

Dissertation submitted in fulfilment of the requirement for the degree of Doctor
of Philosophy in Science

REENTRANCY AND SCOPING
IN RULE ENGINES FOR
CLOUD-BASED APPLICATIONS

KENNEDY KAMBONA

June 2018

Promotor: Prof. Dr. Wolfgang De Meuter
Faculty of Science and Bio-Engineering Sciences

Dissertation submitted in fulfilment of the requirement for
the degree of Doctor of Philosophy in Sciences

Reentrancy & Scoping in Rule Engines
for Cloud-based Applications

Kennedy Kambona

Promotor:
Prof. Dr. Wolfgang De Meuter

Jury:
Prof. Dr. Viviane Jonckers, Vrije Universiteit Brussel, Belgium (chair)
Prof. Dr. Katrien Beuls, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Bart Jansen, Vrije Universiteit Brussel, Belgium
Prof. Dr. Joeri De Koster, Vrije Universiteit Brussel, Belgium
Prof. Dr. Slinger Jansen, Utrecht University, The Netherlands
Prof. Dr. Stijn Vansummeren, Université Libre de Bruxelles, Belgium
Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel, Belgium (promotor)

All rights reserved.
No parts of this book may be reproduced in any form by print, photoprint, microfilm, electronic
or any other means without prior written consent from the author.
© June 2018.

Abstract

Modern software systems are increasingly being deployed to the Cloud, leading to the rising
adoption of systems that are predominantly online. An example of these are multi-tenant
systems: Cloud-based applications that are shared by and instantiated for a multitude of
tenants. Characteristically, such applications are often connected to different heterogeneous
clients that are reactively uploading events and data, and are thus required to share the
knowledge among the various tenants they support. Rather than hardcoding all this shared
knowledge and ontologies in plain code, the knowledge can be easily programmed in the
form of rules that orchestrate server-side logic, e.g., as business rules. In such situations,
a rule engine is well-suited to accommodate the knowledge for clients of such reactive
knowledge-driven applications.

Unfortunately, existing rule engines (and the rule-based languages they implement)
were not conceptually designed to support and to cope with the knowledge and rules for
multiple tenants at the same time. More specifically, they are unsuitable to support such
heterogeneous systems because one has to manually hardcode the modularity and own-
ership of the knowledge for the various applications and clients, which quickly becomes
complex and fallible. They further lack suitable semantics that developers can use to ex-
ploit collective or community knowledge that may apply to the data contributed by the
various heterogeneous sources.

This dissertation presents Serena, a framework that provides scope-based reasoning
in rule-based systems operating in heterogeneous environments. The solution exploits the
fact that much of the community knowledge significant when performing reasoning and
deductions can be structured in a hierarchy of scopes (that orchestrate which rules should
be applicable to which incoming data). Serena augments an event-driven server with a
Rete-based rule engine. Serena is distinct from existing rule-based systems due the notion
of reentrancy and scoping that are efficiently ingrained at the heart of its inference engine.
Serena further eases the encoding of reactive event patterns by clients in the form of scoped
rules. Rule designers can utilise scoped rules to detect patterns in real-time data and to
realise grouping structures in reactive knowledge-driven applications backed by a common
rule-based system.

Samenvatting

Moderne softwaresystemen worden steeds vaker beschikbaar gesteld via de Cloud, waar ze
online functioneren. Een voorbeeld van zulke systemen zijn multi-tenant systemen. Dit
zijn Cloud-gebaseerde toepassingen die gedeeld en ge�nstantieerd worden door meerdere
gebruikersgroepen, zogenaamde “tenants”. Karakteristiek aan zulke toepassingen is dat ze
veelal verbonden zijn met meerdere heterogene gebruikers. Deze gebruikers sturen events
en data op reactieve wijze naar de multi-tenant toepassing. De toepassing moet deze
informatie waar nodig delen met de verschillende tenants, of juist gescheiden houden. In
plaats van al deze gedeelde kennis en ontologie�n manueel vast te leggen in code, kan
deze kennis eenvoudig geprogrammeerd worden in de vorm van declaratieve regels, zoals
“business rules”. Met een regelgebaseerd systeem kan de server de kennis van de gebruikers
dan op reactieve wijze verwerken.

Bestaande regelgebaseerde systemen (en de regelgebaseerde programmeertalen die ze
implementeren) zijn echter niet ontworpen voor de noden van multi-tenancy. Meer bepaald
missen bestaande systemen ondersteuning voor concepten uit heterogene systemen, waar-
door manueel ge�ncodeerd moet worden welke data bij welke toepassing of tenant hoort.
Dit wordt snel complex en vergroot de kans op fouten in de regels. Bovendien ontbreken
zulke systemen ook een gepaste semantiek voor het uitbuiten van “community knowledge”:
kennis die ook relevant is voor andere tenants buiten de bron van de data.

Deze thesis introduceert Serena: een framework waarmee regelgebaseerde systemen
kunnen redeneren over “scopes” in heterogene omgevingen. De voorgestelde oplossing is
gestoeld op het feit dat de relevante kennis van de community voorgesteld kan worden als
een hi�rarchie van scopes (die aangeven welke regels van toepassing zijn op bepaalde invoer).
Serena voegt aan een traditionele event-gedreven server een regelgebaseerd systeem toe
dat het Rete-algoritme gebruikt. Serena onderscheidt zich van bestaande regelgebaseerde
systemen doordat reentrancy en scoping ingebakken zijn in de kern van de inference engine.
Daarenboven maakt Serena het eenvoudiger om de reactieve voorwaarden van de gebruikers
uit te drukken als regels met scopes. Ontwerpers van regels kunnen regels met scopes
gebruiken om patronen te detecteren in real-time data en groepen te cre�ren in reactieve
event-gedreven toepassingen die ge�mplementeerd zijn met behulp van een gezamenlijk
regelgebaseerd systeem.

Acknowledgements

The Indian tale of the The Blind Men and the Elephant as it applies to community knowl-
edge likewise encompasses my dissertation; as it would not be possible without the assis-
tance, dedication and perseverance of a community surrounding my research life.

I would first like to express my gratitude and appreciation to my promotor Prof. Dr.
Wolfgang De Meuter for his mentorship and guidance throughout the research period. In
the same breath, I appreciate the insightful and candid feedback from my thesis committee
about this work. Next in line to receive my sincere thanks are the people who have par-
ticipated in some capacity to this research: Dr. Lode Hoste, Prof. Dr. Elisa Gonzalez-Boix,
Dr. Ellie D’Hondt, Dr. Jorge Vallejos, and my officemate for years, Florian Myter. To my
research sidekicks Thierry Renaux, Simon Van de Water and Humberto Rodriguez Avila,
thanks for all the in-depth discussions inundated with the word Rete. And to my readers
Simon and Nils (and later, Isaac), thanks being my extra set of eyes in this text.

I am also very grateful to everyone in the Software Languages and Engineering Lab
(both current and ex-Softies) for providing me with valuable contributions, criticisms and
other feedback. The SOFT lab embodies the most intellectually-thriving environment I
have yet encountered – the conference trips, game days, barbecues, and other events were
pretty fun. Our halls might be silent, but in the slack altercations abound. To me, SOFT is
this home away from home, I will therefore be forever honoured to be a part of the family.

To the four people that have most shaped my life, my mother Margaret and father
Alexander, sisters Nancy and Maureen Kambona (in order of nascency), cousin Dr. Moturi:
this document is yours as much as it is mine. The same applies to other friends and family,
to a lesser extent.

Finally, I would like to thank my life partner Jacky for all the support (and distractions
in equal proportions). Yes, your time to reach this point is fast approaching, and I will be
by your side when it does.

If you are still searching for your name here, your contributions were more important
to me than you realise. Just wait for a less serious book ;) and you will most certainly be
there.
Kushukuru haikudhuru. Asanteni.

Contents

1 Introduction 1
1.1 Research Context . 2

1.1.1 Community Knowledge in Heterogeneous Environments 3
1.1.2 Reactive Web Applications . 3
1.1.3 Reactive Knowledge-driven Applications 4

1.2 Problem Statement . 5
1.3 Overview . 7

1.3.1 Dynamic Rule Architecture . 7
1.3.2 Scoped Rule-based Language . 8
1.3.3 Reentrant Rule Engine . 8

1.4 Approach & Methodology . 9
1.5 Contributions . 10
1.6 Supporting Publications . 11

1.6.1 Primary Publications . 11
1.6.2 Secondary Publications . 12

1.7 Outline . 12

2 Reactive Knowledge-driven Applications 15
2.1 Introduction . 15

2.1.1 The Rise of the Dynamic Web . 16
2.1.2 Foundations of Cloud-based Heterogeneity 18

2.2 Trends in the Dynamic Web . 19
2.2.1 The Web and Big Data . 20
2.2.2 Value Extraction in Reactive Web Applications 21
2.2.3 Reactive Knowledge-driven Applications (RKDAs) 22
2.2.4 Characteristics of Reactive Knowledge-driven Applications 23

2.3 Driving Scenario . 24
2.4 Programming and Processing Paradigms for RKDAs 26

2.4.1 Reactive Data & Complex Events 26
2.4.2 Detecting Complex Events . 28
2.4.3 The Reactive Paradigm . 28

2.5 The Rule-based Paradigm . 34
2.5.1 Reactivity in Rule-based Systems . 34
2.5.2 General Architecture of Rule-based Systems 35
2.5.3 Programming Rule-based Systems 35
2.5.4 Optimising the Matching Process: The Rete Algorithm 37
2.5.5 Rule-based Systems for RKDAs . 38
2.5.6 Rule-based Systems & the Cloud . 40

2.6 Requirements for Supporting Reactive Knowledge-driven Applications . . . 41
2.7 Chapter Summary . 41

3 Related Work: Reasoning in Event Streams 43
3.1 Reasoning in Event Processing Systems . 43
3.2 Computation-oriented Event Processing Systems 44

3.2.1 Event Processing in Data Stream Management Systems 45
3.2.2 Event Processing in Stream Processing Systems 47
3.2.3 Limitations of Computation-oriented EPS for RKDAs 50

3.3 Detection-oriented Event Processing Systems 51
3.3.1 Event Processing in Active Databases 52
3.3.2 Event Processing in Rule-based Systems 56
3.3.3 Summary: DEPS for supporting Stream Reasoning 65

3.4 Results of Analysis . 66
3.5 Chapter Summary . 67

4 Serena: Cloud-based Rule Engine 69
4.1 Introduction . 69
4.2 Serena Rule Language: Syntax and Semantics 70

4.2.1 SRL Syntax . 70
4.2.2 SRL Fact Templates . 70
4.2.3 SRL Rule Definitions . 72
4.2.4 SRL JavaScript Plugins . 74

4.3 Serena: Architecture . 75
4.3.1 Client-server Interaction . 75
4.3.2 Server Architecture . 76

4.4 Serena: Execution Semantics . 77
4.4.1 Reactive Rule Engine Execution . 78
4.4.2 The Inference Engine and Rete . 79
4.4.3 Rule Activation . 84
4.4.4 Client Notifications . 85
4.4.5 Reactivity & Dynamism . 86

4.5 Evaluation: Serena Rule-based Framework 88
4.5.1 Evaluation of Requirements & Comparison with Related Work . . . 88

4.6 Chapter Summary . 90

5 Heterogeneity in Reactive Knowledge-driven Applications 93
5.1 Rule-based Systems and Heterogeneity . 93

5.1.1 Multi-tenant Rule-based Systems . 94
5.2 Issues with Heterogeneity in Rule-based Systems 94

5.2.1 Scenario: Office Complex Security System 95
5.2.2 Reentrancy in Heterogeneous RBS 97
5.2.3 Inter and Intra-Client Relationships in Heterogeneous RBS 103

5.3 Requirements for Heterogeneous Rule Engines 105
5.3.1 Metadata Model for Discerning Heterogeneous Clients’ Data 105
5.3.2 Formalised Model for Grouping Heterogeneous Clients 106
5.3.3 Execution Model for Selective Computations 107
5.3.4 Flexible Model for Notification Semantics 108

5.4 Heterogeneity in existing RBS: Related Work 108
5.4.1 Decomposition in Rule Engines . 108
5.4.2 Overview: Decomposition in Rule Engines 113
5.4.3 Schema Sharing in Multi-tenant Databases 113
5.4.4 Visibility in Event-based Systems . 115

5.5 Chapter Summary . 115

6 Scoped Rules in Serenas 119
6.1 Foundations of the Scope-based Rule Language 119

6.1.1 Design Factors of Serenas Scope-based Language 119
6.2 Scoped Rules in Serenas . 121

6.2.1 Defining Scoped Rules . 123
6.2.2 Overview of Supported Scopes . 123
6.2.3 Examples of Scoped Rules . 126

6.3 Serenas Architecture . 128
6.3.1 Client-server Interaction . 128
6.3.2 Server Architecture . 129

6.4 Localised Scopes . 129
6.5 Scoped Notifications . 132
6.6 SerenaUI: Graphical Scoped Rules Builder 134
6.7 Chapter Summary . 135

7 Serenas: The Reentrant Cloud-based Rule Engine 137
7.1 The Serenas Encoding Scheme . 137

7.1.1 The Need for an Efficient Encoding 138
7.1.2 Selecting an Encoding Scheme . 138
7.1.3 Encoding Methods . 139
7.1.4 The Encoding Process . 140

7.2 Supporting Reentrancy via Scope-based Reasoning 144
7.2.1 Implementing Scoping with MϑL . 144
7.2.2 Node Reuse with Scopes . 145

7.3 Processing Scoping Constraints . 149
7.3.1 The Matching Phase using Scopes 149
7.3.2 Scoped Notifications . 155

7.4 Scope-based Hashing (SBH) . 157
7.4.1 Improving Scope Test Performance 158
7.4.2 Group Hashing the Alpha Memory 159
7.4.3 Matching with Scope-based Hashing 161
7.4.4 Advanced Issues in SBH . 162
7.4.5 Summary: Scope-based Hashing . 163

7.5 Maintainability of Scoped Rules and Other Issues 164
7.5.1 Retraction and Modification of Facts 164
7.5.2 Changes in Group Structure . 164
7.5.3 Negation . 165

7.6 Requirements Revisited . 167
7.6.1 Evaluation of Requirements . 167

7.7 Chapter Summary . 168

8 Evaluation 171
8.1 Evaluation Scenario . 171

8.1.1 Example: University Services Access Control 172
8.2 Evaluation: Scoped & Ad-hoc Approaches 175

8.2.1 Experimental Setup . 175
8.2.2 Results and Discussion . 176

8.3 Evaluation: Isolated Rule Engine Instances 180

8.3.1 Setup and Methodology . 180
8.3.2 Analysis of Results . 181
8.3.3 Discussion . 181

8.4 Evaluation: Scope-based Hashing . 182
8.4.1 Experimental Setup . 182
8.4.2 Analysis of Results . 182

8.5 Evaluation: Rule Engine Benchmark with Miss Manners 185
8.5.1 Setup & Methodology . 185
8.5.2 Results & Discussion . 188

8.6 Chapter Summary . 191

9 Conclusion 193
9.1 Revisiting the Problem Statement . 193
9.2 Summary & Contributions . 194

9.2.1 Summary . 194
9.2.2 Restating the Contributions . 198

9.3 Limitations & Future Research . 199
9.3.1 Support for Custom Scopes . 199
9.3.2 Antiquated Data in Rete . 200
9.3.3 Cloud Models for Heterogeneous Rule-based Systems 201
9.3.4 Other Research Avenues . 202

9.4 Concluding Remarks . 203

A Serena’s Matrix Encoding 205
A.1 Definitions . 205

A.1.1 Posets . 205
A.1.2 Lattices . 206

A.2 Operations with ϑ . 207
A.3 Matrix Encoding . 207
A.4 Full Matrix Encoding for Office Complex Example 208

B Coordinating Collaborative Interactions 209
B.1 Motivating Example: Online Collaborative Drawing Editor 209
B.2 Collaborative Interactions in Serenas . 210

C Miss Manners’ Benchmark in Serena 213

D University Security Access Rules 217

List of Figures

1.1 Example of a heterogeneous RKDA . 5

2.1 Evolution of the Web architecture . 17
2.2 Comparison of multi-tenancy patterns with a single-tenant architecture . . 19
2.3 The story of The Blind Men and the Elephant 22
2.4 Dataflow graphs for reactive programming code 32
2.5 General architecture of a rule-based system 36

3.1 Set-based vs independent event processing 51

4.1 Compact grammar of the basic Serena Rule Language 71
4.2 The Serena framework distributed architecture 75
4.3 Typical client-server interaction sequence in Serena 76
4.4 Serena server architecture . 77
4.5 Serena rule engine components . 78
4.6 Rete graph for the InternAccess rule . 80
4.7 The Rete graph for InternAccessThirdShift rule 81
4.8 Sequence of a typical matching cycle in the Serena Rete graph 82
4.9 Serena’s implementation of tree-based tokens in the Rete graph 88

5.1 A multi-tenant system a shared RBS serving heterogeneous clients 94
5.2 Example: Structural organisation of companies in an office complex 96
5.3 Example Rete graph after addition of rules from separate clients 99
5.4 Example showing an unintended activation in Rete 100
5.5 Conceptual vision for enforcing reentrancy in a heterogeneous RBS 100
5.6 Example Rete graph for company ToiletAccess rule 102
5.7 Rete graph for InternAccess rule with test expressions 103
5.8 Rete graph for InternServerRoomAccess rule 106
5.10 Multi-tenancy in databases and heterogeneity in rule-based systems 114
5.11 Conceptualizing a multitenant inference engine 116

6.1 Example of structural groups of companies and physical locations 122
6.2 Scopes supported in the Serena framework 124
6.3 Compact grammar of the Serena Rule Language with scopes 125
6.4 Client-server interaction sequence in Serenas 129
6.5 Components of a scoped rule engine . 130
6.6 Comparison of local scopes in Serenas . 132
6.7 Building scoped rules graphically using SerenaUI 134

7.1 Example hierarchy of a company . 140
7.2 The example hierarchy converted into a lattice L 141

7.3 The encoded matrix MϑL
for the example hierarchy 142

7.4 Scoped nodes reuse in the Rete graph . 146
7.5 Different ways of reusing scoped nodes in the Rete graph 148
7.6 Reusing scoped nodes in the Rete graph . 151
7.7 Scoped graph for the ServerRoomAccess rule with initial facts 152
7.8 Scoped graph for the ServerRoomAccess rule 155
7.9 Lattice representing the groups in the office complex 157
7.10 Hash table for calculating lpeerof . 158
7.10 Traversal of a token in the example Rete graph 159
7.11 Alpha memory with SBH . 160
7.12 The InternServerRoomAccess Rete graph with SBH 160
7.13 The effect of modifications to the group hierarchy 166

8.1 Example structures in a university . 173
8.2 Evaluation Scenario: University Security Monitoring 174
8.4 Cumulative results for a single analogous simulation run 177
8.5 Individual results of all randomised simulation runs 178
8.6 Aggregated results of all the simulation runs 179
8.7 Initial memory consumption of the analogous simulation run 180
8.8 Results of the simulation for the university scenario with separate instances 183
8.10 Results of the Miss Manners benchmarks 189
8.11 The hobby hierarchy for the related interests benchmark 190

9.3 The resulting constituent parts of a scoped Rule-based Framework 198
9.4 Example of a simple client group structure 202
9.5 Optimisation via scoped graph reordering at runtime 203

A.1 Full matrix encoding of all the company hierarchies 208

B.1 The Collaborative Resize Interaction . 210

1
Introduction

The most advanced systems currently on the Web have emerged as a result of embracing the
culture of envisioning computing as a utility. This led to the prominence of today’s Utility
Computing [Arm+10]. Utility Computing lays its basis on time-sharing methodologies
in the 1970s as applied to current online systems, i.e., by sharing resources in a cost-
effective manner to provide services to end-users. One of the main reasons this phenomenon
is popular is that the resources required to develop a software application targeted for
mass markets are greatly surpassed by the resources needed to replicate its utility [Bro87].
Consequently, traditional software systems are increasingly being installed to run on

the Web platform (i.e., deployed to the Cloud) to take advantage of Utility Computing
and support a larger number of clients. Notable examples include customer relationship
management provider Salesforce [Sal15], human resource and financial management service
Workday [Wor15] and expense management software Concur [Con16]. Recently, research
has emerged in newer paradigms such as Fog and Dew Computing [Wan15] whose main
aim is to bring such services closer to the edge of the network, as opposed to the Cloud.

The current Internet age has therefore ushered in a dynamic architecture that supports
the assimilation of newer structural and programming paradigms. A defining characteristic
of these paradigms is that they all aspire to expose online services to a larger number of
distributed end-users. These paradigms must remain robust given the high numbers of
supported clients and data, and the increasing adoption of the Web by traditional desktop
software developers.

As a result of the Web’s dynamicity and increasing number of connected users, data-
intensive applications with real-time processing of events have recently gained prominence.
Events can consist of both low-level data such as raw GPS coordinates and high-level data
that other applications depend on, such as detecting a package that is late for delivery. Such
event data can be continuously sent over the Web to application servers in various forms as
unordered, partially unbounded and/or time-varying sequences. This fundamentally differs
from traditional systems in earlier ages of the Web where the processing of data was mostly
done on finite, static datasets. Accordingly, there is currently a need for techniques that
ease the dynamic definition of constraints that will be used to capture and extract value
from this continuous, reactive data to infer potential higher-level knowledge that it may

1

2 Chapter 1. Introduction

uncover before the data decays. Currently, the technologies available to meet these goals
are often times complicated and limiting due to the non-determinism and sheer volume of
data to discern patterns on.

Recent advancements have re-discovered the use of rule-based systems consisting of
rule-based languages and rule engines, in areas that take advantage of business rules [H+00]
using engines such as Drools [Bro09] and Jess [Fri03]. These systems can be used to support
the development of dynamic software applications that have been deployed to the Cloud.
Rule-based systems exhibit clear advantages over other programming tools that are used
in modern software: they provide an advanced concept by representing the conceptual
logic of a system in an application-independent way. This is particularly useful to Web
applications running on modern platforms for a number of reasons. A rule-based system
reduces the complexity of developing and supporting applications, making the whole process
more uniform: one of the most important contributions of rule-based systems to software
development is the separation of the what the program should capture rather than the
nuances of the hows [Bro87]. Furthermore, the fundamental power of rule-based systems
comes not only their complex inference mechanisms but also their ability to embrace rich
knowledge bases that reflect aspects of the real world [LF91].

The modern Web is characterised by a definitive heterogeneous environment. Different
types of client devices (or things [Dav11]) contribute diverse types of data that are expected
to be processed in a uniform manner promptly. Sharing brought about by Utility Comput-
ing is significant in exploiting collective knowledge that can be discovered from the data
that these devices contribute. However, sharing unearths issues that can be attributed to
classically isolated rule engine design. Conceptually, rule engines were designed in the era
where isolated computing was prevalent. At the time, rule engines were programmed to
encode a localised set of rules and to work on homogeneous data. Traditional rule engines
thus suffer from a lack of proper modularisation when installed to serve such heterogeneous
settings with shared data. They are characterised by a flat design space where activations
could be observed from all data without discriminating their sources. As we will show, cur-
rent methods to mitigate these problems unnecessarily retract the gains made by utilising a
rule-based system in the first place: it increases the complexity of application development
making it fallible, and muddles the design of the conceptual logic of the application.

The vision of this dissertation is two-fold. First, we argue that rule languages for de-
veloping heterogeneous applications should expose specialised constructs that enable rule
creators to exploit community knowledge. These constructs allow combining or distinguish-
ing events pertaining to different event sources, while keeping this logic cleanly separated
from the application logic. Second, modern rule-based systems deployed to support these
multi-user platforms should provide a mechanism that manages the multiple users and the
knowledge that they share using reentrancy techniques that modularise the rule base in
a way that it reflects the corresponding user fact base. In this way, the rule language
constructs can enable rule creators to specify constraints that support data consolidation
and/or discrimination in heterogeneous settings.

1.1 Research Context

The inspiration for the work presented in this dissertation spans several domains in software
languages and engineering. We outline the specific areas next in the context of providing
programming and processing support of dynamic knowledge-intensive, data-driven Web
applications.

1.1. Research Context 3

1.1.1 Community Knowledge in Heterogeneous Environments
The concept of service provision through sharing of resources in Utility Computing gave
rise to heterogeneous systems such as those seen in multi-tenancy. Multi-tenancy refers to
Web-based architectures that provide a shared application instance that serves a number
of clients or tenants [Pat+11]. A multi-tenant application therefore is installed on a single
instance and serves all clients from that instance. This is analogous to traditional software
modules that supported simultaneous access from multiple users or terminal environments.
Research in this domain splits multi-tenancy into two major groups [Guo+07]. The first is
known as multiple-instances multi-tenancy, where tenants have their own dedicated applica-
tion instance over shared hardware or operating system. The second is native multi-tenancy
(or true multi-tenancy), where all the tenants share a single shared application instance as
opposed to multiple isolated ones. These two patterns differ in terms of engineering and
operational costs, customisability and scalability. Comparably, while multi-instance multi-
tenancy solutions scale to support several dozen tenants, native multi-tenancy solutions can
scale better and can support several hundreds of clients using similar resources [Guo+07].

The heterogeneous multi-tenant applications running on the Web platform are usually
characterised by a shared server instance that is connected to different clients raising var-
ious events and exchanging data. The server therefore has the potential to reason about
contributed events (as data) collectively via the concept of community knowledge. Commu-
nity knowledge enables the concise collection of useful information that can be sourced from
a variety of data contributed by different types of clients. This is significant in the context
of heterogeneous systems due to the vastness and diversity of the types of information that
can be produced, collected and processed from connected clients. These systems are thus
required to manage the shared resources reused by the various applications they support.
However, we argue that current approaches for such architectures use various techniques
that do not intrinsically support the flexibility and expressiveness required to distinguish or
capture community knowledge. In this dissertation we aim to support such heterogeneous
applications through a technique that enforces partitioning of client constraints and data
using rule-based programming constructs.

1.1.2 Reactive Web Applications
Recently, there has been a shift of the view of the Web server from a host that relays
static documents to one that is event-driven and processes dynamic content from connected
clients. The role of such a server is to wait and listen in on a stream for events, and
subsequently push responses back to clients in a reactive way. One programming paradigm
that has emerged for modern Web applications with such timely requirements is reactive
programming [Bai+13]. Reactive programming puts greater significance on the data flow
of a program during development, as opposed to the common control flow. To enforce
this, the paradigm abstracts time-varying events and values for their consumption by a
programmer. The programmer can then define functions that will react upon incoming
events and their data.

Reactive programming approaches support abstractions that model continuous and
discrete time-varying values. The abstractions are first-class values and can be passed
around or even composed within the program. These kinds of abstractions reduce the
complexity of dealing with timely event occurrences prevalent in Web applications. With
imperative approaches, whenever an event occurs programmers have to explicitly perform
re-computations and ensure data dependencies from changes brought about by the event are
methodologically updated. With the reactive programming approach programmers need

4 Chapter 1. Introduction

not explicitly trigger a re-computation of time-varying data. In our work related to this
thesis [KBD13] we performed an evaluation and demonstrated how reactive programming
and promises can be used to build highly interactive multi-user Web applications. In
this dissertation we extend the notion to support such reactive knowledge-intensive web
applications in capturing community knowledge.

1.1.3 Reactive Knowledge-driven Applications
Many applications are increasingly residing on the web often in heterogeneous Cloud-based
architectures. Coming up with techniques that extract value from reactive data to in-
fer higher-level knowledge that it may uncover promptly (e.g. before the data decays) is
a challenge, given its volume and velocity. Currently, the programming of applications
and processing of content to meet these goals is complicated and limiting. Programming
reactive Web applications involves dealing with nondeterministic external (and at times,
internal) events, which are difficult to control in traditional sequential programming lan-
guages [KBD13]. Techniques that attempt to solve these issues, such as event-based pro-
gramming, can cause code that becomes hard to understand in larger systems leading to
what has been termed as “asynchronous spaghetti code”.

To help build reactive Web applications, various libraries and frameworks for the
Web have recently emerged that support reactive programming (such as Flapjax [Mey+09]
and Elm [Cza12]) and stream processing (such as Esper [BV07] and Aurora [Che+03]).
Most of these approaches operate on data streams and provide constructs for computation-
oriented event processing (COEP) such as aggregation (e.g. calculating a summation based
on inbound data) [Ali+15]. In this dissertation we focus on more specific detection-oriented
event processing (DOEP) which is vital when reasoning about higher-level knowledge or
combinations of events through event patterns. In COEP, processing on event streams is
done on ordered sets, and there is often a high throughput of events that are processed by
queries. DOEP focuses more on isolated event-by-event processing on potentially out-of-
order events via a number of constraints formulated as rules in classical rule-based systems.
Rule-based systems that provide programming logic through production rules and that
perform complex event processing through rule engines are prevalent in the DOEP domain
(e.g., Drools [Bro09]).

Rule engines in rule-based systems can be split into two categories according to their
reasoning process: forward and backward chaining systems. In forward-chaining, the condi-
tions of rules determine the reasoning process while in backward-chaining the goal of a rule
influences the reasoning process. During rule engine execution, control is hinged on the
basic re-evaluation of the data states with the rules, and not by any form of static control
structures explicitly defined in the program as in conventional instruction-driven programs.
Consequently, computation in such rule-based systems is said to be data-driven [GR98b].
Forward chaining is well-suited to detect complex events from non-deterministic simple
events and is thus commonly used in detection-oriented event processing. The most popu-
lar data-driven rule-based systems with forward-chaining are production systems [New73]
because they provide efficient pattern matching through the Rete algorithm [For82]. Pro-
duction systems still form the core of much larger software systems in various domains
today [Fri14; Pro15].

For this work, we envision supporting low to medium-scale RKDAs, providing complex
services via specialised hosting on the Cloud – ranging from having rulesets of 5 rules
processing 100k events per second, to having 500 rules processing 15k events per second.
However, most RKDAs tend to send events to the server non-deterministically and, as such,
the server often receives events in irregular intervals. We illustrate day-to-day examples of

1.2. Problem Statement 5

Multitenant)web)system

Web)application1 Web)application2 Web)application3

Da
ta
/e
ve
nt
s

if1$then$...
if2andif3$then$...

else$if4$and$if5$then$...$
else$if6$then$...

Figure 1.1: Example of a heterogeneous RKDA – These systems are required
to manage the shared knowledge base reused by the various applications they
support.

such applications later in Section 2.2.3.

1.2 Problem Statement
In this dissertation we focus on supporting reactive knowledge-driven Web applications.
These systems are usually connected to different clients intermittently sending events and
data, and are thus required to manage the shared knowledge base reused by the various
applications they support. An example is a server that supports applications that require
the detection of complex events from different event sources (e.g., in devices participating
in a Smart Space [Wan+02]). The application server runs in the Cloud and can support
applications, e.g. for security monitoring, for all clients subscribed to the service (Figure 1.1).
Each client installs a security monitoring application that is connected to the server using
bidirectional communication channels and the server needs to process data from clients sent
as events. In order to reason about the data and extract value, i.e., higher-level knowledge,
it is vital that the value of the sent data be extracted efficiently – notwithstanding the
massive and intermittent nature of contributed data. Rather than hard-coding all the
shared knowledge and ontologies, this knowledge can easily be programmed in the form
of rules to program server-side logic (e.g., as business rules [H+00]). In such situations, a
modern rule engine can be used to accommodate the knowledge for clients of these multi-
tenant web systems.

The executing process of a rule-based system is known as the inference engine. It
is tasked to find out which rules are relevant to the current elements in its state, the
working memory, and will fire the selected rules. This is fundamentally performed in three
stages forming the match-select-execute cycle [GR98b]. Unlike classic rule-based systems, in
reactive rule-based systems computation does not halt when the working memory matches
a goal or reaches an equilibrium (i.e. after the execute stage): the engine defaults to a
wait stage that awaits any newly asserted facts, after which it proceeds to perform the

6 Chapter 1. Introduction

match-select-execute cycle (Section 2.5.3).
However, inference engines were not conceptually designed to work in multi-user en-

vironments such as multi-tenant architectures. Classic rule-based systems (e.g., production
systems) are intrinsically non-reentrant: they are characterised by a flat memory and rule
set where activations can be observed from all asserted facts without discriminating their
sources. In other words, they are designed for single-use, in order to support isolated
knowledge-driven applications.

Reentrancy is fundamental in applications that are intended to be used in multi-user
environments [DD14]. The term describes computer programs that are written in such
a way that multiple users can share the copies of data in memory. Reentrant code is
a requirement in common multi-user systems such as operating systems; where system
programmers ensure that whenever a program is executed for a particular user, there can
be no other instructions that will interfere with data intended for another user. These
features cannot be easily implemented in rule-based systems. In programs written using
current rule-based approaches, programmers are forced to ‘mimic’ reentrancy by manually
hard-coding distinctions between clients and their data sources within the rules (Chapter 5).
Evidently, this quickly becomes complex and fallible to enforce using rule semantics when
the number of users and the relationships between them increases. In the context of multi-
user environments, failure to properly make these distinctions can cause unintended rule
activations in other clients.

Rule engines therefore require orchestration within rules to discriminate or distinguish
between data instances contributed by different entities. This dissertation proposes scoped
rules that enforce reentrancy in multi-user rule-based systems. Users and developers spec-
ify these rules to detect patterns in real-time data and to realise grouping structures in
knowledge-intensive rule-based applications.

Scoped rules enable rule creators to distinguish between events pertaining to different
clients while keeping this logic cleanly separated from the actual semantics of the rule. As
such, the basic purpose of the rule is not muddled with the logic required for distinguishing
clients. This leaves the logical intent of a rule easy to understand for a rule creator. At the
same time, scoping enables us exploit a number of performance optimisations in the server’s
inference engine during the matching process. Our approach of encoding the physical
and logical organisations of multi-user applications eases the computational workload of
the inference engine. This further decreases the engine’s overall response time, thereby
increasing its processing efficiency.

This dissertation aims to provide a reactive rule-based system for reactive knowledge-
driven applications that mitigates reentrancy problems by extending its rule-based syntax
with scoping extensions. The extensions enforce data discrimination during execution of
the inference engine processing cycle. Concretely, the research goals are:

• To support the development of reactive Web applications for multi-user environments
by exposing a reactive rule-based language for client rule definitions. This will enable
detecting client-specific complex events and will absolve clients of the complexities when
defining constraints in streams of events,

• To support the dynamism of today’s Web environment by presenting a DOEP rule-based
framework based on the Rete algorithm that allows runtime definition of rules by clients
that can be dynamically added in the engine during execution, incrementally evaluates
new events with newly-asserted definitions and reactively sends feedback to notify clients
selectively,

1.3. Overview 7

• To allow programmers to write reentrant rules by augmenting the rule language with
scope-based semantics that define scoped rule syntax, which allows orchestration within
rules to discriminate or distinguish between instances of different client entities,

• To enforce reentrancy in multi-user rule-based systems by infusing the Rete algorithm
with scope-based reasoning in the inference engine’s execution cycle that discriminates
data matches as defined in scoped rules,

• To evaluate the approaches that this dissertation proposes and their effect on the effi-
ciency of a Rete-based inference engine when compared to classical approaches.

In short, we present our vision from the research areas of rule-based systems, reactive
technologies and collective intelligence with the aim of providing a collegial approach for
the advancement of the current state-of-the-art. We identify the following two general
statements this thesis will claim:

1: Modern knowledge-intensive web applications have specific reactive, data-driven re-
quirements that are solved using rule-based system consisting of an inference engine
for execution and a rule-based language for programming logic.

2: That reactive knowledge-driven applications are also characterised by concurrent,
multi-user features introducing reentrancy problems in traditional inference engines.
This thesis presents a solution that introduces scope in rules and inference engines,
and goes further to optimise the approach using encoding techniques.

Serena: Constituent Parts

Serena = Event-driven server+ Forward-chaining rule engine+ Scoping component
= Reactivity +Reasoning +Heterogeneity

1.3 Overview
To address the challenges and to pursue the research goals mentioned in the previous
section, this dissertation proceeds to employ two main program design and engineering
artefacts: a rule-based programming language and a compatible rule engine presenting a
unified framework that spans both the server and client Web architectures. This makes the
languages both easier to use – an advantage for users – and provides avenues for engine
optimisation – an advantage for the server platform.

1.3.1 Dynamic Rule Architecture
In order to fulfil the goal of easing the development of reactive knowledge-driven applica-
tions for multi-user environments, this dissertation proposes a framework that will allow
remote clients to define and install logic reactive rules on the server. Rule definitions al-
low ways in which the system is able to monitor and adapt to user requirements more
efficiently. Using the unified framework, remote clients can add reactive rules to the server.
Reactive knowledge-driven applications (the focus of this thesis) require dynamicity not
only in the data that is contributed, but also in the defined constraints or rules that clients

8 Chapter 1. Introduction

have uploaded to the server. Therefore, clients can dynamically upload constraints as rules
and data as events to the server engine during the server engine execution, which is then
appended to the rule engine. The framework also maintains push-based communication
between the client and the server for instantaneous feedback in the form of notifications of
activated rules. The supporting system running on the server should therefore reconfigure
itself in order to dynamically adapt to the changing requirements of the remote clients -
without the need for re-deployment. This goes in tandem with the always online nature of
applications running in today’s dynamic software environment.

1.3.2 Scoped Rule-based Language
In order to represent client knowledge, this work provides a rule-based syntax that clients
can use to define their constraints as rules. Rule definitions allow for a declarative way to
define complex event detection patterns. When defined, client rules are uploaded to the
server. The rules are subsequently appended to the server’s rule engine, which appends
each rule to the inference engine’s internal representation. Each rule defines the real-time
detection constraints of interest for a particular client. In general, the inference engine will
process and detect any events that the client is interested in. Once a rule is activated the
framework notifies the relevant client(s) according to the client rule’s notification semantics.

In a heterogeneous environment such as a multi-tenant system there is need to dis-
tinguish data from different types of clients. Instead of embedding logic for distinguishing
clients in the main logic of the rule, Serena exposes scoped rule definitions by extending
normal rule syntax with scope-based definitions. The scope definitions specify scope-based
constraints on clients, their groups and the relationships between them. The scoped rules
therefore specify which data to match, who to notify and what information is sent with
the notification. Further, to ease the learning curve of rule design, the approach provides
an optional intermediate means for rule definitions. Rule creators can optionally design
rules for the framework using a provided graphical user interface that exposes a visual
programming editor to build client rules.

1.3.3 Reentrant Rule Engine
The rule engine on the server is based on Rete, one of the most the widely-used mod-
els of knowledge representation known as the production systems model [New73]. The
distinguishing feature of production systems is the use of data-sensitive rules rather than
sequenced instructions as the basis of computation. To this end, this dissertation presents
a reactive web server augmented with a traditional forward-chaining inference engine. This
enables servers supporting Web applications to realise the computationally-intensive pro-
cess of receiving and reactively processing data in order to detect complex events, together
with accompanying data relevant to notify clients.

Rule-based systems consist of a number of unordered rules referencing a global working
memory. Support for multiple, heterogeneous users in a single rule engine instance is
needed, and can be enforced by making the Rete algorithm reentrant such that it can
purely handle multiple inference states simultaneously for different sets of client rules. In
order to enforce reentrancy during the inference engine’s match cycles, it is imperative
that an efficient representation is used to represent multiple users internally and to quickly
determine the relationships between the data being processed at runtime. This dissertation
proposes embracing the concepts of physical or logical groups of tenant clients and their
relationships, common in multi-user applications [KKH11]. Examples of groups include

1.4. Approach & Methodology 9

research groups in a university, branches in an organisation, hobby categories in forums
and area zones when monitoring distributed sensor networks.

This dissertation targets reactive knowledge-driven Web applications and, as such, ef-
ficiency is immensely significant in providing a responsive service by the rule-based engine
given, i) the scale of data and number of heterogeneous users and, ii) the reactive setting
that these applications exhibit. A number of existing research that improves efficiency by
reducing the highly combinatorial evaluations made during rule engine execution reported
high performance benefits in their results [Doo95; HH93; Kim+14; MNM77; XZ10]. Given
this, the proposed framework internally converts structures of clients (or client group rep-
resentations) into an efficient encoding. The principal idea is that we precompute, store
and maintain an internal representation efficiently as an encoding that will be used to
expeditiously process constraints used to enforce reentrancy within the inference engine.
Our vision is to use an encoding method that performs (near) constant-time operations to
entirely determine client data relationships in the structure. This is vital because during
the match-execute cycle, the Rete algorithm performs most of its processing in the join
nodes as the dataset increases: therefore these operations would dramatically affect the
performance per cycle.

1.4 Approach & Methodology
After presenting the overview, this section presents the approach and methodology used in
this dissertation. In general, this thesis aims to invent a formalism in which rule designers
in heterogeneous environments can express patterns for data discrimination concisely, in
a way that reduces the accidental complexity [Bro87] encountered when expressing these
patterns using normal rule logic. The drawback of using normal rule logic to express such
patterns also negatively affects the execution of the underlying rule engine. We therefore
observe that there exists a balance on the flexibility vs efficiency spectrum, where if the
patterns we expose to rule designers are too flexible or abstract, then the implementation is
no longer efficiently implemented; and if we restrict the patterns we expose, we can have a
more efficient implementation. We summarise the process that will be used to address these
challenges and to pursue these goals. The summary parallels the six-step design science
research process that is described by Peffers et al. in [Pef+06].

Problem – The thesis focuses on reactive knowledge-driven web applications (RKDAs),
introduced in Section 1.1.3, that can be supported using knowledge extraction of CEP
patterns in the form of a shared rule based system; a rule-based language for program-
ming logic to detect event patterns, and a rule engine for execution. Moreover, with a
shared rule-based system developers can be able to exploit community knowledge, i.e.,
knowledge that has been contributed by data coming from different types of hetero-
geneous clients (Section 1.1.1). However, we observe that classic rule-based systems
were designed for single use, and therefore run into reentrancy problems when trying to
orchestrate events from a variety of heterogeneous clients (Section 1.2).

Objectives – The main objective is to provide a unified, reactive rule-based framework
for RKDAs that exposes a simple formalism using scoping for expressing and enforc-
ing data discrimination, and for capturing community knowledge efficiently in the rule
engine. The research goals for this dissertation supporting this main objective were
concretely discussed at the end of Section 1.2. Subsequently, this dissertation identifies
the requirements that such a system should have to in order to implement the objective.

10 Chapter 1. Introduction

Through these requirements, we dissect the current state-of-the art, with a specific focus
on the support of heterogeneity in systems that provide reasoning from a series of events
in Chapters 3 and 5.

Design and development – To pursue the objectives, this work presents the design and
development (in Chapters 6 and 7 respectively) of the Serena framework, a modern
detection-oriented rule-based system for RKDAs that runs on a Web server. In Serena,
clients can dynamically upload and install rules on the server, and can receive feedback
in the form of push-based notifications. In addition, the framework presents Serenas,
which exposes a rule-based language with scoping extensions that rule designers can use
to enforce data discrimination during the execution of the rule engine. This step was
discussed in detail as the scoped rule-based language and its reentrant rule engine in the
overview in Section 1.1.

Demonstration – The efficacy of the vision behind the Serena framework to solve the
problem of reentrancy in heterogeneous rule engines is explained using a driving scenario.
The scenario is representative of a typical reactive knowledge-driven application with
event capture, reactive processing and rapid response of detected complex events. The
scenario includes a security monitoring system requiring reactive detection and process-
ing of independent events from different company employees, and is representative of
a reactive knowledge-driven application. This dissertation presents this running exam-
ple introduced in Section 2.3, that continues throughout the text, to explain how the
framework solves the problems of reentrancy, and how scoping can be effectively used
to capture community knowledge.

Evaluation – The benefits of the developed Serenas framework are presented using qual-
itative and quantitative analyses. The qualitative analysis delves into related work and
compares how current systems support the identified requirements. The analysis then
proceeds to compare these current systems with the constructs provided by the Serenas
framework, showing that the proposed framework improves on the current support for
heterogeneity in modern rule-based systems. For the quantitative analysis, the benefits
afforded by Serenas are evaluated using scenarios representative of an RKDA in Cloud-
based, heterogeneous environment. The scenarios are modelled and tested in extensive
experimental simulations, and the results are analysed, comparing them with current
alternative approaches in Chapter 8.

Communication – This dissertation, and its supporting internationally peer-reviewed
publications outlined in Section 1.6, are the culmination of communicating the reen-
trancy problems of heterogeneous rule engines in the Cloud, and how the proposed
approach using scopes presents a viable solution to these problems.

1.5 Contributions
After giving a brief description of the methodology that this thesis will embrace, we sum-
marise its main contributions as follows:

A study of the open issues, limitations and shortcomings of supporting reactive knowledge
-driven Web applications in multi-user environments that require reasoning semantics.
We perform a literature study on the broad domain of such knowledge-driven systems
for the Web and propose a number of criteria that these systems need to fulfil.

1.6. Supporting Publications 11

A unified reactive, rule-based framework for heterogeneous environments that supports
reactive knowledge-driven applications. The framework realises the computationally-
intensive process of receiving and reactively processing data in order to detect complex
events, together with sending relevant data when notifying clients.

A rule-based language augmented with extensions to define scoped rules for community
knowledge. – Scope-based syntax can be applied to rules in order to support scope-
based constraints in heterogeneous rule-based systems.

A reentrant inference engine that embraces scope-based reasoning. A modification to the
Rete algorithm for inference engines that enforces reentrancy by incorporating tech-
niques from bit-vector encoding, which discriminates data matches as defined in
scoped rules.

An evaluation of a reentrant inference engine that is based on practical use cases. The
evaluation shows that given the structured knowledge representation of heterogeneous
clients, scoped rules are much easier to formulate and understand, and the inference
engine itself can process a larger number of access requests at a faster rate than the
traditional rule engine.

1.6 Supporting Publications
This work was a result of a number of primary and secondary publications.

1.6.1 Primary Publications
The publications that constitute the primary basis of this thesis are outlined below.

 Harnessing Community Knowledge in Heterogeneous Rule Engines. Lecture Notes
in Business Information Processing, vol. 322. Kennedy Kambona, Thierry Renaux,
Wolfgang De Meuter.

This paper outlined the benefits accrued from using scope-based reasoning in het-
erogeneous rule engines as a means to capture collective intelligence via community
knowledge. Using a simulated case study, it was confirmed that the technique presents
a viable approach for efficiently representing and processing community knowledge in
heterogeneous environments.

 Efficient Matching in Heterogeneous Rule Engines. Proceedings of the 30th Interna-
tional Conference on Industrial, Engineering, Other Applications of Applied Intelligent
Systems: IEA/AIE 2017. Advances in Artificial Intelligence: From Theory to Prac-
tice. Lecture Notes in Computer Science, vol. 10350, pp. 394. Kennedy Kambona,
Thierry Renaux, Wolfgang De Meuter.

The paper presented the scope-based hashing algorithm (SBH) in a heterogeneous
rule-based framework that enables efficient matching in scoped rule engines based
on the Rete algorithm. SBH introduces scoped hash tables in alpha memories that
help in avoiding unnecessary join tests that hamper performance. The experimental
results showed that SBH significantly decreases the response time of rule engines in
heterogeneous environments having entities sharing the same knowledge base.

12 Chapter 1. Introduction

 Reentrancy and Scoping in Multi-tenant Inference Engines. Proceedings of the 13th
International Conference on Web Information Systems and Technologies 2017. Kennedy
Kambona, Thierry Renaux, Wolfgang De Meuter.

The paper presented Serena, a rule-based framework that supports multi-tenant re-
active web applications. The distinctive feature of Serena is the notion of reentrancy
and scoping in its inference engine, which is the key solution in making it multi-tenant.
The validation was performed through a simulated case study and a comparison with
a similar ad-hoc approach. The results showed that Serena’s flexible approach im-
proves computational efficiency in the engine.

 Coordinating collaborative interactions in Web-based applications. Proceedings of
the 2015 International Conference on Interactive Tabletops & Surfaces. Kennedy
Kambona, Lode Hoste, Elisa Gonzalez Boix, Wolfgang De Meuter.

Focused on coordination constructs for programmers of collaborative knowledge-driven
applications. Such applications can today support heterogeneous collaborative inter-
actions for multiple clients simultaneously, but lack programming language abstrac-
tions for coordinating these complex interactions. The paper presented a framework
for dedicated coordination programmer constructs that blends techniques common in
complex event processing and group communication.

1.6.2 Secondary Publications
The publications that served as indirect research avenues for reinforcing the ideas behind
this dissertation are outlined below.

 Serena: A scalable middleware for real-time Web applications. Proceedings of the
30th Annual ACM Symposium on Applied Computing 2015. Kennedy Kambona,
Lode Hoste, Elisa Gonzalez Boix, Wolfgang De Meuter.

Focused on using an inference engine to support real-time processing on the web. The
position paper presented a middleware for real-time web applications that utilises a
rule-based approach achieve real-time constraints, giving instantaneous feedback. The
middleware also abstracts the underlying infrastructure needed to support real-time
communication.

 An evaluation of reactive programming & promises for collaborative Web applica-
tions. Proceedings of the 7th Workshop on Dynamic Languages and Applications
2013. Kennedy Kambona, Elisa Gonzalez Boix, Wolfgang De Meuter.

This work investigated the expressiveness of approaches that tackle problems with
inversion of control in event-driven code, namely reactive extensions and promises.
The paper presented a case study and subsequent analysis consisting of an online
collaborative drawing editor modelled using the aforementioned techniques. From the
analysis, the work proposes a roadmap of how to improve support of programming
event-driven Web applications.

1.7 Outline
An outline of the chapters that this dissertation presents are enumerated below.

1.7. Outline 13

1. Introduction.
2. Background & Motivation. Presents the basic principles of rule-based systems, and

their justification for use on the Web.
3. Related Work. Delves into the related work event processing systems having support

for knowledge-driven applications.
4. Serena: Cloud-based RBS. Introduces the Serena framework, a Cloud-based rule engine

based on the Rete network.
5. Heterogeneity in RBS. Examines the effects of heterogeneity in multi-user RBSes.
6. The Serenas Scoped Rule Language. Presents Serenas, a modern rule-based language

with scopes.
7. Serenas: Reentrant Cloud-based RBS. Presents enhancements to the Serena engine with

scope-based reasoning.
8. Evaluation. Describes the setup and evaluation of the proposed heterogeneous rule

engine.
9. Conclusion. Concludes with a summarised recap, presenting some hindsights and pos-

sible future extensions.

Code listings, information boxes and appendices
Throughout this document we introduce shorter code examples as listings. Code with more
details or with multiple parts are deferred to the later sections in the appendix. Information
boxes will be used to provide context or place emphasis on specific ideas in the discussion.

2
Reactive Knowledge-driven Applications

Turn, turn, my wheel! All things must change; To something new, to something
strange; Nothing that is can pause or stay…

Henry Wadsworth Longfellow, Kéramos, 1878

The modern software ecosystem is predominantly online. This phenomenon exposes
a number of challenges for traditional methods of creating and processing software applica-
tions. In this chapter we outline the differences between the classical and the modern Web
environments, and how they influence software development. In doing so, we motivate the
need for managing real-time processing of data, and how this can effectively be handled
using a mixture of classical rule engines and state-of-the-art programming using reactive
techniques1.

2.1 Introduction
Traditionally, software systems were conceptually designed to run on single, isolated ar-
chitectures. With the invention of networking at the end of the 1960s and subsequently
the World Wide Web in 1991, internetworking (i.e., the Internet) brought interconnected
systems and information to homes and businesses alike.

Today, traditional web applications have evolved into supporting dynamic, data-driven
and reactive applications with large numbers of users and client devices that require real-
time responses. This has become evident as connectivity has continued to become cheaper
and faster, leading to more powerful ways of supporting modern systems running on the
Web. An example of such systems is the information repository known as the Knowledge
Graph that enhances Google Search’s real-time engine results. Since its inception in 2012,
the graph processes more than 70 billion facts [Pay16].

1Some observations described in this chapter have been published as [KBD13] and [Kam+15].

15

16 Chapter 2. Reactive Knowledge-driven Applications

Fundamentally, the changes in the Web architecture have affected modern software
systems in various ways. The next section presents an account that indicates the changes
that programming and processing in the Web underwent over the years, highlighting their
significance on the current web environment.

2.1.1 The Rise of the Dynamic Web
The ideas behind a global Web used to discover and retrieve information can be traced
as far back as 1946 in a short by Murray Lenister2 titled “A Logic Named Joe” [FS09].
The article, in some ways, predicted the rise of the internet and interactive computing by
a ‘Logic the size of a breadbox sitting on a desk linked with other commonplace logics in
homes’3. The Lenister short envisioned the idea of an information network today accessible
from people’s homes. It would be concretised later in September 2, 1969 with the imminent
deployment of ARPANET to four universities in the USA for research. Later on in 1991,
the use of the internet as the backbone for connectivity was presented to the public domain
with Tim Berners-Lee’s The Information Mine global hypertext project known as the World
Wide Web. The Web was conceived as an information retrieval initiative aiming to “give
universal access to a large universe of documents”.

The induction of the Web to the general public fuelled the need for various program-
ming and processing techniques that developers and engineers would be able to develop
general-purpose applications that would run on this new architecture. What followed was
a number of technical and infrastructural evolution spanning over three ages starting from
the initial ‘Static Age’ to the current ‘Dynamic age’ [Dri11], as we illustrate in Figure 2.1.
We summarise the ages next.

 Static Age (1990 - 1999)

The original idea of having a ‘big, virtual document system in the sky’ by Berners-Lee
resulted in a network of static hard-coded files that made up the Web. These files
were programmed in the largely static HTML1, 2 & 3.2 languages and formed the
content on the Web after publishing on web servers. Classic web browsers such as
Viola and Mosaic/Netscape were used to connect to the servers to retrieve, format
and display files to users, who were simply consumers of web content.
The features of static server access and retrieval of information made the Web to
be considered as a static, read-only medium. The processing was lacking due to
limited server processing performance and bandwidth of the medium – long pages
often slowed down the entire site during retrieval. The Web 1.0 retronym is often
used to refer to this Age.

 Semi-dynamic Age (1999 - 2009)

From some of the deficiencies of the Static Age came the Semi-dynamic Age, where
information on the Web was additionally actively contributed by users. Content on
the Web evolved from publishing to participation by users: often through blogging,
online bids and early social media platforms. Consequently, this changed the land-
scape of the technologies used to program and process websites. Web pages were
programmed increasingly using languages such as PHP and ASP.

2A nom de plume of William Fitzgerald Jenkins
3Lenister is said to have a more accurate description of the current PCs and the Web than the often-

quoted Vannevar Bush in [Bus+45]

2.1. Introduction 17

Static Age:

1991-1999

Semi-static Age:

2000-2009

Dynamic Age:

2010-Present

Dynamic Web Server

Db Server Templates

Dynamic
Event-driven

Server

Static Web Server

Data/
Events

Figure 2.1: Changes in the Web over the ages – The earlier stages of the Web were
based on static files but today it has evolved to embrace dynamic technologies.

The usual processing pattern in this age was to retrieve server-based content by use
of predefined templates to prepare documents using content from databases, which
were processed using server-side technologies like CGI [Wor14], and Servlets [Ora11].
Files were then usually presented statically in HTML4.01 & XHTML to the client.
The architecture of the applications in this era followed a 3-tier web-stack. This age
was referred to by the term Web 2.0.

 The Dynamic Age (2009 - Present)

This third generation of the Web has been transformed into a more seamless and
interoperable whole rather than separate units. In this age, the Web is characterised
by a richer network of interactive contextualised information in order to make it
easy to be dissected, processed and shared between cooperating web applications
efficiently. The focus is shifting from simple websites to fully-fledged interactive web
applications and services. This is significant because enriched and interconnected
information greatly increases its value. This has led to the more intelligent processing
of web content by server technologies, such as recommender systems [Kum+98], micro-
formats [Biz+13], search using natural languages [WLY04], etc.
Also significant is the improvement in broadband connectivity, influencing a rise in
mobile internet access and streaming services. As a result, advanced distributed
applications have emerged spanning desktop, mobile and other smart devices. These
applications are not just programmed as simple webpages but as fully interactive,
event-driven web applications through which information moves using various event
streams. The most popular programming language for web applications is JavaScript
and HTML54.

From this account of the changes the Web has experienced over the years, two influ-
ences are evident. The first is that cheaper connectivity and the rise of the number of
connected smart devices or things has rapidly increased the need of online processing of
large quantities of data. The second is that there is an increase in the assimilation of newer
programming paradigms that remain robust given the dynamicity of the modern Web. The

4Some other languages can compile to these languages

18 Chapter 2. Reactive Knowledge-driven Applications

waterfall effect of this is increasing adoption of Web architecture as a platform by tradi-
tional “desktop” software developers. We discuss the repercussions of these two influences
in the upcoming sections.

2.1.2 Foundations of Cloud-based Heterogeneity
The changes that the Web platform has undergone were driven by the support of inter-
net applications that were previously exclusively running in isolated environments. With
cheaper networking hardware and the subsequent rise of the Internet, developers realised
the potential of utilising the Web as a platform. Accordingly, software systems that lever-
age the Web platform started being increasingly deployed to online software servers.

The need for a model that allows for availability of configured computing resources on
demand that resides on online servers (given the name “The Cloud”) subsequently arose.
The model was referred to as Cloud Computing [Arm+10]. Cloud computing provides
(seemingly infinite) computing resources and services that can be easily provisioned, con-
figured and deployed online with little management required.

Cloud Service Models

As the Internet matures, the trend of modern institutions seeking more complex
software solutions for their operations is shifting to cloud service providers. Cloud
service models generally consist in three forms: Infrastructure as a Service (IaaS) is
actual hardware provided by service providers available to users on demand. Plat-
form as a Service (PaaS) is when different services on the cloud provider’s platform
offer computing resources to end users. Software as a Service (SaaS) includes direct
applications that exist as cloud services offered by the provider remotely.

Utility Computing SaaS is becoming the more prevalent Cloud service delivery model, pri-
marily because its underlying technologies are maturing much faster and newer approaches
supporting SaaS applications are becoming more popular [So11]. Of the diverse descriptions
that are attributed to the Cloud, the most distinguishing characteristics are virtualisation,
scalability and a utility model for service provisioning. The latter is best known as Utility
Computing with a pay-as-you-go model that takes advantage of cost reduction through
resource sharing of online services. Utility Computing provides a way in which modern
software systems can share online services and resources in a cost-effective manner. It rep-
resents the modern take on time-sharing, a prominent computing model used in the 1970s
during the computing era of mainframes. Time-sharing initiated the idea behind envision-
ing computing as a utility by allowing more efficient means of using mainframe resources
by jobs from different connected users.

Multi-tenancy In today’s Cloud, however, utility computing has surpassed the simple
models of time-sharing due to the advanced techniques employed in the multi-tenancy
domain where economies of scale play a more significant role. Multi-tenant architectures
enable a number of customers, tenants, to transparently share system resources [Kab+15]
via a Cloud service provider. An example is Salesforce, which mainly provides a database
architecture shared by several tenants [Sal15].

Multi-tenant architectures can generally be split into two types, illustrated in Fig-
ure 2.2 [Pat+11]. The Figure illustrates different hardware and software configurations for

2.2. Trends in the Dynamic Web 19

SW

HW

SW

HW

OS OS

(a) Single-tenant

SW SW

OS OS

HW

(b) Multiple-instance multi-tenancy

HW

SW

OS

(c) Native multi-tenancy

Figure 2.2: Comparison of types of multi-tenancy with single-tenant architec-
ture – Multi-instance multi-tenancy exhibits duplication of resources, while native multi-
tenancy or true multi-tenancy utilises fully shared resources among tenants.

providing Cloud services. Multiple-instances multi-tenancy is where the tenants have their
own dedicated application instance over shared hardware or operating system, while native
multi-tenancy or true multi-tenancy is where the tenants have a single shared application
instance over various hosting resources. The two differ in terms of engineering and oper-
ational costs, customisability and scalability. Comparably, multi-instance multi-tenancy
solutions scale to support several dozen tenants, native multi-tenancy solutions scale much
better and can support several hundreds of tenants using similar resources. They however
do have some disadvantages, the forefront being lack of control, thereby leading to prob-
lems with data security. The multi-tenant systems we shall focus on consist of a single
instance that is shared across all clients, or tenants, from that instance. Overall, however,
multi-tenant solutions simplify the deployment of applications for customers online. This
is particularly significant when observing the emergence of technologies supporting modern
Web applications.

2.2 Trends in the Dynamic Web
The rise of the dynamic Web has made it inadequate to rely on traditional methods of
web application development. This is evidenced by the emergence of newer programming
paradigms and supporting processing techniques for servers on the Web. In this section we
intertwine the two, discussing the effects of newer programming paradigms on the processing
backends and vice-versa. To facilitate the discussion, we begin with a foundation of how
the processing of large data sets or big data has influenced trends in the modern web
environment.

20 Chapter 2. Reactive Knowledge-driven Applications

2.2.1 The Web and Big Data
Given the adoption of the internet, there are currently an estimated 6.4 billion devices,
with 20 billion devices (from ordinary computers to sensors and smart devices) projected
to be inter-connected by 2020 [Dav11]. These devices contribute to larger systems (e.g.
within ‘smart’ homes and offices via Smart Spaces [Wan+02]) by gathering and pushing an
unprecedented amount of data to a back-end web infrastructure that is required to perform
high-level processing like data aggregation, monitoring and analysis.

By and large, the modern Web has been noted as the primary conduit of the stag-
gering scale of the quantity of data and processing that is observed in current systems.
This large amount of data contributed by devices occurrs at a record rate, and has been
aptly named big data. Big data has been classified by researchers as having the following
characteristics [VOE11]:

• Volume – The high capacity of data produced from varied event sources. The volume
of data greatly affects efficient processing of information.

• Veracity – The level of trust that can be attributed to the data. Veracity goes hand-
in-hand with the data quality and can be extended to confidentiality and security as
well.

• Velocity – The rate of data generation from event sources and transfer to processing
servers. The velocity is also intertwined with the rate of response by the processing
entity as this affects the responsiveness of the system as a whole.

• Variety – The different types of data collected from different event sources such as devices
with sensor and GPS data. Variety introduces challenges in isolation and convergence
of big data in different contexts.

• Value – The possibility of discovering hidden values from its raw form. The value of
big data is especially significant because the large scale greatly reduces the conventional
methods used to extract meaningful information.

Technologies that support these big data characteristics can be categorised into two:
online and offline. Offline big data technologies usually focus on post-processing numerous
amounts of collected data for analytical purposes that spans all or most of the data in
static batches e.g., in techniques such as Hadoop [Apa09]. In contrast, online big data
technologies focus on real-time processing where incoming data is promptly ingested and
possibly cached, as seen in online processing approaches such as Flink [Car+15].

This dissertation focuses on real-time detection and processing of data sets, which falls
in the general area of online big data technologies. Detecting and processing online data
sets in larger quantities, however, poses a great challenge that is distinct from those faced
by offline approaches. These challenges are discussed in the coming sections.

Orchestrating Real-time Events in Online Big Data

Events play a major role in driving the main functionality of applications that rely on
online big data technologies: Facebook, Twitter, and LinkedIn together are estimated to
process more than 12 million events per second [Pel+15]. These applications have a much
higher level of interactivity, i.e., the responsive communications between users and system
components. Various entities produce data collectively (albeit intermittently) and expect
prompt responses whenever an event they have subscribed to occurs.

2.2. Trends in the Dynamic Web 21

Ma in [Ma11] noted that a major challenge of current services is the inability to adapt
to the highly interactive modern Web environment, like providing real-time or near real-
time services. Real-time services provide reactive content to a number of clients as soon as
it is readily available in the form of events and return immediate feedback in form of notifica-
tions. From today’s era of environments such as interactive multi-user online communities
(in social networks, crowdsourcing), newer demands for developing web applications have
emerged. A practical example is in detecting composite events from simpler but disorderly
events, used to compose interactions in approaches such as in synchronous web-based ap-
plications for Groupware [RG92]. This is indeed the key distinguishing feature of current
trends from previous methods in the earlier ages and offline big data processing technologies:
the necessity of the continuous processing of data from a large number of event sources to
instantaneously return timely but accurate data. The research challenge is in investigating
supporting technologies for the detection, processing and orchestration of events from such
interactive, dynamic web applications – all in real time. In this dissertation we term such
applications as reactive web applications.

2.2.2 Value Extraction in Reactive Web Applications
Value is a significant feature when employing reasoning within big data to discern patterns
and is one of the main principles of this dissertation. Huge amounts of data are virtually
useless if the data does not provide value to the application and its end-clients. A major
challenge in related research is coming up with techniques that extract value from the
reactive data to infer potential higher-level knowledge that it may uncover before the data
decays.

Significance of Value in Heterogeneous Data

In reactive big data, discovering interesting trends and patterns from massive, dispersed or
entangled pieces of data greatly improves its quality. A good analogy for this is the ancient
Parable of the Blind Men and An Elephant, that originated from the Rigveda collection in
ancient India [JB14]. The parable describes a number of blind men sizing up an unknown
object, a large elephant. Their goal is to try and determine what the object or creature is,
and project the result to the others. Each man feels only one part of the elephant’s body
and is then required to describe the elephant from this basis. Since each man has only a
limited, local perspective of the elephant, they come up with different conclusions of what
the object can be: for instance, one says the elephant could be a wall, a spear or a rope
depending on the limited region they can access (respectively, the side, the tusk or the tail),
Figure 2.3. The fable ends with the blind men in complete disagreement of what the object
is.

In the same way, value from data contributed by a variety of sources or clients on
the Web can potentially be increased if it is extracted or processed collectively. This will
significantly increase its value because the information is fed into a deterministic process
where patterns within a set of collective information can be ascertained. One field where
this is of practical significance is in the organisational intelligence domain, where the result
of the process is often termed as collective knowledge or collective intelligence [All97]. In
this dissertation we will use the term community knowledge. Community knowledge is
obtained by a process of extracting a concise collection of useful information sourced from
different clients. In practical scenarios the clients are often grouped according to logical
or physical similarities. Community knowledge is important in the context of multi-tenant
Cloud architectures due to the vastness and diversity of the types of information that

22 Chapter 2. Reactive Knowledge-driven Applications

Figure 2.3: The Blind Men and the Elephant – Each blind man has a limited
view of the elephant and comes up with different conclusions of what the object
is (Image sourced from [Com]).

can be produced, collected and processed from different clients. This type of composite
knowledge in such heterogeneous environments therefore encompasses the value and variety
characteristics of reactive big data.

Inferring higher-level knowledge from large amounts of data forces a majority of tech-
niques to require that such processing be performed offline [Gha+13; Hu+07; Yan+09].
Research in techniques that support faster and efficient ways of processing incoming data
in real-time for knowledge extraction in the Cloud are therefore needed in the modern dy-
namic Web ecosystem. This is further complicated by today’s need for discovering richer
community knowledge from diverse data sources. We refer to applications that require
extraction of value in the form of community knowledge through the online, reactive pro-
cessing of diverse sources of data as reactive knowledge-driven applications.

2.2.3 Reactive Knowledge-driven Applications (RKDAs)
Reactive knowledge-driven applications (RKDAs) are modern applications that collect in-
formation produced by multiple distributed sources and need to process it in a timely
manner in order to extract new knowledge in the form of community knowledge. The
knowledge extraction follows the techniques in traditional knowledge-based applications
and is driven by a reasoning process. The collective information consists of event data that
is usually sourced from users, client devices, sensor activity, etc., and is sent to a reactive
event-driven server for processing.

