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The evolution of the smartphone as a general computing platform combined with 
the rich sensing functionalities that it has acquired in recent years, have led to a 
new collective data gathering paradigm called participatory sensing. Participatory 
sensing is the driving technology behind so-called citizen observatories; i.e. a set of 
cloud-based software tools that are used to gather, analyse and visualise data by a 
group of citizens that share some collective concern. Participatory sensing  is often 
used in so-called campaigns. A campaign is a collective data gathering effort that 
is delimited in space and/or time.

Today citizen observatories have to be developed from scratch for each application 
domain, meaning that deploying a new citizen observatory is nothing less than 
a complex cloud-driven software engineering project that is extremely labour-
intensive precisely because of its technical complexity. Despite an overwhelming 
demand for such platforms, they are thus beyond the reach of most societal 
stakeholder groups.  

What is needed is a generic approach towards reusable and reconfigurable 
citizen observatories, i.e. a citizen observatory meta-platform that can be used by 
stakeholders to create new and adapt existing citizen observatories.  Thus, apart 
from the technical design challenges, a key requirement of such a meta-platform 
is that it is easily accessible by societal stakeholders and communities. Deploying 
a new citizen observatory and setting up campaigns through the meta-platform 
should therefore be possible without or with only very limited programming skills. 

In this dissertation, we present DISCOPAR (Distributed Components for 
Participatory Campaigning), a new visual reactive flow-based domain-specific 
programming language created specifically to hide the non-essential complexity 
of citizen observatories from the end-user, and to present only concepts that are 
truly relevant to their domain.  DISCOPAR is used throughout the meta-platform to 
enable end-users to construct every part of a citizen observatory: the mobile data 
gathering app, server-side data processing, and web-based visualisations can all be 
set up using a single visual language, thereby greatly increasing the accessibility by 
end-users.

We validate our citizen observatory meta-platform and the DISCOPAR language – 
in terms of expressiveness, suitability and usability – through experiments both in 
laboratory as well as in real-world conditions. We demonstrate  expressiveness by 
creating three radically different citizen observatories and test the suitability and 
usability during real-world experiments performed by different groups of people 
without any programming knowledge.
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A B S T R AC T

The evolution of the smartphone as a general computing platform combined with the
rich sensing functionalities that it has acquired in recent years, have led to a new
collective data gathering paradigm called participatory sensing. Participatory sensing
is the driving technology behind so-called citizen observatories; i.e. a set of cloud-
based software tools that are used to gather, analyse and visualise data by a group of
citizens that share some collective concern. Participatory sensing is often used in so-
called campaigns. A campaign is a collective data gathering effort that is delimited
in space and/or time.

Today citizen observatories have to be developed from scratch for each applica-
tion domain, meaning that deploying a new citizen observatory is nothing less than a
complex cloud-driven software engineering project that is extremely labour-intensive
precisely because of its technical complexity. Despite an overwhelming demand for
such platforms, they are thus beyond the reach of most societal stakeholder groups.

What is needed is a generic approach towards reusable and reconfigurable citi-
zen observatories, i.e. a citizen observatory meta-platform that can be used by stake-
holders to create new and adapt existing citizen observatories. Thus, apart from the
technical design challenges, a key requirement of such a meta-platform is that it is
easily accessible by societal stakeholders and communities. Deploying a new citizen
observatory and setting up campaigns through the meta-platform should therefore be
possible without or with only very limited programming skills.

In this dissertation, we present DISCOPAR (Distributed Components for Partic-
ipatory Campaigning), a new visual reactive flow-based domain-specific program-
ming language created specifically to hide the non-essential complexity of citizen
observatories from the end-user, and to present only concepts that are truly relevant
to their domain. DISCOPAR is used throughout the meta-platform to enable end-
users to construct every part of a citizen observatory: the mobile data gathering app,
server-side data processing, and web-based visualisations can all be set up using a
single visual language, thereby greatly increasing the accessibility by end-users.
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We validate our citizen observatory meta-platform and the DISCOPAR language
– in terms of expressiveness, suitability and usability – through experiments both in
laboratory as well as in real-world conditions. We demonstrate expressiveness by cre-
ating three radically different citizen observatories and test the suitability and usabil-
ity during real-world experiments performed by different groups of people without
any programming knowledge.
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S A M E N VAT T I N G

De evolutie van de smartphone als computerplatform, gecombineerd met de rijke
technologische functies die het de afgelopen jaren heeft verworven, heeft geleid tot
een nieuw paradigma voor gegevensverzameling dat participatief meten wordt ge-
noemd. Participatief meten wordt vaak gebruikt in campagnes, het verzamelen van
data door een groep mensen in een specifiek gebied en/of tijdsinterval.

Participatief meten is de motor achter zogenaamde burgerobservatoria; een reeks
ICT-hulpmiddelen om gegevens te verzamelen, analyseren en visualiseren met als
doel de levenskwaliteit van burgers te verbeteren. Tegenwoordig moeten burgerobser-
vatoria voor elk toepassingsgebied vanaf nul worden ontwikkeld, waardoor een nieuw
burgerobservatorium creëren uiterst moeilijk en arbeidsintensief blijft. Ondanks een
overweldigende vraag naar dergelijke platforms, zijn ze dus buiten het bereik van de
meeste maatschappelijke belanghebbenden.

Bijgevolg is een generieke benadering van herbruikbare en (her)configureerbare
burgerobservatoria meer dan nodig. Dit proefschrift introduceert een burgerobserva-
toria metaplatform, een platform dat belanghebbenden kunnen gebruiken om burg-
erobservatoria te creëren. Een van de grootste uitdagingen van dit metaplatform is
de toegankelijkheid verzekeren voor betrokken personen en gemeenschappen. Het
creëren van een burgerobservatorium en het opzetten van campagnes moet daarom
mogelijk zijn zonder of met beperkte programmeervaardigheden.

Om dit mogelijk te maken, hebben we DISCOPAR (Distributed Components
for Participatory Campaigning) gecreëerd. DISCOPAR is een nieuwe visuele, reac-
tive, flow-gebaseerde, domeinspecifieke programmeertaal die specifiek de ongewen-
ste complexiteit van burgerobservatoria verbergt voor de eindgebruiker en alleen con-
cepten presenteert die relevant zijn voor hun domein. DISCOPAR wordt overal in
het metaplatform gebruikt om eindgebruikers in staat te stellen elk deel van een burg-
erobservatorium te bouwen. De mobiele app voor het verzamelen van gegevens, de
gegevensverwerking op de server, en ook de webgebaseerde visualisaties kunnen alle-
maal worden opgezet met behulp van één visuele taal. Hierdoor vergroot de toeganke-
lijkheid voor eindgebruikers aanzienlijk.
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Om de expressiviteit en correctheid van het herconfigureerbare platform aan te
tonen, hebben we drie radicaal verschillende burgerobservatoria gecreëerd en deze
getest in zowel het laboratorium als in reële omstandigheden. De toegankelijkheid
van het metaplatform werd getest tijdens experimenten uitgevoerd door verschillende
groepen bestaande uit mensen zonder programmeerkennis.
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1
I N T RO D U C T I O N

In 2006, Burke et al. [65] introduced the concept of participatory sensing (PS), which
tasks individuals, acting alone or in groups, along with their personal smartphones,
to systematically monitor personal information (e.g. health) and environmental in-
formation (e.g. noise levels, traffic conditions). Given enough people with a smart-
phone, participatory sensing has the potential to collect enormous volumes of highly
localised, person-centric data, which can support (or nudge) policy makers to assess
(or adjust) societal or environmental processes in a way that was hitherto unthinkable.
Especially in urban contexts with a high concentration of smartphone users, this form
of sensing enables the assessment of behavioural and environmental parameters on a
scale and a level of granularity that was unattainable before.
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Chapter 1: Introduction

The emergence of the PS paradigm has resulted in a broad spectrum of systems
targeted at collecting data across various domains. These include, but are not lim-
ited to, environmental monitoring, intelligent transportation, personalised medicine,
and epidemiological investigations of disease vectors [126]. All these applications
are so-called ad-hoc participatory sensing systems, which means that they can only
be deployed to collect data about their particular domain, i.e., they are designed on
a per use case basis. Developing a new PS system for a particular domain is a costly
and time-consuming operation. This inspired several research initiatives to adopt a
different approach. Rather than developing yet another ad-hoc PS system, a new gen-
eration of platforms [27, 13, 74, 123] has emerged that enable end-users to configure
their own mobile data gathering apps. Up until now, however, these platforms have
limited expressiveness as they focus only on discrete data, i.e., single-shot observa-
tions which usually take the form of a questionnaire. They provide no support for
continuous data streams originating from smartphone sensors. This is due to the fact
that uploaded surveys are much easier to handle than continuously streaming sensor
data.

Despite the inferior quality of smartphone sensors when compared to profes-
sional measuring equipment, participatory sensing can still produce qualitative re-
sults [130, 41, 64]. This is accomplished by using the potentially enormous quantity
of data PS can collect to compensate for the typically inferior quality of individual
measurements. But this is easier said than done. To ensure that a high data quality is
achieved, PS is currently mainly used on a smaller, coordinated scale where a limited
number of people are carefully organised in order to contribute qualitative and use-
ful data. This is achieved by organising a so called participatory sensing campaign,
which usually focuses the combined data collection effort in both space and time.
Scaling up such campaigns in order to truly get quality out of quantity is currently an
open problem.

Participatory sensing provides the enabling technology to deploy so-called citi-
zen observatories. These are distributed software platforms that provide stakeholders
with the instruments to collect, process, analyse, and visualise data in order to ac-
cumulate knowledge into a centralised repository. Citizen observatories have been
discussed as an increasingly essential tool for better observing, understanding, pro-
tecting, and enhancing our environment [84]. Citizen observatories may also serve
as an information hub for citizens. For example, a citizen may consult (the data pro-
duced and processed by) an observatory on noise pollution to get an idea of the noise
pollution that he is exposed to in his daily life. Alternatively, citizen observatories
can be a provider of publicly available data that stakeholders can use in their pol-
icy making. Various citizen observatories have emerged to establish interaction and
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co-participation between citizens and authorities about various environmental issues,
emergencies (e.g., flooding [81]), or the day-to-day management of fundamental re-
sources (e.g., FixMyStreet [45]).

1.1 Problem Statement

One major issue of citizen observatories is that, despite the high societal demand,
developing a citizen observatory remains a labour-intensive (i.e., costly) and lengthy
process that requires substantial technical expertise. Constructing a new citizen obser-
vatory for a new type of data (e.g., air pollution, mobility patterns of users of public
transportation, etc.) requires most of the software infrastructure to be rebuilt from
scratch. Source code for mobile devices, the observatory’s website, server-side data
processing and data storage infrastructure, participant feedback provision, and data
analysis need to be manually programmed time and time again.

Another issue is that even though the concept of a well-orchestrated PS campaign
is crucial for ensuring qualitative data, none of the existing PS systems and citizen
observatories provide technological support to make sure that the campaign is effec-
tively executed in the foreseen way. Actively orchestrating campaigns is a tedious
task even for relatively small campaigns. This is mainly caused by the fact that a
significant number of tasks, such as checking the data to verify whether participants
satisfied the spatio-temporal constraints imposed by the campaign, still have to be
performed manually due to the lack of technological support [36]. The workload in-
volved in manually orchestration campaigns, combined with the lack of technological
support for the definition and enactment of a campaign in existing PS systems, are a
significant hindrance in the wide-scale adoption of PS campaigns that involve large
numbers of participants.

Third, the lack of a systematic, easy, and reusable method for setting up new
citizen observatories and for defining new campaigns (within a citizen observatory)
poses an insurmountable hurdle for communities and organisations as these typically
lack the specific technical ICT-skills and programming knowledge that is needed to
create the necessary server infrastructure and mobile applications. This often forces
organisations to opt for a non-technological approach (i.e., pen and paper) or to spend
large parts of their (often restricted) budget on external ICT-consultants.

Finally, by far the largest obstacle of current approaches is the discrepancy with
respect to software engineering efforts: stakeholders lack the strong technical back-
ground required to set up their own citizen observatories, and platform engineers can-
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not keep up with the demand for (and the number of variations in) citizen observatory
and campaigning requirements within limited budgetary constraints.

1.2 Research Vision

What is needed to tackle the aforementioned problems is a generic approach targeting
reusable and reconfigurable citizen observatories that are easily accessible by societal
stakeholders and communities.

In this dissertation, we focus on finding a solution toward wide-scale adoption of
citizen observatories. We propose the notion of a citizen observatory meta-platform:

A citizen observatory meta-platform is a platform that reasons about and acts
upon citizen observatory platforms. It is a platform capable of constructing citizen

observatory platforms.

Through this CO meta-platform, citizen observatories can be constructed by
stakeholders in a way that appeals to ICT-agnostic end-users. These citizen obser-
vatories should be scalable with respect to the amount of data, the number of users,
and, most importantly, the type of data collected (i.e., the application area). Only in
this way can we move away from small-scale research-oriented deployments to the
full-fledged adoption of PS as a societally and scientifically relevant data collection
method. The CO meta-platform will exhibit the technical features necessary to con-
cretise the following research visions:

Research Vision 1: Reconfigurable Citizen Observatory Platform The CO meta-
platform has to be generic, meaning that it must be configurable to provide support for
the creation of citizen observatories for any PS scenario. Citizen observatories created
though the meta-platform must be expressive and powerful enough to handle both
discrete data (e.g., people’s experience of their surroundings, such as the perception
of local safety in cities) and continuous data (e.g., sensorial data, such as temperature
or air humidity). Additionally, the underlying technological implementation of each
citizen observatory has to be reusable to prevent the re-implementation of each citizen
observatory from scratch.

Research Vision 2: Campaign Definition and Enactment Unlike existing PS sys-
tems where the definition and enactment of campaigns is not technically supported
(and thus managed manually), we envision the CO meta-platform to provide inte-
grated technological support for the concept of a PS campaign. ICT-agnostic users
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must be able to define campaigns themselves rather than relying on PS system own-
ers for insider knowledge. Campaigns will be defined by means of a set of predicates
(e.g., spatio-temporal constraints) about the data collection process that have to be sat-
isfied in order for the campaign to be successfully executed. Each campaign deployed
within an observatory will be automatically enacted by the platform and provide au-
tomated orchestration of participants. This orchestration can coordinate participants
while they are collecting data and provide them with feedback on their contributions
as an incentive mechanism.

Research Vision 3: Reactive Citizen Observatories In order to guarantee suc-
cessful campaigning it is essential that we embed automated orchestration to steer
participants to optimise their data collection efforts and to provide them with imme-
diate user feedback. In order to provide real-time feedback, citizen observatories and
campaigns cannot rely on the traditional mechanism such as batch processing of data
and query-based data analysis. We therefore envision each citizen observatory created
through the meta-platform as a massive cloud-based reactive [11] application that re-
acts on data coming from mobile devices, contributes those data to the server, and
promptly pushes feedback such as intermediate campaign results back to the relevant
devices.

Research Vision 4: ICT-Agnostic Usability In order to ensure ICT-agnostic us-
ability of the CO meta-platform, we envision end-user-centric tools for constructing
citizen observatories and defining campaigns. These tools offer the means to describe
the type of data that is of interest, the constraints it is subject to, the mechanism of its
collection method, and the process of its storage in the citizen observatory. Through
these tools we increase the usability of the CO meta-platform by avoiding the techno-
logical complexity of setting up the necessary infrastructure.

1.3 Methodology

In order to concretise the envisioned characteristics of a citizen observatory meta-
platform, this dissertation introduces DISCOPAR, a new visual reactive flow-based
domain-specific language. DISCOPAR is designed specifically to hide the non-
essential complexity of creating citizen observatories and their inherent distributed
nature from the end-user, and to present only concepts that are relevant to their do-
main. DISCOPAR is used throughout the meta-platform to construct every part of a
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citizen observatory, i.e., the mobile data gathering app, the server-side data process-
ing, and the web-based visualisations can all be set up using a single visual language.

Furthermore, in order to enable ICT-agnostic users to construct their own citizen
observatories and define their own campaigns, we have developed DISCOPARDE, a
web-based visual programming environment for DISCOPAR. A sneak preview of
DISCOPARDE is depicted in fig. 1.1. Programs in DISCOPAR can be created by
selecting components from the component menu, and visually assemble them on a
canvas through drag-and-drop interactions.

Figure 1.1: DISCOPARDE, a web-based visual programming environment for DISCOPAR.

1.4 Supporting Publications and Technical Contributions

Several parts of this dissertation’s contributions have been published. This section
lists these publications and briefly highlights their relevance to this work.

6
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Published Papers

The concept of a participatory sensing campaign is formally introduced in the follow-
ing papers:

• Ellie D’Hondt, Jesse Zaman, Eline Philips, Elisa Gonzalez Boix, and Wolfgang
De Meuter. Orchestration support for participatory sensing campaigns. In Pro-
ceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’14, pages 727-738, New York, NY, USA,
2014. ACM. doi: 10.1145/2632048.2632105. URL http://doi.acm.org
/10.1145/2632048.2632105

• Jesse Zaman, Ellie D’Hondt, Elisa G. Boix, Eline Philips, Kennedy Kambona
and Wolfgang De Meuter, Citizen-friendly participatory campaign support.
in IEEE International Conference on Pervasive Computing and Communica-
tion Workshops, pages 232-235, Budapest, Hungary, 2014. IEEE. ISBN 978-
1-4799-2736-4. doi: 10.1109/PerComW.2014.6815208. URL http://ieee
xplore.ieee.org/document/6815208/

The design of the mobile application builder is presented in the following work:

• Jesse Zaman, Lode Hoste, and Wolfgang De Meuter. A flow-based program-
ming framework for mobile App development. In Proceedings of the 3rd Inter-
national Workshop on Programming for Mobile and Touch, PROMOTO ’15,
pages 9-12 , New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3908-7.
doi: 10.1145/2824823.2824825. URL http://doi.acm.org/10.1145/
2824823.2824825

The DISCOPAR platform is discussed in the following paper:

• Jesse Zaman and Wolfgang De Meuter, DISCOPAR: Distributed compo-
nents for participatory campaigning, IEEE International Conference on
Pervasive Computing and Communication Workshops, pages 160-165 St.
Louis, MO, USA, 2015. IEEE. ISBN 978-1-4799-8425-1. doi: 10.1109/PER-
COMW.2015.7134012. URL http://ieeexplore.ieee.org/docum
ent/7134012/

The underlying distribution model is the focus of the following paper:
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• Jesse Zaman and Wolfgang De Meuter, Crowd Sensing Applications: A Dis-
tributed Flow-Based Programming Approach, IEEE International Conference
on Mobile Services, MS ’16, pages 79-86, San Francisco, CA, USA, 2016,
IEEE. ISBN 978-1-4799-2736-4. doi: 10.1109/MobServ.2016.22. URL http:
//ieeexplore.ieee.org/document/7787058/

Technical Contribution

The DISCOPAR platform was designed as a generic citizen observatory creation tool.
It is available online :

• Jesse Zaman, DISCOPAR Platform. https://discopar.net/, 2018

1.5 Dissertation Outline

The rest of this dissertation is organised as follows.

Chapter 2: Participatory Campaigning and Citizen Observatories provides a
gradual introduction to the core concepts of participatory sensing, participatory cam-
paigning, and citizen observatories. First, an overview of the history of PS is pre-
sented. Then, we introduce a definition for a PS campaign, along with a life-cycle
model that most campaigns adhere to. Next, we present the concept of a citizen ob-
servatory and its relation to participatory campaigning. We discuss a citizen observa-
tory’s stakeholders and provide an overview of existing citizen observatory platforms.
We highlight the problems involved in creating a citizen observatory. These motivate
the need for a citizen observatory meta-platform, i.e., a platform that can create citi-
zen observatory platforms.

Chapter 3: Towards a Citizen Observatory Meta-Platform: Requirements pro-
vides a more in-depth analysis of the challenges involved in creating a CO meta-
platform. By analysing the “typical” citizen observatory architecture and stakehold-
ers involved, we identify five key requirements that a CO meta-platform has to take
into account. Next, we motivate our choice of programming techniques that will
be employed to implement these requirements, and we argue that a visual reactive
flow-based domain-specific language is the most suitable approach to implement a
citizen observatory meta-platform. This chapter therefore introduces the concepts of
flow-based programming, reactive programming, visual programming languages, and
domain-specific languages, and ends by presenting related work.
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Chapter 4: Language Concepts of DISCOPAR focusses on DISCOPAR’s graph
layer. More specifically, it presents the visual programming language that is built on
top of DISCOPAR’s component layer. We first describe the general idea of DISCO-
PAR and introduce DISCOPARDE, our web-based visual programming environment
for designing programs in DISCOPAR. Next, we introduce the various concepts and
visual syntax of DISCOPAR. We end the chapter by introducing four common strate-
gies of visual programming languages that facilitate end-user programming, and de-
scribe how these strategies are applied to DISCOPAR and DISCOPARDE.

Chapter 5: Constructing Citizen Observatories with DISCOPAR introduces
the CO meta-platform. The first part of this chapter focusses on how a citizen ob-
servatory can be created through the use of DISCOPARDE. We describe how the
mobile data collecting app, server-side data processing, and web-based visualisations
of a citizen observatory can all be implemented in DISCOPAR. The second part of
this chapter explains how campaigns can be created within a specific citizen obser-
vatory. We conclude the chapter by describing the built-in calibration tool and the
community component creator provided by the CO meta-platform.

Chapter 6: Implementation gives an overview of the implementation of DISCO-
PAR for the sake of reproducibility. This chapter first introduces the various abstrac-
tions that together define the component layer in DISCOPAR. Next, we introduce the
implementation of DISCOPAR’s graph layer and DISCOPARDE. Finally, we provide
a high-level view on the underlying system architecture of the citizen observatory
meta-platform and discuss the various technologies involved in every part of a CO’s
architecture.

Chapter 7: DISCOPAR at Work validates our reusable and reconfigurable ap-
proach for ICT-agnostic users to design and deploy citizen observatories. The CO
meta-platform is validated in terms of expressiveness, suitability, and usability
through experiments in both laboratory as well as real-world conditions.

Chapter 8: Conclusion summarises the advantages of our CO meta-platform, pro-
vides an overview of the contributions of this dissertation, and highlights some direc-
tions for future work.
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2
PA RT I C I PAT O RY C A M PA I G N I N G A N D C I T I Z E N
O B S E RVAT O R I E S

The evolution of the smartphone as a computing platform, combined with the rich
sensorial abilities it has acquired in recent years, have led to a new data gathering
paradigm called participatory sensing. Participatory sensing (PS) is often used in so
called campaigns, i.e., a collective effort focussed in an area and/or time. Partici-
patory sensing is the driving technology behind so-called citizen observatories;i.e.,
distributed software platforms that provide stakeholders with the instruments to col-
lect, process, analyse, and visualise data in order to accumulate knowledge into a
centralised repository. Today citizen observatories have to be developed from scratch
for each application area, meaning that deploying a new citizen observatory remains
extremely difficult and labour-intensive. Despite an overwhelming demand for such
platforms, they are thus beyond the reach of most societal stakeholders. This led us
to the idea of creating a reconfigurable citizen observatory platform that allows end-
users to build and configure their own citizen observatory.

This chapter provides a gradual introduction into the core concepts of participa-
tory sensing, participatory campaigning, and citizen observatories. First, an overview
of the history of PS is presented. Then, we introduce a definition for a PS campaign,
along with a life cycle model that most campaigns adhere to. Next, we present the
concept of a citizen observatory and its relation to participatory campaigning. We dis-
cuss a citizen observatory’s stakeholders and provide an overview of existing citizen
observatory platforms. We highlight the problems involved in creating a citizen obser-
vatory. These motivate the need for a citizen observatory meta-platform; a platform
that can create citizen observatory platforms.
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Chapter 2: Participatory Campaigning and Citizen Observatories

2.1 Sensors Galore

Conventional data gathering methods used by governments and authorities (i.e., using
a limited number of professional sensors placed in key locations) have some limita-
tions [89, 35, 113]:

1. The number of professional sensors deployed is usually limited. Data collec-
tion at sparse locations does not scale to meet a high spacial and temporal
granularity.

2. Deploying a large number of professional sensors is expensive, discouraging
governments and authorities from applying this method due to budget limita-
tions.

3. Professional sensors are usually placed in fixed locations, which means they
are inherently measuring the environmental conditions at given places and not
those surrounding actual people.

Paulos. et al [42] give a good example of this last problem: “The civic government
may say that the temperature is currently 23°C by taking one measurement at the
center of the city or averaging several values from multiple sites across town. But
what if you are in the shade by the wind swept waterfront where it is actually 17°C
or waiting underground for the subway where it is a muggy 33°C.”.

Faced with these issues of conventional data gathering methods, scientists and
stakeholders noticed the technological advances of modern mobile phones and the
sheer number of them in circulation. According to a survey [19] conducted in 40
nations, smartphone ownership stands at 43% of the population. The ownership ra-
tio is even significantly higher among the richer economies surveyed (e.g., 88% of
South Koreans own a smartphone). The popularity of smartphones is not surprising as
these omnipresent devices are much more than mere cell phones that enable users to
communicate. They can be regarded as pocket-sized computers that can be used as a
phone, MP3 player, point-and-shoot digital camera, hand-held gaming system, GPS,
flashlight, alarm clock, e-reader, voice recorder, etc. They have the capability to con-
nect to the Internet, and utilise an operating system capable of running downloaded
apps.

As smartphones matured as computing devices, they were gradually equipped
with an increasing number of sensors. For example, Figure 2.1 depicts the growth
of sensors in the Samsung Galaxy S smartphone series. Nowadays, smartphones are
equipped with a gyroscope, compass, accelerometer, proximity sensor, ambient light
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Figure 2.1: Sensor growth in smartphones.

sensor, and other more conventional sensors such as front and back facing cameras, a
microphone, GPS, WiFi, and Bluetooth radios. Many of the newer sensors are added
to support the user interface or augment location-based services [80]. For example, a
light sensor allows the phone’s software to automatically adjust the display’s bright-
ness, while the GPS enables location-based applications such as maps. However, all
these sensors have additional potential: they enhance our ability to measure the real
world around us while we carry out our normal daily activities. For example, they can
provide real-time information about the current temperature, or we can use them to
determine whether noise levels fall within certain limits.

The use of smartphones as sensor nodes and location-aware data collection instru-
ments led to the establishment of a new data gathering methodology, referred to as
participatory sensing [65, 42]. This approach to data collection and interpretation re-
lies on individuals, acting alone or in groups, along with their personal smartphones
to systematically monitor personal information (e.g. health) and/or environmental
information (e.g. noise levels, traffic conditions). Given enough people with a smart-
phone, participatory sensing has the potential to collect enormous volumes of highly
localised, person-centric data, which can support (or nudge) policy makers to assess
societal processes in a way that was previously unthinkable.
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2.2 Participatory Sensing

Participatory sensing (PS) allows people-centric environmental monitoring through
the use of smart mobile devices. This is a well-established research field, as witnessed
by the publication of recent surveys [32, 126]. The concept of PS is also sometimes
referred to as mobile crowdsensing [49], participatory urbanism [105], citizen sens-
ing [65], urban sensing [15], or community sensing [76].

A concept closely related to participatory sensing is the concept of citizen science.
Citizen science is defined by the European Commission as [24]:

“The engagement of the general public in scientific research activities where
citizens actively contribute to science either with their intellectual effort or
surrounding knowledge or with their tools and resources.”

While participants in citizen science projects provide experimental data and facili-
ties for researchers, they also raise new questions and co-create a new scientific cul-
ture. Through citizen science activities, volunteers acquire new learning, skills, and a
deeper understanding of the scientific work in an appealing way.

Strictly speaking, citizen science differs from PS in the sense that the former does
not necessarily involve the use of technological equipment (smart mobile devices,
dedicated sensors, etc.) to collect, store, and share observations from volunteers. For
example, the earliest citizen science project is probably the Christmas Bird Count that
has been run by the National Audubon Society in the USA every year since 1900. The
project is still ongoing, and in the most recent count, tens of thousands of observers
counted a total of over 63 million birds [117].

As the name implies, the collection of measurements is done participatively, a
term used in contrast with opportunistic sensing systems. These terms refer to what
roles people, as sensing device custodians, are willing to play in large-scale sensing
systems [78]. In the case of participatory sensing, people are incorporated into all
decision stages of the sensing system, such as deciding what data is shared or when
data is gathered. Hence, a PS system focuses on tools and mechanisms that assist
people to share, publish, search, and interpret the information collected. With oppor-
tunistic sensing, the user may not be aware of applications running in the background.
These applications measure data automatically and when appropriate, and can make
decisions on their own.

Figure 2.2 presents an architectural overview of a typical PS system. A PS system
operates in a centralised fashion, i.e., measurements collected by the mobile phones
are uploaded (using wireless data communications) to a central server for processing.
On the server, the uploaded measurements are analysed and made available on a
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Figure 2.2: Architectural overview of a typical participatory sensing system.

web-portal in various forms, such as graphical representations or maps showing the
sensing results.

In the remainder of this section, we provide an overview of related work in the
domain of participatory sensing, dividing the research into three categories. The first
category consists of PS systems specifically designed for a particular use-case (e.g.
measuring noise pollution, monitoring eating habits, etc.). The second category com-
prises PS platforms that are more general and provide reusable tools that can be
shared across various PS projects. The third category focuses on key research chal-
lenges related to PS such as privacy, energy, and efficiency.

2.2.1 Ad-Hoc Participatory Sensing Systems

The emergence of the PS paradigm has resulted in a broad spectrum of systems across
various domains. These include, but are not limited to, environmental monitoring,
intelligent transportation, personalised medicine, and epidemiological investigations
of disease vectors [126]. Many of these applications are closed systems in the sense
that they can only be deployed in their respective domain, i.e., they are designed
on a per use-case basis. We refer to such PS applications as ad-hoc participatory
sensing systems. We use the term system, as participatory sensing entails more than
just a mobile data gathering app. A PS system also includes some data management
strategies to capture, analyse, and survey the gathered data, which is usually hosted
on some back-end server infrastructure (cfr. fig. 2.2).
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We present some examples of ad-hoc PS systems using a similar sub-
classification as Christin et al. [32], which is based on the type of sensing involved.
The first examples are people-centric sensing systems, which mainly focus on doc-
umenting activities (e.g., sport experiences) and understanding the behaviour of in-
dividuals (e.g., eating disorders). In contrast, environment-centric sensing systems
collect environmental parameters (e.g., air quality or noise pollution). There exist
many more ad-hoc PS systems than those presented in the remainder of this section.
We merely use a variety of examples to illustrate the different domains PS can be
applied to, in addition to the opportunities that it presents.

People-Centric Sensing Systems

People-centric PS systems collect data about the physiological state and health of
their users. With the help of such applications, participants can monitor and document
health-related issues.

ExposureSense [106] monitors people’s daily activities to compute a reasonable
estimation of air pollution exposure in their daily life. ExposureSense further enriches
air quality data by combining external sensor network data (e.g., air quality sensors
placed on public transports like buses and trams) with data obtained from integrative
USB pluggable sensors for smartphones (e.g., a pluggable ozone (O3) sensor). The
daily activities are extracted using the accelerometer sensor as it is suitable for activity
recognition with minimal battery consumption.

BeWell+ [79] continuously monitors a user’s behaviour along three distinct health
dimensions, namely sleep, physical activity, and social interaction. This is done us-
ing the gyroscope, accelerometer, microphone, camera, and digital compass. The app
promotes improved behavioural patterns by using an ambient display on the smart-
phone’s wallpaper as a feedback mechanism.

StressSense [86] uses the microphone of smartphones to recognise stress from
human voice. It does this by analysing a variety of acoustic features of the captured
audio samples, such as pitch. The classifier used by the StressSense system can ro-
bustly recognise stress among multiple individuals in diverse acoustic environments.

There are many more people-centric applications dealing with health and fitness
data such as diet behavior [4, 33, 109], physical activities [121, 57], depression [121],
and sport experiences [39, 40]. However, most of these applications have been con-
ceived as research prototypes and their real-world deployment still remains limited in
terms of either number of participants or deployment duration [20]. Nevertheless, sim-
ilar commercial products for documenting running activities, such as RunKeeper [44]
and Nike+ Run Club [101], are becoming increasingly popular.
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Environment-Centric Sensing Systems

Environment-centric PS systems handle information about a participant’s surround-
ing (e.g., noise pollution, road and traffic conditions, etc.). Unlike most people-centric
sensing scenarios, the collected data is mainly aggregated and exploited at a commu-
nity scale [32].

NoiseTube [89], and similar projects such as NoiseSpy [70], Ear-Phone [107],
and Laermometer [9], use the microphones embedded in smartphones to measure
the surrounding sound pressure level. These PS systems use their data to build rep-
resentative noise pollution maps. Sound samples recorded through a mobile phone’s
microphone can also be analysed to determine the context of the sound recording
(e.g., a human voice, music, etc.), as is the case in the SoundSense project [87].

Other projects focus on gathering (urban) air pollution information. Pollution-
Spy [69] uses a Bluetooth personal network to connect up to seven different Blue-
tooth devices (e.g., pollution sensors for CO, NO, NO2, CO2, etc.). These sensors
feed geolocalised data to a log file and display this collected data graphically on the
phone’s screen. Users also have the option to transfer the data to a remote database
and view it in real time on GIS mapping tools, which are embedded in a dedicated
web interface. Similarly, GasMobile[55] uses low-cost sensors connected to smart-
phones to measure air pollution levels. They provide high data accuracy by exploiting
sensor readings near static measurement stations to regularly keep sensor calibration
up to date. P-Sense [100] uses external sensors to monitor air pollution and assess the
user’s exposure to air pollution according to the places visited during daily activities.

