
A Distributed

Logic Reactive

Programming Model

and its Application to Monitoring Security

Thierry Renaux

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

March 28, 2019

Jury:

Prof. Dr. Wolfgang De Meuter, Vrĳe Universiteit Brussel, Belgium (promotor)
Prof. Dr. Joeri De Koster, Vrĳe Universiteit Brussel, Belgium (promotor)
Prof. Dr. Viviane Jonckers, Vrĳe Universiteit Brussel, Belgium (chair)
Prof. Dr. Katrien Beuls, Vrĳe Universiteit Brussel, Belgium (secretary)

Prof. Dr. Tias Guns, Vrĳe Universiteit Brussel, Belgium
Prof. Dr. Coen De Roover, Vrĳe Universiteit Brussel, Belgium

Prof. Dr. Sebastian Erdweg, TU Delft, The Netherlands
Prof. Dr. Robert Hirschfeld, Hasso Plattner Institute, Germany

Vrĳe Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Lab

© 2019 Thierry Renaux

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 9789493079205
NUR 989

All rights reserved. No part of this publication may be produced in any form by print,
photoprint, microfilm, electronic or any other means without permission from the author.

Abstract

Processes in the world are increasingly managed by software systems that
are centered around the notion of events. For instance, banking software
responds to the occurrence of financial transaction events and parcel services
respond to the arrival event of a package at a depot. To, e.g., identify fraud in
a series of financial transactions,multiple transaction eventsmust be correlated.

How to efficiently extract patterns from a stream of events — in an online
fashion — is an active research topic. The state of the art enables extracting
complex patterns from large streams, or performing simple processing with
predictable latency. There are, however, no techniques which combine expres-
sive event correlation mechanisms with guaranteed upper bounds on resource
usage. Lacking such guarantees, event monitoring systems risk falling behind
on the live data, or even crashing due to memory exhaustion. Preventing this
is of utmost importance for modern systems that are online 24/7.

In this dissertation, we propose a novel programming paradigm for large-scale
online event correlation: Logic Reactive Programming. LRP overcomes the
issues in the state of the art by imposing maximum lifetimes on stored event
data. Through temporal reasoning, LRP then guarantees that a fixed upper
limit exists on the number of events whose data needs to be retained. Stale
data is automatically discarded, thus enabling LRP systems to operate in a
fixed resource budget. We introduce PARTElang, the first Logic Reactive
Programming language. Its formal foundations are defined by means of an
event algebra. We define Featherweight PARTE, an operational semantics for
PARTElang, which guarantees that every operation evaluates in constant time,
using constant space. We prove correctness of Featherweight PARTE, i.e.,
that steps defined by the formal model ensure that a PARTElang program is
translated to a number of concurrent units of computation which jointly arrive
at the results prescribed by the event algebra. We further validate PARTE-
lang by building a security monitoring application on top of a prototypical
implementation of the Featherweight PARTE model.

i

Samenvatting

Steeds vaker worden activiteiten in de buitenwereld beheerd door softwaresys-
temen die werken op basis van events. Zo reageren banksystemen bĳvoorbeeld
op het plaatsvinden van een transactie-event. De systemen van pakjesdiensten
voeren acties uit wanneer een aankomst-event van een pakje zich bĳ een depot
voordoet. Dergelĳke events bevatten op zich reeds nuttige informatie, maar er
kan nog meer informatie onttrokken worden uit een correlatie van meerdere
events, bv. door fraude te detecteren in een reeks financiële transacties.

Dit alles zorgt ervoor dat er nood is aanmiddelen om grote stromen van events
te monitoren op het voorkomen van patronen van events. Omdat het vaak
nuttig is om snel te reageren, vindt deze monitoring best live plaats — terwĳl
de events plaatsvinden. De ontwikkeling van technieken om grootschalige
eventstromen live te analyseren, is de focus van meerdere onderzoeksdomei-
nen. Er ontbreekt echter een oplossing die kan garanderen dat de grootschalige
live analyse uitgevoerd kan worden met een op voorhand bepaalde hoeveel-
heid middelen. Zonder die garantie riskeren eventmonitoringsystemen om
achterop te geraken ten opzichte van de live data, of zelfs om hun taak te
moeten staken bĳ gebrek aan werkgeheugen. Voor systemen die continu
beschikbaar moeten blĳven, is dit onaanvaardbaar.

In deze doctoraatsverhandeling stellen we een nieuw programmeerparadigma
voor voor grootschalige live eventcorrelatie: Logisch-Reactief Programmeren.
LRP overkomt de problemen in huidige oplossingen door een garandeerbare
bovengrens te vereisen op de levensduur van eventdata. Aan de hand
van temporal reasoning garandeert LRP dat een vaste bovengrens bestaat
op het aantal events dat bĳgehouden moet worden. Oude events worden
automatisch verwĳderd. Dit laat LRP systemen toe om binnen een eindig
tĳds- en geheugenbudget te werken. We introduceren PARTElang, de eerste
LRP taal. De formele onderbouwing van LRP berust op een event algebra. We
definiëren een operationele semantiek voor PARTElang. Deze garandeert
dat iedere operatie in constante tĳd uitgevoerd wordt, gebruikmakend van
een constante hoeveelheid geheugen. We bewĳzen dat het evaluatiemodel
het correcte gedrag voorschrĳft, en demonstreren dit aan de hand van een
prototype.

iii

Acknowledgments

First of all, I would like to thank the members of my jury (Viviane Jonckers,
Katrien Beuls, Tias Guns, Coen De Roover, Sebastian Erdweg, and Robert
Hirschfeld) for their insightful comments and feedback.

I would like to thank my promotors, Wolf and Joeri, for their guidance and
feedback. Their advice, encouragement, and occasional constructive criticism
were essential throughout my PhD.

Of course, the rest of the Software Languages Lab was also a great bonus.
Thank you all, both for offering a good environment to do work in, and for
being great colleagues. I won’t list you all, but know that I am thankful for the
work environment you helped create. So, thanks to the Rete-and-event-based-
things people: Kennedy, Humberto, Sam, etc. Thanks to those of you who
arrived at SOFT around the same time as me, and therefore were often going
through the same thing at the same time as me: Janwillem, Nathalie, Simon,
etc. Thanks to those who at some point were doing the day-to-day guidance
for the part of SOFT I was in at that time: Stefan, Lode, Yves, etc.

Outside of SOFT, I’d also like to thank my family and friends. Thanks Ansje,
for being there for me through all these years. Thanks, mom and Evelyne too,
for all the support you provided. Thanks, Raf, for your friendship and for
proofreading this entire dissertation, even though you had no obligation to do
so at all.

Finally, thanks, reader, for reading this. Why are you reading this? Are you
waiting for my public defense to start? (Hello! Wave!) Or are you reading it
during the presentation? Aww, I spent all that effort making it interesting...
Or are you looking for inspiration while writing your own Acknowledgments
section? Did you pass your private defense yet? Congratulations! Or are
you just that well-prepared that you’re writing it proactively? Wow, keep up
the good work! In any case, thanks, and I hope the work described in this
dissertation is useful to some of you.

Thiswork is partially funded by a PhD scholarship of theAgency for Innovation
by Science and Technology in Flanders (IWT).

v

Contents

1 Introduction 1

1.1 Problem Statement . 4
1.2 Research Goal . 4
1.3 Approach . 5
1.4 Contributions . 8
1.5 Supporting publications . 8
1.6 Outline of the Dissertation . 10

2 State of the Art in Distributed Big Data and Stream Processing 11

2.1 Driver Scenarios . 12
2.1.1 Setting . 12
2.1.2 Scenarios . 13
2.1.3 Conclusion . 14

2.2 History of Big Data Stream Processing . 14
2.2.1 Origins . 14
2.2.2 Early Stream Processing: Tribeca . 16
2.2.3 Later Stream Processing Systems . 17
2.2.4 Early Big Data Processing: MapReduce 19
2.2.5 Data-Parallel Pipelines . 20
2.2.6 Towards Streaming Big Data Processing 21
2.2.7 Summary . 23

2.3 Research Trends . 23
2.3.1 Restricting Selections by Time: Windowing 23
2.3.2 Distribution and Fault-Tolerance . 27
2.3.3 Expressivity and Language Paradigm 29
2.3.4 Summary . 31

2.4 Discussion: Shortcomings in the State of the Art 31
2.4.1 Event Correlation in Big Data Stream Processing Frameworks . . . 32
2.4.2 Data Processing Guarantees of Data in Streaming Databases 33

2.5 Conclusion . 34

vii

3 State of the Art in Event Handling 35

3.1 Traditional Approaches to Event Handling 35
3.2 Averting the Callback Hell: Reactive Programming 37

3.2.1 The Functional Reactive Programming Paradigm 37
3.2.2 Beyond Functional Reactive Programming 38
3.2.3 Active Research in Reactive Programming 38

3.3 Detecting Event Patterns: Complex Event Processing 38
3.3.1 Differentiating CEP from Streaming Databases 39
3.3.2 A Baseline for Modern CEP: SASE 41
3.3.3 Aggregation and Monitoring Multiple Streams: Cayuga 42
3.3.4 Expressive and Efficient CEP with Distributed Event Sources: TESLA 44
3.3.5 A Formal Foundation for Modern CEP: EVA 46
3.3.6 Complex Event Patterns and Reaction Logic as Declarative Rules . 46

3.4 A Taxonomy of Event Handling . 47
3.4.1 Event Consumption Policies . 47
3.4.2 Semantics of “followed by” . 48
3.4.3 Support for Temporal Constraints in Event Handling Languages . 50
3.4.4 Event Detection Models . 51
3.4.5 Summary . 56

3.5 Discussion: Shortcomings in the State of the Art 56
3.5.1 Shortcomings of Functional Reactive Programming 57
3.5.2 Shortcomings of Current Complex Event Processing 60

3.6 Conclusion . 62

4 Logic Reactive Programming 63

4.1 A Programming Paradigm for Reactive CEP 64
4.1.1 LRP as the Combination of CEP and Behavior-based RP 64
4.1.2 Strong Reactivity and Event Arrival Rate 65
4.1.3 LRP means Strongly Reactive Complex Event Processing 66
4.1.4 LRP means Distributed Processing 69
4.1.5 Requirements for a Logic Reactive Programming Language 70
4.1.6 Conclusion . 72

4.2 A Logic Reactive Programming Language: PARTElang 74
4.2.1 Informal Semantics . 74
4.2.2 Structure of a PARTElang Program 76

4.3 An Event Algebra for Logic Reactive Programming 79
4.3.1 Definitions of Base Concepts . 79
4.3.2 Patterns . 81
4.3.3 Evaluation . 83

viii

4.4 Mapping PARTElang onto the Event Algebra 83
4.4.1 Mapping a Single Pattern . 84
4.4.2 Mapping Multiple Patterns . 84
4.4.3 Mapping Multiple Rules . 85

4.5 Limitations of PARTElang and Future Work 85
4.5.1 Restriction to Closed Time Intervals 86
4.5.2 Lack of Aggregation Constructs . 86
4.5.3 Lack of Software-Engineering Constructs 87

4.6 Related work . 87
4.6.1 Guaranteed Constant Time Processing 87
4.6.2 Composition of Temporal Constraints in Event Algebras 90
4.6.3 Event Capture Semantics in Event Algebras 93

4.7 Conclusion . 94

5 Operational Semantics for an LRP Language 95

5.1 Background: the Rete Algorithm . 96
5.1.1 Rete: A Forward Chaining Inference Engine Algorithm 97
5.1.2 Varying the Amount of State Stored along the Rete Graph 99
5.1.3 Adapting Rete for Strongly Reactive Evaluation 100
5.1.4 Adapting Rete for Events . 100
5.1.5 Adapting Rete for a Distributed Context 101

5.2 A First, Rudimentary Formal Model for PARTE 103
5.2.1 Graph Nodes . 104
5.2.2 Node-local Data . 106
5.2.3 Tokens . 109
5.2.4 Events . 109
5.2.5 The Global Evaluation Language . 110
5.2.6 The Local Evaluation Language . 112

5.3 Formal Concepts for an Operational Semantics of PARTElang 118
5.3.1 Opposite Activation Side and Opposite Partial Match History . . . 119
5.3.2 Partial Match Arrival Rate . 119
5.3.3 Stale Partial Matches . 121
5.3.4 Expiration . 123
5.3.5 Rule Matching . 124
5.3.6 Node States . 125
5.3.7 Minimum Viable Size . 127

5.4 The Featherweight PARTE Model . 129
5.4.1 Shortcomings of the First, Rudimentary PARTE Model 129
5.4.2 Events . 130

ix

5.4.3 Tokens . 130
5.4.4 Graph Nodes . 132
5.4.5 Node-local Data . 132
5.4.6 The Local Evaluation Language . 134
5.4.7 The Global Evaluation Language . 145

5.5 Compiling PARTElang Programs into Featherweight PARTE Graphs . . . 146
5.5.1 Registering Event Templates . 146
5.5.2 Implementing Individual Event Patterns 148
5.5.3 Combining Event Patterns: Constructing the Join Network 148
5.5.4 Representing the Reaction Logic . 149

5.6 Limitations of Featherweight PARTE and Future Work 150
5.6.1 Limitations of the Minimum Viable Size Calculation 151
5.6.2 Limitations Inherited from PARTElang and Event Algebra EA . . . 152
5.6.3 Limited Interoperability with Order-Dependent Code 152
5.6.4 Lack of Failure Handling . 153
5.6.5 Optimizations Lacking from the Formal Model 153

5.7 Related Work . 155
5.7.1 Formal Models of Production Rule Systems 155
5.7.2 Time and Event-Management in Rete-derived Systems 155
5.7.3 Distributed Tracking of Temporal Lower Bounds 156

