
Proefschrift ingediend met het oog op het behalen van een
doctoraatsdiploma
Dissertation submitted in fulfilment of the requirement for the
degree of Doctor of Philosophy in Sciences

SCALABLE DESIGNS FOR
ABSTRACT INTERPRETATION OF
CONCURRENT PROGRAMS:
Application to Actors and
Shared-Memory Multi-Threading

Quentin Stiévenart

Promotors: Prof. Dr. Coen De Roover
Prof. Dr. Wolfgang De Meuter

Faculty of Science and Bio-Engineering Sciences

Dissertation submitted in fulfilment of the requirement for
the degree of Doctor of Philosophy in Sciences

Scalable Designs for

Abstract Interpretation of

Concurrent Programs:

Application to Actors and
Shared-Memory Multi-Threading

Quentin Stiévenart

Promotors:
Prof. Dr. Coen De Roover
Prof. Dr. Wolfgang De Meuter

Jury:
Prof. Dr. Viviane Jonckers, Vrĳe Universiteit Brussel, Belgium (chair)
Prof. Dr. Simon Keizer, Vrĳe Universiteit Brussel, Belgium (secretary)
Prof. Dr. Coen De Roover, Vrĳe Universiteit Brussel, Belgium (promotor)
Prof. Dr. Wolfgang De Meuter, Vrĳe Universiteit Brussel, Belgium (promotor)
Prof. Dr. Ann Dooms, Vrĳe Universiteit Brussel, Belgium
Prof. Dr. Em. Theo D’Hondt, Vrĳe Universiteit Brussel, Belgium
Prof. Dr. David Van Horn, University of Maryland, USA
Prof. Dr. Philipp Haller, KTH Royal Institute of Technology, Sweden

May 15, 2018

Abstract

Concurrent programs are difficult for developers to reason about. They consist of con-
current processes, of which the execution can be interleaved in an exponential number of
ways. Contemporary concurrent programs moreover feature dynamic process creation
and termination, exacerbating the need for tool support.

Static program analysis can be a powerful enabler of such tool support, but current
static analysis designs for concurrent programs are limited with respect to one or more
of the following desirable properties: automation, soundness, scalability, precision and
support for dynamic process creation. Moreover, existing analyses are designed with a
single concurrency model in mind, and uniform design methods applicable to multiple
concurrency models are lacking.

We study the applicability of a recent design method for static program analyses—
abstracting abstract machines (AAM)—to concurrent programming languages. Applying
this method results in analyses featuring all desirable properties except scalability. We
present MacroConc and ModConc, two AAM-inspired uniform design methods that,
when applied to the operational semantics of a concurrent programming language,
result in static analyses featuring all the desired properties.

The first design method, MacroConc, introduces Agha’s 1997 notion of macro-stepping
into AAM analyses for concurrent programs. Refining the default all-interleavings se-
mantics for concurrent processes with macro-stepping reduces the number of inter-
leavings the analysis has to explore. The resulting analyses remain exponential in their
worst-case complexity, but mitigate the scalability issues of existing analyses without
compromising their precision. The second design method, ModConc, introduces Cousot
and Cousot’s 2002 notion of modularity into AAM analyses for concurrent programs.
Analyses resulting from this design method consider each process of a concurrent pro-
gram in isolation to infer potential interferences with other and newly created processes,
which will have to be reconsidered until a fixed point is reached. Process interleavings
are not explicitly modeled by the analysis but still accounted for. This analysis design
trades off precision to yield process-modular analyses that scale linearly with the num-
ber of processes created in the program under analysis.

To demonstrate generality, we apply each design method to two prominent concur-
rent programming models: concurrent actors and shared-memory multi-threading. We
prove the soundness and termination properties for each of the resulting analyses for-
mally, and evaluate their running times, scalability and precision empirically on a set of
56 concurrent benchmark programs. Analyses resulting from the application of Macro-
Conc achieve high precision, yet exhibit a reduction in running time of up to four orders
of magnitude, compared to analyses resulting from a naive application of AAM. Anal-
yses resulting from the application of ModConc exhibit a more consistent reduction,
compared to both analyses resulting from the application of AAM and of MacroConc,
but this at the cost of lower precision.

The complementary design methods presented in this dissertation enable one to select
an analysis design fitting their needs in terms of scalability and precision, enabling future
tool support for contemporary concurrent programs.

i

Samenvatting

Concurrente programma’s kunnen voor ontwikkelaars moeilĳk zĳn om over te rede-
neren. Zulke programma’s bestaan uit meerdere concurrente processen waarvan de
instructies in een exponentieel aantal volgordes uitgevoerd kunnen worden. Dat mo-
derne concurrente programma’s bovendien processen dynamisch aanmaken en beëin-
digen, versterkt alleen de nood aan ondersteuning voor ontwikkelaars.

Zulke ondersteuning kan geboden worden onder de vorm van statische programma-
analyse, maar de ontwerpen voor bestaande analyses schieten tekort op een of meerdere
van de volgende desiderata: automatisatie, correctheid, schaalbaarheid, precisie, en
ondersteuning voor dynamische gecreëerde processen.

In dit proefschrift bestuderen we de inzetbaarheid van een recente ontwerpmethode
voor statische programma-analyses, abstracting abstract machines (AAM), voor con-
currente programmeertalen. De toepassing van deze methode resulteert namelĳk in
analyses die voldoen aan alle desiderata, behalve schaalbaarheid. Daarom stellen we
twee nieuwe, door AAM geïnspireerde, ontwerpmethoden MacroConc en ModConc
voor die, wanneer toegepast op de operationele semantiek van een concurrente pro-
grammeertaal, resulteren in statische analyses die aan alle desiderata voldoen.

De eerste ontwerpmethode, MacroConc, vertaalt het concept van macro-stepping
(Agha, 1997) naar AAM-gebaseerde analyses. De standaard semantiek voor concurrente
programma’s verfijnen tot een macro-stepping semantiek zorgt ervoor dat deze analyses
minder uitvoeringsvolgordes moeten verkennen. Dit verbetert de schaalbaarheid van de
resulterende analyses, maar de worst-case complexiteit blĳft exponentieel. De tweede
ontwerpmethode, ModConc, vertaalt het concept van een modulair ontwerp (Cousot
en Cousot, 2002) naar AAM-gebaseerde analyses voor concurrente programma’s. De
resulterende analyses beschouwen elk proces van een concurrent programma afzon-
derlĳk, maar herbeschouwen elk proces waarvoor potentiële interferenties vanuit een
ander proces gevonden zĳn tot een fixpunt bereikt wordt. De dusdanig verkregen re-
sultaten zĳn representatief voor elke mogelĳke uitvoeringsvolgorde, zonder dat deze
expliciet verkend zĳn. De ModConc ontwerpmethode ruilt dus precisie van resultaten
in voor analyses die lineair schalen met het aantal processen dat door het ge-analyseerde
programma gecreëerd wordt.

Om de algemeenheid van onze ontwerpmethoden te demonstreren, passen we elke
methode toe op twee prominente modellen voor concurrent programmeren: concurrent
actors en shared-memory multi-threading. We bewĳzen de correctheid en de eindigheid
van elke resulterende analyse formeel, en evalueren hun snelheid, schaalbaarheid en
precisie empirisch op een verzameling van 56 concurrente programma’s. De uit Macro-
Conc resulterende analyses zĳn precies, en toch nog tot vier ordegroottes sneller dan
analyses die resulteren uit een naïeve toepassing van AAM. De uit ModConc resulte-
rende analyses zĳn dan weer consistenter sneller dan analyses resulterende uit zowel
AAM als MacroConc, maar dit wel ten koste van precisie.

De complementaire ontwerpmethoden die in dit proefschrift voorgesteld worden,
stellen ontwerpers van statische programma-analyses in staat een ontwerp te selecteren
overeenkomstig de gewenste precisie en schaalbaarheid —en komt op die manier tege-
moet aan de nood aan ondersteuning voor ontwikkelaars van concurrente programma’s.

ii

AC K NOW L E D G E M E N T S

First of all, I would like to thank the members of my jury (Viviane Jonckers, Simon Keizer,
Ann Dooms, Theo D’Hondt, David Van Horn, and Philipp Haller) for their insightful
comments and feedback.

I would also like to express all of my gratitude towards my promotors, Coen De Roover
and Wolfgang De Meuter. None of this work would have been possible without their
support and feedback. My work and this resulting dissertation have greatly profited
from their many (many) helpful comments, remarks, and suggestions.

Jens Nicolay deserves a special thanks, as most of my research these past years has
been done in cooperation with him, thanks to his sudden bursts in my office with new
ideas and insights, most of which still need to be investigated; and thanks to his ability
to restructure a first draft into a paper with a structure of great quality.

I’m also thankful to those who proofread part of this dissertation: thanks Maarten,
Noah, and Jens; and to my promotors who have read it from front to back in no time:
thanks Coen and Wolf.

A big thanks to all of the SOFT members, who are all part of what makes SOFT a
particularly interesting work environment in which people can both have fun and at
the same time strive for work of a great quality. There have been many great moments,
including research presentations, drinks, ice-cream breaks, interesting discussions, vape
sessions, memorable conference trips, and many others. This all helps in the life of a
PhD student, and I’m glad to be a part of this lab.

I would also like to thank Roxane, my family, and my friends for their support.

iii

CO N T E N T S

List of Figures xi

List of Tables xv

1. Introduction 1

1.1. Research Context . 2
1.1.1. Static Analyses for Concurrent Programs Scale Poorly 2
1.1.2. Static Analyses for Concurrent Programs

Lack Support for Dynamic Process Creation 4
1.1.3. Static Analyses for Different Concurrency Models

Lack Uniformity in their Design 4
1.2. Problem Statement . 5
1.3. Thesis . 6
1.4. Overview of The Approach . 6
1.5. Contributions . 7
1.6. Supporting Publications . 8
1.7. Dissertation Outline . 10

2. Introduction to Abstract Interpretation of Concurrent Programs 13

2.1. A Functional Sequential Subset: λ0 . 14
2.1.1. Syntax of λ0 . 14
2.1.2. Concrete Semantics of λ0 . 14
2.1.3. Abstract Semantics of λ0 . 20
2.1.4. Soundness and Termination . 24

2.2. The Actor Model: λα . 25
2.2.1. Overview of Actors . 25
2.2.2. Syntax of λα . 28
2.2.3. Concrete Semantics of λα . 29
2.2.4. Abstract Semantics of λα . 34
2.2.5. Soundness and Termination . 40

2.3. Threads and Shared Memory: λτ . 41
2.3.1. Overview of Threads and Shared Memory 41
2.3.2. Syntax of λτ . 44
2.3.3. Concrete Semantics of λτ . 45

v

Contents

2.3.4. Abstract Semantics of λτ . 49
2.3.5. Soundness and Termination . 54

2.4. Soundness Testing and Evaluation of
Running Time, Precision, and Scalability on a Benchmark Suite 54
2.4.1. Implementation . 55
2.4.2. Benchmark Suite . 55
2.4.3. Soundness Testing . 57
2.4.4. Running Time . 57

2.5. Conclusion . 58

3. State of the Art in Static Analysis of Concurrent Programs 59

3.1. Static Analyses of Concurrent Programs 60
3.1.1. Bug Finding . 60
3.1.2. Abstract Interpretation . 62
3.1.3. Type Systems . 65
3.1.4. Model Checking . 66
3.1.5. Proof Systems . 68
3.1.6. Overview . 69

3.2. Research Approach: Towards Scalable Analyses 71
3.2.1. State Space Reduction . 71
3.2.2. Process-Modular Analysis Design 73

3.3. Conclusion . 74

4. MacroConc: Designing Macro-Stepping Analyses 77

4.1. Macro-Stepping Abstract Interpretation of Concurrent Programs 78
4.1.1. Step 1: Definition of the Operational Semantics 79
4.1.2. Step 2: Definition of the Macro-Stepping Transfer Function 79
4.1.3. Step 3: Definition of the Global Transfer Function 81
4.1.4. Step 4: Abstraction of the Macro-Stepping Collecting Semantics . 81

4.2. Properties of a Macro-Stepping Analysis 82
4.2.1. Termination . 82
4.2.2. Soundness . 82
4.2.3. Complexity . 82
4.2.4. Precision . 83

4.3. Application of MacroConc to λα . 83
4.3.1. The Importance of Order . 83
4.3.2. Step 1: Definition of the Operational Semantics 85
4.3.3. Step 2: Definition of the Macro-Stepping Transfer Function 85
4.3.4. Step 3: Definition of the Global Transfer Function 86
4.3.5. Step 4: Abstraction of the Macro-Stepping Collecting Semantics . 87
4.3.6. Soundness and Termination . 87

4.4. Application of MacroConc to λτ . 88
4.4.1. Step 1: Definition of the Operational Semantics 88
4.4.2. Step 2: Definition of the Macro-Stepping Transfer Function 88

vi

Contents

4.4.3. Step 3: Definition of the Global Transfer Function 89
4.4.4. Step 4: Abstraction of the Macro-Stepping Collecting Semantics . 90
4.4.5. Soundness and Termination . 90

4.5. Soundness Testing and Evaluation of
Running Time, Precision, and Scalability on a Benchmark Suite 91
4.5.1. Soundness Testing . 91
4.5.2. Running Times . 91
4.5.3. Precision . 94
4.5.4. Scalability . 96

4.6. Conclusion . 98

5. A Study of Mailbox Abstractions 101

5.1. The Importance of Ordering and Multiplicity 102
5.1.1. Verifying Absence of Errors . 102
5.1.2. Inferring Mailbox Bounds . 103

5.2. Categorization of Mailbox Abstractions 105
5.2.1. Soundness of Mailbox Abstractions 105
5.2.2. List Representation for Concrete Mailboxes 106
5.2.3. Set Abstraction . 107
5.2.4. Multiset Abstraction . 108
5.2.5. Finite Multiset Abstraction . 109
5.2.6. Finite List Abstraction . 110
5.2.7. Graph Abstraction . 111

5.3. Evaluation of Mailbox Abstractions . 113
5.3.1. Benchmark Suite for Absence of Errors and Mailbox Bounds . . . 114
5.3.2. Precision . 115
5.3.3. Running Times on Full Benchmark Suite 120

5.4. Conclusion . 121

6. ModConc: Designing Modular Analyses 123

6.1. Modular Abstract Interpretation of Concurrent Programs 124
6.1.1. Step 1: Definition of the Abstract Operational Semantics 127
6.1.2. Step 2: Definition of the Sequentialized Transition Relation 127
6.1.3. Step 3: Definition of the Intra-Process Analysis 127
6.1.4. Step 4: Definition of the Inter-Process Analysis 128

6.2. Properties of a Process-Modular Analysis 128
6.2.1. Termination . 128
6.2.2. Soundness . 129
6.2.3. Complexity . 129
6.2.4. Precision . 129

6.3. Application of ModConc to λα . 130
6.3.1. Step 1: Definition of the Abstract Operational Semantics 130
6.3.2. Step 2: Definition of the Sequentialized Transition Relation 130
6.3.3. Step 3: Definition of the Intra-Process Analysis 133

vii

Contents

6.3.4. Step 4: Definition of the Inter-Process Analysis 135
6.3.5. Soundness and Termination . 137

6.4. Application of ModConc to λτ . 138
6.4.1. Step 1: Definition of the Abstract Operational Semantics 138
6.4.2. Step 2: Definition of the Sequentialized Transition Relation 138
6.4.3. Step 3: Definition of the Intra-Process Analysis 141
6.4.4. Step 4: Definition of the Inter-Process Analysis 143
6.4.5. Soundness and Termination . 145

6.5. Soundness Testing and Evaluation of
Running Time, Precision, and Scalability on a Benchmark Suite 146
6.5.1. Soundness Testing . 146
6.5.2. Running Time . 146
6.5.3. Precision . 150
6.5.4. Scalability . 151

6.6. Conclusion . 152

7. Conclusion and Future Work 155

7.1. Summary of the Dissertation . 155
7.2. Contributions . 157
7.3. Limitations and Future Work . 159

7.3.1. Applicability to Real-World Concurrent Programs 160
7.3.2. Definition of the Restriction Function

for Macro-Stepping Semantics . 160
7.3.3. Applicability of Mailbox Abstractions to Large Programs 161
7.3.4. Ordering and Multiplicity Information in Process-Modular Analysis161
7.3.5. Process Sensitivities for Increased Precision 162
7.3.6. Combining MacroConc and ModConc 163

7.4. Concluding Remarks . 163

A. Notations 165

A.1. Domains . 166
A.2. Functions . 166
A.3. Sets . 167

B. Proofs 169

B.1. Proofs for Naive Application of AAM to
Concurrent Programs (Chapter 2) . 169
B.1.1. Proofs for Abstract Interpretation of λ0 169
B.1.2. Proofs for Abstract Interpretation of λα 175
B.1.3. Proofs for Abstract Interpretation of λτ 178

B.2. Proofs for Application of MacroConc to
Concurrent Programs (Chapter 4) . 181
B.2.1. Proofs for the Application of MacroConc to λα 181
B.2.2. Proofs for the Application of MacroConc to λτ 184

viii

Contents

B.3. Proofs for Mailbox Abstractions (Chapter 5) 186
B.3.1. Soundness of the Set Abstraction 187
B.3.2. Soundness of the Multiset Abstraction 188
B.3.3. Soundness of the Finite Multiset Abstraction 190
B.3.4. Soundness of the Finite List Abstraction 191
B.3.5. Soundness of the Graph Abstraction 193

B.4. Proofs for Application of ModConc to
Concurrent Programs (Chapter 6) . 195
B.4.1. Proofs for the Application of ModConc to λα 195
B.4.2. Proofs for the Application of ModConc to λτ 197

Bibliography 201

ix

L I ST O F F I G U R E S

1.1. Non-determinism in concurrent programs. 3

2.1. Syntax of λ0. 14
2.2. State space for λ0. 15
2.3. Atomic evaluation for λ0. 16
2.4. Transition relation of λ0. 17
2.5. Allocation for λ0. 17
2.6. Injection function of λ0. 18
2.8. Transfer function for λ0. 18
2.7. Trace of a concrete execution of a λ0 program. 19
2.9. Approximation of a program trace through abstract interpretation. . . . 20
2.10. Abstract state space for λ0. 21
2.11. Abstract atomic evaluation relation for λ0. 22
2.12. Abstract allocation functions for λ0. 22
2.13. Abstract transition relation for λ0. 23
2.14. Abstract injection function of λ0. 23
2.15. Abstract transfer function for λ0. 24
2.16. Representation of the actor topology of a factorial program. 28
2.17. Syntax of λα. 29
2.18. Auxiliary functions for λα. 29
2.19. State space for λα. 30
2.20. Communication effects for λα. 30
2.21. Mailboxes of λα. 31
2.22. Atomic evaluation relation for λα. 31
2.23. Sequential transitions for λα. 32
2.24. Actor management transitions rules for λα. 32
2.25. Message transitions for λα. 33
2.26. Process identifiers for λα. 33
2.27. Injection function for λα. 34
2.28. Transfer function for λα. 34
2.29. Abstract state space for λα. 35
2.30. Abstract mailboxes for λα. 36
2.31. Abstract communication effects for λα. 36

xi

List of Figures

2.32. Abstract atomic evaluation relation for λα. 36
2.33. Abstract transition relation rules for sequential transitions of λα. 37
2.34. Abstract transition relation rules for actor management of λα. 38
2.35. Abstract transition rules for messages in λα. 38
2.36. Abstract process identifiers for λα. 39
2.37. Over-approximation of the actor topology represented in Figure 2.16 . . 39
2.38. Abstract injection function for λα. 40
2.39. Abstract transfer function for λα. 40
2.40. Example of race condition. 43
2.41. Representation of a concrete execution of Listing 2.2 with 3 as input. . . 44
2.42. Syntax of λτ. 45
2.43. State space for λτ. 45
2.44. Communication effects for λτ. 46
2.45. Transition relation rule for sequential transitions for λτ. 46
2.46. Transition relation rules for thread management for λτ. 47
2.47. Transition relation rules for references for λτ. 47
2.48. Transition relation rules for locks for λτ. 48
2.49. Injection function for λτ. 48
2.50. Process identifiers for λτ. 49
2.51. Transfer function for λτ. 49
2.52. Abstract state space for λτ. 50
2.53. Abstract communication effects for λτ. 50
2.54. Abstract rules for sequential transitions for λτ. 51
2.55. Abstract rules for thread management transitions for λτ. 51
2.56. Abstract rules for references transitions for λτ. 52
2.57. Abstract rules for locks transitions for λτ. 52
2.58. Abstract process identifiers for λτ. 53
2.59. Abstraction of the concrete executions of Listing 2.1. 53
2.60. Abstract injection function for λτ. 53
2.61. Abstract transfer function for λτ. 54

3.1. Representation of all-interleavings analysis for concurrent programs. . . 72
3.2. Representation of a process-modular analysis for concurrent programs. . 73

4.1. Representation of the executions of two concurrent processes. 79
4.2. Generic formulation of a macro-stepping transfer function. 80
4.3. Generic formulation of a global transfer function for macro-stepping. . . 81
4.4. Macro-stepping transfer function for λα. 86
4.5. Global transfer function for λα. 87
4.6. Macro-stepping transfer function for λτ. 89
4.7. Global transfer function for λτ. 90
4.8. Benchmark family for number of message (m) in λα 97
4.9. Benchmark family for number of behaviors (b) in λα 97
4.10. Benchmark family for number of threads (t) in λτ 97

xii

List of Figures

4.11. Benchmark family for number of joins (j) in λτ 97
4.12. Benchmark family for number of conflicts (c) in λτ 97
4.13. Scalability evaluation of MacroConc. 98

5.1. List representation of mailboxes. 106
5.2. Set abstraction for mailboxes. 107
5.3. Multiset abstraction for mailboxes. 108
5.4. Finite multiset abstraction for mailboxes. 109
5.5. Finite list abstraction for mailboxes. 110
5.6. Visual representation of the graph mailbox abstraction. 112
5.7. Graph abstraction for mailboxes. 113
5.8. Precision metrics for the different mailbox abstractions. 118

6.1. State space of the sequentialized transition relation for λα. 131
6.2. Sequential transition rule for λα. 132
6.3. Actor management transitions for λα. 132
6.4. Message transitions for λα. 133
6.5. State space for the intra-process analysis for λα. 134
6.6. Transfer function for the intra-process analysis for λα. 135
6.7. State space for the inter-process analysis of λα. 135
6.8. Auxiliary functions used in the inter-process analysis for λα. 136
6.9. Inter-process analysis transfer function for λα. 137
6.10. State space for the sequentialized transition relation for λτ. 139
6.11. Sequential transitions for λτ. 139
6.12. Transition rules for thread management in λτ. 140
6.13. Transition rules for references in λτ. 140
6.14. Transition rules for locks for λτ. 141
6.15. State space of the intra-process analysis for λτ. 141
6.16. Transfer function for the intra-process analysis for λτ. 143
6.17. State space of the inter-process analysis for λτ. 143
6.18. Auxiliary functions used by the inter-process transfer function for λτ. . . 144
6.19. Inter-process transfer function for λτ. 145
6.20. Scalability evaluation of ModConc. 153

7.1. Evolution of running times. 158

xiii

L I ST O F TA B L E S

2.1. Benchmark programs used in the evaluation of the analyses. 56
2.2. Running times of naive application of AAM. 58

3.1. Overview of properties of static analyses for concurrent programs. . . . 70

4.1. Running times for MacroConc analyses. 91
4.2. Comparison of analysis times between MacroConc and AAM. 93
4.3. Comparison between MacroConc and related work. 94
4.4. Precision evaluation of MacroConc analyses. 95

5.1. Categorization of the concrete List mailbox and five abstractions thereof. 106
5.2. Benchmark programs exhibiting unreachable errors and bounded mail-

boxes used in the evaluation of the analyses. 115
5.3. Precision evaluation of mailbox abstractions. 117
5.4. Precision metrics for the different mailbox abstractions. 119
5.5. Running times for MacroConc analyses with different mailbox abstractions.121

6.1. Performance evaluation of ModConc analyses. 147
6.2. Comparison of analysis time between ModConc and AAM. 148
6.3. Running time comparison between MacroConc and ModConc. 149
6.4. Running time comparison between ModConc and related work. 149
6.5. Precision evaluation for ModConc analyses. 150
6.6. Precision comparison between MacroConc and ModConc. 151

xv

1
I N T RO D U C T I O N

In this dissertation, we present and study two analysis design methods that, when
applied to the operational semantics of a concurrent programming language, result in
static program analyses that are automated, sound, scalable, precise and that support
dynamic process creation in the program under analysis. We apply these design meth-
ods to two models of concurrent programming: concurrent actors and shared-memory
multi-threading. We prove soundness and termination properties of each analysis for-
mally and evaluate their running times, scalability and precision empirically.

1

1. Introduction

1.1. Research Context

Concurrent programs tend to be difficult for developers to reason about. They consist
of concurrent processes, of which the execution can be interleaved in an exponential
number of ways. Errors present in concurrent programs tend to arise only under specific
process interleavings and in a non-deterministic manner. This is complicated further by
the fact that concurrent programs may create and terminate new processes dynamically,
rendering such programs harder to understand. Tool support is required in order to aid
developers reasoning about concurrent programs.

Static program analysis is a powerful enabler of tool support for developers. A static
analysis reasons about the possible run-time behaviors of a program without executing
it. Applications can be found in program comprehension, bug detection, and automated
program verification. By accounting for all possible run-time behaviors, a static analysis
can reveal potential defects that could otherwise manifest only late in the development
process or even after the application has been deployed. More interestingly, a static anal-
ysis can prove the absence of defects by over-approximating all the possible behaviors
of a program.

Static analysis of concurrent programs is a challenging undertaking for a number
of reasons, but its necessity is growing as concurrent programs gain prominence. We
review the major challenges faced when designing a static analysis for concurrent pro-
grams.

1.1.1. Static Analyses for Concurrent Programs Scale Poorly

Concurrent programs have long been considered problematic for static analysis (Cousot
and Cousot, 1980; Cousot and Cousot, 1984). Concurrent programs can be highly non-
deterministic in their execution, as multiple processes are executed concurrently and
their executions may interleave in an exponential number of possible ways (see Fig-
ure 1.1). This is known as the state explosion problem in analysis of concurrent pro-
grams (Valmari, 1996). Mitigations for this problem have been studied in the context of
model checking, leading to partial-order reduction techniques (Godefroid, 1996; Flana-
gan and Godefroid, 2005) which reduce the number of interleavings a model checker
has to explore, rendering it more scalable and enabling the verification of more complex
programs. Such techniques do not solve the explosion problem for concurrency, as their
worst-case complexity remains exponential, but mitigate the problem sufficiently so that
real-world concurrent programs can be verified within minutes or hours (Yang et al.,
2008; Abdulla et al., 2014). While model checking is free of false positives (any detected
error is a true error) and can prove correctness without false negatives (no undetected
errors) for finite systems, it is limited to analyzing concurrent programs that exhibit
finite behavior, while contemporary concurrent programs may exhibit infinite behavior
(e.g., a concurrent web server is not supposed to terminate).

Abstract interpretation (Cousot and Cousot, 1977) is an established approach to static
analysis capable of supporting infinite systems. Unfortunately, partial-order reduction
techniques are not applicable to abstract interpretation because they do not support

2

1.1. Research Context

Non-determinism in concurrent programs

Consider a program initially executing a single thread t1 performing the following
operations: instruction 1 spawns another thread t2, before executing instructions
1′ and 1′′, while thread t2 executes instructions 2 and 2′. This concurrent behavior
is depicted in Figure 1.1a. The execution of this program orders the execution of
threads t1 and t2 in a specific order. If no ordering is enforced through synchroniza-
tion mechanisms such as locks, these instructions can be interleaved in six different
ways, represented in Figure 1.1b. Depending on the interleaving, the result of the
program may differ.

t1

t2

1 1′ 1′′

2 2′

(a) Representation of a concurrent com-
putation between two threads. Plain
arrows denote execution of an instruc-
tion, and dashed arrows denote pro-
cess creation.

1 1′ 1′′ 2 2′

1 1′ 2 1′′ 2′

1 1′ 2 2′ 1′′

1 2 1′ 1′′ 2′

1 2 1′ 2′ 1′′

1 2 2′ 1′ 1′′

(b) Possible interleavings for the concur-
rent execution of the two threads of
Figure 1.1a. Plain arrows denote exe-
cution of an instruction. Each line rep-
resents a possible interleaving.

Figure 1.1.: Non-determinism in concurrent programs.

3

1. Introduction

the cyclic state spaces present in abstract interpretation (Flanagan and Godefroid, 2005).
A mitigation technique for the state space explosion problem in concurrent programs
adapted to static analysis is therefore required. Existing dynamic analysis tools for
concurrent actor programs (Sen and Agha, 2006b; Lauterburg et al., 2009) rely on macro-
stepping (Agha et al., 1997) to reduce the state space explored. Macro-stepping has,
however, yet not been adapted to an abstract interpretation setting.

A more adequate solution to the state explosion problem in analysis of concurrent
programs consists of modularizing an analysis (Cousot and Cousot, 2002) by analyzing
parts of a program (e.g., its processes) in isolation. Interleavings of different processes are
not explicitly represented in a process-modular analysis but are still over-approximated
in a sound manner, at the cost of precision. Such analyses are not prone to the state
explosion problem and have been used to verify complex industrial concurrent pro-
grams (Miné and Delmas, 2015), but only a few modular analyses have been designed
explicitly for concurrent programs (Flanagan et al., 2005; Kahlon et al., 2005; Miné, 2014;
Midtgaard et al., 2016b), none of which supports dynamic process creation.

1.1.2. Static Analyses for Concurrent Programs Lack Support for Dynamic

Process Creation

Modern concurrent programs exhibit highly dynamic behavior such as dynamic process
creation and termination. For example, a server distributing concurrent requests among
a pool of worker processes may create new processes at run time under high load
and terminate existing processes when the load decreases (Lea, 1997). Dynamic process
creation is a challenging feature for static analysis to support (Huch, 1999). Existing static
analyses featuring partial-order reduction (Sen and Agha, 2006b; Lauterburg et al., 2009;
Sen and Agha, 2006a; Tasharofi et al., 2012; Godefroid, 1996; Flanagan and Godefroid,
2005; Christakis et al., 2013) or adhering to a process-modular design (Flanagan et
al., 2002; Henzinger et al., 2003; Miné, 2014; Monat and Miné, 2017; Gotsman et al.,
2007; Midtgaard et al., 2016b) may scale well and have been shown to verify complex
concurrent programs (Miné and Delmas, 2015), but do not support dynamic process
creation, which limits them to analyzing programs with a constant set of processes
that is known a priori. Existing static analyses supporting dynamic process creation
are few and far between, an exception being the Soter tool (D’Osualdo et al., 2012), but
this tool fails to scale beyond small benchmark programs due to its non-modularity, as
demonstrated in Chapter 4.

1.1.3. Static Analyses for Different Concurrency Models Lack Uniformity in

their Design

Shared-memory multi-threading is perhaps the predominant concurrency model avail-
able in mainstream programming languages. Analysis support for this model exists in
the form of model checking (Godefroid and Wolper, 1991; Godefroid, 1996) and process-
modular analysis (Flanagan et al., 2005; Miné, 2014). The actor model (Hewitt et al., 1973;
Agha, 1986) is a concurrent programming model that has been growing in popularity

4

1.2. Problem Statement

over the past years. It has been formulated several times resulting in multiple variants
of the model (Hewitt and Smith, 1975; Yonezawa et al., 1986; Agha, 1990; Armstrong
et al., 1993; Varela and Agha, 2001; Miller et al., 2005; Van Cutsem et al., 2007; Haller
and Odersky, 2009; Srinivasan and Mycroft, 2008; Caromel et al., 2009). We refer to De
Koster et al. (2016) for a detailed history and a taxonomy of the variants of the actor
model. Distributed variants of the actor model are, for instance, increasingly advocated
as a foundation for micro-service architectures (Haller and Sommers, 2012; Nash and
Waldron, 2016). However, few static analyses support the actor model (e.g., D’Osualdo
et al. (2013) and Stiévenart et al. (2017)). Analyses for other concurrency models are few
and far between. Channel concurrency (Hoare, 1978) has seen support from a number
of static analyses, but these remain limited to programs with a constant set of processes
that is known a priori (Mercouroff, 1991; Ng and Yoshida, 2016; Stadtmüller et al., 2016;
Colby, 1995; Martel and Gengler, 2000; Ladkin and Simons, 1992). Software transac-
tional memory (Shavit and Touitou, 1997) has been studied in the context of compiler
optimization (Afek et al., 2010), but lacks support from general-purpose static analyses.
Atomics have seen static analysis support in the form of abstract interpretation (Might
and Van Horn, 2011), but this approach fails to scale due to its explicit modeling of
all execution interleavings, as demonstrated in Chapter 2. As each of the mentioned
analyses is dedicated to a single concurrency models, improvements designed for such
an analysis may not apply to analyses designed for other models. We strive for unified
designs that are applicable to multiple concurrent programming paradigms.

1.2. Problem Statement

Concurrent programs tend to be difficult for developers to reason about, as they consist
of concurrent processes of which the execution can be interleaved in an exponential
number of ways. Contemporary concurrent programs moreover feature dynamic pro-
cess creation and termination, increasing the need for tool support. Static program anal-
ysis can be a powerful enabler of such tool support, but current static analysis designs
for concurrent programs following from model checking and abstract interpretation are
limited with respect to one or more of the following desirable properties.

Automation
Automation is important to reduce the burden of using an analysis for a developer,
enabling developers to use static analysis tools without requiring expertise in static
analysis.

Soundness
Soundness is necessary to ensure that the results given by an analysis can be
trusted: if the analysis reports a program as safe, the user of the analysis can
expect the program to be safe in all of its executions.

Scalability
As concurrent programs may exhibit highly non-deterministic behavior, static

5

1. Introduction

analyses have to scale well in order to support analyzing programs larger than a
few lines of code.

Precision
Developers are prone to ignore the results of an imprecise analysis that reports too
many false positives (Johnson et al., 2013; Bessey et al., 2010). Precision is therefore
another important criterion for a static analysis.

Support for dynamic process creation
Finally, modern concurrent programs exhibit dynamic process creation, where
processes may be created an terminated at any point in the program’s execution,
which has to be supported by static analyses.

We therefore aim to provide a solid foundation for designing static analyses for concur-
rent programs that combine all these crucial properties.

1.3. Thesis

The thesis defended in this dissertation is the following. Static program analysis is a
powerful enabler of tool support for developers, but current static analysis designs for
concurrent programs are limited with respect to one or more of the following properties:
automation, soundness, scalability, precision and support for dynamic process creation.
We propose two design methods that, when applied to the operational semantics of a
concurrent programming language, result in static analyses featuring these desirable
properties. The first design method mitigates scalability issues of existing analyses
without compromising their precision, while the second trades off precision to yield
truly scalable analyses.

1.4. Overview of The Approach

Our analysis design methods find their root in the abstracting abstract machines (AAM)
analysis design method of Van Horn and Might (2010). In this design method, pro-
gramming language semantics are encoded in a small-step operational manner, with
all values and continuations allocated at addresses in stores so that abstraction can be
performed by rendering the addresses finite. Starting from analyses resulting from the
naive application of the AAM method, we derive two distinct AAM-inspired uniform
designs, MacroConc and ModConc, that, when applied to the operational semantics
of a concurrent programming language, result in static analyses featuring automation,
soundness, scalability, precision and support for dynamic process creation in the pro-
gram under analysis.

The first design method, MacroConc, introduces Agha’s notion of macro-stepping (Agha
et al., 1997) into AAM analyses for concurrent programs. Refining the default all-
interleavings semantics for concurrent processes with macro-stepping reduces the num-
ber of interleavings an analysis has to explore. The resulting analyses remain exponential

6

1.5. Contributions

in their worst-case complexity, but mitigate the scalability issues of existing analyses
without compromising their precision.

The second design method, ModConc, introduces Cousot and Cousot’s notion of mod-
ular analysis (Cousot and Cousot, 2002) into AAM analyses for concurrent programs.
Analyses resulting from this design method consider each process of a concurrent pro-
gram in isolation to infer potential interferences with other and newly created processes,
which will have to be reconsidered until a fixed point is reached. Process interleavings
are not explicitly modeled by the analysis but still accounted for. This analysis design
method trades off precision to yield process-modular analyses that scale linearly with
the number of processes created in the program under analysis.

To evaluate our design methods, we apply each method to the design of an analysis
for a concurrent actor language and for a multi-threaded language with shared mem-
ory. We provide a formal model of the languages and the analyses developed in this
dissertation, and we implement each analysis on top of our Scala-AM static analysis
framework (Stiévenart et al., 2016b). The formalization enables proving the theoretical
properties of the resulting analyses, while the implementations enable evaluating each
analysis in terms of running times, scalability and precision.

1.5. Contributions

The contributions of this dissertation are the following.

MacroConc: A design method for all-interleavings macro-stepping analysis
Our first contribution is an analysis design method that improves the efficiency
of AAM-style analyses for concurrent programs without compromising precision,
when existing improvements based on partial-order reduction are not applicable.
We take inspiration from the concept of macro-stepping introduced by Agha et al.
(1997) in the context of actor programs to reduce the number of interleavings that
have to be accounted for in a static analysis. We apply this design method to an
analysis for concurrent actor programs and to the equivalent analysis for shared-
memory concurrent programs. We demonstrate the soundness and termination of
the resulting analyses formally and evaluate their running times, scalability and
precision empirically.

A study of mailbox abstraction strategies
We perform an in-depth study of a macro-stepping analysis for actor programs
resulting from the application of the MacroConc design method. We propose
several mailbox abstractions and study how such abstractions affect the running
time and the precision of the analysis. We categorize the mailbox abstractions
according to whether they preserve the ordering of messages and according to
whether they preserve the multiplicity of messages. We formally prove these
abstractions sound and empirically evaluate their impact on the running time and
precision of the analysis.

7

1. Introduction

ModConc: A design method for process-modular analyses
As an alternative to all-interleavings analyses that are subject to the state explosion
problem, albeit mitigated through macro-stepping, we propose a design method
for process-modular analyses that scales for concurrent programs with dynamic
process creation. ModConc introduces Cousot and Cousot’s notion of modular-
ity (Cousot and Cousot, 2002) into AAM-style analyses for concurrent programs.
Analyses resulting from this design method consider each process of a concur-
rent program in isolation to infer potential interferences with other and newly
created processes, which will have to be reconsidered for analysis until a fixed
point is reached. Process interleavings are not explicitly modeled by the analysis
but still accounted for. This analysis design trades off precision to yield process-
modular analyses that scale linearly with the number of processes created in the
program under analysis. We describe and apply this design method to concur-
rent actor programs and to shared-memory multi-threading. We demonstrate the
soundness and termination of the resulting analyses formally and evaluate their
running times, scalability and precision empirically.

Scala-AM: A static analysis framework
In the context of this dissertation, we have developed Scala-AM, a framework for
implementing static program analyses. The framework is designed to be modular
and extensible, so that static analysis developers can easily explore and integrate
new static analysis ideas. The framework’s flexibility is demonstrated by the use
of Scala-AM to evaluate all the analyses designed in this dissertation, as well as
its use in a number of other works (Vandercammen et al., 2015; Vandercammen
and De Roover, 2016; De Bleser et al., 2017; Vandercammen and De Roover, 2017;
Van Es et al., 2017b).

1.6. Supporting Publications

This dissertation is supported by the following conference papers.

• Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “Detecting concurrency
bugs in higher-order programs through abstract interpretation”, in Proceedings of
the 17th International Symposium on Principles and Practice of Declarative Programming,
Siena, Italy, July 14-16, 2015, M. Falaschi and E. Albert, Eds., ACM, 2015, pp. 232–
243, isbn: 978-1-4503-3516-4. doi: 10.1145/2790449.2790530. This conference
paper describes and evaluates the performance of a naive application of the AAM
design method for an analysis of multi-threaded concurrency in the same line as
the analyses presented in Chapter 2.

• Q. Stiévenart, M. Vandercammen, W. De Meuter, and C. De Roover, “Scala-am: A
modular static analysis framework”, in 16th IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA, October
2-3, 2016, IEEE Computer Society, 2016, pp. 85–90, isbn: 978-1-5090-3848-0. doi:

8

https://doi.org/10.1145/2790449.2790530

1.6. Supporting Publications

10.1109/SCAM.2016.14. This short conference paper describes the architecture of
our static analysis framework with which we implement the analyses developed
in Chapters 2 and 4 to 6.

• Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “Building a modular
static analysis framework in scala (tool paper)”, in Proceedings of the 7th ACM SIG-
PLAN Symposium on Scala, SCALA@SPLASH 2016, Amsterdam, Netherlands, October
30 - November 4, 2016, A. Biboudis, M. Jonnalagedda, S. Stucki, and V. Ureche, Eds.,
ACM, 2016, pp. 105–109, isbn: 978-1-4503-4648-1. doi: 10.1145/2998392.3001579.
This symposium tool paper describes the details of the implementation of our
static analysis framework.

• Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “Mailbox abstrac-
tions for static analysis of actor programs”, in 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, P. Müller,
Ed., ser. LIPIcs, vol. 74, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
25:1–25:30, isbn: 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.2017.25. This
conference paper describes a macro-stepping analysis for concurrent actor pro-
grams, in the same line as the macro-stepping analysis for concurrent actors pre-
sented in Chapter 4, and provides the categorization of the mailbox abstractions
presented in Chapter 5.

The following journal articles are currently under review.

• Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “Smap: Scalable modular
static analysis of actor programs”, Submitted on Oct. 17, 2017 to Information & Soft-
ware Technology, This paper describes a process-modular analysis for concurrent
actor programs, in the same line as the process-modular analysis for concurrent
actor programs presented in Chapter 6.

• Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “A general method for
rendering analyses for diverse concurrency models modular”, Submitted on Feb.
22, 2018 to Journal of Systems and Software, This paper introduces the ModConc
uniform analysis design method, presented in Chapter 6.

A number of additional publications document our academic track record, touching
upon topics addressed in this dissertation including static analysis, interpreters and
abstract machines in the context of higher-order languages.

• Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “Poster: Static analy-
sis of concurrent higher-order programs”, in 37th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2,
A. Bertolino, G. Canfora, and S. G. Elbaum, Eds., IEEE Computer Society, 2015,
pp. 821–822. doi: 10.1109/ICSE.2015.265.

• M. Vandercammen, Q. Stiévenart, W. De Meuter, and C. De Roover, “STRAF: A
scala framework for experiments in trace-based JIT compilation”, in Grand Timely

9

https://doi.org/10.1109/SCAM.2016.14
https://doi.org/10.1145/2998392.3001579
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.1109/ICSE.2015.265

1. Introduction

Topics in Software Engineering - International Summer School GTTSE 2015, Braga,
Portugal, August 23-29, 2015, Tutorial Lectures, J. Cunha, J. P. Fernandes, R. Lämmel,
J. Saraiva, and V. Zaytsev, Eds., ser. Lecture Notes in Computer Science, vol. 10223,
Springer, 2015, pp. 223–234. doi: 10.1007/978-3-319-60074-1_10.

• N. Van Es, J. Nicolay, Q. Stiévenart, T. D’Hondt, and C. De Roover, “A performant
scheme interpreter in asm.js”, in Proceedings of the 31st Annual ACM Symposium
on Applied Computing, Pisa, Italy, April 4-8, 2016, S. Ossowski, Ed., ACM, 2016,
pp. 1944–1951, isbn: 978-1-4503-3739-7. doi: 10.1145/2851613.2851748.

• J. De Bleser, Q. Stiévenart, J. Nicolay, and C. De Roover, “Static taint analysis of
event-driven scheme programs”, in 10th European Lisp Symposium, ELS 2017, April
3-4, 2017, Brussels, Belgium, 2017, pp. 80–87.

• N. Van Es, Q. Stiévenart, J. Nicolay, T. D’Hondt, and C. De Roover, “Implementing a
performant scheme interpreter for the web in asm.js”, Computer Languages, Systems
& Structures, vol. 49, pp. 62–81, 2017. doi: 10.1016/j.cl.2017.02.002.

• J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover, “Purity analysis for
javascript through abstract interpretation”, Journal of Software: Evolution and Process,
e1889–n/a, 2017, e1889 smr.1889, issn: 2047-7481. doi: 10.1002/smr.1889.

1.7. Dissertation Outline

This dissertation is structured as follows.

Chapter 2. Introduction to Abstract Interpretation of Concurrent Programs
We start our exposition with an introduction to concurrent programming and to
the abstract interpretation approach to static analysis used throughout the dis-
sertation. A base sequential language λ0 is introduced, as well as two separate
extensions with support for concurrency. The first extension adds the concept of
concurrent actors to λ0, giving rise to the λα language. The second extension adds
multi-threading and shared memory to λ0, giving rise to the λτ language. Both
extensions feature dynamic process creation, an essential feature of contempo-
rary concurrent programs. For each of these extensions, we provide the formal
syntax and semantics, as well as a naive application of the AAM analysis design
method (Van Horn and Might, 2010). We demonstrate that this naive application
of AAM to these concurrent programming languages results in static analyses that
scale poorly. As such, this design method forms a baseline that is improved upon
in the subsequent chapters.

Chapter 3. State of the Art in Static Analysis of Concurrent Programs
This chapter discusses the state of the art in analysis of concurrent programs. It
presents the related work that comprises many different approaches to program
analysis: bug finding, abstract interpretation, model checking, types systems and

10

https://doi.org/10.1007/978-3-319-60074-1_10
https://doi.org/10.1145/2851613.2851748
https://doi.org/10.1016/j.cl.2017.02.002
https://doi.org/10.1002/smr.1889

1.7. Dissertation Outline

proof systems. We highlight that existing analysis designs are limited with re-
spect to one of the following properties: automation, soundness, scalability and
precision, or support for dynamic thread creation. The naive application of the
AAM method developed in the previous chapter only lacks scalability, and we
therefore review two approaches to address scalability issues for static analysis of
concurrency models: state space reduction and process-modular analysis.

Chapter 4. MacroConc: Designing Macro-Stepping Analyses
This chapter presents MacroConc, our first analysis design method that results in
an analysis featuring the desired properties (albeit scalable only to a limited extent).
We introduce the notion of macro-stepping, adapted from Agha et al. (1997), in
order to speed up the analysis by ignoring certain interleavings that are shown not
to be for the verification of local process properties. Macro-stepping was initially
described in an actor setting (Agha et al., 1997), which we generalize to other
concurrency models. Semantics featuring macro-stepping perform more than a
single step on a process before investigating interleavings with other processes.
We apply the MacroConc design method for analyses of the λα actor language
and the λτ multi-threaded language. Instantiations of macro-stepping define a
function that states which communication effects are not allowed in the same
macro step, after a certain effect has been produced. This results in analyses that
perform significantly better than the analyses resulting from a naive application
of AAM, as demonstrated in the evaluation section of this chapter. However,
scalability remains limited as there are programs in our benchmark suite for
which the analyses do not terminate within their time budget.

Chapter 5. A Study of Mailbox Abstractions
In this chapter, we take a detour for an in-depth study of our macro-stepping
analysis for concurrent actor programs with ordered mailboxes. We describe two
important properties for actor programs: absence of errors and mailbox bounds.
We demonstrate that preserving ordering and multiplicity on the abstraction of
mailboxes is important in order to verify such properties. We categorize different
mailbox abstractions according to whether they preserve ordering information
and according to whether they preserve multiplicity information. We formally
prove the mailbox abstractions sound and empirically evaluate the impact of
each mailbox abstraction for verifying absence of errors and for inferring mailbox
bounds.

Chapter 6. ModConc: Designing Modular Analyses
This chapter presents ModConc, our second analysis design method which takes
inspiration from the concept of modular analysis of Cousot and Cousot (2002), and
adds support for dynamic process creation. We present it as a uniform method that
we apply for static analysis of concurrent actor programs and of multi-threaded
programs. Each process is analyzed in isolation through an intra-process analysis,
relying on communication effects to infer created processes and other communi-
cations between processes. The result of the intra-process analysis is the set of

11

1. Introduction

created processes and of process communications. This inferred information is
then reflected on the global analysis state by an inter-process analysis. Using a
fixed-point formulation, the inter-process analysis terminates after having ana-
lyzed every created process with every communication between processes. We
formally prove that the resulting analyses are sound, terminate, and are scalable.
We empirically demonstrate the improved scalability compared to macro-stepping
analysis, and evaluate the impact on the analysis’ precision.

Chapter 7. Conclusion and Future Work
We conclude this dissertation by recapitulating our main contributions. We also
identify possible directions for future work on the presented analysis design meth-
ods. First, while we applied our design methods to static analysis of concurrent
actors and multi-threading, they remain to be investigated in the context of other
concurrency models, and combinations thereof. Second, we identify possible ex-
tensions to our concurrency models to more closely match real-world implemen-
tations. Finally, we discuss possibilities to increase the precision of our analyses on
three axes: by considering context-sensitivities and process-sensitivities, by incor-
porating order information into the ModConc design method, and by combining
modularity and macro-stepping into one analysis design method. We conclude
with potential applications for the analyses described in this dissertation, which
include program comprehension tools as well as automated verification methods
for diverse concurrency models.

12

2
I N T RO D U C T I O N TO A B ST R AC T I N T E R P R E TAT I O N O F
CO NC U R R E N T P RO G R A M S

In this chapter, we introduce a base sequential language λ0, and two separate extensions
of this language that each implement a different concurrency model, namely the actor
model in λα and the model of shared-memory multi-threading in λτ. Each language
is presented with its concrete semantics, formulated as the fixed-point of a transfer
function relying on a transition relation. The transition relation itself is annotated with
communication effects. Communication effects describe information about the concurrent
behavior of a program’s execution. This formulation enables performing static analysis
by abstract interpretation for each language, following the AAM approach of Van Horn
and Might (2010).

We call the application of AAM to the semantics of these languages presented in this
chapter naive, in the sense that the resulting static analyses perform no optimizations
for scalability, and model all possible process interleavings explicitly. These analyses are
subject to the state explosion problem due to the high number of possible interleavings,
and these analyses therefore suffer from scalability issues. We formally prove that the
resulting analyses are sound and always terminate. We also evaluate these naive abstract
interpretations empirically in terms of soundness and running time, on a set of 56
benchmark programs, confirming the scalability issues. While sound, the resulting
analyses fail to analyze most benchmarks within their time budget due to scalability
issues.

As we work on three different languages (λ0, λα, and λτ), we introduce the following
convention to avoid confusion: formalization of language components are given in boxes
labeled with the corresponding language name.

13

2. Introduction to Abstract Interpretation of Concurrent Programs

2.1. A Functional Sequential Subset: λ0

The base language used as the sequential foundation for both our concurrent languages
is called λ0 and is based on the λ-calculus in A-Normal Form (Flanagan et al., 1993).
A-Normal Form, or ANF, is a restricted syntactic form for λ-calculus programs, where
operators and operands are restricted to atomic expressions. Atomic expressions ae are
expressions that can be evaluated immediately without impacting the program state, as
opposed to expressions e that are not known to terminate and may impact the program
state. This syntactic simplification of the language does not limit its expressiveness, as
any λ-calculus program can be automatically rewritten into its A-Normal Form (Flana-
gan et al., 1993). When presenting example programs, we do not restrict their syntax to
ANF, but rather rely on the Scheme subset supported by our implementation, which
features more data types (e.g., integers, cons cells, vectors), operations (e.g., +, cons,
make-vector) and language constructs (e.g., if, do).

2.1.1. Syntax of λ0

The λ0 language, of which the syntax is given in Figure 2.1, includes recursive bindings
(letrec), closure creation (λ) and application ((f ae)), run-time errors (error), and has
closures as sole values. Variable references and closure creations are atomic expressions.
Variables are named syntactically and there is a finite number of variable names in any
given program.

λ0
e ∈ Exp ::= ae

| (f ae)
| (letrec ((x e1)) e2)

| (error)

f , ae ∈ AExp ::= x | lam
lam ∈ Lam ::= (λ (x) e)
x, y ∈ Var a finite set of names

Figure 2.1.: Syntax of λ0.

2.1.2. Concrete Semantics of λ0

We define the concrete semantics of λ0 in a small-step operational manner, as a transition
relation (↪→) acting on states ς, memory heaps (called value stores) σ, and continuation
stacks (called continuation stores) Ξ. We write ς, σ, Ξ ↪→ ς′, σ′, Ξ′ to denote a transition
from state ς with value store σ and continuation store Ξ to state ς′, value store σ′ and
continuation store Ξ′.

State Space

Figure 2.2 depicts the state space for λ0. A state ς is composed of a control component
c and a continuation address k. The control component c dictates whether a state is an

14

2.1. A Functional Sequential Subset: λ0

evaluation state (ev), in which an expression is evaluated in a given environment, a
value state (val), in which a value has been reached, or an error state (err), in which
the execution has reached a user error. The continuation address k of a state points
to the continuation of the computation in the continuation store. Environments ρ map
variables to addresses, value stores σ map addresses to values and continuation stores Ξ
map continuation addresses to continuations. A continuation κ is either a frame φ and a
continuation address for the next continuation on the stack, or it is empty, representing
the absence of continuation. We use this form of continuation allocated through a
continuation store to enable abstraction later on. The λ0 language only has a single type
of frame: letrec(e, a, ρ), used to evaluate the body of a letrec expression, where e is
the body expression, a is the address in the store of the newly bound variable being
evaluated, and ρ is the definition environment that records lexical scope information.
The language only supports closures (clo) as values. A closure pairs a lambda expression
lam with a binding environment ρ. We leave the set of addresses Addr and KAddr as
parameters, and give a possible instantiation when discussing allocation.

λ0

ς ∈ Σ = Control × KAddr
c ∈ Control ::= ev(e, ρ)

| val(v)
| err

v ∈ Val ::= clo(lam, ρ)

ρ ∈ Env = Var → Addr

σ ∈ Store = Addr → Val
Ξ ∈ KStore = KAddr → Kont

κ ∈ Kont ::= φ : k | ε

φ ∈ Frame ::= letrec(e, a, ρ)

a ∈ Addr a set of addresses for values
k ∈ KAddr a set of addresses for continuations

Figure 2.2.: State space for λ0.

Atomic Evaluation

Atomic expressions are expressions that can always be evaluated in a single small
step without impacting the stores of the program state. Figure 2.3 depicts the atomic
evaluation relation for λ0 programs. We denote atomic evaluation as ρ, σ ` ae ⇓ v,
meaning that atomic expression ae evaluates to value v in environment ρ and store σ. A
variable reference evaluates to the value found in the store at the address for this variable
found in the environment (rule Var). A lambda expression evaluates to a closure that
pairs the expression with the current environment (rule Lambda).

15

2. Introduction to Abstract Interpretation of Concurrent Programs

λ0

v = σ(ρ(x))
ρ, σ ` x ⇓ v

Var
ρ, σ ` lam ⇓ clo(lam, ρ)

Lambda

Figure 2.3.: Atomic evaluation for λ0.

Transition Relation

Figure 2.4 depicts the transition relation ↪→ of λ0, which encodes the common call-by-
value λ-calculus semantics. Rule Atomic evaluates an atomic expression using atomic
evaluation. Rule App evaluates a function application by atomically evaluating the func-
tion and its argument, and stepping into the function body with an extended environ-
ment and value store. The address with which the store is extended is generated by the
alloc allocation function, discussed later in this section. This allocation function returns a
fresh address, i.e., an address that has not been used before. Rules Letrec1 and Letrec2
encode the semantics of letrec: first a new address is allocated for the variable to be
bound using the alloc allocation function, and the evaluation steps into the expression
computing the value for this variable, pushing a frame for the evaluation of the body on
top of the continuation stack, encoded in the continuation store. This push is performed
by allocating a new continuation address using the allocation function kalloc, described
later in this section. This allocation function returns a fresh continuation address. When
the value for the variable has been evaluated, the store is extended to incorporate it, and
evaluation continues with the body of the letrec. Finally, rule Error steps the program
into an error state when the error primitive is called.

16

2.1. A Functional Sequential Subset: λ0

λ0

ρ, σ ` ae ⇓ v
〈ev(ae, ρ), k〉, σ, Ξ ↪→ 〈val(v), k〉, σ, Ξ

Atomic

ρ, σ ` f ⇓ clo((λ (x) e), ρ′) ρ, σ ` ae ⇓ v a = alloc(x, σ)

〈ev((f ae), ρ), k〉, σ, Ξ ↪→ 〈ev(e, ρ′[x 7→ a]), k〉, σ[a 7→ v], Ξ
App

a = alloc(x, σ) k′ = kalloc(e2, ρ, σ, Ξ) ρ′ = ρ[x 7→ a]
〈ev((letrec ((x e1)) e2), ρ), k〉, σ, Ξ ↪→
〈ev(e1, ρ′), k′〉, σ, Ξ[k′ 7→ letrec(e2, a, ρ′) : k]

Letrec1

Ξ(k) = letrec(e, a, ρ) : k′

〈val(v), k〉, σ, Ξ ↪→ 〈ev(e, ρ), k′〉, σ[a 7→ v], Ξ
Letrec2

〈ev((error), ρ), k〉, σ, Ξ ↪→ 〈err, k〉, σ, Ξ
Error

Figure 2.4.: Transition relation of λ0.

Allocation

Concrete allocation functions for λ0 are defined in Figure 2.5. The allocation of value
addresses is defined by the alloc allocation function, which takes as arguments an atomic
expression, and the current value store σ to generate an address. The allocation of contin-
uation addresses is defined by the kalloc allocation function, which takes as arguments
an expression e that remains to be evaluated in the continuation of the computation, the
current environment ρ, the current value store σ and the current continuation store Ξ.
When using concrete semantics, value addresses and continuation addresses are typi-
cally represented by integers in the concrete state space (Van Horn and Might, 2010).
They are allocated by returning the next available address.

λ0
Addr = N

KAddr = N

alloc(ae, σ) = |dom(σ)|
kalloc(e, ρ, σ, Ξ) = |dom(Ξ)|

Figure 2.5.: Allocation for λ0.

Injection Function

The injection function I : Exp → Σ depicted in Figure 2.6 injects a program e into an
initial program state, where k0 denotes a specific continuation address that is always

17

2. Introduction to Abstract Interpretation of Concurrent Programs

mapped to the empty continuation ε in the continuation store.

λ0
I(e) = 〈ev(e, []), k0〉

Figure 2.6.: Injection function of λ0.

Collecting Semantics

Concrete interpretation of a λ0 program starts by applying the injection function to the
program, resulting in an initial state ς. Next, the transition relation is applied repeatedly
to this initial state, with an initial value store and an initial continuation store. The
transition relation is applied until a final state is reached. A final state is a value state
(val) where the current continuation address is the address of the empty continuation
(k0). As no transition rule is applicable anymore to this state, it represents the end of the
execution of the program. The initial value store (denoted []) is empty and the initial
continuation store (denoted [k0 7→ ε]) maps k0 to the empty continuation ε. The concrete
interpretation of a program starts with the injection of the program into an initial state,
followed by the application of the transition relation until no more rules can be applied.
The concrete run of an example program is depicted in Figure 2.7.

In order to define concrete interpretation formally, we use collecting semantics (Cousot
and Cousot, 1977), as it accounts for future abstraction and for possible non-determinism
in the semantics. The collecting semantics of a program is the set of all the states
reachable during the execution of this program. Collecting semantics enable modeling
non-determinism, which is necessary for abstract interpretation where non-determinism
results from approximations. Non-determinism is inherent to concurrent programs, so
collecting semantics are a natural way to describe all possible executions of a concurrent
programs. We define the collecting semantics through a transfer function Fλ0

e : P(Σ ×
Store × KStore) → P(Σ × Store × KStore) parameterized by the program e to execute,
and aggregating reachable states with their corresponding stores. This transfer function
is depicted in Figure 2.8.

λ0

Fλ0
e (S) = {(I(e), [], [k0 7→ ε])} (1)

∪
⋃

(ς,σ,Ξ)∈S
ς,σ,Ξ↪→ς′,σ′,Ξ′

(ς′, σ′, Ξ′) (2)

Figure 2.8.: Transfer function for λ0.

The transfer function Fλ0
e defines that the following types of states are reachable from

18

2.1. A Functional Sequential Subset: λ0

〈ev((letrec ((f (λ (x) (x x)))) (f (λ (y) y))), []), k0〉,
[], [k0 7→ ε]

Letrec1
↪−−−−→ 〈ev((λ (x) (x x)), [f 7→ a f]), k1〉,

[], [k0 7→ ε, k1 7→ letrec((f (λ (y)y)), a f , [f 7→ a f]) : k0]

Atomic
↪−−−→ 〈val(clo((λ (x) (x x)), [f 7→ a f])), k1〉,

[], [k0 7→ ε, k1 7→ . . .]
Letrec2
↪−−−−→ 〈ev((f (λ (y) y)), [f 7→ a f]), k0〉,

[a f 7→ clo((λ (x) (x x)), [f 7→ a f])], [k0 7→ ε, k1 7→ . . .]
App
↪−→ 〈ev((x x), [f 7→ a f , x 7→ ax]), k0〉,

[a f 7→ clo((λ (x) (x x)), [f 7→ a f]),

ax 7→ clo((λ (y) y), [f 7→ a f])], [k0 7→ ε, k1 7→ . . .]
App
↪−→ 〈ev(y, [f 7→ a f , y 7→ ay]), k0〉,

[a f 7→ clo((λ (x) (x x)), [f 7→ a f , x 7→ ax]),

ax 7→ clo((λ (y) y), [f 7→ a f]),

ay 7→ clo((λ (y) y), [f 7→ a f])], [k0 7→ ε, k1 7→ . . .]
Atomic
↪−−−→ 〈val(clo((λ (y) y), [f 7→ a f])), k0〉,

[a f 7→ clo((λ (x) (x x)), [f 7→ a f , x 7→ ax]),

ax 7→ clo((λ (y) y), [f 7→ a f]),

ay 7→ clo((λ (y) y), [f 7→ a f])], [k0 7→ ε, k1 7→ . . .]

Figure 2.7.: Trace of a concrete execution of the λ0 program (letrec ((f (λ (x) (x x)))) (f
(lambda (y) y))).

19

2. Introduction to Abstract Interpretation of Concurrent Programs

a given set of states S:

1. the initial injected state, with the initial empty value store and initial continuation
store mapping the k0 continuation address to the empty continuation, and

2. states that can be reached from reachable states, with the corresponding stores.

The collecting semantics is then defined as the least fixed point of this transfer function,
lfp(Fλ0

e), which is the set of all states reachable during all possible executions of program
e.

2.1.3. Abstract Semantics of λ0

The collecting semantics for a λ0 program describes all states that are reachable during
any execution of the program. However, this set of states may be infinite and not com-
putable in the general case. A static analysis has to be able to analyze any program of
the language under analysis. Relying on the concrete collecting semantics for static anal-
ysis is therefore not feasible. This is why we introduce an abstracted version of the λ0
collecting semantics, which is appropriate for static analysis and follows the principles
of abstract interpretation (Cousot and Cousot, 1977).