RKDAs can be observed in several domains. One is in the traditional complex event
processing domain, where data from multiple sources is correlated or combined to infer
events and patterns that are meaningful for quick responses [Luc02]. An approach on
the Web is stream reasoning, a newer area where techniques are used to integrate data
streams and reasoning systems in the Semantic Web [Val+09]. Examples of practical
implementations of reactive knowledge-driven applications include:

• Package monitoring – RFID-based inventory management performs continuous analysis
of RFID scans to track paths of shipments in order to capture possible irregularities
while in transit [WL05]. Providing tools for determining problems in shipments sourced
from various suppliers that end up in customers in different area/time zones can be a
challenge.

• Network management – These systems analyse network packets in real-time to ascertain

2.2. Trends in the Dynamic Web 23

traffic flow patterns for efficient routing, bandwidth monitoring and network security.
An example is intrusion detection, used to promptly detect and possibly anticipate
attacks in a network and to generate alerts when a known sequence of port scanning
and flooding occurs [ALB11], [Cra+03]. In this case, detecting an elusive robot port
scanner can prove to be elusive if the agent performs the attack from different IPs using
a set of proxies.

• Environmental monitoring – Data from sensors deployed in different zones needs to be
processed to acquire information about the observed zones – to detect anomalies or to
predict various emergencies as soon as possible [Res+09]. Designing an early warning
system that collects data from different observed area zones to provide interventions to
different action zones through a number of aid agencies can be a challenge.

• Automated manufacturing – A system can analyse scanned items on-the-fly for real-time
logging purposes and to detect anomalies in the manufacturing process, e.g., missing
items in the conveyor belt [ZDZ09]. More superficial problems can be detected from
analysing outputs from multiple conveyor flows as opposed to a single one.

• Fraud detection – Banks and other agencies need to detect occurrences of fraud by
processing and inspecting real-time streams of credit card transactions [Wid+07]. It is
increasingly becoming a requirement for multiple agencies to liaise with each other in
order to crack down more intricate money laundering schemes.

• Stock and currency monitoring – Some financial applications require a continuous analy-
sis of stocks to discover correlations, identify trends/spikes and forecast stock/currency
prices [Luc02] for trading with short or long positions. An example is in the cryptocur-
rency space, where trades of one reference currency e.g., Bitcoin, can have an effect
on other cryptocurrencies as well; so movements in multiple markets may need to be
analysed. Fast processing of such data is significant because more recent results increase
the value of possible gains [SÇZ05].

The next section outlines some of the most common characteristics of RKDAs.

2.2.4 Characteristics of Reactive Knowledge-driven Applications
Knowledge-based reasoning model Reactive knowledge-driven applications require extract-
ing value from incoming raw data in unpredictable sequences. The data from various clients
on the Web has to be processed to extract knowledge, forming a knowledge base that will
enrich the functionality that modern applications are required to provide. As stated, this
dissertation focuses on applications where the clients can send data intermittently and out-
of-order. In general, the complexity of processing this kind of data is beyond the evaluation
of simple filter predicates checking whether certain values are within pre-defined bounds.
In RKDAs, the reasoning process can be extremely complex due to the non-deterministic
nature of incoming data, e.g., events from sensor devices transmitting data intermittently.
A knowledge-based reasoning model can be used to detect these complex events in this
way instead of relying on programming predefined sequences or steps which often becomes
convoluted.

Event-driven communication model The types of RKDAs on the Web that this disser-
tation focuses on operate via a central server, with various distributed users and devices

24 Chapter 2. Reactive Knowledge-driven Applications

contributing data to the shared server. To support the distributed nature of the envi-
ronment and the potential large number of clients that send data intermittently to the
system, interactions in RKDAs are best suited to be based on the event-based model. The
event-based model is said to be memory-efficient because there is less context to store than
the traditional threaded model, and time-efficient since the expenses of context switching
are greatly reduced. In the modern Web environment, these features enable the model
to continuously process and respond to the large number of client requests that RKDAs
observe.

Responsive processing model Related to the dynamic properties of today’s online big
data, RKDAs also need immediate processing to provide responsive feedback to relevant
parties, with minimal latency: e.g., detection of an intrusion in an alarm system should be
prompt. Dealing with RKDAs therefore requires a responsive processing model, preferably
employing incremental processing techniques to reduce latency. This becomes important
in RKDAs that are modelled around data that exhibits decaying features, i.e., rapidly
losing its value over time [Kai+13]. A responsive processing model is therefore needed by
RKDAs to produce immediate actionable knowledge. This is evident in the proliferation of
responsive Web systems such as social applications like Twitter and Facebook where clients
require prompt processing of real-time updates.

Active feedback mechanism An additional characteristic of RKDAs is that regardless
of the amount of data that is contributed and processed, there is need for responsive
feedback to relevant devices or end-users with minimal latency. This is evident in the
proliferation of dynamic web systems and other distributed systems requiring real-time
monitoring, such as package trackers and online home security applications. In these cases,
immediate feedback is needed in order to receive real-time updates that may affect future
actions of supported applications. For instance, a responsive feedback can allow an online
re-configuration of the running system, an attractive albeit challenging feature in today’s
dynamic web architecture.

Collective intelligence through community knowledge Even though online value extrac-
tion is significant in RKDAs, what makes them stand above similar approaches is that
not only is the data to be processed is ‘big’, but the realisation that a diverse range of
autonomous sources contribute the data in one integrated system. The state of this multi-
tenant system is subsequently shared by all the autonomous sources. This has a profound
effect on the complexity and the relationships that can be unearthed in this shared system.
This aspect is especially significant in RKDAs that share a common model for representing
knowledge.

2.3 Driving Scenario
This section presents an example scenario of a reactive knowledge-driven application that
requires prompt detection of events from different sources. The application scenario is
inspired by the concept of having ubiquitous devices in Smart Spaces [Wan+02]: in this
scenario, a security system is deployed in an office environment to monitor different access
patterns using scanning devices.

The higher management of a software consultancy company Kimetrica has embarked
on improving the security of its internal physical office environment. They have passed

2.3. Driving Scenario 25

regulations that require the security department to monitor accesses of all staff and other
members while inside the company via security protocols. The regulations stipulate that
location accesses should be immediately reported to the responsible security body for quick
analyses and responses.

Throughout the company premises, the board has purchased and installed devices
that scan employee badges at major access points. Permanent and contracted employees,
upon registration, are issued identification badges, and are required to wear their badges
at all times. The badges are contactless smart cards that can be read by the access devices.
To gain access to any part of the company, a staff member is required to scan their badge
on the device.

For this simplified scenario we now illustrate a few of the security protocols that have
been drafted by the security department (from the regulations). These are only a few of the
protocols that can be enforced in the company and will be applicable to all the members
in the working environment.

 Protocol 1

Company employees have access to their offices during working hours

 Protocol 2

Permanent staff in the systems development department have car access to parking
on the weekends from 10am to 4pm

 Protocol 3

Non-staff members have access to corridors if they have a pre-existing 4-digit code
issued by mid-level employees

 Protocol 4

Interns are allowed access to the intern cubicles in restricted times from 8am until no
later than 8pm

This example is representative of a reactive knowledge-driven application. An applica-
tion supporting this scenario would typically exhibit the characteristics of RKDAs outlined
in Section 2.2.4. A supporting monitoring system should be capable of capturing the re-
quests from all employees automatically at varied times whenever a request is made, the
data sent for processing can grow to be a huge amount. The number of access devices
connected to the processing entity to send request data is high, littered all over the com-
pany’s physical environment. Furthermore, the data is sent in realtime. Therefore the
security system needs to handle a large amount of data that comes from different access
requests at different times. It needs to detect those requests against the said regulations
in a timely manner, by correlating low-level data read from the badges and the devices
to high-level situational replies to the access requests. With this functionality, the system
can detect actionable information that can be used for logging or decision-making. In a
nutshell, transforming this raw data into useful knowledge is significant in achieving the
security monitoring regulations specified by higher management.

We will frequently refer to this driving scenario throughout this dissertation as one
instance of a reactive knowledge-driven application.

26 Chapter 2. Reactive Knowledge-driven Applications

2.4 Programming and Processing Paradigms for RKDAs
In general, RKDAs can be developed using common methods, i.e., via conventional im-
perative programming techniques in languages such as Java and C# for programming
(server-side) applications. Given the fact that in the modern setting much of the creation
of the large amounts of data is occurring rapidly and in a non-deterministic fashion – gen-
erated from sensors, timers, user interactions etc., – these approaches are known to lead to
unnecessary convoluted code when detecting these irregular events [Sch+11]. There have
therefore been attempts that tackle these kinds of problems. This section outlines some
of the proposed state-of-the-art solutions, in light of supporting reactive knowledge-driven
applications. In particular, it focuses on how to program them using suitable definitions
to capture events of interest, and how systems can process requests promptly providing
immediate feedback.

In principle, technologies for developing applications that process real-time data sets
should be able to adequately support all their characteristics, from coping with its high
volume to discovering hidden values. Processing large quantities of data in real-time, how-
ever, presents unique challenges as opposed to processing the data offline. Developing web
applications that process content dynamically and supporting the processing of such kinds
of content can be done using a number of recent approaches. The next sections describe
the common methods and identify some of their limitations.

2.4.1 Reactive Data & Complex Events
In order to support the processing and detection of non-deterministic events, servers sup-
porting RKDAs need to be responsive: aside from managing more concurrent connections,
the processing systems should be able to promptly respond to many requests while re-
maining robust. In this case, the traditional thread-per-connection model is known to
have limitations such as scalability issues due to huge load, and increased risk of race
conditions when authoring modules due to complexity of orchestrating multi-threaded ap-
plications [Ous96]. As mentioned in Section 2.2.4, the event-driven model is designed to
make it easier to handle such issues – delegating incoming work to background processes
thus being able to handle larger loads.

In traditional systems the execution of a program is modelled around the call stack.
We present an example in the code of Listing 2.1 that calls a function performing a database
query and returning the results. When the function db is called, the caller on line 7 has
to wait until the database query is complete and the function’s return value is received –
in this case rows. Execution is synchronous, and only continues when the return value is
received and the context is restored.

Listing 2.1: Conventional synchronous database request
1 function db(a,b){
2 var rows = database.query(query);
3 return rows;
4 }
5

6 var query = "Select count(∗) from employees";
7 var result = db(query); /* execution waits forthe result */
8 console.log(result);

In contrast, event driven architectures do not logically use the concept of call stack [Hoh06].
Their execution is based on primitives known as events. An event is an abstraction of an

2.4. Programming and Processing Paradigms for RKDAs 27

interaction. We show the same database query code in asynchronous event-driven style
in Listing 2.2. The execution of the main code and the function call database.query are
decoupled. The function call is asynchronous, therefore the caller needs to provide a han-
dler or callback that will handle the response of the database call in line 3. Execution can
now continue without waiting for the expensive database request to complete. When the
request completes, an event is fired and the callback is executed.

Listing 2.2: Event-driven asynchronous database request
1 var query = "Select count(∗) from employees";
2 /* database call with callback */
3 database.query(query, function(err, rows) { //
4 var result = rows;
5 console.log(result);
6 });
7 /* execution continues without waiting */

The event-driven model is said to be memory-efficient since there is less computational
context to store, and time-efficient because the expenses of context switching are greatly
reduced [HO06]. As a result the model is well-suited for distribution as it provides a
decoupled model that is highly scalable and requires little coordination. The event-driven
approach has been identified by researchers to be a natural fit for reactive processing in
todays software environment [Dab+02; Dun+06; Lev+04; Mey+09]. The approach has
contributed to the popularity of a number of technologies on the Web. For instance, its
style embracing asynchronous events has led to the rise of the event-based JavaScript
language. Its execution semantics makes the paradigm performant and scalable, and has
contributed to the growth of the event-driven Node.js server. Given this, we present the
first requirement for support of reactive knowledge-driven applications.

 [Requirement 1] Event-driven processing & communication model

Modern Web applications make heavy use of fine-grained requests to the server dur-
ing their operation [Sch+08]. This is more evident in RKDAs, where client requests
may arrive at any time (as intermittent events) and from multiple distributed sources.
There is therefore need for a viable concurrency model that offers an efficient and scal-
able means to support RKDAs. Furthermore, because they operate in a distributed
environment, server engines supporting RKDAs must be able to consider how to han-
dle a number of clients connecting to the server to transfer and receive data as well
as to process these requests. The server should be able to support connections that
allow clients and devices to send reactive event data intermittently, and allow the
server to send both feedback and notifications to clients after processing client data.
In the driving scenario from Section 2.3, for instance, in their day-to-day operations
any number of employees can make random access requests at different times of the
week. When an access request is made, it is sent to a server and the device awaits im-
mediate response in order to allow or reject the request made by the employee. These
requests need to be sent to the monitoring system through a model that requires the
least overhead in coordination and performance when receiving and processing them.
As presented in this section, the event-based paradigm provides a model that enables
such a supporting system to be able to provide these types of requirements in an
efficient and scalable way. An event-driven server provides the required execution
and communication model that enriches the applications it supports by making the
system responsive to user requests in a decoupled manner. As a result, the model

28 Chapter 2. Reactive Knowledge-driven Applications

enables the server receiving requests to be able to process requests from a large
number of clients, typically observed in RKDAs.

2.4.2 Detecting Complex Events
Event-driven reactivity is a natural programming model for web applications [Mey+09], and
more-so for RKDAs. RKDAs are characterised by events that need to be orchestrated using
event sequences that deliver reactive data at non-deterministic intervals. In these cases, the
conventional programming abstractions available for detecting correlated or more complex
events make developers run into various challenges when orchestrating these events. The
most notable problem that has recently received high recognition is the callback hell: deeply-
nested callbacks that have dependencies on data returned from previous asynchronous
invocations.

To expound on the problem we illustrate an example that applies conventional tech-
niques in a simple RKDA (also presented in [KBD13]). The example is of an online drawing
editor wherein a programmer intends to detect a simple dragging of a shape on the canvas.
In the design of the code a programmer would need to detect three events: a mouse down
on a shape, a mouse move and an eventual mouse up. Detection of the start mouse up and
the end mouse down state occurs only once per drag operation, with mouse move events in
between.

Listing 2.3: Programming a shape moved operation
1 shape.detectMouseDown(function(e1){
2 //mousedown state logic
3 shape.detectMouseMove(function(e2){
4 //mousemove state logic
5 shape.detectMouseUp(function(e3){
6 updateShape(e3);
7 });
8 });
9 });

The code example in Listing 2.3 shows how to detect the shape drag operation (i.e. a
user clicks on a shape and then holds and moves the mouse) using conventional callbacks5.
As we see from the example, having to extract higher-level events – a simple drag operation
in this case – creates a nested programming flow that is convoluted, making them harder
to understand and test as the number of events to correlate increase [Mey+09]. These
complex events are are also prominent in the driving scenario where advanced employee
access patterns need to be detected for the various security protocols. As the complexity
of the events to be detected increases, more advanced programming paradigms are needed.

2.4.3 The Reactive Paradigm
In this section we introduce the reactive programming (RP) paradigm, which builds upon
the deficiencies of traditional imperative programming paradigms by abstracting time-
varying events for their consumption by a programmer. This inverts the normal control
flow of the program: it relinquishes its control to only react upon incoming events. A
programmer can then define functions that will be invoked upon any ‘external’ event that
is detected by the system.

5We omit code for updating the canvas during the drag for clarity.

2.4. Programming and Processing Paradigms for RKDAs 29

Reactive data vs streamed data

Note that the type of incoming data we reference is different from the commonplace
definition of streaming data, which refers to the transfer of data at steady, high-speed
rates with strict quality of service (QoS) requirements [Wu+01]. Streamed data
usually supports linearly-ordered real-time applications such as the timely delivery
of the playback of high-definition video content over the Web. Our focus is on
reactive data, which is usually produced at irregular or diffused intervals. We explore
this concept further in Chapter 3.

In [KBD13] we investigate the use of the reactive programming paradigm for develop-
ing reactive programs such as RKDAs with such timely requirements on the Web. Most
RP approaches support two kinds of abstractions that model continuous and discrete time-
varying values. Continuous values, usually referred to as behaviours or signals, represent
uninterrupted or fluid flow of incoming data from a steady event e.g., a timer. More rel-
evant to the distributed setting are discrete values (usually referred to as event streams);
asynchronous abstractions for the progressive flow of intermittent data coming from a re-
curring event e.g., events from interacting with a mouse. The abstractions are first-class
values and can be passed around or even composed within the program.

In Listing 2.4 we show the previous example of detecting a drag event composed from
consecutive mouse actions. We use the syntax of Flapjax [Mey+09], a popular reactive
language extension for JavaScript. In the code we model one complete drag gesture as a
single composed event of a mouse down followed by a number of mouse move events, ending
with a mouse up in line 9. Unlike the nested callbacks from the previous Listing 2.3, dragE
in line 14 is a first-class entity that represents a composed event stream consisting of the
merged streams of the three mouse actions that represent a complete drag event. Whenever
the complete interaction is detected then dragE will send data to its handlers as shown in
line 14-16.

Listing 2.4: Shape drag operation using reactive programming
1 function mouseDownAndMoveE (canvas) {
2 return extractEventE(canvas,"mousedown").mapE(function(md) {
3 return extractEventE(canvas,"mousemove").mapE(function(mm) {
4 //update shape position during move...
5 });
6 });
7 }
8 function mouseDownMoveAndUp(element){
9 var downMoveAndUpE = mouseDownAndMoveE(element).mergeE(mouseUpE(element));

10 return downMoveAndUpE;
11 }
12

13 var dragE = mouseDownMoveAndUp(canvas);
14 dragE.mapE(function(e) {
15 //update shape position after drag...
16 });

These kinds of abstractions greatly reduce the complexity of dealing with timely event
occurrences prevalent in the Web domain. For instance, RxJs [Man15] is an industry-
strength RP library that is used in large web applications to capture and compose reactive
streams. With imperative approaches, whenever an event occurs programmers have to
explicitly perform re-computations and ensure data dependencies from changes brought
about by the event are methodologically updated. With the RP approach programmers

30 Chapter 2. Reactive Knowledge-driven Applications

need not explicitly trigger a re-computation of time-varying data: the framework provides
automatic re-computation of reactive values in the program. [KBD13] illustrates how such
RP constructs can be used to build interactive RKDAs by providing some useful abstrac-
tions for reasoning about events in such applications. Rather than force explicit ordering
of program flow as with conventional programming techniques (resulting in problems such
as the callback hell), reactive programming provides constructs to react whenever an event
is triggered.

Reactive Programming for RKDAs

Even though the reactive paradigm provides abstractions that have been proposed for
applications that react to external events, it exhibits some limitations. We explain the
impact of these limitations specifically for supporting RKDAs.

As mentioned in Section 2.2.4, in addition to reactivity, RKDAs also require value
extraction from events. A central idea to this is the relationship between the information
from certain events: e.g., an alarm can only be raised if an intrusion happens when the
door was locked from the outside or at night time: indicating respectively that the owners
are either not present or could be asleep. As a result, these relationships between values
brought forth from various occurrences of events are vital when determining the event
patterns that are of interest to RKDAs. In reactive programming there is a lack of suitable
constructs to capture such relationship patterns in events. Some reactive programming
languages do indeed allow one to define custom operators: for instance FlapJax contains
receiverE and sendEvent to create custom event streams and to send event data. But
as we present in [KBD13], these operators increase complexities for the programmer when
detecting more advanced interactive event patterns, evident in RKDAs.

Consider the code previously shown in Listing 2.3 that detects a drag operation for
a single user. If several users are using the application at the same time, then additional
code is needed to make sure that each detected event is processed for each corresponding
user (cf. the variety characteristic in Section 2.2.1). A programmer would need to combine
two mousedown operations as shown in Listing 2.5. The programmer is then forced to add
if..else statements (e.g., lines 5 and 16) in the handlers of detected event streams to
further specify specific patterns (in this case, that the mousedown operations came from
different clients in Line 5 and whether the two events happened simultaneously in line 16).
Further constraints would lead to an increase in the complexity of the code. This forces
the programmer to specify how the system should work rather than simply what is desired:
significantly complicating the reasoning process.

Listing 2.5: Shape drag operation using reactive programming
1 function twoClientMouseDownsE(canvas) {
2 var evt = receiverE();
3 extractEventE(canvas,"mousedown").mapE(function(md1) {
4 extractEventE(canvas,"mousedown").mapE(function(md2) {
5 if (md1.client !== md2.client){
6 //a two−client mouse down
7 evt.sendEvent(md1, md2);
8 }
9 });

10 });
11 return evt;
12 }
13

14 var mouseDownsE = twoClientMouseDownsE('editor');
15 var mouseDownsESameTimeE = mouseDownsE.mapE(function(md1, md2){

2.4. Programming and Processing Paradigms for RKDAs 31

16 if (md1.time − md2.time <= 100){
17 //mousedowns happened simultaneously
18 //...
19 }
20 });

This leads us to the next requirement for supporting the development of RKDAs.

 [Requirement 2] Knowledge encoding via declarative definition of event patterns

The No Silver Bullets paper by F. Brooks [Bro87] noted that the most prominent
gains in software development are made by removing unnecessary artificial barriers
that have made programming various tasks ‘inordinately hard’. A declarative style of
programming places emphasis on specifying what needs to be done rather than the
sequence of steps of how to do it. By avoiding implementation details, well-written
declarative code is easier to understand, modify, and maintain [And13].
The most significant part of designing RKDAs that deal with disorderly events is spec-
ifying and designing the dynamic or interactive concepts of the application. Hence,
a framework supporting development of RKDAs should expose knowledge-encoding
syntax and semantics that directly enforces the intent of the developer thereby re-
ducing the complexity of writing code. In the case of RKDAs, this is code that is
expressive enough to detect real-time events from a continuous stream given a num-
ber of related criteria or constraints, and to compose them to higher-level events. For
example in the driving scenario, the supporting framework needs to expose expressive
constructs that can detect various access requests against the said regulations by cor-
relating low-level data reads from the badges, devices, etc., to high-level situational
replies to the access requests. Although RP provides useful abstractions that keep
time-varying values and their dependencies consistent, these types of computations
can be cumbersome to express using RP while retaining algorithmic clarity [SM14]
(and, as we discuss later, reasonable performance). Other research implementations
that embrace declarative semantics within event-based systems (through stream pro-
cessing) exist, and often follow relational structured query languages [Bar+09; Zhi15],
pattern matching syntax [BM11; Bro09] and other custom techniques that borrow
from these two approaches [DHW94; Han92]. These approaches will be discussed in
detail in the next chapter.

Processing Reactive Data from Complex Events

Aside from detecting event patterns, the supporting framework for RKDAs needs to be
responsive enough to process data from events reactively in order to extract value from
event data promptly. One of the main benefits of this is a responsive execution model and
responsive feedback.

Most work on processing data that RKDAs receive in the modern context has tradi-
tionally focused on offline techniques: batch processing for data analysis or mining. An
increasing number of modern approaches emphasise on processing newly-streamed data,
which is considered to be of a higher contextual priority than older static data. Therefore,
offline techniques have recently been mapped to processing reactive data online using tech-
niques such as micro-batching [Cór15]. Even so, providing continuous online processing of
data sets in an efficient way is still a challenge [GRC04].

In reactive programming, the code written by a developer is usually converted to
a directed acyclic data-flow graph (DAG) for processing. The DAG is a directed graph

32 Chapter 2. Reactive Knowledge-driven Applications

root

map

xyMovesE

(a) Graph for xyMovesE

root

filter

map

xmouseMovesE

(b) Graph for xMouseMovesE

root

filter

map

filter

map

xmouseMovesE xmouseMovesE2

(c) Graph for xMouseMovesE2

Figure 2.4: Dataflow graphs for the codes in Listing 2.6 & 2.7– The graph contains
nodes that are connected according to dependencies in reactive code.

that is built with nodes and edges representing the data dependencies already defined in a
program.

At runtime, most RP implementations use a proactive propagation model where
changes, when detected, are immediately applied to nodes and their dependencies in the
graph (i.e., push-based). This can be best illustrated with a simple example: extracting
the even x mouse move coordinates as in Listing 2.6. The code on Line 3 maps over data
received by the mouseMovesE event stream from the previous line. For this part, a sim-
plified DAG consists of 2 nodes as depicted in Figure 2.4a. Incoming events start from
the root node and are propagated to the first node for processing. The output is a new
event stream that emits the returned xy coordinate values from the computations in Line 3.
The next line 5 creates a new stream that contains only even x coordinates of the mouse
gestures. RP implementations place emphasis on representing dependencies between time-
varying values in the DAG built from source code. The resulting graph contains an added
node representing this last computation depending on the previous one, as depicted in Fig-
ure 2.4b. Incoming event data (in this case, mouse gestures) flows through the graph and
any dependent values are recomputed. RP therefore absolves the programmer from manu-
ally updating dependent computations from reactive values, since the underlying runtime
will perform these computations automatically.

Listing 2.6: RP code for X Mouse Coordinates - Client 1
1 var mouseMovesE = extractEventE(canvas,"mousemove");
2 //mouse coordinates when mousemove is detected
3 var xyMovesE = mouseMovesE.map(function(evt){ return [evt.mouseX, mouseY]; };
4 //x coordinates of mousemove
5 var xMouseMovesE = xyMovesE.filter(function(xyMove){ return xyMove[0] % 2 === 0; });
6 //...

As observed in Section 2.2.4, one feature of RKDAs is that they can serve a number of
distributed clients. Consider the code in Listing 2.7 which could be written by a different
client, but which achieves the same purpose for detecting the even x coordinates made on

2.4. Programming and Processing Paradigms for RKDAs 33

the canvas as that in Listing 2.6.
In the ideal situation, a reactive DAG builder would append the new client’s code

to the graph without duplication of nodes. This is not the case however, as most RP
frameworks build the DAG for this code as shown in Figure 2.4c. This often leads to
duplication of nodes, which is inefficient especially when re-evaluations occur as result of
events triggering changes in large parts of the graph. In a number of such cases, nodes can
indeed be reused to reduce redundancies and improve performance. The reuse is especially
significant because different clients contribute a number of constraints to the the server,
and therefore performance becomes a key issue when employing RP approaches to support
the processing requirements of RKDAs.

Listing 2.7: RP code for X Mouse Coordinates - Client 2
1 var mouseMovesE = extractEventE(canvas,"mousemove");
2 //retrieve x coordinate on each mousemove
3 var xMouseMovesE2 = mouseMovesE.map(function(evt){ return [evt.mouseX, mouseY];

↪→ }).filter(function(xyMove){ return xyMove[0] % 2 === 0; });
4 //...

The automatic tracking of dependencies in a reactive DAG has often led to RP imple-
mentations placing specific restrictions in the operations performed in the DAG’s ‘heart-
beat’, i.e., the immediacy of effecting a change to all dependent nodes in the graph. In
practice, however, applications built with reactive abstractions are often infused with the
usual imperative stateful logic [Van+17]. This brings us to the third requirement.

 [Requirement 3] Reactive incremental processing of online/real-time events

A framework supporting modern RKDAs should provide efficient and prompt pro-
cessing of reactive data. The reactivity requirement is that first, the server must be
able to receive events at all times (i.e., continuously) and second, to have a highly-
optimised execution engine that is able to offer event-triggered evaluation with min-
imal overhead to deliver instantaneous response. Optimised and efficient processing
can be categorised using terms as eager, lazy, and hybrid approaches. In any case,
to enforce real-time processing and immediacy of results it is necessary to monitor
the data memory – to continually add new data whilst checking if there are notifica-
tions created to automatically send them to clients. With reactive processing of data,
efficiently prioritising computational resources as per each input is essential.
Frameworks supporting RKDAs, in reality, often perform extensive computations.
This is because RKDAs require extracting value from real-time event data. This
value extraction from events often requires a way to provide incremental processing
whenever any incoming event is detected. Incremental computation avoids the entire
program to be re-executed whenever small changes to input data is detected. In the
driving scenario, the monitoring system should be able to store relevant intermediate
data that relate to the security protocols in order to promptly process incoming
requests against the said regulations and avoid re-evaluating all protocols every time
a request is detected.
One way of providing this incremental processing is through storing intermediate data
(in intermediate nodes within a DAG, for example) from events that have already been
observed, thus avoiding redundant computations. On the processing side, however,
traditional RP approaches cannot efficiently deal with incrementally constructed val-
ues [RD17], which is vital for value extraction. The graph built behind reactive
programs usually needs to be re-executed in its entirety when a change is detected.

34 Chapter 2. Reactive Knowledge-driven Applications

The change needs to be propagated to the whole graph, which usually do not contain
any caching mechanism that can be vital for performing more extensive computations
incrementally. Incremental processing is thus important in RKDAs that require data
sets from clients to be cached in order to perform the processing needed for value
extraction promptly. Current examples of techniques that follow this direction of
extracting knowledge in event-based systems include systems that perform set-based
reasoning of events collectively and reasoning using individual events [Bas07].

With the above discussion, we proceed to explain why the rule-based paradigm is
specifically significant for RKDAs, which will help us to frame the rest of the requirements
in context.

2.5 The Rule-based Paradigm
This section focuses on the value extraction characteristics of RKDAs to infer higher-level
knowledge. For frameworks supporting RKDAs, directly integrating a reactive, scalable
event-driven server with a rule engine makes the whole system improve performance when
receiving requests from a large number of clients and responsive when processing and
activating client rules. The role of such a server is to wait and listen in on a stream for
events from such entities and subsequently push responses back (to whomever needs it)
typically with much shorter response times in a reactive way.

To infer higher-level knowledge,one needs mechanisms for capturing patterns from
incoming data in observed events. The main problem that arises when trying to capture
patterns from a large number of external events is that they arrive in a non-deterministic
manner, i.e., programmers have little or no control. One of the most appealing aspects of
the rule-based paradigm is that in principle, it offers an attractive way to escape from the
complexity of problems caused by lack of control by offering formal declarative semantics.
Systems employing rules to specify pattern-matching constraints are known as rule-based
systems. Rules are modular units that expose a formalised syntax which programmers can
use to define different pattern-matching criteria. The decoupled nature of the events makes
them suitable for developing scalable web applications, and, the declarative semantics and
efficient processing of rule-based systems provide real-time detection of patterns. This
section describes the ways in which the rule-based paradigm can offer rich programming
and processing semantics that web applications can use for reasoning.

2.5.1 Reactivity in Rule-based Systems
Rule-based systems were designed with a goal of general problem solving by representing
knowledge in terms of modular rules that encode knowledge in the system [Hay85]. Per-
haps the most famous work was the General Problem Solver by Newell and Simon in [SN71].
Their work demonstrated that much of human problem solving or cognition can be mod-
elled using production rules whereby a rule is a small, modular collection of loosely-linked
constraints. Short-term memory in the human brain is used for storing knowledge tem-
porarily when solving problems. A cognitive processor finds and eventually activates the
rules that have been matched by the external stimuli. The cognitive processor corresponds
to a rule engine and the sequence of how rules are activated were conceived to be the human
thought process.

The model by Newell and Simon for human problem solving is the basis of specialised
rule-based systems called production systems. They have several manifestations, building

2.5. The Rule-based Paradigm 35

expert systems in domains such as multi-agent and decision support systems. Even though
using specialised domain knowledge later became key in the success of such intelligent
systems [GR98b], production systems still form the core of more general systems in various
domains today [Fri14; Pro15].

Rule-based engines based on semantics of classic production systems perform ea-
ger evaluation of asserted facts and react to changes in condition states. Recent ex-
tensions of production rule systems have been extended to the Complex Event Process-
ing (CEP) [Luc02] domain, such as the Drools [Pro15] and CLIPS [Cro11] engines. In
practice, production systems provide functionality such as event monitoring and problem
solving in various domains including medicine, business, manufacturing and in computer
games [Lug05; WM03]. As they are the main focus of this dissertation, we will hence-
forth refer to production systems and rule-based systems interchangeably in the rest of its
chapters.

2.5.2 General Architecture of Rule-based Systems
The rule-based system model shares the main components as other models of computation:
a program, data and some execution semantics. The main difference is that for the rule-
based systems programs consist of an unordered collection of rules. A typical rule-based
system consists of a data memory, a rule memory and an inference engine. We illustrate
the architecture of a typical rule-based system in Figure 2.5.

1. Data memory – The data memory is a repository of symbols that represents facts about
the world. The data memory stores the current state of knowledge during problem-
solving by holding the symbols that map to the facts (and goals) of the domain. The
data memories are usually global stores as the data needs to be accessible from anywhere
in the system.

2. Rule memory – The rule memory stores the collection of rules that will be used to process
the facts. The rules use the facts to update knowledge about a task being performed.
In most systems rules are added to the inference engine at compilation time and are
compiled into an efficient structure suitable for the inference engine.

3. Inference Engine – The most significant component is the inference engine, which deter-
mines which rules are relevant to a given data memory configuration and chooses one
to execute. Executing the rules is commonly referred to as firing rules, following the
analogy of firing neurons in the human brain.

2.5.3 Programming Rule-based Systems
Facts and Rules. Facts represent data instances of real-world objects or event abstractions
related to the domain of application – in some cases they can also represent conceptual ob-
jects that will fuel the problem-solving strategies. In rule-based systems, facts are composed
of elements that hold simple data types. Facts in data memory can be added, modified
or removed. Addition of facts into the data memory is known as assertion and removal is
called retraction.

Rules can be expressed as a set of if-then statements. The if part is the condition
and is also known as the left-hand side (LHS), also termed the antecedent. The then part
is the action and is also known as the right-hand side (RHS) or the consequent. The rule
relates the facts bound in the if part to some action in the then part.
An example of a simple rule:

36 Chapter 2. Reactive Knowledge-driven Applications

Inference Engine
Rule memory

Data memory

Rule firing

Facts

Rules

Figure 2.5: General architecture of a rule-based system – The most significant
component is the inference engine. It performs the actual execution process of
the rule-based system.

IF age > 12
AND age < 20
THEN stage is "teenage"

A sample fact for this rule can be:
age 15

After the rule has been executed with this fact, the new state of the system is:
age 15
stage "teenage"

The age fact was added into the data memory and the stage fact is added by the
then part of the rule. Usually, the left-hand side of a rule is made of a combination of
condition clauses, such as AND which combines two clauses, OR which defines exclusivity
and NOT which is represents a negated clause.

The right-hand side usually contains a list of modifications made to data memory
when the rule fires. In the example the stage is given a new value. In addition, the right-
hand side can perform external operations such as printing on a display, reading from or
writing to an external input/output device, signalling a system halt, etc. We now follow the
architecture with a description of the runtime execution semantics of a typical rule-based
system.

Processing in Rule-based Systems

Execution in a rule-based system is centred on the inference engine. The classic inference
engine is a finite state machine performed by a well-known recognise-act cycle [For82;
Mir14]. The recognise-act cycle consists of three primary states. The first two stages
constitute the recognise phase, and the last is the act phase of the cycle.

1. Match-rules – All rules that satisfy the current state of the data memory are noted,
according to the comparison algorithm of the inference engine. This is done by

2.5. The Rule-based Paradigm 37

comparing the left-hand sides of the rules with the current facts in the data memory.
Within this cycle, the constraints in rules cannot mutate while the engine is processing
rule bindings. Each ordered pair of (rule, [relevant-facts]) is known as an
instantiation of the rule. The rule matches found are all eligible for execution and
collectively form the conflict set.

2. Select-rules – In this stage rules are chosen for execution from the conflict set. The
rule-based system applies a specific pre-defined selection strategy (or possibly a num-
ber of strategies for arbitration) to find out which rules to execute.

3. Execute-rules – After rule selection, the system proceeds to execute the rules. Some
rules, when executed, may alter the data memory and instantiate a different set of
rules after performing the actions. The system then performs the match phase again,
forming the recognise-act cycle.

In any rule-based system, most of the processing time is consumed by the first and most
significant phase, match-rules. The term Match originated specifically from the concept of
pattern-matching in Section 2.5 and indicates that a clause in the left-hand side of a rule
is exactly the same as a data element in memory. Since most rules can be defined using
variables, the variable in a rule is said to be bound if it can be replaced by a constant
from a data element. Once bound, the variables are used consistently in that scope. An
instantiation therefore includes consistent bindings for a rule in both the condition and
action parts in the select-rules phase. The result of the select-rules phase, i.e., the conflict
set, can be ordered and stored in an agenda. The rules are then selected in order and
executed during the execute-rules phase.

Data-driven execution: During execution in a rule-based system control is hinged on the
basic re-evaluation of the data states with the rules, and not by any form of static control
structures explicitly defined in the program. Consequently, computation in such rule-based
systems is said to be data-driven as opposed to conventional instruction-driven programs.
The main side-effect of this is that the implementation of the execution process becomes
more complex and the direction of rule application is in a top-down fashion [GR98b].

Rule application direction: The direction of application of rules during the recognise-act
cycle corresponds to the type of reasoning that is used by the inference engine. In forward-
chaining the conditions of rules determine the reasoning process. Execution begins with
existing facts and derives intermediate knowledge by applying appropriate rules until a goal
state is reached [Fri03]. Backward-chaining involves reasoning ‘backward’ from a goal state
or from a conclusion to be proved to the facts that satisfy the goal. Backward chaining is
suitable for analysis or diagnosis tasks [GR98b] and is termed as the goal-driven approach.

2.5.4 Optimising the Matching Process: The Rete Algorithm
The match-rules phase has been identified as the most intensive phase in terms of the
amount of processing that the rule-based systems performs [MNM77]. Since rule-based
systems usually handle a large number of rules and facts, efficiency is significant in achiev-
ing high performance in interactive domains. Rule-based systems allow complex pattern-
matching across a large data memory, making the matching process a major source of
inefficiency.

Unless the inference engine is optimised, successive recognise-act cycles will recompute
all the matches to determine the rules that are applicable according to the conditions on

38 Chapter 2. Reactive Knowledge-driven Applications

the left-hand side and the data elements in memory. Making this process fast becomes
crucial and methods for performing fast matching are essential for good performance. Due
to this, reducing the amount of matching in rules is the best way to make any inference
engine process its cycles faster [MNM77].

The Rete algorithm: The most widely-accepted algorithm for efficiency in forward-chaining
inference engines is the Rete pattern-matching algorithm (or just Rete), devised by C. Forgy
in the late 1970s [For79]. Rete performs efficient pattern-matching [Sch+86] by relying on
a special internal representation for rules added in the rule memory. The internal repre-
sentation is a structure containing compiled rules with cached data, eliminating extra work
performed by an unoptimised engine.

Rete variations: A number of variations of the Rete algorithm have been implemented
since its invention. TREAT [Mir14] and A-TREAT [Han92] omit part of the network
across cycles while maintaining the conflict set to reduce the amount of matching per-
formed and to further reduce the memory requirements. The major benefit of the other
variations Rete* [WM03] and Gator [HH93] is they provide configurable time-space trade-
offs by allowing dynamic changes in the intermediate memories to limit memory consump-
tion. LEAPS [Bat94] is a separate but related algorithm that uses lazy evaluation to merge
conflict resolution strategies during matching (as opposed to after the matching process)
to achieve efficient processing.

Comparisons: Each Rete variation however is targeted for specific situations or configu-
rations, thus in a general situation they experience inefficiencies when compared to vanilla
Rete implementations. TREAT’s conflict set support has a high space-time cost in the gen-
eral execution of the Rete engine [Bra+91]. During normal unrestricted processing Rete*
requires more space than Rete due to the overhead of the additional functionality that it
provides, including maintaining dual tokens [Sch+86]. LEAPS’ implementation is tightly
coupled with a fixed resolution strategy, and it also needs to maintain expensive data his-
tories to support its execution. The general Rete algorithm therefore provides efficient
processing of matches in the inference engine of a more general-purpose rule-based system.

Despite its early origins, the original Rete algorithm has gone through various meta-
morphoses to suit different scenarios in different rule engines. The basic algorithm there-
fore embodies many of the underlying techniques used in a number of modern rule-based
engines, both commercial (BizTalk [Wig12], Blaze Advisor [FIC12]) and non-commercial
(JBoss Drools [Pro15], Jess [Fri14], CLIPS [Cro11]).

2.5.5 Rule-based Systems for RKDAs
The declarative nature of the rule-based paradigm exposes powerful abstractions for expres-
sivity when defining patterns and for reasoning when processing the patterns – especially in
developing RKDAs. In most of these applications programmers are faced with a large state
space to reason about and are facing a lack of control. By hiding implementation details
and enabling programmers to express program logic in terms of reactive rules, therefore,
the paradigm lends itself well when specifying advanced patterns for encoding knowledge,
while at the same time hiding implementation details.

We give a similar example of detecting shape drag operation as in Listing 2.8 in
rule-based syntax. Lines 2-4 indicate the mouse gestures to detect, and line 5 checks the
timing constraints in milliseconds. This is also illustrated in the work in [Kam+15], which

2.5. The Rule-based Paradigm 39

investigates the use of a rule-based approach for collaborative RKDAs. For instance, the
work explains how using a rule-based language for a collaborative drag operation provides a
natural way of detecting such high-level events. Additionally, this method is easy to extend
– detecting even higher-level events simply involves adding conditions on the left-hand-side.

Listing 2.8: Rule for a shape moved operation
1 (rule "detectShapeMove"
2 (Event (function "mouseDown") (shape ?shape) (args ?a1) (time ?t1))
3 (Event (function "mouseMove") (shape ?shape) (args ?a2) (time ?t2))
4 (Event (function "mouseUp") (shape ?shape) (args ?a3) (time ?t3))
5 (test (and (time:before ?t1 ?t2) (time:between ?t1 ?t3 500)))
6 −>
7 (assert (shapeMoved (shape ?shape) (args ?a3))))

The rule-based paradigm is also a natural fit for providing the reactive processing
requirements of RKDAs. From defined rules, data-driven approaches create a graph similar
to that of RP frameworks. The difference with graphs built by rule-based systems is
that they are especially geared towards reactive, knowledge-based processing of data. The
execution of such graphs is highly dependent on the patterns in the rule definitions, and
are usually built and executed according to a strict execution sequence, e.g., using the
recognize-act cycle. Classically, the strict requirements on execution and performance of
these graphs resulted in their compilers creating optimised graphs that were mostly static
during execution. This brings us to the fourth requirement.

 [Requirement 4] Hot-Swapping dynamic changes to client constraints

As mentioned in Section 2.1.1, a framework supporting RKDAs needs to represent
specific client behaviour. Among other benefits, this enables the clients to flexibly
customise their specific share of the service that any framework exposes. For example,
a change in the security situation may result in a need to update the behaviour of
detecting threats in real-time access patterns. Therefore, it is typically the clients
that initiate the adaptations in their behaviour on the server, based on changes in
their environment. In this way, RKDAs are essentially dynamic applications that can
undergo adaptations according to changes in the environment initiated by the clients
themselves during execution.
Due to the dynamic environment that RKDAs operate in, these client customisations
also need to be accomplished dynamically without stopping those parts that are unaf-
fected by the change. This dynamicity should extend to the constraint definitions that
capture different event patterns at runtime for connected clients. In addition, RKDAs
can serve a variety of clients at any one point in time. It is therefore unsuitable for
the supporting framework to experience downtime thus limiting availability to other
clients and experiencing performance bottlenecks. Classic approaches in rule-based
systems (and even in reactive programming) construct static graphs at compile time
for their operations, making their approaches unsuitable for runtime reconfigurations.
There currently exist several approaches for providing dynamicity that vary in terms
of the restrictions or extent of changes when performed during execution. On the
one hand there are approaches that embrace a stop-start mechanism. This approach,
however, requires the system to be taken offline before appending updating. On the
other hand, there are also on-the-run approaches that are capable of safely append-
ing updates without taking the system offline. In between the two extremes, there
exist work that proposes hot-swapping approaches [Aln+13]. In coarse-grained hot

40 Chapter 2. Reactive Knowledge-driven Applications

swapping, rather than performing an append, large parts of a system’s state is cloned
and quickly replaced at some suitable point e.g. at the end of an execution cycle.
In fine-grained hot swapping these parts are replaced at more specific areas that are
affected by the change, sometimes based on a heuristic. Ultimately, a solution that
reduces downtime in a system supporting RKDAs by allowing changes to be made
without recompilation is desirable to adequately support dynamicity.

2.5.6 Rule-based Systems & the Cloud
In Cloud-based services, one area that is gaining momentum is in providing complex ser-
vices for knowledge representation. Instead of hard-coding all the functionality using con-
ventional techniques, we have shown how developers often encode this knowledge in the
form of rules to specify detection logic. e.g., IBM ODM Decision Server [Det+14], Amazon
IoT Rules [Ama15] and Waylay [Way15]. In order to support RKDAs, these rule-based
systems in the Cloud are required to interface with existing web server technologies.

Shelling Classical Rule-based Systems One significant aspect to determine the feasibility
of incorporating rule-based systems to support RKDAs is to observe how they have tra-
ditionally been utilised in other systems. Rule-based systems have been classically added
only as supporting components to existing systems, i.e, they have innately been viewed as
black-boxes separate from the domain model [Ros03]. This was the result of traditional
knowledge-based systems being incorporated into larger systems, but installed as expert
system shells. The expert system shells were often seen to have a more separate and com-
plex execution semantics by normal application programmers. A direct consequence of this
is that the rules were often not intrinsic to the rest of the system model, and sometimes
the application logic was either duplicated or needed to be kept consistent with the rest
of the application model. Being installed as an isolated, external component was also a
factor that contributed to rule engines being commonly used for offline analytical process-
ing, rather than for real-time processing as required by RKDAs. This leads us to the next
requirement.
 [Requirement 5] Simplicity via transparent symbiosis with server execution

In RKDAs, the traditional approach of installing a separate, isolated instance of
an offline reasoning system as the backend processing component increases architec-
tural complexity and hampers the responsiveness of communications between com-
ponents and the system as a whole. This has been coined the ‘hammer and nails
syndrome’, identified as a limitation that reduces the responsiveness of real-time
systems [Bry+09]. Identified issues include differences in data serialisation and ir-
regular interfaces. The type of integration with web server execution influences the
architecture and design of the resulting framework. For instance in Cloud-based vir-
tualisation frameworks, homogenised environments are significant for easier adoption
of higher-level applications and services [BN13]. For an RKDA framework, however,
close integration with server execution makes the system performant when directly
receiving requests from clients. At the same time, it makes the system responsive
when processing activations and forwarding notifications to connected clients. A sim-
ple, unified framework that provides integration with operational systems goes a long
way in promoting reactivity and in solving application integration challenges. In
the same way, the supporting framework should be able to provide a simple uni-
fied language to provide the required semantics for an RKDA to specify knowledge
constraints, communicate with the server and react to updates from the server.

2.6. Requirements for Supporting Reactive Knowledge-driven Applications 41

Simplicity is therefore vital in an RKDA framework: externally, it should be seen as
a single abstract entity with a unified interface for application code – even though the
underlying architecture or runtime in reality consists of several components [Gro00].
This aspect is closely related to the reduction of the essential complexity that a devel-
oper must master to adhere to the various application requirements set forth, rather
than the accidental complexity that they face when integrating different incompati-
ble interfaces, each designed with its separate goals [Bro87]: which can be seen for
example when plugging a web server with a rule engine, a database backend, separate
messaging frameworks and execution runtimes for application logic. This simplicity
is especially desirable in such situations where programmers face a number of acciden-
tal challenges by being forced to interact directly with different internal component
interfaces when developing RKDAs.

2.6 Summary: Requirements for Supporting Reactive
Knowledge-driven Applications

We now present a summary of requirements for frameworks supporting RKDAs, distilled
from revelations in the previous sections in this chapter. In particular, our focus has been
less geared towards reliability issues such as availability and fault-tolerance or security-
oriented issues authenticity and fungibility, but more towards the development and pro-
cessing requirements as discussed.

R1. Event-driven processing & communication. Need for a viable concurrency model that
offers an efficient and scalable means to support RKDAs.

R2. Knowledge encoding via declarative definition of event patterns. Exposing knowledge-
encoding syntax and semantics that directly enforces the intent of the developer
thereby reducing the complexity of writing code for RKDAs.

R3. Reactivity via incremental processing of online/real-time events. To enforce real-time
processing and immediacy of results in RKDAs it is necessary to provide technologies
that support a form of incremental processing.

R4. Hot-Swapping dynamic changes of client requirements. A solution that reduces down-
time in a system supporting RKDAs by allowing changes to be made without recom-
pilation.

R5. Simplicity via transparent symbiosis with server execution. Simplicity in symbiosis with
the server is significant for responsive execution and easier adoption of RKDAs and
dependent services.

2.7 Chapter Summary
Web applications have been undergoing a metamorphosis from their static, isolated founda-
tions to more dynamic, responsive and composite functionality. One of the ever-increasing
demands of today’s applications is the need for real-time detection of patterns within col-
lective data. Technologies to meet these demands do, to some extent, support offline tech-
niques of detecting patterns in static or persistent data. Research in meeting demands for
online discovery of patterns in large data sets from different event sources is however limited.
We refer to the types of applications with such characteristics as reactive knowledge-driven
applications (in short, RKDAs).

42 Chapter 2. Reactive Knowledge-driven Applications

We then presented an example that epitomises a typical RKDA and distilled the
requirements that a software framework supporting RKDAs should fulfil. We proceeded
to show why conventional techniques in meeting these requirements of RKDAs fall short
in various critical areas. The next chapter proceeds to investigate various related research
that fits into the identified requirements, but, as we will show, none of the related work on
its own is suitable to support all the requirements.

3
Related Work: Reasoning in Event Streams

Individual events. Events beyond law. Events so numerous and so uncoordinated
that, flaunting their freedom from formula, they yet fabricate firm form.

John Wheeler, Frontiers of Time, 1994 (Cited)

In Chapter 2 we pin-pointed a number of requirements that a software framework
that purports to support RKDAs as defined in Section 2.2.3 should satisfy. Over the years,
there has been a body of research work in technologies relatable in supporting applications
meeting these criteria [BV07; Che+03; Cór15; Cro11; Wid+07; ZDZ09]. The purpose
of this chapter is to provide a survey of the current state-of-the-art in technologies and
techniques that can facilitate support for the requirements of RKDAs. Because the work
is relatively recent, some of the technologies presented will only exhibit properties that can
be indirectly mapped to support these types of applications.

Having identified the 5 requirements for supporting RKDAs, we begin the chapter
with a discussion of real-time event processing technologies in Section 3.1 with the aim
of supporting reactive processing of content. We split the related research areas into two
fundamental categories for independent and sequenced events, presented in Sections 3.2
and 3.3. We proceed with an analytical overview of the identified work, and draw general
observations for the conclusion of the chapter in Section 3.4.

3.1 Reasoning in Event Processing Systems
From the Web’s dynamic age, data-intensive applications that require the processing of data
that is generated or sourced from real-time events started to gain prominence. Event data
can be continuously sent to the system in various forms in real time. This fundamentally
differs from traditional systems in the earlier ages where the processing of data was mostly
done on finite, static datasets.

The idea of supporting the reception of dynamic events with the aim of processing
reactive data has led to the emergence of research areas in event-processing systems [EN10].

43

44 Chapter 3. Related Work: Reasoning in Event Streams

One of the earliest work dedicated to similar systems in event processing was in the 1990s by
D. Luckham to analyse event-driven simulations of various architectures using the Rapide
engine [Luc02].

Recent advancements have given birth to the development of systems that combine
both the benefits of event processing and traditional reasoning systems. With regards to
this reasoning over events, researchers have further identified distinctions between events
that occur independently from those that occur in sequence [Bas07; Luc06]. Independent
events can happen at the same time or at different times with no possible relations between
each other. They are thus often viewed as an unordered set. On the other hand, sequenced
events have a causal relationship between them and are usually viewed as an ordered set.
A set of independent events are referenced individually and this is thus termed as an event
cloud and those of sequenced events are referenced as an ordered set are event streams.
The two distinctions have direct consequences on the processing model of the underlying
system. Following this dichotomy, work in the event processing domain such as in [Ali+15]
has categorised processing engines that support these two concepts as:

1. Computation-oriented event-processing systems (CEPS) – These are event processing
systems that are suited for processing events as collections of data, i.e., as ordered
event streams. Classical terminology refer to these types of systems as being set-
oriented, but more recent terminology refers to them as having set-at-a-time seman-
tics [FRS93]. They employ SQL-like syntax for defining queries over event streams.

2. Detection-oriented event-processing systems (DEPS) – Process events as indepen-
dent entities forming event clouds. Classically, these types of systems were referred
to as being instance-oriented, but they are today more commonly referred to as hav-
ing event-at-a-time semantics [FRS93]. These systems are known to use traditional
production rule-like syntax for definitions.

To contrast the two categorisations consider the following example. Suppose we
have the instance-oriented pattern AND(E1,E2). Whenever E1 arrives it becomes
of interest and should be stored, because any other event Ei that arrives in any
order can potentially satisfy E2. When E2 arrives it completes the pattern. On
the other hand, if we have the set-oriented pattern AVG(EsetT ,ET) when the set of
relevant E events of type T arrive, the evaluation is performed on the entire set. The
current AVG can be reported on the existing set, but is incomplete, because any other
incoming E of type T will update the value of the AVG.

We discuss the related work of this dissertation spanning the two categories, while
restricting ourselves to systems applicable to supporting reasoning in reactive event pro-
cessing for reactive knowledge-driven applications as defined in Section 2.2.3.

3.2 Computation-oriented Event Processing Systems
One way to implement reactive knowledge-driven applications is to use computation-oriented
event-processing systems (CEPS), which view processing of data from ordered event streams
as a collection or a set. An event stream in this sense is a sequence of linearly-ordered events,
where the order is often based on time: a good example is a stock market feed with a series
of changing stock quotes of the trading day sent as events to the system.

3.2. Computation-oriented Event Processing Systems 45

Most CEPS have embraced the use of queries based on SQL termed as continuous
queries that operate over a series of events. Continuous queries are often implemented
as SQL extensions that utilise windows on streams conceptualised as relations in order to
allow the use of SQLs relational operators. In this dissertation we classify CEPS into two
subcategories.

The first type of CEPS have strong foundations in traditional database management
systems (DBMS) specifically catered for real-time stream processing. These systems are
known as data stream management systems or DSMS, and are known to extensively utilise
continuous queries. DSMSes however interface with a foundational DBMS backend as
opposed to a special or dedicated runtime engine catered for event processing from the
ground up. Well-known DSMS examples include TelegraphCQ [Cha+03], SQ [SLR94] and
STREAM [ABW06].

The systems in the second category also employ a SQL-like language but have a
dedicated engine to process events as ordered collections or sets. Using the dedicated engine,
they perform operations that can process continuous queries as well, using time and buffer
windows over a series of events. Such systems are commonly referred to as event stream
processing systems [BV07] or ESPs. Examples of ESP engines include Borealis [Aba+05],
Medusa[Cet03], Niagara [Che+00], Cayuga [Dem+07], Esper [BV07], and more recently,
Apache Flink [Car+15].

CEPS that process streams of events perform useful optimisations on the data, usually
taking advantage of the order that events should arrive. A characteristic feature of CEPS
algorithms is that at runtime they do not need to internally cache all events that arrive
in a processing element, and can therefore reduce memory consumption by keeping only
the ‘relevant’ events in the processing element. An example is the STREAM engine, which
uses this phenomenon to optimise stream processing using techniques such as pipeline
filters [ABW06]. The algorithms for processing CEPS event streams therefore tend to be
faster as a result since they can compute events as they arrive and proceed to send results
to the next processing element, flushing out irrelevant event data.

We next discuss the viability of CEPS to the requirements of supporting RKDAs using
the STREAM engine which introduced the Continuous Query Language (CQL), and the
recent Apache Flink [Car+15].

3.2.1 Event Processing in Data Stream Management Systems
Event Processing in STREAM

CEPS use methods that can support the event-processing needs of RKDAs: the foremost
being the support for processing events in real-time. The STREAM engine was internally
modelled to construct mappings between streams and database relations. STREAM appli-
cations are programmed using the CQL declarative language, which is based on SQL but
with extensions for registering continuous queries against streams and updatable database
relations.

Listing 3.1: Counting room accesses in STREAM CQL
1 CREATE INPUT STREAM accessreqs
2 (roomId INT, user STRING, time DATETIME, granted BOOLEAN)
3 SOURCE randomgen
4 PROPERTIES ("timeUnit" = "SECONDS", "period" = "1",
5 "eventNumPerperiod" = "1", "isSchedule" = "true");
6

7 CREATE OUTPUT STREAM securitysys

46 Chapter 3. Related Work: Reasoning in Event Streams

8 (source INT, allowed INT)
9 SINK consoleOutput;

10

11 INSERT INTO STREAM securitysys SELECT roomId, COUNT(granted) as allowed
12 FROM accessreqs[RANGE 3600 SECONDS BATCH]
13 WHERE id = 5 AND granted IS TRUE
14 GROUP BY user;

Listing 3.1 shows an example in CQL that detects room accesses from events. Line
11 detects the number of allowed accesses per user (line 14) to a room with ID 5 after
each hour (line 12, 13) in a building is shown in Listing 3.1. The granted access requests
are batched together and results grouped according to requests by each user. We now use
the STREAM engine with its constituent language CQL [ABW06] (using the example), to
evaluate how CEPS can meet the requirements of RKDAs as defined in Section 2.6.

• R1: Processing & Communication Model – The available version of STREAM provides
a client-server architecture that is loosely based on a traditional threaded model. The
STREAM engine provides an execution model that can efficiently capture a variety
of streams and process any user-defined relations. The client-server architecture of
STREAM allows a number of clients to access the server, which exposes functionality
to query and receive results using its threaded model. This model is therefore geared
towards serving a relatively small amount of complex queries [Ara+04]. For RKDAs to
take advantage for the event-driven model for processing and communication, developers
are required to implement the interfaces with the STREAM engine manually.

• R2: Declarative Knowledge Encoding – STREAM’s CQL language proposes abstract
declarative semantics for continuous queries that is based on event streams and database
relations as data types. The operators of these types span three classes: stream-to-
relation, relation-to-relation and relation-to-stream, which transform one type as input
to another as the output. Using the relation/stream class operators, the engine maps
the data into a form that the underlying database can process. This approach fares
well for simpler queries to capture patterns in incoming data streams (lines 1,7 and
11 of Listing 3.1). However, its complexity rapidly increases whenever more advanced
querying is needed, where the extent of achieving the desired functionality forces one
to mix relations with streams, subqueries, aggregations, windowing and the semantics
therein [ABW06]. Most event-driven applications tend to only use CQLs stream-to-
relation semantics, where at any point in time it views a part of a stream as a relation
in order to define queries that capture events, avoiding class conversion complexities.
Furthermore, existing implementations of CQL in STREAM do not support features
such as subqueries in the WHERE clause limiting its expressiveness [Ara+04; ABW06]
when encoding knowledge. The alternative proposed for these unsupported features
is expressing them using intermediate named queries, but this further increases the
complexity of developing RKDAs using CQL in STREAM.

• R3: Reactivity – Upon initialisation, the STREAM engine always evaluates incoming
events according to the defined CQL queries. A fundamental property of CQL is that
it evaluates incoming streams using windows. The windows in STREAM can be calcu-
lated using either a time-based or tuple-based processing model [Jai+08]. For instance,
in a time window of 2 seconds, with the following streams consisting of tuples (value,
timestamp):
(50,1) (60,1) (50,2) (60,2) (40,2)
The time-based model picks only one value per timestamp non-deterministically (e.g.,

3.2. Computation-oriented Event Processing Systems 47

(50,1) (60,2) or (60,1) (50,2). The tuple-based model picks all five tuples for
query processing. However, during joins the two models show different behaviour. Con-
sider the join of the streams
Stream1 = (50,1) (60,1); Stream2 = (60,2) (40,2)
The time-based model contains the four combinations of tuples. The tuple-based model
however uses total order temporal resolution, where tuples in a given timestamp are im-
plicitly given a rank which affects processing (but is inaccessible from query semantics).
The arrival order of the tuples therefore determines the output of the query, with 4!
possible outputs. As these examples show, the two models have different semantics in
the way they process incoming events using windowed intervals, affecting their reactivity
semantics especially due to the ‘evaporating tuples’ effect [Jai+08]. This is especially
the case when considering larger intervals.

• R4: Dynamicity – In STREAM physical query plans are generated from textual queries
written in CQL and are optimised using query plan merging via a monitoring and
adaptive query processor StreaMon. StreaMon ensures that plans and memory struc-
tures are efficient and can generate multiple continuous queries internally for perfor-
mance [ABW06]. StreaMon thus applies lightweight adaptation strategies to the query
plans such as runtime modification of the resource allocation and scheduling policy for
performance purposes. CQL applications are however first compiled, and the system
then generates special query plans for the engine. This implies that STREAM only
supports adaptivity of queries: runtime additions of continuous queries would cause
a stop-start recompiling process that halts the system to (re)generate modified query
plans [Zhi15].

• R5: Simplicity – The original version of STREAM was released as a standalone com-
ponent, forcing users to develop their applications using a separate server, STREAM
engine and client code, exposing them to handle nuances of interfacing all these com-
ponents. This made the development process difficult and introduced bottlenecks since
integration became complex. Subsequent revisions of the system have been released with
the aim of unifying an Apache Storm server functionality with the STREAM engine, and
to improve client interfaces [Zhi15].

3.2.2 Event Processing in Stream Processing Systems
Event Processing in Apache Flink

Apache Flink [Car+15] is an open-source engine with a universal dataflow platform that
can process both stream and batch data. It uses data stream processing for real-time,
continuous processing of unbounded streams and batching techniques for processing finite
data sets in the execution engine. Flink however treats batch processing as a special case of
streaming computations. Flink provides benefits for distributed event processing systems
such as fault-tolerance, machine learning components and computation over large data sets
provided by tools such as Kafka [Apa14].

The Flink architecture is based on layers. At the highest layer, users can submit
applications in Java or Scala which are then converted into directed acyclic graphs (DAG)
by the lower layers. In the DAG, an operation such as a map or filter is represented by a
node with edges representing data flow. The graph can be optimised by the query optimiser
for efficient distribution of nodes with jobs. At the lowest layer, Flink supports writing to
sinks, which can be persistent storage in terms of connectors to files, HDFS or JDBC.

48 Chapter 3. Related Work: Reasoning in Event Streams

In Flink, the event stream processing dataflow engine is used to partition, transform,
and aggregate data stream sequences using windows. The Flink documentation also states
that it provides limited support to out-of-order records, but these are entirely left to the
burden of the programmer to provide semantics of how to handle them when they occur.

Listing 3.2: Room accesses for an Employee in Apache Flink
1 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
2 DataStream<Event> input = ...
3

4 Pattern<Tuple3<Integer, Long, Employee>, ?> pattern =
5 Pattern.<Tuple3<Integer, Long, Employee>>begin("A").followedBy("B").within(Time.seconds(3600));
6

7 DataStream<String> result = CEP.pattern(input.keyBy(0), pattern)
8 .flatSelect(new PatternFlatSelectFunction<Tuple3<Integer, Long, Employee>, String>() {
9

10 public void flatSelect(Map<String, Tuple3<Integer, Long, Employee>> map, Collector<String>
↪→ collector) throws Exception {

11 Tuple3<Integer, Long, Employee> a = map.get("A");
12 Tuple3<Integer, Long, Employee> b = map.get("B");
13

14 /*check that employee instances a and b have at least 1hr between*/
15 if (a.f2.getId() == b.f2.getId()) {
16 /*custom date formatter, date output from milliseconds*/
17 String msg = "Accessed at " + DateFormatter.formatDate(a.f1) + " and " +

↪→ DateFormatter.formatDate(b.f1);
18 collector.collect(msg);
19 }
20 }
21 });
22 result.print();
23 env.execute("Employee accesses within the hour.");

The code example in Listing 3.2 shows an Apache Flink program that detects access
requests for an employee within 1 hour. In line 4-5 a pattern is made to detect two events
that occurred within 3600 seconds. The main logic is between lines 11-18, where every two
events that come from the same employee are collected (lines 11, 12, 15) and the results are
shown as a printout (line 22). Since it is a relatively new project, Apache Flink suffers from
infancy problems such as limited API and partial implementation of advanced features.

• R1: Processing & Communication Model – Event processing in Flink is performed by
nodes acting as Processing Elements (PEs). When submitted, code from applications
can be efficiently distributed among these nodes for simple, high-throughput processing.
Flink in its core utilises the Netty communication framework [The15], an event-driven
communication framework commonly used in the rapid deployment of high performance
protocol servers. With Netty, Flink can support the exchange of data between node
sources and sinks concurrently using pipelined intermediate streams and enables the
framework to expose asynchronous event-driven functionality in processing events. This
also allows Flink to support operations that cover the event-driven communication needs
for streaming applications, e.g., connectivity between clients and the server, as well as
between nodes assigned with various tasks. To receive feedback, clients are however
required to manually poll the main processing element.

• R2: Declarative Knowledge Encoding – Flink offers a multitude of APIs that allow pro-
grammers to write programs in Java or Scala with windowing and aggregation functions.
All user-written code is then automatically compiled into a common data flow graph,

3.2. Computation-oriented Event Processing Systems 49

so the programmer does not need to explicitly wire the processing graph in similar ap-
proaches such as Apache Storm [Apa15]. In addition Flink is (at the time of writing)
working on a CEP library that will reduce complexity of Flink application development
via the framework by including pattern-matching [Car+15]. The code in Listing 3.3 de-
tects 3 accesses start middle and end with the middle access happening at least once
(line 10). The Pattern construct can contain event types as well as regular expressions
for pattern-matching on event tags. However, out-of-order events need to be manu-
ally orchestrated and the framework provides no dedicated API or support for dealing
with these types of streams. This is because most operators provided by Flink rely on
some sequencing semantics, making it difficult for developers to perform reasoning over
independent, unordered events.

Listing 3.3: Detecting Consecutive Employee Accesses in Apache Flink
1 Pattern.<Event>begin("start").where(new SimpleCondition<Event>() {
2 public boolean filter(Event value) throws Exception {
3 return value.getName().equals("e1");
4 }
5 })
6 .followedBy("middle").where(new SimpleCondition<Event>() {
7 public boolean filter(Event value) throws Exception {
8 return value.getName().equals("e2");
9 }

10 }).oneOrMore()
11 .followedBy("end").where(new SimpleCondition<Event>() {
12 public boolean filter(Event value) throws Exception {
13 return value.getName().equals("e3");
14 }
15 });

• R3: Reactivity – Flink is said to utilise a Kappa architecture that forms the basis of using
reactive stream processing as its primary processing method. Flink programs contain re-
active code which is converted into a graph that assigns tasks to various nodes [Car+15].
Tasks are instances of jobs from user-defined programs which reactively process incoming
events from neighbouring nodes using operators that transform input streams, produc-
ing new streams. This is in contrast to similar technologies such as Apache Spark that
use the Lambda architecture where batching is the main method utilised for process-
ing [Fer+15]. Recent versions of Flink can perform a form of incremental processing
using delta iteration on only the parts of the data that contain changes [Car+15]. The
result is that user programs in Flink usually produce results more promptly than those
of other architectures, albeit with less accuracy.

• R4: Dynamicity – As mentioned, queries in Apache Flink are translated into DAGs. The
DAGs are created from user programs and operations distributed as tasks. This process
occurs during a compilation process where optimisations and scheduling is performed.
Particularly for the CEP Flink API, there is currently no support for dynamically chang-
ing some pre-defined CEP patterns. Proposed workarounds such as changing the way
operators are shipped to the schedulers and using Flink savepoints that start and stop
jobs on nodes at runtime are complicated and can lose incoming event data during the
start-stop process.

• R5: Simplicity – Even though it lacks native integration with server systems, Flink
was designed to operate in environments supporting distributed event processing frame-
works and architectures. Flink offers simple integration with various schedulers and

50 Chapter 3. Related Work: Reasoning in Event Streams

allows web-based scheduling to manage tasks and the overall system. For instance, its
initial design included integration with Hadoop for its batching functionality, where it
carefully manages resources needed during compilation. The design further integrates
well with components such as HDFS and Kafka that are used by various event pro-
cessing frameworks for high throughput and advanced scheduling. Finally, Flink can
internally run tasks written for other event processing frameworks like Apache Storm
using compatibility APIs.