5.8 Conclusion . 157

6 Implementation 159

6.1 PARTERust: a Single-Machine PARTE Prototype 160
6.1.1 Overview . 160
6.1.2 Rust Primer . 160
6.1.3 Differences between PARTERust and the Formal Model 162
6.1.4 Implementing Values and Events . 162
6.1.5 Implementing Tokens . 164
6.1.6 Implementing Graph Nodes . 168
6.1.7 Implementing Node-local Data . 170
6.1.8 Implementing the Global Evaluation 175

6.2 PARTEElixir: a Truly Distributed PARTE Prototype 175
6.2.1 Overview . 175
6.2.2 Elixir Primer . 176
6.2.3 Interfacing Rust with Elixir . 177
6.2.4 Modifications to PARTERust Code . 177
6.2.5 Linking PARTEElixir to PARTERust . 179

6.3 Revisiting the Limitations of Featherweight PARTE 179

x

6.4 Conclusion . 182

7 Experimental Validation 183

7.1 Revisiting the Driver Scenarios . 183
7.1.1 Visualizing the Temporal Aspect of the Driver Scenarios 184
7.1.2 Understanding the Join Behavior of the Driver Scenarios 185
7.1.3 A Concrete Event Trace . 187

7.2 Expressing the Driver Scenarios in PARTElang 189
7.3 Shortcomings of the State of the Art Revisited 193

7.3.1 Issue: No Notion of Minimum Viable Sizes in the Model 194
7.3.2 Case Study: Expressing the Solution in Apache Flink 195
7.3.3 Case Study: Expressing the Solution in Spark Streaming 197

7.4 Quantifying the Problems with the State of the Art 199
7.4.1 Experimental Setup . 199
7.4.2 Results . 203
7.4.3 Conclusion . 206

7.5 Conclusion . 207

8 Formal Validation 209

8.1 Correctness of the Lower Bounds on Event Timestamps 210
8.1.1 Local Invariants . 210
8.1.2 Proof . 211
8.1.3 Conclusion . 216

8.2 Expiration does Not Discard Valid Matches 216
8.2.1 Proof . 217
8.2.2 Conclusion . 218

8.3 Unattainability of a Blocked PARTE Network 218
8.3.1 Proof . 219
8.3.2 Conclusion . 220

8.4 Necessity of “No Change” in Negated Subgraphs 220
8.4.1 Proof . 221
8.4.2 Minimum Required “No Change” Token Generation Rate 222
8.4.3 Conclusion . 222

8.5 Boundedness of State Size of Featherweight PARTE Graph 223
8.5.1 Local Invariant . 223
8.5.2 Proof . 223
8.5.3 Conclusion . 226

8.6 A PARTElang Program can be Evaluated in Constant Time per Event . . . 226
8.6.1 Local Invariant . 227
8.6.2 Proof . 227

xi

8.6.3 Conclusion . 233
8.7 Conclusion . 234

9 Conclusion 235

9.1 Revisiting the Problem Statement . 235
9.2 Revisiting our Contributions . 236

9.2.1 The Logic Reactive Programming Paradigm 236
9.2.2 PARTElang: a Logic Reactive Programming Language 237
9.2.3 Featherweight PARTE: an Operational Semantics for PARTElang . 237
9.2.4 Two Prototypical Implementations of Featherweight PARTE 237

9.3 Revisiting the Limitations and Future Work 238
9.4 Closing Remarks . 239

A Additional Code Snippets 241

A.1 Additional PARTElang Snippets . 241
A.2 Additional Snippets of the PARTERust Implementation 242
A.3 Additional Snippets of the Event Trace . 243

B Experimental Results 247

xii

List Of Definitions

Definition 1 Strong reactivity . 65
Definition 2 Event arrival rate . 65
Definition 3 Stratification . 67
Definition 4 Logic Reactive Programming . 72
Definition 5 Relation . 79
Definition 6 Schema . 79
Definition 7 Type in a schema . 80
Definition 8 Values of a type . 80
Definition 9 Instance of a schema . 81
Definition 10 Stream . 81
Definition 11 Pattern . 81
Definition 12 Evaluation of a pattern . 83
Definition 13 Opposite partial match history 119
Definition 14 Partial match arrival rate . 121
Definition 15 Semantic time window of events 121
Definition 16 Semantic time window of partial matches 122
Definition 17 Stale partial match . 122
Definition 18 Expiration . 123
Definition 19 Rule matching . 124
Definition 20 Evaluating state . 126
Definition 21 Blocked state . 126
Definition 22 Waiting state . 126
Definition 23 Suspended state . 126
Definition 24 Blocked PARTE network . 127
Definition 25 Minimum viable partial match history size 127
Definition 26 Minimum viable outbox size . 127
Definition 27 Minimum viable inbox size . 128

xiii

1
Introduction

Increasingly, processes in the world are managed by software systems. Financial trans-
actions are executed by autonomous software systems. Access to buildings and rooms
is managed by smart locks. Parcels passing through distributions centers are scanned
and automatically routed. Evidently, electronic communication is handled by software
systems too, as are web applications. Developments such as Smart Cities or the Internet
of Things lead to widespread deployment of sensors throughout the real world.

All these systems necessarily create some representation of the elements they aremanaging,
and of what happens to them. The latter are commonly referred to as events. Events are
digital records of things that occurred in the world surrounding some computational
system. For a system managing finances, the fact that, e.g., 50e was transferred from
some account to another at five past noon today, is an event. For a smart lock, the fact
that, e.g., the front door was unlocked at eight o’clock last Sunday, is an event. For a web
application, the fact that, e.g., a user stopped scrolling down while a certain image was
displayed, is an event.

The information carried by events is often valuable: finances need auditing, smart locks
benefit from storing access logs, parcel services benefit from having a trace of their
parcels’ whereabouts, etc. Even when events are not critical to the execution of the base
tasks, storing events can be invaluable. For this reason, many web applications store
click-streams, i.e., a log of all interaction events a user executed on their platform, for
analysis purposes.

1

Chapter 1: Introduction

The process of gathering and storing events is only part of the solution. A complete
solution includes the means of understanding the relation between events. While events
carry meaning in isolation, a better understanding of the world can often be reached by
correlating multiple data points in an event stream. For instance, detecting fraudulent
diffusion of crime money requires linking multiple transactions. Detecting where a
parcel has disappeared from the pipeline requires correlating the point at which it was
last registered with the first point at which it was supposed to appear, but never did.
Measuring user engagement in a web application requires multiple data points from
multiple users. Such combinations of multiple events are commonly referred to as
complex events [94]. Stakeholders’ desire to monitor their data streams for occurrences of
complex events, has led to the need for software technologies by which complex events
can efficiently be detected.

At the same time, modern software systems increasingly need to provide immediate
feedback. Users expect web applications to be interactive. Companies increasingly expect
their event monitoring to be reactive too. Parcel services do not want to be limited to
the ability to investigate issues after the facts, they want their systems to autonomously
inform them of issues as soon as possible. Users deploying smart locks expect anomalies
to be signaled as soon as possible. Financial services do not want to wait for the results of
an overnight batch processing of yesterday’s transactions. Every second gained increases
the chance that malicious actions can successfully be reverted. In application domains
like security monitoring or fraud detection, this feature is not just “nice to have”, but a
hard requirement.

There hence exists a need for software systems that reliably and autonomously monitor
large, live streams of event data for complex events, and that autonomously enact reactions
to those complex events. The act of detecting and reacting to complex events is referred to
as Complex Event Processing (CEP).

Over the last decade, much effort has been put into building systems which can process
vast amounts of data. These systems are commonly referred to as “Big Data” processing
systems. A large portion of the Big Data processing systems is aimed at batch processing.
In batch processing, groups of data points are gathered into a batch, which is then jointly
processed. For instance, an entire day’s worth of financial transactions can be gathered,
to be executed overnight. As discussed, many use cases cannot be properly served by
batch processing systems, as such systems inherently have a high latency. Instead of
analyzing the data in batches, such use cases require real-time monitoring of event streams,
i.e., processes events incrementally as they unfold. Such stream processing systems may
offer lower latency, but typically do so at the cost of lower throughput. Furthermore,
while batch processing systems trivially are able to use data from all data points in a batch,
stream processing systems typically only offer limited means of referring to earlier data
points while processing a new event.

In this dissertation, we argue there is one use case where the state of the art of Big Data
processing falls short: reliably correlating events across and within large streams of

events, in a streaming fashion. For instance, the use case of financial fraud monitoring

2

Distributed Big Data & Stream Processing Event Handling
Reactive ProgrammingComplex Event ProcessingBig Data Stream Processing Streaming Databases

~ average to low~ average to low✓✓ very high ✓ high
Throughput

– none✓ some history– none ✓✓large history size
History

✓ constant
(depth of program)

– proportionate to
history

✓ constant
(depth of program)

– proportionate to
historyCost per update

– unsupported✓✓ expressive pattern
language

– unsupported ✓ supported
(relational join)

Pattern
matching

~ possible, assuming no
loops etc. in program

– proportionate to
history

✓ yes
(with basic operators)

– proportionate to
history

Bounds on
resource usage

✓✓well-supported
(core of the paradigm)

– outside of the model,
or Callback Hell

– often integrated, but
Callback Hell

– outside of the model
Reaction logic

Table 1.1: Summary of the state of the art of event stream processing

needs support for a.) responding to occurrences of financial transactions; b.) filtering
financial transactions based on their attributes, e.g., selecting only transactions above a
certain valuation; c.) joining financial transactions based on their attributes, e.g., joining
all transactions whose source account matches another set of transactions’ destination
account; d.) detecting the absence of transactions matching some pattern; e.) performing
well enough to handle an entire financial institution’s stream of transactions; and to
f.) provide the guarantee that the system can keep up with data as it comes in, i.e., that it
will not detect fraud too late, let alone miss fraudulent transactions because the system
was overloaded or had crashed due to resource exhaustion.

Implementing software systems for this task is complicated, as existing software solutions
do not offer the required guarantees, or fail to concisely and unambiguously express the
patterns to detect.

We discuss in chapters 2 and 3 how existing batch processing systems fail to meet the
stringent latency requirements, while most streaming systems either do not offer ways
of correlating events, or do so without guarantees on the time and space it takes them.
Such streaming systems can thus not guarantee that they will be able to keep up with
the arrival of new events, nor that they will not run out of memory. These shortcomings
make them inherently irreconcilable with use cases such as security monitoring: security
systems can not afford to fall behind, or to cease monitoring.

On the other hand, existing stream processing systems which guarantee bounded resource
usage are restricted to very constraining language models. For instance, some of those
systems expose a complex event matching strategy based on regular expressions. This
paradigm does not lend itself very well for use cases such as monitoring financial
transactions: fraud analysts are rarely interested in comparing a transaction to specifically
the very next transaction that happened to be submitted to their institution, or in
uninterrupted sequences of transactions. We discuss in chapter 3 how none of the existing
systems offer a clean way of expressing complex event patterns while guaranteeing
constant time processing in constant space.

We summarize the strengths and weaknesses of state of the art in table 1.1.

3

Chapter 1: Introduction

1.1 Problem Statement

We explained the need for software systems that can detect complex patterns in continuous
streams of events, live as the events are occurring. For some application domains — such
as security monitoring — the complex event detection system must guarantee it is able to
keep up with the input stream, and to autonomously enact reactions to occurrences of the
complex events. Given a set of complex event patterns to detect, and an upper bound on
the rate at which events can be delivered via the input stream, a monitoring system must
be able to determine its maximum resource usage. Within the bounds of that resource
usage, the system must then guarantee that reactions to the complex event patterns are
enacted, and that they are enacted in a timely manner. We define this guaranteed ability
to react in a timely fashion to an input stream with a bounded maximum rate as strong
reactivity (page 65).

Given this context, we formulate the problem statement as follows:

Problem Statement

There is a need for platforms which autonomously process complex events in
high-throughput streams of events, incrementally in a data-driven, always-listening,
strongly reactive manner.

1.2 Research Goal

The goal of this dissertation is to develop a programming paradigm that captures the
concerns of strongly reactive Complex Event Processing over high-throughput streams of
events. Programming languages implementing this paradigm should

• facilitate Complex Event Processing by offering the abstractions to reason about
combinations of events; and

• guarantee that programs written in them are strongly reactive, i.e., that finite upper
bounds are known on the rate at which primitive events may occur, and that
execution of the program in turn is guaranteed to never fall behind on the input
streams, nor consume more than some predictable, finite amount of memory. In
general, strong reactivity precludes the possibility of the program crashing due to
resource exhaustion.

Many forms of event stream processing exist. It would needlessly broaden the scope of
this dissertation to discuss them all in detail. Informed by a number of driver scenarios
from the application domain of security monitoring, we investigate only streaming pattern
matching. Pattern matching is the act of finding sets of events which jointly satisfy the
conditions of some pattern or template.

4

1.3 Approach

To disambiguate what we mean by that we consider the defining properties of this
approach to be that 1.) the patterns to match are decided up front (in contrast to, e.g.,
outlier detection); that 2.) the patterns tomatch are explicitly defined from expert knowledge
(in contrast to, e.g., machine learning techniques); and that 3.) the patterns may express a
correlation (in contrast to, e.g., simply filtering events, or computing aggregates such as
running averages). Systems which do not conform to these properties are out of scope for
this dissertation. Due to their historic importance we discuss some systems of the third
category in our discussion of the state of the art (chapters 2 and 3).

1.3 Approach

In this dissertation, we propose a novel programming paradigmwhich tackles the problem
stated in section 1.1. We call this new paradigm Logic Reactive Programming (LRP). As
the name implies, Logic Reactive Programming is a logic programming paradigm. In LRP,
complex event patterns can be specified using a restricted logic programming language.

Consider the code snippet shown in listing 1.1.