Through abstraction, possibly infinite behaviors of a program are rendered finite,
enabling static analysis. The resulting abstract semantics over-approximate the concrete
semantics in a sound manner. For example, the possibly infinite trace of a program
(depicted in Figure 2.9a) may be approximated by a graph that over-approximates all
possible concrete traces (depicted in Figure 2.9b). We call such a graph a flow graph.

s0 s1 s2 s3 . . .

(a) Trace of the program execution under
concrete semantics.

ŝ0 ŝ1 ŝ2 ŝ3

(b) Flow graph approximating the program
execution under abstract semantics.

Figure 2.9.: Approximation of a program trace through abstract interpretation.

This abstraction is performed through the Abstracting Abstract Machines method, abbre-
viated AAM (Van Horn and Might, 2010). The AAM method is a systematic approach
to designing abstract interpretations of higher-order languages. This method can be
seen as a recipe to turn language semantics expressed as an abstract machine into a
finite version of this semantics called an abstracted abstract machine. The recipe requires
allocating the elements of every infinite component of the state space at an address in
a store and limiting the set of addresses to a finite set. AAM then guarantees that the
analysis terminates when it is expressed through a monotone transfer function.

Besides termination, another crucial property is soundness. Soundness means that
the results computed by the analysis of a program hold for any possible execution
of the program, and can therefore be trusted. A sound analysis may over-approximate
information, leading to potential false positives (e.g., the analysis reports potential errors
that in reality may never arise), but can never under-approximate information (e.g., the

20

2.1. A Functional Sequential Subset: λ0

analysis reports no potential errors while some execution of the program under analysis
may lead to an error).

Addresses are generated according to an allocation strategy, which is the only com-
ponent that has to be tuned to obtain a finite state space once the semantics has been
abstracted. This allocation strategy is defined by the alloc and kalloc allocation functions
(Figure 2.5). The allocation strategy influences the precision of the analysis (Gilray et
al., 2016a), but not its soundness, as any allocation strategy leads to a sound analysis
(Might and Manolios, 2009). We can therefore prove the soundness of the analysis with-
out considering the allocation strategy used. We do not study the impact of allocation
strategies in this dissertation as this discussion is orthogonal to the contributions of our
work.

In our formalization of the abstract semantics, we highlight in gray the main changes
with respect to the concrete semantics. The abstracted version of a concrete component
is denoted by the same name decorated with a hat.

Abstract State Space

Figure 2.10 depicts the abstract state space for λ0. In order to abstract the semantics,
the sets of addresses (value addresses Addr and continuation addresses KAddr) are
rendered finite. This simple change propagates through the state space. Abstract envi-
ronments ρ̂ map variable names to abstract addresses â. Abstract closures clo contain
abstract environments ρ̂. Abstract control components ĉ may contain abstract values v̂
and environments ρ̂. Abstract frames φ̂ contain abstract addresses â and abstract en-
vironments ρ̂. Abstract continuations κ̂ contain abstract continuation addresses k̂. The
major changes happen in the stores: because the set of abstract value addresses and ab-
stract continuation addresses are finite, both the value store and the continuation store
have to map respectively to sets of values and to sets of continuations. This introduces
non-determinism in the semantics: looking up a value or a continuation in a store may
yield multiple results. This non-determinism may lead to a precision loss in the analysis,
which is the price to pay for termination of the analysis.

λ0
ς̂ ∈ Σ̂ = Ĉontrol × K̂Addr

ĉ ∈ Ĉontrol ::= ev(e, ρ̂)

| val(v̂) | err

ρ̂ ∈ Ênv = Var → Âddr

σ̂ ∈ Ŝtore = Âddr → P(V̂al)

Ξ̂ ∈ K̂Store = K̂Addr → P(K̂ont)

κ̂ ∈ K̂ont ::= φ̂ : k̂ | ε

φ̂ ∈ F̂rame ::= letrec(e, â, ρ̂)

v̂ ∈ V̂al ::= clo(lam, ρ̂)

â ∈ Âddr a finite set of addresses

k̂ ∈ K̂Addr a finite set of addresses

Figure 2.10.: Abstract state space for λ0.

21

2. Introduction to Abstract Interpretation of Concurrent Programs

Abstract Atomic Evaluation

The abstract version of atomic evaluation depicted in Figure 2.11 now accounts for the
fact that one address in the value store may map to more than one possible value. The
atomic evaluation relation hence becomes non-deterministic as seen by the membership
operation in rule Var. Rule Lambda remains the same under abstraction.

λ0

v̂ ∈ σ̂(ρ̂(x))

ρ̂, σ̂ ` x ⇓̂ v̂
Var

ρ̂, σ̂ ` lam ⇓̂ clo(lam, ρ̂)
Lambda

Figure 2.11.: Abstract atomic evaluation relation for λ0.

Abstract Allocation

As noted before, any allocation strategy leads to a sound analysis (Might and Manolios,
2009). We depict in Figure 2.12 the allocation strategy introduced by Gilray et al. (2016b)
that leads to a flow-sensitive, context-insensitive 0-CFA analysis, with precise call and
return matching.

λ0
â ∈ Âddr = Exp

k̂ ∈ K̂Addr = Exp × Ênv

âlloc(e, σ̂) = e

k̂alloc(e, ρ̂, σ̂, Ξ̂) = (e, ρ̂)

Figure 2.12.: Abstract allocation functions for λ0.

Abstract Transition Relation.

The abstract transition relation (Figure 2.13) is adapted to the abstract state space. Values
stored in the value store are now sets of values, and updates to the value store now
become join operations, as expressed by the t operator (see Appendix A), in order to
group values that share the same address. Similarly, the continuation store now maps to
sets of continuations, and updates to the continuation store also become join operations
for the same reason.

22

2.1. A Functional Sequential Subset: λ0

λ0

ρ̂, σ̂ ` ae ⇓̂ v̂

〈ev(ae, ρ̂), k̂〉, σ̂, Ξ̂ ↪̂→ 〈val(v̂), k̂〉, σ̂, Ξ̂
Atomic

ρ̂, σ̂ ` f ⇓̂ clo((λ (x) e), ρ̂′) ρ̂, σ̂ ` ae ⇓̂ v̂ â = âlloc(x, σ̂)

〈ev((f ae), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂→ 〈ev(e, ρ̂′[x 7→ â]), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
App

â = âlloc(x, σ̂) k̂′ = k̂alloc(e2, ρ̂, σ̂, Ξ̂) ρ̂′ = ρ̂[x 7→ â]

〈ev((letrec ((x e1)) e2), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂→

〈ev(e1, ρ̂′), k̂′〉, σ̂, Ξ̂ t [k̂′ 7→
{

letrec(e2, â, ρ̂′) : k̂
}
]

Letrec1

Ξ̂(k̂) 3 letrec(e, â, ρ̂) : k̂′

〈val(v̂), k̂〉, σ̂, Ξ̂ ↪̂→ 〈ev(e, ρ̂), k̂′〉, σ̂ t [â 7→ {v̂}], Ξ̂
Letrec2

〈ev((error), ρ), k̂〉, σ̂, Ξ̂ ↪̂→ 〈err, k̂〉, σ̂, Ξ̂
Error

Figure 2.13.: Abstract transition relation for λ0.

Abstract Injection

The abstract injection function Î : Exp → Σ̂, depicted in Figure 2.14 is adapted from the
concrete semantics by using a specific abstract continuation address k̂0 for the address
of the empty continuation.

λ0
Î(e) = 〈ev(e, []), k̂0〉

Figure 2.14.: Abstract injection function of λ0.

Abstract Collecting Semantics

The abstract collecting semantics (Figure 2.15) are adapted from the concrete collecting
semantics by using the abstract transition relation. Note that because addresses are
finite, all other components of the state space become finite as well, rendering the
transfer function F̂λ0

e monotone and the abstract collecting semantics computable (see
Section 2.1.4 for the proof).

23

2. Introduction to Abstract Interpretation of Concurrent Programs

λ0

F̂λ0
e (S) =

{
(Î(e), [], [k̂0 7→ ε])

}
(1)

∪
⋃

(ς̂,σ̂,Ξ̂)∈S
ς̂,σ̂,Ξ̂ ↪̂→ ς̂′,σ̂′,Ξ̂′

(ς̂′, σ̂′, Ξ̂′) (2)

Figure 2.15.: Abstract transfer function for λ0.

The fixed point of the transfer function for a program e, lfp(F̂λ0
e), is an over-approximation

of the set of reachable states in all possible executions of the program e (Theorem 1).
The abstract collecting semantics therefore forms a sound foundation for building static
analyses. For example, one can adapt its definition to include not only reachable states
but also the transitions taken between the states, resulting in a flow graph such as
depicted in Figure 2.9.

Another variant of the collecting semantics can be obtained by applying global-store
widening (Van Horn and Might, 2010). Global-store widening further abstracts the do-
main of the transfer function to a set of reachable program states, a single global value
store, and a single continuation store, i.e. using the domain P(Σ̂)× Ŝtore × K̂Store in-
stead of P(Σ̂ × Ŝtore × K̂Store). This reduces the precision of the resulting analysis, for
an improved worst-case time complexity, which becomes polynomial in the size of the
program under analysis (Van Horn and Might, 2010). We systematically apply this
global-store widening in the implementation of all analyses developed in this disserta-
tion. Using the allocation strategy presented in Figure 2.12 and global-store widening,
the worst-case time complexity of the resulting analysis is of O(|Exp|3) (Gilray et al.,
2016b), i.e., polynomial in the size of the analyzed program.

2.1.4. Soundness and Termination

For a static analysis to be able to prove properties about a program, it must be sound, and
for it to support analyzing any program statically, it must always terminate. The analysis
described here satisfies both properties, and soundness and termination of analyses
resulting from applying AAM have been proven by Van Horn and Might (2010). To
prove both properties formally, we have to introduce an ordering relation v, which,
with the domain of the transfer function (P(Σ̂ × Ŝtore × K̂Store)), forms a finite lattice.
Moreover, to prove soundness formally, we introduce the abstraction function used to
abstract of the state space, α : (Σ × Store × KStore) → (Σ̂ × Ŝtore × K̂Store). We provide
the definition of this ordering relation and abstraction function in Appendix B.1.1.

Theorem 1 (Soundness). lfp(F̂λ0
e) is a sound over-approximation of lfp(Fλ0

e).

Proof. The proof is detailed in Appendix B.1.1. The idea of the proof is the following: we
want to show that ∀S, α(Fλ0

e (S)) v F̂λ0
e (α(S)). This can be reduced to showing that the

24

2.2. The Actor Model: λα

abstract transition relation soundly over-approximates the concrete transition relation:
if ς, σ, Ξ ↪→ ς′, σ′, Ξ′, then ∃ς̂′, σ̂′, Ξ̂′ such that α(ς, σ, Ξ) ↪̂→ ς̂′, σ̂′, Ξ̂′ ∧ α(ς′, σ′, Ξ′) v
ς̂′, σ̂′, Ξ̂′. This is shown by a case analysis over the rules of the transition relation.

Theorem 2 (Termination). The computation of lfp(F̂λ0
e) always terminates.

Proof. The proof is detailed in Appendix B.1.1. It entails showing that F̂λ0
e is a monotone

transfer function, and that the lattice (P(Σ̂ × Ŝtore × K̂Store),v) is finite. By Tarski’s
fixed-point theorem (Tarski, 1955), the least-fixed point of a monotone function over a
finite lattice will be reached in a finite number of steps. Hence, the abstract interpretation
always terminates.

2.2. The Actor Model: λα

The actor model is a widely used model of concurrency introduced by Hewitt et al.
(1973) and further developed by Agha (1986). We formalize an actor extension to λ0, as
the λα language. Before introducing λα, we first give a high-level overview of an actor
extension to Scheme. The λα language embodies the core concepts of this extension.

2.2.1. Overview of Actors

In the actor model, a program is composed of entities called actors that can communicate
with each other by sending asynchronous messages. Actors are executed concurrently
to each other in an isolated manner, and each actor has a specific behavior according
to which it processes messages. This behavior can change dynamically. Actors receive
messages in their mailbox. Once a message is ready to be processed by an actor, the
actor extracts the message from the mailbox and executes the code defined in a mes-
sage handler associated with this type of message. Mailboxes are ordered queues of
messages, to which messages are enqueued in the front and from which messages are
dequeued from the back. When processing a message, actors can perform a number of
operations, such as dynamically creating other actors, sending messages to other actors
or to themselves, or dynamically updating their behavior, thereby changing how future
messages will be processed.

Defining actor behaviors

Actor behaviors are defined through the actor construct. This construct first defines
the state variables that will form the internal state of the actor. These state variables
are not mutable, but can be updated when changing the behavior of an actor, through
the become construct. The actor construct also defines a number of message handlers,
one for each type of message that the actor can receive. A message is composed of a
selector, or tag, and a number of message arguments. When an actor receives a message,
the body of the corresponding message handler, selected according to the tag of the
message, will be executed in an environment extended with the formal parameters of

25

2. Introduction to Abstract Interpretation of Concurrent Programs

the handler bound to the arguments given in the message. Note that this merely defines
an actor behavior, but does not create an actor yet.

1 (define an-actor
2 (actor (state-var1 state-var2)
3 (tag1 (a b) body1)
4 (tag2 (c) body2)))

Creating actors.

An actor is created, or spawned, through the create construct, which has to be provided
as arguments the behavior to instantiate for the new actor, and the initial values for the
state variables of this actor. In the code fragment below, actor A is spawned with the
previously defined behavior an-actor, and with state variable state-var1 bound to 1,
and state-var2 bound to 2.

1 (define A (create an-actor 1 2))

Sending messages.

Messages are sent using the send construct, where the target actor is given as first
argument, followed by the tag of the message to send and by the message arguments.
When actor A receives the message tag1(#t, ’hello), it will execute body1 in an
environment extended with a bound to #t and b bound to ’hello. Messages are sent
asynchronously; a call to send returns immediately and does not block the sending actor
until the target actor has processed the sent message.

1 (send A tag1 #t ’hello)

Changing the behavior of an actor.

The become construct changes the behavior of an actor dynamically, and updates the
state variables of the actor. In the following snippet, the actor with the an-actorbehavior
will update its state variables upon the receipt of a tag1message, by binding state-var1
to the value of the first argument of the message, and leaving state-var2 unchanged.
An actor can also change its behavior to a different behavior, as shown in the body of
the message handler for tag2.

1 (define an-actor
2 (actor (state-var1 state-var2)
3 (tag1 (a b) (become an-actor a state-var2))
4 (tag2 (c) (become another-actor))))
5 (define A (create an-actor 1 2))

Note that, for the sake of simplicity but without loss of generality, we require the body
of all message handlers to end with a become statement. In real-world actor languages,
it is assumed that if no become statement is executed in the body of a message handler,
the actor does not change its behavior.

26

2.2. The Actor Model: λα

Example actor program.

We give a more involved example actor program in Listing 2.1, adapted from Agha
(1986). This program computes and displays the factorial of a number read from user
input. After the definition of three behaviors (lines 1, 10, and 15), two actors are created:
actor fact with behavior fact-actor (line 20), and actor displayer that displays the
messages it receives (line 21). On line 22 the number returned by read-integer (as-
sumed non-negative) is sent to actor fact along with actor displayer, the customer that
will receive the answer that fact computes.

When actor fact receives the compute message with n = 0, it sends 1 as answer
to the customer (line 5). Otherwise n 6= 0, and fact spawns an actor with behavior
customer-actor (line 7), passing n and fact’s customer as arguments. Actor fact then
sends itself a compute message to compute (n − 1)!, passing along the newly created
customer (line 7). Actors with the customer-actor behavior multiply the number they
receive by the number given at their creation, and send the result to the customer given
at their creation (line 12).

Putting everything together, when fact receives the initial compute message with
number n and customer displayer, it creates a customer c with n and displayer
as arguments. This customer represents the continuation of the factorial computation.
Actor fact then computes (n − 1)! by sending a compute message to itself with n − 1
and c as arguments. When the computation of (n − 1)! is completed, the result is sent
to customer c, which computes n ∗ (n − 1)! = n!, and sends the result to displayer,
which displays the result on the screen.

1 (define fact-actor
2 (actor ()
3 (compute (n customer)
4 (if (= n 0)
5 (send customer result 1)
6 (let ((c (create customer-actor
7 n customer)))
8 (send self compute (- n 1) c)))
9 (become fact-actor))))

10 (define customer-actor
11 (actor (n customer)
12 (result (k)
13 (send customer result (* n k))
14 (become customer-actor n customer))))

15 (define displayer-actor
16 (actor ()
17 (result (v)
18 (display v)
19 (become displayer-actor))))
20 (define fact (create fact-actor))
21 (define displayer (create displayer-actor))
22 (send fact compute (read-integer) displayer)

Listing 2.1: Program computing the factorial of a user-given number with actors, adapted from
Agha (1986).

Figure 2.16 depicts the evolution of the actor topology throughout the execution
of the factorial program. We see that the fact actor creates a chain of customers that
propagate and multiply a value until the resulting value (the computed factorial) reaches
the display actor.

27

2. Introduction to Abstract Interpretation of Concurrent Programs

main

disp

fact

cust(n) cust(n − 1) . . . cust(1)

compute(n, pdisp)

result(1)

result(1)result((n − 2)!)result((n − 1)!)result(n!)

Figure 2.16.: Representation of the actor topology during the execution of the factorial program
in Listing 2.1. Plain edges represent actor creation, and dashed edges represent
message sends. When annotated, the dashed edges indicate the message being
sent. Actors denoted by disp and cust respectively denote actors with behaviors
displayer-actor and customer-actor. The dots in the chain of cust actors repre-
sent a number of actors that depend on the value of n.

2.2.2. Syntax of λα

Figure 2.17 depicts the syntax of λα. To model actor concurrency formally, we extend λ0
with the concepts of actor definition, creation and evolution and with messages.

1. Actor definition, creation and evolution. Actor behaviors are defined through the
actor construct, and actors are created by instantiating an actor behavior with the
create construct, which creates a new process. Actors have but one state variable,
which characterizes the state of the actor. We limit the model to a single state
variable, without loss of generality. An actor’s behavior and state variable can be
updated through the become construct.

2. Messages. Actors can send messages with the send construct, and receive mes-
sages in their mailbox. Each actor defines message handlers for the types of mes-
sage it can receive. Each message carries a tag, which will be used to select the
message handler that handles this type of message when received, as well as an
argument. We limit the model to a single argument per message, without loss of
generality.

Like variable names, tags are syntactic elements of which there is a finite number within
a program. To simplify the presentation, but without loss of generality, λα is limited to
actors with one state variable, and messages with one argument. Our implementation
however supports an arbitrary number of state variables and an arbitrary number of
message arguments. Note that the dotted parts (. . .) of the following definitions refer to
the fact that we extend the syntax and semantics of λ0. For example, atomic expressions
correspond to the usual atomic expressions of λ0 (variables and lambda expressions),
extended with the notion of actor expression (act).

28

2.2. The Actor Model: λα

λα
e ∈ Exp ::= . . .

| (create ae ae)
| (send ae t ae)
| (become ae ae)

ae ∈ AExp ::= . . . | act
act ∈ Act ::= (actor (x)

(t (y) e)∗)
t ∈ Tag a finite set of tags

Figure 2.17.: Syntax of λα.

We also define auxiliary functions in Figure 2.18 to extract specific components from
expressions: var extracts the name of the state variable of an actor expression, and
handler extracts from an actor the handler for a specific tag from an actor expression.

λα
var((actor (x) . . .)) = x

handler((actor (x) . . . (t (y) e) . . .), t) = (y, e)

Figure 2.18.: Auxiliary functions for λα.

2.2.3. Concrete Semantics of λα

We define the concrete semantics of λα as an extension to the semantics of λ0. The
semantics is defined by a concurrent transition relation (), annotated with communica-
tion effects. Communication effects describe the concurrent operation performed within
a transition. They are only used for an informational purpose in this chapter, but could
be used to perform a communication topology analysis (Colby, 1995; Martel and Gengler,
2000), where the processes dynamically created in an concurrent program are identified
along with their interactions. In Chapters 4 and 6, we use these communication effects
to improve the scalability of the analysis.

State Space

Figure 2.19 depicts the state space for λα. As each actor has a specific behavior, a process
state (ς) is a tuple containing a control component c, a current actor behavior b, and
a continuation address k. The control component can comprise an additional value
compared to λ0: an actor can be waiting for messages. Actor definitions (actor) and
process identifiers (pid) are first-class values in the language, and are respectively the
resulting value of the actor and create constructs. An actor behavior is either a user-
defined actor definition paired with its extended environment (beh), or the behavior
of the main actor (main). This distinction is used because the main actor, i.e., the actor
that is initially spawned when running an actor program, acts differently: it executes a
body of code and does not receive any messages. The global state of the computation
is held in a process map (π), associating with each process identifier a current process

29

2. Introduction to Abstract Interpretation of Concurrent Programs

state and a mailbox. We discuss possible instantiations of process identifiers later in this
section. A mailbox (mb) is an ordered sequence of messages (m), where each message is
a pair of a tag and an argument value.

λα
π ∈ Π = PID → (Σ × Mbox)
ς ∈ Σ = Control × Beh × KAddr

c ∈ Control ::= . . . | wait
v ∈ Val ::= . . . | pid(p) | actor(act, ρ)

b ∈ Beh ::= beh(act, ρ) | main
mb ∈ Mbox = Message∗

m ∈ Message = Tag × Val
p ∈ PID a set of process identifiers

Figure 2.19.: State space for λα.

Communication Effects

Figure 2.20 depicts the communication effects for λα. Actors can generate four types
of communication effects during their execution. Creation effects c(p, ς) are generated
when an actor creates another actor, with initial state ς and process identifier p. An actor
can also send a message with tag t and argument v to an actor with process identifier p,
generating a snd(p, t, v) communication effect. An actor that starts processing a message
with tag t and argument v generates a prc(t, v) communication effect. An actor changing
its behavior to b with state variable set to value v generates a b(b, v) communication
effect.

λα

eff ∈ Effect ::= c(p, ς) | snd(p, t, v) | prc(t, v) | b(b, v)

Figure 2.20.: Communication effects for λα.

Mailboxes

Figure 2.21 depicts the mailboxes of λα. Mailboxes are queues of messages in the formal
model. When a message is sent to an actor, it is enqueued in the front of the mailbox, and
when a message is processed by the actor, it is dequeued from the back of the mailbox.
This behavior is encoded in the enq and deq functions. The deq function returns a set
of pairs of dequeued messages and resulting mailboxes. In a concrete setting, this set
is either a singleton set to represent a successful dequeue, or empty to represent the

30

2.2. The Actor Model: λα

absence of messages to dequeue. The size function computes the size of a mailbox, and
the empty symbol denotes the empty mailbox.

λα
enq(m, mb) = m : mb

size(mb) = |mb|
empty = ε

deq(ε) = ∅
deq(mb : m) = {(m, mb)}

Figure 2.21.: Mailboxes of λα.

Atomic Evaluation

Figure 2.22 depicts the atomic evaluation relation for λα. The semantics for λα extends
the atomic evaluation relation with support for actor definitions: evaluating an actor def-
inition (act) yields an actor value that pairs the definition with the binding environment
(rule Actor). Rules Var and Lambda from λ0 still apply.

λα

ρ, σ ` b ⇓ actor(act, ρ)
Actor

Figure 2.22.: Atomic evaluation relation for λα.

Transition Relation

The semantics of λα is formalized as a concurrent transition relation denoted . This
transition relation always carries the process identifier p of the actor performing the

transition (p), and may also carry a communication effect (eff
p). The process p that

transitions at a given time in the execution of the program is selected by the transfer
function, defined later in this section. The concurrent transition relation acts on process
maps π, value stores σ, and continuation stores Ξ, and a transition is written π, σ, Ξ p
π′, σ′, Ξ′. We explicitly mention in the text when we use the notation p for a transition
that may generate any effect, otherwise this notation states that no communication effect
is generated.

Sequential transitions. The Seq rule depicted in Figure 2.23 applies the transition
relation of the sequential subset of the language, λ0, to actor transitioning, leaving its
mailbox untouched. No effect is generated.

31

2. Introduction to Abstract Interpretation of Concurrent Programs

λα

π(p) = (ς, mb) ς, σ, Ξ ↪→ ς′, σ′, Ξ′

π, σ, Ξ p π[p 7→ (ς′, mb)], σ′, Ξ′ Seq

Figure 2.23.: Sequential transitions for λα.

Actor management transitions. Figure 2.24 depicts the transition rules for actor man-
agement in λα. To create an actor, the behavior and state variable provided to create
are evaluated with the atomic evaluation relation. The new actor starts in a waiting
state, with an empty continuation stack and an empty mailbox. A process identifier is
allocated for the new actor, and the initial state of the actor is added to the process map,
with its environment extended to map its state variable to the address at which the value
of the argument given to create resides. The actor performing the create reaches as
value the process identifier of the created actor, and a c communication effect is gener-
ated (rule Create). An actor can change its behavior through a become statement, which
binds the state variable to its new value, and sets the actor to a wait state, generating a
b communication effect (rule Become).

λα

π(p) = (〈ev((create ae ae′), ρ), b, k〉, mb) ρ, σ ` ae ⇓ actor(act, ρ′)
ρ, σ ` ae′ ⇓ v ς′ = 〈wait, beh(act, ρ′[x 7→ a]), k0〉
a = alloc(x, σ) p′ = palloc(ς′, π) x = var(act)

π, σ, Ξ
c(p′,ς′)

p
π[p 7→ (〈val(pid(p′)), b, k〉, mb), p′ 7→ (ς′, empty)], σ[a 7→ v], Ξ

Create

π(p) = (〈ev((become ae ae′), ρ), b, k〉, mb)
ρ, σ ` ae ⇓ actor(act, ρ′) ρ, σ ` ae′ ⇓ v

b′ = beh(act, ρ′[x 7→ a]) x = var(act) a = alloc(x, σ)

π, σ, Ξ
b(b′,v)

p π[p 7→ (〈wait, b′, k〉, mb)], σ[a 7→ v], Ξ
Become

Figure 2.24.: Actor management transitions rules for λα.

Messages transitions. Figure 2.25 depicts the transition rules for messages in λα. To
evaluate a send construct, the transition relation evaluates its first argument to the target
actor’s process identifier using atomic evaluation, evaluates the message argument using
atomic evaluation, adds the message to the mailbox of the target actor, and generates
the corresponding snd communication effect (rule Send). Note that the actor sending
the message might also be the actor receiving the message. This is accounted for in

32

2.2. The Actor Model: λα

the enqueuing of messages by first updating the control component of the process p
sending the message without modifying its mailbox mb, resulting in a process map π′,
and only then updating the mailbox mb′ of the target process p′ separately. This rule
can therefore apply if p and p′ are different as well as if they correspond to the same
process.

An actor that starts processing a message extracts the received message from its mail-
box through function deq, selects the handler corresponding to the tag of the received
message, binds the parameter of the handler to the received value, and proceeds by
evaluating the handler body, generating a prc communication effect (rule Process). If
the mailbox of an actor is empty, deq returns an empty set and rule Process cannot apply.
This rule models the execution of actors that are in a waiting state and poll their mailbox
until a message can be processed.

λα

π(p) = (〈ev((send ae t ae′), ρ), b, k〉, mb) ρ, σ ` ae ⇓ pid(p′)
π′ = π[p 7→ (〈val(v), b, k〉, mb)] π′(p′) = (ς, mb′) ρ, σ ` ae′ ⇓ v

π, σ, Ξ
snd(p′,t,v)

p π′[p′ 7→ (ς, enq((t, v), mb′))], σ, Ξ
Send

π(p) = (〈wait, beh(act, ρ), k〉, mb){
((t, v), mb′)

}
= deq(mb) (y, e) = handler(act, t) a = alloc(y, σ)

π, σ, Ξ
prc(t,v)

p
π[p 7→ (〈ev(e, ρ[y 7→ a]), beh(act, ρ), k〉, mb′)], σ[a 7→ v], Ξ

Process

Figure 2.25.: Message transitions for λα.

Process Identifiers

Figure 2.26 depicts the process identifiers for λα. Allocation of process identifiers is
performed by the palloc function, which takes as argument the actor state ς of the created
actor, and the current process map π. A straightforward process identifier allocation
strategy in a concrete setting is to represent process identifiers as natural numbers and
to allocate them by generating the lowest available process identifier. The size of the
process map (|π|) only increases during the program execution.

λα

p ∈ PID = N palloc(ς, π) = |π|

Figure 2.26.: Process identifiers for λα.

33

2. Introduction to Abstract Interpretation of Concurrent Programs

Injection Function

The injection function depicted in Figure 2.27 injects the program to evaluate into an
initial process map containing only the main actor, associated with the initial process
identifier p0. The main actor evaluates the expression representing the program and has
an empty mailbox.

λα

I(e) = [p0 7→ (〈ev(e, []), main, k0〉, empty)]

Figure 2.27.: Injection function for λα.

Collecting Semantics

The collecting semantics is similar to the one for λ0 programs, and is defined by the
transfer function depicted in Figure 2.28. States explored by the transfer function are
tuples 〈π, σ, Ξ〉 containing a process map π encoding multiple actor states, a value store σ

and a continuation store Ξ, henceFλα
e : P(Π× Store×KStore) → P(Π× Store×KStore).

The initial injected state is reachable (1), and any state resulting from the application of
a a transition for any running actor on a reachable state is also reachable in the collecting
semantics (2). We use p here as notation for a transition that may generate any effect
or no effect.

λα

Fλα
e (S) = {(I(e), [], [k0 7→ ε])} (1)

∪
⋃

(π,σ,Ξ)∈S
p∈dom(π)

π,σ,Ξ pπ′,σ′,Ξ′

(π′, σ′, Ξ′) (2)

Figure 2.28.: Transfer function for λα.

2.2.4. Abstract Semantics of λα

We naively apply the AAM design method to λα, in order to systematically abstract in
a sound manner its semantics to enable static analysis of λα programs. This process is
analogous to the one for λ0, rendering the infinite components of the state space finite.
In this case, infinite components are not only addresses (Addr and KAddr), but also
process identifiers (PID) and mailboxes (Mbox). These changes propagate through the
state space and transition relation.

34

2.2. The Actor Model: λα

Abstract State Space

The abstraction function used for addresses and process identifiers is a parameter of the
analysis. We also leave the abstraction of the mailbox as a parameter of the analysis, of
which we give an instantiation later in this section. Chapter 5 is dedicated to an in-depth
study of potential mailbox instantiations and their effect on running time and precision.
Figure 2.29 depicts the abstract state space of λα. The abstract process map now maps
to sets of pairs of states and abstract mailboxes. This change stems from the abstract
semantics having to compute a sound over-approximation with but a finite amount of
process identifiers and mailboxes. Other components (store, continuation store, values)
and dotted parts of the state space follow the same abstraction as for λ0, as described in
Section 2.1.3.

λα

π̂ ∈ Π̂ = P̂ID → P(Σ̂ × M̂box)

ς̂ ∈ Σ̂ = Ĉontrol × B̂eh × K̂Addr

ĉ ∈ Ĉontrol ::= . . . | wait

v̂ ∈ V̂al ::= . . . | pid(p̂) | actor(act, ρ̂)

b̂ ∈ B̂eh ::= beh(act, ρ̂) | main

m̂b ∈ M̂box an abstraction of concrete mailboxes

m̂ ∈ M̂essage = Tag × V̂al

p̂ ∈ P̂ID a finite set of process identifiers

Figure 2.29.: Abstract state space for λα.

Abstract Mailboxes

There exist multiple ways of abstracting the mailboxes in actor programs, and we refer
to Chapter 5 for a discussion on this matter. In this chapter, we abstract mailboxes
to sets of messages, as depicted in Figure 2.30. The empty mailbox is the empty set.
Enqueuing a message in a mailbox consists of performing a set union between the
mailbox and a singleton set containing the enqueued message. Dequeuing a message
from a mailbox returns two possible results for each message to ensure soundness, as
sets do not preserve information about the multiplicity of their elements: either the
message is contained more than once in the concrete mailbox abstracted by the set and
it is still contained in the mailbox after dequeuing, or the message is contained only once
in the concrete mailbox that the set abstracts and is removed from the resulting mailbox.
The \ operator performs a set difference operation (see Appendix A). As sets do not
preserve the ordering information of their elements, any of the messages contained in
the set abstracting the mailbox may be dequeued. The size of the empty mailbox is 0,

35

2. Introduction to Abstract Interpretation of Concurrent Programs

and the size of any other mailbox is approximated to ∞ as there is no information on
the number of messages contained in the mailbox.

λα

m̂b ∈ M̂box = P(M̂essage)

êmpty = ∅

ênq(m̂, m̂b) = m̂b ∪ {m̂}

d̂eq(m̂b) =
{
(m̂, m̂b), (m̂, m̂b \ {m̂}) | m̂ ∈ m̂b

}
ŝize(∅) = 0

ŝize(m̂b) = ∞

Figure 2.30.: Abstract mailboxes for λα.

Abstract Communication Effects

The domain of communication effects preserves the same structure under abstraction,
as depicted in Figure 2.31. Abstract domains are however used instead of concrete ones.

λα

êff ∈ Êffect ::= c(p̂, ς̂) | snd(p̂, t, v̂) | prc(t, v̂) | b(b̂, v̂)

Figure 2.31.: Abstract communication effects for λα.

Abstract Atomic Evaluation

Atomic evaluation is abstracted in the same way as for λ0, and is depicted in Figure 2.32.
We give here the abstracted Actor rule for atomic evaluation of actor definitions, which
preserves the same structure as the concrete rule.

λα

ρ̂, σ̂ ` b̂ ⇓̂ actor(act, ρ̂)
Actor

Figure 2.32.: Abstract atomic evaluation relation for λα.

Transitions

The abstract transition relation rules, acting on components of the abstract state space,
are adapted to account for the changes in the state space resulting from abstraction.

36

2.2. The Actor Model: λα

These changes arise due to sound over-approximation. We highlight the differences
with the concrete rules graphically and explain them.

The process map π̂ now maps each process identifier to a set of pairs of an actor state
and a mailbox. Hence the premise π(p) = (ς, mb) has to be adapted to π̂(p̂) 3 (ς̂, m̂b).
This introduces non-determinism when one abstract process identifier is mapped to
more than one abstract actor state. For the same reason, and because the store now maps
each abstract address to a set of values, process map updates and store updates become
join operations: π[p 7→ . . .] becomes π̂ t [p̂ 7→ {. . .}]. The resulting loss in precision can
be mitigated by incorporating abstract counting in the abstracted semantics (Might and
Shivers, 2006; Might and Van Horn, 2011). Abstract counting enables performing strong
updates, i.e. regular updates instead of joins, on the store and process map when an
abstract address or an abstract process identifier is mapped to a single element. We do
use abstract counting on the process map for improved precision in our implementation.

Sequential Transitions. The abstract sequential rule depicted Seq in Figure 2.33 states
that if an abstract sequential transition (↪̂→) applies for a process p̂, then the corre-
sponding concurrent transition can apply. It also accounts for the changes induced by
abstraction.

λα

π̂(p̂) 3 (ς̂, m̂b) ς̂, σ̂, Ξ̂ ↪̂→ ς̂′, σ̂′, Ξ̂′

π̂, σ̂, Ξ̂ p̂ π̂ t [p̂ 7→
{
(ς̂′, m̂b)

}
], σ̂′, Ξ̂′

Seq

Figure 2.33.: Abstract transition relation rules for sequential transitions of λα.

Actor Management Transitions. The actor management transitions adhere to the
changes following from abstraction, and are depicted in Figure 2.34. Note the fact that a
created process is joined into the process map, together with the empty mailbox, and not
just added to it. This is to ensure that, because the number of abstract process identifiers
is finite, if a newly created process uses a pre-existing process identifier, it does not
overwrite the local state of the already existing process.

37

2. Introduction to Abstract Interpretation of Concurrent Programs

λα

π̂(p̂) 3 (〈ev((create ae ae′), ρ̂), b̂, k̂〉, m̂b) ρ̂, σ̂ ` ae ⇓̂ actor(act, ρ̂′)

ρ̂, σ̂ ` ae′ ⇓̂ v̂ ς̂′ = 〈wait, beh(act, ρ̂′[x 7→ â]), k̂0〉
â = âlloc(x, σ̂) p̂′ = p̂alloc(ς̂′, π̂) x = var(act)

π̂, σ̂, Ξ̂
c(p̂′,ς̂′)

p̂

π̂ t [p̂ 7→
{
(〈val(pid(p̂′)), b̂, k̂〉, m̂b)

}
, p̂′ 7→

{
(ς̂′, êmpty)

}
], σ̂ t [â 7→ v̂], Ξ̂

Create

π̂(p̂) 3 (〈ev((become ae ae′), ρ̂), b̂, k̂〉, m̂b)
ρ̂, σ̂ ` ae ⇓̂ actor(act, ρ̂′) ρ̂, σ̂ ` ae′ ⇓̂ v̂

b̂′ = beh(act, ρ̂′[x 7→ â]) x = var(act) â = âlloc(x, σ̂)

π̂, σ̂, Ξ̂
b(b̂′,v̂)

p̂ π̂ t [p̂ 7→
{
(〈wait, b̂′, k̂〉, m̂b)

}
], σ̂ t [â 7→ v̂], Ξ̂

Become

Figure 2.34.: Abstract transition relation rules for actor management of λα.

Messages Transitions. The abstract message transition relations depicted in Figure 2.35
account for abstraction in a similar manner. Note that the d̂eq function returns a set of
pairs of abstract messages and mailboxes, which is accounted for by the Process rule
through a set membership operation.

λα

π̂(p̂) 3 (〈ev((send ae t ae′), ρ̂), b̂, k̂〉, m̂b)
ρ̂, σ̂ ` ae ⇓̂ pid(p̂′) π̂′ = π̂ t [p̂ 7→

{
(〈val(v̂), b̂, k̂〉, m̂b)

}
]

π̂′(p̂′) 3 (ς̂, m̂b
′
) ρ̂, σ̂ ` ae′ ⇓̂ v̂

π̂, σ̂, Ξ̂
snd(p̂′,t,v̂)

p̂ π̂′ t [p̂′ 7→
{
(ς̂, ênq((t, v̂), m̂b

′
))
}
], σ̂, Ξ̂

Send

π̂(p̂) 3 (〈wait, beh(act, ρ̂), k̂〉, m̂b)
((t, v̂), m̂b

′
) ∈ d̂eq(m̂b) (y, e) = handler(act, t) â = âlloc(y, σ̂)

π̂, σ̂, Ξ̂
prc(t,v̂)

p̂

π̂ t [p̂ 7→
{
(〈ev(e, ρ̂[y 7→ â]), beh(act, ρ̂), k̂〉, m̂b

′
)
}
], σ̂[â 7→ v̂], Ξ̂

Process

Figure 2.35.: Abstract transition rules for messages in λα.

38

2.2. The Actor Model: λα

Abstract Process Identifiers

We use a context-insensitive abstraction for process identifiers. Abstract process identi-
fiers, as depicted in Figure 2.36, are therefore composed of only the initial behavior of the
process they correspond to. Figure 2.37 represents the actor topology for Listing 2.1, as
inferred by an analysis using such an abstraction for process identifiers: all the concrete
cust actors are mapped to a single abstract actor.

The instantiation of this parameter influences the precision, but not the soundness of
an analysis, as the AAM design method has been proven sound under any allocation
strategy (Might and Manolios, 2009; Gilray et al., 2016a). Other instantiations of abstract
process identifiers are orthogonal to the issues addressed in this dissertation but are
identified as potential future work and discussed in Chapter 7. Introducing a form of
process-sensitivity, where the process identifier of a created process would inherit part
of the history of the program’s execution (e.g., the last k created processes), could lead
to improved precision.

λα

P̂ID = B̂eh p̂alloc(〈_, b, _〉, _) = b

Figure 2.36.: Abstract process identifiers for λα.

main

disp

fact

cust(Int)

compute(n)

result(Int)

result(Int)
result(Int)

Figure 2.37.: An over-approximation of the actor topology represented in Figure 2.16. Actors de-
noted bydisp andcust respectively denote actors with behaviorsdisplayer-actor
and customer-actor.

Abstract Injection Function

The abstract injection function, depicted in Figure 2.38 accounts for the fact that the
process map now maps to pairs of which the first element has become a set of process
states.

39

2. Introduction to Abstract Interpretation of Concurrent Programs

λα

Î(e) = [p̂0 7→ (
{
〈ev(e, []), main, k̂0〉

}
, êmpty)]

Figure 2.38.: Abstract injection function for λα.

Abstract Collecting Semantics

The abstract collecting semantics now uses the abstract domains instead of the concrete
ones. The fixed point of the abstract transfer function depicted in Figure 2.39, lfp(F̂λα

e),
is a set containing all the program states reachable in any execution of program e, under
any possible interleaving. Using this formulation of the abstract collecting semantics,
a communication topology analysis (Colby, 1995; Martel and Gengler, 2000) can be
derived by recording the communication effects that are generated by the transitions
explored. We use p here as notation for a transition that may generate any effect or
no effect. Our implementation performs a further store widening abstraction (Van Horn
and Might, 2010), using P(Π̂)× Ŝtore × K̂Store as the domain for the transfer function.
The domain of the transfer function contains a powerset of process maps, rendering the
height of the lattice P(Π̂)× Ŝtore × K̂Store exponential. This means that in the worst
case, the analysis will iterate an exponential number of times. Therefore, the worst-case
time complexity of the resulting analysis is exponential, i.e., O(2|Exp|).

λα

F̂λα
e (S) =

{
(Î(e), [], [k̂0 7→ ε])

}
(1)

∪
⋃

(π̂,σ̂,Ξ̂)∈S
p̂∈dom(π̂)

π̂,σ̂,Ξ̂ p̂ π̂′,σ̂′,Ξ̂′

(π̂′, σ̂′, Ξ̂′) (2)

Figure 2.39.: Abstract transfer function for λα.

2.2.5. Soundness and Termination

Theorems 3 and 4 state that the analysis described by the abstract collecting semantics
terminates and is sound, two crucial properties for a static analysis.

Theorem 3 (Soundness). lfp(F̂λα
e) is a sound over-approximation of lfp(Fλα

e).

Proof. The proof is detailed in Appendix B.1.2 and performs a case analysis on the
transition rules. It relies on Theorem 1 to show that the rule Seq is sound, and shows
that the concurrent transitions are sound.

Theorem 4 (Termination). The computation of lfp(F̂λα
e) always terminates.

40

2.3. Threads and Shared Memory: λτ

Proof. The proof is detailed in Appendix B.1.2 and follows the same structure as the
proof for Theorem 2: F̂λα

e is a monotone transfer function, (P(Σ̂ × Ŝtore × K̂Store),v) is
a finite lattice, hence by Tarski’s fixed-point theorem (Tarski, 1955), the analysis always
terminates.

2.3. Threads and Shared Memory: λτ

We formalize a multi-threaded extension to λ0, inspired by threads as they are imple-
mented in SML (Cooper and Morrisett, 1990) and OCaml (Leroy et al., 2008), where
mutable shared memory is represented through mutable references that can be protected
through some form of locking. We present this extension in a similar manner as for λα:
we present an overview of this extension, formalize its syntax, its concrete semantics
and its abstract semantics.

2.3.1. Overview of Threads and Shared Memory

The shared-memory concurrency model targeted in this dissertation is an extension to
the λ0 language, in which we introduce support for multi-threading, support for side
effects to mutable references, and support for delineating critical sections through locks.

Creating and Joining Threads

Threads can be created, or spawned, in λτ through the spawn construct, which creates a
new thread to execute the expression given as argument. The resulting value is a process
identifier that can be used to refer to the newly created thread. Thejoin construct enables
blocking a thread until the thread of which the process identifier is given as argument
finishes its execution. The resulting value is the value returned by the joined thread.

The following snippet evaluates the expression (+ 1 2) in a separate thread, and
waits for this computation to terminate. The final value of this snippet is therefore 3.

1 (define t (spawn (+ 1 2)))
2 (join t)

Shared State

State can be shared among threads through shared mutable references. References can
be created using the ref construct, which boxes the value of its given expression inside a
reference. References can be read using the deref construct which returns the content of
the reference, and written to using the ref-set! construct, which updates the content
of the reference to a new value. This is illustrated by the following snippet. At line
1, a reference x is created and holds the value 0. The assertion at line 2 shows that
accessing the contents of the reference yields the value 0. Line 3 increments the contents
of reference x. The assertion at line 4 shows that the updated reference holds the value
1.

41

2. Introduction to Abstract Interpretation of Concurrent Programs

1 (define x (ref 0))
2 (assert (= 0 (deref x)))
3 (ref-set! x (+ (deref x) 1))
4 (assert (= 1 (deref x)))

The choice of using references instead of introducing variables that are mutable
through the set! construct of Scheme is to ensure that programs written in λτ can profit
from shared mutable state that can be passed along function calls, thereby modeling
a call-by-reference mechanism. This is not possible with set!, which cannot mutate
variables outside of their scope. Doing so in Scheme requires for example to box mutable
values in a cons cell, and to use set-car!. References introduced with ref avoid this
unpleasant necessity. Moreover, this has the advantage of syntactically denoting mutable
state, thereby improving program comprehension: variables are always immutable, and
references are always mutable.

Note that the names may remind of refs in Clojure, but this is a different concept.
References in our language are simply mutable boxes, while in Clojure they are part of
an implementation of software transactional memory (Hickey, 2008).

Locks

Locks are used to protect critical sections of a program from race conditions. A lock
can be created through the new-lock construct, which takes no argument. A lock is
acquired by a thread through the acquire construct unless the lock is currently held by
another thread. If a thread uses acquire to acquire a lock, and the lock is already held
by another thread, the first thread will block until the lock is released by the second one
and becomes available. A lock can be released through the release construct by the
thread that acquired it.

Preventing Race Conditions with Locks

Consider the situation represented in Figure 2.40, which represents two possible in-
terleavings of a program in which two threads perform the (ref-set! x (+ (deref
x) 1)) operation concurrently, with the goal of incrementing the value contained in
reference x twice. Suppose the initial value of x is 0. If thread t1 reads the contents of
reference x first, and thread t2 then reads the contents of reference x (left-hand side of
the depicted situation), both threads see the same value of the reference, and the update
to the reference from within one thread will overwrite the update from within the other
thread. On the other hand, and this is the desired behavior, if thread t1 reads from and
writes to the reference before thread t2 reads the contents of the reference (right-hand
side), the contents of x is incremented twice.

Locks make it possible to avoid race conditions by delineating a critical section in the
code. The idea is to acquire a lock before entering the critical section and releasing it
afterwards. For example, no more than one thread can execute line 5 of the following
snippet at any given time. Replacing uses of (ref-set! x (+ (deref x) 1)) by calls
to inc in the previous example eliminates the race condition.

42

2.3. Threads and Shared Memory: λτ

t1: (ref-set! x (+ (deref x) 1))
t2: (ref-set! x (+ (deref x) 1))

t1: (ref-set! x (+ 0 1))
t2: (ref-set! x (+ deref x) 1)

t1: (ref-set! x (+ 0 1))
t2: (ref-set! x (+ 0 1))

t1: 1
t2: (ref-set! x (+ (deref x) 1))

t1: 1
t2: (ref-set! x (+ 0 1))

t1: 1
t2: (ref-set! x (+ 1 1))

t1: 1
t2: 1

t1: 1
t2: 2

t1

t2 t1

t1 t2

t2 t2

Figure 2.40.: Race condition caused by two concurrent reads and writes to a mutable reference
shared between two threads. Nodes denote program states, showing the expression
evaluated by the threads (ti : e), or the value reached by the threads (ti : v). Edges
denote threads transitioning, and are annotated with the identifier of the thread
that transitions.

1 (define lock (new-lock))
2 (define x (ref 0))
3 (define (inc)
4 (acquire lock)
5 (ref-set! x (+ (deref x) 1))
6 (release lock))

Example Multi-Threaded Program

We give a more involved example multi-threaded program for the computation of a
factorial computation in Listing 2.2. The number of threads created in this program
depends on the input given by the user. Consider a concrete execution when 3 is given
as input.

• The main thread creates a thread to compute (fact-thread 1 3) and joins this
new thread (line 10).

• The thread executing (fact-thread 1 3) creates two threads: one executing
(fact-thread 1 1) and one executing (fact-thread 2 3), and joins these cre-
ated threads to multiply their results (lines 6 to 8).

• The thread executing (fact-thread 1 1) returns 1 (line 3).

• The thread executing (fact-thread 2 3) returns 6 (line 4).

43

2. Introduction to Abstract Interpretation of Concurrent Programs

• The blocking join operation can now return the value of the threads, and(fact-thread
1 3) returns 6, which is printed to the screen.

The topology resulting from this concrete run of the program is represented in Fig-
ure 2.41.

1 (define (fact-thread from to)
2 (case (- to from)
3 ((0) from)
4 ((1) (* from to))
5 (else (let ((middle (+ from (/ (- to from) 2)))
6 (t1 (spawn (fact-thread from (- middle 1))))
7 (t2 (spawn (fact-thread middle to))))
8 (* (join t1) (join t2))))))
9 (define (fact n)

10 (printf "fact(~a)␣=␣~a~n" n (join (spawn (fact-thread 1 n)))))
11 (fact (read-integer))

Listing 2.2: Concurrent computation of the factorial of a number resulting from user input.

main (fact-thread 1 3)

(fact-thread 1 1)

(fact-thread 2 3)

Figure 2.41.: Representation of a concrete execution of Listing 2.2 with 3 as input.

2.3.2. Syntax of λτ

Figure 2.42 depicts the syntax of λτ. The semantics of λτ extend λ0 with support for the
following shared-memory multi-threading concepts.

1. Thread creation and joining. Threads can be created to compute an expression
in a different process through the spawn construct, and a thread can join another
thread to obtain the final value of the computation performed by this other thread
through the join construct. The latter is a blocking operation.

2. Mutable references. We introduce mutable references into the language. Refer-
ences can be created through the ref construct, which wraps its argument value
into a reference. References hold a value that can be read through the deref
construct or that can be modified through the ref-set! construct.

3. Locks. We introduce locks to delineate critical sections in multi-threaded programs
so that race conditions can be avoided. Locks can be created through the new-lock
construct, returning a new lock. A lock can be acquired by a thread through the
acquire construct, and released through the release construct. Only the thread
that acquired a lock can release it. If a thread tries to acquire a lock already held
by another thread, the requesting thread blocks until the lock is released.

44

2.3. Threads and Shared Memory: λτ

λτ
e ∈ Exp ::= . . .

| (spawn e) | (join ae)
| (ref ae) | (deref ae) | (ref-set! ae ae)
| (new-lock) | (acquire ae) | (release ae)

Figure 2.42.: Syntax of λτ .

2.3.3. Concrete Semantics of λτ

We provide the concrete semantics of λτ as an extension to the concrete semantics of λ0.

State Space

The state space for λτ is depicted in Figure 2.43. States of λτ processes (ς) are identical
to states for λ0 programs: a pair of a control component and a continuation address.
Process maps (π) map process identifiers to process states. For thread management,
process identifiers are first-class values (pid) returned by spawn, and accepted by join.
References and locks are also first-class values. A reference ref(a) wraps an address a
at which the value of the reference resides in the store. A lock lock(a) also wraps an
address. The value pointed to by the address is a lock value, which can either correspond
to an acquired lock, containing the process identifier of the process that holds the lock
(locked(p)), or to a released lock (unlocked). These lock values (locked and unlocked)
are not first-class values as they are not returned by any construct, but are used internally
when accessing locks.

λτ
ς ∈ Σ = Control × KAddr

π ∈ Π = PID → Σ
v ∈ Val ::= . . .

| pid(p) | ref(a)
| lock(a) | locked(p) | unlocked

p ∈ PID a set of process identifiers

Figure 2.43.: State space for λτ .

Communication Effects

Multi-threaded λτ programs can generate three kinds of communication effects, de-
picted in Figure 2.44: process-related effects, memory access effects, and lock access
effects. Process-related effects comprise the creation of a process (c(p, ς)) with process

45

2. Introduction to Abstract Interpretation of Concurrent Programs

identifier p and initial state ς, and the join on a process p which has terminated its
execution with value v (j(p, v)). Memory access effects are either read accesses (r(a)), or
write accesses (w(a)), and act on a specific address a. Similarly, lock access effects are
either acquire accesses (acq(p, a)) or release accesses (rel(p, a)), act on a specific lock
address a, and include the process identifier p of the thread performing the access.

λτ
eff ∈ Effect ::= c(p, ς) | j(p, v)

| r(a) | w(a)
| acq(p, a) | rel(p, a)

Figure 2.44.: Communication effects for λτ .

Transition Relation

The semantics of λτ programs is defined by the concurrent transition relation (p),
annotated with the process identifier p of the thread performing the transition. This
transition relation acts on process maps, value stores and continuation stores, and a
transition is denoted as π, σ, Ξ p π′, σ′, Ξ′. The transition may carry a communication

effect, written eff
p.

Sequential transitions. Figure 2.45 depicts the transition relation rule for sequential
transitions for λτ. Just as for λα, λτ relies on the sequential transition of λ0 to encode
the semantics of the sequential subset of the language through the Seq rule. No effects
are generated for this transition rule.

λτ

π(p) = ς ς, σ, Ξ ↪→ ς′, σ′, Ξ′

π, σ, Ξ p π[p 7→ ς′], σ′, Ξ′ Seq

Figure 2.45.: Transition relation rule for sequential transitions for λτ .

Thread management. Figure 2.46 depicts the rules for thread management transitions
for λτ. For the spawn construct, the Spawn transition rule creates a new process state ς′

that is added to the process map, generates a c(p, ς) communication effect where p is
the process identifier of the thread created, and ς is the initial state of the created thread.
The thread performing the spawn operation proceeds to a value state with the process
identifier of the created thread as value. When a thread joins another thread p′, it can
only advance its execution when thread p′ has reached the end of its own execution,
i.e., when p′ has reached a state with a value for its control component and k0 for its

46

2.3. Threads and Shared Memory: λτ

continuation address. If this is the case, the thread performing the join can proceed and
reaches a value state wrapping the value of the terminated thread (rule Join).

λτ

π(p) = 〈ev((spawn e), ρ), k〉 ς′ = 〈ev(e, ρ), k0〉 p′ = palloc(ς′, π)

π, σ, Ξ
c(p′,ς′)

p π[p 7→ 〈val(pid(p′)), k〉, p′ 7→ ς′], σ, Ξ
Spawn

π(p) = 〈ev((join ae), ρ), k〉 ρ, σ ` ae ⇓ pid(p′) π(p′) = 〈val(v), k0〉

π, σ, Ξ
j(p′,v)

p π[p 7→ 〈val(v), k〉], σ, Ξ
Join

Figure 2.46.: Transition relation rules for thread management for λτ .

References. Figure 2.47 depicts the rules for references for λτ. The transition rule for
the ref construct allocates a new address using the alloc allocation function and returns
a reference bound to that address (rule Ref). The transition rule for the deref construct
looks up the value in the store at the address a wrapped by the reference, and generates
a communication effect r(a) (rule Deref). The transition rule for the ref-set! construct
updates the value in the store residing at address a wrapped by the reference, and
generates a communication effect w(a) (rule RefSet).

λτ

π(p) = 〈ev((ref ae), ρ), k〉 a = alloc(ae, σ) ρ, σ ` ae ⇓ v
π, σ, Ξ p π[p 7→ 〈val(ref(a)), k〉], σ[a 7→ v], Ξ

Ref

π(p) = 〈ev((deref ae), ρ), k〉 ρ, σ ` ae ⇓ ref(a) v = σ(a)

π, σ, Ξ
r(a)

p π[p 7→ 〈val(v), k〉], σ, Ξ
Deref

π(p) = 〈ev((ref-set! ae ae′), ρ), k〉
ρ, σ ` ae ⇓ ref(a) ρ, σ ` ae′ ⇓ v

π, σ, Ξ
w(a)

p π[p 7→ 〈val(v), k〉], σ[a 7→ v], Ξ
RefSet

Figure 2.47.: Transition relation rules for references for λτ .

Locks. Figure 2.48 depicts the rules for locks for λτ. Rule NewLock creates a new lock
by allocating a new address in the store and associating it to the unlocked value. Rule
Acquire sets an unlocked lock to a locked(p) value where p is the process identifier
of the thread acquiring the lock. This operation generates an acq(p, a) communication

47

2. Introduction to Abstract Interpretation of Concurrent Programs

effect. Rule Release changes the value of a lock to unlocked, provided the lock was
acquired by the same process p, and generates a rel(p, a) communication effect.

λτ

π(p) = 〈ev((new-lock), ρ), k〉 a = alloc((new-lock), σ)

π, σ, Ξ p π[p 7→ 〈val(lock(a)), k〉], σ[a 7→ unlocked], Ξ
NewLock

π(p) = 〈ev((acquire ae), ρ), k〉
ρ, σ ` ae ⇓ lock(a) σ(a) = unlocked

π, k, σ, Ξ
acq(p,a)

p π[p 7→ 〈val(lock(a)), k〉], σ[a 7→ locked(p)], Ξ
Acquire

π(p) = 〈ev((release ae), ρ), k〉
ρ, σ ` ae ⇓ lock(a) σ(a) = locked(p)

π, σ, Ξ
rel(p,a)

p π[p 7→ 〈val(lock(a)), k〉], σ[a 7→ unlocked], Ξ
Release

Figure 2.48.: Transition relation rules for locks for λτ .

Injection Function

The injection function for λτ programs, depicted in Figure 2.49, injects the program to
evaluate in a process map containing an initial process with process identifier p0, that
evaluates the expression e corresponding to the program.

λτ

I(e) = [p0 7→ 〈ev(e, []), k0〉]

Figure 2.49.: Injection function for λτ .

Process Identifiers

Process identifiers, depicted in Figure 2.50, use the same concrete definitions as for λα

programs. They are represented by integers, and the next available process identifier is
returned for the concrete semantics. Note that the size of the process map only increases
during the program execution, as terminated process are not removed from the process
map.

48

2.3. Threads and Shared Memory: λτ

λτ

p ∈ PID = N palloc(ς, π) = |π|

Figure 2.50.: Process identifiers for λτ .

Collecting Semantics

The collecting semantics is defined similarly to the collecting semantics for λ0 (Figure 2.8)
and λα (Figure 2.28), as the fixed point of a transfer function Fλτ

e : P(Π × Store ×
KStore) → P(Π × Store×KStore), depicted in Figure 2.51. This transfer function acts on
tuples consisting of a process map, a value store and a continuation store. The initial
injected state is reachable (1), and any state that can be reached in one step on any
process from a reachable state is itself reachable (2). We use p here as notation for a
transition that may generate any effect or no effect.

λτ

Fλτ
e (S) = {(I(e), [], [k0 7→ ε])} (1)

∪
⋃

(π,σ,Ξ)∈S
p∈dom(π)

π,σ,Ξ pπ′,σ′,Ξ′

(π′, σ′, Ξ′) (2)

Figure 2.51.: Transfer function for λτ .

2.3.4. Abstract Semantics of λτ

We apply the AAM design method to the concrete semantics of λτ, as we did for λα.
Process identifiers are rendered finite, as are value addresses and continuation addresses.
These changes propagate through the abstract state space and transition relation.

Abstract State Space

Figure 2.52 depicts the abstract state space for λτ. The abstraction for the state space
renders the sets of abstract process identifiers and abstract addresses finite. The range
of abstract process maps π̂ becomes a powerset of states to account for the possibility of
multiple process states being mapped to the same process identifier under abstraction.
With the exception of the stores which are abstracted similarly to the abstraction in λ0
(see Section 2.1.3), the remainder of the state space remains structurally the same.

49

2. Introduction to Abstract Interpretation of Concurrent Programs

λτ

π̂ ∈ Π̂ = P̂ID → P(Σ̂)

v̂ ∈ V̂al ::= . . .
| pid(p̂) | ref(â)
| lock(â) | locked(p̂) | unlocked

p̂ ∈ P̂ID a finite set of process identifiers

Figure 2.52.: Abstract state space for λτ .

Abstract Communication Effects

Figure 2.53 depicts the abstract communication effects for λτ. The communication effects
preserve their structure under abstraction, but now contain abstract elements instead of
concrete ones.

λτ

êff ∈ Êffect ::= c(p̂, ς̂) | j(p̂, v̂)
| r(â) | w(â)
| acq(p̂, â) | rel(p̂, â)

Figure 2.53.: Abstract communication effects for λτ .

Abstract Atomic Evaluation

The atomic evaluation relation is abstracted just as for the abstract interpretation of λ0.
As the rules are identical to the ones depicted in Figure 2.11, we do not repeat them
here.

Abstract Transition Relation

Adapting the transition relation rules to the abstract state space requires changing how
the process map is accessed and updated. Abstract process maps now map to sets of
process states. Accessing the state of a thread with process identifier p is therefore
changed from ς = π(p) to ς̂ ∈ π̂(p̂). This is similar to accesses to the process map
in the semantics of λα (Figures 2.33 to 2.35). For integrating new information into the
process map, a join operation (t) is used rather than an in-place update. This to ensure
soundness. Joins are also used on value stores and continuation stores for the same
reason.

Sequential transitions. The abstract sequential transition, depicted in Figure 2.54,
follows the changes made to the abstract state space. Note the use of a membership

50

2.3. Threads and Shared Memory: λτ

operation when extracting a process state from the process map, as more than one
process state may be associated with a single abstract process identifier. The use of the
join operation on the process map to update a process state is of note too.

λτ

π̂(p̂) 3 ς̂ ς̂, σ̂, Ξ̂ ↪̂→ ς̂′, σ̂′, Ξ̂′

π̂, σ̂, Ξ̂ p̂ π̂ t [p̂ 7→
{

ς̂′
}
], σ̂′, Ξ̂′ Seq

Figure 2.54.: Abstract rules for sequential transitions for λτ .

Thread management. The rules for thread management, depicted in Figure 2.55, sim-
ilarly follow the changes to the state space induced by abstraction.

λτ

π̂(p̂) 3 〈ev((spawn e), ρ̂), k̂〉 ς̂′ = 〈ev(e, ρ̂), k̂0〉 p̂′ = p̂alloc(ς̂′, π̂)

π̂, σ̂, Ξ̂
c(p̂′,ς̂′)

p̂ π̂ t [p̂ 7→
{
〈val(pid(p̂′)), k̂〉

}
, p̂′ 7→

{
ς̂′
}
], σ̂, Ξ̂

Spawn

π̂(p̂) 3 〈ev((join ae), ρ̂), k̂〉 ρ̂, σ̂ ` ae ⇓̂ pid(p̂′) π̂(p̂′) 3 〈val(v̂), k̂0〉

π̂, σ̂, Ξ̂
j(p̂,v̂)

p̂ π̂ t [p̂ 7→
{
〈val(v̂), k̂〉

}
], σ̂, Ξ̂

Join

Figure 2.55.: Abstract rules for thread management transitions for λτ .

References. Rules for references, depicted in Figure 2.56, similarly follow the changes
to the state space induced by abstraction.