3.2.3 Limitations of Computation-oriented EPS for RKDAs
In this section we summarise the core (in)competencies of computation-oriented event pro-
cessing systems (or CEPS), as to whether they can offer suitable real-time technologies to
support the development of reactive knowledge-driven applications.

In general, CEPS technologies tend to be more focused on continuous queries for
high-speed querying of event streams and apply (usually aggregate) relational operators to
event data. Continuous queries typically subsume SQL and expose useful constructs that
are mainly used for defining complex aggregate functions and windowing.

Even though CEPS have useful technologies that can support a number of applica-
tions that require real-time computations, they are however not optimal for the problems
identified in Section 2.2.3 that involve supporting the development and execution of RK-
DAs. Specifically, CEPS contain fundamentally distinct key features from those identified
as supporting the requirements.

Most CEPS provide mechanisms for supporting the detection and processing of event
sequences and do not intrinsically support capturing independent events or events that
arrive out of order. This is because CEPS approaches aggregate similar event types per a
given time-based or property-based constraints. Data arriving out of order is a problem for
CEPS approaches due to their ordered, set-based processing: CEPS focus on set-at-a-time
semantics for the detection and processing of event streams and have little support for
event-at-a-time processing. As illustrated in this section, CEPS need to assign incoming
event data a temporal or similarly-ranked order so that abstractions such as windowing
can be effectively applied. Therefore, because RKDAs usually receive events in a non-
deterministic and intermittent fashion, CEPS are not well-suited to captured such types of
events. Detection of random employee accesses to determine invalid access patterns requires
an approach that views employee accesses as independent events rather than ordered event
sequences. As mentioned in Section 2.2.3 this dissertation focuses on such types of value
extraction by processing event data individually as it arrives in the system to discern
actionable knowledge as a result of the addition of new events.

Developing for RKDAs would force the programmer to mix semantics of reasoning
with that of relational data streams via windowing to discern patterns from events. This
is because of the interplay concepts (e.g. streams and batches or streams and relations)
in CEPS, which tend to complicate expressing and processing of independent events due
to different processing semantics. CEPS usually restrict processing of events to a certain
window of concern, focusing on a subset of recent statements in the stream. This means
that events that were observed previously can be ignored and because of this, CEPS can
have the effect of reducing the immediacy of receiving real-time results, e.g., in windowing
or batching operators that need to aggregate on the complete sets of histories. Another sig-
nificant downside of CEPS is that most approaches are limited in providing hot-swapping
functionality to processing new queries from clients, and require a start-stop mechanism
to update processing elements at runtime. Finally, although the CEPS approaches seek
better integration with server execution, they lack the proper technologies to support com-

3.3. Detection-oriented Event Processing Systems 51

...

(a) ‘Set-at-a-time’

...

(b) ‘Event-at-a-time’

Figure 3.1: Differentiating between ‘set-at-a-time’ and ‘event-at-a-time’ process-
ing – The two distinctions form the basis of computation and detection-oriented
event processing systems respectively.

munication with a variety of connected clients, e.g., process events and send push-based
notifications.

3.3 Detection-oriented Event Processing Systems
The kinds of event processing that are not ideal for Computation-oriented Event Processing
Systems are the very same problems that Detection-oriented Event Processing Systems
(DEPS) focus on supporting. In the Web, one cannot always assume that events arrive
in an orderly fashion due to its decoupled and distributed nature. As a result, in many
situations a total ordering of any two events will not be available, especially those that are
intermittent or sporadic in nature.

As opposed to reasoning over event stream sequences that are usually ordered, DEPS
usually focus on supporting order-independent definitions and execution semantics [Luc06].
Additionally, DEPS provide abstractions that allow discovering patterns within (multiple)
incoming events events as individual, independent entities (aka, event-at-a-time), as illus-
trated in Figure 3.1. Unlike CEPS, DEPS are not primarily focused aggregating event
sequences over a property-based or time-based constraint. They are however more suited
for reasoning through pattern-matching, comparing out-of-order independent events and
for applying decisions and reactions to event patterns.

Viewing incoming events as an unordered independent ‘cloud’ rather than an ordered
sequence is more appealing in the distributed, heterogeneous context. This is attractive
for supporting RKDAs because in order to benefit from a richer value extraction process,
the applications needs to uncover complex relationships between individual events. DEPS
place emphasis on patterns of events and extracting knowledge by abstracting, composing
and correlating information in the patterns.

A downside of DEPS as compared to CEPS is that they require much more memory
and are often slower than their CEPS counterparts, because DEPS tend to ‘remember’ all
events inserted in order to find the complex relationships that have been defined. DEPS
have the ability of providing alternative solutions, dealing with noisy input streams, non-
determinism, different preferences, conflicts and constraints. All these features are often
computationally intensive.

On the other hand, the advantage is that DEPS can be applicable to a different, more
relatable set of applications. Specifically, we can compare the practical scenarios of DEPS
implementations to those of CEPS in supporting stream reasoning and KDAs [Bas07].
In a weather station scenario, even though both technologies can be used in monitoring
climatic conditions, CEPS are suited for checking the average temperature recorded at
a particular station while DEPs would be better suited to reason about the changing

52 Chapter 3. Related Work: Reasoning in Event Streams

weather conditions. In monitoring stock movements, CEPS are often used to provide
summaries of financial transactions of the day, DEPS are better suited for detecting insider
trading or more complicated fraud mechanisms. These cases show that in addition to
summaries, one may need to detect which events caused other events or which events
happened independently.

To perform an analysis of DEPS, we focus on rule-based approaches because these are
commonly used for reasoning about knowledge bases (as mentioned in Section 2.5.3). In
this dissertation we group DEPS into two categories based on the abstractions they expose
and their processing backend. Congruent to DSMS we begin with active databases that
primarily use database technology, and similar to ESPS we follow with in-memory rule-
based systems that primarily process events via production rules and a dedicated inference
engine.

3.3.1 Event Processing in Active Databases
Active databases were the first attempt at evolving passive traditional database manage-
ment systems that only executed queries and transactions explicitly submitted by external
entities into more active systems [DHW94]. In such contexts, the most significant limita-
tion of conventional DBMS was that they were inadequate when supporting high-volume
stream processing with low latencies. Active database technology was therefore concep-
tualised to support these requirements and toolkits were implemented as extensions to
conventional database systems or as independent systems. Examples include Ariel [Han96],
HiPAC [Day+88], Starbust [Wid96] and Postgres [SRH90].

An active database system monitors incoming events and triggers an appropriate
timely response whenever these events occur. Defining this kind of behaviour is expressed
in special event-condition-action rules or ECA rules of the form

Listing 3.4: Structure of an ECA Rule
1 on <event>
2 if <condition>
3 then <action>

The event part emerged from the implicit assumption that during rule processing, a
rule is triggered only when the event to be monitored is detected. The condition is used to
examine the context in which the event has taken place. Finally, the action describes the
task to be carried out by the rule if the relevant event has been triggered and the condition
is evaluated to be true. After definition, ECA rules are stored in the database. Stored
ECA rules can be shared by a number of applications and can be internally optimised by
the implementing database system.

In active database systems processing of ECA rules is tightly integrated with con-
ventional database activity via queries and transactions. This activity causes events that
trigger the ECA rules and the level of complexity they expose for events, conditions and
actions vary. A number of database systems today employ specific technologies from the
approaches borrowed from active database techniques.

We proceed to discuss the viability of active databases to the requirements of support-
ing RKDAs. Since active databases use rules to process events independently regardless
of their order, these systems tend to be more relevant when investigating their support of
the reasoning process required by systems geared towards RKDAs. We thus compare two
prominent implementations of active database systems, Ariel and Postgres.

3.3. Detection-oriented Event Processing Systems 53

Event Processing in Ariel

Ariel is an active database technology designed to be tightly integrated with specific
database systems [Car+86]. The implementation of Ariel focuses on improving condition
testing via the the Rete algorithm (introduced in Section 2.5.4). Because Ariel is integrated
with a database system, it utilises a tuned TREAT [Mir14] Rete algorithm. TREAT places
more emphasis on intra-condition tests and focuses less on tests between conditions during
execution.

An example of an ECA rule in Ariel for adding a default access level of a new employee
is shown in Listing 3.5. The rule is triggered by inserting data into the staff table. Upon
detection of the insertion of a new employee record (line 2), the action sets the default
access level of a new employee in line 5 to the minimally-accepted level acquired from line
4.

Listing 3.5: Ariel rule for default access level of a staff member
1 define rule SetDefaultAccessLevel
2 on insert to staff
3 then begin
4 min_level := (select min(level) from accesslevels);
5 update staff set(level = min_level) where staff = new.id
6 end

• R1: Processing & Communication Model – In Ariel, ECA rules triggered by events are
often raised using database functionality. Actions of triggered rules can only update
the database structure, and mechanisms are needed to send updates to external entities.
Therefore any event-based reception and feedback mechanism has to be orchestrated by a
programmer manually. Furthermore, Ariel offers no built-in mechanism for supporting
distributed event sources or clients. As with most other active database systems, a
programmer is often at the mercy of the supporting database for connectivity. In Ariel
this means that programmers are required to provide manual mechanisms for connecting
to the system and for receiving updates resulting from actions of triggered rules.

• R2: Knowledge Encoding – Ariel decouples events and condition filters using different
parts of an ECA rule. When an event occurs, the rule is triggered and the condition is
checked on the data. Even though ECA rules offer restricted pattern matching semantics
to perform reasoning (see below), the condition constructs availed are ample to define
constraints needed to capture data from events as they define predicates over persistent
data in the database. The integration of Ariel with the underlying database semantics,
however, make programming ECA rules more complex. For instance, the notion of events
based on transition of database transactions on tuples leads to a more complicated rule
design process. This is because the developer focuses on the expression of database
operations as opposed to the effects they have on the data. Consider the rule in 3.6 that
avoids any employee with the rank intern from being added to the staff table.

Listing 3.6: Ariel rule for restricting interns as staff
1 define rule NoInterns
2 on insert employee into staff
3 if
4 employee.rank :: "intern"
5 then
6 delete employee

54 Chapter 3. Related Work: Reasoning in Event Streams

In this situation, the following insert+update operations in Listing 3.7 will be allowed
into the database. This is clearly not the intention of the rule designer, who would be
forced to additionally add other rules to ensure the requirement is met.

Listing 3.7: Operations will not trigger Ariel NoInterns rule
1 insert into staff(name='julius', age=32, rank='')
2 update staff set(rank='intern') where name='julius'

In addition, extracting knowledge from event patterns in Ariel is heavily dependent on
the fixed structure of the event specification part of a rule where the event part (E) is the
main focus of an ECA rule. A programmer can only specify the detection of a primitive
event using the on construct in Ariel and is left to define multiple rules with actions to
achieve more advanced semantics, e.g., composition. Event composition operators are
not supported in event specifications, and by extension in the processing engine. As an
alternative, however, a separate feature in Ariel allows the event part to be omitted from
an ECA rule. In this case rule triggering is defined implicitly by a rule’s condition part,
in which the Ariel engine replies on tuples in the database state to process such rules. In
essence, this exposes a slight difference in semantics because the data has already been
persisted in the database, which is different from evaluating data from incoming events
at runtime: this is observed in the example stated previously.

• R3: Reactivity – As they happen, events are captured as specified in the event part of
an ECA rule. Database activity, queries, transactions etc. can all emit events. Even
though the specification language assumes disorderly, independent events, data modi-
fication commands in the core database can be packaged as set-oriented operations as
transactions known as transitions. ECA Rules can only be triggered after every database
transition. Programmers designing database modifications have control over the man-
ner in which transitions occur. Therefore the granularity of processing events in Ariel
can be a set of transition-based tuple operations by the database, known as a logical
event [Han96], rather than one operation. Ariel uses logical events to force programmers
to reason about the effects of operations rather than their expression – this is actually
due to its core execution being influenced by the underlying database. This issue can
negatively influence reactivity due to the effects of fine-grained client events in RKDAs.

• R4: Dynamicity – Ariel’s ECA rules are defined internally as metadata in the schema,
together with tables, views, integrity constraints, etc. Defined rules are compiled into
a discrimination network that evaluates the rules according to data that is integrated
with the underlying database system. As such, once the rules in Ariel are defined and
compiled they cannot be modified without an extensive recompilation process to relink
them to the database internal structure.

• R5: Simplicity – Although initially Ariel was developed as a separate extension or
plugin to an existing database system, subsequent revisions discovered the importance
of intertwining condition testing with execution of the database system, and newer
versions of Ariel feature an engine tightly integrated with a database system. Because
it does not support distribution, however, Ariel has to be added to a Web server system
as a separate, isolated component.

Event Processing in POSTGRES

Unlike Ariel which is primarily an active component tightly integrated with its database
system, POSTGRES [SK91] is a database management system that contains an internal

3.3. Detection-oriented Event Processing Systems 55

package that enables active rule system functionality.
Historically, the inspiration for active functionality in POSTGRES arose from the

need to satisfy requirements of more advanced business applications, i.e, from the usual
object management, POSTGRES should also support knowledge management. The system
is therefore able to utilise a collection of rules that form part of the logic of an application
to allow derivation of data that is not directly available in the database. POSTGRES is
offered as a Software-as-a-Service (SaaS) by a number of cloud services providers. Most
active database functionality in modern versions of POSTGRES is provided in two forms:
first as a restricted trigger language using standardised SQL syntax, and second as an
internal optimiser that modifies queries into rules using the query planner for planning and
execution [The12].

Refer back to the default staff access rule in Ariel shown in Listing 3.5. The implemen-
tation for POSTGRES will contain similar syntax. If a set of newly-hired employees are
added, in POSTGRES’ tuple-oriented system the rule is triggered once per employee. In a
set-oriented rule system such as Ariel, the rule is triggered only once in the same situation.
The execution model of the two systems can change the semantics of applications in some
cases, e.g., when calculating moving averages.

• R1: Processing & Communication Model – POSTGRES provides similar event process-
ing functionality as Ariel where rules are triggered from database effects. The initial
POSTGRES implementation did not have facilities for executing requests from external
components. More recent versions have support for command processing drivers that
applications can install and use to submit commands using events. Using these drivers,
POSTGRES provides a messaging system that can accessed through dedicated com-
mands: NOTIFY which sends a notification, LISTEN which opens up the system to receive
notification and UNLISTEN halts the LISTEN command. Push-based connectivity is also
available using the NOTIFY command availed by the engine, which creates a notification
event that adds an entry to the pg_notify table to be sent by a special postmaster
service. Interfacing with these systems can however only be implemented through a
configuration process.

• R2: Knowledge Encoding –When focusing on how knowledge in RKDAs can be deducible
from events in ECA rules, there is need to investigate the syntax of the event definitions
because these expose the processing and execution semantics. Initial versions of POST-
GRES were primarily accessed by users through its query language POSTQUEL. Later
versions however feature a set-oriented SQL-based query language. The language further
supports user-defined functions/operators, arrays and path expressions [SK91]. Because
users can define views declaratively in an SQL-based format (which are then internally
converted into ECA rules), POSTGRES provides useful abstractions for reducing the
complexity of event definitions (with similar syntax as that shown in Listing 3.5). Unlike
in Ariel, however, the event part of a POSTGRES ECA rule is non-optional, and the
event specification does not allow basic event operators such as disjunction or conjunc-
tion. Although users are allowed to define custom rules in ECA format, the POSTGRES
rule system is further considered to be conservative due to its tight coupling with the
database semantics [DHW94]. For instance, it only allows explicit triggering on selected
events, which may be updates, removal, or retrieval operations. The extent of func-
tionality exposed by ECA rules in POSTGRES is therefore limited when compared to
other active database systems. Due to this, even though the language exposes pow-
erful SQL-like abstractions, it does not support useful techniques for RKDAs such as
pattern-matching for advanced reasoning.

56 Chapter 3. Related Work: Reasoning in Event Streams

• R3: Reactivity – As mentioned earlier, one aspect of active databases that affects the
reactivity of the system is event granularity. In POSTGRES the rule processing is per-
formed immediately after an event is raised, and the consequences of the event can take
effect instantaneously using tuple-oriented rule processing. POSTGRES therefore allows
for a reactive response when rules are activated. Furthermore, it supports specific se-
mantics for rule activation that specify that a rule should be activated immediately upon
occurrence of the event and those that should be deferred to the end of the modifying
transaction.

• R4: Dynamicity – In POSTGRES, items like data-types, operators and functions can
be added dynamically while in execution[SK91]. The system further allows users to
define views (and custom rules) which will be internally transformed into ECA rules.
POSTGRES supports dynamic user-written rules that specify data update semantics
on views but not on the actual schema. If a view is to be updated (which means that
the underlying ECA rule has to be changed), then POSTGRES will need to temporarily
halt the system to recompile the view and generate a new ECA rule. In this respect, dy-
namicity in POSTGRES is available (to some extent), but internally the system resorts
to a stop-start sequence.

• R5: Simplicity – Subsequent versions of the POSTGRES software can use specifically-
built foreign data wrappers to link to other systems like other RDBMS, a file system,
or even a web-service. Even though the active extension is somewhat integrated with
the database, the use of foreign data wrappers require some manual maintenance when
linking up with the POSTGRES main server daemon [The12].

3.3.2 Event Processing in Rule-based Systems
Section 2.5.1 gave a general introduction of rule-based systems (RBS). The discussion
specifically focused on reactive rule-based systems that operate using forward chaining
semantics, which enables them to present rules as being triggered by events, causing actions.
Here we discuss RBSes in the vein of how their unique processing capabilities make them
suitable for supporting reactive knowledge-driven applications (RKDAs), thus providing
avenues that may provide a solution to the various research challenges for real-time event
processing that were observed in Section 2.6.

Rule-based systems specifically perform inference through pattern matching and unifi-
cation. As discussed in Section 2.5, RBSes rely on rules as modular problem-solving units.
Production rules typically react to changes in condition state and have no explicit reification
of events as in other event processing systems. However, fact updates from external sources
form new fact instances that can be dynamically added to the fact base as instances of event
declarations – an approach used by modern rule engines [BM11; Bro09; FIC12]. Compared
to other detection-oriented processing systems, the conditions in production rules are used
to specify these events implicitly (unlike the explicit event definitions in ECA rules).

RBS therefore conceptually consider updates caused by events as changes that can
trigger rules based on conditions. This gives the programmer full control over the detection
patterns that can be expressed in conditions. In addition, there is always a link between
the data that matches the condition of a rule and the behaviour defined in the actions of
the rule. Condition variables are bound to data items in the working memory that satisfy
the conditions and are accessible in the actions of the rule. Therefore rule-based systems
offer attractive features that make them especially suitable for the development of RKDAs:
today there exist several open-source and commercial RBSes that are in use in academia
and industry with similar goals [Bat94; Bro09; Fri03; Ril91; XZ10].

3.3. Detection-oriented Event Processing Systems 57

Given the previous introduction of rule-based systems’ architecture and execution
semantics in Section 2.5.1, we proceed to investigate the viability of rule-based systems for
supporting the development of RKDAs.

Forward-chaining rule engines can be split into sub-categories: pure rule-based sys-
tems and composite rule-based systems. Pure rule-based systems only strictly support
rule-based semantics for programming applications and internal implementation for infer-
ence. They are defined by an inference engine, factbase and rulebase that receives rules and
lightweight facts 1. Composite rule-based systems (also termed as hybrid systems [DHo04;
GK94]) consist of a fusion of a rule engine with a host object-oriented architecture (or
some other runtime) that accepts objects instead of facts asserted into the in-memory ob-
ject repository. They often use a complex hybrid of strategies or are simply developed for a
specific application domain and differ in semantics of the effects of changes to host objects
and fields from external sources.

It was established in Chapter 2 that rule engines are a suitable fit for reactive knowledge-
driven applications. In this section we use this reference to perform a feature-based eval-
uation using various rule-based systems drawn from the two domains. As in the previous
sections the comparison is made against a baseline of a number of requirements identified in
Section 2.6. For the evaluation we employ a practical example to perform the comparison
of the rule engines to be discussed. To this end, we present a rule that represents one of
the access policies of the practical use case from Section 2.3.

Rule for Intern Access: Interns are allowed access to the intern cubicles in restricted
times – from 8am till no later than 8pm.

This Intern Access policy rule will be used as a running example for the remainder of
this section.

Event Processing in Pure CLIPS & Composite CLIPS COOL

CLIPS [Cro11] (C Language Integrated Production System) is a rule-based system that
is based on the Rete algorithm that was designed at Johnson Space Center, but is today
maintained independently as public domain software. A separate engine based on the pure
CLIPS rule-based system was developed and became the composite variation CLIPS COOL
(CLIPS Object Oriented Language), which introduced procedural and object-oriented pro-
gramming support.

In CLIPS facts are composed of one or more slots that contain attributes with their
values. In CLIPS COOL the working memory can additionally contain objects with fields
and field values. CLIPS rules contain conditions and actions in the left and right-hand
sides respectively, with the => symbol separating the two sides. Rules are defined using the
defrule construct and variables are identifiers that start with the ? symbol.

The InternAccess rule using the traditional CLIPS syntax is shown in Listing 3.8. Line
2 captures the employee and their attributes, specifying that the employee should be an
intern. Line 3 and 4 capture the intern’s access request and the device from where the
request was made. The test conditional element in line 5 provides a way to define boolean
expression statements, which in this case checks the time constraints of the policy. The
RHS performs an assertion in line 7 that grants the access request if the conditions are
met.

1This is a restricted definition of pattern-directed inference systems in [Jac98]

58 Chapter 3. Related Work: Reasoning in Event Streams

Listing 3.8: Intern Access rule in CLIPS
1 (defrule intern_access
2 (employee (name ?nam) (badge ?ibadge) (level "intern"))
3 (accessreq (id ?reqid) (badge ?ibadge) (time ?t) (device ?dev))
4 (accessdevice (id ?dev) (location "cubicle"))
5 (test (and (< ?t 20) (>= ?t 8)))
6 =>
7 (assert (accessrep (reqid ?reqid) (device ?dev) (allowed true)))
8 (printout t "Allowed access for" ?nam " on device " ?dev crlf)
9)

• R1: Processing & Communication Model – In both CLIPS and CLIPS COOL execution
of the engine is synchronous in all stages. The pure CLIPS engine offered a single entry-
point for fact assertions and offered little support for several event sources asserting
facts into the engine. An interfacing entity therefore has to wait until rule execution is
complete in order to assert more facts to the engine. This makes the rule engine diffi-
cult to orchestrate for event processing asynchronously without internally modifying the
engine’s codebase. The CLIPS COOL variation however has support for Java-based ex-
tensions that are useful in supporting multiple sources when performing event processing
from distributed entities.

• R2: Knowledge Encoding – CLIPS represents heuristic knowledge using CLIPS rules.
The use of declarative rules in CLIPS promotes the detection of patterns through the
inference process in the engine. The seminal paper that described the CLIPS rule-based
system [Ril91] contrasted code in C vs. a rule in CLIPS whose aim was to monitor a
number of sensors in order to detect anomalies. The comparison showed that in such
cases, a rule in CLIPS is more compact and readable than conventional code. It also con-
tains advanced operators that are useful in defining various detection constraints such
as declaring rule properties that temporarily disable rules [GR98a]. CLIPS COOL tries
to maintain the same semantics across the pure and hybrid functionality in the engine
for pattern detection. For instance, classes in CLIPS COOL contain slots rather than
fields, and object slots maintain most of the applicable operations on normal fact-based
(or non object-based) slots. CLIPS COOL further offers basic constructs for procedural
programming like generic functions and object-oriented programming, enabling develop-
ing using of a mix of rules and message-passing, or rules and procedural code [Ril91].
This however tends to complicate the design of rules and eventually makes understanding
execution semantics of the engine more complex.

• R3: Reactivity – CLIPS terminates whenever there are no items in the agenda. Pure
CLIPS therefore has the limitation of not supporting continuous execution that is useful
for continuous event processing out-of-the-box. One workaround can be through the use
of incessant facts that always force an item on the agenda to reset the engine back to
the select phase after activation of rules. We show such an example in Listing 3.9 that
prints a counter value. The continue fact in line 3 is used to trick the engine to continue
execution by always modifying the value of the fact, repeatedly placing the count rule in
the agenda. Of course, aside from being inefficient by adding operations to be performed
at the end of each cycle, this technique is more of a ‘hack’ and is highly dependent on
the conflict resolution strategy that the engine enforces. CLIPS COOL supports some
form of reactive semantics through its reactive facet specified in its initial configuration
(i.e., during definition), which specifies that changes to an object slot will initiate the
pattern-matching process – akin to a fact modification in pure CLIPS.

3.3. Detection-oriented Event Processing Systems 59

• R4: Dynamicity – In both CLIPS and CLIPS COOL, once the engine is in execution
mode then the rules within the rulebase are used to create the Rete graph internally.
CLIPS allows a change in the rulebase to be performed through an addition, removal
or modification of rules by other rule definitions. But because the engine does not
inherently support reactive semantics as described above, the integration of these two
features (dynamicity and reactivity) is not clear. This is a limitation in supporting
dynamic features for RKDAs and would require manual interventions to achieve such
functionality when using the engine. Even though the engine supports other dynamic
features such as dynamic salience in rules in the select phase of the matching cycle, it
is lacking this requirement as explained in Section 2.4.3.

• R5: Simplicity – In order to support simplicity when developing RKDAs with CLIPS,
the manner in which the engine is integrated with Web server technology is key to enable
responsiveness to clients during its operation. The pure CLIPS engine was specifically
designed as a stand-alone tool (a.k.a, as an expert system shell [GR98b]) with little sup-
port for such integration. The CLIPS COOL engine does support basic interfaces but
applications need to manually specify a component that maps received data to CLIPS
COOL objects. It exposes an API that can be used to control the engine externally: how-
ever, the allowed operations are limited to macro-operations like starting and stopping
the engine, and less about controlling the execution flow of the engine.

Listing 3.9: Incessant Facts in CLIPS
1 (defrule count
2 ?c <− (counter (no ?n))
3 ?y <− (continue (val false))
4 =>
5 (modify ?c (no (+ ?n 1)))
6 (modify ?y (val true))
7)
8

9 (defrule show
10 ?c <− (counter (no ?n))
11 ?y <− (continue (val true))
12 =>
13 (printout t "Current value: " ?n crlf)
14 (modify ?y (val false))
15)

Event Processing in Jess

Jess [Fri03] is a rule engine inspired by the CLIPS engine. Jess exposes its main rule-
based syntax, the LISP-based CLIPS syntax from its parent engine and the XML-based
RuleML [Bol06] syntax to represent rules.

Even though the strength of the Jess engine is in its implementation of the forward-
chaining Rete algorithm, it can also simulate backward chaining by controlling execution
using rules programmed in a specific form to react to goal-seeking or trigger facts. Jess
follows a composite implementation and can directly reason about Java objects. It repre-
sents the objects in its working memory as Java Beans akin to slots in CLIPS. Java Beans
in the engine are said to be either dynamic, where changes to fields are always kept up to
date in the working memory, or static, where changes to an object are ignored. The engine
however can manipulate objects using typical assert, retract or modify constructs in
rules.

60 Chapter 3. Related Work: Reasoning in Event Streams

Listing 3.10: InternAccess rule in Jess
1 (defrule rule_intern_access
2 ?e ← (employee {level == "intern"})
3 ?r ← (accessrequest {time < 20 && time > 8})
4 ?a ← (accessdevice {id == r.device && location "cubicle"})
5 ⇒
6 (assert (accessreply (id r.id) (device a.device) (allowed true))
7 (printout t "Allowed access to intern ?e.name on device ?a.device" crlf)))

Jess rules typically have a left-hand side and a right-hand side separated by a ‘⇒’.
We show the InternAccess rule in Jess syntax in Listing 3.10. The LHS contains a list of
conditions each consisting of a condition type, like employee in line 2 and slots like level.
Conditions can also contain expressions in curly braces as in the expression in line 2 that
checks if the employee is an intern. On the right hand side three actions are commonly used:
assert to add new objects, modify to change an object’s slot and retract to remove an
object from the working memory. Other side-effects can be used on the RHS, for instance
the print statement shown in line 7. These statements have no effect on the engine itself
but can be useful for purposes such as logging in applications.

• R1: Processing Model & Communication Model – Jess provides event processing via
the semantics of its Rete engine, which can be started by calling Rete.run. In Jess,
rules are constantly evaluated against incoming events asserted into the knowledge base.
Jess also allows the definition of one-off rules using defquery, which will only run once
when explicitly called externally and retrieves all matches at once. This in Jess is often
used when stored Java Beans objects can undergo several changes to their state from
external sources, thus having the underlying Rete engine perform undesired execution
cycles. It however undermines the default semantics of the Rete engine. The default
run method to start Jess’ Rete engine executes the engine synchronously. Therefore
any incoming event would have to wait until all rules are fired and execution returns
to continue interacting with the engine. The alternate runUntilHalt is thread-based
and can use constructs like wait() and notify() to perform actions asynchronously
whenever there are rules to be fired. Using this alternative, Jess can internally expose
events through the JessEvent class that can be used by sources to capture rule acti-
vations using registered event listeners asynchronously. Additionaly, even though the
engine does not natively support multiple clients connecting in order to add rules and to
assert facts, Jess supports connectivity through manual configuration via Web servlets.
Communication with clients can be therefore be implemented using various frameworks;
however application designers have to manage the idiosyncrasies themselves.

• R2: Knowledge Encoding – Jess follows a rule-based syntax that allows specifying con-
straints using conditions in rules. Jess consists of an expressive syntax derived from
CLIPS that was specifically designed for pattern-matching in rules. The left hand side
before the ⇒ describes the constraints for the working memory elements and the ex-
pressions to test for matching. The right hand side avails the actions to take after the
conditions have been matched. The engine further exposes similar pattern for its sym-
biosis with Java objects using Jess patterns that allow mixing native expressions with
Java-based OO syntax. Even though this in effect renders rule design more complicated,
it nevertheless makes the engine able to perform reasoning over Java Beans objects in
the working memory.

• R3: Reactivity – Jess heavily borrows from the CLIPS engine and employs the Rete
algorithm at its core. As discussed earlier in Section 2.5.4 the algorithm is suited for

3.3. Detection-oriented Event Processing Systems 61

efficient data-driven processing. In Listing 3.11 we show our example of running a Jess
application using the InternAccess rule, where rules are added into the engine inline
and then facts are inserted to the working memory. Jess then requires the method
Rete.run() (line 15) to be invoked which performs matching and activates rules. Similar
to Drools, the Jess engine performs offline processing by default: it immediately stops
execution as soon as there are no more applicable rules. The later version of Jess
5 provides the aforementioned Rete.runUntilHalt() method (Listing 3.12, line 17),
which uses Java’s wait/notify constructs for control, e.g., pausing the calling thread
until active rules are ready to fire. As the name suggests, the run will only return
when Rete.halt() is called. This way the engine can be made to support processing
event streams using reactive semantics. By default, there is no synchronisation between
changes to object fields when already in the Rete network and they thus do not trigger
events in the system – but this behaviour can be allowed by configuration of the engine
upon initialisation.

• R4: Dynamicity – The Jess engine performs processing offline by default using the
run method, performing a match-execute cycle and exiting after rules are activated.
During each run, Jess undergoes a compilation process that converts all rules into a
Rete graph. With the runUntilHalt method, the engine continuously runs in a separate
thread. However, when running in this mode the engine cannot receive new rules or
modify existing ones. Work in [Thi07] reported a similar conclusion. The work involved
investigating the extent of dynamism supported in the Jess engine and it reported that
in dynamic environments, Jess is not able to support runtime modification of rules that
already underwent a compilation process.

• R5: Simplicity – Even though Jess is based on the pure CLIPS engine, it requires
symbiosis with the Java runtime and object architecture. The same deficiencies as those
discussed of the Drools engine apply here, where various components are needed to
interface with Web servers and applications. This makes it harder to develop, debug
and maintain applications that require integrated reasoning semantics.

Listing 3.11: Running a Jess Session
1 import jess.*;
2 public class SecEngine {
3 private Rete engine;
4 public SecurityEngine(ArrayList facts) throws JessException {
5 /* Create Jess engine */
6 engine = new Rete();
7 engine.reset();
8

9 /* Load the intern accessrule */
10 engine.batch("rule_intern_access.clp");
11 /* Load the data into working memory */
12 engine.addAll(facts);
13

14 /* Fire the rules that apply to the facts */
15 engine.run();
16

17 // Return accesses created by the rules
18 return engine.getObjects(new Filter.ByClass(AccessReply.class));
19 }
20 }

62 Chapter 3. Related Work: Reasoning in Event Streams

Listing 3.12: Running Jess Continuously For Event Processing
1 import jess.*;
2 public class SecEngine {
3 private Rete engine;
4 public PricingEngine(ArrayList facts) throws JessException {
5 new Thread(new Runnable() {
6 public void run() {
7 /* Create Jess engine */
8 engine = new Rete();
9 engine.reset();

10

11 /* Load the intern accessrule */
12 engine.batch("rule_intern_access.clp");
13 /* Load the data into working memory */
14 engine.addAll(facts);
15

16 /* Fire the rules that apply to the facts */
17 engine.runUntilHalt();
18 }
19 }).start();
20 }
21 }

Event Processing in JBoss Drools

Drools [Bro09] is a popular business logic integration platform written in Java. It contains
a forward-chaining production system that is built using the Rete algorithm. It is today
part of the JBoss suite of business enterprise management and monitoring tools.

Drools follows a composite implementation of combining the use of rules with the use
of objects. A repository of Java objects can be inserted into the network which represents
the ‘facts’ or the state of the system. The objects can also be removed or their fields
updated in Drools’ Rete network.

Drools has a native language for writing rules known as the Drools Rule Language.
The syntax follows the when..then structure to distinguish the left-hand side from the
right-hand side. Due to its composite nature rule statements can access fields and invoke
methods on Java Bean objects.

Listing 3.13: InternAccess (Protocol 4) rule in Drools
1 rule "InternAccess"
2 when
3 $e: Employee(level == "intern"))
4 $r: AccessRequest(badge == $e.badge))
5 $a: AccessDevice(id == $r.device, location == "cubicle", $r.time <= 20, $r.time > 8))
6 then
7 insert(new AccessReply($r.id, $e.name, $a.device, true)

The InternAccess rule in Drools’ syntax is illustrated in Listing 3.13. Rules in Drools
are identified by a rule name, in Line 1. A rule can refer to objects in the hybrid approach:
lines 2-5 will, at runtime, bind to objects of the classes Employee, AccessRequest and
AccessDevice respectively. In each when condition, types checks can be augmented with
expression tests for its attributes with constant values or variables representing other at-
tributes, as in line 3 which specifies that the Employee should have the level intern. On the
then side new objects can be inserted, removed or modified in the engine. The action in line
7 adds an AccessReply that indicates that the request fulfils the conditions and has been

3.3. Detection-oriented Event Processing Systems 63

accepted. Such rules are then parsed and compiled by the framework’s KnowledgeBuilder,
and objects can be added into a KnowledgeSession.

Using the sample rule as a reference, we now evaluate Drools with respect to how it
can support a reactive server engine for the Web, focusing on the identified requirements
in Section 2.6.

Listing 3.14: Starting the Drools engine using fireAllRules
1 KnowledgeBuilder knowledgeBuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
2 /* Add DRL file */
3 BuilderknowledgeBuilder.add(drlFile, ResourceType.DRL);
4 StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
5 AccessDevice device = new AccessDevice("Cubicles");
6 knowledgeSession.insert(device);
7 /* ... */
8 knowledgeSession.fireAllRules();

Listing 3.15: Running the Drools engine using fireUntilHalt
1 /* Create a session and run continuously */
2 new Thread(new Runnable() {
3 public void run() {
4 KieContainer.newKieSession().fireUntilHalt();
5 }
6 }).start();

• R1: Processing & Communication Model – The Drools engine provides two event pro-
cessing modes, STREAM and CLOUD [Bro09]. The mode is specified via a configuration
parameter at startup. The STREAM processing mode assumes an ordered stream of
events and uses an internal ‘session clock’ to provide this functionality. In this mode,
Drools can also process streams using windowing, thus operating in a similar manner
to stream processing systems discussed in Section 3.2. The CLOUD processing mode is
the default mode, where the engine behaves similarly to other pure forward chaining en-
gines. In CLOUD mode the engine sees all events in the working memory as unordered,
independent facts. The engine applies the Rete algorithm to find matching facts and
to activate rules. Therefore the CLOUD mode processing is better suited for providing
support for RDKAs.
For communication with clients, concurrent connections in the Web server running
JBoss Drools are not available by default. Drools can support push-based concurrent
connections through the EAP 6.3 WebSocket implementation in its parent framework
JBoss [Red15]. This however requires the developer to delve into Drools source code,
which can be a challenge to debug. As an example, the programmer needs to keep in
mind that, as in the Java WebSocket 1.0 specification, callbacks for asynchronous writes
are performed on a different thread to the thread that initiated the write [Fou15]. This
will affect the orchestration of the reception and notification of client event messages
from the running Drools session (which, is as subsequently explained, runs in a separate
thread as well).

• R2: Knowledge Encoding – Rules are defined using declarative expressions specifying the
constraints to match in the when section and the actions to take in the then. Procedural
statements can also be written in the latter section. The rules sets are are defined in .drl
files. Each condition can refer to a class rather than a fact type, e.g., Employee in line
3 of Listing 3.13 refers to an instance of the class Employee that has a specific level.

64 Chapter 3. Related Work: Reasoning in Event Streams

Drools provides pattern-matching constructs using condition expressions in the when
part of rules. The left-hand-side of rules in Drools are matched according to bound
variables and expressions. Conditions can be bound using variables denoted as starting
with $ and fields of objects bound to them can be accessed using normal dot operators
(as with $r.device in line 5). Boolean guards can be defined in conditions, such the time
expressions in line 5 that check if the access was made between 8am and 8pm. The rule
language also support aggregation and negation operators. Using these constructs, the
engine can internally perform inference on facts bound to variables in the rule definitions.
The declarative expressions therefore allow programmers to capture knowledge via the
various rule-based constructs exposed by the Drools rule language.

• R3: Reactivity – By default, when objects are added to the engine, Drools performs
matching internally and stops executions without instantiations. In an RKDA frame-
work, it is more appropriate for the engine to simply wait instead of halting execu-
tion after matching, because in this environment events happen continuously or even
intermittently. Drools does not create and fire activations unless a special method
fireallRules is invoked on the Drools session upon instantiation, as shown in List-
ing 3.16. fireAllRules then performs the matching process and proceeds to fire any
rules that have entries in the agenda, immediately halting when there are no more rules
to activate. The default behaviour can be changed by instead invoking a special method,
fireUntilHalt. fireUntilHalt however requires to be run in its own separate thread,
which will keep firing any instantiations on the agenda until none remains, as shown
in the example in line 6 of Listing 3.15. This can complicate the mechanisms in which
a programmer can add and receive notifications from the engine running in a reactive
manner.

• R4: Dynamicity – The default fireAllRules primarily checks for activations in the
current agenda then puts the engine in an idle state when there are no more activations,
making this a single execution sequence. As we illustrated, in order to evaluate dynamic
rule addition in a continuous, real-time fashion, a developer is obliged to first create
a Drools session in fireUntilHalt mode, which runs in its own thread. Support for
dynamic addition of rules requires the Drools engine to be able to add rules into the rule
base (thus appending the rule within the Drools’ inference engine structure) at runtime.
This is however not the only requirement for dynamic rule addition in Drools. Whenever
a rule developer wants to add a rule at runtime, the session needs to be given a new
release ID and deployed as we show in lines 16-22 in Listing 3.16 which shows the common
way to startup the engine. The updateToversion method will update the session with
the new rule base. The reason for all this is because the deployable artefacts (or jars)
that Drools uses to represent sessions are immutable source code artefacts. Therefore
another jar is created in memory that updates the previous version. The whole process
makes rule addition in Drools pseudo-dynamic, is fairly convoluted and can lead to
unintended versioning problems arising from its manual implementation.

• R5: Simplicity – Evidently, from the above descriptions of how to configure and run
the Drools engine for real-time events and dynamic rule addition we can see that the
engine requires multiple separate components to achieve the real-time goals that we
investigate in this section. Drools has native integration with JBoss, which contains a
server component. However, integrating with other server frameworks shows that the
engine contains the shelling limitations as discussed in Section 2.6. Furthermore, the
intricate setup for starting the engine as reactive components with support for RKDAs
not only makes the development and maintenance effort complex, but also increases

3.3. Detection-oriented Event Processing Systems 65

the communication overhead when receiving and processing multiple events from many
clients.

Listing 3.16: Dynamic rule addition in Drools using Kiesession updates
1 KieServices ks = KieServices.Factory.get();
2 String testRule1 = /* rule1 here */;
3 /* Create kie session version 1.0.0 */
4 ReleaseId release1 = ks.newReleaseId("org.kie", "drools−addStaticRule", "1.0.0");
5 KieModule km = createAndDeployJar(ks, release1, testRule1);
6

7 //Create a session and fire rules
8 final KieContainer kc = ks.newKieContainer(km.getReleaseId());
9

10 new Thread(new Runnable() {
11 public void run() {
12 kc.newKieSession().fireUntilHalt();
13 }
14 }).start();
15

16 String testRule2 = /* rule2 here */;
17 /* Create 2nd kie session version 1.0.1 */
18 ReleaseId release2 = ks.newReleaseId("org.kie", "test−addDynamicRule", "1.0.1");
19 km = createAndDeployJar(ks, release2, testRule2);
20

21 /* Update session container to version 1.0.1 */
22 Results results = kc.updateToVersion(release2);
23 //...

Although Drools fares well with its rule-based syntax of specifying declarative con-
straints, it falls when evaluating its preparedness for supporting concurrent clients and
dynamic addition of rules to the running engine. Further, the disintegration of the rule en-
gine with the rest of the architecture needed to support reception and notification real-time
events from distributed clients makes it less appealing for RKDAs.

3.3.3 Summary: DEPS for supporting Stream Reasoning
We provide a summary discussing how proficient detection-oriented systems are and how
they can be applied to reactively process events; with reference to the development and
processing support of the kinds of applications that this dissertation targets, RKDAs.

Due to their symbiosis with database systems events, active databases are restricted
to internal database calls. Indeed, although active databases incorporate a rule-based
approach based on ECA rules, their support of capturing events from definitions is mostly
dependent on the event specification languages that are tied to the larger database system
semantics. Restrictions such as the event part being associated to only one relation (e.g.,
in POSTGRES [SK91]) hinder the expressiveness needed to capture advanced or multiple
event patterns, required by RKDAs.

Active database systems differ in the level of granularity of triggering an ECA rule,
whether tuple-based or set-based. Some ADS systems even support both types. Designers
of ECA rules have experienced conflicts in these differences that lead to nondeterministic
behaviour that is difficult to debug [Hor94]. Furthermore, their implementations are de-
pendent on database effects semantics, to the extent that they are modelled around static
database processing statements rather than on the foundations of reactive event-based pro-
cessing that this dissertation targets for RKDAs.

66 Chapter 3. Related Work: Reasoning in Event Streams

Most of these restrictions placed on active database systems are not experienced in
rule-based systems. In RBS events are triggered by external and unordered data streams
coming from real-world sources and can include sensors, user activity, etc. Rule based
systems offer expressive rule-based syntax that provides strong pattern-matching semantics
for inference.

In theory, techniques that are based on the data-driven forward-chaining semantics
such as the engines presented can be extended to provide event processing capability. When
it comes to practical implementations, however, all the engines required substantial manual
interventions to support reactive event processing.

CLIPS offers little support for Web-based integration and support for concurrent con-
nectivity for receiving and sending prompt updates from the engine to clients and vice-versa.
Drools and Jess require thread-related solutions which complicates the process of support-
ing concurrent connections and dynamic addition of rules and facts. Even though CLIPS
COOL’s integration with languages such as C gives good performance, it offers limited
operations that support event-based reactive semantics without resorting to modifying the
core engine’s codebase.

3.4 Results of Analysis
We provide a comparison of selected systems that provide event processing with respect to
supporting frameworks that enable the development of reactive knowledge-driven applica-
tions that harness community knowledge. We provide the analysis based on the require-
ments set forth in Section 2.6 to the technologies discussed for event processing.

We present a summarised view in Table 3.2, where the rows represent the technologies
and the columns the requirements. The table contains 5-star rankings where a rank of
5 stars symbolises the most desirable (i.e., meets the requirements fully) while a 0-star
ranking symbolises the least desirable (hardly meets any criteria).

From the table and the discussions we can draw several observations. If only sequence
filtering and processing a high number of ordered events per given time slots is needed, then
computation-oriented approaches are highly specialised to aptly provide such processing
requirements. This dissertation focuses on uncovering support for technologies that support
knowledge-based reasoning in RKDAs: i.e., ways in which processing of independent data
streams can be merged with systems that provide complex reasoning abstractions. With
this focus, computation-oriented approaches suffer from lack of abstractions and complexity
in rule design aimed at these goals.

From the overview, we see that detection-oriented rule-based systems are particu-
larly suited for their non-deterministic, demand-driven, precise querying processing models
that enable caching of intermediate results. In addition, the on-the-fly pattern-matching
and unification techniques of rules give rule-based systems a unique approach in deriving
knowledge from incoming uncoordinated events. We observe that DEPS are the closest fit
to support the kinds of applications that this work envisions. However, current solutions
suffer from fundamental problems that will require application developers devote substan-
tial programming effort to overcome. Rule engines follow a traditional select-execute cycle,
and require more advanced or manual interventions to enable them to continuously process
external events and provide feedback without affecting the engine cycle.

A separate point is that distributed stream processing systems approaches suffer
from an increase in semantic complexity as a result of intertwining two paradigms to-
gether [Jai+08]. With active database systems the paradigms are database and production
rule paradigms [Hor94], and with hybrid rule engines it was intermingling the underlying

3.5. Chapter Summary 67

object oriented runtime with the rule engine execution [DHo04]. Pure approaches therefore
provide cleaner semantics and focus solely on supporting reasoning during event detection
as well as processing, a viable option when meeting the requirements set forth.

From the analysis, we conclude that the engines surveyed have little support for
the extent of reactivity, dynamism, simplicity, connectivity and decoupling required when
supporting the continuous execution of the engine, dynamic addition of client rules at
runtime, large number of distinct event sources and decoupled distributed execution needed
for reasoning in reactive knowledge-driven applications.

3.5 Chapter Summary
To summarise, this chapter has provided a categorisation of event-processing systems based
on computation-oriented and detection-oriented techniques. Both of these approaches are
(in some ways) suited for the types of reasoning that reactive knowledge-driven applications
require (c.f. Section 2.2.3).

Even though existing event processing systems can provide high-throughput stream
processing, they lack complex reasoning capability that is required by RKDAs. In this
respect two approaches were presented. Detection-oriented approaches in Section 3.3 are
more suited for the reasoning semantics required by RKDAs than the computation-oriented
engines discussed in Section 3.2. Rather than focusing on an inherent order with incoming
events as in CEPS, DEPS view incoming events as unordered, independent entities.

From the analysis, we conclude that though promising, existing DEPS systems are still
not well-suited to support the development and processing requirements of RKDAs. They
have particularly exhibit limitations in allowing dynamic changes at runtime and providing
continuous, reactive execution semantics and simple integration with server frameworks.
The next chapters present our approach in tackling these limitations.

EVALUATION OF EVENT,PROCESSING SYSTEMS FOR WEB REASONING

Proc & Comm Model Knowledge Encoding Reactivity Dynamicity Simplicity

Computation,oriented Engines

 Data Stream Management Systems

 STREAM

 Event Stream Processing Systems

 FLINK

Detection,oriented Engines

 Active Database Systems

 ARIEL

 POSTGRES

 Rule,based Systems

 DROOLS

 JESS

 CLIPS

 CLIPS COOL

Table 3.2: Evaluative feature comparison of event processing systems for supporting reactive knowledge-driven applications on the Web
– Rule-based systems offer the most powerful abstractions of one-at-time detection and processing of events, but are weak in areas such
as reactivity and dynamicity.

4
Serena: Cloud-based Rule Engine

One Orchestration to Rule them all,
One Subscription to find them,

One Port to bring them all,
and in the Engine bind them.

Charles Young, Geeks With Blogs

The previous chapters identified that rule engines can provide functionality that sup-
ports reasoning in reactive knowledge-driven applications. Current solutions however lack
proper mechanisms to be able to be deployed in such dynamic environments. This chapter
introduces the Serena rule engine, a custom rule-based system for RKDAs that provides
reasoning over events. In Serena rule-based logic can be integrated with the event-driven
Web environment using external callback functions in the Javascript language.

The chapter begins with a discussion of the architecture and execution semantics of
the engine in Section 4.1. Next, it references the motivating scenario from Chapter 2 to
delve into details of its implementation. The syntax and execution semantics are presented,
and finally an evaluation of the engine as compared to the related work is discussed in
Section 4.5. The chapter then concludes with a summary of observations in Section 4.61.

4.1 Introduction
This section presents the Serena Web framework. The main motivation of the framework
is to overcome the limitations of current rule-based systems by instilling reactive event-
processing behaviour in a forward-chaining rule-based system. This enables the framework
to realise the computationally-intensive process of receiving and reactively processing data
in order to detect complex events, together with accompanying data relevant to notify
clients.

1Observations described in this chapter have been published as [KBD15]

69

70 Chapter 4. Serena: Cloud-based Rule Engine

With these foundations, the framework provides techniques that ease the dynamic
definition of requirements by utilising a rule-based syntax, and also provides methods that
enable the efficient processing of intermittent data giving instantaneous feedback. Serena
further manages sending messages between the server and connected clients by abstracting
the underlying infrastructure that supports reactivity using push-based communication.

Using the scenario from Section 2.3, this chapter dissects the inner workings of Serena
by first defining the syntax of rules and then by illustrating its general architecture. Later,
the execution semantics of the framework are explained in detail.

4.2 Serena Rule Language: Syntax and Semantics
This section describes the syntax and semantics of the framework. Serena supports dynamic
custom rules by clients: clients are able to design, install and dynamically upload rules
to the server rule engine. There exist rule-based implementations for the Web that use
RuleML [Bol06], based on the verbose XML format. However, the Serena framework has
embraced a schema that is more compact and faster to serialise for easier transportation
of data as rules and events between clients and the server. The syntax of rules in Serena
draws inspiration from JSON Rules [GP08] and is named the Serena Rule Language, SRL
in short. Using SRL, clients can design and publish their own rules which will be shipped to
the server in the Web’s lingua franca for data exchange, the JSON format. SRL therefore
provides mechanisms in which modern Web applications can easily be enriched with rule-
based reasoning capabilities.

4.2.1 SRL Syntax
Similar to other rule-based languages, the Serena Rule Language defines templates describ-
ing the program data and rules describing constraints. The compact grammar specification
for SRL is shown in Figure 4.1. The specification adopts the use of parentheses for delim-
iting definitions, ∗ for the usual zero or more occurrences, + for one or more occurrences,
square brackets for an optional occurrence and a vertical bar for selection. For more precise
syntax, the complete ANTLR v.3 syntax for SRL can be found in [Kam].

A program in Serena generally represents event patterns captured using declarative
specifications. In order to successfully identify these patterns, SRL consists of templates,
rule and plugin definitions. We illustrate the syntax of these definitions in the next sections.

4.2.2 SRL Fact Templates
To define the structure of the data and their types in SRL, developers first explicitly define
templates. As with other rule-based languages, the format of the facts is predefined using
templates. Templates therefore provide blueprints that will be used to describe event
instances represented as facts in the framework.

Listing 4.1 illustrates the template for access device data in the security example as a
JSON object received by the server. Templates in SRL contain a name, shown in line 1, an
optional comment and a number of template slot definitions. Template slot definitions are
simply attribute-value pairs of slot name, slot type and a default value. The slot name is
mandatory. An access device in this case consists of an id of type int2, name as a string
and location. The default type for any slot is string; since location has no explicit type
(line 6), it is therefore implicitly assigned the type string.

2The type int is as specified in the host JavaScript language as double-precision floating point numbers

4.2. Serena Rule Language: Syntax and Semantics 71

P ∈ SRL ::= (t∗ | r∗ | p∗)+

t ∈ templates ::= template tn [cm] t∗s

r ∈ rules ::= rule rn c+ a∗

c ∈ conditions ::= ce | te | b
ce ∈ cond-elms ::= type tn slc∗

slc ∈ slot-constr ::= sn (== | ̸=) sv

te ∈ test-conds ::= e (< | ≤ | = | ≥) e
| e

p ∈ plugins ::= plugin pn f∗

f ∈ functions ::= fn e∗
e ∈ expressions ::= [pn.]fn [e]

| var | e δ e

b ∈ binds ::= var ← ce

ts ∈ template-slots ::= sn [γ]

δ ∈ operators ::= + | − | ∗ | / | % | . . .
sv ∈ values ::= num | string | var
γ ∈ types ::= int | string | bool
a ∈ actions ::= assert tn [sn ⇒ e]

| retract var
| modify var with [sn ⇒ e]

| call [pn.]fn

var ::= V ariableName

cm ::= Comment

rn ::= RuleName

pn, fn ::= Plugin, FunctionName

tn, sn ::= TemplateName, SlotName

Figure 4.1: Compact grammar of the basic Serena Rule Language

72 Chapter 4. Serena: Cloud-based Rule Engine

Each template definition is also assigned default system slots that include sign and
time that represent the sign of the fact (explained in Section 4.4.5) and the time the fact
was asserted into the server rule engine.

Listing 4.1: Template for access device
1 {templatename: "accessdevice",
2 comment: "the proximity badge scanning device",
3 slots: [
4 {name: "id", type: "int", default: 0},
5 {name: "name", type: "string"}
6 {name: "location"}
7]
8 }

4.2.3 SRL Rule Definitions
In SRL rules define the requirements of clients and contain conditions and actions. Condi-
tions are expressed as predicates that capture facts. The SRL language views computation
as controlled inference using mechanisms based on pattern-matching via unification.

Following the motivating example from Section 2.3, we use a simple rule implementa-
tion in SRL to explain their structure. The example introduced a security system deployed
in an office environment to control access patterns.

We present the InternAccess rule that specifies that interns are only allowed access
to their cubicle space. Remember from Section 2.3 that the rule should capture accesses
made by intern employees between 8am and 8pm. Listing 4.2 shows the InternAccess rule
as JSON received by the server. The SRL syntax is comparable to that of CLIPS (cf.,
Listing 3.3.2).

Listing 4.2: Rule for intern access
1 {rulename: "intern_access",
2 conditions:[
3 {type:"employee", level: "intern", name:"?name"},
4 {type:"accessdevice", name: "?dev", location:"cubicle"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"$test", expr:"(time.hourBetween(?t, 8, 20))"}
7],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed: true}}

10]
11 }

Rule structure

An SRL rule consists of a name, the left-hand side (LHS) and the right-hand side (RHS).
The rulename identifies the rule. The LHS contains conditions (lines 2 to 7). Conditions
specify a pattern to match against a fact in memory. The RHS contains the actions to be
taken when the conditions have been fulfilled (lines 8 to 10).

4.2. Serena Rule Language: Syntax and Semantics 73

Conditions

The first condition in line 3 defines a predicate that captures a fact representing an intern
employee. The ? operator on the same line defines a logic variable ?name to capture the
employee’s name. During execution, the inference engine needs to find the appropriate sub-
stitution instance that will match with the logic variable. This process of finding concrete
substitutions that match with logic variables in a predicate is called unification and is a
powerful form of pattern-matching. Any subsequent uses of the same logic variable in the
predicates of the rule, as in line 5, are syntactically the same and cannot be changed.

The next condition captures the device located in the entrance of the cubicle space
(line 4). The actual request made is captured in the next line 5 with the device and the
name ascertained to be the same, by use of the same unified logical variable ?dev. In this
line, ?t is the time of the access request.

Line 6 shows a test condition that specifies a boolean expression. Expressions can use
a host of arithmetic, relational and boolean operators. Several test conditions can be used
in a rule, and multiple test expressions can be defined within one condition by chaining
them with conjunctive and/or disjunctive operators that follow the native JavaScript syn-
tax. Generally, tests act as computational filters for facts that only match their specified
expressions on the grounded values of the facts. In this case, the expression test is suc-
cessful only if the recorded time of an accessrequest fact occurred between the specified
hours. Conditions therefore have the effect of introducing computations in rules. Normal
conditions match to facts, and test conditions filter matched facts based on their values.

A condition matches a fact if all its literals and its consistent variable substitutions
are satisfied. In SRL, the simplest condition element is a predicate that specifies a fact
type, e.g., {type:"employee"}. If a pattern on a slot is not included in the condition, then
it has no restrictions on the slot values during the matching process; therefore the above
condition will match any fact of type employee in the fact base.

Variables in SRL rules

In SRL there are two types of logic variables: slot variables and condition variables.
Slot variables bind to slot values and serve two purposes: 1) they unify matches by
specifying unified substitutions in the rule’s predicates (?name in lines 3 and 5 of
Listing 4.3), and 2) they enable the use of concrete values that were bound on the
left hand side to be referenced in the right-hand side modifiers (?reqid in line 9)
Unlike slot variables, condition variables bind to whole facts. They can be used with
slot names to access specific properties of the fact (as $r in lines 5 and 6).

Listing 4.3: Rule for intern access using condition variable $r
1 {rulename: "intern_access",
2 conditions:[
3 {type:"employee", level: "intern", name:"?name"},
4 {type:"accessdevice", name: "?dev", location:"cubicle"},
5 {$r: {type:"accessreq", id: "?reqid", person: "?name", device: "?dev"}},
6 {type:"$test", expr:"(time.hourBetween($r.time, 8, 20))"}
7],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "$r.time"}}

10]
11 }

74 Chapter 4. Serena: Cloud-based Rule Engine

Actions

When all the conditions specified in the LHS are satisfied, then a sequence of actions defined
in the RHS is activated. In an SRL there are three main types of actions:

• assert adds a new fact into the engine according to the assert definition

• retract removes the fact from the engine

• modify modifies the fact according to the specified definitions

• print writes to the output log and can be useful for debugging purposes

In the example rule of Listing 4.3, the RHS of the InternAccess rule asserts that the
access request has been granted by the reply, in line 9. In the action, the request is bound
to ?reqid that was bound by the condition in line 5.

The assert action creates the fact with slot names and default values according to
its template. Then, the attribute elements specified in the assert definition are used to
overwrite the default slot values. The resulting fact is then added to the fact base.

The retract action is used to remove fact elements from the fact base. Some facts may
need to be removed in cases that they are not needed, e.g., they may cause inappropriate
rule activations in the case that they have already been fired. Retract takes a condition
variable as an argument and upon execution removes the fact bound to the variable.

The modify action internally operates as a retract and assert combination and logically
modifies the specified fact with the defined values. An additional halt action is available
that can be used as a special directive to stop execution of the rule engine, if enabled in
the rule engine configuration.

4.2.4 SRL JavaScript Plugins
RKDAs sometimes need custom functionality that can be used to validate whether an event
can be part of a pattern to be detected. Serena provides this functionality by allowing a
number of system and custom plugins. Plugins are optional components, and simply define
various user-defined pure functions (or helper functions) that can be referenced within
rules. The functions are required to return boolean values and can thus be conceptualised
as advanced predicates: they are used to evaluate the test expression in a test condition.

All plugins in Serena are declared in the framework’s host language JavaScript. Instal-
lation of plugins requires a server-side configuration process of adding the .js file in the
package’s plugins directory before engine initialisation. An example of a default plugin in
Serena is the datetime plugin, which consists of functions like getHour(time) that extracts
the hour of the time input format, and the location plugin with distanceBetween(x1,
y1,x2,y2) that calculates the euclidean distance between two points. An over-reliance of
plugins, however, is usually an indicator that the programmer is working against the rule
language and should re-evaluate the application scenario to see if a rule-based solution was
indeed the best fit.

4.3. Serena: Architecture 75

Serena&Client&Library&

Client&Web&Application

Serena&Client&Library&

Client&Web&Application

Websocket)interface Websocket)interface

……

Client&1 Client&n

Server

Serena&Server

Figure 4.2: The Serena framework distributed architecture – The framework
consists of a client library that uses WebSockets to connect to the rule-based
server.

4.3 Serena: Architecture

Serena augments an event-driven web server with a forward-chaining inference engine that
processes events reactively using rules. In Serena clients create and install the logic reactive
rules that define the complex events they are interested in. Clients can also dynamically
upload data to the server using facts sent in JSON format. Such data can be sent at a
steady rate, but in RKDAs it is characteristically intermittent. As seen in the previous
section, the rules specify which data to match, and once activated the rule can send this
activation as a notification to the client.

4.3.1 Client-server Interaction

The architectural design of the Serena framework consists of client and server components,
as shown in Figure 4.2. Clients are entities that are connected to the server and can
consist of devices and other autonomous computational entities. The centralised server
is the main processing unit of the framework. The two sides are connected to each other
through push-based bidirectional WebSockets for low-latency communication providing fast
real-time responses over the Web platform. At any given moment, a number of clients can
be simultaneously connected to the server.

We illustrate a practical interaction sequence between a client and the server in Fig-
ure 4.3. Clients initially connect to the server through a client library provided by the
framework. In the example scenario, the rule can be designed and uploaded by a security
staff client that is connected to the Serena server. A client can thus design and send rules
to the server, after which the server receives the rule and maps it uniquely to the client.
The client can then start sending events, which will be added as facts to the server rule
engine. If the client’s rule is activated, the server will send a notification with the relevant
facts to the client. The Serena client library receives the facts and calls a handler in the
client application to react to the activation of the rule.

We discuss the specifics of the architecture and the execution semantics of the frame-
work in the upcoming sections.

76 Chapter 4. Serena: Cloud-based Rule Engine

Client'connects'to'
server

Client'composes'and'adds'
rule,'sent'to'the'server'
through'client'library

Client'sends'events'to'
server,'which'are'
formatted'as'facts

Server'registers'the'client'rule'
or'parses'event'data'and'
processes'using'rule'engine

Serena'sends'notifications'of'
activated'rule'to'client

CONNECT
SEND
RULE

SEND
EVENTS PROCESS NOTIFY

Figure 4.3: Typical client-server interaction sequence in Serena – Clients add rules
and send events to the server for processing, and the server sends notifications if
rules are activated.

4.3.2 Server Architecture
The Serena framework’s server is the main processing entity and runs on the Node.js event-
driven platform [Joy10]. It consists of several components for maintaining client connec-
tions, processing events and sending notifications. Figure 4.4 shows the server architecture.
Each component is discussed in detail next, with specifics explained in the upcoming sec-
tions.

The Rule Register

Rules uploaded by clients are processed by the rule registration component. Its main
function is to parse received rules and to map each rule to its client. Rules are read
according to the SRL specification and are inserted into the rule engine upon reception
by Serena. The rules are then parsed according to predefined templates. As described in
Section 4.2.2, templates provide metadata that describe the format of the facts that are
used in rule condition elements. The rule register then sends the rule to the rule engine
and registers a notification channel for the client for this rule.

The Event Manager

The event manager has two main functions: supplying event data to the rule engine and
managing client connections. Events are sent asynchronously by clients (e.g., mobile devices
or sensors) and Serena’s event manager uses an event queue to asynchronously store event
data as they are received at the server side. Stored messages are dequeued in FIFO order
and inserted into the rule engine for processing. To manage the often volatile client connec-
tions, the event manager maps WebSocket event channels to clients and maintains unique
client session identifiers. It communicates with the client library to maintain WebSocket
connections and to identify specific clients that connect to the server.

The Notification Manager

The notification manager receives notification data from the rule engine once a rule is
activated. The data usually includes the facts that were involved during the instantiation
of the rule. The notification is then sent to the client’s notification channel with additional
metadata about the notification (e.g., the notification time), and the client library invokes
the relevant handler in the client code. The notification manager runs in an event loop
fashion and may bundle several notifications, especially under heavy load.

4.4. Serena: Execution Semantics 77

Event&
Manager

Client
events

Notifications

Client
Rules

Rule&
engine

Rule&
register

Notifications&
Manager

Figure 4.4: Serena server architecture – The server contains several components
for managing rules and reasoning about incoming events.

The Rule Engine

The rule engine is the main reasoning component at the server-side and is used to process
events according to the rules uploaded by clients. It is tasked with efficiently evaluating
client events in order to determine applicable rules that can be activated. The rule engine
operates in an event-loop fashion that fits well within the event-driven model of its host
server, Node.js. Once a rule is activated the engine sends the accompanying data to the
notification manager for the client to be notified.

4.4 Serena: Execution Semantics
Based on the architecture overview presented in Section 4.3, this section discusses the
execution semantics of the server in detail. The discussion will pivot around the rule
engine since it is the most significant reasoning component. The rule engine contains
specific modules to achieve its functionality.

Implementing rule-based functionality requires maximum efficiency due to the complex
pattern-matching techniques that are supported. Reducing the amount of matching in rules
therefore guarantees faster server execution. For this reason, the Serena rule engine is based
on the Rete algorithm to determine which combinations of facts are relevant for which rule
inserted by the rule register.
A typical Rete-based system’s architecture is depicted in Figure 4.5 and contains:
◦Rule base: Rules from the rule register are added to the rule base to be used when building
the Rete graph and when activating rules. The rule base thus supports the logic of
applications by storing the collective knowledge that is used in evaluations of rules.

◦Fact base: Facts that represent event data from other clients are added to the fact base.
It is thus a global store that contains data that is accessible to the entire engine.

◦Inference engine: The inference engine contains the pattern matcher and the activation
scheduler which employ Rete to determine which rule to fire given the current state of the
engine.

Rete provides efficient rule evaluation that is achieved through exploiting 1) structural
similarity – sharing of the nodes when building the Rete graph, and 2) temporal redundancy
– caching of intermediate matched data tokens between cycles of incoming results (at the
price of higher memory usage). The next sections discuss how the inference engine provides
this efficiency while performing the reasoning process.

78 Chapter 4. Serena: Cloud-based Rule Engine

Rule%base Fact%base
Pattern%Matcher

Activation%Scheduler

Inference%Engine

Event%
Manager

Client
events

Figure 4.5: Serena rule engine components – The inference engine performs rule
processing according to data from the fact base and rules from the rule base.

4.4.1 Reactive Rule Engine Execution
Classical forward-chaining inference engines follow the basis of control using a three-stage
cycle: match, select and execute (Section 2.5.3). After the 3-stage cycle completes the rule
engine execution halts if there are no more rules to activate. As discussed earlier, rule
engines such as Drools from Section 3.3.2 and Jess from Section 3.3.2 operate using this
model.

A web server requires continuous execution in order to serve incoming client data.
Serena provides reactive rule engine execution by embracing the single-threaded event loop
that forms the basis of operation of the Node.js server. The execution semantics of the rule
engine is therefore intertwined with the Node.js server’s event-loop model [MTS05], where
a single thread of execution embodies it. The event loop uses an event queue to order and
schedule the execution of all requests. Every concurrent interaction is then modelled as an
event that is tied to an event handler. An event handler has access to a global state which
is shared with other handlers; but with a single thread of execution the state is guaranteed
to be consistent at any time, i.e., no concurrent modifications can be performed from other
threads. Any new event will be picked from the queue by the main thread again, creating
an event life cycle that continues as long as the main server process is not halted. This
model is able to provide scalable processing semantics for event-driven applications, e.g.,
as shown in the evaluation by Chaniotis [CKT15].

We explain how this model can support sequences that are as a result of distributed
clients uploading rules and sending events continuously and non-deterministically in the
upcoming sections. The example of security monitoring with the intern access rule is used
to show a typical sequence of complex event detection (CED) in the framework below, in
stages.