1 rule FraudPassThrough where
2 incoming : MoneyTransferred {
3 amount >= 100.0,
4 uncommon_route(originator, destination)
5 },
6 outgoing : MoneyTransferred {
7 uncommon_route(originator, destination),
8 originator = incoming.destination,
9 amount = incoming.amount
10 }
11 when
12 outgoing in incoming [0 days, 14 days]
13 then
14 emit SuspiciousSequenceDetected
15 at incoming.timestamp
16 with {
17 mule_account = incoming.destination,
18 amount = incoming.amount,
19 incoming_transactions = list(incoming.id),
20 outgoing_transactions = list(outgoing.id)
21 }

Listing 1.1: A first look at LRP: a PARTElang code snippet expressing a pattern consisting
of a suspicious incoming and a suspicious outgoing transaction.

Of course, the concrete semantics of this snippet will only be clear once the language
is explained in chapter 4. Skimming over the details, though, one can see that this
snippet defines a rule, called “FraudPassThrough”, which has a where-clause specifying
constraints on an incoming and an outgoing “MoneyTransferred” event, a when-clause
specifying how far apart in time both events may take place, and a then-clause specifying
that a “SuspiciousSequenceDetected” event must be emitted.

5

Chapter 1: Introduction

To enforce strong reactivity, the language requires that the when-clause imposes closed
temporal constraints between every pair of events in a pattern: events must occur some
fixed, finite amount of time before or after each other. As such, an upper bound can
statically be determined on the duration during which events remains relevant.

Closed temporal relations between events can specify, e.g., that a certain event must
occur between half a second before, and one second after another event. Open temporal
constraints, such as requiring that three events occur in sequence, but arbitrarily far apart
in time, cannot be expressed in LRP languages, as the duration during which the events’
data must be retained is then unbounded. This is compatible with our use case in security
monitoring: while having the ability to match events occurring arbitrarily far apart from
each other is nice to have, it is not a hard requirement.

The high-level, declarative nature of the LRP paradigm serves two purposes:

• First, it allows us to hide irrelevant implementation details from the LRPprogrammer.
Details such as event storage, retrieval of stored events, or purging of outdated
information are common to all LRP programs. In essence, an LRP programmanages
a database of recent (complex) events. There is hence some overlap with other
languages used for querying and updating databases.
Consider the case of SQL. In SQL, queries are expressed in terms of relational
algebra. Relational algebra can express the notion of a table of records, of conditions
on attributes of those records, and of joins between tables. SQL does not provide an
API to some storage of record. Bugs such as out-of-bound reads are prevented by
construction, since the relational algebra does not even expose the concept of an
addressable storage. Automatic rewriting of relational expressions to equivalent
relational expressions enables large-scale performance gains in relational database
systems. These properties largely depend on the non-imperative, declarative
character of SQL.
Logic Reactive Programming aims to exploit similar advantages for event processing.
By abstracting over the inner workings, it is easier for the LRP programmer to write
correct programs. Additionally, the abstractions give the language runtime more
options for transparent optimization. This choice is in line with the choices made by
related work: most systems for event correlation follow a declarative approach (see
chapters 2 and 3).

• The second reason we opted for a declarative approach, has to do with guaranteed
reactivity. Compare again with SQL. The maximum size of the (intermediate and
final) results of a query written in plain SQL is proportionate to the size of the
database. The same holds for the time it may take to enumerate those results.
Programs written in general-purpose languages offer a weaker guarantee, as Turing
completeness entails that time and space requirements are unbounded.
Logic Reactive Programming explores the opposite side of the spectrum: the
resource usage of an LRP program may not be proportionate to the size of all data
that was added to the monitored stream. To remain strongly reactive, LRP programs

6

1.3 Approach

must execute in constant time. Since enumerating results takes time proportionate
to the number of results, the number of (intermediate and final) results generated in
response to each event must be constant.
By carefully selecting which operations are allowed in an LRP program, LRP
programs by construction have a guaranteed, static upper bound on reaction time.
One of the main restrictions imposed to accomplish this, is the absence of arbitrary
data structures. The only compound data types which exist in LRP, are events.
Events are treated as timestamped records. Events may not store other events as
attributes. Individual events cannot even be named by an LRP program, nor can
they be explicitly stored somewhere. LRP programs merely express patterns of
events. The pattern is instantiated for each combination of events that matches the
pattern. The storage location is transparent to the LRP programmer.
As such, the declarative nature of LRP ensures that the memory layout of any
given LRP program can be statically determined up front. As a result, given an

LRP program and an upper bound on the event arrival rate, one can statically

determine whether a certain machine is capable of detecting all complex events

occurring in the input streams. LRP precludes the possibility that a CEP program
falls behind on the input stream or crashes due to resource exhaustion.

We develop PARTElang, the first Logic Reactive Programming language. The formal
foundations of PARTElang are defined by means of an event algebra. We propose a
two-phase model for evaluating programs written in the PARTE language.

• In the first phase, the dependencies outlined in the PARTE program are extracted
and compiled into a Rete-like [59] graph. Using the temporal constraints defined
in the PARTE program and the maximum event arrival rates for all input streams,
a finite minimum viable size is computed for each location where state is stored.
These minimum viable sizes are the minimum sizes at which PARTE can guarantee
to find all matches to the patterns that occur in the event streams.

• In the second, online phase, events are matched to the constraints in the graph in
constant time, using constant space: at most the minimum viable size is needed. The
operational semantics of the evaluation model is defined in the form of rewrite-rules
on the PARTE graph.

We evaluate our work in two ways:

• First, we develop a prototypical implementation, and show its ability to reliably
process a live stream of events. We compare this with the abilities of the state of the
art of event stream processing techniques.

• Second, we formally prove that the evaluation model defines strongly reactive
matching of complex event patterns.

7

Chapter 1: Introduction

1.4 Contributions

The contributions of this dissertation are the following:

A taxonomy of existing event processing systems with a focus on scalable Big Data
stream processing engines and expressive event handling languages.

Logic Reactive Programming, a novel programming paradigm aimed at strongly reac-
tive correlation of complex events. Characteristic of Logic Reactive Programming
Logic are 1.) declarative specification of event patterns and reaction logic, 2.) built-in
temporal reasoning, 3.) automatic management of event data, 4.) scalable online
processing, and 5.) guaranteed availability.

PARTElang, a first Logic Reactive Programming language which satisfies the five re-
quirements of LRP. We further define an event algebra, which serves as the formal
foundation for PARTElang. We define how PARTElang programs map onto the
event algebra.

Featherweight PARTE, a formal model for evaluation of PARTElang which defines an
operational semantics of PARTElang. Featherweight PARTE complements the event
algebra by specifying which steps must be taken to achieve the behavior specified in
the event algebra. Featherweight PARTE fits the Big Data context by not requiring a
shared memory space, nor centralized control, instead coordinating multiple nodes
through asynchronous message passing. The model defines a global evaluation
language which specifies how messages are exchanged by the nodes, and a local
evaluation language which specifies how node state is transformed in response to
specific messages.

A prototypical PARTElang runtime implementing the Featherweight PARTEmodel. We
evaluate how the prototype compares to the state of the art when implementing our
driver scenarios, which we introduce in section 2.1.

1.5 Supporting publications

Parts of this dissertation were published in a number of papers. We summarize them
below:

• Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De Meuter. Parallel
Gesture Recognition with Soft Real-Time Guarantees. In Proceedings of the 2nd
edition on Programming Systems, Languages and Applications based on Actors, Agents, and
Decentralized Control Abstractions, AGERE! 2012, pages 35–46. ACM, 10 2012. ISBN
978-1-4503-1630-9. doi: 10.1145/2414639.2414646

8

1.5 Supporting publications

This paper introduced the first step towards PARTE: an implementation of the
Rete algorithm [59], adapted for event processing, which can make use of the
parallelism offered by modern multi-core processors by implementing the Rete
graph as concurrent actors. The use case — live gesture recognition — necessitated
soft real-time guarantees: late responses are suboptimal, but not a hard failure.

• StefanMarr, Thierry Renaux, Lode Hoste, andWolfgang DeMeuter. Parallel Gesture
Recognition with Soft Real-Time Guarantees. Science of Computer Programming, 98:
159–183, 2 2015. ISSN 0167-6423. doi: doi:10.1016/j.scico.2014.02.012

This paper extends the one listed above. We showed that the time requirement of
the version of PARTE described in that paper was bounded by the data set size.
A set of mostly synthetic benchmarks demonstrated that PARTE could run with
predictable time costs, a requirement for soft real-time systems.

• Janwillem Swalens, Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De
Meuter. Cloud PARTE: Elastic Complex Event Processing based on Mobile Actors.
In Proceedings of the 3rd International Workshop on Programming based on Actors, Agents,
and Decentralized Control, AGERE! 2013, pages 1–10. ACM, 10 2013. ISBN 978-1-4503-
2602-5

This paper demonstrates howPARTE canmake use of the compute power ofmultiple
networked computers. We split up computation on the actor-level granularity
introduced in PARTE, and schedule different nodes on different machines. We
empirically validate the possibility of balancing a workload over multiple networked
computers, based on the number of messages in the inboxes of the nodes.

A number of our papers touch upon topics related to this dissertation, notably the
implementation of rule-based languages to provide complex event processing capabilities:

• Kennedy Kondo Kambona, Thierry Renaux, and Wolfgang De Meuter. Reentrancy
and Scoping for Multitenant Rule Engines. In Proceedings of the 13th International
Conference on Web Information Systems and Technologies (WEBIST 2017), volume 1,
pages 59–70. Scitepress, 2017

This paper describes a multi-tenant rule-based system, i.e., one which hosts the
business logic of multiple users. The rule-based system can share some data and
work among the users, while other data can be kept private.

• Kennedy Kambona, Thierry Renaux, and Wolfgang De Meuter. Efficient Matching
in Heterogeneous Rule Engines. In Proceedings of the 30th International Conference on
Industrial, Engineering, Other Applications of Applied Intelligent Systems (IEA/AIE 2017:
Advances in Artificial Intelligence: From Theory to Practice), volume 10350 of Lecture
Notes in Computer Science, pages 394–406. Springer, 6 2017. ISBN 978-3-319-60041-3

This paper shows how the performance of a multi-tenant system can be improved
by asymptotically speeding up the process of joining data from different hierarchical
scopes.

9

Chapter 1: Introduction

• Kennedy Kambona, Thierry Renaux, and Wolfgang De Meuter. Harnessing Com-
munity Knowledge in Heterogeneous Rule Engines. In Tim A. Majchrzak, Paolo
Traverso, Karl-Heinz Krempels, andValérieMonfort, editors,Web Information Systems
and Technologies, volume 322, pages 132–160. Springer International Publishing, 2018.
ISBN 978-3-319-93527-0. doi: 10.1007/978-3-319-93527-0_7

This paper shows how the efficient matching in multi-tenant rule engines makes it
possible to harness community knowledge by combining the views that individual
users have.

• Thierry Renaux, Lode Hoste, Christophe Scholliers, and Wolfgang De Meuter.
Software Engineering Principles in the Midas Gesture Specification Language. In
Proceedings the 2nd International Workshop on Programming for Mobile and Touch, Port-
land, PRoMoTo 2014, pages 9–16, Portland, Oregon, USA, 10 2014. ACM. ISBN
978-1-4503-2295-9

This paper explores applying software engineering principles to rule-based lan-
guages. Central are the ideas of improved means of abstraction and reuse.

1.6 Outline of the Dissertation

The next two chapters sketch the state of the art in distributed Big Data and stream
processing (chapter 2), and event handling (chapter 3). Chapter 4 introduces the novel
Logic Reactive Programming paradigm, and proposes a first LRP programming language,
PARTElang, as well as an event algebra for PARTElang programs. In chapter 5 we define
an operational semantics for PARTElang programs, in the form of the Featherweight PARTE
model.

In chapter 6 we describe our prototypical implementations of the Featherweight PARTE
model: PARTERust and PARTEElixir. We show how our research artifacts can be used to
implement a real-world use case in chapter 7.

Finally, the validity of claims from chapter 5 is established by formal proofs in chapter 8.

10

2
State of the Art in Distributed Big Data

and Stream Processing

We stated in section 1.1 that there is a need for software systems which autonomously
process complex events in high-throughput streams of events. In this chapter we discuss
the evolution of large-scale data processing systems. We argue that two concrete historical
turning points lead us to the current state of the art. The first turning point is the inception
of relational databases. The second turning point is the point at which distributed
processing became mainstream, i.e., the “Big Data” trend. Both relational databases and
Big Data processing systems have evolved to support incremental, streaming processing
of event data. This chapter outlines how that evolution took place, and even became
confluent across both domains.

The chapter is structured as follows: we first introduce three driver scenarios from the
domain of fraud detection for financial transactions. We then sketch the relevant parts of
the history of Big Data stream processing. We identify three trends in the state of the art:
the introduction of time windows, the introduction of distributed computation, and
the shift in programming language paradigm used.

Afterwards, we discuss how the state of the art in Big Data stream processing the art fails
to express two key concerns of our driver scenarios: correlating events and guaranteeing
timely processing of data.

11

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

2.1 Driver Scenarios

We stated in chapter 1 that the research in this dissertation targets software tools used to
monitor streams of events for occurrences of event patterns. The event monitoring should
additionally satisfy the following constraints:

Declarative: event patterns should be declarative specifications of complex events, i.e.,
events which potentially consist of multiple sub-events; and

Reliably real-time: the monitoring should take place in real-time, detecting matches to
the patterns as soon as the pattern occurred.

Many existing systems ostensibly tackle a similar problem. We describe the most relevant
systems in section 2.2 and explain in section 2.4 why those systems do not suffice for
tackling our use cases. To make the issues concrete, we now introduce a set of driver
scenarios. These scenarios will be used throughout this dissertation to compare different
approaches, and to explain new concepts as they are introduced.

2.1.1 Setting

Consider the domain of fraud detection in financial transaction processing. To detect
fraudulent transactions, financial institutions track all transfers of money which pass
through their system. The data available to the financial institutions is limited to — on
the one hand — static information about accounts held at their own institution, and — on
the other hand — a live feed of the money transfers from, to, or between local accounts.