51

2. Introduction to Abstract Interpretation of Concurrent Programs

λτ

π̂(p̂) 3 〈ev((ref ae), ρ̂), k̂〉 â = âlloc(ae, σ̂) ρ̂, σ̂ ` ae ⇓̂ v̂

π̂, σ̂, Ξ̂ p̂ π̂ t [p̂ 7→
{
〈val(ref(â)), k̂〉

}
], σ̂ t [â 7→ v̂], Ξ̂

Ref

π̂(p̂) 3 〈ev((deref ae), ρ̂), k̂〉 ρ̂, σ̂ ` ae ⇓̂ ref(â) v̂ ∈ σ̂(â)

π̂, σ̂, Ξ̂
r(â)

p̂ π̂ t [p̂ 7→ 〈val(v̂), k̂〉], σ̂, Ξ̂
Deref

π̂(p̂) 3 〈ev((ref-set! ae ae′), ρ̂), k̂〉
ρ̂, σ̂ ` ae ⇓̂ ref(â) ρ̂, σ̂ ` ae′ ⇓̂ v̂

π̂, σ̂, Ξ̂
w(â)

p̂ π̂ t [p̂ 7→ 〈val(v̂), k̂〉], σ̂ t [â 7→ v̂], Ξ̂
RefSet

Figure 2.56.: Abstract rules for references transitions for λτ .

Locks. Rules for locks, depicted in Figure 2.57, similarly follow the changes to the state
space induced by abstraction.

λτ

π̂(p̂) 3 〈ev((new-lock), ρ̂), k̂〉 â = âlloc((new-lock), σ̂)

π̂, σ̂, Ξ̂ p̂ π̂ t [p̂ 7→ 〈val(lock(â)), k̂〉], σ̂ t [â 7→ unlocked], Ξ̂
NewLock

π̂(p̂) 3 〈ev((acquire ae), ρ̂), k̂〉
ρ̂, σ̂ ` ae ⇓̂ lock(â) σ̂(â) 3 unlocked

π̂, k̂, σ̂, Ξ̂
acq(p̂,â)

p̂ π̂ t [p̂ 7→ 〈val(lock(â)), k̂〉], σ̂ t [â 7→ locked(p̂)], Ξ̂
Acquire

π̂(p̂) 3 〈ev((release ae), ρ̂), k̂〉
ρ̂, σ̂ ` ae ⇓̂ lock(â) σ̂(â) 3 locked(p̂)

π̂, σ̂, Ξ̂
rel(p̂,â)

p̂ π̂ t [p̂ 7→ 〈val(lock(â)), k̂〉], σ̂ t [â 7→ unlocked], Ξ̂
Release

Figure 2.57.: Abstract rules for locks transitions for λτ .

Abstract Process Identifiers

As for the abstract semantics of λα programs, we use a context-insensitive abstraction for
process identifiers. Figure 2.58 depicts abstract process identifiers, which are abstracted
to the control component of the initial process state. Allocating a process identifier
therefore amounts to extracting the control component from the given process state.

52

2.3. Threads and Shared Memory: λτ

Figure 2.59 represents the abstract topology inferred with such an allocation strategy
for the factorial computation of Listing 2.2. Exploring more precise process identifier
allocation strategies is an interesting avenue identified as future work, and discussed
in Chapter 7. A context-sensitive allocation strategy could distinguish between threads
evaluating the same expression but created at different points in the execution of a
multi-threaded program.

λτ

p ∈ PID = Control palloc(〈c, _〉, π) = c

Figure 2.58.: Abstract process identifiers for λτ .

main (fact-thread 1 n)

(fact-thread from (- middle 1))

(fact-thread middle to)

Figure 2.59.: Abstraction of the concrete executions of Listing 2.1 where process identifiers are
abstracted as the expression executed within the thread.

Abstract Injection Function

The abstract injection function, depicted in Figure 2.60 accounts for the fact that the
range of the abstract process map is now a powerset of process states.

λτ

Î(e) = [p̂0 7→
{
〈ev(e, [])〉, k̂0

}
]

Figure 2.60.: Abstract injection function for λτ .

Abstract Collecting Semantics

The abstract collecting semantics is derived from the concrete collecting semantics by
substituting abstract for concrete components, and is the result of computing the fixed
point of the transfer function F̂λτ

e : P(Π̂ × Ŝtore × K̂Store) → P(Π̂ × Ŝtore × K̂Store), de-
picted in Figure 2.61. The abstract collecting semantics provides a sound over-approximation
of the set of all reachable states of a multi-threaded program e, under all possible thread
interleavings. We use p̂ here as notation for transitions that may generate any effect
or no effect. Our implementation performs a further store widening abstraction (Van

53

2. Introduction to Abstract Interpretation of Concurrent Programs

Horn and Might, 2010), using P(Π̂)× Ŝtore × K̂Store as domain for the transfer function.
As for λα, the height of the lattice P(Π̂)× Ŝtore × K̂Store is exponential, and the analysis
therefore exhibits an exponential worst-case time complexity, i.e., O(2|Exp|).

λτ

F̂λτ
e (S) =

{
(
{
Î(e)

}
, [], [k̂0 7→ ε])

}
(1)

∪
⋃

(π̂,σ̂,Ξ̂)∈S
p̂∈dom(π̂)

π̂,σ̂,Ξ̂ p̂ π̂′,σ̂′,Ξ̂′

(π̂′, σ̂′, Ξ̂′) (2)

Figure 2.61.: Abstract transfer function for λτ .

2.3.5. Soundness and Termination

Theorems 5 and 6 state that the analysis described by the abstract collecting semantics
terminates and is sound, two crucial properties for a static analysis.

Theorem 5 (Soundness). lfp(F̂λτ
e) is a sound over-approximation of lfp(Fλτ

e).

Proof. The proof is detailed in Appendix B.1.3 and performs a case analysis on the
transition rules. It relies on Theorem 1 to show that the rule Seq is sound, and shows
that the concurrent transitions are sound.

Theorem 6 (Termination). The computation of lfp(F̂λτ
e) always terminates.

Proof. The proof is detailed in Appendix B.1.3 and follows the same structure as the
proof for Theorem 2: F̂λτ

e is a monotone transfer function, (P(Σ̂ × Ŝtore × K̂Store),v) is
a finite lattice, hence by Tarski’s fixed-point theorem (Tarski, 1955), the analysis always
terminates.

2.4. Soundness Testing and Evaluation of Running Time,

Precision, and Scalability

We implemented the analyses resulting from a naive application of AAM described in
this chapter. To empirically evaluate these analyses, we composed a list of 56 benchmark
programs consisting of 28 λα programs and 28 λτ programs. We evaluate the running
time of our implementation of the analyses presented in this chapter on our set of
benchmark programs.

54

2.4. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

2.4.1. Implementation

All of the analyses presented in this dissertation have been implemented on top of the
Scala-AM static analysis framework (Stiévenart et al., 2016b; Stiévenart et al., 2016a)
and are available online along with the benchmark programs used to evaluate them1.
The base sequential language supported by our implementation is not the λ-calculus
variant λ0 in ANF, but rather a large subset of Scheme in direct style with support for
data types such as integers, strings, cons-cells, vectors, and with a number of primitive
operations on these data types (e.g., string-length, cons, car, cdr, make-vector, etc.).
Moreover, the actor constructs introduced in λα are not restricted to messages with one
argument nor to actors with a single state variable, but support any number of message
arguments and actor state variables. Constructs for λτ match the constructs described
in this chapter, but are in direct style rather than in ANF.

Each running time reported in this dissertation is an average of 20 analysis runs after
an initial 10 warmup runs. The warmup runs eliminate the initialization overhead of
the JVM and its JIT compiler, as our static analysis framework is implemented in Scala
and executed on the JVM. We used Scala 2.12.3 and Java 1.8.0_151 on a Linux server
with an Intel Xeon CPU processor running at 3.5GHz and 256GB of RAM, 8GB of which
were allocated for the heap of the JVM, and 200MB of which were allocated for its stack.
We used the same setup for all empirical evaluations in this dissertation.

We also implemented concrete interpreters for concrete versions of λα and λτ, which
record the communication effects that arise during the execution of a program. This en-
ables comparing the result of an analysis that infers the communication effects with the
run-time communication effects that have been recorded, with the aim of demonstrating
the soundness of our implementation, and of measuring its precision empirically.

2.4.2. Benchmark Suite

To assess the precision and performance of our implementation, we used two benchmark
suites of 28 benchmark programs each, one for actor-based programs and one for multi-
threaded programs. The full list of benchmark programs is given in Table 2.1, with their
length in lines of code (LOCs), the number of actor creation sites for actor benchmarks,
i.e., the number of expressions which are calls to create (C), and the number of thread
spawning sites, i.e., the number of expressions which are calls to spawn (S). Note that
at run time, each process creation site may be executed an arbitrary number of times.
Most of the benchmarks actually create a dynamic number of processes depending on a
parameter, not known in advance. These benchmarks therefore expose dynamic process
creation where the number of process created is not known in advance. A static analysis
has to account for all possible values of that parameter. We use these benchmarks

1https://github.com/acieroid/scala-am on the branch modularactors for analyses of actors, and on
the branch modularthreads for analyses of shared-memory multi-threading. Benchmark programs
for actors reside in the actor/savina directory, and benchmark programs for shared-memory multi-
threading reside in the threads/suite directory. Benchmark programs used to evaluate the precision
in Chapter 5 are reside in the actors/soter directory.

55

https://github.com/acieroid/scala-am

2. Introduction to Abstract Interpretation of Concurrent Programs

throughout the dissertation to evaluate the analyses presented.

Actors Threads

Bench. LOCs C Bench. LOCs C Bench. LOCs S Bench. LOCs S

PP 27 2 BTX 61 2 ABP 81 2 TRAPR 78 1
COUNT 29 2 RSORT 60 3 COUNT 55 2 ATOMS 71 1
FJT 38 1 FBANK 143 13 DEKKER 56 2 STM 175 1
FJC 17 1 SIEVE 37 3 FACT 73 4 NBODY 174 1
THR 43 1 UCT 145 4 MATMUL 123 4 SIEVE 71 1
CHAM 81 2 OFL 293 3 MCARLO 38 2 CRYPT 224 1
BIG 52 2 TRAPR 72 2 MSORT 49 2 MCEVAL 145 1
CDICT 67 3 PIPREC 74 2 PC 51 2 QSORT 85 2
CSLL 61 3 RMM 113 3 PHIL 52 1 TSP 153 3
PCBB 98 3 QSORT 69 3 PHILD 66 1 BCHAIN 116 1
PHIL 58 3 APSP 188 1 PP 52 1 LIFE 172 1
SBAR 77 4 SOR 201 3 RINGBUF 90 2 PPS 108 2
CIG 49 2 ASTAR 92 2 RNG 30 1 MINIMAX 133 1
LOGM 106 3 NQN 106 2 SUDOKU 96 29 ACTORS 127 1

Table 2.1.: Benchmark programs used in the evaluation of the analyses.

Actor Benchmarks

The Savina benchmark suite (Imam and Sarkar, 2014) is a set of 28 benchmark programs
written in Scala, designed to empirically evaluate different implementations of the actor
model. The original Savina programs range from 102 to 616 lines of Scala code, with
fragments written in Java. To evaluate our analyses for λα, we translated all of the Savina
benchmarks to λα. After translation, the benchmarks range from 17 to 293 lines of code.
This difference in code size can be attributed to the conciseness of λα compared to Scala
and Java in general, and to λα’s more concise actor definitions which do not involve
defining abstract methods inherited from a trait.

The resulting benchmark suite includes a number of programs intended to benchmark
specific aspects of actor implementations such as throughput (FJT) or actor creation time
(FJC). There are also λα implementations of well-known concurrency problems such as
the dining philosophers (PHIL), the sleeping barbers (SBAR), and the cigarette smokers
(CIG). Also included are implementations of concurrent sorting algorithms such as
bitonic sort (BTX), radix sort (RSORT), and quicksort (QSORT), as well as concurrent
versions of trapezoidal approximation (TRAPR), all-pair shortest path (APSP), the A∗

algorithm (ASTAR), and the n queens problem (NQN).
The majority of benchmarks feature dynamic process creation, creating a number of

processes determined by integer parameters specific to each benchmark. For concrete
runs of the benchmark programs, these parameters are chosen randomly at every pro-
gram run. This is because these parameters influence the behavior of the programs, and
we use the concrete program runs to measure the precision of our analyses, hence it is
desirable to explore as many different concrete runs as possible. For the analysis of the
benchmark programs, the parameters are approximated by the top integer value. This

56

2.4. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

sound approximation ensures that any concrete run, with any possible value for the
parameter, is accounted for by the analysis.

Thread Benchmarks

In order to evaluate the analyses for λτ, we composed a set of 28 multi-threaded pro-
grams. These benchmarks exhibit dynamic process creation as well as the use of higher-
order features. The benchmark suite includes common multi-threaded algorithms such
as the alternating bit protocol (ABP), the Dekker algorithm (DEKKER), the producer-
consumer problem (PC), and two implementations of the dining philosophers (PHIL,
PHILD). It also includes a number of multi-threaded implementations of common
computer science problems, such as matrix multiplication (MATMUL), factorial compu-
tation (FACT), merge sort (MSORT), a Sudoku solution checker (SUDOKU), as well as
implementations of concurrent models on top of threads and shared memory: software
transactional memory (STM), the actor model (ACTORS), and a meta-circular evaluator
with support for threads (MCEVAL).

2.4.3. Soundness Testing

We have proven that a naive application of the AAM design method to λα and λτ is
sound (Theorems 3 and 5). In addition, we provide empirical evidence for the sound-
ness of our implementation through soundness testing (Andreasen et al., 2017). To this
end, we verified that all information recorded during 1000 concrete runs of each bench-
mark program is soundly over-approximated by the analysis of the same program. No
unsound results were reported for any of the supported benchmarks, i.e., the analysis
implementation over-approximated every value that was observed during the concrete
executions. Note that only 6 of the benchmark programs are analyzed within the given
time budget of 30 minutes (see next section), but we repeat the soundness testing of our
implementation in Chapters 4 and 6.

2.4.4. Running Time

To evaluate the efficiency of the analysis, we analyzed each of the benchmark program
20 times, after 10 warmup runs, and report on the average time required to analyze
each program. We set a time-out of 30 minutes, after which running time is denoted as
infinite (∞). The results are listed in Table 2.2. It is clear from these results that a naive
application of AAM for static analysis of concurrent program lacks in scalability: only 6
of the 56 programs are analyzed within the time limit, and of those only 3 are analyzed
in less than a minute. These program either feature a constant set of processes known
in advance (PP, COUNT, ABP, DEKKER), or an dynamic set of actors that only receives
messages without sending any message (FJT, FJC).

As only few benchmark programs can be analyzed within the time budget of 30
minutes, and because the analyses resulting from application of the MacroConc design

57

2. Introduction to Abstract Interpretation of Concurrent Programs

method described in Chapter 4 yields the same precision as the analyses developed in
this chapter, we defer the discussion of the precision of the analyses to Chapter 4.

Actors Threads

Bench. Time (ms) Bench. Time (ms) Bench. Time (ms) Bench. Time (ms)

PP 2876 BTX ∞ ABP 92163 TRAPR ∞
COUNT 920 RSORT ∞ COUNT ∞ ATOMS ∞
FJT 435812 FBANK ∞ DEKKER 20675 STM ∞
FJC 528242 SIEVE ∞ FACT ∞ NBODY ∞
THR ∞ UCT ∞ MATMUL ∞ SIEVE ∞
CHAM ∞ OFL ∞ MCARLO ∞ CRYPT ∞
BIG ∞ TRAPR ∞ MSORT ∞ MCEVAL ∞
CDICT ∞ PIPREC ∞ PC ∞ QSORT ∞
CSLL ∞ RMM ∞ PHIL ∞ TSP ∞
PCBB ∞ QSORT ∞ PHILD ∞ BCHAIN ∞
PHIL ∞ APSP ∞ PP ∞ LIFE ∞
SBAR ∞ SOR ∞ RINGBUF ∞ PPS ∞
CIG ∞ ASTAR ∞ RNG ∞ MINIMAX ∞
LOGM ∞ NQN ∞ SUDOKU ∞ ACTORS ∞

Table 2.2.: Running times of the analyses presented in this chapter on our benchmark programs.
The times are expressed in milliseconds and represent the average of 20 runs after 10
warmup runs. ∞ denotes that the analysis timed out after 30 minutes.

2.5. Conclusion

In this chapter, we introduced the two concurrent languages that are used throughout
this dissertation: a concurrent actor programming language λα, and a shared-memory
multi-threaded language λτ. Both languages are based on the same sequential subset
of Scheme formalized by the λ0 language. We provided the concrete semantics of each
language, and performed a naive application of the AAM design method to obtain
static analyses for concurrent programs written in λα and λτ. This naive application
does not perform any optimization with respect to scalability, explicitly representing all
possible interleavings of the transition relation. We formally proved that the resulting
analyses are sound and terminate, and empirically evaluated their running time. While
the analyses are sound, they fail to analyze most benchmarks within a budget of 30
minutes. Only 6 of our 56 benchmark programs can be analyzed within this time budget,
demonstrating the scalability issues of these analyses. However, the analyses do exhibit
almost all of the desirable properties identified in Chapter 3: they are automated, sound
and support dynamic process creation. We defer the evaluation of their precision to
Chapter 4. The main limitation of these analyses are their scalability. In the following
chapters, we present analysis design methods inspired by this naive application of AAM
to concurrent language, that improve the scalability of the resulting analysis.

58

3
STAT E O F T H E A RT I N STAT I C A NA LYS I S O F CO NC U R R E N T
P RO G R A M S

In this chapter, we review existing analyses for concurrent programs, observing that no
existing analysis combines automation, soundness, scalability, precision and support for
dynamic process creation (Section 3.1). Through this review, we identify two predom-
inant approaches to improve the scalability of static analyses for concurrent programs
(Section 3.2): state space reduction methods that mitigate the state explosion problem
within an analysis, and process-modular analyses designs that overcome the problem
from the ground up. As such, both approaches represent potential avenues to address
the scalability issues of the analyses described in Chapter 2.

59

3. State of the Art in Static Analysis of Concurrent Programs

3.1. Static Analyses of Concurrent Programs

We review here the existing analysis methods that target concurrent programs and we
identify their shortcomings. We observe that no existing method features all the desired
properties explained in Section 1.2: automation, soundness, scalability, precision, and
support for dynamic process creation.

Sound static analyses may report defects that will never arise at run time, called false
positives, which stem from imprecision, often due to a too coarse abstraction. Whether a
detected defect is a false positive or a true defect has to be investigated by the user of the
analysis, which becomes a burden if the number of false positives is high (Cousot, 2005).
Static analysis is an undecidable problem and therefore cannot be both sound (over-
approximates all behaviors) and maximally precise at the same time. Some analyses
sacrifice soundness in order to achieve maximal precision. Such analyses are maximally
precise in the sense that any detected error is an error that will arise under specific
conditions (no false positive), but such analyses are not sound in the sense that they
may miss errors (potential false negatives). Avoiding false positives is desirable to reduce
the burden on the user of an analysis, as developers are prone to ignore the results of
imprecise analyses that report too many false positives (Johnson et al., 2013; Bessey et al.,
2010). However, false negatives result in an analysis that cannot be trusted: if the analysis
reports no error, the program may still be erroneous. Other analyses are neither sound
nor maximally precise, and may therefore produce false positives and miss defects,
but do so with the goal of achieving a high precision. Dynamic analysis approaches
also sacrifice soundness because they cannot reason about all possible behaviors of
the program under analysis and will miss potential errors. The dynamic approaches
supporting concurrency aim at providing a precise under-approximation of all the
behaviors of the program for precise defect detection, rather than at providing a sound
over-approximation for proving program properties.

We aim for static analyses that, in contrast, are sound: the analyses account for all
possible program inputs and interleavings and do not produce false negatives. If such
an analysis does not report a defect, it therefore proves that the given program is free of
that defect. Sacrificing soundness to improve precision is not compatible with provably
verifying or inferring properties of a concurrent program.

3.1.1. Bug Finding

We discuss existing bug finding approaches targeted at concurrent programs as this
gives a better picture of the current state of concurrent program analyses. We defer
the discussion of model checking to Section 3.1.4 as it is a large field of research that
deserves its own section, even though most of the model-checking related work is
maximally precise but only sound under specific assumptions, and therefore fall under
the bug finding methods.

60

3.1. Static Analyses of Concurrent Programs

Bug Finding Tools for Actor-Based Programs

The dCUTE (Sen and Agha, 2006b), Basset (Lauterburg et al., 2009) and Concuer-
ror (Christakis et al., 2013) tools perform automated testing of actor-based programs,
and are therefore dynamic approaches. They rely on concolic testing (Sen, 2007) and
incorporate partial-order reduction. Partial-order reduction methods reduce the state
space that has to be explored by an analysis, by identifying equivalent process interleav-
ings, thereby enabling the analysis to explore only one interleaving among a group of
equivalent interleavings. We present partial-order reduction methods in more details in
Section 3.2.1. dCUTE and Concuerror rely on dynamic partial-order reduction (Flana-
gan and Godefroid, 2005), while Basset includes both dynamic partial-order reduction
and an actor-specific state comparison reduction. As these analyses rely on concrete
execution of the program, they are not prone to false positives, but are not sound and
only terminate if the program itself terminates.

The Erlang static analysis tool Dialyzer (Sagonas, 2007) incorporates multiple analy-
ses geared towards concurrent programming bugs. The race condition analysis of Dia-
lyzer (Christakis and Sagonas, 2010) detects race conditions that may appear between
actors that make use of unsafe components of Erlang where memory is shared, such as
the Erlang term storage. This analysis first detects all static locations where potentially
interfering calls to unsafe components are made, and then filters out combinations of
interfering calls that are safe according to unsound but precise conditions. The deadlock
analysis of Dialyzer (Christakis and Sagonas, 2011) detects deadlocks that may appear
due to incorrect assumptions made by the programmer on the ordering of messages.
This analysis is prone to false positives and to false negatives, but tries to strike a balance
between precision and scalability. These two analyses are based on the escape analysis
of Carlsson et al. (2003), which aims at detecting functions that can escape their defining
function in Erlang. As only escaping functions can be used to spawn new processes in
Erlang, this reduces the number of functions to investigate when an unknown process is
created. This is particularly efficient for Erlang programs where higher-order functions
are used more scarcely than in other languages such as Scheme (Carlsson et al., 2003).

Bug Finding Tools for Multi-Threaded Programs

jCUTE (Sen and Agha, 2006c; Sen and Agha, 2006d; Sen and Agha, 2006a) is a concolic
tester for multi-threaded Java programs supporting dynamic process creation. Any error
found by jCUTE is a true error as, being a concolic tester, it performs concrete executions
of the program under analysis. However, it relies on an oracle to solve path constraints,
and unless this oracle can solve all path constraints discovered in the program under
test, which is not the case in general, it is not sound. It is also unsound if the program
under test has an infinite number of possible paths of execution or a possibly infinitely
long executions.

FindBugs (Hovemeyer and Pugh, 2004) performs syntactic checks on Java programs to
detect shared-memory concurrency bugs. Among the 424 syntactic checks that are per-
formed by FindBugs, 46 of them fall under the multi-threaded correctness category. These

61

3. State of the Art in Static Analysis of Concurrent Programs

lightweight syntactic checks aim to detect bugs that are specific to the Java concurrency
model. FindBugs is neither sound nor maximally precise, as it is prone to both false
positives and false negatives.

A large body of work is dedicated to the detection of race conditions in multi-threaded
programs. The survey of Hong and Kim (2015) classifies the different types of race
detections that have been studied, and surveys 43 race detectors. All the surveyed
detectors focus on bug detection rather than on sound analyses.

Various other analyses focus on deadlock detection, either based on testing (Fonseca
et al., 2011) or by analyzing lock usage statically (Artho and Biere, 2001; Williams et
al., 2005; Engler and Ashcraft, 2003; Naik et al., 2009). However, these analyses are not
sound and are closely tied to the concurrency model they analyze.

Bug Finding for Other Concurrency Models

Albert et al. (2016) propose a testing method for deadlock detection in programs using
futures (Baker and Hewitt, 1977). This is performed through a combination of a testing
strategy and a static analysis. The static analysis is based on a may-happen-in-parallel
deadlock analysis (Flores-Montoya et al., 2013) that detects potential deadlock cycles.
This information is then used to guide the testing phase to find actual deadlocks. This
method is limited to programs where the number of futures and their location is known
a priori. The testing strategy features macro-stepping semantics (Agha et al., 1997) to
reduce the state space that the analysis has to explore, similarly to the static analyses
presented in Chapter 4, but Albert et al. (2016) use it only in a dynamic analysis setting.

Carver and Lei (2004) present a general model to perform reachability testing for di-
verse concurrency models (asynchronous and synchronous message-passing, as well as
shared memory protected through semaphores, locks, and monitors). Reachability test-
ing combines non-deterministic testing, which executes a program with a given input
but does not enforce a specific process interleaving, with deterministic testing, which
executes a program with a given input and a fixed process interleaving. This combination
runs a test case deterministically up to a pre-determined point identified as the prefix
of a potential error, after which the testing proceeds in a non-deterministic manner in
order to find the error. This testing method is not prone to false positives but is unsound.

3.1.2. Abstract Interpretation

Abstract interpretation is the method used by the analyses described in Chapter 2, which
form the baseline for this dissertation. In contrast to bug finding approaches of the
previous section, abstract interpretation aims at providing a sound foundation for static
analysis through sound abstractions of the semantics of the analyzed programming
language. There exists a number of applications of abstract interpretation to concurrent
languages.

62

3.1. Static Analyses of Concurrent Programs

Abstract Interpretation of Actor-Based Programs

Huch (1999) represents some of the earliest work on static analysis of actor-based pro-
grams through abstract interpretation. This work identifies four sources of unbound-
edness that render analyzing actor programs challenging: data unboundedness, stack
unboundedness, mailbox unboundedness, and unboundedness resulting from dynamic
process creation. Huch (1999) shows how abstract interpretation can be used to solve the
first two sources of unboundedness, and mitigates the other two by framing the analysis
in the context of programs that have finite mailboxes and a finite number of processes
known a priori. However, actor programs tend to contain unbounded mailboxes as well
as an unbounded number of processes created at run time.

Support for unbounded mailboxes and unbounded dynamic process creation has
been developed by the Soter tool (D’Osualdo et al., 2012; D’Osualdo et al., 2013), which
abstracts mailboxes to sets of messages in order to ensure their finiteness. Soter also
maps multiple concrete actors to a single abstract actor to deal with unbounded process
creation. In this sense, Soter is close to the actor analysis we present in Chapter 2 by
explicitly representing interleavings of different abstract actors. However, one major
difference with our work is that Soter verifies properties in a two-step fashion: first
a model of the program is constructed, then this model is used to perform model
checking of user-annotated properties. The analysis presented in Chapter 2 enables
direct verification on the model without requiring further model checking. Another
difference is that Soter performs coarse abstractions which are later refined in the model
checking phase, enabling Soter to support more programs than the actor analysis of
Chapter 2, bringing it closer in terms of efficiency to the actor analysis developed in
Chapter 4. We demonstrate this in Chapter 4.

Garoche et al. (2006) present an abstract interpretation approach to verify properties
of an actor calculus. The focus is on abstractions that enable reasoning about the number
of actors bound to a process identifier. This analysis is later extended by Garoche (2008)
to detect orphan messages in actor programs, using a vector addition system. Similarly
to D’Osualdo et al. (2013), the verification is performed in two phases: first a model is
constructed through abstract interpretation, and model checking is then performed on
the constructed model. This approach is sound by construction, but the largest program
this approach has been applied to is 17 lines long, which took 52 seconds to analyze,
raising questions about its scalability.

Abstract Interpretation of Multi-Threaded Programs

Might and Van Horn (2011) apply the abstracting abstract machines (Van Horn and Might,
2010) design method in a shared-memory concurrency setting. The resulting analysis is a
non-modular analysis of threads supporting dynamic thread creation and shared mem-
ory through atomics, where shared memory can be mutated through a compare-and-swap
operation. This is close to the analysis discussed in Chapter 2, with the difference that
our shared-memory multi-threading model relies on locks to protect shared memory
rather than atomics. Analyses resulting from a naive application of AAM to concurrent

63

3. State of the Art in Static Analysis of Concurrent Programs

programs fail to scale beyond synthetic programs as demonstrated in Chapter 2. Might
and Van Horn (2011) hint at a possible solution to obtain polynomial complexity by
performing a further abstraction that joins all the states explored during the analysis
into a single state. This results in an improved complexity at the cost of precision. This
further abstraction is used in the Soter tool (D’Osualdo et al., 2012), against which we
compare throughout this dissertation.

Another approach to abstract interpretation of concurrent higher-order programs
is the work of Jagannathan and Weeks (Weeks et al., 1994; Jagannathan and Weeks,
1994; Jagannathan, 1994). These analyses target compiler optimizations, and support
both dynamic process creation and higher-order functions. The abstract interpreter in
Jagannathan and Weeks (1994) is written in a concurrent language and its scalability is
improved by analyzing the different processes concurrently. The soundness of this line of
work is not demonstrated, nor is its ability to analyze more than synthetic benchmarks.

Miné (2014) introduces a process-modular abstract interpretation that reasons about
values of variables in a concurrent, shared-memory setting. Its incarnation in the As-
tréeA tool (Miné, 2012) has been able to analyze commercial programs of up to 1.7
million lines of code with 15 pre-defined running threads in a few days. However, the
abstract interpreter is limited to programs with a constant number of running processes
known a priori.

Predicate abstraction (Flanagan and Qadeer, 2002) is a form of abstract interpretation
where the abstract domain is constructed from a set of predicates that are generated from
the source code of the program under analysis. Predicate abstraction has been adapted
to a multi-threaded context (Gupta et al., 2011) based on rely-guarantee reasoning (Jones,
1983). This approach can either infer modular or non-modular proofs for multi-threaded
programs. However, it is limited to programs with a constant set of processes known a
priori.

Abstract Interpretation of Other Concurrency Models

A number of static analyses have been developed for channels concurrency (Hoare,
1978). Midtgaard et al. (2016b) introduce a process-modular analysis for synchronous
message-passing programs, but the analysis is limited to programs composed of two
processes. Other analyses explore all process interleavings explicitly and are either
limited to programs with a fixed set of processes (Mercouroff, 1991; Ng and Yoshida,
2016; Stadtmüller et al., 2016), make the simplifying assumption on the concurrency
model that communication occurs only through explicitly identified channels (Colby,
1995; Martel and Gengler, 2000), or assume that senders and receivers are statically
determined (Ladkin and Simons, 1992).

Software transactional memory (Shavit and Touitou, 1997) has seen static analysis
support dedicated to specific compiler optimizations (Afek et al., 2010), but lacks support
from general-purpose static analyses.

64

3.1. Static Analyses of Concurrent Programs

3.1.3. Type Systems

Static type systems aim at restricting the number of valid programs so that only pro-
grams that satisfy the properties expressed by the types can be executed. Soundness in
type systems is a crucial property. Type systems are modular by nature, scale well, and
support dynamic process creation. While verifying and inferring context-insensitive
and flow-insensitive properties is well-supported by type systems, supporting stronger
properties remains challenging and renders the type system closer to a proof system,
which are discussed in Section 3.1.5

Type Systems for Actor-Based Programs

Several type systems have been proposed for actor programs. Early work focuses on
detecting type errors in the sequential subset of the language (Lindgren, 1996; Marlow
and Wadler, 1997), without dedicated support for concurrency. While useful to prevent
errors in the sequential subset, this approach cannot reason about concurrent properties.

Dagnat and Pantel (2002) introduce a type-driven static analysis that infers interfaces
for actors in a subset of Erlang with the goal of detecting orphan messages. Orphan
messages are messages that are sent to an actor but that are never handled by the
receiving actor. The approach supports dynamic process creation, but is not shown
sound nor scalable.

Pony is a language that combines actors and shared memory in a type-safe, memory-
safe, data-race free and deadlock-free manner (Clebsch et al., 2015), thanks to its use of
capabilities (Miller et al., 2003). Such a language facilitates writing safe concurrent actor
programs. Our approach is however not of extending the analyzed language with new
features but rather providing support for analysis for existing languages.

Session types enable verifying whether a program adheres to a protocol. Mostrous
and Vasconcelos (2011) present session types for Erlang capable of ensuring that sent
messages have the expected types. In multi-party asynchronous session types (Honda
et al., 2008; Neykova and Yoshida, 2014; Honda et al., 2016; Scalas et al., 2017), the
protocol is expressed as a global type that describes the behavior of multiple parties of
the system under analysis. However, multi-party session types rely on channels used
by at most two entities at a time, while in the actor model any number of actors can
send messages to an actor. Moreover, relying on a global type to specify the protocol
requires advanced knowledge about the topology of the system, while actor systems are
inherently dynamic. Finally, while session types are expressive, their static verification
is complex and state of the art approaches fall back to dynamic checking of session types
when static checking fails (Neykova and Yoshida, 2014)

Type Systems for Multi-Threaded Programs

Several type systems for multi-threaded programs have been proposed to ensure the ab-
sence of concurrency errors such as race conditions (Boyapati and Rinard, 2001; Boyapati
et al., 2002; Flanagan and Freund, 2000) and deadlocks (Boyapati et al., 2002; Flanagan

65

3. State of the Art in Static Analysis of Concurrent Programs

and Abadi, 1999), to ensure determinacy of the concurrent executions (Bocchino Jr. et
al., 2009), or to verify method atomicity (Flanagan and Qadeer, 2003a). The resulting
programs tend to require heavy type annotations before they are accepted by the type
checker. Further work has shown that some of the required annotations can be inferred
automatically (Abadi et al., 2006; Sasturkar et al., 2005).

Type Systems for Other Concurrency Models

Nielson et al. (1999) introduce a type and effect system that performs a communication
analysis of typed channels, inferring which values are communicated over the channels,
while recording information about the temporal orders of effects. It remains unclear
how such an analysis could be adapted to an untyped dynamic setting.

Haskell support for STM (Jones et al., 1996) ensures that transactional memory is used
in a safe manner through statically-typed monadic operations. The static verification
relies heavily on the type system of Haskell and is not applicable to untyped dynamic
languages such as our extensions to λ0 introduced in Chapter 2.

3.1.4. Model Checking

Model checking entails verifying that a property, generally expressed in a property
specification language, holds for a program. The program under analysis is sometimes
expressed as a model in a model specification language. This model may also be derived
directly from the source code of the program (Godefroid, 1997; Corbett et al., 2000;
Havelund and Pressburger, 2000; Fredlund and Svensson, 2007). Conventional model
checkers perform explicit state exploration: all reachable states in the execution of a
program are explored, and the property is verified for all those states.

The state space is explored either in a stateful or in a stateless manner, respectively
leading to stateful model checking or stateless model checking. In stateful model checking, all
encountered states are stored to prevent visited states from being visited again. The main
limitation of this approach is that program states, which may contain a large amount of
information, have to be encoded in a memory-efficient manner. Stateless model checking
avoids this limitation by not storing the set of explored states, hence removing the need
to encode program states. However, this comes at the cost that cycles in the execution of
a program (e.g., infinite loops) cannot be detected. Therefore, stateless model checking
does not terminate in the general case, and is sound only when it terminates.

A number of state space reductions have been applied in the context of model check-
ing, of which we defer the technical discussions to Section 3.2. Such reductions come
either in the form of static partial-order reductions (Godefroid, 1996) or dynamic partial-
order reductions (Flanagan and Godefroid, 2005), and are limited with respect to sup-
porting dynamic process creation.

66

3.1. Static Analyses of Concurrent Programs

Model Checking of Actor-Based Programs

Dam and Fredlund (1998) introduce a specification logic and proof system for Core
Erlang programs, a subset of Erlang used by the BEAM Erlang virtual machine. This
specification logic and proof system can be used to perform model checking on Erlang
programs. This work has been integrated in the Erlang Verification Tool (Arts et al., 1998),
later extended to support specific constructs of the widely-used OTP1 framework (Arts
and Noll, 2000). It supports verifying that an implementation satisfies a given specifica-
tion, but lacks automation and is limited to a client-server setting where the notion of
dynamic process creation is not present.

The analyses present in dCUTE (Sen and Agha, 2006b), Basset (Lauterburg et al.,
2009), and Concuerror (Christakis et al., 2013) are concolic, but can also be described as
stateless model checking. They rely on a variant of dynamic partial-order reduction (Sen
and Agha, 2006a) that supports dynamic process creation.

TransDPOR (Tasharofi et al., 2012) performs stateless model checking and relies on an
extended version of dynamic partial-order reduction, taking advantage of the fact that
the dependency relation describing dependencies among transitions in actor systems
is transitive. This enables further reductions of the number of program paths that have
to be explored. It is limited to acyclic state spaces like the original dynamic partial-
order reduction (Flanagan and Godefroid, 2005) and to programs with a constant set of
processes that is known a priori.

McErlang (Fredlund and Svensson, 2007) introduces a model checker for a distributed
version of Erlang, but is also limited to acyclic state spaces and to programs with a
constant set of processes that is known a priori.

Lauterburg et al. (2010) evaluate the impact of different ordering heuristics on the re-
duction performed by dynamic partial-order reduction when analyzing actor programs.
It is shown that analyses are highly sensitive to the order of exploration, as differences
of two orders of magnitude can be observed between different heuristics.

Model Checking of Multi-Threaded Programs

While model checking initially focused on communication protocols, it has also been
applied to multi-threaded programs (Godefroid, 1997; Holzmann, 2004; Flanagan and
Qadeer, 2003b; Flanagan et al., 2002). The initial description of partial-order reduc-
tion (Godefroid, 1996) and dynamic partial-order reduction (Flanagan and Godefroid,
2005) rely on a multi-threaded model. Kokologiannakis et al. (2018) present an alter-
native for dynamic partial-order reduction in stateless model checking of applications
for weak memory models. However, these approaches are all framed in a context of a
constant set of threads that is known a priori.

Java PathFinder (Havelund, 1999) supports verifying multi-threaded Java programs (Ujma
and Shafiei, 2012), by reducing the size of the states by abstracting instances of classes
from the java.util.concurrent package to integers, and relying on the JVM perform-
ing the model checking to map from integers to actual class instances. This does not

1OTP, the Open Telecom Platform, is a set of libraries and tools for designing Erlang applications.

67

3. State of the Art in Static Analysis of Concurrent Programs

solve the state explosion problem as the complexity of the analysis remains exponen-
tial, but significantly reduces the verification time on benchmarks for concurrent data
structures from an hour to a few minutes (Ujma and Shafiei, 2012).

Khurshid et al. (2003) extend model checking to handle unbounded data input. Re-
lying on Java PathFinder to perform the model checking, this analysis supports multi-
threaded applications written in Java and profits from the mitigation of Java PathFinder
for reducing the size of the states, but it is also subject to the state explosion problem.

Model Checking of Other Concurrency Models

Jensen et al. (2015) apply stateless model checking featuring dynamic partial-order re-
duction to event-driven applications. Event-driven applications exhibit similar behavior
as concurrent programs, even though they are executed using a single thread. These ap-
plications also exhibit nondeterministic behavior and contain errors that may manifest
only under specific interleavings of events.

Kastenberg and Rensink (2008) introduce a novel dynamic partial-order reduction
that supports dynamic enabling and disabling of transitions in a transition system. This
is framed in the context of analyzing graph transformation systems, but is also appli-
cable to concurrent programs. This brings dynamic partial-order reduction to systems
where processes may be dynamically enabled or disabled but lacks support for dynamic
process creation where the behavior of the created processes is not known statically.

3.1.5. Proof Systems

Proof systems can be used to prove challenging properties of concurrent programs, but
fall short with respect to automation. Proof systems generally require expert knowledge
from the user to express theorems and to fill in the proof details. This requires a sig-
nificant effort from the developer for complex and for larger programs. This is why in
this dissertation we aim for automated static analysis instead, which requires minimal
intervention from the user of the analysis.

Proof Systems for Actor-Based Programs

Proof systems for Erlang such as Rebeca (Sirjani et al., 2005; Sirjani and Jaghoori, 2011),
the Erlang Verification Tool (Arts et al., 1998; Arts and Noll, 2000), and the work by Dam
and Fredlund (1998) all require proof system expertise to prove the correctness of a
program.

Proof Systems for Multi-Threaded Programs

Concurrent separation logic (O’Hearn, 2007) enables reasoning about thread-based con-
current systems in a modular way, focusing on resource usage. Automated analyses that
infer logic formulas for non-concurrent separation logic have been designed (Calcagno
et al., 2009), but an automated inference for concurrent separation logic is yet to be
designed. Rely-guarantee reasoning (Jones, 1983) is similar to concurrent separation

68

3.1. Static Analyses of Concurrent Programs

logic but tends to lead to longer proofs as it explicitly models non-interferences, while
concurrent separation logic models them implicitly. Sergey et al. (2015) provide a proof
system for verifying concurrent programs that make use of the compare-and-swap prim-
itive, and prove a number of small concurrent programs correct. This proof system is a
Coq library that relies on fine-grained concurrent separation logic (Nanevski et al., 2014) to
encode properties of concurrent programs. This version of concurrent separation logic
enables compositional proofs for concurrent programs featuring higher-order functions
and dynamic thread creation. The size of the programs verified in Sergey et al. (2015)
varies from 27 to 305 lines of code and the size of the proofs from 26 to 1744 lines of
code, indicating that the effort invested in the proofs may be significantly higher than
the effort to write the programs themselves.

3.1.6. Overview

Having reviewed the state of the art in analyses for concurrent programs, Table 3.1 gives
an overview of the existing analyses with respect to our desired properties: automation
enabling users without tool expertise to rely on the analysis, soundness enabling users
to trust the analysis for proving certain program properties, scalability enabling the
analysis to support large programs, precision to minimize the number of false positives
detected by the analysis, and support for dynamic process creation enabling the analysis
to support modern concurrent programs We group analyses that share the same aspects,
and list analyses based on abstract interpretation separately as they exhibit different
ranges of features. No existing analysis exhibits at the same time all these desirable
properties.

Bug finding
Bug finding analyses are often maximally precise at the cost of soundness, and
are therefore subject to false negatives (undetected bugs). Such analyses may scale
well because of the soundness sacrifice performed, and support dynamic process
creation. They are generally automated as their goal is to help developers with a
minimal investment cost.

Abstract interpretation
Abstract interpretation analyses are automated, sound, and precise but differ in
terms of scalability and support for dynamic process creation. The work of Miné
(2014) has been demonstrated to scale to large programs (Miné and Delmas, 2015),
but lacks support for dynamic process creation. Conversely, several existing ab-
stract interpretations (D’Osualdo et al., 2013; Garoche et al., 2006; Might and Van
Horn, 2011; Jagannathan and Weeks, 1994) support dynamic process creation but
are limited in terms of scalability.

Type systems
Type systems are generally sound and scalable by design, and support dynamic
process creation. Type systems are automated and require no intervention from
the user, except for annotating the program with types, but are limited in their

69

3. State of the Art in Static Analysis of Concurrent Programs

analysis to reasoning about relatively straightforward properties. Type systems
that can express more complex properties fall into the proof systems category, and
they require significantly more user intervention. Type systems reject programs
that are deemed unsafe, and tend to sacrifice precision, therefore rejecting safe
programs that the type system cannot detect as safe.

Model checking
Model checkers are sound under the assumption that the program under analysis
always terminates. They are maximally precise and can provide execution traces
that lead to a detected error, but they fail to scale despite their use of mitigations
to the state explosion problem, such as partial-order reduction. Moreover, model
checkers perform verification of a program against a specification expressed in a
specification language, which has to be devised by the user of the tool, and there-
fore fall short with respect to automation. The program analyzed also sometimes
has to be expressed in a modeling language, although research automating the
construction of the model exists.

Proof systems
Proof systems are sound and can be very precise, but lack automation, leaving
a significant amount of work to the user of the system. Once the proof has been
encoded in the proof system, running the proof can be performed in a scalable
manner.

Method Automated Sound Scalable Precise
Dynamic
process
creation

Bug finding 3 7 3 3 3
Abstract interpretation

Huch (1999) 3 3 7 3 7
D’Osualdo et al. (2013) 3 3 7 3 3
Garoche et al. (2006) 3 3 7 3 3
Might and Van Horn (2011) 3 3 7 3 3
Jagannathan and Weeks (1994) 3 3 7 3 3
Miné (2014) 3 3 3 3 7

Type systems 3 3 3 7 3
Model checking 3 ~ ~ 3 7
Proof systems 7 3 3 3 3

Table 3.1.: Overview of properties of static analyses for concurrent programs. A check mark (3)
indicates that a given approach may support the property of interest. For example,
while most model checkers are not automated as they require encoding a model
and a specification by hand, there exists work on automating the model construction
and there exist pre-defined specifications for specific classes of bugs, hence a check
mark is used. A cross mark (7) is used when no existing work in the field brings
support for the specific properties. A tilde (~) is used for analyses that support a
property partially, for example by making specific assumptions about the program
under analysis.

70

3.2. Research Approach: Towards Scalable Analyses

3.2. Research Approach: Towards Scalable Analyses

The application of AAM to concurrent programs described in Chapter 2 supports mod-
ern concurrent programs that feature dynamic process creation. It is sound and auto-
mated, but lacks scalability as it fails to analyze most of our benchmark programs. This
is a result of the inherent non-determinism in concurrent programs, which the analyses
resulting from this naive application account for explicitly by exploring all process inter-
leavings. Having reviewed the state of the art, we now discuss the two main approaches
to remedying the scalability issues. State space reduction mitigates the state explosion
problem without sacrificing precision, while a process-modular analysis design elimi-
nates the state explosion problem entirely at the cost of precision.

3.2.1. State Space Reduction

The number of possible process interleavings in concurrent programs is typically high,
but different interleavings may be equivalent with respect to some properties. The idea
behind state space reduction is to only explore one interleaving among each group of
equivalent interleavings, thereby still accounting for all possible behaviors of a program
without exploring all possible interleavings explicitly.

We review here the most prevalent partial-order reductions based on persistent sets
(Godefroid, 1996). In a program composed of concurrent processes, processes transition
between states. From a state, a number of transitions can be taken at any point in time,
resulting in non-determinism. The set of transitions that can be taken from a given state
is called the set of enabled transitions. Analyses featuring partial-order reduction explore
only a subset of enabled transitions at every state. The subset of transitions that can be
explored from a given state while being sufficient to verify a property is called a persistent
set. Starting from the initial state, analyses incorporating partial-order reduction always
explore a persistent set of the enabled transitions at each discovered state. This results
in sound analyses that explore possibly fewer than all the possible interleavings, but
still account for them.

Consider a program with two threads, t1 and t2, where each thread is ready to perform
a state transition.

(a) If the operation performed by each transition does not influence the applicability
or the outcome of the transition of the other thread, having t1 transition first and
then only t2 or having t2 transition first and then only t1 does not influence the
result of the program. This is for example the case when both transitions read
from, but do not write to, the contents of a reference. This situation is depicted in
Figure 3.1a. In this case there are two persistent sets from the initial state: the set
containing only the transition of t1, and the set containing only the transition of t2.
An analysis may explore only one of the two interleavings, and still remain sound.

(b) If the transitions do influence each other, then the end result of the program
will depend on the interleaving, and an analysis has to take into account both
interleavings. This is for example the case if t1 modifies a reference and at the

71

3. State of the Art in Static Analysis of Concurrent Programs

same time t2 accesses the same reference. This situation is depicted in Figure 3.1b.
In this case, there is only one persistent set at the initial state, containing both
enabled transitions. This means that if t1 transitions first, the result of the program
may be different from the result where t2 transitions first. For an analysis to be
sound, it needs to account for both interleavings in its results.

t1: (deref x)
t2: (deref x)

t1: 1
t2: (deref x)

t1: (deref x)
t2: 1

t1: 1
t2: 1

(a) Non-interfering processes.

t1: (deref x)
t2: (ref-set! x 2)

t1: 1
t2: (ref-set! x 2)

t1: (deref x)
t2: 2

t1: 1
t2: 2

t1: 2
t2: 2

(b) Interfering processes.
Figure 3.1.: Representation of the concurrent execution of two threads in an all-interleavings

analysis. Each program state represents the current expression evaluated or the
value reached by each thread (written ti : e or ti : v for each thread). Edges represent
transitions performed in the execution of the program.

Persistent sets can be computed in a number of ways. Godefroid (1996) compares three
different algorithms to compute persistent sets statically, all performing an analysis on
the static structure of the code of the program under analysis to infer the possible future
operations that may be performed after an enabled transition has been taken.

Adapting such reductions to dynamic programs is problematic. First, because static
partial-order reduction requires a static analysis to reason about the possible future
transitions performed in the execution of a process in order to construct the persistent
sets. While this may be feasible for programs with a relatively static control-flow, it is not
adapted for programs in dynamic languages such as our extensions to λ0 considered in
Chapter 2. Reasoning about the possible future executions of such program requires a
full-fledged static analysis, which is also subject to the state explosion problem. Dynamic
partial-order reduction (Flanagan and Godefroid, 2005), in contrast, records information
at run time about the current execution of the program to infer the persistent sets. It
perform stateless model checking to this end, and is therefore limited to reasoning
about programs that terminate. Dynamic partial-order reduction has been transposed
to stateful model checking by Yi et al. (2006) and by Yang et al. (2008), but none of these
extensions support dynamic process creation or possibly infinite state spaces.

Neither static nor dynamic partial-order reduction can therefore be incorporated as
such in the analyses resulting from the naive application of AAM presented in Chapter 2.
However, the general idea of only exploring a subset of all possible process interleavings
is applicable. This is what we propose in Chapter 4, where we base ourselves on the

72

3.2. Research Approach: Towards Scalable Analyses

notion of a macro step instead. Agha et al. (1997) introduced the concept of macro-
stepping to facilitate reasoning about concrete semantics of actor programs. A macro
step is defined as multiple small steps performed within a single actor between the
reception of two messages. This concept has been used by dynamic tools (Sen and Agha,
2006b; Lauterburg et al., 2009; Albert et al., 2016) to reduce the state space explored
during dynamic analysis, but has not yet been applied in an abstract setting. We revisit
this concept in a static analysis setting as part of our MacroConc analysis design method
in Chapter 4.

3.2.2. Process-Modular Analysis Design

While state space reductions mitigate the state explosion problem, they do not reduce the
worst-case time complexity of an analysis, which remains exponential (see Section 4.5).
A more thorough solution to the problem is to adopt a process-modular analysis design
following from the modular analysis notion of Cousot and Cousot (2002). This is the
approach taken by Miné (2014), by type systems, and by proof systems. Instead of
reducing the number of interleavings to explore, process-modular analyses account
for all interleavings through over-approximation, without explicitly exploring every
interleaving separately. This is done by analyzing the program on a per-process basis.
Each process is analyzed in isolation, and every interleaving of the analyzed process
with other processes is deemed possible. Processes that may conflict need to be analyzed
more than once to account for possible conflicts, hence a process-modular analysis will
iterate over multiple analyses of the set of processes. However, it can be ensured that
the maximal number of iterations does not grow exponentially. This comes at a cost in
terms of precision, as interleavings are not explicitly represented or explored but are
over-approximated.

t1: (deref x) t2: (deref x)

t1: 1 t2: 1

(a) Non-interfering threads.

t1: (deref x)

t1: 1 t1: 2

t2: (ref-set! x 2)

t1: 2

(b) Interfering threads.
Figure 3.2.: Representation of the concurrent execution of two threads in a process-modular

analysis. Each node denotes the current expression evaluated by a thread or the
value reached by this thread. Edges represent transitions performed during the
analysis of a thread. Plain edges are transitions explored during the first iteration
of a process-modular analysis, and dashed edges are explored during the second
iteration.

We revisit our previous example in the setting of a process-modular analysis. There
are two threads to analyze: t1 and t2, and each thread is analyzed in isolation.

(a) In the case of non-interfering transitions, each thread is analyzed just as any
sequential program, and the complexity of the analysis becomes the complexity

73

3. State of the Art in Static Analysis of Concurrent Programs

of a sequential analysis multiplied by the number of threads. This is depicted in
Figure 3.2a. Note that the interleavings of the different threads are not explicitly
represented, but rather the result of the analysis is a graph per thread describing
the evolution of each thread separately.

(b) In the case of interfering transitions, a first iteration of the analysis analyzes each
thread in separation until completion. This is depicted by the plain edges in Fig-
ure 3.2b. Thread t2 performs an operation conflicting with thread t1, and therefore
thread t1 is analyzed again to account for the changes that occur from the execution
of thread t2. The dashed transition of Figure 3.2b is therefore also explored.

Although this is a very synthetic example, we can already see that the number of tran-
sitions explored is reduced compared to an analysis that explores all interleavings or to
an analysis that performs state space reduction. Indeed, in the case of the non-interfering
threads, an analysis with state space reduction and a process-modular analysis only ex-
plore two transitions instead of the four possible transitions. In the case of interfering
processes, an analysis with state space reduction explores all four transitions, while a
process-modular analysis only explores three transitions. As the number of processes
and the number of transitions grow, this difference in the number of transitions and the
number of states that have to be explored by each analysis grows as well.

The concept of modular analysis has been formalized by Cousot and Cousot (2002),
which present a general-purpose method to design modular analyses. These ideas have
been applied in the context of thread-based programs by using concepts from either
assume-guarantee reasoning (Flanagan et al., 2002; Henzinger et al., 2003), rely-guarantee
reasoning (Miné, 2014; Monat and Miné, 2017), or separation logic (Gotsman et al., 2007),
and this in a setting limited to a statically known number of executed threads. Recent
developments (Midtgaard et al., 2016b; Midtgaard et al., 2016a) propose process-modular
analyses for synchronous message-passing programs, but again limited to programs
composed of a constant set of processes that is known a priori.

Process-modular analyses may fare very well in terms of scalability (Miné and Delmas,
2015), as they are not subject to the state explosion problem. However, they sacrifice
precision for this improved scalability, as they over-approximate the interleavings of
the different processes: the process interleavings are not represented, and all possible
interleavings between the analyzed processes are deemed possible. The main challenge
compared to existing work is that dynamic creation of processes is inherent to modern
concurrent programs and must be supported by the analysis.

3.3. Conclusion

In this chapter, we presented a thorough review of the state of the art in static analyses
for concurrent programs, and identified two approaches to improve the scalability of
the analyses introduced in Chapter 2. These analyses resulted from a naive application
of AAM, and are automated, sound, precise and support dynamic process creation, but

74

3.3. Conclusion

do not scale well. The identified approaches, namely state space reduction and a process-
modular analysis design, are at the core of the analysis design methods presented in
Chapters 4 and 6.

75

4
M AC RO CO NC : D E S I G N I NG M AC RO - ST E P P I NG A NA LYS E S

In this chapter, we present MacroConc, a design method that improves upon a naive
application of AAM to concurrent programs by incorporating macro-stepping in the
resulting abstract semantics. The naive applications of AAM for concurrent programs
presented in Chapter 2 resulted in analyses that explore all reachable states within the
collecting semantics of the analyzed programs, explicitly considering all process inter-
leavings. These analyses suffer from scalability issue, as demonstrated in our empirical
evaluation. This is due to the exponential growth of the number of interleavings to
explore with the size of the program under analysis.

As a mitigation for this issue, we introduce MacroConc, an analysis design method
relying on a macro-stepping variant of the concrete semantics of concurrent programs.
This design method reduces the state space that has to be explored by analyses resulting
from its application. At the core of this design method lies the notion of macro step, intro-
duced by Agha et al. (1997) and used in dynamic analyses for concurrent programs (Sen
and Agha, 2006b; Lauterburg et al., 2009; Albert et al., 2016), but which has not yet been
applied in an abstract setting. We describe the MacroConc design method (Section 4.1),
and discuss the properties of the analyses resulting from its application (Section 4.2). We
apply MacroConc to concurrent actor programs (Section 4.3) and to shared-memory
multi-threaded programs (Section 4.4). We formally prove the soundness of the result-
ing analyses and prove that their precision remains identical to naive applications of
the AAM design method. We empirically evaluate the resulting analyses in terms of
running time, precision and scalability (Section 4.5), and observe the following.

• There is a improvement of up to four orders of magnitude in running time.
• MacroConc renders the resulting analyses able to analyze more than the few

benchmark programs supported by the analyses developed in Chapter 2 within
the same time budget.

• We observe a high precision of 96% on our benchmark suite for an analysis that
infers communication effects performed by concurrent processes.

• The scalability of the resulting analyses remains however limited, as their worst-
case time complexity remains exponential.

77

4. MacroConc: Designing Macro-Stepping Analyses

4.1. Macro-Stepping Abstract Interpretation of Concurrent

Programs

We propose macro-stepping as a way to reduce the number of interleavings explored
by static analyses of concurrent programs. The concept of macro-stepping originates
from Agha et al. (1997), who define the concrete semantics of actor programs in terms
of macro steps to aid manual reasoning. It has also been used to optimize the search
process in automated testing of concurrent programs (Sen and Agha, 2006b; Lauterburg
et al., 2009; Albert et al., 2016), but has not yet been applied in an abstract setting. Inspired
by Agha et al. (1997), we formalize the concrete semantics of concurrent programs as a
macro-stepping semantics. We adapt macro-stepping to abstract semantics as part of the
MacroConc analysis design method. MacroConc does not suffer from the limitations
of partial-order reduction methods: it does not require a static analysis to reason about
the future of the program’s execution, it is not limited to acyclic state spaces, and it
supports infinite state spaces through abstraction.

We illustrate the concepts of macro-stepping through an example. Consider a program
composed of two concurrent processes A and B, where one process performs operations
A1 and A2, and the other process performs operations B1 and B2. All the possible
interleavings of these processes are represented in Figure 4.1a. We assume that the
operations A1 and B1 are safe (e.g., arithmetic computations), while the operations
A2 and B2 are acting on the shared process state and deemed potentially unsafe (e.g.,
writing to a shared reference or sending a message). In that case, performing A2 before
B2 may produce a different result from performing B2 before A2, and it is important for
an analysis to account for both interleavings. However, the interleavings of A operations
alone are not important for the end result of the program, and may be ignored by an
analysis.

Under macro-stepping semantics, each process is either executed until completion or
up to a state where at most one potentially interfering operation has been performed.
This is a macro step. After the completion of a macro step, another macro step is
performed on all running processes. For our example, this is represented in Figure 4.1b:
either the first process performs a macro step, executing A1 and then A2, followed by
the second process, executing B1 and then B2, or vice-versa. Both final states of the
programs are explored, while equivalent interleavings of the different processes are
ignored. Macro-stepping semantics enables analyses to scale significantly better than
naive all-interleavings analyses.

The design of an analysis with MacroConc follows four steps, which we detail in the
remainder of this section.

1. The specification of an operational semantics for the input language featuring con-
currency, defined by a transition relation annotated with communication effects.
This corresponds to the semantics given for λα (actors) and for λτ (threads) in
Chapter 2.

2. The specification of a macro-stepping transfer function that computes the set of states

78

4.1. Macro-Stepping Abstract Interpretation of Concurrent Programs

A1 B1

A2 B1 A1 B2

B1 A2 B2 A1

B2 A2

(a) Interleavings considered under an all-
interleavings semantics.

A1 B1

A2 B2

B1 A1

B2 A2

(b) Interleavings considered under a
macro-stepping semantics.

Figure 4.1.: Representation of the executions of two concurrent processes, where one process
performs operations A1 and then A2, while the other process performs operations
B1 and then B2, where operations A1 and B1 are safe while operations A2 and B2 are
potentially unsafe.

reachable within a single macro-step of a given process starting at a given state.

3. The specification of a global transfer function that drives the fixed-point computa-
tions of the macro-stepping transfer function and infers the set of reachable states
under macro-stepping collecting semantics.

4. The abstraction of the macro-stepping collecting semantics, in order to obtain a
finite static analysis.

4.1.1. Step 1: Definition of the Operational Semantics for the Input Language

We frame our presentation of MacroConc in the context of a concrete semantics for
concurrent programs as described in Chapter 2. In such a context, a concrete transition
relation (p), parameterized by a process identifier p, defines the small-step operational
semantics of concurrent programs. Transitions may be annotated with communication

effects: s
eff

p s′ indicates that the program may transition from state s to state s′, gener-
ating a communication effect eff . The semantics for λα programs and for λτ programs
have both been formalized through a transition relation fitting this description (see
Sections 2.2 and 2.3 respectively).

4.1.2. Step 2: Definition of the Macro-Stepping Transfer Function

Macro steps are defined by a transfer function Macro -Gs0,p that explores all reachable
states in the macro step of a single process p from a given initial state s0. We provide a
generic formulation of this transfer function in Figure 4.2, relying on an effect restriction
function f : Effect → P(Effect). This effect restriction function returns the set of effects

79

4. MacroConc: Designing Macro-Stepping Analyses

that are not allowed in a macro step after a transition generating the given effect has been
taken. The transfer function itself acts on tuples 〈S, F, E〉 consisting of the set of states
explored as part of the macro step (S), the set of states from which no more transition
can be explored either because the process finished its execution or because that would
break the macro step (F), and the set of effects that are not allowed in the remainder of
the macro step (E).

Macro -Gs0,p(〈S, F, E〉) = 〈{s0} ,∅,∅〉 (1)

t
⊔
s∈S

s
eff

ps′

eff 6∈E

〈
{

s′
}

,∅, f (eff)〉 (2)

t
⊔
s∈S

s ps′

〈
{

s′
}

,∅,∅〉 (3)

t
⊔
s∈S

s
eff

p_
eff∈E

〈∅, {s} ,∅〉 (4)

t
⊔
s∈S

@s′,s
eff

ps′

〈∅, {s} ,∅〉 (5)

Figure 4.2.: Generic formulation of a macro-stepping transfer function.

Figure 4.2 defines the macro-stepping transfer function Macro -Gs0,p : P(Σ)×P(Σ)×
P(Effect) → P(Σ)×P(Σ)×P(Effect) in five parts.

1. The initial state s is part of the set of reachable states.

2. Any state s′ reachable from a state s in the set of reachable states S, through a
transition that generates an allowed effect, is also reachable. The set of effects that
are not allowed is updated according to the effect restriction function f .

3. Any state s′ reachable from a state s in the set of reachable states S, through a
transition that does not generate any effect, is also reachable.

4. States s from which a transition can be performed, but that would generate an
effect that is not allowed, are added to the set of final states.

5. States s from which no transition can be performed for the process p are added to
the set of final states.

The fixed point of this transfer function, lfp(Macro -Gs0,p), is a tuple 〈S, F, E〉 where S
is the set of states reachable within the macro step, F is the set of final states from

80

4.1. Macro-Stepping Abstract Interpretation of Concurrent Programs

which the current macro step can no longer proceed, and E is the set of effects that
are not allowed. The joining of tuples is defined as a component-wise union, that is
〈S, F, E〉 t 〈S′, F′, E′〉 = 〈S ∪ S′, F ∪ F′, E ∪ E′〉. The big join operator (

⊔
) joins all the

elements described to its right (see Appendix A).

4.1.3. Step 3: Definition of the Global Transfer Function

The semantics of a concurrent program e is defined by a global transfer function
Global -Ge that explores the entire set of reachable program states using the macro-
stepping transfer function. The global transfer function Global -Ge : P(Σ) × P(Σ) →
P(Σ)×P(Σ) acts on tuples of sets of states 〈S, F〉, where S is the set of reachable pro-
gram states, including all intermediary states visited as part of macro steps, and F is
the set of final states of previously computed macro steps, from which the global trans-
fer function starts new macro steps. We provide a generic formulation of this transfer
function in Figure 4.3, where s0 is the initial injected state of program e, with the initial
stores as defined in Section 2.1.2, and where processes(s) extracts the process identifiers
of all running processes in state s.