1. Client uploads InternAccess rule R to server

2. The rule R is parsed and added to the inference engine (knowledge base update)

3. Client device at access point sends access requests as event data E (event capture)

4. Server updates fact base with E (fact base update)

5. The rule engine performs matching based on E to find client rules to fire (matching
process)

6. Activation scheduler selects and fires selected rule R (rule application)

7. The server asynchronously notifies relevant client(s) rule R was fired (rule notification)

8. The server waits for more event data (engine wait), and then proceeds to stage 4.

4.4. Serena: Execution Semantics 79

Serena Node.js Server

The execution semantics of the stages of the inference engine embraces the event
loop model of Node.js. The use of a single-threaded event offers a safe shared state
and avoids complexities that arise from orchestrating the execution of a rule engine
using several threads, as discussed w.r.t Drools, Jess, etc. (see Section 3.3.2), and has
given rise to alternative concurrency models in other rule engines [Pet+14; Swa+13].
The Node.js engine has been especially optimised for event-driven execution using
this model from the ground up thus limiting the drawbacks of the model itself.
Furthermore, the event loop model maps onto the foundations of the host language
JavaScript and to the use of the performant V8 engine by the Node.js runtime.

4.4.2 The Inference Engine and Rete
The inference engine is the heart of the rule engine. It serves as the interpreter for uploaded
rules, evaluating received data according to the semantics of the rules. It is composed of
several submodules:

◦The Rete graph builder receives the rules from the clients via the rules repository, parses
the rules, and builds the Rete graph based on the Rete algorithm (stage 2).

◦The matching component is tasked with finding consistent fact bindings in the fact base
(stage 5). It builds an instantiation or activation for every set of facts that satisfy a rule
and places them in the queue of the activation scheduler.

◦The activation scheduler takes the set of all rule instantiations and executes or fires them
given an activation strategy (stage 6).

We use the example of the InternAccess rule to explain the concepts of the inference
engine.

Building the Rete Graph

As mentioned, the inference engine match cycle is based on the Rete algorithm [For79].

Listing 4.4: Rule for intern access - revisited
1 {rulename: "intern_access",
2 conditions:[
3 {type:"employee", level: "intern", name:"?name"},
4 {type:"accessdevice", name: "?dev", location:"cubicle"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"$test", expr:"(time.hourBetween(?t, 8, 20))"}
7],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed: true}}

10]
11 }

When the inference engine receives a new rule it builds a Rete graph. Rete compiles
rules into a data-flow graph that filters incoming facts (data) as they propagate through its
nodes, performing the actual matching process. We show the graph for the InternAccess

80 Chapter 4. Serena: Cloud-based Rule Engine

b1

r.persone.name

b2

r.device d.name

Beta Network

terminal
t1

b3
test/

hourBetween(?t,/8,/20)

root

employee access
request

access
device

Alpha Network

location = cubiclelevel= intern

Alpha node
Alpha memory
Beta node
Beta memory

a1

a2

a3

Figure 4.6: The Rete graph for InternAccess rule – The graph is a DAG that
contains of two parts, the alpha and beta networks, consisting of nodes and edges
in between them.

rule of Listing 4.2 (the complete rule is shown in Listing 4.4 for easier reference) after
addition to the server in Figure 4.6. The graph consists of two regions, the alpha and beta
network, with facts coming in from the root node.
The alpha network. The alpha network contains alpha nodes that perform intra-condition
tests – such as the leftmost alpha node, that checks if a fact is of type employee and if the
employee is an intern. They filter facts of that type and store them in their own alpha
memory as a list.
The beta network. Below the alpha network is the beta network, which is built in the
lexical order of the condition elements forming a left-associative binary tree. Two-input
beta nodes or join nodes perform inter-condition tests known as join operations on their left
and right inputs according to the corresponding conditions. A beta memory is associated
with each beta node and holds the intermediate join results. The leftmost beta node b1 in
Figure 4.6 performs joins for an employee’s name and the name of the person performing
the access request, creates a token by appending facts that passed the test as a list, and
sends it to the next beta node. It also serves as left input for successive nodes in the beta
network. The second beta node b2 receives the token and performs joins of facts of an
accessdevice with the device from where the accessrequest was made. As observed in
Figure 4.6, for any join node, the right input is always an alpha node.

The beta network also hosts the nodes that represent test conditions. Test conditions
produce beta test nodes, such as the node that checks for the time of the access request.
The final beta node in a condition sequence represents the full activation of a rule and is
called a terminal node. In this case the rule InternAccess will be instantiated once a token
reaches this node.
Structural similarity. Rete takes advantage of structural similarity, where similar elements
are used to enable sharing of nodes when building the network. This is because rules can
share tests against the same fact type, fact slot values, relations between condition elements
and entire condition elements themselves. For instance, suppose another InternAccess
rule is to added for interns that work the third shift (also known as the graveyard shift)
for overseas clients, between 10pm and 5am. The InternAccess3rdShift rule is shown in
Listing 4.5. The rule is similar to that of Listing 4.4. It however differs in line 6 where the
times for the specified shift is are checked. The structural similarity property enables Rete

4.4. Serena: Execution Semantics 81

root

employee access
request

access
device

Alpha Network

location = cubiclelevel= intern
a1

a2

a3

terminal
t1

b3
test$

hourBetween(?t,$8,$20) b4

terminal
t2

test$
hourBetween(?t,$22,$5)

b1

r.persone.name

b2

r.device d.name

Beta Network

Alpha node
Alpha memory
Beta node
Beta memory

Figure 4.7: The Rete graph of the InternAccessThirdShift rule – The property of
structural similarity in Rete enables the sharing of nodes across rules that have
similar properties.

to reuse both the nodes and their intermediate results for similar rules thereby improving
space and processing efficiency.

The resulting graph after addition of the rule in Listing 4.5 is illustrated in Figure 4.7.
The graph has only changed where the test expression for the new rule is found to differ
from that of the existing test node b3 in the graph, and only adds the new test node b4 and
terminal node t2 for the second rule. In general, there exists a Rete network for a particular
rule set: with more similar rule conditions, sharing is increased in the graph [Doo95].

Listing 4.5: 3rd shift intern access rule
1 {rulename: "intern_access_third_shift",
2 conditions:[
3 {type:"employee", level: "intern", name:"?name"},
4 {type:"accessdevice", name: "?dev", location:"cubicle"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"$test", expr:"(time.hourBetween(?t, 10, 5))"}
7],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed: true}}

10]
11 }

The Matching Process: The Rete Algorithm

In stage 4 of the CED sequence, a fact base update triggers the next stage, namely the
matching process. The matching process searches for consistent bindings between incoming
facts and the existing rules.

Incoming data is received by the server and it creates an instance of a fact. The fact
is then inserted into the Rete graph from the root node. The root node receives the fact
and reads its sign (Section 4.2.2). A positive sign means the update is an assertion and
should be added to the graph and negative means it is a retraction and it should be deleted.
Facts traverse down the network as they are processed and forwarded by nodes, which store

82 Chapter 4. Serena: Cloud-based Rule Engine

intermediate computations in node local memories. The root forwards facts to its children,
employee, accessrequest and accessdevice in this case.

For a concrete example refer back to the graph in the previous Figure 4.6. If a number
of interns clock-in as they arrive this is captured and inserted as facts into the rule engine.
The intern facts will be inserted into the Rete network from the root node and will
eventually be stored as intermediate results in the a1 node. Similarly, the devices that are
online will be stored in the memory of the accessdevice node and devices for cubicles
are stored in the memory of a3. The beta node b1 waits for an access request to continue
the computation process.

Following the graph, when an intern requests access to a cubicle office space at around
12pm (this request should ideally be granted), the engine will receive the request and
eventually adds it as an accessrequest fact to the Rete graph. The fact will enter the
graph from the root node and will be sent to the accessrequest alpha node a2. This node
will store the fact in its alpha memory and will send it to its child, the beta node b1 as
shown in Figure 4.8a.

b1

r.persone.name

b2

r.device d.name

terminal
t1

b3
test/

hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern

Alpha node
Alpha memory
Beta node
Beta memory

a1

a2

a3

(a)

b1

r.persone.name

b2

r.device d.name

terminal
t1

b3
test/

hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern

a1

a2

a3

(b)

b1

r.persone.name

b2

r.device d.name

terminal
t1

b3test/ hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern

a1

a2

a3

(c)

b1

r.persone.name

b2

r.device d.name

terminal
t1

b3test/ hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern

a1

a2

a3

(d)

Figure 4.8: An example of a typical matching cycle in the Serena engine

4.4. Serena: Execution Semantics 83

Right Activation. When a fact is received at the right input of any two-input beta node,
a right activation is triggered that issues a request for all the items in its left parent to
compute consistent bindings for the fact (line 2 of Algorithm 4.1). This process is known
as matching, and the subsequent test is called a join computation (line 4).

Algorithm 4.1 Beta Node Right Activation
1 function scopedBetanodeRightReceive(node : n, fact : f)
2 tokens ← n.getTokens()
3 for each token t in tokens do
4 if n.joinTestPassed(t, f) then
5 tnew tw ← n.createNewToken(t, f)
6 n.sendTokenToChildren(tnew)
7 end if
8 end for
9 end function

Left Activation. When a data item passes a join computation in the beta network, the
Serena rule engine packages the result as a token. A token is logically a data structure that
contains all the facts with consistent variable bindings up to that point in the rule. The
facts in a token are internally represented by Serena as a list of pointers where each one
points to the actual item in the alpha memory. A left activation is triggered when a token
is received at the left input: in this case however the join test requests all items from the
node’s right parent which is always an alpha memory (line 2 of Algorithm 4.2). This is due
to the fact that the Rete network always forms a left-associative binary tree.

Algorithm 4.2 Beta Node Left Activation
1 function betaNodeLeftReceive(node : n, token : t)
2 facts ← n.alphaMemory.getFacts()
3 for each fact f in facts do
4 if n.joinTestPassed(t, f) then
5 tnew ← n.createNewToken(t, f)
6 n.sendTokenToChildren(tnew)
7 end if
8 end for
9 end function

The beta node b1 will therefore request items from its left parent the alpha node
a1. Node a1 will send all intern employee facts that it contains, and b1 now proceeds to
perform its join test (e.name == r.person) that checks if the name of any of the employees
is the same as that of the accessrequest fact.

When the person that made the request matches the employee name, then node b1
first creates a new token by appending the employee fact (line 5, illustrated in Figure 4.8b),
stores this intermediate result in its beta memory, and in line 6 sends the new token to its
children, node b2. The same sequence of steps occur at b2, but this time a left activation
is triggered by node b2 to find out compatible access devices by performing join tests
(r.device == d.name) on all devices from the alpha memory a3 as shown in Figure 4.8c.

If a compatible device is found then a token is created and sent to the test node b3 that
checks whether the time for the request is within 8am and 8pm. The time 12pm succeeds

84 Chapter 4. Serena: Cloud-based Rule Engine

the test, so the token finally reaches the terminal node (Figure 4.8d), which means that the
rule should be activated. In this case, the request made by an intern to enter the cubicle
office space should be granted, and this rule and its bindings are sent to the activation
scheduler for execution in stage 6 and eventual notification in stage 7 of the CED.

Observations. In summary, we list some of the main points behind Serena’s execution
semantics that uses the basic Rete algorithm:

• In general, at most n− 1 beta nodes are needed to represent n conditions in a rule.

• The beta memory of node n contains matches for the first n conditions.

• The conditions of a rule are checked in order. If no combination of tokens match a
sequence of conditions up to a certain point, then the remaining conditions are not
evaluated.

• Rete takes advantage of structural similarity, where similar elements of different rules
share nodes when building the network.

• Rete also leverages temporal redundancy by caching intermediate results of computa-
tions known as tokens as they traverse the network. Tokens reside in beta memories.

• The typical Rete network algorithm always forms a left-associative binary tree.

• Deleting a condition in the default setting requires a linear search in each node mem-
ory to delete the element in every node.

Optimising the Cost of Matching

The matching stage determines those rules that are relevant to the current state of the fact
base for activation. As identified in [NGR88], a major bottleneck in the Rete algorithm is
the expensive computations performed during this stage.

Concretely, as much as 90% of the execution of a Rete-based system can be spent in
the match phase [Mir14], with the number of join comparisons made dominating the time
the matching process takes. This was previously discussed in Section 2.5.4. For this reason,
the main area of improvement when looking for avenues to speed up any Rete-based rule
engine execution is join computations during the matching process. This dissertation aims
to exploit this idea, by using an efficient encoding to quickly expedite the matching process
in Chapter 7.

4.4.3 Rule Activation
In Serena a matching cycle can end up with an instantiation, which is simply a reference to a
rule to be activated along with its tokens containing the facts that caused the instantiation.
The instantiation is usually sent to the activation scheduler (shown back in Figure 4.5). The
scheduler performs two main actions: it processes the RHS actions and sends instantiations
to the notification manager to notify clients. RHS actions assert and retract, such as the
assert in line 9, are queued in the event loop to be executed in the next matching cycle.

Sometimes an action can cause an existing instantiation in the scheduler to be invali-
dated. This is usually due to a retraction, and the semantics of retraction in Serena states
that the token will eventually be retracted all the way from the alpha to the beta network to

4.4. Serena: Execution Semantics 85

the terminal node of the rule in one cycle (via tree-based deletion, explained in the next sec-
tion). The instantiation will end up being tagged for deletion in the scheduler. Because the
scheduler always first checks and removes tagged instantiations before performing actions
that were already queued, the instantiation will be invalidated, maintaining consistency.
Resolution Strategies. In some cases, more than one rule can be instantiated in one cy-
cle. Serena employs resolution strategies of similar engines such as Drools and Jess, which
perform a last-in-first-out (LIFO) scheme for instantiations, i.e., the most recent rule is
chosen for activation. The special case here is that the strategy is performed per client
(otherwise only one client could dominate rule activations). Similarly, if it happens that
two instantiations were added at the same time, Serena will arbitrarily choose one instanti-
ation to queued for activation. For flexibility, developers can configure different activation
schemes to be enabled at server startup: currently LIFO (default) and FIFO are supported.
Custom resolution strategies that implement a pre-defined interface can also be developed
and used by the activation scheduler. For example, for the evaluation of the Miss Manners
benchmark in Chapter 8, the Depth strategy [Bri06] was added for use by the activation
scheduler.
Refraction. Serena maintains semantics of refraction as in classic RBS systems [GR98b].
All rules undergo refraction, where identical rule instantiations are not allowed to fire twice
in a row. Serena maintains fact identifiers of the last N instantiations (N = 2, by default)
that fired a rule and will not activate the same rule with the same identifiers. This approach
has been traditionally used to prevent possible infinite loops caused by repeated identical
instantiations of a rule.

4.4.4 Client Notifications
This section outlines how client application code can be used to add rules and to receive
notifications using the Serena framework.

When adding a rule using the Serena client library, the client application code specifies
a handler that will be executed whenever that rule is activated on the server. By utilising
the event loop model of Node.js, Serena can delegate long-running tasks such as writing to
client websockets to the Node.js internal threadpool thereby reducing such overhead.

The code to add a client rule is shown in Listing 4.6. Currently the Serena client
library supports Javascript-based application code, prominent on the Web. A connection
to the server is made in line 1. This code is usually added as an initialisation step, e.g., in
the <head> section of a webpage. In the background, the framework initiates and maintains
a websocket connection to the server using the Socket.IO library [Rai13]. The initialisation
code can optionally take a handler as the last argument, which will be invoked when a
disconnection occurs. The client code then specifies the created intern_access rule from
Listing 4.4 in line 3. Lines 4-6 and 7-10 declare the handlers to be invoked when the rule is
activated and when the rule is added respectively. In line 11 the rule is sent to the server,
providing the callbacks for acknowledgement and rule activation.

Listing 4.6: Adding a Serena client rule and notification callback
1 var serena = new SerenaClient('serverip', 'securitystaff');
2 //....
3 var rule = // json rule 'intern_access' here
4 var ackCallback = function(err, result){
5 // optional cb after rule added ack
6 };
7 var activCallback = function(rulename, facts, source){
8 // rule was fired

86 Chapter 4. Serena: Cloud-based Rule Engine

9 updateUI(facts);
10 };
11 serena.addRule(rule, activCallback, ackCallback);

On the server side, upon registration of a rule the rule registration module maps the
rule to the client uploading the rule, shares this mapping with the notification manager,
and triggers the client library to call the acknowledgement handler provided by the client.
The notification manager maps the client’s websocket to the activation handler and stores
the mapping internally. When a rule is activated by the inference engine the scheduler
sends the activation to the notification manager. The notification manager then identifies
the client that added the rule, picks up the client’s notification channel established using
the websocket connection, and informs the client library to execute the activCallback
handler on the client side.

4.4.5 Reactivity & Dynamism
From Chapter 2, the main focus of Serena is to support reasoning in RKDAs in todays
dynamic Web environment. The engine thus contains further improvements to the basic
Rete algorithm to fulfil these specific goals, explained in this section.

Remember from Section 2.5.3 that the traditional match-select-execute cycle assumes
that when the run command is issued to a rule engine, the rule definitions have already
been added to the rule base. This approach is obviously unsuitable for a Web server serving
clients that can dynamically upload rules at any moment in time. The rule engine on the
server would need subsequent re-compilation of the rules every time a client adds a rule –
a process that becomes inefficient as time goes by and may introduce inconsistencies when
resetting the intermediate results as cached tokens. The rule engine therefore needs to
support the fact that clients can send rules and event data at any time. Serena supports
this dynamism by incorporating several techniques, inspired by the goal of improving match
cycle efficiency.

Reactive match-select-execute cycle – In order to allow the server rule engine to add
rules and facts from clients during execution without triggering a whole recompilation
process, Serena implements a process that is distinguishable from the traditional recognize-
act cycle3. In the recognize-act cycle, selecting a rule to execute initiates the cycle because
all facts to be matched are present in the alpha memories. This is why traditional engines
contain a run command to begin the select-rules phase, after data has been added
with the make command [Bri06]. In Serena, once the engine is already running, a cycle is
initiated whenever a change in the fact base is detected. This is usually via an assert or
retract command, which begins the match phase. Serena’s inference engine then performs
matching and then creates rule activations that arise. Any instantiations are placed in a
queue to be executed by the event loop according to the activation strategy as explained
in Section 4.4.3. Because Serena immediately processes incoming event data from clients,
the two distinctions are the key difference in Serena’s support for reactive processing in the
engine.

Dynamic construction of the Rete graph – In most classical rule-based systems the
engine reads all rules and creates a Rete graph through a compilation process. Even though
compilation is fast, it makes addition of rules at runtime an expensive process. Any updates
to the created graph often requires recompilation, thus creating a new graph. In Serena,
the Rete graph is constructed dynamically. Initially when the Web server is run, the rule
engine is also started. After it receives a client rule, Serena’s inference engine appends the

3This technique was also used by a variant of the OPS5 engine [Bri06]

4.4. Serena: Execution Semantics 87

rule to the Rete network on the fly using the interpreted technique described by Doorenbos
in [Doo95], rather than using the common compilation method. The technique builds
the Rete graph top-down by appending nodes extracted from constructs in the parsed
rule to the existing graph. Once the final terminal node is created at the bottom of the
graph, Serena tags the node with the client’s rule in order to map its potential activations
to the client’s notification channel. The graph-building process is placed in front of the
server’s event queue, before any succeeding event messages from clients are processed. This
approach offers dynamism, but hampers refinement because modifying the existing rules
at runtime offers limited restructuring techniques in the graph without disruption of the
server execution process.

Algorithm 4.3 Adding a rule dynamically in Serena
1 function addRule(rule:r, rootNode:n, dummyBetaNode:b0)
2 chead ← r.conditions.head()
3 na ← createOrReuseAlphaMemory(chead)
4 nj ← createOrReuseJoinNode(na, b0)
5 crest ← r.conditions.rest()
6 for each condition ci in crest do
7 bm ← createOrReuseBetaMemory(nj , ci)
8 na ← createOrReuseAlphaMemory(ci)
9 nj ← createOrReuseJoinNode(na, bm)

10 end for
11 nt ← createTerminalNode(nj , r)
12 return nt

13 end function

Dynamic update of the Rete graph – Certainly, the engine also needs to handle situa-
tions where there could be existing facts present in existing alpha and beta memories that
can already trigger the newly-added rule immediately upon addition. When added, a new
node starts from an empty state, processing inputs directed to it from its parent nodes.
Therefore, tokens already created may not be able to process events that occurred earlier.
Also borrowing from the said Doorenbos technique, after appending the nodes of the rule to
the graph, Serena calls an optimised update procedure whenever each node is created (e.g.
createOrReuseAlphaMemory in line 3 of Algorithm 4.3) that will cause all the parent nodes
of the new rule to update their internal memories thus bringing the graph to a consistent
state. From here, Serena can proceed in two ways. One, it can ignore any activations of
the newly added rule for already-existing data. This is called the amnesia method, akin to
a similar phenomenon in event stream processing systems [Hwa+05]. Alternatively, it can
proceed with the retrospection method, where it executes the actions and the notifications
of the new rule, causing all tokens that are sent to the node as a result of the update, to
create activations. By default Serena takes the amnesia method, since retrospection has a
performance penalty if rules are frequently added at runtime.

Dynamic Rule Removal – Just as rules can be added at runtime, they can also be
removed in the same way. Clients remove rules by using the Serena Client Library API
to remove a rule by specifying its rule name (which are unique per client). The Serena
server receives the request and adds it to the event queue. The basic principle in removing
a rule is based on a bottom-up process. When the inference engine dequeues the remove
command it locates the rule’s terminal node (identified from the returned value in line 12
of Algorithm 4.3) and begins the bottom-up removal process. Starting from the terminal

88 Chapter 4. Serena: Cloud-based Rule Engine

root

Figure 4.9: Serena’s implementation of tree-based tokens in the Rete graph. In-
stead of performing matching during retraction of a fact the usual way, Serena
just follows the path to the fact’s children via its links.

node going up, the engine checks if the current node is ‘in use’, i.e., shares the node with
another rule. If the node is not in use then its intermediate memory is removed and then
the node itself is deleted, with its reference removed from the parents’ children lists. The
process then recursively proceeds in the same manner to the nodes parents and the removal
is complete upon reaching the root node.

Tree-based Retractions – In Rete, retraction is often implemented by inserting a neg-
ative fact to the graph, which will trigger deletions as it percolates down the graph. This
technique suffers performance limitations because it undergoes the normal matching pro-
cess, performing expensive computations. For larger graphs this means that it traverses the
entire network, an approach that does not scale well. Serena improves this by employing
a technique from [Doo95] that maintains pointers to any child facts/tokens, see Figure 4.9.
The pointers are created during assertions and when creating tokens as a result of a suc-
cessful test either at the alpha or beta nodes. Retractions are thus simpler, because to
retract a fact the engine follows the fact’s child links to delete all instances initially created
by that fact in the graph. This maintains the semantics of inserting a negative token as
before, but speeds up the retraction process as it avoids any processing of tests or joins in
the network at the cost of maintaining additional pointers in the engine.

4.5 Evaluation: Serena Rule-based Framework
The previous sections have elaborated the architecture and the execution semantics of the
Serena framework. From the taxonomy in Chapter 3, it follows that Serena is a detection-
oriented event processing system that contains rule-based semantics. This section proceeds
to evaluate the framework on the basis of the features that enable it to fully support the
development of applications with reactive knowledge-driven semantics.

4.5.1 Evaluation of Requirements & Comparison with Related Work
The Serena framework will be evaluated in the context of the concrete requirements that
were introduced back in Section 2.6.

4.5. Evaluation: Serena Rule-based Framework 89

• R1: Processing & Communication Model – Serena is an event-based framework for
RKDAs with clients sending fine-grained event data and receiving responses as event
notifications. The architecture of the Serena framework makes it capable of receiving
and processing events from a number of clients concurrently connected to the server,
managed by both the client library and the event/notification manager at the server. The
client library handles most nuances of initiating and maintaining WebSocket connections,
session information and invoking rule activation handlers on the client side. At the
server side, the event manager establishes and maintains connections and communication
between the clients and the server, while the notification manager handles push-based
client rule notifications. The connections between the clients and the server follow
asynchronous non-blocking semantics, improving decoupling between the clients and
the server. Notifications from the server are sent asynchronously to clients as well.
The server benefits from this because it can reduce dependencies, thereby increasing
the amount of clients that it can hold simultaneously, unlike traditional server-based
threaded approaches supported by other rule engines. Its asynchronous nature can be
seen to invert control in client notification code – better rule design can be used to
mitigate such situations (e.g., via chaining of rules).

• R2: Knowledge Encoding – The Serena framework exposes rule-based syntax that re-
duces the complexity of writing code to effectively capture complex events as it is expres-
sive and less susceptible to the non-deterministic nature of events coming from different
clients. The SRL language described in Section 4.2 is inspired by similar rule-based
languages and supports extracting complex events from simpler events through abstrac-
tions that provide powerful semantics such as pattern-matching and unification. Hence,
SRL maximises on declarative definitions from clients, leaving specifics of computing
them to the rule engine. However, SRL lacks advanced constructs such as quantification
and aggregation available in engines such as Drools and Jess.

• R3: Reactivity – The Serena framework has been especially adapted to perform its
execution continuously (Section 4.4.1). First, the server rule engine runs the Rete al-
gorithm for a data-driven response when evaluating rules. Second, the inference engine
is built with a modified match-select-execute cycle that reacts to incoming data rather
than waiting for an explicit run instruction. Third, the inference engine also performs
dynamic construction of the Rete graph, eliminating the need to have rules added be-
forehand using a static compilation process. Aside from enabling the engine to always
receive new events and place them in the event buffer for processing, these techniques
also allow the framework to build and evaluate incoming rules. It also delivers push-
based responses in a reactive manner – even though responses may experience delay in
heavier processing load.

• R4: Dynamicity – Similar to reactivity, the framework was built from the ground up
with the dynamics of RKDAs in mind (as outlined in Section 4.4.5). This is particularly
implemented by supporting the runtime addition of client rules to the framework –
performed by adapting the inference engine to allow dynamic updates to its internal Rete
graph’s structure and content. Clients can therefore add and remove rules at runtime,
with the option of amnesia or retrospective updates set beforehand when initialising the
rule engine.

• R5: Simplicity – The framework’s architecture and execution is integrated seamlessly
with the Node.js event loop semantics. Serena uses the semantics of the event queue in
Node.js to efficiently manage the processing of the inference engine and the activation

90 Chapter 4. Serena: Cloud-based Rule Engine

scheduler. It also delegates websocket interactions to the server for reading and writing
client data efficiently. This makes the system performant when directly processing client
requests, as explained in Section 4.3. To the client, though, the framework works as one
unit that receives uploaded client rules and processes events. This approach however
makes it somewhat harder to debug applications, and advanced debugging methods may
be needed to identify sources of problems during execution.

Table 4.10 illustrates a recap of the related work outlined in Section 3.4 of Chapter 3,
with the same ranking scheme. This time, the table is augmented with the ranking of the
Serena framework contextualised in the rule-based engines section. Comparisons can be
clearly drawn from the table. It can be observed that the limitations of classic rule-based
approaches for event processing, dynamism, reactivity and simplicity that are suitable for
RKDAs are suitably addressed by the Serena framework.

4.6 Chapter Summary
This Chapter introduced the Serena Framework, a blend of an event-driven web server and
a rule-based inferencer. Serena,

1) eases the declarative definition of rule-based constraints by utilizing a rule-based
approach,

2) efficiently processes intermittent data giving instantaneous feedback by incorporating
a forward-chaining inference engine, and,

3) manages sending messages between the server and its tenants by abstracting the
underlying infrastructure that supports push-based communication.

The syntax of the Serena Rule Language was first presented, paving the way for
the description of the overall client-server architecture and the organisation of the server-
side components. The Rete algorithm lies at the heart of the framework, and a practical
example was used to showcase the execution semantics of the engine, from rule registration
to notifying clients about rule activations.

Referring back to the requirements identified in Section 2.6, the chapter concluded
with an evaluation of the Serena framework for supporting the reasoning semantics in
RKDAs. The observation made was that the Serena framework not only offers the powerful
abstractions of one-at-at-time detection and processing of events as in classical rule-based
systems, but also thrives in supporting features that are significant in the modern Web
landscape like dynamism and reactivity.

Even though Serena is well equipped to provide rule-based reasoning over the Web,
the next chapter presents a phenomenon that rule-based systems face when exposed to
multi-user environments exhibited by RKDAs. As it will be seen, this problem is unique to
rule-based systems operating in such environments and is less applicable when compared
to the classically-isolated rule-based systems.

EVALUATION OF EVENT,PROCESSING SYSTEMS FOR WEB REASONING

Event Processing Knowledge Encoding Reactivity Dynamicity Simplicity

Computation,oriented Engines

 Event Stream Processing Systems

 STREAM

 Data Stream Management Systems

 FLINK

Detection,oriented Engines

 Active Database Systems

 ARIEL

 POSTGRES

 Rule,based Systems

 DROOLS

 JESS

 CLIPS

 CLIPS COOL

 SERENA

Table 4.10: Evaluative feature comparison from Chapter 3 with ratings of the Serena framework – The framework thrives in the areas where
classical rule-based systems were weak in, such as event processing & communication, support for dynamism and simplicity in integration with
RKDAs.

5
Heterogeneity in Reactive Knowledge-driven

Applications

If you want to go quickly, go alone. If you want to go far, go together.

African saying

One of the most distinguishing features of the Web landscape is its heterogeneity. In
this chapter, we discuss the implications of heterogeneity in RKDAs, particularly on the
effects of traditional processing cycles within the rule engine. In essence, heterogeneity as
used in this dissertation primarily refers to multi-user contexts, but can be extended to
others as well. We introduce the subject by investigating the extent of the effects of hetero-
geneity on shared rule-based systems in the Cloud in Section 5.2. In our view, the Cloud is
a heterogeneous execution environment that leverages the Web as a platform, supporting
deployment of RKDAs connected to distributed clients or devices. After identifying several
criteria, we proceed to perform an analysis of the current state in techniques that offer ways
to deal with problems in heterogeneous systems in Section 5.4. We conclude the chapter
with a summary of the take-home points in Section 5.5.

5.1 Rule-based Systems and Heterogeneity
The evaluation made in Chapter 3 came to the conclusion that rule-based systems were
most suited to support RKDAs in Section 3.4. The previous chapter 4 then introduced the
Serena rule-based framework that is deployed to the Web environment. This section briefly
presents the foundations of heterogeneity in rule-based systems and why this concept is
important in the future adoption of RKDAs.

93

94 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

Multitenant)system
with)RBS

Heterogeneous)clients

Figure 5.1: A multi-tenant system with a shared RBS serving heterogeneous
clients.

5.1.1 Multi-tenant Rule-based Systems
Section 2.1.2 introduced multi-tenancy, which arose from the concept of time-sharing where
different clients were connected to a server that provided a shared service. Rule-based
systems (RBS) are increasingly used by Cloud service providers today to provide complex
services for knowledge representation (Section 2.5.6). In these cases, multi-tenant rule-
based systems can be used to accommodate the knowledge of all customers in a multi-
tenant web system. RKDAs that leverage this multi-tenant system can be able to support
a number of heterogeneous clients.

Aside from other benefits accrued by multi-tenancy, multi-tenant RBS can offer two
main advantages. First, they offer simplified deployment of RKDAs. As opposed to setting-
up and configuring a RBS system in-house, the provider can offer an easier way to subscribe
to a multi-tenant RBS service. Second, they offer an avenue to foster sharing community
knowledge collected from a variety of data from different clients in RKDAs. This is espe-
cially applicable to native multi-tenancy, where all clients use one shared instance at the
application or middleware level (Section 2.1.2). Community knowledge is vital in RKDAs,
which can be used to facilitate collaboration between the clients or to discern interesting
‘big data’ patterns that would be unable to be discovered in isolated systems.

In this dissertation we thus focus on having shared rule-based systems on the Cloud
that can support the development and execution of RKDAs. Such systems are essentially
native multi-tenant rule-based systems that serve a number of heterogeneous clients (Fig-
ure 2.2c). Because of this, we will refer to such systems as heterogeneous rule-based systems.
Accordingly, RKDAs that leverage multi-tenancy are able to support a number of hetero-
geneous clients distributed over the Web, as in Figure 5.1. The Serena framework is an
example of a heterogeneous rule-based system for RKDAs. However, these systems en-
counter issues when faced with a variety of heterogeneous clients contributing data. These
issues are discussed in the upcoming sections.

5.2 Issues with Heterogeneity in Rule-based Systems
The driving force behind RKDA frameworks such as Serena is a rule-based system. Classic
rule-based systems were conceptually designed to run in isolated configurations and were

5.2. Issues with Heterogeneity in Rule-based Systems 95

therefore not conceived to operate in a shared, heterogeneous environment. Despite the con-
ceptual independence of rules that promote modularity in rule-based systems, unexpected
problems can arise from interactions between rules within rule engine in a heterogeneous
context. The next section introduces a concrete example that will be used to discuss the
issues in detail.

5.2.1 Scenario: Office Complex Security System
The motivating example from Chapter 2 showed a driving scenario that required the explicit
representation, expressive detection and flexible reasoning of events. This section extends
the example to highlight the unique problems that heterogeneity presents in RKDAs.

Motivating Scenario: Update

Previously, the company Kimetrica offices were located in one location that housed all
employees. The company experienced growth in recent times resulting in more employees
leading to higher day-to-day costs and a need for more office space. For cost-effectiveness,
the company decides to move into an office complex that hosts several other companies.

The complex covers several floors and contains various amenities on each floor that
cater to both resident employees and visitors of the companies. We show a basic logical
organisation of the physical amenities of the large office complex in Figure 5.2a. The
company Kimetrica ultimately reserves office space of two floors with about a quarter of
the area per floor. It shares space with two other companies in the said floors, Safari Tours
and Soko Marketing companies. It also shares amenities such as cafeteria and parking with
the other companies residing in the complex.

Within their respective office spaces, the arrangement of companies depends on these
internal organisational structures. For reference, the organisational structure of the three
companies are shown in Figure 5.2. Figure 5.2b shows the organisational structure of
Kimetrica, Figure 5.2d shows that of the Safari tours company and Figure 5.2c illustrates
that of the event Soko marketing company. In Kimetrica, employees of levelA are directors,
levelB are department heads, levelC team leaders and lastly interns are short-time
temporary hires. This shows that to an extent, the companies will be arranged according
to their own predefined structures – that are expected to seldom change.

The updated version of the scenario offers a comparable analogy to the concept of hetero-
geneity using shared multi-tenancy concepts. In this case, the existence of several compa-
nies sharing office spaces corresponds to application instances sharing computing resources
availed by a multi-tenant Cloud service provider.

Heterogeneity comes at a cost, however. One of the main challenges is that the build-
ing faces more complex management logistics and higher maintenance costs because each
company contains its own internal structures and day-to-day operations. To concretise this
significant challenge we present the driving scenario of the security monitoring system in
this context.

Security Monitoring System: Office Complex

Similar to the security regulations in Kimetrica, the owners of the new building expect
clients to adhere to strict security guidelines. The employees of client companies are issued
badges that must be worn while inside the building. The office complex is a pervasive
computing environment and the badges can be used to gain access to particular locations

96 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

complex

support

employee

admin

cubicle
s

offices

clients

toilets

server4
rooms

comproomslibrary

resto

conference4
rooms

meeting4
rooms

visitor

stores

entry4
points

parkingmainservice

main
resto cafeteria

(a) Building logical layout
departments

sys+
development

fieldops

administration

financelogistics

MnE

surveying
ui swdb interns

levelC

levelB

levelA

employees

(b) Kimetrica consultancy structural hierarchy
staff

lev2
lev3

interns

employees

securityteam

lev1

directors

supervisors team5leaders

dept.5
heads

CEO

(c) Soko marketing company staff hierarchy
employees

operations management

seniorjunior

marketing

logistics

interns

sales

communications

(d) Safari tours company employee hierarchy

Figure 5.2: Structural organisation of companies in an office complex – The struc-
ture can be modelled as arbitrary DAGs with nodes having multiple parents.

5.2. Issues with Heterogeneity in Rule-based Systems 97

in the office complex: most access points contain a scanning device that can restrict access
to a location. Given this arrangement, the devices are therefore:

• associated to some node in the building’s physical hierarchy,

• linked to some logical structure within the establishments.

For example, a device that restricts access to the marketing department’s cubicles is linked
to both the marketing team in the tours company and the cubicles of the building.

The owners of the office complex avail a security system that can regulate and monitor
access patterns. In this case, the system is an online service that monitors and logs requests
on security access systems for office buildings. The service can be offered by a provider
in the Cloud that will host the monitoring security system, similar to the model of a
Cloud Access Security Broker (CASB) [FYW15]. Client companies formulate their own
regulations of access and their security teams design rules for the service. Using the service,
the security teams can log and monitor access requests and receive updates if any of the
accesses deviate from their security protocols so that relevant measures can be taken.

Because each client has its own security needs, each client can upload rules to the
service. The security team of that client will then receive prompt notifications whenever
the rules are triggered. When the clients start uploading rules to a shared, heterogeneous
RBS, however, unexpected results can be observed. These issues are examined next.

5.2.2 Reentrancy in Heterogeneous RBS
Reentrancy is a phenomenon used to describe programs written in such a way that the
same copy in memory can be shared by multiple users effectively. A program is reentrant
if distinct executions of the program on distinct data cannot affect each other, whether run
sequentially or concurrently [WST09]. Reentrant code is a requirement in common multi-
user systems such as operating systems, where system programmers ensure that whenever
a program is executed for a particular user there can be no other instructions that can
modify data intended for another user1.

Inference engines in RBS were not conceptually designed to work in the shared multi-
tenant environment serving different users. This is because rule-based systems use a number
of unordered rules that reference one single global working memory as can be observed in
Sections 2.5.1 and 4.4. Hence rule-based systems are intrinsically non-reentrant where
in this flat design space, activations could be observed from all asserted facts without
discriminating their sources. To effectively exploit community knowledge, this problem
needs to be addressed. This problem is exemplified in the next section with the updated
example scenario.

Heterogeneous Rules in the Office Complex

Given that the security team of Kimetrica already designed several rules using their existing
security regulations, they proceed to naïvely upload their InternAccess rule listed in 2.3
such as that shown in Listing 5.1. Supposing there are no rules inserted beforehand, the
Rete graph as a result of adding the InternAccess rule is shown in Figure 5.3a.

The other companies also need to design rules to control access within their quarters
in the building (refer back to their organisational structures in Figure 5.2). The Safari
tours company has hired interns, and intends to control their access to various locations

1The use of the term reentrancy in this dissertation relates to the notion of reentrant procedures in
multiuser systems programming and excludes those related to concurrent access and recursive method calls.

98 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

in the company premises. They therefore design and in the same way upload their own
InternCubicleAccess rule that is shown in Listing 5.1. Evidently, this rule is identical to
that of the Kimetrica except for the rule name and other variable declarations. This is
because the Safari tours company also contains employees who are interns. Additionally,
they capture data from accessdevices that have been installed (in the open-plan cubicles)
by the security team of the building in their own rented area.

Listing 5.1: Tours company rule for intern access
1 {rulename: "intern_cubicle_access",
2 conditions:[
3 {type:"employee", level: "intern", name:"?name"},
4 {type:"accessdevice", name: "?dev", location:"cubicle"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"$test", expr:"(time.hourBetween(?t, 8, 20))"}
7],
8 actions:[
9 {assert: {type: "accessreply", reqid:"?reqid", allowed: true}}

10]
11 }

The Need for Reentrancy

The shared Rete graph built after the addition of the rule by Kimetrica is shown in Fig-
ure 5.3a. As usual, the terminal node has been tagged with the rule so that received tokens
will trigger an instantiation of that rule. When the new rule by the Safari tours company
is inserted, Rete will reuse the nodes that are compatible with the rule definitions, as dis-
cussed in Section 4.4.2. The graph is structurally the same as before the addition of the
rule, however this time the terminal node is tagged with activation of both added rules.
The resulting graph is shown in Figure 5.3b.

Let us follow the execution sequence in the Rete algorithm for the graph shown after
the addition of the second rule. Suppose that there are currently two intern employee
facts in the alpha memory a1 representing one intern from each company, and that there
is an accessdevice fact for entrance to the cubicle space2. This situation is shown in
Figure 5.4a.

When an intern in the Safari tours company scans their badge to gain access to the
cubicles, the device will send the data as an accessrequest to the server engine. The
server will insert a fact with this info in the Rete graph. Next,

• The fact will traverse the node with a2 which will send it to b1 (Figure 5.4b) causing
a right activation on the node.

• The node b1 will then request all the items in a1, in order to check whether the
employee has the same name as that on the request. The intern from the tours
company passes the test, and the token of [employee, accessreq] is made and sent
to the next node b2 (Figure 5.4c) causing a left activation.

• Node b2 performs a similar process, checking if a given device matches the one in
the request. If so it creates a token of [employee, accessreq, accessdevice] and
sends it to the test node b3.

2We omit a second accessdevice fact for clarity since the same result of unintended activations would
be observed in the terminal node

5.2. Issues with Heterogeneity in Rule-based Systems 99

b1

r.persone.name

b2

r.device d.name

terminal

b3
test/

hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

[intern_access]

(a) First intern_access rule added

[intern_access, intern_cubicle_access]

b1

r.namee.name

b2

r.device d.name

terminal

b3
test-

hourBetween(?t,-8,-20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

(b) Second intern_cubicle_access rule
added

Figure 5.3: Resulting Rete graph after addition of rules from separate clients
– The second intern_cubicle_access rule reuses most of the graph that existed after
the initial addition of the first rule.

• If the request was made at an appropriate time, the test succeeds and finally reaches
the terminal node as shown in Figure 5.4d .

Because the terminal node was tagged with both rules intern_access from the com-
pany Kimetrica and intern_cubicles_access from the Safari company, both rules will be
activated on both clients. This in effect means that an intern from the Safari company has
triggered an ‘access granted’ sequence in both companies’ systems: an undesirable result!
In this case one company will have a notification of granted accesses from unknown parties
on its dashboards and in system logs.

When employed in RKDAs, classic rule-based systems are said to be fundamentally
non-reentrant. Given varied data sources, rules intended for one specific source can
be activated by data from other sources.

Therefore, multiple heterogeneous data sources can lead to unexpected behaviour dur-
ing the execution cycles of a shared rule engine. One undesirable consequence is that rule
activations can be observed from all asserted facts without discriminating their specific
source. In effect, the difficulty in localising rule control as shown in Figure 5.5 makes it
hard to orchestrate the behaviour of rules in these settings. The simple example exposes
the fact that in order to fully exploit capturing community knowledge in a heterogeneous
RKDAs, it is vital that the system should avail mechanisms in which problems brought
forth due to lack of reentrancy be suitably addressed. The next sections proceed to describe
the manual ad-hoc methods that can be applied by developers of rule-based systems to try
to solve this problem.

100 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

b1

r.persone.name

b2

r.device d.name

terminal

b3test/
hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

[intern_access, intern_cubicle_access]

(a)

b1

r.persone.name

b2

r.device d.name

terminal

b3test/
hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

[intern_access, intern_cubicle_access]

(b)

b1

r.persone.name

b2

r.device d.name

terminal

b3test/
hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

[intern_access, intern_cubicle_access]

(c)

[intern_access, intern_cubicle_access]

b1

r.persone.name

b2

r.device d.name

terminal

b3
test/
hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

(d)

Figure 5.4: A token traversal sequence showing an unintended activation – When
a token from either client is received in the terminal node both client rules case an
activation.

Figure 5.5: Conceptual vision for enforcing reentrancy in a heterogeneous RBS

5.2. Issues with Heterogeneity in Rule-based Systems 101

Ad-hoc Solutions

Relation facts One way that introduces situational state is by manually adding IDs to
every rule condition that will identify the source of the data. An example is having con-
ditions in the InternAccess rule appended with additional ID slots, which contain enough
information to delimit incompatible data. This method is however rigid and expects local
rule designers to be aware of existence of global ID schemes.

A more flexible improvement is by using relation facts. Relation facts are facts as-
serted into the working memory that indicate a relationship between other entities in the
working memory. Listing 5.2 illustrates this approach. Facts that indicate a belongs to
relation (or similar) in the companies are added to the system, e.g., {type:"belongsTo"
entity1:"intern1" entity2:"toursco"} relates an intern to the Safari tours company
in the building. With this approach, the relation facts need to be added to the working
memory a priori. Then, the rule from Listing 4.2 can be modified to bind to such facts so
that one can distinguish between companies in the building. The rule is further modified
by appending conditions in lines 6 and 7 to the rule, resulting in the modified rule shown
in Listing 5.2.

Listing 5.2: InternAccess rule with relation facts
1 {rulename: "intern_access",
2 conditions:[
3 {type:"employee", level: "intern", name:"?name", company:"?empco"},
4 {type:"accessdevice", name: "?dev", location:"cubicle", company: "?devco"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"belongsTo" entity1:"?empco", entity2:"kimetrica"},
7 {type:"belongsTo" entity1:"?devco", entity2:"kimetrica"},
8 /* .. same as before .. */
9 }

Essentially, additions to the rule confirm that the intern belongs to the company
Kimetrica and that the device is located within their premises. The rule is more flexible,
i.e., when any employees or devices are changed then the preexisting relation facts can
added or modified without changing the rule itself.

Consider a second example. Suppose a general rule is required in the office complex
which stipulates that any person with a badge is allowed to use any toilet within their own
premises in the building. Such a rule is shown in Listing 7.1.

Listing 5.3: ToiletAccess rule with relation facts
1 {rulename: "toilet_access",
2 conditions:[
3 {type:"employee", name:"?name", company:"?empco"},
4 {type:"accessdevice", name: "?dev", location:"toilet", company: "?devco"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"belongsTo" entity1:"?empco", entity2:"?c"},
7 {type:"belongsTo" entity1:"?devco", entity2:"?c"},
8],
9 actions:[

10 {assert: {type: "accessreply", reqid:"?reqid", allowed: true}}
11]
12 }

The resulting Rete graph for the rule is shown in Figure 5.6. Observe that the node needs to
perform an additional check in beta node 4 to ascertain that the two data items employee

102 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

1
r.person

e.name

2
r.device d.name

...

root

employee access
request

access
device belongsTo

3

4

e.company

b2.entity1
d.company

location =
toilet

b1.entity1

b2.entity2b1.entity2

Alpha node
Alpha memory
Beta node
Beta memory

Figure 5.6: Rete graph for company ToiletAccess rule –The last join node 4 needs
to perform an additional check for consistent data.

and device are sourced from the same company, represented by the check of the token
with the fact b1 and b2. This check is extremely expensive because the matching process
will perform cross-product computations of all the data items in the memories of the beta
node and the alpha node in order to test for their compatibility.

Test Expressions A different approach takes advantage of the availability of expressions
in rule conditions. The idea in this case is to require that every rule from a client to have
additional discriminatory test conditions.

This can be illustrated with the same example as the original InternAccess rule. As
with the previous method (of relation facts), first employees and devices are assigned their
respective companies. This time, however, the rule contains additional expression tests
that check, for instance, if the intern and the device are in the same company. Line 6
of Listing 5.4 adds a boolean test that checks if the intern and device are in the same
company. This also results in a different Rete graph with an additional beta test node,
shown in Figure 5.7. Note that at beta join node b2 the same complete cross-product joins
of employee and device facts are computed.

Listing 5.4: InternAccess rule with test expressions
1 {rulename: "intern_access",
2 conditions:[
3 {$e: {type:"employee", level: "intern", name:"?name"}},
4 {$d: {type:"accessdevice", name: "?dev", location:"cubicle"}},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"$test", expr:"(areInCompany('kimetrica', $e, $d))"}
7 /* .. rhs same as before .. */
8 }

Discussion

As demonstrated, the above approaches are possible solutions to the reentrancy problem.
The approaches however exhibit a number of limitations. From an engineering point of
view, it is generally undesirable to have rule condition logic interspersed with event source

5.2. Issues with Heterogeneity in Rule-based Systems 103

b1

r.persone.name

b2

r.device d.name

terminal

b3test/
hourBetween(?t,/8,/20)

root

employee access
request

access
device

location = cubiclelevel= intern
a1

a2

a3

b4areInCompany('kimetrica',
e,/d)

Figure 5.7: Rete graph for InternAccess rule with test expressions – The second
test expression distinguishes data from other clients.

identification (also noted in [MFP06, p.131] in the context of notifications in event-based
systems). This is mainly because they pollute the logical intent of the rule making it
unnecessarily complex. Additionally, in these approaches clients would need to be aware of
the existence and the layout of other clients. In more complex rules, it becomes tedious to
distinguish which conditions need to be infused with the information that identifies clients
and which ones do not.

Using ad-hoc methods forces rule designers to hard-code distinctions between clients
and their data sources within the rules. This quickly becomes complex and error-prone as
the number of clients and the relationships between them increase, or when the relationships
become complicated to enforce using rule semantics. In a heterogeneous setup, failure to
properly make these distinctions can cause unintended rule activations to leak in other
clients.

In summary, the ad-hoc approaches are problematic because they 1) draw context
knowledge into application components that relates to the interaction with outside
entities rather than the rule implementation 2) pollute the logical intent of the rule
designer 3) complicate rule implementation and makes the process fallible. 4) impact
the underlying Rete graph by creating additional nodes, requiring more computa-
tions.

5.2.3 Inter and Intra-Client Relationships in Heterogeneous RBS
The previous section showed how ad-hoc methods forces rule design to be polluted with
logic to distinguish clients in RKDAs. By extension, rule complexity quickly becomes more
tedious in configurations that contain complex client internal structures with multiple levels.

Refer back to Figure 5.2 that showed the structure of the companies and the office
building. Usually, heterogeneous setups such as these contain complex structures that are
modelled according to physical or logical relationships among participating entities. These

104 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

relationships can be based on various aspects, such as the principle of locality among inter-
acting components in event-based systems [MFP06] and encapsulation in object-oriented
systems. In simple situations these relationships can be based on the application-specific
semantics tied to underlying structures, operations and processes of clients.

In the office complex, the Kimetrica company has a systems development department
is composed of user interface, database and programming teams. Some rules in Kimetrica
will want to capture events from users in the system development teams and exclude those
from other levels in the company’s hierarchy. Therefore aside from distinguishing between
different companies, rule designers will also require distinctions between different levels of
their own hierarchy. This is exemplified in the next section.

Custom Security Policies

Organisation-wide security policies are necessary but not sufficient to capture more fine-
grained security policies of various clients in a heterogeneous environment. Consider the
scenario where the security team of the company Kimetrica receive security policies that are
applied in specific contexts within various departments. Some of the policies are outlined
below.

 Protocol 7 Intern server room access

Interns in the systems development department can have access to the server room
but only if accompanied by a department leader during working hours.

 Protocol 8 Financial office access

Only finance department employees have access to the financial records offices during
working hours.

The rule for protocol 7 specifies that interns in the sysdevelopment department can
have access to the serverrooms of their own departments but only if accompanied by a de-
partment leader during working hours. Listing 5.5 shows a rule enforcing such specifications
using the aforementioned test expressions. The InternServerRoomAccess rule captures the
two employees, the intern and the sysdevelopment department leader in lines 3 and 4.
The serverrooms device is captured in line 5. Line 6 and 7 detect two access requests by
the parties, indicating that both have to scan their badges on the device that enables access
to the server room. To capture requests that originated from the same company, the test
expression in line 9 is added. Line 8 makes sure that the access requests were made during
working hours and that they were made simultaneously (specifically, within one minute)
using the time.diff function.

Line 10 is where the main objective of the rule is specified where an expression is
used to capture the various constraints of the InternServerRoomAccess rule. The line first
checks the rank of the intern and the department or team assigned to the intern is related
to systems development. The rank of the employee is then confirmed and lastly whether
the device is located in the company’s server room. Also, each employee fact needs to be
modified with dept, and team fields in order to be evaluated by the expression (actually,
the number of these fields depends on the levels of the organisation hierarchy).

Although flexible to updates, the approach using such expressions in the InternServer-
RoomAccess rule is complex and hard to debug if an error occurs. From the rule, it can be
observed that with ad-hoc approaches, capturing such constraints increases the complexity
of rule design implementation. It further muddles the logical intent of the rule designer –
making them harder to analyse and understand.

5.3. Requirements for Heterogeneous Rule Engines 105

Listing 5.5: Rule for intern access to server rooms
1 {rulename: "intern_serverroom_access",
2 conditions:[
3 {$e1: {type:"employee", name:"?intname"}},
4 {$e2: {type:"employee", name:"?empname"}},
5 {$d: {type:"accessdevice", name: "?dev"}},
6 {type:"accessreq", id: "?reqid1", person: "?empname", device: "?dev"},
7 {type:"accessreq", id: "?reqid2", person: "?intname", device: "?dev"},
8 {type:"$test", expr:"(time.hourBetween(?t1, 8, 20)) && time.diff(?t1, ?t2, 60)"},
9 {type:"$test", expr:"(areInCompany('kimetrica', $e1, $e2, $d))"},

10 {type:"$test", expr:"(($e1.level == 'intern' && $e1.dept == 'sysdevelopment' &&
↪→ ($e2.level == 'levelB' && $e2.dept == 'sysdevelopment') && ($d.location ==
↪→ 'serverrooms'))"}

11],
12 actions:[
13 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t1"}}
14],
15 }

The resulting simplified Rete graph for the rule is shown in Figure 5.8. In the graph
the second test expression node will perform expensive checks for all the constraints of the
rule: the expression test will perform extensive computations to ascertain the validity of
the compatibility of the tokens it receives in the network. This in-house compatibility check
between data from different departments within one company is indeed a local manifestation
of the reentrancy problem mentioned in Section 5.2.2.

In summary, it is common to have clients in a heterogeneous setting organised in
hierarchies consisting of different components in different levels. We have seen that in a
multi-tenant setup, there is need to distinguish data from other tenants. But also within
the hierarchies, the clients can be organised to participate in various relationships that
distinguish between various sub-hierarchies.

We observe that in the spirit of community knowledge, exploiting the relationships
between logical components in a heterogeneous configuration is a basis for addressing
the engineering and management issues of these systems.

In the next section we present the requirements for addressing these issues in rule
engines supporting such configurations.

5.3 Requirements for Heterogeneous Rule Engines
One of the main contributions of this dissertation is to provide a heterogeneous rule-based
framework to support RKDAs. In order to suitably provide such systems, a solution needs
to be uncovered to solve the various problems hitherto identified. This section outlines
the requirements of heterogeneous rule engines and seeks to compare solutions drawn from
related domains that can be adapted for these requirements.

5.3.1 Metadata Model for Discerning Heterogeneous Clients’ Data
As discussed in previous sections, rule-based systems face challenges when deployed to
heterogeneous contexts due to the existence of an all-inclusive global fact base. Current

106 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

b1

r1.persone1.name

b2

r1.device d.name

b3
areInCompany('kimetrica',7

e1,e2,7d)

root

employee access
request

access
device

a1 a2 a3

b4

($e1.level7==7"intern"7&&7$e1.dept7==7"sysdevelopment"7&&7
($e1.team7==7"ui"7||7$e1.team7==7"db"7||7$e1.team7==7"sw"))7&&7

($e2.level7==7"levelB"7&&7$e2.dept7==7"sysdevelopment")7&&7
($d.location ==7"serverrooms")

...

b3time.hourBetween(?t1,78,720))7
&&7time.diff(?t1,7?t2,760)

r2.persone2.name

r2.device d.name

Figure 5.8: Rete graph for InternServerRoomAccess rule – The additional con-
straints in the test expression add excessive computations during rule execution.

approaches force rule designers to infuse logic to discriminate between the clients together
with the normal logic to be captured in rules. At the same time the client facts have to be
manually annotated in order to conform to the discrimination logic in the rule, e.g., each
facts from an employee in the Safari company would be tagged with the information about
the employee’s company, department, team, etc. The same applies to rules uploaded by
clients to the server.

The solution is to provide a uniform and consistent metadata model that supports
identifying different clients as event sources. This would enable mapping client events and
rules from different contexts to specific clients, e.g., data from clients in different teams at
the same department. The underlying rule engine can then use this mapping to be able to
ascertain the origins of different rules and events, in order determine the correct execution
contexts, e.g., performing join computations with client data from the same department.

Semantically, the proposed approach should ideally utilise metadata to provide an
application-agnostic solution that leaves the normal semantics of a rule-based system in-
tact, thus absolving an application programmer from the nuances that would exist without
the model. This requirement ranges from providing no model for this forcing manual inter-
ventions, to a complete model that automatically tags client metadata concerning events,
rules and notifications. A simple example of this is whenever a client creates an event,
the model should automatically tag the event with the relevant metadata before sending
it to the server – instead of the client application programmer handling these specificities.
Similarly on the server side, the model should be able to reason about the data model with
the least effect on the underlying processing cycle of the rule engine.

Purposely, this requirement is the precursor of the next requirements.

5.3.2 Formalised Model for Grouping Heterogeneous Clients
Previous sections have demonstrated the need for a framework seeking to support RKDAs
to manage the heterogeneity of clients. The main reason is the complexity due to having a

5.3. Requirements for Heterogeneous Rule Engines 107

variety of clients uploading rules and data into one shared system. A well-known concept
for mastering complexities in a heterogeneous setup is by composing entities into higher-
level units, often called groups. Groups are semantic and syntactic abstractions of entities
that share a common goal or share some commonality.

In order to manage complexity a heterogeneous RBS should therefore provide an ex-
tensible grouping model that captures the structures of clients and describes any possible
compositions flexibly. Examples in the office scenario are teams which form departments
that are all a part of a company hierarchy, but can also participate in other roles. One
way to design this model within the framework is via a formalism that is based on the
groups, and that builds upon the aforementioned metadata definitions. The formal model
can be designed around clients hierarchical structure that lends itself well in progressively
describing the relationships between clients. The most significant benefit of such a model
is in effectively representing and managing client organisation in the system, useful during
evolution. This requirement therefore ranges from having no grouping mechanism expos-
ing rule designers to the above ad-hoc methods, to providing a complete formalised model
that can be used to provide flexible ways capture and represent client organisation and
compositions within rules.

5.3.3 Execution Model for Selective Computations

Rule engine execution in a heterogeneous setup considers all possible contexts, making the
engine spend time performing computations that can be made more efficient (Section 5.2.2).
This manner of rule engine execution is undesirable because it impedes performance. The
problem is that the rule engine never provides selective matching by imposing any discrim-
ination in rule execution: all rules are under consideration in a given match cycle. Indeed,
the diversity of data sources in RDKAs requires further precision in during execution. Note
that implementing this using the selection strategy in the select phase of rule activation
(Section 4.4.3) as a solution is inadequate. This is because the select phase never actually
depends on matching, but requires special ordering of instantiations – commonly imple-
mented based on the recency of an instantiation. Therefore, the match stage would still be
negatively affected.

If heterogeneity is represented in the rule engine, it can then use this knowledge to
natively encode it internally in its execution rather than being infused in normal rule logic.
Thus, an extensible formalism modelled around metadata in client events and grouping
models can be exploited to perform the selective execution of the rule engine, by discrimi-
nating or partitioning the data residing in the heterogeneous system. The discriminating
computations are those that try to find consistent bindings for the intended data sources
to avoid unintended activations in the engine with data from unwanted sources. The im-
plication here is that the internal structures of clients should be reflected in the runtime in
order for it to efficiently process the requests within the confines of clients’ configuration.
The scale for this requirement ranges from providing no specialised execution, to having
a model in which the rule engine can utilise at runtime to perform this data partitioning
efficiently. Implementing these proposals will result in the rule engine performing selective
execution of rules thereby, in a number of cases, reducing the amount of computations
performed by the engine during its execution cycle. This conjuncture will be supported by
the evaluations presented in Chapter 8.

108 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

5.3.4 Flexible Model for Notification Semantics
As mentioned in Chapter 2, RKDAs usually employ the event-based communication model
to disseminate information as it can support a high number of clients in one instance. In
a rule-based system, notifications can be sourced from the server as a consequence of rule
activations. Here, a notification is a data item that reifies an event from a rule activation.
The notification carries the data that accompanies the activation, but in RKDAs may also
contain additional metadata such as the time of activation and the creator of the rule or the
event source. One issue that arises that is exclusive to heterogenous configurations is who
to notify, or precisely, which client(s) should receive the notification of a rule activation.
This should also be determined in an efficient manner.

In the default scenario, the user that added the rule receives the notification. However,
the composition aspect can be fully embraced to group sets of clients (that share some
common goal) as the basis of engineering notification contexts. The aim of such composition
is to specify boundaries for notification delivery: it semantically defines how to distribute
notifications of a rule activation from the server. For the office complex, these can be
drawn directly from the company organisational hierarchies presented in Figure 5.2: but in
most situations they are application-specific. The boundaries should be able to be specified
using a clearly-defined notification semantics, e.g., allowing or restricting propagation of
notifications to related components. Of course, the ideas discussed here can reuse the
extensible formalism that captures client structures as specified in previous requirements.

In most current systems the programmer is left to implement such capabilities man-
ually on their own. This approach is undesirably static and impedes system evolution.
Such semantics should be exposed as syntactical abstractions and processed at the frame-
work level, thus promoting flexibility for notifications. Hence, for this requirement, the
least desirable is leaving programmers to implement them on their own, but most desirable
is to provide flexible semantics for specifying notifications. With a flexible notification
model, the framework can efficiently optimise providing functionalities such as decoupling
of notification channels, scheduling of server resources for piggybacked notifications, etc.

The remainder of this chapter explores how much work has been done regarding these
issues in similar or related domains.

5.4 Heterogeneity in existing RBS: Related Work
The previous sections identified issues and limitations that make current rule-based systems
difficult to control and maintain when deployed for heterogeneous RKDAs. This section
delves into research that can be used to tackle the some of limitations of heterogeneous sys-
tems identified in this chapter. The main focus is on rule-based systems, but the discussion
is extended to other related areas.

5.4.1 Decomposition in Rule Engines
In rule engines, execution begins with existing facts, deriving intermediate knowledge by
applying appropriate rules without discriminating any sources. In fact, modern Rete-based
RBSes have sought some kind of modularisation or decomposition of their rule base, pro-
viding ways in which rule designers can partition larger rulesets. These solutions are drawn
from the concept of an analogous rulebook. Similar to a folder that can hold a number of
files inside it, rule books can encompass multiple rules in their structure and use them to

5.4. Heterogeneity in existing RBS: Related Work 109

modularise their rulebase. This section discusses the merits and demerits of these solutions
with regards to the requirements for heterogeneous rule engines.

EntryPoints in JBoss Drools

The JBoss Drools engine was introduced in Section 3.3.2 and is based on the Rete algorithm.
The section discussed how the Drools engine can be embedded onto a server as a back-end
processing component that will process requests that are forwarded from the main server
component. Citing this, the Drools research team observed that the engine will inevitably
deal with event streams that are of of high volume and require correlation. Such event
streams are expected to receive inputs from multiple entry points. More importantly, the
event streams can be heterogeneous with different types of events. Entry points can be
thought of a particular pipe where events from a source flood into the system. The system
in this case is the rule engine and it can handle multiple pipes at any given time. Facts
derived from event sources never lose their identity when asserted through an entry point.
This in effect means that a fact inserted through one entry point will not match a pattern
specifying another entry point.

Internally, all event streams by default use the DEFAULT entry point in Drools. New
entry points are declared by implicitly referencing them in rule conditions. An example for
the security scenario is shown in Listing 5.6, which is modified from the actual InternAccess
rule from Listing 3.13. The example implicitly creates an entry point for the facts from
the Kimetrica company to be selectively picked during matching. When an access request
is made, the packaged fact is directly inserted into a named entry point kimetrica in the
rule conditions. This is shown in Listing 5.7.

Listing 5.6: InternAccess rule in Drools - with Entry Points
1 rule "InternAccess"
2 when
3 $e: Employee(level == "intern")) from entry−point "kimetrica"
4 $r: AccessRequest(badge == $e.badge)) from entry−point "kimetrica"
5 $a: AccessDevice(id == $r.device, location == "cubicle", $r.time <= 20, $r.time > 8)) from

↪→ entry−point "kimetrica"
6 then
7 insert(new AccessReply($r.id, $a.device, true)

Listing 5.7: Inserting Event into EntryPoint in Drools
1 WorkingMemoryEntryPoint accessRequestEntryPoint = session.getWorkingMemoryEntryPoint("kimetrica");
2 accessRequestEntryPoint.insert(newAccessRequest);

We evaluate this approach according to the requirements.

• Metadata Model: Drools does not offer a decoupled metadata model that will discern
data from particular clients. Even though entry points are declared implicitly in rules,
they require the programmer to directly reference them whenever they want to perform
data updates in the rule engine. Further, programming updates to data objects using
entry points forces the programmer to intertwine data separation logic with the normal
client application logic.

• Grouping Model: Entry points in Drools present rather simplistic semantics for distin-
guishing event sources from incoming data. They do not offer any formalised model for
more advanced issues such as addressing multiple entry-points as a single composable
unit or relationships between them common in heterogeneous contexts.

110 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

• Execution Model: Entry points in Drools are perhaps the closest solution to the problem
of distinguishing event data. During rule compilation, entry points in rules will be
identified by the compiler as having separate event sources which internally forces it
to create separate alpha nodes when building the related conditions. They can thus
be used to partition the fact base depending on the nature of facts and provide a way
to discriminate different facts in the fact base. When building the graph, the Drools
compiler uses the default root ReteNode to create different EntryPointNodes as its
children according to the entry points identified in the rules, and continues building
the graph in the usual way. This internally results in as many graphs as there are
entry points. Even so, the research team simply states in [Bro09] with little detail that
in some unspecified cases they can reduce cross products that degrade the rule engine
performance during pattern-matching.

• Notification Model: The entry point functionality is provided by the Drools STREAM
streaming mode which provides special semantics for ‘streamed’ events that may trigger
rule activations. Even so, the engine offers no notification model as a response mecha-
nism. The programmer needs to manually implement any notification functionality if a
rule of interest is activated as a result of incoming events.

Peers in Jess

Jess is a rule engine also based on Rete and was discussed in Section 3.3.2. It is a hybrid
engine where the engine’s working memory can contain shadow facts that are essentially
Java objects. The engine is similar to Drools in that it is Java-based and can provide
reasoning to Web servers as a backend tool. It however does not support the streaming
semantics provide by Drools for specialised event processing.

Multiple instances of the rule engine in Jess can be initialised by spawning several
Jess.Rete objects as independent Rete engines [Fri03]. With the multiple instances ap-
proach each Jess.Rete instance will execute in its own thread and will contain its own
working memory, rule base, etc. In some cases, creating separate engines with their own
execution environment is undesirable from a performance point of view due to duplication
and redundancy. Jess therefore provides an alternative method through the use peering of
rule engines, designed to be used in the scenario of pools of Web applications.

Conceptually, peers are an evolution of multiple Jess.Rete instances. One ‘initial’
Rete engine instance is created and rules added to it, creating the compiled Rete graph.
Thereafter, multiple independent peers can be created which will share the compiled rules
and templates, but each peer contains its own enclosed working memory, execution context
and agenda. All peers share a similar rule set: changes to the rule set by any of the
instances will thus be reflected on the other peers. Listing 5.8 shows how peers in Jess
can be created. The code creates two peers from an initial Rete instance in lines 11 and
13. The peers share the same intern_access rule defined back in Listing 3.10, which is
loaded in line 8. Remember that the engines will halt after matching the data collected
from the database, (line 16) and to enable reactive functionality one has to write the code
as illustrated back in Listing 3.12.