The occurrence of a money transfer constitutes an event. For instance, if Alice sends
50e to Bob on January 1st, 2018 at 10:05, the system registers the occurrence of an event
that “money was transferred” with a timestamp of “2018-01-01 10:05”, and attributes
identifying the originator of the event as Alice, the destination as Bob, and the amount as
50e.

In this setting, we focus on suspicious behavior that indicates possible cases of two types
of fraud:

Money muling: an account is used to forward crime money (scenario A) or to diffuse
crime money (scenario B).

Refund scams: an account holder is tricked into reimbursing a supposedly erroneous
transaction, but the erroneous transaction is additionally claimed as erroneous with
the originating bank, causing the transaction to be reverted. The sender hence gets
reimbursed twice (scenario C).

12

2.1 Driver Scenarios

Account A Account B

Account C

Account D

Account E

incoming
outgoing1
outgoing2
outgoing3

Account A Account B Account Coutgoingincoming

A. Suspected money muling: pass-through

B. Suspected money muling: diffusion
Account A Account B

reimburse

revert incoming

claim

C. Suspected refund-scam

other incoming

incoming

Figure 2.1: Schematic depiction of the driver scenarios — Rectangles represent accounts. Arrows

represent money transfers between the accounts. A “claim” cloud represents the occurrence of a claim that a

transaction was erroneous. Time progresses from left to right for scenarios A and B, and from top to bottom

for scenario C.

2.1.2 Scenarios

A schematic depiction of the driver scenarios is provided in figure 2.1.

Scenario A: Suspected Money Muling: Detecting Pass-Through of Money

The first driver scenario is quite simple, and will be used to demonstrate basic concerns,
such as basic syntax and concepts. Driver scenario A concerns the detection of an account
possibly used as a money mule in the most simple way: the account receives a sum of
money from an account it normally does not receive money from, and forwards it to a
third account it normally does not send money to. In driver scenario A, the amount of
money sent must be exactly the same as the amount of money received. Furthermore, the
amount must be at least 100e; individual transactions involving less money are ignored.
To enable monitoring within fixed resource bounds, it is impossible to inspect the entire
history of financial transactions. Therefore, a limited time span of 2 weeks is inspected.
Scenario A only concerns cases of pass-through which conclude within 2 weeks.

Scenario B: Suspected Money Muling: Detecting Diffusion of Money

The second driver scenario extends the first one, by detecting a three-way split through
a possible mule account. Again, the originator account is suspicious if it is an account
that does not normally transact with the suspected mule account, as are the destination
accounts. However, this time there are three destination accounts, and it is the sum of the
value of all outgoing transactions that has to match the incoming transaction. Additionally,
a discrepancy of up to 10% between incoming and outgoing amounts will be allowed to
make the detection more resilient to obfuscation, and to account for possible included
payment of the mule. The incoming transaction must again amount to at least 100e.
Again, a time window of up to 2 weeks is considered.

13

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

Scenario C: Detecting Refund Scam

The third driver scenario differs from the first, in that this case tries to detect a victim
instead of an accomplice of fraud. Again, suspicious accounts are defined as accounts
which do not normally wire money to each other. The time window for the sequence of
events is again set to 2 weeks. The pattern of interactions is as follows: 1.) an account
receives a deposit from some originator, 2.) the account sends the same amount, with a
10% margin, back to the originator, 3.) the originator falsely claims the first transaction
was in error, thereby recuperating the money, but keeps the money sent in step 2, and
4.) there was no other transaction similar to the one in step 1, to which the refund in step
3 might apply.

Note that this scenario introduces the notion of absence of events: the last condition
holds when no matching transaction is detected.

2.1.3 Conclusion

In all three scenarios, detection has to happen live, as the data comes in. The amount of
data to handle can grow large, as both the rate at which new events can occur is large, as
well as the time frame during which the events need to be retained. It is an operational
requirement that the system is constantly online and keeping up with new events.

When these requirements present themselves, a reasonable first choice seems to be to turn
to database management systems. Relational databases are a staple for warehousing and
processing large amounts of structured data, providing high availability. Alternatively,
distributed stream processing systems have shown to be able to handle “Big Data” with
strong guarantees on availability. In the remainder of this chapter we sketch the state of the
art in Big Data stream processing, and discuss why it falls short in properly implementing
the driver scenarios. Similarly, chapter 3 sketches the state of the art of Event Handling,
and discusses why existing event handling solutions fall short in properly implementing
the driver scenarios.

2.2 History of Big Data Stream Processing

2.2.1 Origins

The need to store data has been part of computer science since the beginning. Multiple
approaches have been devised, from low-level filesystems to domain-specific, tailored
databases. For large amounts of structured data which can be made to fit a schema,
relational database management systems have been in use for about half a century.

14

2.2 History of Big Data Stream Processing

database

query
queryquery

datadata
data

results

a. Traditional, query-driven database

database

query
queryquery

datadata
data

results

b. Active, data-driven database

Figure 2.2: Traditional vs. active databases — In traditional databases, data is stored and the

introduction of a query causes results to be computed. In an active database, queries are stored and the

introduction of data causes results to be computed.

The need to handle data immediately, as new data arrives, gave rise to active databases.
The seminal work by McCarthy and Dayal [99] summarize that an active database “is
one which automatically executes specified actions when [specified] conditions arise”.
The difference is depicted schematically in figure 2.2. In essence, traditional relational
databases store “passive” data as a bounded, unordered set of tuples, organized by
abstractions based on relational algebra. Relational algebra can be used to optimize and
plan queries over this data. Active databases move away from this notion of random
access reads and updates, favoring instead continuous queries [134]. Typically, in active
databases the order in which the tuples arrived matters. Furthermore, since the size of
the database is unknown when the query is formulated, the utility of query planning
is reduced. Some stream processing systems experimented with moving away from
SQL — and even from relational operators in general — as the fit between the query
language and the features required of — and offered by — the streaming active database
system weakened. New constructs for structuring data were introduced instead, chiefly
among them temporal windowing, i.e., selections of data points based on their timestamps.
Simultaneously, constructs for splitting up storage and processing (such as database
sharding) and fault-tolerance were modified to perform better in the novel context.

Data storage systems evolved to support incremental data processing. Concurrently, data
processing systems evolved to support larger amounts of data. In symmetry with our
discussion on the origins of active databases, we do not aim to provide an exhaustive
survey of the origin and evolution of stream processing systems. We merely aim to
sketch the context of the work described further in this thesis. As such, we skip the early
history, including formalisms like Petri nets, Communicating Sequential Processes and
Synchronous Dataflow languages, and applications in the domains of audio and video
processing, or digital signal processing. We start instead at an early example of stream
processing systems: Tribeca [131].

15

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

2.2.2 Early Stream Processing: Tribeca

Tribeca is a stream processing system tailored at network traffic stream analysis. Sullivan
[131] describes that his system is a better fit for network traffic analysis than conventional
relational database management systems because a.) “both [their] data and the storage
medium are stream-oriented”, offering fast sequential access to data; b.) “non-clustered
indices will not work for traffic data”; c.) “a network traffic trace is a sequence of
timestamped network protocol headers” whose processing requires “operators like those
found in sequence and temporal DBMSs”, yet they require “several dataflow operators
and pattern matching operators that are not common in sequence databases”; d.) the
format “means that even otherwise distinct queries [. . .] often share subqueries”; and
e.) the need to work in a streaming fashion means that “users would rather reformulate
an expensive query or drop an expensive query from the mix than overallocate” resource
usage, whereas “relational systems run queries as fast as they can but typically do not
provide this kind of capacity information”.

While the paper by Sullivan focuses specifically on network traffic analysis, the concerns
raised there can be generalized to what we consider to be the defining properties of stream
processing:

Pre-registered processing Stream processing systems enable formulating queries or
transformations that will be applied to the entire streams of data.

Temporal constraints Stream processing systems offer operators to express temporal
constraints over the data.

Streaming operation Since they operate on data as the data is coming in, stream process-
ing systems need to keep up with the data, which entails that the speed at which
data can be processed is linked to the speed at which it is generated. If data arrives
faster, the processing system has to be sped up; be it by augmenting its hardware,
by improving its implementation, or by reducing its workload.

Since we use Tribeca as the baseline for our discussion of later systems, we describe
Tribeca in some more detail.

The basic unit of computation in Tribeca is a network traffic query. Every query has exactly
one source stream. Data on this stream can be transformed using three types of operators:
qualification (i.e., filters), projection (i.e., transformations), and aggregation (e.g., averages,
minima, or maxima). Results of a traffic analysis query are published in the form of one
or more result streams. Both source streams and result streams can be fed from tape or
file. In addition to considering entire streams at once, parts of streams can be selected into
temporal windows. Tribeca offers two types of windows: a “fixed” window that gets reset
after a fixed interval (commonly called a “tumbling window”, see below) and a “moving”
window that contains the last events for some fixed length of time (commonly called a
“sliding window”, see below).

16

2.2 History of Big Data Stream Processing

The syntax for Tribeca is fairly straightforward: it consists of lines specifying one of the
components listed above. For instance, consider the traffic query in listing 2.1.

1 source_stream a is {file sample1 someTrace}
2 result_stream b is {file someFile}
3 stream_pipe some_pipe
4 stream_window w on a defined by { a.time.interval 0.5 } is fixed
5 stream_proj {{a.some_field a.some_other_field}} some_pipe
6 stream_agg { some_pipe.some_field.min } b

Listing 2.1: The Tribeca syntax for the example from section 2.2.2.

This code specifies that the query sources its data from some stream a sampled of a file
named someTrace. Results will be generated on some stream b, whose values will be
stored into the file someFile. The attributes some_field and some_other_field
will be read from all data on stream a, and pushed into an intermediate data pipe
some_pipe. The values off some_pipe will be aggregated by taking the minimum of
the some_field attribute, and pushed into stream b.

2.2.3 Later Stream Processing Systems

NiagaraCQ

The foundation laid by Tribeca was extended on by what became the field of stream
processing. A first milestone after Tribeca was NiagaraCQ [32]. NiagaraCQ is arguably
an active database, structuring its stream processing as continuous queries. Chen et al. [32]
clarify the difference between traditional triggers and continuous queries by the purpose
of both: the purpose of triggers is to maintain data integrity, whereas the purpose of
continuous queries is to support repeated, continuous processing of queries. NiagaraCQ
also supports queries involving multiple input sources, some of which need not even be
present in a database. This distinguishes it from both triggers as well as Tribeca, which —
as mentioned above — supports only a single source stream per query.

The NiagaraCQ Command Language offers the means to register named continuous
queries, listing a query expressed in XML-QL [48], some reaction code, and optionally a
start time and end time, and an interval. These timings specify how often the query is
reevaluated. NiagaraCQ is not strictly data-driven; it is not necessarily the arrival of new
data that causes reevaluation, but the firing of an internal timer.

The main contributions of NiagaraCQ are improved sharing of subqueries, which leads to
higher processing performance on streams, and the use of a fully declarative, SQL-like
query language in a streaming context.

17

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

Gigascope

Gigascope [39]merges the contributions of Tribeca andNiagaraCQ, by offering an SQL-like
query language which reasons over data streams and produces new data streams. Cranor
et al. [39] identify a number of issues with the sliding windows in existing continuous
query languages. They claim composing windows is not possible in those languages, and
result of continuous queries may be difficult to interpret when the inputs were filtered by
means of time windows. For these reasons, they opt instead for selecting events using an
SQL GROUPBY construct.

A translation into Gigascope syntax of the Tribeca query in listing 2.1 could look like what
is listed in listing 2.2:

1 SELECT MIN(some_field), some_other_field
2 FROM SomeInput AS a
3 GROUP BY time/7200 -- Half-second buckets

Listing 2.2: The Gigascope syntax for a query similar to the one in listing 2.1.

In essence, it is an SQL query: Gigascope’s GSQL is a subset of SQL. In contrast, the
contemporaneous STREAM by Arasu et al. [13] uses a superset of SQL: CQL. CQL extends
SQL with constructs for sliding windows, showing that no consensus existed in 2003 on
the utility of sliding windows for stream processing.

Aurora and Borealis

We consider Aurora [27] to be the next big step in the evolution of stream processing
systems. Aurora improved earlier work by offering more temporal reasoning capabilities.
In addition to the simplistic time windows supported by Tribeca and NiagaraCQ, Aurora
introduced the notion of a latch which retains a specific element for future processing
steps, and the idea of slack: a means to handle events which arrived out of order. Aurora
further featured load shedding, the principle of dropping tuples when compute time is
insufficient to handle all input in a timely fashion. Evidently, this cannot in general be
done without impacting the results. Carney et al. [27] therefore developed a strategy to
select the data whose omission is least likely to impact results.

The Aurora project was combined with the Medusa project [17] to develop Borealis [1],
a stream processing system that supports offloading its computation to a cluster of
distributed computers. We consider this to be the next big milestone in the evolution
of stream processing systems, as it enabled a significant increase in the load that can be
handled by a stream processor. Notmuch later, Esper [56] combined the idea of SQL-based
queries with distributed stream processing.

18

2.2 History of Big Data Stream Processing

2.2.4 Early Big Data Processing: MapReduce

To enable very large data sets, the field of stream processing had to join forces with
the field of Big Data processing. We temporarily shift the focus of our discussion away
from streaming, and towards what could in retrospect be considered the point at which
non-streaming Big Data processing became mature and gained wide use in industry: the
introduction of MapReduce [44].

MapReduce is a programming model for applying computations to large amounts of data.
As the name implies, MapReduce is based on the functional programming concepts of
mapping a computation over a dataset, and reducing the result as if by an SQL GROUPBY
where the values for each key are combined by an associative and commutative operation.
The MapReduce programming model extends these concepts with a distribution model
which is largely transparent to the user. Data is split up in subsets which get distributed
across multiple physical computers. The same computation is then applied to each set,
and the results are gathered to determine the overall result.