Global -Ge(〈S, F〉) = 〈{s0} , {s0}〉 (1)

t
⊔
s∈F

p∈processes(s)
〈S′,F′,_〉=lfp(Macro -Gs,p)

〈S′, F′〉 (2)

Figure 4.3.: Generic formulation of a global transfer function in terms of a macro-stepping trans-
fer function.

The global transfer function Global -Ge is described in two parts.

1. The initial state is added to the set of reachable states as well as the set of final
states, as only final states are considered to initiate further macro steps.

2. For each final state, a macro step is performed by computing the fixed point of the
macro-stepping transfer function. The resulting set of reachable states and set of
final states are added to the global analysis state.

The fixed point of the global transfer function, lfp(Global -Ge), is a tuple 〈S, F〉 where S
contains all the reachable states of program e under macro-stepping semantics, and F
contains all states at which a macro step ended, and is therefore a subset of the set S.

4.1.4. Step 4: Abstraction of the Macro-Stepping Collecting Semantics

The transfer functions described in steps 2 and 3 are concrete, and the computation
of their fixed points may not terminate. To ensure termination, the state space used
in the definition of the concrete operational semantics (step 1) needs to be abstracted

81

4. MacroConc: Designing Macro-Stepping Analyses

using the same method as in Chapter 2. The changes to the state space propagate to the
definition of the abstract transition relation (p̂), and to the definition of the abstract
transfer functions (Macro - Ĝs0,p̂ and Global - Ĝe). The computations of the fixed points of
the abstracted transfer functions terminate and provide a sound over-approximation of
the concrete macro-stepping semantics.

4.2. Properties of a Macro-Stepping Analysis

We discuss here important properties that analyses resulting from the application of
MacroConc should exhibit, and explain how this is ensured.

4.2.1. Termination

Termination is ensured by the abstraction performed in step 4 of the MacroConc design
method. By abstracting the possibly infinite concrete state space to a finite abstract one,
and by demonstrating that the abstract transfer functions are monotone, termination is
ensured by Tarski’s fixed-point theorem (Tarski, 1955). We provide termination proofs
for the MacroConc analyses for λα and λτ in Sections 4.3.6 and 4.4.5 respectively.

4.2.2. Soundness

As macro-stepping semantics reduces the number of interleavings expressed, it de-
scribes less information than all-interleavings semantics, which might be seen as prob-
lematic for soundness. However, it can be shown that for verifying particular pro-
gram properties, relying on macro-stepping semantics is equivalent to relying on all-
interleavings semantics. Performing a sound abstraction on the macro-stepping seman-
tics therefore results in a sound analysis with respect to these properties.

For example, the application of MacroConc to λα and λτ is proven sound for lo-
cal process properties (Theorems 7 and 9): all process states (ς) explored by an all-
interleavings analysis are also explored by an analysis featuring macro-stepping. This
suffices to derive sound analyses such as, among others, communication topology analy-
ses (Colby, 1995; Martel and Gengler, 2000). Similarly to other state explosion mitigation
techniques (Godefroid, 1996), properties expressed over the concurrent state of multi-
ple processes are not expressible in a sound manner anymore without reestablishing
all-process interleavings into the semantics. This is for example the case for a may-
happen-in-parallel analysis that infers expressions that can be evaluated in parallel on
multiple processes (Duesterwald and Soffa, 1991).

4.2.3. Complexity

In the worst case, every macro step degenerates to a single regular step, and the number
of interleavings explored by a macro-stepping analysis remains the same as the number
of interleavings explored by an all-interleavings analysis. As the number of processes
created and of communication effects performed in a concurrent program increases,

82

4.3. Application of MacroConc to λα

the number of interleavings that have to be explored increases exponentially. Analyses
resulting from the application of MacroConc therefore have an exponential worst-case
time complexity, i.e., O(2|Exp|), like the analyses presented in Chapter 2. However, in
practice, the running time of a macro-stepping analysis is orders of magnitude better
because most macro steps perform more than one small step, therefore reducing the
number of interleavings that the analysis has to explore. However, an increasing number
of communication effects in the program under analysis will result in an increased run-
ning time. This is because the more communication effects there are, the less transitions
can be made within the macro steps, which results in an increase in non-determinism.
We demonstrate this in our empirical evaluation (see Section 4.5).

4.2.4. Precision

The precision of an analysis resulting from the application of MacroConc remains the
same as the precision of an analysis resulting from the naive application of AAM. This is
because an analysis relying on macro-stepping will neither compute less information nor
more information. When proving soundness, one proves that every state that matters for
the soundness of an analysis is accounted for by the macro-stepping semantics, and one
proves that even though the macro-stepping analysis computes less information than an
all-interleavings analysis, all observable information remains identical, hence precision
is not improved. Moreover, an analysis relying on macro-stepping semantics cannot
produce more information than an analysis relying on all-interleavings semantics, as
it only reduces the number of interleavings expressed in the semantics. Hence, the
precision of an analysis under macro-stepping semantics is not worse than under all-
interleavings semantics. Therefore, precision is preserved in analyses resulting from the
application of MacroConc.

4.3. Application of MacroConc to λα

We apply the MacroConc design method to λα. We start by demonstrating that for an
actor model in which the messages in a mailbox are ordered, macro-stepping semantics
as originally described by Agha et al. (1997) may miss important process interleav-
ings. We therefore instantiate two macro-stepping semantics: ordered macro-stepping for
actor models with ordered mailboxes, and unordered macro-stepping for actor models
with unordered mailboxes. Actor models with unordered mailboxes exist in formal
models (Agha et al., 1997; Garoche et al., 2006), but are uncommon in real-world imple-
mentations of actors, which typically provide some guarantees about the ordering of
messages. We then provide the definition of the macro-stepping transfer function and
of the global transfer function for λα, and their abstractions.

4.3.1. The Importance of Order

Listing 4.1 illustrates how the order of message sends may be impacted by macro-
stepping semantics. Lines 2 and 7 each define an actor behavior. The first behavior beh1

83

4. MacroConc: Designing Macro-Stepping Analyses

(line 2) has no state variables, and handles three different messages (lines 3–5). The
second behavior beh2 (line 7) has one state variable, target, and upon reception of a
message start (line 8) sends two messages to this target (lines 9 and 10). The main
process then creates actor t (line 12) with behavior beh1, and actor awith behavior beh2
(line 13), specifying actor t as its target. The process then sends message start to actor
a (line 14), followed by message m3 to actor t.

1 (define beh1
2 (actor ()
3 (m1 () (become beh1))
4 (m2 () (become beh1))
5 (m3 () (become beh1))))
6 (define beh2
7 (actor (target)
8 (start ()
9 (send target m1)

10 (send target m2)
11 (become beh2 target))))

12 (define t (create beh1))
13 (define a (create beh2 t))
14 (send a start)
15 (send t m3)

Listing 4.1: Example program motivating the need for static analyses to revisit macro-stepping
for actor models with ordered-message mailboxes.

In a concrete execution, actor t can receive messages in its mailbox in any of the
following orders.

• m1, m2, m3: actor a sends its messages m1 and m2, after which the main process is
scheduled for execution and sends message m3.

• m3, m1, m2: the main process sends message m3, after which actor a sends messages
m1 and m2.

• m1, m3, m2: actor a sends a first message m1, the main process is scheduled and
sends message m3, after which actor a sends its second message m2.

For a static analysis to be sound for an actor model in which mailboxes preserve the
ordering of their messages, it should account for all important interleavings. Consider
an analysis that reasons about the order in which messages are received at actor t. For
such an analysis, a mailbox abstraction preserving ordering information is required,
and we study such abstractions in Chapter 5. An analysis abstracting all-interleavings
semantics will account for all of these orderings.

An analysis abstracting Agha’s original macro-stepping semantics (Agha et al., 1997)
however no longer includes the third interleaving in its over-approximation of the
program’s runtime behavior. This is because the analysis will not interleave the main
process with actor a’s processing of the start message. The original macro-stepping
semantics defines a macro step as multiple small steps between the reception of a
message and the reception of the next message. Therefore, under such macro-stepping
semantics, actor awill always send both m1 and m2without interruptions, and the results
of an analysis abstracting these semantics will not be sound.

This is why we propose a finer-grained variant of macro-stepping semantics which
we call ordered macro-stepping semantics. During an ordered macro step, each actor

84

4.3. Application of MacroConc to λα

is allowed to process a message and to send at most a single message. The ordered
macro step ends right before a second message is sent, as message sends can introduce
other important interleavings. Two ordered macro steps (instead of one regular macro
step) are therefore required for actor a to process the start message. The first macro
step ends before actor a sends the second message, allowing the main actor to send
its message before a sends message m2. The difference to regular macro-stepping is
small, but ensures that analyses relying on such abstractions of ordered macro-stepping
semantics correctly account for interleavings at message sends.

This example illustrates that regular macro-stepping semantics, while useful to re-
duce non-determinism, needs to be adapted for actor models with ordered-message
mailboxes. Otherwise, important message interleavings might be discarded, rendering
an analysis abstracting macro-stepping semantics unsound. For unordered-message
mailboxes, the original notion of macro-stepping suffices because messages can be re-
ordered arbitrarily in the mailbox.

4.3.2. Step 1 of MacroConc for λα: Definition of the Operational Semantics

The first step of MacroConc consists of defining the operational semantics of the lan-
guage. We defined this semantics for λα in Chapter 2 in terms of a concurrent transition
relation , and do not redefine it here as it remains identical. This transition rela-
tion includes rules for sequential transitions (Figure 2.23), rules for actor management
(Figure 2.24), and rules for sending and processing messages (Figure 2.25).

4.3.3. Step 2 of MacroConc for λα: Definition of the Macro-Stepping

Transfer Function

Figure 4.4 instantiates our generic formulation of the macro-stepping transfer function
from Figure 4.2 for λα, as the transfer function Macro -Gλα

p,π0,σ0,Ξ0
. The domain of this

transfer function is defined as tuples containing a process map π, a value store σ and a
continuation store Ξ, which are defined in Figure 2.19. We discuss the macro-stepping
strategy defined by the restriction function f λα below.

Instantiation of the Macro-Stepping Transfer Function for λα

As the original macro-stepping semantics of Agha et al. (1997) does not describe a
sound subset of the all-interleavings semantics for actor programs with an ordered
mailbox model, we introduce two macro-stepping transfer functions: one that follows
the definition of Agha et al. (1997), and is suitable for actor models with unordered
mailboxes only, and one that is suitable for ordered-mailbox actor models and therefore
for λα.

Unordered macro-stepping
Using f λα(eff) = {prc(t, v) | t ∈ Tag, v ∈ Val} as restriction function in the defini-
tion of Macro -Gλα

p,ς0,σ0,Ξ0
gives rise to the unordered macro-stepping semantics of

85

4. MacroConc: Designing Macro-Stepping Analyses

Agha et al. (1997). This restriction disallows processing more than one message
in the same macro step. A macro step on an actor therefore executes a message
handler up to completion, which is called a turn in the actor terminology (De
Koster et al., 2016).

Ordered macro-stepping
Ordered macro-stepping semantics arises from the definition of f λα given below.

f λα(snd(p, t, v)) =
{

prc(t′, v′), snd(p′, t′, v′) | t′ ∈ Tag, p′ ∈ PID, v′ ∈ Val
}

f λα(eff) = {prc(t, v) | t ∈ Tag, v ∈ Val} if eff 6= snd(_, _, _)

This restriction disallows actors from processing more than one message and
from sending more than one message within the same macro step. Processing or
sending a second message requires a further macro step.

λα

Macro -Gλα
p,π0,σ0,Ξ0

(〈S, F, E〉) = 〈{〈π0, σ0, Ξ0〉} ,∅,∅〉 (1)

t
⊔

〈π,σ,Ξ〉∈S

π,σ,Ξ
eff

pπ′,σ′,Ξ′

eff 6∈E

〈
{
〈π′, σ′, Ξ′〉

}
,∅, f λα(eff)〉 (2)

t
⊔

〈π,σ,Ξ〉∈S
π,σ,Ξ pπ′,σ′,Ξ′

〈
{
〈π′, σ′, Ξ′〉

}
,∅,∅〉 (3)

t
⊔

〈π,σ,Ξ〉∈S

π,σ,Ξ′ eff
p_,_,_

eff∈E

〈∅, {〈π, σ, Ξ〉} ,∅〉 (4)

t
⊔

〈π,σ,Ξ〉∈S

@〈π′,σ′,Ξ′〉,π,σ,Ξ
eff

pπ′,σ′,Ξ′

〈∅, {〈π, σ, Ξ〉} ,∅〉 (5)

Figure 4.4.: Macro-stepping transfer function for λα.

4.3.4. Step 3 of MacroConc for λα: Definition of the Global Transfer

Function

Figure 4.5 depicts the instantiation of the generic formulation of the global transfer
function from Figure 4.3 for λα. The initial state s0 is obtained by injecting the program
under analysis with the injection function I defined in Figure 2.27, and using the initial

86

4.3. Application of MacroConc to λα

value store and continuation store. Identifiers of running processes correspond to the
domain of the process map of a state. The global transfer function explores the initial
state (1), and any state that can be reached in a macro step from a state of the set of final
states F (2).

λα

Global -Gλα
e (〈S, F〉) = 〈{s0} , {s0}〉 (1)

t
⊔

〈π,σ,Ξ〉∈F
p∈dom(π)

〈S′,F′,_〉=lfp(Macro -Gλα
p,π,σ,Ξ)

〈S′, F′〉 (2)

where s0 = 〈I(e), [], [k0 7→ ε]〉

Figure 4.5.: Global transfer function for λα.

4.3.5. Step 4 of MacroConc for λα: Abstraction of the Macro-Stepping

Collecting Semantics

The transfer functions are abstracted by incorporating the abstract state space and the
abstract transition relation defined in Chapter 2 instead of the concrete ones. The abstract
transfer functions Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
: P(Σ̂)×P(Σ̂)×P(Êffect) → P(Σ̂)×P(Σ̂)×P(Êffect)

and Global - Ĝλα
e : P(Σ̂)×P(Σ̂) → P(Σ̂)×P(Σ̂) preserve the same structure as the con-

crete ones from Figures 4.4 and 4.5. We therefore do not provide their definition for the
sake of brevity.

4.3.6. Soundness and Termination

Theorems 7 and 8 state that the analysis described by the fixed point of the abstract global
transfer function is sound and terminates, two crucial properties for a static analysis.

Theorem 7 (Soundness). Static analyses for a concurrent actor program that soundly abstract
macro-stepping semantics are sound with respect to local process properties.

Proof. The proof is detailed in Appendix B.2.1. The idea of this proof is the following. We
introduce a function local : P(Π × Store × KStore) → (PID → P(Σ × Store × KStore)),
which defines the meaning of a local process property. A local process property is a
property that can be expressed using the result of this function when applied to the
fixed point of the global transfer function, i.e., a property that only concerns the states of
processes in isolation. We show that the local process view of all states reachable under
all-interleavings semantics is equivalent to the local process view of states reachable
using macro-stepping, and that the restriction function for ordered macro-stepping
allows at most a single transition that act on the global state of the analysis per macro

87

4. MacroConc: Designing Macro-Stepping Analyses

step. Performing a sound abstraction of the concrete macro-stepping semantics results
in a sound static analysis for local process properties.

Theorem 8 (Termination). The computation of lfp(Global - Ĝλα
e) always terminates.

Proof. The proof is detailed in Appendix B.2.1 and follows the same structure as previ-
ous termination proofs. By proving that the abstract state space is finite, and that both
the abstract macro-stepping transfer function Macro - Ĝλα

π̂0,σ̂0,Ξ̂0,p̂
and the global transfer

function Global - Ĝλα
e are monotone, termination is ensured by Tarski’s fixed-point theo-

rem (Tarski, 1955).

4.4. Application of MacroConc to λτ

We apply the MacroConc design method to the λτ language introduced in Section 2.3.
We present this application in the same way as for λα: we provide the definition of
the operational semantics, the definition of the macro-stepping transfer function, the
definition of the global transfer function and the abstractions of these transfer functions.
Applying the macro-stepping analysis design method to λτ results in exactly the same
formulation of the transfer functions as for λα.

4.4.1. Step 1 of MacroConc for λα: Definition of the Operational Semantics

We defined the semantics for λτ in Chapter 2 in terms of a concurrent transition relation
 , and do not redefine it here as it remains identical. This transition relation includes
rules for sequential transitions (Figure 2.45), rules for thread creation and joining (Fig-
ure 2.46), rules for creating, accessing and modifying references (Figure 2.47), and rules
for creating, acquiring and releasing locks (Figure 2.48).

4.4.2. Step 2 of MacroConc for λτ: Definition of the Macro-Stepping

Transfer Function

Figure 4.6 instantiates the generic macro-stepping transfer function from Figure 4.2 for
λτ programs, as the function Macro -Gλτ

p,π0,σ0,Ξ0
. The domain of this transfer function is

defined as tuples containing a process map π, a value store σ and a continuation store
Ξ, which are defined in Figure 2.43. It remains structurally equivalent to the generic
formulation and only differs in the definition of the effect restriction function f λτ .

Instantiation of the Macro-Stepping Transfer Function for λτ

The effect restriction function for λτ has to break macro steps when possibly interfering
effects are performed. A straightforward yet effective definition of this restriction func-
tion is to only allow for at most one of the following operations in a macro step: spawning
a thread, reading from a reference, writing to a reference, acquiring a lock, releasing
a lock, or joining another process. This results in defining the restriction function as

88

4.4. Application of MacroConc to λτ

f λτ (eff) = Effect, meaning that all possible effects are forbidden once a communication
effect has been performed (Effect is the set of all effects). As shown in our evaluation
(Section 4.5), this restriction function results in an analysis that performs well both in
terms of running time and precision. Refinements of this restriction function include
allowing a thread to spawn multiple threads or taking into account the addresses read
from or written to. We discuss possible refinements of this restriction function as future
work in Chapter 7.

λτ

Macro -Gλτ
p,π0,σ0,Ξ0

(〈S, F, E〉) = 〈{〈π0, σ0, Ξ0〉} ,∅,∅〉 (1)

t
⊔

〈π,σ,Ξ〉∈S

π,σ,Ξ
eff

pπ′,σ′,Ξ′

eff 6∈E

〈
{
〈π′, σ′, Ξ′〉

}
,∅, f λτ (eff)〉 (2)

t
⊔

〈π,σ,Ξ〉∈S
π,σ,Ξ pπ′,σ′,Ξ′

〈
{
〈π′, σ′, Ξ′〉

}
,∅,∅〉 (3)

t
⊔

〈π,σ,Ξ〉∈S

π,σ,Ξ′ eff
p_,_,_

eff∈E

〈∅, {〈π, σ, Ξ〉} ,∅〉 (4)

t
⊔

〈π,σ,Ξ〉∈S

@〈π′,σ′,Ξ′〉,π,σ,Ξ
eff

pπ′,σ′,Ξ′

〈∅, {〈π, σ, Ξ〉} ,∅〉 (5)

Figure 4.6.: Macro-stepping transfer function for λτ .

4.4.3. Step 3 of MacroConc for λτ: Definition of the Global Transfer

Function

Figure 4.7 instantiates the generic global transfer function from Figure 4.3 for λτ pro-
grams. The initial state s0 is obtained by injecting the program to analyze with the
injection function I defined in Figure 2.49, and the set of running processes can be ex-
tracted from the domain of the process map (dom(π)). It preserves the same structure
as the generic formulation.

89

4. MacroConc: Designing Macro-Stepping Analyses

λτ

Global -Gλτ
e (〈S, F〉) = 〈{s0} , {s0}〉

t
⊔

〈π,σ,Ξ〉∈F
p∈dom(π)

〈S′,F′,_〉=lfp(Macro -Gλτ
p,π,σ,Ξ)

〈S′, F′〉

where s0 = 〈I(e), [], [k0 7→ ε]〉

Figure 4.7.: Global transfer function for λτ .

4.4.4. Step 4 of MacroConc for λτ: Abstraction of the Macro-Stepping

Collecting Semantics

The transfer functions of the macro-stepping collecting semantics for λτ are abstracted
analogously to those for λα, by plugging in the abstract domains in place of the concrete
ones, without requiring structural modifications. The abstract macro-stepping trans-
fer function Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
: P(Σ̂)×P(Σ̂)×P(Êffect) → P(Σ̂)×P(Êffect) therefore

acts on sets of abstract states and on sets abstract effects, and the abstract global transfer
function Global - Ĝλτ

e : P(Σ̂)×P(Σ̂) → P(Σ̂)×P(Σ̂) acts on sets of abstract states. We
do not provide these abstract definitions for the sake of brevity, as again, only hats need
to be placed on the concrete elements to perform abstraction.

4.4.5. Soundness and Termination

Theorems 9 and 10 state that the analysis described by the fixed point of the abstract
global transfer function is sound and terminates, two crucial properties for a static
analysis.

Theorem 9 (Soundness). Static analyses for a multi-threaded program that soundly abstract
macro-stepping semantics are sound with respect to local process properties.

Proof. The proof is detailed in Appendix B.2.2 and follows the same reasoning as the
proof for Theorem 7: we show the equivalence of macro-stepping semantics to all-
interleavings semantics in the concrete case for local process properties, and a further
sound abstraction results in a sound static analysis for local process properties.

Theorem 10 (Termination). The computation of lfp(Global - Ĝλτ
e) always terminates.

Proof. The proof is detailed in Appendix B.2.2 and follows the same structure as the
proof for Theorem 8: both transfer functions are monotone and act on finite state spaces,
hence the analysis always terminates.

90

4.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

4.5. Soundness Testing and Evaluation of Running Time,

Precision, and Scalability on a Benchmark Suite

We implemented the analyses resulting from the application of MacroConc described
in this chapter using our Scala-AM static analysis framework, presented in Section 2.4.1.
We empirically evaluate these analyses in terms of running time, precision, and scala-
bility on the set of benchmark programs introduced in Section 2.4.2.

4.5.1. Soundness Testing

We have proven that the application of MacroConc to λα and λτ results in sound
analyses (Theorems 7 and 9). We also provide empirical evidence for the soundness
of our implementation through soundness testing (Andreasen et al., 2017) as described
in Section 2.4.3. In brief, we compare the information inferred by each analysis to the
information recorded during 1000 concrete runs of each benchmark, and check that all
concrete information is soundly over-approximated by the analysis. No unsound results
were discovered.

4.5.2. Running Times

We report the average time required to analyze each benchmark program with the same
setup used in the evaluation of Section 2.4: each program is analyzed 20 times after 10
warmup runs, with a time budget of 30 minutes. The results are given in Table 4.1. Of the
56 benchmark programs, 30 are analyzed within the given time budget of 30 minutes,
with analysis times varying between 15 milliseconds and 25 minutes.

Actors Threads

Bench. Time (ms) Bench. Time (ms) Bench. Time (ms) Bench. (ms) Time (ms)

PP 494 BTX 2567 ABP 1014 TRAPR 559
COUNT 284 RSORT 12913 COUNT 48003 ATOMS 8710
FJT 112 FBANK 619849 DEKKER 275 STM ∞
FJC 15 SIEVE 79 FACT ∞ NBODY ∞
THR 233744 UCT ∞ MATMUL ∞ SIEVE 1026
CHAM 1499941 OFL ∞ MCARLO 1134673 CRYPT ∞
BIG ∞ TRAPR 10301 MSORT ∞ MCEVAL ∞
CDICT 21246 PIPREC 387 PC 12852 QSORT ∞
CSLL ∞ RMM ∞ PHIL 463 TSP ∞
PCBB 99630 QSORT ∞ PHILD 5168 BCHAIN 74711
PHIL ∞ APSP ∞ PP 657 LIFE 663712
SBAR ∞ SOR ∞ RINGBUF ∞ PPS 56669
CIG 1337 ASTAR ∞ RNG 711 MINIMAX ∞
LOGM ∞ NQN ∞ SUDOKU ∞ ACTORS ∞

Table 4.1.: Running times of the analyses presented in this chapter on our benchmark programs.
The timings are expressed in milliseconds and represent the average of 20 runs after
10 warmup runs. ∞ denotes that the analysis exceeded the allocated time budget of
30 minutes.

91

4. MacroConc: Designing Macro-Stepping Analyses

We observe that the running time of the analysis correlates with the following char-
acteristics of the program under analysis.

• When each abstract process is mapped to a single concrete process, because each
creation site is executed a single time, the analysis time is low. This is the case
for the PP and COUNT actor programs, and for the ABP, DEKKER and PP multi-
threaded programs, which are all analyzed in a second or less. This is because when
each abstract process is mapped to a single concrete process, the use of abstract
counting reduces the non-determinism on the process map π of the analysis.

• For actor programs, the fewer messages are sent in a message handler, the lower
the analysis time. For example, programs FJT and FJC contain actors that receive
messages but do not send any message, and programs BTX, TRAPR and PIPREC
contain actors that send at most one message per message handler. These bench-
marks are all analyzed in 10 seconds or less.
If more than one message are sent from a message handler, the macro step will
have to be broken before the end of the actor’s turn. The RMM program illustrates
this well: a message handler of one of the actors sends more than 8 messages upon
the reception of a single message. To analyze this message handler, more than 8
macro steps are therefore required.

• For multi-threaded programs, the fewer threads perform joins, the lower the anal-
ysis time. For example, programs ABP, COUNT, DEKKER, PC, PHIL, PP, and RNG
all contain calls to join only within the main thread, never in a spawned thread,
and are analyzed in under a minute. As more threads perform join operations,
more macro steps are broken and more non-determinism is introduced, resulting
in an increased running time for the analysis.

• For the multi-threaded programs, the fewer potential conflicts through access
to shared-memory there are, the lower the analysis time. For example, programs
PHIL and TRAPR do not make use of shared-memory constructs and are analyzed
in less than a second. Program PHILD program is similar to the PHIL program, but
uses shared memory and takes ten times the time required for the PHIL program.
As more potential conflicts are introduced, more macro steps have to be broken
and analysis time increases.

We confirm that all these factors have an impact on the analysis time in Section 4.5.4.
Another factor—which we do not detail further as it is orthogonal to our discussion—
is the sequential complexity of the program under analysis. For example, while the
MCEVAL program does not use many concurrent features (only spawn and join), it
is a meta-circular interpreter that manipulates cons cells and relies on higher-order
functions such as map, and therefore requires more time to analyze than a program like
RNG that, even though it accesses and modifies shared state, performs simple arithmetic
computations.

92

4.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

Comparison to Naive Applications of AAM

We observe a substantial improvement in running time over the analyses presented in
Chapter 2, which can only analyze 6 of the 56 benchmark programs within the time
budget. Table 4.2 compares running times for benchmarks that can be analyzed within
the time budget by both analyses. The application of MacroConc rather than a naive
application of AAM results in analyses that are up to four orders of magnitude faster,
with a speedup factor (i.e., the running time of analyses presented in Chapter 2 over the
running time of analyses resulting from the application of MacroConc) ranging from
3 to 35216. The speedup is more important for actor programs that contain actors of
which message handlers do not send messages, such as programs FJT and FJC.

Actors Threads

Bench. Naive Macro Speedup Bench. Naive Macro Speedup

PP 2876 494 ÷5.82 ABP 92163 1014 ÷90.89
COUNT 920 284 ÷3.24 DEKKER 20675 275 ÷75.18
FJT 435812 112 ÷3891.18
FJC 528242 15 ÷35216.13

Table 4.2.: Running time comparison between the analyses resulting from the naive application
of AAM (column Naive) and the analyses resulting from the application of Macro-
Conc presented in this chapter (column Macro), for programs analyzed by both anal-
yses in under 30 minutes. Columns Naive and Macro contain timings in milliseconds.
Columns Speedup represent the speedup factor of the running time of analyses result-
ing from the application of AAM over the running time of analyses resulting from
the application of MacroConc.

Comparison to Related Work

We also compare the analysis for actors presented in this chapter against its closest
related work, the Soter tool (D’Osualdo et al., 2012). Soter performs verification of actor
programs written in Erlang in two phases: a first phase constructs a model of the program
under analysis, and a second phase performs model checking using this model and user-
provided annotations to verify that the properties expressed in the annotations hold for
every execution of the program. We only compare to the running times of the first
phase. To perform the comparison, we translated each of the actor programs from our
benchmark suite presented in Section 2.4.2 faithfully from λα to Erlang. As Soter is
closed source and only available through a web interface with a two minute time limit,
the resulting running times are not directly comparable to the running times of our
analysis. We therefore do not compare the approaches in terms of raw timings, but
rather in terms of the number of benchmarks that can be analyzed within the time limit.

The results are given in Table 4.3, where we cap the running times of our analysis at
two minutes to match Soter’s time budget. We observe that both analyses share similar
results: Soter analyzes 11 out of the 28 benchmarks under the two-minutes timeout,
while our macro-stepping analysis analyzes 12 out of the 28 benchmarks within the

93

4. MacroConc: Designing Macro-Stepping Analyses

Bench. Macro Soter Bench. Macro Soter Bench. Macro Soter Bench. Macro Soter

PP 494 150 CDICT 21246 ∞ BTX 2567 ∞ PIPREC 387 ∞
COUNT 284 310 CSLL ∞ ∞ RSORT 12913 ∞ RMM ∞ ∞
FJT 112 470 PCBB 99630 ∞ FBANK ∞ ∞ QSORT ∞ ∞
FJC 15 110 PHIL ∞ 29840 SIEVE 79 4240 APSP ∞ ∞
THR ∞ 1130 SBAR ∞ 1710 UCT ∞ ∞ SOR ∞ ∞
CHAM ∞ 1860 CIG 1337 ∞ OFL ∞ ∞ ASTAR ∞ ∞
BIG ∞ ∞ LOGM ∞ 31950 TRAPR 10301 ∞ NQN ∞ 29090

Table 4.3.: Comparison between the analysis for concurrent actors presented in this chapter
(column Macro) and the analysis for concurrent actors present in Soter (D’Osualdo et
al., 2012) (column Soter). Each benchmark program is analyzed with a time limit of 2
minutes. Running times are given in milliseconds.

same time budget. We also see that 5 benchmark programs can be analyzed by both
approaches within the time budget, that 6 benchmarks can be analyzed within the time
budget only by Soter while our approach times out (THR, CHAM, PHIL, SBAR, CIG,
NQN), and that Soter times out on 7 benchmarks that are analyzed by our approach in
under two minutes (CDICT, PCBB, CIG, LOGM, BTX, OFL, TRAPR).

4.5.3. Precision

As explained in Section 4.2.4, the precision of analyses resulting from the application of
MacroConc remains the same as the analyses presented in Chapter 2. We did not discuss
precision in Chapter 2 as only 6 benchmarks can be analyzed within the time budget
with the analyses presented in that chapter. The precision of the analyses resulting from
the application of MacroConc being the same, we discuss precision of all analyses
together here.

To measure precision, we compare the information inferred from running the analyses
presented in this chapter on each benchmark program with the corresponding concrete
information resulting from running each benchmark 1000 times, first aggregating and
then abstracting the observed results. The abstracted aggregated results from the con-
crete runs represent an under-approximation of the maximally precise analysis results.
This is an under-approximation because we cannot ensure that all possible program
paths and process interleavings have been explored in the 1000 different runs. However,
we expect the abstraction of the aggregated concrete results to be close to the results
that a maximally precise analysis would compute. By comparing these abstracted ag-
gregated results to the information computed by a static analysis, we can quantify the
precision of the analysis by counting potential spurious abstract elements. Resulting from
over-approximation, a spurious abstract element lacks corresponding concrete elements
in actual runs of the program. The more spurious elements, the less precise the results
of the analysis.

We record the following elements at each run of the λα programs:

1. each execution of a become statement, with the arguments given,

2. each creation of an actor, with the state given as argument, and

94

4.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

3. each reception of a message, with the tag and arguments of the message.

We record the following elements at each run of the λτ programs:

1. each value returned by each thread,

2. each memory address read from and written to by each thread,

3. each lock acquired and released by each thread.

We compare the observed concrete elements with the results of a communication effects
analysis in order to detect spurious elements. We sum the number of spurious elements
computed by the analysis for each benchmark and report on the results in Table 4.4.
Note that these results are an upper bound on the number of spurious elements, as it
might be the case that none of the 1000 runs of each benchmark program explored a
specific path that leads to one of the element detected as spurious, which therefore is
not spurious. We nonetheless carefully manually inspected the recorded elements and
could not find missing elements that could arise in other runs of the programs.

Actors Threads

Bench. Obs. Spu. Bench. Obs. Spu. Bench. Obs. Spu. Bench. Obs. Spu.

PP 9 0 BTX 9 0 ABP 20 0 TRAPR 2 0
COUNT 8 0 RSORT 10 0 COUNT 6 4 ATOMS 6 0
FJT 3 0 FBANK 38 0 DEKKER 16 5 STM 11 –
FJC 2 0 SIEVE 8 0 FACT 21 – NBODY 25 –
THR 5 2 UCT 20 – MATMUL 40 – SIEVE 4 2
CHAM 10 0 OFL 13 – MCARLO 12 0 CRYPT 2 –
BIG 10 – TRAPR 7 0 MSORT 12 – MCEVAL 2 –
CDICT 13 0 PIPREC 8 0 PC 15 0 QSORT 18 –
CSLL 16 – RMM 14 – PHIL 4 0 TSP 12 –
PCBB 13 0 QSORT 6 – PHILD 8 0 BCHAIN 7 0
PHIL 13 – APSP 5 – PP 6 0 LIFE 16 0
SBAR 19 – SOR 12 – RINGBUF 19 – PPS 10 0
CIG 9 0 ASTAR 11 – RNG 6 0 MINIMAX 4 –
LOGM 15 – NQN 11 – SUDOKU 58 – ACTORS 18 –

Table 4.4.: Precision evaluation. Column Obs. lists the number of observed elements among
1000 concrete runs of each benchmark program. Column Spu. lists the number of
potential spurious elements inferred by an analysis, i.e., abstract elements that have
no corresponding element observed in any concrete run. A dash (–) is used to denote
benchmarks for which the analysis exceeds the time budget of 30 minutes.

We see that the analyses achieve full precision on most benchmarks: out of the 30
benchmark programs analyzed within the time limit, 26 are analyzed with full precision.
On the 4 other benchmarks, a few potential spurious elements are detected by our
evaluation method. In total, on the programs analyzed within the time budget, 13
potential spurious elements have been reported, and 290 elements observed at run time
have been correctly inferred by the analysis. This results in a precision of 96%1. We

1We have 290 observed elements (true positives) and 13 spurious elements (false positives), therefore the

precision is 290
290 + 13

= 0.96.

95

4. MacroConc: Designing Macro-Stepping Analyses

therefore conclude that an analysis resulting from the application of MacroConc yields
a very high precision on our benchmark suite.

4.5.4. Scalability

We identified the worst-case time complexity of analyses resulting from the application
of MacroConc as exponential in the number of running processes and communication
effects (Section 4.2.3). We also evaluate the scalability of the analyses resulting from the
application of MacroConc empirically. To that end, we generate a number of synthetic
benchmark programs of increasing complexity for which we record the running time
of a macro-stepping analysis. Each benchmark family studied here has an increasing
number of created processes or communication effects, and demonstrate how processes
created and communication effects performed impact the running time of the analyses
presented in this chapter. In each benchmark family, we ensured that the number of
expression remains constant to measure precisely the overhead incurred on analysis time
by the increasing value of the parameter. To that end, some benchmark families include
dummy function calls to the + primitive, that are replaced to concurrent primitives (e.g.,
spawn) when the value of the parameter increases.

For λα, a first family of benchmark programs depicted in Figure 4.8 creates a single
actor with a fixed number of message handlers (10), and sends the same number of
messages to that actor. The varying parameter for this benchmark family is the number
of different messages being sent, varying from a single message (the actor receives
10 times the same message), to all different messages (the actor receives 10 different
messages). A second family of benchmark programs depicted in Figure 4.9 creates a
fixed number of actors (7), with a number of different behaviors varying from a single
behavior (all 7 actors have the same behavior) to 7 different behaviors (all actors have
a different behavior). Due to the process allocation strategy presented in Figure 2.26,
multiple actors that are created with the same behavior are mapped to a single abstract
actor, while actors that are created with different behaviors are mapped to different
abstract actors.

For λτ, a first family of benchmark programs depicted in Figure 4.10 contains a fixed
number of nested let bindings (10), and gradually evaluates the expression for the
bound value in a separate thread. We run each of the programs from this benchmark
family from 1 thread created (one expression is evaluated in a new thread, the others
are evaluated sequentially) to 10 threads created (all bound values are evaluated in a
new thread). A second family of benchmark programs depicted in Figure 4.11 spawns a
number of threads (12), each either evaluating an expression sequentially, or joining the
result of another thread. We run each of the programs from this benchmark family from 1
joins (all but one threads evaluate an arithmetic expression) to 9 joins (9 threads perform
joins). A third family of benchmark programs depicted in Figure 4.12 spawns a number
of threads (10), each evaluating a simple expression or incrementing a shared mutable
reference. We run each of the programs from this benchmark family from 0 conflicting
threads (all but one threads evaluate an arithmetic expression) to 10 conflicting threads
(all threads perform unprotected read and write accesses to the same mutable reference).

96

4.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

1 (letrec ((b (actor ()
2 (m0 () (become b))
3 ...
4 (m9 () (become b))))
5 (p (create b)))
6 (send p m0)
7 ...
8 (send p m0))

(a) m = 1

1 (letrec ((b (actor ()
2 (m0 () (become b))
3 ...
4 (m9 () (become b))))
5 (p (create b)))
6 (send p m0)
7 ...
8 (send p m9))

(b) m = 10
Figure 4.8.: Benchmark family for number of message (m) in λα

1 (letrec ((b0 (actor () (m () (become b0))))
2 ...
3 (b6 (actor () (m () (become b6)))))
4 (send (create b0) m)
5 ...
6 (send (create b0) m))

(a) b = 1

1 (letrec ((b0 (actor () (m () (become b0))))
2 ...
3 (b6 (actor () (m () (become b6)))))
4 (send (create b0) m)
5 ...
6 (send (create b6) m))

(b) b = 7
Figure 4.9.: Benchmark family for number of behaviors (b) in λα

1 (letrec ((t0 (spawn 0))
2 (t1 (id 1))
3 ...
4 (t9 (id 9)))
5 1)

(a) t = 0

1 (letrec ((t0 (spawn 0))
2 (t1 (spawn 1))
3 ...
4 (t9 (spawn 9)))
5 1)

(b) t = 10
Figure 4.10.: Benchmark family for number of threads (t) in λτ

1 (letrec ((t0 (spawn (+ (join t1) (join t2))))
2 (t1 (spawn (+ (id 2) (id 3))))
3 ...
4 (t9 (spawn (+ (id 10) (id 11))))
5 (t10 (spawn (id 11)))
6 (t11 (spawn (id 12)))))
7 1)

(a) j = 1

1 (letrec ((t0 (spawn (+ (join t1) (join t2))))
2 (t1 (spawn (+ (join t2) (join t3))))
3 ...
4 (t9 (spawn (+ (join t10) (join t11))))
5 (t10 (spawn (id 11)))
6 (t11 (spawn (id 12))))
7 1)

(b) j = 9
Figure 4.11.: Benchmark family for number of joins (j) in λτ

1 (letrec ((x (ref 0))
2 (t0 (spawn (ref-set! x
3 (id (deref x 1)))))
4 (t1 (spawn (id (id (id 1) 1))))
5 ...
6 (t9 (spawn (id (id (id 9) 1)))))
7 (join t0)
8 ...
9 (join t9))

(a) c = 1

1 (letrec ((x (ref 0))
2 (t0 (spawn (ref-set! x (+ (deref x 1)))))
3 (t1 (spawn (ref-set! x (+ (deref x 1)))))
4 ...
5 (t9 (spawn (ref-set! x (+ (deref x 1))))))
6 (join t0)
7 ...
8 (join t9))

(b) c = 10

Figure 4.12.: Benchmark family for number of conflicts (c) in λτ

97

4. MacroConc: Designing Macro-Stepping Analyses

0 2 4 6 8 10
0

1

2
·104

m

Ti
m

e
(m

s)

(a) Number of messages sent, λα.

0 2 4 6
0

2

4

6

8

·105

b

Ti
m

e
(m

s)

(b) Number of behaviors, λα.

0 2 4 6 8 10
0

2

4

6
·104

t

Ti
m

e
(m

s)

(c) Number of threads, λτ .

0 2 4 6 8
0

0.5

1

·106

j

Ti
m

e
(m

s)

(d) Number of joins, λτ .

0 2 4 6 8 10
0

5

·105

c

Ti
m

e
(m

s)

(e) Number of conflicts, λτ .
Figure 4.13.: Scalability evaluation of MacroConc. Each graph corresponds to a benchmark

which is parameterized by a value (m for number of messages, and b for number
of actor behaviors, t for abstract threads, j for join operations, c for conflicts) that
increases, and shows the running time of the analysis in function of the value of
the given parameter.

For each of the λα and λτ families of benchmarks, we expect to see an exponential
increase in the running time of the analysis as the value of the parameter (messages,
behaviors, threads, joins, conflicts) increases. This is because as more communication
effects are performed, the macro steps become smaller, and the non-determinism of
the analysis increases. We ran each benchmark 20 times after 10 warmup runs, and
recorded the timing of each of the 20 runs. We plot the results as one data point per
run in Figure 4.13, where we see an exponential trend for each family of benchmarks.
Although we note minor variations of the data points, they do not deviate from the
exponential curve. This confirms the theoretical results from Section 4.2.3.

4.6. Conclusion

In this chapter, we presented the MacroConc analysis design method that, when ap-
plied to operational semantics of a concurrent programming language, results in a static
analysis featuring an improved scalability compared to analyses resulting from a naive

98

4.6. Conclusion

application of the AAM design method—thanks to macro-stepping. Analyzing parts
of the execution of the processes sequentially, as macro steps, reduces the number of
process interleavings that have to be explored. The macro-stepping strategy is defined
by a restriction function expressing which communication effects are not allowed once
specific communication effects have been generated by a process. Any transition that
performs a communication effect that is disallowed interrupts the macro step at which
point the analysis investigates other interleavings. The result of a macro step of a process
from a given state is expressed as the fixed point of a macro-stepping transfer function
expressed in terms of the aforementioned restriction function. The fixed-point compu-
tations of the macro-stepping transfer function are driven by a global transfer function
that dictates which macro step to explore based on the running processes and the final
states of previously explored macro steps.

We have formally proven that the analyses resulting from the application of Macro-
Conc to λα and to λτ are sound, terminate and exhibit the same precision as the analyses
presented in Chapter 2, while exploring potentially fewer interleavings. However, their
worst-case time complexity remains exponential. We empirically evaluate the resulting
analyses through their implementation on top of our static analysis framework. These
analyses scale significantly better than the analyses presented in Chapter 2, analyzing
30 out of the 56 benchmarks within the time budget, compared to only 6 for the analyses
presented in Chapter 2. In terms of running time, analyses resulting from the applica-
tion of MacroConc provide a speedup of up to four orders of magnitude. We compare
the analysis for λα to its closest related work (D’Osualdo et al., 2012), showing that
it behaves similarly: our analysis analyzes 12 out of the 28 actor benchmarks under 2
minutes, Soter analyzes 11 of them. In terms of precision, the analyses resulting from
the application of MacroConc achieve a high precision of 96% on our benchmark suite
when considering communication effects inferred by the analyses. However, the scala-
bility of the resulting analyses remains limited, as demonstrated empirically through a
set of synthetic benchmarks. As the number of communication effects in the program
under analysis increases, analysis time increases exponentially.

This motivates the need for analyses that over-approximate the interleavings instead
of reducing the number of interleavings to analyze, as in the worst case the number of
interleavings remains exponential.

99

5
A ST U DY O F M A I L B OX A B ST R AC T I O N S

The analyses for concurrent actor programs presented in Chapters 2 and 4 abstract the
mailboxes of actors to sets. However, this abstraction is not sufficiently expressive for
verification of specific properties that require information about the ordering or the
multiplicity of messages within a mailbox. Sets do not preserve information about the
ordering nor about the multiplicity of their elements. Preserving such information in the
abstraction of mailboxes enables the verification of more properties and may increase
the precision of existing analyses, as less over-approximations are performed.

In this chapter, we study the impact of different mailbox abstractions on the precision
and running time of the analysis for concurrent actor programs presented in Chapter 4.
We first justify the importance of having information about the ordering and multi-
plicity of messages in the abstraction of mailboxes (Section 5.1). We then present five
mailbox abstractions, of which we prove the soundness. We categorize these abstrac-
tions according to whether they preserve the ordering of messages and according to
whether they preserve the multiplicity of messages (Section 5.2). We finally evaluate the
impact of these mailbox abstractions on the running time and precision of actor analyses
(Section 5.3).

101

5. A Study of Mailbox Abstractions

5.1. The Importance of Ordering and Multiplicity

The static analyses introduced in Chapters 2 and 4 abstract mailboxes to sets of abstract
messages by default. However, the abstract mailbox domain M̂box is a tunable parameter
of the analysis, of which we study possible instantiations in this chapter. We first em-
phasize the need to study mailbox abstractions, as they have an impact on the precision
of analyses for concurrent actor programs. We claim that mailbox abstractions have to
be chosen carefully, as illustrated by the following examples.

5.1.1. Verifying Absence of Errors

Listing 5.1 is adapted from Agha (1986) and uses an actor with behavior stack-node
to implement a stack. Upon receiving a push message with a value v to be pushed on
the stack (line 3), the actor creates a closure capable of restoring its current state (line 5),
i.e., the values of content and link. The actor updates its state variable content to the
pushed value and updates its state variable link to the closure, by becoming the same
behavior with the updated state variables. Upon receiving a pop message (line 8), the
value of content is sent to the provided target actor customer, and the link closure is
called to restore the previous state. Should the stack be empty upon a pop (i.e., link is
#f), a stack underflow error is raised (line 15). The main process pushes a value obtained
from the user on a stack act (line 19), pops one value from this stack (line 20), which will
send it (line 11) to a display actor (omitted from the example, passed along on line 20)
that will print the value received. Although this program contains an error statement
on line 15, this error is not reachable in any execution of the program under any input
and any interleaving.

1 (define stack-node
2 (actor (content link)
3 (push (v)
4 (become stack-node v
5 (lambda ()
6 (become stack-node
7 content link))))
8 (pop (customer)
9 (if link

10 (begin

11 (send customer
12 message content)
13 (link))
14 (begin
15 (error "underflow")
16 (terminate))))))
17 (define display (create display-actor))
18 (define act (create stack-node #f #f))
19 (send act push (read-integer))
20 (send act pop display)

Listing 5.1: Actor-based stack implementation adapted from Agha (1986).

No multiplicity information.

If mailboxes are abstracted to sets, as done in Chapters 2 and 4 and in related work (D’Os-
ualdo et al., 2013), this error is deemed reachable. Executing lines 19–20 results in
the mailbox of actor act being abstracted to the set {push(Int), pop(display)}. To
preserve soundness, messages need to be extracted from this abstract mailbox non-
deterministically. This is because there is no information about the multiplicity of the mes-

102

5.1. The Importance of Ordering and Multiplicity

sages in the mailbox. A sound static analysis therefore computes not one, but two mail-
boxes as the result of retrieving the push message from this mailbox: {pop(display)}
and {push(Int), pop(display)}. The extraction of the next message from the mailbox
{pop(display)} again yields two mailboxes: ∅ and {pop(display)}. Through the for-
mer case, the analysis accounts for pop being present but once and deems the stack
underflow error unreachable as a result. Through the latter case, the analysis accounts
for pop being present more than once. It now deems the stack underflow error reach-
able as the stack may be empty when a subsequent pop message is processed. This
false positive results from a loss of precision due to the use of a set abstraction for the
mailboxes.

No ordering information.

Another possible abstraction is to abstract mailboxes to multisets (Garoche et al., 2006),
where the abstraction preserves information about the number of times a message is
present in the abstract mailbox. Multisets are sets that preserve multiplicity but, like
sets, are unordered. However, a mailbox abstraction that preserves multiplicity does
not suffice either to analyze this program precisely. At the point where the stack actor
has received the push message followed by the pop message, the analysis abstracts the
mailbox of actor act to [push(Int) 7→ 1, pop(display) 7→ 1]. This multiset contains the
information that both a push(Int) message and a pop(display) message are present
once in the mailbox. Again, the analysis needs to non-deterministically extract the next
message to process, giving rise to two possible successor mailboxes: [pop(display) 7→ 1]
and [push(Int) 7→ 1]. The former multiset represents the mailbox of the stack actor after
it has processed message push(Int). In contrast to the set abstraction, retrieving the next
message from this mailbox gives rise to a single mailbox [], because pop(display) is
present only once, and no stack underflow error can be reached through (spurious)
subsequent pop messages. However, because ordering information is not preserved,
message pop(display) might be processed before its corresponding push(Int) when
dequeuing from the mailbox [push(Int) 7→ 1, pop(display) 7→ 1], and the analysis still
deems the stack underflow error reachable under a multiset abstraction for the actor’s
mailbox.

This example motivates the importance of mailbox abstractions that satisfy ordering
and multiplicity: without one or the other, the analysis cannot automatically infer that
the program in Listing 5.1 is free of errors.

5.1.2. Inferring Mailbox Bounds

Consider the example program in Listing 5.2. This is a simplified implementation of the
circuit breaker pattern (Kuhn et al., 2017). In this program, an actor a-service performs
computations that may fail under high load. To avoid high-load situations on that actor,
the requests are routed through a circuit breaker, implemented by the a-breaker actor.
This actor buffers requests and dispatches them to the a-service actor one at a time,
avoiding high load on this actor. A full implementation of the circuit breaker pattern

103

5. A Study of Mailbox Abstractions

may perform other tasks, such as identifying when the a-service actor is failing, and
directly providing a failure notification to the requester, instead of waiting for a reply
of the a-service actor that might possibly take a long time.

1 (define service
2 (actor ()
3 (request (v p)
4 (computation)
5 (send p response)
6 (become a-service))))
7
8 (define breaker-open
9 (actor (target)

10 (request (v)
11 (send target
12 request v self)
13 (become breaker-close
14 target))
15 (response ()
16 (become breaker-open
17 target))))

18 (define breaker-close
19 (actor (target requests)
20 (request (v)
21 (become breaker-close
22 target
23 (append requests (list v))))
24 (response ()
25 (if (empty? requests)
26 (become breaker-open)
27 (begin
28 (send target
29 request (car requests))
30 (become breaker-close
31 target (cdr requests)))))))
32
33 (define a-service (create service))
34 (define a-breaker (create breaker-open a-service))
35 (define (loop i)
36 (send a-breaker request i)
37 (loop (+ i 1)))
38 (loop 0)

Listing 5.2: Simplified implementation of the circuit breaker pattern (Kuhn et al., 2017).

The implementation in Listing 5.2 performs the following operations. A request sent
to the a-service actor takes a value v as argument, and a process identifier p. Upon
processing the request (line 3), the a-service actor performs its computation (line 4),
after which it sends the response to the requester (line 5). The a-breaker actor receives
requests as request messages with a value v as argument. Upon receiving a request,
if this actor has the breaker-open behavior (line 8), it directly sends the request to the
a-service actor (line 11), and changes its behavior to breaker-closed (line 13). Upon
receiving a response from the a-service actor, it preserves the breaker-open behavior.
If the a-breaker actor has the breaker-closed behavior (line 19), it appends the request
to a list of pending requests by updating its behavior (line 22). Upon receiving a response
from the a-service actor (line 25), either all the requests have been processed, and the
a-breaker actor changes its behavior back to breaker-open, which will directly send the
next request to the a-service actor. Or, if there are pending requests, the next request
is sent to the a-service actor (line 29), and is removed from the list of pending requests
by updating the behavior (line 31). In this program, an infinite number of requests are
dispatched to the a-breaker actor (line 37).

One important property of this program is that the a-service actor should not be
under high load. One can prove that in fact, the mailbox of actor a-service will never
contain more than one message at any given time. Therefore, the mailbox of this actor
is bounded, and has a maximal size of 1. Such a property can be statically verified by a
mailbox bound analysis (D’Osualdo et al., 2013).

Consider an analysis of this program using a set mailbox abstraction. The mailbox of

104

5.2. Categorization of Mailbox Abstractions

actor a-service is abstracted to the set {request(Int, a-breaker)}. Sets do not preserve
information about the multiplicity of their elements, and the size of this abstract mailbox
is therefore approximated to ∞. A static analysis with such a set abstraction cannot prove
that the mailbox of a-service is bounded. A static analysis that abstracts mailboxes to
multisets infers in the abstract mailbox [request(Int, a-breaker) 7→ 1], and this mailbox
has a size of 1. With a multiset mailbox abstraction, it can therefore be inferred that the
mailbox of actor a-service is bounded to a maximal size of 1. This further motivates
the need for mailbox abstractions that do preserve multiplicity information.

5.2. Categorization of Mailbox Abstractions

We now formalize and categorize five abstractions of mailboxes for actors, one of which
results in an infinite domain for mailboxes even if the domain of messages M̂essage
is finite (Multiset) and four of which result in a finite domain for mailboxes is finite
when M̂essage is finite (Set, Finite List, Finite Multiset, Graph). For completeness, we also
categorize the concrete mailbox representation (List).

The domain of messages M̂essage is finite if the value domain (V̂al) itself is finite,
which is the case when process identifiers (P̂ID) are also finite. This is the case for the
abstract domains presented in Chapters 2 and 4.

A mailbox abstraction M̂box is defined by instantiating the following functions and
elements.

• ŝize : M̂box → N ∪ {∞} returns the size of a mailbox, and may over-approximate
this size to ∞.

• êmpty : M̂box represents the empty mailbox.

• ênq : M̂essage × M̂box → M̂box enqueues a message at the back of a mailbox.

• d̂eq : M̂box → P(M̂essage × M̂box) dequeues a message from the front of a mailbox.
This is a non-deterministic operation. Each element of the resulting set is a tuple
containing the message dequeued from the mailbox and the subsequent mailbox.

Table 5.1 depicts a two-dimensional categorization of the mailbox abstractions pre-
sented in this chapter, and also contains the concrete representation of mailboxes (List).
A mailbox abstraction preserves message ordering information if it can encode which
messages have arrived before others (partially or up to some bound), i.e., there exists a
bound n such that αn(m1 : m2 : mb) 6= αn(m2 : m1 : mb). A mailbox abstraction preserves
message multiplicity if it can encode the number of times a message has been received
(up to some bound), i.e., there exists a bound n such that αn(m : mb) 6= αn(m : m : mb).

5.2.1. Soundness of Mailbox Abstractions

A mailbox abstraction is sound if the abstraction soundly over-approximates the concrete
mailbox. This means that any behavior of a concrete mailbox has to be accounted for by

105

5. A Study of Mailbox Abstractions

Ordering No ordering

Multiplicity List (§ 5.2.2) Multiset (§ 5.2.4)
Finite List (§ 5.2.6) Finite Multiset (§ 5.2.5)

No multiplicity Graph (§ 5.2.7) Set (§ 5.2.3)

Table 5.1.: Categorization of the concrete List mailbox and five abstractions thereof.

its abstraction. For a mailbox abstraction to be sound, the following equations should
hold.

• ∀mb, size(mb) ≤ ŝize(α(mb)), i.e., the abstract size function soundly over-approximates
the size of the mailbox.

• α(empty) v êmpty, i.e., the empty abstract mailbox is a sound over-approximation
of the empty concrete mailbox.

• ∀mb, m, α(enq(m, mb)) v ênq(α(mb), α(m)), i.e., the abstract enqueuing function
soundly over-approximates the concrete enqueuing function.

• ∀m, mb, mb′, (m, mb′) ∈ deq(mb) =⇒ ∃m̂b
′
, (m̂, m̂b

′
) ∈ d̂eq(α(mb)) ∧ α(mb′) v

m̂b
′
∧ α(m) v m̂, i.e., for every message that can be dequeued from a concrete

mailbox, and for the resulting mailbox, the abstract dequeuing function returns
an over-approximating message and over-approximating mailbox.

We provide an abstraction function α and a partial-order relation v for each mailbox
abstraction and prove the soundness of each abstraction in Appendix B (Appendix B.3).

5.2.2. List Representation for Concrete Mailboxes

Figure 5.1 depicts concrete ordered mailboxes represented by lists of messages. We
introduced this concrete definition in Chapter 2 and repeat it here. The size of a mailbox
is the size of the sequence representing the mailbox. The empty element is the empty
sequence. Enqueuing a message in a mailbox adds the message to the front of the mailbox.
Dequeuing a message from a mailbox extracts the last message from the mailbox, and
results in the singleton set containing a pair of this message with the resulting mailbox.
Dequeuing from an empty mailbox results in the empty set.

λα
mb ∈ Mbox = Message∗

size(mb) = |mb|
empty = ε

enq(m, mb) = m : mb
deq(ε) = ∅

deq(mb : m) = {(m, mb)}

Figure 5.1.: List representation of mailboxes.

106

5.2. Categorization of Mailbox Abstractions

This representation is not finite, even if the domain of messages is made finite. It
preserves information about both the ordering and the multiplicity of the messages
contained.

5.2.3. Set Abstraction

Figure 5.2 depicts the set mailbox abstraction, used in Chapters 2, 4 and 6 and in related
work (D’Osualdo et al., 2013). Concrete mailboxes are abstracted to sets that contain
abstract messages. We repeat this definition here, and name the domain of abstract
mailboxes abstracted to sets as Set (in Chapters 2 and 4, we use M̂box = Set).

A mailbox is abstracted to a set of abstract messages. The empty mailbox is abstracted
to the empty set and it is always empty, hence its size is 0. The size of a mailbox
containing messages is not known—because of the lack of multiplicity information—
and is therefore approximated to ∞. Enqueuing a message in a mailbox entails joining
it into the set representing the mailbox. Dequeuing a message from a mailbox accounts
for all possible orderings and multiplicities: any message can be dequeued (m̂ ∈ m̂b),
and the resulting mailbox may contain the message to account for the corresponding
concrete mailboxes that contain it more than once ((m̂, m̂b)), or may not contain the
message to account for the corresponding concrete mailboxes that contain it only once
((m̂, m̂b \ {m̂})).

λα

m̂b ∈ Set = P(M̂essage)

ŝizeSet(∅) = 0

ŝizeSet(m̂b) = ∞

êmptySet = ∅

ênqSet(m̂, m̂b) = m̂b ∪ {m̂}

d̂eqSet(m̂b) =
{
(m̂, m̂b), (m̂, m̂b \ {m̂}) | m̂ ∈ m̂b

}
Figure 5.2.: Set abstraction for mailboxes.

Though sound (Theorem 11), this coarse abstraction only keeps track of which mes-
sages are present in the mailbox, and preserves neither ordering nor multiplicity of
messages.

Theorem 11 (Soundness of the set mailbox abstraction). The set mailbox abstraction is
sound.

Proof. The proof entails showing that the properties given in Section 5.2.1 hold. ŝizeSet is
proven sound by a case analysis on the concrete mailbox. êmptySet is sound by definition.
ênqSet is proven sound by induction on the concrete mailbox. d̂eqSet is proven sound by
showing that it accounts for a message being present once or more than once in the
concrete mailbox. This proof is detailed in Appendix B.3.1.

107

5. A Study of Mailbox Abstractions

5.2.4. Multiset Abstraction

Figure 5.3 depicts the multiset mailbox abstraction, used in related work as concrete
representation of unordered mailboxes (Agha et al., 1997; Garoche et al., 2006). With this
abstraction, a mailbox is abstracted to a multiset that keeps track of the multiplicity of
each abstract message within the mailbox, but does not preserve ordering information.
A multiset is represented as a mapping from abstract messages to integers representing
the multiplicity of the corresponding message. This multiplicity represents concrete
information: a multiplicity of n associated to an abstract message m̂ in a mailbox m̂b
represents that in the concrete, mailboxes abstracted to m̂b contain n concrete messages
that are abstracted to m̂, e.g., the same concrete message n times, or different messages
that are all abstracted to m̂. The abstract size of a mailbox abstracted by a multiset is
the sum of the multiplicities of all the messages contained in the mailbox. The empty
mailbox is the mapping that maps all messages to zero, as no message is present in
the empty mailbox. Enqueuing an element in a mailbox increases its multiplicity by
one. The dequeuing operation accounts for all possible orderings (m̂ ∈ dom(m̂b)) of
messages that are present in the mailbox (m̂b(m̂) ≥ 1), and decreases the count of the
dequeued message in the resulting mailbox.

λα

m̂b ∈ MS = M̂essage → N

ŝizeMS(m̂b) = ∑
m̂∈dom(m̂b)̂

mb(m̂)

êmptyMS = λm̂.0

ênqMS(m̂, m̂b) = m̂b[m̂ 7→ m̂b(m̂) + 1]

d̂eqMS(m̂b) =
{
(m̂, m̂b[m̂ 7→ m̂b(m̂)− 1])

| m̂ ∈ dom(m̂b) ∧ m̂b(m̂) ≥ 1
}

Figure 5.3.: Multiset abstraction for mailboxes.

The multiset abstraction is sound (Theorem 12) but its domain is infinite: there is no
limit on the number of times each message may appear. However, this abstraction can be
rendered finite by approximating the multiplicity associated to each message, as done
in the next section.

Theorem 12 (Soundness of multiset abstraction). The multiset mailbox abstraction is sound.

Proof. The proof entails showing that the properties given in Section 5.2.1 hold. ŝizeMS

is proven sound by induction on the concrete mailbox. êmptyMS is sound by definition.
ênqMS is proven sound by induction on the concrete mailbox. d̂eqMS is proven sound by
showing that it accounts for all possible messages present in the abstract mailbox to be
returned. This proof is detailed in Appendix B.3.2.

108

5.2. Categorization of Mailbox Abstractions

5.2.5. Finite Multiset Abstraction

Figure 5.4 depicts the finite multiset mailbox abstraction, which renders multisets finite
by imposing a bound on the multiplicity of each abstract message. Once this bound is ex-
ceeded for an abstract message, the multiplicity of that specific message is abstracted to
∞. The mailbox domain of the finite multiset abstraction maps to the union of bounded
integers and the multiplicity ∞ (N≤n ∪{∞}). The empty mailbox is represented as in the
multiset abstraction, and maps all messages to a multiplicity of 0 (λm̂.0). The size of the
mailbox is also the sum of the multiplicities of all elements contained in the abstract mail-
box, and becomes ∞ when at least one of the multiplicities is over-approximated to ∞.
Enqueuing a message increases the multiplicity of the enqueued message (m̂b(m̂) + 1),
over-approximating it to ∞ when it exceeds the bound n (i.e., when m̂b(m) ≥ n). The
dequeuing operation accounts for all possible orderings (m̂ ∈ dom(m̂b)) and decreases
the multiplicity of the dequeued message if it is not over-approximated. If the multiplic-
ity of the message is over-approximated to ∞, then either the message is contained in
the mailbox more than once and its multiplicity remains over-approximated ((m̂, m̂b)),
or it was contained only once and its multiplicity is set to zero ((m̂, m̂b[m̂ 7→ 0])). Note
that its multiplicity could also be set to n, but setting it to zero suffices as a sound
over-approximation according to the ordering relation v defined in Appendix B, and
reduces the non-determinism of this abstraction. Function ŝizeMSn would be more pre-
cise on specific mailboxes, but this precision would not profit client analyses such as
a mailbox bound analysis, as the maximal size of the mailbox on the entire program’s
execution would remain ∞.