Listing 5.8: Creating Multiple Peers in Jess
1 import jess.*;
2 public class SecurityMonitor {
3 public static void main(String[] argv) throws JessException {
4 /* "initial" engine */
5 Rete engine = new Rete();

5.4. Heterogeneity in existing RBS: Related Work 111

6

7 // Add intern_access_rule
8 engine.batch("intern_access_rule.clp");
9

10 // Create a peer of the initial engine
11 Rete peer = engine.createPeer();
12 // Second peer
13 Rete peer2 = engine.createPeer();
14

15 // Load the catalog data into working memory
16 database = connectToDataSource();
17 peer1.addAll(database.getItems());
18 peer2.addAll(database.getItems());
19

20 // Run the original engine;
21 engine.run();
22

23 // Run the peers
24 peer1.run();
25 peer2.run();
26 }
27 }

• Metadata Model: Jess does not provide a metadata model that will effectively man-
age the data from different sources. Creating instances and peers is done in alongside
application code, and the developer should always specify which data will be added to
which peer. The implementation of the separation of instances therefore needs to be
intertwined with application logic.

• Grouping Model: The Jess engine explicitly exposes all peers as conceptually identical
entities. So even though peers are instantiated from the initial Rete engine, Jess offers
no mechanisms for managing peers that would promote advantages such as addressing
multiple peers as a single abstraction in order to share common knowledge.

• Execution Model: The multiple instances approach of Jess is in reality similar to the
independent rulebook concept. The method creates separate Rete engines each with its
own components. Jess promotes the use of peers, a better approach for situations that
contain large rule sets and may need to share resources. As was mentioned, the sharing of
resources is however limited to rulesets and templates, and excludes the working memory
and the agenda. Furthermore, to exploit community knowledge, it can be difficult for
the programmer to ascertain which data will go to which peer.

• Notification Model: The Jess engine supports Web server extensions, and the peer system
can be used to create pools of instances that can serve client requests in a request/reply
fashion. It however does not expose functionality for managing notifications for respond-
ing to clients in the event of a rule activation. Therefore, even though activations from
peers are distinguishable, it is up to the programmer to manually handle any response
mechanism that they require.

Rule Modules in CLIPS

The CLIPS engine was introduced in Section 3.3.2 and contains two flavours, the pure
CLIPS and the hybrid object-based CLIPS COOL. This section focuses on its modules
for supporting heterogeneity. The engine does not provide streaming or reactive execution

112 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

natively, but as discussed earlier it can be coerced into continuous execution using incessant
facts.

CLIPS provides modular management for larger rule bases through the use of rule
modules. A rule module contains a set of rules that can be grouped together to leverage
explicit control by restricting the access of the enclosed rules by other modules. Modules
can therefore be used by rules to control execution. By limiting access to rules, a module
functions in the same way as a rule book, allowing facts and rules to be only visible to the
module. Each module has its own Rete graph and agenda for its rules.

Similar to Drools, normal engine execution actually runs in the default MAIN module.
Custom modules can be defined using the defmodule construct. When the CLIPS engine
is issued a run command, the module with the current focus is executed. Focus can
be specified either by the (set-current-module <module-name>) command or by using
(focus <module-name>) in the right-hand side of a rule, which shifts rule engine execution
to a particular module context. At any one time, rule execution is performed in a particular
module, until focus shifts to another module or the engine exits.

Listing 5.9 illustrates how the rule intern_access can be implemented using CLIPS
module-based constructs. Lines 1 and 10 use two modules for two companies to define their
different rules. The modules internally construct two separate Rete graphs. Similar to the
situation with peers in Jess, two different facts would need to be inserted in both engines.

Listing 5.9: Intern Access rule in CLIPS
1 (defrule kimetrica::intern_access
2 (employee (name ?nam) (badge ?ibadge) (level "intern"))
3 (accessreq (id ?reqid) (badge ?ibadge) (time ?t) (device ?dev))
4 (accessdevice (id ?dev) (location "cubicle"))
5 (test (and (< ?t 20) (>= ?t 8)))
6 =>
7 (assert (accessrep (reqid ?reqid) (device ?dev) (allowed true)))
8 (printout t "Allowed access for Kimetrica " ?nam " on device " ?dev crlf)
9)

10 (defrule touring::intern_access
11 (employee (name ?ename) (badge ?b) (level "intern"))
12 (accessreq (id ?req) (badge ?b) (time ?t) (device ?device))
13 (accessdevice (id ?device) (location "cubicle"))
14 (test (and (< ?t 19) (>= ?t 7)))
15 =>
16 (assert (accessrep (reqid ?req) (device ?device) (allowed true)))
17 (printout t "An intern in Touring " ?ename" accessed device " ?device crlf)
18)

• Metadata Model: CLIPS exposes a simple, generic model where facts can be tagged
to a particular rule module but only during fact definitions. In this manner, the event
source of a data item in the graph within the engine can be determined and can be used
to partition data in the working memory. The programmer needs to specify the module
when defining the fact, as with the other approaches.

• Grouping Model: CLIPS rule modules provide modular abstractions for grouping related
rules. However, the CLIPS engine does not provide any abstractions for managing
rule modules that could be used as model for representing the various client structures.
Describing physical and logical client relationships in a heterogeneous environment using
CLIPS therefore requires a substantial amount of effort to model using CLIPS modules.

• Execution Model: Rule modules are a direct mapping to the rulebook concept because
they contain separate, independent Rete graphs with its own execution context and

5.4. Heterogeneity in existing RBS: Related Work 113

Table 5.9: Evaluative comparison of rule-based systems for supporting heterogeneity

Page 1 of 1

Metadata Model Grouping Model Execution Model Notification Model

Rule-based Systems

 Entry Points

 Peers

 Rule Modules

agenda. When compared to Drools’ entry points, they are limiting because entry points
can be used to determine event sources in conditions unlike in the module approach.
This can be seen when comparing Listing 5.9 with 5.8, where different entry points
can be constrained at condition-level but modules can only be attached at rule-level.
Furthermore, constructs are available in rule modules that allow programmers to ‘hijack’
the rule engine’s focus to execute a named module. This unnecessarily complicates
programming heterogeneous RKDAs, because rule designers are required to orchestrate
rule interactions. Absolving the rule engine from its own control of execution goes against
the motivation of using a rule engine in the first place: in problem domains where there
are no obvious algorithmic solutions to be found and functional specification is difficult.

• Notification Model: CLIPS and its invariant CLIPS COOL do not support notifications
of rule activations out-of-the-box. Even though an activation from a particular rule mod-
ule can be detected (as each has its own agenda), notifications to individual clients need
to be programmed manually. The main reason is that the engines were not envisioned
to work in a heterogenous environment and activations were intended for single-user
situations only.

5.4.2 Overview: Decomposition in Rule Engines
The approaches described are related to the forward-chaining rule-based systems that this
dissertation targets – and the techniques they expose that can be used to solve the identified
problems. Table 5.9 summarises the approaches described in terms of the aforementioned
requirements. It follows the same ranking system as the evaluation table 3.2 in Section 3.4.

The table shows discrepancies of rule-based systems for support of heterogeneous RK-
DAs, particularly in providing metadata and notification models. We therefore investigate
support of these requirements in similar approaches found in related research areas. The
areas to be examined will follow the general directions presented in the related work Chap-
ter 3. Because these approaches do not suitably fit within the scope of rule-based systems
as designated in the chapter, the discussion will only focus on their specific concepts with
regards to heterogeneity.

5.4.3 Schema Sharing in Multi-tenant Databases
Drawing a connection with active databases discussed in Section 3.3.1, this section explores
work that explicitly abstracts heterogeneous tenants in multi-tenant databases. In classic
database management systems, several logical databases were manually mapped onto one
physical database to enforce heterogeneity (the initial design choice of multi-tenant Cloud

114 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

Separate'
Database

Separate'
Schemas Shared'Tables

Multiple'
instances

Modules'
Entry'points

Peers
?

More%sharingLess%Sharing

Figure 5.10: Parallels between approaches for multi-tenancy in databases and
heterogeneity in rule-based systems.

service provider Salesforce). This process was found to complicate application development
without supporting multi-tenancy from within the DBMS. The use of techniques such as
pivot tables can help overcome these complexities, but offered limited support for features
like query optimisation and indexing [Aul+11].

A multi-tenant database applies multi-tenancy concepts at the database layer by con-
solidating multiple tenants into a shared data-tier resource [J+07]. They are analogous
to heterogeneous rule-based systems: whereas multi-tenant databases are an application
of multi-tenancy at a static database layer, heterogeneous RBS construct client rules and
reactively process data from multiple sources within a shared rule engine.

Multi-tenant databases are based on three main distinctions [HDX12]. In separate
database each tenant has its own set of data that is isolated from the data for the rest of
the tenants. This data model makes it easy to extend the database to meet individual needs
of a particular client, but has a higher resource cost per tenant. In shared database separate
schema several tenants can share the same database, but each tenant has its own schema
that describes its own set of tables. In shared schema/tables, the schema is created once
and different tenants are mapped directly onto it. This method has the lowest cost and can
host the largest number of tenants per server, but has a higher complexity to implement
data distinctions. More recent advances have proposed the use of extension tables that
reify the concept of a tenant to the database layer, where the database engine can associate
each request to a tenant and forwards it to the appropriate table storage.

Comparisons can be drawn between the three distinctions of multi-tenant DBMS with
the approaches for rule-based systems in the previous section. A graphical representa-
tion is shown in Figure 5.10. The separate database approach is similar to the multiple
instances approach – spawning several instances of rule engines corresponds to having sep-
arate databases, one for each tenant. The separate schema approach is comparable to most
of the approaches presented earlier. Having a number of peers, entry points or modules to
share one fact base but having several Rete graphs, agendas, intermediate memories and
execution contexts.

We observe that although the shared schema/tables approach is the closest to the
primary focus of this thesis, it has no definite parallel with the aforementioned approaches
for current rule engines, as indicated in Figure 5.10.

Flavours of the presented approaches do try to come close to sharing of a single Rete
instance. One example is entry points in Drools; entry points are however distinct and are,
in essence, internally represented as separate Rete graphs albeit with a shared root node,
and thus map to the separate schemas in multi-tenant DBMS.

It is generally accepted that support for multitenancy requires a structure for client
metadata management,e.g, in extension tables [J+07]. In addition, because these databases
are not inherently intended for reactive CEP, they do not particularly have avenues for

5.5. Chapter Summary 115

flexible client notifications, e.g., to a subset of tenants.

5.4.4 Visibility in Event-based Systems
Likewise, this section draws a connection to the event stream processing systems identified
in Section 3.1 when applied to heterogeneity. For example, they have been used in the
software-defined networking domain to provide information-centric networks by capturing
cross-domain events in packets [Nun+14].

Conceptually, event-based systems view events received in terms of the origin, or
the event source. With this abstraction, distributed event-based applications can be pro-
grammed at a higher level in a heterogeneous context, since the loose coupling of participat-
ing components makes it possible to design more structurally-complex systems. However,
different event sources can be the cause of different event notifications, the primary com-
munication mechanism between components. Thus the problem of dialect [Bat+98], i.e., of
interpreting events from different event sources, needs to be tackled.

Several areas of research have tried to find ways to solve the dialect problem. The
closest approach is the work about event notifications in the system REBECA [Fie+02] which
aims to provide abstractions for structuring event-based systems. The work proposes a
way to solve the dialect problem by limiting the visibility of notifications in bundled con-
sumers. Only the components that are intended to receive notifications (i.e. the intended
consumers) are able to ‘see’ notifications. The use of a hierarchical architecture sets this
approach apart from similar efforts. To implement this, the proposed system provides a
broker overlay that contains a set of cooperating components arranged in topologies, e.g.,
based on logical or administrative boundaries. Each client process contains a local event
broker which functions similar to a proxy. The broker marshals outgoing client requests to
other brokers or producers. To receive notifications, the broker contains a set of visibility
roots, which is simply a list of external components that this client can receive notifica-
tions from. In the paper, the authors compare their model with other related work in
event-based notification and filtering with a set of requirements, one being support for
heterogeneity. The technologies compared include subject-based addressing in event zones
in READY[GKP99], bridges for structuring JavaBeans objects [UM99] and Linda-based Ac-
torSpaces to limit message distribution [CA94]. They conclude that unlike all the other
approaches, the use of a broker architecture with visibility roots is the most suitable for
managing event notifications of components organised in different multi-level compositions.

The REBECA system shows some differences with the identified requirements for sup-
porting heterogeneity. The use of brokers is a form of client-side filtering where brokers
can receive all notifications and decide which specific notifications the client can ‘see’ via
metadata. The semantics of placing restrictions in the actual matching process upon receiv-
ing events is not suitably discussed (which, in comparison, is the essential part of any rule
engine) and the work purely focuses on notification semantics. Furthermore, the broker
architecture presupposes the existence of some form of an overlay network which requires a
complex distributed management scheme that is not the primary focus of this dissertation.
Nevertheless, the idea of visibility roots is a promising direction and the concept can be
used as a foundation for managing heterogeneous clients.

5.5 Chapter Summary
Section 5.2 identified the main concern in the support of RKDAs is essentially harnessing
community knowledge and enforcing reentrancy in the rule engine. From this, we identified

116 Chapter 5. Heterogeneity in Reactive Knowledge-driven Applications

Rule1
Rule4

Rule5

Rule6

Rule2
Rule3

Rule7
Rule8

Rule9

Rule10

Client23fact

Client33fact

Client13fact

Rule1
Rule4

Rule5

Rule6

Rule2
Rule3

Rule7
Rule8

Rule9

Rule10Client13fact

Client33fact

Client23fact

Client23fact

Client2(Rete

Rule5
Rule10

Rule6

Client1(Rete

Rule1
Rule8Client13fact

Rule4

Client33fact
Rule3
Rule9

Client3(Rete

Rule7

Rule2

(c)

(b)(a)

Heterogeneous(Rete

Homogeneous(Rete

Figure 5.11: Conceptualizing a multitenant inference engine showing (a) naïve,
(b) module-based and (c) heterogeneous engine approaches [KRD17b].

four key requirements that encompass the support of heterogeneity in rule-based systems.
Various existing research were then discussed to discover possible avenues that can be
exploited. Table 5.12 presents a summarised result of the evaluation in this respect.

From the existing research we observe that there can be three conceptual directions
to take when designing a heterogeneous rule engine. The first is the naïve shared approach
that causes unintended activations in rules uploaded by different clients (Figure 5.11a). The
second consists of the idea of rulebooks or modules that promote the complete isolation
of the rules, thereby duplicating all the rule engine instances (Figure 5.11b). The peering
and entry-point approaches absolve this somewhat, but in reality do not employ sharing –
instead they separate the intermediate memories and activation queues entirely in a running
rule engine. The first two approaches increase rule complexity and quickly become tedious
in clients with more complex internal structures like multiple departmental levels. They
have a negative impact in the underlying Rete graph: additional nodes are created and
more computations are required even when they could be avoided. They further pollute
the logical intent of the rule designer, e.g., by adding conditions that need to enforce
discrimination within the rules of all clients.

Heterogeneous rule-based systems for RKDAs require features that solve reentrancy
problems and promote community knowledge as the applications they support grow in
size and complexity. The following Chapter 6 proposes a model that supports RKDAs
by enabling any Rete graph in shared rule engines to purely handle multiple inference
states simultaneously for different sets of client rules (as illustrated in Figure 5.11c). This
promotes both reentrant execution and, by extension, community knowledge by exploiting
the organisation and relationships between heterogeneous clients.

Table 5.12: Evaluative comparison of RBS and other systems for supporting heterogeneity
EVALUATION OF EVENT,PROCESSING SYSTEMS FOR WEB REASONING

Metadata Model Grouping Model Execution Model Notification Model

Rule,based Systems

 Entry Points

 Peers

 Rule Modules

Multitenant Databases

 Shared schema/tables

Event,based Systems

 Visibility

6
The Serenas Scoped Rule Language

Language shapes the way we think, and determines what we can think about.

Benjamin Lee Whorf, Language, Thought, and Reality, 1956

The previous chapter discussed how classical rule-based systems experience challenges
in shared heterogeneous systems, particularly when aiming to exploit the concept of com-
munity knowledge. This chapter presents the Serenas Rule Language, a scope-based rule
language intended for RKDAs. The language provides constructs that programmers of RK-
DAs can use to capture community knowledge by distinguishing client data using scopes.
Section 6.1 outlines the foundations of the language. Next, the semantics of the language
is presented starting from Section 6.2. The architecture that supports the language is then
presented in Section 6.3. In the sections, examples of scoped rules are illustrated using
the office complex scenario. The chapter concludes by presenting notification scopes in the
language, used to provide selective responses to groups of clients1.

6.1 Foundations of the Scope-based Rule Language
Current rule-based languages lack abstractions that allow rule creators to effectively organ-
ise shared knowledge. We present the solution that this dissertation proposes, through the
use of scopes.

6.1.1 Design Factors of Serenas Scope-based Language
In this section we introduce the inspiration behind scope-based reasoning and proceed to
explain the design factors of introducing scopes in rules.

1Some observations described in this chapter have been published as [KRD17b].

119

120 Chapter 6. Scoped Rules in Serenas

Similarities with Temporal Reasoning in Rules

The use of scopes in rules follows a similar idea as in temporal reasoning in rules. Earlier
rules lacked formal mechanisms for representing temporal semantics and were instead fused
with normal rule logic [CM97]. Take the following rule, which checks the order arrival of a
pizza and awards a ‘gold’ customer a free pizza if the time exceeds 10 minutes.

IF order.time - delivery.time > 600000
AND order.id == delivery.id
AND order.customerrank == "gold"

THEN delivery.status = "free"

In the first line, the temporal constraint explicitly checks the time that the delivery
event occurred in the normal logic of the rule. In this case, the expression is simple, but
more extensive checks make programming such logic more complex and error prone.

As a solution the work by Allen in [All83] observed that temporal constraints in rules
can be programmed without the explicit mention of time in facts, but with syntax that
abstracts the temporal relationships between them. The rule language benefits by separating
the temporal logic from the rule logic and more complex concepts can be added, like interval-
based time semantics [MK93; WBG08]. The next example shows the same rule with this
type of syntax.

IF order.id == delivery.id
AND order.customerrank == "gold"
WITH delivery AFTER(10M) order

THEN delivery.status = "free"

The Notion of Scopes

Similar to earlier problems about reasoning of time in rules, current methods of data dis-
crimination force rule designers to procedurally embed structural logic (i.e., organisation of
clients) within the normal logic of the rule. This problem was illustrated in the InternServer-
RoomAccess rule of Listing 5.5 back in Section 5.2.3. The examples showed that explicitly
distinguishing between sources in the normal rule logic makes it difficult to control and
maintain rules in heterogeneous RKDAs.

As a solution, Serenas uses scope-based reasoning in rules to separate client discrimi-
nation logic from the normal rule logic. This is because structural constraints in rules
can be programmed without the explicit mention of fact sources, but with formal
syntax that abstracts their organisation and the structural relationships between
them.

The approach taken by Serenas is to embrace physical or logical groupings of clients and
their relationships.

Heterogeneous Groupings RKDAs typically contain some application-specific structuring
or organisation of clients (Section 5.3). Examples of groupings include research groups
in universities, departments in companies, branches in conglomerate businesses, hobby
categories in forums, area zones when monitoring distributed sensor networks, user lists
in Twitter, and campaigns in crowdsourcing activities [Zam+14]. Grouping clients is a
powerful concept because it can be effectively exploited for modularity in heterogeneous

6.2. Scoped Rules in Serenas 121

rule engines. This is the approach taken by Serenas to orchestrate rules to discriminate or
distinguish between instances of data from different clients.

In the office complex scenario, the logical structures for clients shown in Figure 5.2 can
be modelled into groups and subgroups, where each group is represented by a node in the
figure. To explain the concepts, this section proceeds with a limited number of groupings
shown in Figure 6.12. To model the groups, a client with an administrator role whose main
responsibility is to compose a set of groupings, or a group hierarchy of clients and deploy
them to the server3. The group hierarchy defines how the clients are organised. It is defined
via an adjacency list with the groups specified as a list of couples (a, b) if b is a parent of
a. For example for Figure 6.1c,

[(directors, lev1), (securityteam, lev1), (supervisors, lev2), (employees, lev3), . . .]

Heterogeneous Relationships Heterogeneous groupings are usually modelled according to
physical or logical relationships among the clients – project teams can belong to (sub)
departments, hobbies can be categorised into hierarchies of interest groups and sensor area
zones can be contained in levels of administrative units. Section 5.2.3 gave examples such
as locality as the main inspiration behind the relationships, but they can generally be
attributed to application-specific semantics. These relationships are significant to exploit
community knowledge. The example of the office complex groups illustrate a simple but
common relationship. The Kimetrica company has a systems development department
composed of user interface, database and programming teams. Users in the UI team can be
said to additionally belong to the systems department teams and the company Kimetrica
at large.

Serenas appropriates the term scopes to represent the common relationships between
groups in a hierarchy and designates that as a scope hierarchy. In Serenas scopes define (a
series of) edges traversing one or more nodes in the modelled group hierarchy. Scopes are
a significant control structure for heterogeneous rule-based languages because they specify
a selection of which rules that the inferencer will use at a particular time during execution.

In the next Chapter 7 we discuss the effect of using the concepts of groups and scopes
on the execution of the rule engine. In the upcoming sections we present the scope-based
language of Serenas.

6.2 Scoped Rules in Serenas

Serenas employs the use of scopes to discriminate between data from different heterogeneous
clients. This section outlines how scoping is used in the definition of scoped rules.

Serenas goes further than the concepts of isolation in multi-tenant, heterogeneous
contexts [Guo+07; J+07] by providing ways in which clients can further exploit
collective or community knowledge according to how they are organised.

2The evaluation in Chapter 8 is done on larger groups of clients for a similar scenario
3The administrator role is borrowed from similar roles in the distributed event-processing do-

main [MFP06]. In the multitenant domain such roles are designated tenant managers [KKH11].

122 Chapter 6. Scoped Rules in Serenas

complex

cubiclesoffices

clients/
spaces

general/
spaces

serverroomsparking

resto

(a) Office complex groups

departments

sys+
development

administration

finance
security

ui swdb

interns

levelB

levelA

employees

kimetrica

(b) Kimetrica consultancy groups
staff

lev2
lev3

interns

employees
securityteam

lev1

directors

supervisors

(c) Safari tours company groups

Figure 6.1: Structural groups of companies and physical locations

6.2. Scoped Rules in Serenas 123

6.2.1 Defining Scoped Rules
Serena provides scope-based reasoning in rules by extending the normal rule syntax with
scope-based definitions which specify structural constraints on the groups and the relation-
ships between them, simply called scopes. Scopes are thus abstractions that assist clients in
heterogeneous applications to define expressions that specify what data is applicable their
rules.

The grammar of the complete Serenas Rule Language is outlined in Figure 6.3 that
contains extensions to the syntax shown back in Figure 4.1. The additions to the basic
SRL are in the scopes and notifies constructs:

Scopes contain scope expressions, which can be grouped by the use of parentheses. Scope
expressions are always binary and can be expressed using pre-defined scope symbols,
explained later in this section. They can be combined with logical operators | and &.

Notifies contain notify expressions with unary operators used to define event notification
semantics, i.e., the expressions specify the specific clients to notify once a rule is activated.
Notify expressions can use scope symbols in the same way as scope expressions.

The supported scopes are illustrated in the next section.

6.2.2 Overview of Supported Scopes
In Serenas, the scoped operations that the framework supports are presented in Figure 6.2.
To clarify the differences, the operations are illustrated based on the client groups from the
office complex example shown in Figure 6.1. A description of each scope follows.

• subgroupof : This scope includes only the data items added by the group or any of its
subgroups in the scope. This scope is ideal for a departmental rule for sys development
that will only apply to members of that department or sub-departments (iu, db and sw).
See Figure 6.2b.
The dual of subgroupof is supergroupof .

• private: The private scope will exclusively capture data items from the specified group
and none else (not even its subgroups or parent group). This scope is well suited for
data that applies to an exact group, like in Figure 6.2c where we can specifically target
data from head employees in the levelB group and not high-level directors in levelA or
low-level interns.

• peerof : Only data items that originate from specific peers will be considered in this scope.
The peers include groups that are at the same level in the hierarchy. For instance the
security head would want to create a rule with this scope that applies to devices stationed
at the entrances of the sys development and administration departments, Figure 6.2a.

• visibleto: In this scope Serenas only captures data items from clients in groups that
share the same ancestor in the hierarchy. An example is capturing data that pertains
to security members together with all other ui members (Figure 6.2d).

• super: In this scope the runtime captures data items from all defined groups in the
hierarchy. Data will therefore be captured from all clients belonging to all the defined
groups.

The syntax of using the above scopes for programming rules declaratively is explained
in the next section.

124 Chapter 6. Scoped Rules in Serenas

departments

sys+
development

administration

financesecurity

ui swdb

a

b

(a) a peerof b
departments

sys+
development

administration

finance
security

ui swdb

a

b

(b) a subgroupof b, b supergroupof a

interns

levelB

levelA

employees

a"b

(c) a private b

departments

sys+
development

administration

financesecurity

ui swdb

a

b

(d) a visibleto b

Figure 6.2: Scopes supported in Serena – The scopes shown are in relation to the
group hierarchy from Figure 6.1

6.2. Scoped Rules in Serenas 125

P ∈ SRL ::= (t∗ | r∗ | p∗)+

t ∈ templates ::= template tn [cm] t∗s

r ∈ rules ::= rule rn c+ a∗ [s∗] [n∗]

c ∈ conditions ::= ce | te | b | nce
ce ∈ cond-elms ::= type tn slc∗

slc ∈ slot-constr ::= sn (== | ̸=) sv

te ∈ test-conds ::= e (< | ≤ | = | ≥) e
| e

p ∈ plugins ::= plugin pn f∗

f ∈ functions ::= fn e∗

e ∈ expressions ::= [pn.]fn [e]

| var | e δ e

nce ∈ ncond-elms ::= not c
b ∈ binds ::= var ← ce

ts ∈ temp-slot ::= sn [γ]

δ ∈ operators ::= + | − | ∗ | / | % | . . .
sv ∈ values ::= num | string | var
γ ∈ types ::= int | string | bool
a ∈ actions ::= assert tn [sn ⇒ e]

| retract var
| modify var with [sn ⇒ e]

| call [pn.]fn
s ∈ scopes ::= se sc se

se ∈ scopeexpr ::= sg (φ sg)
∗

φ ∈ scopeoperators ::= | | &
sc ∈ scopesymbols ::= (subgroupof | visibleto | peerof

| supergroupof | public | private
| lvisibleto | lpeerof | super) se

sg ∈ scopevalues ::= symbol | var
n ∈ notifies ::= (sc s+e) | sg+

var ::= V ariableName

cm ::= Comment

rn ::= RuleName

pn, fn ::= Plugin, FunctionName

tn, sn ::= TemplateName, SlotName

Figure 6.3: Compact grammar of the Serena Rule Language with scopes

126 Chapter 6. Scoped Rules in Serenas

6.2.3 Examples of Scoped Rules
Scoped rules consist of the usual rules in SRL with an additional scopes construct. The
scope extensions are based on a JSON representation of SRL syntax, as was explained in
Section 4.2.2. We give examples of scoped rules below, using the office complex scenario.

subgroupof The example of Protocol 4’s InternAccess rule using scope constraints is
shown in Listing 6.1. The protocol specified that interns are allowed access to Kimetrica’s
cubicle space only between working hours. The rule is similar to that shown in Listing 4.3
of Section 4.4. This time however rule utilises an additional scopes section in line 8.

In the scope definition, the bound condition variable $e from the condition in line 3 is
referenced to check whether the employee that performed the access request (in line 5) is
tagged to belong to the group interns4. This is done using the scope check subgroupof that
will ascertain that the employee is tagged with the group interns or any of its subgroups.

Listing 6.1: InternAccessRule with Scopes
1 {rulename: "intern_access",
2 conditions:[
3 {$e: {type:"employee", level: "intern", name:"?name"}},
4 {type:"accessdevice", name: "?dev", location:"cubicle"}},
5 {type:"accessreq", id: "?reqid", person: "?name", device: "?dev", time: "?t"}},
6 {type:"$test", expr:"(time.hourBetween(?t, 8, 20))"}
7],
8 scopes:["$e subgroupof interns"],
9 actions:[

10 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t"}}
11]
12 }

private A device can actually be added as a ‘client’ by mapping it onto the client group
hierarchy cubicles, leading to the modification of the InternAccess rule to that in List-
ing 6.2. The modified line 8 appends the scope construct private that specifies that the
device should originate from the specific cubicles group of the physical building hierarchy.

Listing 6.2: InternAccessRule with Scopes – Part 2
1 {rulename: "intern_access",
2 conditions:[
3 {$e: {type:"employee", level: "intern", name:"?name"}},
4 {$d: {type:"accessdevice", name: "?dev"}},
5 {type:"accessreq", id: "?reqid", person: "?name", device: "?dev", time: "?t" },
6 {type:"$test", expr:"(time.hourBetween(?t, 8, 20))"}
7],
8 scopes:["$e subgroupof interns", "$d private cubicles"],
9 actions:[

10 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t"}}
11]
12 }

4The tags are automatically added by Serenas as specified in Section 6.3

6.2. Scoped Rules in Serenas 127

visibleto Related to Protocol 2, the next rule in Listing 6.3 uses the visibleto scope in
line 9 to capture all accesses made by employee vehicles via an access code on devices only
for their own company parking slots.

Listing 6.3: KimetricaAccessRequests rule
1 {rulename: "kimetrica_vehicle_request",
2 conditions:[
3 {type:"car", no:"?no", carowner: "?onam"},
4 {$e: {type:"employee", name:"?onam"}},
5 {$d: {type:"accessdevice", name: "?dev"}},
6 {type:"accessreqcode", id: "?reqid", code: "?no", deviceid: "?dev", time:"?t"},,
7 {type:"$test", expr:"(time.hourBetween(?t, 10, 16)) && time.isWeekend(?t)"}
8],
9 scopes:["$e visibleto $d"],

10 /*...*.
11 }

peerof To monitor employee accesses at the administration and other departments (i.e.,
at the main entrances of departments) across the company, the EmployeeDepartmentAc-
cesses rule below uses the peerof scope. To capture departmental accesses by employees at
their own departments, the scope expression can add a "$e subgroupof $d" check.

Listing 6.4: SeniorFacultyAccess rule
1 {rulename: "employee_department_accesses",
2 conditions:[
3 {$s: {type:"employee", name: "?nam"}},
4 {type:"accessreq", id: "?reqid", person: "?name", device: "?dev"},
5 {$d: {type:"accessdevice", id: "?dev"}}.
6],
7 scopes: ["$d peerof administration"],
8 /*...*/
9 }

supergroupof For a more involving example, take the InternServerRoomAccess rule from
Listing 5.5 in Section 5.2.3. The rule implemented Protocol 7 that specified that interns
are only allowed into the server rooms when accompanied by a department leader during
appropriate hours. The rule implemented using scope-based syntax is shown in Listing 6.5.

Listing 6.5: Scoped rule for accompanied access to server rooms
1 {rulename: "intern_serverroom_access",
2 conditions:[
3 {$e1: {type:"employee", name:"?intname"}},
4 {$e2: {type:"employee", name:"?empname"}},
5 {$d: {type:"accessdevice", name: "?dev"}},
6 {type:"accessreq", id: "?reqid1", person: "?empname", device: "?dev", time:"?t1"},
7 {type:"accessreq", id: "?reqid2", person: "?intname", device: "?dev", time:"?t2"},
8 {type:"$test", expr:"(time.hourBetween(?t1, 8, 20)) && time.near(?t1, ?t2)"}
9],

10 scopes:["$e1 subgroupof interns","$e2 private levelB", "sysdevelopment supergroupof
↪→ ($e1 & $e2)", "$d subgroupof serverrooms"],

128 Chapter 6. Scoped Rules in Serenas

11 actions:[
12 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t1"}}
13]
14 }

The scope tests of the rule specify that the first employee should be an intern and
the second should specifically be a levelB employee (senior departmental employees). The
next supergroupof scope expression uses the & operator for defining multiple scope checks
in one expression. In this case the expression specifies that the sysdevelopment depart-
ment should encompass the departments that both employees are a part of by using the
supergroupof scope constraint. The final scope expression checks to see whether the device
is part of the serverrooms general group as per the specification of the protocol.

Evaluation. Compare the scoped rules with their classic versions, i.e., the InternAccess-
Rule in Listing 4.3 and 6.2 and the InternServerRoomAccess rule back in Listing 5.5 with 6.5.
In the classic implementations, distinctions between clients and their data sources need to
be hard-coded within the rule logic, which quickly becomes complex and prone to errors
as the number of clients and the relationships between them increase, or when the rela-
tionships become complex to enforce using rule semantics. Using scoped rules that logic is
separated, the rules are more succinct and provide flexible ways to specify such constraints.
Therefore scoped rules are a viable step forward in multi-user contexts requiring rule-based
reasoning, and can further be exploited by the rule engine to make computations faster
(this is the basis of the next Chapter 7). To give an overview of the technologies used to
implement scoped rules we present the architecture of the Serenas scoped framework.

6.3 Serenas Architecture

6.3.1 Client-server Interaction
The client-server interaction sequence introduced in Section 4.3 remains largely unchanged.
The modified interaction process is shown in Figure 6.4. An initial step for adding the
parent (or main) groups of the hierarchies starts the process. The parent groups for the
office complex are Kimetrica, Safari tours and Marketing and these can be added to the
system when registering the companies as tenants in the building, for instance. The client
groups are then added to the server, which then builds an efficient internal representation
based on MϑL

explained later in Section 7.1.4. The client groups are internally prefixed
with their parent group, and thus the names of client groups under a parent group (e.g., one
company) should be unique. This maps to the concept of a tenant in multitenant systems.

Thereafter, clients can at any time connect to the server through the client library
as earlier, but now they are required to specify their affinity to the main group and other
specific groups (Listing 6.6). Therefore a client always belongs to at least one group in
the hierarchy. The Serena client library stores this information internally for subsequent
communications with the Event Manager on the server.

Listing 6.6: Serenas client connecting to the server
1 var securityClient = new SerenaClient(serverip, 'kimetrica', 'security');

The scoping mechanism in the client library is implemented via metadata. When the
client designs a rule, the client library packages the rule and additionally tags the rule with
metadata containing information of the owner before being sent to the server. When the

6.4. Localised Scopes 129

Groups'are'added' to'the'
server.'

Serena'generates'and'encodes'
group'representation

Clients'send'scoped''rules'
and'events

Clients'connect'to'server,'new'
clients'specify'their'groups.'

Serena'incrementally'builds'the'rete'
network'and'performs'matching'
based'on'the'scopes'using'encoded'
operations

Serena'selectively'sends'scoped'
notifications'of'activated'rules

INITIALIZE ENCODE CONNECT SEND RULES
EVENTS

MATCH NOTIFY

Figure 6.4: Client-server interaction sequence in Serenas – The grouping struc-
tures are added initially, and then clients can specify the groups that they belong
to when connecting to the server.

client sends rules and event data, the Serena client library tags the data with the client
information stored as metadata when they initially connect to the server. Each data item
is thus tagged with its respective owner. Data items can further be tagged with the specific
groups that the data is applicable to according to stored metadata, e.g., a fact added by
a client in sysdevelopment5. The data is then added to the rule engine together with
its metadata. The scoping module can access the rule, event data and client metadata
to perform its functions. The client library subsequently receives notifications form rule
activations on the server and calls the suitable handlers in client code.

6.3.2 Server Architecture
The architecture of the Serena engine illustrated in Section 4.5 is now augmented to sup-
port scope-based reasoning in scoped rules. The illustration in Figure 6.5 presents a new
component, the Scoping Module that references the inference engine, the event manager
and rule/fact bases.

The Scoping Module is tasked with implementing and validating scope-based reason-
ing functionality in the framework. It internally represents the group structures of the
clients, builds an efficient scoping mechanism and modifies the matching strategy in the in-
ference engine to perform scope validations in rules. The Event Manager now additionally
stores the primary groups that connected clients belong to as metadata for the rule engine.
The Scoping Module is then used by the event manager to determine the recipients of no-
tifications from rule activations by informing clients selectively as per the rule definitions
and the stored metadata, e.g., the owner of the rule.

6.4 Localised Scopes
In a multiuser or multitenant setup, the scopes peerof and visibleto can be insufficient to
define scoped rules that only capture local data (i.e., in one tenant). For instance, the
scope peerof once applied to the office complex hierarchy would capture all data from
all companies, even if the intention was to capture data only from within one company
such as Kimetrica. The same concept is applicable to the visibleto scope. To solve these
problems, Serenas introduces local scopes that fulfil isolation properties. Remember that
as an initial startup step, the parent (or main) groups of each client are first added to the
scoping module’s internal representation of client hierarchies (Section 6.1.1). Local scopes

5More flexible configurations can allow some clients to specify the specific groups that a data item is
applicable to.

130 Chapter 6. Scoped Rules in Serenas

Rule%base Fact%base
Pattern%Matcher

Inference%Engine

Scoping%module

Event%
Manager

Clients’
events

Activation%
Scheduler

Figure 6.5: Scoped rule engine components – The scoping module interfaces with
the rest of the components to implement scope-based reasoning functionality.

are therefore only applicable to a hierarchy that the data is sourced from locally, i.e., those
groups that share a common ancestor that is this parent/main group. For example, in
Figure 6.1 the main groups are Kimetrica, Safari tours and Complex.

• lvisibleto: In this scope the runtime only captures data from clients in groups that share
a common ancestor in the hierarchy (that is not the parent group). This is semantically
equivalent to capturing data from one hierarchy within the parent group, as depicted
in Figure 6.6d. An example is capturing the data that pertains to a company’s security
members in a meeting with any other employees in departments.

• lpeerof : The data items that originate from peers under the same main group will be
considered in this scope, and will exclude peers from other hierarchies. For instance a rule
with this scope that applies to devices stationed at the entrances of the sysdevelopment
and administration departments, Figure 6.6b.

• public: In this scope the runtime captures data from groups under a common parent
group in the same hierarchy. The public scope therefore captures data within one com-
pany (Figure 6.6c). It can be used for rules that validate accesses of employees within
their own company.

A side-by-side comparison of the local scopes with the normal scopes is illustrated in
Figure 6.6. Note that public scope is a localised version of the super scope. As an example,
the Kimetrica security team can use public to draft protocols for its members, but the
security team of the office complex can draft protocols that are applicable to all its tenants
via super.

An example of a rule with localised scopes is shown in Listing 6.7. In the rule, simul-
taneous accesses made by two employees from the same rank in a particular room late at
night in the Safari tours company are detected. The lvisibleto check in line 11 confirms if
the employees are from the same rank and the public check confirms that the access device
is installed in the Safari tours company.

Listing 6.7: Localised rule for night employee access
1

2 { rulename: "staff_member_employee_access",
3 conditions:[

6.4. Localised Scopes 131

staff

lev2
lev3

internsemployees
securityteam

lev1

directors supervisors

tours

departments

sys5
development

administration

financesecurity

ui swdb

interns

levelB

levelA

employees

kimetrica

a

(a) peerof a

staff

lev2
lev3

internsemployees
securityteam

lev1

directors supervisors

tours

departments

sys5
development

administration

financesecurity

ui swdb

interns

levelB

levelA

employees

kimetrica

a

(b) lpeerof a

departments

sys+
development

administration

finance
security

ui swdb

interns

levelB

levelA

employees

kimetrica

a

(c) visibleto a

departments

sys+
development

administration

finance
security

ui swdb

interns

levelB

levelA

employees

kimetrica

a

(d) lvisibleto a

132 Chapter 6. Scoped Rules in Serenas

staff

lev2
lev3

internsemployees
securityteam

lev1

directors supervisors

tours

departments

sys5
development

administration

financesecurity

ui swdb

interns

levelB

levelA

employees

kimetrica

a

(e) super a

staff

lev2
lev3

internsemployees
securityteam

lev1

directors supervisors

tours

departments

sys5
development

administration

financesecurity

ui swdb

interns

levelB

levelA

employees

kimetrica

a

(f) public a

Figure 6.6: Comparing local and global scopes in Serenas– The scopes shown are
in relation to the group hierarchy from Figure 6.1

4 {$e1: {type:"employee", name: "?nam1"}},
5 {$e2: {type:"employee", name: "?nam2"}},
6 {type:"accessreq", id: "?req1", person: "?nam1", time: "?t1", device: "?dev"},
7 {type:"accessreq", id: "?req2", person: "?nam2", time: "?t2", device: "?dev"},
8 {$d: {type:"accessdevice", name: "?dev"}},
9 {type:"$test", expr:"(time.hourBetween(?t1, 0, 4)) && time.diff(?t1, ?t2, 5)"}

10],
11 scopes:["$e1 lvisibleto $e2", "$d public tours"],
12 actions: [/* ... */]
13 }

6.5 Scoped Notifications
As mentioned in Section 2.2.4, RKDAs require availability of an active feedback mechanism.
When a rule is activated in an RKDA, there should be a way to notify its respective clients.
Bundling clients into groups can be exploited to limit the distribution of client notifications.
This approach is similar to that applied in event-based systems via visibility roots discussed
in Section 5.4.4. For instance, in the office complex once an access request is granted then
the effect should be displayed on the correct dashboards of the clients of the security team
in the relevant company, as per the requirements set in the scenario in Section 2.3.

A basic approach is to notify the client that added the rule. Other application scenarios
may have more stringent requirements placed on notification semantics (i.e., who to notify)
when rules are activated: notifying a particular group rather than only the ‘owner’ of the
rule or the client that added the rule. This is due to the structured nature of RKDAs that
this dissertation targets.

6.5. Scoped Notifications 133

Serenas supports such notification semantics whenever a scoped rule has been acti-
vated. This is done through notify construct in rules, specified in the SRL syntax gram-
mar back in Figure 6.3. Listing 6.8 shows the same InternServerroomAccess rule this time
with the notify construct in Line 14. The construct specifies the clients or groups to notify
once the rule is fired using notification scopes.

Notification scopes are similar to the matching scopes, however in this case they
enforce notification constraints to a group, related groups, or direct clients.

Notification scopes require Serenas to retrieve and notify all connected clients in all
the groups that are applicable to a particular notification scope definition. The notify
construct can be used with scopes specified in Section 6.2.2 as well as local scopes in
Section 6.4.

In the Listing for InternServerRoomAccess, the rule specifies that Serenas should
notify members of security group and any of its subgroups. With the private scope
Serenas only notifies clients that are in the specified group.

Listing 6.8: Scoped rule for accompanied access to server rooms - with notify
1 {rulename: "intern_serverroom_access",
2 conditions:[
3 {$e1: {type:"employee", name:"?intname"}},
4 {$e2: {type:"employee", name:"?empname"}},
5 {$d: {type:"accessdevice", name: "?dev"}},
6 {type:"accessreq", id: "?reqid1", person: "?intname", device: "?dev", time:"?t1"},
7 {type:"accessreq", id: "?reqid2", person: "?empname", device: "?dev", time:"?t2"},
8 {type:"$test", expr:"(time.hourBetween(?t1, 8, 20)) && time.near(?t1, ?t2)"}
9],

10 scopes:["$e1 subgroupof interns","$e2 private levelB", "sysdevelopment supergroupof
↪→ ($e1 & $e2)", "$d subgroupof serverrooms"],

11 actions:[
12 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t1"}}
13],
14 notify: ["private security"]
15 }

Notifying Direct Clients In addition, to notify one particular client, the notify construct
can be prefixed with a ‘#’, for example "notify #securityhead". The event manager
will directly send the notification to the specified client. If a rule does not contain any
notification constructs, then the framework will not send any notifications when the rule is
activated.

Reacting to Client Notifications In client code, in order for client applications to react
to a notification from a rule with a group notification definition, the client specifies a
onGroupRuleActivated handler with the parameters shown in Listing 6.9. The client
code for receiving such notifications with scopes using JavaScript syntax in a typical web
application is shown. As before, a client connects to the server in line 1. The client specifies
code that will be executed whenever a notification for a scoped rule is detected, with the
arguments of the rulename, the facts, and the owner that added rule (line 3).

134 Chapter 6. Scoped Rules in Serenas

Figure 6.7: Building scoped rules graphically using SerenaUI

Listing 6.9: Serenas reacting to notifications in client code
1 var securityClient = new SerenaClient(serverip, 'kimetrica', 'security');
2 //...
3 securityClient.onGroupRuleActivated(function(rulename, facts, owner){
4 // group rule was fired
5 //...
6 });

6.6 SerenaUI: Graphical Scoped Rules Builder
One of the challenges of the usurpation of rule-based systems is that end-users can have
a low understanding of rule design. This is due to issues such as complexity of rules
and non-existent standardised procedures of representing rules [Cla83]. The solution that
most modern rule engines provide is to expose rule creators a intermediate way to design
rules: usually using a domain-specific language [GDJ99] and graphical interfaces to design
rules [MP90].

The Serenas framework embraces visual programming to assist users to create scoped
rules. SerenaUI is an interactive, graphical Web-based rule-building tool based on Blockly [Dev16],
a library the provides functionality for code generation from arrangements of GUI compo-
nents consisting of graphical blocks.

In SerenaUI users employ the use of interlocking, graphical and composable blocks to
define scoped rules. It uses a parser that follows the syntax of the Serena rule language
(SRL) shown in Figure 6.3 when generating scoped rules from graphical components. A
rule designer can request the http://<host>/serenaui page on a browser, where after
logging in Serenas will retrieve specific groups, templates etc that are relevant to the client.
For instance, a security person in Kimetrica can log in and the framework will deliver the
relevant templates as the rule-building components on the graphical menu ‘Rule Operators’.
Rules can then be built using blocks that are used to build rule artefacts. Supported blocks
are condition variables, literals, arithmetic or boolean operators as shown in Figure 6.7.
Once the rule design is done the user can add the rule which will generate a rule in SRL
that will be sent to the server via the Serena client library. The rule will then be added to
the rule engine as outlined in Section 4.3. SerenaUI provides thus ways in which rules can
be created and deployed graphically, which can be beneficial to a number of end-users.

6.7. Chapter Summary 135

6.7 Chapter Summary
This chapter presented the scoped Serena Rule Language. The foundations of the lan-
guage were first introduced, giving the reasons for embracing the heterogeneity of clients in
RKDAs, in order to provide constructs that can be used in scoped rules. The syntax and
semantics of the framework were then presented with a focus on how rule designers can pro-
gram scoped rules to capture data from heterogeneous clients. Examples of using scopes for
selective client notifications were also illustrated. The SerenaUI graphical rule-building tool
was presented to as an alternative method to design SRL rules. Throughout the chapter
the motivating example of the office complex system was used to clearly explain the scoped
rule language. Given structured knowledge representations, scoped rules provide ways in
which developers of RKDAs can formulate rules to capture community knowledge. The
next chapter delves into the details of how scope-based reasoning is implemented internally
in the rule engine.

7
Serenas

The Reentrant Cloud-based Rule Engine

Home affairs should not be talked about in the public square.

Kenyan proverb

The previous chapter introduced scoping constructs in the Serena Rule Language.
This chapter presents Serenas, a scoped extension to the Serena framework presented in
Chapter 4. Serenas uses the physical or logical organisation of multi-user applications
to create an encoding. The encoding eases the computational workload of the inference
algorithm when distinguishing client data into scopes. Section 7.1 outlines how the scope-
aware rule engine performs its processing cycles. The following sections from Section 7.1.3
explain how scoped rules are processed in the execution cycle of the Serenas rule engine,
focusing on the motivating office complex example. A further optimisation to the approach
known as scope-based hashing is presented in Section 7.4.2. The chapter concludes by
revisiting requirements for supporting heterogeneity for RKDAs in Section 7.6 and finally
presents a summary of the main points in Section 7.71.

7.1 The Serenas Encoding Scheme
Rule engines require orchestration within rules to discriminate or distinguish between in-
stances of different entities. In Serenas this is fulfilled by using scoped rules. In addition,
Serenas exposes constructs that provide ways in which clients can further exploit relation-
ships between them to source data with regards to their own organisational hierarchy or
layout. This is in line with the vision of exploiting collective or community knowledge.
This chapter discusses how the rule engine uses scopes in rules to ease the computational
workload of its main processing component, the inference engine.

1Observations described in this chapter have been published as [KRD17a; KRD17b].

137

138 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

7.1.1 The Need for an Efficient Encoding
Scoped rules in Serenas were introduced in Chapter 6. When defining scoped rules, scope
expressions specify which client data is applicable to a rule. Moreover, we have seen that
scopes are also useful to specify which data from groups of clients is applicable to a rule.

When a scoped rule is added to the server, the rule engine creates its Rete graph.
We have seen that adding the rule to the graph naïvely on the server’s rule engine will
cause it to process all the data from all clients. This forces the execution cycle of the
engine to perform excessive computations when only part of the data may be applicable to
the rule. With scoped rules, the rule engine can utilise the information provided by scope
expressions. The Serenas rule engine is scope-aware, therefore when scoped rules are added,
the inference engine uses the expressions to annotate Rete nodes with scope information.

During execution, the inference engine still needs a way to ascertain whether partic-
ular data applies to a scoped node. The different scopes that can be used in rules were
presented in Section 6.2.2. Take the example of a node with a scope check <$e subgroupof
sysdevelopment>2. To find out whether a particular data item is applicable to the node,
the engine would need to transitively test whether the employee is in the group or any of its
subgroups ui, db or sw and their children, if any. Other scopes have different relationships
requiring different tests, which further complicate the process of checking if a data item is
compatible with a particular Rete node through its annotated scope check. Instead of per-
forming these checks using these naïve approaches, we need an efficient encoding that can
quickly determine compatibility of data in a heterogeneous rule engine during execution.
This way, the engine can quickly ascertain whether a particular rule scoped with a specific
group should fire whenever data arrives, preferably using constant-time operations (or as
defined in [Aı̈t+89], virtually constant-time operations).

The vision is to use an encoding method that rather than performing scope checks
that are computationally expensive such as path traversals in hierarchical client or-
ganisation structures, performs near-constant time operations to entirely determine
if a data item passes a scope check. We precompute the scope check, store and
maintain it efficiently as an encoding that will be used to expeditiously process
scope checks.

7.1.2 Selecting an Encoding Scheme
To select an encoding mechanism used to process scope checks in Serenas, there are several
aspects to consider.

First, the method should provide ways of capturing different arrangements of clients
via client hierarchies. The encoding method should provide ways of defining how various
clients are organised into groups, and the different relationships between them. Different
scope tests will require different mechanisms to test for inclusion, so the chosen encoding
method should encompass these factors.

Second, the encoding method can have an extensive pre-computation (e.g., longer
compile time) in order to develop a more efficient runtime encoding. This is because it
will run on a Web server, which typically have run-once characteristics that can perform
lengthy initialisations for the added benefit of faster runtime execution.

2In this text we denote scope checks with angle brackets.

7.1. The Serenas Encoding Scheme 139

Finally, the encoding should be able to be implemented in the Rete algorithm in such
a way that operations for determining compatibility of data items (as explained in the
previous section) should map to the normal processing cycle of the inference engine.
A discussion of encoding methods based on these considerations follows.

7.1.3 Encoding Methods
There exist similar work to perform encodings on hierarchies, commonly referred to as
closure encoding tests [ZG01], which have a diverse range of applications. This section
briefly mentions various encoding methods for these types of tests and their suitability for
use in the inference engine.

Encoding Methods

Simple methods. A simple approach is relative numbering [SPT83], a process that pro-
duces an ordered numbering of all elements. Each node stores a numbered range [a, b] (the
max and min numbers) of its successors, which is used to test if an element is included in
the node’s successors.

A separate method is Cohen’s encoding. With each element in a hierarchy it stores
its level (or height), its unique ID in the level and an array containing all its predecessors
in the hierarchy, also indexed per level [Coh91]. A predecessor test involves checking if an
element exists in the array via its ID.

Advanced Methods. In the packed encoding method [VHK97] the hierarchy is modified
and partitioned into slices where no two elements in one slice have common descendants. An
array is created for each element based on the identified slices. An element is a predecessor
if it is contained in another element’s slice arrays.

The range compression method [ABJ89] generalises the relative numbering method
through the use of multiple [a1, b1], ..., [an, bn] disjoint intervals for an element rather than
a single interval. To test if an element is included in another requires a check if its assigned
ID is included in any of the element’s descendant intervals – making testing time dependent
on these intervals.

One of the most explored areas is in the bit-vector encoding method [Aı̈t+89; HN94;
RT01]. The method is a hierarchical encoding method where ordering relations are embed-
ded onto lattices used to encode bit vectors. Each element e is encoded as a bit vector Ve of
a number of bits not larger than the total number of elements n. If in the vector Ve[i] = 1
then we say e has gene i under the encoding. Suppose another element a is encoded as bit
vector Va also using the same encoding. With the bit-vector encoding methods, to check
if a is a successor of e we mask their two bit vectors to check the genes of the result: (Ve

and Va) = Ve. An encoded test using the bit vector encoding therefore uses elementary
bitwise boolean operations.

Discussion. The simple methods have a limitation of only supporting single-parent hi-
erarchies, and are unsuitable because they severely limit the types of supported client
hierarchies. The various advanced methods presented also have some limitations. Aside
from having restrictions on the composition of the hierarchy to be partitioned, the packed
encoding and range compression methods have testing processes that become more complex
with increasing hierarchies due to increasing slices or intervals. They will thus negatively
affect the performance of rule engine execution.

140 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

departments

sys+
development

administration

finance
security

ui swdb

interns

levelB

levelA

employees

kimetrica

Figure 7.1: The Kimetrica hierarchy

Ultimately, the requirement of fast operations on incoming data leads to the eventual
compromise between simplicity of fast encoded operations and saving space. The type
of encoding can be chosen depending on the needs of the system3. In a standard Rete
implementation however, matching cycles typically perform billions of join operations in
beta nodes [Doo95]. Keeping operations simple and fast greatly benefits the fast execution
of a chosen encoding, rather than having a compact space and more complex encoding
tests. The bit-vector encoding method does exactly that. Its main aim is to sacrifice
space for faster speed and simpler encoding tests. The bit-vector encoding method also
enumerates all group elements in the hierarchy, making it possible to perform the various
scope operations of the framework. The binary representations of elements also allow
the framework to perform a technique similar to specialization in [ZG01], by using bit
vectors to pre-compute values used to optimise the encoding test process even further.
This is the basis of the scope-based hashing method which we explain later in Section 7.4.
Consequently, Serena’s encoding method is based on the faster bit-vector encoding method.
The foundations of the technique is explained next.

7.1.4 The Encoding Process
The encoding method that Serena employs is based on the implementation by [Aı̈t+89]
which has formal foundations in order theory. This section highlights this encoding method
and presents the specifics of the encoding process. The method follows the formal definitions
detailed in Appendix A.1.1. To make the explanation more clear and concise, we utilise
the hierarchy for Kimetrica outlined in Section 6.1.1. For reference, the hierarchy is shown
again in Figure 7.1.

The Groups Hierarchy as a Poset

As explained in Section 6.3, Serena receives the client group hierarchy from an administrator.
The hierarchy is a partially-ordered set (poset)4. The example hierarchy can be represented
as a poset (P,⩽) with the binary relation ⩽ defined as ‘is subgroup of ’ or ‘is part of ’.

The poset P has an element (a, b) iff a is part of b. Examples in the hierarchy ele-
ments include (administration, departments), (security, administration), (sw, sysdevt) and

3The choice of encoding that provides efficient operations also becomes a tradeoff between static and
dynamic approaches, which are at opposite ends of a spectrum of good performance vs high flexibility. This
is discussed in Section 9.3.1.

4For definitions, see Appendix A.1.1.

7.1. The Serenas Encoding Scheme 141

departments

sys+
development

administration

finance
security

ui swdb

interns

levelB

levelA

employees

�

�

kimetrica

Figure 7.2: The hierarchy converted into a lattice L

(interns, levelB). With P we can perform well-defined operations such as calculating the
bounds (LUB, GLB)4 and extrema (maximals & minimals). For instance the maximal in
the group hierarchy of Figure 7.1 is kimetrica. If that group is omitted, then the maximals
are departments and employees.

Nevertheless, when processing poset operations the engine would still have to traverse
all the elements of the poset. A more efficient structure to represent the elements is dis-
cussed next.

The Groups as a Lattice

The Serenas framework converts the groups poset to a lattice L as outlined in Appendix A.1.2.
This leads to the hierarchy depicted as the Hasse diagram4 in Figure 7.2. The benefit of this
conversion is that a lattice represents the group hierarchy in a form that is more efficient
to encode and to compute than the naïve poset representation.

Encoding the Lattice

With the lattice L, Serenas performs a customised bit-vector encoding process ϑ that lays
its basis on the method by Aït-Kaci [Aı̈t+89]. The formal background is outlined in detail
in Appendix A.3. The process performs calculations for all groups in the group hierarchy.

Example. The calculations made to come up with the codes for elements in L depicted
in Figure 7.2 are shown below. Note that the codes are in binary notation. At each step,
Serenas also calculates the level of each group represented in the matrix.

ϑ(⊤) = 0

ϑ(kimetrica) = [ϑ(⊤) ∨ 20] = [0 ∨ 20] = 1

ϑ(employees) = [ϑ(kimetrica) ∨ 21] = [1 ∨ 21] = 11

ϑ(departments) = [ϑ(kimetrica) ∨ 22] = [1 ∨ 22] = 101

ϑ(levelA) = [ϑ(employees) ∨ 23] = [11 ∨ 23] = 1011

142 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

� kimeempl dept levA admi sysd levB fina secu sw db ui inte �

� 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kime 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

empl 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

dept 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

levA 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

admi 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

sysd 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0

levB 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0

fina 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0

secu 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0

sw 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

db 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0

ui 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0

inte 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0

� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 7.3: The encoded matrix MϑL for the simple hierarchy shown in Fig-
ure 6.1b. The entire matrix for all the company hierarchies in the example is
shown in A.1.

ϑ(administration) = [ϑ(departments) ∨ 24] = [101 ∨ 24] = 10101

ϑ(sysdevt) = [ϑ(departments) ∨ 25] = [101 ∨ 25] = 100101

ϑ(levelB) = [ϑ(levelA) ∨ 26] = [1011 ∨ 26] = 1001011

ϑ(finance) = [ϑ(administration) ∨ 27] = [10101 ∨ 27] = 10010101

ϑ(security) = [ϑ(administration) ∨ 28] = [10101 ∨ 28] = 100010101

ϑ(sw) = [ϑ(sysdevt) ∨ 29] = [100101 ∨ 29] = 1000100101

ϑ(db) = [ϑ(sysdevt) ∨ 210] = [100101 ∨ 210] = 10000100101

ϑ(ui) = [ϑ(sysdevt) ∨ 211] = [100101 ∨ 211] = 100000100101

ϑ(interns) = [ϑ(levelB) ∨ 212] = [1001011 ∨ 212] = 1000001001011

ϑ(⊥)= [ϑ(ui)∨ϑ(db)∨ϑ(sw)∨ϑ(security)∨ϑ(finance)∨ϑ(interns)∨ 213] = 11111111111111

As indicated by the steps in Appendix A.3, each result is reversed and a 1 added to
its most significant bit (leftmost column) before being inserted in the matrix. The result
is a binary matrix encoding MϑL

(read as the matrix M produced from encoding L using
ϑ) of the group hierarchy shown in Figure 7.3. If i and j are indices of groups a and b
respectively, and group(i) corresponds to the group a at that index, then the encoding
MϑL

has the following properties:

i) The labels on the rows of MϑL
correspond to the groups in L; and similarly for the

columns. The first row corresponds to ⊤ and the last row to ⊥. ⊤ has only one bit
value set to 1 while in ⊥ all bit values are set to 1.

ii) An entry MϑL(i,j) has a 1 if group(i) = group(j) or if group(j) is an ancestor of
group(i) in L, and 0 otherwise.

7.1. The Serenas Encoding Scheme 143

iii) An entry MϑL(j,i) has a 1 if group(i) = group(j) or if group(j) is a descendant of
group(i), and 0 otherwise.

iv) Group a at index i is a maximal in P iff the row MϑL(i,∗) has a 1 only at MϑL(i,i) and
at MϑL(i,⊤).

v) Group a at index i is a minimal in P iff the column MϑL(∗,i) has a 1 only at MϑL(i,i)

and at MϑL(⊥,i).

The notation MϑL(i,∗) indicates the row vector at index i, and likewise MϑL(∗,i) the
column vector. The properties for ii) and iii) follow from the transitive properties of the
underlying poset (Appendix A.1.1). The next properties iv) and v) are validated.

7.1.1 Proposition. Given a lattice L encoded as a matrix MϑL
, the encoding of group g at

index i in the matrix and a row vector for g, Vg = MϑL(i,∗), then if Vg has only 2 column
values set to 1 then g is a maximal in the poset P represented by the lattice L.

Proof. It is known that one of the 1 bit values in Vg corresponds to the group g due to the
reflexive properties of the poset P used to form L. Each element in a vector V in MϑL

, is
appended a bit value 1 in the encoding process to represent the topmost ⊤ element, which
can be ignored since ⊤ /∈ P . Therefore g has no other predecessors (other than ⊤), and is
subsequently a maximal in P .

The proof of property v) follows from the Duality Principle of orders (Definition A.1.2.1).
An additional product of the encoding process is that it generates the Level (defined

in Appendix A.3) of each group, which Serenas stores internally. For instance,

Level(administration) = Level(departments) + 1

= Level(kimetrica) + 1 + 1

= Level(⊤) + 1 + 1 + 1

= 0 + 1 + 1 + 1

= 3

(7.1)

The levels assist us to define local maximals.

• A group c is a local maximal in P if it is an immediate descendant of a maximal, i.e., c
≺ ⌈P ⌉.

• A group d is a local minimal in P if it is an immediate predecessor of a minimal, i.e.,
⌊P ⌋ ≺ d.

Definitively, a local maximal is actually a maximal when its parent groups are removed
from the poset5. Ifmg is a maximal andml is a local maximal we can conclude the following
from the above definition of local maximals (and equation A.1),

∀mg ∈ P, Level(mg) = 1 (7.2)

∀ml ∈ P, Level(ml) = 2 (7.3)
5The Duality Principle confirms the same for local minimals, but these are of little interest to our

approach.

144 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

We will henceforth use the terms global maximals and maximals interchangeably, but
we will specifically refer to local maximals (to distinguish them from global maximals).

For faster retrieval, the row indices for all the maximals and local maximals in the
matrix are also stored by the scoping module in the engine (described in Section 6.3).
The next sections will now show how the encoding is used to perform scoping within the
inference engine.

7.2 Supporting Reentrancy via Scope-based Reasoning
This section explains how the data from encoding MϑL

is used to efficiently implement
scoping in the inference engine. The scoping module (introduced in Section 6.3) is mainly
responsible for enforcing the scoping semantics in various components of the Serena server.
It creates and stores the client information needed to support the scoping operations in
rules in the inference engine. It internally represents the organisation of clients, and builds
an efficient encoding mechanism for scopes. This encoding affects the matching strategy
in the inference engine, and is used by the event manager to determine the recipients of
notifications.

The scoping module therefore performs three operations. Firstly, it uses scope def-
initions in rules to modify the node reuse process of the Rete graph. Secondly, it
uses stored scope expressions in nodes to influence the matching process. Thirdly,
it uses notify directives in rules for invocation of clients after rule activations.

7.2.1 Implementing Scoping with MϑL

The encoding with MϑL
is the basis of enforcing scoping in the execution of the inference

engine. To facilitate this, Serenas adds scope tests at appropriate nodes when building
the Rete network, and evaluates scoping operations in the beta network’s beta join nodes
during matching. These tests are based on the definitions outlined in Section 7.1.4. Given
that i and j are indices of groups a and b respectively in the matrix MϑL

, the tests include
the following:

I visibleto – To perform a scope check of a visibleto b the Serenas checks if the result
of MϑL(i,∗) ∧MϑL(j,∗) is not ⊤ as per property i). To perform a scope check of a
lvisibleto b it additionally checks that this result is not a global maximal as per
property iv).

II peerof – To check if a peerof b Serenas checks whether Level(a) = Level(b) from the
process of encoding MϑL

. To check if if a lpeerof b it further checks if a visibleto
b.

III subgroupof – A scope check of a subgroupof b is true if the result ofMϑL(i,∗)∧MϑL(j,∗)
= MϑL(j,∗) as per property ii). Conversely, b is a supergroupof a as per property iii).

IV private – To find out if a private b it can check if MϑL(i,∗) ∧MϑL(j,∗) = MϑL(i,∗)
and MϑL(j,∗) ∧MϑL(i,∗) = MϑL(j,∗) as per property ii) and iii). In practice, the check
MϑL(i,∗) = MϑL(j,∗) suffices.

7.2. Supporting Reentrancy via Scope-based Reasoning 145

V super – A scope check of a super b passes if the result of MϑL(i,∗) ∧ MϑL(⊤,∗) =
MϑL(⊤,∗) as per properties i) and ii).

Note that the visibleto scope check is equivalent to a public check if there exists a
main group in every client hierarchy. Typically, groups a and b are extracted from group
metadata on facts inserted into the Rete graph. We give a concrete example of how these
tests are used by Serenas during the execution cycle in Section 7.3.

To chain the operations Serenas employs the operators & and | to designate the boolean
and and or respectively. All the above tests have distributive properties, for instance6:
<a subgroupof (b | c)> translates to <(a subgroupof b) | (a subgroupof c)>
<a subgroupof (b & c)> translates to <(a subgroupof b) & (a subgroupof c)>
Consequently, by default the framework treats facts tagged with multiple groups from the
hierarchy as implicitly having the or operator, as with the first case.

An interesting property can be observed when examining the columns of the encoded
matrix MϑL

. This property is useful for performing checks for descendants of particular
groups. It is also is used by the framework for retrieving all descendants of a given set of
groups, particularly useful when deciding which clients to send notifications to (discussed
in Section 7.3.2).

7.2.1 Theorem. Given the encoding of group g, g ∈ L with index i in the matrix MϑL
and

a column vector for g MϑL(∗,i), then the subgroups of g are the elements where MϑL(∗,i)=1.

Proof. In the matrix a bit element at index j in the row vector MϑL(i,∗) that corresponds
to a group b is 1 if b is a supergroup of g and 0 otherwise. It follows that in every other
row MϑL(k,∗) of a group h ∈ L a bit element MϑL(k,i) has a 1 whenever g is a supergroup
of h, or inversely, h is a subgroup of g. Consequently, the vector MϑL(∗,i) of any group g
in MϑL

represents all subgroups of g.

Examples of some of the operations are presented in subsequent sections.

7.2.2 Node Reuse with Scopes
Serenas follows the semantics of the Rete algorithm to promote structural similarity (ex-
plained in Section 4.4.2) with scopes. When a rule is added to the engine, as usual the
engine checks if some of the conditions are compatible with existing nodes in the graph.
Serenas further takes the scope definitions in rules and uses these to place scope expressions
in the graph whenever a node in the beta network is created. It attempts to find compatible
nodes for reuse and, depending on the situation, can choose to reuse or append new nodes.

Example 1. The process is best clarified with an example. Consider the rules shown in
Listing 7.1.

Listing 7.1: Example access rules
1 [{ rulename: "example_access_rule1",
2 conditions:[
3 {$e: {type:"employee", name: "?empname"}},
4 {$d: {type:"accessdevice", name: "?device"}},
5 {type:"accessreq", id: "?reqid", person: "?empname", device: "?device"},
6 /*...*/
7],

6We denote scope checks with angle brackets.

146 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

8 scopes: ["$e peerof lev1"]
9 },

10 { rulename: "example_access_rule2",
11 conditions:[
12 {$e: {type:"employee", name: "?emp"}},
13 {$d: {type:"accessdevice", name: "?dev"}},
14 {type:"accessreq", id: "?reqid", person: "?emp", device: "?dev"},
15 /*...*/
16],
17 scopes: ["$e peerof lev3"]
18 }]

root

employee access
request

access
device

Alpha Network

a2

terminal
t1

.....

b1

r.persone.name

b2

r.device d.name

Beta Network

<e/peer/lev1>

a1 a3

(a) After addition of first rule

root

employee access
request

access
device

Alpha Network

a2

terminal
t1, t2

.....

b1

r.persone.name

b2

r.device d.name

Beta Network

<e/peer/lev1/lev3>

a1 a3

(b) After addition of second rule

Figure 7.4: Reusing scoped nodes in the Rete graph.

