we want to use
Epsilon to test our ideas on how to process the models.

Listing 7.5 shows a simplified version of the select operation implemented
using Epsilon. It uses the SPLOT reasoner. Basically, it receives an Interactive
Configuration cfg and a Feature f. If the feature is a dead feature it returns an
error for InvalidConfigurationStep. In addition, if the propagation of the selec-
tion results in a error, also returns an InvalidConfigurationStep. If everything
is Ok, it updates the state of the features in the feature model, appends the
configuration step to the interactive configuration and returns the step.

1 operation ConfiguratorDelegate select(cfg: InteractiveConfiguration, f:Feature) : ConfigurationStep {
2

3 // obtain the SPLOT reasoner
4 var reasoner = Reasoner.get(’SPLOT’);
5

6 // obtain the feature model being configured
7 var fm = cfg.featureModel;
8

9 // use the reasoner to determine if the feature is dead
10 if ( resoner.isDeadFeature(fm, f) ) {
11 return InvalidConfigurationStep;
12 }
13

14 // use the reasoner to determine the effect of selecting
15 // the feature given the current configuration
16 var cfgStep = reasoner.propagate(cfg, fm, f, FeatureState#selected);
17 if ( not cfgStep.isValid() ) {
18 return InvalidConfigurationStep;
19 }
20

21 // if everything is ok...
22 // update the state of the features in the model
23 fm.update(cfgStep);
24 // append the step to the configuration
25 cfg.steps.add( cfgStep );
26 // return the step
27 return cfgStep;
28

29 }
Listing 7.5: Example implementation of a custom Select operation for theConfigurator built-in object
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7.7 Conclusions

In this chapter we presented diverse tools we created to support our approach:

Tools to create and edit Feature Models A web-based application where
users can create and edit multiple domain-specific feature models, stan-
dard specific feature models and constraints.

Tools to merge Feature Models for Domains and Standards Tools
that allows users to merge the diverse types of feature models in our
approach,

Tools to derive configuration systems A set of model transformations that
takes a feature model and produces the corresponding Configuration Sys-
tem, and

Runtime Components to process user decisions A set of model trans-
formations that processes user decisions and updates the state of a con-
figuration and the corresponding user interface.

In addition, we presented in this chapter the corresponding software designs
and the platform extensions we created to develop them:

An extensible Epsilon runtime A modified EGL servlet that supports se-
curity configurations, custom built-in objects that can be invoked by the
scripts, and an improved model loader able to load non-EMF models.

An improved Epsilon Model Manager A redesigned Epsilon Model Man-
ager that is able to load non-EMF models uniformly. Instead of requir-
ing different functions for different file types, it defines a single function
that tries to load the models using a set of preloaded model connectivity
drivers.

An extension to process Feature Models and Configurations A new
built-in object that can be used by the Epsilon scripts to analyse and
configure feature models. It is able to integrate both Java external li-
braries and Epsilon custom algorithms. Its design includes a unified API
and an additional child-runtime used to execute the algorithms if it is
required.

These tools, and their source code, are available at Github in the organiza-
tion at http://github.com/FaMoSA.

http://github.com/FaMoSA


Chapter 8

Case Study: Electrical
Transformers at Siemens

During the work on this thesis, we started a joint research project between
Siemens Colombia and Universidad de los Andes. On one hand, Siemens was
interested on creating families of configuration systems for the Electrical Trans-
formers they produce. On the other hand, we were interested in an industrial
case study where we can explore the use and combination of multiple feature
models. During two years we worked with a group of engineers modeling the
configuration options for the electrical transformers and creating multiple con-
figuration systems using our approach for structuring and analysing the related
models.

This chapter describes the industrial case study we conducted in cooper-
ation with Siemens. During the case study, our approach to model domains
and standards independently was applied to a realistic scenario. First, Section
8.1 describes the intended configuration scenario at Siemens. Then, Section
8.2 introduces the process we use to model the diverse technical domains and
standards, and Section 8.3 describes the resulting feature models. Finally, Sec-
tion 8.6 discusses some lessons learned, Section 8.7 presents a discussion, and
Section 8.8 concludes the paper.

Contribution: Main contribution of this chapter is a real-life case study
on modeling electrical transformers that (1) describes real problems modeling
complex products, (2) introduces an iterative process aimed to overcome these
problems, and (3) presents lessons learned during our work.

Note that all models of the case study are property of Siemens Colombia and
cannot be depicted or described in detail in this thesis. This chapter presents
some example models and excerpts to explain our experience. However, the
complete set of real models and constraints is not included.
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8.1 Intended Configuration Scenario

During the first meetings with the Siemens engineers in the project, they com-
mented on their vision.

Siemens Colombia produces Electrical Transformers for a large variety of
applications for both North and South America markets1. For instance, they
produce transformers used in transmission and distribution networks, industrial
applications and private households to deliver power to the points where the
electricity is required. Instead of creating a single configuration systems for
all the transformers, they are interested on multiple families of systems where
each one is targeted to a specific type of stakeholder, a concrete market or a
single line of transformers that Siemens produces.

Figure 8.1: Workflow with the intended configurators for Siemens

Figure 8.1 shows an excerpt of the intended workflow with the diverse con-
figuration systems. First, Siemens was willing to offer final customers a “clar-
ification tool”: a system where customers can select from a general set of
features and introduce some parameters, and the software (1) determines if
the provided specifications are consistent, (2) searches in the standard product
catalog and the historical database of designs which transformer models are the
most suitable, and (3) if there is not a suitable model, presents users informa-
tion on which families and models of transformers that Siemens offers can be
customized to satisfy the requirements. A customer may take that information
to order a specific model or specify her own transformer.

In addition, Siemens was interested on “family-specific configurators” that
allow external and internal engineers to specify a customized electrical trans-
former. In these configuration systems, the users may introduce more detailed
specifications for a specific type of transformer and the software must determine
if the specifications comply with a set of pre-defined family-specific constraints.
The resulting specification is later used as a foundation to design and manu-
facture the transformer according to the customer requirements.

1http://www.transformadores.siemens.com

http://www.transformadores.siemens.com
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8.2 Modeling Process in Siemens

Considering the vision of using multiple configuration systems, we explore mul-
tiple approaches to create the corresponding feature models: Trying to create
a single feature model for all the configuration systems may result into very
large models hard to debug and maintain by all the different experts at the
same time. Trying to create a different feature model for each configuration
system may result into a lot of models with redundancies and, very likely, in-
consistencies. Instead, we decide to create feature models for each domain and
to process these models to create one for each configuration system based on
the type of transformer and the market where it will be used.

Overview

We defined a process to elicit knowledge from the diverse domain experts in
order to create a feature model for electrical transformers. This process aims
to separate the domains in such a way that: (1) domain experts review, debug
and introduce new options into the feature models that represent only the
configuration options for electrical transformers that are part of their concerns,
(2) domain experts model different standards using different feature models,
and (3) domain experts join together to discuss and model how decisions in
one concern affect decisions in other concerns. Figure 8.2 shows an overview
of the proposed process to create the feature model.

Figure 8.2: Process to Elicit Knowledge and create the Feature Model

Separation of Domains The process started defining the domains and stan-
dards to model. This was an iterative process where the different features
and constraints for the product were grouped using the involved decisions
as the main criteria. For instance, in Siemens we started with three dif-
ferent domains and ended with seven. The domains were organized to
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maximize the cohesion by grouping the decisions performed by the same
kind of experts, and to minimize the coupling by trying to keep together
the decisions where one affects to the other. For instance, the accessories
for transformers, initially built using a single feature model, was later
divided into a model for electrical design accessories and mechanical de-
sign accessories because they represent decisions usually performed by
different experts and are not highly related to each other.

Modeling of each domain and standard Once a separation of concerns
was defined, we proceeded to model the options in each domain and
standard using independent feature models. The models were created by
a modeling leader (involved in the creation of all the models) and a group
of experts for each domain. Each model was created including features
that represent the options that each expert decided and including the
constraints among these options that the domain expert identified.

Analysis per domain The models were later reviewed using three different
activities: (1) a peer-review activity where domain experts discussed
which options and constraints to include or not; (2) automated processes
aimed to identify dead features (i.e., options that cannot be selected), and
conflicting or redundant constraints; and (3) additional activities where
domain experts used some of the automated tools we built to create con-
figurations of existing products and detect problems in the models. Dur-
ing these configuration tests, experts entered options and then checked if
the constraints in the feature model enabled or disabled some of the re-
maining options as planned. Based on these analyses, modifications and
improvements where proposed and discussed with the modeling leader
and domain experts.

Modeling relationships among domains Although each domain puts to-
gether decisions related to a single concern, these domains are not or-
thogonal. There are constraints and relationships among the options in
these domains. In our approach, these relationships were represented as
constraints external to the feature models. To define these inter-domain
relationships, we discussed with experts in multiple domains the impact
that decisions in one domain may have on decisions in the other do-
mains. As a result of these decisions, sometimes improvements to each
model were also proposed.

Analysis of the relationships among models As with the feature models,
we reviewed the inter-domain relationships with peer-reviews and auto-
mated processes. Basically, we took each pair of feature models and a
specification of the relationships between them to create a combined fea-
ture model. The resulting feature model was reviewed by experts and
manually tested by trying to configure some products. In addition, those
models were also analyzed using an automated process to detect conflicts
and redundancies on the constraints.
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Merge and testing Once the feature models and the inter-domain relation-
ships were analyzed, we merged the models and performed further anal-
yses and tests. On one hand, we automatically combined and analyzed
the models for different combinations of the domains to detect dead fea-
tures and conflicting constraints. On the other hand, we used existing
catalogs to test the resulting models. Basically, we took the information
of each product in the catalog and tried to configure that product using
the resulting feature model. This process detects errors when an existing
product cannot be configured using the resulting model.

We defined three roles for the project: A project leader, who was in charge of
the administration of the project; a modeling leader, who supervised the mod-
eling activities and led the activities to review the models with many experts;
and the domain and standard experts, who created the models. A software en-
gineer participated too. He developed software to obtain information from the
Siemens databases to perform tests and analyses, integrated the configuration
systems to the existing ERP and supported the domain experts when problems
with the infrastructure happened.

In order to support the project activities, we used several tools: For in-
stance, the Feature Models were created using a modified version of SPLOT.
The combinations, tests and analyses of these models were performed using
other tools we created. These tools were developed using Model-driven tech-
nologies that allow experts edit the feature models, define a combination of
them, and derive the corresponding configuration system without the interven-
tion of software developers. In consequence, the people in the project was able
to analyse the models and test the corresponding configuration system during
all the process.
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8.3 Models for Electrical Transformers

Electrical Transformers are complex devices that exhibit an enormous variabil-
ity depending on the intended power transformation, environmental conditions,
standards imposed and customer particularities.

8.3.1 Modeling Multiple Domains

Intuitively, all the transformers perform the same task: They transport elec-
tricity from one circuit to another, possibly modifying properties such as the
electric current or voltage in the process. All the transformers have speci-
fications that include the electrical properties of the input and the output.
However, transformer specifications may differ in many other aspects. For in-
stance, the properties to include in the specifications may vary according to
elements such as the type of transformer, the location where it will be installed
and the electrical and mechanical properties required for its operation.

Separation of Domains As mentioned before, an important decision in our
approach is to determine which domains to model. For Siemens, we defined
seven domains after multiple iterations:

1. System, a model representing the options and restrictions defined by the
power transmission and distribution network;

2. Installation, a model including properties such as altitude and temper-
ature of the place where the transformer will be located;

3. Transformer Type, one including transformer classifications such as
pole-mounted or pad-mounted;

4. Electrical, Thermal and Acoustic (ETA) representing specifications
directly related to the electrical design;

5. Mechanical comprising specifications related to the mechanical design,
6. Electrical Accessories; and
7. Mechanical Accessories.