λα

m̂b ∈ MSn = M̂essage → (N≤n ∪ {∞})
êmptyMSn

= λm̂.0

ŝizeMSn(m̂b) = ∑
m̂∈dom(m̂b)

m̂b(m̂)

ênqMSn
(m̂, m̂b) = m̂b[m̂ 7→ m̂b(m̂) + 1] if m̂b(m̂) < n

= m̂b[m̂ 7→ ∞] otherwise

d̂eqMSn
(m̂b) =

{
(m̂, m̂b[m̂ 7→ m̂b(m̂)− 1]) | m̂ ∈ dom(m̂b) ∧ 1 ≤ m̂b(m̂) ≤ n

}
∪
{
(m̂, m̂b), (m̂, m̂b[m̂ 7→ 0]) | m̂ ∈ dom(m̂b) ∧ m̂b(m̂) = ∞

}
Figure 5.4.: Finite multiset abstraction for mailboxes.

This mailbox abstraction is sound (Theorem 13) and finite. It does not preserve order-
ing information but does preserve multiplicity information on a per-message basis: the

109

5. A Study of Mailbox Abstractions

multiplicity of each message is preserved up to the bound n.

Theorem 13 (Soundness of finite multiset abstraction). The finite multiset mailbox abstrac-
tion is sound.

Proof. The proof relies on the soundness of the multiset abstraction (Theorem 12), and
entails showing that abstracting the multiplicity of a message to ∞ is sound. This proof
is detailed in Appendix B.3.3.

5.2.6. Finite List Abstraction

Combining the set abstraction with the concrete representation of mailboxes results in
the finite list abstraction depicted in Figure 5.5 and denoted Ln. We use the notation
M̂essage

∗
n to denote lists of messages with a length that does not exceed n (see Ap-

pendix A). The finite list abstraction represents an abstract mailbox as a list up to the
point where the size of the list exceeds a specific bound n, after which the mailbox is
abstracted to a set. The size of the mailbox is approximated by the size function of the
corresponding domain, i.e., size for mailboxes abstracted to lists and ŝizeSet for mailboxes
abstracted to sets. The empty concrete mailbox is abstracted to an empty list. Enqueuing
a message in a mailbox relies on the enqueuing function defined on the corresponding
domain, except if the size of the mailbox would exceed its bound n after enqueuing.
If this is the case, the mailbox is abstracted to a set using toSet (where toSet(ε) = ∅,
and toSet(m̂ : m̂b) = {m̂} ∪ toSet(m̂b)). The dequeuing of an element from a mailbox is
defined in terms of the dequeuing function of the corresponding domain: if the mailbox
is abstracted to a list, a message is dequeued with function deq, and if the mailbox is
abstracted to a set, a message is dequeued with function d̂eqSet.

λα

m̂b ∈ Ln = M̂essage
∗
n ∪ Set

ŝizeListn(m̂b) = size(m̂b) if m̂b ∈ M̂essage
∗
n

= ŝizeSet(m̂b) if m̂b ∈ Set

êmptyLn
= ε

ênqLn
(m̂, m̂b) = enq(m̂, m̂b) if m̂b ∈ M̂essage

∗
n ∧ |m̂b| < n

= ênqSet(m̂, toSet(m̂b)) if m̂b ∈ M̂essage
∗
n ∧ |m̂b| = n

= ênqSet(m̂, m̂b) if m̂b ∈ Set

d̂eqLn
(m̂b) = deq(m̂b) if m̂b ∈ M̂essage

∗
n

= d̂eqSet(m̂b) if m̂b ∈ Set

Figure 5.5.: Finite list abstraction for mailboxes.

110

5.2. Categorization of Mailbox Abstractions

This finite and sound abstraction (Theorem 14) preserves ordering and multiplicity
of the abstract messages in the abstract mailbox up to the point where the bound is
reached. Once the number of messages in the mailbox exceeds the bound n, the finite
list abstraction behaves like the set abstraction, rendering it finite.

Note that the finite list mailbox abstraction has two values for the empty mailbox:
ε ∈ Mbox and ∅ ∈ Set. It is safe to replace ∅ by ε when it appears during an analysis
as the concrete empty mailbox is the only mailbox abstracted by ∅. We do so in our
implementation, as this provides extra precision to this abstraction.

Theorem 14 (Soundness of finite list abstraction). The finite list mailbox abstraction is
sound.

Proof. The proof relies on the fact that up to the point where the bound n is reached, it
behaves like a concrete mailbox containing abstract messages, and that when abstracted
to a set, it is sound according to Theorem 11. This proof is detailed in Appendix B.3.4.

5.2.7. Graph Abstraction

The graph abstraction described here is a new abstraction that we introduced (Stiévenart
et al., 2017), and which resembles the regular expression abstraction introduced by
Midtgaard et al. (2016a). It results from the observation that ordering relation between
abstract messages in a mailbox may be approximated by edges between nodes in a graph.
A mailbox is abstracted to a graph of which the nodes correspond to messages and of
which the edges express their ordering in the mailbox: an edge from node a to b indicates
that message b was enqueued after a in the mailbox. A mailbox abstracted to a graph has
a first pointer, denoting the front of the mailbox, and a last pointer, denoting the back of
the mailbox. When a message is enqueued in the back of a mailbox, a node is added in
the graph with an directed edge connecting the previous last node of the graph to this
new node, which becomes the last node of the graph. When a message is dequeued, the
first node of the graph is extracted, and its edge points to the new first node of the graph.
This abstraction maintains information about the first and last message in the mailbox.
Figure 5.6 depicts the following evolution over time of a mailbox using this abstraction.

(a) Enqueuing message a in the empty mailbox creates a node a, and makes the first
(f) and last (l) pointers point to this node (Figure 5.6a).

(b) Enqueuing message b creates a new node connected to the previous last pointer,
updates the last pointer, but leaves the first pointer as is (Figure 5.6b).

(a) Enqueuing message a does not create a new node since the node a is already in
the graph, but does add a new edge from b to a, and updates the last pointer
(Figure 5.6c).

(c) Dequeuing a message yields the message a pointed by the first pointer. The result-
ing mailbox has the same graph, but the first pointed is updated to point to the
target of its outgoing edge of its current node (Figure 5.6d). If this node has more

111

5. A Study of Mailbox Abstractions

than one outgoing edges, this is a non-deterministic operation that yield multiple
possible results, one per outgoing edges.

a

lf

(a)

a

b
lf

(b)

a

b
lf

(c)

a

b
lf

(d)

Figure 5.6.: Visual representation of the graph mailbox abstraction. f is the first pointer and l is
the last pointer of the abstract mailbox.

Figure 5.7 depicts the formalization of the graph mailbox abstraction. A graph mailbox
abstraction is either bottom (⊥), denoting the empty mailbox or a tuple containing the
set of nodes in the graph, the set of edges in the graph, the node corresponding to the
first message, and the node corresponding to the last message. The size of the graph
is given by the length of the unique path between the first node and the last node,
if that path is unique, otherwise it is over-approximated to ∞. This is computed by
the PathLength function (defined in Appendix B), which returns n if there is a single
path between f and l, and this path has length n. For example, there is a single path
from the first to the last message in Figures 5.6a and 5.6b, but not in Figure 5.6c nor
in Figure 5.6d. Enqueuing a message in the empty mailbox initializes the graph with a
single node ({m̂}), no edges, and the first and last pointers pointing to the enqueued
message. Enqueuing a message in a non-empty mailbox adds the enqueued message to
the set of nodes (V ∪ {m̂}), adds an edge from the current last node to the enqueued
message (E ∪ {〈l, m̂〉}), and sets the last pointer to the node for the enqueued message.
Dequeuing a message from the empty mailbox results in the empty set, as no message
can be dequeued because no message is contained in the mailbox. Dequeuing from a
mailbox containing a single message results in the dequeued message and the empty
mailbox. A mailbox contains a single message only if there is no edge starting at its first
node (@ f ′ | (f , f ′) ∈ E). Otherwise, the resulting mailbox is updated so that the first
node is set to one of the successor of the previous first node. This is a non-deterministic
operation, as the first node may have more than one edge to other nodes.

112

5.3. Evaluation of Mailbox Abstractions

λα

m̂b ∈ G = (P(M̂essage)×P(M̂essage × M̂essage)

× M̂essage × M̂essage) ∪ {⊥}
êmptyG = ⊥

ŝizeG(⊥) = 0

ŝizeG(〈V, E, f , l〉) = 1 + PathLength(f , l, 〈V, E〉)
ênqG(m̂,⊥) = 〈{m̂} ,∅, m̂, m̂〉

ênqG(m̂, 〈V, E, f , l〉) = 〈V ∪ {m̂} , E ∪ {〈l, m̂〉} , f , m̂〉
d̂eqG(⊥) = ∅

d̂eqG(〈V, E, f , l〉) = {(f ,⊥)} if @ f ′ | (f , f ′) ∈ E

d̂eqG(〈V, E, f , l〉) =
{
(f , 〈V, E, f ′, l〉) | (f , f ′) ∈ E, f ′ ∈ V

}
otherwise

Figure 5.7.: Graph abstraction for mailboxes.

This sound abstraction (Theorem 15) preserves ordering information but does not
preserve multiplicity according to our definition of preservation of multiplicity. This is
because, unlike the finite list abstraction for which a bound n can be found to preserve
the multiplicity of any mailbox, the graph abstraction does not have such bound and
may not preserve multiplicity information for any mailbox, e.g., the size of a mailbox
a : b : a abstracted to a graph is always ∞. The graph abstraction is finite when the
domain of messages is finite, as the number of nodes in the graph is bounded by the
number of abstract messages.

Theorem 15 (Soundness of graph abstraction). The graph mailbox abstraction is sound.

Proof. The proof entails showing that the properties given in Section 5.2.1 hold. ŝizeG is
sound because it either over-approximates the size to ∞, or has the maximally precise
size when there exists a single path from the first node to the last node in the graph.
êmptyG is sound by definition. ênqG is proven sound by induction on the concrete
mailbox. d̂eqG is proven by a case analysis on the concrete mailbox. This proof is detailed
in Appendix B.3.5.

5.3. Evaluation of Mailbox Abstractions

We extended the implementation of the analysis resulting from the application of Macro-
Conc to λα presented in Chapter 4 to perform verification of absence of errors and infer-
ence of mailbox bounds. Both the verification and the inference are performed by a walk
through the reachable states computed by the analysis. If no error state is reachable in
the analysis results, the program is deemed to be free of errors. The inferred bound for
the mailbox of an actor in a program is the maximal mailbox size observed within the

113

5. A Study of Mailbox Abstractions

reachable states in the results of the analysis. This is because these results correspond
to the program’s abstract collecting semantics.

We implemented the different mailbox abstractions presented in this chapter and use
this implementation to evaluate the applicability of these abstractions empirically. The
benchmark suite introduced in Section 2.4.2 is not well-suited for evaluating the extent
to which the analysis supports verification of absence of errors and inference of mailbox
bounds, as only a few benchmark programs contain unreachable errors and bounded
mailboxes. We therefore introduce a different benchmark suite containing a number of
programs that exhibit such properties (Section 5.3.1). We perform verification of absence
of errors and inference of mailbox bounds on these programs using our analysis, and
using Soter (D’Osualdo et al., 2012). We measure the precision of the analysis with
different mailbox abstractions (Section 5.3.2). To assess the applicability of the different
mailbox abstractions to real-world programs, we run the analysis with each mailbox
abstraction on our full benchmark suite introduced in Section 2.4.2 (Section 5.3.3).

5.3.1. Benchmark Suite for Absence of Errors and Mailbox Bounds

We introduce in Table 5.2 a small benchmark suite containing programs exhibiting
unreachable errors and bounded mailboxes. This benchmark suite is different from
the one used in the remainder of this dissertation, as well as from the one used in
Section 5.3.3. We use this small benchmark suite to evaluate the impact of the different
mailbox abstractions on the precision of the analysis in the next section. The use of this
different benchmark suite is justified by the fact that it contains programs that exhibit
unreachable errors and bounded mailboxes, unlike the benchmark suite used in the
rest of this dissertation. This renders this specific benchmark suite suitable to evaluate
the precision of client analyses that perform verification of unreachable errors and
inference of mailbox bounds, as evaluated in the next section. We translated benchmark
programs exhibiting unreachable errors and mailbox bounds from multiple sources to
λα, remaining as close as possible to their original implementation. We unrolled all loops
that create a fixed number of actors, in order to benefit from the additional precision
offered by abstract counting.

In order to compare our approach with Soter, which analyzes Erlang programs, we
faithfully translated all the benchmarks in Erlang. The correspondence between the
λα and Erlang versions of the benchmarks is as close as possible. Table 5.2 lists the
programs that compose this benchmark suite. These benchmarks are adapted from
the Savina benchmark suite (Imam and Sarkar, 2014), from Agha (1986), and from
D’Osualdo et al. (2012). They feature dynamic process creation, but we did not target
benchmark programs with an unbounded number of concrete actors, as this is an
orthogonal problem to the points discussed in this chapter. Support for unbounded
creation of processes is however at the core of the MacroConc and ModConc analysis
design methods (Chapters 4 and 6).

114

5.3. Evaluation of Mailbox Abstractions

Bench. LOCs Bench. LOCs

PARIKH 22 CELL 13
SAFE-SEND 15 PIPE-SEQ 15
STUTTER 15 STATE-FAC 24
STACK 20 PP 27
COUNT-SEQ 23 FJC-SEQ 13

Table 5.2.: Benchmark programs exhibiting unreachable errors and bounded mailboxes used
in the evaluation of the analyses. Note that the line count differs for the listings of
this chapter presenting benchmark programs, as we performed formatting change to
improve the readability of the code.

5.3.2. Precision

We evaluate the precision of the different mailbox abstractions for verification of absence
of errors and inference of mailbox bounds. As part of this precision evaluation, we also
compare our analyses of λα with Soter (D’Osualdo et al., 2013), because Soter can perform
verification of absence of errors and verification of mailbox bounds. We refer to Chapter 4
for a detail description of Soter, but we recall two important differences between our
approach and Soter.

1. Soter generates a coarse flow graph as the model of a program, and then performs
model checking on this flow graph to verify program properties. Our approach is
to construct a more precise flow graph of the program on which the verification
can be performed directly, not requiring a separate model checking phase to
prove the absence of run-time errors or bounds on mailboxes. To highlight this
difference, consider the PARIKH benchmark depicted in Listing 5.3. It defines a
server actor that expects init as a first message, but throws an error if it receives
a second init message. With a set mailbox abstraction, which does not preserve
multiplicity, the error is reachable in the graph generated by Soter. However, it
can be proved unreachable by performing an extra model-checking phase. With
a suitable mailbox abstraction, our approach benefits from improved precision,
resulting in a smaller and more precise flow graph that does not contain the error
state. No further model checking phase is therefore required.

2. Soter requires the user to specify the properties that need to be verified through
code annotations. The model checking part of Soter relies on these annotations to
drive the model checker. An important difference with our analysis for the mailbox
bounds analysis is that our analysis infers the size of the mailbox of each actor in
the program, while Soter verifies that specific mailboxes do not exceed the size
specified in their annotation.

Table 5.3 lists the results of our analysis with the different mailbox abstractions and of
Soter on programs that exhibit unreachable errors (Table 5.3a), and on programs with
bounded mailboxes (Table 5.3b). We can observe the following.

Set abstraction

115

5. A Study of Mailbox Abstractions

1 (define server-init-actor
2 (actor ()
3 (init (p x)
4 (send p ok)
5 (become server-actor x))))
6 (define server-actor
7 (actor (x)
8 (init (p x)
9 (error))

10 (set (y)
11 (become server-actor y))
12 (get (p)
13 (send p result x))
14 (bye ()
15 (terminate))))

16 (define after-init-actor
17 (actor (s)
18 (ok ()
19 (send s set ’b)
20 (send s bye)
21 (terminate))))
22
23 (define s (create server-init-actor))
24 (define after-init
25 (create after-init-actor s))
26 (send s init after-init ’a)

Listing 5.3: PARIKH benchmark program.

1 (define stutter
2 (actor (f)
3 (message (x)
4 (become unstutter f))))
5 (define unstutter
6 (actor (f)
7 (message (x)
8 (f x)
9 (unstutter))))

10 (define (dosmt x)
11 (if (= x 0)
12 (error)
13 ’ok))

14 (define p (create stutter dosmt))
15
16 (define (sendA p)
17 (send p message 0)
18 (sendB p))
19 (define (sendB p)
20 (send p message 1)
21 (sendA p))
22
23 (sendA p)

Listing 5.4: STUTTER benchmark program.

1 (define fac-actor
2 (actor (p)
3 (call (in)
4 (send p update self in)
5 (become fac-wait-actor p))))
6 (define fac-wait-actor
7 (actor (p)
8 (done ()
9 (become fac-actor p))

10 (call (n)
11 (send self call n)
12 (become fac-wait-actor p))))
13 (define state-actor
14 (actor (n f)
15 (update (p in)
16 (send p done)
17 (become state-actor m (f n in))))))

18 (define state
19 (create state-actor
20 (random) (lambda (x y) (random))))
21 (define factory (create fac-actor state))
22
23 (define (call-loop n f)
24 (if (= n 1)
25 (send f call (random))
26 (begin
27 (send f call (random))
28 (call-loop (- n 1) f))))
29
30 (call-loop (random) factory)

Listing 5.5: STATE-FAC benchmark program.

116

5.3. Evaluation of Mailbox Abstractions

The set mailbox abstraction does not preserve multiplicity information and over-
approximates all non-empty mailboxes with a potentially infinite size, rendering
it unfit for inference of mailbox bounds. Moreover, this coarse abstraction is not
precise enough to verify any of the programs in our benchmark suite as free of
errors.

Multiset abstraction
Through its preservation of multiplicity information, the multiset abstraction en-
ables verifying the PARIKH program as free of errors, and enables inferring all
mailbox bounds.

List abstraction
Through its preservation of ordering information, the list abstraction enables
verifying the rest of the programs except the STUTTER and STATE-FAC bench-
mark programs. These benchmark programs, respectively depicted in Listings 5.4
and 5.5, exhibit infinitely growing mailboxes in the concrete that follow a specific
pattern (respectively, a : b : a : b : . . . and a : a : . . . : a : b), for which the finite
list abstraction loses all precision, as no value of the bound for this abstraction is
sufficient to analyze these benchmark programs with maximal precision.

Graph abstraction
Through its preservation of ordering information on specific infinite mailboxes, the
graph abstraction can preserve the ordering on the infinite mailboxes of programs
STUTTER and STATE-FAC, and therefore enables verifying these benchmarks.

In contrast to our approach, Soter uses a set mailbox abstraction, but is able to verify
benchmarks despite this very coarse abstraction, thanks to the second model checking
phase included in Soter.

Bench. Set MSn Ln G Soter

PARIKH 7 3 1 3 1 3 3
SAFE-SEND 7 7 – 3 4 3 3
STUTTER 7 7 – 7 – 3 7
STACK 7 7 – 3 4 3 7
COUNT-SEQ 7 7 – 3 2 3 7
CELL 7 7 – 3 2 3 7

(a) Precision evaluation of mailbox abstractions
for verification of absence of errors. For each
mailbox abstraction, we indicate the pro-
grams for which the absence of errors can
be verified (3) or not (7), and for the abstrac-
tions with a bound parameter, we indicate
the value of the parameter.

Bench. Set MSn Ln G Soter

PIPE-SEQ 7 3 1 3 1 3 3
STATE-FAC 7 3 1 7 – 3 3
PP 7 3 1 3 1 3 3
COUNT-SEQ 7 3 1 3 2 3 3
CELL 7 3 1 3 2 3 3
FJC-SEQ 7 3 1 3 1 3 3

(b) Precision evaluation of mailbox abstrac-
tions for inference of mailbox bounds. For
each mailbox abstraction, we indicate the
programs for which the correct mailbox
bound can be inferred (3) or not (7), and
for the abstractions with a bound parame-
ter, we indicate the value of the parameter.

Table 5.3.: Precision evaluation of mailbox abstractions.

117

5. A Study of Mailbox Abstractions

Spurious Mailboxes and Spurious Dequeued Messages

To evaluate the impact of the different mailbox abstractions on the precision of the
analysis resulting from the application of MacroConc to λα, we analyzed the small
benchmark suite introduced in Section 5.3.1 and report on the number of spurious
values detected.

Instead of comparing the messages dequeued and the executions of become expres-
sions during abstract interpretation and concrete interpretations, as done in Chapter 4,
we perform the precision evaluation at a finer-grained level to obtain more insights to
the precision of the mailbox abstractions. This finer-grained precision evaluation not
only takes into account the messages dequeued from the mailbox, but also takes into
account the mailbox from which they are dequeued. We compare abstract mailboxes
computed during an analysis and messages dequeued from these abstract mailboxes to
the concrete values that can be observed in concrete executions. Resulting from over-
approximation, a spurious abstract value lacks corresponding concrete values in actual
runs of the program. The more spurious values, the less precise the results of an analy-
sis. We counted the following spurious values in the analysis results and summed the
results for all programs listed in Table 5.2, which are depicted in Figure 5.8:

1. spurious mailboxes, i.e., mailboxes that results from too much over-approximation
and correspond to no concrete mailboxes,

2. spurious messages resulting from spurious mailboxes (Spurious Messages #1),

3. spurious messages resulting from non-spurious mailboxes (Spurious Messages #2).

Any message dequeued from a spurious mailbox is a spurious message, directly linking
the number of such spurious messages to the number of spurious mailboxes. This link
is not that direct for spurious messages resulting from non-spurious mailboxes, and
at least a different mailbox abstraction is required to decrease the number of spurious
messages in this category. For example, a non-empty mailbox will always yield spurious
messages if abstracted to a set, no matter the precision of the other abstractions used in
the analysis.

0 20 40 60 80 100 120 140 160 180 200 220

Graph

Finite List

Finite Multiset

Set

2

26

26

10

12

32

128

10

11

18

57

Number of spurious values

Spurious Mailboxes
Spurious Messages #1
Spurious Messages #2

Figure 5.8.: Precision metrics for the different mailbox abstractions (lower is better).

118

5.3. Evaluation of Mailbox Abstractions

Set MSn Ln G

Bench. A B C A B C A B C A B C

PARIKH 4 7 1 0 0 1 0 0 0 0 0 0
SAFE-SEND 21 61 11 3 7 11 0 0 0 0 0 0
STUTTER 2 2 2 4 7 2 4 4 2 0 0 0
STACK 4 9 10 6 13 10 0 0 0 0 0 0
COUNT-SEQ 3 5 1 1 1 1 0 0 0 0 0 0
CELL 0 0 1 0 0 1 0 0 0 0 0 0
PIPE-SEQ 16 30 0 4 4 0 4 4 0 4 4 0
STATE-FAC 2 3 0 0 0 0 3 4 0 6 6 0
PP 5 11 0 0 0 0 0 0 0 0 0 0
FJC-SEQ 0 0 0 0 0 0 0 0 0 0 0 0

Total 57 128 26 18 32 26 11 12 2 10 10 0
Table 5.4.: Precision metrics for the different mailbox abstractions. Column A indicates the num-

ber of spurious mailboxes that correspond to no concrete mailbox in a concrete run of
the benchmark. Column B indicates the number of spurious values dequeued from
spurious mailboxes. Column C indicates the number of spurious values dequeued
from non-spurious mailboxes.

The results, detailed in Table 5.4, show that the coarse set abstraction is the most
imprecise abstraction, resulting in many spurious values. For example, the SAFE-SEND
program exhibits a mailbox with 4 different unique messages in a specific order, and
the set abstraction yields many spurious values due to its loss of precision on ordering
and multiplicity information. The multi-set abstraction benefits from higher precision
because it preserves multiplicity, therefore resulting in fewer spurious mailboxes. How-
ever, because it lacks ordering information, it does not improve over the set abstraction
in the number of spurious messages resulting from non-spurious mailboxes. The list and
graph abstractions preserve both multiplicity and ordering, which renders them more
precise. On benchmarks with an unbounded number of sent messages, both lose some
precision. However, when the messages in a possibly infinite mailbox follow a specific
pattern, the graph abstraction yields a better precision than the finite list abstraction.
This is because the list abstraction reduces to a set once the bound is reached, thereby
losing ordering information, while ordering information may be preserved by the graph
abstraction. This is the case in the STUTTER benchmark program for example, where
messages sent to an actor follow a specific pattern (one, zero, one, zero, etc.). The list
abstraction reaches its bound and over-approximates the mailbox by the set {0, 1} and
results in 10 spurious values, while the graph preserves the ordering information and
analyzes this benchmark with full precision (i.e., without spurious values).

The only program where the graph abstraction yields more spurious values than the
other abstractions is STATE-FAC, depicted in Listing 5.5. This is because this program
contains an actor receiving a specific message an unbounded number of times, as well
as a single instance of another message. Due to the former message being received an

119

5. A Study of Mailbox Abstractions

unbounded number of times, the graph abstraction does not maintain the multiplicity
information that the other message is unique. Using the finite multiset abstraction pre-
serves this multiplicity and yields no spurious values. The set and finite list abstractions
do not preserve this multiplicity information, and therefore yield spurious values. How-
ever because these abstractions have a smaller domain size, they produce less spurious
mailboxes compared to the graph abstraction (2 for the set abstraction, 3 for the finite
list abstraction, 6 for the graph abstraction). This is because multiple spurious values
in a more precise abstraction may be represented by a single spurious value in a less
precise mailbox, e.g., if a : b and b : a are two spurious values for a list abstraction, a
single spurious value is present in the set abstraction: {a, b}.

5.3.3. Running Times on Full Benchmark Suite

To evaluate the impact of the different mailbox abstractions on the efficiency of the
analysis resulting from the application of MacroConc to λα, we analyzed 20 times each
of the programs from the benchmark suite introduced in Section 2.4.2, after 10 warmup
runs, and report on the average time required to analyze each program. The results are
listed in Table 5.5.

We see that an increase in precision from the mailbox abstractions does not result
in a consistent improvement of the scalability. In some cases, the analysis exhibits an
improved running time with the more precise mailbox abstractions presented in this
chapter. This is the case for programs where either all actors receive a single type of
message (FJT, FJC), which is well-supported by the more precise abstractions, or where
messages follow a specific pattern well-supported by the more precise abstractions (PP,
COUNT). In other cases, the running time increases when the analysis does not profit
from the increased precision from the mailbox abstraction, and results in an increased
state space size (e.g., RSORT). This is because the analysis loses precision for reasons
not linked to the mailbox abstraction (e.g., due to context-insensitivity), and this loss of
precision is reflected in the mailbox abstraction which creates more non-determinism
due to its more precise representation of mailboxes. A less precise abstraction has less
impact on the size of the state space in this case.

With the set mailbox abstraction, 12 out of the 28 benchmarks are analyzed within
the time limit. With the finite multiset abstraction, one more program times out (BTX),
and the time required to analyze some programs increases by one order of magnitude
(CDICT, PCBB, RSORT), while the time decreases on smaller programs (PP, COUNT,
FJT). The finite list abstraction supports the 12 same benchmarks as the set abstraction,
with relatively similar running times, except on the smaller programs for which the
analysis time is reduced, while the BTX program now takes one order of magnitude
more time to analyze. Finally, the graph abstraction, the most precise according to our
precision evaluation, supports fewer benchmark programs: only 8 compared to the 12
supported by the set abstraction.

These more precise abstractions therefore do not result in improved scalability. How-
ever, the cost in scalability to pay for the improved precision is low. We identify as an
interesting avenue for future work the combination of different abstractions, where the

120

5.4. Conclusion

set abstraction could be used by default for most actors, yielding a reduced running time,
and abstractions with higher precision could be used for other actors based on either
user-provided code annotations or heuristics, to profit from an increased precision on
these mailboxes.

Bench. Set MSn Ln G Bench. Set MSn Ln G

PP 494 7 7 7 BTX 2567 ∞ 14493 ∞
COUNT 284 24 24 18 RSORT 12913 153432 147773 133711
FJT 112 58 54 48 FBANK ∞ ∞ ∞ ∞
FJC 15 16 14 14 SIEVE 79 247 103 ∞
THR ∞ ∞ ∞ ∞ UCT ∞ ∞ ∞ ∞
CHAM ∞ ∞ ∞ ∞ OFL ∞ ∞ ∞ ∞
BIG ∞ ∞ ∞ ∞ TRAPR 10301 24920 13098 10339
CDICT 21246 211467 19215 ∞ PIPREC 387 331 319 212
CSLL ∞ ∞ ∞ ∞ RMM ∞ ∞ ∞ ∞
PCBB 99630 940338 83136 ∞ QSORT ∞ ∞ ∞ ∞
PHIL ∞ ∞ ∞ ∞ APSP ∞ ∞ ∞ ∞
SBAR ∞ ∞ ∞ ∞ SOR ∞ ∞ ∞ ∞
CIG 1337 3916 2589 1230 ASTAR ∞ ∞ ∞ ∞
LOGM ∞ ∞ ∞ ∞ NQN ∞ ∞ ∞ ∞

Table 5.5.: Running times of MacroConc analyses with different mailbox abstractions. The tim-
ings are expressed in milliseconds and represent the average of 20 runs after 10
warmup runs. ∞ denotes that the analysis exceeded the allocated time budget of 30
minutes.

5.4. Conclusion

In this chapter, we presented five sound abstractions for mailboxes of actor programs.
The set mailbox abstraction used in the analyses presented in Chapters 2, 4 and 6 is a
coarse abstraction that preserves no information about the ordering nor about the mul-
tiplicity of the messages contained in the mailbox. We have shown the importance of
preserving such information in order to analyze actor programs for specific properties,
such as verification of absence of errors or inference of mailbox bounds. We catego-
rized the abstractions according to whether they preserve ordering information and
according to whether they preserve multiplicity information. We formalized each of the
abstractions, which are proven sound. We assessed the impact of the different abstrac-
tions on the precision and running time of an analysis resulting from the application of
MacroConc. Through a benchmark suite that includes programs featuring unreachable
errors and bounded mailboxes, we have shown that mailbox abstractions preserving
multiplicity and ordering information are necessary in order to verify such benchmarks.
We also observed an increased precision at the level of mailboxes for abstractions that
preserve this information. The finite list and the graph abstractions yield the highest
precision, and the finite multiset abstraction yields a significantly better precision than
a coarse set abstraction. To assess the applicability of these abstractions on real-world
programs, we measured the running time of the analysis with each of these abstractions
on our full benchmark suite. Compared to the coarse set abstraction used in the other

121

5. A Study of Mailbox Abstractions

chapters of this dissertation, these new abstractions do not result in more benchmarks
being analyzed, but the cost in scalability is low for a high improvement in precision.
Small benchmark programs even profit from an improved analysis time.

122

6
M O D CO NC : D E S I G N I NG M O D U L A R A NA LYS E S

Chapter 4 introduced the MacroConc analysis design method, which incorporates
macro-stepping semantics for improved scalability into AAM-style analyses without
compromising on their precision. Although the resulting analyses perform orders of
magnitude better than the analyses of Chapter 2, they still fail to analyze the entirety of
our benchmark suite, both for actor programs and for multi-threaded programs. This is
because, even though MacroConc reduces the number of interleavings that an analysis
has to consider, it does not solve the inherent state explosion: the number of interleavings
to explore remains exponential in the worst case.

In this chapter, we demonstrate that scalability can be achieved through modular anal-
ysis, as introduced by Cousot and Cousot (2002). We present the ModConc analysis
design method, resulting in process-modular analyses for concurrent programs (Sec-
tion 6.1) and discuss the soundness, complexity and termination of the resulting anal-
yses (Section 6.2). We then apply ModConc to concurrent actor programs (Section 6.3)
and to shared-memory multi-threaded programs (Section 6.4). Finally, we evaluate the
resulting analyses empirically in terms of running time, scalability and performance
(Section 6.5).

123

6. ModConc: Designing Modular Analyses

6.1. Modular Abstract Interpretation of Concurrent Programs

The analyses presented in Chapter 2 explore all possible process interleavings of the
transition relation explicitly, which hampers their scalability. While only exploring a
sound subset of the interleavings—as done by the introduction of macro-stepping se-
mantics into the analysis (Chapter 4)—leads to an improvement in running time, the
worst-case time complexity of the resulting analyses remains exponential. In practice
not all of our benchmark programs can be analyzed within the time limit. We pro-
pose process-modular analyses as an alternative, where process interleavings are not
modeled explicitly.

The notion of modular analysis was introduced by Cousot and Cousot (2002). A
modular analysis treats the behavior of every component (in our case, each process) in
isolation. The analysis computes the interferences (in our case, communication effects) of
a component with other components, which are then reconsidered for analysis until a
fixed point is reached. To this, we add the notion that the analysis of a component can
discover new components that are created dynamically and need to be considered for
analysis. The core insight enabling modular analysis for concurrent programs is that the
concurrent behavior of a process is defined by its code, known at creation time, and the
communication effects involving this process, discovered by analyzing other processes.
Other factors such as user input and random values are dealt with by the abstractions
on values of the sequential subset.

Our ModConc design method relies on the same transition relation as the analyses of
Chapter 2, but consists of two clearly distinct and alternating phases: an intra-process
analysis phase and an inter-process analysis phase.

1. In the intra-process analysis phase, a single process is analyzed in isolation until a
fixed point is reached. This phase infers the processes that are created and the com-
munication effects that are generated by the analyzed process. The intra-process
analysis is based on a modified version of the concurrent semantics, replacing con-
current operations by operations that denote the corresponding generated effects
but otherwise do not modify the analysis state of other processes in any way. This
is in contrast with the analyses presented in Chapters 2 and 4, which keep track of
the state of all processes and may step any of the running processes at any given
point, immediately reflecting the interferences between the processes.

2. The inter-process analysis phase relies on the effects accumulated during the intra-
process analysis to update the global analysis state. After computing the set of
processes that interfere with the analyzed processes, the inter-process analysis
runs additional intra-process analyses for processes that were created or impacted
by these state updates. When no new interprocess communication effects are
discovered, a sound over-approximation of the behavior of all processes in the
program has been reached.

The result is a modular whole-program analysis for concurrent programs that infers
the set of all running processes, their reachable states and the communication effects

124

6.1. Modular Abstract Interpretation of Concurrent Programs

performed, and this in a scalable manner. The resulting analyses, like any sound all-
interleavings analysis, take into account all communication effects that may occur dur-
ing program execution (no information is “lost”) but, unlike all-interleavings analyses,
do not explicitly explore all possible process interleavings. This information is over-
approximated, but remains implicitly accounted for. For this reason, the resulting anal-
yses scale with respect to process creation and interprocess communication.

We illustrate the notion of a process-modular analysis at a high level. Consider the
factorial example implemented with actors, introduced in Section 2.2 and repeated in
Listing 6.1. A process-modular analysis analyzing this program performs the following
iterations.

1. The first iteration of the process-modular analysis analyzes the main process.
This is done by an intra-process analysis that relies on a sequentialized transition
relation and that collects the set of processes created and messages sent. In this
case, the intra-process analysis detects two created actors: an actor fact with
behavior fact-actor created at line 21, and an actor displayer with behavior
displayer-actor created at line 22. The intra-process analysis also detects that
the main process sends a message compute(Int, displayer) to the actor fact at
line 23.

2. The second iteration analyzes the fact actor, with a mailbox containing the
compute(Int, displayer) message. It detects one created actor c with behavior
customer-actor(Int, displayer) created at line 6, and two sent messages: a
result(Int) message sent to actor displayer at line 5, and a compute(Int, c) sent
to actor fact at line 8.

3. The third iteration analyzes the fact actor with an updated mailbox, and the
displayer actor. For the fact actor, one new created actor is detected: actor cwith
behavior customer-actor(Int, c) created at line 6 (note the change in its second
state variable compared to the created actor detected in the previous iteration, and
the circularity in its definition that results from the abstraction of the semantics),
and two sent messages are detected: message result(Int) is sent to actor c at line
5, and message compute(Int, c) is sent to actor fact at line 8. The intra-process
analysis of the displayer actor analyzes this actor with a mailbox containing the
result(Int) message, and does not detect created actors nor sent messages.

4. The fourth iteration analyzes the c actor with behavior
customer-actor(Int, {displayer, c}) (note the approximation of its second
state variable). It detect two possible sent messages: the message result(Int) can
be sent to both actor displayer and to actor c. At this point, the sent messages
that are detected have already been taken into account by the analysis, which has
therefore reached a fixed point and terminates.

Unlike MacroConc, ModConc is directly applied to the abstract semantics of a concur-
rent programming language. This is because, unlike the analyses presented in Chapters 2

125

6. ModConc: Designing Modular Analyses

1 (define fact-actor
2 (actor ()
3 (compute (n customer)
4 (if (= n 0)
5 (send customer result 1)
6 (let ((c (create customer-actor
7 n customer)))
8 (send self compute (- n 1) c)))
9 (become fact-actor))))

10 (define customer-actor
11 (actor (n customer)
12 (result (k)
13 (send customer result (* n k))
14 (become customer-actor n customer))))

15 (define displayer-actor
16 (actor ()
17 (result (v)
18 (display v)
19 (become displayer-actor))))
20
21 (define fact (create fact-actor))
22 (define displayer (create displayer-actor))
23 (send fact compute (read-integer) displayer)

Listing 6.1: Program computing the factorial of a user-given number with actors, adapted from
Agha (1986).

and 4, the analyses presented here over-approximate the process interleavings. Macro-
Conc abstracts a refinement of the concrete semantics of a concurrent programming
language, while ModConc abstracts further over an initial abstraction such as the ones
presented in Chapter 2. We prove that applications of this further abstraction to λα and
to λτ are sound (Theorems 16 and 18).

ModConc comes at a cost in terms of precision. Properties that rely on ordering or
multiplicity information may not be verifiable using the results of this process-modular
analysis. This is the case for the mailbox bounds analysis of Chapter 5. However, lo-
cal process properties such as communication effects can still be inferred with high
precision, as demonstrated in our evaluation of Section 6.5.

Applying ModConc to concurrent programs is a four-step process.

1. Specifying an operational semantics for the input language featuring concurrency,
modeled by a transition relation. This corresponds to the semantics given in Chap-
ter 2.

2. Modifying the operational semantics into a sequentialized transition relation anno-
tated with communication effects.

3. Specifying an intra-process analysis that computes states reachable and the commu-
nication effects produced by a given process, based on the sequentialized seman-
tics.

4. Specifying an inter-process analysis that runs intra-process analyses on newly dis-
covered processes and on processes affected by communication effects, until no
new communication effects are inferred.

The remainder of this section details each of these steps.

126

6.1. Modular Abstract Interpretation of Concurrent Programs

6.1.1. Step 1: Definition of the Abstract Operational Semantics for the Input

Language

In order to apply ModConc, the operational semantics of a concurrent programming
language needs to be defined through a transition that specifies how the program state
(i.e., the state of its set of processes, its value store, and its continuation store) evolves
in a small-step fashion. Sections 2.2 and 2.3 respectively presented such a transition
relation for λα and for λτ. These relations define two kinds of transitions.

1. Sequential transitions model sequential operations affecting a single process. These
correspond to the transitions defined by on the transition relation of the common
base language λ0 (↪→). They generate no communication effects.

2. Concurrent transitions define the semantics for concurrent operations that affect
more than one process or that affect the global state of the system. Concurrent
transitions include for example the transitions for the create and send constructs
in λα (see Section 2.2), and the transitions for the spawn and join constructs in λτ

(see Section 2.3).

6.1.2. Step 2: Definition of the Sequentialized Transition Relation

The second step in an application of ModConc is to construct a sequentialized version of
the above semantics that acts on a single process. This semantics honors the existing se-
quential transitions, but replaces the transitions for concurrent constructs by transitions
that generate communication effects that don’t apply them to the global analysis state
yet. This results in an intra-process transition relation annotated with a set of commu-
nication effects, which is not empty for concurrent operations. These effects are defined
formally for the actor-based and multi-threaded languages in Sections 2.2 and 2.3.

We denote this intra-process transition relation as p̂ . Note that it only acts on a
single process state ς̂, whereas the transition relations in the analyses of Chapters 2
and 4 act on a map of processes π. This intra-process transition relation may also be
parameterized by values, written as subscript. This allows a view on the global state,
e.g. to retrieve messages from a mailbox or inspect return values of other threads.

6.1.3. Step 3: Definition of the Intra-Process Analysis

The intra-process analysis analyzes a process under given assumptions and infers the
communication effects that can be generated by the analyzed process. The assumptions
for the intra-process analysis are encoded as parameters and generally include the global
value store and global continuation store, as well as the values returned by other threads
in multi-threaded programs and the actor mailboxes in actor-based programs.

The intra-process analysis explores all possible behaviors of the process under analysis
under the given assumptions, and infers the communication effects as well as potential
changes to global program components such as the value store and continuation store.

127

6. ModConc: Designing Modular Analyses

The intra-process analysis is formalized as the fixed point of a parameterized transfer
function Intra - Ĥ, that applies the transition relation resulting from step 2. The fixed
point of this transfer function is a sound over-approximation of all possible executions
of the process under analysis, under the given assumptions. It provides the information
that needs to be propagated to the global analysis state.

6.1.4. Step 4: Definition of the Inter-Process Analysis

The inter-process analysis collects the communication effects inferred by the intra-
process analyses for a set of processes, and computes the next set of processes that
require intra-process analysis. These are the newly created processes and the processes
that depend on the inferred communication effects.

For example, if a thread t1 is joining a thread t2, and the intra-process analysis of thread
t2 has determined a change in the return value of this process, then the intra-process
analysis of thread t1 must be performed again to account for this new information.
Similarly, based on the communication effect determined by an intra-process analysis
when an actor a1 sends a message to an actor a2, the inter-process analysis performs a
subsequent intra-process analysis on actor a2.

As the execution of a concurrent program starts from its main process, the inter-
process analysis starts by performing an intra-process analysis of this main process. The
inter-process analysis terminates when no new communication effects can be inferred,
and results in a sound over-approximation of all possible behaviors of the program
under analysis.

The inter-process analysis is formalized as the fixed point of a transfer function
Inter - Ĥe, parameterized by the program e under analysis. The domain of the inter-
process transfer function contains a global process map π̂ mapping process identifiers
to their initial process state and to a set of reachable states as computed by the intra-
process analysis. It also contains global program components such as the value store σ̂
and continuation store Ξ̂.

6.2. Properties of a Process-Modular Analysis

We discuss here important properties that analyses resulting from the application of
ModConc exhibit, and explain how this is ensured.

6.2.1. Termination

In order for an analysis resulting from the application of ModConc to terminate, both
the intra-process and inter-process analyses, defined as fixed-point computations, have
to terminate. This can be proven by showing that the transfer function of each analysis is
monotone, and that these functions act over a finite abstracted state space. Termination
of these analyses is then ensured by Tarski’s fixed-point theorem (Tarski, 1955). We prove
termination of analyses resulting from the application of ModConc to λα in Section 6.3.5
and to λτ in Section 6.4.5.

128

6.2. Properties of a Process-Modular Analysis

6.2.2. Soundness

Analyses resulting from the application of ModConc over-approximate the process in-
terleavings, without exploring them explicitly. All interleavings between the explored
processes are deemed reachable. Similarly as for analyses resulting from the application
of MacroConc (Section 4.2), it can be shown that for verifying particular program prop-
erties, a process-modular analysis soundly approximates the result of analyses relying
on all-interleavings semantics. In particular, the application of ModConc to λα and to
λτ is proven sound (Theorems 16 and 18 in Sections 6.3 and 6.4): all process states (ς)
explored by an all-interleavings analysis are also accounted for by a process-modular
analysis. This suffices to derive sound analyses such as communication topology analy-
ses (Colby, 1995; Martel and Gengler, 2000). We prove the soundness of analyses resulting
from the application of ModConc to λα in Section 6.3.5 and to λτ in Section 6.4.5.

6.2.3. Complexity

A process-modular analysis designed according to the ModConc design method scales
linearly in terms of the total number of communication effects: for a given program
size, the analysis time increases linearly in the number of abstract processes created by
the program under analysis and in other communication effects such as the number
of abstract messages sent in actor programs or write operations on shared variables
in thread programs. This is because the inter-process analysis will at most have to
recompute an intra-process analysis a number of times proportional to the number of
communication effects. As the number of abstract processes increases, the running time
of the analysis increases linearly.

The complexity of the inter-process analysis therefore adds a polynomial factor to
the complexity of the sequential analysis. If the sequential analysis is polynomial, the
process-modular concurrent analysis remains polynomial, unlike a non-modular anal-
ysis which becomes exponential due to the non-determinism in process interleavings.
For example, the intra-process analyses presented in this chapter exhibit the same char-
acteristics as the analysis for λ0, and have a complexity of O(|Exp|3). The inter-process
analysis will at most run one intra-process analysis for each detected communication
effect, i.e., its worst-time complexity is of O(|Êffect| × |Exp|3). We demonstrate the scal-
ability of the application of ModConc to λα and λτ in Section 6.5.4.

6.2.4. Precision

Whereas analyses resulting from the application of the MacroConc design method
(Chapter 4) preserve the same precision as the analyses resulting from a naive applica-
tion of AAM to concurrent programs (Chapter 2), process-modular analyses resulting
from the application of ModConc trade off precision to gain in scalability. Information
about the order in which the communication effects occur and about their multiplicity
is lost, because they are stored in sets by the intra-process analysis. ModConc therefore
cannot be used for analyses such as the mailbox bound analysis of Chapter 4. We leave

129

6. ModConc: Designing Modular Analyses

open the question of whether this information may be preserved, identifying it as future
work in Chapter 7. We study the precision of analyses resulting from the application of
ModConc in Section 6.5.3.

6.3. Application of ModConc to λα

Next, we apply the ModConc design method to λα concurrent actor programs. We
first present the sequentialized transition relation, derived from the abstract transition
relation of λα presented in Section 2.2 . We then present the intra-process analysis which
computes, for each abstract process, the set of created processes and the set of messages
sent. Finally, we present the inter-process analysis, which acts on global analysis states
composed of, for each abstract actor, the intra-process analysis state, a set of reachable
states, and an abstraction of the mailbox. Relying on the information inferred by intra-
process analysis, the inter-process analysis reconsiders for intra-process analysis the set
of newly created processes, and the processes impacted by the set of messages sent.

6.3.1. Step 1 of ModConc for λα: Definition of the Abstract Operational

Semantics

The abstraction of the operational semantics of λα on which we rely for the application
of ModConc to λα is the abstraction presented in Section 2.2. It results from a naive
application of AAM and forms the starting point for the application of ModConc to λα.

6.3.2. Step 2 of ModConc for λα: Definition of the Sequentialized Transition

Relation

The sequentialized transition relation has the same structure as the transition relation
of the abstract operational semantics of λα (step 1). The three main differences are the
following.

1. Rather than acting on global states, represented as process maps π̂, the transition
relation for ModConc acts on the local state of a single abstract actor ς̂.

2. The transition relation for ModConc is parameterized by the mailbox of the actor
under analysis, so that messages can be extracted from this mailbox.

3. Instead of applying the effect of concurrent operations to the process map, the tran-
sition relation records generated communication effects. The changes are applied
to the local state of the actor, but not to the state of other actors.

Transitions are therefore written ς̂, σ̂, Ξ̂ p̂,m̂b ς̂′, σ̂′, Ξ̂′.
We follow the same structure of presentation as in Chapter 2: we introduce the state

space of the sequentialized transition relation first, and then present the transition
relation rules for sequential transitions, for actor management, and for messages. Al-
location of addresses, allocation of process identifiers, and atomic evaluation remains

130

6.3. Application of ModConc to λα

unchanged and we therefore do not repeat their definitions, which can be found in
Chapter 2 (Figures 2.12, 2.32 and 2.36).

State Space of the Sequentialized Transition Relation

Figure 6.1 depicts the state space for the sequentialized transition relation of λα. The
state space consists of actor states containing a control component (ĉ), a behavior (b̂),
and a continuation address (k̂). Abstract mailboxes are represented as sets of messages.
We refer to the abstract state space of Chapter 2 for the components that are not defined
here, such as the stores (σ̂) and the environments (ρ̂).

λα

ς̂ ∈ Σ̂ = Ĉontrol × B̂eh × K̂Addr

ĉ ∈ Ĉontrol ::= ev(e, ρ̂) | val(v̂) | wait

v̂ ∈ V̂al ::= clo(lam, ρ̂) | pid(p̂) | actor(act, ρ̂)

b̂ ∈ B̂eh ::= beh(act, ρ̂) | main

m̂ ∈ M̂essage = Tag × V̂al

m̂b ∈ M̂box = P(M̂essage)

p̂ ∈ P̂ID a finite set of process identifiers

Figure 6.1.: State space of the sequentialized transition relation for λα.

Sequentialized Transition Relation

The sequentialized transition relation is written ς̂, σ̂, Ξ̂ p̂,m̂b ς̂′, σ̂′, Ξ̂′ and acts on actor
states, value stores and continuation stores, for an actor with process identifier p̂ and
mailbox m̂b. Transition relations may carry a communication effect. Communication
effects that only affect the state of the actor transitioning or the stores are directly
applied, but communication effects that affect the state of other actors are not applied,
as the transition relation does not act on process maps.

Sequential transitions. Figure 6.2 depicts the transition rule for sequential transitions.
If a sequential transition may be performed in a process, the process can transition (rule
Seq).

131

6. ModConc: Designing Modular Analyses

λα

ς̂, σ̂, Ξ̂ ↪̂→ ς̂′, σ̂′, Ξ̂′

ς̂, σ̂, Ξ̂ p̂,m̂b ς̂′, σ̂′, Ξ̂′ Seq

Figure 6.2.: Sequential transition rule for λα.

Actor management transitions. Figure 6.3 depicts the transition rules for actor man-
agement. The actor creation rule Create steps the process performing the creation into
a value state with the process identifier of the created process as value. The initial state
of the created actor is constructed (ς̂′), but is not reflected in the resulting state, as this
is handled by the inter-process analysis. A creation effect is generated and contains the
process identifier of the created actor (p̂′), as well as its initial state (ς̂′). Note that the
second argument given to the process allocation function p̂alloc is an empty process map
([]). This is because this sequentialized transition relation has no process map, and can
only be used in an abstract setting. We therefore require a p̂alloc function that ignores
the value of its second parameter. This is the case for the abstract process identifier
allocation function defined in Figure 2.36.

The rule Become only affects the actor executing the become statement, and all changes
are therefore reflected in the actor state. This rule generates a b effect, used only for
informational purposes.

λα

ρ̂, σ̂ ` ae ⇓̂ actor(act, ρ̂′)

ρ̂, σ̂ ` ae′ ⇓̂ v̂ ς̂′ = 〈wait, beh(act, ρ̂′[x 7→ â]), k̂0〉
â = âlloc(x, σ̂) p̂′ = p̂alloc(ς̂′, []) x = var(act)

〈ev((create ae ae′), ρ̂), b̂, k̂〉, σ̂, Ξ̂
c(p̂′,ς̂′)

p̂,m̂b

〈val(pid(p̂′)), b̂, k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂

Create

ρ̂, σ̂ ` ae ⇓̂ actor(act, ρ̂′) ρ̂, σ̂ ` ae′ ⇓̂ v̂
b̂′ = beh(act, ρ̂′[x 7→ â]) x = var(act) â = âlloc(x, σ̂)

〈ev((become ae ae′), ρ̂), b̂, k̂〉, σ̂, Ξ̂
b(b̂′,v̂)

p̂,m̂b 〈wait, b̂′, k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
Become

Figure 6.3.: Actor management transitions for λα.

Messages transitions. Figure 6.4 depicts the transition rules for messages in λα. The
message sending rule Send steps the actor that sends a message into a value state and

132

6.3. Application of ModConc to λα

generates a snd communication effect, without storing the message sent into the mailbox
of the target actor. The information provided by the communication effect is used by
the intra-actor analysis.

The message processing rule Process generates a prc effect containing the message
extracted from the mailbox. The actor steps into the body of the message handler
corresponding to the received message.

λα

ρ̂, σ̂ ` ae ⇓̂ pid(p̂′) ρ̂, σ̂ ` ae′ ⇓̂ v̂

〈ev((send ae t ae′), ρ̂), b̂, k̂〉, σ̂, Ξ̂
snd(p̂′,t,v̂)

p̂,m̂b 〈val(v̂), b̂, k̂〉, σ̂, Ξ̂
Send

(t, v̂) ∈ m̂b (y, e) = handler(act, t) â = âlloc(y, σ̂)

〈wait, beh(act, ρ̂), k̂〉, σ̂, Ξ̂
prc(t,v̂)

p̂,m̂b

〈ev(e, ρ̂[y 7→ â]), beh(act, ρ̂), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂

Process

Figure 6.4.: Message transitions for λα.

6.3.3. Step 3 of ModConc for λα: Definition of the Intra-Process Analysis

The intra-process analysis for λα analyzes the behavior of a single actor by performing a
fixed-point computation of a transfer function Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
where ς̂0 is the initial

state of the actor under analysis, σ̂0 and Ξ̂0 are the global stores before analysis, and m̂b
is an approximation of the mailbox of the actor under analysis.

State Space of the Intra-Process Analysis

Figure 6.5 depicts the state space of the intra-process analysis. The intra-process analysis
operates on intra-states (̂IntraState), which consist of a set of actor states (P(Σ̂)), a value
store (Ŝtore), a continuation store (K̂Store), a set of created actors (P(Ĉreated)), and a set
of messages sent (P(Ŝent)). Created actors are represented as a pair of their process
identifier and their initial actor state, i.e., the state at which they start their execution.
Messages sent are represented as a tuple of the process identifier to which the message
is addressed, and the message sent. A mailbox is represented as a set of messages, which
themselves are pairs of tags and values.

133

6. ModConc: Designing Modular Analyses

λα
̂IntraState = P(Σ̂)× Ŝtore × K̂Store

×P(Ĉreated)×P(Ŝent)

Ĉreated = P̂ID × Σ̂

Ŝent = P̂ID × M̂essage

Figure 6.5.: State space for the intra-process analysis for λα.

Transfer Function of the Intra-Process Analysis

Figure 6.6 depicts the transfer function of the intra-process analysis,
Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
: ̂IntraState → ̂IntraState. This transfer function performs the

following operations.

1. The initial state and stores are part of the intra-process analysis state. The initial
sets of created processes and sent messages are empty.

2. Effect-less transitions are taken without generating any communication effect.

3. Transitions that process a message or change the behavior of the actor are taken
without adding information to the set of created actors and messages sent.

4. Transitions that create a process add an element to the set of created processes.

5. Transitions that receive a message extract the message content from the mailbox.

134

6.3. Application of ModConc to λα

λα

Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
(〈S, σ̂, Ξ̂, C, M〉) = 〈{ς̂0} , σ̂0, Ξ̂0,∅,∅〉 (1)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂ p̂,m̂b ς̂′,σ̂′,Ξ̂′

〈
{

ς̂′
}

, σ̂′, Ξ̂′,∅,∅〉 (2)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
êff

p̂,m̂b ς̂′,σ̂′,Ξ̂′

êff∈
{

b(b̂,v̂),prc(t,v̂)
}

〈
{

ς̂′
}

, σ̂′, Ξ̂′,∅,∅〉 (3)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
c(p̂′,ς̂2)

p̂,m̂b ς̂′,σ̂′,Ξ̂′

〈
{

ς̂′
}

, σ̂′, Ξ̂′,
{
(p̂′, ς̂2)

}
,∅〉 (4)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
snd(p̂′,t,v̂)

p̂,m̂b ς̂′,σ̂′,Ξ̂′

〈
{

ς̂′
}

, σ̂′, Ξ̂′,∅,
{
(p̂′, (t, v̂))

}
〉 (5)

Figure 6.6.: Transfer function for the intra-process analysis for λα.

6.3.4. Step 4 of ModConc for λα: Definition of the Inter-Process Analysis

The inter-process analysis is defined as the fixed-point computation of a transfer function
Inter - Ĥλα

e where e is the program under analysis. The result of the inter-process analysis
is a process map that maps each abstract process to the result of its intra-process analysis,
its initial actor state, and its mailbox.

State Space of the Inter-Process Analysis

Figure 6.7 depicts the process map π̂ produced by the inter-process analysis of λα.

λα

π̂ ∈ Π̂ = P̂ID → (̂IntraState × Σ̂ × M̂box)

Figure 6.7.: State space for the inter-process analysis of λα.

Transfer Function of the Inter-Process Analysis

The transfer function relies on the following auxiliary functions, defined in Figure 6.8.

135

6. ModConc: Designing Modular Analyses

• explore : P̂ID × Σ̂ × M̂box × Ŝtore × K̂Store → Π̂ × Ŝtore × K̂Store performs an intra-
process analysis on the actor with the process identifier p̂, initial state ς̂, mailbox
m̂b, using value store σ̂ and continuation store Ξ. It returns a process map, value
store and continuation store containing the information resulting from the intra-
process analysis.

• created : Π̂ → P(P̂ID × Σ̂) returns the set of all created actors computed by the
analysis, described by their process identifier and their initial actor state.

• sent : Π̂ × P̂ID → P(M̂essage) returns the set of messages sent to actor with process
identifier p̂.

λα

explore(p̂, ς̂, m̂b, σ̂, Ξ̂) = 〈[p̂ 7→ (s, ς̂, m̂b)], σ̂′, Ξ̂′〉
where s = lfp(Intra - Ĥλα

p̂,ς̂,σ̂,Ξ̂,m̂b
) and (_, σ̂′, Ξ̂′, _, _) = s

created(π̂) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,C,_),_,_)

C sent(π̂, p̂) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,_,M),_,_)

(p̂,m̂)∈M

{m̂}

Figure 6.8.: Auxiliary functions used in the inter-process analysis for λα.

Figure 6.9 depicts the inter-process analysis transfer function
Inter - Ĥλα

e : Π̂ × Ŝtore × K̂Store → Π̂ × Ŝtore × K̂Store, which performs the follow-
ing operations.

1. The main process has an empty mailbox and is analyzed with the intra-process
analysis.

2. Each process to which a message is sent—as extracted from the results of previ-
ous intra-process analyses by the sent function—is re-analyzed with an updated
mailbox.

3. Each process that has been created—as extracted from the result of previous intra-
process analyses by the created function—is analyzed, starting with an empty
mailbox.

136

6.3. Application of ModConc to λα

λα

Inter - Ĥλα
e (〈π̂, σ̂, Ξ̂〉) = explore(p̂0, 〈ev(e, []), main(e), k̂0〉,∅, σ̂, Ξ̂) (1)

t
⊔

π̂(p̂)=(_,ς̂,m̂b)
m̂b

′
=m̂b∪sent(π̂,p̂)

explore(p̂, ς̂, m̂b
′
, σ̂, Ξ̂) (2)

t
⊔

(p̂,ς̂)∈created(π̂)

explore(p̂, ς̂,∅, σ̂, Ξ̂) (3)

Figure 6.9.: Inter-process analysis transfer function for λα.

Complexity

The inter-process analysis may reconsider an actor for analysis for every message sent
and for every actor created. As the process allocation strategy of Figure 2.26 represents
the process identifier of an abstract actor by an abstract behavior, the number of abstract
actor is bounded by the number of abstract behaviors. The worst-case time complexity
of the analysis is therefore of O((b + m)× |Exp|3), where b is the number of abstract
behaviors, m is the number of abstract messages sent, and |Exp|3 comes from the worst-
case time complexity of the intra-actor analysis, which has the same complexity as a
sequential analysis.

6.3.5. Soundness and Termination

Theorems 16 and 17 state that the analysis described by the inter-process analysis
terminates and is sound, two crucial properties for a static analysis.

Theorem 16 (Soundness). The result of lfp(Inter - Ĥλα
e) is a sound over-approximation of

lfp(Fλα
e).

Proof. The proof is detailed in Appendix B.4.1. The idea of this proof is the following.
We show by a case analysis on the transition rules that the intra-process analysis is
a sound over-approximation of the transfer function F̂λα restricted to states reachable
with transition on the same process p̂ from the initial state 〈[p̂ 7→

{
(ς̂0, m̂b)

}
], σ̂0, Ξ̂0〉. As

the inter-process analysis considers every newly created actor and every actor affected
by a message send, the analysis will eventually have analyzed all running actors with
over-approximation of their mailbox and stores.

Theorem 17 (Termination). The computation of lfp(Inter - Ĥλα
e) always terminates.

Proof. The proof is detailed in Appendix B.4.1 and follows the same structure as previous
termination proofs. By proving that the abstract state space is finite, and that both the
transfer function of the intra-process analysis and the transfer function of the inter-
process analysis are monotone, termination is ensured.

137

6. ModConc: Designing Modular Analyses

6.4. Application of ModConc to λτ

We apply the ModConc design method to λτ programs. These programs feature shared-
memory concurrency through multi-threading and support mutable references and
locks. We follow the same structure of presentation as for the application of ModConc
to λα programs: we present the sequentialized transition relation, the intra-process
analysis, the inter-process analysis and conclude by proving soundness and termination.

6.4.1. Step 1 of ModConc for λτ: Definition of the Abstract Operational

Semantics

The abstract operational semantics of λτ, defined by the concurrent transition relation
p̂ in Section 2.3, forms the starting point for the application of ModConc to λτ.

6.4.2. Step 2 of ModConc for λτ: Definition of the Sequentialized Transition

Relation

The transition relation of λτ undergoes similar structural changes as the transition
relation of λα, which are the following.

1. The transition relation acts on local thread states (ς̂) rather than on global process
maps (π̂).

2. The transition relation is parameterized by a join store (Ĵ) that contains information
about the return values of threads that have terminated their execution.

3. The communication effects annotate the transitions of λτ, and do not impact the
global state of the program.

Transitions are therefore written ς̂, σ̂, Ξ̂ p̂, Ĵ ς̂′, σ̂′, Ξ̂′. We introduce the state space of
the sequentialized transition first, and then present the transition relation for sequential
transitions, for thread management, for references and for locks. We do not repeat the
definitions for the allocation function for abstract addresses and for abstract process
identifiers, as we rely on the abstract definitions presented in Chapter 2, respectively
Figures 2.12 and 2.58.

State Space of the Sequentialized Transition Relation

Figure 6.10 depicts the abstract state space of the sequentialized transition relation. It
remains the same as the one introduced in Section 2.3: a process state is a pair of a control
component (ĉ) and a continuation address (k), and process identifiers (pid), references
(ref) and locks (lock) are first-class values.

138

6.4. Application of ModConc to λτ

λτ

ς̂ ∈ Σ̂ = Ĉontrol × K̂Addr

v̂ ∈ V̂al ::= . . .
| pid(p̂) | ref(â)
| lock(â) | locked(p̂) | unlocked

Ĵ ∈ ̂JoinStore = P̂ID → P(V̂al)

p̂ ∈ P̂ID a finite set of process identifiers

Figure 6.10.: State space for the sequentialized transition relation for λτ .