Smartphones have also been exploited to document road and traffic conditions.
For example, the embedded accelerometer, microphone, and positioning system can
be used to monitor traffic and road conditions such as potholes, bumps, or braking
and honking, which both are implicit indicators of traffic congestion [92]. In addi-
tion, applications such as SeeClickFix [114, 90] and FixMyStreet [45] collect par-
ticipant feedback about neighbourhood issues (potholes, graffiti, damaged infrastruc-
ture). The reports made by users can then, for example, be submitted to the city coun-
cil and made publicly available. This makes it easy to see what the common problems
are in a given area, and how quickly they are fixed.

2.2.2 Reusable Participatory Sensing Systems

Developing a new PS system for a particular domain is a costly operation, as it re-
quires an enormous development effort to implement mobile apps, web interfaces,
databases, data analysis, and data visualisation from scratch. This inspired a couple
of research initiatives to adopt a different approach. Rather than developing an ad-
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hoc PS system, platforms were created that enables end-users to configure their own
mobile data gathering apps. However, these platforms focus only on discrete data,
i.e., single-shot observations usually collected through digital questionnaires. They
provide no support for continuous data streams originating from smartphone sensors.
This is due to the fact that surveys are much easier to handle than continuous sen-
sor data streams. Examples of these platforms include Epicollect, ODK, SENR, and
ohmage.

EpiCollect [27] is a platform designed to provide a simple and intuitive method
to set up data collection projects. A web-based form builder enables users to define
a single survey to be used for data collection, which can be deployed as both an An-
droid and iOS mobile app. The survey questions can be organised using conditional
branching. A rich set of data types is supported. Collected data can be analysed using
a web-based data visualiser. Due to the fact that many data collection projects require
considerably more complexity than a single form, an enhanced version of EpiCollect
(EpiCollect+) has been developed that provides the ability to produce more complex
forms with more features [28].

ODK [13] is a modular toolkit that helps semi-professional users to build mo-
bile data collection solutions. ODK has been deployed in many countries, both in
the public health domain and environmental monitoring. It started out as a tool for
collecting surveys using mobile devices, and although integrated sensor support was
under development, to the best of our knowledge this was never released for pro-
duction. However, it does provide a modular set of tools that helps simplify sensing
application development by creating a single interface to connect to both external and
built-in sensors.

SENSR [74] is an authoring tool that enables non-programmers to create, share
and manage a citizen science project. SENSR combines a visual drag-and-drop pro-
gramming environment with a mobile application in which people with limited tech-
nical expertise can build mobile data collection tools and manage data collectively.
SENSR only supports a limited set of data types and provides no access to smart-
phone sensors besides the GPS.

Ohmage [123] is a modular PS platform that gathers, analyses, and visualises
data from both form-based surveys and continuous data streams. It has been used
primarily for research in the education and medical fields. Although ohmage does not
explicitly have a sensor abstraction framework like ODK, it can consume collected
data streams, such as location traces and audio samples, through its application
programming interface.
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A different approach to reduce the workload involved in constructing participatory
sensing systems is offered by AWARE [43]. Rather than providing a platform that is
configurable by non-programmers, AWARE provides an open-source mobile instru-
mentation toolkit whose aim is to reduce the development effort involved in build-
ing participatory sensing systems. To do so, AWARE encapsulates implementation
details of sensor data retrieval and exposes the sensors as higher-level abstractions.
AWARE is available as a library that can be added to any Android development ap-
plication or plugin using Android Studio’s Gradle mechanism.

2.2.3 PS Research Challenges

A variety of research focuses purely on key research challenges that both ad-hoc PS
systems and reusable PS systems are faced with. One key challenge in PS is ensur-
ing that the collected data is representative for the monitored area. To ensure spatio-
temporal density, participatory sensing systems need enough participants and/or a
coordination mechanism to assist the data collection process. This can be done by
using game elements on location-based services for directly improving the quality
rather than quantity [71, 111], minimising the number of participants necessary to
satisfy a predefined coverage constraint [139], and using triggers based on spatial
models of previously collected data [83].

A participant coordination approach generally requires that the location of each
participating device is known by the central coordination mechanism (i.e., a server).
This poses a problem for smartphones, as sending frequent location updates to the
server consumes battery power. Energy consumption is thus another key research
challenge, as users are not willing to use PS applications if they drain their batter-
ies considerably faster [128]. For this reason, research also focusses on optimising
battery usage of PS systems. One example is the STREET framework [73], which
is assisted by a simple localisation scheme during the data collection process that
minimises the usage of the GPS sensor.

Another key challenge is incentive mechanisms. The quality of the data gathered
by PS systems relies on the willingness of mobile users to participate in the collec-
tion and reporting of data. Without adequate incentive mechanisms most users are not
willing to participate (on a longer run). Therefore, appropriate incentive mechanisms
must be designed if participants do not obtain a direct benefit from their contribution.
Such mechanisms can either be monetary (e.g., micro-payments [108, 82, 99, 50])
or non-monetary incentives (e.g., gamification [50, 127]). Additionally, if users feel
that their privacy might be endangered, it is likely that they will be reluctant to par-
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ticipate. A number of projects therefore focus on privacy protection in participatory
sensing [26, 51, 12].

2.3 Participatory Campaigning

We introduced the concept of participatory sensing as an alternative data gathering
methodology to monitor personal and/or environmental information. One question
that remains is whether the potentially enormous quantity of PS data can really com-
pensate for the typically inferior quality of individual measurements coming from
smartphone sensors. Several research efforts have answered that quality-quantity
question in the affirmative [130, 41, 64]. But in order to do this, one first and foremost
needs to ensure that a high data quantity is achieved. However, participatory sensing
is a relatively new paradigm, so the actual number of people that may be interested
and capable of participating is currently insufficient in order to obtain qualitative data.
As a result, PS is currently mainly used on a smaller, coordinated scale where a lim-
ited number of people are still capable of obtaining qualitative and useful data. This
is achieved by organising a so called participatory sensing campaign, which usually
focuses the combined effort in an area and/or time. The idea of organising partici-
patory sensing actions into campaigns was mentioned as early as 2006 by Burke et
al. [65]:

“With the right tools, professionals and community groups alike could employ
participatory sensing campaigns to gather data about short-term concerns
[...] without waiting for a formal project or grant funding— yielding bottom-
up, grassroots sensing.”

The idea of a campaign also emerges naturally in the context of participatory sensing
as there is high demand by communities of all sorts — grassroots, institution-led, or
research-based — to be able to translate local concerns into actual socio-economic
campaigns for tackling them.

PS campaigns ensure data density in absence of a large crowd contributing data.
This, in turn, is essential for adequate assessment of the concern at hand. Indeed,
in a participatory context one has to strike the right balance between quality and
quantity of data, statistically averaging over large datasets so as to minimise random
errors while at the same time increasing representativeness of values obtained. By
focusing measurement efforts in terms of geographical and temporal boundaries it
can be ensured that a dense enough dataset is collected.

While data density plays a significant role in the success of PS campaigns, trust-
worthiness of the acquired data also plays a role. The fact that anyone is allowed to
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contribute data exposes the campaigns to erroneous and malicious contributions [68].
Erroneous contributions may be the result of a user unintentionally positioning the
smartphone such that incorrect measurements are recorded, e.g., placing the device
in a bag whilst recording data for a noise mapping campaign. Malicious contributions
may originate from users that deliberately pollute sensor data for their own benefits,
e.g., a real estate leasing agent may intentionally contribute fabricated low noise read-
ings to promote his properties in a particular suburb. A campaign thus also needs a
certain level of confidence in the contributions uploaded by volunteers, such that the
campaign outcome will be useful for the community involved.

Despite the existence of several PS systems and their application in specific cam-
paigns, there is currently no formal notion of a campaign. However, Burke et al. [65]
informally defined a campaign as

“geographically and temporally constrained series of systematic operations
to gather a particular type of data — using an already-deployed (but not at
all static) network of mobile devices”

In the remainder of this section, we introduce the concept of a campaign protocol,
which is used to define the concept of a PS campaign. We also discuss the typical
lifecycle of a PS campaign. These concepts are described based on our findings from
previous work [36, 137], where we analyse a number of participatory sensing cam-
paigns to observe commonalities and detect patterns.

2.3.1 Campaign Protocol

Participatory sensing is an inherently active data gathering method; measurements
are gathered consciously by users with specific devices. It is thus possible to describe
the context of the collected data, i.e., information describing the user (e.g., age, gen-
der) and the particular device (e.g., brand, model) used to collect data. We denote this
set of context information by {C}. Data is gathered in a collection of measurements
{M}. An individual measurement is a tuple of data points M = (s1, . . . , sn) where
si are sensor readings. We use the liberal meaning of the word sensor here, encom-
passing real sensor data, user inputs, data ingested from existing datasets, or even
higher-order data such as that derived by activity recognition algorithms. We write
{C} ) {M} to indicate that the context {C} contributed dataset {M}. We then
have the following definition.

Definition 1. A campaign protocol is a set of predicates PC + PM over context C and
measurements M respectively.
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Contextual Predicate

The contextual predicate PC captures the desired context of the data collection. For
example, it can be used to indicate what types of users are allowed to contribute
and/or what types of devices must be used to perform the data gathering. The ability
to express the former is important as our previous experiences with participatory cam-
paigning indicated that there are certain campaigns that only allow trusted individuals
to participate, while other campaigns allowed any participant to contribute. The abil-
ity to express what types of devices must be used to perform the data gathering is
important as restricting the data collection to certain device models, e.g., those with
more accurate sensors or a matching calibration profile, can increase data quality.

Measurement Predicate

The measurement predicate PM generally includes a temporal predicate PT specifying
when participants must be collecting data. For example, a temporal predicate can be
used when a comparison between days (e.g., workweek vs. weekend) or hours (e.g.,
peak-hours vs. off-peak hours) is desirable. Temporal predicates can also be used
when a limited number of participants is available.

The measurement predicate also frequently includes a geographical predicate,
which we write as PA, with A for the area. Placing a geographical boundary on the
area of interest of a campaign has multiple purposes [137]. First, campaigns become
‘local’, i.e., they tackle a concern in a particular area. Because, people living in that
area would benefit from participating in that campaign, localising a campaign may
serve as an incentive to take part in it.

Focussing participant contributions to a certain time frame and instructing them
to measure in a predefined area increases the density of the collected measurements,
thereby enabling the generation of more accurate results.

Example: NoiseTube

NoiseTube [89] is a participatory monitoring and mapping system of ambient
sound levels through mobile phones. In NoiseTube measurements are tuples of
sensor readings containing the time, sound pressure level, latitude, longitude, and
zero or more tags that can be used to describe the sound source. We can thus say
userAccount1, SamsungS8 ) {timei, Leq,i, latitudei, longitudei,
tags⇤i }

n
i=0. to indicate that that a particular user and mobile device contributed

a dataset containing NoiseTube sensor readings. Consider a campaign with the
following scenario: a city administrator wishes to investigate sound pressure levels
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recorded by his employees, using calibrated handsets, in the centre of Brussels
between 8-9am during the month of May. We can thus formally represent the
campaign protocol predicates as follows:

PC = (user 2 employees, device 2 calibrated-devices)
PM = ((latitude, longitude) 2 polygon(Brussels),

time 2 [2017-05-xT08:00, 2017-05-xT09:00]
with x 2 {1,...,31})

2.3.2 Campaign Definition

Using the concept of a campaign protocol, we now define a participatory sensing
campaign as follows:

Definition 2. A campaign is a collection of measurements M constrained by the cam-
paign protocol consisting of predicates PC + PM over context C and measurements
M respectively, such that M is collected participatively by a set of users satisfying PC.
A campaign is considered successful if M is dense enough to generate a qualitative
output.

It is important to notice that in addition to the constraints embodied in the protocol,
we also capture the necessity of obtaining data that meets certain qualitative predi-
cates. Whether or not a particular output is qualitative depends on the specific goal of
a campaign. The enormous quantity of data that is typical of PS is usually translated
into a more qualitative condensed representation, e.g., by location-based statistical
averaging. Therefore, the quality of a campaign is inherently related to the density of
measurements.

2.3.3 Campaign Lifecycle

From analysing several environmental PS campaigns [136, 36], combined with our
extensive expertise in participatory noise sensing with the NoiseTube project, we de-
rived a typical campaign’s lifecycle, which is shown in fig. 2.3. A campaign’s lifecycle
proceeds through a number of stages [136, 137]:

Campaign Conceptualisation

The first step in a campaign’s lifecycle is the initiative. There are many situations
where one or more stakeholders may want to initiate a campaign around a given
interest. Examples of campaign initiators include:
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Figure 2.3: Campaign lifecycle.

• A civil society organisation setting up a campaign based on its members organ-
isations’ interests.

• A research institute or governmental organisation setting up a campaign for
participatory research or policy-making.

• Citizens setting up a campaign for a particular concern in their neighbourhood.

In second step, the initiators seek a suitable solution for their particular inter-
est and compare existing data gathering methods. During this phase, initiators may
discover the existence of a certain PS system either by themselves (media, word of
mouth) or by consulting a research institute, governmental organisation, etc. This PS
system can then be considered as an alternative to better-known institutional solutions.
Once the initiators agree to adopt a participatory solution, the campaign definition
starts.

Campaign Definition

Defining a campaign involves several steps: The envisioned participants are recruited
and informed about the concept of a PS campaign, and each participant is briefed with
the usage instructions of the selected PS system. This is usually done by face-to-face
meetings where an expert explains the prerequisites for a campaign to be success-
ful. In case the initiators underestimated the workload involved and the number of
participants needed, an additional recruitment phase can occur.
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As soon as enough motivated participants have been recruited, the planning phase
begins. The purpose of this phase is to ensure the campaign achieves its goal. Remem-
ber that for participatory sensing to be a valid alternative for other data gathering
methods, a high data quantity must be achieved. The planning ensures that each par-
ticipant’s measurements have optimal use and reduces the chance for data redundan-
cies. For example, a noise mapping campaign concerned about the noise pollution in
a certain neighbourhood will set up a planning to prevent that every participant mea-
sures in the same area at the same time. Once the planning is complete, the actual
execution of the campaign can finally begin.

Campaign Enactment

The actual execution of the campaign consists of participants collecting data using
their mobile devices. Ideally, the campaign is monitored and analysed during this
phase to trigger remediating action when problems arise. For example, when there
is insufficient coverage of the area of interest, or when participants are producing
unusable data as a result of not measuring properly (e.g., not turning on the GPS of
the mobile device).

During the campaign’s execution, all the data is aggregated and made available
for analysis and visualisations. The campaign’s output can then be used by the initia-
tors, participants, and decision makers to reflect upon the results. For example, when
people take part in a campaign that keeps track of their travel habits and provides
them with personalised recommendations for alternative routes (and benefits related
to these alternatives), they may decide to follow up on those recommendations.

2.4 Citizen Observatories

Although many PS systems were implemented as a prototype for a single use-case,
there also exist more advanced PS systems that have been used to organise multiple
campaigns. In this case, the PS system becomes a sort of data repository for various
campaigns, where researchers/citizens — who are not necessarily actively involved
— can analyse/compare the data gathered of every campaign, as well as individual
contributions.

For example, consider NoiseTube [89], a PS system enabling the monitoring and
mapping of ambient sound levels by using the microphone of mobile phones. Be-
tween 2008 and 2016, NoiseTube has been used in 19 noise mapping campaigns
at 13 different locations. One such example is a group of 7 concerned citizens that
mapped the noise pollution in their neighbourhood due to a huge traffic-laden round-
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about [36]. In some of these campaigns, the resulting noise maps where used to show
the city administrations that existing official noise maps based on simulations were
not representative of the actual noise levels. Despite their different intentions, each of
these campaigns contributed meaningful data on sound pressure levels to NoiseTube.
Combined with standalone contributions of individual users, NoiseTube has become
a data repository on noise pollution data from all over the world. End-users are al-
lowed to consult this data for various purposes, such as to compare noise levels in
major cities around the world.

To differentiate the single use-case PS systems with these more advanced PS
systems that act as a central repository of knowledge on a particular type of data, we
refer to the latter as so called citizen observatories, which we define as follows:

Definition 3. A citizen observatory (CO) is a distributed software platform that pro-
vides stakeholders with the instruments to collect, process, analyse, and visualise
data in order to accumulate knowledge into a centralised repository.

It is important to understand the relationship between a citizen observatory and
the previously introduced concept of participatory campaigning. Generally speaking,
a CO collects, analyses, and evaluates a specific type of data (e.g. environmental
noise, water polution, etc.). To collect this data, each observatory has one dedicated
mobile PS app. Within each CO, users can deploy campaigns to aggregate data for a
particular goal or concern. Campaigns are only interested in a subset of the observa-
tory data (defined by the campaign protocol), and thus describe how the observatory
data should be filtered, processed, and aggregated. Note that a CO does not necessar-
ily collect data only through campaigns. The idea of a CO is usually to obtain pub-
licly available data that stakeholders can use in their policy making. It is therefore
perfectly possible that stakeholders merely use the CO to create visualisations using
the available open data without actually running a campaign themselves. Citizen ob-
servatories also serve as an information hub for citizens. For example, an individual
user might consult the CO data to get an idea of the noise pollution that he is exposed
to in his daily life.

The definition of a citizen observatory does not imply that the data collection can
only be accomplished using smartphones. As stated by Liu et al. [84] a CO entails
“the participation of citizens in monitoring the quality of the environment they live in,
with the help of one or more of the following: (1) mobile devices of everyday utility;
(2) specialized static and/or portable environmental and/or wearable health sensors,
and (3) personal, subjective and/or objective observations, information, annotation
and exchange routes, coming from social media technologies or other similar plat-
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forms”. In the scope of this dissertation, we only focus on citizen observatories where
the data collection is performed using smartphones and specialised portable sensors.

2.4.1 Citizen Observatory Stakeholders

By analysing several PS systems, Christin et al. [32] derive a general model of a PS
system including stakeholders and architectural components. We extend this model
to include the concept of a citizen observatory and the campaigns that it can host. The
resulting model is depicted in Fig. 2.4. We now discuss each stakeholder involved in
a citizen observatory.

Query Data

Citizen Observatory 
Administrator

End Users

Participants

Campaign Administrator

Monitor CampaignDesign Campaign

Contrib
ute Data

Receive Feedback

Analyse Data

Manage ICT ToolsMonitor Observatory

Figure 2.4: Stakeholders of a citizen observatory.

Citizen Observatory administrators are the creators of citizen observatories. They
are responsible for creating and managing the set of ICT-tools that comprise a CO,
usually a mobile application for data gathering, server-side back-end infrastructure
for processing and storing data, and web-based visualisation tools. It is the CO
administrator’s responsibility to set up these tools either by themselves or by hiring
a developer.

Campaign administrators are members of a community, an organisation, research
group, or simply individuals who wish to set up a participatory sensing campaign
that uses a certain CO. They design, implement, and deploy the PS campaign within
the CO. The campaign is defined as a subset of the data collected by the observatory,
so ideally the CO provides campaign administrators the means to describe which
subset of data they want to gather and for what particular purpose or goal.
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Participants install the PS application on their smartphone and voluntarily gather
sensor readings to contribute to the CO and the PS campaigns of that CO. A
participant’s can be motivated to contribute data either through personal benefit,
e.g., to monitor their impact on the environment, or through specialised incentive
mechanisms (cfr. section 2.2.3).

End users access and consult the data gathered by the participants according to their
interests and preferences. End users include the contributing participants, as they
usually want to consult their own collected data. Other end users can be campaign
administrators verifying the actual contributions and results, or specialised scientists
attempting to gain insights about the monitored phenomena.

2.4.2 Research in Citizen Observatories

Citizen observatories have been discussed as an increasingly essential tool for better
observing, understanding, protecting, and enhancing our environment [84]. This gain
in popularity is visible, for example, through the many research projects funded by
the European Union on the topic of observatories. In 2012, five projects were funded
under the EU’s Seventh Framework Programme for Research and Technological De-
velopment (FP7): CITI-SENSE [22] (air quality), COBWEB [23] (biospheres), We-
SenseIt [133] (water quality), Citclops [21] (ocean monitoring), and OMNISCIEN-
TIS [104] (odour monitoring). Each of these projects were aimed at developing novel
technologies and applications in the domain of Earth Observation. Their goal was to
exploit the capabilities offered by portable devices to enable an effective participation
by citizens in environmental stewardship, in support of both community and policy
priorities. Ever since, various citizen observatories have been emerging to stablish
interaction and co-participation between citizens and authorities about various envi-
ronmental issues, emergencies (e.g., flooding [81]), or the day-to-day management of
fundamental resources.

Research in citizen observatories continues in ongoing projects of the EU’s Hori-
zon 2020 research and innovation programme. This programme includes projects
such as the GROW observatory [103] that generates, shares, and utilises information
on land, soil and water resource, and the SCENT [112] and LandSense [77] obser-
vatories that and use and land cover. Citizen observatories such as these prove the
critical role of ICT in the evolution towards a sustainable society.
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2.4.3 Research Questions

Despite the existing and ongoing research, there are still many fundamental chal-
lenges that citizen observatories are faced with, such as ensuring effective user
participation, dealing with data privacy, and taking into account data standards, qual-
ity and reliability [84]. One major issue of citizen observatories is that, despite
the high societal demand, developing a new citizen observatory remains a labour-
intensive (i.e., costly) and lengthy process that requires substantial technical expertise.
In this dissertation, we focus on finding a solution towards a wide-scale adoption of
citizen observatories. Concretely, this dissertation addresses the following research
questions:

Research Question 1

How can we transform the development and deployment of new citizen
observatories into a more systematic process?

There is currently no systematic, easy and reusable method for setting up new cit-
izen observatories and for defining their corresponding data collection campaigns.
Although there already exist several reusable and reconfigurable PS systems (cfr. sec-
tion 2.2.2), they focus more on data collection (typically form-based) and neglect
other roles of a citizen observatory such as advanced data processing methods, and
participant feedback and coordination.

One key insight that can be used to make the development and deployment of
citizen observatories a more systematic process is that each CO and their underlying
participatory sensing applications all share a similar structure: information is gathered
collaboratively (implicitly or explicitly) by mobile users and uploaded to a server for
aggregation, global analysis, and visualisation. Feedback is sent back to the users
so that they are made aware of the status of the observatory, ideally in a continuous
manner.

Research Question 2

How can we provide technological support for the definition and enactment of a
PS campaign and enable the automated orchestration thereof?

The knowledge on how to organise campaigns properly is absent from currently ex-
isting PS systems, nor do they provide any means to define and enact a PS campaign.
This is problematic for stakeholders, who are therefore largely dependent on PS sys-
tem owners for insider knowledge on campaign management, but also for the PS
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system owners, who are not able to scale up their efforts in managing these cam-
paigns.

Furthermore, a major factor in the success of PS campaigns (and consequently
citizen observatories) is sustained high quality participation. We previously dis-
cussed (cfr. section 2.2.3) that incentive mechanism such as gamification and micro-
transaction can be used to increase participation. However, as stated by Stevens [120]:
“user behaviour is largely unpredictable and some user actions, or lack thereof, can
have detrimental effects on data quality. Usually this happens unintentionally or even
unknowingly; for instance due to forgetfulness or a lack of knowledge, skill or time.”
To prevent this unwanted behaviour, it is important that campaigns are orchestrated
to provide participants feedback on their contributions. Providing direct feedback to
participants has multiple benefits [1]:

• Feedback can be used to provide participant coordination on an individual level,
ensuring relevant contributions by checking the user’s data to verify whether it
satisfies the constraints imposed by the campaign.

• Feedback acts as an incentive for participants to motivate them to increase
their contribution or to help them convince others to join, resulting in higher
participation and consequently better data quality.

Actively orchestrating campaigns of a citizen observatory to provide such feedback
is a tedious task. This is mainly caused by the fact that a significant amount of tasks,
such as checking the data to verify whether participants satisfied the constraints im-
posed by the campaign, still have to be performed manually due to the lack of tech-
nological support [36]. The workload involved in manually orchestrating campaigns,
combined with the lack of technological support for the definition and enactment
of a campaign in existing PS systems, are a significant bottleneck in the wide-scale
adoption of PS campaigns.

Research Question 3

How can we step away from the batch-processing philosophy according to
which current citizen observatories have been designed and turn the

collect-process-analyse-visualise chain into a fully interactive process?

Existing PS systems and citizen observatories are currently developed as static appli-
cations: collected data is usually processed and analysed through a batch-processing
mechanism, after which it is stored in a database. Visualisations are then generated
by performing queries on this database.

30



2.5 Vision: Citizen Observatory Meta-Platform

This traditional approach discourages participants from contributing due to the
slow or late feedback, and lack of acknowledgement of their contributions by the cit-
izen observatory and/or campaigns. In contrast, immediate and specific feedback can
serve as incentive mechanism for participants. Slow feedback is also problematic for
the automated orchestration of a PS campaign (cfr. Research Question 2). For exam-
ple, steering the movements of individual participants requires real-time knowledge
on each participant’s whereabouts.

To solve this issue, citizen observatories and campaigns must be responsive to
uploads from participants. The data gathering process must be an interactive cycle
where participants upload data to a citizen observatory and immediately receive feed-
back, such as coordination instructions or intermediate campaign results, based on
their contributions.

Research Question 4

How do we enable ICT-agnostic stakeholders to design their own citizen
observatories and campaigns?

Due to the lack of systematic, easy and reusable method for setting up new citizen
observatories, deploying a new citizen observatory remains difficult and labour inten-
sive. They are thus beyond the reach of most stakeholders, who usually lack the nec-
essary ICT-skills and programming knowledge to create a citizen observatory from
scratch [18]. This often forces stakeholders to opt for a non-technological approach
(i.e., pen and paper) or to spend big chunks of their restricted budget on external
ICT-consultants.
To be accessible to societal stakeholders and communities, citizen observatories must
be configurable and usable by ICT-agnostic stakeholders. Here, the challenge is find-
ing the right balance between expressiveness and usability. Stakeholders must be
allowed to design a citizen observatory and campaigns in a way that automatically
generates the necessary tools to collect, process, analyse, and visualise data accord-
ing to their expectations.

2.5 Vision: Citizen Observatory Meta-Platform

Despite the high societal demand, citizen observatory development remains labour-
intensive, lengthy, and requires technical expertise. This led us to the idea of a generic
approach towards reusable and reconfigurable citizen observatories. We refer to this
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generic platform for setting up citizen observatories as a citizen observatory meta-
platform. A ‘meta-platform’ is a platform that reasons about and acts upon another
platform [88]. Hence, a CO meta-platform reasons about and acts upon citizen obser-
vatory platforms. Concretely, we envision a CO meta-platform as follows:

Research Vision 1: Reconfigurable Citizen Observatory Platform To avoid re-
building all the mobile apps, web interfaces, databases, data analysis and visualisa-
tion elements from scratch, we envision the CO meta-platform as a component-based
software development approach that is less ad-hoc and less dependent on hardcore
programming technologies. Despite being constructed from reusable components, cit-
izen observatories created though the meta-platform must be expressive and powerful
enough to handle both discrete data (e.g., people’s experience of their surroundings,
such as the perception of local safety in cities) and continuous data (e.g., sensorial
data, such as temperature or air humidity).

Research Vision 2: Campaign Definition and Enactment Unlike existing PS sys-
tems where campaigns are not explicitly supported and usually managed manually,
we envision the CO meta-platform to enable the definition of a PS campaign and the
enactment thereof. As a result, initiators can define campaigns themselves rather than
relying on PS system owners for insider knowledge. Campaigns are then enacted by
the platform to provide automated orchestration to participants. This orchestration
can coordinate participants whilst they are gathering data and provide them feedback
on their contributions as an incentive mechanism.

Research Vision 3: Reactive Citizen Observatories To guarantee successful cam-
paigning it is essential that we embed automated orchestration to guide data collection
and immediate user feedback. This requires citizen observatories and campaigns to be
reactive, whereas the automated orchestration must encompass the distributed archi-
tecture of a citizen observatory (mobile data gathering app and server-side process-
ing) transparently. We therefore envision each citizen observatory created through
the meta-platform as a massive cloud-based reactive application that reacts on data
coming from mobile devices, contributes that data to the server, and promptly pushes
feedback, such as intermediate campaign results, back to the relevant devices.

Research Vision 4: ICT-Agnostic Usability Within this CO meta-platform,
stakeholders can set up and configure the necessary ICT-tools of a citizen obser-
vatory and deploy campaigns without or with very little programming skills. We
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envision an interface that offers access to components to describe the type of data,
the constraints it is subject to, the mechanism of its gathering and the process of
its storage in the citizen observatory. This interface also enables stakeholders to
formulate a PS campaign by defining the campaign protocol (cfr. section 2.3.1) and
their expectations for the campaign’s output (e.g., types of maps).

Furthermore, the CO meta-platform has the potential to act as a central hub for the
various research undertakings in PS. Due to its component-based approach, problems
such as incentive or coordination mechanisms (cfr. section 2.2.3) that are usually re-
searched and solved in an isolated environment, can be implemented as a component
of the meta-platform. As a result, interoperability and synergies can be established
between the various research performed in the domain of participatory sensing.

2.6 Conclusion

In this chapter, we explain how the evolution of the smartphone, combined with its
user’s mobility, led to the establishment of a new data gathering methodology referred
to as participatory sensing. After providing an overview of PS use cases and related
research, we introduced the concept of participatory campaigning as a combined data
gathering effort and formally described the various aspects of a campaign. In the
bigger picture, such campaigns are a part of citizen observatories. We observe from
the current state of the art that each of these observatories are developed from scratch,
due to a lack of reusable and reconfigurable citizen observatory construction tools. Al-
though there already exist several reusable and reconfigurable PS systems, they focus
more on the data gathering (typically form-based) and neglect other roles of a citizen
observatory such as advanced data processing methods, and participant feedback and
coordination. As a solution, we propose a more generic approach through the use of
a CO meta-platform. Through this meta-platform, ICT-agnostic stakeholders will be
able to construct their own citizen observatories and design PS campaigns with little
or no help from platform owners. Only in this way can we move away from small-
scale research-oriented deployments to the full-fledged adoption of PS as a societally
and scientifically relevant method. In the following chapter, we perform a require-
ments analysis of the envisioned CO meta-platform and use these as a guideline to
choose the most suited technologies to implement the CO meta-platform.
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3
T OWA R D S A C I T I Z E N O B S E RVAT O RY M E TA - P L AT F O R M :
R E Q U I R E M E N T S

Building a citizen observatory meta-platform is a challenging task because of three
reasons. First, in order to be truly generic, the platform must cover the rich diversity in
citizen observatory scenarios. Second, when applicable, campaign participants must
be coordinated in real-time to ensure the campaign’s data quantity and/or quality. Last
but not least, the platform must be accessible to stakeholders and communities with
limited ICT knowledge.

This chapter starts by providing a more in-depth analysis of the challenges in-
volved in creating a CO meta-platform. By analysing the typical citizen observatory
architecture and stakeholders involved, we identify five key requirements that a CO
meta-platform has to take into account. Next, we motivate our choice of program-
ming techniques that will be employed to implement these requirements, where we
argue that a visual reactive flow-based domain-specific language is the most suitable
approach to implement a citizen observatory meta-platform. Therefore, this chapter
introduces the concepts of flow-based programming, reactive programming, visual
programming languages, and domain-specific languages. We end the chapter by pre-
senting related work.
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3.1 Citizen Observatory Architecture

Citizen observatories all share a similar architecture, namely a mobile app, server
with a database, and web-based visualisation tools. Figure 3.1 depicts this typical cit-
izen observatory architecture. This architecture is based on similar reference architec-
tures for participatory sensing systems [138, 37]. We discuss each element in-depth
to analyse the functional requirements for a CO meta-platform.

SERVER WEB-BASED CLIENTMOBILE CLIENT

Sensing

Processing

Storage

Feedback

Visualisations

Data Analysis

Data Query

Processing

Storage

Campaign 
Enactement

Intermittent 
Connection

Intermittent 
Connection

Figure 3.1: Citizen observatory architecture.

Mobile Apps gather the required information through on-board sensors and user-
input, and upload it to the server for aggregation and analysis. Additionally, users of
the mobile app (i.e., participants) may receive feedback in real-time (e.g., coordina-
tion instructions, data visualisations). Despite the high variability of citizen observa-
tory scenarios, PS apps share common technical properties. Regardless of which data
parameters are being collected, PS apps need to include logic on how to upload data
to a server, handle temporal disconnections, access the device’s sensors, etc.

Servers and Databases are responsible for processing and storing the (potentially
massive amount of) data generated by the mobile apps. Similarly to the mobile apps,
many different processing steps and algorithms can be used in multiple scenarios (al-
beit with slightly modified settings and input data). Storing the data also presents a
challenge, as each citizen observatory can gather completely different types of data.
Additionally, the server has to handle every campaign deployed within the observa-
tory. Each campaign must process and filter uploaded data as specified through the
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campaign protocol (cfr. section 2.3.1). Ideally, this campaign enactment occurs in
real-time to provide immediate feedback on each participant’s contributions.

Web-Based Analysis and Visualisation Tools provide participants and stakehold-
ers means to reason about the collaboratively gathered data. In most cases, these are
simple graph visualisations or map-based plotting of data samples. However, more
advanced data analysis and visualisations can be envisioned, such as cluster analyses
and correlations

3.2 Meta-Platform Stakeholders

As described in section 2.4.1, there are various stakeholders involved in a citizen
observatory. The CO meta-platform must be accessible to these stakeholders and
communities with limited ICT knowledge. In this section, we provide details on
our assumptions on the background and level of ICT knowledge of the various
stakeholders that will interact with the CO meta-platform.

CO meta-platform owners are the only stakeholder category that require program-
ming knowledge, as they are responsible for maintaining the CO meta-platform and
the corresponding hardware architecture. This includes the addition of new features,
such as support for a new type of smartphone sensor.