Advantages of the MapReduce Model

The main advantage of this model is that it allows for transparent distribution of the
workload: each transformation can be done independently, and reduction can be done
incrementally as the different compute nodes finish their transformation. Handling
failures in the MapReduce model can always be achieved in one of two ways: either restart
failed subparts, or ignore the failures and use only the results of the nodes that did not fail.
Noteworthy is that neither option requires custom code to be written for a certain problem
domain. MapReduce implementations come with these methods of failure handling built
in, and the accidental complexity of handling failure, which typically burdens distributed
programmers, is largely handled transparently.

Taking full advantage of the MapReduce model requires the transformation code to
be purely functional, commutative, and associative, such that arbitrary retries do not
influence the result, and such that merging in whichever order the system happens to
select, leads to correct results. In practice, the MapReduce model is regularly used simply
as a distributed task execution model with map-tasks that touch mutable state (which
entails that repeated execution is not even strictly idempotent) and whose reduce-step is
used only to synchronize on task completion. The simple to use nature of the MapReduce
model led to widespread adoption. An open source implementation of the MapReduce
model was made available in the form of the Hadoop [10] project. Hadoop’s availability
sped up the popularization of the notion of Big Data processing.

Drawbacks of the MapReduce Model

Despite its advantages, MapReduce suffers a number of drawbacks. Most importantly, the
model does not deal well with pipelining. When the result of one computation serves as

19

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

the input for another computation, both computations are scheduled one after the other.
The results of one phase are returned to a central coordinator, only to be distributed again
for the next phase. This inefficiency is targeted by data-parallel pipelines.

2.2.5 Data-Parallel Pipelines

Data-parallel pipelines offer ways of expressing a computation as a dataflow graph, where
vertices are operations which can be executed in parallel to other vertices’ operations, and
edges are data-transfers. This architecture inherently supports distributingworkloads over
multiple compute nodes. The abstraction of data-parallel pipelines shares MapReduce’s
useful property that the way in which fault tolerance, failover, and recovery can be
handled, are orthogonal to the application domain. As such, data-parallel pipelines can
transparently handle these concerns.

A large number of novel systems operating by the data-parallel pipeline paradigm were
developed to leverage MapReduce as their execution target. Examples include Pig [114],
Dremel [102], JAQL [23], and Flume [73]. Simultaneously, a large number of existing data
processing systemsweremademore scalable by developing a backend that schedules tasks
as data-parallel pipelines on MapReduce clusters. For instance, SQL/MapReduce [60]
offers a relational queriable data store backed byMapReduce, Yedalog [33] offers a Datalog
system backed by MapReduce, and DryadLINQ [143] offers an implementation of .NET’s
Language INtegrated Query language that executes on a MapReduce backend.

Each of them differs somewhat in the way they map onto data-parallel pipelines scheduled
on MapReduce, but they all operate roughly along one of the following avenues:

Parallel collections as used in systems such as Flume [73]. These systems offer the
abstraction of parallel collections with a small set of operations, which can be
efficiently implemented on top of the MapReduce model;

Relational datasets as used in systems such as Pig [114] and Dremel [102]. These systems
feature an SQL-like language for querying the dataset, which is stored in such a way
that it can be efficiently queried on top of the MapReduce model, e.g. by storing in a
columnar fashion;

Knowledge base with declarative query language as used in systems such as Dyna [52],
Jaql [23], or Yedalog [33]. These systems build on the concepts of Datalog to
achieve near-Prolog expressivity with less risk for expensive or accidentally infinite
regression in the deduction process.

The raw MapReduce model soon got superseded by those systems and their successors.

20

2.2 History of Big Data Stream Processing

Drawbacks of the MapReduce Model in Data-Parallel Pipelines

As these data-parallel pipeline systems evolved, three significant weaknesses of the
underlying MapReduce model became apparent. First, the high latency due to long
startup time and slow communication made the model unfit for stream processing.
Second, the model associates a high inherent cost to using previous results in a subsequent
computation, as this requires a complete pass through the pipeline, including the long
startup time and the slow communication. Third, the model does not deal well with
shared global state, for what is essentially the same reason: by design, all synchronization
in the MapReduce model happens by gathering results to the centralized master node at
the end of a MapReduce cycle, and distributing that data again at the start of the next
cycle, both of which are the slow parts of MapReduce.

Some solutions were devised which replace the MapReduce component with a custom-
built distributed backend specifically targeting the pipelining of data. Frameworks such as
Spark [144] offer shorter startup times, built-in mechanisms to efficiently reuse the results
of previous pipeline stages, and ways of incorporating some sense of global state. At the
same time, these frameworks still offered the main benefits of MapReduce: transparent
distribution, load balancing, and fault tolerance through for instance checkpointing.

Shortcomings of Data-Parallel Pipelines

Data-parallel pipelines enabled efficient large-scale computations that required multiple
steps. Some of them even partially tackled the problem of high processing latency. Still,
none of these systems were really fit for streaming data processing: they offered neither
the abstractions to reason about processing new data in the context of old data, nor the
low latency necessary to respond in a streaming fashion. To tackle that problem, ideas
from the field of stream processing had to be borrowed.

2.2.6 Towards Streaming Big Data Processing

Initially, solutions based on the existing systems were developed, leading to the Hadoop
Online Prototype by Condie et al. [35] and Spark Streaming [146]. The former adapts
pipelining within a job, and switches to a push-based data exchange model. The latter
processes data on a Spark [145] cluster inmany small jobs instead of a few large jobs, trading
throughput for reduced latency. Despite the reduction in size per job, the underlying
execution model remains batch-based, giving rise to the term “micro-batching”. In both
cases, the fault tolerance of the systems they were built on could be maintained. For
instance, Spark Streaming guaranteed at-least-once semantics for processing, built on top
of the at-least-once semantics offered by Spark for processing its Resilient Distributed
Data Sets.

21

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

Industry-Grade Specialized Stream Processing Systems

In addition to those lower-latency versions of the existing tools, specialized stream
processing systems were built, specifically aimed at Big Data processing. An early
example of this is S4 by Neumeyer et al. [110]. S4 is built from the ground up to offer
streaming support. It starts a new pipeline for each key/value-pair, offering low latency at
the cost of peak throughput. S4 features a time-to-live based removal of data. Crucially, it
coupled this with distributed processing support, and features some resilience to failure.

Work on S4was haltedwhen the industrial supporters of S4 switched to Storm [135]. Storm
offers strong at-least-once semantic in its processing, coupled with a simple programming
model. Sources of data (“spouts”) and transformations of data (“bolts”) can be defined in
arbitrary imperative code. Coordination, transportation of data, and fault-tolerance is
handled transparently by Trident [95], but imposes strict ordering on transactions. Storm
in turn got superseded by a new system: Heron [89], which builds on the ideas underlying
Storm. Storm and Heron both are supported by the Apache Software Foundation. A
third distributed stream processing system is currently developed by Apache, which
aims to more reliably store state. This system, Samza [112], is built on top of the Kafka
distributedmessage broker [11], which enables it to guarantee strict exactly-once semantics
— obviously under the constraint that it might take the system arbitrarily long to do this.
Samza provides failure-handling not through checkpointing, but by keeping a changelog.

The tools described in the previous paragraph all target Java, Scala, or other languages
running on the JVM. Other language communities have similar tools available. For
instance, StreamPy [31] by Anomaly Systems Inc offers plain, but distributed stream
processing for Python.

Specialized Event-Stream Processing Systems

Still, these toolsmerelyprovide awayofmanuallydescribing a topology, and implementing
the components in imperative languages such as Java and Python. The need for tools
which aid in processing event data, i.e., data whose temporal attributes are important,
lead to a new wave of stream processing systems. We focus specifically on two of them:
Naiad and MillWheel.

Google’s MillWheel [5] features low watermarks to track the remaining data belonging to
a computation, essentially delimiting time windows. The ideas from MillWheel were
transplanted into Google’s Cloude Dataflow platform [87].

In contrast, Microsoft Research’s Naiad [108] introduces the notion of Timely Dataflow.
Timely Dataflow is a novel computational model centered around low-latency asyn-
chronous message-passing, with minimal and lightweight coordination. Naiad distin-
guishes itself from earlier work by integrating incremental, streaming computation with
iterative computation. Time windows in Naiad are formed by tracking not only time, but
also by tracking an iteration count.

22

2.3 Research Trends

2.2.7 Summary

A summary of the history of Big Data stream processing can be found in figure 2.3. The
figure depicts the systems discussed in this section, organized by the language paradigm
(horizontally) and by the degree in which they support streaming (vertically). Dashed
arrows depict the lineage of ideas, e.g., DryadLINQ builds on LINQ, by being a distributed
version of the latter. Systems presented as green boxes define a domain specific language
for stream processing. Systems presented as purple boxes offer only an API to an existing
language. The borders of the boxes indicate the degree to which the systems support
distribution: a solid border is a fully distributed system, a dashed border merely parallel.
A dotted border indicates a system which is — in its original form — only suited for
single-threaded execution.

2.3 Research Trends

The previous section sketched the history of Big Data stream processing in a chronological
order. In this sectionwe look at the evolution from active databasemanagement systems to
distributed stream processing systems by focusing on three core trends: the introduction
of windowing (section 2.3.1); the introduction of distributed, streaming computation

(section 2.3.2); and the shift in languageparadigms (section 2.3.3). We limit our discussion
to the key languages and frameworks surveyed in previous section. Those languages and
systems present a representative selection, based on prevalence in academia and industry.

The trends that will be described throughout this section are summarized in table 2.1.
The last column presents a best-effort based indication of the year of introduction of
the technology. For technologies introduced in academic papers, we use the year of
publishing. Note that some of the systems only gained some distinctive features after that
initial year.

2.3.1 Restricting Selections by Time: Windowing

Traditional Temporal Windows

When dealing with event data, the temporal component of the data is important. To
provide a semantic fit for the temporal component, many streaming technologies discussed
in the previous section introduced a form of windowing. Temporal windows represent
a slice of time; a group of data elements whose membership to the window depends
purely on temporal constraints. Windowing was an important innovation, and arrived
in what Esmaili [55] calls the first generation of stream processing systems. Though
Gigascope [39] lacks themeans for specifyingwindows explicitly, systems like Tribeca [131]
andAurora [27] introducedwindows as a built-in concept. A “latch” inAurora is awindow
too albeit a single-slotted one. Similarly, Aurora’s notion of slack is a related, somewhat

23

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

M
ap

Re
du

ce
Fa

ul
t-t

ol
er

an
ce

, fl
ex

ib
le

 d
at

a
m

od
el

N
ot

ab
le

 O
pe

n
So

ur
ce

 im
pl

em
en

ta
tio

n:
 H

ad
oo

p

H
ad

oo
p

O
nl

in
e

Pr
ot

ot
yp

e
Pi

pe
lin

e
w

ith
in

 M
ap

Re
du

ce
 jo

b
Pu

sh
-b

as
ed

 d
at

a
m

od
el

sc
he

du
le

s e
xe

cu
tio

n
on

Pi
g

SQ
L-

lik
e

la
ng

ua
ge

 b
ui

lt
on

 d
at

a-
pa

ra
lle

l p
ip

el
in

e
O

pe
ra

te
s o

n
ne

st
ed

 d
at

a

D
re

m
el

SQ
L-

lik
e

la
ng

ua
ge

 b
ui

lt
on

 d
at

a-
pa

ra
lle

l p
ip

el
in

e
C

ol
um

na
r r

ep
re

se
nt

at
io

n
of

 n
es

te
d

da
ta

us
es

 fa
ul

t-t
ol

er
an

ce
 a

nd
 fl

ex
ib

le
 d

at
a

m
od

el
 o

f

sc
he

du
le

s e
xe

cu
tio

n
on

SQ
L/

M
ap

Re
du

ce
SQ

L
on

 d
at

a-
pa

ra
lle

l p
ip

el
in

e
A

llo
w

s d
el

ay
ed

 sp
ec

ifi
ca

tio
n

of
 sc

he
m

a
in

 u
se

r-
de

fin
ed

 (D
B-

)fu
nc

tio
ns

Re
w

or
ke

d
da

ta
ba

se
s’

 U
D

F
fr

am
ew

or
k

to
 b

et
te

r h
an

dl
e

di
st

rib
ut

io
n

le
ve

ra
ge

s i
de

as
 fr

om

Ye
da

lo
g

D
iff

er
en

ce
s f

ro
m

 D
at

al
og

:
•

na
m

ed
 fi

el
ds

 (P
ro

to
Bu

ff)
•

‘v
al

ue
s’

 (L
ik

e
D

yn
a)

•
pr

ed
ic

at
es

 a
re

 b
ag

s i
ns

te
ad

 o
f s

et
s

C
om

pu
ta

tio
n

an
d

de
pl

oy
m

en
t i

n
sa

m
e

la
ng

ua
ge

M
ix

es
 b

at
ch

 a
nd

 in
cr

em
en

ta
l.