The next sections present a subset of these models and exemplify some of
the operations and analysis we perform during the process. We describe there
excerpts of the models for (1) the type of transformer; (2) the ETA properties;
(3) the mechanical properties, (4) and the electrical accessories.

Transformer Type domain There are many types of transformers depend-
ing of their intended application and installation. For instance, for residential
applications, there are: (1) indoor distribution transformers that are installed
inside a building to deliver electricity to the apartments and offices in its in-
terior, and (2) pad-mounted transformers and (3) pole-mounted transformers
that are installed outdoor delivering power to the apartments in a building or
to the houses in a block. Figure 8.3a shows a feature model representing the
mentioned types of transformers.
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(a) Transformer Type (b) Electrical, Thermal and
Acoustic (ETA)

Figure 8.3: Excerpt of Feature Models for Transformer Domains (1)

Electrical, thermal and acoustic (ETA) domain In addition, indepen-
dently of its type, transformer specifications include definitions for electrical,
thermal and acoustic (ETA) properties. These definitions are used to design
the electrical systems and components that are the core of the transformer.
Figure 8.3b shows an excerpt of the corresponding feature model.

The electrical definitions include values for parameters such as power, high
and low voltages, and the expected thermal and noise levels. Note that there
are mandatory features for each one of these parameters. The values for these
parameters must be specified for every transformer that Siemens produces.

Among the thermal characteristics of a transformer, there is the type of
cooling system that must be used. For instance, the cooling systems may
either ONAN or ONAF: ONAN, an acronym for ”Oil Natural Air Natural”,
is a system that uses the natural flow of oil and air across tubes or radiators
attached to the device to cool the transformer. In contrast, ONAF, for ”Oil
Natural Air Forced”, is a system where fans blowing air on the cooling surface
are employed to provide better cooling.

Similarly, the acoustic definitions include information about the intended
levels of sound (or noise) for the transformers. For transformers, there are some
definitions of the intended acoustic levels. For instance, a transformer may be
have either NEMA TR1 or NEMA ST 20 or IEC 60076-10 audible sound levels.
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(a) Mechanical Buchholz Relay ⇒ Air Filter
Buchholz Relay ⇒ Air Rubber

(b) ETA Accessories

Figure 8.4: Excerpt of Feature Models for Transformer Domains (2)

Mechanical domain The mechanical specifications of a transformer includes
definitions such as the type of refrigeration and the type of tank used by the
transformer. Figure 8.4a presents an excerpt of the feature model. Basically,
there are dry transformers, that are refrigerated by air, and liquid-immersed
transformers, that are refrigerated by immersing the circuitry in mineral or veg-
etable oil. In addition, depending on the type of refrigeration, the transformer
must include one of many alternatives for enclosing. For dry transformers, the
device may include an enclosure to prevent users to accidentally access the
circuits. For liquid-immersed transformers, they may use sealed tanks where
the oil remains in a single container, or conservator tanks where the oil flows
from one tank to facilitate its refrigeration.

ETA Accessories Another model describes the accessories to include in a
transformer. These accessories include elements for electrical and thermal pro-
tection and control, such as diverse types of oil level indicators, protective
valves and relays that a transformer uses. The feature model in Figure 8.4b
shows some of these accessories. There are two features for specifying the Oil
level indicators: these indicators may activate an Alarm, may Trip a circuit
or may perform both tasks. In addition, there are other two similar types
of Buchholz Relays: those that turn on an Alarm, those that Trip a breaker
and those that do both. Finally, there are other features representing air flow
accessories: air filter and air rubber cell.

Note that this model includes a cross-tree constraint. Including a Buchholz
relay in a transformer implies to include also an air filter and an air rubber
cell.
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8.3.2 Modeling Domain Interactions

Domain interactions are modeled as cross-model constraints. For instance,
as mentioned before, Buchholz relays can be used only in transformers with
a conservator tank, i.e., the existence of a Buchholz relay in a transformer
implies that the device includes a conservator tank. This is represented with
a constraint relating a feature in the mechanical domain with a feature in the
ETA accessories domain.

Figure 8.5 shows an example of cross-model constraints representing domain
interactions. It includes other two constraints relating the features presented
above: On one hand, pole mounted transformers are used to step-down the
power and deliver electricity to houses, i.e., pole mounted transformers implies
a step-down operation. And on the other hand, pole mounted transformers
cannot comply with the ONAF specifications, i.e., pole mounted transformers
excludes the ONAF.

Buchholz Relay ⇒ Conservator Tank
Pole Mounted ⇒ Step Down
Pole Mounted ⇒ ¬ONAF

Figure 8.5: Inter-domain Constraint Set for Electrical Transformers

8.3.3 Modeling Standards

Standards are modeled as additional feature models. In contrast to models
representing domains, the models representing standards may include features
that already exists in other models. These models are used to represent the
standards using a tree-based structure instead of using just a list of additional
constraints.

Figure 8.6 shows an excerpt of the feature model for the NTC 3997 standard.
Note that it is represented as a feature model and includes features that exists
in the other domains. In the model, the root represents the standard: NTC
3997. It includes definitions of the allowed values for power, high and low
voltage. It specifies that the transformer must be pad mounted. It defines only
a single cooling method, ONAN, which is mandatory. In addition, it defines the
NEMA TR1 sound level as mandatory. All this information may be obtained
from the text of the standard specification. Note that an initial version of the
corresponding feature model can be created without the intervention of domain
experts.
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Figure 8.6: Excerpt of Feature Model for NTC 3997

8.4 Reviewing and Analyzing the Models

Once each model was created, we performed additional processes to review
and analyze them. These processes comprise the combining of these models in
different arrangements:

• Combining domain feature models and inter-domain constraints
to test and analyse the interactions among multiple domains.
• Combining domain feature models with a standard, to test and

analyse the interactions among domains and standards, and
• Combining all the domains and the standards, to test and analyse

the interactions among multiple domains and standards.

8.4.1 Analysis by combining domains

We combined the domain-specific feature models and inter-domain constraints
to test and analyse the interactions among multiple domains. Basically, we
combined first each pair of domains and reviewed the result with experts on
both. Then, we combined all the models, and reviewed the combination trying
to reproduce the configurations of real transformers.
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Buchholz Relay ⇒ Air Filter
Buchholz Relay ⇒ Air Rubber

Buchholz Relay ⇒ Conservator Tank
Pole Mounted ⇒ Step Down
Pole Mounted ⇒ ¬ONAF

Figure 8.7: Feature Model combining the domains
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For instance, we combined the feature models to determine how the options
in the ETA domain affect or are affected by the options in the ETA accessories
domain. We used the result to determine if the constituent models included
contradictions or problems that prevent to introduce valid configurations or
lead to make options dead or full mandatory.

Once each pair of domains was combined and analysed, we combined all
the domains. The figure 8.7 shows a model combining all the models presented
above. Note that the root of the model, i.e., the concept to configure, is the
transformer. Below, there are sub-trees based on the models for each domain.
There are sub-trees for the transformer type, the ETA, the Mechanical and
the ETA accessories domains. In addition, there are additional constraints
representing the cross-tree constraints in each models and the inter-domain
constraint sets.

8.4.2 Analysis by combining domains and standards

NTC 3997 ⇒ NEMA TR1
NTC 3997 ⇒ ONAN

(a) optional standard (b) mandatory standard

Figure 8.8: Feature Model combining ETA domain and the NTC-3997 standard
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Simultaneously, we combined domain-specific feature models with stan-
dards. This allow us to determine interactions among the domains and the
standards. For instance, we combined the ETA domain and the NTC-3997
standard. Figure 8.8 shows the resulting combined feature models.

We can combine domains and standards in two ways: On one hand, we can
combine them setting the standard as an optional feature. In such case, a set
of additional constraints is included in order to enforce the restrictions defined
by the standard when it is selected. On the other hand, we can combine the
models by enforcing the standard. The resulting model does not include any
feature that is not allowed by the standard. Note the models in the figure 8.8.
In the left model, the standard is optional and some constraints enforce the
rules when it is selected. In the right model, the standard is not even a feature.
The model includes only the features that are compatible with it.

We tested and analysed these models with experts on the corresponding
domains and standards. Basically, we aimed to review if the constraints in-
cluded in the model represent correctly the rules in the standard and do not
contradict the restrictions defined by the domain itself.

8.4.3 Analysis by combining all the domains and standards

Once we analysed the different combinations of domains and standards, we cre-
ated models combining all the models and the standards required for a specific
configuration system. For instance, consider a system aimed to configure a
family of pole-mounted transformers for the Colombian market. The required
model must combine the feature models for the diverse transformer domains
and the standards related to that type of transformer and that specific market.

Figure 8.9 shows feature models combining the NTC-3997 standard with all
the domains presented above. As before, there is a model where the standard
is defined as an optional feature, and another model where the rules of the
standard are enforced. One one hand, note that the first model includes more
constraints than the second one. For instance, there is a constraint stating
that, if the NTC-3997 is selected, the ONAN must be selected too. On the
other hand, the second model includes less features than the first. For instance,
the ONAN feature is mandatory because it is enforced by the standard and
the ONAF feature is not included because it is prohibited by the norm.
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Buchholz Relay ⇒ Air Filter
Buchholz Relay ⇒ Air Rubber

Buchholz Relay ⇒ Conservator Tank
Pole Mounted ⇒ Step Down
Pole Mounted ⇒ ¬ONAF
NTC 3997 ⇒ NEMA TR1

NTC 3997 ⇒ ONAN

(a) optional standard

Buchholz Relay ⇒ Air Filter
Buchholz Relay ⇒ Air Rubber

Buchholz Relay ⇒ Conservator Tank
Pole Mounted ⇒ Step Down
Pole Mounted ⇒ ¬ONAF

(b) mandatory standard

Figure 8.9: Feature Model combining the domains and the NTC-3997 standard



8.5. Reviewing and Testing the Models 139

8.5 Reviewing and Testing the Models

In conjunction with engineers from Siemens, we defined activities to assure
the quality of the models. Additionally to the automated analyses of these
models e.g., to determine dead features and conflicts among the constraints,
we performed other activities to check if the models represented the real set of
products that the company manufactures and sells.

Among these activities, we can mention:

Peer reviews and walkthroughs Several activities were aimed to review
the models. On one hand, each domain and standard expert usually
reviewed many models created by the others. In order to review the
interactions among domains and among domains and standards, they
usually took models from other users and checked that some required
features were present in the models. Although some of these errors can
be detected by automated analyses, many errors were detected in that
way.

On the other hand, many meetings domain and standards experts was
scheduled to review the models. Usually the author of the model pre-
sented the features in the model and an overview of the constraints in-
cluded in it. The other participants reviewed the model at the same time
to make questions and provide feedback. Some of these meetings were
scheduled to define how to solve a conflict when differences among the
models were detected.

Manual tests using Configuration Systems In addition to the reviews,
domain and standard experts used configuration systems to test the
model. Each time an expert modified or combined the feature models,
she can use a configuration system to specify an electrical transformer
and check if the constraints that she defined were defined correctly. Al-
though the experts were free to configure any product, some activities
were defined to request experts to configure products for specific markets
and check if the model included all the relevant constraints.