Figure 7.4a shows the graph when the first rule in lines 1 to 9 is added. The beta node
b1 is annotated with the scope check for the first rule. When the second rule in lines 10
to 18 is added, Serenas notes that aside from being structurally similar to the existing
graph, the rule also has a compatible scope check in line 17. This is because of the peerof
check in the second rule can be reused with that of the first rule: level1 and level3 are
on the same level in the hierarchy, computed according to the definitions in the previous
Section 7.2.1. The terminal node will now activate both rules. The node reuse process is
explained next.

Node reuse in Standard Rete. When adding a rule to an existing graph, the traditional
Rete algorithm proceeds by comparing the incoming rule’s conditions to pick an existing
node n for similar patterns that can be reused, starting from the root node. Once an
existing node n is picked, the algorithm can proceed in one of two ways depending on the
compatibility of the patterns of the identified node with the incoming conditions.

- The node n cannot be reused as the conditions are not compatible, therefore the new
node will be created as a sibling of this node.

- The conditions are compatible and the current node n can be reused, thus no new
node will be created and this new node will be returned.
This proceeds iteratively until all the rule conditions are processed, and ends once its

terminal node is created.

7.2. Supporting Reentrancy via Scope-based Reasoning 147

Node reuse in Serenas. As specified above, node reuse in traditional Rete proceeds to reuse
a particular existing node only if the node’s patterns are same as those of the incoming
rule conditions. Serenas appends an additional scoped node reuse process by checking if
the scope test of the existing node is compatible with that of the defined scope test of the rule
to be added. Compatibility of rules is based on the properties in Section 7.2.1 performed
as follows:

- If the existing node is a node with a super scope, then it can always be reused.

- If the existing node is any of the other scopes, then it can only be reused if the
incoming scope is the same and the operands are compatible as per their respective
properties.

Example 2. In another example, consider the code shown in Listing 7.1. The listing also
shows two rules, where the second is added after the first.

Listing 7.2: Example access rules
1 [{ rulename: "example_access_rule1",
2 conditions:[
3 {$e: {type:"employee", name: "?empname"}},
4 {$d: {type:"accessdevice", name: "?devname"}},
5 {type:"accessreq", id: "?reqid", name: "?empname", dev: "?devname"},
6 /*...*/
7],
8 scopes: ["$e subgroupof departments"]
9 },

10 { rulename: "example_access_rule2",
11 conditions:[
12 {$e: {type:"employee", name: "?nam", badgeid: "?badgid"}},
13 {$d: {type:"accessdevice", name: "?devname"}},
14 {type:"accessreq", id: "?reqid", name: "?nam", dev: "?devname"},
15 /*...*/
16],
17 scopes: ["$e subgroupof administration"]
18 }]

When example_access_rule1 is initially added, the resultant Rete graph is built as
usual and is shown in Figure 7.5. Now, supposing the second example_access_rule2
is added, then per condition, Serenas sees that the alpha memory for employee and
accessdevice can be reused. The next action is to find out if beta node b1 can also
be reused, which follows the operations listed above. Since adminstration is a sub-
group of departments, Serenas can reuse this node. Remember that the scope check <$e
subgroupof administration> still needs to be performed; and therefore the new node b3
is added as a child node for n1 as in Figure 7.5b.

In some cases, however, the node b1 would not be reused, resulting in the graph
shown in Figure 7.5c: we discuss such situations later in Section 9.3.4. Generally, when
all beta nodes have the scope super then the scoping algorithm is functionally equivalent
to the vanilla Rete algorithm. Moreover, due to the dynamic addition of rules, in practice
the node reuse algorithm is dependent on the order that rules are added into the engine.
Any newly-added rule that would result in some form of node reordering will simply be
appended to the graph. This policy is preferable because it has the least effect on the

148 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

root

employee access
request

access
device

Alpha Network

a2

terminal
t1

.....

b1

r.persone.name

b2

r.device d.name

Beta Network

<e/subgroupof depts>

a1 a3

(a) First rule added
root

employee access
request

access
device

a2

terminal
t1

.....

b1

r.namee.name

b2r.dev
d.name

<e*subgroupof depts>

a1 a3

terminal
t2

.....

b3r.dev
d.name

<e*subgroupof admin>

(b) Second rule added: option 1

root

employee access
request

access
device

a2

terminal
t1

.....

b1

r.namee.name

b2r.dev

d.name

<e*subgroupof depts>

a1 a3

terminal
t2

.....

b3

r.dev
d.name

<e*subgroupof
admin>

b4

(c) Second rule added: option 2

Figure 7.5: Reusing scoped nodes in the Rete graph – Serena can take two actions:
either reuse existing nodes or append them

7.3. Processing Scoping Constraints 149

current execution of the engine, but some ideas on reordering the graph are discussed later
in Chapter 9.

7.3 Processing Scoping Constraints
Within the inference engine, the built Rete network annotated with scopes will be used
during the matching phase of the engine’s processing cycles. Scopes allow for a more
compact and efficient way to discriminate the tokens that a beta node is required to process
(we evaluate this in Chapter 8). As mentioned, the scoping module will use MϑL

and the
outputs from its encoding process to perform the operations from the scope checks in beta
nodes (denoted in previous figures with angle brackets).

7.3.1 The Matching Phase using Scopes
The matching phase with scopes is triggered by a mixture of left and right activations in
beta nodes.

Left Activations with Scopes. For left activations, when a token is received in a beta node,
all facts in the node’s right parent, the alpha memory, need to be checked to see if compatible
matches can be found. The scoped inference engine modifies the basic Rete algorithm
semantics for left activations outlined in Algorithm 7.1 into that shown in Algorithm 7.2
for a scoped beta node left activation.

Algorithm 7.1 Beta Node Left Activation: Standard Rete
1 function betaNodeLeftReceive(node : n, token : t)
2 facts ← n.alphaMemory.getFacts()
3 for each fact f in facts do
4 if n.joinTestPassed(t, f) then
5 tnew ← n.createNewToken(t, f)
6 n.sendTokenToChildren(tnew)
7 end if
8 end for
9 end function

Algorithm 7.2 Beta Node Left Activation: with Scopes
1 function scopedBetanodeLeftReceive(node : n, token : t)
2 facts ← n.alphaMemory.getFacts()
3 for each fact f in facts do
4 if this.scopeCheckPassed(n,t,f) then
5 if n.joinTestPassed(t, f) then
6 tnew ← n.createNewToken(t, f)
7 n.sendTokenToChildren(tnew)
8 end if
9 end if

10 end for
11 end function

150 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

Right Activations with Scopes. For right activations the process is similar, except that
when the alpha memory fact is received then the scoped approach needs to perform it-
erations through all the tokens stored in the beta node’s memory. The vanilla Rete’s
right activation pseudocode is shown in Algorithm 7.3 and the scoped variation is show in
Algorithm 7.4.

Algorithm 7.3 Beta Node Right Activation: Standard Rete
1 function scopedBetanodeRightReceive(node : n, fact : f)
2 tokens ← n.getTokens()
3 for each token t in tokens do
4 if n.joinTestPassed(t, f) then
5 tnew ← n.createNewToken(t, f)
6 n.sendTokenToChildren(tnew)
7 end if
8 end for
9 end function

Algorithm 7.4 Beta Node Right Activation: with Scopes
1 function scopedBetanodeRightReceive(node : n, fact : f)
2 tokens ← n.getTokens()
3 for each token t in tokens do
4 if this.scopeCheckPassed(n,t,f) then
5 if n.joinTestPassed(t, f) then
6 tnew ← n.createNewToken(t, f)
7 n.sendTokenToChildren(tnew)
8 end if
9 end if

10 end for
11 end function

The Process. The algorithm is simply modified as follows: on a left or right activation,
Serenas first performs the encoded scope check on the fact from the alpha memory or
the token’s fact respectively. If the check passes, the inference engine proceeds with the
join computation. The method scopeCheckPassed performs scope tests for the data item
arguments it receives, using the operations on the encoding outlined in Section 7.2.1. To
explain the process, we next describe an example with the matching cycle using scopes.

Listing 7.3: Scoped rule for accompanied access to server rooms - revisited
1 {rulename: "intern_serverroom_access",
2 conditions:[
3 {$e1: {type:"employee", name:"?intname"}},
4 {$e2: {type:"employee", name:"?empname"}},
5 {$d: {type:"accessdevice", name: "?dev"}},
6 {type:"accessreq", id: "?reqid1", person: "?intname", device: "?dev", time:"?t1"},
7 {type:"accessreq", id: "?reqid2", person: "?empname", device: "?dev", time:"?t2"},
8 {type:"$test", expr:"(time.hourBetween(?t1, 8, 20)) && time.near(?t1, ?t2)"}
9],

7.3. Processing Scoping Constraints 151

root

employee access
request

access
device

a2

terminal

b1
r1.persone1.name

b2

r1.device
r2.device

e2

<e11subgroupof interns>
<sysdev supergroupof e1>

a1 a3

b4

e2.name
r2.person

d.name

b3

<e21private1levB>
<sysdev supergroupof e2>

<d subgroupof serverrooms>

Figure 7.6: Scoped Rete graph for the ServerRoomAccess rule.

10 scopes:["$e1 subgroupof interns","$e2 private levelB", "sysdevelopment supergroupof
↪→ ($e1 & $e2)", "$d subgroupof serverrooms"],

11 actions:[
12 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t1"}}
13]
14 }

Building the Rete Graph

Consider the ServerRoomAccess rule, shown for convenience again in Listing 7.3. Remem-
ber that rule contains a scopes section to distinguish between data from different sources,
line 10. The graph as a result of this rule is depicted in Figure 7.6, with the final test node
omitted. The graph shows where Serenas annotates the scopes in different points in the
graph according to the defined scope expressions of the rule.

Scopes in the Matching Cycle

To show a definitive process, we will use the full matrix encoding of all company group
hierarchies in the office complex from Figure 6.17. When three employees arrive at work
by clocking into their respective offices, their employee facts are added to the engine.
Figure 7.7 shows the state of the graph with the facts added, and these are stored in the
alpha node a1’s memory. In the node there are two Kimetrica employee facts (denoted
with a red outline) indicating that two employees have clocked in, and one Safari tours fact
(denoted with a blue outline), indicating one employee from that company has entered the
workplace. Facts in node a3 also show two devices installed in the each of the companies.

Suppose a software developer intern Billie is accompanied by a levelB employee Zak
in order to gain access to their server rooms of the Kimetrica company. Both the employees
scan their badges using the device in the company’s server room in the building. The two
access requests are sent to the Serena server.

The first request from Billie will be inserted into the Rete graph from the root and
will be sent through the alpha node a2 to the beta node b1 as shown in Figure 7.8a. This se-

7The full matrix of the entire groups of the office complex hierarchy is illustrated in Appendix A.4.

152 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

root

employee access
request

access
device

a2

terminal

b1
r1.persone1.name

b2

r1.device
r2.device

e2

<e11subgroupof interns>
<sysdev supergroupof e1>

a1 a3

b4

e2.name
r2.person

d.name

b3

<e21private1levB>
<sysdev supergroupof e2>

<d subgroupof serverrooms>

{employee name: “Zak”} <group: levelB, sw>

{employee name: “Jackie”} <group: lev1>
{employee name: “Billie”} <group: interns, sw>

{accdev name: “dev1”} <group: lev2, offices>
{accdev name: “dev2”} <group: lev3, cubicles>
{accdev name: “dev3”} <group: adminstration, offices>
{accdev name: “dev4”} <group: sysdevt, serverrooms>

Figure 7.7: Scoped graph for the ServerRoomAccess rule with initial facts.

quence will cause a right activation in node b18. The right activation follows Algorithm 7.4,
where Serenas will need to perform two scope checks:

1. <$e1 subgroupof interns>

2. <sysdev supergroupof $e1>

using the guidelines outlined in Section 7.2.1 for subgroupof and supergroupof. The checks
will be performed on all the facts in the memory of the alpha node a1 with the full matrix
encoding.

Scope check fails. At this point, let us first show an example of an unsuccessful scope
check. If, for instance, Jackie from Tours (represented by the first fact in a1) was to make
an access request, the request will be sent from the root to a2 to b1. At b1, the employee
fact representing Jackie will trigger the following operations for the scope tests of the node.
If l, i, sy and t are indices in MϑL

corresponding to the groups levB, interns, sysdevt and
⊤ respectively,

MϑL(l,∗) ∧MϑL(i,∗) = MϑL(i,∗)

T 1 0

&
lev1 1 0 1 0 0 0 0 0 1 0

inte 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

MϑL(sy,∗) ∧MϑL(l,∗) = MϑL(sy,∗)
sysd 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

T 1 0

&lev1 1 0 1 0 0 0 0 0 1 0

In the scope check e1 represents the employee fact for Jackie, which is tagged with the
group lev1. The tests fail on both accounts, because the actual results (i.e., MϑL(t,∗)) differ
from the expected results (i.e., MϑL(i,∗) and MϑL(sy,∗)) as shown by the two operations at
the top. In practice, if the first fails then the second will not be performed – the implicit
and operation between subsequent scope tests in one node is short-circuited. Therefore the
fact for Jackie is incompatible and does not proceed to the join computation. The fact
from Zak will similarly fail the scope test.

8The fact from Billie will also be sent to the node b3 but as it does not have any data items yet, no
test will be made.

7.3. Processing Scoping Constraints 153

Scope check passes. Now Billie from Kimetrica makes an access request via the fact rep-
resenting Billie with groups interns, sw. If k and sw are indices in MϑL

corresponding
to the groups kimetrica and sw the operations for the first scope test of b1 are:

MϑL(i,∗) ∧MϑL(i,∗) = MϑL(i,∗)
inte 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

&inte 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

inte 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

MϑL(sw,∗) ∧MϑL(i,∗) = MϑL(i,∗)
sw 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

&

kime 1 0 0 1 0

inte 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

The test passes because the first operation fulfils the first scope check as a whole. The
second scope check of b1 is now performed:

MϑL(sy,∗) ∧MϑL(i,∗) = MϑL(sy,∗)
sysd 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
inte 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

kime 1 0 0 1 0

MϑL(sy,∗) ∧MϑL(sw,∗) = MϑL(sy,∗)

&
sysd 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

sw 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

sysd 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

The check also passes due to the success of the second operation (remember a fact
tagged with multiple groups is implicitly treated as an or) and the token for the two facts
is created. With this, the normal join test for node b2 (for the name and person of the
employee and the request) is assured to operate on compatible data. The join test also
passes, and then the token is stored in the intermediate memory of the node b1 (as shown
in Figure 7.8a) and sent to its child b2.

Subsequent tests. At b2 a left activation occurs, which will first perform the scope checks
on the node b2 with the items from the right alpha memory a1. The scope checks for b2
are <$e2 private levB> and <sysdev supergroupof $e2>, and will once more use MϑL

to calculate the compatibility. Again, the tests follow the ones shown for b1 using the rules
in Section 7.2.1. The scope tests pass for the token, and the results are appended to the
token with e2 as the fact for employee Zak, as shown in Figure 7.8b.

When the second request from Zak comes in Figure 7.8c, the fact will eventually be
sent to the node b3 (the request will also be sent to b1 but will fail the first scope test of
that node). The node has no scope tests and the normal join test is performed, capturing
the employee with the same name as the request and appends the fact representing Zak to
the token. This new token is then sent to node b4, causing a left activation.

The node should now perform the scope test <$d subgroupof serverrooms> on all
devices. The scope test for device dev4 will succeed (since it is tagged with the group
serverrooms) and will proceed to perform the normal join test of the node, which checks
if the names of the devices are the same. The join test does succeed, and the full token
shown in Figure 7.8d will eventually be sent to the terminal node for the rule InternServer-
RoomAccess, which will activate the rule since all its conditions (and scope requirements)
have been met.

Observation. Observe that in Figure 7.8d all facts are sourced from the same company
Kimetrica, which are depicted with a red outline. The facts from the Safari tours company
in blue do not participate in the final token that activated the rule9.

9For much larger matrices, it is possible to employ research that proposes offsetting matrix computations
to GPU elements [LM01].

154 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

root

employee access
request

access
device

a2

b1
r1.persone1.name

b2

e2

<e1-subgroupof interns>
<sysdev supergroupof e1>

a1 a3

<e2-private-levB>
<sysdev supergroupof e2>

...

{employee name: “Billie”} <group: interns>
{accreq id: 1, person: ”Billie”, device: “dev2” time:1014}

(a) First access request sent to node b1.
root

employee access
request

access
device

a2

b1
r1.persone1.name

b2

e2

<e1-subgroupof interns>
<sysdev supergroupof e1>

a1 a3

<e2-private-levB>
<sysdev supergroupof e2>

...

{accreq id: 1, person: ”Billie”, device: “dev2” time:1014}
{employee name: “Billie”} <group: interns>

{accreq id: 1, person: ”Billie”, device: “dev2” time:1014}
{employee name: “Billie”} <group: interns>

{employee name: “Zak”} <group: levelB, sw>

(b) Token received by node b2.

terminal

r1.device
r2.device

e2.name
r2.person

d.name

b3

<d subgroupof serverrooms>
b4

{accreq id: 2, person: ”Zak”, device: “dev2” time:1014}

{accreq id: 1, person: ”Billie”, device: “dev2” time:1014}
{employee name: “Billie”} <group: interns>

{employee name: “Zak”} <group: levelB, sw>

root

employee access
request

access
device

a2

b1
r1.persone1.name

b2

e2

<e16subgroupof interns>
<sysdev supergroupof e1>

a1 a3

<e26private6levB>
<sysdev supergroupof e2>

...

(c) Second access request sent to node b3.

7.3. Processing Scoping Constraints 155

terminal

r1.device
r2.device

e2.name
r2.person

d.name

b3

<d subgroupof serverrooms>b4

root

employee access
request

access
device

a2

b1
r1.persone1.name

b2

e2

<e16subgroupof interns>
<sysdev supergroupof e1>

a1 a3

<e26private6levB>
<sysdev supergroupof e2>

{accreq id: 2, person: ”Zak”, device: “dev2” time:1014}

{accreq id: 1, person: ”Billie”, device: “dev2” time:1014}
{employee name: “Billie”} <group: interns>

{employee name: “Zak”} <group: levelB, sw>

{accdev name: “dev4”} <group: sysdevt, serverrooms>
...

(d) Subsequent traversal to b4 and finally the terminal
node.

Figure 7.8: Scoped graph for the ServerRoomAccess rule with data – The graph
shows sequences after the first and second access requests are made.

Insight: Scopes as Guards

In essence, the scope checks act like guards that expeditiously check to see if the
data is compatible before performing an actual join in scoped rule engines. If any
of the tests fail then the scope check fails and the rest of the computation will
not be evaluated. The benefit achieved is that first, tests for a large number of
incompatible data are avoided and second, the scope checks are performed in an
efficient manner. In the end, scopes can assist to efficiently ‘separate the blues from
the reds’ for reentrancy and in other cases combining them into ‘purple facts’ for
community knowledge, if required.

7.3.2 Scoped Notifications
With the encoding of MϑL

, Serenas can support such notification semantics whenever
a scoped rule has been activated. This is done through the notify construct in rules,
specified in the SRL syntax and described back in Section 6.5. Listing 6.8 shows the
same InternServerRoomAccess rule this time with the notify construct in Line 14. The
construct specifies the clients or groups to notify once the rule is fired using notification
scopes that specify which clients to send notifications to.

In the Listing for InternServerRoomAccess, the rule specifies that Serenas should
notify members of security group and any of its subgroups. With the subgroupof scope
notification definition Serena directly retrieves the entry MϑL(∗,sec), where sec is the index
of the group security, and notifies clients in the groups which have an entry of 1 – which
in this case is only the clients of the group security.

156 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

Notifications with Localised Scopes With localised scopes, the approach outlined for iden-
tifying all groups applicable is not as straightforward. Finding all groups applicable to
scopes such as lpeerof and lvisibleto requires extra computations. Suppose a notify con-
struct defines a notification scope of notify lpeerof lev1, which is applicable to the
Safari tours hierarchy. The groups to be notified in this case are clients directly tied to
the lev1, lev2 and lev3 groups, and excludes groups in other hierarchies like Kimetrica’s
departments (compare this in Figure 7.9). One way Serenas can discern this information
is by iterating through all groups and compare their Level, which becomes inefficient as the
number of groups increases.

To improve this Serenas uses indexing generated during the encoding process (Sec-
tion 7.1.4) for these notification scopes. Remember from Section 7.1.4) that the indices
of global and local maximals are stored. For notify lvisibleto ui, if u represents the
group ui, the solution is to retrieve the row entry for MϑL(u,∗) and return the descendants
of all row entries of local maximals that are set to 1.

Notifications for local peers. For lpeerof, the event manager uses a third index based on the
groups at each level per global maximal. Levels are obtained when calculating each group’s
bit vector in the process outlined in Section 7.1.4. These indices are primarily maintained
to capture all peers within a hierarchy of a main parent group. For this purpose, a data
structure H is maintained by Serenas is shown in Figure 7.10. The structure H is a hash
with the buckets representing levels in the hierarchy: each entry has its key representing a
level and the values point to a peers hash. The peers hash has contains keys as indices of
maximals (or main groups) in the hierarchy and values as a binary vector representing all
peers of that hierarchy at that level. The entries of the vector correspond to the indices of
corresponding elements in the encoded matrix MϑL

. Therefore if a rule contains a notify
lpeerof lev1, then Serenas event manager retrieves its level Level = 3 and accesses H
at key 3. It finds the entry for Safari tours (maximal index 2), retrieving the vector
00000011100000000000000000000000 (which corresponds to the groups lev1, lev2 and
lev3). The hash H is also significant for the scope-based hashing method, described in the
next section.

Summary. To summarise, suppose e, f , u, b are indices corresponding to the groups
employees, finance, ui, and ⊥. The following operations are used to apply notification
scopes in rules:

• To calculate <subgroupof employees> Serenas retrieves the groups that are set in the
column bit vector MϑL(∗,e). In this case the groups are all descendants of the group
employees in Figure 7.9.

• To calculate <supergroupof finance> it retrieves the groups that are set in the row
bit vector MϑL(f,∗), i.e., the ancestors of finance.

• To calculate <private sw> it retrieves the clients in sw group via its unit vector.

• To calculate <lpeerof lev1>, Serenas uses H to retrieve the level of lev1 within its
parent groups and returns the vector representing groups at that index, {lev1, lev2,
lev3}. To calculate <peerof lev1> it retrieves all peers of the index of lev1 in H.

• To calculate <visibleto ui> it retrieves in MϑL(u,∗) the column vectors of the global
maximals set to 1. To calculate <lvisibleto ui> it retrieves in MϑL(u,∗) the column
vectors of local maximals set to 1. Recall that maximal indices are known from the

7.4. Scope-based Hashing (SBH) 157

encoding process. In this case the only local maximal column vector represents all
groups under departments in Figure 7.9.

• To calculate <super db> it retrieves the groups in the bit vector for ⊥, MϑL(b,∗).

lev2
lev3

internsemployees
securityteam

lev1

directors supervisors

tours

departments

sys4
development

administration

financesecurity

ui swdb

interns

levelB

levelA

employees

kimetrica

complex

cubicles

offices

clients4
spaces

general4
spaces

serverroomsparking resto

�

Figure 7.9: Lattice representing the groups in the office complex – The lattice is
the result of the operations described in Section 7.1.4 on all the group hierarchies.

Listing 7.4: Scoped rule for accompanied access to server rooms - with notify
1 {rulename: "intern_serverroom_access",
2 conditions:[
3 {$e1: {type:"employee", name:"?intname"}},
4 {$e2: {type:"employee", name:"?empname"}},
5 {$d: {type:"accessdevice", name: "?dev"}},
6 {type:"accessreq", id: "?reqid1", person: "?intname", device: "?dev", time:"?t1"},
7 {type:"accessreq", id: "?reqid2", person: "?empname", device: "?dev", time:"?t2"},
8 {type:"$test", expr:"(time.hourBetween(?t1, 8, 20)) && time.near(?t1, ?t2)"}
9],

10 scopes:["$e1 subgroupof interns","$e2 private levelB", "sysdevelopment supergroupof
↪→ ($e1 & $e2)", "$d subgroupof serverrooms"],

11 actions:[
12 {assert: {type: "accessrep", reqid:"?reqid", allowed: true, time: "?t1"}}
13],
14 notify: ["subgroupof security"]
15 }

With the notification constructs, Serenas uses a combination of indexing and binary
operations similar to those in Section 7.2.1 to determine which groups to notify.

7.4 Scope-based Hashing (SBH)
In this section, we present an improvement to the matching efficiency of the scope-aware
RBS Serenas. The technique involves an inventive optimisation to the Rete algorithm
during the matching process.

158 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

Mxl
Index

1 01110000000000000000000000000000

2 01110000000000000000000000000000

3 01110000000000000000000000000000

Lvl

1

2

3

.../

1 00001100000000000000000000000000

2 00000011100000000000000000000000

3 00000000011000000000000000000000

1 00000000000111110000000000000000

2 00000000000000001110100000100000

3 00000000000000000000011100000000

..

Mxl Index:)1)complex,)2)tours,)3)kimetrica

Figure 7.10: Hash H for calculating lpeerof – The primary indices represent the
levels of the hierarchy, while the secondary key represent the indices of maximals
in MϑL .

The scope-based hashing or SBH approach utilises scoped hash tables and group
metadata in asserted facts to efficiently cherry-pick compatible data that is relevant
for computing joins in the Serenas engine.

7.4.1 Improving Scope Test Performance
Consider Algorithm 7.2, that showed the left activation process with scopes. With the
iteration starting from line 3 that iterates over all the facts from the alpha memory, it is
clear that with each left activation of a beta node, scope checks are still performed on every
fact in the alpha memory, regardless. This shows that the approach performs encoded tests
on every fact to determine their compatibility.

To this end, we investigate ways how to improve the efficiency of the process. In the
dissertation in [Doo95], Doorenbos stated that for a variety of general-purpose applications
where a large number of rules are affected by an assertion, left activations occur often during
the matching process stage in Rete networks. Due to the sharing of nodes in the network,
a fact that affects a large number of rules when asserted triggers one right activation of a
shared join node between the alpha and beta networks. However, as the data propagates
down the network from that node, it causes multiple left activations of other nodes, and
the number of such left activations increases with the number of rules if there is high node
reuse in the system.

We present an approach that makes such activations in Rete networks more efficient,
by introducing the scope-based hashing algorithm (SBH). We revisit the office complex
scenario to explain the concepts.

Example with the Office Complex Scenario

In the graph of the InternServerRoomAccess rule shown in Figure 7.8a, when the accessrequest
is added, it triggers a right activation in beta node b1 (following the red dashed lines in the
figure). If the token passes the tests, then it is sent to b2 (Figure 7.8b), where it causes a

7.4. Scope-based Hashing (SBH) 159

left activation. If it passes the tests for b2 it will also cause a left activation in b3 where it
will wait for the next request (Figure 7.8c). Once that request arrives and passes the tests
the token will trigger a final left activation in b4. The sequence shows there are several left
activations in the graph representing one InternServerRoomAccess rule.

Let us take the state in Figure 7.8c when the second access request from Zak has
been received, and the resulting token has passed tests in node b3. The new token is sent
to b4, show in Figure 7.10 (reproduced from Figure 7.8d for convenience) and it causes
a left activation. Following the process in Algorithm 7.2, the node will retrieve all items
from the the alpha memory a3. In the scoped approach the scoping module will then
perform scope checks on each of these device items for compatibility according to the test
<$d subgroupof serverooms>. Of course, this is not desirable because as the number of
devices increase, the tests become even more expensive to perform.

terminal

r1.device
r2.device

e2.name
r2.person

d.name

b3

<d subgroupof serverrooms>
b4

{accreq id: 2, person: ”Zak”, device: “dev2” time:1014}

{accreq id: 1, person: ”Billie”, device: “dev2” time:1014}
{employee name: “Billie”} <group: interns>

{employee name: “Zak”} <group: levelB, sw>

root

employee access
request

access
device

a2

b1
r1.persone1.name

b2

e2

<e16subgroupof interns>
<sysdev supergroupof e1>

a1 a3

<e26private6levB>
<sysdev supergroupof e2>

...

Figure 7.10: Traversal of token to node b4 from a second access request in Fig-
ure 7.8.

A better approach would be for the scoping module to be able to immediately retrieve
all the items in a3 that are compatible with the scope check defined in the node b4. In
this case, the module would, according to the defined scope, know that it needs to only
retrieve the facts that are relevant. The module would thus retrieve facts that ‘the group
serverrooms is a supergroup of’ from the relevant alpha memory. Enforcing this would
require the alpha memory to change the means in which it stores the facts that it receives.
SBH enables Serenas to provide this by restructuring the alpha memory to use hashing
based on defined groups.

7.4.2 Group Hashing the Alpha Memory
Alpha memories in Rete can be viewed as nodes that store facts of a particular type, e.g.,
the memories of employee and accessdevice nodes in Figure 7.6. One of the purposes
of alpha memories is to supply beta nodes with fact items. As event data is added to the
engine, the cached alpha memory dataset increases. This effect is more profound in shared
heterogeneous rule engines. Hence, although scope-based rule engines offer efficient guards
before computing joins, the rule engine still suffers when performing scope checks for every

160 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

Group1

Group2

Group3

Group4

Group5

...

SBH Alpha Memory

Figure 7.11: Alpha memory with SBH – The node dynamically creates hash
buckets partitioned according to facts belonging to different client groups.

root

employee access
request

access
device

a2

b1
r1.persone1.name

b2

e2

<e1-subgroupof interns>
<sysdev supergroupof e1>

a1 a3

<e2-private-levB>
<sysdev supergroupof e2>

terminal

d.name

b3

<d subgroupof serverrooms>
b4

r1.device
r2.device

Figure 7.12: The InternServerRoomAccess Rete graph with SBH – The main
difference is in the hashed alpha memories where they are partitioned according
to groups (colour-coded with outlines) in the hierarchy.

data item added in the alpha memory.
SBH presents an approach that improves this scope-checking process. The technique

constructs a hash table that dynamically assigns buckets based on client groups in the
group hierarchy (e.g. the groups in Figure 6.1). Each bucket points to a list and each group
holds a set of facts of that group. As facts are added to the system SBH assigns each fact
to the correct bucket dynamically. For instance, for a device located at the entry point
of a server room the fact will be added to the serverrooms bucket of the accessdevice
SBH hash table. The encoding method prefixes group names to make sure groups will be
mapped into unique identifiers, therefore each hash bucket will logically contain items of a
unique group as in Figure 7.11.

The Rete graph structure for storing facts in SBH alpha memories is shown in Fig-
ure 7.12. In this case, the outlines show facts that belong the the same groups linked
together. The SBH algorithm further modifies the getFacts method of a left activation
(line 2, Algorithm 7.2) to allow the alpha memory to accept a list of groups as an argument.
The new method will collect all data in the groups via direct access from the hash table,

7.4. Scope-based Hashing (SBH) 161

explained in the next section.

7.4.3 Matching with Scope-based Hashing
Matching in scoped engines involves updating the beta network with scope guards that
check compatibility of left and right inputs. SBH introduces a way to efficiently determine
which fact items are compatible with an incoming token at the left input of a beta node to
be subsequently used in the join test of the node. SBH modifies the scoped left activation
process from Algorithm 7.2 to the one shown in Algorithm 7.5.

Algorithm 7.5 BetaNode Scoped Left Activation with SBH
1 function hashedBetanodeLeftReceive(node : n, token : t)
2 groupsCode ← this.calculateCodeFromScopeGuards(n.scopeTests, t)
3 groups ← this.getGroupsFromCode(groupsCode)
4 scopeFacts ← n.alphaMemory.getFacts(groups)
5 for each fact f in scopeFacts do
6 if n.joinTestPassed(t, f) then
7 tnew ← n.createNewToken(t, f)
8 n.sendTokenToChildren(tnew)
9 end if

10 end for
11 end function

Example Take the example of the state of the Rete graph in node b4 as presented in
Figure 7.12. The scope guard specifies that Serenas will check if the device $d is lo-
cated at a subgroup of the serverrooms group. The token triggers a left activation on
node b4 as usual. Instead of performing the check with every device fact in the alpha
memory a3, SBH retrieves the matrix codes for all the subgroups of serverrooms via
calculateCodeFromScopeGuards in Algorithm 7.5, line 2. This process is described next
(with the scope guard <$d subgroupof serverrrooms> of beta node b4).

Calculating SBH Vector Vn Let n be the total number of elements of a row in the encoded
matrix MϑL

(Figure A.1). calculateCodeFromScopeGuards constructs a bit vector Vn

with all elements having a bit value 0. Conceptually, the Vn represents all groups in the
hierarchy. At this point, no groups have passed the scope check (all have 0s as entries in Vn).
SBH then performs operations that assign a group element 1 iff it satisfies the scope test
for the current node. For this case, SBH will use the test <$d subgroupof serverrooms>
(which is part of the argument n.scopeTests) to retrieve the groups which severrooms is
a supergroup of. If s is the index that corresponds to the group serverrooms in the matrix,
then the method thus retrieves the column vector
MϑL(∗,s)= 00000000000010000000000000000001
which represents all the subgroups of the group serverrooms. Because the method re-
trieves all groups that apply to a particular scope definition, this approach is equivalent to
the process outlined in the previous Section 7.3.2 for notification scopes. SBH therefore
reuses those specifications for line 2, when calculating the code from the scope guards at a
particular node.

162 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

Retrieving Groups G in Vn The next step in Algorithm 7.5 is to retrieve the corresponding
groups in method getGroupsFromCode line 3 which will then be used to retrieve the items
per group in the alpha memory. The method getGroupsFromCode retrieves the groups
names which have a 1 in Vn (excluding ⊥) as a set G. In this case G=[serverrooms].
Retrieving G from Vn should be relatively easy since the groups are the labels in the
matrix.

Retrieving Facts of G Remember that the getFacts method of the alpha memory now
accepts the groups G as an argument. The method uses the alpha memory’s internal SBH
table introduced in Section 7.4.2 to access the fact items that are pertinent to the beta
node b4. The alpha memory will thus retrieve the facts residing in each of the G buckets.
Essentially, the facts retrieved are a subset of all of the items in the alpha memory thus
avoiding computing scope checks (and subsequently the join tests) on all of the fact items
residing in the accessdevice alpha memory. The rest of the code in Algorithm 7.5 proceeds
normally by iterating through all the retrieved items and performing the normal join tests
for the node.

7.4.4 Advanced Issues in SBH

Evaluating Scope Expressions

In reality, a number of nodes will have multiple scope expressions in one node: an example is
node b1 which not only has <$e1 subgroupof interns> but also <sysdev supergroupof
$e1>. Furthermore, scope tests can contain complex expressions – to specify “an access
device that is in the sysdevt or administration departments, or the office of a levB
member,” the expression becomes <($d subgroupof (sysdev | administration)) | $d
private levB>

One option to compute such expressions is to repeatedly call calculateCodeFromScopeGuards
on each scope test, store multiple vectors of Vn and send their groups to the alpha memory
to retrieve the items needed for a beta node’s join computations. A more efficient way
that SBH uses is that it performs reductions using bitwise operations, given every Vni

bit vector result of each scope test i of a beta node. Thus, the result is used by method
calculateCodeFromScopeGuards to construct Vn for the scope test of beta node.

For the example <($d subgroupof(sysdev | administration)) | ($d private levB>)

<($d subgroupof (sysdev | administration)) | ($d private levB)>
= <($d subgroupof sysdev | $d supergroupof administration)
| $d private levB >
= ((00000000000000000000000100011101 | 00000000000000000000001001100001)
| 00000000000000000000000010000001)
= (00000000000000000000001101111101 | 00000000000000000000000010000001)
= 00000000000000000000001111111101

Note that the vector Vni of a scope test of <private u> is the unit vector of u
in MϑL

. The result Vn is returned from the method calculateCodeFromScopeGuards.
The next step computes the set G via the getGroupsFromCode method in line 3 of Algo-
rithm 7.2, which in this case the set G corresponds to the groups with the bits in Vn set
to 1. G thus evaluates to [administrative,sysdevelopment,levB,finance,security,

7.4. Scope-based Hashing (SBH) 163

sw,db,ui,interns]. Subsequently, the SBH algorithm proceeds normally as outlined in
Algorithm 7.5, retrieving the facts of groups in G that passed the scope check.

SBH and Facts with Multiple Groups

One limitation brought about by the SBH scheme is in cases where a fact can be assigned to
multiple groups. An example is a senior employee that is working on a project that teams
up the administration and the sys development units. Facts for such an employee
will be tagged with [administration,sysdev] group metadata. In the alpha memory of
the employee node, SBH will assign the fact into the administration as well as sysdev
buckets. During retrieval with the alpha memory’s getFacts(G) method this will lead to
duplication if the scope guard of a child beta node requires items from facts of the two
groups. A common fix is to check for duplicate items whenever a fact from multiple groups
is retrieved. This method however reduces the efficiency of the SBH algorithm execution,
due to the repeated lookups that each check needs to perform to guarantee retrieved items
are unique.

To remedy the problem the SBH algorithm exploits a property that most data-driven
rule engines already enforce: each asserted fact has a unique handle or ID. If an engine
fulfils this property then SBH uses the getFacts(G) method efficiently by employing a
temporary hash with fact IDs as keys. To find whether a retrieved item is a duplicate, it
checks the fact ID in the hash: if it exists then the fact has already been retrieved and is
not added to the values to be returned, if not then its ID is added to the hash. This process
is improved by adding the requirement that only multigroup facts require this special check.
With this technique SBH provides a more efficient way to avoid duplicates when retrieving
facts tagged with multiple groups from the SBH table.

Hashing Thresholds in SBH

Like most hashing techniques, SBH is becomes more effective as the number of elements
increases, avoiding the need to perform scope tests in every alpha memory fact. If the
items in an alpha memory are few, however, then it can be expensive to maintain hashed
memories as opposed to the normal alpha memories. Therefore it is suitable for a rule
engine to be able to flexibly use the SBH scheme to achieve high efficiency.

SBH provides a group hashing threshold to be set, which will activate and enable
alpha node hashing only when the number of groups is above the threshold. The hashing
threshold may be a configuration parameter set by a client with the administrator role,
becoming transparent to rule designers and the RKDAs that utilise Serenas.

Another type of hashing threshold can be set for all computations that have length(G)=t,
where in extreme cases t is the total number of all groups representing clients, and in others
t represents a small subset of these groups. A higher number of Gs having all client groups
indicates that SBH scheme tends to degenerate to a generic rule engine without scope se-
mantics. In such cases, the traditional approach can be faster than the scoped approach
with SBH. Hence, Serenas can incorporate such an evaluated code length threshold that
turns off SBH checks in join nodes.

7.4.5 Summary: Scope-based Hashing
In the vanilla implementation, the scoped engine of Serenas has to search through all facts
in a particular alpha memory. This gets particularly inefficient as more facts are asserted in
the system’s lifetime. Using group-hashed alpha memories limits this retrieval of elements

164 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

to those that can actually pass the scope test. With this setup, Serenas can take full
advantage of left activations to optimise lookup. This optimisation does not affect the
set of complete production matches that will be found; the semantics of the scoped Rete
algorithm remains unchanged.

7.5 Maintainability of Scoped Rules and Other Issues
This section discusses effects of maintaining the scoping method on the runtime execution
of the rule engine in Serenas.

7.5.1 Retraction and Modification of Facts
The retraction of a fact in the Serenas framework closely follows that of the normal se-
mantics of retraction in Serena presented in Section 4.4.5. There, the tree-based deletions
approach of having references in asserted facts in the Rete network’s alpha memories that
point to children in the beta network constituting beta tokens are used. In this scheme, a
fact can be deleted by following these references and deallocating them up until the termi-
nal node, if necessary. This is beneficial as it bypasses the join tests as before, but more
importantly in this case it also avoids performing the scope tests as well (which would
otherwise need to be performed).

7.5.2 Changes in Group Structure
The main argument for an encoding of the structural elements in client logical and physical
organisations is efficiency of various operations. This feature also becomes its weakness
because even though client structures are expected to seldom change, modifications tend to
have some effects on the encoding through the addition and removal of groups.

The normal way when dealing with changes is for the framework to re-encode the
matrix from the ground up. This of course implies that the system needs to be stopped
and reinitialised. However, as noted in [Aı̈t+89] if there is a change to the underlying
poset at an element a then only the elements that subsume a via the relation need to be
re-encoded. In Serenas, not only does the encoding require to be changed, but also the state
of the graph – it will be inconsistent because the tokens in the beta network may need to
be reevaluated.

Therefore, Serenas takes a two-pronged approach to updates. When encoding the
matrix during initialisation, Serenas uses the technique described in Section 7.1.4 with all
groups. For dealing with changes at runtime, Serenas provides a more restricted func-
tionality – to reduce the effect of the change in the Rete network’s existing tokens. The
framework allows piecemeal changes to the hierarchy, through the runtime addition and
removal of groups only if the groups are/will be minimals in the underlying poset (definition
in Appendix A.1.1). This way, the required changes to the encoded lattice can be easily
added or removed to the latter rows of the encoded matrix.

Take an example for the matrix in Figure 7.3. If a sales group representing a new
department is added to the hierarchy as the child of the departments group, the matrix
only needs to be updated as shown in 7.13a. The process to update the Serenas encoding
is:

• Add a row and column in the matrix before the entry representing ⊥.

• Zero-fill the added column with 0s.

7.5. Maintainability of Scoped Rules and Other Issues 165

• Duplicate the row for its parent departments onto the new row (fulfils the transitive
property).

• At the last index s representing the new group sales, set MϑL(s,s) = 1 (fulfils the
reflexive, antisymmetric property).

• Add the group into the peer hash H as outlined in Section 7.3.2.

For group deletion, a similar reverse process occurs. Deletion further requires that the
relevant tokens in the Rete network should be deleted as well. This deletion is performed
using command tokens, which are meta tokens that are percolated through the scoped Rete
network with the intention of deleting a group and its references in the network. The token
{remove-group "sales"} is sent to the root node which will forward to all the alpha nodes.
When an alpha node receives the token, it will search its memory for facts that have this
group and will delete them (thus deleting all the child references in tokens via tree-based
deletion). The alpha node will also forward the token to its children. If a beta node receives
a remove-group command token, it will only forward to child nodes if it contains a scope
test with this group. Eventually, a command token received on a terminal node indicates
that the rule associated with this node should be deleted, because its scope test is now
undefined. Thus the rule containing the scope check with the group is acquired from the
terminal node and is scheduled for removal. The group is also deleted from the peer hash H
via its level and main parent group. A final step for removing all clients that belong to that
group is performed by the event manager and finally deallocates any socket connections
from the server.

SBH-related Changes

If the scope-based hashing method from Section 7.4 is used, then the alpha memories need
to be updated according to the changes of a group. One way is to deal with addition of
a new group is to use the command token {add-group "sales"} to traverse the alpha
network of the Rete graph. Any memory of an alpha node with SBH will then add a
bucket for the group in its hash. Alternatively, the entry can be added by the alpha node
dynamically when a fact of the new group is received by the node.

For deletions, the network will use the aforementioned command token {remove-group
"sales"}. Instead of an alpha node searching its memory for facts with the indicated group,
using SBH the group can directly be acquired from the hash and all the items removed
using the tree-based deletion. After this, the hash entry for that group is finally removed.
This actually improves the efficiency of removing groups in SBH as opposed to the normal
scoped setups. Subsequently, the deleted elements will be removed from the beta network
using the same manner as explained in the previous section.

7.5.3 Negation
Formally, production rule systems such as CLIPS and Jess do not explicitly refer to incom-
ing data as events (as in, say, active databases), but can assimilate them into memory as
fact assertions. In Serena, the left-hand side semantically models event conditions and the
right-hand sides models their actions and/or effects. In essence, this kind of reasoning has
influenced the support of negation in the engine.

Traditional production rule engines discussed in Section 3.3.2 support the classical
negation model [Wag03]. In this model, using not in rules expresses negation with complete
predicates that are subject to a completeness model having a closed-world assumption,

166 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

� kime empl dept levA admi sysd levB fina secu sw db ui inte sale �

� 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kime 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

empl 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

dept 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

levA 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

admi 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

sysd 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

levB 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0

fina 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

secu 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0

sw 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0

db 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0

ui 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0

inte 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0

sale 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) Addition of a group sales to the encoded matrix MϑL

� kime empl dept levA admi sysd levB fina secu sw db ui inte sale �

� 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kime 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

empl 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

dept 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

levA 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

admi 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

sysd 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

levB 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0

fina 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

secu 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0

sw 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0

db 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0

ui 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0

inte 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0

sale 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Deletion of group sw from the encoded matrix
� kime empl dept levA admi sysd levB fina secu db ui inte sale �

� 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kime 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

empl 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

dept 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

levA 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

admi 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

sysd 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0

levB 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0

fina 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0

secu 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0

db 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

ui 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0

inte 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0

sale 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(c) Final matrix after addition and deletion

Figure 7.13: Showing the effect of modifications to the hierarchy on MϑL– Only
allowed at runtime if the group to be added or deleted is a minimal in the under-
lying poset.

7.6. Requirements Revisited 167

i.e., the engine assumes that all facts are available a priori and so negative patterns can
be evaluated immediately. A problem with this model is that this a priori requirement
is not guaranteed by the distributed streaming semantics of the rule engine in Serena.
Consequently, the engine does not intrinsically support the semantics of negation when
applied to streamed events in the framework.

Other classical approaches circumvent these problems in several ways. A number of
rule engines that consume events use temporal operators that allow negation on timed
events only within time intervals or windows, as Drools in STREAM mode [Bro09]. The
systems in [WBG08] and [Ber02] semantically conceive facts and events separately within
the engine, opening avenues for negation semantics and garbage collection in different
scenarios.

The classical negation model as implemented in [Doo95] is supported in Serena only in
specific cases where the engine is not intended for streamed data (i.e., where completeness
is satisfied)10. In these cases, Serena expresses not by essentially testing the absence of an
item in the fact base, as in similar non-streaming rule engines such as Drools in CLOUD
mode. A negated condition in a rule will create a negative beta node that behaves similar
to a beta node. The main difference is that a negative beta node will forward tokens to its
child nodes only if its join computation fails.

In its implementation, however, Serenas does not support having scope definitions
on negated conditions in rules. This is because they conceptually represent the absence
of a fact – therefore a non-existing fact does not contain the metadata that the scoping
module can use to perform scope tests. A promising direction is in negated scope expressions
where the scoping module could perform a scope test as usual, but subsequently allow the
join computation on its beta node to be performed only if the scope test (boolean result)
fails. But more research needs to be done regarding the effects of the technique on the
performance of scope tests: because there tend to be a larger number of items to retrieve,
the cost of creating and performing these operations may greatly hinder execution of the
inference engine cycles. We discuss related issues in future research avenues in Section 9.3
about cost estimation models.

7.6 Requirements Revisited
Having presented the inner workings of the Serenas framework, this section evaluates the
goals of the scope-based approach in supporting heterogeneous rule based systems.

7.6.1 Evaluation of Requirements
Supporting client rules in classical rule-based systems in heterogeneous contexts was shown
to exhibit problems identified in Section 5.2.2, with the main concern being essentially en-
forcing reentrancy in such rule engines. A related problem was the support for capturing
community knowledge in client rules. The requirements set forth in Section 5.3 were there-
fore meant to provide a structure in which such problems can be tackled.

Serenas as introduced in this chapter enforces these requirements to support hetero-
geneous rule engines in the following ways. They are presented in the same manner as the
related work back in Table 5.9.

• Metadata model – Serenas provides a Web-based framework that is suitable for support-
ing heterogeneous clients. Its scoping model hides the metadata required by the scoping

10This is applied to some of the rules in the Miss Manners’ benchmark as discussed in Section 8.5

168 Chapter 7. Serenas: The Reentrant Cloud-based Rule Engine

module and the client library about rules, clients and asserted facts into the rule engine
on the server. As discussed in Section 7.2.1 the main reason is to offer high-level con-
structs that aid in managing the shared knowledge of heterogeneous systems. Serenas
does not require one to pollute rules by manually encoding such logic but instead rel-
egates this to the engine. The model is non-intrusive with respect to rule activation
semantics, in the sense that if the scoping functionality is removed from the framework
or disabled, then the underlying semantics of rule engine execution is preserved.

• Grouping model – The framework places grouping of clients according to their organi-
sation and their representation at the heart of its scoped approach. The groupings can
be used within scoped rule definitions to specify the data that the engine should use
when performing the rule computations. Clients with special roles add their logical or
physical organisational structures to the engine. Thereafter, other clients are identified
according to the groups they belong, and facts are transparently tagged with scoping
metadata. Section 6.1 specified the need for these heterogeneous groupings and relation-
ships (unlike in approaches that use rule modules and its variations) and Section 7.1.4
presented its formalised model using concepts from order theory. Hence, in Serenas,
physical or logical groupings of clients are captured and modelled internally in the en-
gine as a hierarchy that is used to discriminate or distinguish between instances of data
from different clients.

• Execution model – To realise the addition of scopeful constructs in a rule-based system
would, when done naïvely, negatively impact the runtime computation of the inference
engine. As mentioned in Section 7.1 this is mainly due to the possibly large set of
possibilities that need to be verified when determining compatibility. Scoping in Serenas
(and by extension using SBH) provides an internal representation is that precomputed
efficiently as an encoding that is be used when processing constraints and to enforce
reentrancy during rule engine execution. In this regard, the next Chapter 8 evaluates
the efficiency of this approach.

• Notification model – Once rules are activated in a multi-user RKDA setup, there is
need for a way to directly identify the users that should be notified. As explained
in Sections 6.5 and 7.3.2, the Serenas framework exploits the aforementioned concepts
of metadata about clients, their grouping structures and the efficient computation of
scopes to limit the distribution of client notifications. Notifications in Serenas are flexible
expressions that can define constraints to notify a group, subgroup, or even direct clients.

The suitability of Serena according to the applicability of the heterogeneous require-
ments is presented in table 7.14, compared to the existing state-of-the-art as discussed
in back in Section 5.4. The table shows that Serenas provides suitable abstractions and
models that can tackle the problems brought about by heterogeneity in rule-based systems.

7.7 Chapter Summary
This chapter presented the implementation of scoping in the Serenas framework. The im-
portance of using an efficient encoding to model organisation of clients was discussed, and
the use of the bit-vector encoding method was consequently chosen. A further improvement
known as scope-based hashing was presented to improve the efficiency of determining com-
patible data when computing joins during left activations, making the engine more efficient

7.7. Chapter Summary 169

Table 7.14: Evaluative comparison of Serenas scope-based approach with other approachesEVALUATION OF EVENT,PROCESSING SYSTEMS FOR WEB REASONING

Metadata Model Grouping Model Execution Model Notification Model

Multitenant Databases

 Shared schema/tables

Event,based Systems

 Visibility

Rule,based Systems

 Entry Points

 Peers

 Rule Modules

 Scopes

when processing scope tests. More advanced issues regarding the extent of how the frame-
work supports the addition and removal of facts, rules and client groups were discussed.
Throughout the chapter the motivating example of the office complex system was used to
clearly explain the concepts presented, but other scenarios with similar characteristics can
also be supported by the framework.

The chapter then concluded by revisiting the stated requirements of a heterogeneous
framework for supporting the processing of events in RKDAs. Through the scenario and by
comparisons against the requirements, the scope-based approach of the Serenas framework
was observed to provide suitable abstractions and models that support the execution of
scoped rules in RKDAs backed by a common rule-based system.

8
Evaluation

Reasoning draws a conclusion, but does not make the conclusion certain, nor
does it remove doubt, unless the mind discovers it by the path of experience.

Roger Bacon, The Opus Majus of Roger Bacon, 1897

This chapter evaluates the scope-based approach of this dissertation through its con-
crete implementation, the Serenas framework. The goal of the evaluation is to examine
the computational efficiency of the Serenas framework’s rule engine. The approach was
centred on investigating the following points:

1. Whether a scope-aware rule engine as presented has significant computational bene-
fits over a traditional rule engine in which scoping is manually encoded in the rule
(Sections 8.2 & 8.5),

2. Comparison of the integrated scoped technique of this dissertation with one that
fosters total isolation through the independent rulebook approach (Section 8.3),

3. Whether a scoped rule engine with SBH experiences significant improvements in
efficiency compared to one without SBH (Section 8.4).

For each evaluation we begin with an introduction of the evaluation cases and proceed
to illustrate the configuration, method and results of the actual experimental process. We
then complete each section with a discussion of the observed results. In the cases we use
a comprehensive simulation of a scenario that is functionally equivalent to the motivat-
ing example presented in Section 5.2.1. The simulation is used to provide a comparative
evaluation with the classical approaches.

8.1 Evaluation Scenario
In this section we explain the setup of the evaluation, presented as published in [KBD15]
and [KRD17a]. To highlight the requirements that such a system should meet, we present

171

172 Chapter 8. Evaluation

the scenario that is akin to Cloud service providers for monitoring security systems [FYW15].
In this case, the provider is a service that monitors and logs requests in a university-wide
security access system.

8.1.1 Example: University Services Access Control
Scenario Narrative

The 3 universities of the Association of Universities in Brussels (Universitaire Associatie
Brussel) have passed a resolution that requires monitoring accesses of students and staff all
over their campuses. Accesses that deviate from the policies in place should immediately
be reported to the responsible security bodies for quick responses.

All the universities have proximity ID-card readers at major access points in their
campuses. Students and staff wear identification badges that contain their issued ID cards
upon registration (technically, the ID cards are contactless smart cards also known as
proximity cards). To this effect, students and staff scan their issued ID cards to gain access
to various locations in the campuses.

University Security Policies

We illustrate some of the policies for the universities below.

 Policy 1 Student Classroom Access

All students at all levels have access to classrooms during class times on weekdays

 Policy 2 Car Parking Access

Only registered student and staff cars are allowed entry to underground parking on
their campuses

 Policy 3 External Staff Code Access

External staff are allowed access only if they have a pre-authorised access code, issued
by higher level administrative staff

For this motivating example we have enumerated a number of policies. These poli-
cies are generally applicable to the whole university. Universities usually have an overall
arrangement of organisational structures, roles, and functions. From a security viewpoint,
we present the following university structure focusing on three core planes:

• The physical structures collocated within the university, consisting of a number of build-
ings and other edifices, such as the campus restaurant, parking and bank ATM.

• The different faculties of institutes of research that perform specific academic functions
such as teaching and promoting innovation.

• The various administrative bodies that offer professional support services such as man-
agement and overall strategic planning. These include core personnel, part-time or
external personnel.

8.1. Evaluation Scenario 173

personnel

external

otherbank

internal

academic

administrative

junior senior

physical

main6
campus

labs

classrooms

parking

medical6
campus6

research

science6
dept

computer6
science

software6
engineering

biology

arts6
dept

web6info6
systems

bioinformatics

Figure 8.1: Example structures in universities – They are grouped into three
hierarchical structures: one based on physical location, one on department, and
one on type of personnel.

A simplified structure is shown in Figure 8.1 with the personnel, research and physical
structures. The figure shows the various groups as vertices and the relationships between
them as edges that depict the overall structure of the university1.

Students, staff and strategically-placed ID-card readers can be linked to any group at
any level of the structure.

Custom Security Policies

In the association, a university has the structure shown in Figure 8.1. One university
develops specialised custom policies for its various departments given its layout. To this
end, specific departments and units define custom access policies:

 Policy 4 Biology students lab access

Biology department students are allowed access to all labs of its (sub)departments
during the weekends if accompanied by senior academic staff

 Policy 5 Campus bank office access

Only campus bank employees and consultants have access to the bank back office
during working hours

These custom policies apply to different levels of the university structure, for instance
within a department and its sub-departments.

1The hierarchy diagram is not necessarily a tree, since some nodes can have multiple predecessors.

174 Chapter 8. Evaluation

Rule
Rule

Rule

Rule

Rule
Rule

Rule

Rule

Rule

Rule

Figure 8.2: Evaluation scenario of monitoring university security – Policies added
as rules to the server are used to determine the validity of access requests.

Scenario Modelling

For the experimental simulation, we enumerated around 40 security access policies. The
final model contains 3 universities and 61 faculty, administrative and physical groupings
(the simplified depiction of structure in Figure 8.1 was derived from this final model).

The final model also contains students, staff and devices belonging to one or multiple
groups. The access devices are ID-card readers that are installed at strategic physical
structures and academic departments. The staff belong to various administrative personnel
categories with different access levels. Both parties (the students and staff) gain access to
various locations and at various times by scanning their badges using the access devices.

Security Monitoring Service Provider

A security monitoring service provider provides an RKDA framework for the universities.
The service receives all the defined security policies that should be evaluated whenever a
request is made. A routine use case of a typical access request is enumerated below, and a
general illustration is shown in Figure 8.2.

1. A student or staff initiates an access request to a particular location in the university
by scanning his ID-card on an access device restricting access to the location.

2. The device collects the request data (time, badge, location) and needs to immediately
send it to the university access device server.

3. The server in turn copies and sends the data to the monitoring service.

4. The service logs the request and instantaneously computes whether the access request
is within the defined security policies.

5. The service sends the feedback as notifications to the dashboards of the relevant
authorities for prompt analysis.

Student Classroom Access Example
For instance in policy 1, when a student in a university accesses a classroom during
class times, the monitoring dashboard would show a status to indicate whether the
access is acceptable or otherwise.

8.2. Evaluation: Scoped & Ad-hoc Approaches 175

Table 8.3: Specifications for the Evaluation Case Server

Specification Value

Operating System Ubuntu Server 15.04
Web Server Node.js v5.6.0
Processor AMD Opteron 6272
Processor Speed 2.1Ghz
Total RAM 96GB DDR3
RAM Speed 1600 MHz
Allocated RAM 20GB∗

Allocated Disk Space 40GB∗ HDD
∗ Allocated per Node.js process

8.2 Evaluation: Scoped & Ad-hoc Approaches
In this section we evaluate our scope-based approach by implementing the university sce-
nario. For this evaluation we investigate whether introducing the scoping metadata ar-
chitecture and semantics within the rule engine as presented in the previous chapters has
significant computational benefits over a traditional approach using a vanilla rule engine
that requires a manual encoding of the same knowledge.

8.2.1 Setup and Methodology
Experimental Setup

The example scenario was implemented as a simulation running on an event-driven web
server. The final application has a total of 61 groups in hierarchies, 40 access rules, and 73
concurrent clients across 3 sample universities. The Serena server runs a Node.js web server,
and all clients are connected to the server concurrently through websocket connections
managed by the framework. The specifications for the server and the Node.js processes are
shown in Table 8.3.

Methodology

The general evaluation of the university scenario focuses on investigating the differences
between two approaches:

• The first follows the mechanisms that current rule-based systems expose i.e. the use
of vanilla/traditional rules using manual methods such as expression tests, to enforce
reentrancy and data discrimination. For this we used a JavaScript Rete-based rule engine
for Node.js, JsRete, that was inspired by a similar implementation Nools [C2F14]. We
refer to this as scoping using an ad-hoc approach.

• The second approach uses Serena’s built-in approach that this thesis proposes: using
the Serena framework’s scoped rules realised in the inference engine’s graph. We refer
to this as the built-in or scoped approach.

The general methodology for the simulations involved splitting the evaluation process
into parts:

176 Chapter 8. Evaluation

Analogous simulation – The first part involved performing one session of the sim-
ulation using identical access requests for both ad-hoc and built-in scoping approaches
from predetermined clients (students, staff etc.) in similar locations. This was in order to
perform a direct comparison of the performance of both approaches.

Randomised simulation – The second part involved performing a more extensive ran-
domised simulation. We randomly designated various clients to different levels within the
university hierarchies and generated random access requests (at different times) from those
clients. This was significant to come up with statistical observations of the differences
between the general performance of the two approaches.

We simulated the analogous and randomised access requests from clients using different
access devices throttled in ranges of between 1-5 seconds, to model practical delays in
subsequent access requests by clients at access points. Each simulation was running for a
total of 12 hours. The aim of these requests was to model real-world access patterns of
students and staff from different departments or personnel levels accessing various university
locations at different times.

For the randomised simulation, we ran 35 iterations of simulations in each category
(scoped and ad-hoc): approximately 420 hours simulation runtime for each.

During both categories of simulations we logged the number of join computations
performed in the inference engine’s Rete graph, the RSS/Heap memory used and the cu-
mulative number of activations observed by the server. We show the results and discuss
the findings in the next section.

8.2.2 Results and Discussion

Results

We present the results in the form of several charts and graphs. In each simulation (i.e. in
a single simulation run of 12hrs) an average of approximately 18k access requests were gen-
erated. Each graph compares both scoped and ad-hoc simulation categories and illustrates
the results of every simulation run recorded.

From the results of the analogous simulation we present Figure 8.4, which shows the
cumulative number of join tests performed, rule activations (i.e., firing rules) observed and
the memory utilised for both scoped and traditional engines with the same access requests.

For the randomized simulation the comparative join computations, the rule activa-
tions and memory consumption of both approaches are depicted in graphs shown in Fig-
ures 8.4a, 8.4b and 8.4c respectively. The results of the runs are then aggregated the data
statistically depicted using box plots show in Figure 8.6.

We next discuss the observed results of the different simulations performed.

Discussion

Analogous simulation results: From the cumulative results of the analogous simulation
we analyse the performance of both scoped and traditional engines using the same config-
urations (i.e. similar rules and fact assertions).

From the graphs in Figure 8.4 we observe that the traditional Rete graph built from
manual ad-hoc methods in rules suffers a marked increase in the number of joins computed
compared to Serena’s scoped engine. The ad-hoc approach spent more time processing the
expensive join operations in the engine. Serena’s scope tests act as guards that use the
encoding to perform efficient tests to restrict incompatible data, leading to better perfor-

8.2. Evaluation: Scoped & Ad-hoc Approaches 177

TIME (S)

N
O

. O
F

JO
IN

S
PR

O
CE

SS
ED

Unscoped Scoped

1864
5715

9884
13734

17913
21808

25777

29900

33990
37776

41754
0M

500M

1 000M

1 500M

VUB Security Access Case Study - Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 14:23

Ad-hoc

(a) Comparison of number of joins processed

TIME (S)

N
O

. O
F

RU
LE

 A
CT

IV
AT

IO
N

S

Unscoped Scoped

1864
5715

9884
13734

17913
21808

25777

29900

33990
37776

41754
0k

10k

2.5k

5k

7.5k

VUB Security Access Case Study - Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 14:24

Ad-hoc

(b) Comparison of number of rule activations

TIME (S)

M
EM

O
RY

 (R
SS

) (
M

BS
)

Unscoped Scoped

1864
5715

9884
13734

17913
21808

25777

29900

33990
37776

41754
0

250

500

750

1000

1250

VUB Security Access Case Study - Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 16:40

Ad-hoc

(c) Comparison of memory consumption

Figure 8.4: Cumulative results for the single analogous simulation run of 12hrs –
The results show that under similar conditions the scoped approach reduces the number
of join computations performed (in favour of efficient encoding operations) leading to
a higher number of rule activations observed in (b). The scoped approach also uses a
considerably less amount of memory.

178 Chapter 8. Evaluation

SIMULATIONS

N
O

. O
F

JO
IN

S
PR

O
CE

SS
ED

Unscoped Scoped

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0M

500M

1 000M

1 500M

2 000M

VUB Security Access Case Study - 1 month run Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 16:51

Ad-hoc

(a) Join test results for all randomised runs in both scoped and ad-hoc approaches.

SIMULATIONS

N
O

. O
F

RU
LE

 A
CT

IV
AT

IO
N

S

Unscoped Scoped

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0k

10k

2.5k

5k

7.5k

VUB Security Access Case Study - 1 month run Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 16:52

Ad-hoc

(b) Activations observed over all the randomised runs for both scoped and ad-hoc approaches.

SIMULATIONS

M
EM

O
RY

 (R
SS

) (
M

B
S)

Unscoped Scoped

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0

250

500

750

1000

1250

1500

VUB Security Access Case Study - 1 month run Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 16:53

Ad-hoc

(c) Memory (resident set size) consumed by both approaches over all simulation runs.

Figure 8.5: Results of all the randomised simulation runs show a similar trend
as the analogous run: the ad-hoc approach performs more join computations (a)
and uses more memory (c) resulting in less activations and slower responses to
access requests (b) from clients.

8.2. Evaluation: Scoped & Ad-hoc Approaches 179

Beta joins/tests (Billions) Activations Memory (RSS) (MBs)

Ad-hoc Ad-hoc Ad-hoc

Figure 8.6: Aggregated results of all the simulation runs – The results summarise
the trends observed in the previous Figure 8.5. The box plots indicate that a scoped
rule engine offers computational benefits compared to an ad-hoc approach.

mance, and consequently to a higher number of activations recorded (by approximately
31%) within the same analogous simulation run.

Randomised simulation results: The aggregated results in Figures 8.5a, 8.5b and 8.5c show
evidence of a better overall performance of the scoped engine. Compared to a traditional
ad-hoc approach, Serena’s scoped engine on average improves the computation of scope
tests and total memory consumption, increasing the average number of rule activations of
all randomised simulation runs as indicated by the box plot of Figure 8.6.

The reduced memory consumption of the scoped engine is an interesting result: given
the matrix encoding of the hierarchy one would expect a higher memory consumption in
the scoped approach. This is indeed true when we closely observe the initial memory
consumption of the single analogous run of Figure 8.4c. This is illustrated in Figure 8.7.
Eventually, however, the ad-hoc approach surpasses the scoped engine after about an hour
of asserted facts. A reason for this is the framework internally performs space optimisations
of scoping metadata as opposed to the traditional approach. For example, in the traditional
approach each fact would contain a dedicated source slot object, taking up the same space
as other slots like name and age. Serena utilises the lattice hierarchy labels to tag the data
as opposed to creating slots in facts thus saving up space occupied in each asserted fact.
Ultimately, the ad-hoc approach leads to a higher memory consumption, due to redundant
information and inefficiencies brought about by the complexity of using the manual methods
in client rules.

180 Chapter 8. Evaluation

TIME (S)

M
EM

OR
Y

(H
EA

P
US

ED
) (

M
BS

)

Unscoped Scoped

1864
5715

9884
3860

7847
117

59
0

250

50

100

150

200

VUB Security Access Case Study - Benchmarks http://127.0.0.1:7653/

1 of 1 19/06/16 20:27

Ad-hoc

Figure 8.7: Initial cumulative memory consumption of the analogous simulation
run – Serena’s scoped approach begins with a higher memory usage, but is later sur-
passed by the engine with the ad-hoc approach.

8.3 Evaluation: Isolated Rule Engine Instances
In this section we perform a separate simulation using the isolated rulebook approach
having separated instances of Rete rule engines for the university security scenario. The
server configuration remains as specified in Table 8.3. We outline the process next.

8.3.1 Setup and Methodology
For the setup, we used the 3 sample universities from the first simulation and incorporated
the same policies. However, in this case we distinctly duplicate and/or split the policies
according to the relevant university. As expected, some policies were duplicated; for in-
stance, the classroom access protocol that applies collectively to all universities needs to
be replicated over the university instances.

For this setup we did not incorporate the use of scopes – and as such groups are
not captured for encoding internally. However, the universities themselves do contain a
hierarchy of research groups, personnel entities and physical structures. Consequently, the
access rules perform data discrimination between these internal structures using normal
test expressions.