Citizen Observatory administrators and Campaign administrators are expected
to be domain-experts with limited ICT knowledge, comparable to the knowledge
required for interacting with Microsoft Excel. This means that administrators do not
require programming knowledge to set up their own citizen observatory or deploy a
campaign using traditional methods. However, administrators do need to be familiar
with the domain in the sense that they need to know how to collect, process, and
visualise data.

Participants do not need to be domain experts of the citizen observatory that they
are contributing to. We assume basic technological knowledge and experience in
interacting with a smartphone. This includes the knowledge on how to install and
operate a mobile app.
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End-Users are divided into two categories: basic end-users and advanced end-users.
Basic end-users only look at the visualisations and results made available on the web
page of the citizen observatory or campaign. Advanced end-users are those that want
to perform their own analysis and create their own visualisations. For advanced end-
users, we assume an ICT knowledge-level on par with being capable of working with
Microsoft Excel.

3.3 Meta-Platform Requirements

Based on the CO architecture and stakeholder assumptions presented above, and tak-
ing into account the research questions (cfr. section 2.4.3) and the concept of a CO
meta-platform (cfr. section 2.5), we now introduce the five key requirements for a
CO meta-platform: customisability, usability, compatibility, scalability, and reactiv-
ity. A distinction is made between requirements relating to the user level and those
related to the implementation of the meta-platform. In the remainder of this section,
we present the requirements of both categories and discuss which technologies facil-
itate the development of a truly generic CO meta-platform.

3.3.1 User Level Requirements

The CO meta-platform must enable ICT-agnostic stakeholders to construct their own
observatory and campaigns for a variety of scenarios. To enable this, the meta-
platform must ensure customisability and usability. Additionally, participants con-
tributing data to campaigns require real-time feedback. As a result, the CO meta-
platform must include support for reactivity. We now elaborate on each of these user
level requirements (ULR).

ULR-1: Customisability

The meta-platform must enable CO administrators and campaign administrators to
set up and customise their CO and campaign respectively, in such a way that it suits
their particular scenario. To support multiple scenarios and to be truly generic, the
meta-platform must support different types of data and deal with the specific features
involved. This includes both continuous data (sensorial parameters such as noise, ac-
celerometer, humidity, etc.) as well as discrete data (e.g., behavioural parameters ob-
tained from user input through questionnaires). In addition to providing the necessary
features to collect such diverse data, the meta-platform must also enable the customi-
sation of different data processing algorithms for each citizen observatory scenario.
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Rather than forcing each CO to re-implement the same features with only some minor
adjustments, we propose the use of component-based development model.

A component-based approach takes advantage of citizen observatories’ similar
structure to provide end-users with an off-the-shelf toolkit including all relevant com-
ponents and tools that are needed to set up a citizen observatory. Such a toolkit would,
for example, include:

• Data gathering components for collecting data either using the smartphone’s
sensors, or by requesting user input.

• Data processing components for processing and aggregating data based on a
particular algorithm.

• Feedback components for handling interaction with the user (e.g., instruc-
tions on how to perform the measurements, feedback coming from the server,
gaming elements, etc.).

• Distribution components for handling the client-server communication (e.g.,
upload of measurements to the observatory).

A CO can then be implemented through a composition of such reusable and con-
figurable components, enhancing the customisability of the meta-platform. Therefore,
it is desirable that the toolkit contains a component for as many features as possible,
and that each component is sufficiently customisable to cope with the variety of CO
data types.

ULR-2: Usability

To be accessible to societal stakeholders and communities, the meta-platform must
enable the deployment of a citizen observatory and the setup of a campaign without
or with very little programming skills. Expecting stakeholders to program a citizen
observatory using textual source code is therefore unreasonable. A more accessible
and realistic solution is to provide stakeholders with a graphical interface in which
they can assemble a CO and campaigns in a way similar to playing with LEGO
or Scratch [110]. In fact, the aforementioned component-based development model
serves as a good foundation to create a visual programming language (VPL). Basic
programming elements in a VPL are generally represented as blocks, i.e., structural
elements with visual cues about how they can be used and linked together. By only
allowing the blocks to by arranged in a way that “fits”, incorrect programs can be
prevented from being constructed. In contrast, there is a big risk that stakeholders
do not manage to program their own citizen observatory textually as, in addition
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to the syntax itself being a hindrance, there is no built-in visual cue to prevent the
arrangement of components in an incorrect way.

Not any VPL will suffice. It is important that stakeholders can express themselves
using familiar concepts without puzzling over implementation technicalities. As a re-
sult, we propose to restrict the VPL to a particular domain, namely the domain of
participatory sensing. Using this visual domain-specific language (DSL), stakehold-
ers can program a CO (and its campaigns) simply by describing the data parameters
that must be collected, which data processing and aggregation algorithms must be
used, the type of feedback participants receive, etc.

ULR-3: Reactivity

Each participant is connected in real-time to the observatory and, ideally, receives
immediate feedback about his/her contributions. This means that every time a mobile
device uploads new information, the corresponding citizen observatory must process
it immediately, keep track of the progress of the running campaigns, and inform the
“interested” mobile devices about the freshly updated state of every campaign. Addi-
tionally, each observatory is responsible for coordinating the behaviour of the cam-
paign participants to ensure an optimal data density. Such a coordination mechanism
must be capable of operating in real-time, as it makes no sense to send participants
instructions if they already moved to a different location or stopped contributing data
by closing the app.

Orchestration of an observatory/campaigns involves more than just participant
coordination. Participants must receive feedback as incentive mechanisms, campaign
creators must be informed about the progress of their campaign, data visualisations
must be kept up to date, etc. Ideally, each of these happen in real-time. It is therefore
important that the meta-platform is capable of immediately reacting to data coming
from mobile devices, contributing those data to the server and promptly pushing in-
termediate campaign analysis results back to the relevant devices.

3.3.2 Implementation Level Requirements

A CO meta-platform will host multiple citizen observatories, each hosting several
campaigns. The high variety of data types and the different types of hardware in-
volved (e.g., smartphones with different OS) requires the meta-platform to ensure
compatibility of the various elements in the CO distributed architecture. Addition-
ally, the large amount of participants and end-users simultaneously interacting with
the meta-platform requires scalability. We now discuss each of these implementation
level requirements (ILR) in more detail.

40



3.3 Meta-Platform Requirements

ILR-1: Compatibility

The architecture of a citizen observatory as depicted in fig. 3.1 engenders a distributed
architecture: mobile apps running on smartphones communicate across a network
to upload data (in real-time) to a processing server. Feedback is sent back to these
mobile devices and to any web-based clients that are monitoring the results of the
processing (e.g., visualisations) on dedicated webpages.

In existing citizen observatories and other PS systems, these various elements
of the architecture have been developed using a different set of technologies and
programming languages:

• Mobile apps have to be coded for their respective operating system (i.e., Java
for Android , Objective-C or Swift for iOS).

• The data processing server requires knowledge on both web server technol-
ogy (e.g., Apache Tomcat, Ruby-on-Rails, etc.) and data processing techniques
(e.g., Spark, etc.).

• A database system has to be chosen (e.g., SQL or some NoSQL solution).

• Building web-based visualisation tools requires expertise in HTML, CSS, and
JavaScript.

Constructing a citizen observatory involves creating each element of the architec-
ture shown in fig. 3.1. When built on top of a component-based development model,
it is important that all the components can be composed into a functional citizen ob-
servatory. The components therefore have to be compatible with one another. The
client-side components produce a high variety of data types that need to be compat-
ible with server-side components that process and persistently store the data. These
server-side component must then in turn produce output data compatible with the
various feedback and visualisations components.

ILR-2: Scalability

Scalability can be measured in various ways, depending on the context. In the case
of a CO meta-platform, we particularly focus on two types: load scalability and
functional scalability.

Load scalability is the CO meta-platform’s ability to easily expand and contract its
resource pool to accommodate heavier or lighter loads (e.g., sudden increase or de-
crease in participants). It also relates to the ease with which a component can be
modified, added, or removed to accommodate changing loads.
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The meta-platform must be capable of specifying several citizen observatories
that each enact multiple campaigns simultaneously. Because a large number of
participants will be contributing data to these observatories, appropriate scaling
mechanisms must be put in place. For example, If a certain server-side component
cannot handle the amount of data it receives from a large number of client, multiple
instances of the overloaded component can be spawned and the input load balanced
among the spawned instances. However, special care is required as additional
problems are created when dealing with a stateful component, such as one that keeps
track of the average value of its input.

Functional scalability is the ability to enhance and extend the CO meta-platform by
adding new functionality with minimal effort. Because technologies keep evolving
(e.g., smartphones being equipped with additional sensors) it is required to design a
citizen observatory construction tool that allows for the addition of new components
and the maintenance of existing ones.

The functional scalability of the platform is directly influenced by the compo-
nents’ granularity: fine-grained components provide very basic features and they can
be composed into larger, more complex components. Such a composition mechanism
facilitates the addition of new features. For example, if smartphones would suddenly
be equipped with a new sensor, the CO meta-platform only has to provide a new com-
ponent that is capable of accessing the sensor and outputting its data. This raw data
can then be connected to various already existing data processing components.

3.4 The Right Tool for the Job

Conceptually, a citizen observatory is a distributed architecture where the data gener-
ated by participants flows from their mobile apps to a server. On this server, incoming
data flows through a series of data processing components. Intermediate results of the
processed data then flows back to the mobile apps and web-based dashboard in the
form of feedback.

From this point of view on citizen observatories, combined with the aformen-
tioned CO meta-platform requirements (cfr. section 3.3.1 and section 3.3.2), we pro-
pose to use a visual reactive flow-based domain-specific language (VRFBDSL) that
can handle the distributed nature of a citizen observatory’s architecture. The advan-
tages of using a VRFBDSL are as follows:

• Flow-based programming is a flavour of component-oriented programming ap-
proach by nature. It enables one to design a citizen observatory as a composi-
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tion of reusable and configurable components, resulting in a highly customis-
able platform (ULR-1). Additionally, a component-based approach increases
the functional scalability of the CO meta-platform (ILR-2).

• Reactive Programming allows developers to express programs in terms of what
to do, and let the language automatically manage when to do it. In the context of
the CO meta-platform, this means that the execution of each component used in
in the implementation of a citizen observatory is triggered automatically based
on input data availability, resulting in reactive citizen observatories (ULR-3).

• A visual programming language greatly increases the usability of the meta-
platform for societal stakeholders and communities with very little program-
ming skills (ULR-2). For example, its visual cues can be used to indicate and
ensure compatibility of the various components used to construct the citizen
observatory (ILR-1).

• The use of a domain-specific language further enhances the usability of the
platform (ULR-2), as it ensures that stakeholders are familiar with the domain
of the language, rather than forcing them to rely on a general purpose language
that is more difficult to understand.

In the remainder of this chapter, we provide a short introduction to each of these
programming concepts.

3.5 Flow-Based Programming

Flow-based programming (FBP) was invented by J. Paul Morrison in the early 1970s.
The FBP development approach views an application not as a single, sequential, pro-
cess, which starts at a point in time, and then does one thing at a time until it is
finished. Instead, FBP views an application as a network of asynchronous processes
communicating by means of streams of structured data chunks [97]. FBP applications
are represented as a directed graph consisting of processes as nodes and connections
as edges. Processes access connections by means of ports. A process is an instance of
a component, and runs concurrently with other processes. Multiple instances of the
same component can be created. Morrison explains the paradigm as follows [94]: “An
application built using FBP may be thought of as a "data processing factory": a net-
work of independent "machines", communicating by means of conveyor belts, across
which travel structured chunks of data, which are modified by successive "machines"
until they are output to files or discarded.”
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FBP can be considered a particular style of dataflow programming, but consid-
ering the fact that there is a sizeable body of published work related to dataflow
programming and/or architectures, the use of the term dataflow may cause some con-
fusion. Therefore, we first introduce the general concept of dataflow programming,
and then provide more details on the particular type of dataflow, i.e., flow-based pro-
gramming, that is used in the context of this dissertation.

3.5.1 Dataflow Programming

Dataflow Programming has been a research topic of programming languages design
since the ‘70s. Several researchers argued that conventional von Neumann processors
are inherently unsuitable for the exploitation of parallelism [34, 132]. The main issue
with von Neumann hardware is the bottleneck caused by the shared bus between the
program memory and data memory [2, 5]. This shared bus prevents the simultaneous
access of both program instructions and the program data. As a result, the CPU is
forced to wait for data to be transferred from memory, limiting the effective process-
ing speed of the CPU. As a solution, the dataflow architecture [132, 31] was proposed
which avoids both of these bottlenecks by using only local memory and by executing
instructions as soon as their operands become available.Advances in Dataflow Programming Languages 3

Fig. 1. A simple program (a) and its dataflow equivalent (b).

2. THE DATAFLOW EXECUTION MODEL

2.1. The Pure Dataflow Model

In the dataflow execution model, a pro-
gram is represented by a directed graph
[Arvind and Culler 1986; Davis and Keller
1982; Dennis 1974; Dennis and Misunas
1975; Karp and Miller 1966]. The nodes
of the graph are primitive instructions
such as arithmetic or comparison oper-
ations. Directed arcs between the nodes
represent the data dependencies between
the instructions [Kosinski 1973]. Concep-
tually, data flows as tokens along the
arcs [Dennis 1974] which behave like un-
bounded first-in, first-out (FIFO) queues
[Kahn 1974]. Arcs that flow toward a node
are said to be input arcs to that node, while
those that flow away are said to be output
arcs from that node.

When the program begins, special acti-
vation nodes place data onto certain key
input arcs, triggering the rest of the pro-
gram. Whenever a specific set of input arcs
of a node (called a firing set) has data on it,
the node is said to be fireable [Arvind and
Culler 1986; Comte et al. 1978; Davis and
Keller 1982]. A fireable node is executed at
some undefined time after it becomes fire-
able. The result is that it removes a data
token from each node in the firing set, per-
forms its operation, and places a new data

token on some or all of its output arcs. It
then ceases execution and waits to become
fireable again. By this method, instruc-
tions are scheduled for execution as soon
as their operands become available. This
stands in contrast to the von Neumann ex-
ecution model, in which an instruction is
only executed when the program counter
reaches it, regardless of whether or not it
can be executed earlier than this.

The key advantage is that, in dataflow,
more than one instruction can be executed
at once. Thus, if several instructions be-
come fireable at the same time, they can be
executed in parallel. This simple principle
provides the potential for massive parallel
execution at the instruction level.

An example of dataflow versus a tra-
ditional sequential program is shown in
Figure 1. Figure 1(a) shows a fragment of
program code and Figure 1(b) shows how
this is represented as a dataflow graph.
The arrows represent arcs, and the circles
represent instruction nodes. The square
represents a constant value, hard-coded
into the program. The letters represent
where data flows in or out of the rest of
the program, which is not shown. Where
more than one arrow emanates from a
given input, it means that the single value
is duplicated and transmitted down each
path.

ACM Computing Surveys, Vol. 36, No. 1, March 2004.

Figure 3.2: A simple dataflow program (a) and its directed graph representation (b) [66].

In the dataflow execution model a program is represented by a directed graph,
as illustrated by figure 3.2. The nodes of the graph are primitive instructions such
as arithmetic or comparison operations. Directed arcs between the nodes represent
the data dependencies between the instructions [75]. Values are propagated to the
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dependent nodes as soon as they are processed, triggering the computation of the
dependent nodes.

There exists a large body of research devoted to dataflow programming in vari-
ous application domains; Johnston et al. provide a comprehensive overview of more
recent advances in dataflow programming languages [66].

One issue with the term dataflow is that its meaning has become very broad. The
term dataflow programming is generally used to refer to synchronous dataflow pro-
gramming, while flow-based programming is used to refer to asynchronous dataflow
programming.

Synchronous dataflow programming executes a program once by starting with the
data of all the inputs, also called sources. Each node in the graph is executed once
when the data of all of its input ports becomes available. When a node in the graph
completes its execution, output data becomes available on all of its output ports. This
data then “flows” to the input ports of the downstream nodes allowing them to start
executing. This process is repeated until the entire graph (representing the program)
is traversed.

Asynchronous dataflow programming resembles the event-based and message
passing programming model: the nodes in the graph are connected with asynchronous
messaging channels and all of the nodes are continuously waiting for messages to ar-
rive to their inputs. Whereas in synchronous dataflow programming the nodes are
executed only once, in flow-based programming the nodes are constantly waiting for
new asynchronous messages to arrive from other nodes.

3.5.2 Flow-Based Programming Characteristics and Classification

Flow-based programming is best understood as a coordination language, rather than
a programming language [96]. A coordination language embodies a coordination
model, which Gelernter and Carriero define as [52] “the glue that binds separate
[computational] activities into an ensemble”. A coordination model provides opera-
tions to create computational activities and communication among them [52]. In the
context of flow-based programming, these computational activities are “black box”
processes that communicate among predefined connections.
The strength of FBP is that different applications can be built from the same set of
components by connecting them in different compositions. In 1974, Nate Edwards
coined the term “configurable modularity” [38] to denote the ability to reuse indepen-
dent components by changing their interconnections. One of the important character-
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istics of systems exhibiting configurable modularity is that they can be built using
“black box” reusable components [96], as is the case in flow-based programming.
FBP is therefore a component-based development approach by nature.

Component-based software engineering (CBSE), is a branch of software engi-
neering that emphasises the separation of concerns with respect to the wide-ranging
functionality available throughout a given software system [85]. It is a reuse-based ap-
proach to defining, implementing and composing loosely coupled independent com-
ponents into systems [134]. CBSE is primarily concerned with three functions [56]:

• Developing software from preproduced parts

• The ability to reuse those parts in other applications.

• Easily maintaining and customising those parts to produce new functions and
features.

There are many definitions of what a component in CBSE entails. Heineman and
Councill [56] define a software component as a “software element that conforms
to a component model and can be independently deployed and composed without
modification according to a composition standard”. In other words, a component
model defines how to construct an individual component and enforces global
behaviour on how a set of components communicate and interact with each other.
A component can be composed with another component by creating assembled
connections. The general term ‘assembly’ is used, as components can be composed
in many different ways. The component model can also define other aspects such as
naming conventions, meta data, interoperability, customisation, etc.

Another characteristic of FBP is that its system design is generally split into two lay-
ers: the graph layer and the component layer. The graph layer usually has a visual
representation and is intended to be used by the graph designer, i.e., it is used to con-
struct the graph by connecting the various components together to form the applica-
tion’s logic. The component layer contains the actual source code of each component
as implemented by the component developer.

Classical vs. Reactive Flow-Based Programming

Flow-based programming has evolved considerably over the last 40 years, and several
new FBP systems were recently developed that are missing some key characteristics
of true FBP, such as asynchrony, and each process running in its own thread or other
concurrency mechanism. As a result, we make a distinction between Classical FBP
and Reactive FBP:
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Classical FBP is what we consider to be the original approach. In this case, op-
erating system or virtual machine threads are used, enabling processes to execute
concurrently. Connections between processes are usually implemented as bounded
buffers or FIFO queues. Processes can choose from which port they want to read
data. Classical FBP features blocking reads and writes: a process that to reads from
an empty input port blocks until input data arrives. Alternatively, a process writes to a
connection whose buffer is full, the process is suspended until the buffer is no longer
full. Examples include JavaFBP [95] and C#FBP [93].

Reactive FBP is a FBP-inspired approach designed around event-listeners. Pro-
cesses operate using a publish/subscribe pattern, i.e., processes wait for data arriving
on their input ports and publish data on their output ports. Events include both data
sends, as well as connects, disconnects, etc. Unlike Classical FBP, processes cannot
choose from which port they want to read data. Instead, processes in Reactive FBP
simply react to every incoming event on a port in the order of arrival. Examples in-
clude NoFlo [8], Node-RED [102], and MicroFlo [91].

3.6 Reactive Programming

Reactive programming (RP) is a programming paradigm that is built around the no-
tion of continuous time-varying values and propagation of change. It facilitates the
declarative development of event-driven applications by allowing developers to ex-
press programs in terms of what to do, and let the language automatically manage
when to do it [7]. In this paradigm, state changes are automatically and efficiently
propagated across the network of dependent computations by the underlying execu-
tion model. RP introduces the notion of behaviors for representing continuous time-
varying values and events for representing discrete values. In addition, it allows the
structure of the dataflow to be dynamic (i.e., the structure of the dataflow can change
over time at runtime).

The history of research and developments in reactive programming fall outside
the scope of this dissertation. For more details we refer the reader to a comprehensive
survey by Bainomugisha et al. [7]. In more recent years, reactive programming has
gained a lot of attention in the front-end developers community. As a result, several li-
braries came into existence that implement RP principles. Examples of such libraries
include Bacon.js [6], Meteor [61], React.js [60], and RxJS [125].
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3.7 Visual Programming Languages

Visual programming languages (VPL) are languages that use some form of visual
representation instead of — or in addition to — textual representations used by tra-
ditional programming languages [115]. One well-known example is Scratch [110],
which represents programming statements graphically as colourful pieces of a jig-
saw puzzle that can be composed to define the logic of a program. An example of a
Scratch script is illustrated in fig. 3.3.

Figure 3.3: Sample Scratch script [110].

Visual programming languages have some specific goals, which most commonly
are [14]:

• Making programming more understandable to non-technical users.

• Improving the correctness with which users perform programming tasks.

• Improving the speed with which users perform programming tasks.

It is important to distinguish visual programming from visual aids for programming.
The latter is a more general term which also includes tools for program code visu-
alisation (e.g., class hierarchies, state diagrams, etc.) and data visualisation, as illus-
trated by the taxonomy of visual aids for programming depicted in fig. 3.4. Visual
programming systems allow the programmer to construct programs using techniques
that display computational functions and elements in two or more dimensions. Pro-
gram code visualisation, on the other hand, helps in debugging and understanding
programs by providing visualisations of various aspects of the program. Examples of
program visualisation include the Unified Modeling Language (UML) or Architec-
ture Description Languages.

Visual programming can be further subdivided into two key branches [119]:
graphical interaction systems and visual language systems. This division is based
upon how the graphics are used to build the program. In graphical-interaction
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3.7 Visual Programming LanguagesFigure 1. Classification of visual computing [14]

Figure 2. Taxonomy of visual aids for programming [14]

two-dimensional since the compiler or interpreter processes it as a long, one-dimen-
sional stream’ [15].
Singh and Chignell [14] divide visual programming into two key branches: graphical

interaction systemsand visual languagesystems (see Figure 2). This division is based upon how
the graphics are used to build the program. Systems where the user guides or instructs
the system in order to create the program are classified as graphical interaction systems.
Visual language systems consist of systems in which icons, symbols, charts or forms are
used to specify the program.
In graphical interaction systems, the sequence of user actions is of vital importance

since the system ‘learns’ from the user input. This category is more commonly, and
perhaps,more aptlycoined programmingbyexample. In themajorityof such systems, a user
is required to specify everything about the program and the system is able to remember
the examples for later use. This type of system could be described as ‘DoWhat I Did’.
Conversely, some systems attempt to infer the general program structure after the user
has provided a number of examples which work through the algorithm. These systems
could be characterized by ‘Do What I Mean’ and are often referred to as automatic
programming, which has generally been an area of Artificial Intelligence research [15].
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Figure 3.4: Taxonomy of visual aids for programming [119].
.

systems the user guides or instructs the system in order to create the program.
Visual-language systems use icons, symbols, charts, or forms to specify the program.
The main difference between these two systems is that in the former the user
interaction with the system is important, whereas in the latter the arrangement of
symbols on the screen is important. Visual-language systems are further classified
depending on the graphical abstraction used. In this dissertation, we are mainly
interested in data flow diagrams, i.e., visual data flow programming languages.

3.7.1 Visual Data Flow Programming Languages

Data-Driven Nets [29], developed in the 1970s, is a graphical programming concept
that can arguably be considered as the first visual dataflow programming language
(VDFPL). However, it operated on such a low level that it was not practical to pro-
gram directly using this language. As a result, a higher-level language was developed
known as Graphical Programming Language [30]. In this language a program is de-
picted as a graph, and every node in the graph is either an atomic node or a compound
node that can be expanded to reveal a sub-graph. These subgraphs can be defined re-
cursively. Arcs in the graph are typed and the whole environment has facilities for
debugging, visualisation, and text-based programming [66].

Most visual data flow programming languages use boxes to represent functions
and lines to represent the flow of data between functions. This representation maps
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directly onto the flow-based programming concepts of processes and connections. It
is therefore not surprising that many FBP frameworks have a visual representation.

3.8 Domain-Specific Languages

General-purpose languages such as C, Java, and Python enable programmers to write
instructions for computers to solve problems in many domains. The broad applicabil-
ity of these languages results in a lack of specialised features for a particular domain.
Hence, when the problem is limited to a certain domain, a more specialised language
is required that provides features created specifically for that domain, i.e., a domain-
specific language.

A Domain-Specific Language (DSL) is a language that is optimised for a given
class of problems called a domain [129]. A DSL is based on abstractions that are
closely aligned with the domain for which the language is built. As such, a DSL in-
cludes a syntax suitable for expressing these abstractions concisely. This syntax can
be either textual or graphical. Sometimes, representations such as graphical diagrams,
matrices, and tables are used alongside text to provide the desired closer mapping to
the problem domain. There is a wide variety of DSLs, ranging from widely used lan-
guages for common domains, such as HTML for web pages or SQL for for relational
database queries, down to languages used by only one or a few pieces of software,
such as MATLAB. DSLs have to sacrifice some of the flexibility of general-purpose
languages (GPLs) to ensure productivity and conciseness of relevant programs in a
particular domain. They can also be restricted on purpose to only allow the creation
of correct programs. Unlike GPLs, there is no requirement for DSLs to be Turing
complete [122].

Domain-specific languages can be used for a variety of purposes, such as being
a utility for developers to automate a specific aspect of software development or,
in larger-scale systems, to describe the architecture of a software system. Voelter et
al. [129] provide an in-depth book on the design, implementation and use of DSLs.
In the context of this dissertation, we are mainly interested in the use of DSLs for
Domain-Specific Modelling.

3.8.1 Domain-Specific Modelling

Domain-Specific Modelling is a software engineering methodology that involves the
systematic use of a (graphical) DSL to design and develop systems. Modelling in this
context refers to prescriptive modelling, where a model is created that can be used to
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(automatically) construct the target system. This is in contrast to a descriptive model
that represents an existing system for discussion and analysis.

Domain-Specific Modeling mainly aims to accomplish two goals [72]: first, raise
the level of abstraction by specifying the solution in a language that directly uses
concepts and rules from a specific problem domain. Second, generate final products
in a chosen programming language or other form from these high-level specifications
(i.e., automatic creation of executable source code from the domain-specific model).

There are many benefits of using DSM, such as increasing the productivity and
quality of the created product through the removal of (unnecessary) degrees of free-
dom for programmers, the avoidance of duplication of code, and the consistent au-
tomation of repetitive work by the execution engine. Validation and verification of
the created product are easier to implement, as the error messages can be more mean-
ingful through the use of domain concepts. Using DSM, developers only need to
model the core logic of an application system independent of the underlying tech-
nology platform, making it possible to change the execution engine of the model to
execute the code on a new platform. But perhaps the most interesting benefit of DSM
is domain expert involvement: if the abstractions are closely aligned with how domain
experts express themselves, the domain experts, who often are non-programmers, can
become developers and use the DSL to write the program code by making complete
specifications using familiar domain concepts. This capability to support domain ex-
perts’ concepts makes DSM very applicable for end-user programming.

3.9 Related Work

Although the concept of a citizen observatory meta-platform is, to the best of our
knowledge, unprecedented, our approach is rooted in the literature of visual data flow
programming languages.

Node-RED [102] is a reactive flow-based programming tool built on top of
Node.js. It provides a browser-based drag-and-drop editor — depicted in fig. 3.5 —
for wiring together hardware devices, APIs, and online services. Node-RED provides
a library where people can add new components and share existing component com-
positions.

Other examples of reactive FBP include NoFlo [8], MicroFlo [91], and
MsgFlo [98]. Each of these FBP implementations provide a visual editor, although
they adopt a slighty different approach compared to Node-RED: rather than hav-
ing their own dedicated visual data flow programming language, they both rely on
Flowhub [46], a technology agnostic (e.g., supports any runtimes compatible with
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Figure 3.5: Node-RED’s browser-based editor.

the FBP protocol) web-based IDE for flow-based programming. The web-based IDE
of FlowHub is depicted in fig. 3.6.

Figure 3.6: FlowHub IDE.

Despite their identical visual editor, each of these FBP implementations have a
different domain. NoFlo is based on Node.js and is written in JavaScript and Cof-
feeScript. It can be used to build server-side or client-side (browser) applications.
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MicroFlo is written in C++ and is intended to be used on microcontrollers and em-
bedded devices. MsgFlo components can be implemented in any language (to reuse
existing code or libraries) and can be used to implement a distributed FBP system
spanning multiple computers/devices.
VDFPLs have seen adoption outside of the domain of FBP as well. Perhaps one of
the best known examples of a VDFPL is LabView [62]. First released in 1986, it
allows the construction of programs for data analysis in laboratories. LabVIEW pro-
grams are called virtual instruments, because their appearance and operation often
imitate physical instruments. Creating a new virtual instrument is done by specifying
the front panel (the user interface of the virtual instrument), and the block diagram
(containing the graphical source code). An example block diagram is depicted in
figure 3.7. Constructing the block diagram is done by connecting different function-
nodes, displayed as boxes with icons, using wires representing the data paths. Lab-
VIEW uses “G”, a dataflow programming language, meaning that the wires propagate
variables and any node can execute as soon as all its input data become available.

Figure 3.7: Example of LabVIEW Block diagram.

Another example is Reaktor [63], a graphical modular software music studio that
lets musicians and sound specialists design and build their own instruments, sam-
plers, effects and sound design tools by connecting various modules. The Reaktor
environment is depicted in figure 3.8.

Blender [47] is an open-source 3D computer graphics toolset for creating video
games, visual effects, animated films, etc. Blender allows you the creation of a mate-
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Figure 3.8: The Reaktor environment.

rial (i.e., the artistic qualities of the substance that a 3D object is made of) by routing
basic materials through a set of nodes. Each node performs some operation on the
material, changing how it will appear when applied to the mesh, and passes it on to
the next node. Figure 3.9 depicts this node editor environment.

Figure 3.9: The Blender Node Editor.

These, and other examples [131, 135], make it obvious that VDFPLs are applicable in
many domains. However, many of these systems did not focus directly on research in
dataflow programming. Instead, they were produced to solve specific problems and
use the dataflow model because it provides the best and/or most intuitive solution to
a specific problem.
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3.10 Conclusion

Designing a citizen observatory meta-platform that enables domain experts to cre-
ate their own citizen observatory is a challenging task. This becomes apparent by
analysing various requirements of the meta-platform, i.e., customisability, usability,
reactivity, compatibility, and scalability. Using these requirements as a motivation for
our decision, we advocate the use of a visual flow-based domain-specific language
that enables non-ICT stakeholders to build citizen observatories. This chapter intro-
duced the programming concepts that facilitate the implementation of the CO meta-
platform, i.e., flow-based programming, reactive programming, visual programming
languages, and domain-specific languages.

Flow-based programming is particularly suited to ensure customisability of a cit-
izen observatory by providing the end-user with a toolkit of relevant participatory
sensing components that can be composed to provide the desired features. FBP also
aids in the functional scalability of the meta-platform as newly designed components
can easily be integrated in the rest of the system. Additionally, FBP ensures the reac-
tivity of each citizen observatory, enabling real-time data processing and participant
coordination.

By incorporating reactive programming principles, the execution of components
is triggered automatically based on input data availability, resulting in highly reactive
citizen observatories that can provide participants with immediate feedback.

Usability of the CO meta-platform can be facilitated through a visual program-
ming language, enabling end-user programming by ICT-agnostic stakeholders. Visual
cues can prevent incompatible component compositions.

However, simply providing a visual environment for the domain-expert is not
sufficient. The components presented in the visual programming language have to
make sense to the domain experts. Therefore, a (visual) domain-specific language
that only presents relevant concepts to the end users is needed.

Although this chapter discussed various existing visual data flow programming
languages, none of these are suitable to implement a citizen observatory meta-
platform for the following reasons: first, none of these languages enable the design of
a citizen observatory as the necessary domain-specific components to implement PS
data gathering and processing are not present. Second, the existing languages either
provide no support for distribution, or those that do only provide low-level compo-
nents that are too difficult to configure for non-ICT experts. This makes the imple-
mentation of citizen observatories more difficult due to their distributed architecture
(i.e., mobile apps, processing server, web based visualisations).
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In the next chapter, we introduce a novel visual reactive flow-based domain-
specific language, named DISCOPAR, which is designed specifically to cope with
these issues. This language is used throughout our citizen observatory meta-platform.
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L A N G UAG E C O N C E P T S O F D I S C O PA R

One of the main challenges of a citizen observatory meta-platform is ensuring us-
ability by (ICT-agnostic) societal stakeholders and communities (cfr. section 3.3.1
- ULR-2). Deploying a citizen observatory and setting up campaigns should there-
fore be possibly without or with limited programming skills. To make this possible,
we propose DISCOPAR (Distributed Components for Participatory Campaigning), a
new visual flow-based domain-specific programming language created specifically
to hide the non-essential complexity of citizen observatories and their distributed na-
ture from the end-user, and to present only concepts that are relevant to their domain.
DISCOPAR is used throughout the meta-platform to construct every part of a citi-
zen observatory, i.e., the mobile data gathering app, server-side data processing, and
web-based visualisations can all be set up using a single visual language. Due to its
flow-based nature, DISCOPAR’s design is split in two layers: a graph layer enabling
end-users to visually construct observatories, and a component layer containing each
component’s source code and the necessary abstractions to compose them.