Automated tests using Product Catalogs Siemens has databases with the
actual catalog of products and with the history of all the products that
the company has built. These databases include specifications, designs
and a lot of additional information. We used these databases to obtain
configurations of real products and test the feature models. The infor-
mation in the databases was translated to configurations that included
the features defined in the feature models. A program took that configu-
rations and determined if they were valid against the feature model. The
products that resulted invalid were checked to determine if the model had
errors. Sometimes the products reported with errors were transformers
that are not compliant with the current standards and regulations.
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8.6 Lessons Learned

Our experience in modeling electrical transformers using feature models and
specifying them as a Configuration Process can be summarized in the following
lessons learned:

8.6.1 Modeling

Modeling complex products using a single feature model is tough
As a first attempt, we tried to create a single feature model representing the
variability involved in a Transformer. The resulting feature model included
features from multiple domains, constraints in each domain and constraints
imposed by the diverse standards for electrical transformers. The final result
had a large number of features and constraints and was very hard to under-
stand, validate and maintain. The intermixed of features from diverse disci-
plines made the discussion among experts difficult. Furthermore, the amount
of constraints imposed by the standards difficulted the analysis of the feature
model. For instance, an initial model for a medium-sized transformers product
line and only one standard included more than four hundred features and more
than one hundred constraints. After many reviews and modifications, domain
experts found it too hard to check and introduce new constraints in that model.

Using multiple feature models facilitates the modeling of multiple
domains Due to the issues found in the approach with a single model, we
decided to create one feature model to capture the variability of each domain
of expertise and a feature model per standard. The result was a set of feature
models, each less complex than the former, single one. The expert validation
was easier. As we presented in previous sections, the activity required an itera-
tive process and a strong collaboration with the experts to identify relationships
among feature models.

The separation of domains is an iterative process Many times, after
reviewing the model for a domain we found better ways to organize the domains
or the features in the model. For instance, some domains were divided in two or
three to focus on some type of decisions and simplify the modeling. Also some
options were reorganized within a domain to simplify the constraints. And
other options, initially defined in a domain, were moved to another domain.
The iterative nature of the process and the participation of a modeling leader
that understands how the domains have been divided facilitates the separation
of domains.

While the initial feature model combining all the domains comprised more
than 400 features, the resulting models for each domain contains between 10
and 123 features, and those for the standards between 69 and 71 features. Do-
main experts found these models easier to review and modify than the former.
In addition, the final models include features from more products and represent
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more standards than the initial. That means that these models are simpler and
more complete.

Incremental modeling of products facilitates the work Initially, do-
main modelers tried to detect all the most exotic options included in any al-
ready developed product, introducing a lot of features and defining very com-
plex constraints. Instead of trying to create a complete model from the be-
ginning, we started focusing on the most common features (those included in
the 80% of the products), and then on the more exotic ones. This incremental
approach allowed us, (1) train the domain experts using simpler models, (2)
practice with them how to introduce new features and constraints, and (3)
define practices to review and debug the models continuously.

We consider that the models to represent transformer specifications will
evolve with time to introduce new technologies and standards. Future activ-
ities for continuous modeling can be based on the presented process to elicit
knowledge. In addition, more specialized tools to detect the impact of feature
model modifications can be adapted or created to support these activities.

Each standard can be modeled independently An important source of
complexity to model the transformers is the existence of multiple standards.
Initially, we tried to model several standards using a single model. However this
approach resulted in models with very complex constraints hard to review by
the domain experts. Then we decided to use feature models for each standard
and an automatic process to merge these models. Using multiple models we can
focus on modeling each standard using simpler constraints, while our software
tool combines these constraints into the complex constraints we detected before.

8.6.2 Validation of the models

Continuous testing facilitates the incremental modeling of products
Each time we created a version of a model, that model was tested and reviewed
with domain experts. This approach allowed us to detect errors using simpler
models reducing the risks of trying to detect and correct errors on larger and
more complex models. In addition, this approach allowed us to compare how
different versions of the models validate some configurations and detect errors
introduced when a model was modified.

Testing of models can be performed using product catalogs Because
the models also represent products already manufactured, domain experts can
use information from product catalogs and the production order history to
test them. Sometimes they took information of standard catalogs and produc-
tion orders to define custom configurations that they used to test the models
manually. We consider that software tools can take that information to create
configurations that must be valid against a correct set of feature models. Af-
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ter any modification on the models, these tools may help us to detect errors
introduced by accident.

8.6.3 Tooling

Existing tools provide limited support to create multiple inter-related
models There are many tools to create feature models, define views on these
models, merge sub-models and configure products based on them. However,
they offer limited support to reorganize the domains we are modeling by moving
features or automatically refactoring the constraints related to these features.
We extended SPLOT [91] and create our own tools to edit multiple feature
models, to perform the special merge of feature models for domains and for
standards, and to process and test continuously the models. There is an op-
portunity to create more specialized tools to model complex products with
multiple concerns.

Partial Configurations can be used to guide the process Existing
tools can use the information in feature models to validate and auto-complete
a partial configuration. This allows customers to provide incomplete specifica-
tions and use the software to validate them. In addition, if these incomplete
specifications include all the features that are relevant to the customer, any
configuration resulting of an auto-complete will include those features and will
be appropriated to the user. Furthermore, those partial configurations can be
used to find similar products and recommend customers either standard or al-
ready designed transformers that are faster to build. We consider that, at least
for electrical transformers, the configuration software must include options to
support user-provided partial configurations.

8.6.4 Impact on other engineering processes

Modeling the products allows engineers to define and enforce stan-
dards in the company During the process, we continuously discussed which
features are part of a standard and which not. This discussion allows engineers
to detect potential problems and conflicts in some combinations of standards.
In addition, because we also discussed which features are the most commonly
requested, this helped engineers in their permanent reflection on which stan-
dard products, assemblies and sub-assemblies can be defined in the company.
We consider that the modeling of variability is not only useful to create con-
figuration software but also to help companies to analyze and streamline their
portfolio of products.
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8.7 Discussion

Considering that we learned some lessons from the Siemens case-study, it is
important to determine if these lessons are relevant to other companies and
situations. This section describes the research method we used in our work
and the threats for the validity of our conclusions.

8.7.1 Research Method

Our work with Siemens allowed us. not only to develop formal operations and
software artifacts for using feature models to create configuration systems, but
also to apply and evaluate these outcomes in a real-life environment. There are
several Design Science Research Processes [62][107][103] proposed for scenar-
ios like this where the expected outcomes of the research include the design,
implementation or the improvement of artifacts for a specific problem domain.
We followed the process outlined by Offermann et al. [103] where research,
design and implementation activities are defined to (1) identify the problem,
(2) design and (3) evaluate the solution.

Problem Identification We started working with Siemens to create
configuration systems using Feature Models. Initial activities were cen-
tered on a literature review of the applicable approaches, the transfer
of knowledge to Siemens engineers and the creation of a single feature
model to represent the products. Additional activities were focused on
using multiple feature models and determining advantages and problems
of both alternatives. The challenges and problems addressed in our work
were defined based on evaluations and interviews of the participants of
these activities.

Solution Design After precising the problem, we started to design a solu-
tion. We worked on three main areas: the modeling of complex domains
using multiple feature models, the automated processing of these models,
and the derivation of configuration systems from them. For each area we
performed literature reviews and technical evaluations with the partici-
pants during all the process. As a result we refined our proposal for the
modeling process, the automated processing of the models and the design
of the supporting software in multiple iterations.

Solution Evaluation Finally, we evaluated and improved our solution based
on its application in real-life product lines. In conjunction with Siemens
we created models to configure electrical transformers. The activities
to analyse and test the models helped us, not only to improve the fea-
ture models but also to improve our solution to create and process these
models.

As a result of this work we refined and evaluated our proposal to develop
configuration systems using different feature models for the technical domains
and the regulations of a product family.
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8.7.2 Threats to Validity

In general, the validity of a research is concerned with the question of how the
conclusions might be wrong [46]. A validity threat is a specific way in which it
might be wrong [46]. This section discusses some validity threats of our work
in the case study.

Internal Validity focus on how legitimate are the findings and solutions in
our research. One possible threat to internal validity is a researcher
bias. We have been working with feature models and operations on these
models and it is possible that we influenced the work to use them and
present them as a viable solution. In order to mitigate this threat we
tried first to represent the products using a single feature model, and later
tried with multiple feature models. As part of the problem identification,
we interviewed the domain experts participating in the modeling about
the pros and cons of both alternatives. Another possible threat is a
modeler bias. It is possible that the results were influenced by the ability
or the knowledge of the modelers. We consider that the likelihood of
this threat is fairly low. On one hand, several modelers with different
skills and backgrounds were involved in the process. The problems we
describe were not perceived and commented by only one participant but
by many of them. On the other hand, none of the participants had
previous experience on using feature models. They learned to create the
models as part of the project. Finally, we discussed our findings with
the project leaders from Siemens, and presented our experience to other
experts in feature models to mitigate any possible bias.

External Validity is concerned with whether we can generalize the results
outside the scope of our study. In this case study, many domain and
standard experts created models and configuration systems for multiple
product families, domains and standards. Although some of these do-
mains and standards were very different one from the others, they were
able to specify these concerns using our proposal. That give us some
confidence that the approach can be used to create models for product
families in other domains and companies. However, all our work was
limited to Siemens and to Electrical Transformers. Although, this is a
point of caution in the generalization of our findings, we believe that our
study shows that the approach is very comprehensive and offers benefits
to the companies creating configuration systems for complex products
that involve multiple domains and regulations.
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8.8 Conclusions

In this chapter, we reported our experience on modeling configuration options
for electrical transformers. Instead of modeling a set of existing products,
we aimed to model the different options that can be included in user-supplied
specifications. Initially, Siemens tried to use a single feature model to represent
the different options in all the involved domains. However, this approach led
them to create larger models with complex constraints difficult to understand,
validate and maintain. Instead, we opted to use multiple feature models and
automatic tools to combine them. We defined a process to elicit the knowledge
on the diverse domains and create these multiple models.

Our findings are summarized as a set of lessons learned. Among others, we
identified that using multiple feature models facilitates the modeling process
because each domain expert can focus on the variability that she understands
and is part of her concerns. In addition, we found that an iterative approach to
separate and model the domains facilitates the work. Furthermore, we detected
that existing tools can be improved to support the creation and testing of
variability models that comprise multiple feature models.
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Conclusion and Perspectives

In this chapter, we first synthesize and conclude all the contributions of this
thesis, re-enumerating the challenges and how we addressed each of them. Next
and finally, we discuss some perspectives for future research.

9.1 Summary of Contributions

This thesis is an effort to support the tasks of modeling and building configura-
tion systems for complex products. These tasks need special assistance due to
the inherent complexity of the products, the need to involve multiple domains
and experts, the existence of many standards and regulations, the diversity of
configuration systems required by the companies to build product families.

To assist engineers and stakeholders on modeling and building these feature-
based configuration systems, we have presented the following contributions:

C1 Feature Models for Domains and for Standards We extend existing ap-
proaches by using multiple feature models and constraints among feature
models. Instead of creating a single feature model, domain experts create
a model for each domain and for each standard independently. Interac-
tions among the domains are represented using sets of constraints among
the corresponding feature models. A standard may restrict which features
can be selected or not in the other domains, can define valid combina-
tions of features and specify concrete feature values. Each standard can
be modeled by experts on the standard, using a different feature model
using the easy-to-understand structure of the model instead of a set of
constraints. We propose an iterative process to specify all the options
for the configuration system by creating, combining and testing models
of the domains and standards.

147
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C2 Operators to combine feature models for domains and standards. These
models represent, on one hand, configuration options and constraints de-
fined by the technical properties and designs of the products, and on the
other hand, constraints imposed by standards and regulations. We pro-
pose a set of automated operations to analyze and merge on such models.
Considering that standards are crosscutting concern that can be enforced
or not depending on the customer requirements and country regulations
where the products are sold, we define operations for Conditional Inter-
section Merge, that can enforce a standard only when a feature is selected,
and for Partial Conditional Intersection Merge, that can enforce only the
part of a standard related to a domain when a feature is selected. We
define an operation for Combination that performs multiple operations
such as Reduced Product Aggregation and Partial Conditional Intersection
Merge to combine properly the diverse feature models for the domains
and the standards of a product family.