Sequentialized Transition Relation

The sequentialized transition relation is written ς̂, σ̂, Ξ̂ p̂ ς̂′, σ̂′, Ξ̂′ and may carry a
communication effect. Communication effects that affect the local state of the thread
performing the effect or that affect the store are applied. However, communication
effects that affect the state of other threads are not applied.

Sequential transitions. Figure 6.11 depicts the transition relation rule for sequential
transitions. The rule Seq generates no communication effect and relies on the sequential
transition relation of λ0 to perform a sequential step in a thread.

λτ

ς̂, σ̂, Ξ̂ ↪̂→ ς̂′, σ̂′, Ξ̂′

ς̂, σ̂, Ξ̂ p̂, Ĵ ς̂′, σ̂′, Ξ̂′ Seq

Figure 6.11.: Sequential transitions for λτ .

Thread management. Figure 6.12 depicts the transition rules for thread management.
The execution of the spawn construct (rule Spawn) generates a creation communication
effect c(p̂′, ς̂′) where p̂′ is the abstract process identifier of the spawned thread, and
ς̂′ is the initial state of the spawned thread. Similar to the process identifier allocation
for λα, the second argument given to p̂alloc is an empty process map ([]), because the
sequentialized transition relation has access to no process map. The abstract process
identifier allocation function defined in Figure 2.58 does not use its second argument
and abstract process identifiers are therefore not impacted by this.

The execution of the join construct (rule Join) generates on a join communication
effect j(p̂′, v̂), where p̂′ is the abstract process identifier of the thread joined, and v̂ is the
value returned by this thread, which is extracted from the join store Ĵ.

139

6. ModConc: Designing Modular Analyses

λτ

ς̂′ = 〈ev(e, ρ̂), k̂0〉 p̂′ = p̂alloc(ς̂′, [])

〈ev((spawn e), ρ̂), k̂〉, σ̂, Ξ̂
c(p̂′,ς̂′)

p̂, Ĵ 〈val(pid(p̂′)), k̂〉, σ̂, Ξ̂
Spawn

ρ̂, σ̂ ` ae ⇓̂ pid(p̂′) v̂ ∈ Ĵ(p̂′)

〈ev((join ae), ρ̂), k̂〉, σ̂, Ξ̂
j(p̂′,v̂)

p̂, Ĵ 〈val(v̂), k̂〉, σ̂, Ξ̂
Join

Figure 6.12.: Transition rules for thread management in λτ .

References. Figure 6.13 depicts the rules for references, which are adapted from the
rules presented in Chapter 2. A r(â) communication effect is generated when reading a
reference at address â is read from, and a w(â) communication effect is generated when
a reference at address â is written to.

λτ

â = âlloc(ae, σ̂) ρ̂, σ̂ ` ae ⇓̂ v̂

〈ev((ref ae), ρ̂), k̂〉, σ̂, Ξ̂ p̂, Ĵ 〈val(ref(â)), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
Ref

ρ̂, σ̂ ` ae ⇓̂ ref(â) v̂ ∈ σ̂(â)

〈ev((deref ae), ρ̂), k̂〉, σ̂, Ξ̂
r(â)

p̂, Ĵ 〈val(v̂), k̂〉, σ̂, Ξ̂
Deref

ρ̂, σ̂ ` ae ⇓̂ ref(â) ρ̂, σ̂ ` ae′ ⇓̂ v̂

〈ev((ref-set! ae ae′), ρ̂), k̂〉, σ̂, Ξ̂
w(â)

p̂, Ĵ 〈val(v̂), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
RefSet

Figure 6.13.: Transition rules for references in λτ .

Locks. Figure 6.14 depicts the rules for locks, which are also adapted from the rules
presented in Chapter 2. The acquisition of a lock generates an acq(p̂, â) communication
effect, and the release of a lock generates a rel(p̂, â) communication effect.

140

6.4. Application of ModConc to λτ

λτ

â = âlloc((new-lock), σ̂)

〈ev((new-lock), ρ̂), k̂〉, σ̂, Ξ̂ p̂, Ĵ

〈val(lock(â)), k̂〉, σ̂ t [â 7→ {unlocked}], Ξ̂

NewLock

ρ̂, σ̂ ` ae ⇓̂ lock(â) σ̂(â) 3 unlocked

〈ev((acquire ae), ρ̂), k̂〉, σ̂, Ξ̂
acq(p̂,â)

p̂, Ĵ

〈val(lock(â)), k̂〉, σ̂ t [â 7→ {locked(p̂)}], Ξ̂

Acquire

ρ̂, σ̂ ` ae ⇓̂ lock(â) σ̂(â) 3 locked(p̂)

〈ev((release ae), ρ̂), k̂〉, σ̂, Ξ̂
rel(p̂,â)

p̂, Ĵ

〈val(lock(â)), k̂〉, σ̂ t [â 7→ {unlocked}], Ξ̂

Release

Figure 6.14.: Transition rules for locks for λτ .

6.4.3. Step 3 of ModConc for λτ: Definition of the Intra-Process Analysis

The intra-process analysis for λτ analyzes the behavior of a single thread by performing
a fixed-point computation of an intra-process transfer function. We first present the state
space of the intra-process transfer function before presenting the transfer function itself.

State Space of the Intra-Process Analysis

Figure 6.15 depicts the state space for the intra-process analysis. The domain of the intra-
process transfer function consists of intra-states (̂IntraState), which are composed of a set
of states reachable, a value store, a continuation store, a set of threads created, a set of
threads joined, and a set of addresses accessed (reference addresses and lock addresses).
Threads created are represented as a pair of the process identifier of the thread created
and its initial thread state. Threads joined are represented by their process identifier. We
introduce the notion of join store, which stores the return values for threads that have
terminated their execution.

λτ
̂IntraState = P(Σ̂)× Ŝtore × K̂Store

×P(Ĉreated)×P(P̂ID)×P(Âddr)

Ĉreated = P̂ID × Σ̂

Figure 6.15.: State space of the intra-process analysis for λτ .

141

6. ModConc: Designing Modular Analyses

Transfer Function of the Intra-Process Analysis

Figure 6.16 depicts the intra-process transfer function
Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
: ̂IntraState → ̂IntraState, which is parameterized by the initial

state of the thread under analysis (ς̂), its process identifier (p̂), a value store (σ̂0), a
continuation store (Ξ̂0), and a join store (Ĵ). The join store contains information about
the return values of threads that have terminated, and serves to enable transitions for
the join construct.

The transfer function operates as follows with respect to generated effects and effect
sets.

1. The initial state of the process, with the corresponding stores, are visited.

2. Effect-less transitions are trivially taken and generate no communication effects.

3. Transitions that create a process add an element to the set of created processes.

4. Transitions that join on another process p̂′ add the dependency on process identi-
fier p̂′ to the corresponding set.

5. Other transitions that read from a reference, write to a reference, acquire a lock, or
release a lock at a specific address register the address accessed as a dependency
in the corresponding set of addresses. In the case of locks, the value of p̂ inside
the communication effect must correspond to the current process identifier.

142

6.4. Application of ModConc to λτ

λτ

Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
(〈S, σ̂, Ξ̂, C, P, A〉) = 〈{ς̂} , σ̂0, Ξ̂0,∅,∅,∅〉 (1)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂ p̂, Ĵ ς̂′,σ̂′,Ξ̂′

〈
{

ς̂′
}

, σ̂′, Ξ̂′,∅,∅,∅〉 (2)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
c(p̂′,ς̂2)

p̂, Ĵ ς̂′,σ̂′,Ξ̂′

〈
{

ς̂′
}

, σ̂′, Ξ̂′,
{
(p̂′, ς̂2)

}
,∅,∅〉 (3)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
j(p̂′,v̂)

p̂, Ĵ ς̂′,σ̂′,Ξ̂′

〈
{

ς̂′
}

, σ̂′, Ξ̂′,∅,
{

p̂′
}

,∅〉 (4)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
êff

p̂, Ĵ ς̂′,σ̂′,Ξ̂′

êff∈{w(â),r(â),acq(p̂,â),rel(p̂,â)}

〈
{

ς̂′
}

, σ̂′, Ξ̂′,∅,∅, {â}〉 (5)

Figure 6.16.: Transfer function for the intra-process analysis for λτ .

6.4.4. Step 4 of ModConc for λτ: Definition of the Inter-Process Analysis

The inter-process analysis is defined as the fixed-point computation of a transfer function
Inter - Ĥλτ

e where e is the program under analysis. The result of the inter-process analysis
is a tuple containing in its first element a process map containing information about the
reachable states of all threads, the communication effects performed by each thread, and
in its second element the value store and continuation store. We first present the state
space of the inter-process analysis and then define the inter-process transfer function.

State Space of the Inter-Process Analysis

Figure 6.17 depicts the state space for the inter-process analysis. Process maps of the
inter-process analysis map from abstract process identifiers to pairs of intra-states of
the last intra-process analysis on the corresponding thread and to the initial state of the
corresponding thread.

λτ

π̂ ∈ Π̂ = P̂ID → (̂IntraState × Σ̂)

Figure 6.17.: State space of the inter-process analysis for λτ .

143

6. ModConc: Designing Modular Analyses

Transfer Function of the Inter-Process Analysis

The inter-process transfer function relies on the following functions defined in Fig-
ure 6.18.

• explore : Π̂ × P̂ID × Σ̂ × Ŝtore × K̂Store × ̂JoinStore → Π̂ × Ŝtore × K̂Store × ̂JoinStore
requires the current process map π̂ and performs an intra-process analysis on the
actor with the process identifier p̂, initial state ς̂, using the value store σ̂, the con-
tinuation store Ξ̂ and the join store Ĵ. It returns a process map, a value store, a
continuation store and a join store containing the information resulting from the
intra-process analysis.

• created : Π̂ → P(P̂ID × Σ̂) returns the set of all created threads inferred by the
intra-process analyses, described by their process identifier and initial thread
state.

• joins : Π̂ × ̂JoinStore → P(P̂ID × Σ̂) returns the set of threads (described as a pair
of process identifier and initial thread state) that join a thread for which the return
value has been inferred and stored in the join store Ĵ.

• conflicts : Π̂ → P(P̂ID × Σ̂) returns the set of threads (described as a pair of pro-
cess identifier and initial thread state) that may be in conflict with other threads
because they access the same reference or lock. Through abstract counting (Might
and Shivers, 2006), this function may be refined by ensuring that p 6= p′ when it
is known that both process identifiers map to a single thread.

λτ
explore(π̂, p̂, ς̂, σ̂, Ξ̂, Ĵ) = 〈[p̂ 7→ (s, ς̂)], σ̂′, Ξ̂′, Ĵ′〉

where s = lfp(Intra - Ĥλτ

p̂,ς̂,σ̂,Ξ̂, Ĵ
)

and (_, σ̂′, Ξ̂′, _, _, _) = s

and Ĵ′ =
⊔

p̂∈dom(π̂)
π̂(p̂)=((S,_,_,_,_,_,_),_)

〈val(v),̂k0〉∈S

[p̂ 7→ {v}]

conflicts(π̂) =
⋃

p̂,p̂′∈dom(π̂)
π̂(p̂)=((_,_,_,_,_,A),ς̂)

π̂(p̂′)=((_,_,_,_,_,A′),ς̂′)
A∩A′ 6=∅

{
(p̂, ς̂), (p̂′, ς̂′)

}

joins(π̂, Ĵ) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,_,P,_),ς̂)

∃ p̂′∈P, Ĵ(p̂) 6=∅

(p̂, ς̂)

created(π̂) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,C,_,_,_),_)

C

Figure 6.18.: Auxiliary functions used by the inter-process transfer function for λτ .

Figure 6.19 depicts the inter-process transfer function
Inter - Ĥλτ

e : Π̂ × Ŝtore × K̂Store × ̂JoinStore → Π̂ × Ŝtore × K̂Store × ̂JoinStore. This
transfer function performs the following operations.

144

6.4. Application of ModConc to λτ

1. The main thread is analyzed by the intra-process analysis.

2. Each newly created thread discovered by a previous intra-process analysis (as
extracted by the created function) is analyzed.

3. Each thread that joins another thread for which a previous intra-process analysis
has inferred a return value (as extracted by the joins function) is reconsidered for
analysis to account for the possibly new inferred return values.

4. Each thread that accesses a memory address that is part of the set of conflicting
addresses between different threads (as extracted by the conflicts function) is re-
considered for analysis to account for a possible change in value at the conflicting
address.

The inter-process analysis of a λτ program e is then the computation of the fixed point of
this transfer function, lfp(Inter - Ĥλτ

e), and results in an over-approximation of the set of
all reachable thread states contained in a process map, as well as an over-approximation
of the value store and continuation store.

λτ

Inter - Ĥλτ
e (〈π̂, σ̂, Ξ̂, Ĵ〉) = explore([], p̂0, 〈ev(e, []), k̂0〉, σ̂, Ξ̂, Ĵ) (1)

t
⊔

(p̂,ς̂)∈created(π̂)

explore(π̂, p̂, ς̂, σ̂, Ξ̂, Ĵ) (2)

t
⊔

(p̂,ς̂)∈joins(π̂,J)

explore(π̂, p̂, ς̂, σ̂, Ξ̂, Ĵ) (3)

t
⊔

(p̂,ς̂)∈conflicts(π̂)

explore(π̂, p̂, ς̂, σ̂, Ξ̂, Ĵ) (4)

Figure 6.19.: Inter-process transfer function for λτ .

Complexity

The inter-process analysis may reconsider a thread for analysis for every thread created,
for every joins performed, and for potential conflicts. Its worst-case time complexity is
therefore of O((t + j + c)× |Exp|3), where t is the number of abstract threads created,
j is the number of joins performed, c is the number of potential conflicts arising in the
program, and |Exp|3 comes from the complexity of the intra-process analysis.

6.4.5. Soundness and Termination

Theorems 18 and 19 state that the analysis described by the inter-process analysis
terminates and is sound, two crucial properties for a static analysis.

145

6. ModConc: Designing Modular Analyses

Theorem 18 (Soundness). The result of lfp(Inter - Ĥλτ
e) is a sound over-approximation of

lfp(Fλτ
e).

Proof. The proof is detailed in Appendix B.4.2. This idea of this proof is the fol-
lowing. We show by a case analysis on the transition rules that the intra-process
analysis is a sound over-approximation of the transfer function F̂λτ restricted
to states reachable with transition on the same process p̂ from the initial state
〈[p̂ 7→ {ς̂0}], σ̂0, Ξ̂0〉 t

⊔
p̂∈dom(Ĵ),v̂∈ Ĵ(p̂)〈[p̂ 7→

{
val(v̂), k̂0

}
], [], []〉. As the inter-process

analysis considers every newly created thread and every thread affected by joins and
conflicts, the analysis will eventually have analyzed all running threads with over-
approximation of their stores.

Theorem 19 (Termination). The computation of lfp(Inter - Ĥλτ
e) always terminates.

Proof. The proof is detailed in Appendix B.4.2 and follows the same reasoning as the
proof for Theorem 17: the transfer functions are monotone and act on a finite state space,
hence the analysis always terminate.

6.5. Soundness Testing and Evaluation of Running Time,

Precision, and Scalability on a Benchmark Suite

As was done for the analyses developed in Chapters 2 and 4, we have implemented the
analyses resulting from the application of ModConc to λα and to λτ using our Scala-
AM static analysis framework presented in Section 2.4.1. We empirically evaluate these
analyses in terms of running time, precision, and scalability on the set of benchmark
programs introduced in Section 2.4.2.

6.5.1. Soundness Testing

We have proven that the application of ModConc to λα and λτ results in a sound
analysis (Theorems 16 and 18). We also provide empirical evidence for the soundness
of our implementation through soundness testing (Andreasen et al., 2017), as described
in Section 2.4.3. In brief, we compare the information computed by each analysis to the
information recorded during 1000 concrete runs of each benchmark, and check that all
concrete information is soundly over-approximated by the analysis. No unsound results
were discovered.

6.5.2. Running Time

Similar to the evaluation of the analyses developed in the previous chapters, we ran the
analyses presented in this chapter on each of our benchmark programs and report on
the average time required to analyze each benchmark with the same setup as used in the
evaluation of Section 2.4: each program is analyzed 20 times after 10 warmup runs, with

146

6.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

a time budget of 30 minutes. The results are given in Table 6.1. All benchmark programs
can be analyzed within the given time budget, with analysis times varying between
8 milliseconds and 42 seconds. As we study in Section 6.5.4, the factor that increases
analysis time is the number of communication effects performed by the program under
analysis.

Actors Threads

Bench. Time Bench. Time Bench. Time Bench. Time

PP 377 BTX 68 ABP 34 TRAPR 41
COUNT 43 RSORT 39 COUNT 38 ATOMS 74
FJT 73 FBANK 75 DEKKER 14 STM 42052
FJC 8 SIEVE 29 FACT 337 NBODY 912
THR 43 UCT 837 MATMUL 33612 SIEVE 113
CHAM 80 OFL 6365 MCARLO 42 CRYPT 5303
BIG 76 TRAPR 69 MSORT 889 MCEVAL 12168
CDICT 98 PIPREC 42 PC 23 QSORT 227
CSLL 81 RMM 354 PHIL 19 TSP 717
PCBB 754 QSORT 1456 PHILD 24 BCHAIN 182
PHIL 54 APSP 1142 PP 14 LIFE 1742
SBAR 56 SOR 2213 RINGBUF 73 PPS 394
CIG 46 ASTAR 205 RNG 33 MINIMAX 6814
LOGM 106 NQN 498 SUDOKU 144 ACTORS 1950

Table 6.1.: Running times of the analyses presented in this chapter on our benchmark programs.
The timings are expressed in milliseconds and represent the average of 20 runs after
10 warmup runs. ∞ denotes that the analysis exceeded the allocated time budget of
30 minutes.

Comparison to Naive Applications of AAM

As for analyses resulting from the application of MacroConc, we observe a substantial
improvement in running time of the analyses presented here over the analyses presented
in Chapter 2. Table 6.2 compares running times for benchmarks that can be analyzed
within the time budget by both analyses. The application of ModConc rather than a
naive application of AAM results in analyses that are up to four orders of magnitude
faster, with a speedup factor ranging from 7 to 66030, which are the double of the
minimal and maximal speedup factors resulting from the application of MacroConc.

Comparison to MacroConc

Whereas the analyses of Chapter 4 analyze 30 out of the 56 benchmarks within the time
limit of 30 minutes, the analyses resulting from the application of ModConc success-
fully analyze all of them in a few seconds at most per program. Table 6.3 compares
the running times for benchmarks that can be analyzed within the time budget by both
analyses. Whereas the analyses of Chapter 4 have a speedup factor of up to four orders of
magnitude compared to the analyses of Chapter 2, the process-modular analysis results
in a speedup factor (i.e., MacroConc time over ModConc time) ranging from 1.31 and

147

6. ModConc: Designing Modular Analyses

Actors Threads

Bench. Naive Mod Speedup Bench. Naive Mod Speedup

PP 2876 377 ÷7.63 ABP 92163 34 ÷2710.68
COUNT 920 43 ÷21.40 DEKKER 20675 14 ÷1476.79
FJT 435812 73 ÷5970.03
FJC 528242 8 ÷66030.25

Table 6.2.: Running time comparison between the analyses resulting from the naive application
of AAM (column Naive) and the analyses resulting from the application of ModConc
presented in this chapter (column Mod), for programs analyzed by both analyses in
under 30 minutes. Columns Naive and Mod contain timings in milliseconds. Columns
Speedup represent the speedup factor of the running time of analyses resulting from
the application of AAM over the running time of analyses resulting from the appli-
cation of ModConc.

27016, that is up to four more orders of magnitude. Note that this does not mean that
the application of ModConc does not result in a speedup factor of eight orders of mag-
nitude, as the benchmark profiting from the highest speedup factor in the application of
MacroConc and of ModConc are different. This however demonstrates that ModConc
results in analyses with a substantially better scalability than MacroConc, which itself
results in analyses with a substantially better scalability than naive applications of the
AAM design method. We observe a better speedup for programs that take more time for
MacroConc to analyze, as the time needed to analyze such programs with ModConc
is consistent across the benchmarks.

Comparison to Related Work

We reiterate the comparison to the Soter tool (D’Osualdo et al., 2012). It behaves similarly
to the actor analysis presented in Chapter 4 in terms of successfully analyzed bench-
marks. Table 6.4 compares the analyses presented in this chapter to Soter. In terms of
successfully analyzed benchmarks, while Soter analyzes 11 out of the 28 Savina bench-
mark programs under the 2 minutes timeout of its web interface, our process-modular
actor analysis can analyze all of them in a few seconds at most. While it would not be
fair to compare raw timings, as Soter is run through a web interface and we cannot re-
move the initialization overhead of the analysis, we can see that the timings are in some
cases drastically different: our analysis takes generally under 3 seconds to analyze each
benchmark, with one exception at 6 seconds, while Soter may take up to 30 seconds to
analyze some programs, and fails to analyze more than half of the benchmark programs.
This confirms that analyses resulting from applications of ModConc scale better than
analyses relying on all-interleavings semantics such as the ones presented in Chapter 2
and used by Soter, and better than analyses relying on macro-stepping semantics such
as the ones presented in Chapter 4.

148

6.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

Actors Threads

Bench. Macro Mod Speedup Bench. Macro Mod Speedup

PP 494 377 ÷1.31 ABP 1014 34 ÷29.82
COUNT 284 43 ÷6.56 COUNT 48003 38 ÷1263.24
FJT 112 73 ÷1.53 DEKKER 275 14 ÷19.64
FJC 15 8 ÷1.88 MCARLO 1134673 42 ÷27016.02
THR 233744 43 ÷5435.91 PC 12852 23 ÷558.78
CHAM 1499941 80 ÷18749.26 PHIL 463 19 ÷24.37
CDICT 21246 98 ÷216.80 PHILD 5168 24 ÷215.33
PCBB 99630 754 ÷132.14 PP 657 14 ÷46.93
CIG 1337 46 ÷29.97 RNG 711 33 ÷21.55
BTX 2567 68 ÷37.75 TRAPR 559 41 ÷13.63
RSORT 12913 39 ÷331.10 ATOMS 8710 74 ÷117.70
FBANK 619849 75 ÷8264.65 SIEVE 1026 113 ÷9.08
SIEVE 79 29 ÷2.72 BCHAIN 74411 182 ÷408.85
TRAPR 10301 69 ÷149.29 LIFE 663712 1742 ÷381.01
PIPREC 387 42 ÷9.21 PPS 56669 394 ÷143.83

Table 6.3.: Running time comparison between the analyses resulting from the application of
MacroConc (column Macro) and the analyses resulting from the application of Mod-
Conc presented in this chapter (column Mod), for programs analyzed by both anal-
yses in under 30 minutes. Columns Macro and Mod contain timings in milliseconds.
Columns Speedup represent the speedup factor of the running time of analyses result-
ing from the application of MacroConc over the running time of analyses resulting
from the application of ModConc.

Bench. Mod Soter Bench. Mod Soter Bench. Mod Soter Bench. Mod Soter

PP 377 150 CDICT 98 ∞ BTX 68 ∞ PIPREC 42 ∞
COUNT 43 310 CSLL 81 ∞ RSORT 39 ∞ RMM 354 ∞
FJT 73 470 PCBB 754 ∞ FBANK 75 ∞ QSORT 1456 ∞
FJC 8 110 PHIL 54 29840 SIEVE 29 4240 APSP 1142 ∞
THR 43 1130 SBAR 56 1710 UCT 837 ∞ SOR 2213 ∞
CHAM 80 1860 CIG 46 ∞ OFL 6365 ∞ ASTAR 205 ∞
BIG 76 ∞ LOGM 106 31950 TRAPR 69 ∞ NQN 498 29090

Table 6.4.: Comparison between the analysis for concurrent actors presented in this chapter
(column Mod) and the analysis for concurrent actors present in Soter (D’Osualdo et
al., 2012) (column Soter). Each benchmark program is analyzed with a time limit of 2
minutes. Running times are given in milliseconds.

149

6. ModConc: Designing Modular Analyses

6.5.3. Precision

We evaluate the precision of the analyses resulting from the application of ModConc in
the same way as for the analyses developed in Chapter 4. We run each benchmark con-
cretely and record observed concrete information about the become statements executed,
processes created, messages received, values returned by threads, references accessed
and modified, and locks acquired and released. We obtain an under-approximation of
the maximally-precise analysis results by abstracting all the observed concrete values.
This allows us to detect potentially spurious elements, i.e. elements that have been com-
puted by the analysis but that may not arise in any concrete execution of the program
under analysis. We report on the number of elements observed and the number of spu-
rious elements detected in Table 6.5. We remind the reader that these numbers are mere
upper bounds on the number of spurious elements, and therefore a lower bound on the
precision, because concrete values that can arise under specific interleavings may not
be observed during any of the 1000 concrete runs.

Actors Threads

Bench. Obs. Spu. Bench. Obs. Spu. Bench. Obs. Spu. Bench. Obs. Spu.

PP 9 0 BTX 9 0 ABP 20 0 TRAPR 2 0
COUNT 8 0 RSORT 10 0 COUNT 6 4 ATOMS 6 0
FJT 3 0 FBANK 38 0 DEKKER 16 5 STM 11 7
FJC 2 0 SIEVE 8 0 FACT 21 8 NBODY 25 0
THR 5 2 UCT 20 8 MATMUL 40 0 SIEVE 4 2
CHAM 10 0 OFL 13 0 MCARLO 12 0 CRYPT 2 2
BIG 10 0 TRAPR 7 0 MSORT 12 0 MCEVAL 2 2
CDICT 13 0 PIPREC 8 0 PC 15 0 QSORT 18 0
CSLL 16 0 RMM 14 0 PHIL 4 0 TSP 12 8
PCBB 13 0 QSORT 6 0 PHILD 8 0 BCHAIN 7 0
PHIL 13 0 APSP 5 0 PP 6 0 LIFE 16 4
SBAR 19 0 SOR 12 1 RINGBUF 19 2 PPS 10 0
CIG 9 0 ASTAR 11 12 RNG 6 0 MINIMAX 4 0
LOGM 15 0 NQN 11 0 SUDOKU 58 0 ACTORS 18 0

Table 6.5.: Precision evaluation for ModConc analyses. Column Obs. lists the number of ob-
served elements among 1000 concrete runs of each benchmark program. Column
Spu. lists the number of potential spurious elements inferred by an analysis, i.e.,
abstract elements that have no corresponding element observed in any concrete run.

The analyses presented in this chapter obtain full precision on a majority of bench-
marks: 42 of the 56 benchmarks are analyzed with maximal precision. A total of 67
spurious elements are detected, while the 697 other elements observed in concrete runs
have been correctly inferred by the analysis. This results in a precision of 91%1. These
numbers cannot be directly compared to the numbers resulting from our evaluation of
macro-stepping analysis, as there are more benchmarks analyzed within the time limit
by the analyses resulting from the application of ModConc than from the application

1There are 697 correctly observed elements (true positives) and 67 spurious elements (false positives),

hence the precision is 697
697 + 67

= 0.91.

150

6.5. Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite

of MacroConc.

Comparison to MacroConc

To compare the analyses resulting from the application of MacroConc with the analyses
resulting from the application of ModConc in terms of precision, we limit the compar-
ison to benchmark programs analyzed by both approaches within the time budget.
Table 6.6 reports on the number of detected spurious elements for each analysis.

Actors Threads

Bench. Macro Mod Bench. Macro Mod Bench. Macro Mod Bench. Macro Mod

PP 0 0 CIG 0 0 ABP 0 0 RNG 0 0
COUNT 0 0 BTX 0 0 COUNT 4 4 TRAPR 0 0
FJT 0 0 RSORT 0 0 DEKKER 5 5 ATOMS 0 0
FJC 0 0 FBANK 0 0 MCARLO 0 0 SIEVE 2 2
THR 2 2 SIEVE 0 0 PC 0 0 BCHAIN 0 0
CHAM 0 0 TRAPR 0 0 PHIL 0 0 LIFE 0 4
CDICT 0 0 PIPREC 0 0 PHILD 0 0 PPS 0 0
PCBB 0 0 PP 0 0

Table 6.6.: Comparison between the precision of analyses resulting from the application of
MacroConc and from the application of ModConc. Column Macro and Mod lists the
number of spurious elements for, respectively, the analyses resulting from the appli-
cation of MacroConc and the analyses resulting from the application of ModConc.

These numbers are almost identical with the exception of the LIFE benchmark, where
the actor analysis of this chapter infers 4 spurious elements while none are inferred by
the actor analysis of Chapter 4. This is because the process-modular analysis does not
contain information about the ordering between the execution of multiple processes,
and re-analyzes a specific thread in the LIFE benchmark with an over-approximation of
the store that contains values that are written to the store after the thread has finished its
execution, and are therefore too over-approximative. This results in spurious writes and
reads being detected. Therefore, the precision goes from 96% (Chapter 4) to 94%2 for the
process-modular analysis presented here. The cost in terms of precision is acceptable in
order to obtain an analysis that can analyze all of the programs in the benchmark suite
in a few seconds.

6.5.4. Scalability

We have shown that the worst-case time complexity of analyses resulting from the appli-
cation of ModConc is polynomial, scaling linearly with the number of communication
effects (Section 6.2.3), while it is exponential for the analyses presented in Chapters 2

2There are 290 correctly observed elements (true positives) and 17 spurious elements (false positives),

hence the precision is 290
290 + 17

= 0.94.

151

6. ModConc: Designing Modular Analyses

and 4. We evaluate the scalability of the analyses resulting from the application of Mod-
Conc empirically using the same families of synthetic benchmark programs as the ones
used in Chapter 4. In brief, these benchmarks evaluate the scalability of an analysis
for λα with respect to the number of different static behaviors (b), and the number of
different messages exchanged (m), and they evaluate the scalability of an analysis for
λτ with respect to the number of threads created (t), the number of conflicts between a
fixed number of threads (c), and the number of joins on different threads (j).

The analyses presented in this chapter scale significantly better than the analyses
of Chapter 4, and we are able to run each of the benchmark program families with
higher values for their parameters. Once the values for these parameters exceeded 10,
the analyses from Chapter 4 started to exceed the time budget of 30 minutes. For the
analyses presented in this chapter, we are able to increase the value of their parame-
ters to 1503. Each of the parameters studied in this scalability evaluation corresponds
to one kind of communication effect, therefore we expect to see a linear trend be-
tween analysis time and the increasing value of the parameter of each benchmark. The
worst-case time complexity of an analysis resulting from the application of ModConc
is O(|Êffect| × |Exp|3), and by keeping |Exp| constant, we measure the impact of an
increased number of communication effects. More specifically, the complexity of the
analysis for λα is O((m + b)× |Exp|3), where m is the number of abstract messages
sent, and b is the number of abstract behaviors. The complexity of the analysis for λτ

is O((t + j + c)× |Exp|3), where t is the number of abstract threads created, j is the
number of joins performed, and c is the number of potential conflicts. We recorded the
analysis time for each benchmark program for each value of the parameters on 20 runs
after 10 warm-up runs. The results are reported in Figure 6.20, where each data point
corresponds to the time taken to run an analysis, and where we plot the best-fitting
linear regression.

On these graphs, we can see that our implementations of the ModConc analyses scale
linearly with an increasing number of communication effects. This confirms the theoret-
ical results from Section 6.2.3. Moreover, looking at the y axis further demonstrates the
improved running times, in milliseconds here, compared to the analyses of Chapter 4,
where the y axis goes up to 30 minutes.

6.6. Conclusion

In this chapter, we presented the ModConc analysis design method which, when applied
to the operational semantics of a concurrent programming language, results in a static
analysis that scales linearly with the number of communication effects performed in
the program—thanks to its process-modular design. By sequentializing the operational
semantics of the input language, an intra-process analysis reasons only about a single

3We could have increased the maximal value of the parameter, however as the maximal value of the
parameter increases, the number of expressions in the benchmark program increases as well. Due to a
naive abstract syntax normalization strategy in our implementation, higher values for the parameters
result in stack overflows, hence we limited the maximal value to 150.

152

6.6. Conclusion

0 50 100 150
0

50

100

150

200

m

Ti
m

e
(m

s)

(a) Number of messages sent, λα.

0 50 100 150

60

80

100

b

Ti
m

e
(m

s)

(b) Number of behaviors, λα.

0 50 100 150
0

50

100

t

Ti
m

e
(m

s)

(c) Number of threads, λτ .

0 50 100 150

150

200

j

Ti
m

e
(m

s)

(d) Number of joins, λτ .

0 50 100 150

50

100

150

c

Ti
m

e
(m

s)

(e) Number of conflicts, λτ .
Figure 6.20.: Scalability evaluation of ModConc. Each graph corresponds to a benchmark which

is parameterized by a value (m for number of messages, and b for number of actor
behaviors, t for abstract threads, j for join operations, c for conflicts) that is increased
from 1 to 150, and shows the running time of the analysis in function of the value
of the given parameter.

process and infers the communication effects performed by this process. This intra-
process analysis is driven by an inter-process analysis, which collects the communication
effects inferred by the intra-process analyses in order to consider new processes and
processes affected by communication effects for new runs of the intra-process analysis.
We presented this analysis design method in a generic formulation and applied it to the
λα concurrent actor language and to the λτ shared-memory multi-threaded language.

We have demonstrated the theoretical properties of the resulting analyses, which
are sound and terminate, adding only a polynomial cost to the complexity of the un-
derlying intra-process analysis, and therefore remain polynomial in their worst-case
time complexity. Furthermore, we evaluated the analyses empirically through their im-
plementation. The entirety of the benchmark suite described in Section 2.4.2 can be
analyzed within the time limit, and the analyses take less than a minute to analyze each
benchmark. The resulting analyses also perform better in terms of running time and
scalability than the analyses resulting from a naive application of AAM (Chapter 2),
than the analyses resulting from the application of MacroConc (Chapter 4), and than
the closest related work (D’Osualdo et al., 2012). This major improvement in scalability
comes at a minor cost in precision, as the analyses detect 4 more spurious elements on

153

6. ModConc: Designing Modular Analyses

all of our benchmark suite. A more substantial cost in precision is that the resulting
analyses are unable to reason about properties that require ordering or multiplicity
information, such as bounds on mailboxes. We identify the investigation of solutions
to this limitation as future work in Chapter 7. However, the precision of the analyses
remains very high to support communication topology analyses (Colby, 1995; Martel
and Gengler, 2000).

154

7
CO NC LU S I O N A N D F U T U R E WO R K

7.1. Summary of the Dissertation

Concurrent programs are becoming increasingly prevalent both in multi-core program-
ming and in cloud-commodity infrastructure. However, they tend to be difficult to rea-
son about and they may contain subtle bugs that only manifest in specific interleavings
of the instructions of their processes. Tool support for concurrent programs is therefore
necessary, and could be enabled by static program analyses. In this dissertation, we
provide a solid foundation for such tool support by introducing two analysis design
methods that are applicable to the operational semantics of concurrent programs.

We started our discourse with a naive application of the AAM analysis design
method (Van Horn and Might, 2010) to concurrent programs, specifically to concurrent
actor programs implemented in λα (Section 2.2) and to multi-threaded programs featur-
ing shared memory implemented in λτ (Section 2.3). Both languages extend the base
language λ0, which features higher-order functions. The application of the AAM design
method to the operational semantics of λα and λτ results in static analyses that feature
many desirable properties: automation, soundness, precision and support for dynamic
process creation. To evaluate the analyses developed in this dissertation, we selected
56 benchmark programs, 28 of which are concurrent actor programs adapted from the
Savina benchmark suite (Imam and Sarkar, 2014), and 28 of which are shared-memory
multi-threaded programs of our design (Section 2.4.2). These benchmark programs con-
tain challenging features for static analyses to support such as dynamic process creation
and termination, and the use of higher-order functions. As we have demonstrated in
our evaluation (Section 2.4), the analyses resulting from a naive application of AAM to
concurrent programs do not scale well, as only 6 of the 56 benchmark programs can be
analyzed within a time limit of 30 minutes.

We then reviewed existing analyses for concurrent programs, and observed that no
existing analysis exhibits all of the desirable properties that are automation, soundness,
scalability, precision and support for dynamic process creation (Section 3.1). As the
analyses introduced in Chapter 2 fail to scale, we identified from the related work two

155

7. Conclusion and Future Work

analysis designs that improve on existing analyses in terms of scalability: state space
reduction and process-modular analysis (Section 3.2). We incorporated these insights
in the AAM design method, giving rise to the MacroConc and the ModConc analysis
design methods.

Our first analysis design method, MacroConc (Chapter 4), relies on macro-stepping
semantics as a way to mitigate the state explosion problem and to improve the scala-
bility of the resulting analyses. Refining the concrete all-interleavings semantics of a
concurrent programming language with macro-stepping semantics enables reducing
the non-determinism inherent to its semantics. This is performed by advancing the ex-
ecution of a process in macro steps, which accumulate successive steps of the transition
relation on the same process until a possible conflict arises and macro steps on other pro-
cesses need to be considered. We presented MacroConc in a generic manner (Section 4.1)
and described its theoretical properties (Section 4.2): the design method gives rise to
sound analyses that are as precise as the analyses resulting from a naive application of
AAM presented in Chapter 2, yet might explore fewer process interleavings.

We presented analyses resulting from MacroConc, for λα programs (Section 4.3) and
for λτ programs (Section 4.4), and evaluated these analyses in terms of running time,
precision and scalability (Section 4.5). We observed that analyses resulting MacroConc
feature reduction in running time of up to four orders of magnitude compared to the
analyses resulting from a naive application of AAM. The precision of the analyses re-
sulting from the application of MacroConc and from the naive application of AAM is
the same, and is high: we demonstrated a 96% precision on our benchmark suite for
a communication topology analysis. However, we established formally that the worst-
case time complexity of the analyses resulting from the application of MacroConc is of
O(2|Exp|), i.e., exponential in the size of the program (Section 4.2), and we observe em-
pirically (Section 4.5.4) that their scalability remains limited, as they exhibit exponential
behavior in the worst-case.

As part of our presentation of analysis design methods for concurrent programs,
we studied different mailbox abstractions that can be used in a static analysis of actor
programs in order to improve the precision of the analysis (Chapter 5). We identified
two important properties of mailbox abstractions for the precision of static analyses:
whether an abstraction preserves ordering and whether an abstraction preserves multi-
plicity (Section 5.1). We presented and categorized five mailbox abstractions that vary
according to these properties (Section 5.2): a set abstraction used in Chapters 2, 4 and 6,
a multiset abstraction, a finite multiset abstraction, a finite list abstraction, and a new
graph abstraction. We proved the soundness of each of these abstractions, and evaluated
their impact on the precision and the scalability of an actor analysis resulting from the
application of our MacroConc design method (Section 5.3). The abstractions discussed
are significantly more precise than the coarse set abstraction used in the other chapters
of this dissertation, yet with almost no cost in terms of performance.

We introduced ModConc (Chapter 6) next, our second analysis design method that
results in analyses that feature a process-modular design. We presented ModConc in
a generic manner (Section 6.1) and discussed the theoretical properties of analyses

156

7.2. Contributions

resulting from the application of ModConc (Section 6.2). Such analyses are sound,
terminate, and feature a complexity that is only impacted by a linear factor of the
number of communication effects present in the analyzed programs. Formally, their
worst-case time complexity is of O(|Êffect| × |Exp|3) where Êffect is the abstraction of
the set of all effects that can arise in the execution of the program under analysis. Their
precision is however lower, as analyses resulting from the application of ModConc
are not able to reason about the ordering nor about the multiplicity of communication
effects.

We applied ModConc to the operational semantics of the λα concurrent actor language
(Section 6.3) and to the operational semantics of the λτ shared-memory multi-threaded
programming language (Section 6.4). We evaluated the resulting analyses in terms of
running time, precision and scalability (Section 6.5). The running times of the resulting
analyses on our benchmark suite improve by up to four orders of magnitude compared
to the running times of analyses resulting from the application of MacroConc, as a result
of the process-modular design of the analyses. The cost in terms of precision is minimal,
as only one program of our benchmark suite is impacted, resulting in four detected
false positives. The precision of the analyses remains high: 91% on the full benchmark
suite, and 95% on the programs that can also be analyzed by analyses resulting from
the application of MacroConc. Whether or not this loss can be regained by combining
process-modular analyses with more precise domains such as our mailbox abstractions
remains an open question. Finally, we demonstrate the improved scalability through a
set of synthetic benchmark programs, where the analysis time increases linearly with
the number of communication effects in the program.

Figure 7.1 summarizes the improvements in terms of running time of our two design
methods. Figure 7.1a shows the improvement for the analysis of λα programs, and Fig-
ure 7.1b shows the improvement for the analysis of λτ programs. Note the logarithmic
scale of these graphs, and note how MacroConc consistently results in improved run-
ning times on programs that can be analyzed within the time limit, and how ModConc
consistently results in improved running times compared to MacroConc.

7.2. Contributions

Our first contribution is MacroConc (Chapter 4), an analysis design method that im-
proves the efficiency of AAM-style analyses for concurrent programs without compro-
mising their precision. Incorporating macro-stepping (Agha et al., 1997) into the oper-
ational semantics of a concurrent programming language before applying the AAM
design method (Van Horn and Might, 2010) results in static program analyses that ex-
plore fewer process interleavings. We call this design method MacroConc and used it
to design an analysis of concurrent actor programs and an analysis of shared-memory
multi-threaded programs. The resulting analyses are formally proven to be sound, to
terminate and to preserve their precision with respect to an all-interleavings analysis.
We also demonstrate empirically that such analyses can achieve high precision and can
yield running times up to four orders of magnitude better than a naive applications of

157

7. Conclusion and Future Work

PP

COUNT FJT FJC THR

CHAM BIG
CDIC

T
CSL

L
PCBB

PHIL
SB

AR
CIG

LO
GM BTX

RSO
RT

FB
ANK

SIE
VE

UCT
OFL

TRAPR

PIPREC
RMM

QSO
RT

APSP SO
R

AST
AR

NQN

101

102

103

104

105

106

Ti
m

e
(m

s)

Naive MacroConc ModConc 1 minute

(a) λα programs.

ABP

COUNT

DEKKER
FA

CT

MATMUL

MCARLO

MSO
RT PC

PHIL

PHILD PP

RIN
GBUF

RNG

SU
DOKU

TRAPR

ATO
MS

ST
M

NBODY
SIE

VE

CRYPT

MCEVA
L

QSO
RT

TSP

BCHAIN LIFE PPS

MIN
IM

AX

ACTO
RS

101

102

103

104

105

106

Ti
m

e
(m

s)

Naive MacroConc ModConc 1 minute

(b) λτ programs.
Figure 7.1.: Evolution of running times for analyses resulting from the application of Macro-

Conc and of ModConc. The times are capped at 30 minutes, the time limit used in
our evaluation. The y axis is in milliseconds and is logarithmic.

158

7.3. Limitations and Future Work

AAM.
Our second contribution is a categorization of the mailbox abstractions that can be

used by static analyses for concurrent actor programs, which includes a new graph-
based abstraction for mailboxes (Chapter 5). We described five mailbox abstractions,
which we categorized according to whether they preserve ordering of messages and
according to whether they preserve multiplicity of messages. We proved the soundness
of each mailbox abstraction formally, and evaluated their impact empirically on an actor
analysis resulting from the application of MacroConc. We demonstrated that a finite
list abstraction and a graph abstraction yield the highest precision in analyses for local-
process properties, through an analysis that verifies the absence of errors and one that
infers bounds for mailboxes.

Our third contribution is ModConc (Chapter 6), an analysis design method that im-
proves the efficiency of AAM-style analyses for concurrent programs, by eliminating
the state explosion problem at the cost of precision. The resulting analyses feature
a process-modular design and are scalable in nature. Each process of a concurrent
program is analyzed in isolation to infer potential interferences with other and with
newly created processes, which will have to be reconsidered for analysis until a fixed
point is reached. We applied this design method to concurrent actor programs and
shared-memory multi-threaded programs, proved the soundness and termination of
the resulting analyses, and evaluated their running time, precision and scalability em-
pirically. We observed that the running times on programs from our benchmark suite
are improved by up to four more orders of magnitude compared to analyses resulting
from the application of MacroConc. The precision is reduced but remains very high as
we demonstrate. Finally, the analyses resulting from the application of ModConc are
shown to scale linearly with the number of communication effects performed in the
program under analysis.

Our fourth and final contribution is Scala-AM, a static analysis framework with
which we implemented all the analyses described in this dissertation. This modular and
extensible framework is used throughout the dissertation to provide empirical evidence
of the soundness, scalability and precision of the analyses developed in this dissertation.
This contribution enables future experiments to be developed on the analyses presented
in this chapter with minimal implementation effort. This is demonstrated in Chapter 5,
where we plug new mailbox abstractions into the analysis developed for actors in
Chapter 4 to evaluate their impact on static analysis for actors. The flexibility of this
framework is further demonstrated by its use outside of this dissertation in the domain
of static analysis by abstract interpretation (Vandercammen et al., 2015; Vandercammen
and De Roover, 2016; De Bleser et al., 2017; Vandercammen and De Roover, 2017; Van Es
et al., 2017b).

7.3. Limitations and Future Work

We state the limitations of our approach, discuss how these limitations can be addressed
in future work, and identify possible avenues of future research on our design methods.

159

7. Conclusion and Future Work

7.3.1. Applicability to Real-World Concurrent Programs

We have shown that analyses resulting from the application of MacroConc yield an
improvement in running time of up to four orders of magnitude compared to naive
applications of AAM. The analyses resulting from the application of ModConc also
yield an improvement of up to four orders of magnitude compared to naive applications
of AAM, and also yield an improvement of up to four orders of magnitude compared
to analyses resulting from the application of MacroConc, although not on the same
programs. This has been demonstrated on our benchmark suite counting 56 concurrent
programs, ranging from 17 to 293 lines of code. However, it remains to be investigated
how such analyses fare in practice on larger programs. Existing model checking analyses
featuring state space reduction have been applied to programs of thousands of lines
of code (Yang et al., 2008; Abdulla et al., 2014), and existing static analyses featuring a
process-modular design have been applied to programs of millions of lines of code (Miné
and Delmas, 2015). These existing analyses may take days to verify large programs, and
it remains to be investigated how analyses resulting from the application of MacroConc
and ModConc will behave on such large programs.

To investigate this, it is necessary to apply MacroConc and ModConc to real-world
languages rather than to λα and λτ. Our implementation is a first step in that direction,
as it supports a large subset of Scheme as the base sequential language, rather than the
minimal λ0 of our formalization. However, a number of extensions to the concurrency
models are necessary to reflect real-world uses of concurrency. For example, while we
included locks in λτ, multi-threaded programs may use other means of synchronization
such as semaphores, monitors, or synchronized blocks. Moreover, it has been shown
that developers tend to combine multiple concurrency models (Godefroid and Nagap-
pan, 2008; Tasharofi et al., 2013). Applying MacroConc and ModConc to languages
that feature such combinations would prove useful to support real-world concurrent
programs.

Finally, we applied MacroConc and ModConc to the design of a communication
topology analysis, which infers the communication effects that are generated by each
process. Although Chapter 5 presented analyses that infer mailbox bounds and that
verify the absence of errors, the extent to which analyses resulting from the application
of our design methods support other clients should be investigated. We foresee future
applications in program comprehension and automated theorem proving.

7.3.2. Definition of the Restriction Function for Macro-Stepping Semantics

In the application of MacroConc to λα and λτ, we use simple yet efficient definitions for
the restriction function of the macro-stepping semantics (Sections 4.3.3 and 4.4.2). How-
ever, other definitions of these restriction functions should be investigated. For example,
the restriction function for λτ breaks a macro step before a second communication effect
is generated, even if performing this effect would not conflict with other processes. Pos-
sible refinements could allow for more than one communication effect to be performed
within the same macro-step, as for the restriction function for λα. This could result in

160

7.3. Limitations and Future Work

additional improvements in running time.
Such restriction functions have to be designed carefully, as an incorrect definition

may lead to an unsound analysis. For example, we have shown that the original macro-
stepping strategy of Agha et al. (1997) is not sound for ordered mailbox models (see
Section 4.3.1). As MacroConc is applicable to many models of concurrent programs,
guidelines on how to devise an efficient and sound restriction function should be for-
mulated.

7.3.3. Applicability of Mailbox Abstractions to Large Programs

We studied several mailbox abstractions in Chapter 5, and evaluated their impact on
the precision and running time of analyses resulting from MacroConc. First, additional
mailbox abstractions are worth studying. For example, while our finite list abstraction
approximates the mailbox to a set once a certain bound is reached, it could use a different
abstract representation (e.g., a multiset) for increased precision.

Second, a combination of multiple mailbox abstractions in the analysis of the same
program should be investigated. As we have shown, some benchmark programs benefit
from an improved precision and running time when specific mailbox abstractions are
used, while other programs do not see this improvement. Devising a strategy to abstract
the mailbox of multiple actors in the same program differently, according to a heuristic
or to user annotations, could further improve the precision and running time on other
benchmark programs.

As we have shown, changing the mailbox abstraction results in an improvement
in precision with almost no cost in performance for the MacroConc actor analysis.
It remains to be seen whether the abstractions we presented are applicable to large
programs. However, the possible improvements described here could enable analyses
that use more precise abstractions or feature such strategies to support larger programs.

7.3.4. Ordering and Multiplicity Information in Process-Modular Analysis

While analyses resulting from the application of MacroConc exhibit the same precision
as analyses resulting from a naive application of AAM for concurrent programs, Mod-
Conc sacrifices precision. For a communication topology analysis, we have shown that
this loss of precision is minimal in Chapter 6, as on 294 values inferred by the analysis,
only four of them are spurious. However, the main cost is the loss of information about
ordering and multiplicity in the analyses. As demonstrated through the study of mail-
box abstractions in Chapter 5, such information support important applications such as
inference of mailbox bounds for concurrent actor programs.

The analyses resulting from the application of ModConc store the communication
effects discovered in sets, which lose all ordering and multiplicity information. Our
study of mailbox bounds has shown different ways of preserving this information more
precisely in the case of an actor analysis. Investigating the use of similar abstractions for
the set of communication effects is an interesting avenue for future work.

161

7. Conclusion and Future Work

We also identify two other possible solutions to this limitation. First, Midtgaard et
al. (2016a) describe an analysis with a process-modular design, targeted at processes
that communicate synchronously. Although this process-modular analysis is limited
to programs consisting of two processes, ordering and multiplicity information is pre-
served in its representation of communication between the processes. Extending this
work to support more than two processes and to support dynamic process creation
could enable preserving ordering and multiplicity information in the results of the
intra-process analyses. Second, the Soter tool (D’Osualdo et al., 2012)—against which
we extensively compare our work throughout this dissertation—performs an analysis
on actor programs that abstracts to sets. However, as demonstrated in Chapter 5, Soter
is able to reason about properties that require ordering and multiplicity information.
This is because the analysis of Soter constructs a coarse model of the program on which
a model checker can be run to verify properties expressed through user-provided code
annotations. This second model checking part can restore the ordering and multiplicity
information that is lost during the model construction. Using this as inspiration to re-
store ordering and multiplicity information in analyses resulting from the application of
ModConc would enable these analyses to verify properties that require more precision.

7.3.5. Process Sensitivities for Increased Precision

The allocation strategy for processes used in this dissertation (introduced in Chapter 2)
allocates processes at addresses that corresponds to their initial code (initial behavior
for λα, and expression to evaluate for λτ). Similarly, the allocation strategy for value
addresses and for continuation addresses is a simple 0-CFA strategy where a variable or
continuation is allocated at an address that corresponds to a single location in the code.
In the literature, a number of other allocation strategies have been presented, from the
k-CFA of Shivers (1991) to the unified methodology for polyvariant CFA of Gilray et al.
(2016a) which consists of 11 different allocation strategies for AAM-based analyses. Such
allocation strategies have an influence on the precision and running time an analysis
without impacting soundness (Might and Manolios, 2009). No such study of allocation
strategies for processes has been performed, and we foresee the following allocation
strategies for processes that could improve the precision of the analyses resulting from
MacroConc and ModConc.

By instrumenting the operational semantics with a timestamp that captures the history
of the program’s execution, as in the original formulation of AAM (Van Horn and Might,
2010), one could express process allocation strategies that are sensitive to the history
of the concurrent operations performed in the program. For example, similarly to the
k-CFA allocation strategy allocates a variable at an address that contains information
about the last k call sites at the allocation point (Shivers, 1991), a process allocation
strategy could include the last k processes created, or the last k communication effects
performed, into the process identifiers. As a result, analyses could distinguish processes
that are now mapped to the same abstract process. As is the case for k-CFA, this comes
at a cost in running time which would have to be further studied to assess the feasibility
of such process allocation strategies.

162

7.4. Concluding Remarks

7.3.6. Combining MacroConc and ModConc

While we describe MacroConc and ModConc as two different analysis design methods,
they share a common starting point in the transition relations described in Chapter 2. We
foresee possible combinations of the two design methods, where part of the program is
analyzed by an analysis resulting from the application of MacroConc for high precision
but lower efficiency, while other parts of the program are analyzed by an analysis
resulting from the application of ModConc for improved running time at the cost of a
lower precision. Such combinations need to be investigated and could result in analyses
that are at the same time precise at the place where they need to be, and scalable.

7.4. Concluding Remarks

We started this dissertation by motivating the need for static analysis tools that sup-
port modern concurrent programs. We presented multiple desirable features of such
tools. Automation is important to enable developers to use static analysis tools without
requiring expertise in static analysis. Soundness is crucial to enable verifying proper-
ties in such a way that the output of the tool can be trusted. Scalability is needed for
concurrent programs as such programs exhibit a high degree of non-determinism in
their process interleavings, exacerbating the complexity of their behavior. Precision is
necessary to provide accurate results to the users of a static analysis instead of having
them ignore results that are too imprecise. Support for dynamic process creation enables
analyzing modern concurrent programs that feature dynamic topologies.

In this dissertation, we started from a naive application of the AAM design method to
concurrent programs, demonstrating that it achieves most of these desirable properties,
except scalability. We identified from the existing static analysis literature on concurrent
programs two ways to address this scalability issue, and presented two AAM-based
design methods for analyses of concurrent programs, MacroConc and ModConc, each
inspired by one of these solutions. MacroConc results in analyses that feature state
space reduction through a macro-stepping formulation of the concrete semantics of
the analyzed language. This improves the scalability of the resulting analyses without
compromising precision, although their worst-case time complexity remains exponen-
tial. ModConc results in analyses that feature a process-modular design in which each
process of a concurrent program is analyzed in isolation, improving scalability to a
polynomial worst-case time complexity, for a small cost in precision.

We applied each of these design methods to a concurrent actor language, λα, and to
a shared-memory multi-threaded language, λτ. We proved the soundness and termina-
tion of the resulting analyses formally, and evaluated their running time, precision and
scalability empirically. Analyses resulting from the application of MacroConc improve
the running time of the analyses by up to four orders of magnitude and achieve a high
precision, yet remain subject to scalability issues due to their worst-case exponential
time complexity. Analyses resulting from the application of ModConc further improve
the running time of the analyses by up to four more orders of magnitude compared to

163

7. Conclusion and Future Work

MacroConc, for a minimal cost in terms of precision. These analyses scale linearly with
the number of communication effects performed in the analyzed programs.

Our analysis design methods comprise an important improvement over the state
of the art in static analysis support for modern concurrent programs. Several aspects
of MacroConc and ModConc can be improved further. These include improving the
state space reduction of MacroConc through a more refined effect restriction function,
reestablishing ordering information into ModConc analyses for improved precision, in-
vestigating the impact of more precise process sensitivities than the one used in this
dissertation, and combining the two design methods in the same analysis. Nonethe-
less, these analysis design methods have been shown to support complex concurrent
programs.

In conclusion, MacroConc and ModConc provide a solid foundation for the design
of static analyses targeted at modern concurrent programs. Analyses featuring such
designs serve the needs of developers of concurrent programs in terms of tool support.

164

A
NO TAT I O N S

By relieving the brain of all unnecessary work, a good notation sets it free to concen-
trate on more advanced problems.

— McConnell (2004)

We list here the notations used throughout this dissertation.

165

Appendix A. Notations

A.1. Domains

Domain names
Domain names are either denoted with Latin letters starting with a capital (e.g.,
Store), or with a single Greek letter (e.g., Σ).

Tuples
Multiple domains are paired together using the multiplication operator. If A and
B are domains, A × B is the domain composed of pairs of elements of A and B.
Elements of a tuple domain are denoted with angle brackets or parentheses. For
example, if a ∈ A and b ∈ B, we write 〈a, b〉 ∈ A × B or (a, b) ∈ A × B.

Sums
Multiple domains can be combined with the sum operator to provide choice. If
A and B are domains, A + B is the domain containing either elements of A or
elements of B. Elements of a sum domain have no special notation. If a ∈ A, then
we write a ∈ A + B. Similarly, if b ∈ B, we write b ∈ A + B.

Sequences
A domain consisting of possibly infinite sequences of elements of domain A is
denoted A∗. Elements of this domain are concatenated with the : operator. The
empty sequence is denoted ε. For example, if ai ∈ A, then a1 : a2 : ε ∈ A∗. The
size of a sequence a1 : . . . : an is denoted |a1 : . . . : an|.

Finite sequences
The notation A∗

n denotes a subset of the domain A∗ where all sequences have at
most n elements, i.e., a ∈ A∗

n ⇐⇒ a ∈ A∗ ∧ |a| ≤ n.

Powerset
The powerset of a domain is the domain composed of sets of element of the domain.
For example, P(A) is the powerset of domain A, and contains elements such as
{a1}, {a1, a2}, where ai ∈ A.

Backus-Naur form
We sometimes define domains using the Backus-Naur form. For example, the
domain of booleans can be defined as B ::= #t | #f.

A.2. Functions

Total functions
A total function f is denoted as f : A → B, where A is the domain of the function,
i.e. dom(f) = A, and the range of the function is B, i.e. range(f) = B. A total
function maps every element of its domain to an element of its range.

166

A.3. Sets

Partial functions
A partial function f is denoted as f : A ⇀ B and behaves similarly as a total
function, except that it may not be defined for all elements of its domain.

Extension
Functions are extended using the following notation: f [a 7→ b] is the function that
behaves as f on every element, except on a where it returns b. That is, f [a 7→
b](x) = f (x) if x 6= a, and f [a 7→ b](a) = b.

Membership
We also use the notation f [a 7→ b] to match over a function f which associates a to
b. That is, a transition rule that has f [a 7→ b] as a premise requires that f (a) = b.

Empty function
The empty function is denoted by square brackets: []. In case of partial functions,
this function is defined for no elements of its domain. In case of total functions
whose range is a lattice, the empty function maps any element from its domain to
the bottom element of the lattice, i.e. it is the function λx.⊥.

Function joining
When the range of a function is a lattice, joining is extended to the function domains
in the following way: f t g = λx. f (x) t g(x).

A.3. Sets

Set construction
A set is defined between curly braces: the set {1, 2} contains the elements 1 and 2.

Set union
Two sets can be combined through the union operator (∪): {1, 2} ∪ {2, 3} =
{1, 2, 3}.

Set difference
The set difference operator (\) applied to sets removes element from the second
set that are present in the first set: {1, 2} \ {2, 3} = {1}.

Set comprehension
Set comprehension is used to construct new sets from iterations over existing sets.
For example, A− B can be described by the set comprehension {a | a ∈ A ∧ a 6∈ B}.

Big operators
We use big operators to denote an operator applied to a number of elements. For
example, the set of all square numbers

{
02}∪

{
12}∪

{
22}∪ . . . can be denoted as

follows. ⋃
i∈N

i2

167

B
P RO O F S

Q: Why bother doing proofs about programming languages? They are almost
always boring if the definitions are right.

A: The definitions are almost always wrong.

— Pierce (2002)

In this appendix, we provide detailed proofs for the theorems presented in the disser-
tation. Some proofs have been mechanized, and are annotated with a check mark (3).
Note that we overload α to denote multiple abstraction functions, when it is not used in
an ambiguous way.

B.1. Proofs for Naive Application of AAM to Concurrent

Programs (Chapter 2)

B.1.1. Proofs for Abstract Interpretation of λ0

We prove soundness of each component of the abstract interpretation of λ0 separately,
and combine the results to prove the soundness of the abstract interpretation of λ0 at
the end of this section.

169

Appendix B. Proofs

Addresses

Value addresses and continuation addresses are a parameter of the analysis, of which
we give a concrete instantiation in Figure 2.5 (p. 17) and an abstract instantiation in Fig-
ure 2.12 (p. 22). We assume that address allocation is sound, which is a sound assumption
as Might and Manolios (2009) have proven that any address abstract allocation strategy
leads to a sound analysis. We therefore rely on an abstraction function for addresses,
α : Addr → Âddr.

Assumption 1 (Address allocation is sound).

α(σ) v σ̂ =⇒ α(alloc(ae, σ)) v âlloc(ae, σ̂)

α(ρ) v ρ̂ ∧ α(σ) v σ̂ ∧ α(Ξ) v Ξ̂ =⇒ α(kalloc(e, ρ, σ, Ξ)) v k̂alloc(e, ρ̂, σ̂, Ξ̂)

Environments

Concrete environments are defined in Figure 2.2 (p. 15), and abstract environments are
defined in Figure 2.10 (p. 21).

Definition 1 (Abstraction of environments). Environments are abstracted using the following
abstraction function α : Env → Ênv.

α(ρ) = λx.α(ρ(x))

The partial-order relation on environments (v) is the point-wise ordering relation on functions,
i.e., ρ̂ v ρ̂′ ⇐⇒ ∀x, ρ̂(x) v ρ̂′(x)

Lemma 1 (Environment lookup is sound).

α(ρ) v ρ̂ =⇒ ∀x, α(ρ(x)) v ρ̂(x)

Proof. This directly follows from the definition of the partial-order relation on environ-
ments.

Lemma 2 (Environment extension is sound).

α(a) v â ∧ α(ρ) v ρ̂ =⇒ α(ρ[x 7→ a]) v ρ̂[x 7→ â]

Proof. We have the following.

α(ρ[x 7→ a]) = λy.

{
α(a) if x = y
α(ρ(x)) otherwise

v λy.

{
â if x = y
ρ̂(y) otherwise

= ρ̂[x 7→ â]

170

B.1. Proofs for Naive Application of AAM to Concurrent Programs (Chapter 2)

Therefore, we have α(ρ[x 7→ a]) v ρ̂[x 7→ â].

Value Stores

Concrete value stores are defined in Figure 2.2 (p. 15), and abstract value stores are
defined in Figure 2.10 (p. 21).

Definition 2 (Abstraction of value stores). Value stores are abstracted using the following
abstraction function α : Store → Ŝtore.

α(σ) = λâ.
⋃

α(a)vâ

α(σ(a))

As for environments, the partial-order relation on value stores is the point-wise partial-ordering
on functions, i.e., σ̂ v σ̂′ ⇐⇒ ∀â, σ̂(â) v σ̂′(â).

Lemma 3 (Value store lookup is sound).