This chapter focusses on DISCOPAR’s graph layer. More specifically, it presents
the visual programming language that is built on top of DISCOPAR’s component
layer. Details on the more technical component layer are discussed in chapter 6.
In this chapter, we first describe the general idea of DISCOPAR and introduce
DISCOPARDE, our web-based visual programming environment for designing pro-
grams in DISCOPAR. Next, we introduce the various concepts and visual syntax of
DISCOPAR. Then, we provide more details on DISCOPARDE. We end the chapter by
introducing four common strategies of visual programming languages that facilitate
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end-user programming, and describe how these strategies are applied to DISCOPAR
and DISCOPARDE.

4.1 Programming with DISCOPAR

In section 3.4, we proposed to implement our CO meta-platform using a visual re-
active flow-based domain-specific language (VRFLDSL) that can handle the dis-
tributed nature of a citizen observatory’s architecture. The idea to use a VRFLDSL
was motivated through the analysis of both user level requirements (cfr. section 3.3.1)
and implementation layer requirements (cfr. section 3.3.2) of the CO meta-platform.
These requirements, combined with the distributed architecture of citizen observa-
tories, highlight the significant challenge involved in creating a CO meta-platform
capable of constructing any type of citizen observatory.

When analysing existing flow-based languages, we noticed that most FBP lan-
guages do not allow the flow to be partitioned across multiple devices. Those that do
are either research prototypes [10] or only provide low-level communication compo-
nents that have to be manually configured by the end user [98]. Configuring these
components involves details such as specifying the IP-address and port to establish a
connection. Such details are too difficult to understand for ICT-agnostic users, who
are incapable of programming such technicalities. What is needed is a distributed
flow-based language where stakeholders only need to express themselves with lan-
guage concepts that come from the domain of citizen observatories and participatory
campaigning. As a result, we created DISCOPAR, a new visual reactive flow-based
domain-specific programming language with support for distribution.

DISCOPAR ensures usability by ICT-agnostic stakeholders through the use of
domain-specific components, which can be composed in a visual manner. Through
such component composition, stakeholders are capable of implementing the various
elements of a citizen observatory without having to worry about the underlying com-
plexity of the CO’s distributed architecture. Due to the lack of support for distribution
in existing FBP languages, we opted to design a language from the ground up. By cre-
ating a new language instead of implementing additional abstractions in an existing
FBP language, we facilitate the understanding and development of mechanisms that
can handle the distributed architecture of a citizen observatory. To the best of our
knowledge, DISCOPAR is the only distributed visual flow-based language where dis-
tributed connections are automatically handled by the system and do not require any
configuration from the programmer.
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Programs in DISCOPAR are a directed acyclic graph (DAG) where each node of
the graph consist of a component instance and where the edges are implemented as
real-time data streams. Programs in DISCOPAR can be visually assembled through
our web-based visual programming environment, named DISCOPARDE. Figure 4.1
depicts an instance of DISCOPARDE, consisting of a component menu from which
graph designers can select components and visually assemble them on the canvas
through drag-and-drop interactions. More details on the features of DISCOPARDE

are deferred to section 4.3.

Figure 4.1: DISCOPARDE: DISCOPAR’s web-based visual programming environment.

Due to its flow-based nature, DISCOPAR’s design is split in two layers: a graph
layer enabling end-users to visually construct observatories, and a component layer
containing each component’s source code and the necessary abstractions to com-
pose them. Figure 4.2 illustrates the interaction between DISCOPAR’s graph layer
and component layer. DISCOPARDE, DISCOPAR’s integrated web-based visual pro-
gramming environment, enables ICT-agnostic users to program an application using
the visual syntax of DISCOPAR’s graph layer. To execute a program designed in
DISCOPARDE, the constructed DAG is passed onto the execution engine of DIS-
COPAR, named DISCOPAREE. DISCOPAREE is responsible for executing the DAG.
This is done by initialising the components by loading their source code from the com-
ponent layer, and establishing the real-time data streams between the newly created
processes. Due to its reactive flow-based nature, each process in the DISCOPAREE

activates automatically based on the availability of data on its incoming data streams.
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Figure 4.2: Overview of DISCOPAR.

Each element of a citizen observatory’s distributed architecture is implemented
through DISCOPAR. This means that the CO’s mobile app, server-side data process-
ing, and web-based visualisations all execute a different DAG in DISCOPAREE. More
details on how the CO meta-platform enables each element of a citizen observatory
to be programmed through DISCOPARDE are explained in chapter 5.

It is important to realise that DISCOPAR supports distribution and hides any tech-
nological complexity associated with it. DISCOPARDE is capable of simultaneously
programming client-side and server-side logic, and graph designers can create a con-
nection between a component from each DAG in the same way that they create a
connection between those in the same DAG, i.e., by performing a drag-and-drop in-
teraction. Connections made between components residing on a different device are
automatically handled by DISCOPAR. In other words, a DAG deployed on one par-
ticular device (e.g., mobile app) transparently establishes a connection with a DAG
on another device (eg server-side data processing). More details on how DISCOPAR
automatically handles these distributed connections are provided in chapter 6.

4.2 Concepts and Terminology

This section provides a general introduction to various flow-based programming con-
cepts and introduces their visual syntax in the graph layer of DISCOPAR.
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4.2.1 Components

Components form the basic building blocks used by developers to build an applica-
tion using flow-based programming. In FBP, the emphasis in implementing an appli-
cation shifts from building everything from scratch to connecting pre-existing com-
ponents and only creating new ones when absolutely required. Implementing compo-
nents is commonly done using classes, functions or small programs in conventional
programming languages. Unlike components in dataflow programs, which primarily
consist of primitive arithmetic and comparative operations (cfr. fig. 3.2), components
in FBP are more complex. FBP uses “black-box” components, referring to the fact
that the application developer does not need to understand or modify the internal im-
plementation of a component. Programming in FBP is done by composing various
components into a DAG to form the desired logic.

Figure 4.3: Example of DISCOPAR’s visual syntax for components.

DISCOPAR features a variety of components that all share the same visual syntax.
As an example, the visual representation of some components is illustrated in fig. 4.3.
Components are represented as boxes labelled with their name. Components can have
multiple input and output ports, which are represented as little squares on the side of
a component. Input ports are always shown on the left side of a component, while
output ports are shown on the right.

4.2.2 Processes

An instance of a component is called a process. A process is an asynchronously ex-
ecuting piece of logic. Processes can be handled by the system using threads or a
similar form of concurrency, or at least provide the illusion of it to the designer. Mul-
tiple processes of the same component can be simultaneously active. A process is
stateful and can access its own internal state and ports, but it cannot access other
processes. Processes communicate by sending and receiving structured data chunks
called information packets (IP). A process is activated when it receives an informa-
tional packet on one of its input ports. Exceptions to this rule are processes that are
automatically activated on application startup.
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Processes in DISCOPAR are spawned behind the scenes, so technically speak-
ing they do not have a visual syntax. The graph designer implements an application
by creating a visual representation of interconnected components in DISCOPARDE.
The DAG of interconnected components is then loaded by DISCOPAREE, where pro-
cesses are initialised that communicate across the predefined connections.

4.2.3 Connections

Processes communicate by means of connections. Connections can be considered
streams on which information packets “flow” from one process’s output port to an-
other’s input port. In FBP, connections can be implemented using bounded buffers
or FIFO queues. The size of this buffer or queue is known as connection capacity,
which some FBP implementations allow to be 0, meaning that the IPs are transferred
immediately between the sending and receiving processes.

The visual representation of connections in DISCOPAR is illustrated in fig. 4.4.
They are represented as lines connecting an output port to an input port. The colour of
a connection is always the same as the colour of the output port that the connection
originates from. An output port’s colour indicates the type of data the port emits
(cfr. section 4.2.4).

Some ports in DISCOPAR only accept distributed connections that are automat-
ically established by the system. For example, the output port of the Upload com-
ponent is automatically connected to the observatory’s server-side whenever an inter-
net connection is available. This is indicated to the graph designer by a cloud icon
(cfr. fig. 4.4).

Figure 4.4: Visual syntax of connections in DISCOPAR.

A component’s input port can have multiple incoming connections. However, the
number of connections attached to an input port of a component does not impact the
behaviour of that component. Once the component is initialised by DISCOPAREE,
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the corresponding process will react to any IP, regardless of its origin, as soon as it
arrives on the input port.

In classical FBP (cfr. section 3.5.2), an information packet is tracked from its
creation to destruction, and can only be “owned” by a single process at a time or
be in transit between processes. This means that in classical FBP a single output
port can only be connected to a single input port, as otherwise the same IP would
be owned by multiple processes at the same time. Classical FBP requires IPs to be
explicitly copied using a dedicated component with multiple output ports that are
then connected to multiple input ports. In order to not needlessly complicate matters
for the graph designer, DISCOPAR adopts the reactive FBP approach where a single
output port can be connected to multiple input ports, thereby implying automatic
replication of data.

4.2.4 Ports

The contact points between processes and connections are called ports. Every port
is named to enable FBP components to refer to them without needing to be aware
of what they are connected to. A component can have multiple inputs or outputs.
A process can send to or receive from any of its ports. Input ports provide receive
functionality to dequeue IPs from a connection’s buffer. Output ports provide send
functionality to queue an IP into the port of a connected process.

A process reacts to the arrival of data on an input port by executing code from its
black box implementation. This code can potentially produce output, which is then
published on one of its output ports. The behaviour of components with multiple
input ports depends on the implementation of the component. More details on this
are provided in section 6.1.3.

It is possible for a component to not have an input port, in which case it acts as
a source of the DAG. A source is a component that automatically produces output.
For example, a component generating output from a smartphone sensor. Similarly, a
component without an output port acts as a sink of the DAG. A sink is a component
that consumes data, such as a linechart component that draws the consumed value on
a chart.

Observation
Message

Number
Text

File
Any

Location
GeoJSON 

Figure 4.5: DISCOPAR’s supported data types and corresponding colours.
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Ports in DISCOPAR are typed. Ports can only be connected if they “understand”
each other. Components are compatible if the output of one component can serve as
input of another component. For example, it makes no sense to send a numerical value
to a component expecting JSON input. The colour of the port indicates what type of
data the component can receive. The various types that are currently supported, along
with their corresponding colour, are shown in fig. 4.5. The Any type is a special case
and accepts connections from any output port, regardless of its type.

4.2.5 Information Packets

An information packet (IP) is data that is sent from one process to another. An IP
has some affinities with the concept of “object” in Object-Oriented Programming.
Information packets have a life cycle and are owned explicitly by one process at a
time. The actual implementation and content of an IP depends on the application do-
main. One special type of information packet, called initial information packets, are
not meant to be passed around between processes. They only contain configuration
information and are given to a particular process when the program is started by the
DISCOPAREE. For example, a component capable of establishing a serial connection
to external devices through USB requires that the USB protocol details are passed to
the process upon initialisation.

In DISCOPAR, IPs can be numbers, strings, or JSON objects. However, these
are often not presented to the user as-is, but use an additional layer of abstraction
so that users are able to deal with domain specific data instead (cfr. port typing in
section 4.2.4).

Citizen observatories can gather data on a variety of topics, such as noise pollu-
tion or eating habits. Despite this diversity, there are some commonalities between
the data collected in every citizen observatory. Observational data typically contains
the following information [118]:

• Geographical information, indicating where the data sample was made.

• Observation time, indicating when the data sample was made.

• Observer, indicating who made the data sample.

• Observation Procedure, indicating how the data sample was made.

• Observed Data, the measured data of this sample.

DISCOPAR supports this observational data model, and provides a special type
of IP that is referred to as an observation. Observations can be considered the most
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important type of information packet in a citizen observatory. Observations are al-
ways created by data-producing processes on the mobile app, such as those reading
out sensor values or outputting user input from questionnaires. Observations are aug-
mented with relevant meta-information, such as user id, device model, so that they
can be processed and persistently stored in the citizen observatory. Observations can
be considered a summary of the captured data. Many sensor components also output
the individual values captured in the observation on different output ports. One such
example is the SensorDrone component, illustrated in fig. 4.6. This component
collects sensor readings on temperature, humidity, and atmospheric pressure on a reg-
ular interval from an external device that can be connected to the smartphone using
Bluetooth. On each interval, these sensor readings are wrapped inside an observation,
augmented with meta-data, and sent to the out output port. At the same time, each
individual numerical value is sent to the corresponding output port.

Figure 4.6: The SensorDrone component.

4.2.6 Graphs

The structure of an application in flow-based programming is represented as a di-
rected graph. The nodes of the graph are processes, while the edges are the con-
nections between ports. Unlike other FBP languages that do allow the application’s
directed graph to contain cycles, DISCOPAR adopts a more strict policy where a pro-
gram is implemented as a directed acyclic graph. This choice was made deliberately
to prevent ICT-agnostic users from creating incorrect programs.

Constructing a graph in FBP can either be done graphically using a visual tool,
or using a textual Domain-Specific Language. In DISCOPAR, graphs are created
through DISCOPARDE, our web-based visual programming environment.

A FBP application represented through a graph can be executed in the underlying
FBP language or library by initialising the processes and establishing the appropriate
connections. In the case of DISCOPAR, this is done by loading the graph constructed
with DISCOPARDE in DISCOPAREE.
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Graphs in DISCOPAR do not necessarily deploy every component on the same
device (hence the term "distributed" in the DISCOPAR acronym). However, this dis-
tribution of components is hidden from the developer. For example, consider the
graph depicted in fig. 4.7. This graph filters the observations uploaded by mobile
devices based on whether those observations were made within the boundary of a
certain city. Observations satisfying this constraint are then aggregated into a map,
and this map is visualised to end-users.

Figure 4.7: A graph containing distributed components.

The graph designer that implemented this data processing and visualisation logic
did so only by interconnecting these four components. The data filtering and aggrega-
tion processes reside on the server, as they are CPU-intensive operations that process
the uploaded data of every participant. However, visualisation components in DISCO-
PAR provides real-time and interactive visualisations that are rendered on the client.
Despite this distributed setting, the graph designer can simply drag connections from
one (server-side) component to a (client-side) component. Behind the scenes, DIS-
COPAR will automatically establish the distributed connection between the client
and server. More details on how these distributed connections are handled are dis-
cussed in section 6.1.6 .

4.3 DISCOPARDE

In addition to the visual syntax for components, ports, and connections, DISCOPAR
features a web-based visual programming environment, named DISCOPARDE, that
provides users with the means to visually compose components into a graph through
drag-and-drop actions. Although already briefly introduced in section 4.1, this section
provides more details on the features of DISCOPARDE.

The user interface of DISCOPARDE, depicted in fig. 4.8, consists of four main
elements: the component menu, the canvas, a pop-up window granting access to pro-
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cess configuration, and the graph validation indicator. This default interface of the
DISCOPARDE can be modified and extended for each particular use throughout the
CO meta-platform, as we will discuss in chapter 5.

Figure 4.8: DISCOPAR’s default visual programming environment.

4.3.1 Component Menu

The component menu is presented as a searchable list containing the various
available components. Searching the available components can be done by name,
(sub)category, or on any keyword in a component’s description. This description —
toggleable by an information button next to each component — offers more details
to the graph designer on the features that a certain component provides.

The set of available components is configured upon initialisation of
DISCOPARDE, meaning that every component is not always available. For example,
components that only work on the client-side, such as those producing output from a
smartphone sensor, are not made available when using DISCOPARDE to program the
server-side of a citizen observatory. An exhaustive list of every component available
in the current implementation of DISCOPAR is available in appendix A.

Components that provide more low-level features are hidden from the component
library’s list by default. These components generally are intended to be used by more
advanced users. They become available after switching on the advanced mode, which
can be done through a button beneath the search bar.
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Clicking on a component in the library will create an instance of that component,
which immediately appears on the designer canvas. Multiple instances of the same
component can be created.

Dynamic Menu Population

An interesting feature of DISCOPARDE is that the component menu can be dy-
namically adjusted based on other components in the graph. Graphs constructed in
DISCOPARDE are analysed to extract meta-information, i.e., information about the
graph itself, such as the types of data that is produced by a mobile app. This meta-
information is used as initial information packet (cfr. section 4.2.5) to configure pro-
cesses. For example, the ObservationData component extracts all the data from
an observation, and outputs the individual values on corresponding output ports. This
component needs the meta-information to know how many and what type of output
ports it should create, which is based on the data produced by the mobile app.

Furthermore, this meta-information can result in additional components being
added to the menu. For example, if by analysing a mobile app the system realises that
it consists of a survey containing various questions, the system will automatically add
extra components to the library which can filter observations based on the input of
participants. If a survey asks for the participant’s gender, then a component is added
to the component menu that can sort observations by gender.

4.3.2 Canvas

The canvas contains the visual representations of the various components, and pro-
vides the means to connect their various input and output ports through drag-and-
drop interactions. When right-clicking a component on the canvas, a menu appears,
shown in fig. 4.9, that enables the graph designer to delete the component or open its
configuration window (cfr. section 4.3.3).

Figure 4.9: Menu shown when right-clicking a component on the canvas.
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Every action performed by the designer is immediately and persistently updated
in the DISCOPAR graph. There is no need to “save" a graph, and no risk for the
designer to lose any modifications to a potentially large graph.

Port Typing

Remember from section 4.2.4 that ports in DISCOPAR are typed, and that ports can
only be connected if the output of one component can serve as input of another com-
ponent. DISCOPARDE’s canvas includes a visual feedback mechanism that helps the
graph designer by presenting this port typing constraint on connections in a visual
way: when dragging a connection from an output port, only input ports with match-
ing colours are highlighted and actually accept the connection. The exception to this
rule are input ports of the Any type, which are always highlighted as they accept
any type of input. DISCOPARDE thus prevents the creation of a graph in which two
components are connected through incompatible ports.

Figure 4.10: Highlighting of compatible ports.

Figure 4.10 demonstrates this colour matching principle. In this example, the de-
signer is creating a connection from the OUT port of the Speed component. This port
outputs numerical data, namely the speed a smartphone is moving at based on GPS
data. Here, there are two compatible ports: the IN port of the Average component
that accepts numerical data, and IN port of the Counter component that accepts
any type of data. Thus, both these ports are automatically highlighted when dragging
a connection from the Speed component’s output port. The MapDotDraw input
port requires observations as input, and can therefore not be connected to the Speed
component.
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4.3.3 Process Configuration

Components can include configurable settings that enable the designer to customise
the behaviour of the process once the component is initialised. When available, these
settings are automatically added to the configuration window of each component.
Figure 4.11 depicts the configuration window of a LineChartVisualisation
component. This component visualises numerical values that it receives, and can be
configured to change the number of values that are shown simultaneously, the scale
of the Y-axis, etc.

Figure 4.11: LineChartVisualisation component configuration window.

Each component drawn on the canvas in the DISCOPARDE corresponds to one
process of that particular component in the DISCOPAREE once the graph is deployed.
Each process has its own configuration, so it is possible for two processes of the
same component to behave differently by using other settings. For example, the graph
designer can add two LineChartVisualisation components on the canvas but
configure them differently. Since we are actually configuring settings that will have an
impact on one particular process, we refer to this mechanism as process configuration
rather than component configuration.

Components can modify the default configuration window to include a more ad-
vanced editor for process customisation. One such example is the Form component,
which enables the creation of questionnaires that enable data gathering through user
input. Figure 4.12 shows the modified configuration window used by the Form com-
ponent to design questionnaires. This form builder consists of a drag-and-drop inter-
face, along with a collection of form elements that can be dragged onto a live preview
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Figure 4.12: Customised component configuration window.

of the form. Upon completion, the form elements are serialised and stored inside the
corresponding Form instance. The component is then added to the canvas where it
can be assembled into the mobile app.

4.3.4 Graph Validation Indicator

DISCOPARDE supports the concept of graph validation. A graph is considered valid
if it satisfies every constraint that is imposed on the graph. These constraints are
specified behind the scenes, as we will describe in more detail in section 6.1.5. One
example is a constraint for the mobile app logic stating that there must be at least
one data connection arriving at the Upload component, as otherwise no data will
be contributed to the observatory. Another example is testing if a path exists between
the sensor components (i.e., the graph’s sources) and the destination.

Whenever a constraint is not satisfied, a visual cue is shown to the graph designer
to indicate that there are still some unresolved issues, as illustrated in fig. 4.13. When-
ever a change is made to the graph, the constraints are re-evaluated and the visual cues
updated when necessary.
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Figure 4.13: Graph Validation error message example.

4.3.5 DISCOPARDE as Live Programming Environment

The previous section introduces the various features of DISCOPARDE, the visual
programming environment that creates DAGs that are initialised and executed by the
DISCOPAREE. A previously unmentioned and optional feature of DISCOPARDE is
live programming. Live programming environments, such as Smalltalk [54], allow
changes to the code of a running application in order to provide earlier feedback to
the programmer for both debugging and development.

DISCOPARDE has the option to be configured in such a way that any changes
made to the DAG, such as adding a component or changing configuration settings,
are immediately, and automatically, mirrored by the DISCOPAREE responsible for
executing that DAG. The DISCOPAREE mirroring these changes can either be de-
ployed on the same device as the DISCOPARDE, or on a different device.

In case the DISCOPAREE is deployed on the same device as the DISCOPARDE,
the DISCOPAREE can interact with the DISCOPARDE to provide immediate feed-
back to the graph designer about the running program. For example, if the
DISCOPARDE is used to create a mobile app for the citizen observatory, the live pro-
gramming can be enabled to provide the graph designer a live preview of the mobile
app’s UI and test its functionality during its development.

In case the DISCOPAREE is deployed on a different device, the DISCOPARDE

acts as a distributed live programming environment, where a graph designer can mod-
ify — from within its client-side browser — an application running on the server. In
the current status, it is only possible to modify a running program on the server from
within the client-side browser. In the future, we plan on adding support for real-time
monitoring, such as data throughput of a process.

More use-cases of DISCOPARDE as live programming environment are discussed
in chapter 5. The details on how this live programming is implemented are presented
in chapter 6.
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4.4 Facilitating End-User Programming

Section 3.7 introduced the most common goals of visual programming languages, i.e.,
making programming more understandable to some particular audience and improv-
ing the speed and correctness with which people perform programming tasks. These
goals are directly applicable on the usability requirement of our CO meta-platform
(cfr. section 3.3.1 - ULR2), as ICT-agnostic stakeholders must be able to correctly
set up a citizen observatory without too much effort through the use of DISCOPAR.
To achieve these goals, visual programming languages rely on four common strate-
gies [14]: Concreteness, Directness, Explicitness, Immediate Visual Feedback. In the
remainder of this section, we briefly introduce each of these strategies and explain
how DISCOPAR adopts them.

Concreteness

Concreteness means expressing some aspects of a program using particular instances,
i.e., using real values rather than a description of possible values [53]. Concreteness
can be used in two ways: to provide feedback or to specify part or all of the program.
For example, a WYSIWYG editor (“what you see is what you get”) automatically
displays the effects of some portion of a program on a specific object or value.

DISCOPARDE is concrete by-design, as it enables programmers to specify what
they want from the observatory through drag-and-drop actions where they manipulate
specific instances of components.

The process configuration (cfr. section 4.3.3) is also an example of concreteness,
as each process can be further customised by specifying actual values for a variety of
configuration options. In case the live programming feature of DISCOPARDE is en-
abled, changes to these settings are automatically applied on the running application
in the DISCOPAREE , potentially resulting in visual feedback in the live preview of
the running application.

Directness

Directness is described by Hutchins et al. [58] as having two aspects: distance and
engagement.

The first aspect of directness is a small distance between a goal and the actions
required of the user to achieve this goal. A term closely related is the conceptual
simplicity of a VPL [3], meaning that the underlying concepts are represented as nat-
urally as possible and simplifies abstract concepts. It only emphasises logic which is
directly pertinent to the application and not the programming mechanics. DISCOPAR
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was created specifically to hide the technological complexity of a citizen observatory
from the user. When creating a citizen observatory or campaign, users can create
client-side visualisations from server-side data processing components without even
realising they are setting up a distributed connection. Creating a (distributed) connec-
tion is as simple as drawing a line between an output port and an input port.

The second aspect of directness is a feeling of direct engagement, i.e., the feel-
ing that one is directly manipulating the objects of interest. According to Shneider-
man [116], the main principles for direct manipulation are: continuous representation
of the objects of interest, physical actions or presses of labeled buttons instead of
complex syntax, and rapid incremental reversible operations whose effect on the
object of interest is immediately visible. Rather than relying on complex syntax,
DISCOPARDE uses physical actions through its drag-and-drop interface and labelled
buttons to directly manipulate a process, e.g., to configure a process, or delete it from
the canvas.

Explicitness

Explicitness is the direct expression of certain aspects of semantics, without requir-
ing the programmer to infer it. Visual programming languages usually shows rela-
tionships among objects, component, or modules in a very explicit way, for example,
by drawing directed edges among related variables or statements.

Explicitness in DISCOPARDE is ensured as the connections between components
are explicitly depicted to the graph designer. The connections indicate data flows from
one process to another in the DISCOPAREE, without requiring the graph designer to
infer it. Another example is the port typing mechanism. When dragging a connection
from an output port, all the compatible input ports are explicitly highlighted.

Immediate Visual Feedback

Immediate Visual Feedback refers to the automatic display of effects of program
edits. A closely related term is the liveness [124] of a program, which is the degree
to which a visual programming language provides immediate feedback. Tanimoto
proposed a four-level scale of liveness (see figure 4.14). The lowest level of liveness
is the pure ‘informative’ level that uses the visual representation of the program as
an aid to documenting or understanding the program, but not for implementing the
program itself. The highest level is ‘informative, significant, responsive, and live’. It
is a system that automatically provides incremental semantic feedback whenever the
programmer performs an incremental program edit, and all affected on-screen values
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are automatically redisplayed. Additionally, it also reacts to other events as well such
as system clock ticks and mouse clicks over time.
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Figure 4.14: Levels of liveness in visual programming systems.

DISCOPARDE is designed to exhibit liveness at the highest level, which means
that it is informative, significant, responsive, and live. It is informative and significant
as the visual representation of the interconnected components is used to specify the
actual implementation of the citizen observatory instead of just serving as documen-
tation thereof. Responsiveness is present in DISCOPARDE as it displays the effects
of changes made by the programmer automatically, that is, the programmer does not
need to press a special button or do something in order to see the effects. For exam-
ple, deleting a component automatically removes it from the canvas, in addition to
any connection that was connected to the component. DISCOPARDE is live as the
optional live preview (cfr. section 4.3.5) is capable of reacting to events such as the
system clock, connection status, or microphone input, etc.

The advantage of implementing level four liveness for DISCOPARDE is that the
amount and rate of feedback to the graph designers is maximised, which increases
the correctness and speed at which they can program an observatory. Furthermore,
immediately seeing the impact of incremental changes to the program makes it easier
for graph designers to understand the effect of their actions.

4.5 Conclusion

This chapter introduced DISCOPAR, a new visual reactive flow-based domain-
specific programming language. More specifically, we introduced the graph layer
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of DISCOPAR, i.e., the visual syntax with which graph designers can construct pro-
grams. This graph layer is used by DISCOPARDE, a visual programming environ-
ment for DISCOPAR that is used throughout the citizen observatory meta-platform.
We introduced the main concepts of flow-based programming and their visual repre-
sentation in DISCOPAR’s graph layer.

We presented DISCOPARDE, with key features including the input/output typing
to ensure process compatibility, graph validation to prevent incorrect programs, pro-
cess configuration to enhance customisability, and optional live programming mode
to modify a running program, which may be deployed on the server. To ensure end-
user usability and understanding, we adopted four common strategies into the design
of DISCOPAR’s graph layer: concreteness, directness, explicitness, and immediate
visual feedback.

The concepts and visual syntax presented here serve as a guideline for the next
chapter, which introduces the CO meta-platform and discusses how stakeholders can
program a citizen observatory using DISCOPAR.
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5
C O N S T RU C T I N G C I T I Z E N O B S E RVAT O R I E S W I T H
D I S C O PA R

DISCOPAR, presented in the previous chapter, is a visual reactive flow-based domain-
specific language that lies at the foundation of our citizen observatory meta-platform.
This CO meta-platform enables ICT-agnostic stakeholders and communities to con-
struct their own citizen observatory and set up campaigns.

This chapter introduces the CO meta-platform. The first part of this chapter fo-
cusses on how a citizen observatory can be created through the use of DISCOPARDE.
We describe how the mobile data collecting app, server-side data processing, and web-
based visualisations of a citizen observatory are all implemented in DISCOPAR. The
second part of this chapter explains how campaigns can be created within a specific
citizen observatory. We conclude the chapter by describing the built-in calibration
tool and the community component creator provided by the CO meta-platform.
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5.1 Creating a New Citizen Observatory

The citizen observatory meta-platform enables stakeholders to instantiate their own
CO on a particular topic, such as noise pollution, road conditions, etc. Creating a
new citizen observatory is accomplished by specifying the name and purpose of the
observatory, along with an image that will be used as logo throughout the observatory
and as icon for the mobile app. The user who creates the CO is automatically assigned
the role of citizen observatory administrator (cfr. section 2.4.1). Upon creating a new
citizen observatory, the meta-platform automatically generates a series of dedicated
web pages for that particular observatory, as depicted in fig. 5.1. Furthermore, the
newly created CO is added to the list of observatories on the meta-platform’s website.
This website allows users to browse all currently existing citizen observatories and
grants them access to each observatory’s homepage.

The CO homepage acts as the central hub for that particular citizen observatory.
The top part of the homepage consists of the observatory’s logo and description, and
presents a list of the various campaigns that have been deployed within that obser-
vatory. Each campaign is listed by its name, description, and the campaign’s access
level (cfr. section 5.2). A button enables any visitor to create his own campaign. The
bottom part of the homepage shows a dashboard containing the visualisations speci-
fied in the Data Processing Design Interface, which is described in section 5.1.2. This
dashboard can be used to show general statistics about the observatory, such as, for
example, how many measurements have been uploaded in total, where they are made,
etc.

The menu of the homepage changes depending on the user’s access rights. The
CO administator has access to the following features:

• Mobile App Design Interface (MADI) is a web application that allows the
CO administrator to create a customised mobile data gathering app for the
observatory.

• Data Processing Design Interface (DPDI) is a web application that allows
the CO administrator to specify server-side data processing and/or monitoring
features of the citizen observatory.

The following features are accessible to any user:

• Mobile Data Collection App to contribute data to the citizen observatory. This
app is created by the CO administrator through the MADI.

• Observatory Data Analysis Interface (ODAI) is a web application to analyse
the citizen observatory’s data.
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5.1.1 Mobile App Design Interface

Each citizen observatory has exactly one specific mobile app that will be used for
collecting data. This app is developed by the CO administrator using the Mobile App
Design Interface (MADI), which is depicted in fig. 5.2.

1

Figure 5.2: The Mobile App Design Interface, featuring the component library (left), de-
signer canvas (middle), and a live preview of the mobile app (right).

The MADI uses DISCOPARDE and populates the component menu with a set of
domain-specific components that the CO administrator can compose into a graph to
implement the mobile app’s logic. The components that can be used by a mobile app
can be classified based on their functionality:

• Sensing components produce data coming from smartphone sensors or exter-
nal devices, or though user input from a participant.

• Logic components offer data processing capabilities such as filtering of incom-
plete data, and communication components to upload data to the observatory.
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• Visualisation components provide the means to visualise the data generated
by the mobile app.

• Coordination components handle the instructions sent out by campaign or-
chestration components to provide participant coordination on an individual
level.

Within each of these categories, subcategories are used to further subdivide compo-
nents into meaningful groups. For example, sensing components are further subdi-
vided by the type of data they produce, such as sound levels, air pollution, etc.

The MADI enables DISCOPARDE’s feature to become a live programming en-
vironment (cfr. section 4.3.5). Behind the scenes, the mobile app’s logic is executed
by DISCOPAREE to provide the CO administrator with a live preview of the mobile
app 1 . As discussed in section 4.4, DISCOPAR features “level four” liveness. As
a consequence, all the affected on-screen values and dependencies are automatically
updated whenever the CO administrator performs an incremental program edit. The
live preview of the mobile app also reacts to other events that the web browser pro-
vides, such as geo-location information. As a result, the CO administrator can more
accurately predict the actual behaviour of the mobile app while it is being developed.

5.1.2 Data Processing Design Interface

Each citizen observatory is responsible to process, store, and visualise all the data
collected by participants. The CO administrator specifies how this is done using the
Data Processing Design Interface (DPDI), which is depicted in fig. 5.3. The goal of
the DPDI is twofold:

First, the DPDI enables the specification of how all the data gathered by partic-
ipants must be pre-processed before persistently storing and passing it to the cam-
paigns deployed within the observatory. This pre-processing is particularly useful to
apply data cleansing and transformation to uploaded data samples. For example, fil-
tering out measurements without GPS coordinates, after which reverse geocoding is
performed on the remaining data.

Second, the DPDI can be used to create visualisations for analysis and mon-
itoring purposes. Visualisations can be public, in which case they are updated in
real-time on the dashboard included on the observatory’s homepage (cfr. fig. 5.1).
Not every visualisation has to be made public, as the observatory administrator may
want to keep certain statistics private.
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1

Figure 5.3: The Data Processing Design Interface, featuring the component library (left),
designer canvas (top-right), and the visualisations preview window (bottom-right).

The Data Processing Design Interface is a good example of how DISCOPAR hides
the non-essential complexity of creating distributed applications. The visualisation
components specified in the DPDI, which are visible on the observatory’s dashboard,
are web-based visualisations that are loaded every time the observatory’s homepage
is loaded. However, these visualisations expect input from components that are de-
ployed on the server. Therefore, behind the scenes distributed connections are estab-
lished to ensure that these visualisations remain up to date in real-time. Details on the
implementation of these distributed connections are provided in section 6.1.6.

Consider the example graph depicted in fig. 5.3. Although this graph does not
perform any data pre-processing, it uses several components to produce data for two
data visualisation components: a MapVisualisation shows the locations of the
most recent data contributions, and a PieChartVisualisation compares the
number of contributions made on each day of the week. These visualisations can be
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previewed from within the DPDI through a dedicated window (cfr. fig. 5.3 1 ).