C3 Automated Derivation of Configuration Systems. Considering that com-
panies are interested in creating Configuration Systems for specific mar-
kets and countries, it is important to produce the software based on the
correct combination of models. We propose a model-driven approach
where feature models are used to generate the software components that
interact with the user during the configuration process. Furthermore, we
built a set of runtime components that processes the user decisions and
updates the user interface consequently. In contrast to other proposals,
our user-decision processor exploits the previous decisions of the user to
perform tasks such as undoing and changing decisions more efficiently.

C4 Case Study on modeling Electrical Transformers. We have applied our ap-
proach in an industrial case study. We worked in a joint research project
between Siemens Colombia and Universidad de los Andes to model and
create multiple configuration systems for Electrical Transformers using
our approach and tools. We present here a report of our experience in-
cluding some lesson learned during the process.

C5 Experimental Implementation of our approach. We have developed the
FaMoSA toolset, a set of software tools to (1) model, test and analyze
models representing multiple domains and standards (2) analyze and test
these models (3) combine these models according to the intended config-
uration process, and (4) derive automated configuration systems that
stakeholders can use to decide and select features for a product.
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9.2 Research Perspectives

In this section, we present some long- and short-term ideas for research around
the contributions of this thesis.

9.2.1 Regarding the Modeling of Domains and Regulations

Support for other types of Models and Relationships. While our work
uses multiple feature models and constraints to relate these models, other
approaches combine other types of variability models and relationships
among models to represent complex products. For instance, there are
approaches that combine Feature Models, Orthogonal Variability Models
and Decision Models [42][43][53], that combine Feature Models with Goal
Models [34] and use multiple types of relationships [27][28][31][111]. It is
important to extend our approach to support, on one hand, domains and
standards represented using other types of models and, on the other hand,
types of relationships among these domains and standards in addition to
the already supported propositional constraints.

Support for additional analysis operations. Our approach models con-
figuration options for complex products using multiple models for do-
mains and externally defined constraints, such as standards and regula-
tions. Additional operations can be defined to help to analyse and debug
that set of models. For instance, we are considering operations to an-
alyze the standards: some operations can be defined to determine if at
least one product of a product family, or all of them, are compliant with
some standard. Other operations can analyze if two or more standards
are compatible and if it is possible to configure at least a product that
is compliant with them at the same time. Additional methods can be
considered to determine which modifications to a set of feature models
must be performed to support a specific standard.

Case Studies on other Product Families. Part of our research involved
a case study on Configuration Systems for Electrical Transformers at
Siemens Colombia. We are interested on implementing our modeling
approach in other companies and product families. Further cases studies
will give us the opportunity to test and improve our approach.

9.2.2 Regarding the Combination of Feature Models.

Support of other types of solvers and formalizations. In order to im-
prove the implementation of our approach, we are considering the use
of diverse types of solvers and frameworks for testing. On one hand,
we plan to explore Satisfiability Module Theory and Linear program-
ming solvers to analyze [97] and optimize [142] [95] feature configura-
tions. On the other hand, we are considering extending frameworks such
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as FLAME [45] and Betty [123] to formalize the merge operations and
perform automated metamorphic testing of our implementations.

Integration to other frameworks and libraries. We have implemented our
merge operations using Epsilon and SPLOT. There are other libraries
that are being used by the Software Product Line community such as
Familiar, FaMa and FeatureIDE. We are interested on implementing our
operations on these libraries to motivate other users to explore and use
our approach.

9.2.3 Regarding the Derivation of Configuration Systems.

Support for Concurrent Configuration. We focused on developing feature-
based configuration systems where a single user makes the decisions or
where multiple users decide one after the other. However, there are many
scenarios where multiple stakeholders decide at the same time without
considering the decisions made by the others. In such scenarios, the
software must evaluate the decisions to determine conflicts among the
decisions of the same user and among the decisions made by the oth-
ers. The software must support strategies to solve conflicts different than
those used for a single user. For instance, the software may use a ranking
of users to impose decisions of some users over the others, may use al-
gorithms trying to satisfy a larger number of users or may propose fixes
based on decision rules. It is necessary to extend our approach to derive
configuration systems in order to support these tasks.

Support for Configuration Workflows. Instead of Concurrent Configura-
tion, other authors have proposed the use of Configuration Workflows [66].
In this approach, multiple users configure a product, each one selecting
options from a view of the product following a predefined workflow. The
software to support this kind of configuration processes requires to sup-
port the definition of feature model views and the integration of the
configuration systems with an workflow system. It is necessary to extend
our approach to consider, on one hand, the multiple feature models rep-
resenting each modeling perspective, and on the other hand, the multiple
views representing the configuration perspectives in a workflow.

Support for Product Optimization during Configuration. Our approach
was tested on a case study on Electrical Transformers. We use our ap-
proach to provide tools that validates user specifications and propose
existing products based on that. However, during our work, many times
the software presented a set of transformers that satisfies the require-
ments but does not recommend any in particular. We consider that the
software may integrate algorithms for product optimization in order to
recommend users which transformer choose based on some criteria, e.g.,
recommending the transformer that is cheaper, is easier to build, or has
a larger costumer base.
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Support for Attributes and Values during Configuration. Products
such as the Electrical Transformers must be configured by specifying val-
ues for attributes such as voltage or power. Currently, we model these
attributes as features that may selected or not. For instance, if a trans-
former may have a value of 110v or 220v for the voltage, these options
must be represented as two different features. These options can be rep-
resented using an attribute for the transformer instead of using a feature.
Using attributes, and domains of values for these attributes, requires
modifications on the algorithms we defined, but this will open up new
possibilities to the ways that products can be modeled and configured.





Appendix A

Approaches for Intersection
Merge

Operations on feature models such as the intersection merge can be imple-
mented in different ways. Acher et al. [11] described four approaches that can
be used. There are semantic-based approaches that rely on the propositional
encoding of the input feature models, reference-based approaches that build
composite structures involving the inputs, and hybrid techniques that use local
synthesis or slice operations to produce the resulting model. In Chapter 5, we
are using an approach that takes one of the input models and introduces to it
new constraints according to the semantics of the other model. This chapter
compares our approach with the other techniques described above to implement
the Intersection Merge operation.

Rest of this chapter is organized as follows: Section A.1 presents a running
example. Section A.2 explains how the intersection merge can be implemented
using the techniques proposed by Acher et al. [11]. Section A.3 presents our ap-
proach. Finally, Section A.4 presents a comparison and Section A.5 concludes
the chapter.

Note that this appendix presents alternative implementations of the
(traditional) intersection merge operation. In our work we defined other op-
erations: Conditional Intersection Merge and Partial Conditional Intersection
Merge. Alternative implementations for the Conditional Intersection Merge are
discussed in the Appendix B.
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A.1 Running example

This chapter presents diverse implementations of the intersection merge: an
operation that takes two feature models and produces a new feature model
which semantics (i.e., the corresponding set of valid configurations) is the in-
tersection of the semantics of the input models.

To illustrate the diverse techniques, we present first a running example.
Figure A.1 shows two feature models that we want to intersect.

(a) fm1 (b) fm2

Figure A.1: Example Feature Models to intersect

The intersection merge operates on the semantics of these models. The
Table A.1 shows the set of valid configurations of both models. Note that
there are some configurations that are valid against both.

Configurations for fm1 Configurations for fm2

{A,B}
{A,B,C,D}
{A,B,C,E}
{A,B, F}
{A,B, F,G}

{A,B,C,D, F}
{A,B,C,E, F}
{A,B,C,D, F,G}
{A,B,C,E, F,G}

{A,B,D, F}
{A,B, F,G}

{A,B,C,D, F}
{A,B,C, F,G}

Table A.1: Sets of valid configurations for the example Feature Models

The intended result of the intersection is a new feature model which se-
mantics corresponds to the set of configurations valid on both models, i.e.,
Jfmr K = Jfm1 K ∩ Jfm2 K. In our example, this is a feature model which set of
valid configurations is {{A,B, F,G}, {A,B,C,D, F}}.

Note that the resulting feature model may include only the features that
exist in both models, i.e., Ffmr

= Ffm1
∩Ffm2

. For instance, the feature E that
exists in fm1 but not in fm2 is not included in any of the valid configurations
of the result. That feature can be absent in the resulting model.
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A.2 Approaches to implement the intersection merge

Acher et al. [11] described four techniques to implement operations on feature
models: (1) a semantic-based approach, that uses the propositional encoding
of the feature models, (2) a reference-based approach, that uses models that
reference to the input feature models, (3) a local-synthesis hybrid approach,
that takes a reference-based model to synthesize a new feature model, and
(4) a slice-based hybrid approach, that uses the slice operation to process a
reference-based model to produce the new feature model.

A.2.1 Semantic-based implementation

The Semantic-based implementation comprises three steps: (1) Formula Calcu-
lation,, (2) Implication Graph Derivation, and (3) Feature Tree Derivation [2].

Formula Calculation The first step is to determine the propositional formula
that represent the resulting feature model.

For the intersection merge [2]: Given two feature models fm1 and fm2

with the corresponding φ1 and φ2 propositional formulas, the resulting
model fmr can be encoded using the formula φr, defined as follows:

φr = (φ1 ∧ not(Ffm1
\ Ffm2

)) ∧ (φ2 ∧ not(Ffm2
\ Ffm1

))

where,

not({f1 , f2 , . . . fn}) =
∧

i=1...n

¬fi

Implication Graph Derivation The next step is to build an implication
graph from the resulting formula [9]. An implication graph of a formula
is a directed graph G < V,E >. Each a vertex v represents a variable
of the formula or its negation, and each directed edge from vertex u to
vertex v represents an implication u⇒ v (or the same, ¬u ∨ v).

Feature Tree Derivation Finally, the last step is to determine a structure
for the resulting feature model. The new structure is a spanning tree
of the implication graph. Additional edges in the graph are included as
cross-tree constraints to the model. The types for the features and rela-
tionships may be determined based on the formula. Additional structures
may be used to help in the process, e.g., Bi-implication graphs can be
used to determine atomic sets and binary exclusion graphs can be used
to determine mutually exclusive features [3].

The result is a feature model which semantics represents correctly the in-
tersection of the input feature models. Usually, it is one of the many possible
models that represent that set of valid configurations. For instance, consider
the example presented above. Figure A.2 shows some alternative solutions for
the intersection of the example models.
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(a) (b) (c)

Figure A.2: Example Solutions for the intersection of the Feature Models

FAMILIAR implementation Executing a semantic-based intersection
merge in FAMILIAR is straight forward. It provides a merge intersection
command that executes all the steps. Listing A.1 shows an example intersecting
the models in the example.

1 // define the fm1 and fm2
2 fm1 = FM (A : B [C] [F]; C: (D | E); F: [G]; )
3 fm2 = FM (B: A [C] F; F: (D | G); )
4

5 // intersect the input models
6 fmr = merge intersection { fm1 fm2 }

Listing A.1: Semantic-based Intersection Merge of the Example Feature Models

Figure A.3 shows the result of running the script. The resulting model is dif-
ferent to the examples shown above. It does not include any alternative group
but additional constraints indicating that some features excludes to others.

C ⇒ ¬G
D ⇒ ¬G

Figure A.3: Semantic-based intersection of the Example feature models

Pros and Cons Acher et al. discussed the pros and cons of this approach [11].
Among the pros, the semantic-based implementation provides a complete and
sound solution for operations such as intersecting feature models. The result-
ing model represent the intersection of the valid configurations of the inputs.
Among the cons, this resulting model may exhibit a hierarchy that is very
different than the inputs, and therefore, hard to understand by the users.
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A.2.2 Reference-based implementation

The Reference-based implementation does not use the encoding of the feature
models into propositional logic. Instead of, it creates a new feature model
that (1) aggregates the input models with a new feature model, named “the
view”, that includes the features relevant to the user; and (2) includes a set of
relationships and constraints that implement the operation.