Similar to the previous setup, we designed and implemented a simulation in which
the universities receive the same intermittent access requests belonging to the respective
universities. The requests were not randomised; they were modelled in the same way as
those in the previous analogous simulation. Instances of the traditional Rete engines were
spawned representing the 3 sample universities. Each simulation was modelled with the
same intermittent requests limited to 12-hours similar to the previous analogous scope-
based simulation.

The aim of this evaluation was to investigate differences of two approaches: on one
hand we have the approach of scopes in a shared inference engine, and on the other hand
we have the approach having isolated rule engine instances. We thus recorded the resource
usage and computations performed during the simulation and compared the results.

8.3. Evaluation: Isolated Rule Engine Instances 181

8.3.2 Results and Discussion
We present the results recorded in comparison with the results of the built-in scoped ap-
proach. Each graph compares the previous built-in scoped and manual ad-hoc results of
the analogous simulation augmented with the results observed from this simulation with
separated instances. To analyse the approaches comparatively, we show the results of the
simulation run. Figure 8.8a shows the total number of join computations recorded in the
instances, Figure 8.8b shows the number of activations observed. Finally, Figure 8.8c shows
the RSS (Resident Set Size) memory used by the simulation.

From the graphs we observe that our scoped engine approach has similar performance
as the approach with isolated instances. Furthermore, the multiple instances generally
perform better than the single-instance ad-hoc approach, but they consume much more
memory than the other approaches.

In processing join tests, Figure 8.8a shows that the joins computed in the separate
instances are less than those of the ad-hoc approach – this is because the ad-hoc approach
still needs to perform its joins on all client data in one Rete instance. The scoped approach
has fewer join computations because it instead uses the matrix encoding to perform scope
checks. Remember that join computations are the most expensive computations in Rete-
based rule engines as discussed in Section 4.4.2.

When analysing the activations in Figure 8.8b, we observe that within the same time
interval the isolated engine instances observed a much higher number of rule activations
than the ad-hoc single instance approach. Furthermore, comparing the results of the iso-
lated instances with the scoped approach showed a slightly less number of activations. In
other words, the multiple instances performed computations that resulted in processing
nearly the same number of activations as the shared instance scoped approach within the
same time interval of 12hrs. Indeed, having separate instances tends to have faster com-
putations than the traditional ad-hoc approach. The limitation of the approach having
separate instances manifests itself when observing the memory consumption in Figure 8.8c.
Here, the memory used by the separate instances of Rete engines is significantly higher
compared to all other approaches. The reason is that the isolated instances have increased
redundancy, and this leads to the duplication of the working memory, graph nodes, inter-
mediate memories and activation queues utilised by the inference engines. A single Rete
instance takes advantage of structural similarity and temporal redundancy as discussed in
Section 7.2.2 leading to reuse of shared resources in the same way as utility computing in
the Cloud (Section 2.1.2).

8.3.3 Conclusion
In this evaluation we implemented the university security scenario using isolated Rete
instances for each of the universities. We presented our methodology of having policies of
each university implemented in its own instance using the same data as the analogous run
in Section 8.2.1 . Within a fixed time interval we recorded the results and compared them
with the scope-based and ad-hoc approaches.

The results showed that the separate instances exhibited, comparatively, the same
performance as our scoped approach in terms of the rule activations processed but out-
performed the traditional ad-hoc approach. The main cost of the approach with separate
instances is however the high amounts of memory utilisation due to duplication of resources.

From the analysis of the results we conclude that in terms of processing the scoped
shared instance and separate engine instances both offer similar performance when dealing
with heterogeneous data. Furthermore, we observe that even though the use of separate

182 Chapter 8. Evaluation

Rete engines has better performance than ad-hoc methods, the technique of having separate
engines suffers from higher usage of resources – especially as more tenants are added to the
system. In comparison, our scoped approach enjoys both the benefits of good performance
that utilises less memory during execution. Sharing of rules in one instance further allows
Serena to exploit community knowledge, unlike in separate instances.

8.4 Evaluation: Scope-based Hashing
This section evaluates the Scope-based Hashing (SBH) approach. The main focus is to
find out whether a rule engine with SBH experiences significant improvements in efficiency
compared to the ‘vanilla’ scoped approach. The evaluation was based on the complete
university security scenario staged introduced in Section 8.1.

8.4.1 Setup & Methodology
We performed our evaluation in a setup consisting of a web server running Serenas. The
server was similarly configured as in the previous simulations.

In this simulation, clients and devices were initialised and connected to the rule server
via WebSockets. Similar to previous evaluations the mobile clients were configured to
generate access requests at intervals of 1-5 seconds and devices received reactive feedback. A
security console received push-based updates of accesses to entry points. In this simulation,
each access request was randomised, with a random client belonging to any group(s) making
an access request at a device from a random location in the university hierarchy.

We split the experiment into two test categories. One category included running a
‘vanilla’ scoped rule engine, and the other involved the Serenas rule engine with the scope-
based hashing algorithm (Section 7.4): i.e., Serenas without SBH and Serenas with SBH.
The number of simulation runs for this case was increased to a total of 62 sessions for
each category, with one session running for a duration of 12 hours. The total experiment
therefore spanned 124 sessions and 1488 hours runtime.

8.4.2 Analysis of the Results
During the experiment the activation times (comparable to response time) and the memory
used were logged and compared. The results for this scenario are charted using graphical
bean charts that show the quartiles as well as the density estimates in Figure 8.9a. It shows
the results of the activation times of the vanilla scoped engine without SBH and the rule
engine with SBH. Here, rule activation time is the time it takes the engine to perform a
matching process, between assertion and rule activation (Section 4.4).

The chart shows that, on average, the vanilla scoped rule engine showed higher rule
activation times than the engine with SBH. SBH exhibits an advantage over the vanilla
scoped approach, with reduced rule activation times of up to 80%.

Figure 8.9b shows the results of the recorded memory consumption (measured by
resident set size, RSS) averages of each category. The scoped engine showed a lower amount
of memory consumed by reducing and optimising redundant information used for computing
scopes. On average, the SBH approach was observed to consume up to 30% more than
using the vanilla scoped engine. From this result we see that the alpha memory hashing
of SBH leads to a more complex node memory structure that needs more space than
the conventional node memory. In addition, the setup of the security monitoring service

8.4. Evaluation: Scope-based Hashing 183

1166.75

1433.28

756.45

0

500

1000

1500

2000

Unshared Unscoped Scoped

JO
IN

S
P

R
O

C
ES

SE
D

 (
M

ill
io

ns
)

(a) Comparing the number of joins processed in all
module instances.

7434

4053

7760

0

2000

4000

6000

8000

Unshared Unscoped Scoped

A
C

TI
VA

TI
O

N
S

(b) Comparing the number of rule activations observed
per 12-hr simulation period.

1758.4

1197.4

557.2

0

500

1000

1500

2000

Unshared Unscoped Scoped

M
EM

O
R

Y
 (R

SS
)

U
SE

D
 (

M
B

s)

(c) Comparing the total memory consumption (RSS).

Figure 8.8: Results of the simulation for the university access control service
with separate rule engine instances augmented with the other approaches – When
analysing performance, our scoped Rete engine approach performs comparatively better
than using isolated Rete engine instances. The approach with isolated engines performs
better than the ad-hoc approach with a shared engine, but consumes more memory due
to the separate instances and duplication of resources.

184 Chapter 8. Evaluation

Vanilla scoped SBH scoped

(a) Bean plot of the results of rule activation times – The results show that the SBH approach
offers much quicker rule activation times than the plain scoped engine.

Vanilla scoped SBH scoped

(b) Bean plots of results of memory used (Resident Set Size) – SBH was found to consume more
memory than a plain scoped approach.

8.5. Evaluation: Rule Engine Benchmark with Miss Manners 185

application consisted of a number of entities belonging to multiple groups in the hierarchy,
and this therefore leads to fact duplication in the SBH table, increasing memory usage2.

From the results we observe that for a scoped rule engine for RDKAs, adopting the
SBH algorithm leads to faster execution of the engine’s matching process (due to direct ac-
cess in the hash table) resulting in lower activation times. We therefore find that SBH offers
significant efficiency benefits for heterogeneous rule engines over vanilla scoped approaches,
at the price of a higher space requirement.

8.5 Evaluation: Rule Engine Benchmark with Miss Manners
In this section we proceed to analyse the performance of Serena using a known standard in
benchmarking rule engines. The de-facto academic benchmark for Rete-based rule engines
is arguably the Miss Manners benchmark, explained next.

The Miss Manners Benchmark

The Miss Manners benchmark is described as follows. Miss Manners wants to throw
and host a dinner party. She does not want her guests to get bored; so she intends to
place them at specific parts of available dinner tables. She designs a simple solution:
she attempts to match people that share a hobby and are of the opposite sex to be
seated at one table.

The design of the Miss Manners benchmark provides a combinatoric evaluation: it
specifically stress tests the beta network of a simple Rete implementation [Bra+91]. Con-
ceptually, the problem employs a depth-first search approach that tries to find a solution
of matching people that share a hobby seated at a table. The runs cause the engine to per-
form millions of join test computations. The benchmark is not without criticism, however,
where most rule engine vendors are able to detect and ‘optimise’ its results. Nevertheless,
given proper analysis and setup, the benchmark can give a reasonable indication of rule
engine performance when computing expensive joins.

8.5.1 Setup & Methodology

Setup

We setup the Miss Manners evaluation for this work by comparing the rule engine of the
Serenas framework with the Drools Engine introduced in Section 3.3.2.

We performed a customised setup for evaluating the benchmark, since the original ver-
sion of the benchmark was tied to the specifics of the execution of the OPS5 engine [Bri06].
Firstly, we implemented a similar resolution strategy as Drools’ depth strategy that places
priority on instantiations with more recent or higher number of facts. Secondly, because
Serena is a streaming engine, we first assert the guest and setup facts before asserting the
context fact that initiates the benchmark.

For this evaluation, we resolve the Miss Manners problem using a range of between 5
and 50 guests, each with a maximum of 3 hobbies. We performed the benchmark on an
Intel Core i7@2.5 GHz (4870HQ) processor with 16GB DDR3@1600 MHz RAM.

2We discussed in Section 7.4.4 the situations that can lead to duplication of facts in the SBH table.

186 Chapter 8. Evaluation

Methodology

We present our methodology for evaluating the benchmark. The main aim of this evaluation
is to determine the benefits of the proposed scoping mechanism. We therefore perform the
benchmark for a comparison between the results of the Serena engine with the Drools
engine.

To effectively measure the efficiency and other benefits of scoping, we split the Miss
Manners evaluation into two parts: identical and related hobbies benchmarks.

Identical hobbies benchmark

In this benchmark the goal is to place the guests matched according to a partners of
different sex that have the same exact hobby. The identical hobbies benchmark therefore
corresponds to the classic Miss Manners benchmark which places guests that have the same
hobbies adjacent to each other. We therefore perform this evaluation with the guests having
a maximum of 3 hobbies, and guests with the exact same hobbies are placed together.

The rules required from the identical hobbies benchmark are derived from the classical
OPS5 benchmarks for Miss Manners. The rules facilitate the matching of guests on various
seats. As an illustration, we now show the assignFirstSeat rule that is responsible
for creating the initial seating arrangement and for setting the next context. To give an
indication of the different rules of the benchmark we show the left-hand sides of the rule
for SRL (Serena Rule Language) in Listing 8.1 and for DRL (Drools Rule Language) in
Listing 8.2. All the rules for the Miss Manners benchmark in SRL are listed in Appendix C.

Listing 8.1: Miss Manners: SRL guest-seating rule as JSON
1 {rulename: "find_seating",
2 conditions:[
3 {$c1: {type:"context", state: "assign_seats"}},
4 {type: "seating", seat1: "?seat1", seat2: "?seat2", name2: "?n2", id:"?id", pid:

↪→ "?pid", path_done: true},
5 {type:"guest", name: "?n2", sex: "?s1", hobby: "?h1"},
6 {type:"guest", name: "?g2", sex: "?s2", hobby: "?h1"},
7 {$c3: {type:"count", num: "?c"}},
8 {sign: "not", type: "path", id: "?id", name: "?g2"},
9 {sign: "not", type: "chosen", id: "?id", name: "?g2", hobby:"?h1"}

10],
11 actions:[
12 /*...*/
13]
14 }

Listing 8.2: Miss Manners: DRL rule for seating guests
1 rule findSeating
2 when
3 $c : Context(state == Context.ASSIGN_SEATS)
4 $s : Seating(pathDone == true)
5 $g1 : Guest(name == $s.rightGuestName)
6 $g2 : Guest(sex != $g1.sex, hobby == $g1.hobby)
7 count : Count()
8 not (Path(id == $s.id, guestName == $g2.name))
9 not (Chosen(id == $s.id, guestName == $g2.name, hobby == $g1.hobby))

10 then
11 //...

8.5. Evaluation: Rule Engine Benchmark with Miss Manners 187

12 end

The findSeating rule determines the seating arrangements. The rules in Serena and
Drools are shown in Listing 8.1 and 8.2 respectively. Both rules contain a name, left-hand
side (conditions for SRL and when for DRL) and a right-hand side (actions for SRL and
then for DRL). The rule finds a table with one guest (line 5) and tried to match it with
another compatible guest: where the sex of both guests are different but share the same
hobbies (line 6) and the guest has not been already chosen for another table (lines 8-9).

Aside from the rules facilitating the matching of guests, the benchmark also requires
a number of facts representing the guests with their hobbies, sex etc. and other context
information when searching for compatible guests. In the template for the guest fact, for
instance, hobbies are of type integer and each guest can have up to 3 hobbies in this
benchmark.

Listing 8.3: findSeating Rule for Related Hobbies
1 { rulename: "find_seating",
2 conditions:[
3 {$c1: {type:"context", state: "assign_seats"}},
4 {type: "seating", seat1: "?seat1", seat2: "?seat2", name2: "?n2", id:"?id",

↪→ pid: "?pid", path_done: true},
5 {$g1: {type:"guest", name: "?n2", sex: "?s1"}},
6 {$g2: {type:"guest", name: "?g2", sex: "?s2"}},
7 {type: "$test", expr: "(?s1 != ?s2)" },
8 {type:"count", num: "?c"},
9 {sign: "not", type: "path", id: "?id", name: "?g2"},

10 {sign: "not", type: "chosen", id: "?id", name: "?g2", hobby:"?h1"}
11],
12 scopes: ["$g1 visibleto $g2"],
13 actions:[
14 /*....*/
15]
16 }

The Related Hobbies Benchmark

In this part we performed a modified evaluation of the Miss Manners benchmark, where
the guests can have several hobbies and can be seated adjacent to others with related
hobbies. The narration goes as follows: Miss Manners considers that it is limiting to only
seat guests of the opposite sex with identical hobbies – some guests may share similar or
related hobbies and would still hold interesting conversations together.

Related hobbies are topics of interest that have common or general heritage (in com-
parison, identical hobbies are the exact same topics). The related interests benchmark
therefore corresponds to the basic benchmark with different hobbies forming a practical
taxonomy that connects general hobbies related to each other e.g. a general arts category
to a related watching the opera hobby.

We can represent the hobbies structured as a hierarchy of topics of interests as depicted
in Figure 8.11. Miss Manners can thus ask the guests to choose their hobbies at any level
of the hierarchy. The modification to the benchmark using related hobbies increases the
computations that the basic Miss Manners benchmark performs. This is because the engine
needs to check whether the guests now share a common interest: for instance if they both

188 Chapter 8. Evaluation

generally like the arts or sports (rather than just if both like the opera or hockey in the
identical interests benchmark).

The facts of this benchmark were modified: we remove the slot of the guest facts that
represented a hobby. Each guest now becomes a user in Serena, and we designate each
guest a number of groups from different levels of the hierarchy, representing their hobbies.

Guests can then receive notifications if any guest ‘matches’ a person with related hob-
bies at the party. This required modifying several rules for this benchmark. In Listing 8.3
we show the modified findSeating rule. The rule is similar to the identical hobbies bench-
mark, except for the scopes in line 15 that specify that the two guests should have general
interests in the hierarchy using the scope check of visibleto.

8.5.2 Results & Discussion
Results

We ran the separate benchmarks on both Drools and Serena engines and logged the time
it took for the engine to seat all the guests correctly. Figure 8.10a shows the results of the
Drools engine and Figure 8.10b shows the result of the Serena framework. Both graphs
show the results of the benchmark using identical interests (without groups) and related
interests (with groups) benchmarks.

Discussion

The results of the two Miss Manners benchmarks show that in the classical settings, the
Serena engine is, on average, 8 times slower than the JBoss Drools engine. This result is
because the Drools engine is known to have several Rete-based optimisations in its core that
make it outperform the scoped Serena engine [Pro13]. Furthermore, the Serena framework
contains additional components such as the event manager that maintain connections with
clients and manage receiving and sending events/notifications, that have a negative impact
on the overall performance of the engine. Drools, in contrast, has no notion of maintaining
multiple clients and their connections, and does not need to maintain such components
internally. The results can be viewed in Figure 8.10a.

When analysing the results of both identical and related hobbies benchmarks, we dis-
cover a trend where the Drools engine exhibits degrading performance when comparing
its performance changes with increasing number of guests. To get a better insight of this
trend, we first take the total time taken by both engines in both experiments. The total
time taken by Serena engine is thus tserena and for Drools is tdrools. We then use this to
tabulate the percentage that each engine recorded for a particular number of guests over
its total time.
For example, in the benchmark of 5 guests for Drools we have,

percide5 =
tide5
tdrools

∗ 100

percrel5 =
trel5
tdrools

∗ 100

∆drools5 = percrel5 − percide5

where for the 5 guest benchmark, tide5 the time taken by Drools, percide5 is its percent-
age for the identical hobbies benchmark, percrel5 is its percentage for the related hobbies

8.5. Evaluation: Rule Engine Benchmark with Miss Manners 189

MISS MANNERS BENCHMARK - SERENA

GUESTS

TI
M

E
(M

S)

Identical hobbies Related hobbies

5 10 15 20 25 30 35 40 45 50
100

1k

10k

100k

1M

Miss Manners Benchmarks Results http://127.0.0.1:7653/

1 of 1 21/06/16 13:45

(a) The results for the Serena frameworkMISS MANNERS BENCHMARK - DROOLS

GUESTS

TI
M

E
(M

S)

Identical hobbies Related hobbies

5 10 15 20 25 30 35 40 45 50
10

100

1k

10k

100k

Miss Manners Benchmarks Results http://127.0.0.1:7653/

1 of 1 21/06/16 13:46

(b) The results for the JBoss Drools engine

Figure 8.10: Results of both types (identical and related) of Miss Manners bench-
marks – The graphs show the time taken to find seating for guests, as the number of
guests increase. We see that the Serena engine is generally slower than the commercial
Drools engine by a factor of about 8x. Drools however exhibits a faster performance
degradation when applying the benchmark on related hobbies.

sports&games

sports

track/
field

contactfield3
games

board3
games

video3games

games

ski court

water ice judo

wrestling fieldsports
track

marathon

sprint
jog

football
rugby

golf

tennis

hockey

basket
ball

social

activities

partiesspecialised
instant3
messagingblogging

social
media

bookclub
cruise

concerts
house3
partymicro3

bloging
vlogging text3

chat video3
chat

hiking

arts

performing

theatre

media

paintfashion

visual

tv

film standup
play

opera

pottery

poetry

Figure 8.11: The hobby topics hierarchy used on the related interests Miss Man-
ners benchmark – This hierarchy relaxes the restriction of seating guests with identical
interests together to seating those with common general interests. The relaxation how-
ever increases the complexity of the evaluations that the benchmark performs.

8.6. Chapter Summary 191

Table 8.12: Comparison of the effect of the modified Miss Manners benchmarks on
the performance of both engines – The table displays the time taken as a percentage
of the total in both identical (ide) and related (rel) hobbies benchmarks. The increase
(∆) shows that Drools suffers from a higher performance degradation with increasing
number of guests as compared to Serena.

Guests 5 10 15 20 25 30 35 40 45 50

Drools

percide 0.08 0.08 0.13 0.16 0.49 0.78 1.09 1.41 1.58 2.26
percrel 0.10 0.12 0.31 0.40 3.18 10.49 14.50 17.75 19.58 25.53

∆ 0.02 0.04 0.18 0.24 2.69 9.72 13.40 16.34 18.00 23.27
Serena

percide 0.09 0.15 0.25 0.45 0.98 1.92 4.50 8.74 14.74 25.04
percrel 0.10 0.17 0.27 0.45 0.90 1.66 3.42 5.62 11.81 18.76

∆ 0.01 0.02 0.02 0.00 -0.09 -0.26 -1.08 -3.12 -2.92 -6.27

benchmark and ∆drools5 is the percentage difference between the two benchmarks. A simi-
lar calculation is performed for Serena.

The results are shown in the rows of Table 8.12. From the table, we observe that the
Serena engine shows a smaller change in performance degradation as the number of guests
increase when comparing the two benchmarks. This can be seen in the ∆ rows of the table
with increasing number of guests. The reason for the better relative performance of the
Serena engine is because with the increase in the number of guests the engine utilises efficient
computations to determine whether two guests are compatible with each other using the
encoding of the different hobbies. As the guests increase, the amount of computations to be
performed to determine this compatibility increases, making the Serena engine to perform
better than the classical benchmark that uses normal join tests when placing guests in table
seats.

In contrast, and as seen in Figure 8.10b, the Drools engine suffers from a decrease in
performance as the number of guests are increased when comparing deltas of both identical
and related hobby benchmarks. The reason here is that with the higher the number of
guests the engine needs to perform more combinations of tests to determine which guests
with related hobbies can be seated together. Consequently, the different beta computations
to ascertain whether such scope checks pass take their toll on the established Drools engine’s
performance.

8.6 Chapter Summary
In this chapter we have evaluated our approach of introducing scopes to a rule-based frame-
work supporting RKDAs. We performed the evaluation using two strategies to compare
our proposed benefits:

• To illustrate the practicality of use, we modelled an extensive real-world scenario
(code in Appendix D); and,

• To investigate its efficiency with the state of the art, we performed a comparison with
a well-established inference engine (code in Appendix C).

192 Chapter 8. Evaluation

The first strategy involved designing and implementing a real-world scenario of a uni-
versity access monitoring service in the Cloud interacting with its clients over an extended
period of time. The second strategy involved reproducing a known benchmark with the
established Drools engine.

From the results and their analyses we confirmed that our technique is useful for
RKDAs to capture the inherent organisation of various knowledge representations, and
maintains efficiency by considerably lowering the amount of time the inference engine takes
to perform its most expensive computations.

The university access monitoring service simulation illustrates that our model controls
the number of computations performed by the engine and can also reduce the memory
the engine uses internally, compared with a traditional approach with isolated instances.
The improvements introduced by the scope-based hashing approach further resulted in
significant efficiency benefits over both traditional and purely scoped approaches, with a
tradeoff for higher resource usage.

Although the Miss Manners benchmark exposed that Serena was on average slower
than the state-of-the-art (i.e., heavily-optimised Drools), the analysis of the results con-
firmed that current engines suffer substantially when processing structured, shared knowl-
edge in form of groups. This is indeed significant, because structured, shared knowledge is
common in heterogeneous RKDAs, as discussed in Chapter 5.

In conclusion, introducing scoping in rule-based frameworks for RKDAs results in
efficient computations due to scoped rules. This improves the responsiveness of the RBS
as a whole. This in effect means that given the structured knowledge representation, rules
in reactive knowledge-driven applications are easier to formulate and understand; and the
supporting framework can therefore process a larger number of access requests at a faster
rate. As a result, scoped rule engines for RKDAs exhibit increased response times and
greater efficiency than using classical forward-chaining rule engines to encode the same
knowledge.

9
Conclusion

True creativity often starts where language ends.

Arthur Koestler, The act of creation, 1964

The current Web landscape consists of a dynamic architecture that supports the assim-
ilation of technologies that provide complex online services to a larger number of distributed
end-users. This dissertation presented our work of using scope-based reasoning in frame-
works supporting reactive knowledge-driven applications (or RKDAs). In this chapter we
revisit our initial problem specification in order to assess the extent to which these goals
were met. The chapter then follows by discussing the main contributions of this research
work, and finishes by drawing out the limitations of the approach coupled with some pos-
sible solutions as the future work.

9.1 Revisiting the Problem Statement
The Web platform has evolved into a dynamic architecture that processes content from
intermittent events [Dri11]. Modern techniques that try to support these changes include
reactive programming, which builds upon the deficiencies of traditional imperative program-
ming paradigms by managing data dependencies from various events for their consumption
by a programmer [KBD13]. In such techniques however, it eventually becomes difficult
to express complex operators for event correlation, composition and other orchestration
methods for real-time complex events (Chapter 2).

An approach well-suited for this is rule-based systems that provide rule-based syntax
for definitions and a rule-engine for processing. Rule-based reasoning leverages a declarative
style of programming rather than the common imperative style. This way, an application
programmer is offered a way to tackle the complexity of problems caused by lack of control
of incoming events from different sources. In a similar manner, the rule engine is capable
of capturing, processing and detecting higher-level complex events from such simple but
disorderly events.

193

194 Chapter 9. Conclusion

Rule-based systems are particularly well-suited for expressing community knowledge,
that uses techniques which combine data derived from a variety of distributed sources in
such way that the information can be used collectively to infer higher-level knowledge. This
has become particularly significant in todays Web platform, where the sources are users
that contribute to such a shared heterogeneous environment. Applications that typically
collect events produced by multiple distributed sources and process it in a timely manner in
order to extract community knowledge are known as reactive knowledge-driven applications
(RKDAs).

However, heterogeneity, when coded manually, has negative implications on the exe-
cution cycle of the main component of a rule-based system, the inference engine. Classical
rule-based systems are indeed inherently non-reentrant as they can spur rule activations
from all asserted facts without discriminating their disparate sources. Reentrancy describes
programs written in such a way that multiple users can share the same copies of data in
memory consistently. Using current rule-based approaches programmers enforce reentrancy
through manual interventions, by hard-coding distinctions between different data sources
within the rules. This becomes difficult to enforce and orchestrate using traditional rule
semantics as the number of clients and the relationships between them increase. Failure to
properly make these distinctions causes unintended rule activations in other clients.

RKDA frameworks therefore require orchestration within client rules and within the
inference engine during processing to discriminate or distinguish between instances of differ-
ent entities. This problem manifests itself in other domains such as multi-tenant databases
and distributed event-based systems (Chapter 5). Ultimately, however, even though rule-
based systems are suitable for supporting the development of RKDAs, abstractions that
attempt to solve these problems are lacking in current approaches.

9.2 Summary & Contributions

9.2.1 Summary
The goal of this dissertation was to provide a reactive rule-based system for RKDAs that
solves reentrancy problems by implementing scope-based reasoning. The scope-based ap-
proach supports scoping within rule definitions and in rule engine execution to enforce data
discrimination between instances of data from different clients and to promote community
knowledge. The motivation for this dissertation was organised into two parts.

Serena: Rule Engines for RKDAs

The first part discusses how modern Web applications have changed from their static, iso-
lated foundations to more dynamic, responsive and composite functionality. The functional-
ity has enabled Web applications, denoted in this dissertation as reactive knowledge-driven
applications or RKDAs, which require programming and processing constructs to collect
information produced by multiple distributed sources, and to process it in a timely manner
in order to extract new knowledge. The requirements identified for technologies that should
support these types of applications are summarised in Table 9.1.

While presenting a survey of the current state-of-the-art that meets requirements
(Chapter 3), the discussion concluded that most current approaches were lacking when it
comes to meeting demands for programming online discovery or detection of patterns in
large data sets. The work further showed why most conventional techniques of meeting de-
mands for online processing of events in reactive knowledge-driven applications using event

9.2. Summary & Contributions 195

Table 9.1: Recap of requirements for support of knowledge-driven applications

Requirement In detail

Event-driven model For efficient online processing of client events.
Knowledge encoding For providing knowledge extraction in reactive data.
Incremental processing To provide real-time processing and immediacy of results
Hot-swapping To enable the dynamic addition of client constraints at run time
Simplicity For providing transparent symbiosis with server execution

Table 9.2: Recap of requirements that foster the support for capturing community
knowledge in rule-based systems

Requirement Detail

Metadata model Metadata for managing heterogeneous clients
Grouping model Formalised model for grouping clients
Execution model Execution model for selective computations
Notification model Flexible model for notification semantics

processing systems are unsuitable. This dissertation consequently identified a promising
research area in the rule-based paradigm (Chapter 4). Specifically, detection-oriented rule
engines that process events independently were found to be suitable to capture definitions
for heterogeneous data from clients.

The first part therefore culminated in a custom detection-oriented rule-based infer-
encer, Serena, that meets the identified requirements. Clients can upload and install rules
to the server and receive reactive feedback in the form of push-based notifications. Serena
as a whole provides dynamic definition of rule-based constraints, efficiently processes in-
termittent data through a forward chaining inference engine and manages connections and
message sends between the server and clients.

The Challenges of Heterogeneity in the Web

The second part focused on heterogeneity in the Cloud, particularly the implications of this
heterogeneity in rule-based systems. Using a practical example, we showed the problems
of heterogeneity on a shared instance in the traditional processing cycles of a rule engine.
These effects can be attributed to lack of reentrancy in rule-based systems, making them
difficult to control and maintain when they are deployed in heterogeneous settings. The
problem becomes more complex when community knowledge is taken into account. To
frame a solution, requirements to solve these problems were presented (Chapter 5). The
requirements are summarised in Table 9.2.

Given these requirements we investigated related research in rule-based (and other)
domains, focusing on heterogeneous solutions with shared instances or resources. Even
though specific rule-based systems contain generic abstractions for managing heterogene-
ity such as rule modules and entry points, these abstractions are not suited for multiple
clients sharing a single engine instance. Additionally, they have no support for targeted
notifications for clients or a well-designed metadata architecture for managing heterogene-
ity. In related domains, abstractions such as schema sharing in multi-tenant databases and
notification filtering in event-based systems exist with the aim of designing and engineering

196 Chapter 9. Conclusion

for heterogeneity. Schema-sharing techniques in multi-tenant databases were lacking in
providing a grouping model and did not support notification mechanisms for client events.
Event-based systems had promising research in visibility roots for notifications but lacked
in providing a suitable execution model.

Scope-based Reasoning

Chapter 6 introduced scope-based reasoning in Serena. Serena provides a viable solution
for heterogeneous rule engines and exposes abstractions that promote capturing community
knowledge. Serena uses this scope-based approach and is built using two main program
design and engineering artefacts, scoped rules and a scope-aware rule engine, using a unified
framework that spans both the server and client architectures.

Scoped Rule-based Language Scoped rules contain an extended rule-based syntax that
allows rule designers to define scope constraints. Scopes are a control structure for het-
erogeneous rule-based languages because they specify a selection of which (subset of) rules
that a scope-aware inferencer will use at a particular time during execution. They specify
which data to which the rule is applicable when matching. Additionally, scoped rules also
specify who to notify and what information is sent with the notification. To ease the learn-
ing curve of rule design for a number of users, rule creators can optionally design rules for
the framework using a provided graphical user interface named SerenaUI, that exposes a
visual programming editor to build client rules.

Scope-aware Rule Engine In shared heterogeneous multiuser environments, the use of
scopes allows shared rule engines to cope with the means of determining which rules are
applicable to a data token within the engine at runtime. This is not only important for
enforcing reentrancy, but also for supporting capturing community knowledge in shared
multiuser architectures, where a rule can be applicable to a group of clients or applica-
tions. As discussed in Chapter 5, determining the relationships between the data being
processed at runtime efficiently becomes an important factor for the successful operations
of a heterogeneous rule engine, because having multiple sources can negatively affect the
performance of performing rule computations. Consequently, Serena utilises the concepts
of physical or logical groups of tenant clients and their relationships in its implementation.
The framework internally captures and converts sets of clients into an internal represen-
tation computed efficiently via an encoding. The encoding generated is used to perform
operations efficiently in order to determine compatible data during rule engine execution.
The encoding is a modified application of the method for efficient implementation of lattice
operations in [Aı̈t+89]. The process and results of this encoding are used when comput-
ing scope operations by scope guards installed on the beta nodes within the Rete graph
generated by the engine. The scope guards are invoked to determine whether the join com-
putation that the node should perform on the data inputs will use compatible data. The
chapter also presented a further optimisation with the scope-based hashing (SBH) technique,
that extends the work on scoped inference engines with scoped hash tables of alpha memo-
ries in the inference engine. The hashes are computed according to client groups in asserted
facts added using the scoped metadata architecture. The SBH approach utilises the scoped
hash tables and fact metadata to exclusively and efficiently compute the compatible inputs
that will be relevant when computing joins during the match cycle of heterogeneous rule
engines.

9.2. Summary & Contributions 197

Scoped Notifications Finally, the notification model in the framework further provides
flexible means to limit the distribution of client notifications whenever client rules are
activated. Notifications can define constraints to notify a group, subgroup, or even direct
clients. Section 6.5 explained how the framework exploits metadata about clients, their
grouping structures and the encoding process to limit the distribution of client notifications.

The benefits afforded by Serena were validated in the evaluation Chapter 8. In the evalu-
ation, a practical scenario representative of an RKDA in a heterogeneous environment was
modelled and tested in an extensive experimental simulation, and the results were analysed.
Together with the previous evaluation of the related work, it was confirmed that the scope-
based technique is useful to capture the inherent organisation of community knowledge
representations (i.e., qualitative evaluation), and is efficient by considerably lowering the
amount of time the inference engine takes to perform its most expensive computations (i.e.,
quantitative evaluation). The SBH improvement increases the efficiency of the scope-based
approach during the matching process, albeit with a higher memory consumption. When
comparing Serena’s implementation to an industry-strength forward-chaining rule engine,
it was further confirmed that classical rule engines suffer substantially when processing
structured knowledge in a heterogeneous configuration. The scoped approach on the other
hand showed negligible differences in performance in the same settings. In the end, Serenas
fulfils the big data characteristics of volume, velocity, variety and value via its scale, re-
activity, heterogeneity and community knowledge features. Of course, the requirement is
that client structures have to be defined to be internally represented in the framework for
these benefits to be realised.

Summary. Serenas therefore fulfils the requirements for capturing community knowledge
in rule-based systems, as summarised below.

• Metadata model – Serenas provides a Cloud-based framework that is suitable for sup-
porting RKDAs using scoping model that operates on metadata about rules and facts
asserted into the rule engine on the server, to aid in managing shared knowledge in
heterogeneous systems.

• Grouping model – The framework places grouping of clients according to their structural
organisation at the heart of its scoped approach. The groupings can be used within
scoped rule definitions to specify the data that the engine should use when performing
the rule computations.

• Execution model – Scoping in Serenas, and by extension using SBH, provides an internal
representation is that precomputed efficiently as an encoding that is be used when
processing constraints to check for data compatibility during rule engine execution.

• Notification model – Once rules are activated a multi-user setup needs some way to
identify the users that should be notified: the Serenas framework exploits the afore-
mentioned points of metadata about clients, their grouping structures and the efficient
computation of scopes to limit the distribution of client notifications.

Scoped rules allow rule designers to focus on distinguishing constraints on clients as
sources of events independently, isolated from from the logical intent of the rule. This
separation of concerns feeds into a solution of the problems of shared heterogeneous data
and at the same time promotes the capture of community knowledge separate from how
the computational aspect of the rule is designed.

198 Chapter 9. Conclusion

Figure 9.3: The resulting constituent parts of a scoped RBF – The approach
merges techniques from different domain areas fused to form a scoped rule-based
framework.

The ideas that this dissertation has presented encompass research from distinct fields
brought together by changes of the traditional landscape of the Web to the current dy-
namic and versatile architecture. Its artefact, Serenas is a unified framework that contains
concepts amagalmated from several fields (Figure 9.3), including:

• rule engine execution for capturing complex events through the forward-chaining Rete
algorithm,

• research in collective intelligence through harnessing community knowledge in hetero-
geneous environments,

• work in the prompt processing of data sets from intermittent sources continuously
using online, reactive and dynamic semantics,

• research in efficient computation of an encoding method that entirely determines data
relationships in heterogeneous environments,

• event-based notification semantics to determine the recipients of notifications of events
once constraints are fulfilled.

The framework uses these concepts to provide an application-agnostic solution to solv-
ing problems in heterogeneous rule based systems and to provide means in which community
knowledge can be exploited.

9.2.2 Restating the Contributions
From the summary of the direction and the methodology that this dissertation has em-
braced, we revisit its main contributions as they pertain to the ideas that it represents in
the following summary.

A study of the open issues, limitations and shortcomings of supporting reactive knowledge
-driven Web applications in multiuser environments that require reasoning semantics.
This work has performed a literature study in the domain of knowledge-driven systems
for the Web after identifying a number of criteria that systems aiming to support
RKDAs need to fulfil.

9.3. Limitations & Future Research 199

A unified reactive, rule-based framework for heterogeneous environments that can support
reactive knowledge-driven applications. The framework supports RKDAs by present-
ing a detection-oriented rule-based framework built on the Rete algorithm. The
framework allows runtime definition of rules by clients to be dynamically added in
the engine during execution. The engine allows the framework to incrementally evalu-
ate new events with newly-asserted definitions and reactively send feedback to notify
clients selectively.

A rule-based language augmented with extensions to define scoped rules for expressing
community knowledge. The extensions are applied to rules in order to support scope-
based constraints in heterogeneous rule-based systems, known as scoped rules. Scoped
rules allow programmers to capture collective intelligence in the form of community
knowledge by augmenting the rule language with scope-based semantics that define
scoped rules. They allow programmers to specify orchestration within rules in order
to distinguish between instances of different client entities as well as capturing data
according to relationships between groups of clients.

A reentrant inference engine that embraces scope-based reasoning. The work presented an
extension to the Rete algorithm that efficiently enforces reentrancy by incorporat-
ing techniques based on the bit-vector encoding method, which discriminates data
matches as defined in scoped rules. The implementation uses a scope-based architec-
ture in the inference engine to determine compatible inputs to a beta join node in the
engine during matching. With the scope-based hashing approach the alpha network
can also be a party to the efficient implementation of scope-based reasoning in the
engine.

A qualitative and quantitative evaluation of a reentrant inference engine. The qualitative
evaluation has shown that given the structured knowledge representation of hetero-
geneous clients, Serenas scoping constructs are useful in expressing heterogeneous
community knowledge. The quantitative evaluation showed that the scoped engine
can process incoming events at a faster rate than a classical rule engine. A further
evaluation of the scope-based hashing approach showed that an improvement in effi-
ciency was realised using hashed alpha memories, albeit with a slightly higher usage
in memory.

9.3 Limitations & Future Research
This section identifies some of the limitations of the work presented, and proposes the
future avenues that the ideas behind it has unearthed.

9.3.1 Support for Custom Scopes
Serenas uses a bit-vector encoding method for representing the common patterns needed
to represent community knowledge. The downside is that the process and the encoding
itself is mostly static and consequently, the types of scopes it can support is limited. It
would be useful to avail a more dynamic or custom scope-based language in which clients
can compose their own scope definitions which can be used in scoped rules, which can then
be internalised in the engine’s execution process. One challenge with this research path
is the choice of scope-based language to be exposed to the clients. Similar languages are

200 Chapter 9. Conclusion

prevalent today in the field of graph query languages. Indeed, the problems with express-
ing various knowledge representation systems was source of major inspiration in languages
supporting the graph data model (GDM) [Kun87], as it needs expressive and flexible tech-
niques to represent models as well as derive them from queries. Some GDM research has
been applied to the Web, such as in AllegroGraph [Aas06]. The interest here, however, is
in the expressive power of structural property graphs that can be queried using a declar-
ative query language. Todays such query languages are particularly common in modern
graph databases, where the data (and its schema) is represented entirely as a graph. Unlike
in those based off of traditional databases, graph-database query languages (GQLs) sup-
port paths, neighbourhoods and connectivity [AG08] – which in our case would be useful
when constructing custom scopes in client structures. Examples of promising GQLs in this
environment include newer languages such as Cypher/Gremlin [HP13], GraphQL [HS08],
UnQL [BFS00], SocialScope [ALY09], that have gained notable traction from older lan-
guages GraphDb [Güt94], GRAM [AS92], G [CMW87], and GOOD [Gys+94].

Listing 9.1 shows a precept of defining a simple dynamic scope in a rule definition in
Serena. The snippet returns siblings that share the same immediate parent through the
siblingOf definition.

Listing 9.1: Example of a Dynamic Scope Definition
1 DEFINE SCOPE siblingof AS
2 MATCH (group1)−[:parent]−()−[:child]−(group2)
3 RETURN group1, group2

Another challenge would be the design of a specification language for scopes in rules.
The language would be semantically similar to the aforementioned GQLs thus improving
its expressiveness in defining and capturing different scopes. Despite offering expressive
functionality for custom scoping, this approach however has a significant disadvantage of
having two different matching semantics within one rule: rule-based and graph query-based.
As a result, this increases the complexity of understanding the rule logic as a whole. A
separate challenge is how existing custom scope definitions would handle the addition and
removal of groups at runtime. This would need a traversal of all the definitions to find the
ones affected and perform suitable actions on them according to some predefined semantics.

Even with dynamic scope definitions and querying, the implementation described
above would need to offer efficient checking of these definitions whilst the rule engine is
in execution. This implies that the approach would follow implementations of in-memory
graph databases such as imGraph [JR13] to achieve high-speed processing requirements.
Ultimately however, the support of static vs. dynamic scopes leads to a general tradeoff
between flexibility and the range of optimisations applicable; aspects that can be usually
chosen depending on the needs of the serving application.

9.3.2 Antiquated Data in Rete
The Rete algorithm at the heart of the Serena framework is an in-memory algorithm for effi-
cient matching in rule-based systems. From its temporal redundancy feature, the algorithm
needs to store intermediate results in its internal nodes to avoid redundant computations
across cycles. Due to this, it is vulnerable to the known limitation of increasingly becoming
lethargic as the amount of data stored in its intermediate memories continually increases
from assertions. In such cases the rule engine will inevitably store and process a large
number of data items per node eventually becoming a major performance bottleneck (due
to the increasing amount of stored state), reducing the response times of the framework as
a whole.

9.3. Limitations & Future Research 201

This problem has already been investigated by several works. One of the earlier work is
by the TREAT algorithm (introduced in Section 2.5.4). TREAT takes advantage of conflict
set support which explicitly retains the conflict set across cycles and thus beta memories
do not need to be retained, reducing overall memory consumption. This research direction
led to work that investigated tradeoffs between a high memory usage and processing in the
beta network, in Rete* [WM03] and Gator [HH93] (also discussed in Section 2.5.4).

Even with these modifications, the engine will inevitably run into memory man-
agement issues, albeit at different rates. To solve this, in work related to this thesis
PRete [Ale15] investigated ways in which Rete can persist (parts of) its intermediate state
to a rapidly-accessible solid-state drive. While doing this, the network would be able to
remove the ‘least recently used’ tokens during a predetermined number of matching cycles
in the inference engine. With this scheme, it was observed that the Rete engine can increase
its workload capacity, as well as making it more resilient in the event of a server crash.

The PRete method can be extended to tailor to specific situations in a heterogeneous
context. Work in [FRS93] proposed an adaptive algorithm that evaluates rules and returns
the set of ‘most profitable’ relational expressions to be maintained for a good compromise
between a rule engine with and without intermediate beta memories. The algorithm was
based on an analysis of the flow of data in a rule engine. If fused with a scope-aware engine
it is possible to analyse the effects of different scope definitions in rules to determine which
data from which client groups is superfluous and can be persisted to a rapid-access disk, to
improve engine execution.

Separate work by PARTE [Swa+13] involved introducing relative temporal semantics
in rules, as well as in rule engine execution. This can be useful for garbage collection
of antiquated facts, by offloading unnecessary data that cannot partake in current rule
temporal patterns. These techniques can be incorporated into Serena, as scoping retains
the basic semantics of the Rete algorithm.

9.3.3 Cloud Models for Heterogeneous Rule-based Systems
Serena is designed to work in a Cloud environment. It is therefore subject to other issues
that were not the primary focus of this thesis, such as virtualisation and providing cost
models.

For virtualisation, work on distributing the Rete algorithm over several clusters or
virtual machines exists. Recent approaches concentrate on the actor and message-passing
models to separate Rete graph nodes [Swa+13; Wan+14]. Since Serena preserves the
semantics of the Rete algorithm, these approaches can be integrated into the framework,
taking care to keep a scope check and its distributed node together. In addition, the
encoding should be present in all nodes with a scope check, and any changes to the encoding
should be propagated to the relevant nodes.

For cost models, we observe that execution cycles in the Serena rule engine can be
dominated by rules from one client (or one tenant). In such cases it becomes useful to be
able to calculate the amount of resources that a client uses for accountability. These can be
used for billing purposes or to offer various flexible payment models to registered customers.
This is important to clients as well, to confirm that the provider has adhered to the level
of performance often agreed upon in the Service Level Agreement, or SLA (which can play
a part in the veracity aspect of big data).

To calculate the usage of resources by a particular client, modern Cloud providers often
offer a flat cost (or sometimes, no cost) for the base application, but the client incurs an
additional price for the extent of usage on particular aspects such as service customisation
and runtime resource usage. This is particularly attractive for a heterogeneous platform

202 Chapter 9. Conclusion

group&a

group&dgroup&c

group&b

Figure 9.4: Sample client group structure.

because demand for its services varies over time [Arm+10]. For instance, detecting access
requests on various rooms in the office complex will drastically reduce during working
breaks and over the weekends.

In this respect, a vital challenge for the shared instances of a heterogeneous rule based
system is how to determine (or estimate) the cost models associated with a particular client,
groups of clients or company. Models often seen in cloud computing incorporate bandwidth,
CPU hours and disk storage used. For distributed entities, the number of nodes or VMs
occupied can be included. Solutions for calculating such metrics for scoped engines can
include calculating more specific metrics to particular features. Aside from the number or
groups of clients per parent company, other indicators of rule engine execution can be used
to give specific memory usage metrics such as the number of rules per client or groups of
clients, and the number of facts asserted. More elaborate metrics can also be incorporated
to calculate the execution cost model, including the number of join computations, beta
node activations, rule activations, etc. Network metrics can include the number of events
received and notifications sent to and from specific clients or groups of clients.

9.3.4 Other Research Avenues

Rule Optimisation and Graph Reordering

Serena supports dynamic addition of rules from clients to the server. Internally, whenever
a rule is added to the Rete graph built by the rule engine, existing nodes are either reused
or new nodes are appended to the graph. Appending nodes makes the runtime process of
adding rules faster in general but may reduce the potential for possible optimisation steps
that can be exploited.

For instance, consider the simplified layout of client groups illustrated in Figure 9.4.
Suppose a rule r1 contains a scope definition s1 <$s subgroupof groupd> for a condition
r1c. The graph for r1 can be as shown in Figure 9.5a. If a rule r2 with a similar condition
r2c that contains scope definition s2 <$s subgroupof groupa> is added by a client after
r1, the rule engine tries to find nodes to reuse for r2c. If none is found, it adds r2 to the
graph by simply appending its nodes to reduce processing downtime during rule addition.
The result of adding rule r2 with an existing graph of rule r1 is shown in Figure 9.5b.
For better optimisation, a graph reordering can occur. In this case, having a node for
r1c with scope check s1 for groupd can be rearranged having the node for scope check s2
for groupa inserted before that of s1, as node b2 shown in Figure 9.5c. The challenge of
this idea is whether reordering offers a more optimised approach when compared to the
downtime needed to reorder and re-update the new graph with existing tokens. Borrowing
from ideas behind condition-reordering in Rete-based systems [NGR88], the approach can
be fine-tuned to achieve different results.

9.4. Concluding Remarks 203

.....

b1
<s$subgroupof groupd>

terminal
t1

(a) The current Rete graph for rule r1.

terminal
t1

b1 b2
<s#subgroupof groupa> <s#subgroupof groupd>

terminal
t2

..........

(b) Addition of r2 without reorder-
ing.

terminal
t2

.....

b2

b1

<s$subgroupof groupa>

terminal
t1

<s$subgroupof groupd>
.....

(c) Addition of r2 with reorder-
ing.

Figure 9.5: Optimisation via scoped graph reordering at runtime

Right Activations in Scope-based Hashing

The scope-based hashing approach (Section 7.4) offered a reasonable improvement over a
scope-based engine. It was however only applied to left-activations, and although these can
dominate right activations in a high number of cases, they do not substantively cover all
the join computations performed by the engine.

Future research for SBH in right activations during matching can be promising to
capitalise on the foundations of scoped alpha memories in order to further improve the
performance of the algorithm as a whole. This implies that the beta memories should also
contain hashed memories by scope, unearthing research questions regarding the semantics
of hashing token compositions based on client groups and existing scopes. Furthermore,
implementing this approach can further increase the complexity of processing retractions
and changes to client group structures at runtime.

9.4 Concluding Remarks
This dissertation presented the Serena framework, which blends an event-driven web server
with a rule-based inferencer. Internally, the rule engine and its components are contained
in a shared instance that can serve multiple tenants. Currently, there are no rule-based
approaches that offer rich semantics that developers can use to exploit community knowl-
edge contributed by distributed, heterogeneous clients in a shared multi-tenant instance.
This solution is useful in a number of multi-client applications to deal with the problem of
orchestrating data patterns in a heterogeneous setting, and to exploit the fact that much
of the community knowledge significant when performing reasoning and deductions can

204 Chapter 9. Conclusion

be structured hierarchically. Rule designers can utilise scoped rules to detect patterns in
real-time data and to realise grouping structures in RKDAs, backed by a common rule-
based system. Scoped rules provide ways in which clients can further exploit relationships
between them to source data with regards to their own organisational structure or layout.

From the evaluation we have confirmed that our technique is a viable approach for
capturing community knowledge. The evaluation showed that our model precisely controls
the amount of deduction or computation performed automatically by the framework (as
collective information from clients flows into the system) in a both expressive and computa-
tionally effective manner when compared to classical approaches. The requirement is that
the clients need to specify their group structures to fully take advantage of the proposed
framework: the groups to be encoded in the client hierarchy have to be defined and added
to the engine, so that the benefits provided by the encoding scheme can be fully realised.

To conclude, this dissertation presented our vision garnered from the research areas
of rule-based systems, reactive technologies and collective intelligence. We believe scope-
aware rule engines provide a collegial approach that advances of the current state-of-the-art
in allowing modern multi-user RKDAs to orchestrate, as well as capitalise on, community
knowledge deduced from heterogeneous event sources.

A
Serena’s Matrix Encoding

A.1 Definitions

A.1.1 Posets
A partially-ordered set (or simply a poset) (P,⩽) is a set P and a binary relation ⩽, such
that for all a, b, c ∈ P , the following properties always hold:

1. a ⩽ a (reflexivity)

2. a ⩽ b and b ⩽ c implies a ⩽ c (transitivity)

3. a ⩽ b and b ⩽ a implies a = b (antisymmetry)

Two elements in a poset are defined to be comparable if either a ⩽ b or b ⩽ a. If two
elements are not comparable they are said to be incomparable. Unlike a totally-ordered set,
it is not a requirement that all elements in a poset be comparable.

Poset Operations

Bounds: Given A ⊆ P , an element b ∈ P is called an upper bound of A if a ⩽ b for all a ∈ A.
b is a least upper bound or LUB if b ⩽ a whenever a is an upper bound of A. The dual of
the least upper bound is known as the greatest lower bound or GLB. Conversley, the LUB
∨ of P is also known as the join or suprema of A. The GLB ∧ is the meet or infima of A.
Extrema: A maximal element (or just the maximal) of a poset P, which we denote as ⌈P ⌉,
is an element m ∈ P that is greater than any other element in P according to the relation
⩽. More formally,

⌈P ⌉ = ∀b ∈ P, b ⩽ m (A.1)

If there is one unique maximal element in P , we call it the maximum. The dual of the
maximal is known as the minimal, ⌊P ⌋ and a unique minimal is known as the minimum.

205

206 Appendix A. Serena’s Matrix Encoding

A.1.2 Lattices
If in a finite poset P every pair has at least an LUB ∧ and a GLB ∨, then the poset P
with the features (P,⩽,∧,∨) is said to be a lattice L.

A.1.1 Lemma. Given a finite poset P with a set of maximals M , if an element ⊤ is added
such that (m ⩽ ⊤) for all m ∈M then the new element ⊤ is the LUB of all elements in P .

Proof. Assume the newly added element ⊤ was not the LUB of an element b ∈ P . This
means that there was no m ∈ M that was an upper bound of b. But if b has no upper
bound in P it means b is itself a maximal, and thus b would be in the set M . so, if b ∈M
then the relation (b ⩽ ⊤) makes ⊤ a LUB of b.

With Lemma A.1.1, the same proof construction can be made for the addition of a GLB ⊥
to all minimals in P .

A.1.2 Lemma. Given a finite poset P with a set of minimals N , if an element ⊥ is added
such that (⊥ ⩽ n) for all n ∈ N then the new element ⊥ is the GLB of all elements b ∈ P .

Proof. The proof is similar to that of Lemma A.1.1. If the newly added element ⊥ is not
the GLB of an element b ∈ P , then there is no n ∈ N that was a lower bound of b. But
if b has no lower bound in P it means b is itself a minimal, and thus b would be in the set
N .

The second proof is actually confirmed by the Duality Principle for orders,

A.1.2.1 Definition (The Duality Principle). If a statement ϕ is true for all orders, then its
dual ϕD is also true on all orders.

This leads us to the following theorem.

A.1.3 Theorem. Given a finite poset P , we can transform it into a lattice by adding a parent
⊤ to all maximals and a child ⊥ to all minimals.

Proof. Lemma A.1.1 already proves that ⊤ is the LUB of all elements in P. Its dual
Lemma A.1.2 also proves that ⊥ is the GLB of all elements in P. From the definition
of a lattice, the addition ⊤ as a parent of all maximals and ⊥ as a child to all minimals
makes every element to have at least an LUB and a GLB, confirming that (P,⩽,⊤,⊥) is
a lattice.

Therefore, one way to transform the poset P into a finite lattice [BMN97] is by adding a
parent ⊤ to every maximal and a child ⊥ to every minimal in P .

The Covering Relation

We say for two elements a, b ∈ P , a is covered by b if b immediately follows a in the poset
ordering (i.e. a is an immediate successor of b, b is an immediate predecessor of a). More
formally,

a ≺ b iff a ⩽ b and ∄c s.t. a ⩽ c ⩽ b, c ̸= a, c ̸= b (A.2)

This enables us to depict a lattice in a Hasse diagram, where an edge goes from b to a iff
a ≺ b.

A.2. Operations with ϑ 207

Lattice levels

In this dissertation we define the level of an element a in a lattice as the longest distance
of a from the maximum of the lattice (in this case, ⊤) to the element, i.e.,

Level(a) =

0 when a has no predecessors
in P and,

max({Level(b)) | b ≻ a}) + 1 otherwise.
(A.3)

where ≻ is the dual of ≺.

A.2 Operations with ϑ

Having constructed a lattice L, the method in [Aı̈t+89] defines a mapping ϑ from L to
another lattice (S ⊆,∩,∪) such that for every a, b ∈ L,

ϑ(a ∧ b) = ϑ(a) ∩ ϑ(b), (A.4)

ϑ(a ∨ b) = ϑ(a) ∪ ϑ(b). (A.5)
ϑ is thus said to be join and meet-preserving. Furthermore, the method specifies that ϑ
should be invertible, making it relatively easy to calculate the GLB and LUB such that ∀
a, b ∈ L,

a ∧ b = ϑ−1(ϑ(a) ∩ ϑ(b)), (A.6)

a ∨ b = ϑ−1(ϑ(a) ∪ ϑ(b)). (A.7)
The notion of the mapping ϑ is the basis of the matrix encoding, described next.

A.3 Matrix Encoding
Serena has adopted the encoding method mentioned in [Aı̈t+89] similarly taking ϑ as
the transitive closure. Given a finite poset P , the framework uses the ideas described in
Appendix A.1.2 to transform P into a lattice L. Serena then uses the encoding method
in [Aı̈t+89] with a slight modification that will map L onto an encoded matrix MϑL

. The
whole process is described below.

• Instead of starting with ⊥, start with ⊤ as the first element from L. Assign ϑ(⊤) =
0.

• Visit the next elements level by level downwards in L (using the relations in L), and
calculate the bitcode of each element as a vector.

• The bitcode of an element a ∈ L is obtained by

ϑ(a) = 2i−1 ∨
∨
a≺x

ϑ(x) (A.8)

where i is the number of elements visited since ⊤ and x represents a predecessor of
a; therefore ϑ(x) is the code of each predecesor of a.

208 Appendix A. Serena’s Matrix Encoding

__T comptourst kime gene clie lev3 lev2 lev1 kiem dept rest serv park cubi offi trin trem supe sect dire levA admi sysd levB fina secu sw db ui kiin __B
__T 1 0
comp 1 1 0
tourst 1 0 1 0
kime 1 0 0 1 0
gene 1 1 0 0 1 0
clie 1 1 0 0 0 1 0
lev3 1 0 1 0 0 0 1 0
lev2 1 0 1 0 0 0 0 1 0
lev1 1 0 1 0 0 0 0 0 1 0
kiem 1 0 0 1 0 0 0 0 0 1 0
dept 1 0 0 1 0 0 0 0 0 0 1 0
rest 1 1 0 0 1 0 0 0 0 0 0 1 0
serv 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
park 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cubi 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
offi 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
trin 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
trem 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
supe 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
sect 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
dire 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
levA 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
admi 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
sysd 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
levB 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
fina 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
secu 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
sw 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
db 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
ui 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
kiin 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
__B 1

Figure A.1: The full matrix encoding of all the company hierarchies – The groups are based on
the running example of the office building complex showcased in Section 5.2.1.

• An entry in the new matrix MϑL
for a is the reverse of the bitcode obtained by

Equation (A.8) without the most significant bit, which is always a 1.

With this encoding, Serena can perform operations in Eq (A.6) and (A.7) having ∩ as the
bitwise AND and ∪ as bitwise OR in MϑL

.

A.4 Full Matrix Encoding for Office Complex Example
The resulting binary matrix of all the groups of the office complex hierarchies after the
encoding process with ϑ outlined in the previous section is shown in Figure A.1.

B
Coordinating Collaborative Interactions

using Scoped Rules

This section uses the research work in [Kam+15] that identified some of the early challenges
that developers of RKDAs face whenever they require mechanisms to orchestrate the large
number of events from different sources. RKDAs today have the ability to provide richer
interactions hitherto unrealised by running them on isolated devices. These modern appli-
cations can now support proximal and remote collaborative interactions for multiple clients
simultaneously connected to each other. Most technologies however were found to lack pro-
gramming language abstractions for coordinating complex interactions, such as to define,
detect and combine complex events coming from multiple clients or other heterogeneous
software entities. Furthermore, they lack the expressiveness required to support non-trivial
levels of collaborative interactions for connected clients.

In [Kam+15] we identifed two software mechanisms that web-based mobile applica-
tions should provide to support the development of collaborative interactions: distributed
event composition and group coordination. The work culminated as the Mingo framework,
a precursor to Serena which provides dedicated coordination programmer constructs for
these two mechanisms by blending techniques common in complex event processing and
group communication. In this appendix we apply these ideas using scoped rules in the
Serenas framework.

B.1 Motivating Ex: Online Collaborative Drawing Editor
Consider an example of a traditional collaborative drawing application where several dis-
tributed participants on mobile phones are connected via the web using a server. The
participants share the same canvas on multiple mobile devices. The users are participating
in the same session and can therefore interact at the same time. The shared canvas can
be used by the several participants connected via the web to draw and interact with (or
manipulate) shapes already drawn on the canvas.

In addition to the normal functionality provided by a traditional drawing application,

209

210 Appendix B. Coordinating Collaborative Interactions

Figure B.1: The Collaborative Resize Interaction – One participant drags to the
left, another to the right, forming the collaborative interaction on both canvases.

we envisioned that the collaborative web-based drawing application further allows users on
mobile devices to perform advanced collaborative interactions1. We illustrate an example
of collaborative interactions that can be applied:
Collaborative resize interaction. Consider when one participant on a mobile device starts
to drag a drawn shape to the right, while at the same time a different participant in
the same session drags the same shape to the left (Figure B.1). Typically an application
recognizes two separate sequential interactions (e.g. drag-right and drag-left respectively),
and proceeds to enforce techniques to determine ownership and which action to apply. In
contrast, our sample application recognizes this as a single collaborative resize interaction.
As a result, the application then reacts by causing the shape to resize according to the
input of the participants.

B.2 Collaborative Interactions in Serenas

We present the approach for coordinating complex interactions, such as the example in the
previous section, in collaborative Web applications. We compare it with Mingo [Kam+15],
an object-oriented framework employing web-based infrastructure to coordinate collabora-
tive interactions. Mingo extends the JavaScript language with blended constructs for group
coordination and complex event processing.

The rule shown in Listing B.1 for Mingo and B.2 is used to define the collaborative
interaction for the distributed resize, and is first added to the server. Then, a number of
interactive client devices connect to the server and start the application. They create or
join rooms which represent a drawing session. In Serenas, the rooms represent groups, and
on the server side these groups are encoded by the rule engine. Whenever a simple event
that has been denoted to comprise a complex interaction is performed, the invocation is
intercepted and the event information is sent to the server. If a complex interaction has
been realised, it is propagated to all clients in the session.

To clarify the coordination orchestration, we illustrate how a collaborative interaction
is realized.

1. A developer writes the application in JavaScript and constructs to coordinate the
application’s distributed interactions.

2. The runtime sends the interactions and their relevant information to the server by
means of WebSockets.

3. The server assembles the local interactions from client devices with their respective
information and sends them as facts to the rule engine. Therefore, in this case, a fact
is an internal representation of a simple interaction in the application.

1The users should already be aware of this e.g. from a description of the application features

B.2. Collaborative Interactions in Serenas 211

4. The interactions are then asserted. If the interactions trigger a pre-defined rule cre-
ated from constructs previously defined by the developer, it can combine the simple
interactions into one composed event.

5. The composed event is then pushed back to the runtime which in turn delivers it to
the awaiting client devices that defined a handler for the composed event.

Listing B.1: A Collaborative Resize Rule in Mingo
1 rule('collabResizeRule',
2 '(Invoked (function "touchMove") (dev ?d1) (args ?a1) (time ?time1) (room ?room))
3 (Invoked (function "touchMove") (dev ?d2) (args ?a2) (time ?time2) (room ?room))
4 (test (time:within ?time1 ?time2 1000))
5 →
6 (assert (collabResize (args ?a1 ?a2) (dev ?d1 ?d2) (room ?room))')

Listing B.2: Collaborative Resize Rule in Serena
1 { rulename: "collabResizeRule",
2 conditions:[
3 {$f1: {type:"invoked", function: "touchMove", dev:"?d1", args:"?a1", time:"?t1"}},
4 {$f2: {type:"invoked", function: "touchMove", dev:"?d2", args:"?a2", time:"?t2"}},
5 {type:"$test", expr: "time.within(?t1, ?t2, 1000)"},
6],
7 actions:[{assert: {type:"collabResize" args:"[?a1,?a2]", devs:"[?d1,?d2]"}}]
8 scopes: ["$f1 private $f2"],
9 notify: ["private $f1"]

10 }

The Mingo rule in Listing B.1 is defined by its name collabResize, actions and
conditions, similar to SRL in Section 4.2.1. The conditions and actions in Mingo are
delimited by a ‘→’. The first two conditions capture the move interaction on a shape in
the same room (line 2 and 3). The next condition is a test condition that checks if the
interaction was made at around the same time. If the interaction is confirmed, then the
action taken is to assert the collabResize interaction with the arguments, client device
IDs.

The SRL rule is similar to the Mingo rule. The difference lies when coordinating
the interactions between sessions. The Mingo rule requires the logic of orchestrating room
sessions to be interspersed with the logic of capturing the touchMove events for detecting
the collabResize gesture. In lines 2, 3 and 6, the room logic is added to the constructs
in the rule to ensure the interactions come from the same room session. Of course, in line
6 Mingo then broadcasts the collabResize notification to all drawing sessions, thus in
the client-side there needs to be a conditional check to see whether a received collaborative
interaction is destined for that particular room. In contrast, Line 8 of Listing B.2 uses
the private scope to ensure that the two interactions occur in the from the same room
group. Also, the notification to be sent to the drawing session of the room in question is
performed in line 9. Even though the example mainly exposes the reentrant functionality
provided by the Serenas framework, the rules contain more intuitive scope constructs that
can be applied separately from the normal rule logic. Furthermore, more flexible client
notifications are supported.

C
Miss Manners’ Benchmark in Serena

In this section we present a listing for the rules for the Miss Manners’ benchmark explained
in the evaluation chapter in Section 8.5. We performed the evaluation to compare the
performance of the Serena engine with a mainstream benchmark.

In the Manners benchmark the engine needs to compute the seating arrangements for
a number of guests at various tables in a dinner party. The setup of the basic benchmark
contains 8 rules for determining the seating arrangements. The main crux of the benchmark
is the high number of join computations in the rule engine to find compatible guests at a
particular dinner table. We illustrate the rules of the benchmark used in the evaluation
using the Serena Rule Language (SRL) syntax.

 The AssignSeats rule

This rule creates the first seating arrangement and creates a path that will be used
to match the next guests. It also sets the context to the next state of assigning seats.
A counter is maintained for the number of seats that have been found.

Listing C.1: AssignSeats Rule
1 { rulename: "assign_first_seat",
2 conditions:[
3 {$c1: {type:"context", state: "start"}},
4 {type:"guest", name: "?n"},
5 {$c3: {type:"count", num: "?c"}}
6],
7 actions:[
8 {assert: {type: "seating", seat1: 1, name1: "?n", name2: "?n", seat2: 1,

↪→ id:"?c", pid: 0, path_done: true}},
9 {assert: {type: "path", id: "?c", name: "?n", seat: 1}},

10 {modify: '$c3', with: {type:"count", num: "(?c + 1)"}},
11 {modify: '$c1', with: {type:"context", state: "assign_seats"}}
12]
13 }

213

214 Appendix C. Miss Manners’ Benchmark in Serena

 The FindSeating rule

This is the main rule of the benchmark. It determines the compatibility of guests
according to their hobbies and different genders. Internally, the rule engine will
perform combinatorial tests for all the guests (excluding the guests that are already
seated).

Listing C.2: FindSeating Rule
1

2 { rulename: "find_seating",
3 conditions:[
4 {$c1: {type:"context", state: "assign_seats"}},
5 {type: "seating", seat1: "?seat1", seat2: "?seat2", name2: "?n2", id:"?id",

↪→ pid: "?pid", path_done: true},
6 {type:"guest", name: "?n2", sex: "?s1", hobby: "?h1"},
7 {type:"guest", name: "?g2", sex: "?s2", hobby: "?h1"},
8 {$c3: {type:"count", num: "?c"}},
9 {sign: "not", type: "path", id: "?id", name: "?g2"},

10 {sign: "not", type: "chosen", id: "?id", name: "?g2", hobby:"?h1"}
11],
12 actions:[
13 {assert: {type: "seating", seat1: "?seat2", name1: "?n2", name2: "?g2",

↪→ seat2: "(?seat2 + 1)", id:"?c", pid: "?id", path_done: false}},
14 {assert: {type: "path", id: "?c", name: "?g2", seat: "(?seat2 + 1)"}},
15 {assert: {type: "chosen", id: "?id", name: "?g2", hobby:"?h1"}},
16 {modify: '$c3', with: {type:"count", num: "(?c + 1)"}},
17 {modify: '$c1', with: {type:"context", state: "make_path"}}
18]
19 }

 The MakePath and PathDone Rules

These two rules work in tandem to ensure all guests are seated at a table, using paths
that represent the searching process of compatible guests. The MakePath rule adds
a path for every seating and PathDone modifies a seating arrangement for a later
check (that will see if the seating has been matched with a compatible guest).