Similar to the MADI (cfr. section 5.1.1), the DPDI uses DISCOPARDE as a live pro-
gramming environment. When a new observatory is created, a new DISCOPAREE

is deployed on the server that executes the observatory’s server-side logic. By de-
fault, new observatories only contain a component for persistently storing the data.
Any change made in the DPDI to server-side logic is immediately mirrored by this
DISCOPAREE . The CO administrator’s actions on DISCOPARDE’s canvas thus mod-
ify the running program. For the client-side components present in the DPDI, i.e., the
visualisation components, a separate DISCOPAREE is deployed on the client. This
client-side DISCOPAREE interacts with the server-side logic to provide the CO ad-
ministrated with a real-time live preview of the dashboard’s visualisation during their
development.

5.1.3 Mobile Data Collection App

The mobile data collection apps created through the MADI are web-based apps that
can run in any modern mobile web-browser. This app initialises the DAG containing
the app’s logic as designed by the CO administrator. A citizen obervatory’s mobile
app is responsible for measuring and monitoring the data, presenting the user with the
necessary feedback, and — in case of temporary disconnections from the observatory
— operating autonomously by buffering results until reconnection. Behind the scenes,
the mobile app automatically establishes a two-way real-time connection to the ob-
servatory to upload data and receive feedback. Everyone who creates an account on
the CO meta-platform is allowed to contribute data to a CO.
Each observatory’s mobile app has a default layout, depicted in fig. 5.4, consisting of
four tabs:

1. The main tab contains the actual mobile app UI.

2. The feedback tab displays messages from other users and general feedback
coming from the observatory.

3. The campaign tab shows a list of campaigns deployed within the observatory
whose intermediate results can be tracked in real-time.

4. The map tab depicts geographical information generated by the mobile app.

The campaign tab provides an overview of all the campaigns accessible to the par-
ticipant. Clicking on a campaign loads their visualisations, enabling real-time mon-
itoring of intermediate campaign results from within the app. Additionally, partici-
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Figure 5.4: The Mobile Data Gathering App with the main tab (left) and the campaign tab
showing intermediate results (right).

pants can toggle a button to indicate whether or not they want to receive campaign
coordination messages by the campaigns orchestration components, if available for
that particular campaign. We deliberately chose to not turn on any campaign-related
features unless a participant explicitly chooses to do so. This way, we prevent partici-
pants from being overwhelmed by unwanted campaign coordination messages, while
at the same time also reducing the bandwidth consumption of the mobile app. It also
reduces the mobile app’s CPU usage as it does not have to perform unnecessary up-
dates to all of the campaign visualisations.

5.1.4 Observatory Data Analysis Interface

In addition to providing real-time data processing and visualisation, citizen observato-
ries created through the CO meta-platform also support a more traditional query-like
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approach. This is achieved through the Observatory Data Analysis Interface (ODAI)
which enables end-users to query the observatory’s data for analysis and visualisation.
For example, the ODAI of a citizen observatory regarding noise pollution could be
used to see a particular city’s noise pollution.

1

Figure 5.5: The Observatory Data Analysis Interface.

The ODAI, depicted in fig. 5.5 also uses DISCOPARDEand although very similar
to the Data Processing Design Interface, it has a subtle but important difference: the
graph’s source is not the Mobile App Data component that receives observations
from each participant in real-time, but rather the Database component. Unlike the
DPDI’s graph, which remains active during the entire citizen observatory’s lifetime,
the ODAI’s graph is only executed once when the end-user decides to ‘run’ the graph
(cfr. fig. 5.5 1 ). When this happens, all the observations are retrieved from the ob-
servatory’s database and provided as output produced by the Database component,
after which they flow through the data analysis and visualisation components. In a
way, end-users can thus program database queries by selecting and configuring data
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filtering components. The raw data can also be downloaded in various formats for use
in external data processing and visualisations tools.

5.2 Creating a Campaign

Each citizen observatory provides support to deploy campaigns. The goal of a cam-
paign is to aggregate data for a particular goal or concern. Any user can deploy one
or more campaigns in each of the citizen observatories that are available on the CO
meta-platform. Users that create a campaign automatically take on the role of cam-
paign administrator for that particular campaign. A new campaign is created by click-
ing the appropriate button on a CO’s homepage and specifying the name and purpose
of the campaign. Additionally, the campaign’s access level has to be selected that
specifies which users are allowed to participate in the campaign. Following access
levels are supported:

• Open: Every user is allowed to participate. The campaign accepts observations
from each mobile app user. The campaign is visible and accessible to anyone
from the observatory’s web-page.

• Request: Users request permission from the campaign administrator to con-
tribute to the campaign. The campaign only accepts observations from users
who are granted permission. The campaign is visible from the observatory’s
web-page, but not accessible without permission.

• Invitation: Users are invited by the campaign administrator to contribute to the
campaign. The campaign only accepts observations from users who accepted
the invitation. The campaign is only visible on the observatory’s web page to
users that accepted the invitation.

Creating a campaign results in the automatic generation of several web-pages, sim-
ilarly to the creation of an observatory. These generated web pages are depicted
in fig. 5.6. The campaign’s homepage provides the campaign administrator access
to:

• Campaign Design Interface (CDI) to specify the campaign protocol and vi-
sualisations.

Furthermore, the campaign’s homepage provides every participant of the campaign
(or every user in the case of a public campaign) access to:
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Figure 5.6: Automatically generated web pages of a campaign.
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• Campaign Analysis Interface (CAI) to offer a more traditional query-like
analysis of campaign data.

• Campaign Dashboard to examine the real-time data visualisations.

The campaign dashboard is included in the campaign’s homepage, as depicted
in fig. 5.6. Visualisations defined in the CDI are shown automatically on the cam-
paign’s dashboard. These visualisations can either serve as reporting tools that enable
the campaign administrator to monitor a running campaign, or as data visualisation
for end-users to analyse the data from a campaign in real-time. As mentioned in sec-
tion 5.1.3, these visualisations can also be loaded from within the observatory’s mo-
bile data gathering app where they serve as immediate visual feedback. These visual-
isations act as an incentive mechanism promoting further involvement of participants
and end-users.

5.2.1 Campaign Design Interface

The Campaign Design Interface (CDI) enables the campaign administrator to specify
the subset of data collected by the observatory that is of interest to the campaign. This
is done by defining the campaign’s protocol (cfr. section 2.3.1). Specifying the cam-
paign protocol is done by placing constraints on the collected data (cfr. section 2.3.1)
and the context in which the data collection took place (cfr. section 2.3.1). In addi-
tion to defining the campaign protocol, the CDI enables the campaign administrator
to describe the campaign’s desired output in terms of data collections, visualisations
and maps.

The CDI, depicted in fig. 5.7, is a live programming environment where
DISCOPARDE provides a view on the campaign’s server-side logic and client-side
dashboard visualisations simultaneously. Any changes made to the campaign’s pro-
tocol are thus immediately applied on the server, and changes to the campaign’s
dashboard visualisations are immediately shown on the visualisation preview win-
dow (fig. 5.7 1 ), which has a similar purpose as the observatory’s Data Processing
Design Interface: it demonstrates what the current visualisations included in the graph
look like.

The CDI also includes a geographical constraint editor (fig. 5.7 2 ) that enables
the campaign administrator to define what areas are of interest to the campaign. Vari-
ous forms of geographical constraints are supported, such as a simple point, a trajec-
tory, complex polygon, etc. Notice however that specifying geographical constraints
is not mandatory. For example, a campaign that collects data on eating habits of peo-
ple from a certain age anywhere on earth does not require a geographical constraint.
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1 2

Figure 5.7: The Campaign Design Interface.

The geographical constraint editor is a good example of DISCOPAR’s dynamic
component menu population (cfr. section 4.3.1): whenever the campaign administra-
tor specifies a geographical constraint, a series of specific components for that geo-
graphical area are dynamically created and made available from the component menu.
These include components to test whether or not an observation has been produced
by an app while it is located in the specified geographical area, or a component that
overlays the area with a grid layout and performs location-based statistical averaging.

The CDI’s component menu is categorised as follows:

• Logic Components provide various data manipulation components. as well as
several filter components that can be used to specify the campaign protocol.
These filter components are further divided into following sub-categories:

– Geographical components can be used to add a geographical predicate
PA to the campaign’s protocol (cfr. section 2.3.1). In other words, they
can be used to place a geographical boundary on the area of interest of a
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campaign. Various geographical data filtering components are available,
such as testing if a measurement was made inside a specified area or
testing if the user stays on a predefined trajectory.

– Temporal components enable the campaign administrator to specify the
temporal predicate PT (cfr. section 2.3.1) to indicate when participants
should be collecting data. These components filter data based on their
time-stamp, which is added automatically to all observations that are pro-
duced by the mobile apps.

– Contextual components describe the desired context of the data collec-
tion. They define the contextual predicate PC (cfr. section 2.3.1) of the
campaign’s protocol. These components filter data based on meta-data
such as the participant’s age or device model.

• Aggregation components collect and/or aggregate data so that it can be used
in the visualisations depicted on the campaign’s dashboard. Data collections
can also be used by end-users in the Campaign Analysis Interface to browse
and analyse the data.

• Coordination components are capable of providing real-time coordination
messages to participants. For example, location-based triggers can be used to
prompt participants to gather data when they approach a particular area, or
participants can be requested to move to a particular area that currently has a
low data density.

• Visualisation components visualise (aggregated) data on the campaign’s dash-
board. These visualisations are also available from within the mobile app’s
campaign tab, enabling participants to monitor campaign progress in real-time.

5.2.2 Campaign Analysis Interface

End-users who want to browse and analyse the data that was collected in the context
of an ongoing campaign can use the Campaign Analysis Interface (CAI) rather than
relying on the visualisations depicted on the campaign dashboard. For example, con-
sider a noise mapping campaign of a certain busy road during peak hours. At the end
of the campaign, certain end-users may want to individually compare the different
days of the week to see whether there is any notable difference. To this extent, the
CAI provides a more traditional query-like approach, similar to the ODAI (cfr. sec-
tion 5.1.4). The CAI thus enables campaign participants (or any user if the campaign
is public) to run their own data analysis and visualisation.
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Figure 5.8: The Campaign Analysis Interface.

The Campaign Analysis Interface (CAI), illustrated in Figure 5.8, enables its
users to query the data collections made by the campaign. Data in these collections
can then be further manipulated and filtered using DISCOPARDE. Similar to the
ODAI, the graph constructed in the CAI is only executed once, rather than remaining
active in the system indefinitely. When the graph is initialised, the data collections
are retrieved from the database, after which they flow through the various data anal-
ysis and visualisation components. The raw data can also be downloaded in various
formats for use in external data processing and visualisations tools.

5.3 Citizen Observatory Meta-Platform Tools

The CO meta-platform has a separate web-page where various additional useful tools
for users can be presented. At the time of writing, the page provides access to the
Sensor Calibration Tool and the Community Component Creator.
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5.3.1 Sensor Calibration Tool

Sensor calibration is a comparative procedure where one smartphone’s sensor read-
ings are compared with those of a trusted reference device that is considered to pro-
duce correct readings. Sensor calibration can reveal systematic errors that can then
be corrected for in the future when collecting data with those sensors. Applying these
corrections substantially increases the accuracy of smartphone sensors [41].

A major issue with sensor calibration is the vast number of different device mod-
els available. With new models being released on a regular basis, performing sensor
calibration for each device model is tedious. Luckily, we observed from our previ-
ous expertise with the NoiseTube platform that there are many volunteers with the
necessary expertise (such as noise pollution scientists) who are willing to perform
this calibration themselves if they know their corrections will be integrated into the
NoiseTube platform. While the NoiseTube platform relies on manual effort to inte-
grate the calibration profiles, our CO meta-platform includes a Sensor Calibration
Tool that enables stakeholders to upload their own calibration profiles, after which
they are automatically integrated into the platform.

Figure 5.9: The Sensor Calibration Tool.

The Sensor Calibration Tool, depicted in fig. 5.9, enables users to add their own
so-called calibration profiles. Each calibration profile is linked to a specific device
model and sensor. The calibration profile itself consist of a series of calibration points.
A calibration point is a pair containing a reading of the smartphone sensor, combined
with the corresponding output of the reference device. Calibration is performed by
compensating the average measurement offsets of each device model through a cor-
rection term which is found by linear interpolation between calibration points for that
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sensor. Calibration can be performed both on the client and server through the use of
the calibration component.

In the current state, only calibration profiles for sound pressure levels using an
A-weighting filter are included in the CO meta-platform. Observatories dealing with
sound levels can thus utilise the calibration component to automatically calibrate data
when a profile is available. Testing whether a calibration profile is available is done by
extracting the meta-information from observations, which contains information indi-
cating how the data sample was made, including the device model (cfr. section 4.2.5).

5.3.2 Community Component Creator

To improve the speed at which programs can be created, the CO meta-platform sup-
ports the concept of reusable and shareable end-user created components, named
Community Components. These components can be created using the Community
Component Creator (CCC), which is implemented thorugh DISCOPARDE. The CCC
enables the community to add new components by re-configuring and composing a
number of existing components. Community components can be used throughout the
platform. In a sense, they allow end-users to construct their own abstractions for mo-
bile apps, data processing logic, and campaigns for other people to reuse. Community
components can thus be compared to procedural abstraction of other general purpose
languages. Each community component’s internal implementation consist purely out
of a DAG of other reusable components (which may be community components as
well).

Figure 5.10 illustrates the Community Component Creator. A new component
can be designed by visually programming its internal logic and defining the ports
it exposes to send and receive data. The example in fig. 5.10 depicts a community
component capable of filtering observations based on whether or not an observation
was produced during the daytime in weekends. To do so, the community component
relies on two internal components: a TimeFilter configured to daytime hours,
and a DayFilter that is set up to only let observations pass that were produced in
the weekend. A name and description can be specified when saving the community
component, after which the component is published in the component library.

The community components mechanism ensures functional scalability of the CO
meta-platform (cfr. section 3.3.2 - TR2), which is directly influenced by component’s
granularity. Community components enable the composition of fine-grained compo-
nents that provide very basic features into larger, more complex components. This
composition mechanism facilitates the addition of new features, as only a single fine-
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Figure 5.10: Community Component Creator.

grained component has to be implemented that can then be composed with various
existing components to provide even more features.

Community components also increase the usability of the CO meta-platform
(cfr. section 3.3.1 - UR2). Rather than having to reimplement every component com-
position from scratch, which is a time consuming effort, graph designers can use
community components that already implement the desired feature. As such, the ab-
straction mechanism provided by community components has an impact on the effi-
ciency at which end-users can program in DISCOPAR.

5.4 Conclusion

This chapter introduces our CO meta-platform that enables stakeholders to create
their own citizen observatories. We present the various interfaces, implemented
through the use of DISCOPARDE, that can be used to design each aspect of a citi-
zen observatory and a campaign.

In chapter 7, we present three radically different citizen observatories to demon-
strate the versatility of the CO meta-platform. However, we first provide some tech-
nological background in chapter 6 where we discuss implementations details of DIS-
COPAR and describe how the citizen observatories created through the CO meta-
platform are hosted.
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6
I M P L E M E N TAT I O N

For the sake of reproducibility, this chapter focuses on the implementation of DIS-
COPAR, our new visual reactive flow-based domain-specific language that lies at the
basis of the citizen observatory meta-platform.

As is typical in flow-based programming (cfr. section 3.5), the design of DISCO-
PAR is split into two layers: the component layer and the graph layer. The latter is
used in the implementation of DISCOPARDE, a web-based visual programming en-
vironment that is used throughout the CO meta-platform to design the various parts
of a citizen observatory and a campaign. The visually composed programs are then
loaded by DISCOPAREE, the execution engine implemented by DISCOPAR’s com-
ponent layer.

This chapter first introduces the various abstractions that together define the com-
ponent layer in DISCOPAR. Next, we introduce the implementation of DISCOPAR’s
graph layer. Finally, we provide a high-level view on the underlying system archi-
tecture of the citizen observatory meta-platform and discuss the various technologies
involved in every part of a CO’s architecture.
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6.1 DISCOPAR: Component Layer

Remember from section 3.5 that flow-based programming applications are repre-
sented as a directed graph consisting of processes as nodes and connections as edges.
Processes access connections by means of ports. A process is an instance of a com-
ponent, and runs concurrently with other processes.

The component layer of a flow-based programming language contains the source
code of each component. In DISCOPAR, this source code is divided amongst several
packages. Each package contains components about a certain topic. For example,
the ‘geolocation’ package contains components offering various geolocation features,
such as components interacting with the GPS sensor to provide information about
the participants whereabouts or movement speed. An exhaustive list of DISCOPAR’s
packages and their constituent components is presented in appendix A.

The component layer also included the necessary abstractions to create a compo-
nent, spawn a process thereof, etc. Therefore, this section describes how FBP con-
cepts such as components, processes, and ports are implemented in DISCOPAR’s
component layer, which is written in JavaScript.

6.1.1 Components

Remember from section 3.5.2, which presents the characteristics of flow-based
programming, that FBP is a form of component-based software engineering (CBSE)
by design. CBSE defines components as software elements that conform to a compo-
nent model and which can be independently deployed and composed according to a
composition standard without modification [56]. The role of the component model
is to define a set of standards for component implementation, interfaces, naming,
meta-data, interoperability, customisation, composition, evolution, and deployment.
We now introduce the component model of DISCOPAR, i.e., the set of standards
each component in DISCOPAR must adhere to.

Component Implementation: Each component is implemented by instantiating
the Component object, which requires two arguments: an object containing the
component’s meta-data, and a function that contains the component’s black box logic.

Naming: Components in DISCOPAR require a unique name, as a component’s name
is used to identify it in the component library. Within the same component, input
ports must have a unique name. The same holds for output ports.
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Meta-Data: The meta-data of a component contains its unique name. Optionally it
contains the component’s category, subcategory, description, and flags to indicate
special cases such as components that can only operate on the client or server side. If
no (sub)category is specified, it defaults to ‘miscellaneous’.

Interoperability: Components are compatible if the output of one component can
serve as input of another component (cfr. port typing section 4.2.4).

Customisation: Components can be customised in two ways: by providing them
with a configuration object that acts as initial information packet (cfr. section 4.2.5),
or by specifying user-customisable settings that can be configured by the graph
designer through DISCOPARDE’s configuration window (cfr. section 4.3.3).

Composition: Components can be composed as long as their input and output ports
are compatible. Client-side-only components cannot be included in a server-side
application, and vice versa. Components with a special flag that indicates there can
only be one instance of that component, can only be used once within the same
application.

Evolution Support: Replacing a component with a newer version must not break
the component’s interface. This means that existing ports cannot be removed or
renamed, although additional ports may be added. It is only allowed to modify the
internal black-box logic of a component if it does not change the external behaviour
of the component. The meta-information of a component, such as its description,
can also be modified as long as it remains relevant with respect to the component’s
intended behaviour.

Deployment: Components can be deployed on any system where the DISCOPAREE

is loaded. Restrictions from individual components, such as only allowing client-side
deployment, still apply.

In the remainder of this section, we discuss how components can be implemented
according to this model, and show how components can be initialised to create a
process. Implementing a new component can be done in different ways: from scratch
using JavaScript, through component composition, or a combination of the two.
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Implementing a Component from Scratch

Implementing a new component is done by creating a new Component object.
Component requires two arguments upon initialisation: The first argument is an ob-
ject containing meta-data about the component, as described in the component model.
The second argument is a function that contains instructions on how to transform a
DISCOPAR Process into a particular instance of a specific component.

An example of a component implemented from scratch is shown in listing 6.1.
This code extract contains the complete source code for the Counter component,
which counts the number of information packets (cfr. section 4.2.5) it has received on
its input port.

1 BasicComponents.Counter = new D.Component(
2 {
3 name: 'Counter',
4 category: D.ComponentCategory.LOGIC,
5 description: 'Counts and outputs the number of incoming data.'
6 },
7 function (process) {
8
9 // Register Ports

10 process.addInPort('in', {}, increment);
11 process.addOutPort('out', {type: D.DataType.NUMERIC});
12
13 // Component Black Box Logic
14 var counter = 0;
15
16 function increment(_) {
17 process.outPorts.out.send(++counter);
18 }
19 }
20 );

Listing 6.1: Source code of Counter component.

The Counter component is added to the package BasicComponents. As a
result, this component is automatically added to the DISCOPARDE component menu
whenever the ‘basic’ package is loaded. Note that the various abstractions provided by
DISCOPAR’s component layer, such as the Component object, are made available
through the DISCOPAR or D global variable. The component’s meta-data is specified
on lines 2 to 6, while lines 7 to 19 contain the component’s internal black-box logic to
spawn a process of the Counter component. In case of the Counter component, a
process must add an input port (line 10) that will execute the function increment
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each time it receives an information packet. Additionally, line 11 adds an output port
that outputs the status of the counter each time it is incremented. On line 14 the value
of the counter is initialised. Lines 16 to 18 implement the increment function,
which modifies the state by incrementing the process’s internal counter variable, after
which its new value is send to the output port.

Implementing a Component through Composition

Components can also be created through component composition [56]. Component
composition is the combination of two or more components yielding a new com-
pound component. This composition mechanism can thus be thought of as the FBP
equivalent to procedural abstraction in procedural programming languages. The char-
acteristics of the new component are determined by the components being combined
and the way in which they are combined. The ability to create new components by
using other components is essential to reduce complexity and maximise code reuse.
Primitive components are components that do not contain other components. They
are the basic building blocks of the system and are equivalent to built-in procedures
in traditional programming languages.

The concept of community components, introduced in section 5.3.2, are one ex-
ample of component composition (albeit on a high level of abstraction) where end-
users program the internals of a new component through drag-and-drop actions in
DISCOPARDE. A similar mechanism can also be used by component developers who
wish to create new components on the textual source-code level by composing exist-
ing ones. For example, consider the SoundLevelMeter component shown in list-
ing 6.2 whose implementation consist purely of other components (lines 7 to 9) which
are interconnected (lines 11 to 12). Additionally, certain ports of the internal compo-
nents are exposed (lines 14 to 16), which means that these ports act as input/output
ports for the SoundLevelMeter component. The destroy function on (lines 18
to 21) is the equivalent of a destructor and is called when a compound component
is deleted from the programming environment. it ensures that all the internally used
components are properly disposed.

Spawning a Process from a Component

The components’ source code listed in the previous examples only describe the inter-
nal black box logic of a Counter and SoundLevelMeter component. Spawning
an actual process of a component is done by calling the init() function on the
desired component stored in DISCOPAR’s component library:
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1 SoundComponents.SoundLevelMeter = new D.Component(
2 {
3 name: 'SoundLevelMeter',
4 ...
5 },
6 function (process) {
7 var spl = new D.Library.SoundPressureLevel.init()
8 var calibration = new D.Library.CalibrateDecibel.init();
9 var observationMaker = new D.Library.ObservationMaker.init();

10
11 spl.outPorts.out.connect(observationCreator.inPorts.in);
12 observationMaker.outPorts.out.connect(calibration.inPorts.in);
13
14 process.inPorts.in = spl.inPorts.in;
15 process.outPorts.out = calibration.outPorts.out;
16 process.outPorts.decibel = calibration.outPorts.decibel;
17
18 process.destroy = function () {
19 spl.destroy()
20 calibration.destroy()
21 observationMaker.destroy()
22 }
23 }
24 );

Listing 6.2: Source code of SoundLevelMeter component.

1 var counter = new D.Library.Counter.init(id, iip, settings)

Listing 6.3: Component initialisation.

The init() function accepts three optional arguments:

1. An identifier to be assigned to the process. If none is provided, the system will
automatically assign one to the process.

2. The initial information packet (cfr. section 4.2.5), i.e., a configuration object
containing extra information to properly initialise a process. Intended to be
used by component developers.

3. Initial values for the configurable settings that are made available in the com-
ponent’s configuration window of DISCOPARDE (cfr. section 4.3.3). Intended
to be used by the graph designers.

Section 6.1.5 provides more details on the purpose of a process’s identifier with re-
spect to storing and establishes connections in a graph.
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To further clarify the difference between a process’s initial information packet
(IIP) and settings, consider a citizen observatory where participants can use a mobile
app to upload a geo-tagged photo combined with a rating (1-5 stars). The individual
values of observations made for this observatory can be extracted through the use of
the ObservationData component. This component accepts observations as input
and outputs each individual value on one of its output ports, as illustrated by fig. 6.1.

Figure 6.1: Visual representation of a ObservationData process.

The number of output ports of the ObservationData component is not de-
fined in the component’s source code. Instead, the number of output ports depends
on what data is gathered and uploaded by the mobile application of the citizen ob-
servatory. This means that ObservationData cannot spawn a process without an
IIP containing details on the data collected by the mobile app. This information is
automatically extracted by analysing the graph representing the mobile app, using
an approach similar to the graph validation presented in section 4.3.4, and stored as
meta-information of the citizen observatory. An example of this meta-information is
listed in listing 6.4. This meta-information is wrapped inside an object that acts as the
IIP for the ObservationData component (line 12).

1 var iip = {
2 applicationmetadata : {
3 sensors : {
4 location: {type: "location"}
5 },
6 formFields : {
7 photo: {type: "file"},
8 rating: {type: "number"}
9 }

10 }
11 }
12 var obsData = new D.Library.ObservationData.init(null, iip, null)

Listing 6.4: Initialisation of component requiring configuration.

Note that the type of ObservationData’s output ports is automatically set
based on the information provided by the IIP. Remember from section 4.2.4 that
DISCOPAR assigns each port a type in order to ensure that components can only be
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connected if they ‘understand’ each other, and that port types are visually represented
in DISCOPARDE through the use of different colours.

In contrast, consider the MapVisualisation component that adds a map contain-
ing the individual observations to the observatory’s dashboard. The graph designer
can customise processes of this component by specifying the dimensions of the vi-
sualisation, providing a short description explaining its purpose, and by selecting the
tile layer for the map. Sample values for these settings are explicitly shown in list-
ing 6.5. Providing settings to a component upon initialisation (line 8) will overwrite
the default value of each setting.

1 var settings = {
2 height: "400px",
3 width: "100%",
4 description: "Map depicting observatory data",
5 layer: "openStreetMap"
6 }
7 }
8 var m = new D.Library.MapVisualisation.init(null,null,settings)

Listing 6.5: Initialisation of component with settings.

Unlike the initial information packet, settings are customisable by the graph de-
signer, enabling them to alter the behaviour of a process during its execution. These
settings are displayed in the process’s configuration window (cfr. section 4.3.3) of
DISCOPARDE, as depicted in fig. 6.2

Figure 6.2: Configuration window of a MapVisualisation process.
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6.1.2 Processes

Whenever a component is initialised from the library through the init() function,
a new process is created (cfr.section 4.2.2). This newly created process then loads the
black box logic as defined in the component’s source code, which contains instruc-
tions on how to properly initialise a process for that particular component. To do so, a
component’s source code can utilise the Process object as illustrated in listing 6.6.
Various meta-information fields, such as the process’s unique identifier, are omitted
for the sake of brevity

We now discuss each method supported by the Process object, as listed in list-
ing 6.6.

1 function Process(component, iip, instanceSettings) {
2 var process = this;
3
4 process.addInPort = function (...) { ... };
5 process.addOutPort = function (...) { ... };
6 process.addSetting = function (...) { ... };
7 process.adoptSettings = function (...) { ... }
8 process.destroy = function () { ... };
9

10 return process;
11 }

Listing 6.6: Interface of the Process object.

The addInPort method adds an input port to a process. This method has four
parameters:

• portName: string indicating the name of the port. Each component must have
unique input port names.

• configuration: JSON object to specify various settings of the port. For exam-
ple, {type: D.DataType.NUMERIC} indicates that the input port only
accepts numerical data.

• IPHandler: (optional) function that is executed for each information packet
received by the input port.

• bufferHandler: (optional) function that is executed after a series of informa-
tion packets are received by the input port.
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The addOutPort method adds an output port to a Process. This method has
two parameters, i.e., portName and configuration, which serve the identical
purpose as in addInPort.

The addSetting method adds a configurable setting to a process (cfr. sec-
tion 4.3.3). addSetting accepts a name, initial value, callback and optional con-
figuration. Every time the value of a setting changes, its corresponding callback is
executed. Settings accept any value, unless the optional configuration object speci-
fies a predefined set of values that restricts the set of values from which the setting
must be chosen. For example, the Map component, which loads a map in the DOM,
provides a setting to change the tile layer of the map. Rather than accepting any value,
this setting must be set to one of the pre-defined supported tile layers.

The adoptSettings method enables a process that is implemented through
component composition to adopt and expose the settings of internally used processes.

The destroy method is used to properly dispose processes, such as explicitly
stopping underlying hardware signals used by the process. In the case of compound
components, internally used processes have to be correctly destroyed as well. For
example, the destroy function of the SoundLevelComponent (cfr. listing 6.2)
disposes — amongst other — the internally used SoundPressureLevel process.
Explicitly destroying the SoundPressureLevel is required to stop the media
stream which captures sound samples from the audio input.
The Process object listed in listing 6.6 is used by default when initialising a
component. However, certain components require additional features. For example,
feedback components require access to the DOM, while community components
(cfr. section 5.3.2) have an entire graph as their black box logic rather than built-in
source code. As a result, different types of processes exist, which extend the
Process interface or which override certain aspects of the internal implementation.
These different types are indicated using an additional field in a component’s meta-
information, which in turn is used by a Component’s init method to decide what
type of process is required to create an instance of the component. Currently, the
following types of processes exist: DOM-Process, Visualisation-Process
and Community-Process. We discuss each type in the remainder of this section.

DOM-Process is a process with access to the DOM. These processes are mainly
used in the Mobile App Design Interface (cfr. section 5.1.1), as the mobile app’s user
interface consists of DOM-processes, ranging from simple data visualisations, such
as displaying text on the screen, to more advanced ones, such as a line chart, pie chart,
etc.
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Each DOM-Process contains a field which holds the visualisation’s HTML
code. The Process API is extended with addToDOM and removeFromDOM
methods, that add, or respectively remove, the process’s HTML to the DOM.
Additionally, an addedToDOM callback function is added, which can be used by
processes that require additional set-up once its HTML is actually added to the
DOM. A resize callback enables DOM-processes to update their visualisations
in the case of a window resize, such as a participant rotating the smartphone from
portrait to landscape.

Visualisation-Process is a special case of a DOM-process, and thus
further extends the DOM-process interface. Visualisation processes are used by
the web-based visualisation components that display observatory data or campaign
data on a dashboard. Since they are designed to be depicted on a dashboard, each
visualisation process provides several settings that can be configured to define the
dimensions of the visualisations on the dashboard. Additionally, each visualisation
supports various export options, enabling end-users to download the visualisations
in various formats. Visualisations processes can specify which export options
the support through the additional loadExportOptions method added to the
Process interface.

Community-Process is an instance of DISCOPAR’s community components
(cfr. section 5.3.2). These user-defined processes consist of a graph describing the
internal logic of the component. This graph, combined with the user-defined input
and output ports of the community component, are persistently stored in the DIS-
COPAR community component database. When creating a process of a community
component, its internal graph is loaded by the loadInternalGraphmethod, after
which this graph is connected to the input/output ports of the community component
through the loadConnections method.

6.1.3 Ports

Ports are the points of contact between processes and connections. In classical FBP
(cfr. section 3.5.2), input ports provide receive functionality which consists of dequeu-
ing information packets from a connection’s buffer, and output ports provide send
functionality to queue an information packet into the port of a connected process.
In contrast, DISCOPAR is a reactive FBP language, meaning that processes operate
using a publish/subscribe pattern, i.e., processes wait for data arriving on their input
ports and publish data on their output ports. The actual sending of an information
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packet is a normal JavaScript event that triggers the connected input port’s callback
function.

Input ports and output ports provide a different interface, although both inherit
some common properties from the Port object shown in listing 6.7.

1 function Port(name, config) {
2 var port = this;
3 ...
4 port.connections = {};
5 port.distributedConnections = {};
6 port.type = config.type || Globals.DataType.ALL.;
7 port.subject = new Rx.Subject();
8 ...
9 return port;

10 }

Listing 6.7: The Port object.

Each port must be assigned a name upon creation, and additional configuration
settings can be provided by means of an optional second parameter. DISCOPAR has
the convention that in case there is a single input port on a component, it should be
named ‘IN’. Similarly, in case there is only a single output port, it should be named
‘OUT’. In case of multiple ports, meaningful names are preferred. For example, the
Accelerometer component has three output ports, named X, Y, and Z, that output
acceleration on the corresponding axis.

Each port keeps track of the connections attached to it. Each port makes a distinc-
tion between local connections to another process on the same device, and distributed
client-server connections that connect to a remote process.

The type of a port (line 6) can be specified using the optional configuration pa-
rameter. Recall from section 4.2.4 that DISCOPAR prevents processes with different
port types to be connected to one another, thereby ensuring that interconnected pro-
cesses are always compatible. The exception to this rule is the Any datatype, which is
assigned to a port by default if no type restriction is specified. Ports receive and send
data through the use of a publish/subscribe pattern implemented using RxJS Subjects.
This is explained below.

RxJS Subjects

The Reactive Extensions for JavaScript (RxJS) [125] is a set of libraries for compos-
ing asynchronous and event-based programs using observable sequences and fluent
query operators. RxJS represents asynchronous data streams via the Observable
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abstraction. Observer objects can subscribe to an Observable, which no-
tifies the subscribed Observer instance whenever an event occurs inside the
Observable.