For the intersection merge, the resulting model is a compound structure
comprising:
• a synthetic root, the parent of three feature models: the view and the

inputs.
• the view model, a feature model that includes the common features

of the input models. All its features are optional to avoid additional
constraints on these features.

• the input models that become mandatory children of the root, and
• additional constraints that establish bi-implications among the corre-

sponding feature in all the models, and negate the features that are not
common to all the input models.

Figure A.4 shows a reference-based solution to the example. Note that
the synthetic root r is the parent of the view and the input models. In the
view model, all the common features appear as optional children features of
the A feature. And regarding the constraints, note that all the features in the
view model are linked to the corresponding features in the input models. The
features included in a model but not in the others are negated.

A⇔ A1

B ⇔ B1

C ⇔ C1

D ⇔ D1

F ⇔ F1

G⇔ G1

¬E1

A⇔ A2

B ⇔ B2

C ⇔ C2

D ⇔ D2

F ⇔ F2

G⇔ G2

Figure A.4: Reference-based intersection of the Example feature models
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FAMILIAR implementation To execute a reference-based intersection, it
is possible to use the aggregateMerge intersection command.

1 // given the example fm1 and fm2
2

3 // intersect the input models
4 fmr = aggregateMerge intersection { fm1 fm2 }

Listing A.2: Reference-based Intersection Merge of the Example Feature
Models

Figure A.5 shows the result using FAMILIAR. Note that its implementation
vary from our previous example: The view model uses the same hierarchy of
the first feature model instead of a flat hierarchy. The input feature models are
modified to include all the features, e.g., the second model now includes the
feature E. And finally, some constraints are included to negate these features.
However, despite the differences, both solutions are equivalent.

A⇔ A1

B ⇔ B1

C ⇔ C1

D ⇔ D1

E ⇔ E1

F ⇔ F1

G⇔ G1

A⇔ A2

B ⇔ B2

C ⇔ C2

D ⇔ D2

E ⇔ E2

F ⇔ F2

G⇔ G2

¬E2

Figure A.5: Reference-based intersection of the Example feature models

Pros and Cons Acher et al. discussed this approach too [11]. Regarding its
disadvantages, we can mention two of them. On one hand, the structure of the
result is a composite model. A user may consider the resulting model awkward
or hard to understand. On the other hand, the model may have a prolifer-
ation of constraints to maintain the same value on the all the corresponding
features. The number of constraints may disturb the algorithms for processing
and analysis and increase their computation time.
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A.2.3 Hybrid implementations

The hybrid-implementations combines the above techniques. Basically, these
approaches take the composite structure produced by the reference-based im-
plementations, and use the propositional encoding of that structure to generate
a simpler feature model using semantic-based techniques.

Two types of hybrid strategies have been defined [11]: (1) to perform a Local
Synthesis of the result feature model, or (2) to Slice the composite structure
to eliminate the non-relevant variables

Local Synthesis An alternative is to synthesize a new feature model from the
features and constraints of the composite model. In general, this strategy
performs similar steps to the used by the semantic based approach. It uses
a propositional encoding of the composite model to generate a implication
graph and determine a tree-structure for the result model.

Slice Other alternative is to Slice the composite structure. The Slice is an
operation that produce a new feature model including only a set of user-
provided relevant features. Internally, this operation processes the for-
mula to remove the variables by existential quantification. The new for-
mula represents the exact same valid configurations of the original. This
formula is used to synthesize a new feature model using the techniques
mentioned above.

FAMILIAR implementation There are commands for synthesize and slice
feature models in FAMILIAR. An script may execute first an aggregateMerge
and the execute on of these commands Listing A.2 shows an example.

1 // given the example fm1 and fm2
2

3 // intersect the input models
4 fmt = aggregateMerge intersection { fm1 fm2 }
5

6 // 0. obtain the features in the view
7 // in the result, the the root of the "view" is fmt.A
8 view_features = { fmt.A } ++ fmt.A.*
9

10 // 1. Local Synthesis
11 fmr1 = ksynthesis fmt over view_features
12

13 // 2. Slice
14 fmr2 = slice fmt including view_features

Listing A.3: Reference-based Intersection Merge of the Example Feature
Models

Although both strategies rely on processing the propositional encoding of
the composite models, they may produce different results. The Local Synthesis
builds a new formula based on the features and constraints of the model. This
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synthesis may result in a over-approximation of the set of valid configurations
and, therefore, in a incomplete or erroneous intersection. The Slice, on the
other hand, processes the actual propositional encoding of the input models,
and produces correct responses all the time.

Pros and Cons Acher et al. discussed pros and cons of the hybrid ap-
proaches [11]. As an advantage, in contrast to the reference-based implemen-
tations, the hybrid strategies produce simpler feature models. Users trying
to read or understand the model do not find repeated features as with these
approaches. Regarding the different strategies that can be used, the Slice pro-
duces better results. The Slice strategy offers a complete and sound solution
that can be customized and extended [11]. In contrast, the approaches using
Local Synthesis may produce inexact results.

A.3 Our approach: Adding constraints

As mentioned in Chapter 5, we are considering a different approach. Consider-
ing the reference-based feature model, instead of creating a composite structure
with the input models, we reuse the structure of one of the models and add
additional constraints to the model to implement the operation.

Given two feature models fm1 and fm2 , the intersection can be implemented
by (1) adding to the first model fm1 the constraints that represent fm2 negating
the features that do no exist ing fm1 , (2) adding to fm1 other constraints that
negate the features in fm1 that are not in fm2 , and (3) slicing the resulting
model in order to include only the features that are common..

For instance, Figure A.6 shows the constraints defined in the hierarchy of
the feature model fm2 .

(a) fm2

A⇔ B
C ⇒ B
F ⇔ B

F ⇒ (D ∨G)
D ⇒ ¬G

(b) Constraints represented in fm2

Figure A.6: Constraints representing the second feature models of the example

FAMILIAR implementation FAMILIAR provides means to add constraints
to a feature model. There is an addConstraint command that can be used.
Listing A.4 shows code to take the first model of the example and add the
constraints represented in the second.
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1 // given fm1 and fm2
2

3 // copy the first model into a temporary model
4 fmt = copy fm1
5

6 // add the constraints of the second feature model
7 addConstraint constraint ( A biimplies B ) to fmt
8 addConstraint constraint ( C implies B ) to fmt
9 addConstraint constraint ( F biimplies B ) to fmt

10 addConstraint constraint ( F implies D or G ) to fmt
11 addConstraint constraint ( D implies ! G ) to fmt
12 // add the constraints negating the non-common features
13 addConstraint constraint ( ! E ) to fmt
14

15 // obtain the set of common features
16 fm1_features = features fm1
17 fm2_features = features fm2
18 fmr_features = setIntersection fm1_features fm2_features
19 // slice the result from the temporary model
20 fmr = slice fmt including fmr_features

Listing A.4: Example FAMILIAR Implementation of the Conditional
Intersection Merge

Although the example uses literals to add the constraints, FAMILIAR pro-
vides a set of functions to obtain information of the constraints of a model.
For instance, getImpliesHierarchy aims to obtain the constraints defined in
the structure of a feature model. getImpliesConstraint, getExcludesCon-straint and getBiimpliesConstraint obtain the cross-tree constraints. com-puteBiimplies and computeExcludes can be used to find others. The con-
straints obtained from these functions may be used as part of the process.

Discussion Our implementation is an hybrid approach. On one hand, like
the reference-based implementations, it aims to reuse the structure of one of
the input models. On the other hand, like the semantic-based implementation,
it uses the encoding of the feature models to determine which additional con-
straints must be added, and use a synthesis algorithm to produce the resulting
feature model.

Our approach exploits that the semantic formula calculation for the inter-
section is a conjunction of clauses. The operation can be implemented as a
process that adds constraints to one of the models. Other operations, such as
the union merge, that include disjunctions cannot be implemented just adding
constraints. In order to implement these operations by modifying one of the
input models, it is possible that some features must be added and copied. This
strategy must be used with caution to achieve the expected results.
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A.4 Comparison

Acher et al. proposed a framework to select the appropriated technique to
implement an operation on feature models [11]. The framework comprises:
(1) the set of techniques presented above, (2) a set of dimensions for evaluation
of these techniques, and (3) a comparison table.

Dimensions of Evaluation The framework uses five dimensions to evaluate
each approach.

Diagram Quality refers to how each approach produces feature models that
are correct and easier to understand by users. As mentioned before,
almost all the approaches produce complete and sound solutions. Only
the hybrid implementation using local synthesis may produce an over-
approximation. Regarding the structure of the result all the approaches,
except the reference-based implementations produce simple models that
do not repeat features. Our solution uses the slice operation to produce
a simple feature model as result.

Reasoning refers to how amenable are the resulting feature model for other
processing and analysis operations. Here, the reference-based implemen-
tation is weak because it produces models with features non-relevant to
the user and additional constraints that maintains the same values for
these features. Analysis operations may be disturbed by the large number
of features and constraints. The hybrid approaches that use local synthe-
sis are weak too. They may produce models with an over-approximation
that affect the results of the analysis. Again, our approach uses the slice
operation to produce a correct model with only the relevant features.

Traceability refers to how the approach can maintain relationships among the
features in the resulting model and the elements in the source models.
Here the semantic-based approaches are weak because they translate the
models into a propositional formula and the references to the original
models are lost. In contrast, Reference-based and hybrid approaches
maintain references to the original features. Our approach maintains
references to the features of the first feature model but not to the features
of the second.

Customizability refers to how the approach can be customized or can be
used to implement other operations. Here the hybrid approaches are the
winners. A lot of new operations can be defined by combining multiple
operations with a local synthesis or the slice operation. Our approach,
however, it is based on modifying one of the feature models. Although
this is very plausible to implement the intersection, may result hard to
implement other operations.
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Composability refers to the ability of compose (i.e., to combine) operations
to produce different results. Operations implemented using the reference-
based approaches are the hardest to compose. These approaches copies
and renames the features in the process. It is very likely that two op-
erations end referring to different features and producing non-expected
results. Hybrid approaches using local synthesis are not the best op-
tion neither. Although they may maintain the names and references of
the features in the input models, they may produce models with over-
approximations. Composing these operations may produce unexpected
results too. Our approach uses the slice operation. This help to produce
correct models that can be used in other operations easily.

Comparison Table Table A.2 summarizes the discussions and results. Each
approach is classified according to the same scale for each dimension. The
best solutions are classified with A while the worst with C. Note that many
solutions are equivalent for some criteria. For instance, there are many that
produce high-quality models and produce correct results. This is the same
table proposed by Acher et al. [11] but with an additional column presenting
our approach.

Hybrid
Semantic Reference Local Adding

(Denotational) (Operational) Synthesis Slicing Constraints

Diagram Quality A C B A A
Reasoning A C C A A
Traceability C A A A A
Customizability C B A A B
Composability A C B A A

Table A.2: Comparison of approaches to implement operations

Our evaluation is similar to the presented previously [11]. The slicing-based
techniques are the most suited in the general case. They produce correct models
that include only the relevant features. In fact, our own approach uses the slice
operation for that reason.

A.5 Conclusions

In this chapter we presented different implementations of the intersection merge
operation:

1. the semantic-based implementation, that operates on the equivalent propo-
sitional logic of the input feature models, produce a new propositional
formula with the result, and derives a new feature model based on a
spanning tree of the corresponding implication graph;

2. the reference-based implementation, that uses a new “view” feature model
which includes the other models and relationships and constraints that
implement the operation; and
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3. hybrid implementations that combines techniques of the previous two
approaches to produce simpler models.

4. and the new type of hybrid implementation we are proposing, an approach
that adds constraints to one of the models and uses the slice operation to
remove the non-relevant features.