Ba
tc

h
vi

a
Fl

um
e’

is
h

pl
at

fo
rm

D
at

al
og

Ja
ql

C
om

pu
ta

tio
n

an
d

de
pl

oy
m

en
t i

n
sa

m
e

la
ng

ua
ge

O
pt

io
na

l s
ch

em
a/

se
m

i-s
tr

uc
tu

re
d

da
ta

D
yn

a

us
es

 in
te

ra
ct

iv
e

se
rv

ic
e

of

Pr
ol

og
ge

ne
ra

liz
es

:
ad

ds
 a

gg
re

ga
tio

n
to

sc
he

du
le

s e
xe

cu
tio

n
on

re
st

ric
ts

Sp
ar

k
St

re
am

in
g

D
at

a-
pa

ra
lle

l p
ip

el
in

e
em

be
dd

ed
 in

 g
en

er
al

-p
ur

po
se

 la
ng

ua
ge

M
ic

ro
ba

tc
hi

ng
 is

 st
ill

 b
at

ch
in

g.
 R

ea
so

ni
ng

 a
cr

os
s b

at
ch

es
 n

ot
 su

pp
or

te
d

A
t-l

ea
st

-o
nc

e
se

m
an

tic
s

Sp
ar

k
D

at
a-

pa
ra

lle
l p

ip
el

in
e

em
be

dd
ed

 in
 g

en
er

al
-p

ur
po

se
 la

ng
ua

ge
M

od
el

s d
at

a
as

 R
ep

lic
at

ed
 D

is
tr

ib
ut

ed
 D

at
as

et
s

re
du

ce
s l

at
en

cy
 th

ro
ug

h
m

ic
ro

ba
tc

hi
ng

St
or

m
St

re
am

 p
ro

ce
ss

in
g

fr
am

ew
or

k
fo

r J
V

M
A

t-l
ea

st
-o

nc
e

se
m

an
tic

s
St

re
am

Py
Py

th
on

 st
re

am
in

g
lib

ra
ry

G
lu

e
fu

nc
tio

ns
 to

ge
th

er
 w

ith
 `s

tr
ea

m
_a

ge
nt

`

M
ill

W
he

el
St

ag
es

, d
is

tr
ib

ut
ed

 p
ro

gr
es

s t
ra

ck
in

g
H

an
dl

es
 o

ut
-o

f-o
rd

er
 st

re
am

s t
hr

ou
gh

 lo
w

 w
at

er
m

ar
ks

Ex
ac

tly
-o

nc
e

se
m

an
tic

s t
hr

ou
gh

 id
em

po
te

nt
 p

ro
ce

ss
in

g

H
er

on
Ba

ck
w

ar
ds

 co
m

pa
tib

le
 w

ith
 S

to
rm

S4 Ti
m

e-
to

-li
ve

 b
as

ed
 re

m
ov

al
 o

f d
at

a

N
ai

ad
/T

im
el

y
D

at
afl

ow
In

cr
em

en
ta

l c
om

pu
ta

tio
n:

 it
er

at
io

ns
 a

nd
 st

ag
es

Pr
ov

id
es

 fi
lte

r/
m

ap
/…

, b
ut

 a
s s

tr
ea

m
-c

om
bi

na
to

rs
Fa

ul
t-t

ol
er

an
t v

ia
 ch

ec
kp

oi
nt

in
g

D
ry

ad
LI

N
Q

LI
N

Q
 (L

an
gu

ag
e

IN
te

gr
at

ed
 Q

ue
ry

)
Em

be
dd

ed
 in

 .N
et

 la
ng

ua
ge

s

Es
pe

r
St

re
am

 p
ro

ce
ss

in
g

Fa
ul

t-r
ec

ov
er

y
an

d
re

pl
ic

at
io

n

di
st

rib
ut

ed
 v

er
si

on
 o

f

D
iff

er
en

tia
l D

at
afl

ow
In

cr
em

en
ta

l c
om

pu
ta

tio
n:

 it
er

at
io

ns
 a

nd
 st

ag
es

D
iff

er
en

tia
l d

at
afl

ow
: n

ot
 k

ee
pi

ng
 st

at
e,

 b
ut

 a
 se

t o
f d

iff
er

en
ce

s
Pr

ov
id

es
 fi

lte
r/

m
ap

/j
oi

n/
gr

ou
p/
ite
ra
te/

…
, b

ut
 a

s s
tr

ea
m

-c
om

bi
na

to
rs

A
pa

ch
e

Fl
in

k
St

re
am

 p
ro

ce
ss

in
g

fr
am

ew
or

k
fo

r J
V

M

di
st

rib
ut

ed
 v

er
si

on
 o

f

Bo
re

al
is

Fa
ul

t-t
ol

er
an

t v
ia

 D
PC

 (D
el

ay
, P

ro
ce

ss
, a

nd
 C

or
re

ct
)

U
si

ng
 re

pl
ic

as
 k

ep
t c

on
si

st
en

t b
y

th
e

sy
st

em

A
ur

or
a

Pr
ov

id
es

 fi
lte

r/
m

ap
/…

, b
ut

 a
s s

tr
ea

m
-c

om
bi

na
to

rs
M

an
ua

lly
 li

nk
 u

p
gr

ap
h

in
 X

M
L

D
ec

la
ra

ti
ve

PR
O

LO
G

- o
r S

Q
L-

li
ke

D
ec

la
ra

ti
ve

B
ut

 g
en

er
al

 p
ur

po
se

 fi
lt

er
/jo

in
/tr

an
sf

or
m

Im
pe

ra
ti

ve
Em

be
dd

ed
 in

 g
en

er
al

 p
ur

po
se

 la
ng

ua
ge

StreamingPipelinedBatch

us
es

ag
gr

eg
at

es

m
od

el
 o

f

la
ye

r o
n

to
p

of

Sc
he

du
le

s e
xe

cu
tio

n
on

(v
ia

 D
ry

ad
)

: B
ui

ld
s o

n
La

ng
ua

ge
Fr

am
ew

or
k/

Pl
at

fo
rm

 o
nl

y
D

is
tr

ib
ut

io
n-

aw
ar

e
D

at
a-

pa
ra

lle
l b

ut
 ¬

 d
is

tr
ib

ut
ed

Si
ng

le
-th

re
ad

ed
Sy

st
em

 ty
pe

:
D

is
tr

ib
ut

ab
il

it
y:

Li
ne

ag
e:

us
es

 b
at

ch
 p

la
tfo

rm
 o

f

G
ig

as
co

pe
W

in
do

w
in

g
th

ro
ug

h
SQ

L
G

RO
U

PB
Y

ST
RE

A
M

C
Q

L:
 S

Q
L

+
w

in
do

w
in

g

N
ia

ga
ra

C
Q

C
on

tin
uo

us
 q

ue
ry

in
g

of
 X

M
L-

Q
L

Tr
ib

ec
a

St
re

am
 p

ro
ce

ss
in

g
w

ith
 w

in
do

w
s

Fl
um

e
M

od
el

s w
or

kl
oa

d
as

 a
 se

rie
s (

pi
pe

lin
e)

 o
f j

ob
s

Pl
an

s e
xe

cu
tio

n
(d

at
afl

ow
 g

ra
ph

),
th

en
 sc

he
du

le
s

Sa
m

za
Ex

ac
tly

-o
nc

e
se

m
an

tic
s u

si
ng

 K
af

ka

sc
he

du
le

s
ex

ec
ut

io
n

on
 e

.g
.

G
oo

gl
e

C
lo

ud
 D

at
afl

ow
C

om
m

er
ci

al
 p

ro
du

ct
 in

cl
ud

in
g

M
ill

W
he

el
 a

nd

Fl
um

eJ
av

a

Figure 2.3: A summary of the state of the art in Big Data stream processing

24

2.3 Research Trends

System Windowing Distribution Expressivity Year

Sl
id
in
g

La
nd

m
ar
k

Tu
m
bl
in
g

Se
ss
io
n

Se
m
an

tic

O
th
er

Su
pp

or
te
d

Fa
ul
t-

to
le
ra
nc

e

La
ng

ua
ge

Pa
ra
di
gm

Tribeca X - X - - - - - custom D 1996
NiagaraCQ X - - - - - - - XML-QL S 2000
Aurora X - X - - latch - - - B 2002
Gigascope - - X - - - - - GSQL S 2003
STREAM X - X - - - - - CQL S 2003
Borealis X - X - - latch X R - B 2005
Esper X X X ∼ ∼ - X L SQL S 2006
DryadLINQ - - - - - element index X C + R LINQ S 2008
HOP ∼ ∼ ∼ ∼ ∼ - X C - I 2010
S4 ∼ ∼ ∼ ∼ ∼ TTL X R - I 2010
Flume ∼ ∼ ∼ ∼ ∼ - X C + R - I 2010
Spark Streaming - - X - - - X C + R - S 2012
Naiad ∼ ∼ ∼ ∼ X timely dataflow X C - I 2013
MillWheel ∼ ∼ ∼ X X low watermarks X C - I 2013
Storm ∼ ∼ ∼ ∼ ∼ - X C + L - I 2014
Heron ∼ ∼ ∼ ∼ ∼ - X C + L - I 2015
Flink X X X X ∼ - X C SSQL S 2016
Samza ∼ ∼ X X ∼ - X L - I 2017

Table 2.1: A taxonomy of streaming systems, ordered by time of introduction — For

windowing: “∼” indicates that the column’s windowing type is manually implementable in the system on

top of the existing abstractions, but is not offered out of the box — For fault-tolerance: “R” indicates

replication, “C” checkpointing, and “L” the use of a replayable changelog or eventlog — For language

paradigm: “D” indicates declarative programming languages, “B” box-and-arrow, i.e., a manually construct

graph, “S” SQL-like languages, and “I” imperative, manual coding.

dual concept to windowing: slack identifies a time period during which events’ relative
order is not yet known. Instead of identifying the “current” most relevant data elements,
as a time window does, slack identifies the “current” not yet fully consolidated data
elements. The notion of slack was generalized to a notion of revision processing in Aurora’s
successor: Borealis [1].

The types of windows offered by these early systems were rather straightforward. They
were all one of three types:

sliding windows, i.e., a slice of either the last n events, or the last n seconds of events;

landmark windows, i.e., a slice delimited at the front by a “landmark” event, and either
another “landmark” event, or the current time at the end; or

tumbling windows, a slice of at most n events, which fills up gradually, and once full
gets reset.

A “latch” can be thought of as a sliding window of length 1, or — equivalently — as a
tumbling window of length 1. The upper 3 timelines in figure 2.4 visualize how a stream
of events can get mapped onto windows in all 3 traditional temporal window types.

25

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

Tumbling window
(size 5)

time
e e e e e e e e e e e e e e e e e e

window (now)
window (-1)

window (-2)

Sliding window
(size 5)

Landmark window
time

e e e e e e e e e e e e e e e e e e

window #1 window #2 window #3

time
e e e e e e e e e e e e e e e e e e

window #1 window #2 window #3

Session window
time

e e e e e e e e e e e e e e e e e e

window #1 window #2 window #3

Figure 2.4: Visualization of four traditional window types — For each window type, the first

three windows are indicated. The squares marked “e” are events, laid out on a timeline. The rectangles

outlined in bold are “landmark events”.

These window types offer good primitives for building stream processing systems.
Moreover, they easily lend themselves for high performance implementations. A sliding
window of length n, is just a ring buffer of length n. A landmark window is just a
dynamically sized array which explicitly gets emptied when a “landmark” event occurs.
Tumbling windows are even simpler, being merely a bounded vector in which events get
placed until it is full, at which point the vector gets emptied. To this day, industry-strength
stream processing systems largely leverage those window types. The “micro-batches”
offered by Spark Streaming [146] are essentially tumbling windows, with the added
limitation that processing is delayed until the window is full. As typical with the tradeoff
between batch and streaming, Spark Streaming’s batches offer high throughput, at the
cost of latency.

Beyond Traditional Window Types

Still, those early types of windowing have their shortcomings. The type and size of the
window must be determined statically, by the programmer. Furthermore, all runtime
events are placed in the same window data structure. An abstraction that turned out to
be useful for application domains such as click-stream monitoring — i.e., analyzing the
interactions users have with e.g. a web application — is that of a session window. A session
window is a best-effort approach to categorizing events that constitute one “session” of
user interaction. It is used when a session cannot be established by discrete actions such
as a login and logout, but instead has to be inferred. A session window is a window of
events, delimited by periods of inactivity.1 The fourth timeline in figure 2.4 visualizes
session windows. Support for session windows is present in some of the later streaming

1We use the definition of session windows used by Flink, for instance at https://ci.apache.org/
projects/flink/flink-docs-release-1.2/dev/windows.html. Other systemsusedefinitions closer
to our notion of “landmark window”, where a certain start and end event delimits the session.

26

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/windows.html

2.3 Research Trends

systems, or in recent updates to older system. Table 2.1 marks systems as supporting
session windows if some version of the system supports them.

Semantic Windows

Many real-world use cases can not be expressed using these four window types. By
design, reasoning is only possible within the window. Reasoning over large time windows
quickly becomes resource intensive. A number of stream processing systems sought to
tackle these problems. Jiang et al. [81] define the overarching solution as semantic windows.

With semantic windows, the time windows are no longer a static, one-dimensional length
or duration. Instead, window membership is determined by the specific semantics of
some pattern, in conjunction with the runtime values of previous events. Conceptually, a
new window is created for each event, containing the events that are within the temporal
constraints with respect to that first event. An alternative way of looking at this, is
that events are only stored for the duration during which matching is actually possible
with other concrete events which actually occurred. Among the surveyed systems, only
Naiad [108] and MillWheel [5] (and by extension, Google Cloud Dataflow [87]) offer the
means to tie the lifetime of data to some property that can only be detected at run time.
Both use a system of logical timestamps that enables lightweight coordination: Naiad
uses Timely Dataflow to keep track time and iteration count, whereas MillWheel uses low
watermarks to track the remaining data belonging to a computation. Semantic windows
do not lend themselves to a simple visualization, since they — by definition — depend on
the concrete patterns being matched. We therefore did not include them in figure 2.4.

Many production-grade systems — even those introduced after Jiang et al. coined the
term semantic windows — do not offer built-in windowing support at all. Such systems
instead position themselves as Big Data stream processing, and do not necessarily concern
themselves specifically with event data, or with correlating data points over large spans
of time.

2.3.2 Distribution and Fault-Tolerance

Using the categorization of Esmaili [55], systems from both the second and third gen-
eration of stream processing innovated largely by providing and improving support
for distributing the processing of data across multiple computers, and by adding the
fault-tolerance features that go with it.

The Introduction of Distribution

Consider the case of Aurora: the Aurora stream processing system got subsumed by a new
project, Borealis [1]. The stream processing constructs offered by Borealis are largely the
same as those of Aurora. New in Borealis are support for distribution and fault tolerance.