A Subject is both an Observer and an Observable: it can subscribe to a
data source, and acts as an observable for its own set of subscribed observers. In this
way, the Subject can act as a proxy for a group of subscribers and a source. For ex-
ample, Subject is typically used to implement a custom observable with caching,
buffering, and time shifting. Additionally, it can be used to broadcast data to multi-
ple subscribers. These properties make a Subject very suitable to implement FBP
ports: on one hand, input ports are both listening to upstream information packets
arriving from output ports, while at the same time producing a stream of that noti-
fies the internal black box logic whenever new IPs arrive. This can either trigger an
event handler function within the process or (in the case of a compound component)
forward the data to the required internal processes. On the other hand, output ports
can subscribe to data streams coming from diverse sources, such as smartphone sen-
sors and hardware signals, and publish that data immediately as output of the process
upon which input ports can subscribe.

Input Ports

The additional features provided by the InPort object are shown in listing 6.8.
Method subscribe (lines 4 to 13) enables a process to react upon the arrival of
new information packets by registering a callback function. The way subscribe
handles IPs depends on whether or not a bufferHandler was specified in the
addInPort call of Process (cfr. section 6.1.2). In case bufferHandler is
omitted, IPHandler is registered as callback and thus executed for each IP individ-
ually (line 6). In case bufferHandler is defined, IPs arriving at an input port are
grouped in a timed buffer (line 8) that collects IPs until the specified time has elapsed.
The buffer time defaults to 10 milliseconds but can be overridden using the input
port’s configuration field bufferTime. Lines 9 to 12 subscribe a new callback to
this buffered stream, which execute IPHandler for each IP in the buffer (line 10),
in addition to calling bufferHandler on the buffer as a whole (line 11).

We conceived the buffered stream mechanism after observing a frequently
recurring pattern within a component’s source code: Several components contain
a combination of fast operations that need to be executed for each IP individually,
and slow, expensive operations that do not necessarily need to be executed for every
single IP. Consider for example a visualisation component that displays the collected
data from all participants on the observatory’s web page. Each newly uploaded IP is
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1 function InPort(name, conf) {
2 var inPort = new Port(name, conf);
3
4 inPort.subscribe = function (IPHandler, bufferHandler) {
5 if (!bufferHandler)
6 return port.stream.subscribe(IPHandler);
7 else
8 return port.stream.bufferTime(port.options.bufferTime)
9 .subscribe(function (buffer) {

10 buffer.forEach(IPHandler);
11 bufferHandler(buffer),
12 });
13 };
14
15 inPort.connectFromDistributed = function (...) {};
16 inPort.disconnectFromDistributed = function (...) {};
17
18 return inPort
19 }

Listing 6.8: The InPort object.

individually added to this component’s state in real-time. However, actually updating
and redrawing an element in the DOM is a costly operation, especially considering
the potentially huge amount of data arriving at the same time. Therefore, it suffices
to update the DOM only once for each buffer. Another example is a server-side
database process, responsible for persistently storing each IP. Rather than inducing
a write operation for each individual IP, this process only performs a write for the
buffer as a whole.

The inPort object also features methods to connect and disconnect from distributed
processes. These are explained in more detail in section 6.1.6.

By default, each input port is associated with a specific callback function which is
only executed when IPs arrive at that particular port. However, DISCOPAR also pro-
vides support for more complicated scenarios requiring so-called synchronised input
ports, i.e., ports which fire a single callback only when each individual input port has
an IP in its buffer. Input ports can offer this synchronisation, in addition to a variety
of other interesting stream operators, as a result of being built on top of RxJS.
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Output Ports

A connection between processes always originates at an output port. The OutPort
object (listing 6.9) provides the means to establish (and disrupt) a connection from
an output port to an input port. connect (lines 4 to 7) establishes a connection
between an output port and an input port. Since both types of ports are implemented
on top of RxJS subjects, this connection can be established by subscribing the input
port’s Subject, taking on the role of Observer, to the output port’s Subject,
which takes on the role of Observable. The return value of RxJS’s subscribe
is a function that, when called, will cancel the subscription. Output ports keep track
of each un-subscribe function for each of their outgoing connections (line 5). These
outgoing connections are distinguished based on the ID of the input port they connect
to.

1 function OutPort(name, conf) {
2 var outPort = new Port(name, conf);
3
4 outPort.connect = function (inPort) {
5 outPort.connections[inPort.id] = outPort.subject.subscribe(

inPort.subject);
6 outPort.onConnect(inPort)
7 }
8
9 outPort.disconnect = function (inPort) {

10 outPort.connections[inPort.id].unsubscribe();
11 outPort.onDisconnect(inPort)
12 };
13
14 outPort.send = function (data) {
15 outPort.subject.next(data)
16 for (var connectionID in port.distributedConnections) {
17 outPort.distributedConnections[connectionID].emit(connectionID

, data)
18 }
19 };
20
21 outPort.connectToDistributed = function (...){ ... }
22 outPort.disconnectToDistributed = function(...){ ... }
23
24 return outPort
25 };

Listing 6.9: The OutPort object.
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Each time a connection is established to some process, the onConnect method
is executed, which acts as an event callback that developers can use for a variety of
purposes. For example, when a data collection process establishes a connection to a
visualisation process, it can send its entire data in bulk to that particular visualisa-
tion process to bring it up-to-date. From that point on, the visualisation process will
receive incremental updates form the data collection through the established connec-
tion.

The disconnect function (lines 9 to 12) cancels a particular connection by
calling the correct unsubscribe function stored in the output port’s connections
field. Additionally, the onDisconnect callback is executed that developers can
customise in a component’s source code.

The send function (lines 14 to 19) enables a process to publish an IP to one
of its output ports, triggering a response from the subscribed input ports of con-
nected processes. Distributed processes cannot be directly subscribed to an output
port through RxJS, as they have no Subject representing their input port on the
same device. Therefore, the output port must send the data across each distributed
connection, which are implemented in DISCOPAR through the use of web sockets.
More details on how distributed connections are managed, including the use of the
connectToDistributed and disconnectToDistributed methods, are
provided in section 6.1.6.

Gate Ports

There are situations where a component’s input port acts as input and output port at
the same time. For example, consider the community component (cfr. section 5.3.2)
depicted in fig. 6.3. This component’s IN input port 1 acts as output port for the
internally used components. Similarly, the community component’s output port 2
acts as input port for the internally used components. As a result, these ports act as
“gates” and provide the combined API of both input and output ports.

In future work (cfr. section 8.2.3), we plan on using gate ports to enable hierar-
chical grouping of components, i.e., reducing a group of components into a single
component representing that group. This grouped component would then use gate
ports to implement input ports and output ports for connections going to processes
outside the group.
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1 2

Figure 6.3: Gate ports of a community component.

6.1.4 Observations

Section 4.2.5 presents the concept of information packets and introduced a standard
format for citizen observatory data, which DISCOPAR refers to as observations. List-
ing 6.10 depicts the implementation details of observations. By default, each obser-
vation stores the identifier of the participant that captured the data, in addition to the
observatory’s identifier for which the data is intended. Each observation automati-
cally receives a timestamp on creation, in addition to the device model used by the
participant. Location is a optional field, as not every citizen observatory needs to track
where data was gathered (e.g., an observatory tracking eating patterns of people).

1 function Observation(user_id, observatory_id, data) {
2 var observation = this;
3
4 observation.user_id = user_id;
5 observation.observatory_id = observatory_id;
6 observation.datetime = new Date();
7 observation.location;
8 observation.device = DISCOPAR.Globals.getDeviceModel();
9 observation.data = data;

10
11 observation.addData = function(...) {...};
12
13 return observation
14 };

Listing 6.10: The Observation object.

The actual data is stored in the data field of an Observation, which is an
object containing each collected data value. The addData method requires a data
type and value.
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6.1.5 Graphs

In section 4.2.6 we mention that the structure of an application in DISCOPAR is
represented as a directed acyclic graph. However, cycles are often used as a means to
store state in flow-based programming [17]. A self loop, for example, is an edge that
loops back to an input port of the same process. This can be used by a process to pass
along state data during subsequent activations. Because processes in DISCOPAR are
stateful by design (cfr. section 4.2.2), cycles are not needed to store state, and in fact
not allowed. This design choice was based on the assumption that ICT-agnostic users
interacting with the DISCOPAR language find stateful processes more intuitive than
having to manually program state using cycles.

The nodes of a DISCOPAR graph are processes, while the edges are the connec-
tions between ports. Before we present DISCOPAR’s Graph object, we first discuss
the textual notation of graphs. This JSON representation contains all the required
information to initialise a graph and execute the program’s logic. A graph in DIS-
COPAR is visually created through DISCOPARDE, from where its JSON represen-
tation is passed onto and loaded by DISCOPAREE. The JSON representation can
also be used to persistently store graphs. As an example, consider the graph depicted
in fig. 6.4 that calculates the average speed a participant is moving at, displaying this
value on the screen as a simple label.

Figure 6.4: Simple example of a graph in DISCOPAR.

The JSON representation of this graph is shown in listing 6.11. Each JSON rep-
resentation of a graph is comprised of five fields:

• Unique identification number of the graph.

• A collection of processes used in the graph.

• (Optional) A list of connections describing how the processes within the graph
are interconnected.

• (Optional) A list of distributed connections, describing how processes connect
to external processes.

• (Optional) Constraints imposed on the graph.
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1 var graphJSON = {
2 id: "af886f62-bb39-4933-c539-831de2cb0513",
3 processes: {
4 b0b85c47-f96b-4ea9-aef0-1a89a8ea632c: {
5 name: "Speed"
6 iip: {},
7 settings: {},
8 }
9 66fd995f-c4a7-40ca-b534-a61119360346: {

10 name: "Average",
11 iip: {},
12 settings: {},
13 },
14 0d53b4a0-b577-401e-b4f2-4486a37b13ca: {
15 name: "Label",
16 iip: {},
17 settings: {
18 text: "Speed",
19 unit: "km/h"
20 }
21 }
22 },
23 connections: [
24 {
25 sourceProcess: "b0b85c47-f96b-4ea9-aef0-1a89a8ea632c",
26 sourcePort: "speed",
27 sourceGraph: "af886f62-bb39-4933-c539-831de2cb0513",
28 targetProcess: "66fd995f-c4a7-40ca-b534-a61119360346",
29 targetPort: "in",
30 targetGraph: "af886f62-bb39-4933-c539-831de2cb0513"
31 },
32 {
33 sourceProcess: "66fd995f-c4a7-40ca-b534-a61119360346",
34 sourcePort: "out",
35 sourceGraph: "af886f62-bb39-4933-c539-831de2cb0513",
36 targetProcess: "0d53b4a0-b577-401e-b4f2-4486a37b13ca",
37 targetPort: "in",
38 targetGraph: "af886f62-bb39-4933-c539-831de2cb0513"
39 }
40 ],
41 distributedConnections: [],
42 constraints: []
43 }

Listing 6.11: JSON representation of a Graph object.
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The JSON representation of a graph stores processes based on their ID. Each process
stores the name of the component that it is an instance of, in addition to the process’s
configuration and settings. In this example, only Label has configurable settings, as
the label’s text and optional unit can be customised.

Connections store the process ID, port name, and graph ID of both the output port
(the source) and the input port (the target). This information is used to identify the
ports and establish a connection between them.

Distributed connections store information similar to the local connections, in ad-
dition to extra information required to establish the remote connection. More details
are provided in section 6.1.6.

Constraints can be imposed on the graph. These are used by the graph validation
indicator (cfr. section 4.3.4) in order to test if the graph satisfies the imposed con-
straints. Each constraint has a type, and contains information on what parts of the
graph the constraint is applicable to. An example of a constraint is shown in 6.12.
This constraint forces the graph depicted in fig. 6.4 to have an incoming connection on
the in input port of the Label process. Currently, three types of constraints are sup-
ported: IncomingData, OutgoingData, and pathExists. IncomingData
verifies whether a certain input port of a process receives data, i.e., whether there is
at least one connection arriving on the port. Similarly, OutgoingData checks if an
output port has any outgoing connections. pathExists takes an input port of one
process and an output port of another, and tests whether a path exists between these
ports using the breadth-first search algorithm.

1 constraints : [
2 {
3 arguments: {
4 port: "in",
5 component: "0d53b4a0-b577-401e-b4f2-4486a37b13ca"
6 },
7 type: "incomingData"
8 }
9 ]

Listing 6.12: Example of a graph constraint.

Constraints are specified by the CO meta-platform itself, as they are included in the
various graph templates used by the meta-platform. For example, each mobile app
starts from a graph template including an Upload component that must have at
least some incoming connections, otherwise data is never sent to the observatory.
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1 function Graph(json) {
2 var graph = this;
3 ....
4 graph.fromJSON = function (json) {
5 graph.id = json.id
6 for (var id in json.processes) {
7 var jsonP = json.processes[id];
8 var process = Library[jsonP.name]
9 .init(id, jsonP.configuration, jsonP.settings);

10 graph.addProcess(process);
11 }
12 json.connections.forEach(graph.addConnection);
13 json.distributedConnections
14 .forEach(graph.addDistributedConnection);
15 graph.constraints = json.constraints;
16 return graph
17 };
18
19 graph.addProcess = function (process) {
20 graph.processes[process.id] = process
21 process.graphID = graph.id;
22 }
23
24 graph.addConnection = function (connection) {
25 sourceCmp.outPorts[connection.sourcePort]
26 .connect(targetCmp.inPorts[connection.targetPort]);
27 graph.connections.push(connection)
28 };
29
30 graph.addDistributedConnection = function(...){...}
31
32 graph.removeProcesses= function (...) {...};
33 graph.removeConnection = function (...) {...};
34 graph.removeDistributedConnection = function (...) {...};
35
36 graph.toJSON = function () {...};
37 graph.loadDOM = function (...) {...};
38
39 graph.validate = function () {
40 return graph.constraints.map(function (constraint) {
41 return Globals.GraphValidation[constraint.type](graph,

constraint.arguments);
42 })
43 };
44 ...
45 return graph
46 }

Listing 6.13: The Graph object.
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A graph’s JSON representation can be used to initialise a Graph object. The source
code of the Graph object is displayed in listing 6.13. An “empty” Graph is ini-
tialised when no JSON representation is provided. Loading a graph from its JSON
representation is accomplished by means of the fromJSON method (lines 4 to 17),
which turns the JSON representation into a working program as follows: first, the pro-
cesses included in the JSON representation are initialised. This is done by looking up
the correct component in the DISCOPAR component library and spawning a process
of it by calling the init function with the stored identifier, initial information packet,
and settings specified in the JSON representation. These newly created processes are
added to the graph object using addProcess (lines 19 to 22), which stores them
by ID in the processes field. Next, addConnection (lines 24 to 28) establishes
the connections between the various processes within the graph by calling connect
on the appropriate ports. Similarly, addDistributedConnection initialises the
distributed connections to processes residing on a different machine, whose details
are described in section 6.1.6.

Certain graphs are simultaneously executed on multiple devices. For example,
participants using the mobile app of a particular citizen observatory are executing the
same graph on their devices. The processes of these graphs thus share the same ID,
as their IDs are used to establish the correct connections.

The toJSON method transforms a graph back into its textual representation. Any
changes made to the graph during its execution are included.

loadDOM takes a DOM container as argument and adds any process with a
visual representation, such as a DOM-Process or Visualisation-Process
(cfr. 6.1.2), to it. These types of processes have an additional configuration value indi-
cating the order that they must be added to the DOM container, ensuring an identical
layout than the one previewed during the graph’s development.

validate (lines 39 to 43) performs the graph validation as discussed in sec-
tion 4.3.4 by testing the constraints imposed on the graph and indicating whether
or not they are violated. This method is called automatically whenever a change is
made to the graph in DISCOPARDE.

DISCOPAR supports the dynamic modification of an already deployed graph, even if
there already are information packets flowing through it. Processes and connections
can be added, changed, and removed without stopping and restarting the graph. As
a result, Graph also offers methods to remove certain parts of a graph (lines 32
to 34). More details of DISCOPAR’s live programming environment are described
in section 6.2.1
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6.1.6 Distributed Connection Manager

Up until now, we have deferred the explanation on how DISCOPAR handles dis-
tributed connections, i.e., connections between ports that live on a different machine.
In this section, we present the Distributed Connection Manager (DCM) and describe
how ports can establish a connection to a remote port. A remote port is a port belong-
ing to a process that resides on a different device.

The DCM is implemented using Socket.IO [25], a JavaScript library enabling
real-time bidirectional event-based communication through webSockets. Socket.IO
includes additional features such as auto-reconnection support as well as disconnec-
tion detection. It provides both server-side and client-side components with similar
APIs such that both client and server can emit events and subscribe event listeners.

Since clients, such as participants using the mobile app and end-users consulting
the web-based visualisations, can (dis)appear at any time, it is impossible for server-
side processes to be aware of a new client-side process unless the latter explicitly
notifies the server-side of its existence. Therefore, distributed connections are always
initiated by the clients.

The first step in establishing a distributed connections is a client-side port send-
ing a message to the DCM containing a request to be connected to a certain port
on the server. This is done by calling an output port’s connectToDistributed
method, which is shown in listing 6.14. This method can only be executed on the
client-side, and works as follows: first, a new DistributedConnection is cre-
ated (line 2), which requires the port names, process IDs, and graph IDs, similar to a
normal connection, in addition to information whether it is an outbound or inbound
connection from the perspective of the client. Each DistributedConnection
automatically generates an ID. More specifically, this ID is generated by concatenat-
ing of the output port’s name and process ID, combined with the input port’s name
and process ID.

Next, distributedConnectionSocket is called (line 3), which either cre-
ates a new socket that automatically connects to the CO meta-platform’s server, or
it returns the already existing socket. This means that each client/server connection
originating from the same client is handled by a single underlying web socket, re-
sulting in less network overhead and, as a result, less bandwidth consumption. This
optimisation was implemented to reduce the mobile data usage of participants.

Each output port keeps track of its outgoing distributed connections. Recall
from listing 6.9 that an OutPort’s send method to also emits the data along each
of its distributed connections.
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1 outPort.connectToDistributed = function (port, process, graph){
2 var connection = new DistributedConnection(...)
3 var socket = distributedConnectionSocket();
4 outPort.distributedConnections[connection.id] = socket;
5
6 socket.emit('connectTo', connection);
7 socket.on('reconnect', function () {
8 socket.emit('connectTo', connection);
9 });

10 };

Listing 6.14: The ConnectToDistributed method of the OutPort object.

The output port then emits a connectTo event containing the newly created
DistributedConnection (line 6). Because the server has no means to dif-
ferentiate between a temporary disconnect and a permanent one, the output port
will resend the request to establish a distributed connection whenever the socket
reconnects to the server (lines 7 to 9).

On the server-side, the connectTo event is received by the DCM, thereby trigger-
ing the code shown in lines 1 to 7 in listing 6.15. Here, the input port to which a
connection must be established is located by looking up the correct graph (stored
on the server by ID), and then locating the correct process within that graph. Once
the input port is found, it is subscribed to data arriving on the socket using that par-
ticular connection ID as event name. Recall from section 6.1.5 that certain graphs,
such as the one implementing the mobile app logic, are executed on multiple devices
simultaneously. The processes in each of these graphs share the same IDs and thus
communicate across a distributed connection using the same connection ID. As a re-
sult, the server-side input port of a distributed connection automatically receives data
from possibly multiple instances of its client-side output port.

Since each client is connected through a single socket, we use multiplexing to
support multiple distributed connections using the same socket.

The InPort’s callback, which is defined in the component’s source code, is
automatically triggered by setting the next value of the input port’s internally used
Subject (line 6).

Ending a distributed connection is done by removing the listener on the corre-
sponding connection ID, meaning that from that point on the server-side input port
will no longer reacting to data arriving using that connection ID as event name.

118



6.1 DISCOPAR: Component Layer

1 socket.on('connectTo', function (connection) {
2 var graph = getGraph(connection.targetGraph)
3 var process = graph.components[connection.targetProcess]
4 var inPort = process.inPorts[connection.targetPort];
5
6 socket.on(connection.id, inPort.subject.next)
7 });
8
9 socket.on('disconnectTo', function (connection) {

10 socket.removeAllListeners(connection.id)
11 });

Listing 6.15: connectTo and disconnectTo event handlers of the DCM.

The code listed in listing 6.15 only demonstrates how a connection from a
client-side output port is establised to a server-side input port. Connections going
from a server-side output port to a client-side input port are implemented similarly.
In this case, the client-side input port send a connectFrom event to the DCM,
which locates the corresponding server-side output port and requests that output port
to establish a connection to the client-side input port. From that point on, the output
port will also transmit data over the specified socket to the client. On the client, the
input port is also listening for events using the connection ID as name.

By default, a process that sends data to one of its output ports results in that data
being send to every input port connected it. A previously unmentioned feature that
server-side output ports provide is the possibility to send data to only one particu-
lar client. This is particularly useful for orchestrating a campaign where individual
participants receive personal coordination messages. Sending this personalised data
is easily accomplished in DISCOPAR thanks to two reasons. First, observations, i.e.,
the information packets uploaded by participants, include the user ID of the partic-
ipant (cfr. section 6.1.4). Second, server-side output ports keep track of outgoing
distributed connections based on user ID. This is possible as each socket contains
meta-information such as the user ID of the client that it is associated with. Using
this information, DISCOPAR supports a to method that can be used from within
processes as follows:

1 process.outPorts.out.to(observation.user_id).send(data)

Doing so overwrites the default send behaviour and only sends the provided data to
the specified client.
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6.2 DISCOPAR: Graph Layer

In flow-based programming, the graph layer provides a higher level of abstraction and
enables one to reason about an application in terms of components and their connec-
tions without having to worry about the internal implementation of each component.
The graph layer enables the graph designer to create a program by assembling various
components in a directed acyclic graph. DISCOPAR’s graph layer has a visual rep-
resentation, the syntax of which was introduced in chapter 4. This visual graph layer
is used by DISCOPARDE (cfr. section 4.3) to enable ICT-agnostic users of the CO
meta-platform to design their own citizen observatory and campaigns. This section
discusses some of the implementation details of DISCOPAR’s graph layer as well as
DISCOPARDE.

The graph layer of DISCOPAR is implemented as a standalone library, named
DISCOPAR-UI, which extends DISCOPAR with functionality to visually represent
processes. This distinction is made for efficiency reasons, as all the DISCOPAR-UI
features do not have to be loaded when executing a graph. DISCOPAR-UI is imple-
mented using a combination of web technology, namely Javascript, HTML, and CSS.

Drawing Components

Components are drawn on the screen by adding their visual representation to the can-
vas of DISCOPARDE. Creating the visual representation of a component is done by
initialising a UI-Component, which takes a regular Component and adds several
methods and meta-information related to visually represent the process on the screen.
For example, a UI-Component contains the draw method, which creates a DOM
node representing the component and applies appropriate CSS styling before adding
it to the canvas.

Each component must also visualise its input and output ports. This is done
in a similar fashion, i.e., by creating a UI-Port object that represents the port.
UI-Port also features a draw method that creates a visual representation of a port
by creating a DOM element (applying the correct colour based on the data type that
the port accepts (cfr. section 4.2.4)), and by attaching that DOM element on the cor-
rect side of the graphical representation of the component.

A UI-Component also adds extra meta-information to a component such as
the current X and Y coordinates of the component on the canvas. These are updated
whenever the component is moved around on the canvas. Furthermore, this informa-
tion is stored persistently, thereby ensuring that the component reappears in the same
location on the canvas when re-loading DISCOPARDE.
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Connecting Components

Connections are implemented using JsPlumb [67], a JavaScript library that provides
the means to visually connect elements using Scalable Vector Graphics. JsPlumb pro-
vides various customisation hooks which were used to build DISCOPARDE’s visual
feedback mechanism that highlights compatible input ports when dragging a connec-
tion from a certain output port (cfr. section 4.3.2).

Connections are coloured according to the type of the output port. Once a con-
nection is attached to a compatible input port in the graph layer, a corresponding
connection is made in the component layer of DISCOPAR. A connection can be re-
moved either by clicking on it, or by detaching it from the input port.

6.2.1 DISCOPARDE

DISCOPARDEis the web-based visual programming environment of DISCOPAR. It
can be integrated into any web page, as it only requires access to the DISCOPAR-UI
library and a DOM element in which the canvas can be initialised.

DISCOPARDE enables users to program a distributed application: multi-
ple (sub)graphs, possibly deployed on different devices, can be loaded into
DISCOPARDE simultaneously. Components from each graph can freely establish
connections amongst each other, thus creating a single distributed graph. As a result,
a distinction is made between local connections (i.e., between two components on
the same device) and distributed connections connecting components hosted on
different devices. This is done as follows: upon creation, each graph is assigned to a
particular device by the meta-platform. Since each component knows to which graph
it belongs, it also (indirectly) knows on which device it will be deployed. Using
this information, the correct type of connection is automatically created. Distributed
connections are always added to the client-side graph, as it is the client who initiates
the connection by design (cfr. section 6.1.6).

In the current status of our work, components added to the component menu
are explicitly assigned to a graph, as illustrated in listing 6.16. This code snip-
pet is part of the Campaign Design Interface (cfr. section 5.2.1), where the cam-
paign designer can implement the campaign protocol (server-side data filtering)
and data analysis (client-side web-based visualisations) simultaneously. Here, the
DISCOPAR and DISCOPAR-UI library are loaded, after which two new graphs
are initialised. The processingGraph will contain all server-side logic, while
the visualisationGraph will contain the client-side logic. Processes from
both these graphs can be interconnected in the visual programming environment.
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Since campaigns may contain temporal filters, all the components related to tem-
poral filtering are added to the component library with the indication that each
instance thereof will be added to the processingGraph. Similarly, visualisa-
tions components added to the library will automatically add their processes to the
visualisationsGraph.

1 require(["DisCoPar", "DisCoParUI"], function (D, DUI) {
2 var processingGraph = new DUI.UI-Graph(new D.Graph( ... ));
3 var visualisationGraph = new DUI.UI-Graph(new D.Graph( ... ));
4
5 D.Globals.TemporalComponents.forEach(function (cmp) {
6 DUI.AddComponentToMenu(cmp, processingGraph)
7 })
8
9 D.Globals.VisualisationComponents.forEach(function (cmp) {

10 DUI.AddComponentToMenu(cmp, visualisationGraph)
11 })
12 ...
13 })

Listing 6.16: Adding components to the component menu of DISCOPAREE.

Live Programming Environment

DISCOPARDE is synchronised in real-time, which means that users do not need to
explicitly save their changes. Each action performed by the graph designer triggers
a corresponding event which is immediately sent to the CO meta-platform using
Socket.IO. For example, changing one of the settings in a component’s configura-
tion window will emit a changeSetting event containing the relevant informa-
tion. These changes are then persisted on the server by updating the graph’s JSON
representation and storing it in the database.

If DISCOPARDE’s live programming mode is enabled (cfr. section 4.3.5) the
changes are not only applied to the JSON representation of the graph, but also the
running program, i.e., the in-memory Graph object. Therefore, DISCOPARDE is a
live programming environment (cfr. section 4.3.5). When this graph is running on the
server, users interacting with DISCOPARDE are performing distributed live program-
ming: they are actively changing a program running on the server from within their
web browser. The in-memory Graph is not redeployed when a change is made. This
way, processes preserve their state when changes are made to the graph that do not
affect them.
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6.3 Citizen Observatory Meta-Platform Architecture

This section provides a high-level view of the system architecture of the citizen obser-
vatory meta-platform, and discusses the various technologies involved in each of the
part of a citizen observatory. Figure 6.5 depicts the system architecture of a single citi-
zen observatory as created by the CO meta-platform. This figure only depicts a single
citizen observatory with a single campaign, but the meta-platform can run multiple
citizen observatories simultaneously, each capable of hosting multiple campaigns and
interacting with an unbounded number of mobile clients.

The mobile app, server-side processing, and web-based visualisations are each
implemented using a different DISCOPAR graph. However, since these graphs are
interconnected, a citizen observatory can be considered as one single distributed
graph. DISCOPARDE supports the design of distributed graphs, which means that,
in theory, every element of a citizen observatory could be implemented using a
single interface. However, the fact that end-users, CO administrators, and campaign
administrators have different access privileges, we deliberately chose to split up
citizen observatory’s graph along various interfaces, such as the Data Processing
Design Interface, Campaign Design Interface, etc. Additionally, because of the
limited scalability features of DISCOPARDE with respects to managing the screen
real estate, programming the citizen observatory’s distributed graph as a whole
would quickly become tedious due to the large number of components depicted on
the screen.

Every element of a citizen observatory is implemented in JavaScript. Although
JavaScript was originally intended to be used in the web browser, it is now possi-
ble to program the server-side of an application using JavaScript as well thanks to
Node.js [48]. In the remainder of this section, we provide more technical details about
each element of a citizen observatory.

6.3.1 Mobile Data Collection App

Each observatory has its own dedicated mobile app. This is in contrast to reusable PS
systems such as Epicollect (cfr. Section 2.2.2), where there exists only one mobile
app that shows a list of all available projects that users can click on to participate.

Additionally, rather than having multiple codebases for each mobile operating
system (iOS, Android, etc.), DISCOPAR uses web-based HTML5 apps that are
platform-independent and only require a HTML5 compliant web browser to oper-
ate. Therefore, users do not need to download any native app via the app store and
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6.3 Citizen Observatory Meta-Platform Architecture

they can simply add the app’s web page to their device’s homescreen. Loading the
web app automatically initialises the corresponding DISCOPAR graph representing
the mobile app’s logic. This means that users automatically use the most up to date
version of the application. The observatory owner can modify the mobile app at any
time, and users do not have to update the app through an app store.

Web-based apps are slowly gaining popularity over native apps since they are
becoming increasingly powerful. The main advantages of web-based apps are:

• Common codebase across multiple mobile platforms.

• Developers — in our case ICT-agnostic stakeholders — do not need to submit
their app to any app store for approval.

• Users do not need to bother with downloading the app from an app store. Ad-
ditionally, a web-based app is automatically up to date.

These properties make web-based apps a good solution for our meta-platform where
stakeholders want to develop and publish an app themselves. However, web-based
apps also have some disadvantages:

• Performance is generally inferior compared to native apps.

• Limited access to the mobile device’s hardware (e.g., sensors).

• Offline functionality are more difficult to support.

Although performance is less of an issue when dealing with mobile data collection
apps as they are generally not very CPU-intensive. Limited device access is a more
challenging issue for some data collection purposes. However, the gradual introduc-
tion of browser APIs already provide access to various device sensors, including ac-
celerometer, ambient light detector, GPS, microphone, camera, etc.

Another challenge for web-based mobile apps is offline support. By default, web-
based apps do not work when network connectivity is unavailable, as they are un-
able to download the app’s logic. Solutions exist, such as Service Workers, which
enable applications to take advantage of persistent background processing, including
hooks to enable bootstrapping of web applications while offline. However, these tech-
nologies are not yet considered mainstream and therefore not yet supported by every
browser.

To support more advanced features, such as offline support and additional device
hardware access, an alternative approach such as a hybrid app can be used, which we
discuss in more detail in section 8.2.
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6.3.2 Server-Side Data Processing and Campaigns

The server-side contains both the observatory data processing graph, as well as the
various campaign graphs. The server-side runs on a Node.js server. Since each citizen
observatory can generate completely different types of data (noise measurements, mo-
bility parameters, etc.), a flexible database system is required to persistently store ob-
servatory data. Therefore, we implemented the database using MongoDB, a NoSQL
database supporting dynamic schemas. MongoDB use JSON documents in order to
store records, just as tables and rows store records in a relational database.

Whenever a new citizen observatory is created through the CO meta-platform,
a default observatory graph template containing some basic functionality, such as
storing data in the database, is automatically deployed on the server. The observatory
administrator can modify this graph via the Data Processing Design Interface (cfr. sec-
tion 5.1.2) to add additional data processing features and visualisations to the obser-
vatory’s dashboard. The Store component (which stores observations uploaded by
participants in the database) is automatically connected to the ApplicationData
component of each campaign running in the observatory (which acts as source for the
campaign’s graph). As a result, every campaign receives the pre-processed data upon
which they can apply their campaign protocol.

Newly created campaigns also start from a default campaign template, similar to
the observatory data processing graph. This graph is automatically deployed on the
server, even though it provides no functionality apart from a source component that
outputs all processed observatory data. The campaign can be implemented though
the Campaign Design Interface (cfr. section 5.2.1).

Both the Observatory Data Analysis Interface (cfr. section 5.1.4) and Campaign Anal-
ysis Interface (cfr. section 5.2.1) deploy temporary graphs on the server. These graphs
only remain active as long as the client is visiting the corresponding web page. The
graph are initialised from their JSON representation, after which the observatory’s
data is retrieved from database. This data then flows through each process as defined
in the Analysis Interface, after which it is automatically pushed across a distributed
connection to the visualisation components deployed on the client.

6.3.3 Web-based Visualisations

The homepage and analysis interface of both a citizen observatory and a campaign
include a dashboard containing web-based visualisation for end-users. These web-
based visualisations are rendered on the client, and are implemented in HTML5,
Javascript, and CSS. When loading these web-pages, the underlying visualisation
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processes automatically connect themselves to the corresponding server-side output
ports (cfr. section 6.1.6). From that point on, the visualisations receive real-time sta-
tus updates from the observatory or campaign. When initialising their connection, the
server-side components will first send their entire state to bring the visualisations up
to date. From that point on, they will only receive incremental updates.

6.4 Conclusion

This chapter discusses the implementation of DISCOPAR’s component layer and
graph layer, and provided some technological details on the architecture of the CO
meta-platform. We presented the component model that each component in DISCO-
PAR must adhere to, in addition to the source code of DISCOPAR’s flow-based pro-
gramming concepts such as components, processes, ports, and graphs. We presented
the JSON representation of graphs which are the textual representation of graphs
constructed in the graph layer. We also introduced the Distributed Connection Man-
ager which enables real-time client-server communication between processes. We
discussed how implementing citizen observatories entirely in JavaScript enables DIS-
COPAR’s components to be deployed on the client and server, with the exception of
some components, such as visualisations components that can only be deployed on
the client side.