The new approach we are proposing, described in Chapter 5, is a hybrid
implementation that combines modifications to the feature models with the
slice, a semantic-based operation. In contrast to the reference-based imple-
mentation, it adds constraints to one of the input models instead of creating
a composite model with a synthetic view and all the input feature models. In
addition, like the hybrid approaches, it uses the slice operation to produce a
model that includes only the relevant features.

A comparison among the diverse proposals is included in this chapter. We
found that adding constraints to a feature model and performing a slice allow
us to implement the intersection merge. However, although the intersection
can be implemented in that way, there are other operations such as the strict
union merge that may result hard to implement using the same strategy. For
these operations, a hybrid approach using slice may be a better alternative.

Our review confirms the observations of Acher et al [11]: Except for the
hybrid approach with local synthesis, all the types of implementation produce
complete and sound feature models. FAMILIAR can be used to implement
operations using all these approaches. If the feature models can be matched by
name, the semantic-based implementation of operations such as union and in-
tersection in FAMILIAR is straightforward. If other strategies must be defined
to match the features, an hybrid implementation can be used. The functions in
the language can be used to implement the matching and produce a composed
structure. Once matched the features, the resulting model can be produced by
slicing that structure. Hybrid strategies using the slice operation are the most
suitable in the general case.
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Alternative implementations of
Conditional Intersection Merge

In this thesis, we are proposing Conditional Intersection Merge, a new opera-
tion to combine feature models. We use this operation to combine a feature
model for a domain with a feature model for a standard. The resulting model
includes an optional feature representing the standard and a set of constraints
the enforces the rules of the standard when that feature is selected.

This chapter presents some alternative implementations for that operation.
Some of them are based on the approaches defined by Acher et al. to implement
operations on feature models [11]. An additional implementation is based on
our proposal presented in Chapter 5.

Rest of this chapter is organized as follows: Section B.1 presents an overview
of the conditional intersection merge operation, Section B.2 presents the alter-
native implementations, Section B.3 compares the solutions, and Section B.4
presents our conclusions.
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B.1 Conditional Intersection Merge

We model the configuration options of complex products using two types of
feature models: (1) feature models for domains, that are created by domain
experts to represent the variability of each technical concern, and (2) feature
models for regulations, that are created by other experts to represent the rules
defined in regulations and standards. In the process, each expert creates and
maintains their own models. However, these models must be combined to
perform inter-domain analyses and to build the corresponding configuration
systems.

We have defined Conditional Intersection Merge as an operation to combine
models representing domains with feature models representing regulations.

B.1.1 Running example

Figure B.1 shows an example of a feature model for domain and a feature
model for regulation. They represent the variability for hypothetical electrical
transformers. The first feature model fm1 represents the devices that can be
manufactured by a company while the second model fm2 represents the options
required by an specific standard.

(a) fm1 (b) fm2

Figure B.1: Example Feature Models to apply Conditional Intersection

Regarding the product configurations: On one hand, there are options that
can be manufactured but are not part of the standard. On the other hand,
there are options in the standard that cannot be manufactured. Table B.1
shows the corresponding configurations.

Configurations for fm1 Configurations for fm2

{Transformer ,Power ,W}
{Transformer ,Power , X}
{Transformer ,Power , Y }
{Transformer ,Power , Z}

{Transformer ,Power , V }
{Transformer ,Power ,W}
{Transformer ,Power , X}
{Transformer ,Power , Y }

Table B.1: Sets of valid configurations for the example Feature Models
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The Intersection Merge can be used to determine which products and op-
tions that are part of the standard can be manufactured by the company.
Figure B.2 shows the intersection of the models in the example matching the
Transformer and the Standard. Note that the corresponding set of configura-
tions includes only the products of the standard that can be built.

(a) fmim

Configurations for fmim

{Transformer ,Power ,W}
{Transformer ,Power , X}
{Transformer ,Power , Y }

(b) Set of valid configurations

Figure B.2: Intersection of the Example Feature Models

However, the Intersection Merge may be too restrictive. The standard is not
an option in the resulting model. We are interested on configuration systems
where the user can select (or not) the standard.

Conditional Intersection Merge The Conditional Intersection Merge is
an operation that takes a feature model for a domain and feature model for a
regulation and yields a new model where the regulation is represented as an
optional Selector Feature. In this model, the rules of the regulation are enforced
only when the Selector Feature is included in the configuration.

Figure B.3 shows the Conditional Intersection Merge of the example models.
Note that the standard is enforced when the corresponding feature is selected.

StandardX ⇒ (W ∨X ∨ Y )

StandardX ⇒ ¬Z

(a) fmr

Configurations for fmr

{Transformer ,Power ,W}
{Transformer ,Power , X}
{Transformer ,Power , Y }
{Transformer ,Power , Z}
{Transformer ,StandardX ,Power ,W}
{Transformer ,StandardX ,Power , X}
{Transformer ,StandardX ,Power , Y }

(b) Set of valid configurations

Figure B.3: Conditional Intersection of the Example Feature Models
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B.2 Alternative implementations

As pointed out by Acher et al. [11], the operations on feature models can be
implemented using different approaches: using semantic-based approaches that
rely on the propositional encoding of the input feature models, reference-based
approaches that build composite structures involving the inputs, and hybrid
techniques that use local synthesis or slice operations to produce the resulting
model. We are proposing a new technique that relies on adding constraints to
one of the input models. This section presents some alternative implementa-
tions for the Conditional Intersection Merge.

B.2.1 Semantic-based implementation: Composing
operations

The semantic-based implementation translates the feature models into a propo-
sitional formula, uses that formula to create an implication graph, and finds
a spanning tree on that graph to create the result feature model. Tools and
Libraries such as FAMILIAR implements operations for union, strict union and
intersection of feature models using this approach.

An alternative to implement the Conditional Intersection Merge is to use
these operations. Basically, we must understand the semantics of the operations
that we want to build and use the corresponding operations to produce the
expected result.

Semantics Operations on feature models can be defined in terms of the se-
mantics of the participant models. Given a feature model fm, the semantics of
the model JfmK is the corresponding set of valid configurations. In turn, each
configuration c is a subset of the features in that model Ffm .

The Conditional Intersection Merge is an operation that takes two feature
models fm1 and fm2 and produces a feature model fmr that includes an op-
tional Selector Feature fs and its semantics Jfmr K represents the union of (1) the
products of the first model Jfm1 K (where fs is not included), and (2) the re-
duced product aggregation of the selector feature and the intersection of the
products of both models {fs} ⊗ (Jfm1 K ∩ Jfm2 K).

Jfmr K = Jfm1 K ∪ ({fs} ⊗ (Jfm1 K ∩ Jfm2 K))

FAMILIAR implementation FAMILIAR has support for the union and
intersection merge. However, it does not support the reduced product aggrega-
tion with a single product. It must be implemented by modifying the feature
model or by aggregating two feature models.
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Configurations for Configurations for
Jfm1 K∩ Jfm2 K {fs} ⊗ (Jfm1 K∩ Jfm2 K)

{Transformer ,Power ,W}
{Transformer ,Power , X}
{Transformer ,Power , Y }

{StandardX ,Transformer ,Power ,W}
{StandardX ,Transformer ,Power , X}
{StandardX ,Transformer ,Power , Y }

Table B.2: Example product of fs = StandardX and Jfm1 K ∩ Jfm2 K

In the Conditional Intersection Merge, the reduced product aggregation
aims to include the feature representing the standard in all the configurations
in the intersection. Note the effect in the Table B.2. After applying the inter-
section, the configurations in the intersection of the models in the examples are
modified to include the standard. The same effect can be achieved by inserting
a full-mandatory feature into the model that results of the intersection.

1 // example feature models
2 fm_domain = FM ( Transformer:Power; Power: ( W | X | Y | Z ); )
3 fm_std = FM ( Transformer:Power; Power: ( V | W | X | Y ); )
4 std_name = "Standard X"
5

6 // 1. intersect the input models
7 fmTemp = merge intersection { fm1 fm2 }
8

9 // 2. obtain the product of the selector and the intersection
10 // define a feature model for the selector
11 fms = FM ( dummy: fs; )
12 fms = extract fms.fs
13 renameFeature fms.fs as std_name
14 // insert the selector as mandatory in the resulting intersection
15 fmTemp_root = root fmTemp
16 insert fms into fmTemp_root with mand
17

18 // 3. merge the fm1 with the temporary result
19 fmr = merge sunion { fm1 fmTemp }

Listing B.1: Example FAMILIAR Implementation of the Conditional
Intersection Merge

Listing B.1 shows an implementation of the conditional intersection of the
models in the example using FAMILIAR. The code starts with defining the
feature models and the name of the standard (see line 2). Then, the program
intersects both models (line 7). Later, it determines the product of the selector
and the intersection by adding a mandatory feature representing the standard
(line 16). Note that a single feature cannot be added to the model. It is
necessary to create a feature model to add the feature. Finally, the code obtains
the union of the first feature model with the result of the previous steps (line
19).
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The above mentioned reduced product aggregation can be implemented us-
ing the aggregate command. This command may aggregate two feature models
that include at least a matching feature. Considering that the fs in the exam-
ple, i.e., StandardX, is not a feature in fm1 nor fm2 , it is necessary to perform
an additional task. It is possible to create a feature model (1) which root is
the root feature of the intersection and (2) the standard is a mandatory fea-
ture. Then, it is possible to aggregate both feature models matching the root
features. Listing B.2 shows the code.

1 // example feature models
2 fm_domain = FM ( Transformer: Power; Power: ( W | X | Y | Z ); )
3 fm_std = FM ( Transformer: Power; Power: ( V | W | X | Y ); )
4 std_name = "Standard X"
5

6 // 1. intersect the input models
7 fmTemp = merge intersection { fm1 fm2 }
8

9 // 2. obtain the product of the selector and the intersection
10 // define a feature model for the selector
11 fms = FM ( dummy: fs; )
12 fms = extract fms.fs
13 renameFeature fms.fs as std_name
14 // rename the root with the name of the root of the intersection
15 fmTemp_name = name fmTemp
16 renameFeature fms.dummy as fmTemp_name
17 // aggregate both models
18 fmTemp = aggregate { fmTemp fms }
19

20 // 3. merge the fm1 with the temporary result
21 fmr = merge sunion { fm1 fmTemp }

Listing B.2: Example FAMILIAR Implementation of the Conditional
Intersection Merge

Discussion The Conditional Intersection Merge can be defined by using the
operations defined in FAMILIAR. There are some operations and step that are
complicated than the others. For instance, to insert a feature into a model, it
is necessary to create a feature model and insert that model into the other.

Regarding the configuration semantics, using the operations supplied by
FAMILIAR ensures that the solution produces the expected results. Regarding
the model hierarchy, this implementation converts the models to propositional
logic and derives the corresponding model at least two times: one for the merge
intersection and another for the merge sunion (the lines 7 and 19 in Listing
B.1). It is possible that the resulting model end with a hierarchy very different
than the exhibited by the input feature models.
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B.2.2 Semantic-based implementation: Formula Calculation

Instead of using the existing operations, we can create a new one. In FA-
MILIAR each operation performs three steps: It (1) calculates a formula that
represents the result, (2) derives an Implication Graph from that formula, and
(3) derives a Feature Tree. One operation differs to the others only in the
first step. Different operations calculate the formula for the result in a differ-
ent way. To implement a new operation, we must define how to calculate the
corresponding formula.

Formula Calculation Considering the semantics presented in Section B.2.1,
we can determine the formula to calculate the Conditional Intersection Merge
using the well-known formulas for the intersection and the union merge [2].