α(a) v â ∧ α(σ) v σ̂ =⇒ α(σ(a)) v σ̂(â)

Proof. From the premise on the stores, we have ∀â, α(σ)(â) v σ̂(â). Applying the defini-
tion of α, we get: ⋃

α(a′)vâ

α(σ(a′)) v σ̂(â)

Because of the assumption on addresses (α(a) v â), we know that α(σ(a)) is a member
of the left-hand side of the relation, which concludes the proof because α(σ(a)) v⋃

α(a′)vâ α(σ(a′)) v σ̂(â).

Lemma 4 (Value store extension is sound).

α(a) v â ∧ α(σ) v σ̂ ∧ α(v) v v̂ =⇒ α(σ[a 7→ v]) v σ̂ t [â 7→ {v̂}]

Proof.

α(σ[a 7→ v]) = λâ.
⋃

α(a′)vâ

α(σ[a 7→ v](a′))

= λâ.

 ⋃
α(a′)vâ

α(σ(a′)) ∪
{
{α(v)} if α(a) v a
∅ otherwise


=

λâ.
⋃

α(a′)vâ

α(σ(a′))

 t [â 7→ {α(v)}]

= α(σ) t [â 7→ {α(v)}]
v σ̂ t [â 7→ {v̂}]

171

Appendix B. Proofs

Continuation Stores

Concrete continuation stores are defined in Figure 2.2 (p. 15), and abstract continuation
stores are defined in Figure 2.10 (p. 21).

Definition 3 (Abstraction of continuation stores). Continuation stores are abstracted using
the following abstraction function α : KStore → K̂Store.

α(Ξ) = λk̂.
⋃

α(k)vk̂

α(Ξ(k))

As for environments ad value stores, the partial-order relation on continuation stores is the
point-wise partial-ordering on functions, i.e., Ξ̂ v Ξ̂′ ⇐⇒ ∀k̂, Ξ̂(k̂) v Ξ̂′(k̂).

Lemma 5 (Continuation store lookup is sound).

α(k) v k̂ ∧ α(Ξ) v Ξ̂ =⇒ α(Ξ(k)) v Ξ̂(k̂)

Proof. This proof is identical to the proof of Lemma 3

Lemma 6 (Continuation store extension is sound).

α(k) v k̂ ∧ α(Ξ) v Ξ̂ ∧ α(κ) v κ̂ =⇒ α(Ξ[k 7→ κ]) v Ξ̂ t [k̂ 7→ {κ̂}]

Proof. This proof is identical to the proof of Lemma 6

Atomic Evaluation

Concrete atomic evaluation is defined in Figure 2.3 (p. 16), and abstract atomic evaluation
is defined in Figure 2.11 (p. 22).

Lemma 7 (Atomic evaluation is sound). If ρ, σ ` ae ⇓ v, then α(ρ), α(σ) ` ae ⇓̂ v̂ where
α(v) v v̂.

Proof. We have to show that α(v) v v̂. This is done by case analysis on ae.

• If ae = lam, then v = clo(lam, ρ), v̂ = clo(lam, α(ρ)), and we have α(v) v v̂.

• If ae = x, then v = σ(ρ(x)), v̂ = α(σ)(α(ρ)(x)). By Lemma 3, we have α(σ(ρ(x))) v
α(σ)(α(ρ(x))).

172

B.1. Proofs for Naive Application of AAM to Concurrent Programs (Chapter 2)

Transition Relation

The concrete transition relation is defined in Figure 2.4 (p. 17), and its abstract version
in Figure 2.13 (p. 23).

Lemma 8 (Soundness of the transition relation).

ς, σ, Ξ ↪→ ς′, σ′, Ξ′ =⇒ α(ς), α(σ), α(Ξ) ↪̂→ ς̂′, σ̂′, Ξ̂′

∧ α(ς′) v ς̂′ ∧ α(σ) v σ̂′ ∧ α(Ξ) v Ξ̂′

Proof. This is proven by a case analysis on the transition rule. We detail the first two
cases, and the remaining cases follow the same reasoning.

• If rule Atomic applies, we have ς = 〈ev(ae, ρ), k〉 and ς′ = 〈val(v), k〉, and the
stores remain the same. We also have that α(ς), α(σ), α(Ξ) ↪̂→ 〈val(v̂), α(k)〉, α(σ), α(Ξ).
Therefore, we have to show the following:

– α(v) v v̂, which holds because atomic evaluation is sound (Lemma 7).

• If rule App applies, we have ς = 〈ev((f ae), ρ), k〉, ς′ = 〈ev(e, ρ′[x 7→ a]), k〉. By
Lemma 7, we know that if ρ, σ ` f ⇓ clo((λ(x) e), ρ′), then α(ρ), α(σ) ` f ⇓̂ clo((λ(x) e), ρ̂′)

where α(ρ′) v ρ̂′, and through the same lemma, we know that α(ρ), α(σ) ` ae ⇓̂ v̂
where α(v) v v̂, hence ς̂′ = 〈ev(e, ρ̂′[x 7→ â]), α(k)〉, σ′ = σ[a 7→ v], and σ̂′ = α(σ) t [â 7→ {v̂}],
where a and â result from address allocation. Moreover, we know from Assump-
tion 1 that α(a) v â. It remains to show the following:

– α(σ[a 7→ v]) v α(σ) t [â 7→ {v̂}], which holds by Lemma 4.
– α(ρ[x 7→ a]) v α(ρ)[x 7→ â], which holds by Lemma 2.

• If rule Letrec1 applies, the relation holds: the assumption of soundness on al-
location (Assumption 1) shows that the allocated addresses are soundly over-
approximated, Lemma 2 shows that the environment is extended in a sound
manner, and Lemma 6 shows that the continuation store is extended in a sound
manner.

• If rule Letrec2 applies, the relation holds: Lemma 4 shows that the value store
is extended in a sound manner, and Lemma 5 shows that the lookup in the
continuation store is soundly over-approximated.

• If rule Error applies, the relation holds by applying the definition of α (with
ς = 〈ev((error), ρ), k〉, ς′ = 〈err, k〉, ς̂′ = 〈err, α(k)〉, α(σ), α(k))

Transfer Function

The concrete transfer function is defined in Figure 2.8 (p. 18), and its abstract version in
Figure 2.15 (p. 24).

173

Appendix B. Proofs

Lemma 9 (Soundness of the transfer function).

∀S, α(Fλ0
e (S)) v F̂λ0

e (α(S))

Proof. Unfolding the definitions, we get:

α({(I(e), [], [k0 7→ ε])} ∪
⋃

(ς,σ,Ξ)∈S
ς,σ,Ξ↪→ς′,σ′,Ξ′

(ς′, σ′, Ξ′)) v
{
(Î(e), [], [k̂0 7→ ε])

}
∪

⋃
(ς̂,σ̂,Ξ̂)∈α(S)

ς̂,σ̂,Ξ̂ ↪̂→ ς̂′,σ̂′,Ξ̂′

(ς̂′, σ̂′, Ξ̂′)

α is distributive over ∪ and this can be reduced to show the following cases.

• α(I(e), [], [k0 7→ ε]) v (Î(e), [], [k̂0 7→ ε]), which trivially holds by Assumption 1.

• α(
⋃

(ς,σ,Ξ)∈Sς,σ,Ξ↪→ς′,σ′,Ξ′(ς′, σ′, Ξ′)) v ⋃
(ς̂,σ̂,Ξ̂)∈α(S)ς̂,σ̂,Ξ̂ ↪̂→ ς̂′,σ̂′,Ξ̂′(ς̂′, σ̂′, Ξ̂′), which holds

by Lemma 8.

Soundness.

The following fixed-point transfer theorem established by Cousot (2002) is useful to
simplify soundness proofs.

Lemma 10 (Soundness of least-fixed points). For two transfer functions F and F̂ , an
abstraction function α, and a partial-order relation v, we have:

(∀S, α(F (S)) v F̂ (α(S))) =⇒ α(lfp(F)) v lfp(F̂)

Theorem 1 (Soundness of F̂λ0
e). α(lfp(Fλ0

e)) v lfp(F̂λ0
e).

Proof. This is proven applying Lemma 10 followed by Lemma 9.

Monotonicity

Lemma 11 (F̂λ0
e is monotone). ∀S, S′, S v S′ =⇒ F̂λ0

e (S) v F̂λ0
e (S′)

Proof. If S v S′, then ∃S′′, S′ = S ∪ S′′. Also, from the definition of F̂λ0
e , it is clear that

it is distributive (∀A, B, F̂λ0
e (A ∪ B) = F̂λ0

e (A) ∪ F̂λ0
e (B)). Therefore, we have to show

that:

F̂λ0
e (S) v F̂λ0

e (S) ∪ F̂λ0
e (S′′)

This holds for any S and S′′.

174

B.1. Proofs for Naive Application of AAM to Concurrent Programs (Chapter 2)

Finiteness

Lemma 12. 〈P(Σ̂ × Ŝtore × K̂Store),v〉 is a finite lattice.

Proof. All components defined in Figure 2.10 (p. 21) are either enumerations based on
other components (Ĉontrol, K̂ont, F̂rame, V̂al), tuples of other components (Σ̂), functions
acting on other components (Ênv, Ŝtore, K̂Store), or are explicitly finite sets (Âddr, K̂Addr,
Var, Exp). Hence, the domain P(Σ̂ × Ŝtore × K̂Store) has finitely many elements.

Termination

Theorem 2 (Termination). The computation of lfp(F̂λ0
e) always terminates.

Proof. Tarski’s fixed-point theorem (Tarski, 1955) states that the least-fixed point of
monotone function (F̂λ0

e , Lemma 11) over a finite lattice (〈P(Σ × Store × KStore),⊆〉,
Lemma 12) is reached in a finite number of steps, i.e., always terminates.

B.1.2. Proofs for Abstract Interpretation of λα

Process Identifiers

Process identifiers are a parameter of the analysis, of which we give a concrete instantia-
tion in Figure 2.26 (p. 33) and an abstract instantiation in Figure 2.36 (p. 39). We assume
that process identifier allocation is sound, which is a sound assumption as Might and
Manolios (2009) have proven that any allocation strategy leads to a sound analysis. We
therefore rely on an abstraction function for process identifiers, α : PID → P̂ID.

Assumption 2 (Process identifier allocation is sound).

α(ς) v ς̂ ∧ α(π) v π̂ =⇒ α(palloc(ς, π)) v p̂alloc(ς̂, π̂)

Process Map

Concrete process maps for λα are defined in Figure 2.26 (p. 33), and abstract process
maps are defined in Figure 2.36 (p. 39).

Definition 4 (Abstraction of process maps). Process maps are abstracted using the following
abstraction function α : Π → Π̂.

α(π) = λ p̂.
⋃

α(p)v p̂

α(π(p))

As for environments and value stores, the partial-order relation on continuation stores is the
point-wise partial-ordering on functions, i.e., π̂ v π̂′ ⇐⇒ ∀ p̂, π̂(p̂) v π̂′(p̂).

Lemma 13 (Process map lookup is sound).

α(p) v p̂ ∧ α(π) v π̂ =⇒ α(π(p)) v π̂(p̂)

175

Appendix B. Proofs

Proof. This proof is identical to the proof of Lemma 3

Lemma 14 (Process map extension is sound).

α(p) v p̂ ∧ α(π) v π̂ ∧ α(ς) v ς̂ =⇒ α(π[p 7→ ς]) v π̂ t [p̂ 7→ {ς̂}]

Proof. This proof is identical to the proof of Lemma 6

Mailboxes

Concrete mailboxes are defined in Figure 2.21 (p. 31), and abstract mailboxes are the
focus of Chapter 5. The soundness of the different mailbox abstractions is proven in
Appendix B.3.

Atomic Evaluation

Atomic evaluation for λα is extended from the atomic evaluation of λ0, in Figure 2.22 (p.
31), and its abstraction is defined in Figure 2.32 (p. 36).

Lemma 15 (Atomic evaluation is sound for λτ). If ρ, σ ` ae ⇓ v, then α(ρ), α(σ) ` ae ⇓̂ v̂
where α(v) v v̂.

Proof. Rule Actor is the only rule added, and it mimics rule Closure. We therefore
extend the case analysis of the proof of Lemma 7 with one more case, ae = act, and we
have v = actor(act, ρ), v̂ = actor(act, α(ρ)), and therefore α(v) v v̂.

Transition Relation

The concrete transition relation for λα is defined in Figure 2.23 (p. 32) for the sequential
rule (Seq), in Figure 2.24 (p. 32) for the actor management rules (Create and Become),
and in Figure 2.25 (p. 33) for messages rules (Send and Process). Their abstract version
is given in respectively Figure 2.33 (p. 37), Figure 2.34 (p. 38), and Figure 2.35 (p. 38).

Lemma 16 (Soundness of the transition relation).

π, σ, Ξ p π′, σ′, Ξ′ =⇒ α(π), α(σ), α(Ξ) α(p) π̂′, σ̂′, Ξ̂′

∧ α(π′) v π̂′ ∧ α(σ′) v σ̂′ ∧ α(Ξ′) v Ξ̂′

π, σ, Ξ
eff

p π′, σ′, Ξ′ =⇒ α(π), α(σ), α(Ξ)
êff

α(p) π̂′, σ̂′, Ξ̂′ ∧ α(π′) v π̂′

∧ α(σ′) v σ̂′ ∧ α(Ξ′) v Ξ̂′ ∧ α(eff) v êff

Proof. We perform a case analysis on the transition rule that applies

• Rule Seq applies. We have π, σ, Ξ p π[p 7→ ς′], σ′, Ξ′ and α(π), α(σ), α(Ξ) α(p)

α(π) t [α(p) 7→ ς̂′], σ̂′, Ξ̂′. From Lemma 13, we know that α(ς, mb) v α(π)(α(p)),
and from Lemma 8, we know that α(ς), α(σ), α(Ξ) ↪̂→ ς̂′, σ̂′, Ξ̂′ with α(ς′) v ς̂′,

176

B.1. Proofs for Naive Application of AAM to Concurrent Programs (Chapter 2)

α(σ′) v σ̂′, α(Ξ′) v Ξ̂′. Joining the resulting state in the process map is sound
(Lemma 14).

• Rule Create applies. Lookup in the process map is sound (Lemma 13), extension of
the process map is sound (Lemma 14), allocation of addresses and process identi-
fiers is sound (Assumptions 1 and 2), and atomic evaluation is sound (Lemma 15).

• Rule Become applies. Lookup in the process map is sound (Lemma 13), extension
of the process map is sound (Lemma 14), atomic evaluation is sound (Lemma 15),
and the new abstract state of the process executing the become is a sound over-
approximation of its concrete counter-part.

• Rule Send applies. Lookup in the process map is sound (Lemma 13), extension of
the process map is sound (Lemma 14), atomic evaluation is sound (Lemma 15),
and enqueuing in a mailbox is sound, as proven for each mailbox abstractions in
Appendix B.3.

• Rule Process applies. Lookup in the process map is sound (Lemma 13), exten-
sion of the process map is sound (Lemma 14) and dequeuing messages from the
mailbox is sound (see Appendix B.3).

Transfer Function

The transfer function for λα is defined in Figure 2.28 (p. 34), and its abstract version is
defined in Figure 2.39 (p. 40).

Lemma 17 (Soundness of the transfer function).

∀S, α(Fλα
e (S)) v F̂λα

e (α(S))

Proof. The proof is identical to the proof of Lemma 9.

Soundness

Theorem 3 (Soundness). α(lfp(Fλα
e)) v lfp(F̂λα

e).

Proof. This is proven by applying Lemma 10 followed by Lemma 17.

Monotonicity

Lemma 18 (F̂λα
e is monotone). ∀S, S′, S ⊆ S′ =⇒ F̂λα

e (S) ⊆ F̂λα
e (S′)

Proof. This proof follows exactly the same reasoning as Lemma 11: F̂λα
e is distributive

for the join operation, hence it is monotone.

177

Appendix B. Proofs

Finiteness

Lemma 19. 〈P(Π̂ × Ŝtore × K̂Store),⊆〉 is a finite lattice.

Proof. With the exception of the M̂box component which is a parameter, all components
defined in Figure 2.29 (p. 35) are either enumerations based on other components
(Ĉontrol, V̂al, B̂eh), tuples of other components (Σ̂, M̂essage), functions acting on other
components (Π̂), or are explicitly finite sets (P̂ID). The set mailbox abstraction defined
in Figure 2.30 (p. 36), used in the actor analysis of Chapter 2, is finite as well. Hence, the
domain P(Π̂ × Ŝtore × K̂Store) has finitely many elements.

Termination

Theorem 4 (Termination). The computation of lfp(F̂λα
e) always terminates.

Proof. This is ensured by Tarski’s fixed-point theorem (Tarski, 1955), and Lemmas 18
and 19.

B.1.3. Proofs for Abstract Interpretation of λτ

Process Identifiers

Similarly as for λα, process identifiers are a parameter of the analysis, defined in Fig-
ure 2.26 (p. 33) and an abstract instantiation in Figure 2.36 (p. 39). We rely on an
abstraction function for process identifiers, α : PID → P̂ID.

Assumption 3 (Process identifier allocation is sound).

α(ς) v ς̂ ∧ α(π) v π̂ =⇒ α(palloc(ς, π)) v p̂alloc(ς̂, π̂)

Process Map

Process maps for λτ follow the same definition as for λα, and process maps are defined
concretely in Figure 2.43 (p. 45) and in their abstract version in Figure 2.52 (p. 50).

Definition 5 (Abstraction of process maps). Process maps are abstracted using the following
abstraction function α : Π → Π̂.

α(π) = λ p̂.
⋃

α(p)v p̂

α(π(p))

As for environments and value stores, the partial-order relation on continuation stores is the
point-wise partial-ordering on functions, i.e., π̂ v π̂′ ⇐⇒ ∀ p̂, π̂(p̂) v π̂′(p̂).

Lemma 20 (Process map lookup is sound).

α(p) v p̂ ∧ α(π) v π̂ =⇒ α(π(p)) v π̂(p̂)

178

B.1. Proofs for Naive Application of AAM to Concurrent Programs (Chapter 2)

Proof. This proof is identical to the proof of Lemma 3

Lemma 21 (Process map extension is sound).

α(p) v p̂ ∧ α(π) v π̂ ∧ α(ς) v ς̂ =⇒ α(π[p 7→ ς]) v π̂ t [p̂ 7→ {ς̂}]

Proof. This proof is identical to the proof of Lemma 6

Atomic Evaluation

Atomic evaluation is the same as for λ0.

Lemma 22 (Atomic evaluation is sound for λτ). If ρ, σ ` ae ⇓ v, then α(ρ), α(σ) ` ae ⇓̂ v̂
where α(v) v v̂.

Proof. Atomic evaluation remains unchanged for λτ with respect to λ0, hence the proof
of Lemma 7 applies.

Transition Relation

The concrete transition relation rules for λτ are given in Figure 2.45 (p. 46) for the
sequential rule (Seq), in Figure 2.46 (p. 47) for thread management rules (Spawn and
Join), Figure 2.47 (p. 47) for references rules (Ref, Deref, and RefSet), and Figure 2.48
(p. 48) for rules on locks (NewLock, Acquire and Release). Their abstract versions are
defined in Figure 2.33 (p. 37), Figure 2.34 (p. 38), and Figure 2.35 (p. 38) respectively.

Lemma 23 (Soundness of the transition relation).

π, σ, Ξ p π′, σ′, Ξ′ =⇒ α(π), α(σ), α(Ξ) α(p) π̂′, σ̂′, Ξ̂′

∧ α(π′) v π̂′ ∧ α(σ′) v σ̂′ ∧ α(Ξ′) v Ξ̂′

π, σ, Ξ
eff

p π′, σ′, Ξ′ =⇒ α(π), α(σ), α(Ξ)
êff

α(p) π̂′, σ̂′, Ξ̂′ ∧ α(π′) v π̂′

∧ α(σ′) v σ̂′ ∧ α(Ξ′) v Ξ̂′ ∧ α(eff) v êff

Proof. We perform a case analysis on the transition rule that applies, and the reasoning
is similar to the reasoning in the proof of Lemma 16.

• Rule Seq applies. Lookup in the process map is sound (Lemma 20), extension of
the process map is sound (Lemma 21, and the sequential transition relation is
soundly over-approximated (Lemma 8).

• Rule Spawn applies. Lookup in the process map is sound from Lemma 20, and
extension of the process map is sound from Lemma 21.

• Rule Join applies. Apart from lookup in the process and extension of the process
map, which are sound (Lemmas 20 and 21), this case relies on the fact that atomic
evaluation is sound (Lemma 22).

179

Appendix B. Proofs

• Rule Ref applies. This case relies on the soundness of lookup from and extensions
to the process map (Lemmas 20 and 21).

• Rule Deref applies. This case relies on the soundness of lookup from and exten-
sions to the process map (Lemmas 20 and 21), and also on soundness of lookup in
the store (Lemma 3).

• Rule RefSet applies. This case relies on the soundness of lookup from and exten-
sions to the process map (Lemmas 20 and 21).

• Rule NewLock applies. This case relies on the soundness of lookup from and
extensions to the process map (Lemmas 20 and 21).

• Rule Acquire applies. This case relies on the soundness of lookup from and exten-
sions to the process map (Lemmas 20 and 21), and also on soundness of lookup in
the store (Lemma 3).

• Rule Release applies. This case relies on the soundness of lookup from and exten-
sions to the process map (Lemmas 20 and 21), and also on soundness of lookup in
the store (Lemma 3).

Transfer Function

The concrete transfer function for λτ is defined in Figure 2.51 (p. 49), and its abstract
version is defined in Figure 2.61 (p. 54).

Lemma 24 (Soundness of the transfer function).

∀S, α(Fλτ
e (S)) v F̂λτ

e (α(S))

Proof. The proof is identical to the proof of Lemma 9.

Soundness

Theorem 5 (Soundness). α(lfp(Fλτ
e)) v lfp(F̂λτ

e).

Proof. This is proven by applying Lemma 10 followed by Lemma 24.

Monotonicity

Lemma 25 (F̂λτ
e is monotone). ∀S, S′, S ⊆ S′ =⇒ F̂λτ

e (S) ⊆ F̂λτ
e (S′)

Proof. This proof follows exactly the same reasoning as Lemma 11: F̂λτ
e is distributive

for the join operation, hence it is monotone.

180

B.2. Proofs for Application of MacroConc to Concurrent Programs (Chapter 4)

Finiteness

Lemma 26. 〈P(Π̂ × Ŝtore × K̂Store),v〉 is a finite lattice.

Proof. All components defined in Figure 2.52 (p. 50) are either enumerations based on
other components (V̂al), tuples of other components function acting on other compo-
nents (Π̂), or are explicitly finite sets (P̂ID). Hence, the domain P(Π̂ × Ŝtore × K̂Store)
has finitely many elements.

Termination

Theorem 6 (Termination). The computation of lfp(F̂λτ
e) always terminates.

Proof. This is ensured by Tarski’s fixed-point theorem (Tarski, 1955), and Lemmas 25
and 26.

B.2. Proofs for Application of MacroConc to Concurrent

Programs (Chapter 4)

B.2.1. Proofs for the Application of MacroConc to λα

Macro-Stepping

The macro-stepping transfer function for λα is defined in Figure 4.4 (p. 86).

Lemma 27 (Soundness of macro-stepping transfer function). If the effect restriction func-
tion f λα allows for at most one interfering transition in a macro step, and lfp(Macro -Gλα

p,π0,σ0,Ξ0
) =

〈S, F〉, then for every state 〈π, σ, Ξ〉 reachable by Fλα
e on process p starting at state π0, σ0, Ξ0,

then either:

• there exists a state 〈π′, σ, Ξ〉 in S such that π′(p) = π(p), or

• there exists a state 〈π′, σ, Ξ〉 such that π′(p) = π(p) reachable by Fλα
e from a state in F.

Proof. First note that both Gλα
p,π0,σ0,Ξ0

rely on the same transition relation p. From the
definition of Gλα

p,π0,σ0,Ξ0
, we have:

• States that are added to the set S are states that are reachable from states in S
with either no effect performed, or with an effect that does not violate the strategy
encoded in the restriction function f λα .

• States that are added to the set F are states on which no progress can be made,
because either process p has finished its execution, or because any progress would
violate the strategy of the restriction function.

181

Appendix B. Proofs

This means that the set 〈S, F〉 consists of (1) states in S that are reachable by only
performing transitions on process p that do not violate the macro-stepping strategy,
and hence with at most one interfering transition; and (2) of states in F at which the
macro-step has been stopped. Because f λα allows for at most one interfering transition
in a macro step, there is no state 〈π, σ, Ξ〉 reachable by Fλα

e starting at π0, σ0, Ξ0 for
which no corresponding state (i.e., for which π(p) = π′(p)) is reachable from Fλα

e from
F.

Restriction Function

Lemma 28 (Soundness of the restriction function). The ordered macro-stepping restriction
function f λα(eff) does not allow more than one transition acting on the same component of the
global state space.

Proof. All possibly interfering transition rules of the semantics of λα are annotated with
a communication effect: c for actor creation, b for behavior change (become), snd for
message sends, and prc for message processing. The ordered macro-stepping restriction
function disallows more than one process communication effect per macro step, and
also disallows more than one send communication effect per macro step. Moreover, the
macro step will always stop after a become statement, as the actor transitions to a wait
state according to rule Become, and only rule Process can be applied to such a state.
Altogether, this means that a macro step can only have one of the following sequence
of effects, where parentheses denote optionality, and a star superscript (∗) denotes any
number of effects: (prc), (c)∗, snd, (c)∗, (b), or (prc), (c)∗, (b). This ensures that at most
one interfering transition is contained in a macro step: c and b effects are not interfering
as they cannot be observed by other actors, prc are interfering because they dequeue
a message from the mailbox of the actor performing the transition, snd are interfering
because they enqueue a message on the target actor, and prc and snd are not interfering
with each other because they do not act on the mailbox at the same place (prc dequeues
a message from the front, snd enqueues a message to the back). Hence, interleavings
of the other transitions performed in the macro step cannot be observed at the level of
a single actor, and it is safe to only start further macro steps from states in the set F
returned by the macro-stepping transfer function Macro -Gλα

p,π0,σ0,Ξ0
.

Concrete Macro-Stepping

The global transfer function for the macro-stepping semantics is defined in Figure 4.5
(p. 87).

We first define what local process properties mean: a local process property is a
property that only looks at process states in isolation.

Definition 6 (Local process properties). Local process properties are properties that can be

182

B.2. Proofs for Application of MacroConc to Concurrent Programs (Chapter 4)

expressed on the result of the local function defined as follows.

local : P(Π × Store × KStore) → (PID → P((Σ × Mbox)× Store × KStore))

local(S) = λp.
⊔

(π,σ,Ξ)∈S
p∈dom(π)

〈π(p), σ, Ξ〉

Lemma 29 (Equivalence of concrete semantics).

lfp(Global -Gλα
e) = 〈S, _〉, lfp(Fλα

e) = S′ =⇒ local(S) = local(S′)

Proof. The initial state is explored by both all-interleavings semantics and macro-stepping
semantics. This follows directly from the definition of Fλα

e and Global -Gλα
e . We know

from Lemma 27 (and because the restriction function is sound, Lemma 28 that lfp(Macro -Gλα
p,π0,σ0,Ξ0

)

is a sound over-approximation of the fixed-point of Fλα
e restricted to the states reachable

from initial state 〈π0, σ0, Ξ0〉 on process p. This means that performing a macro step on a
process will not disable possible future transitions due to interleavings of interferences
being ignored. As for every iteration of Global -Gλα

e , a macro step is performed on all
running processes, all local process states are accounted for.

Soundness

Theorem 7 (Soundness). lfp(Global - Ĝλα
e) = 〈S, F〉, lfp(Fλα

e) = S′ =⇒ α(local)(S) = α(local)(S′)

Proof. Because the concrete all-interleavings semantics and the concrete macro-stepping
semantics are equivalent (Lemma 29), performing a further sound abstraction as in
Chapter 2 is sound.

Monotonicity

Lemma 30 (Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
and Global - Ĝλα

e are monotone).

∀S, S′ S v S′ =⇒ Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
(S) ⊆ Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
(S′)

∀S, S′ S v S′ =⇒ Global - Ĝλα
e (S) ⊆ Global - Ĝλα

e (S′)

Proof. This proof follows exactly the same reasoning as Lemma 11: Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
and

Global - Ĝλα
e are distributive for the join operation, hence they are monotone.

183

Appendix B. Proofs

Finiteness

Lemma 31 (Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
and Global - Ĝλα

e act on finite lattices). The following lattices
are finite.

〈P(Π̂ × Ŝtore × K̂Store)×P(Π̂ × Ŝtore × K̂Store)×P(Êffect),v〉

〈P(Π̂ × Ŝtore × K̂Store)×P(Π̂ × Ŝtore × K̂Store),v〉

Proof. The domain P(Π × Store×KStore) is proven finite in Lemma 19. Moreover, Effect
is a finite domain. Therefore, both the domain of Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
and the domain of

Global - Ĝλα
e are finite.

Termination

Theorem 8 (Termination). The computation of lfp(Global - Ĝλα
e) always terminates.

Proof. By Tarski’s fixed-point theorem (Tarski, 1955), and Lemmas 30 and 31, we know
that the computation of lfp(Macro - Ĝλα

p̂,π̂0,σ̂0,Ξ̂0
) always terminates, and therefore that the

computation of lfp(Macro - Ĝλα
e) always terminates.

B.2.2. Proofs for the Application of MacroConc to λτ

Macro-Stepping

The macro-stepping transfer function for λτ is defined in Figure 4.6 (p. 89).

Lemma 32 (Soundness of macro-stepping transfer function). If the effect restriction func-
tion f λτ allows for at most one interfering transition in a macro step, and lfp(Macro -Gλτ

p,π0,σ0,Ξ0
) =

〈S, F〉, then for every state 〈π, σ, Ξ〉 reachable by Fλτ
e on process p starting at state π0, σ0, Ξ0,

then either:

• there exists a state 〈π′, σ, Ξ〉 in S such that π′(p) = π(p), or

• there exists a state 〈π′, σ, Ξ〉 such that π′(p) = π(p) reachable by Fλα
e from a state in F.

Proof. This is identical to the proof of Lemma 27.

Restriction Function

Lemma 33 (Soundness of the restriction function). The ordered macro-stepping restriction
function f λα(eff) does not allow more than one transition acting on the same component of the
global state space.

Proof. All possibly interfering transition rules of the semantics of λτ are annotated
with a communication effect. The only rules that are not annotated with effects are the
following.

184

B.2. Proofs for Application of MacroConc to Concurrent Programs (Chapter 4)

• Rule Seq. It cannot perform nor observe any interference, as it can only evaluate a
pure subset of λτ.

• Rule Ref. It cannot perform nor observe any interference, as it merely creates a
new reference which, at creation time, is not accessible by any other thread.

• Rule NewLock. For the same reason as rule Ref, it cannot perform nor observe any
interference.

The definition of f λτ implies that a macro step can perform at most one communication
effect. As only rules that perform communication effect may interfere on the global state,
only one transition acting on the global state space is allowed within a macro step.

Concrete Macro-Stepping

The global transfer function for the macro-stepping semantics is defined in Figure 4.7
(p. 90).

Definition 7 (Local process properties). Local process properties are properties that can be
expressed on the result of the local function defined as follows.

local : P(Π × Store × KStore) → (PID → P(Σ × Store × KStore))

local(S) = λp.
⊔

(π,σ,Ξ)∈S
p∈dom(π)

〈π(p), σ, Ξ〉

Lemma 34 (Equivalence of concrete semantics).

lfp(Global - Ĝλτ
e) = 〈S, F〉, lfp(F̂λτ

e) = S′ =⇒ local(S) = local(S′)

Proof. The proof follows the same structure as the proof of Lemma 29, and is based on
Lemmas 32 and 33.

Soundness

Theorem 9 (Soundness). lfp(Global - Ĝλτ
e) = 〈S, _〉, lfp(F̂λτ

e) = S′ =⇒ α(local)(S) = α(local)(S′)

Proof. Because the concrete all-interleavings semantics and the concrete macro-stepping
semantics are equivalent (Lemma 34), performing a further sound abstraction as in
Chapter 2 is sound.

Monotonicity

Lemma 35 (Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
and Global - Ĝλτ

e are monotone).

∀S, S′, S v S′ =⇒ Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
(S) ⊆ Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
(S′)

∀S, S′, S v S′ =⇒ Global - Ĝλτ
e (S) ⊆ Global - Ĝλτ

e (S′)

185

Appendix B. Proofs

Proof. This proof follows exactly the same reasoning as Lemma 11: Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
and

Global - Ĝλτ
e are distributive for the join operation, hence they are monotone.

Finiteness

Lemma 36 (Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
and Global - Ĝλτ

e act on finite lattices). The following lattices
are finite.

〈P(Π̂ × Ŝtore × K̂Store)×P(Π̂ × Ŝtore × K̂Store)×P(Êffect),v〉

〈P(Π̂ × Ŝtore × K̂Store)×P(Π̂ × Ŝtore × K̂Store),v〉

Proof. The domain P(Π × Store×KStore) is proven finite in Lemma 26. Moreover, Effect
is a finite domain. Therefore, both the domain of Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
and the domain of

Global - Ĝλτ
e are finite.

Termination

Theorem 10 (Termination). The computation of lfp(Global - Ĝλτ
e) always terminates.

Proof. By Tarski’s fixed-point theorem (Tarski, 1955), and Lemmas 35 and 36, we know
that the computation of lfp(Macro - Ĝλτ

p̂,π̂0,σ̂0,Ξ̂0
) always terminates, and therefore that the

computation of lfp(Global - Ĝλτ
e) always terminates.

B.3. Proofs for Mailbox Abstractions (Chapter 5)

We first recapitulate what a sound mailbox abstraction is, and then prove the different
mailbox abstractions presented in Chapter 5 sound after repeating the definition of each
mailbox abstraction. A mailbox abstraction is sound if the abstraction soundly over-
approximates the concrete mailbox. This means that the following equations should
hold.

• ∀mb, size(mb) ≤ ŝize(α(mb)), i.e., the size is soundly over-approximated.

• α(empty) v êmpty, i.e., the empty abstract mailbox is a sound over-approximation
of the empty concrete mailbox.

• ∀mb, m, α(enq(m, mb)) v ênq(α(mb), α(m))), i.e., message enqueuing is sound.

• ∀m, mb, mb′, (m, mb′) ∈ deq(mb) =⇒ ∃m̂b
′
, (m, m̂b

′
) ∈ d̂eq(α(mb)) ∧ α(mb′) v

m̂b
′
, i.e., dequeueing a message from a mailbox is soundly over-approximated.

Note that the soundness of a mailbox abstraction is not influenced by the domain
of messages used. This is because a mailbox is merely a container of messages, and a

186

B.3. Proofs for Mailbox Abstractions (Chapter 5)

mailbox therefore does not act upon the values of messages. We therefore prove the
soundness of these abstractions in the context of concrete messages. Applying sound
abstractions on messages preserve this soundness.

B.3.1. Soundness of the Set Abstraction

The set abstraction is defined in Figure 5.2 (p. 107).
The subsumption relation for the set abstraction is plain equality.

m̂b v m̂b
′
⇐⇒ m̂b = m̂b

′

The abstraction function αSet : Mbox → Set transforms a sequence of messages into a
set of messages.

αSet(ε) = ∅ αSet(m : mb) = {m} ∪ αSet(mb)

We will use the following lemma to simplify the following proofs.

Lemma 37 (αSet can abstract in the reverse order). αSet(mb : m) = αSet(m : mb)

Proof. This follows from the fact that sets have no order and is proven by induction on
mb.

Lemma 38 (ŝizeSet is sound 3). ∀mb, size(mb) ≤ ŝizeSet(αSet(mb))

Proof. The proof is by case analysis on mb. Either mb = ε, and we have size(ε) =

ŝizeSet(∅) = 0. Or, mb 6= ε and we have ŝizeSet(αSet(m : mb′)) = ∞, and the lemma
follows because ∀n, n ≤ ∞.

Lemma 39 (êmptySet is sound 3). αSet(empty) v êmptySet

Proof. This directly follows from the definition of αSet, because αSet(empty) = ∅.

Lemma 40 (ênqSet is sound 3). ∀m, mb : αSet(enq(m, mb)) v ênqSet(m, αSet(mb))

Proof. The proof is by induction on mb. Either mb is empty and this holds directly.
Otherwise, mb = m′ : mb′ and we have to show the following inequality (after some
unfolding of definitions and use of Lemma 37):{

m′} ∪ αSet(enq(m, mb′)) v
{

m, m′} ∪ αSet(mb′)

Which follows from the induction hypothesis: αSet(enq(m, mb′)) v ênqSet(m, αSet(mb′)).

Lemma 41 (d̂eqSet is sound 3). ∀m, mb, mb′ : (m, mb′) ∈ deq(mb) =⇒ (m, α(mb′)) ∈
d̂eqSet(αSet(mb))

187

Appendix B. Proofs

Proof. We know from the premise that (m, mb′) ∈ deq(mb), therefore mb = mb′ : m, and
because αSet(mb′ : m) = {m} ∪ αSet(mb′), we have to show:

(m, αSet(mb′)) ∈ d̂eqSet({m} ∪ αSet(mb′))

We have two possibilities.

• Either m ∈ αSet(mb′), and we have {m} ∪ αSet(mb′) = αSet(mb′). From this and the
definition of d̂eqSet, we have (m, αSet(mb′)) ∈ d̂eqSet(αSet(mb)), which is what we
had to prove.

• Or m 6∈ αSet(mb′), and we have ({m} ∪ αSet(mb′)) \ {m} = αSet(mb′). From this and
the definition of d̂eqSet, we have (m, αSet(mb′)) ∈ d̂eqSet(αSet(mb)), which is again
what we had to prove.

Theorem 11 (Set sound 3). The set abstraction is a sound mailbox abstraction.

Proof. This follows from Lemmas 38 to 41.

B.3.2. Soundness of the Multiset Abstraction

The multiset mailbox abstraction is defined in Figure 5.3 (p. 108)
The abstraction function αMS : Mbox → MS converts a concrete mailbox represented

by list of messages to a multiset, where multisets are represented by functions from
messages to naturals.

αMS(ε) = λm.0
αMS(m : mb) = αMS(mb)[m 7→ αMS(mb)(m) + 1]

The partial order relation is multiset equality.

m̂b1 v m̂b2 ⇐⇒ ∀m, m̂b1(m) = m̂b2(m)

Lemma 42 (αMS can abstract in the reverse order). αMS(mb : m) = αMS(m : mb)

Proof. This follows from the fact that multisets have no order and is proven by induction
on mb.

Lemma 43 (sizeMS is sound). ∀mb, size(mb) ≤ sizeMS(αMS(mb))

Proof. The proof is by induction on mb. With mb = ε, we have 0 = 0. With mb = m : mb′,
we get:

1 + size(mb′) = sizeMS(αMS(m : mb′))

188

B.3. Proofs for Mailbox Abstractions (Chapter 5)

We can unfold the abstraction function once, and perform the following, where we let
m̂b

′
= αMS(mb′).

sizeMS(m̂b
′
[m 7→ m̂b

′
(m) + 1]) = ∑

m′∈{m}∪dom(m̂b
′
)

m̂b
′
[m 7→ m̂b

′
(m) + 1](m′)

= 1 + m̂b
′
(m) + ∑

m′∈dom(m̂b
′
)−m

m̂b
′
(m′)

= 1 + ∑
m′∈dom(m̂b

′
)

m̂b
′
(m′)

= 1 + sizeMS(m̂b
′
)

We therefore have 1+ size(mb′) = 1+ sizeMS(αMS(mb′)), which holds from the induction
hypothesis (size(mb′) = sizeMS(αMS(mb′))).

Lemma 43 was not fully mechanically verified with Coq. It relies on the following
assumption which holds but couldn’t be mechanically verified:

∀mb, m : sizeMS(ênqMS(m, αMS(mb))) = 1 + sizeMS(αMS(mb))

Lemma 44 (êmptyMS is sound 3). αMS(empty) v êmptyMS

Proof. This follows from the definition of αMS.

Lemma 45 (ênqMS is sound 3). ∀m, mb : αMS(enq(m, mb)) v ênqMS(m, αMS(mb))

Proof. This is proven by induction on mb. If mb = ε, we have [m 7→ 1] v [m 7→ 1] which
holds by reflexivity. If mb = mb′ : m′, our induction hypothesis is αMS(enq(m, mb′)) =
ênqMS(m, αMS(mb′)), and we have to show that αMS(enq(m′, mb′) : m) v ênqMS(m, αMS(m′ :
mb′)). The rest of the proof follows by unfolding αMS once on each side, using the induc-
tion hypothesis, and showing equality of both sides (which requires performing case
analysis on whether m = m′).

Lemma 46 (d̂eqMS is sound 3). ∀m, mb, mb′ : (m, mb′) ∈ deq(mb) =⇒ (m, αMS(mb′)) ∈
d̂eqMS(αMS(mb))

Proof. Because (m, mb′) ∈ deq(mb), we know that mb = m : mb′. Let m̂b = αMS(mb′)[m 7→
αMS(mb′) + 1]. It is easy to show that both αMS(mb′) = m̂b[m 7→ m̂b − 1] and m̂b =

αMS(mb). From the definition of d̂eqMS, and because mb contains m (therefore, αMS(mb)(m) ≥
1), we know that:

(m, m̂b[m 7→ m̂b − 1]) ∈ d̂eqMS(m̂b)

189

Appendix B. Proofs

Expanding the definition of m̂b, and with the fact that ∀x, x + 1 − 1 = x, we get:

(m, αMS(mb′)) ∈ d̂eqMS(αMS(mb))

Which is exactly what we had to proof.

Theorem 12 (MS sound). The multiset abstraction is a sound mailbox abstraction.

Proof. This follows from Lemmas 43 to 46.

Because this proof depends on Lemma 43, it is not mechanically verified. Should
Lemma 43 be mechanically verified, Theorem 12 would follow.

B.3.3. Soundness of the Finite Multiset Abstraction

The finite multiset abstraction is defined in Figure 5.4 (p. 109).
The abstraction function αMSn : Mbox → MSn converts a concrete mailbox represented

by list of messages to a finite multiset, where multisets are represented by functions from
messages to naturals.

αMSn(ε) = λx.0
α(m : mb) = αMSn(mb)[m 7→ αMSn(mb)(m) + 1] if αMSn(mb)(m) < n

= αMSn(mb)[m 7→ ∞] otherwise

The partial order relation is the following.

m̂b1 vMSn m̂b2 ⇐⇒ ∀m, m̂b1(m) = m̂b2(m) ∨ m̂b2(m) = ∞

Lemma 47 (αMSn can abstract in the reverse order). αMSn(mb : m) = αMSn(m : mb)

Proof. This follows from the fact that multisets have no order and is proven by induction
on mb.

Lemma 48 (sizeMSn is sound). ∀mb, size(mb) ≤ sizeMSn(αMSn(mb))

Proof. Either αMSn(mb) contains an element m associated to ∞, and the property trivially
holds, as the right-hand-side is ∞. If αMSn(mb) contains no such element, the property
proof reduces to Lemma 43.

Similarly to Lemma 43, we couldn’t mechanically verify that proof. However, should
Lemma 43 be mechanically verified, Lemma 48 would follow.

Lemma 49 (êmptyMSn
is sound 3). αMSn(empty) vMSn êmptyMSn

Proof. This follows from the definition of αMSn .

Lemma 50 (ênqMSn
is sound 3). ∀m, mb : αMSn(enq(m, mb)) vMSn ênqMSn

(m, αMSn(mb))

190

B.3. Proofs for Mailbox Abstractions (Chapter 5)

Proof. This proof is by induction on mb and is identical to the proof of Lemma 45.

Lemma 51 (d̂eqMSn
is sound 3). ∀m, mb, mb′ : (m, mb′) ∈ deq(mb) =⇒ ∃m̂b

′
, (m, m̂b

′
) ∈

d̂eqMSn
(αMSn(mb)) ∧ α(mb′) vMSn m̂b

′

Proof. We know from the premise that mb = mb′ : m. This proof is by case analysis on
α(mb′)(m)

• If α(mb′)(m) = ∞, we also have αMSn(mb)(m) = ∞ and αMSn(mb′) = αMSn(mb)
and from the definition of d̂eqMSn

, we have (m, αMSn(mb′)) ∈ d̂eqMSn
(αMSn(mb)).

Therefore, by taking m̂b
′
= αMSn(mb′), the lemma holds by reflexivity of vMSn .

• If αMSn(mb′)(m) ∈ N, we either have:
– αMSn(mb)(m) = ∞, in which case α(mb′)(m) = n where n is the bound. We

fix m̂b
′
= αMSn(mb′)[m 7→ ∞]. It follows from the definition of vMSn that

αMSn(mb′) vMSn m̂b
′
. Note that αMSn(mb) = αMSn(mb′)[m 7→ ∞]. From this

and the definition of d̂eqMSn
, we therefore have (m, m̂b

′
) ∈ d̂eqMSn

(m, αMSn(mb)),
which is what remained to prove.

– αMSn(mb)(m) ∈ N. The finite multiset αMSn(mb) therefore has the same be-
havior as the multiset αMS(mb) for message m, and the lemma follows from
Lemma 46.

Theorem 13 (MSn sound). The finite multiset abstraction is a sound mailbox abstraction.

Proof. This follows from Lemmas 48 to 51.

Again, because this proof depends on Lemma 48, which itself depends on Lemma 43,
this could be mechanically verified. Should Lemma 43 be mechanically verified, Theo-
rem 13 would follow.

B.3.4. Soundness of the Finite List Abstraction

The finite list mailbox abstraction is defined in Figure 5.5 (p. 110).
The abstraction function αLn : Mbox → Ln represents a mailbox by a list only if its

length does not exceed the bound, otherwise it represents it as a set.

αLn(mb) = mb if |mb| ≤ n
= αSet(mb) otherwise

191

Appendix B. Proofs

The partial order relation is plain equality if both mailboxes are from the same domain.
Otherwise, it is set equality after converting the mailbox represented by a list into a set.

m̂b1, m̂b2 ∈ Mbox ∧ m̂b1 = m̂b2 =⇒ m̂b1 vLn m̂b2

m̂b1 ∈ Mbox ∧ m̂b2 ∈ Set ∧ αSet(m̂b1) = m̂b2 =⇒ m̂b1 vLn m̂b2

m̂b1 ∈ Set ∧ m̂b2 ∈ Mbox ∧ m̂b1 = αSet(m̂b2) =⇒ m̂b1 vLn m̂b2

m̂b1, m̂b2 ∈ Set ∧ m̂b1 = m̂b2 =⇒ m̂b1 vLn m̂b2

Lemma 52 (sizeLn is sound 3). ∀mb, size(mb) ≤ sizeLn(αLn(mb))

Proof. This is by case analysis on αLn(mb). Either this results in a set, and the inequality
holds due to Lemma 38. Or, this results in a list, and we have to show that size(mb) ≤
size(mb), which holds by reflexivity of ≤.

Lemma 53 (êmptyLn
is sound 3). αLn(empty) = êmptyLn

Proof. This follows from the definition of αLn .

Lemma 54 (ênqLn
is sound 3). ∀m, mb : αLn(enq(m, mb)) = ênqLn

(m, αLn(mb))

Proof. This is with a simple case analysis on the size of the mailbox.

• Either |mb| ≤ n, and αLn(mb) = mb. By unfolding the definition of ênqLn
, we arrive

at αLn(enq(m, mb)) = αLn(enq(m, mb)), which holds by reflexivity.

• Or, |mb| > n, and the mailbox is abstracted by a set: αLn(mb) = αSet(mb). Since en-
queuing can only increase the size of the mailbox, enq(m, mb)will also be abstracted
by a set. We therefore have to show that αSet(enq(m, mb)) = ênqSet(m, αSet(mb)),
which directly follows from Lemma 40.

Lemma 55 (d̂eqLn
is sound 3). ∀m, mb, mb′ : (m, mb′) ∈ deq(mb) =⇒ ∃m̂b

′
, (m, m̂b

′
) ∈

d̂eqLn
(αLn(mb)) ∧ αLn(mb′) vLn m̂b

′

Proof. Because (m, mb′) ∈ deq(mb), we know that mb = mb′ : m. The proof follows by
case analysis on the size of the mailbox.

• Either |mb| ≤ n, and therefore αLn(mb) = mb, which implies that d̂eqLn
(αLn(mb)) =

deq(mb). By fixing m̂b
′
= mb′, the lemma holds for this case: (m, mb′) ∈ deq(mb)

by the premise, and mb′ vLn mb′ by reflexivity of vLn .

• Or |mb| > n, and therefore αLn(mb) = αSet(mb).

192

B.3. Proofs for Mailbox Abstractions (Chapter 5)

– If |mb′| = n, we fix m̂b
′
= αSet(mb′). We have (m, αSet(mb′)) ∈ d̂eqSet(αSet(mb))

by Lemma 41, therefore (m, αSet(mb′)) ∈ d̂eqLn
(αSet(mb)). Moreover, αLn(mb′) vLn

αSet(mb′), since the left-hand-side is a list, and the right-hand-side is the set
abstraction of that same list.

– If |mb′| > n, we fix m̂b
′
= αLn(mb′), and the rest of the proof follows from

Lemma 41 and reflexivity of vLn , since both αLn(mb′) and αLn(mb) are ele-
ments of Set.

– We cannot have |mb′| < n, because we have |mb| > n and mb = m : mb′,
therefore |mb| = |mb′|+ 1.

Theorem 14 (Ln sound 3). The finite list abstraction with bound n > 0 is a sound mailbox
abstraction.

Proof. This follows from Lemmas 52 to 55.

B.3.5. Soundness of the Graph Abstraction

The graph mailbox abstraction is defined in Figure 5.7 (p. 113).
PathLength returns the length of the single path between from and to, if it exists, and

is unique. An over-approximative (but suitable) definition is the following.

PathLength(from, to, 〈V, E〉) = ∞ if ∃m, |
{

m′ | (m, m′) ∈ E
}
| > 1 ∨ cycle(〈V, E〉)

= 0 if from = to ∧ to 6∈ E(from)

= 1 + PathLength(next, to, 〈V, E〉) if {next} ∈ E(from)

It is over-approximative because there might be a unique path between from and to,
but graph 〈V, E〉 might for example contain a loop that is not connected to this path,
and PathLength would over-approximate with ∞. The abstraction function consists of
enqueuing elements of the list of messages on the empty graph in reverse order, e.g.,
α(m1 : m2 : m3) = ênqG(m3, ênqG(m2, ênqG(m1,⊥))). This is done through an auxiliary
abstraction function αm̂b

G : abstracting a sequence of message is performed by enqueuing
the first message in m̂b, followed by enqueuing the remainder of messages with αm̂b

′

G

where m̂b
′
= ênqG(m, m̂b).

αG(mb) = α⊥
G (mb)

αm̂b
G (ε) = m̂b

αm̂b
G (m : mb) = α

ênqG(m,m̂b)
G (mb)

193

Appendix B. Proofs

The partial order relation in this case is the following.

⊥ vG ⊥
V ⊆ V ′ ∧ E ⊆ E′ ⇐⇒ 〈V, E, f , l〉 vG 〈V ′, E′, f , l〉

Lemma 56 (sizeG is sound). ∀mb, size(mb) ≤ sizeG(αLn(mb))

Proof. This proof requires to show that when the graph is in fact a single trace of length
n from f to l, it represents the corresponding concrete mailbox of length n with the same
elements, with full precision, and that PathLength computes this length n, or returns ∞.

• When ∞ is returned, the property holds because ∀n, n ≤ ∞.

• When PathLength returns n, we know that each node has a single successor and
there are no cycle in the graph. Therefore, there exists a single path between from
and to which contains distinct nodes.

Therefore, PathLength computes the length of the single path from f to l if it exists and is
unique. This is the case only if the mailbox has been created by successfully enqueuing
n+ 1 different messages, and therefore has length n+ 1, which is what sizeG returns.

Because this proof is based on non-simple graph operations, it is rather difficult to
mechanically verify with Coq, hence it was not mechanically verified.

Lemma 57 (êmptyG is sound 3). αG(empty) = êmptyG

Proof. This follows from the definition of αG.

Lemma 58 (ênqG is sound 3). ∀m, mb : αG(enq(m, mb)) = ênqG(m, αG(mb))

Proof. We first prove that ∀m, mb, m̂b : αm̂b
G (enq(m, mb)) = ênqG(m, αm̂b

G (mb)). This is by
induction on mb. Either mb = ε and we have:

αm̂b
G (enq(m, ε)) = ênqG(m, αm̂b

G (ε))

αm̂b
G (m : ε) = ênqG(m, αm̂b

G (ε))

From the definition of αm̂b
G , we get:

ênqG(m, m̂b) = ênqG(m, m̂b)

Or, mb = m′ : mb′ and we have to show the following:

αm̂b
G (enq(m, m′ : mb′)) = ênqG(m, αm̂b

G (m′ : mb′))

We can rewrite the left hand side as follows.

αm̂b
G (enq(m, m′ : mb′)) = αm̂b

G (m′ : enq(m, mb′))

= α
ênqG(m

′,m̂b)
G (enq(m, mb′))

194

B.4. Proofs for Application of ModConc to Concurrent Programs (Chapter 6)

From the induction hypothesis, ∀m̂b, αm̂b
G (enq(m, mb′)) = ênqG(m, αm̂b

G (mb′)), we get

ênqG(m, α
ênqG(m

′,m̂b)
G (mb′)), which is equal to the right-hand side after unfolding the

definition of αm̂b
G once. To prove soundness of ênqG, it suffices to notice that the theorem

we just proved is a more general case. By fixing m̂b = ⊥, we finish our proof.

Lemma 59 (d̂eqG is sound). ∀m, mb, mb′ : (m, mb′) ∈ deq(mb) =⇒ ∃m̂b
′
, (m, m̂b

′
) ∈

d̂eqG(αG(mb)) ∧ αG(mb′) vG m̂b
′

Proof. We know from the premise that mb = mb′ : m. We perform a case analysis on mb′.

• Either mb′ = ε. Therefore, αG(mb) = 〈{m} ,∅, m, m〉, and from the definition of
d̂eqG, we have: (m,⊥) ∈ d̂eqG(αG(mb)). This is what we had to prove, because
α(mb′) = ⊥.

• Or, mb′ = mb′′ : m′. What we have to show then is the following.

∃m̂b
′
, (m, m̂b

′
) ∈ d̂eqG(α

〈{m,m′},{〈m,m′〉},m′,m〉
G (mb′′)) ∧ α

〈{m′},∅,m′,m′〉
G (mb′′) vG m̂b

′

We observe that ênqG is monotone on the level of the graph: it only adds nodes
and edges. It also keeps the last element constant. Therefore, we know that
α
〈{m′},∅,m′,m′〉
G (mb′′)will have the form 〈V, E, m′, l〉. We also know that α

〈{m,m′},{〈m,m′〉},m,m′〉
G (mb′′)

will have the form 〈V ′, E′, m, l′〉 where V ⊆ V ′ and E ⊆ E′. Furthermore, we have
(m, m′) ∈ E′. Because of that and by the definition of d̂eqG, we have (m, 〈V ′, E′, f ′, m′〉) ∈
d̂eqG(α

〈{m,m′},{〈m,m′〉},m,m′〉
G (mb′′)). We finally observe that∀x, the l element of αx

G(mb)
is independent of x. Therefore, we have l = l′. We conclude the proof by fixing
m̂b

′
= 〈V ′, E′, m′, l〉, because 〈V, E, m′, l〉 vG 〈V ′, E′, m′, l〉.

The foundations of this proof have been mechanically verified, but not the proof itself.

Theorem 15 (G sound). The graph abstraction is a sound mailbox abstraction.

Proof. This follows from Lemmas 56 to 59.

Because this proof depends on Lemmas 56 and 59, it couldn’t fully be verified.

B.4. Proofs for Application of ModConc to Concurrent

Programs (Chapter 6)

B.4.1. Proofs for the Application of ModConc to λα

Soundness of Intra-Process Analysis

The intra-process analysis for λα is defined in Figure 6.6 (p. 135), and its state space is
defined in Figure 6.5 (p. 134).

195

Appendix B. Proofs

Lemma 60 (The intra-process analysis is sound). lfp(Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
) is a sound over-

approximation of the fixed point of F̂λα restricted to states reachable with transitions on process
p̂ from the initial state 〈[p̂ 7→

{
(ς̂0, m̂b)

}
], σ̂0, Ξ̂0〉.

Proof. This is proven by a case analysis on the transition rules that can apply.

• When rule Seq applies, the sequentialized transition relation rule is identical to
the transition rule used by F̂λα

e .

• When rule Create applies, the resulting state and stores are soundly over-approximated,
while a soundly over-approximating actor state is added to the set of created actors.

• When rule Become applies, the sequentialized transition rule is identical to the
transition rule used by F̂λα

e , as no interferences arise.

• When rule Send applies, the resulting state and stores are soundly over-approximated,
while a soundly over-approximating message is stored in the set of sent messages.

• When rule Process applies, the resulting state and stores are soundly over-approximated.
Also, the message processed is extracted from the abstract mailbox which is repre-
sented by a set. The non-determinism resulting from the use of a set ensures that
all possible message orderings and multiplicities are accounted for.

Hence, the behavior of the actor with process identifier p̂ is soundly over-approximated
for a specific mailbox m̂b and specific stores σ̂0 and Ξ̂0.

Soundness of Inter-Process Analysis

The inter-process analysis for λα is defined in Figure 6.9 (p. 137), and its state space is
defined in Figure 6.7 (p. 135).

Theorem 16 (The inter-process analysis is sound). lfp(Inter - Ĥλα
e) is a sound over-approximation

of lfp(Fλα
e).

Proof. First, the initial state is soundly over-approximated. Second, every sent message
is added to the mailbox of the target actor, and the target actor is re-explored by the
intra-process analysis, which is itself sound, hence every sent message is accounted
for in a sound manner. Finally, every newly created process is analyzed by the intra-
process analysis, which is sound. Each run of the intra-process analysis may discover
newly created processes and new messages sent, and the inter-process analysis will
therefore reconsider the affected actors for analysis. The components of intra-analysis
states (̂IntraState) only increase in size, as no rule removes elements from any component.
When the fixed point is reached, every created actor has been analyzed with a mailbox
that accounts for all the messages sent to this actor, hence the result of the inter-process
analysis is sound.

196

B.4. Proofs for Application of ModConc to Concurrent Programs (Chapter 6)

Monotonicity

Lemma 61 (Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
and Inter - Ĥλα

e are monotone).

∀S, S′ S ⊆ S′ =⇒ Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
(S) ⊆ Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
(S′)

∀S, S′ S ⊆ S′ =⇒ Inter - Ĥλα
e (S) ⊆ Inter - Ĥλα

e (S′)

Proof. This proof follows the same reasoning as Lemma 11: both transfer functions are
distributive for the join operation, hence they are monotone.

Finiteness

Lemma 62. 〈 ̂IntraState,v〉 and 〈Π̂ × Ŝtore × K̂Store,v〉 are finite lattices

Proof. Elements of ̂IntraState are tuples of components that are finite (see Lemma 19), and
hence ̂IntraState is finite itself. Elements of Π̂ are functions of which the domain (P̂ID)
and the range (̂IntraState × Σ̂) are finite, and hence Π̂ × Ŝtore × K̂Store is also finite.

Termination

Theorem 17 (Termination). The computation of lfp(Inter - Ĥλα
e) always terminates.

Proof. By Tarski’s fixed-point theorem (Tarski, 1955) Lemmas 61 and 62., we know that
the computation of lfp(Intra - Ĥλα

p̂,ς̂0,σ̂0,Ξ̂0,m̂b
) terminates, and that the computation of

lfp(Inter - Ĥλα
e) also terminates.

B.4.2. Proofs for the Application of ModConc to λτ

Soundness of Intra-Process Analysis

The intra-process analysis for λτ is defined in Figure 6.16 (p. 143), and its state space is
defined in Figure 6.15 (p. 141)..

Lemma 63 (The intra-process analysis is sound). lfp(Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
) is a sound over-

approximation of the fixed point of F̂λτ restricted to states reachable with transitions on process
p̂ from the initial state 〈[p̂ 7→ {ς̂0}], σ̂0, Ξ̂0〉 t

⊔
p̂∈dom(Ĵ)

v̂∈ Ĵ(p̂)

〈[p̂ 7→
{

val(v̂), k̂0

}
], [], []〉.

Proof. This is proven by a case analysis on the transition rules that can apply.

• When one of the rule Seq, Ref, and NewLock applies, the sequentialized transition
relation rule is identical to the transition rule used by F̂λτ

e , as there are no possible
interferences with other processes.

197

Appendix B. Proofs

• When rule Create applies, the resulting state and stores are soundly over-approximated
by the sequentialized transition relation, while the state of the created thread is
also soundly over-approximated and is added to the set of created threads.

• When rule Join applies, the resulting state and stores are soundly over-approximated
by the sequentialized transition relation. The value returned by the call to join is
a sound over-approximation assuming that the join store parameter Ĵ is sound.

• When one of the rules Deref, RefSet, Acquire, and Release applies, the resulting
state and stores are soundly over-approximated, assuming that the stores given as
parameters (σ0 and Ξ0) are sound. The accessed or modified address is added to
the set of addresses of the intra-process analysis state.

Hence, the behavior of the thread with process identifier p̂ is soundly over-approximated
for specific stores σ̂0 and Ξ̂0, and join store Ĵ.

Soundness of Inter-Process Analysis

The inter-process analysis for λτ is defined in Figure 6.19 (p. 145), and its state space is
defined in Figure 6.17 (p. 143).

Theorem 18 (The inter-process analysis is sound). lfp(Inter - Ĥλτ
e) is a sound over-approximation

of lfp(Fλτ
e).

Proof. The initial state is soundly over-approximated. Every created thread is analyzed
by the intra-process analysis, which is sound. Every thread of which the execution
has reached its end state is added in the join store, which is passed when considering
new threads for intra-process analysis. Moreover, every thread which depends on a
thread for which a new return value has been inferred is reanalyzed to account for this
information. Finally, every pair of threads that may conflicts are re-analyzed. Through
the fixed-point formulation, this means that eventually, all created threads are analyzed
by the intra-process analysis with a sound over-approximation of the value store, the
continuation store and the join store. The components of intra-analysis states (̂IntraState)
only increase in size, as no rule removes elements from any component. Hence, the
result of the inter-process analysis of a λτ program e is a sound over-approximation of
Fλτ

e .

Monotonicity

Lemma 64 (Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
and Inter - Ĥλτ

e are monotone).

∀S, S′, S ⊆ S′ =⇒ Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
(S) ⊆ Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
(S′)

∀S, S′, S ⊆ S′ =⇒ Inter - Ĥλτ
e (S) ⊆ Inter - Ĥλτ

e (S′)

Proof. This proof follows the same reasoning as Lemma 11: both transfer functions are
distributive for the join operation, hence they are monotone.

198

B.4. Proofs for Application of ModConc to Concurrent Programs (Chapter 6)

Finiteness

Lemma 65 (〈 ̂IntraState,v〉 and 〈Π̂ × Ŝtore × K̂Store,v〉 are finite lattices). 〈 ̂IntraState,v〉
and 〈Π̂ × Ŝtore × K̂Store,v〉 are finite lattices

Proof. Elements of ̂IntraState are tuples of components that are finite (see Lemma 26), and
hence ̂IntraState is finite itself. Elements of Π̂ are functions of which the domain (P̂ID)
and the range (̂IntraState × Σ̂) are finite, and hence Π̂ × Ŝtore × K̂Store is also finite.