In the next chapter, we demonstrate the versatility of our CO meta-platform by
creating different citizen observatories, and evaluate the usability of DISCOPARDE

by performing two separate user studies.
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7
D I S C O PA R AT W O R K

The previous two chapters discussed the features and implementation of our citizen
observatory meta-platform, so that stakeholders can set up and configure the neces-
sary ICT-tools of a citizen observatory and deploy campaigns without or with very
little programming skills. In line with our research visions that consist of creating
a reusable and reconfigurable approach for ICT-agnostic users to design and deploy
citizen observatories (cfr. section 1.2), it is essential that we validate our solution in
terms of expressiveness, suitability and usability through experiments in both labora-
tory as well as real-world conditions. This is the goal of this chapter.

7.1 Introduction

In chapter 2 we argued that despite the high societal demand, citizen observatory
development remains labour-intensive, lengthy, and requires substantial technical ex-
pertise. This is mainly due to the fact that in current state of the art, each citizen
observatory is developed from scratch, due to a lack of reusable and reconfigurable
citizen observatory construction tools. As a solution, this dissertation focusses on
conceiving a more generic approach. I.e., we present a CO meta-platform through
which ICT-agnostic stakeholders are able to construct their own citizen observatories
and design PS campaigns. This CO meta-platform was developed with four concrete
research visions in mind (cfr. section 1.2). We now reiterate the research visions of
this dissertation and explain how we will validate, in the remainder of this chapter,
whether the CO meta-platform lives up to these visions.
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Research Vision 1: Reconfigurable Citizen Observatory Platform Establishing
a generic approach for building reusable and reconfigurable citizen observatories is by
far the most complex and ambitious challenge that this dissertations tackles through
the concept of CO meta-platform. To demonstrate the expressiveness of the CO meta-
platform, we have created three radically different citizen observatories. These ob-
servatories each focus on a distinct domain, namely noise pollution, the quality of
informal walking trails, and monitoring atmospheric conditions in terms of tempera-
ture, humidity, and atmospheric pressure.

Research Vision 2: Campaign Definition and Enactment Another challenge and
responsibility of the CO meta-platform is to improve the chances for successful cam-
paigning by automatically orchestrating the campaigns that are deployed in the ob-
servatories created on the platform. We therefore demonstrate the definition and suc-
cessful enactment of several PS campaigns deploying in citizen observatories created
through the CO meta-platform.

Research Vision 3: Reactive Citizen Observatories As explained in section 2.4.3,
it is essential that participants receive immediate feedback to guarantee successful
campaigning. We therefore highlight DISCOPAR’s real-time campaign orchestration
mechanisms that were used in real-world campaigns deployed within the observato-
ries on noise pollution and quality of informal walking trails

Research Vision 4: ICT-Agnostic Usability Citizen observatory created through
the meta-platform have to be configurable and usable by ICT-agnostic users. This
vision is realised through the use of DISCOPARDE, which enables stakeholders and
communities to design a CO and campaigns only by specifying their concerns and
goals using domain-specific concepts. We validate the usability of DISCOPAR and
the CO meta-platform as a whole through two end-user usability tests involving peo-
ple without any programming knowledge.

7.2 Citizen Observatory Meta-Platform Expressiveness

In section 2.2, we introduced the concept of participatory sensing (PS), and cate-
gorised existing PS systems in two categories: Ad-hoc PS systems (section 2.2.1)
and reusable PS systems (section 2.2.2). We discussed how most ad-hoc PS systems
are only a proof-of-concept implementation to showcase the potential of PS as an al-
ternative data gathering method for both sensorial data and user input. These systems
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cannot be reconfigured and only work for the particular use-case they were designed
for. Additionally, they provide no support for defining and enacting campaigns. On
the other hand, several reusable PS systems were developed that solve the lack of re-
configurability of ad-hoc PS systems. However, these reusable PS systems are limited
in terms of the type of data that can be collected, as they focus only on discrete data,
i.e., single-shot observations usually collected through questionnaires. They provide
no support for continuous data streams originating from smartphone sensors. As with
ad-hoc PS systems, campaign support is also largely missing.

The citizen observatory meta-platform presented in this dissertation provides the
best of both worlds: The highly reconfigurable citizen observatories enable the cre-
ation of PS apps handling continuous data streams (e.g., sensorial data from both
internal and external sensors), discrete data such as user input, or a combination of
both. To showcase the CO meta-platform’s expressiveness, we now present three rad-
ically different observatories that were created using the meta-platform.

7.2.1 NoiseTube2.0: Observatory on Noise Pollution

The NoiseTube2.0 observatory built using our CO meta-platform is a re-creation of
the existing NoiseTube platform (cfr. section 2.2.1). The NoiseTube2.0 CO was al-
ready demonstrated on various occasions in chapter 5, where it was used as a running
example for the various tools that constitute the CO meta-platform. In this section
we provide a more in-depth look at the components that were used to implement
this citizen observatory, and we discuss various campaigns deployed in real-world
scenarios.

Mobile Data Gathering App

The NoiseTube2.0 mobile data collecting app and its implementation are depicted
in fig. 7.1. The mobile app is implemented in the Mobile App Design Interface using
only 6 components.

The implementation is straightforward thanks to the abstractions provided by the
component composition mechanism. If we look at the internal implementation of the
NoiseTubeUI component, we notice that it is implemented using a composition of
12 components, as illustrated on the lower left side of fig. 7.1. Furthermore, one of
these internally used components, i.e., the SoundLevelMeter component, is itself
also implemented as a composition of 3 components (cfr. listing 6.2 in section 6.1.1).
This clearly illustrates how component composition greatly reduces the size and com-
plexity of graphs.
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Figure 7.1: Implementation of NoiseTube2.0’s mobile app in DISCOPAR.

Despite its straightforward implementation, The NoiseTube2.0 app is — with the
exception of NoiseTube’s noise source tagging feature — identical to the existing
NoiseTube app. Both apps provide the means to collect sound pressure levels us-
ing the microphone, apply calibration when available, automatically tag observations
with GPS coordinates, and provide feedback to users through visualisations.

Campaigns on Noise Pollution

The creation of NoiseTube2.0 demonstrates that our CO meta-platform is capable of
building a mobile data gathering app that provides the same data gathering and visu-
alisation features an existing ad-hoc PS system for measuring noise pollution. Where
NoiseTube2.0 differentiates itself is the CO meta-platform’s integrated support for
organising campaigns, which is totally lacking from the existing NoiseTube system
where campaigns are orchestrated using the manual effort of a domain-specialist.

We now provide a first demonstration of the suitability and expressiveness of
the CO meta-platform for defining (noise mapping) campaigns. All of the follow-
ing campaigns were created and executed during an international cooperation with
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Zayed University in Abu Dhabi, United Arab Emirates. This cooperation was estab-
lished upon invitation by Andrew Peplov, an associate professor in the department of
Life and Environmental Sciences, who wanted to promote noise pollution awareness
amongst his students by letting them participate in data gathering campaigns created
through our CO meta-platform.

Campaign: Radisson Blue A first campaign was held to test the correctness of
the CO meta-platform. The goal of this campaign was to measure the differences in
noise pollution between daytime and night-time at the Radisson Blue hotel in Abu
Dhabi. It is a good example of how the Campaign Design Interface (CDI) can be
used to describe the campaign protocol (cfr. section 2.3.1). Figure 7.2 depicts the
implementation of this campaign containing the campaign protocol, data aggregation
components, and visualisations components that are visualised on the campaign’s
dashboard.

Figure 7.2: Radisson Blue Campaign Design.

This campaign’s protocol does not contain a contextual predicate (cfr. section 2.3.1).
However, the measurement predicate (cfr. section 2.3.1) includes both a geographical
(PA) and temporal predicate (PT).

PA is implemented through the GeographicalFilter component, which fil-
ters out measurements made outside the vicinity of the hotel. This component was
automatically generated and added to the component library of the CDI as a result
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of indicating the area of interest in the geographical constraint editor, as illustrated
in fig. 7.3.

Figure 7.3: Geographical constraint editor of Campaign Design Interface.

PT is implemented by means of two TimeFilter components. This cam-
paign is only interested in measurements made between eight o’clock in the morn-
ing and midnight. Measurements made during this time interval are split into two
groups in order to create two separate datasets, one that includes measurements made
between 08:00–18:00 and another one that contains measurements made between
18:00–23:59. No additional temporal constraints are present, meaning that measure-
ments from every month and day of the week are included in the campaign’s two data
sets.

The datasets created during this campaign can be used by the Campaign
Analysis Interface (cfr. section 5.2.2), which enables end-users to create their
own visualisations to browse and analyse campaign data. However, this cam-
paign already provides some data visualisations on the campaign’s dashboard: two
AggregatedMapVisualisation components show a comparison of aggre-
gated noise level during the day and evening, as illustrated in fig. 7.4. These compo-
nents display the data as calculated by server-side AggregatedMap components.
Each individual grid cell is coloured based on the average loudness levels. Clicking
on a grid cell reveals additional information, such as the minimum and maximum of
all the values recorded inside that cell.
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Figure 7.4: Visualisations on the ‘Radisson Blue’ campaign dashboard.

The quality of a campaign is inherently related to measurement density (cfr. sec-
tion 2.3.2), as the enormous quantity of data that is typical for particularity sensing is
usually translated into a more qualitative condensed representation. In this case, the
condensed representation is obtained by location-based statistical averaging through
the AggregatedMap component on the server. Sufficient data density, or the lack
thereof, is made apparent by the AggregatedMapVisualisation component
through the opacity of grid cells: Translucent grid cells indicate that the specified
data density requirement is not yet obtained. Grid cells become increasingly opaque
as density increases. Blank cells contain no data (yet). Because these visualisations
are updated in real-time, the campaign administrator and visitors of the campaign
web-page can monitor the campaign progress in real-time. Furthermore, participants
can also load the campaign visualisations in the mobile app, enabling them to track
the progress of a campaign in real-time and move to nearby locations that are still
short of data.

The resulting noise maps of this campaign illustrate that there is a very clear increase
in noise pollution during the daytime (left map of fig. 7.4), especially in the area
surrounding the hotel’s swimming pool. Further analysis found that this was mainly
caused by the children playing and shouting near the pool. This campaign thus demon-
strates that the CO meta-platform is capable of enacting campaigns and producing the
desired output.
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Campaign: Zayed University A subsequent campaign using the NoiseTube2.0 cit-
izen observatory was organised at the campus of Zayed University, where students
were tasked to map the campus. In this case, the campaign was designed by profes-
sor Peplov, who took on the role of campaign administrator. He then tasked several
students to look for loud area’s on one side of the campus, and others to look for
quiet area’s. This campaign resulted in the aggregated noise map depicted in fig. 7.5.
Both parking lots (north and south) are clearly identified as quiet area’s, and the high-
est loudness values were measured near the university’s technical installations for
climate control.

Figure 7.5: Visualisations on the ‘Zayed University’ campaign dashboard.

When paying close attention to the aggregated map, very low sound levels can be
observed on the northern parking lot. The black grid cell indicates an unrealistically
low value upon closer inspection. This happened due to the fact that one of the devices
used to collect data was not calibrated, resulting in inaccurate data. The campaign
administrator could have prevented this from happening by including a contextual
predicate in the campaign protocol that only accepts measurements that originate
from devices with a calibration profile.

Situations such as these are a good example of the convenience of the Campaign
Analysis Interface (cfr. section 5.2.2). Here, the data set populated during the cam-
paign’s execution can be queried and sent through a new graph that does include
a contextual predicate. The result is a similar map, albeit this time only including
calibrated data.
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Other Campaigns Several additional campaigns were organised in Abu Dhabi to
create noise maps of various public parks and highways. We do not discuss each of
these campaigns in detail as their campaign protocol is implemented using similar
components as the aforementioned Radisson Blue and Zayed University campaigns.
These campaigns were designed by professor Peplov himself by interacting with the
CO meta-platform, without any involvement or assistance from us. For example, con-
sider the campaign depicted in fig. 7.6. This rather complex graph implements a cam-
paign that compares noise levels next to a busy highway during different times of the
day. The successfully implementation of this campaign can be considered a testimony
that the CO meta-platform developed in this dissertation indeed enables ICT-agnostic
stakeholders to create and execute their own campaigns successfully.

Figure 7.6: Implementation of the ‘Salaam St. and neighbourhood’ campaign.

Real-Time Coordination of Participants

In section 2.3.2 we defined the notion of a campaign. This definition states that a
campaign is considered successful if the collection of measurements collected by the
campaign is dense enough to generate a qualitative output. In the context of the afore-
mentioned noise mapping campaigns, the “qualitative output” produced by these cam-
paigns are aggregated noise maps, which can be considered dense if the every grid
cell has reached a certain specified measurement density. From previous experience
in organising campaigns for noise mapping, we observed that a threshold of 50 mea-
surements per cell is sufficient to perform meaningful statistical averaging [41].
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The noise maps generated by AggregatedMapVisualisation already pro-
vide visual feedback to participants in terms of grid cell density, giving them an idea
on the campaign’s progress. However, the effectiveness of participants can be further
improved by coordinating their data collection effort. Doing so results in each partic-
ipant receiving individual instructions about where or when data contributions must
be made. Campaigns can therefore rely on specialised coordination components that
steer a participant’s movement based on a specified algorithm. However, finding an
algorithm that offers the most optimal participant coordination in terms of coverage,
effort, etc. is not within the scope of this dissertation, as this is an entire research
topic on its own. We focus mainly on the technical difficulties in providing real-time
individual feedback and coordination instructions to participants. To this end, we im-
plemented a basic algorithm which always instructs a participant to the nearest incom-
plete campaign objective, which in this case are grid cells with insufficient data den-
sity. This functionality is implemented by the FindNearestUncomplete com-
ponent, whose effect is depicted in fig. 7.7. In the future, we will investigate smarter
coordination algorithms that can take multiple factors into account, such as the loca-
tions of other participants and their intended route.

Figure 7.7: Instructing a participant to the nearest incomplete campaign objective.

When a participant activates the coordination mode on the mobile app’s cam-
paign tab, he will initialise a new process that automatically establishes a distributed
connection to the server-side FindNearestUncomplete to continuously send it
location updates. The FindNearestUncomplete component also receives real-
time updates of the campaign’s objectives, i.e., the aggregated noise map. Using this
information, it calculates the nearest incomplete grid cell for each individual partic-
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ipant, and sends this information back using a coordination message. Participants
receive this message and update their map by adding an arrow indicating where the
campaign instructed them to move to.

Note that the individual real-time updates on the aggregated map also take into
account the contributions made by the other participants. It can thus be the case that
the algorithm suddenly instructs a user to move somewhere else, as the current grid
cell may have been completed by another participant.

The main problem using this coordination algorithm is caused by the way the grid
cells are created: when a campaign wishes to make an aggregated map of a particular
area, the entire area is covered using cells of a specified size. Unfortunately, many of
these grid cells will cover inconvenient or inaccessible areas, such as areas covered
with water, restricted areas, etc. As a result, there will always be cells that contain no
data, resulting in participant receiving instructions to move to locations they cannot
access. These inaccessible grid cells should therefore be manually removed. In the
future, we plan on making these maps ‘smarter’ by taking into account topographical
information.

7.2.2 Trage Wegen: Observatory on Pedestrian Experience

A second citizen observatory created using the CO meta-platform focusses on docu-
menting the quality of informal walking trails. This citizen observatory was created
in collaboration with Trage Wegen (Eng: “Slow Roads”), a Flemish non-profit organ-
isation which has conceived the notion of a so-called slow road, i.e., a road intended
for non-motorised traffic only. After 10 years of being active in this field, the organ-
isation has succeeded to anchor this notion into road development plans of many
municipalities in Belgium, while also building up a well-thought-out approach to in-
ventarise and assess future development plans for slow roads. For efficiency reasons,
they want to move away from their pen-and-paper data collection approach and are
experimenting with the possibilities of mobile data collection apps. For this reason,
we developed a mobile app for Trage Wegen using the CO meta-platform.

Mobile App

The implementation of the mobile data collection app is depicted in fig. 7.8. The main
logic is provided by the Form component. Recall from section 4.3.3 that the default
configuration window of a component can be modified to include a more advanced
editor for component customisation. This is the case for the Form component which
includes a drag-and-drop form builder. In the case of the Trage Wegen observatory,
the Form component is configured to enable participants to evaluate the quality of
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informal walking trails through the use of a photo, a rating, and an optional descrip-
tion. Both positive and negative aspects of selected points situated along a walking
trail can be evaluated in this way. Each submitted survey is automatically geo-tagged
through the GeoLocator component, after which it is uploaded to the server. Ad-
ditionally, the documented locations are drawn on a map so the participant has an
overview of the reports made.

Figure 7.8: Implementation of the mobile app for the Trage Wegen observatory.

In section 5.1.3 we described how each mobile app created in the Mobile App Design
Interface uses a default layout template. In case of the Trage Wegen observatory, the
mobile app layout was changed upon request by the Trage Wegen organisation to be
more in line with their own style. Using very minimal changes to the app layout’s
code, a different layout was implemented, which is depicted in fig. 7.9. In this case,
the main layout contained a map depicted the participant’s location. In the future, it
is our goal to enable full customisation of the mobile app UI (cfr. section 8.2.3).

The Trage Wegen observatory was created specifically for use during the “Dag
van de Trage Weg”, a yearly event where multiple organisations organise walks along
various slow roads. Usually, these walks have a particular purpose, such as raising
awareness of slow roads amongst the public. One particular campaign organised us-
ing this observatory was related to a walk organised in Anderlecht, one of the munic-
ipalities of the Brussels Capital Region.

Campaign: Anderlecht

The purpose of this campaign was to get feedback about the quality of the information
displayed on specialised maps that are attached to various bus stops in Anderlecht.
These maps illustrate the various points of interest and distance an average pedestrian
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Figure 7.9: Mobile app of the Trage Wegen observatory.

can cover in 5 minutes, possibly through the use of a slow road. The goal of these
maps is to inform commuters that walking via a slow road may be faster sometimes
than waiting for the bus. Furthermore, participants were also encouraged to make
reports about their findings of other aspects of the walk. For example, recycling bins
placed in the middle of the walking trail, thereby blocking pedestrians (fig. 7.10). Six
participants contributed to the campaign resulting in a total of 55 reports.

Figure 7.10: Participant reporting a negative element on the walking trail.
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Figure 7.11: Dashboard of the Trage Wegen campaign in Anderlecht.
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All the bus stops were added to the campaign through the use of the Campaign
Design Interface’s geographical constraint editor (cfr. section 5.2.1). The geographi-
cal constraint editor provides support for adding elements in bulk rather than drawing
them individually on a map. This was used to load the publicly available GeoJSON
data of bus stop locations in Anderlecht.

Although the campaign was designed to collect any feedback on both the maps
and other elements along the trail, a geographical predicate was used to create a
separate data set for feedback related to the special maps attached to the bus stops.
No other predicates were used in this campaign.

The campaign’s dashboard is depicted in fig. 7.11. The top pane is implemented
through the TableVisualisation component, which creates a table and lists
each uploaded measurement. The bottom is implemented through the use of a
MapMarkerVisualisation component, which is configured to use the value
of the rating for the marker’s colour.

Spatial Triggers

This campaign used spatial triggers as real-time participant coordination mechanism:
whenever a participant got in the vicinity a bus stop, a notification was triggered on
the participant’s mobile app prompting the participant to make a report on the nearby
map. This mechanism prevented participants from missing a particular bus stop, and
thus increased the data density and coverage of the campaign.

To do so, the app continuously uploaded each participant’s location to the cam-
paign, where the NearObjective component perpetually tests whether a partici-
pant is within a certain distance of an “objective”, which in this campaign are the bus
stops. The first time a participant is within the configured distance of an objective, an
individual message is sent to that participant’s app which triggers the notification us-
ing the PushNotification component. These push notifications are an example
of feedback being used as an incentive for participants to motivate them to increase
their contribution.

7.2.3 SensorDrone: Observatory on Atmospheric Conditions

A third citizen observatory that was created using the CO meta-platform collects
data of atmospheric conditions, particularly temperature, humidity, and atmospheric
pressure. This observatory shows how mobile apps created through the CO meta-
platform can also interact with external sensors over a Bluetooth connection.

The implementation of the mobile app is depicted in fig. 7.12. The bulk of the
work is performed by the Sensordrone component, which is itself implemented
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Figure 7.12: Implementation of Sensordrone mobile app.

using component composition. It relies on a component that is responsible for han-
dling the Bluetooth communications, and another component that parses the data
originating from a Sensordrone, a sensor fabricated by Sensorcon. Individual data
values are sent to the appropriate label component, which updates the value on the
mobile app’s screen. The observation containing each data value is geo-tagged using
the GeoLocator component, after which the observation is uploaded to the server.
The resulting mobile app (depicted in fig. 7.13) visualises real-time sensor readings
of temperature, pressure and humidity.

Figure 7.13: Sensordrone mobile app and external SensorDrone sensor.
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Although this citizen observatory demonstrates the meta-platform’s capability of
interacting with external sensors (i.e., sensors that are not built-in into the mobile
phone), there are some technical limitations to be taken into account due to the pure
web-based implementation of mobile apps created through the CO meta-platform.
More details regarding these limitations and a possible workaround are provided
in section 8.2.1.

7.3 End-User Usability Tests

The CO meta-platform enables ICT-agnostic stakeholders to create their own citi-
zen observatories and deploy campaigns. This is achieved by providing them with
domain-specific concepts which can be visually assembled using DISCOPARDE. We
validate the usability of DISCOPARDE and the CO meta-platform as a whole through
two end-user usability tests that involve people without any programming knowledge:

• A first experiment focusses on the Mobile App Design Interface, where we
tasked users to create their own mobile app using the CO meta-platform.

• A second experiment tests the usability of the Campaign Design Interface to
verify whether users can design and deploy their own campaign.

To select an appropriate empirical study for these experiments, we took into ac-
count that the CO meta-platform developed in this dissertation is a new tool which
is still a prototype. Therefore, the user base is virtually non-existent. Additionally,
time restrictions prevented us from studying participants over a longer period of
time. Given these restrictions, the most reliable and feasible type of experiment is
a quasi-experiment [16]. A quasi-experiment is an empirical study which lacks ran-
dom assignment of the groups or other factors being studied. A quasi-experiment,
as opposed to a scientific experiment, does not allow us to make any founded claim
regarding the usability of CO meta-platform. Nevertheless, it does provide insights
about how the platform’s intended end-users perceive and value the features of a vi-
sually programmable citizen observatory, in addition to providing anecdotal evidence
on the usability of the CO meta-platform by ICT-agnostic users.

7.3.1 Quasi-Experiment: Mobile App Design Interface

A first quasi-experiment tested the Mobile App Design Interface of the CO meta-
platform in order to study the intuitiveness and practical use of its features. This
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experiment was performed during the international cooperation with Zayed Univer-
sity, involving 9 female bachelor students in Environmental Science, with participant
ages ranging between 19 and 27. The curriculum of this bachelor program does not
contain any programming courses, and we checked that none of the students had a
background in ICT. Furthermore, in order to properly test how intuitive the UI is, they
did not receive any explanation on how to use DISCOPARDE.

The students were tasked to create their own mobile app that is capable of mea-
suring sound pressure levels (similar to the NoiseTube2.0 mobile app presented in sec-
tion 7.2.1), using the Mobile App Design Interface (cfr. section 5.1.3). In order to be
considered successful, the app had to provide the following functionality:

• Use the microphone to record sound samples and calculate the decibel value.

• Display the current, average, minimum, and maximum decibel value textually
on the screen.

• Display the current decibel value graphically using a line chart.

• Add geolocalisation information to each data sample.

• Draw each data sample on the map using appropriate colour coding.

• Upload each data sample to the observatory.

There were basically two different ways in which these features could be imple-
mented: either through the use of a few high-level composite components, or by
manually recreating this component composition using lower level components. The
students were given a total of 30 minutes to accomplish this goal. Part of this time
was spent on navigating the meta-platform’s website, creating a new account for each
student, creating an observatory, etc. At the end of the experiment, the students were
asked to fill in a survey to evaluate DISCOPARDE and the CO meta-platform as a
whole.

Experiment Results

None of the students experienced difficulties with the meta-platform’s website nav-
igation and they all managed to create an account and a novel citizen observatory1.
After 12 minutes, the first student completed the task and created a functioning mo-
bile app. In the end, 8 out of 9 students designed an app that satisfied the intended
functionality requirements within the time limit. One student forgot to ensure that
each data sample needs to be uploaded to the observatory’s server.

1Some students lost some time downloading a different browser for compatibility reasons.
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Figure 7.14: Noise measuring app implementation with redundancies.

Despite the fact that 8 out of 9 students managed to implement a function-
ing mobile app providing the necessary features, 5 solutions included redundant or
even unused parts in their graph. Consider for example the implementation depicted
in fig. 7.14. This student’s solution utilises the high-level NoiseTubeUI which al-
ready includes the required visualisations to display current decibel values and ad-
ditional statistics. Each observation produced by this component is correctly tagged
with GPS coordinates using GeoLocator. However, at this point, each observation
is sent to two instances of the MapDotDraw component. Having multiple instances
of this component (connected to the same output port) serves no purpose, as they
both do exactly the same thing, namely drawing an observation on the map. There-
fore, each observation is always drawn twice on the app’s map. Similar redundan-
cies were implemented by two other students. For example, one student uses both
a MapDotDraw and MapMarkerdraw component, meaning that the location of
every observation was also indicated using a plain marker on the map.

Two other students made the mistake of leaving disconnected components on
the canvas. These sub-graphs contained processes expecting an input which was not
provided due to the lack of an incoming connection. As such, the entire sub-graph
will never execute. Although these have no impact on the correct functioning of the
required features, they unnecessarily consume memory and/or clog up the UI.

In order to prevent users from implementing such redundancies, we aim to im-
prove DISCOPARDE’s graph validation mechanism (cfr. section 4.3.4).

Three students implemented the app as requested without any redundant compo-
nents. One of these students even opted for the more difficult, low-level, implementa-
tion. This student’s implementation is depicted in fig. 7.15. This low-level approach
requires the use of several low-level components, some of which are not visible un-
less the advanced mode is toggled in the component menu.
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Figure 7.15: Correct, low-level noise measuring app implementation.

Navigating DISCOPARDE seemed straightforward and intuitive for most students,
as they realised that each component can be further configured through its corre-
sponding configuration window (cfr. section 4.3.3). For example, in the low-level
implementation, the Interval Trigger is configured to trigger the recording of
a sound sample at frequent intervals, each Label was modified to display the appro-
priate text in the UI, and the Linechart’s size was updated to take up the remaining
space of the UI.

Survey Results

After the quasi-experiment, students were asked to fill in a survey. The sur-
vey contained two parts: the first focussed on the participants’ experience using
DISCOPARDE, while the latter questioned their interest in the concept of a citizen
observatory meta-platform as a whole. An exhaustive list of the survey questions
used is available in appendix B.

From fig. 7.16a we can conclude that the drag-and-drop interface of
DISCOPARDE was perceived as intuitive and easy to use by the participants. This
is further confirmed by the fact that 8 out of 9 student managed — albeit including
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some redundancies — to compose a functioning mobile app that had the envisioned
features. Every student soon found out that connections can be made through drag-
and-drop interactions. 3 students did not realise that components can be deleted (by
right-clicking them), which explained the unused components left on the canvas by 2
of these students. The third student simply created a new citizen observatory to start
from scratch.
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(a) Boxplot on Intuitiveness (I) and ease
of use (E) of the visual programming
environment of DISCOPAR.
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(b) Boxplot of participants’ appreciation
of the features of DISCOPARDE .
(I) Component Information (L) Live
Preview (P) Port Typing (G) Graph
Validation.

Figure 7.16: Survey results (part 1).

All students noticed that ports have different colours, and that certain compo-
nents cannot be interconnected (cfr. section 4.3.2). However, only 8 out of 9 students
noticed the port highlighting mechanism based on matching output ports and input
ports, and from those 8 only 4 students understood the meaning of this mechanism
and made the link with the compatibility of components. A suggestion was made to
add a notification, explaining the highlighting mechanism, that triggers whenever the
graph designer attempts to make an illegal connection. Additionally, a large interest
was shown in a legend explaining the data type of each port colour.

Every student realised that components expect input from ports on the left side of
the visual representation, and produce output on the right side. However, only 4 out
of 9 students understood that a component will never execute if it has an input port
without any incoming connections. They suggested to add an unused input port as a
warning to the graph validation mechanism.

Only 2 students used the search function of DISCOPARDE and successfully found
the component they were looking for. We conclude that the relative low number of
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components that is currently present in the component library does not warrant the
use of the search function yet.

7 students noticed the information button of components in the component menu,
which shows the component’s description when clicked. This additional information
helped 5 students to understand the functionality of a certain component they did not
know before.

The graph validation mechanism (cfr. section 4.3.4) was discovered by 6 students,
who each understood its meaning and the errors it listed. However, due to the num-
ber of participants that included unused components or duplicate instances in their
implementation, we have to conclude that additional checks must be implemented to
provide more feedback to the graph designer about the quality of their implementa-
tion.

Participants also gave their opinion about the component information, live
preview, port typing, and graph validation mechanisms present in DISCOPARDE

by assigning a rating between 1 to 5 for each of these categories. At this point
in the quasi-experiment, participants received an explanation of each mechanism,
as we noticed from the earlier questions that not every participants discovered or
understood the mechanism. The summary of participant opinions is depicted in
fig. 7.16b. The most appreciated feature of the Mobile App Design Interface is the
live preview that immediately reflects changes made to the implementation of the
mobile app. Students reported that this feature greatly increased their understanding
of their actions and the implementation of the mobile app as a whole.

In the second part of the survey, students answered questions regarding the very no-
tion of a CO meta-platform. Figure 7.17a contains the results of these questions. The
first column contains the answers to the question of how likely they themselves would
use the platform for designing environmental data collection apps in future research.
The second question focussed on data analysis and visualisation, and asked how likely
they were to use a visual interface, such as the Campaign Analysis Interface, as an
alternative to existing software such as Microsoft Excel, SPSS, and MatLab, taking
into account that DISCOPAR would provide the same functionality. The last ques-
tion asked their opinion about the usefulness of a full-fledged CO meta-platform for
environmental scientists in general.
The group of students that participated in this experiment was the same group that
was used for the noise mapping campaign discussed in section 7.2.1. We therefore
also took the opportunity to test whether or not their experience with the CO meta-
platform and data gathering for the campaigns had any impact on their view of par-
ticipatory sensing in general. Figure 7.17b indicates the students’ general confidence
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(a) Boxplot on participant opinions on the
CO meta-platform as a data gather-
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(b) Confidence in participatory sensing as
a accurate alternative for collecting
environmental data before (B) and af-
ter (A) using the CO meta-platform.

Figure 7.17: Survey results (part 2).

in participatory sensing as an accurate alternative for collecting environmental data
before (B) using the CO meta-platform and after (A) interacting with the platform
and participating in the campaigns. 5 out of 9 students indicated that — as a direct
result of their participation — they now also consider participatory sensing as a valid
alternative for collecting scientific data.

7.3.2 Quasi-Experiment: Campaign Design Interface

A second quasi-experiment was performed during the “Reclaiming the city” work-
shop organised by Redelijk Eigenzinnig, an interdisciplinary elective for students at
the Vrije Universiteit Brussel. The course’s aim is to stimulate students to reflect
critically on important social issues. The topic of this particular workshop was “ac-
celerated technological development in the field of ICT, app, and sensoring that are
transforming our cities”.

The idea for this workshop was to give students the opportunity to design their
own environmental noise mapping campaign in an area that was in the direct prox-
imity of the workshop’s location, and to collect data with their smartphone using
the NoiseTube2.0 mobile app. 10 students participated in the workshop, including
students from bachelor and master programs in History, Industrial Science, Political
Science, Philosophy, etc. Unlike the students from the first experiment, students par-
ticipating in this workshop received a presentation explaining the concept of our CO
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meta-platform and a very basic introduction on DISCOPARDE. Next, the students
were given 30 minutes to program their own campaign and an additional 30 minutes
to go out in the field and collect data for their newly created campaigns. fig. 7.18
depicts the output of one such campaign entirely created by one of the students. This
campaign uses a PA that filters out measurements made outside the vicinity of 3 street
segments, and aggregates the remaining measurements in a map.

Figure 7.18: Campaign created during the “Reclaiming the city” workshop.

Each participant successfully created a campaign within the foreseen time slot.
Due to time restrictions, students were not asked to fill in a survey about their experi-
ence with the Campaign Design Interface. However, the fact that all the students suc-
cessfully created a campaign and managed to collect data for their campaign serves
as anecdotal evidence that the Campaign Design Interface is indeed usable by ICT-
agnostic users.

7.4 Conclusion

In this chapter, we demonstrated how the CO meta-platform developed in this disser-
tation lives up to our research vision which consists of building a generic approach
towards reusable and reconfigurable citizen observatories that is accessible by ICT-
agnostic users.

Through the creation of three radically different citizen observatories, we demon-
strate that our citizen observatory meta-platform provides support for both continuous
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data streams (e.g., sensorial data such as sound pressure levels captured through a mi-
crophone) as well as discrete data (e.g., such as pedestrians’ reports on the quality of
informal walking trails). Furthermore, mobile app created through the meta-platform
can be seamlessly augmented with external sensors as long as they can connect to
the mobile phone over a Bluetooth connection. As a result, more types of data can
be gathered than the ones that are directly available through a smartphone’s built-in
sensors. This wide-range support of data types means that our CO meta-platform can
be considered, to the best of our knowledge, the first of a kind in new and more pow-
erful generation of reusable participatory sensing systems such as those presented
in section 2.2.2.