27

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

From the stream processing programmer’s perspective, little changes: the novel concerns
of the distribution and fault tolerance are tackled by a set of new constructs — for instance
the addition of constructs to store and replay streams — but the old concerns are mostly
handled as they were in Aurora.

Even systems which do not offer full-fledged support for distribution at least sought
to improve performance by parallelizing their workload across multiple devices. One
instance of this is Gigascope [39], which brought computations closer to the data (achieving
so-called edge processing) by moving parts of the computation away from the CPU and
onto the Network Interface Card.

Overall, the move towards distributed systems in stream processing is clearly visible in
the timeline shown in table 2.1. Support for distribution became standard for all stream
processing systems in the early 2000’s. The lack of centralized control in a distributed
system led to the introduction of distributed backpressure in e.g. Heron [89]: distributed
components can reject new data if their processing cannot keep up with what is being sent
to them. Components earlier in the task dependency graph buffer their output, or in turn
temporarily cease processing. This entails that the problem gets propagated backwards —
the components “push back”, as it were — to the data ingress point, where the problem is
to be handled.

Fault-Tolerance

Distributing software across multiple machines may lead to higher throughput, and offers
a novel opportunity: the system can deal with partial failures. Unlike in single-machine
solutions, in distributed solutions, failure of one computer does not necessarily mean
that the system as a whole fails. It may still complete its task, if the system features
fault-tolerance.

On the flip side, the chance of some subcomponent of a system failing, increases with the
number of components in the system. Hence, distributing computations across multiple
machines does not only enable failure handling, it also increases the necessity thereof.

Borealis, and later Esper, demonstrate this well: they introduce distribution, and supple-
ment that with the means to handle failures: replication and replayable logs respectively.
The systems built on top of the MapReduce model inherit its checkpoint/restart-based
fault-tolerance. The ZooKeeper [12] component got disentangled from Apache’s Hadoop
project, and used as a general-purpose coordination mechanism for many distributed data
processing systems, offering replication-based fault-tolerance out of the box. Similarly,
Spark Streaming [146] inherits the checkpointing and replication offered by Spark [144].
Finally, systems built on top of distributed message brokers such as Kafka [11] automati-
cally receive the fault-tolerance the message broker offers. For Kafka, that means replaying
the event log, with support for enforcing exactly-once semantics.

The stream processing systems which are not built on top of such preexisting technologies
provide custom solutions playing to the strengths of the technology used. For instance,

28

2.3 Research Trends

the fault-tolerance offered by MillWheel [5] uses MillWheel’s low watermarks system to
determine what data to retain.

2.3.3 Expressivity and Language Paradigm

We stated in section 2.2.1 that active databases are at the origin of stream processing
systems. The origins of active databases are database triggers as supported by most
relational database management systems. Such triggers can respond to the insertion of
new data by executing SQL statements. Active databases started using the term continuous
queries to refer to SQL queries which were registered to trigger whenever new matches to
the query arrived in the database.

Early in the history of active databases, the use of plain SQL was found to be limiting.

Tribeca [131] introduced a custom stream selection and filtering language. In Nia-
garaCQ [32], continuous queries could be expressed in XML-QL. The XML-QL query
language has a novel XML-based syntax, but returns to SQL’s underlying relational alge-
bra. While the streaming execution model prevents traditional query planning, common
subexpressions in multiple continuous queries could be optimized by sharing the results
of common join operations.

Later systems continued this return to SQL, even embracing an SQL-like syntax for their
languages. For instance, Cranor et al. [39] states that “[u]nlike Tribeca the Gigascope uses
an SQL-like language (GSQL) rather than a procedural language to express its queries,
allowing query composition and query optimization”. Around 2010, this trend reversed,
when stream processing systems dropped the relational schemas from their systems,
requiring instead procedural data selection and manipulation code to be written using
stream programming constructs. The evolution can be observed in table 2.1. Note that
before the start of the timeline, relational databases were based on traditional SQL.

A Taxonomy of Stream Processing Language Paradigms

From the viewpoint of interaction paradigm, the systems depicted in figure 2.3 and
categorized in table 2.1 can be subdivided into the following categories:

Precursors to stream processing follow a non-streaming approach. Data is first inserted
into the database. Queries are later submitted to the database, reasoning is
performed, and results are returend. Language paradigms can include SQL in the
case of traditional RDBMS’es, or general-purpose declarative, logic programming in
the case of PROLOG-derived systems.

Trigger-enabled databases are a first step towards streaming data processing. The
interactionmodel of the precursors to streamprocessing is typically still available, but
triggers may be registered, which will activate when matching data arrives. Triggers

29

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

may modify the incoming data, produce derived data, remove data depending on
the inserted data, etc. The language paradigm is typically SQL.

Early stream processing systems like Tribeca, Aurora, and Borealis follow a different
approach, offering full support for streaming, incremental processing. These stream
processing systems are first programmed with some behavior. Next, whenever
data is inserted, that data may be transformed, and notifications or transformed
data may be produced. The language paradigm of these early systems was either
declarative, or required manually linking up different processing steps, using the
so-called “boxes-and-arrows model” [1].

Streaming databases like NiagaraCQ, Gigascope, and Flink (when using SSQL) [8]
combine database concepts with proper streaming. First, a continuous query or rule
is installed. Next, whenever data is inserted, that data may be transformed, and
notifications or transformed data may be produced. In addition, the data itself is
usually stored for some time. Such systems offer a streaming version of relational
databases, and the language paradigm used, is hence derived from SQL.

Big Data stream processing systems like S4, Spark Streaming, Flink (when using the
stream API) [8], and MillWheel do not mimic RDMBS’es. Nevertheless, the
interaction model starts of similar to that of streaming databases: the systems first
are programmed with some behavior. Next, however, whenever (a batch of) data
is inserted, a processing pipeline is deployed across a number of compute devices.
Input data is sent to those computers for processing. In the end, results are gathered
and sent to a consumer. The language paradigm used by these systems is typically
general-purpose imperative programming, somewhat constrained by an API. This
API is typically centered around stream programming constructs like maps, filters,
GROUPBY, and aggregation within a group. The API might impose restrictions on
which data is accessible, and control over which processing step is executed when is
left to the framework’s runtime system.

Trend

A trend is visible from these data points: the domains of (active) databases and stream
processing have merged, but have then split up again into streaming databases on the
one hand, and Big Data stream processing frameworks on the other. The former has fully
embraced an SQL-based language paradigm for processing structured data. The latter
has fully embraced general-purpose languages, and may be used where only schemaless
data is available.

While the early systems had built-in support for approximation, later systems assume
exact results are achievable. Aurora, Borealis, and STREAMassumed their processing only
got to see the stream once, and operated under the assumption that systems in practice
would occasionally be forced to drop data. Newer systems assume that — between
replication, replayable persisted logs, backpressure, and elastic scaling of available cloud

30

2.4 Discussion: Shortcomings in the State of the Art

resources — exactly-once semantics and transactional behavior are achievable. The
interface offered to users of the systems suggests they transparently take care of the issues.
Adoption-levels suggests that users prefer the apparent easy of use that is provided by
the simplification. It should be noted, however, that the assumptions of exactly-once
semantics and transactional behavior cannot formally be guaranteed due to theoretical
limitations on distributed systems.

2.3.4 Summary

We identified three trends in the state of the art of distributed Big Data and stream
processing.

• First, the need for temporal reasoning when handling event data led to the introduc-
tion of multiple windowing techniques. The traditional window types are widely
supported by streaming systems. Semantic windows — which define window
membership based on more involved reasoning than merely the timestamp of the
event itself — only appear in specialized systems.

• Second, stream processing systems increasingly support spreading their workload
across multiple machines. Support for distribution is by now ubiquitous. The
mechanisms for handling failures were quickly added as well. In addition to the
typical techniques of replication and checkpointing, many streaming systems offer
a log-and-replay approach where the streamed input can be replayed after failure.

• Third, two subcategories of stream processing systems emerged: SQL-based stream-
ing databases and Big Data stream processing frameworks enabling the processing
of large amounts of data using general-purpose programming languages.

We summarize this in table 2.2, which reproduces the left-hand side of table 1.1 on page 3.

2.4 Discussion: Shortcomings in the State of the Art

At first sight, the streaming databases and Big Data stream processing systems described
in this chapter seem able to encode the driver scenarios defined in section 2.1. The
scalability of these systems implies that they can handle any arbitrary processing load.
Their streaming computational model tackles the latency-problem that is inherent to batch
processing. With their windowing support, it should be possible to express temporal
constraints such as the 2-week period. Constraints such as the 100eminimum should be
expressible too: for stream programming approaches by means of filters, for streaming
databases as WHERE clauses in the SQL. However, a more in depth analysis reveals some
issues with both categories of streaming systems.

31

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

Distributed Big Data & Stream Processing
Big Data Stream Processing Streaming Databases
✓✓ very high ✓ high

Throughput

– none ✓✓large history size
History

✓ constant
(depth of program)

– proportionate to
historyCost per update

– unsupported ✓ supported
(relational join)

Pattern
matching

✓ yes
(with basic operators)

– proportionate to
history

Bounds on
resource usage

– often integrated, but
Callback Hell

– outside of the model
Reaction logic

Table 2.2: Summary of the state of the art of distributed Big Data and stream processing

2.4.1 Event Correlation in Big Data Stream Processing Frameworks

Data-parallel pipelines and their streaming successors do not aid a programmer in
correlating pairs of events based on their attributes. Built-in support for windowing
is limited in those systems, and the very concept of finding all pairs of events jointly
satisfying some constraint is not at all covered by the APIs offered. Indeed, we defined
the main distinction between Big Data stream processing frameworks and streaming
databases to be the lack of support for a declarative programming paradigm in the former.

The stream processing frameworks offer constructs to filter elements or to compute
running averages, or minima or maxima over a window. Thanks to improvements in the
way shared global state is managed, they can even offer a high-performance incremental
fold over data. Obviously, their use of Turing-complete languages makes them technically
capable of computing anything Turning-computable during such a fold. However, that
entails moving the computation and its accumulated state “out of the model”: the stream
processing system can hence no longer manage the data, collect garbage, or transparently
distribute data in an optimal way. The time and space constraints of programs executing
arbitrary code in a fold, are in principle unrestricted, and complexity may depend on the
size — or even values — of a number of data elements whose structure is not explicitly
understood by the framework.

Some of the stream processing frameworks internalize this concern to some extent, by
offering SQL-likeGROUPBY and JOIN constructs as functions in their API. However, those
too do not impose any bounds on the size of the (intermediate) results. While for, e.g.,
running averages or zips between two streams produce predictable, fixed-cost pipelines,
data processing pipelines involving joins start behaving like generic computations with

32

2.4 Discussion: Shortcomings in the State of the Art

arbitrary run times and resource requirements. When there is no statically guaranteed
upper bound on the resources required to implement the processing pipeline, processing
may be unable to keep up with the incoming data, or run out of storage and subsequently
crash. This conflicts with the requirements of the problem statement outlined in section 1.1.

We conclude that BigData streamprocessing systemswhich offer themeans of (relationally)
joining streams, effectively double as streaming databases, and therefore suffer from the
shortcoming discussed in the next section. The shortcoming of other Big Data stream
processing systems for implementing our problem case is as follows:

Shortcoming of Big Data Stream Processing Systems

Existing Big Data stream processing systems do not support matching event
patterns.

In the absence of pattern matching, the driver scenarios cannot be implemented.

One could manually implement the scenarios from section 2.1 using e.g., Spark Streaming,
Flink, or Samza. In fact, we do so as part of our evaluation in chapter 7. As we show
there, though, the stream processing frameworks do not aid the programmer in tackling
the hard parts of the scenarios. The scenarios are only implementable due to the ability
to escape the domain-specific streaming API that Spark Streaming tries to enforce, and
using the Turing-completeness of the underlying Java-based platform; the streaming API
gets in the way instead of helping.

2.4.2 Data Processing Guarantees of Data in Streaming Databases

Streaming databases do offer the right programming paradigm to correlate events, but
inevitably need to deal with the concern of being overloaded, too. As mentioned in the
history of stream processing (specifically, in section 2.2.3), Aurora [27] and Borealis [1] deal
with overloading through a process known as load shedding: when the stream processing
system would fall too far behind on the data, Aurora and Borealis purposefully drop data.
Though the systems attempt to minimize the impact this has, dropping any event data at
all is irreconcilable with the requirements of the problem statement from section 1.1.

More recent systems use backpressure and elastic scaling to deal with overloading.
Backpressure — by construction — can only handle short-term imbalances: if a stream
processing system chronically cannot keep up with the rate at which new events arrive,
slowing down processing will not help. Elastic scaling can deal with long-term inbalances,
but only to a limited degree. The amount of compute power offered by a cluster does not
scale linearly with the amount of resources available. Increasing the resources that are
available, has diminishing returns. Hence, even with elastic scaling in a cloud setting, one
cannot be certain that a given system will be able to handle a certain load without careful
analysis of the system and the maximum expected load.

33

Chapter 2: State of the Art in Distributed Big Data and Stream Processing

We conclude that shortcoming of streaming databases for implementing our problem case
is as follows:

Shortcoming of Streaming Databases

Existing streaming databases do not offer the means to accurately model the load
on a systemgiven a certain set of patterns to detect, and a certain set of event streams.

In the absence of such a formal model, the hard requirements of our problem
domain cannot be guaranteed, even in the absence of discrete hardware faults.

2.5 Conclusion

We surveyed the state of the art in Distributed Big Data and stream processing. We
discussed how techniques from the domains of active databases, early stream processing
systems, and Big Data processing were combined. Three trends emerged: the introduction
of increasingly specialized temporal windowing, ubiquitous support for distribution
and fault-tolerance, and a schism based on the programming language paradigm that is
offered by the systems. This schism in programming paradigms, splits the domain in two:
on the one hand we have streaming databases, on the other Big Data stream processing
frameworks.