Termination

Theorem 19 (Termination). The computation of lfp(Inter - Ĥλτ
e) always terminates.

Proof. By Tarski’s fixed-point theorem (Tarski, 1955) Lemmas 64 and 65., we know
that the computation of lfp(Intra - Ĥλτ

p̂,ς̂0,σ̂0,Ξ̂0, Ĵ
) terminates, and that the computation of

lfp(Inter - Ĥλτ
e) also terminates.

199

B I B L I O G R A P H Y

[1] M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe locking: Static race
detection for java”, ACM Trans. Program. Lang. Syst., vol. 28, no. 2, pp. 207–255,
2006. doi: 10.1145/1119479.1119480.

[2] P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic par-
tial order reduction”, in The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, S. Jagannathan and P. Sewell, Eds., ACM, 2014, pp. 373–384, isbn:
978-1-4503-2544-8. doi: 10.1145/2535838.2535845.

[3] Y. Afek, G. Korland, and A. Zilberstein, “Lowering STM overhead with static
analysis”, in Languages and Compilers for Parallel Computing - 23rd International
Workshop, LCPC 2010, Houston, TX, USA, October 7-9, 2010. Revised Selected Papers,
K. D. Cooper, J. M. Mellor-Crummey, and V. Sarkar, Eds., ser. Lecture Notes in
Computer Science, vol. 6548, Springer, 2010, pp. 31–45, isbn: 978-3-642-19594-5.
doi: 10.1007/978-3-642-19595-2_3.

[4] G. Agha, ACTORS - a model of concurrent computation in distributed systems, ser. MIT
Press series in artificial intelligence. MIT Press, 1986, isbn: 978-0-262-01092-4.

[5] ——, “Concurrent object-oriented programming”, Commun. ACM, vol. 33, no. 9,
pp. 125–141, 1990. doi: 10.1145/83880.84528.

[6] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A foundation for actor
computation”, J. Funct. Program., vol. 7, no. 1, pp. 1–72, 1997.

[7] E. Albert, M. Gómez-Zamalloa, and M. Isabel, “Combining static analysis and
testing for deadlock detection”, in Integrated Formal Methods - 12th International
Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings, E. Ábrahám
and M. Huisman, Eds., ser. Lecture Notes in Computer Science, vol. 9681, Springer,
2016, pp. 409–424, isbn: 978-3-319-33692-3. doi: 10.1007/978-3-319-33693-
0_26.

[8] E. S. Andreasen, A. Møller, and B. B. Nielsen, “Systematic approaches for increas-
ing soundness and precision of static analyzers”, in Proceedings of the 6th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis, ACM,
2017, pp. 31–36.

[9] J. Armstrong, R. Virding, and M. Williams, Concurrent programming in ERLANG.
Prentice Hall, 1993, isbn: 978-0-13-285792-5.

201

https://doi.org/10.1145/1119479.1119480
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-642-19595-2_3
https://doi.org/10.1145/83880.84528
https://doi.org/10.1007/978-3-319-33693-0_26
https://doi.org/10.1007/978-3-319-33693-0_26

Bibliography

[10] C. Artho and A. Biere, “Applying static analysis to large-scale, multi-threaded
java programs”, in 13th Australian Software Engineering Conference (ASWEC 2001),
26-28 August 2001, Canberra, Australia, IEEE Computer Society, 2001, pp. 68–75,
isbn: 0-7695-1254-2. doi: 10.1109/ASWEC.2001.948499.

[11] T. Arts, M. Dam, L. Fredlund, and D. Gurov, “System description: Verification
of distributed erlang programs”, in Automated Deduction - CADE-15, 15th In-
ternational Conference on Automated Deduction, Lindau, Germany, July 5-10, 1998,
Proceedings, C. Kirchner and H. Kirchner, Eds., ser. Lecture Notes in Computer
Science, vol. 1421, Springer, 1998, pp. 38–41, isbn: 3-540-64675-2. doi: 10.1007/
BFb0054244.

[12] T. Arts and T. Noll, “Verifying generic erlang client-server implementations”,
in Implementation of Functional Languages, 12th International Workshop, IFL 2000,
Aachen, Germany, September 4-7, 2000, Selected Papers, M. Mohnen and P. W. M.
Koopman, Eds., ser. Lecture Notes in Computer Science, vol. 2011, Springer, 2000,
pp. 37–52, isbn: 3-540-41919-5. doi: 10.1007/3-540-45361-X_3.

[13] H. G. Baker and C. Hewitt, “The incremental garbage collection of processes”,
SIGART Newsletter, vol. 64, pp. 55–59, 1977. doi: 10.1145/872736.806932.

[14] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Gros, A. Kamsky, S.
McPeak, and D. R. Engler, “A few billion lines of code later: Using static analysis
to find bugs in the real world”, Commun. ACM, vol. 53, no. 2, pp. 66–75, 2010. doi:
10.1145/1646353.1646374.

[15] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli,
J. Overbey, P. Simmons, H. Sung, and M. Vakilian, “A type and effect system
for deterministic parallel java”, in Proceedings of the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, S. Arora and G. T.
Leavens, Eds., ACM, 2009, pp. 97–116, isbn: 978-1-60558-766-0. doi: 10.1145/
1640089.1640097.

[16] C. Boyapati, R. Lee, and M. C. Rinard, “Ownership types for safe programming:
Preventing data races and deadlocks”, in Proceedings of the 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002., M. Ibrahim and
S. Matsuoka, Eds., ACM, 2002, pp. 211–230, isbn: 1-58113-471-1. doi: 10.1145/
582419.582440.

[17] C. Boyapati and M. C. Rinard, “A parameterized type system for race-free java
programs”, in Proceedings of the 2001 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2001, Tampa, Florida,
USA, October 14-18, 2001., L. M. Northrop and J. M. Vlissides, Eds., ACM, 2001,
pp. 56–69, isbn: 1-58113-335-9. doi: 10.1145/504282.504287.

202

https://doi.org/10.1109/ASWEC.2001.948499
https://doi.org/10.1007/BFb0054244
https://doi.org/10.1007/BFb0054244
https://doi.org/10.1007/3-540-45361-X_3
https://doi.org/10.1145/872736.806932
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/504282.504287

Bibliography

[18] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional shape
analysis by means of bi-abduction”, in Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah,
GA, USA, January 21-23, 2009, Z. Shao and B. C. Pierce, Eds., ACM, 2009, pp. 289–
300, isbn: 978-1-60558-379-2. doi: 10.1145/1480881.1480917.

[19] R. Carlsson, K. Sagonas, and J. Wilhelmsson, “Message analysis for concurrent
languages”, in Static Analysis, 10th International Symposium, SAS 2003, San Diego,
CA, USA, June 11-13, 2003, Proceedings, R. Cousot, Ed., ser. Lecture Notes in
Computer Science, vol. 2694, Springer, 2003, pp. 73–90, isbn: 3-540-40325-6. doi:
10.1007/3-540-44898-5_5.

[20] D. Caromel, L. Henrio, and B. P. Serpette, “Asynchronous sequential processes”,
Inf. Comput., vol. 207, no. 4, pp. 459–495, 2009. doi: 10.1016/j.ic.2008.12.004.

[21] R. H. Carver and Y. Lei, “A general model for reachability testing of concurrent
programs”, in Formal Methods and Software Engineering, 6th International Conference
on Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA, November 8-12,
2004, Proceedings, J. Davies, W. Schulte, and M. Barnett, Eds., ser. Lecture Notes
in Computer Science, vol. 3308, Springer, 2004, pp. 76–98, isbn: 3-540-23841-7.
doi: 10.1007/978-3-540-30482-1_14.

[22] M. Christakis, A. Gotovos, and K. Sagonas, “Systematic testing for detecting
concurrency errors in erlang programs”, in Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg,
March 18-22, 2013, IEEE Computer Society, 2013, pp. 154–163, isbn: 978-1-4673-
5961-0. doi: 10.1109/ICST.2013.50.

[23] M. Christakis and K. Sagonas, “Static detection of deadlocks in erlang”, Technical
report, June, Tech. Rep., 2011.

[24] ——, “Static detection of race conditions in erlang”, in Practical Aspects of Declar-
ative Languages, 12th International Symposium, PADL 2010, Madrid, Spain, January
18-19, 2010. Proceedings, M. Carro and R. Peña, Eds., ser. Lecture Notes in Com-
puter Science, vol. 5937, Springer, 2010, pp. 119–133, isbn: 978-3-642-11502-8. doi:
10.1007/978-3-642-11503-5_11.

[25] S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil, “Deny capabilities for
safe, fast actors”, in Proceedings of the 5th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE! 2015, Pittsburgh, PA,
USA, October 26, 2015, E. G. Boix, P. Haller, A. Ricci, and C. Varela, Eds., ACM,
2015, pp. 1–12, isbn: 978-1-4503-3901-8. doi: 10.1145/2824815.2824816.

[26] C. Colby, “Analyzing the communication topology of concurrent programs”, in
Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, La Jolla, California, USA, June 21-23, 1995, N. D. Jones,
Ed., ACM Press, 1995, pp. 202–213, isbn: 0-89791-720-0. doi: 10.1145/215465.
215592.

[27] E. C. Cooper and J. G. Morrisett, “Adding threads to standard ml”, 1990.

203

https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1007/3-540-44898-5_5
https://doi.org/10.1016/j.ic.2008.12.004
https://doi.org/10.1007/978-3-540-30482-1_14
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1007/978-3-642-11503-5_11
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/215465.215592
https://doi.org/10.1145/215465.215592

Bibliography

[28] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng, “Bandera: Extracting finite-state models from java source code”, in
Proceedings of the 22nd International Conference on on Software Engineering, ICSE
2000, Limerick Ireland, June 4-11, 2000., C. Ghezzi, M. Jazayeri, and A. L. Wolf,
Eds., ACM, 2000, pp. 439–448, isbn: 1-58113-206-9. doi: 10.1145/337180.337234.

[29] P. Cousot and R. Cousot, “Invariance proof methods and analysis techniques for
parallel programs”, in Automatic Program Construction Techniques, A. Biermann,
G. Guiho, and Y. Kodratoff, Eds., Macmillan, New York, New York, United States,
1984, ch. 12, pp. 243–271.

[30] P. Cousot, “Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation”, Theor. Comput. Sci., vol. 277, no. 1-2, pp. 47–103, 2002.
doi: 10.1016/S0304-3975(00)00313-3.

[31] ——, “The verification grand challenge and abstract interpretation”, in Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discus-
sions, B. Meyer and J. Woodcock, Eds., ser. Lecture Notes in Computer Science,
vol. 4171, Springer, 2005, pp. 189–201, isbn: 978-3-540-69147-1. doi: 10.1007/978-
3-540-69149-5_21.

[32] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints”, in
Conference Record of the Fourth ACM Symposium on Principles of Programming Lan-
guages, Los Angeles, California, USA, January 1977, R. M. Graham, M. A. Harrison,
and R. Sethi, Eds., ACM, 1977, pp. 238–252. doi: 10.1145/512950.512973.

[33] ——, “Modular static program analysis”, in Compiler Construction, 11th Interna-
tional Conference, CC 2002, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings,
R. N. Horspool, Ed., ser. Lecture Notes in Computer Science, vol. 2304, Springer,
2002, pp. 159–178, isbn: 3-540-43369-4. doi: 10.1007/3-540-45937-5_13.

[34] ——, “Semantic analysis of communicating sequential processes (shortened ver-
sion)”, in Automata, Languages and Programming, 7th Colloquium, Noordweĳkerhout,
The Netherland, July 14-18, 1980, Proceedings, J. W. de Bakker and J. van Leeuwen,
Eds., ser. Lecture Notes in Computer Science, vol. 85, Springer, 1980, pp. 119–133,
isbn: 3-540-10003-2. doi: 10.1007/3-540-10003-2_65.

[35] F. Dagnat and M. Pantel, “Static analysis of communications for erlang”, in
Proceedings of 8th International Erlang/OTP User Conference, 2002.

[36] M. Dam and L. Fredlund, “On the verification of open distributed systems”, in
Proceedings of the 1998 ACM symposium on Applied Computing, SAC’98, Atlanta, GA,
USA, February 27 - March 1, 1998, K. M. George and G. B. Lamont, Eds., ACM,
1998, pp. 532–540, isbn: 0-89791-969-6. doi: 10.1145/330560.330917.

204

https://doi.org/10.1145/337180.337234
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1007/978-3-540-69149-5_21
https://doi.org/10.1007/978-3-540-69149-5_21
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-10003-2_65
https://doi.org/10.1145/330560.330917

Bibliography

[37] J. De Bleser, Q. Stiévenart, J. Nicolay, and C. De Roover, “Static taint analysis
of event-driven scheme programs”, in 10th European Lisp Symposium, ELS 2017,
April 3-4, 2017, Brussels, Belgium, 2017, pp. 80–87.

[38] J. De Koster, T. Van Cutsem, and W. De Meuter, “43 years of actors: A taxon-
omy of actor models and their key properties”, in Proceedings of the 6th Interna-
tional Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE 2016, Amsterdam, The Netherlands, October 30, 2016, S. Clebsch, T. Desell,
P. Haller, and A. Ricci, Eds., ACM, 2016, pp. 31–40, isbn: 978-1-4503-4639-9. doi:
10.1145/3001886.3001890.

[39] S. Demeyer, A. Parsai, G. Laghari, and B. van Bladel, Eds., Proceedings of the 16th
edition of the BElgian-NEtherlands software eVOLution symposium, Antwerp, Belgium,
December 4-5, 2017, vol. 2047, CEUR Workshop Proceedings, CEUR-WS.org, 2018.

[40] E. D’Osualdo, J. Kochems, and C. L. Ong, “Automatic verification of erlang-
style concurrency”, in Static Analysis - 20th International Symposium, SAS 2013,
Seattle, WA, USA, June 20-22, 2013. Proceedings, F. Logozzo and M. Fähndrich,
Eds., ser. Lecture Notes in Computer Science, vol. 7935, Springer, 2013, pp. 454–
476, isbn: 978-3-642-38855-2. doi: 10.1007/978-3-642-38856-9_24.

[41] E. D’Osualdo, J. Kochems, and L. Ong, “Soter: An automatic safety verifier for
erlang”, in Proceedings of the 2nd edition on Programming systems, languages and
applications based on actors, agents, and decentralized control abstractions, AGERE!
2012, October 21-22, 2012, Tucson, Arizona, USA, G. A. Agha, R. H. Bordini, A.
Marron, and A. Ricci, Eds., ACM, 2012, pp. 137–140, isbn: 978-1-4503-1630-9. doi:
10.1145/2414639.2414658.

[42] E. Duesterwald and M. L. Soffa, “Concurrency analysis in the presence of proce-
dures using a data-flow framework”, in Proceedings of the Symposium on Testing,
Analysis, and Verification, TAV 1991, Victoria, British Columbia, Canada, October
8-10, 1991, W. E. Howden, Ed., ACM, 1991, pp. 36–48, isbn: 0-89791-449-X. doi:
10.1145/120807.120811.

[43] D. R. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions
and deadlocks”, in Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, M. L.
Scott and L. L. Peterson, Eds., ACM, 2003, pp. 237–252, isbn: 1-58113-757-5. doi:
10.1145/945445.945468.

[44] C. Flanagan and M. Abadi, “Types for safe locking”, in Programming Languages
and Systems, 8th European Symposium on Programming, ESOP’99, Held as Part of
the European Joint Conferences on the Theory and Practice of Software, ETAPS’99,
Amsterdam, The Netherlands, 22-28 March, 1999, Proceedings, S. D. Swierstra, Ed.,
ser. Lecture Notes in Computer Science, vol. 1576, Springer, 1999, pp. 91–108,
isbn: 3-540-65699-5. doi: 10.1007/3-540-49099-X_7.

205

https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1145/2414639.2414658
https://doi.org/10.1145/120807.120811
https://doi.org/10.1145/945445.945468
https://doi.org/10.1007/3-540-49099-X_7

Bibliography

[45] C. Flanagan and S. N. Freund, “Type-based race detection for java”, in Proceedings
of the 2000 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Vancouver, Britith Columbia, Canada, June 18-21, 2000, M. S. Lam,
Ed., ACM, 2000, pp. 219–232, isbn: 1-58113-199-2. doi: 10.1145/349299.349328.

[46] C. Flanagan, S. N. Freund, and S. Qadeer, “Thread-modular verification for
shared-memory programs”, in Programming Languages and Systems, 11th Euro-
pean Symposium on Programming, ESOP 2002, held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April
8-12, 2002, Proceedings, D. L. Métayer, Ed., ser. Lecture Notes in Computer Sci-
ence, vol. 2305, Springer, 2002, pp. 262–277, isbn: 3-540-43363-5. doi: 10.1007/3-
540-45927-8_19.

[47] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia, “Modular verification of
multithreaded programs”, Theor. Comput. Sci., vol. 338, no. 1-3, pp. 153–183, 2005.
doi: 10.1016/j.tcs.2004.12.006.

[48] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model check-
ing software”, in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, Long Beach, California, USA, Jan-
uary 12-14, 2005, J. Palsberg and M. Abadi, Eds., ACM, 2005, pp. 110–121, isbn:
1-58113-830-X. doi: 10.1145/1040305.1040315.

[49] C. Flanagan and S. Qadeer, “A type and effect system for atomicity”, in Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation 2003, San Diego, California, USA, June 9-11, 2003, R. Cytron and R. Gupta,
Eds., ACM, 2003, pp. 338–349, isbn: 1-58113-662-5. doi: 10.1145/781131.781169.

[50] ——, “Predicate abstraction for software verification”, in Conference Record of
POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, OR, USA, January 16-18, 2002, J. Launchbury and J. C.
Mitchell, Eds., ACM, 2002, pp. 191–202, isbn: 1-58113-450-9. doi: 10.1145/503272.
503291.

[51] ——, “Thread-modular model checking”, in Model Checking Software, 10th Inter-
national SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings, T. Ball and
S. K. Rajamani, Eds., ser. Lecture Notes in Computer Science, vol. 2648, Springer,
2003, pp. 213–224, isbn: 3-540-40117-2. doi: 10.1007/3-540-44829-2_14.

[52] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, “The essence of compiling
with continuations”, in Proceedings of the ACM SIGPLAN’93 Conference on Program-
ming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA,
June 23-25, 1993, R. Cartwright, Ed., ACM, 1993, pp. 237–247, isbn: 0-89791-598-4.
doi: 10.1145/155090.155113.

[53] A. Flores-Montoya, E. Albert, and S. Genaim, “May-happen-in-parallel based
deadlock analysis for concurrent objects”, in Formal Techniques for Distributed
Systems - Joint IFIP WG 6.1 International Conference, FMOODS/FORTE 2013, Held as
Part of the 8th International Federated Conference on Distributed Computing Techniques,

206

https://doi.org/10.1145/349299.349328
https://doi.org/10.1007/3-540-45927-8_19
https://doi.org/10.1007/3-540-45927-8_19
https://doi.org/10.1016/j.tcs.2004.12.006
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/781131.781169
https://doi.org/10.1145/503272.503291
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.1145/155090.155113

Bibliography

DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings, D. Beyer and M. Boreale,
Eds., ser. Lecture Notes in Computer Science, vol. 7892, Springer, 2013, pp. 273–
288, isbn: 978-3-642-38591-9. doi: 10.1007/978-3-642-38592-6_19.

[54] P. Fonseca, C. Li, and R. Rodrigues, “Finding complex concurrency bugs in
large multi-threaded applications”, in European Conference on Computer Systems,
Proceedings of the Sixth European conference on Computer systems, EuroSys 2011,
Salzburg, Austria, April 10-13, 2011, C. M. Kirsch and G. Heiser, Eds., ACM, 2011,
pp. 215–228, isbn: 978-1-4503-0634-8. doi: 10.1145/1966445.1966465.

[55] L. Fredlund and H. Svensson, “Mcerlang: A model checker for a distributed
functional programming language”, in Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2007, Freiburg, Germany,
October 1-3, 2007, R. Hinze and N. Ramsey, Eds., ACM, 2007, pp. 125–136, isbn:
978-1-59593-815-2. doi: 10.1145/1291151.1291171.

[56] P. Garoche, “Static analysis of an actor-based process calculus by abstract inter-
pretation. (analyse statique d’un calcul d’acteurs par interprétation abstraite)”,
PhD thesis, National Polytechnic Institute of Toulouse, France, 2008.

[57] P. Garoche, M. Pantel, and X. Thirioux, “Static safety for an actor dedicated
process calculus by abstract interpretation”, in Formal Methods for Open Object-
Based Distributed Systems, 8th IFIP WG 6.1 International Conference, FMOODS 2006,
Bologna, Italy, June 14-16, 2006, Proceedings, R. Gorrieri and H. Wehrheim, Eds.,
ser. Lecture Notes in Computer Science, vol. 4037, Springer, 2006, pp. 78–92, isbn:
3-540-34893-X. doi: 10.1007/11768869_8.

[58] T. Gilray, M. D. Adams, and M. Might, “Allocation characterizes polyvariance: A
unified methodology for polyvariant control-flow analysis”, in Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016, J. Garrigue, G. Keller, and E. Sumii, Eds., ACM,
2016, pp. 407–420, isbn: 978-1-4503-4219-3. doi: 10.1145/2951913.2951936.

[59] T. Gilray, S. Lyde, M. D. Adams, M. Might, and D. Van Horn, “Pushdown control-
flow analysis for free”, in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, R. Bodk and R. Majumdar, Eds., ACM, 2016, pp. 691–
704, isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837631.

[60] P. Godefroid, “Model checking for programming languages using verisoft”, in
Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Papers Presented at the Symposium, Paris, France,
15-17 January 1997, P. Lee, F. Henglein, and N. D. Jones, Eds., ACM Press, 1997,
pp. 174–186, isbn: 0-89791-853-3. doi: 10.1145/263699.263717.

[61] ——, Partial-Order Methods for the Verification of Concurrent Systems - An Approach
to the State-Explosion Problem, ser. Lecture Notes in Computer Science. Springer,
1996, vol. 1032, isbn: 3-540-60761-7. doi: 10.1007/3-540-60761-7.

207

https://doi.org/10.1007/978-3-642-38592-6_19
https://doi.org/10.1145/1966445.1966465
https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1007/11768869_8
https://doi.org/10.1145/2951913.2951936
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/3-540-60761-7

Bibliography

[62] P. Godefroid and N. Nagappan, “Concurrency at microsoft: An exploratory sur-
vey”, in CAV Workshop on Exploiting Concurrency Efficiently and Correctly, 2008.

[63] P. Godefroid and P. Wolper, “A partial approach to model checking”, in Proceed-
ings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amster-
dam, The Netherlands, July 15-18, 1991, IEEE Computer Society, 1991, pp. 406–415,
isbn: 0-8186-2230-X. doi: 10.1109/LICS.1991.151664.

[64] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv, “Thread-modular shape analysis”,
in Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, June 10-13, 2007, J. Ferrante
and K. S. McKinley, Eds., ACM, 2007, pp. 266–277, isbn: 978-1-59593-633-2. doi:
10.1145/1250734.1250765.

[65] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and refinement
for verifying multi-threaded programs”, in Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, T. Ball and M. Sagiv, Eds., ACM, 2011, pp. 331–344,
isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926424.

[66] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and event-based
programming”, Theor. Comput. Sci., vol. 410, no. 2-3, pp. 202–220, 2009. doi: 10.
1016/j.tcs.2008.09.019.

[67] P. Haller and F. Sommers, Actors in Scala. Artima Incorporation, 2012.
[68] K. Havelund, “Java pathfinder, A translator from java to promela”, in Theoret-

ical and Practical Aspects of SPIN Model Checking, 5th and 6th International SPIN
Workshops, Trento, Italy, July 5, 1999, Toulouse, France, September 21 and 24 1999,
Proceedings, D. Dams, R. Gerth, S. Leue, and M. Massink, Eds., ser. Lecture Notes
in Computer Science, vol. 1680, Springer, 1999, p. 152, isbn: 3-540-66499-8. doi:
10.1007/3-540-48234-2_11.

[69] K. Havelund and T. Pressburger, “Model checking JAVA programs using JAVA
pathfinder”, STTT, vol. 2, no. 4, pp. 366–381, 2000. doi: 10.1007/s100090050043.

[70] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer, “Thread-modular abstrac-
tion refinement”, in Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, W. A. H. Jr. and F. Somenzi,
Eds., ser. Lecture Notes in Computer Science, vol. 2725, Springer, 2003, pp. 262–
274, isbn: 3-540-40524-0. doi: 10.1007/978-3-540-45069-6_27.

[71] C. Hewitt, P. B. Bishop, and R. Steiger, “A universal modular ACTOR formalism
for artificial intelligence”, in Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. Standford, CA, USA, August 20-23, 1973, N. J. Nilsson, Ed.,
William Kaufmann, 1973, pp. 235–245.

[72] C. Hewitt and B. Smith, “A plasma primer”, Draft. Cambridge, Massachusetts: MIT
Artificial Intelligence Laboratory, 1975.

208

https://doi.org/10.1109/LICS.1991.151664
https://doi.org/10.1145/1250734.1250765
https://doi.org/10.1145/1926385.1926424
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1007/3-540-48234-2_11
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/978-3-540-45069-6_27

Bibliography

[73] R. Hickey, “The clojure programming language”, in Proceedings of the 2008 Sym-
posium on Dynamic Languages, DLS 2008, July 8, 2008, Paphos, Cyprus, J. Brichau,
Ed., ACM, 2008, p. 1, isbn: 978-1-60558-270-2. doi: 10.1145/1408681.1408682.

[74] C. A. R. Hoare, “Communicating sequential processes”, Commun. ACM, vol. 21,
no. 8, pp. 666–677, 1978. doi: 10.1145/359576.359585.

[75] G. J. Holzmann, The SPIN Model Checker - primer and reference manual. Addison-
Wesley, 2004, isbn: 978-0-321-22862-8.

[76] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous session
types”, J. ACM, vol. 63, no. 1, 9:1–9:67, 2016. doi: 10.1145/2827695.

[77] ——, “Multiparty asynchronous session types”, in Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008,
San Francisco, California, USA, January 7-12, 2008, G. C. Necula and P. Wadler,
Eds., ACM, 2008, pp. 273–284, isbn: 978-1-59593-689-9. doi: 10.1145/1328438.
1328472.

[78] S. Hong and M. Kim, “A survey of race bug detection techniques for multi-
threaded programmes”, Softw. Test., Verif. Reliab., vol. 25, no. 3, pp. 191–217, 2015.
doi: 10.1002/stvr.1564.

[79] D. Hovemeyer and W. Pugh, “Finding bugs is easy”, SIGPLAN Notices, vol. 39,
no. 12, pp. 92–106, 2004. doi: 10.1145/1052883.1052895.

[80] F. Huch, “Verification of erlang programs using abstract interpretation and model
mhecking”, in Proceedings of the fourth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’99), Paris, France, September 27-29, 1999., D. Rémi
and P. Lee, Eds., ACM, 1999, pp. 261–272, isbn: 1-58113-111-9. doi: 10.1145/
317636.317908.

[81] S. M. Imam and V. Sarkar, “Savina - an actor benchmark suite: Enabling empirical
evaluation of actor libraries”, in Proceedings of the 4th International Workshop on
Programming based on Actors Agents & Decentralized Control, AGERE! 2014, Portland,
OR, USA, October 20, 2014, E. G. Boix, P. Haller, A. Ricci, and C. Varela, Eds., ACM,
2014, pp. 67–80, isbn: 978-1-4503-2189-1. doi: 10.1145/2687357.2687368.

[82] S. Jagannathan, “Locality abstractions for parallel and distributed computing”, in
Theory and Practice of Parallel Programming, International Workshop TPPP’94, Sendai,
Japan, November 7-9, 1994, Proceedings, T. Ito and A. Yonezawa, Eds., ser. Lecture
Notes in Computer Science, vol. 907, Springer, 1994, pp. 320–345, isbn: 3-540-
59172-9. doi: 10.1007/BFb0026577.

[83] S. Jagannathan and S. Weeks, “Analyzing stores and references in a parallel
symbolic language”, in LISP and Functional Programming, 1994, pp. 294–305. doi:
10.1145/182409.182493.

209

https://doi.org/10.1145/1408681.1408682
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/2827695
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1002/stvr.1564
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/317636.317908
https://doi.org/10.1145/317636.317908
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1007/BFb0026577
https://doi.org/10.1145/182409.182493

Bibliography

[84] C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and M. T. Vechev, “Stateless
model checking of event-driven applications”, in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015, J. Aldrich and P. Eugster, Eds., ACM, 2015, pp. 57–73, isbn:
978-1-4503-3689-5. doi: 10.1145/2814270.2814282.

[85] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?”, in 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, D.
Notkin, B. H. C. Cheng, and K. Pohl, Eds., IEEE Computer Society, 2013, pp. 672–
681, isbn: 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606613.

[86] C. B. Jones, “Specification and design of (parallel) programs”, in IFIP Congress,
1983, pp. 321–332.

[87] S. L. P. Jones, A. D. Gordon, and S. Finne, “Concurrent haskell”, in Conference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996, H. Boehm and G. L. S. Jr., Eds., ACM Press,
1996, pp. 295–308, isbn: 0-89791-769-3. doi: 10.1145/237721.237794.

[88] V. Kahlon, F. Ivancic, and A. Gupta, “Reasoning about threads communicating
via locks”, in Computer Aided Verification, 17th International Conference, CAV 2005,
Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings, K. Etessami and S. K. Ra-
jamani, Eds., ser. Lecture Notes in Computer Science, vol. 3576, Springer, 2005,
pp. 505–518, isbn: 3-540-27231-3. doi: 10.1007/11513988_49.

[89] H. Kastenberg and A. Rensink, “Dynamic partial order reduction using probe
sets”, in CONCUR 2008 - Concurrency Theory, 19th International Conference, CON-
CUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings, F. van Breugel and M.
Chechik, Eds., ser. Lecture Notes in Computer Science, vol. 5201, Springer, 2008,
pp. 233–247, isbn: 978-3-540-85360-2. doi: 10.1007/978-3-540-85361-9_21.

[90] S. Khurshid, C. S. Pasareanu, and W. Visser, “Generalized symbolic execution
for model checking and testing”, in Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, H. Garavel and J. Hatcliff, Eds., ser. Lecture
Notes in Computer Science, vol. 2619, Springer, 2003, pp. 553–568, isbn: 3-540-
00898-5. doi: 10.1007/3-540-36577-X_40.

[91] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective stateless
model checking for C/C++ concurrency”, PACMPL, vol. 2, no. POPL, 17:1–17:32,
2018. doi: 10.1145/3158105.

[92] R. Kuhn, B. Hanafee, and J. Allen, Reactive design patterns. Manning Publications
Company, 2017.

210

https://doi.org/10.1145/2814270.2814282
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/237721.237794
https://doi.org/10.1007/11513988_49
https://doi.org/10.1007/978-3-540-85361-9_21
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1145/3158105

Bibliography

[93] P. B. Ladkin and B. Simons, “Compile-time analysis of communicating pro-
cesses”, in Proceedings of the 6th international conference on Supercomputing, ICS
1992, Washington, DC, USA, July 19-24, 1992, K. Kennedy and C. D. Polychronopou-
los, Eds., ACM, 1992, pp. 248–259, isbn: 0-89791-485-6. doi: 10.1145/143369.
143417.

[94] S. Lauterburg, M. Dotta, D. Marinov, and G. A. Agha, “A framework for state-
space exploration of java-based actor programs”, in ASE 2009, 24th IEEE/ACM
International Conference on Automated Software Engineering, Auckland, New Zealand,
November 16-20, 2009, IEEE Computer Society, 2009, pp. 468–479, isbn: 978-0-7695-
3891-4. doi: 10.1109/ASE.2009.88.

[95] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha, “Evaluating ordering
heuristics for dynamic partial-order reduction techniques”, in Fundamental Ap-
proaches to Software Engineering, 13th International Conference, FASE 2010, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, D. S. Rosenblum and G. Taentzer,
Eds., ser. Lecture Notes in Computer Science, vol. 6013, Springer, 2010, pp. 308–
322, isbn: 978-3-642-12028-2. doi: 10.1007/978-3-642-12029-9_22.

[96] D. Lea, Concurrent programming in Java - design principles and patterns, ser. Java
series. Addison-Wesley-Longman, 1997, isbn: 978-0-201-69581-6.

[97] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon, “The objective caml
system release 3.11”, Documentation and users manual. INRIA, 2008.

[98] A. Lindgren, “A prototype of a soft type system for erlang”, Master’s thesis,
Uppsala University, 1996.

[99] S. Marlow and P. Wadler, “A practical subtyping system for erlang”, in Proceedings
of the 1997 ACM SIGPLAN International Conference on Functional Programming
(ICFP ’97), Amsterdam, The Netherlands, June 9-11, 1997., S. L. P. Jones, M. Tofte,
and A. M. Berman, Eds., ACM, 1997, pp. 136–149, isbn: 0-89791-918-1. doi: 10.
1145/258948.258962.

[100] M. Martel and M. Gengler, “Communication topology analysis for concurrent
programs”, in SPIN Model Checking and Software Verification, 7th International
SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000, Proceedings,
K. Havelund, J. Penix, and W. Visser, Eds., ser. Lecture Notes in Computer Sci-
ence, vol. 1885, Springer, 2000, pp. 265–286, isbn: 3-540-41030-9. doi: 10.1007/
10722468_16.

[101] S. McConnell, Code Complete, Second Edition. Redmond, WA, USA: Microsoft Press,
2004, isbn: 9780735619678.

[102] N. Mercouroff, “An algorithm for analyzing communicating processes”, in Math-
ematical Foundations of Programming Semantics, 7th International Conference, Pitts-
burgh, PA, USA, March 25-28, 1991, Proceedings, S. D. Brookes, M. G. Main, A.
Melton, M. W. Mislove, and D. A. Schmidt, Eds., ser. Lecture Notes in Computer

211

https://doi.org/10.1145/143369.143417
https://doi.org/10.1145/143369.143417
https://doi.org/10.1109/ASE.2009.88
https://doi.org/10.1007/978-3-642-12029-9_22
https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/258948.258962
https://doi.org/10.1007/10722468_16
https://doi.org/10.1007/10722468_16

Bibliography

Science, vol. 598, Springer, 1991, pp. 312–325, isbn: 3-540-55511-0. doi: 10.1007/3-
540-55511-0_16.

[103] J. Midtgaard, F. Nielson, and H. R. Nielson, “A parametric abstract domain for
lattice-valued regular expressions”, in Static Analysis - 23rd International Sympo-
sium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings, X. Rival, Ed.,
ser. Lecture Notes in Computer Science, vol. 9837, Springer, 2016, pp. 338–360,
isbn: 978-3-662-53412-0. doi: 10.1007/978-3-662-53413-7_17.

[104] ——, “Iterated process analysis over lattice-valued regular expressions”, in Pro-
ceedings of the 18th International Symposium on Principles and Practice of Declarative
Programming, Edinburgh, United Kingdom, September 5-7, 2016, J. Cheney and G.
Vidal, Eds., ACM, 2016, pp. 132–145, isbn: 978-1-4503-4148-6. doi: 10.1145/
2967973.2968601.

[105] M. Might and P. Manolios, “A posteriori soundness for non-deterministic abstract
interpretations”, in Verification, Model Checking, and Abstract Interpretation, 10th
International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009.
Proceedings, N. D. Jones and M. Müller-Olm, Eds., ser. Lecture Notes in Computer
Science, vol. 5403, Springer, 2009, pp. 260–274, isbn: 978-3-540-93899-6. doi: 10.
1007/978-3-540-93900-9_22.

[106] M. Might and O. Shivers, “Improving flow analyses via gammacfa: Abstract
garbage collection and counting”, in Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2006, Portland, Oregon, USA,
September 16-21, 2006, J. H. Reppy and J. L. Lawall, Eds., ACM, 2006, pp. 13–25,
isbn: 1-59593-309-3. doi: 10.1145/1159803.1159807.

[107] M. Might and D. Van Horn, “A family of abstract interpretations for static anal-
ysis of concurrent higher-order programs”, in Static Analysis - 18th International
Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings, E. Yahav,
Ed., ser. Lecture Notes in Computer Science, vol. 6887, Springer, 2011, pp. 180–
197, isbn: 978-3-642-23701-0. doi: 10.1007/978-3-642-23702-7_16.

[108] M. S. Miller, E. D. Tribble, and J. S. Shapiro, “Concurrency among strangers”,
in Trustworthy Global Computing, International Symposium, TGC 2005, Edinburgh,
UK, April 7-9, 2005, Revised Selected Papers, R. D. Nicola and D. Sangiorgi, Eds.,
ser. Lecture Notes in Computer Science, vol. 3705, Springer, 2005, pp. 195–229,
isbn: 3-540-30007-4. doi: 10.1007/11580850_12.

[109] M. S. Miller, K.-P. Yee, J. Shapiro, et al., “Capability myths demolished”, Techni-
cal Report SRL2003-02, Johns Hopkins University Systems Research Laboratory,
2003. http://www. erights. org/elib/capability/duals, Tech. Rep., 2003.

[110] A. Miné, “Relational thread-modular static value analysis by abstract interpreta-
tion”, in Verification, Model Checking, and Abstract Interpretation - 15th International
Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings, K. L.
McMillan and X. Rival, Eds., ser. Lecture Notes in Computer Science, vol. 8318,

212

https://doi.org/10.1007/3-540-55511-0_16
https://doi.org/10.1007/3-540-55511-0_16
https://doi.org/10.1007/978-3-662-53413-7_17
https://doi.org/10.1145/2967973.2968601
https://doi.org/10.1145/2967973.2968601
https://doi.org/10.1007/978-3-540-93900-9_22
https://doi.org/10.1007/978-3-540-93900-9_22
https://doi.org/10.1145/1159803.1159807
https://doi.org/10.1007/978-3-642-23702-7_16
https://doi.org/10.1007/11580850_12

Bibliography

Springer, 2014, pp. 39–58, isbn: 978-3-642-54012-7. doi: 10.1007/978-3-642-
54013-4_3.

[111] ——, “Static analysis of run-time errors in embedded real-time parallel C pro-
grams”, Logical Methods in Computer Science, vol. 8, no. 1, 2012. doi: 10.2168/LMCS-
8(1:26)2012.

[112] A. Miné and D. Delmas, “Towards an industrial use of sound static analysis for
the verification of concurrent embedded avionics software”, in 2015 International
Conference on Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, October
4-9, 2015, A. Girault and N. Guan, Eds., IEEE, 2015, pp. 65–74, isbn: 978-1-4673-
8079-9. doi: 10.1109/EMSOFT.2015.7318261.

[113] R. Monat and A. Miné, “Precise thread-modular abstract interpretation of concur-
rent programs using relational interference abstractions”, in Verification, Model
Checking, and Abstract Interpretation - 18th International Conference, VMCAI 2017,
Paris, France, January 15-17, 2017, Proceedings, A. Bouajjani and D. Monniaux, Eds.,
ser. Lecture Notes in Computer Science, vol. 10145, Springer, 2017, pp. 386–404,
isbn: 978-3-319-52233-3. doi: 10.1007/978-3-319-52234-0_21.

[114] D. Mostrous and V. T. Vasconcelos, “Session typing for a featherweight erlang”,
in Coordination Models and Languages - 13th International Conference, COORDINA-
TION 2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings, W. De Meuter and G.
Roman, Eds., ser. Lecture Notes in Computer Science, vol. 6721, Springer, 2011,
pp. 95–109, isbn: 978-3-642-21463-9. doi: 10.1007/978-3-642-21464-6_7.

[115] P. Müller, Ed., 31st European Conference on Object-Oriented Programming, ECOOP
2017, June 19-23, 2017, Barcelona, Spain, vol. 74, LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017, isbn: 978-3-95977-035-4.

[116] M. Naik, C. Park, K. Sen, and D. Gay, “Effective static deadlock detection”, in
31st International Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings, IEEE, 2009, pp. 386–396, isbn: 978-1-4244-3452-7.
doi: 10.1109/ICSE.2009.5070538.

[117] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco, “Communicating state
transition systems for fine-grained concurrent resources”, in Programming Lan-
guages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, Z. Shao, Ed., ser. Lecture Notes in
Computer Science, vol. 8410, Springer, 2014, pp. 290–310, isbn: 978-3-642-54832-1.
doi: 10.1007/978-3-642-54833-8_16.

[118] M. Nash and W. Waldron, Applied Akka Patterns: A Hands-on Guide to Designing
Distributed Applications. O’Reilly Media, Inc., 2016.

213

https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.1109/EMSOFT.2015.7318261
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1007/978-3-642-54833-8_16

Bibliography

[119] R. Neykova and N. Yoshida, “Multiparty session actors”, in Coordination Models
and Languages - 16th IFIP WG 6.1 International Conference, COORDINATION 2014,
Held as Part of the 9th International Federated Conferences on Distributed Computing
Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, E. Kühn
and R. Pugliese, Eds., ser. Lecture Notes in Computer Science, vol. 8459, Springer,
2014, pp. 131–146, isbn: 978-3-662-43375-1. doi: 10.1007/978-3-662-43376-8_9.

[120] N. Ng and N. Yoshida, “Static deadlock detection for concurrent go by global
session graph synthesis”, in Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, A. Zaks and
M. V. Hermenegildo, Eds., ACM, 2016, pp. 174–184, isbn: 978-1-4503-4241-4. doi:
10.1145/2892208.2892232.

[121] J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover, “Purity analysis
for javascript through abstract interpretation”, Journal of Software: Evolution and
Process, e1889–n/a, 2017, e1889 smr.1889, issn: 2047-7481. doi: 10.1002/smr.
1889.

[122] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer,
1999, isbn: 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6.

[123] P. W. O’Hearn, “Resources, concurrency, and local reasoning”, Theor. Comput.
Sci., vol. 375, no. 1-3, pp. 271–307, 2007. doi: 10.1016/j.tcs.2006.12.035.
[Online]. Available: https://doi.org/10.1016/j.tcs.2006.12.035.

[124] B. C. Pierce, Types and programming languages. MIT Press, 2002, isbn: 978-0-262-
16209-8.

[125] K. Sagonas, “Detecting defects in erlang programs using static analysis”, in
Proceedings of the 9th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, July 14-16, 2007, Wroclaw, Poland, M. Leuschel
and A. Podelski, Eds., ACM, 2007, p. 37, isbn: 978-1-59593-769-8. doi: 10.1145/
1273920.1273926.

[126] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller, “Automated type-based anal-
ysis of data races and atomicity”, in Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2005, June 15-17, 2005,
Chicago, IL, USA, K. Pingali, K. A. Yelick, and A. S. Grimshaw, Eds., ACM, 2005,
pp. 83–94, isbn: 1-59593-080-9. doi: 10.1145/1065944.1065956.

[127] A. Scalas, O. Dardha, R. Hu, and N. Yoshida, “A linear decomposition of mul-
tiparty sessions for safe distributed programming”, in 31st European Conference
on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain,
P. Müller, Ed., ser. LIPIcs, vol. 74, Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2017, 24:1–24:31, isbn: 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.
2017.24.

214

https://doi.org/10.1007/978-3-662-43376-8_9
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1002/smr.1889
https://doi.org/10.1002/smr.1889
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/1273920.1273926
https://doi.org/10.1145/1273920.1273926
https://doi.org/10.1145/1065944.1065956
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

Bibliography

[128] K. Sen, “Concolic testing”, in 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia, USA,
R. E. K. Stirewalt, A. Egyed, and B. Fischer, Eds., ACM, 2007, pp. 571–572, isbn:
978-1-59593-882-4. doi: 10.1145/1321631.1321746.

[129] K. Sen and G. Agha, “A race-detection and flipping algorithm for automated
testing of multi-threaded programs”, in Hardware and Software, Verification and
Testing, Second International Haifa Verification Conference, HVC 2006, Haifa, Israel,
October 23-26, 2006. Revised Selected Papers, E. Bin, A. Ziv, and S. Ur, Eds., ser. Lec-
ture Notes in Computer Science, vol. 4383, Springer, 2006, pp. 166–182, isbn:
978-3-540-70888-9. doi: 10.1007/978-3-540-70889-6_13.

[130] ——, “Automated systematic testing of open distributed programs”, in Funda-
mental Approaches to Software Engineering, 9th International Conference, FASE 2006,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings, L. Baresi and R.
Heckel, Eds., ser. Lecture Notes in Computer Science, vol. 3922, Springer, 2006,
pp. 339–356, isbn: 3-540-33093-3. doi: 10.1007/11693017_25.

[131] ——, “CUTE and jcute: Concolic unit testing and explicit path model-checking
tools”, in Computer Aided Verification, 18th International Conference, CAV 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, T. Ball and R. B. Jones, Eds.,
ser. Lecture Notes in Computer Science, vol. 4144, Springer, 2006, pp. 419–423,
isbn: 3-540-37406-X. doi: 10.1007/11817963_38.

[132] K. Sen and G. A. Agha, “Concolic testing of multithreaded programs and its
application to testing security protocols”, Tech. Rep., 2006.

[133] I. Sergey, A. Nanevski, and A. Banerjee, “Mechanized verification of fine-grained
concurrent programs”, in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, D. Grove and S. Blackburn, Eds., ACM, 2015, pp. 77–87, isbn: 978-1-4503-
3468-6. doi: 10.1145/2737924.2737964.

[134] N. Shavit and D. Touitou, “Software transactional memory”, Distributed Comput-
ing, vol. 10, no. 2, pp. 99–116, 1997. doi: 10.1007/s004460050028.

[135] O. Shivers, “Control-flow analysis of higher-order languages”, PhD thesis, Carnegie-
Mellon University, 1991.

[136] M. Sirjani, F. S. de Boer, and A. Movaghar-Rahimabadi, “Modular verification of
a component-based actor language”, J. UCS, vol. 11, no. 10, pp. 1695–1717, 2005.
doi: 10.3217/jucs-011-10-1695.

[137] M. Sirjani and M. M. Jaghoori, “Ten years of analyzing actors: Rebeca experience”,
in Formal Modeling: Actors, Open Systems, Biological Systems - Essays Dedicated to
Carolyn Talcott on the Occasion of Her 70th Birthday, G. Agha, O. Danvy, and J.
Meseguer, Eds., ser. Lecture Notes in Computer Science, vol. 7000, Springer,
2011, pp. 20–56, isbn: 978-3-642-24932-7. doi: 10.1007/978-3-642-24933-4_3.

215

https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1007/978-3-540-70889-6_13
https://doi.org/10.1007/11693017_25
https://doi.org/10.1007/11817963_38
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/s004460050028
https://doi.org/10.3217/jucs-011-10-1695
https://doi.org/10.1007/978-3-642-24933-4_3

Bibliography

[138] S. Srinivasan and A. Mycroft, “Kilim: Isolation-typed actors for java”, in ECOOP
2008 - Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus,
July 7-11, 2008, Proceedings, J. Vitek, Ed., ser. Lecture Notes in Computer Science,
vol. 5142, Springer, 2008, pp. 104–128, isbn: 978-3-540-70591-8. doi: 10.1007/978-
3-540-70592-5_6.

[139] K. Stadtmüller, M. Sulzmann, and P. Thiemann, “Static trace-based deadlock
analysis for synchronous mini-go”, in Programming Languages and Systems - 14th
Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016, Proceedings,
A. Igarashi, Ed., ser. Lecture Notes in Computer Science, vol. 10017, 2016, pp. 116–
136, isbn: 978-3-319-47957-6. doi: 10.1007/978-3-319-47958-3_7.

[140] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “A general method for
rendering analyses for diverse concurrency models modular”, Submitted on Feb.
22, 2018 to Journal of Systems and Software,

[141] ——, “Building a modular static analysis framework in scala (tool paper)”, in Pro-
ceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016, Am-
sterdam, Netherlands, October 30 - November 4, 2016, A. Biboudis, M. Jonnalagedda,
S. Stucki, and V. Ureche, Eds., ACM, 2016, pp. 105–109, isbn: 978-1-4503-4648-1.
doi: 10.1145/2998392.3001579.

[142] ——, “Detecting concurrency bugs in higher-order programs through abstract
interpretation”, in Proceedings of the 17th International Symposium on Principles and
Practice of Declarative Programming, Siena, Italy, July 14-16, 2015, M. Falaschi and
E. Albert, Eds., ACM, 2015, pp. 232–243, isbn: 978-1-4503-3516-4. doi: 10.1145/
2790449.2790530.

[143] ——, “Mailbox abstractions for static analysis of actor programs”, in 31st Euro-
pean Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain, P. Müller, Ed., ser. LIPIcs, vol. 74, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017, 25:1–25:30, isbn: 978-3-95977-035-4. doi: 10.4230/
LIPIcs.ECOOP.2017.25.

[144] ——, “Poster: Static analysis of concurrent higher-order programs”, in 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 2, A. Bertolino, G. Canfora, and S. G. Elbaum, Eds.,
IEEE Computer Society, 2015, pp. 821–822. doi: 10.1109/ICSE.2015.265.

[145] ——, “Smap: Scalable modular static analysis of actor programs”, Submitted on
Oct. 17, 2017 to Information & Software Technology,

[146] Q. Stiévenart, M. Vandercammen, W. De Meuter, and C. De Roover, “Scala-am: A
modular static analysis framework”, in 16th IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA, October
2-3, 2016, IEEE Computer Society, 2016, pp. 85–90, isbn: 978-1-5090-3848-0. doi:
10.1109/SCAM.2016.14.

[147] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications”, Pacific
Journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.

216

https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-319-47958-3_7
https://doi.org/10.1145/2998392.3001579
https://doi.org/10.1145/2790449.2790530
https://doi.org/10.1145/2790449.2790530
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.1109/ICSE.2015.265
https://doi.org/10.1109/SCAM.2016.14

Bibliography

[148] S. Tasharofi, P. Dinges, and R. E. Johnson, “Why do scala developers mix the
actor model with other concurrency models?”, in ECOOP 2013 - Object-Oriented
Programming - 27th European Conference, Montpellier, France, July 1-5, 2013. Pro-
ceedings, G. Castagna, Ed., ser. Lecture Notes in Computer Science, vol. 7920,
Springer, 2013, pp. 302–326, isbn: 978-3-642-39037-1. doi: 10.1007/978-3-642-
39038-8_13.

[149] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha,
“Transdpor: A novel dynamic partial-order reduction technique for testing actor
programs”, in Formal Techniques for Distributed Systems - Joint 14th IFIP WG 6.1
International Conference, FMOODS 2012 and 32nd IFIP WG 6.1 International Confer-
ence, FORTE 2012, Stockholm, Sweden, June 13-16, 2012. Proceedings, H. Giese and
G. Rosu, Eds., ser. Lecture Notes in Computer Science, vol. 7273, Springer, 2012,
pp. 219–234, isbn: 978-3-642-30792-8. doi: 10.1007/978-3-642-30793-5_14.

[150] M. Ujma and N. Shafiei, “Jpf-concurrent: An extension of java pathfinder for
java.util.concurrent”, CoRR, vol. abs/1205.0042, 2012. arXiv: 1205.0042.

[151] A. Valmari, “The state explosion problem”, in Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held
in Dagstuhl, September 1996, W. Reisig and G. Rozenberg, Eds., ser. Lecture Notes
in Computer Science, vol. 1491, Springer, 1996, pp. 429–528, isbn: 3-540-65306-6.
doi: 10.1007/3-540-65306-6_21.

[152] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De Meuter,
“Ambienttalk: Object-oriented event-driven programming in mobile ad hoc net-
works”, in XXVI International Conference of the Chilean Computer Science Society
(SCCC 2007), 8-9 November 2007, Iquique, Chile, IEEE Computer Society, 2007,
pp. 3–12, isbn: 978-0-7695-3017-8. doi: 10.1109/SCCC.2007.4.

[153] N. Van Es, J. Nicolay, Q. Stiévenart, T. D’Hondt, and C. De Roover, “A performant
scheme interpreter in asm.js”, in Proceedings of the 31st Annual ACM Symposium
on Applied Computing, Pisa, Italy, April 4-8, 2016, S. Ossowski, Ed., ACM, 2016,
pp. 1944–1951, isbn: 978-1-4503-3739-7. doi: 10.1145/2851613.2851748.

[154] N. Van Es, Q. Stiévenart, J. Nicolay, T. D’Hondt, and C. De Roover, “Implementing
a performant scheme interpreter for the web in asm.js”, Computer Languages,
Systems & Structures, vol. 49, pp. 62–81, 2017. doi: 10.1016/j.cl.2017.02.002.

[155] N. Van Es, M. Vandercammen, and C. De Roover, “Incrementalizing abstract
interpretation”, in Proceedings of the 16th edition of the BElgian-NEtherlands soft-
ware eVOLution symposium, Antwerp, Belgium, December 4-5, 2017., S. Demeyer, A.
Parsai, G. Laghari, and B. van Bladel, Eds., ser. CEUR Workshop Proceedings,
vol. 2047, CEUR-WS.org, 2017, pp. 31–35.

[156] D. Van Horn and M. Might, “Abstracting abstract machines”, in Proceeding of the
15th ACM SIGPLAN international conference on Functional programming, ICFP 2010,
Baltimore, Maryland, USA, September 27-29, 2010, P. Hudak and S. Weirich, Eds.,
ACM, 2010, pp. 51–62, isbn: 978-1-60558-794-3. doi: 10.1145/1863543.1863553.

217

https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-30793-5_14
http://arxiv.org/abs/1205.0042
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1109/SCCC.2007.4
https://doi.org/10.1145/2851613.2851748
https://doi.org/10.1016/j.cl.2017.02.002
https://doi.org/10.1145/1863543.1863553

Bibliography

[157] M. Vandercammen and C. De Roover, “Employing run-time static analysis to
improve concolic execution”, in Proceedings of the 16th edition of the BElgian-
NEtherlands software eVOLution symposium, Antwerp, Belgium, December 4-5, 2017.,
S. Demeyer, A. Parsai, G. Laghari, and B. van Bladel, Eds., ser. CEUR Workshop
Proceedings, vol. 2047, CEUR-WS.org, 2017, pp. 26–29.

[158] ——, “Improving trace-based JIT optimisation using whole-program informa-
tion”, in Proceedings of the 8th International Workshop on Virtual Machines and In-
termediate Languages, VMIL@SPLASH 2016, Amsterdam, Netherlands, October 31,
2016, A. L. Hosking and W. Srisa-an, Eds., ACM, 2016, pp. 16–23, isbn: 978-1-
4503-4645-0. doi: 10.1145/2998415.2998418.

[159] M. Vandercammen, Q. Stiévenart, W. De Meuter, and C. De Roover, “STRAF:
A scala framework for experiments in trace-based JIT compilation”, in Grand
Timely Topics in Software Engineering - International Summer School GTTSE 2015,
Braga, Portugal, August 23-29, 2015, Tutorial Lectures, J. Cunha, J. P. Fernandes, R.
Lämmel, J. Saraiva, and V. Zaytsev, Eds., ser. Lecture Notes in Computer Science,
vol. 10223, Springer, 2015, pp. 223–234. doi: 10.1007/978-3-319-60074-1_10.

[160] C. A. Varela and G. Agha, “Programming dynamically reconfigurable open
systems with SALSA”, SIGPLAN Notices, vol. 36, no. 12, pp. 20–34, 2001. doi:
10.1145/583960.583964.

[161] S. Weeks, S. Jagannathan, and J. Philbin, “A concurrent abstract interpreter”, Lisp
and Symbolic Computation, vol. 7, no. 2-3, pp. 173–193, 1994.

[162] A. L. Williams, W. Thies, and M. D. Ernst, “Static deadlock detection for java
libraries”, in ECOOP 2005 - Object-Oriented Programming, 19th European Conference,
Glasgow, UK, July 25-29, 2005, Proceedings, A. P. Black, Ed., ser. Lecture Notes in
Computer Science, vol. 3586, Springer, 2005, pp. 602–629, isbn: 3-540-27992-X.
doi: 10.1007/11531142_26.

[163] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Efficient stateful dynamic
partial order reduction”, in Model Checking Software, 15th International SPIN Work-
shop, Los Angeles, CA, USA, August 10-12, 2008, Proceedings, K. Havelund, R. Ma-
jumdar, and J. Palsberg, Eds., ser. Lecture Notes in Computer Science, vol. 5156,
Springer, 2008, pp. 288–305, isbn: 978-3-540-85113-4. doi: 10.1007/978-3-540-
85114-1_20.

[164] X. Yi, J. Wang, and X. Yang, “Stateful dynamic partial-order reduction”, in Formal
Methods and Software Engineering, 8th International Conference on Formal Engineering
Methods, ICFEM 2006, Macao, China, November 1-3, 2006, Proceedings, Z. Liu and
J. He, Eds., ser. Lecture Notes in Computer Science, vol. 4260, Springer, 2006,
pp. 149–167, isbn: 3-540-47460-9. doi: 10.1007/11901433_9.

[165] A. Yonezawa, J. Briot, and E. Shibayama, “Object-oriented concurrent program-
ming in ABCL/1”, in Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’86), Portland, Oregon, Proceedings., N. K. Mey-

218

https://doi.org/10.1145/2998415.2998418
https://doi.org/10.1007/978-3-319-60074-1_10
https://doi.org/10.1145/583960.583964
https://doi.org/10.1007/11531142_26
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/11901433_9

Bibliography

rowitz, Ed., ACM, 1986, pp. 258–268, isbn: 0-89791-204-7. doi: 10.1145/28697.
28722.

219

https://doi.org/10.1145/28697.28722
https://doi.org/10.1145/28697.28722

	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Context
	Static Analyses for Concurrent Programs Scale Poorly
	Static Analyses for Concurrent Programs Lack Support for Dynamic Process Creation
	Static Analyses for Different Concurrency Models Lack Uniformity in their Design

	Problem Statement
	Thesis
	Overview of The Approach
	Contributions
	Supporting Publications
	Dissertation Outline

	Introduction to Abstract Interpretation of Concurrent Programs
	A Functional Sequential Subset: 0
	Syntax of 0
	Concrete Semantics of 0
	Abstract Semantics of 0
	Soundness and Termination

	The Actor Model:
	Overview of Actors
	Syntax of
	Concrete Semantics of
	Abstract Semantics of
	Soundness and Termination

	Threads and Shared Memory:
	Overview of Threads and Shared Memory
	Syntax of
	Concrete Semantics of
	Abstract Semantics of
	Soundness and Termination

	Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite
	Implementation
	Benchmark Suite
	Soundness Testing
	Running Time

	Conclusion

	State of the Art in Static Analysis of Concurrent Programs
	Static Analyses of Concurrent Programs
	Bug Finding
	Abstract Interpretation
	Type Systems
	Model Checking
	Proof Systems
	Overview

	Research Approach: Towards Scalable Analyses
	State Space Reduction
	Process-Modular Analysis Design

	Conclusion

	MacroConc: Designing Macro-Stepping Analyses
	Macro-Stepping Abstract Interpretation of Concurrent Programs
	Step 1: Definition of the Operational Semantics
	Step 2: Definition of the Macro-Stepping Transfer Function
	Step 3: Definition of the Global Transfer Function
	Step 4: Abstraction of the Macro-Stepping Collecting Semantics

	Properties of a Macro-Stepping Analysis
	Termination
	Soundness
	Complexity
	Precision

	Application of MacroConc to
	The Importance of Order
	Step 1: Definition of the Operational Semantics
	Step 2: Definition of the Macro-Stepping Transfer Function
	Step 3: Definition of the Global Transfer Function
	Step 4: Abstraction of the Macro-Stepping Collecting Semantics
	Soundness and Termination

	Application of MacroConc to
	Step 1: Definition of the Operational Semantics
	Step 2: Definition of the Macro-Stepping Transfer Function
	Step 3: Definition of the Global Transfer Function
	Step 4: Abstraction of the Macro-Stepping Collecting Semantics
	Soundness and Termination

	Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite
	Soundness Testing
	Running Times
	Precision
	Scalability

	Conclusion

	A Study of Mailbox Abstractions
	The Importance of Ordering and Multiplicity
	Verifying Absence of Errors
	Inferring Mailbox Bounds

	Categorization of Mailbox Abstractions
	Soundness of Mailbox Abstractions
	List Representation for Concrete Mailboxes
	Set Abstraction
	Multiset Abstraction
	Finite Multiset Abstraction
	Finite List Abstraction
	Graph Abstraction

	Evaluation of Mailbox Abstractions
	Benchmark Suite for Absence of Errors and Mailbox Bounds
	Precision
	Running Times on Full Benchmark Suite

	Conclusion

	ModConc: Designing Modular Analyses
	Modular Abstract Interpretation of Concurrent Programs
	Step 1: Definition of the Abstract Operational Semantics
	Step 2: Definition of the Sequentialized Transition Relation
	Step 3: Definition of the Intra-Process Analysis
	Step 4: Definition of the Inter-Process Analysis

	Properties of a Process-Modular Analysis
	Termination
	Soundness
	Complexity
	Precision

	Application of ModConc to
	Step 1: Definition of the Abstract Operational Semantics
	Step 2: Definition of the Sequentialized Transition Relation
	Step 3: Definition of the Intra-Process Analysis
	Step 4: Definition of the Inter-Process Analysis
	Soundness and Termination

	Application of ModConc to
	Step 1: Definition of the Abstract Operational Semantics
	Step 2: Definition of the Sequentialized Transition Relation
	Step 3: Definition of the Intra-Process Analysis
	Step 4: Definition of the Inter-Process Analysis
	Soundness and Termination

	Soundness Testing and Evaluation of Running Time, Precision, and Scalability on a Benchmark Suite
	Soundness Testing
	Running Time
	Precision
	Scalability

	Conclusion

	Conclusion and Future Work
	Summary of the Dissertation
	Contributions
	Limitations and Future Work
	Applicability to Real-World Concurrent Programs
	Definition of the Restriction Function for Macro-Stepping Semantics
	Applicability of Mailbox Abstractions to Large Programs
	Ordering and Multiplicity Information in Process-Modular Analysis
	Process Sensitivities for Increased Precision
	Combining MacroConc and ModConc

	Concluding Remarks

	Notations
	Domains
	Functions
	Sets

	Proofs
	Proofs for Naive Application of AAM toConcurrent Programs (Chapter 2)
	Proofs for Abstract Interpretation of 0
	Proofs for Abstract Interpretation of
	Proofs for Abstract Interpretation of

	Proofs for Application of MacroConc toConcurrent Programs (Chapter 4)
	Proofs for the Application of MacroConc to
	Proofs for the Application of MacroConc to

	Proofs for Mailbox Abstractions (Chapter 5)
	Soundness of the Set Abstraction
	Soundness of the Multiset Abstraction
	Soundness of the Finite Multiset Abstraction
	Soundness of the Finite List Abstraction
	Soundness of the Graph Abstraction

	Proofs for Application of ModConc toConcurrent Programs (Chapter 6)
	Proofs for the Application of ModConc to
	Proofs for the Application of ModConc to

	Bibliography