Union merge: Given two feature models fm1 and fm2 with the corre-
sponding formulas φ1 and φ2, the model fm∪ resulting of the union merge
Jfm∪K = Jfm1 K ∪ Jfm2 K is the formula φ∪ such that:

φ∪ = (φ1 ∧ not(Ffm2
\ Ffm1

)) ∨ (φ2 ∧ not(Ffm1
\ Ffm2

))

where
not({f1 , f2 , . . . fn}) =

∧
i=1...n

¬fi

Intersection Merge: The model fm∩ resulting of the intersection merge
Jfm∩K = Jfm1 K ∩ Jfm2 K is the formula φ∩ such that:

φ∩ = (φ1 ∧ not(Ffm2
\ Ffm1

)) ∧ (φ2 ∧ not(Ffm1
\ Ffm2

))

Conditional Intersection Merge: The Conditional Intersection Merge
(see Section B.2.1) has been defined as:

Jfmr K = Jfm1 K ∪ ({fs} ⊗ (Jfm1 K ∩ Jfm2 K))

Letting fm1∩2 = Jfm1 K ∩ Jfm2 K, the corresponding φ1∩2 is determined by

φ1∩2 = (φ1 ∧ not(Ffm2 \ Ffm1 )) ∧ (φ2 ∧ not(Ffm1 \ Ffm2 ))

= φ1 ∧ φ2 ∧ not(Ffm2 \ Ffm1 ) ∧ not(Ffm1 \ Ffm2 )

Letting fmf⊗1∩2 = {fs} ⊗ (Jfm1 K ∩ Jfm2 K), the corresponding formula
φf⊗1∩2 is

φf⊗1∩2 = fs ∧ φ1 ∧ φ2 ∧ not(Ffm2
\ Ffm1

) ∧ not(Ffm1
\ Ffm2

)

and the set of features of fmf⊗1∩2 is:

Ff⊗1∩2 = fs ∪ (Ffm2
∩ Ffm1

)
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Note that Ff⊗1∩2 includes the fs feature and the features that are common to
both models. In consequence,

Ff⊗1∩2 \ Ffm1 = fs ∪ (Ffm2 \ Ffm1 )

Ffm1 \ Ff⊗1∩2 = Ffm1 \ Ffm2

Now, considering Jfmr K = Jfm1 K∪ ({fs}⊗(Jfm1 K∩Jfm2 K)), the correspond-
ing formula φr is:

φr = (φ1 ∧ not(Ff⊗1∩2 \ Ffm1
)) ∨ (φf⊗1∩2 ∧ not(Ffm1

\ Ff⊗1∩2))

= (φ1 ∧ ¬fs ∧ not(Ffm2
\ Ffm1

)) ∨ (φf⊗1∩2 ∧ not(Ffm1
\ Ffm2

))

= (φ1 ∧ ¬fs ∧ not(Ffm2
\ Ffm1

))

∨ (fs ∧ φ1 ∧ φ2 ∧ not(Ffm2
\ Ffm1

) ∧ not(Ffm1
\ Ffm2

))

= φ1 ∧ not(Ffm2
\ Ffm1

) ∧ (¬fs ∨ (φ2 ∧ not(Ffm1
\ Ffm2

))

= φ1 ∧ not(Ffm2
\ Ffm1

) ∧ (fs ⇒ (φ2 ∧ not(Ffm1
\ Ffm2

))

Given two feature models fm1 and fm2 with the corresponding formulas
φ1 and φ2, the model fmr resulting of the conditional intersection merge
can be represented with a formula φr such that:

φr = φ1 ∧ not(Ffm2 \ Ffm1 ) ∧ (fs ⇒ (φ2 ∧ not(Ffm1 \ Ffm2 ))

This formula denotes that: (1) The resulting set of configurations contains
all the configurations valid against the first model, i.e., φ1. (2) None of the con-
figurations include features in fm2 not included in fm1 , i.e., not(Ffm2

\ Ffm1
).

(3) And, when fs is included in the configuration, only the configurations valid
against the second model that not include features of fm1 not included in fm2

are valid, i.e., (fs ⇒ (φ2 ∧ not(Ffm1 \ Ffm2 )).

FAMILIAR implementation FAMILIAR does not support the definition
of new operations based on a formula calculation. Semantic-based operations
are implemented as part of the platform in Java. In order to create a new
operation using this approach, it is necessary to modify or extend the source
code of the platform. The corresponding Java implementation is out of the
scope of this chapter.

Discussion The formula of the Conditional Intersection Merge is a conjunc-
tion of the formula representing the first model and a set of additional con-
straints.

Regarding the configuration semantics, the approaches based on formula
calculation produce feature models that represent the expected results. They
use algorithms that produce a hierarchy and a set of constraints that represent
that formula. However, they may produce models with hierarchies very differ-
ent than the existing in the input models. This can be an obstacle to the users
trying to understand and use the resulting models.



B.2. Alternative implementations 173

B.2.3 Reference-based implementation

The Reference-based implementation does not use the semantics or the encod-
ing of the feature models into propositional logic. it yields a feature model that
comprises a new feature model, named “the view”, the input feature models
and a set of relationships and constraints that implement the operation. To im-
plement the Conditional Intersection Merge, we must define how that structure
can be derived from the input models.

Structure for the Conditional Intersection Merge The result feature
model is a compound structure that comprises the view, both input models,
and the additional constraints. Figure B.4 shows the resulting structure for
the example.

Transformer ⇔ Transformer1

Power ⇔ Power1

W ⇔W1

X ⇔ X1

Y ⇔ Y1

Z ⇔ Z1

StandardX ⇔ Transformer2

StandardX ⇒ (Power ⇔ Power2 )

StandardX ⇒ (W ⇔W2 )

StandardX ⇒ (X ⇔ X2 )

StandardX ⇒ (Y ⇔ Y2 )

StandardX ⇒ (Z ⇔ Z2 )

¬V2

Figure B.4: Reference-based Conditional Intersection of the Example feature
models

The View represents the features that are relevant to the user. It must have
the same structure of the first feature model considering that all the prod-
ucts of that model can be configured in the result when the standard is
not selected. In addition, it must include an optional feature representing
the standard (e.g., StandardX ).

The Model for the Domain, the first model, representing the products that
can be selected when the feature is not selected, is mandatory. Basically,
the constraints defined in that model must be enforced all the time.
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The Model for the Regulation or Standard, the second model, represent-
ing the rules that must be enforced only when the standard is selected is
optional.

and the Additional Constraints connect elements in all these models.
• Regarding the view and the first model, there are bi-implications

that maintain the corresponding features in models with the same
value.

• Regarding the view and the second model, there are constraints
denoting that the corresponding values must have the same value only
when the standard is selected.

• There are constraints negating all the features in the second model
that do not exist in the first.

FAMILIAR implementation FAMILIAR includes several commands that
can be used to copy and modify feature models. In addition, it is possible to
iterate over a set of feature to, for instance, rename the features and create con-
straints. Listing B.3 shows an implementation of the Conditional Intersection
of the models in the example.

1 // example feature models
2 fm_domain = FM ( Transformer: Power; Power: ( W | X | Y | Z ); )
3 fm_std = FM ( Transformer: Power; Power: ( V | W | X | Y ); )
4 std_name = "Standard X"
5

6 // 1. create the view
7 // copy the model for the domain
8 fm_view = copy fm_domain
9 // create a selector feature for the standard

10 fms = FM ( dummy: fs; )
11 fms = extract fms.fs
12 renameFeature fms.fs as std_name
13 // insert the selector as optional in the view
14 fm_view_root = root fm_view
15 insert fms into fm_view_root with opt
16

17 // 2. create the first model
18 // copy the model for the domain
19 fm_first = copy fm_domain
20 // renames the features adding 1 to the end
21 fs_first = features fm_first
22 foreach (f in fs_first ) do
23 n = name f
24 n = strConcat n "1"
25 renameFeature f as n
26 end

Listing B.3: Example FAMILIAR Implementation of the Conditional
Intersection Merge
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16 // continuation of the previous listing
17

18 // 3. create the second model
19 // copy the model for the standard
20 fm_second = copy fm_std
21 // renames the features adding 2 to the end
22 fs_second = features fm_second
23 foreach (f in fs ) do
24 n = name f
25 n = strConcat n "2"
26 renameFeature f as n
27 end
28

29 // 4. aggregate the models
30 fmr = aggregate { fm_view fm_first fm_second }
31

32 // 5. add the constraints
33 // NOTE: for the sake of simplicity, we add the features using literals
34 // constraints between the view and the first model
35 addConstraint constraint ( Transformer <-> Transformer1 ) to fmr
36 addConstraint constraint ( Power <-> Power1 ) to fmr
37 // :
38 // constraints between the view and the second model
39 addConstraint constraint ( StandardX <-> Transformer2 ) to fmr
40 addConstraint constraint ( StandardX -> (Power <-> Power2) ) to fmr
41 // :
42 // additional constraints
43 addConstraint constraint ( ! V2 ) to fmr

Listing B.4: Example FAMILIAR Implementation of the Conditional
Intersection Merge

Discussion The reference-based implementation of the Conditional Intersec-
tion produces models that are more complex than the produced in the other
approaches. Although it produce correct results, the structure of the resulting
model a major drawback. A user trying to understand and, for instance, debug
the model may be distracted by the multiple structures and the additional con-
straints in the model. In addition, the repeated features increment the number
of variables and constraints and may disturb the algorithms for processing and
analysis.
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B.2.4 Hybrid implementations: Slice of a compound model

The hybrid-implementations combines semantic-based and reference-based tech-
niques. Basically, these approaches aim to improve the generation of the tree
structure of the model which is the main weakness of the reference-based im-
plementations.

Acher et al.[11] identified two hybrid approaches: one that use local syn-
thesis of a feature model, and another that use the slice operation. The first
can produce models with over-approximations and is not recommended. In
contrast, the second is the most suitable for the general case. Here we describe
the latter: the implementation using slice.

Slice of a compound model If you have a reference based implementation
of the Conditional Intersection, implementing the hybrid approach using the
slice operation is straightforward. It is only necessary to slice the model in
order to maintain only the features of the view and remove the features of the
other two models. The slice operation removes these features but defines new
constraints that maintain the consistency of the result.

FAMILIAR implementation Slicing a feature model in FAMILIAR is
straightforward. There is an slice command that can be used. Listing B.5
shows how to slice the model that results of the above reference-based imple-
mentation. Once we have defined the reference-based solution, we must define
which features must be kept (see line 59) and use the slice (line 60).

55 // continuation of the previous listing
56

57 // 6. slice the model
58 // NOTE: for the sake of simplicity, we define the features using literals
59 to_include = { fmr.Transformer } ++ fmr.Transformer.*
60 fmr = slice fmr including to_include

Listing B.5: Example FAMILIAR Implementation of the Conditional
Intersection Merge

Discussion The hybrid approach based on slice is very powerful. It allow us
to define new operations using a “simple to define” reference-based approach,
but that produce simpler models. This approach points to reduce the com-
plexity of the resulting models in these approaches. Instead of a model with
multiple sub-structures, the resulting model here is a simple hierarchy where
the features are not repeated and there are not additional constraints to main-
tain synced their corresponding values.
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B.2.5 Implementation Adding Constraints

As mentioned in Chapter 5, we are considering a different approach. Instead
of generating a new structure, we use the structure of one of the models and
add additional constraints to the model to implement the operation.

Effect of adding elements to the model Each modification to a fea-
ture model alters the corresponding formula. While some operations add con-
straints to the formula, others may modify the existing clauses. For instance,
if we add an optional feature to a feature model, the modification adds a con-
straint. The corresponding formula is the conjunction of the formula of the
original and the expression corresponding to the new element. Figure B.5
shows the propositional formula after adding an StandardX optional feature.
Note that the result is the conjunction of the original formula and a new clause
StandardX ⇒ Transformer .