Listing C.3: MakePath Rule
1 { rulename: "make_path",
2 conditions:[
3 {$c1: {type:"context", state: "make_path"}},
4 {type: "seating", id:"?id", pid: "?pid", path_done: false},
5 {type: "path", id: "?pid", name: "?n1", seat: "?s"},
6 {sign: "not", type: "path", id: "?id", name: "?n1", seat:"?s"}
7],
8 actions:[
9 {assert: {type: "path", id: "?id", name: "?n1", seat: "?s"}}

10]
11 }

215

Listing C.4: PathDone Rule
1

2 { rulename: "path_done",
3 conditions:[
4 {$c1: {type:"context", state: "make_path"}},
5 {$c2: {type: "seating", seat1: "?s1", name1: "?n1", name2: "?n2", seat2:

↪→ "?s2", id:"?sid", pid: "?pid", path_done: false}}
6],
7 actions:[
8 {modify: '$c1', with: {type:"context", state: "check_done"}},
9 {modify: '$c2', with: {type: "seating", seat1: "?s1", name1: "?n1", name2:

↪→ "?n2", seat2: "?s2", id:"?sid", pid: "?pid", path_done: true}}
10]
11 }

 The AreWeDone and Continue Rules

These rules are the terminating rules. As their name imply, the Continue rule checks
if there are any paths that have not been explored and changes the state back to
that of assigning seats, while the AreWeDone rule activates when the final seat has
been assigned and changes the state to the final state of printing the results.

Listing C.5: Are We Done? Rule
1 { rulename: "are_we_done",
2 conditions: [
3 {$c1: {type:"context", state: "check_done"}},
4 {type: 'last_seat', seatno:"?lseat"},
5 {$c2: {type: "seating", seat2: "?lseat"}}
6],
7 actions:[
8 {modify: '$c1', with: {type:"context", state: "print_results"}}
9]

10 }

Listing C.6: Continue Rule
1

2 { rulename: "continue",
3 conditions: [
4 {$c1: {type:"context", state: "check_done"}}
5],
6 actions:[
7 {modify:'$c1', with: {type:"context", state: "assign_seats"}}
8]
9 }

 The PrintResults and AllDone rules

The final housekeeping rules are used to ensure that the last seating has been done
in rule PrintResults and subsequently stops the benchmark by removing the context
fact from the engine in rule AllDone.

216 Appendix C. Miss Manners’ Benchmark in Serena

Listing C.7: Print Results Rule
1 { rulename: "print_results",
2 conditions:[
3 {$c1: {type:"context", state: "print_results"}},
4 {$c2: {type: "seating", seat2: "?s2", id:"?id"}},
5 {type: 'last_seat', seatno:"?s2"},
6 {$c4: {type: "path", id: "?id", name: "?n", seat:"?s"}}
7],
8 actions:[
9 {retract: '$c4'}

10]
11 }

Listing C.8: AllDone Rule
1

2 { rulename: "all_done",
3 conditions: [
4 {$c1: {type: "context", state: "print_results"}}
5],
6 actions: [
7 {retract: "$c1"}
8]
9 }

D
University Security Access Rules

In this section we present a listing for some of the rules for the University Security Access
scenario explained in the evaluation chapter in Section 8.1. The full set of rules, facts,
templates and other assets can be found in http://bit.ly/serena-uni-rules

Listing D.1: Rules for University Access
1 var accessRules = [
2 /∗Classtime access for any university hierarchy∗/
3 {rulename : ”university−students−classtime−access” ,
4 conditions : [
5 {$s : {type : ”student” , name: ”?nam” , badgeid : ”?badgid”}},
6 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
7 {$d: {type : ”accessdevice” , id : ”?devid”}},
8 {type : ”$test” , expr : ”(hour(? t) > 8 && hour(? t) < 20 && (isWeekday(? t) == true))”}
9] ,

10 actions : [
11 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
12] ,
13 scopes : [”$d vis ibleto $s” ,
14 ”$d private classes ”]
15 } ,
16 /∗All vub students have access to classes during class times (can add during the week)∗/
17 {rulename : ”vub−students−classtime−access” ,
18 conditions : [
19 {$s : {type : ”student” , name: ”?nam” , badgeid : ”?badgid”}},
20 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
21 {$d: {type : ”accessdevice” , id : ”?devid”}},
22 {type : ”$test” , expr : ”(hour(? t) > 8 && hour(? t) < 20 && (isWeekday(? t) == true))”}
23] ,
24 actions : [
25 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
26] ,
27 scopes : [”$s subgroupof vubuni” ,
28 ”$d private classes ”]
29 } ,
30 /∗Evening vub students are allowed extended access to classes in the evening (t i l l 10pm)∗/
31 {rulename : ”vub−evn−students−class−access” ,
32 conditions : [
33 {$s : {type : ”student” , name: ”?nam” , badgeid : ”?badgid” , evening : true}},
34 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
35 {$d: {type : ”accessdevice” , id : ”?devid”}},
36 {type : ”$test” , expr : ”(hour(? t) > 17 && hour(? t) < 22) && (isWeekday(? t) == true)”}
37] ,

217

http://bit.ly/serena-uni-rules

218 Appendix D. University Security Access Rules

38 actions : [
39 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
40] ,
41 scopes : [”$s subgroupof vubuni” ,
42 ”$d private classes ”]
43 } ,
44 /∗Generalize for any university or institution∗/
45 {rulename : ”uni−evn−students−class−access” ,
46 conditions : [
47 {$s : {type : ”student” , name: ”?nam” , badgeid : ”?badgid” , evening : true}},
48 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
49 {$d: {type : ”accessdevice” , id : ”?devid”}},
50 {type : ”$test” , expr : ”(hour(? t) > 8 && hour(? t) < 22) && (isWeekday(? t) == true)”}
51] ,
52 actions : [
53 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
54] ,
55 scopes : [”$d vis ibleto $s” ,
56 ”$d private classes ”]
57 } ,
58 /∗Only ING bank employees have access to vub ING bank during working hours∗/
59 {rulename : ”ing−staff−bank−access” ,
60 conditions : [
61 {$s : {type : ” sta f f ” , name: ”?nam” , badgeid : ”?badgid”}},
62 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
63 {$d: {type : ”accessdevice” , id : ”?devid”}},
64 {type : ”$test” , expr : ”(hour(? t) > 7 && hour(? t) < 18)”}
65] ,
66 actions : [
67 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
68] ,
69 scopes : [”$s private ing” ,
70 ”$d private bank”]
71 } ,
72 /∗VUB staf f and students are allowed car access to the university campuses after

↪→ registering their cars∗/
73 {rulename : ”vub−car−access” ,
74 conditions : [
75 {type : ”car” , no : ”?no” , ownername: ”?onam”} ,
76 {type : ”accessreqcode” , id : ”?reqid” , code : ”?no” , deviceid : ”?devid”} ,
77 {
78 type : ”or” , conditions : [
79 {$s : {type : ” sta f f ” , name: ”?onam”}},
80 {$s : {type : ”student” , name: ”?onam”}}
81]
82 } ,
83 {$d: {type : ”accessdevice” , id : ”?devid”}}
84] ,
85 actions : [
86 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
87] ,
88 scopes : [”$s subgroupof vubuni” ,
89 ”$d peerof etterbeek”]
90 } ,
91 /∗University staf f and students are allowed car park access to their university between

↪→ 11am and 4pm in the weekend∗/
92 {rulename : ”uni−registered−car−access” ,
93 conditions : [
94 {type : ”car” , no : ”?no” , ownername: ”?snam”} ,
95 {type : ”accessreqcode” , id : ”?reqid” , code : ”?no” , deviceid : ”?devid” , time : ”?t”} ,
96 {
97 type : ”or” , conditions : [
98 {$s : {type : ” sta f f ” , name: ”?snam”}},
99 {$s : {type : ”student” , name: ”?snam”}}

100]
101 } ,
102 {$d: {type : ”accessdevice” , id : ”?devid”}},
103 {type : ”$test” , expr : ”(hour(? t) > 11 && hour(? t) < 16) && (isWeekday(? t) == false)”}
104] ,
105 actions : [
106 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
107] ,
108 scopes : [”$d vis ibleto $s” ,
109 ”$d peerof etterbeek”]

219

110 } ,
111 /∗All vub staf f have access to their group ’ s offices during working hours∗/
112 {rulename : ”vub−staff−of f ice−access” ,
113 conditions : [
114 {$s : {type : ” sta f f ” , name: ”?nam” , badgeid : ”?badgid”}},
115 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
116 {$d: {type : ”accessdevice” , id : ”?devid”}},
117 {type : ”$test” , expr : ”(hour(? t) > 8 && hour(? t) < 19)”}
118] ,
119 actions : [
120 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
121] ,
122 scopes : [”vubuni supergroupof $s” ,
123 ”$d subgroupof $s” ,
124 ”$d private o f f i c e s ”]
125 } ,
126 /∗All academic staf f have access to classes during working hours (and overtime)∗/
127 {rulename : ”vub−academic−staff−class−access” ,
128 conditions : [
129 {$s : {type : ” sta f f ” , name: ”?nam” , badgeid : ”?badgid”}},
130 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
131 {$d: {type : ”accessdevice” , id : ”?devid”}},
132 {type : ”$test” , expr : ”(hour(? t) > 7 && hour(? t) < 20)”}
133] ,
134 actions : [
135 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
136] ,
137 scopes : [”vubuni supergroupof $s” ,
138 ”$s subgroupof AP” ,
139 ”$d private classes ”]
140 } ,
141 /∗All non−staf f in KUL have access to depts i f they have a pre−existing code for access

↪→ to the corridors∗/
142 {rulename : ”non−staff−code−access” ,
143 conditions : [
144 {type : ”accessreqcode” , id : ”?reqid” , code : ”?code” , time : ”?t” , deviceid : ”?devid”} ,
145 {type : ”allowedaccesscode” , code : ”?code” , issuer : ”?staffnam”} ,
146 {$s : {type : ” sta f f ” , name: ”?staffnam”}},
147 {$d: {type : ”accessdevice” , id : ”?devid”}}
148] ,
149 actions : [
150 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
151] ,
152 scopes : [”$s supergroupof $d” ,
153 ”$d private corridors”]
154 } ,
155 /∗All non−staf f have access to ALL depts i f they have a pre−existing code for access to

↪→ the corridors and i f the coe was issued by a senior administrative staf f∗/
156 {rulename : ”non−staff−code−access−admincode” ,
157 conditions : [
158 {type : ”accessreqcode” , id : ”?reqid” , code : ”?code” , time : ”?t” , deviceid : ”?devid”} ,
159 {type : ”allowedaccesscode” , code : ”?code” , issuer : ”?staffnam”} ,
160 {$s : {type : ” sta f f ” , name: ”?staffnam”}},
161 {$d: {type : ”accessdevice” , id : ”?devid”}}
162] ,
163 actions : [
164 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
165] ,
166 scopes : [”$s private senioradmin” ,
167 ”$d vis ibleto $s” ,
168 ”$d private corridors”]
169 } ,
170 /∗All WE students have access to WE department−leve l corridors , classes and student rooms

↪→ on weekdays∗/
171 {rulename : ”WE−students−WE−access” ,
172 conditions : [
173 {$s : {type : ”student” , name: ”?nam” , badgeid : ”?badgid”}},
174 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
175 {$d: {type : ”accessdevice” , id : ”?devid”}},
176 {type : ”$test” , expr : ”(isWeekday(? t) == true)”}
177] ,
178 actions : [
179 {assert : {type : ”accessrep” , reqid : ”?reqid” , allowed : true}}
180] ,

220 Appendix D. University Security Access Rules

181 scopes : [”$s subgroupof WE” ,
182 ”$d subgroupof WE” ,
183 ”$d peerof DINF” ,
184 ”$d private (corridors | classes | studyrooms)”]
185 } ,
186 /∗Notify the secretaries that a delivery came in by a code issued.∗/
187 {
188 rulename : ”non−staff−secretary−code−access” ,
189 conditions : [
190 {type : ”accessreqcode” , id : ”?reqid” , code : ”?code” , time : ”?t” , deviceid : ”?devid”} ,
191 {type : ”allowedaccesscode” , code : ”?code” , issuer : ”?staffnam”} ,
192 {$s : {type : ” sta f f ” , name: ”?staffnam”}},
193 {type : ”accessrep” , reqid : ”?reqid” , allowed : true } ,
194 {$d: {type : ”accessdevice” , id : ”?devid”}}
195] ,
196 scopes : [”$s private senioradmin” ,
197 ”$d vis ibleto $s” ,
198 ”$d private corridors”] ,
199 notify : [”subgroupof $s” ,
200 ”private juniormgt”]
201 } ,
202
203 /∗UNT professors get notifications of access to their labs by their thesis students on

↪→ weekends∗/
204 {rulename : ”notify−profs−master−students−promotor−lab−access” ,
205 conditions : [
206 {$stu : {type : ”student” , name: ”?nam” , badgeid : ”?badgid” , level : ”master” , promotor :

↪→ ”? sta f f id ”}},
207 {$stf : {type : ” sta f f ” , id : ”? sta f f id ” , name: ”?stfnam”}},
208 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
209 {$d: {type : ”accessdevice” , id : ”?devid”}},
210 {type : ”$test” , expr : ”(month(? t) > 1 && month(? t) < 9)”} ,
211 {type : ”$test” , expr : ”(isWeekday(? t) == false)”}
212] ,
213 scopes : [” $stf subgroupof seniorAP” ,
214 ”$d subgroupof $stf ” ,
215 ”$d private labs”] ,
216 notify : [”subgroupof $stf ” ,
217 ”private seniorAP”]
218 } ,
219 /∗junior admins get notifications of personnel requesting access in late night hours∗/
220 {rulename : ”log−accepted−or−denied−requests−outside−hours” ,
221 conditions : [
222 {$s : {type : ” sta f f ” , name: ”?stfnam” , badgeid : ”?badgid”}},
223 {type : ”accessreq” , id : ”?reqid” , badgeid : ”?badgid” , time : ”?t” , deviceid : ”?devid”} ,
224 {$d: {type : ”accessrep” , reqid : ”?reqid” , allowed : ”?allowed”}},
225 {type : ”$test” , expr : ”(hour(? t) < 6 && hour(? t) > 10)”}
226] ,
227 scopes : [”junioradmin supergroupof $s”] ,
228 notify : [”private serverrooms”]
229 }
230] ;

Bibliography

[Aas06] Jans Aasman. “Allegro graph: RDF triple database”. In: Cidade: Oakland
Franz Incorporated (2006).

[Aba+05] Daniel J Abadi et al. “The Design of the Borealis Stream Processing Engine.”
In: Biennial Conference on Innovative Data Systems Research. Vol. 5. 2005,
pp. 277–289.

[ABJ89] Rakesh Agrawal et al. Efficient management of transitive relationships in large
data and knowledge bases. Vol. 18. 2. ACM, 1989.

[Aı̈t+89] Hassan Aı̈t-Kaci et al. “Efficient Implementation of Lattice Operations”. In:
ACM Transactions on Programming Languages and Systems (TOPLAS) 11.1
(Jan. 1989), pp. 115–146. issn: 0164-0925. doi: 10.1145/59287.59293. url:
http://doi.acm.org/10.1145/59287.59293.

[Ale15] Coldea Alexandru. “Prete: Persisting Rete”. MA thesis. Brussels, Belgium:
Vrije Universiteit Brussel, 2015.

[Ali+15] Cyril Alias et al. “Generating a business model canvas for Future-Internet-
based logistics control towers”. In: 4th International Conference on Advanced
Logistics and Transport (ICALT), 2015. IEEE. 2015, pp. 257–262.

[All97] Verna Allee. The knowledge evolution: Expanding organizational intelligence.
Routledge, 1997.

[All83] James F. Allen. “Maintaining Knowledge About Temporal Intervals”. In:
Commun. ACM 26.11 (Nov. 1983), pp. 832–843. issn: 0001-0782. doi: 10.
1145/182.358434. url: http://doi.acm.org/10.1145/182.358434.

[Aln+13] Dawood Alnajjar et al. “Implementing flexible reliability in a coarse-grained
reconfigurable architecture”. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 21.12 (2013), pp. 2165–2178.

[AS92] Bernd Amann and Michel Scholl. “Gram: a graph data model and query
languages”. In: Proceedings of the ACM conference on Hypertext. ACM. 1992,
pp. 201–211.

[Ama15] Amazon Web Services, Inc. Rules for AWS IoT. http://docs.aws.amazon.
com/iot/latest/developerguide/iot-rules.html. (Accessed on 12/10/2016).
Apr. 2015.

[ALY09] Sihem Amer-Yahia et al. “Socialscope: Enabling information discovery on
social content sites”. In: arXiv preprint arXiv:0909.2058 (2009).

[And13] John R Anderson. The architecture of cognition. Psychology Press, 2013.
[AG08] Renzo Angles and Claudio Gutierrez. “Survey of graph database models”. In:

ACM Computing Surveys (CSUR) 40.1 (2008), p. 1.

https://doi.org/10.1145/59287.59293
http://doi.acm.org/10.1145/59287.59293
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

Bibliography

[ALB11] Leonardo Aniello et al. “Inter-domain stealthy port scan detection through
complex event processing”. In: Proceedings of the 13th European Workshop on
Dependable Computing. ACM. 2011, pp. 67–72.

[Apa09] Apache Software Foundation. Hadoop. http://hadoop.apache.org. (Ac-
cessed on 01/03/2015). Mar. 2009.

[Apa14] Apache Software Foundation. Kafka: A high-throughput, distributed messaging
system. kafka.apache.org. (Accessed on 21/04/2015). 2014.

[Apa15] Apache Software Foundation. Apache Storm: Trident API. http://storm.
apache.org/releases/current/Trident- tutorial.html. (Accessed on
11/18/2016). 2015.

[Ara+04] Arvind Arasu et al. “Stream: The stanford data stream management system”.
In: Book chapter (2004).

[ABW06] Arvind Arasu et al. “The CQL continuous query language: semantic founda-
tions and query execution”. In: The VLDB Journal—The International Journal
on Very Large Data Bases 15.2 (2006), pp. 121–142.

[Arm+10] Michael Armbrust et al. “A view of cloud computing”. In: Communications of
the ACM 53.4 (2010), pp. 50–58.

[Aul+11] Stefan Aulbach et al. “Extensibility and data sharing in evolving multi-tenant
databases”. In: Data engineering (ICDE), 2011 ieee 27th international confer-
ence on. IEEE. 2011, pp. 99–110.

[Bai+13] Engineer Bainomugisha et al. “A Survey on Reactive Programming”. In: ACM
Comput. Surv. 45.4 (Aug. 2013), 52:1–52:34. issn: 0360-0300. doi: 10.1145/
2501654.2501666. url: http://doi.acm.org/10.1145/2501654.2501666.

[Bar+09] Davide Francesco Barbieri et al. “C-SPARQL: SPARQL for continuous query-
ing”. In: Proceedings of the 18th international conference on World wide web.
ACM. 2009, pp. 1061–1062.

[Bas07] Tim Bass. “Mythbusters: event stream processing versus complex event pro-
cessing”. In: Proceedings of the 2007 inaugural international conference on
Distributed event-based systems. ACM. 2007, pp. 1–1.

[Bat+98] John Bates et al. “Using events for the scalable federation of heterogeneous
components”. In: Proceedings of the 8th ACM SIGOPS European workshop on
Support for composing distributed applications. ACM. 1998, pp. 58–65.

[Bat94] Don Batory. The LEAPS algorithms. Univ., Department of Computer Sciences,
1994.

[BV07] Thomas Bernhardt and Alexandre Vasseur. “Esper: Event stream processing
and correlation”. In: ONJava, O’Reilly (2007).

[Ber02] Bruno Berstel. “Extending the RETE algorithm for event management”. In:
Temporal Representation and Reasoning, 2002. TIME 2002. Proceedings. Ninth
International Symposium on. IEEE. 2002, pp. 49–51.

[BMN97] Karell Bertet et al. “Lazy completion of a partial order to the smallest lattice”.
In: International KRUSE Symposium: Knowledge Retrieval, Use and Storage
for Efficiency. 1997, pp. 72–81.

[Biz+13] Christian Bizer et al. “Deployment of RDFA, microdata, and microformats on
the Web–a quantitative analysis”. In: International Semantic Web Conference.
Springer. 2013, pp. 17–32.

http://hadoop.apache.org
kafka.apache.org
http://storm.apache.org/releases/current/Trident-tutorial.html
http://storm.apache.org/releases/current/Trident-tutorial.html
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
http://doi.acm.org/10.1145/2501654.2501666

Bibliography

[Bol06] Harold Boley. “The RuleML family of web rule languages”. In: International
Workshop on Principles and Practice of Semantic Web Reasoning. Springer.
2006, pp. 1–17.

[BM11] Mr Jérôme Boyer and Hafedh Mili. “IBM websphere ilog jrules”. In: Agile
business rule development. Springer, 2011, pp. 215–242.

[Bra+91] David A Brant et al. “Effects of Database Size on Rule System Performance:
Five Case Studies.” In: VLDB. Vol. 91. 1991, pp. 287–296.

[BN13] Gerd Breiter and Vijay K Naik. “A framework for controlling and manag-
ing hybrid cloud service integration”. In: Cloud engineering (ic2e), 2013 ieee
international conference on. IEEE. 2013, pp. 217–224.

[Bri06] Timothy Brick. “OPS5: A Production Rule System for Expert Systems”. In:
(2006).

[Bro87] Frederick P Brooks. No silver bullet: Essence and Accident in Software Engi-
neering. April, 1987.

[Bro09] Paul Browne. JBoss Drools business rules. Packt Publishing Ltd, 2009.
[Bry+09] Francois Bry et al. Tutorial on Event Processing Languages. www.slideshare.

net/opher.etzion/debs2009- event- processing- languages- tutorial.
(Accessed on 9/10/2016). July 2009.

[BFS00] Peter Buneman et al. “UnQL: a query language and algebra for semistructured
data based on structural recursion”. In: The VLDB Journal: The International
Journal on Very Large Data Bases 9.1 (2000), pp. 76–110.

[Bus+45] Vannevar Bush et al. “As we may think”. In: The Atlantic Monthly 176.1
(1945), pp. 101–108.

[C2F14] C2FO. Nools: Rete based rules engine written in JavaScript. https://github.
com/C2FO/nools. (Accessed on 03/03/2014). 2014.

[CA94] Christian J Callsen and Gul Agha. “Open heterogeneous computing in Ac-
torSpace”. In: Journal of Parallel and Distributed Computing 21.3 (1994),
pp. 289–300.

[Car+15] Paris Carbone et al. “Apache flink: Stream and batch processing in a single
engine”. In: Data Engineering (2015), p. 28.

[Car+86] Michael J Carey et al. “The architecture of the EXODUS extensible DBMS”.
In: Proceedings on the 1986 international workshop on Object-oriented database
systems. IEEE Computer Society Press. 1986, pp. 52–65.

[Cet03] Ugur Cetintemel. “The aurora and medusa projects”. In: Data Engineering
51.3 (2003).

[Cha+03] Sirish Chandrasekaran et al. “TelegraphCQ: continuous dataflow processing”.
In: Proceedings of the 2003 ACM SIGMOD international conference on Man-
agement of data. ACM. 2003, pp. 668–668.

[CKT15] Ioannis K. Chaniotis et al. “Is Node.js a viable option for building modern web
applications? A performance evaluation study”. In: Computing 97.10 (2015),
pp. 1023–1044. doi: 10.1007/s00607-014-0394-9. url: http://dx.doi.
org/10.1007/s00607-014-0394-9.

[Che+00] Jianjun Chen et al. “NiagaraCQ: A scalable continuous query system for
internet databases”. In: ACM SIGMOD Record. Vol. 29. 2. ACM. 2000,
pp. 379–390.

www.slideshare.net/opher.etzion/debs2009-event-processing-languages-tutorial
www.slideshare.net/opher.etzion/debs2009-event-processing-languages-tutorial
https://github.com/C2FO/nools
https://github.com/C2FO/nools
https://doi.org/10.1007/s00607-014-0394-9
http://dx.doi.org/10.1007/s00607-014-0394-9
http://dx.doi.org/10.1007/s00607-014-0394-9

Bibliography

[Che+03] Mitch Cherniack et al. “Scalable Distributed Stream Processing”. In: CIDR.
Vol. 3. 2003, pp. 257–268.

[CM97] Susan J Chinn and Gregory R Madey. “Evaluation and use of CLIPS for
developing temporal expert systems”. In: Proceedings of the 10th international
conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems. Goose Pond Press. 1997, pp. 87–92.

[Cla83] William J Clancey. “The epistemology of a rule-based expert system—a frame-
work for explanation”. In: Artificial intelligence 20.3 (1983), pp. 215–251.

[Coh91] Norman H. Cohen. “Type-extension Type Test Can Be Performed in Constant
Time”. In: ACM Transactions on Programming Languages and Systems 13.4
(Oct. 1991), pp. 626–629. issn: 0164-0925. doi: 10.1145/115372.115297.
url: http://doi.acm.org/10.1145/115372.115297.

[Com] The Baseline Company. The Blind Men and the Elephant. http://www.
theblindelephant.com/the_blind_elephant_fable.html. (Accessed on
04/11/2016).

[Con16] Concur Technologies Inc. The Concur Cloud Platform. https://www.concur.
nl/concur-integrated-ecosystem. (Accessed on 11/03/2016). Mar. 2016.

[Cór15] Patricio Córdova. “Analysis of Real Time Stream Processing Systems Consid-
ering Latency”. In: University of Toronto patricio@ cs. toronto. edu (2015).

[Cra+03] Chuck Cranor et al. “Gigascope: A Stream Database for Network Applica-
tions”. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’03. San Diego, California: ACM, 2003,
pp. 647–651. isbn: 1-58113-634-X. doi: 10 . 1145 / 872757 . 872838. url:
http://doi.acm.org/10.1145/872757.872838.

[Cro11] James L Crowley. “Intelligent Systems: Reasoning and Recognition”. In: EN-
SIMAG 2 (2011), pp. 4–6.

[CMW87] Isabel F Cruz et al. “A graphical query language supporting recursion”. In:
ACM SIGMOD Record. Vol. 16. 3. ACM. 1987, pp. 323–330.

[Cza12] Evan Czaplicki. “Elm: Concurrent FRP for Functional GUIs”. In: Senior thesis,
Harvard University (2012).

[Dab+02] Frank Dabek et al. “Event-driven programming for robust software”. In: Pro-
ceedings of the 10th workshop on ACM SIGOPS European workshop. ACM.
2002, pp. 186–189.

[Dav11] Dave Evans. The IoT, How the Next Evolution of the Internet Is Changing
Everything. http://bit.ly/cisco- internet- things. [Online; accessed
13-September-2014]. Apr. 2011.

[Day+88] Umeshwar Dayal et al. “The Hipac project: Combining active databases and
timing constraints”. In: ACM Sigmod Record 17.1 (1988), pp. 51–70.

[DHW94] Umeshwar Dayal et al. “Active database systems”. In: (1994).
[DD14] Harvey M Deitel and Barbara Deitel. Computers and Data Processing: Inter-

national Edition. Academic Press, 2014.
[Dem+07] Alan J Demers et al. “Cayuga: A General Purpose Event Monitoring System.”

In: CIDR. Vol. 7. 2007, pp. 412–422.

https://doi.org/10.1145/115372.115297
http://doi.acm.org/10.1145/115372.115297
http://www.theblindelephant.com/the_blind_elephant_fable.html
http://www.theblindelephant.com/the_blind_elephant_fable.html
https://www.concur.nl/concur-integrated-ecosystem
https://www.concur.nl/concur-integrated-ecosystem
https://doi.org/10.1145/872757.872838
http://doi.acm.org/10.1145/872757.872838
http://bit.ly/cisco-internet-things

Bibliography

[Det+14] Paolo Dettori et al. “Blueprint for business middleware as a managed cloud
service”. In: Cloud Engineering (IC2E), 2014 IEEE International Conference
on. IEEE. 2014, pp. 261–270.

[Dev16] Google Developers. Blockly: Overview. https://developers.google.com/
blockly/guides/get-started/web. (Accessed on 22/01/2016). June 2016.

[DHo04] Maja D’Hondt. “Hybrid aspects for integrating rule-based knowledge and
object-oriented functionality”. PhD thesis. PhD thesis, Vrije Universiteit Brus-
sel, 2004.

[Doo95] Robert B Doorenbos. “Production matching for large learning systems”. PhD
thesis. University of Southern California, 1995.

[Dri11] Mike Driscoll. Node.js and The JavaScript Age. 2011. url: http://gigaom.
com/cloud/node-js-and-the-javascript-age/ (visited on 10/03/2015).

[Dun+06] Adam Dunkels et al. “Protothreads: simplifying event-driven programming of
memory-constrained embedded systems”. In: Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems. Acm. 2006, pp. 29–
42.

[EN10] Opher Etzion and Peter Niblett. Event processing in action. Manning Publi-
cations Co., 2010.

[FRS93] Françoise Fabret et al. An adaptive algorithm for incremental evaluation of
production rules in databases. Institut national de recherche en informatique
et en automatique, 1993.

[FYW15] Edurardo Fernandez et al. “Cloud Access Security Broker (CASB): A pattern
for secure access to cloud services”. In: 4th Asian Conference on Pattern
Languages of Programs, Asian PLoP ’15. Tokyo, Japan, 2015.

[Fer+15] Raul Castro Fernandez et al. “Liquid: Unifying Nearline and Offline Big Data
Integration.” In: CIDR. 2015.

[FS09] David Ferro and Eric Swedin. “History of Computing 2”. In: ed. by Timo
Impagliazzo Johnand Järvi and Petri Paju. Berlin, Heidelberg: Springer, 2009.
Chap. Computer Fiction: Towards Investigating the Importance of Science
Fiction in the Historical Development of Computing, pp. 84–94. isbn: 978-3-
642-03757-3. doi: 10.1007/978-3-642-03757-3_9. url: http://dx.doi.
org/10.1007/978-3-642-03757-3_9.

[FIC12] FICO. High-Volume Batch Processing with the FICO Blaze Advisor business
rules management system. Tech. rep. FICO Inc., Jan. 2012.

[Fie+02] Ludger Fiege et al. “Engineering event-based systems with scopes”. In: Euro-
pean Conference on Object-Oriented Programming. Springer. 2002, pp. 309–
333.

[For82] Charles L Forgy. “Rete: A fast algorithm for the many pattern/many object
pattern match problem”. In: Artificial intelligence 19.1 (1982), pp. 17–37.

[For79] Charles Lanny Forgy. “On the efficient implementation of production systems”.
PhD thesis. Carnegie-Mellon University, 1979.

[Fou15] Apache Software Foundation. Apache Tomcat - WebSocket How-To. https://
tomcat.apache.org/tomcat-7.0-doc/web-socket-howto.html. (Accessed
on 02/03/2016). Sept. 2015.

https://developers.google.com/blockly/guides/get-started/web
https://developers.google.com/blockly/guides/get-started/web
http://gigaom.com/cloud/node-js-and-the-javascript-age/
http://gigaom.com/cloud/node-js-and-the-javascript-age/
https://doi.org/10.1007/978-3-642-03757-3_9
http://dx.doi.org/10.1007/978-3-642-03757-3_9
http://dx.doi.org/10.1007/978-3-642-03757-3_9
https://tomcat.apache.org/tomcat-7.0-doc/web-socket-howto.html
https://tomcat.apache.org/tomcat-7.0-doc/web-socket-howto.html

Bibliography

[Fri14] E.J. Fried. Jess Website: Web Links. http://www.jessrules.com/links/.
(Accessed on 01/03/2016). Feb. 2014.

[Fri03] Ernest Friedman-Hill. JESS in Action. Vol. 46. Manning Greenwich, CT,
2003.

[Gha+13] Ahmad Ghazal et al. “BigBench: towards an industry standard benchmark for
big data analytics”. In: Proceedings of the 2013 ACM SIGMOD international
conference on Management of data. ACM. 2013, pp. 1197–1208.

[GR98a] Joseph C Giarratano and G Riley. “CLIPS reference manual”. In: Basic
Programming Guide, CLIPS Version 6 (1998).

[GR98b] Joseph C Giarratano and Gary Riley. Expert systems. PWS Publishing Co.,
1998, pp. 10–21.

[GP08] Adrian Giurca and Emilian Pascalau. “JSON rules”. In: Proceedings of the
of 4th Workshop on Knowledge Engineering and Software Engineering, KESE
425 (2008), pp. 7–18.

[GRC04] Matteo Golfarelli et al. “Beyond data warehousing: what’s next in business
intelligence?” In: Proceedings of the 7th ACM international workshop on Data
warehousing and OLAP. ACM. 2004, pp. 1–6.

[GDJ99] Carlos J Alonso González et al. “A graphical rule language for continuous
dynamic systems”. In: Computational Intelligence for Modelling, Control and
Automation. Vol. 55. Amsterdam, Netherlands, CIMCA-99. 1999, pp. 482–
487.

[GK94] Suran Goonatilake and Sukhdev Khebbal. Intelligent hybrid systems. John
Wiley & Sons, Inc., 1994.

[Gro00] Ralph Grove. “Internet-based expert systems”. In: Expert systems 17.3 (2000),
pp. 129–135.

[GKP99] Robert E Gruber et al. “The architecture of the READY event notification ser-
vice”. In: Electronic Commerce and Web-based Applications/Middleware, 1999.
Proceedings. 19th IEEE International Conference on Distributed Computing
Systems Workshops on. IEEE. 1999, pp. 108–113.

[Guo+07] Chang Jie Guo et al. “A framework for native multi-tenancy application devel-
opment and management”. In: 4th IEEE International Conference on Enter-
prise Computing, e-commerce, and E-Services, 2007. CEC/EEE 2007. IEEE.
2007, pp. 551–558.

[Güt94] Ralf Hartmut Güting. “GraphDB: Modeling and querying graphs in databases”.
In: VLDB. Vol. 94. 1994, pp. 12–15.

[Gys+94] Marc Gyssens et al. “A graph-oriented object database model”. In: IEEE
Transactions on Knowledge and Data Engineering 6.4 (1994), pp. 572–586.

[HN94] Michel Habib and Lhouari Nourine. “Bit-vector encoding for partially ordered
sets”. In: Orders, Algorithms, and Applications. Springer, 1994, pp. 1–12.

[HO06] Philipp Haller and Martin Odersky. “Event-based programming without in-
version of control”. In: JMLC. Vol. 4228. Springer. 2006, pp. 4–22.

[Han92] Eric N Hanson. “Rule condition testing and action execution in Ariel”. In:
ACM SIGMOD Record. Vol. 21. 2. ACM. 1992, pp. 49–58.

http://www.jessrules.com/links/

Bibliography

[Han96] Eric N. Hanson. “The design and implementation of the Ariel active database
rule system”. In: IEEE Transactions on Knowledge and Data Engineering 8.1
(1996), pp. 157–172.

[HH93] Eric N Hanson and Mohammed S Hasan. “Gator: An optimized discrimination
network for active database rule condition testing”. In: University of Florida.–
Gainesville: CIS Departement (1993).

[H+00] David Hay et al. “Defining business rules – What are they really?” In: Final
Report (2000).

[Hay85] Frederick Hayes-Roth. “Rule-based systems”. In: Communications of the ACM
28.9 (1985), pp. 921–932.

[HS08] Huahai He and Ambuj K Singh. “Graphs-at-a-time: query language and access
methods for graph databases”. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. ACM. 2008, pp. 405–418.

[HDX12] Li Heng et al. “Survey on multi-tenant data architecture for SaaS”. In: Inter-
national Journal of Computer Science Issues(IJCSI) 9.6 (2012).

[Hoh06] Gregor Hohpe. “Programming without a call stack: Event-driven architectures”.
In: Objekt Spektrum (2006).

[HP13] Florian Holzschuher and René Peinl. “Performance of graph query languages:
comparison of cypher, gremlin and native access in Neo4j”. In: Proceedings of
the Joint EDBT/ICDT 2013 Workshops. ACM. 2013, pp. 195–204.

[Hor94] Bruce M Horowitz. “Intermediate states as a source of non-deterministic behav-
ior in triggers”. In: Research Issues in Data Engineering, 1994. Active Database
Systems. Proceedings Fourth International Workshop on. IEEE. 1994, pp. 148–
155.

[Hu+07] Jian Hu et al. “Demographic prediction based on user’s browsing behavior”. In:
Proceedings of the 16th international conference on World Wide Web. ACM.
2007, pp. 151–160.

[Hwa+05] J-H Hwang et al. “High-availability algorithms for distributed stream process-
ing”. In: 21st International Conference on Data Engineering (ICDE’05). IEEE.
2005, pp. 779–790.

[Jac98] Peter Jackson. Introduction to expert systems. Addison-Wesley Longman Pub-
lishing Co., Inc., 1998.

[J+07] Dean Jacobs, Stefan Aulbach, et al. “Ruminations on Multi-Tenant Databases.”
In: BTW. Vol. 103. 2007, pp. 514–521.

[Jai+08] Namit Jain et al. “Towards a streaming SQL standard”. In: Proceedings of the
VLDB Endowment 1.2 (2008), pp. 1379–1390.

[JB14] Stephanie W Jamison and Joel P Brereton. The Rigveda: the earliest religious
poetry of India. Vol. 1. 2014.

[JR13] Salim Jouili and Aldemar Reynaga. “imGraph: A distributed in-memory graph
database”. In: Social Computing (SocialCom), 2013 International Conference
on. IEEE. 2013, pp. 732–737.

[Joy10] Joyent Inc. The Node.js Website. 2010. url: http://nodejs.org/ (visited
on 11/09/2015).

http://nodejs.org/

Bibliography

[Kab+15] Jaap Kabbedijk et al. “Defining multi-tenancy: A systematic mapping study
on the academic and the industrial perspective”. In: Journal of Systems and
Software 100 (2015), pp. 139–148.

[Kai+13] Stephen Kaisler et al. “Big data: issues and challenges moving forward”. In: Sys-
tem Sciences (HICSS), 2013 46th Hawaii International Conference on. IEEE.
2013, pp. 995–1004.

[Kam] Kennedy Kambona. Serena Rule Language ANTLRv3. http://bit.ly/
serena-antlr. (Accessed on 06/08/2018).

[KBD13] Kennedy Kambona et al. “An Evaluation of Reactive Programming and
Promises for Structuring Collaborative Web Applications”. In: Proceedings of
the 7th Workshop on Dynamic Languages and Applications. DYLA ’13. Mont-
pellier, France: ACM, 2013, 3:1–3:9. isbn: 978-1-4503-2041-2. doi: 10.1145/
2489798.2489802. url: http://doi.acm.org/10.1145/2489798.2489802.

[Kam+15] Kennedy Kambona et al. “Coordinating Collaborative Interactions in Web-
based Mobile Applications”. In: Proceedings of the 2015 International Confer-
ence on Interactive Tabletops & Surfaces. ACM. 2015, pp. 181–190.

[KBD15] Kennedy Kambona et al. “Serena: scalable middleware for real-time web ap-
plications”. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. ACM. 2015, pp. 802–805.

[KRD17a] Kennedy Kambona et al. “Efficient Matching in Heterogeneous Rule En-
gines”. In: Proceedings of the 30th The 30th International Conference on Indus-
trial, Engineering, Other Applications of Applied Intelligent Systems (IEA/AIE
2017). Springer. 2017, to appear.

[KRD17b] Kennedy Kambona et al. “Reentrancy and Scoping for Multitenant Rule En-
gines”. In: Proceedings of the 13th International Conference on Web Informa-
tion Systems and Technologies (WEBIST). ScitePress. 2017, to appear.

[KKH11] Sungjoo Kang et al. “A design of the conceptual architecture for a multi-
tenant saas application platform”. In: Computers, Networks, Systems and In-
dustrial Engineering (CNSI), 2011 First ACIS/JNU International Conference
on. IEEE. 2011, pp. 462–467.

[Kim+14] Milhan Kim et al. “RETE-ADH: an improvement to RETE for composite
context-aware service”. In: International Journal of Distributed Sensor Net-
works 2014 (2014).

[Kum+98] Ravi Kumar et al. “Recommendation systems: A probabilistic analysis”. In:
Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium
on. IEEE. 1998, pp. 664–673.

[Kun87] Hideko S Kunii. “DBMS with graph data model for knowledge handling”.
In: Proceedings of the 1987 Fall Joint Computer Conference on Exploring
technology: today and tomorrow. IEEE Computer Society Press. 1987, pp. 138–
142.

[LM01] E Scott Larsen and David McAllister. “Fast matrix multiplies using graphics
hardware”. In: Proceedings of the 2001 ACM/IEEE conference on Supercom-
puting. ACM. 2001, pp. 55–55.

[LF91] Douglas B Lenat and Edward A Feigenbaum. “On the thresholds of knowledge”.
In: Artificial intelligence 47.1-3 (1991), pp. 185–250.

http://bit.ly/serena-antlr
http://bit.ly/serena-antlr
https://doi.org/10.1145/2489798.2489802
https://doi.org/10.1145/2489798.2489802
http://doi.acm.org/10.1145/2489798.2489802

Bibliography

[Lev+04] Philip Levis et al. “The Emergence of Networking Abstractions and Techniques
in TinyOS”. In: Proceedings of the 1st Conference on Symposium on Networked
Systems Design and Implementation - Volume 1. NSDI’04. San Francisco,
California: USENIX Association, 2004, pp. 1–1.

[Luc02] David Luckham. The power of events. Vol. 204. Addison-Wesley Reading,
2002.

[Luc06] David Luckham. “What’s the Difference Between ESP and CEP”. In: Online
Article, August (2006).

[Lug05] George F Luger. Artificial intelligence: structures and strategies for complex
problem solving. Pearson education, 2005.

[Ma11] Hua-Dong Ma. “Internet of Things: Objectives and Scientific Challenges”. In:
J. Comput. Sci. Technol. 26.6 (Nov. 2011), pp. 919–924. issn: 1000-9000. doi:
10.1007/s11390-011-1189-5. url: http://dx.doi.org/10.1007/s11390-
011-1189-5.

[MP90] Michel Mainguenaud and Marie-Aude Portier. “Cigales: A graphical query
language for geographical information systems”. In: Proc. 4th Intl. Symposium
on Spatial Data Handling, Zürich. Citeseer. 1990, pp. 393–404.

[MK93] Marcus A Maloof and Krys J Kochut. “Modifying rete to reason temporally”.
In: Tools with Artificial Intelligence, 1993. TAI’93. Proceedings., Fifth Inter-
national Conference on. IEEE. 1993, pp. 472–473.

[Man15] Sergi Mansilla. Reactive Programming with RxJS: Untangle Your Asynchronous
JavaScript Code. Pragmatic Programmers, 2015.

[MNM77] J McDermott et al. “The efficiency of certain production system implementa-
tions”. In: ACM SIGART Bulletin 63 (1977), pp. 38–38.

[Mey+09] Leo A Meyerovich et al. “Flapjax: a programming language for Ajax applica-
tions”. In: ACM SIGPLAN Notices. Vol. 44. 10. ACM. 2009, pp. 1–20.

[MTS05] Mark S Miller et al. “Concurrency among strangers”. In: International Sym-
posium on Trustworthy Global Computing. Springer. 2005, pp. 195–229.

[Mir14] Daniel P Miranker. TREAT: A New and Efficient Match Algorithm for AI
Production System. Morgan Kaufmann, 2014.

[MFP06] Gero Mühl et al. Distributed event-based systems. Springer Science & Business
Media, 2006.

[NGR88] P Pandurang Nayak et al. “Comparison of the Rete and Treat Production
Matchers for Soar”. In: AAAI. 1988, pp. 693–698.

[New73] Allen Newell. Production systems: Models of control structures. Tech. rep.
DTIC Document, 1973.

[Nun+14] Bruno Astuto A Nunes et al. “A survey of software-defined networking: Past,
present, and future of programmable networks”. In: IEEE Communications
Surveys & Tutorials 16.3 (2014), pp. 1617–1634.

[Ora11] Oracle Corporation. JSR 315: Java™ Servlet 3.0 Specification. 2011. url:
https://www.jcp.org/en/jsr/detail?id=315 (visited on 03/09/2015).

[Ous96] John Ousterhout. “Why threads are a bad idea (for most purposes)”. In:
Presentation given at the 1996 Usenix Annual Technical Conference. Vol. 5.
San Diego, CA, USA. 1996.

https://doi.org/10.1007/s11390-011-1189-5
http://dx.doi.org/10.1007/s11390-011-1189-5
http://dx.doi.org/10.1007/s11390-011-1189-5
https://www.jcp.org/en/jsr/detail?id=315

Bibliography

[Pat+11] M. Pathirage et al. “A Multi-tenant Architecture for Business Process Exe-
cutions”. In: 2011 IEEE International Conference on Web Services (ICWS).
July 2011, pp. 121–128. doi: 10.1109/ICWS.2011.99.

[Pay16] Robbie Payne. Google Assistant At The MadeByGoogle Event. https://
chromeunboxed.com/google-assistant-steals-the-andromeda-thunder-
at-the-madebygoogle-event/. (Accessed on 10/06/2016). Oct. 2016.

[Pef+06] Ken Peffers et al. “The design science research process: a model for producing
and presenting information systems research”. In: Proceedings of the first in-
ternational conference on design science research in information systems and
technology (DESRIST 2006). sn. 2006, pp. 83–106.

[Pel+15] Tuomas Pelkonen et al. “Gorilla: a fast, scalable, in-memory time series
database”. In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 1816–
1827.

[Pet+14] Martin Peters et al. “Scaling parallel rule-based reasoning”. In: European
Semantic Web Conference. Springer. 2014, pp. 270–285.

[Pro13] Mark Proctor. Drools & jBPM: R.I.P. Rete time to get PHREAKY. http:
//blog.athico.com/2013/11/rip- rete- time- to- get- phreaky.html.
(Accessed on 04/11/2015). Nov. 2013.

[Pro15] Mark Proctor. Drools - Testimonials and Case Studies. http://www.drools.
org/learn/testimonialsAndCaseStudies.html. (Accessed on 02/06/2016).
July 2015.

[Rai13] Rohit Rai. Socket.IO: Real-time Web Application Development. Packt Pub-
lishing Ltd, 2013.

[RT01] Olivier Raynaud and Eric Thierry. “A quasi optimal bit-vector encoding of
tree hierarchies. application to efficient type inclusion tests”. In: European
Conference on Object-Oriented Programming. Springer. 2001, pp. 165–180.

[Red15] Redhat. Websockets in JBoss. http://bit.ly/java- websockets- info.
(Accessed on 02/03/2016). May 2015.

[Res+09] Bernd Resch et al. “Live Geography–Embedded Sensing for Standarised Urban
Environmental Monitoring”. In: (2009).

[RD17] Bob Reynders and Dominique Devriese. “Efficient Functional Reactive Pro-
gramming Through Incremental Behaviors”. In: Asian Symposium on Program-
ming Languages and Systems. Springer. 2017, pp. 321–338.

[Ril91] Gary Riley. “Clips: An expert system building tool”. In: (1991).
[RG92] Mark Roseman and Saul Greenberg. “GroupKit: A groupware toolkit for build-

ing real-time conferencing applications”. In: Proceedings of the 1992 ACM
conference on Computer-supported cooperative work. ACM. 1992, pp. 43–50.

[Ros03] Ronald G Ross. Principles of the business rule approach. Addison-Wesley
Professional, 2003.

[Sal15] SalesForce. The Force Multitenant Architecture. https://developer.salesforce.
com/page/Multi_Tenant_Architecture. (Accessed on 11/12/2016). Dec.
2015.

[SM14] Guido Salvaneschi and Mira Mezini. “Towards reactive programming for
object-oriented applications”. In: Transactions on Aspect-Oriented Software
Development XI 8400 (2014), pp. 227–261.

https://doi.org/10.1109/ICWS.2011.99
https://chromeunboxed.com/google-assistant-steals-the-andromeda-thunder-at-the-madebygoogle-event/
https://chromeunboxed.com/google-assistant-steals-the-andromeda-thunder-at-the-madebygoogle-event/
https://chromeunboxed.com/google-assistant-steals-the-andromeda-thunder-at-the-madebygoogle-event/
http://blog.athico.com/2013/11/rip-rete-time-to-get-phreaky.html
http://blog.athico.com/2013/11/rip-rete-time-to-get-phreaky.html
http://www.drools.org/learn/testimonialsAndCaseStudies.html
http://www.drools.org/learn/testimonialsAndCaseStudies.html
http://bit.ly/java-websockets-info
https://developer.salesforce.com/page/Multi_Tenant_Architecture
https://developer.salesforce.com/page/Multi_Tenant_Architecture

Bibliography

[Sch+08] Fabian Schneider et al. “The new web: Characterizing ajax traffic”. In: Inter-
national Conference on Passive and Active Network Measurement. Springer.
2008, pp. 31–40.

[Sch+11] Christophe Scholliers et al. “Midas: a declarative multi-touch interaction frame-
work”. In: Proceedings of the fifth international conference on Tangible, em-
bedded, and embodied interaction. ACM. 2011, pp. 49–56.

[Sch+86] Marshall I Schor et al. “Advances in Rete pattern matching”. In: AAAI. Vol. 86.
1986, pp. 226–232.

[SPT83] Lenhart K. Schubert et al. “Determining type, part, color and time relation-
ships”. In: IEEE Computer 16.10 (1983), pp. 53–60.

[SLR94] Praveen Seshadri et al. “Sequence query processing”. In: ACM SIGMOD
Record. Vol. 23. 2. ACM. 1994, pp. 430–441.

[SN71] Herbert A Simon and Allen Newell. “Human problem solving: The state of
the theory in 1970.” In: American Psychologist 26.2 (1971), p. 145.

[So11] Kuyoro So. “Cloud computing security issues and challenges”. In: International
Journal of Computer Networks 3.5 (2011).

[SK91] Michael Stonebraker and Greg Kemnitz. “The POSTGRES next generation
database management system”. In: Communications of the ACM 34.10 (1991),
pp. 78–92.

[SRH90] Michael Stonebraker et al. “The implementation of POSTGRES”. In: IEEE
transactions on knowledge and data engineering 2.1 (1990), pp. 125–142.

[SÇZ05] Michael Stonebraker et al. “The 8 requirements of real-time stream processing”.
In: ACM SIGMOD Record 34.4 (2005), pp. 42–47.

[Swa+13] Janwillem Swalens et al. “Cloud PARTE: elastic complex event processing
based on mobile actors”. In: Proceedings of the 2013 workshop on Programming
based on actors, agents, and decentralized control. ACM. 2013, pp. 3–12.

[The15] The Netty Project. Netty NIO. http://netty.io/. (Accessed on 01/18/2016).
May 2015.

[The12] The PostgreSQL Global Development Group. PostgreSQL Documentation:
The Rule System. https://www.postgresql.org/docs/9.4/static/rules.
html. (Accessed on 01/11/2016). May 2012.

[Thi07] Rajkumar Thirumalainambi. “Pitfalls of JESS for Dynamic Systems.” In:
Artificial Intelligence and Pattern Recognition. Citeseer. 2007, pp. 491–494.

[UM99] Naohiko Uramoto and Hiroshi Maruyama. “InfoBus repeater: a secure and
distributed publish/subscribe middleware”. In: Parallel Processing, 1999. Pro-
ceedings. 1999 International Workshops on. IEEE. 1999, pp. 260–265.

[Val+09] Emanuele Della Valle et al. “It’s a streaming world! Reasoning upon rapidly
changing information”. In: IEEE Intelligent Systems 24.6 (2009), pp. 83–89.

[Van+17] Sam Van den Vonder et al. “Tackling the Awkward Squad for Reactive Pro-
gramming: The Actor-Reactor Model”. In: (2017).

[VOE11] Richard L Villars et al. “Big data: What it is and why you should care”. In:
White Paper, IDC (2011).

[VHK97] Jan Vitek et al. Efficient type inclusion tests. Vol. 32. 10. ACM, 1997.

http://netty.io/
https://www.postgresql.org/docs/9.4/static/rules.html
https://www.postgresql.org/docs/9.4/static/rules.html

Bibliography

[Wag03] Gerd Wagner. “Web rules need two kinds of negation”. In: International
Workshop on Principles and Practice of Semantic Web Reasoning. Springer.
2003, pp. 33–50.

[WBG08] Karen Walzer et al. “Relative temporal constraints in the Rete algorithm for
complex event detection”. In: Proceedings of the second international conference
on Distributed event-based systems. ACM. 2008, pp. 147–155.

[WL05] Fusheng Wang and Peiya Liu. “Temporal management of RFID data”. In: Pro-
ceedings of the 31st international conference on Very large data bases. VLDB
Endowment. 2005, pp. 1128–1139.

[WLY04] Hai-Feng Wang et al. Search engine with natural language-based robust parsing
for user query and relevance feedback learning. US Patent 6,766,320. July 2004.

[Wan+14] Jinghan Wang et al. “A distributed rule engine based on message-passing
model to deal with big data”. In: Lecture Notes on Software Engineering 2.3
(2014), p. 275.

[Wan+02] Xiaohang Wang et al. “Semantic space: An infrastructure for smart spaces”.
In: Computing 1.2 (2002), pp. 67–74.

[Wan15] Yingwei Wang. “The relationships among cloud computing, fog computing,
and dew computing”. In: Dew Computing Research Nov 12 (2015).

[Way15] Waylay.io. Waylay: Smart Reasoning for IoT. http://www.waylay.io/blog-
one-rules-engine-to-rule-them-all.html. (Accessed on 15/10/2016).
Mar. 2015.

[Wid+07] Alexander Widder et al. “Identification of suspicious, unknown event patterns
in an event cloud”. In: Proceedings of the 2007 inaugural international confer-
ence on Distributed event-based systems. ACM. 2007, pp. 164–170.

[Wid96] Jennifer Widom. “The starburst active database rule system”. In: IEEE Trans-
actions on Knowledge and Data Engineering 8.4 (1996), pp. 583–595.

[Wig12] Steef-Jan Wiggers. BizTalk Server Business Rule Engine. http://bit.ly/
biztalk-engine. (Accessed on 11/08/2016). Jan. 2012.

[WST09] Jan Wloka et al. “Refactoring for reentrancy”. In: Proceedings of the the 7th
joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. ACM. 2009,
pp. 173–182.

[Wor15] Workday Research. Workdays Technology Platform and Development Pro-
cesses. Tech. rep. Workday Inc., Jan. 2015.

[Wor14] World Wide Web Consortium. CGI: Common Gateway Interface. 2014. url:
http://www.w3.org/CGI/ (visited on 11/20/2015).

[WM03] Ian Wright and James A. R. Marshall. “The execution kernel of RC++:
RETE*, a faster RETE with TREAT as a special case”. In: Int. J. Intell.
Games & Simulation 2.1 (2003), pp. 36–48.

[Wu+01] Dapeng Wu et al. “Streaming video over the Internet: approaches and direc-
tions”. In: IEEE Transactions on circuits and systems for video technology
11.3 (2001), pp. 282–300.

[XZ10] Ding Xiao and Xiaoan Zhong. “Improving Rete algorithm to enhance perfor-
mance of rule engine systems”. In: Computer Design and Applications (IC-
CDA), 2010 International Conference on. Vol. 3. IEEE. 2010, pp. V3–572.

http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html
http://www.waylay.io/blog-one-rules-engine-to-rule-them-all.html
http://bit.ly/biztalk-engine
http://bit.ly/biztalk-engine
http://www.w3.org/CGI/

Bibliography

[Yan+09] Jun Yan et al. “How much can behavioral targeting help online advertising?”
In: Proceedings of the 18th international conference on World wide web. ACM.
2009, pp. 261–270.

[Zam+14] Jesse Zaman et al. “Citizen-Friendly participatory campaign support”. In: Per-
vasive Computing and Communications Workshops (PERCOM Workshops),
2014 IEEE International Conference on. IEEE. 2014, pp. 232–235.

[ZDZ09] YH Zhang et al. “An extensible event-driven manufacturing management with
complex event processing approach”. In: International Journal of Control and
Automation 2.3 (2009), pp. 1–12.

[Zhi15] Zhiqiang. Process of Developing CQL Applications: Huawei BigData/Stream-
CQL Wiki. https : / / github . com / HuaweiBigData / StreamCQL / wiki /
Process- of- Developing- CQL- Applications. (Accessed on 01/11/2016).
Oct. 2015.

[ZG01] Yoav Zibin and Joseph Yossi Gil. “Efficient subtyping tests with PQ-encoding”.
In: ACM SIGPLAN Notices. Vol. 36. 11. ACM. 2001, pp. 96–107.

https://github.com/HuaweiBigData/StreamCQL/wiki/Process-of-Developing-CQL-Applications
https://github.com/HuaweiBigData/StreamCQL/wiki/Process-of-Developing-CQL-Applications

Index

alpha memory
hashing, 159

alpha node, 79
Ariel, 53
asynchronous execution, 26

beta nodes, 79
big data, 20

value, 21
variety, 21

binary matrix encoding, 142
bit-vector encoding, 139, 141
Borealis, 45

Cayuga, 45
CEP, see complex event processing
CEPS, see computation-oriented engines
CLIPS, 35, 57, 111
Cloud Computing, 18
Cloud, the, 1, 18
Cohen’s encoding, 139
community knowledge, 21
complex event processing, 22, 35
computation-oriented engines, 44
conflict set support, 200
continuous queries, 45
cost models, 201
CQL, 45
Cypher, 199

Data stream management systems, 45
data-driven execution, 37
databases

graph, 199
multitenant, 113
schema sharing, 113

DEPS, see detection-oriented engines
detection-oriented engines, 45
Dew computing, 1
domain-specific language, 134
Drools, 2, 35, 62, 109, 185
DSMS, 45
dynamicity, 40

stop-start, 40

encoding
methods, 139

ESP, 45
Esper, 45
event, 20, 27

cloud, 44
loop, 78
notifications, 20
stream, 44

event processing systems, 43
event-based systems, 115
expert systems, 35

fact, 36
Flink, 47
Fog computing, 1

Gator, 200

hasse diagram, 140
hierarchy, 120
hot-swapping, 40

IaaS, 18
imGraph, 200
inference engine, 5, 35

Jess, 2, 59, 110

Kimetrica, 25
knowledge-driven, 21

lattice, 141

match-select-execute, 78
Medusa, 45
metadata, 128
Miss manners, 185

rules, 213
multi-tenancy, 18, 113

multi-instance, 3
multiple-instances, 18

Index

native, 3, 18

neo4j, 199
Niagara, 45
notification, 115, 132, 155

scopes, 132, 155

PaaS, 18
packed encoding, 139
pattern-matching, 34
persistence, 200
poset, 140
POSTGRES, 55
PRete, 201
production systems, 35

range compression, 139
reactive, 21

data, 1
programming, 3

reactive knowledge-driven applications, 5, 22
real-time

services, 21
REBECA, 115
recognise-act cycle, 36
reentrancy, 2, 6, 97, 102
relation facts, 101
relative numbering, 139
research design science process, 9
resolution strategy

FIFO, 85
LIFO, 85

Rete
adaptive, 201
algorithm, 38

Rigveda parable, 21
RKDA, see reactive knowledge-driven appli-

cations
rule, 35
rule engine

metrics, 202
rule engines

decomposition, 108
origin, 35

rule-based systems, 2, 35
RuleML, 59
rules

if-then, 36

SaaS, 18

SBH, see sope-based hashing158
evaluation, 182

scope guards, 153
scope-based hashing, 158
scoped rules, 6
scopes, 121

custom, 199
peerof, 123
private, 123
public, 123, 130
super, 130
visibleto, 130

scoping module, 129
Serena, 69

architecture, 75, 128
client library, 75
encoding methods, 139
encoding process, 140
encoding scheme, 137
fact base, 77
node reuse, 145
rule base, 77
SRL, 70
supported scopes, 129
UI, 134

service level agreement, 201
shared knowledge, 119
SLA, see service level agreement
SRL

action, 74
assert, 74
modify, 74
plugins, 74
retract, 74

STREAM, 45
synchronous execution, 26

TelegraphCQ, 45
temporal rules, 120
time-sharing, 18
TREAT, 200

unification, 73
Utility computing, 1, 18

visibility, 115

Web
evolution, 16

websocket, 75

	1 Introduction
	1.1 Research Context
	1.1.1 Community Knowledge in Heterogeneous Environments
	1.1.2 Reactive Web Applications
	1.1.3 Reactive Knowledge-driven Applications

	1.2 Problem Statement
	1.3 Overview
	1.3.1 Dynamic Rule Architecture
	1.3.2 Scoped Rule-based Language
	1.3.3 Reentrant Rule Engine

	1.4 Approach & Methodology
	1.5 Contributions
	1.6 Supporting Publications
	1.6.1 Primary Publications
	1.6.2 Secondary Publications

	1.7 Outline

	2 Reactive Knowledge-driven Applications
	2.1 Introduction
	2.1.1 The Rise of the Dynamic Web
	2.1.2 Foundations of Cloud-based Heterogeneity

	2.2 Trends in the Dynamic Web
	2.2.1 The Web and Big Data
	2.2.2 Value Extraction in Reactive Web Applications
	2.2.3 Reactive Knowledge-driven Applications (RKDAs)
	2.2.4 Characteristics of Reactive Knowledge-driven Applications

	2.3 Driving Scenario
	2.4 Programming and Processing Paradigms for RKDAs
	2.4.1 Reactive Data & Complex Events
	2.4.2 Detecting Complex Events
	2.4.3 The Reactive Paradigm

	2.5 The Rule-based Paradigm
	2.5.1 Reactivity in Rule-based Systems
	2.5.2 General Architecture of Rule-based Systems
	2.5.3 Programming Rule-based Systems
	2.5.4 Optimising the Matching Process: The Rete Algorithm
	2.5.5 Rule-based Systems for RKDAs
	2.5.6 Rule-based Systems & the Cloud

	2.6 Requirements for Supporting Reactive Knowledge-driven Applications
	2.7 Chapter Summary

	3 Related Work: Reasoning in Event Streams
	3.1 Reasoning in Event Processing Systems
	3.2 Computation-oriented Event Processing Systems
	3.2.1 Event Processing in Data Stream Management Systems
	3.2.2 Event Processing in Stream Processing Systems
	3.2.3 Limitations of Computation-oriented EPS for RKDAs

	3.3 Detection-oriented Event Processing Systems
	3.3.1 Event Processing in Active Databases
	3.3.2 Event Processing in Rule-based Systems
	3.3.3 Summary: DEPS for supporting Stream Reasoning

	3.4 Results of Analysis
	3.5 Chapter Summary

	4 Serena: Cloud-based Rule Engine
	4.1 Introduction
	4.2 Serena Rule Language: Syntax and Semantics
	4.2.1 SRL Syntax
	4.2.2 SRL Fact Templates
	4.2.3 SRL Rule Definitions
	4.2.4 SRL JavaScript Plugins

	4.3 Serena: Architecture
	4.3.1 Client-server Interaction
	4.3.2 Server Architecture

	4.4 Serena: Execution Semantics
	4.4.1 Reactive Rule Engine Execution
	4.4.2 The Inference Engine and Rete
	4.4.3 Rule Activation
	4.4.4 Client Notifications
	4.4.5 Reactivity & Dynamism

	4.5 Evaluation: Serena Rule-based Framework
	4.5.1 Evaluation of Requirements & Comparison with Related Work

	4.6 Chapter Summary

	5 Heterogeneity in Reactive Knowledge-driven Applications
	5.1 Rule-based Systems and Heterogeneity
	5.1.1 Multi-tenant Rule-based Systems

	5.2 Issues with Heterogeneity in Rule-based Systems
	5.2.1 Scenario: Office Complex Security System
	5.2.2 Reentrancy in Heterogeneous RBS
	5.2.3 Inter and Intra-Client Relationships in Heterogeneous RBS

	5.3 Requirements for Heterogeneous Rule Engines
	5.3.1 Metadata Model for Discerning Heterogeneous Clients' Data
	5.3.2 Formalised Model for Grouping Heterogeneous Clients
	5.3.3 Execution Model for Selective Computations
	5.3.4 Flexible Model for Notification Semantics

	5.4 Heterogeneity in existing RBS: Related Work
	5.4.1 Decomposition in Rule Engines
	5.4.2 Overview: Decomposition in Rule Engines
	5.4.3 Schema Sharing in Multi-tenant Databases
	5.4.4 Visibility in Event-based Systems

	5.5 Chapter Summary

	6 Scoped Rules in Serenas
	6.1 Foundations of the Scope-based Rule Language
	6.1.1 Design Factors of Serenas Scope-based Language

	6.2 Scoped Rules in Serenas
	6.2.1 Defining Scoped Rules
	6.2.2 Overview of Supported Scopes
	6.2.3 Examples of Scoped Rules

	6.3 Serenas Architecture
	6.3.1 Client-server Interaction
	6.3.2 Server Architecture

	6.4 Localised Scopes
	6.5 Scoped Notifications
	6.6 SerenaUI: Graphical Scoped Rules Builder
	6.7 Chapter Summary

	7 Serenas: The Reentrant Cloud-based Rule Engine
	7.1 The Serenas Encoding Scheme
	7.1.1 The Need for an Efficient Encoding
	7.1.2 Selecting an Encoding Scheme
	7.1.3 Encoding Methods
	7.1.4 The Encoding Process

	7.2 Supporting Reentrancy via Scope-based Reasoning
	7.2.1 Implementing Scoping with ML
	7.2.2 Node Reuse with Scopes

	7.3 Processing Scoping Constraints
	7.3.1 The Matching Phase using Scopes
	7.3.2 Scoped Notifications

	7.4 Scope-based Hashing (SBH)
	7.4.1 Improving Scope Test Performance
	7.4.2 Group Hashing the Alpha Memory
	7.4.3 Matching with Scope-based Hashing
	7.4.4 Advanced Issues in SBH
	7.4.5 Summary: Scope-based Hashing

	7.5 Maintainability of Scoped Rules and Other Issues
	7.5.1 Retraction and Modification of Facts
	7.5.2 Changes in Group Structure
	7.5.3 Negation

	7.6 Requirements Revisited
	7.6.1 Evaluation of Requirements

	7.7 Chapter Summary

	8 Evaluation
	8.1 Evaluation Scenario
	8.1.1 Example: University Services Access Control

	8.2 Evaluation: Scoped & Ad-hoc Approaches
	8.2.1 Experimental Setup
	8.2.2 Results and Discussion

	8.3 Evaluation: Isolated Rule Engine Instances
	8.3.1 Setup and Methodology
	8.3.2 Analysis of Results
	8.3.3 Discussion

	8.4 Evaluation: Scope-based Hashing
	8.4.1 Experimental Setup
	8.4.2 Analysis of Results

	8.5 Evaluation: Rule Engine Benchmark with Miss Manners
	8.5.1 Setup & Methodology
	8.5.2 Results & Discussion

	8.6 Chapter Summary

	9 Conclusion
	9.1 Revisiting the Problem Statement
	9.2 Summary & Contributions
	9.2.1 Summary
	9.2.2 Restating the Contributions

	9.3 Limitations & Future Research
	9.3.1 Support for Custom Scopes
	9.3.2 Antiquated Data in Rete
	9.3.3 Cloud Models for Heterogeneous Rule-based Systems
	9.3.4 Other Research Avenues

	9.4 Concluding Remarks

	A Serena's Matrix Encoding
	A.1 Definitions
	A.1.1 Posets
	A.1.2 Lattices

	A.2 Operations with
	A.3 Matrix Encoding
	A.4 Full Matrix Encoding for Office Complex Example

	B Coordinating Collaborative Interactions
	B.1 Motivating Example: Online Collaborative Drawing Editor
	B.2 Collaborative Interactions in Serenas

	C Miss Manners' Benchmark in Serena
	D University Security Access Rules