The CO meta-platform further distinguishes itself from existing PS systems
through its integrated technological support for participatory campaigning. Cam-
paigns were already performed in the past with several existing PS systems, but they
always relied on human effort to enact and monitor the campaign and guide partici-
pants. In case of the CO meta-platform, the notion of a campaign, the means to design
a campaign, and automated campaign orchestration are all part of the meta-platform.
Furthermore, campaigns can utilise participant coordination mechanisms to increase
data quality by optimising coverage, density, etc.

In section 2.4.3 we discussed how providing real-time feedback to participants
has multiple benefits. Feedback can be used to provide participant coordination on an
individual level, but also acts as an incentive for participants when they see the effect
of their contributions. Unlike other PS systems that rely on a more static approach us-
ing batch-processing and queries, citizen observatories and campaign created on our
CO meta-platform process and analyse data in real-time due to the reactive nature of
DISCOPAR. This reactive approach enables real-time (individual) participants feed-
back and coordination. Furthermore, data visualisations on an observatory or cam-
paign’s dashboard automatically stay up to date.

Perhaps the biggest ground-breaking feature of our CO meta-platform is that
it enables people with limited technological knowledge to create their own citizen
observatory and set up PS campaigns. We observed from the two different quasi-
experiments discussed in section 7.3 that non-ICT experts can indeed implement
their own mobile data gathering app and set up a campaign with ease. These quasi-
experiments only focussed on the Mobile App Design Interface and the Campaign
Design Interface, so further and more elaborate user studies are necessary to evaluate
the CO meta-platform as a whole. However, we assume that the other interfaces pro-
vided by the CO meta-platform, such as the observatory’s Data Processing Design
Interface, will be equally well-received and accessible to ICT-agnostic users as they
are all built on top of DISCOPARDE.
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8
C O N C L U S I O N

This dissertation introduces the idea of a citizen observatory meta-platform,i.e., a plat-
form that enables the construction of citizen observatory platforms. This final chapter
summarises the functionalities of our CO meta-platform and the visual programming
language that it offers, provides an overview of the contributions of this dissertation,
and highlights some directions for future work.
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8.1 Summary

The CO meta-platform presented in this dissertation enables ICT-agnostic users to
construct their own citizen observatories. This is achieved through the use of DIS-
COPAR, a new visual flow-based domain-specific programming language designed
to hide the non-essential complexity of constructing citizen observatories from the
end-user, and to only confront them with concepts that are truly relevant to their do-
main. The advantages of our CO meta-platform over other existing PS systems are
its reconfigurability, its integrated support for automatically enacting campaigns, re-
activity, and its usability by ICT-agnostic users (cfr. section 2.2.1 and section 2.2.2).

Reconfigurability The CO meta-platform enables the creation and configuration
of citizen observatories for a large spectrum of PS scenarios. Citizen observatories
are capable of collecting different types of data, including both sensorial parameters
(noise, accelerometer, humidity, etc.) and behavioural parameters (e.g., user input
through questionnaires). In addition to providing the necessary features to collect this
diverse data, the CO meta-platform also enables the configuration of different data
processing algorithms for each citizen observatory scenario. The CO meta-platform
is capable of offering this high degree of reconfigurability thanks to the flow-based na-
ture of DISCOPAR, which enables a wide variety of applications to be built from the
same set of components through different compositions. Thanks to the component-
based nature of FBP, the CO meta-platform can avoid rebuilding all the resulting mo-
bile apps, web interfaces, databases, data analysis and visualisation elements from
scratch.

Campaign Support Unlike existing PS systems where the concept of a campaign
is not explicitly supported and thus usually managed manually, the CO meta-platform
provides integrated support for the definition of a PS campaign as well as for its au-
tomated enactment. Within each observatory created on the meta-platform, initiators
can define campaigns themselves. Campaigns provide automated orchestration of par-
ticipants while they are collecting data and provides them with immediate feedback
on their contributions as an incentive mechanism.

Reactivity Each citizen observatory created using the CO meta-platform is a cloud-
based reactive application that reacts to data coming from mobile devices that con-
tribute the data to the server, and that promptly pushes feedback (e.g., intermediate
campaign results) back to the relevant devices. This reactivity enables real-time au-
tomated orchestration to guide data collection and provide immediate user feedback,
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essentials tools for successful campaigning. This also means that, unlike existing PS
systems, every form of data visualisation is always kept up to date and does not rely
on batch-processing techniques a posteriori.

ICT-Agnostic Usability DISCOPARDE, the visual development environment for
DISCOPAR, provides ICT-agnostic users the means to construct a citizen observatory
by visually composing components through drag-and-drop actions. DISCOPARDE

greatly increases the usability of DISCOPAR by only presenting the graph designer
with the essential domain-specific concepts, thereby hiding the irrelevant technologi-
cal difficulties that normally come with deploying a cloud-based reactive application.

8.1.1 Contributions

This section gives an overview of the contributions of this dissertation.

Participatory Sensing Systems: State of the Art We gave an overview of the
history and evolution of participatory sensing, where a distinction is made between
ad-hoc PS systems that are designed on a per use-case basis, and reusable PS sys-
tems. Until now, the latter only focus only on discrete data, i.e., single-shot obser-
vations usually collected through digital questionnaires (cfr. section 2.2). We define
the concept of a PS campaign (cfr. section 2.3.2) and identify the typical predicates
used in the definition of a campaign’s protocol (cfr. section 2.3.1). Furthermore, from
analysing several environmental PS campaigns (combined with our extensive exper-
tise in participatory noise sensing gained from the NoiseTube project [137, 41]), we
derive and describe each step of a typical campaign’s lifecycle (cfr. section 2.3.3). We
also introduce the concept of a citizen observatory (cfr. section 2.4).

Citizen Observatory Meta-Platform We have coined the term citizen observatory
meta-platform, which is a platform to construct citizen observatory platforms. The
CO meta-platform presented in this dissertation (cfr. chapter 5) is a contribution in
the field of participatory sensing, as it can be considered the first of its kind in a new
generation of reusable and reconfigurable PS systems:

• The CO meta-platform provides support for a wide range of data types that
can be collected by the apps it allows us to construct (including both sensorial
parameters and behavioural parameters).

• The CO meta-platform features integrated technological support for the defini-
tion and automated enactment of campaigns.
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• The CO meta-platform further distinguishes itself from existing work due to its
reactive nature, which enables real-time campaign orchestration and feedback.

• The CO meta-platform remains accessible for ICT-agnostic users allowing any-
one to create their own citizen observatory and deploy campaigns.

DISCOPAR Citizen observatories created through the CO meta-platform are col-
laborative cloud-based reactive applications. In order to support real-time commu-
nication amongst the various components deployed in a citizen observatory’s dis-
tributed architecture, we developed DISCOPAR, a new visual reactive flow-based
domain-specific language, created specifically to hide the non-essential complexity
of citizen observatories and their distributed nature from the end-user, and to present
only concepts that are relevant to their domain (cfr. chapter 4). To the best of our
knowledge, this is the only flow-based programming language where components
are automatically distributed amongst devices and their corresponding connections
automatically established.

DISCOPARDE In order to enable ICT-agnotic users to create their own citizen ob-
servatories and define their own campaigns, we have developed DISCOPARDE, a
web-based visual programming environment for DISCOPAR (cfr. section 4.3). It fea-
tures a live programming mode that allows the direct manipulation of a running DIS-
COPAR program without stopping it (cfr. section 4.3.5). Moreover, DISCOPARDE

enables users to perform distributed live programming, which means that they can
change the observatory’s server-side logic from within a web-browser (i.e., remotely).
To help ICT-agnostic users create correct programs in DISCOPAR, DISCOPARDE

features a graph validation mechanism that prevents them from composing incompat-
ible components.

Citizen Observatory Meta-Platform Validation We have validated the citizen ob-
servatory meta-platform in terms of expressiveness, suitability, and usability through
experiments in both laboratory as well as real-world conditions. The expressiveness
and suitability of DISCOPAR for constructing citizen observatories is demonstrated
through the creation of three distinct citizen observatories and the successful enact-
ment of a number of campaigns designed within those observatories (cfr section 7.2).
Usability of the CO meta-platform is validated through two end-user usability tests
(quasi-experiments) where we provide some evidence that people without any pro-
gramming knowledge can successfully create a citizen observatory and design a cam-
paign using the CO meta-platform (cfr. section 7.3). From the analysis of a partici-
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pant’s survey, we analysed the participants’ experience using DISCOPARDE and their
interest in the concept of a citizen observatory meta-platform as a whole. Both were
well-received.

8.2 Future Work

This section outlines ongoing work and provides several possible avenues for future
research. First, we discuss the advantages of shifting the implementation of mobile
apps from pure web-based apps to hybrid mobile apps. Second, we focus on optimis-
ing performance by enabling components to run on different threads. Last, we present
various ideas towards further enhancing the CO meta-platform with regards to user
experience.

8.2.1 Hybrid Mobile Apps

In the current status, mobile apps created through the CO meta-platform are imple-
mented as web-based HTML5 applications (cfr. section 6.3.1). Although web-based
apps are becoming increasingly powerful, new APIs only become mainstream very
slowly and therefore often lack support by all browser vendors. Furthermore, there
are still some limitations to hardware access, and offline availability is more difficult
to implement and is also not without limitations. In ongoing work, we are switching
to a hybrid approach by using PhoneGap [59] to facilitate and enhance the implemen-
tation of offline availability and hardware access.

Offline Support

Offline support can be implemented in web-based apps using to JavaScript’s Service
Workers. However, there are some limitations and inconsistencies involved that make
them not yet a recommended technology to implement offline-capable mobile data
collection apps. In case of citizen observatories, participants can potentially collect
huge amounts of data using their smarpthone, especially when sensorial data is being
collected. When operating offline, all these data have to be persistently stored until
an internet connection is available. Web-based apps can therefore either rely on Web
Storage (e.g., LocalStorage and SessionStorage) but this is limited in size and type
(strings only). Alternatively, apps can utilise the File System API, although this API
is also not sufficiently mature or standardised to encourage widespread adoption yet.
In contrast, hybrid mobile apps provide the benefits of a native app, i.e., access to the
smartphone’s internal storage. Therefore, hybrid apps provide a more straightforward
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and mature approach when it comes to persistently storing data on a phone. Having
no restrictions on the type of data that can be stored is also an important requirement,
as certain observatories may need to store photos, videos, etc. In the future, we will
focus on increasing the mobile app’s user experience and on making it more robust,
thereby particularly focussing on offline availability.

Access to Hardware

In addition to offline-capabilities, another advantage of hybrid mobile app technol-
ogy is that hybrid apps do not have any restrictions regarding access to the mobile
device’s hardware. This is advantageous for both sensor access and communication
with external devices through Bluetooth and USB.

In section 2.1, we discussed how smartphones are becoming increasingly pow-
erful and equipped with multiple sensors. Currently, many sensors (i.e., GPS, ac-
celerometer, microphone, ambient-light, camera, and magnetometer) are only acces-
sible through (experimental) APIs of some web browsers, as they are often still con-
sidered non-standard APIs. A hybrid approach solves this issue by providing direct
access to the sensors rather than going through a web browser’s API. Additionally, a
hybrid app provides access to more uncommon sensors, such as the on-board temper-
ature and humidity sensors that some smartphone models provide.

Bluetooth communication is another technology that is not well-supported by
web browsers. At the time of writing, only Chrome supports the Web Bluetooth
API. Furthermore, it requires an external device featuring the Bluetooth 4.0 standard,
which introduced a new “Low Energy” mode and provides most of its functionality
through key/value pairs provided by the Generic Attribute Profile (GATT). Hybrid
mobile apps do not have such limitations and are thus capable of communicating with
a wider range of external devices, including any version of Bluetooth. Furthermore,
having access to the device’s hardware also enables serial communication through
USB.

In ongoing work, we successfully made two additional citizen observatories: one
focused on gathering particulate matter data by communicating with an external sen-
sor through Bluetooth 2.0, and another one collecting black carbon data by establish-
ing a USB serial connection to an external device.

8.2.2 Performance

In the current ongoing work, every process (cfr. section 4.2.2) runs within the same
thread due to Javascript’s single-threaded execution model. Although this setup
works fine for the relatively small-scale experiments described in chapter 7, it is not
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capable of handling “big data” scenarios, where thousands of participants are all si-
multaneously contributing data to an observatory. To prevent bottlenecks and ensure
real-time feedback of the observatory, it is important that the server-side processing
graphs can deal with the increased amount of data. Therefore, we are investigating
possible methods to increase the scalability of observatories, such as multi-threading
and process replication.

Multi-threading

The first avenue to increase performance is to implement a thread-pool that automat-
ically manages where processes are deployed based on the current workload of each
process. We envision various predicates that can be placed upon a process to decide
when it should be deployed in a separate thread (e.g., based on a certain through-
put indicator). When redeploying a process, only the connections from and to that
process have to be updated, since processes only communicate with their input and
output ports and are not concerned with the connections attached to their ports. This
means that processes do not know the difference whether they are communicating
to a process in the same thread or a different one. The amount of data that a citizen
observatory must process in real-time varies greatly as the number of participants
actively contributing data to it can differ significantly throughout the observatory’s
lifetime. Certain processes can therefore suddenly be required to process a lot more
data. Therefore, load balancing (i.e., assigning a process to a different thread at run-
time) should also be supported.

Process Replication

The second avenue is to implement a replication mechanism at the level of processes.
Rather than replicating an entire observatory, the flow-based programming approach
of DISCOPAR enables citizen observatories to only scale processes that are causing
a bottleneck. For example, if two interconnected processes produce/consume data
at a different rate (e.g., the first process produces data faster than the second can
consume), there is a risk of buffer overflow. The goal is to automatically detect these
situations and create multiple instances of the “slower” process. There is an additional
complexity to take into account for non-functional processes. Processes that maintain
state, such as an aggregated map, need to operate on the same shared object and thus
have a shared state.
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8.2.3 User Experience Enhancements

DISCOPARDE is used in our CO meta-platform to enable ICT-agnostic users to set up
a citizen observatory and deploy campaigns within a citizen observatory. Although
the CO meta-platform is fully functional at the time of writing, there are several
potential improvements that can be applied with the goal of having a positive effect
on the user experience. We discuss some of these in the remainder of this section.

Graph Auto-Complete

In section 4.3.4 a validation mechanism was introduced that verifies whether certain
constraints imposed on the graph are satisfied. In the current state, this mechanism
is rather basic and only supports three types of constraints (cfr. section 6.1.5). In the
future, the types of constraints supported will be increased. However, the same graph
validation mechanism could also be used to automatically make suggestions to the
graph designer, enabling a form of “auto-complete” mechanism. For example, when
the graph validation mechanism notices that a certain process requires input but has
no incoming connections yet on that input port, it could suggest to create a connection
from an unused output port from a process placed nearby on the canvas.

WYSIWYG Editor

Currently, every observatory’s mobile app uses a default layout (cfr. section 5.1.3). Al-
though the active components of each observatory’s mobile app can be programmed
using DISCOPARDE, there is no means to customise the app’s UI. For example, it
is not possible to include a custom logo, or use a different colour scheme. Although
it is relative easy to modify the default app look (e.g., as demonstrated by the Trage
Wegen app shown in section 7.2.2), it is currently only possibly by additional cod-
ing in HTML5 and CSS. A better alternative would be to include a more advanced
WYSIWYG editor that enables full customisation of the mobile app’s layout. This ed-
itor would enable us to modify every visualisation component, in addition to provid-
ing basic layout elements such as images and different types of navigational menus.
Whenever such a visualisation component is included in the layout, a correspond-
ing process should be added to the graph, enabling the graph editor to connect the
visualisation to other processes.

Additionally, a WYSIWYG editor could be also be used to customise the appear-
ance of the various web pages that are automatically created by the CO meta-platform
for a new citizen observatory and campaigns.
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Process Groups and Zoom Controls

DISCOPARDE is faced with a problem that all visual programming languages have in
common: scalability. Applications that are composed of a very large number of com-
ponents can become so complex that interpreting their visual representation becomes
very difficult or even impossible. This can be solved by varying the granularity of the
program shown at a given moment. By grouping components hierarchically, they can
be reduced into a single component representing that group. Similar to how commu-
nity components are implemented (cfr. section 5.3.2), this grouped component would
expose input ports and output ports for connections going to processes outside the
group. At any time a group can be expanded, enabling the user to alter its containing
components.

The user-friendliness can also be further increased by adding zoom controls and
better mechanics to navigate the canvas of the visual programming environment.

Graph Templates

Newly created citizen observatories and campaigns use a default graph template for
their various interfaces. For example, as discussed in section 6.3.2, a new citizen
observatory’s Data Processsing Design Interface (cfr. section 5.1.2) starts with a de-
fault graph template containing some basic functionality, such as storing data in the
database.

In the future, we would like to use this graph template mechanism as a means for
users of the CO meta-platform to recycle the “code”, i.e., the component composi-
tion, of an already existing citizen observatory or campaign. For example, consider
a user inspired by an existing campaign who wants to design a similar campaign.
In the current status, this user has to manually re-create this campaign and modify
it where needed. It would be more efficient if that user could somehow copy-paste
the existing campaign’s implementation and start by modifying the copy. Therefore,
we would like to enhance the graph templates, so that existing citizen observatories
and campaigns can be reproduced and modified with ease. Furthermore, these graph
templates could also be used to have a series of demonstrative showcases of the plat-
form’s features. We envision various mobile app graph templates where users can
select one that most closely resembles their goal.
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8.3 Closing Remarks

Despite the evolution of participatory sensing as a data collection paradigm and the
emergence of several citizen observatories, there is a lack of reusable and reconfig-
urable citizen observatory construction tools. Although there already exist a couple of
reusable and reconfigurable PS systems, these primarily focus on the data gathering
(typically form-based) thereby neglecting the other roles of a citizen observatory such
as advanced data processing methods, support for campaigns, and real-time partici-
pant feedback and coordination. This led us to the idea of a citizen observatory meta-
platform. A CO meta-platform offers a generic approach towards reusable and recon-
figurable citizen observatories. Through this CO meta-platform, ICT-agnostic users
can construct their own citizen observatories and design PS campaigns autonomously.
The CO meta-platform provides support for a wide range of data types, including
both sensorial parameters and behavioural parameters, and also features integrated
support for the definition and enactment of campaigns. These features enable a new
generation of PS scenarios where we move away from small-scale research-oriented
deployments to the full-fledged adoption of PS as a societally and scientifically rele-
vant method.

To conceive the first CO meta-platform, we designed DISCOPAR, a new vi-
sual reactive flow-based domain-specific language, which automatically handles the
distributed nature of citizen observatories and that only presents essential domain-
specific concepts to users. The flow-based nature of DISCOPAR means that the en-
tire system is reactive and capable of processing data and providing feedback in real-
time. To ensure the usability of the DISCOPAR language by ICT-agnostic users, we
developed DISCOPARDE, a web-based visual programming environment for DIS-
COPAR. Throughout the CO meta-platform, DISCOPARDE is used to enable ICT-
agnostic users to design the various parts of a citizen observatory. We demonstrated
the expressiveness and suitability of the CO meta-platform through the creation of
different citizen observatories and the successful enactment of campaigns deployed
within these observatories. We have shown the ICT-agnostic usability of the CO meta-
platform through usability experiments involving people who lack any programming
knowledge.

We are confident that DISCOPAR and DISCOPARDE merely scratch the surface
of a promising new strand of languages and systems that will form the technological
basis for truly democratising the citizen science approach. Our technologies not only
allow citizens to participate in citizen science experiments that were set up by experts,
but also empower them to set up their own experiments and invite their fellow citizens
to participate in those experiments in an open and democratic fashion.
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Appendix A: Component List of DISCOPAR

A.1 Sensing Components

COMPONENT NAME INPUT PORT(S) OUTPUT PORT(S) DESCRIPTION SETTINGS

SensorDrone

OUT (Observation)
TEMPERATURE (Numeric)
 HUMIDITY (Numeric)
 PRESSURE (Numeric)
 BATTERY (Numeric)

Connects to the SensorDrone Bluetooth sensor 
and outputs its temperature, humidity, and 
pressure readings.

SoundPressureLevel IN (Any) OUT (Numeric)
Records a sound sample using the microphone 
whenever the IN port receives data and calculates 
the sound pressure level thereof.

SoundLevelMeter IN (Any) OUT (Observation)
DECIBEL (Numeric)

Records sound samples using the microphone and 
calculates the dB(A) value of these samples.

NoiseTubeUI OUT (Observation)

Records sound samples using the microphone and 
calculates the dB(A) value of these samples and 
return it as data token. The dB(A) is also 
automatically displayed and added to a graph.

nrOfSamples (15)
yAxisMax (100)
yAxisMin (0)
yAxisInterval (10)
chartHeight (100%)
colourScale (Black)

Acceleration
X (Numeric)
Y (Numeric)
Z (Numeric)

Output the data from the smartphone's 
acceleration sensor.

Form OUT (Observation)
Enables you to construct a form using a drag-and-
drop interface. The form will be added to the 
mobile app to enable survey-based data collection

Camera OUT (Observation)
Take photos using the camera. Alternatively, use 
the "Form" component to create a questionnaire 
which can include photos as well

GeoLocator IN (Observations) OUT (Observation) Adds GPS information to observations.

WatchGeoLocation OUT (Location) Sends out a location each time the user's location 
chances.

SpeedCalculator IN (Observation)
OUT (Observation)
SPEED (Numeric)

Calculates the speed based on two consecutive 
observations with GPS locations attached to them.

Speed OUT (Observation)
SPEED (Numeric)

Outputs the speed a mobile app user is moving at.
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A.2 Logic Components

A.2.1 Geographical Components

COMPONENT NAME INPUT PORT(S) OUTPUT PORT(S) DESCRIPTION SETTINGS

IsInsidePolygon IN (Observation) OUT (Observation)
FALSE (Observation)

IsInsideMultiPolygon IN (Observation) OUT (Observation)
FALSE (Observation)

IsNearLine IN (Observation) OUT (Observation)
FALSE (Observation)

distance

IsInsideCircle IN (Observation) OUT (Observation)
FALSE (Observation)

distance

GeographicalFilter IN (Observation)
OUT (Observation)
FALSE (Observation)

Filters out observations that are not made 
within the specified geographical area.

A.2.2 Temporal Components

COMPONENT	NAME INPUT	PORT(S) OUTPUT	PORT(S) DESCRIPTION SETTINGS

TimeFilter IN	(Observation) OUT	(Observation)
Filter	based	on	a	time	window:	Only	
observations	made	inside	the	specified	
time	window	are	forwarded.

from	(12:00:00)
to	(13:00:00)

DateFilter IN	(Observation) OUT	(Observation)
Filter	based	on	a	date	window:	Only		
observations	made	inside	the	specified	
date	window	are	forwarded.

from	(2018-06-01)
to	(2018-06-31)

DayFilter IN	(Observation) OUT	(Observation)
Filter	based	on	day	of	the	week:	Only	data	
tokens	made	on	the	specified	day	of	the	
week	are	forwarded.

day	(Monday)

DayFilterSplit IN	(Observation)

MONDAY	(Observation)
TUESDAY	(Observation)
WEDNESDAY	(Observation)
THURSDAY	(Observation)
FRIDAY	(Observation)
SATURDAY	(Observation)
SUNDAY	(Observation)

Filter	based	on	day	of	the	week	and	
outputs	observations	on	the	matching	
output	port.

A.2.3 Contextual Components

COMPONENT	NAME INPUT	PORT(S) OUTPUT	PORT(S) DESCRIPTION SETTINGS

FilterCampaignParticipants IN	(Observation) OUT	(Observation)
Only	allows	observations	made	by	participants	of	the	
campaign	to	pass.

167



Appendix A: Component List of DISCOPAR

A.2.4 Miscellaneous

COMPONENT NAME INPUT PORT(S) OUTPUT PORT(S) DESCRIPTION SETTINGS

SnapToRoad IN (Location) OUT (Location) Snaps a coordinate to the street network.

IntervalTrigger OUT (Any) Outputs a signal on a configurable interval that 

can be used to trigger other components.

interval (1000ms)

Console IN (Any) Prints received information packets to the 

console. Only used for debugging purposes.

Counter IN (Any) OUT (Numeric) Counts the number of information packets 

received and outputs the counter's value.

Maximum IN (Numeric) OUT (Numeric) Keeps track of the maximum value provided as 

input, and outputs the new maximum 

whenever it changes.

Minimum IN (Numeric) OUT (Numeric) Keeps track of the minimum value provided as 

input, and outputs the new minimum whenever 

it changes.

Average IN (Numeric) OUT (Numeric) Keeps track of the average value provided as 

input, and outputs the new average whenever 

it changes.

Filter IN (Any) OUT (Any) Filters input based on a specified predicate. predicate

DataCollectionQuery

OUT (Observation) Outputs every observation in a data collection 

once when initialising the component.

Database

OUT (Observation) Outputs every observation in the citizen 

observatory's database.

ObservationMaker IN (Numeric) OUT (Observation) Creates an observation from raw data values

ObservationData IN (Observation) [1 output port for each 

value in the observation] 

(depends on observation 

data content)

Outputs the raw data values contained within 

an observation.

FilterFormData IN (Observation) (depends on the type of 

form field)

Filters observations based on the value of a 

specific field of the form. These components are 

only available when the mobile app uses a form 

to gather data from the participants.

FilterRadioField IN (Observation) [1 output port for each 

option in the radio field] 

(Observation)  

Filters observations based on the value of a 

specific radio field of the form. These 

components are only available when the mobile 

app uses a form to gather data from the 

participants.

FilterCheckBoxField IN (Observation) [1 output port for each 

option in the checkbox 

field] 

(observation)

Filters observations based on the value of a 

specific checkbox field of the form. These 

components are only available when the mobile 

app uses a form to gather data from the 

participants.

FilterTextField IN (Observation) TRUE (Observation)

FALSE (Observation)

Filters observations based on the value of a 

specific text field. These components are only 

available when the mobile app uses a form to 

gather data from the participants.

operator

compareTo

CalibrateDecibel IN (Observation) OUT (Observation)

DECIBEL (Numeric)

Calibrates decibel values of an observations 

using a calibration profile.

Upload IN (Observation) OUT (Observation) Uploads observations to the observatory

ApplicationData IN (Observation) OUT (Observation) Receives observations uploaded by the mobile app
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A.3 Aggregation components

COMPONENT	NAME INPUT	PORT(S) OUTPUT	PORT(S) DESCRIPTION SETTINGS

AggregatedMap IN	(Observation) OUT	(GeoJSON)
Creates	an	aggregated	map	of	the	specified	area.	
Output:	aggregated	map	(geojson)	that	can	be	send	to	
visualisation	components

field

Store IN	(Observation) OUT	(Observation) Persistently	stores	observations	in	the	citizen	
observatory's	database.

DataCollection IN	(Observation) OUT	(Observation) Creates	a	persistant	data	collection	of	all	the	data	
samples	it	receives.

name

MapDataCollection IN	(GeoJSON) Persistently	stores	maps	in	GeoJSON	format name

A.4 Coordination components

COMPONENT	NAME INPUT	PORT(S) OUTPUT	PORT(S) DESCRIPTION SETTINGS

PushNotification IN	(Message)
Triggers	a	push	noticiation	on	the	mobile	app	

upon	receiving	a	message.	

ArrowIndicator FROM	(Location)

TO	(Location)

This	components	draws	an	arrow	on	the	map	

to	guide	the	user	to	a	given	location.'

ParticipantMovement OUT	(Observation)

Outputs	an	observation	containing	a	location	

whenever	the	mobile	app	user's	location	

changes.	Used	by	coordination	algorithms.	

ProximityNotification IN	(Observation) OUT	(Message)

Will	inform	a	participant	whenever	s/he	is	

within	the	specified	distance	of	a	campaign's	

objective.

message

title

distance	(10m)

FindNearestObjective
OBSERVATION	(Observation)

OBJECTIVE	(GeoJSON)
OUT	(Message)

This	component		instructs	people	to	go	the	

nearest	campaign	objective	that	still	needs	

data.

FindNearestGridCell
OBSERVATION	(Observation)

MAP	(GeoJSON)
OUT	(Message)

This	component		instructs	people	to	go	the	

nearest	grid	cell	that	still	needs	data.	

169



Appendix A: Component List of DISCOPAR

A.5 Visualisation components

COMPONENT	NAME INPUT	PORT(S) OUTPUT	PORT(S) DESCRIPTION SETTINGS

Label IN	(Any)
This	component	adds	a	label	to	the	mobile	
app,	that	displays	the	most	recent	value	
of	the	connected	input.

heading
unit

LineChart IN	(NUmeric)
This	component	expects	a	numeric	value,	
and	wil	display	this	value	on	a	dynamic	
chart.

nrOfSamples	(15)
yAxisMax	(100)
yAxisMin	(0)
yAxisInterval	(10)
chartHeight	(100%)
colourScale	(Black)

Map This	component	displays	a	map	and	
enables	you	to	configure	the	map	layer.

layer	(mapBox)

MapLocationTracker This	component	centers	the	map	on	the	
current	location	of	the	user

MapDotDraw IN	(Observation)
This	component	can	draw	coloured	dots	
on	the	map	to	visualize	your	data	using	
colour	coding.

colourScale

MapMarkerDraw IN	(Observation) This	component	draws	markers	on	the	
map	for	the	geo-localised	data	provided.

GeoJSONDrawer GEO	(GeoJSON)
Zoom	(Any)

This	component	draws	any	geoJSON	data	
it	received	on	a	map.	

TableVisualisation IN	(Observation)
Dashboard	visualisation	that	visualises	
observations	in	a	table.

height	(400px)
width	(100%)
description	

AggregatedMapVisualisation GEO	(GeoJSON)
Dashboard	visualisation	that	visualises		
aggregated	maps	by	drawing	their	geojson	
on	a	map	layer

height	(400px)
width	(100%)
description	

MapMarkerVisualisation IN	(Observation)
Dashboard	visualisation	that	visualises		
observations	samples	by	plotting	them	on	
a	map	based	on	their	geolocation.

height	(400px)
width	(100%)
description	

MapVisualisation IN	(Observation)
Dashboard	visualisation	that	visualises	
observations		by	plotting	them	on	a	map	
based	on	their	geolocation.

height	(400px)
width	(100%)
description	

LineChartVisualisation IN	(Numeric) Dashboard	visualisation	that	visualises	
data	by	drawing	it	on	a	linechart.

height	(400px)
width	(100%)
description	nrOfSamples	(15)
yAxisMax	(100)
yAxisMin	(0)
yAxisInterval	(10)
chartHeight	(100%)
colourScale	(Black)

PieChartVisualisation IN	(Numeric) Dashboard	visualisation	that	visualises		
data	by	creating	a	pie	chart.

height	(400px)
width	(100%)
description	
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General Information

1. What is your name?

2. What is your age?

3. What is your gender?

DISCOPARDE

1. On a scale of 1-5, how easy did you find it to work with DISCOPARDE’s drag
& drop interface?

2. On a scale of 1-5, how intuitive did you find it to work with DISCOPARDE’s
drag & drop interface?

3. Did you realise that a component accepts input from the left side, and produces
output on the right side?

4. Did you realise that components with no connections arriving at their input
port(s) do nothing?

5. Did you notice that certain connections and input/output ports have a different
colour?

Y.1 Did you understand their meaning?

6. Did you notice that — while dragging a connection — certain elements become
highlighted?

Y.1 What do you think is the meaning of these highlights

7. Did you notice that certain components cannot be interconnected?

Y.1 Did you realise that it was due to the colours of their input and output
ports being different?

8. How useful do you think the colour mechanism is to prevent a connection
between incompatible components?

9. How useful would you think a legend explaining the difference in colours
would be?

10. Did you find out by yourself that you are able to right-click a component to
delete / configure it?

172



11. By right-clicking did you change the configuration of any of the components?

12. Did you use the search function provided by the component menu?

N.1 Why did you not use the search function?
Y.1 Which keywords did you search for?
Y.2 Did the search function help you find the components you were looking

for?
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13. Did you click on a component’s information button in the component menu?

Y.1 Did the provided information help you to understand the functionality of
a component that you did not initially understand?

14. On a scale of 1-5, how useful would you rate the possibility to get more infor-
mation about a component?

15. Did you click on the “Graph Validation” button when building your mobile
app?

Y.1 Did you realize that it verifies whether or not the application you made is
valid?

16. On a scale of 1-5, how useful do you think this mechanism of “Graph Valida-
tion”is to prevent the creation of a non-functional mobile app?

17. Did you realise the smartphone on the right was a live preview of the applica-
tion you were building?

18. On a scale of 1-5, how useful do you think this live preview is?

19. In the end, did you manage to build a functional mobile app that recorded sound
levels and collected GPS location data?

20. Share any tips, feedback and/or comments you have about DISCOPARDE.

Citizen Observatory Meta-Platform

1. On a scale 1-5, If given the opportunity, how likely are you to use the platform
for environmental data capturing?

2. In case DISCOPAR would provide the same features as programs such as Mi-
crosoft Excel, SPSS, Matlab, how likely are you to use DISCOPAR as an alter-
native?

3. What is your opinion about the following statement: "The visual interface pro-
vided by DISCOPAR enables ICT-agnostic scientists to develop Mobile Apps
with ease"

4. What is your opinion about the following statement: "Seeing a program as
components that can be connected corresponds to how I think about data pro-
cessing"

5. Taking into account that DISCOPAR is a prototype, how useful do you think
the finished platform will be for environmental scientists?
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6. On a scale 1-5, BEFORE using the Mobile App (and smartphones as sensor),
how confident were you that smartphones could produce accurate data?

7. On a scale 1-5, AFTER using the Mobile App (and smartphones as sensor),
how confident are you that smartphones could produce accurate data?

8. Would you say that - as a result of using DISCOPAR - you now also consider
smartphones as an alternative approach for gathering scientific data?
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