(a) fm1

φ1 =Transformer

∧ Transformer ⇔ Power

∧W ⇒ Power

∧X ⇒ Power

∧ Y ⇒ Power

∧ Z ⇒ Power

∧ (W YX Y Y Y Z)

(b) fm1 after adding StandardX

φ1 =Transformer

∧ Transformer ⇔ Power

∧W ⇒ Power

∧X ⇒ Power

∧ Y ⇒ Power

∧ Z ⇒ Power

∧ (W YX Y Y Y Z)

∧ StandardX ⇒ Transformer

Figure B.5: Propositional Formula after adding an optional feature

Figure B.6 shows the effect of adding a constraint. The formula becomes
the conjunction of the original formula and the expression corresponding to the
new constraint.
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StandardX ⇒ (X ∨ Y )

(a) fm1 after adding a constraint

φ1 =Transformer

∧ Transformers ⇔ Power

∧W ⇒ Power

∧X ⇒ Power

∧ Y ⇒ Power

∧ Z ⇒ Power

∧ (W YX Y Y Y Z)

∧ StandardX ⇒ Transformer

∧ StandardX ⇒ (X ∨ Y )

Figure B.6: Propositional Formula after adding a constraint

Implementation by Adding constraints Consider the formula calculation
for the Conditional Intersection Merge.

φr = φ1 ∧ not(Ffm2
\ Ffm1

) ∧ (fs ⇒ (φ2 ∧ not(Ffm1
\ Ffm2

))

Note that φ1 is the formula of the feature model fm1 . To implement the
Conditional Intersection Merge, we must add to fm1 the constraints that cor-
respond to: φc1 = not(Ffm2

\ Ffm1
), φc2 = (fs ⇒ φ2) and φc3 = (fs ⇒

not(Ffm1 \ Ffm2 ))

φc1 = not(F fm2 \ F fm1 ): In the original formula, there is not any feature
f ∈ (Ffm2

\ Ffm1
). We can implement φc1 without adding constraints.

We must maintain the features of fm1 without adding new features from
fm2 . It is possible that some clauses in φc2 include these features. For
each clause, we can take all the features in (Ffm2

\ Ffm1
), set them to

false and remove them before add the corresponding constraint to fm1 .

φc2 = (fs⇒ φ2): φc2 can be determined easily from the formula φ2 that
represents fm2 . As mentioned before, in our implementation, we set to
false and remove the variables that correspond to (Ffm2

\ Ffm1
).

φc3 = (fs⇒ not(F fm1 \ F fm2 )): Here we must determine the features in
fm1 that do not exist in fm2 . φc3 can be determined easily from that set.

The Conditional Intersection Merge can be implemented by adding (1) an
optional feature for the standard, (2) a set of constraints denoting that the
feature representing the standard implies the constraints defined in the model
of the standard (the second model) after setting to false and removing the
variables that do not exist in the model of the domain (the first model), and
(3) constraints denoting that the standard implies the negation of the features
in the domain that do not exist in the standard.
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Example For instance, consider the feature models in the running example.
The formula φ1 for the model of the domain and the formula φ2 for the model
of the standard are the following.

φ1 =Transformer ∧ (Transformer ⇔ Power)

∧ (W ⇒ Power) ∧ (X ⇒ Power) ∧ (Y ⇒ Power) ∧ (Z ⇒ Power)

∧ (W YX Y Y Y Z)

φ2 =Transformer ∧ (Transformer ⇔ Power)

∧ (V ⇒ Power) ∧ (W ⇒ Power) ∧ (X ⇒ Power) ∧ (Y ⇒ Power)

∧ (V YW YX Y Y )

We can take the formula φ2 and obtain a new formula φ′2 after setting to false
and removing the V variable that does not exist in the model of the domain.

φ′
2 = Transformer ∧ (Transformer ⇔ Power)

∧ (false⇒ Power) ∧ (W ⇒ Power) ∧ (X ⇒ Power) ∧ (Y ⇒ Power)

∧ (false YW YX Y Y )

= Transformer ∧ (Transformer ⇔ Power)

∧ (W ⇒ Power) ∧ (X ⇒ Power) ∧ (Y ⇒ Power)

∧ (W YX Y Y )

To implement the Conditional Intersection, it is possible to add the constraint
φc2 = (StandardX ⇒ φ′2) to fm1 .

φc2 = StandardX ⇒ (Transformer ∧ (Transformer ⇔ Power)

∧ (W ⇒ Power) ∧ (X ⇒ Power) ∧ (Y ⇒ Power)

∧ (W YX Y Y ))

= (StandardX ⇒ Transformer)

∧ (StandardX ⇒ (Transformer ⇔ Power))

∧ (StandardX ⇒ (W ⇒ Power))

∧ (StandardX ⇒ (X ⇒ Power))

∧ (StandardX ⇒ (Y ⇒ Power))

∧ (StandardX ⇒ (W YX Y Y ))

Consider that, after adding the formula, the formula for the resulting feature
model will be φr = φ1 ∧ φc2 ∧ φc3. If we have two clauses y and x⇒ y, this is
equivalent to y. We can obtain the same result by adding φc2 after removing
the redundant constraints. For instance, in the example we have two clauses
(X ⇒ Power) and StandardX ⇒ (X ⇒ Power). We can remove the second.

The φc3 can be calculated from the features of fm1 and fm2 . The Condi-
tional Intersection can be implemented by adding the following constraints:

φc2 = (StandardX ⇒ (W YX Y Y ))

φc3 = (StandardX ⇒ ¬V )
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FAMILIAR implementation FAMILIAR provides commands to modify
the feature model by adding features and constraints. The Conditional Inter-
section can be implemented using these commands. Listing B.6 shows the code
to implement the example. Note that it does not execute neither a union nor
an intersection.

1 // example feature models
2 fm_domain = FM ( Transformer: Power; Power: ( W | X | Y | Z ); )
3 fm_std = FM ( Transformer: Power; Power: ( V | W | X | Y ); )
4 std_name = "Standard X"
5

6 // 1. create a copy of the model for the domain
7 fmr = copy fm_domain
8

9 // 2. add the feature for the standard
10 // create a selector feature for the standard
11 fms = FM ( dummy: fs; )
12 fms = extract fms.fs
13 renameFeature fms.fs as std_name
14 // insert the selector as optional in the view
15 fmr_root = root fmr
16 insert fms into fmr_root with opt
17

18 // 3. add the constraints
19 // NOTE: we add the constraints using literals
20 addConstraint constraint( StandardX -> ( W xor X xor Y ) ) to fmr
21 addConstraint constraint( ! V ) to fmr

Listing B.6: Example FAMILIAR Implementation of the Conditional
Intersection Merge

The above example adds a set of predefined constraints. FAMILIAR pro-
vides some functions that can be used to determine which constraints must
be added. For instance, getImpliesHierarchy and getBiimpliesHierar-chy returns the constraints that represent the hierarchy of a feature models.
Other functions, e.g., getImpliesConstraints and computeImplies, return
information of the cross-tree constraints or the derived implications.

Discussion This approach implements the Conditional Intersection Merge
by adding constraints to the first feature model. In contrast to the other
approaches, this implementation do not require a re-calculation of the structure
of the resulting feature model. Other approaches use union or intersection
operations, or transform the propositional logic into a graph that is used to
determine the structure of the resulting feature model. This is an advantage for
two reasons: On one hand, this helps to produce a feature model that similar
to the input models. The users using these models are no be disturbed by
hierarchies of features that they do not know. On the other hand, this reduces
the complexity of the solution.
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B.3 Comparison

We have presented some alternative implementations of the Conditional Inter-
section Merge. In order to evaluate each one, we have considered two expected
qualities for the resulting model: Configuration Semantics and Diagram Hier-
archy.

Configuration Semantics An expected quality of any implementation is ob-
taining the expected results. On one hand, the conditional intersection
merge must produce a feature model that: (1) allow users to configure
all the products defined in the feature model for domain when the stan-
dard is not selected. (2) allow them to configure only products that are
conforming to the standard when it is selected. All the implementations
shown produce the expected results. None of the solutions has an advan-
tage over the others.

Diagram Hierarchy Another expected quality is producing feature models
with a hierarchy close to the feature model for the domain. Regarding
this quality,

• the semantic-based implementations rely on calculating the structure
for the resulting feature model from an implication graph. The imple-
mentation that composes operations calculates the structure twice and
the implementation that compute the propositional formula calculates
it once. This may produce hierarchies different than the existing in the
original models.
• the reference based implementation uses a compound model that ex-

hibits a hierarchy very different than the original
• the hybrid solution that uses the slice operation calculates the hierarchy

of the resulting model from an implication graph. This implementation
may produce models with a different hierarchy than the exhibited by
the inputs.
• finally, the solution that adds constraints reuses the same structure

of the feature model of the domain. It only adds to the hierarchy an
optional feature model for the standard.

Here, the implementation based on adding features and constraints has
an advantage over the others.

B.4 Conclusions

In this chapter we presented different implementations of the Conditional In-
tersection Merge operation: Two semantic-based implementations, one that
compose existing operations and another that use the encoding of the input
models to calculate the propositional formula of the result. A reference-based
implementation that build the result by composing the input models with a
synthetic view model. A hybrid implementation based on the slice operation
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that takes the compound structures of the reference-based implementation and
removes the non-relevant features. And, finally, an implementation that only
adds constraints to one of the input models.

A comparison of these approaches is included in the chapter. We evaluated
if the solutions can achieve the expected results and produce feature models
with the hierarchy of one of the models. According to our evaluation, all
the approaches are complete and sound solutions, i.e., all produce models that
represent the expected set of configurations. However, only the solution adding
the constraints enforce the hierarchy of one of the input models into the result.
In addition, because this solution does not calculate the feature model hierarchy
from an implication graph, it not only maintains the structure, but also may
reduce the computation required.
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France, 2011.

[3] M. Acher, B. Baudry, P. Heymans, A. Cleve, and J.-L. Hainaut. Support
for reverse engineering and maintaining feature models. In 7th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems
(VaMoS ’13), pages 20:1–20:8, 2013.

[4] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire.
Reverse engineering architectural feature models. In 5th European Con-
ference on Software Architecture (ECSA 2011), pages 220–235, 2011.

[5] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire.
Extraction and evolution of architectural variability models in plugin-
based systems. Software and System Modeling, 13(4):1367–1394, 2014.

[6] M. Acher, P. Collet, P. Lahire, and R. France. Slicing feature models.
In 26th IEEE/ACM International Conference On Automated Software
Engineering (ASE’11), short paper. IEEE/ACM, 2011.

[7] M. Acher, P. Collet, P. Lahire, and R. France. FAMILIAR: A Domain-
Specific Language for Large Scale Management of Feature Models. Sci-
ence of Computer Programming (SCP), 78(6):657–681, 2012.

[8] M. Acher, P. Collet, P. Lahire, and R. B. France. Composing feature
models. In 2nd International Conference on Software Language Engi-
neering, (SLE 2009), pages 62–81, 2009.

[9] M. Acher, P. Collet, P. Lahire, and R. B. France. Comparing approaches
to implement feature model composition. In 6th European Conference
on Modelling Foundations and Applications (ECMFA 2010), pages 3–19,
2010.

183



184 Bibliography

[10] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar: A domain-
specific language for large scale management of feature models. Science
of Computer Programming (SCP), 78(6):657–681, 2013.

[11] M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire, and R. France.
Composing your Compositions of Variability Models. In 16th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MODELS’13), pages 352–369, 2013.

[12] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. J. P.
de Lucena. Refactoring product lines. In 5th International Conference
on Generative Programming and Component Engineering, (GPCE 2006),
pages 201–210, 2006.

[13] P. Arcaini, A. Gargantini, and P. Vavassori. Generating tests for detect-
ing faults in feature models. In 8th International Conference on Software
Testing, Verification and Validation (ICST 2015), pages 1–10, 2015.
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