We discussed how stream processing frameworks failed to tackle the hard problems
of our driver scenarios: searching for patterns in the streams. In turn, streaming
databases were revealed to be unfit for the setting of our driver scenarios: while streaming
databases do support searching for patterns in event streams, this features comes at a
cost in predictability. Streaming databases cannot guarantee they will stay online and
keep monitoring events under increased load. We conclude that no existing Big Data
stream processing system or streaming database satisfies the requirements of live security
monitoring.

34

3
State of the Art in Event Handling

The BigData streamprocessing systems and streaming databases discussed in the previous
chapter failed to satisfy the requirements exemplified by our driver scenarios on page 12.
We therefore shift our focus to the remainder of the related work which deals with
processing event streams: event-based frameworks and languages.

The languages and frameworks discussed in this chapter are not typically envisioned
for dealing with huge streams of data, but instead consist of programming language
paradigmswhich seek to improveprogrammers’ ability to construct programswhichdetect
and process combinations of events. We will discuss two such paradigms in sections 3.2
and 3.3. In section 3.4 we build a taxonomy of the different event handling languages,
first based on their event-detection semantics, and then based on their operational event-
detection model. In section 3.5 we discuss how the state of the art of event handling
languages falls short in order to support our driver scenarios.

3.1 Traditional Approaches to Event Handling

Hinze and Voisard [72] describe event-based systems as systems which “trigger actions
based on observed events. The most basic triggered action is the sending of a notification
to an interested party”. The set of driver scenarios sketched on page 12 hence calls for
an event-based system: an implementation of those scenarios must respond to certain
patterns of events.

35

Chapter 3: State of the Art in Event Handling

Traditional programming paradigms are not event-based: they are designed first and
foremost for describing a transformation from input to output. Of course, it is possible to
deal with runtime events in traditional programming paradigms (cf. streaming as opposed
to batch processing, as discussed in section 2.2), but a programmer must specifically
structure their program to deal with events. There are two main ways in which programs
are traditionally structured to deal with runtime events:

Event handling by callbacks requires programs to register pieces of code with sources
of events, henceforth event sources. These pieces of code, named callbacks, can take
the form of first-class procedures, function pointers, objects, etc. depending on the
paradigm in use. Event sources can be other logical parts of the same application,
network sockets, inter-process message channels, and so on.

Event handling by waiting structures programs in such a way that they read data from
some input channel. Traditionally, the program would block when no more data is
present on the channel. Whenever the occurrence of an event outside the system
creates new data, the program would be unblocked and execution could resume.
This synchronous approach severely hampers performance compared to what an
asynchronous approach using callbacks can achieve. Language facilities have been
developed which enable programmers to write asynchronous event handling code
which syntactically takes the form of waiting event handling. The most well-known
thereof are the async/await [24] constructs of C], Java, or Scala.

Event handling by waiting offers a straightforward programming model when the
program’s main concern is processing events one by one. On the other hand, the model
of event handling by waiting leads to rather rigid event handling. A callback-based
approach handles this more flexibly, as event handling code can easily be associated
with components. The drawback of callbacks is that they break the flow of code by
requiring an anonymous procedure to be introduced. Depending on the language used,
either those callback procedures capture relevant variables in their lexical scope, or
explicit context-objects must be constructed. Regardless, application logic gets spread
over multiple procedures, increasing cognitive load for the programmer. The problem
gets exacerbated as the reaction logic becomes more complex: callbacks installed from
within callbacks face the choice of either increasing the nesting level, or spreading the
application logic even further apart. As Bierman et al. [24] point out, such an inadvertent
“inversion of control-flow impedes the use of structured control constructs, the staple of
sequential code”. The problems of callback-based approaches are commonly refered to as
the Callback Hell [51].

The need for handling events is commonplace in modern programs: if the program, e.g.,
exposes a user interface, accepts network connections, or listens to sensors, event handling
is necessary. Understandably, the research domain of event-based systems is too large to
warrant in-depth discussion in this dissertation. To limit the scope of our discussion, we
omit an in-depth discussion of single-event systems such as Ptolemy [26] or EventJava [57].

36

3.2 Averting the Callback Hell: Reactive Programming

Similarly, we do not discuss middleware which purely offers publish-subscribe.1 We
instead focus our discussion on paradigms for reacting to combinations of events: Complex
Event Detection and Reactive Programming.

3.2 Averting the Callback Hell: Reactive Programming

In the previous sectionwe introduced the notion ofCallback Hell. Callback-based programs
which depend on multiple event sources are written substantially different from how one
would write a program which depends on multiple input variables. Most of the difference
is boilerplate code.

3.2.1 The Functional Reactive Programming Paradigm

The Reactive Programming paradigm [16] seeks to tackle the Callback Hell. Reactive
programming has its basis in purely functional programming languages. The seminal
work is FRAN, a language for Functional Reactive ANimations by Elliott and Hudak
[54]. Other reactive programming languages built on the purely functional programming
paradigm followed, such as Frappé [38], Yampa [75], and Flapjax [103]. The breakthrough
outside of academia was achieved by Czaplicki and Chong [42], whose Elm language
introduced reactive programming to the industry. These purely functional reactive
programming languages are known as Functional Reactive Programming languages, FRP
languages for short.

The original FRP languages mostly concerned themselves with computing values which
might change over time. Later FRP languages switched their focus to processing concrete
occurrences of events. The unifying idea in FRP languages, though, is that the program
flow merely models how values are assigned to the outputs based on the input values. It
is the responsibility of the language and its runtime to reevaluate some portions of the
code whenever one of the inputs changes.

Representing Values: Behaviors and Streams

In FRP, these inputs — but also the outputs and intermediate variables — take the form of
either behaviors, or event streams. Behaviors are “time varying values” [77], i.e., they hold
a single, current value. Streams represent the entire sequence of events that occurred
up to the current time. It is well-established [16] that in a purely functional setting,
behaviors and streams are complementary. Using the terminology from FrTime [37]: a
hold operator can be defined which turns a stream into a behavior by exposing only its

1For the remainder of this dissertation, we assume that the reader is familiar with the idea of registering
reaction logic — such as callbacks — to be executed in response to events. We introduce a more principled and
structured way of specifying reaction logic in section 3.2, where we introduce reactive programming.

37

Chapter 3: State of the Art in Event Handling

last value, and a changes operator can be defined to reveal the stream of all values a
behavior has had.

Streams require the programmer to use stream-oriented operations to transform the
data. On the other hand, they make it simpler to express e.g., filters over those streams.
Evidently, remembering all previous values leads to unboundedmemory growth, linear in
the number of events that occurred. Practical implementations of long-running programs
may hence need to be constrained to behaviors and bounded streams.

3.2.2 Beyond Functional Reactive Programming

Outside of purely functional programming, reactive programming has recently caught on
too, for example in the form of FrTime by Cooper and Krishnamurthi [37]. However, the
major breakthrough outside of the purely functional world came in the form of frameworks
for existing languages. Reactive extensions were introduced [100] for a number of existing
languages, for instance Java, Scala, C++, and JavaScript [119]. Many of the recent Web
frameworks are based on the reactive programming approach, including Facebook’s
React [78].

In the absence of functional purity those reactive runtimes cannot determine which
expressions may be safely reevaluated. Programmer effort is required to specify which
side-effects may be triggered in response to updates. Usually these side-effects must be
idempotent or otherwise cancel each other out for the system to be well-behaved.

3.2.3 Active Research in Reactive Programming

Since reactive programming is being used for real-world scenarios, theory and practice of
reactive programming languages and frameworks are an active field of research. Real-
world use cases are often built for the Web, an inherently distributed platform. While
for instance Elm [42] already supported the notion of propagating updates through a
distributed dependency graph, more recent work focuses on reducing the cost thereof [50,
109]. Similarly, since real-world use cases tend to run on top of object-oriented languages,
and are often programmed by programmers who are used to object-orientation, recent
work by Salvaneschi et al. [124] looks into how to optimally bridge between functional
and object-oriented programming. Experiments by Salvaneschi et al. [123] show that use
of the reactive programming paradigm effectively improves program comprehension.

3.3 Detecting Event Patterns: Complex Event Processing

Reactive programming solves the issues of the Callback Hell, but does not help pro-
grammers write software which detects patterns of events. Detecting series of events

38

3.3 Detecting Event Patterns: Complex Event Processing

conforming to some pattern, in an on line stream of events, is known as Complex Event
Detection (CED) [117] or Complex Event Processing (CEP) [40].2

CEP is in wide use in business processes: many companies employ CEP on the stream of
business events generated by their systems to detect problems in the supply line, to trigger
automatic reporting, or to rapidly discover and act on business opportunities [47, 46, 40, 72].
However, the techniques underlying CEP can also be used on a much lower level of
processing. For instance, the software driving a touch screen might detect swipes on the
screen by pattern matching periodic samples of where the screen is being touched [97].

3.3.1 Differentiating CEP from Streaming Databases

Evidently, CEP systems and the stream processing systems discussed in the previous
chapter share some overlap. Especially streaming databases are often used for CEP
workloads [61, 62, 49].

Differences in Use Cases

Looking back on the existing literature, we find that systems which are considered as
CEP systems by their authors, differ from those considered streaming databases in at
least one meaningful way: stream processing systems and active databases are invariably
optimized for processing large amounts of data. In those systems it is assumed that the
dataset is large proportionate to the processing power available at the time the system
was developed.3 Stream processing systems process some abstract “stream” of events
with a high throughput. Streaming databases just have tables where data is put into. By
default, streaming databases store all historic data.

In contrast, CEP systems focus on three aspects:

• First — by definition of complex event — CEP finds meaning in the correlation of

multiple events. Typically, the means of correlation offered by stream processing
systems and active databases takes the form of aggregation such as running averages,
or relational joins, respectively. CEP systems instead offer constructs like regular
expressions or pattern matching.

• Second, CEP focuses on the expressivity of the event correlation language. This
entails that CEP systems are typically based around declarative languages, and
that they include support for some form of temporal reasoning to correlate events.

2In this dissertation, we do not distinguish between Complex Event Detection and Complex Event Processing.
The line between both is after all not very clear, and existing literature on both largely overlaps. For consistency,
we stick to the terms “Complex Event Processing” and “CEP”.

3Evidently, what was a “large dataset” a few decades ago may very well fit in main memory of a mobile
device nowadays.

39

Chapter 3: State of the Art in Event Handling

• Third, CEP systems typically are meant to support large numbers of concurrent

queries. Contrast this to stream processing systems, which are typically meant to
subject (a large number of) events to a relatively small set of processing paths.

Hinze and Voisard [72] additionally point out that many active databases “can rely on the
transactional context for the composition of events. Trigger conditions can be defined
based on the old and new state of the database, thus using the concept of states rather
than describing the event itself”.

In most cases, the difference between a CEP system and a stream processing system are
clear. Nevertheless, some systems fit in both categories, or have extensions that bridge the
gap. For instance, while Flink [8] is arguably a stream processing system, FlinkCEP [9] is
obviously considered a CEP system by its authors.

Spatio-Temporal Reasoning in CEP

CEP systems are used in diverse application domains. In all of those domains, the temporal
aspect of the data is important, hence the use of CEP. However, in many of those domains,
location is important too. Consider for instance security monitoring, which includes, e.g.,
detecting malicious actions, or monitoring for possible malfunctions Demers et al. [47]
in cyber-physical systems. The physical location at which the problem occurs, must be
taken into account. Or consider the case of web analytics (e.g., click-stream analysis) [40]
or multi-touch gesture detection [74], where the location of user-interactions on a screen
must be taken into account. The processing back-end of environmental monitoring using
sensor networks [25] evidently must take into account the physical location of the sensors.
Similarly, application domains like traffic control [72], supply chain management [72], and
inventory management Wang and Liu [139] contain the notion of the physical location of
traffic and supplies. Even in credit card fraud Schultz-Møller et al. [127] detection, the
country from which a transaction was executed is important.

This has given rise to the prevalence of support for spatio-temporal reasoning in CEP
languages. With spatio-temporal reasoning, matching not only based on how two
(complex) events relate in time, but also on whether the events occurred (physically) close
to each other spatially.

Spatial reasoning for events has some commonalities with temporal reasoning for events.
For instance, events can be ordered in time as well as in space. An event can be
within some region in space as well as time. On the other hand, there are some clear
differences between the temporal and spatial dimensions: time is typically treated as a
one-dimensional concern, whereas spatial concerns are typically two- or three dimensional.
This entails that, while time constraints are typically limited to an interval, spatial patterns
can be defined in more elaborate ways, such as by means of polygons (for membership-
testing) or polylines (for sequencing), This has led to the creation of specialized tools
for authoring spatial complex event patterns for application domains such as gesture
detection [74]. For instance, EventHurdles [86] enables CEP pattern authors to specify

40

3.3 Detecting Event Patterns: Complex Event Processing

spatial constraints by drawing “hurdles” on a canvas. From this, a CEP pattern is derived
that matches “gestures” which pass those hurdles. These gestures are generic movements
in time and space, e.g., a swipe over a touch screen, or changes in the orientation of a
mobile device.

A less domain-specific example of support for spatio-temporal reasoning for CEP can be
found in SpaTeC [128]. SpaTeC was originally conceived for a mobile computing context.
To process complex interaction events between multiple mobile devices, the proximity of
the devices must be incorporated into the CEP. To this end, SpaTeC introduces a number
of event composition operators. In SpaTec syntax, a pattern E1{<>}E2 requires that some
complex event E1 occurred at the same location as some complex event E2. E1{><}E2
matches when both events occurred at a different location. SpaTeC allows combining
these spatial event composition operators with temporal event composition operators: e.g.,
two events occurring concurrently at the same location are written as E1{ <>

|| }E2, while
a pattern specifying that E1 must occur before E2, and both must happen at a different
location, is written as E1{ ><

; }E2.

In general, many CEP systems come with built-in support for spatial reasoning. For our
driver scenarios (see page 12), however, these concerns are not relevant. We will therefore
not further discuss spatial reasoning in this dissertation. For our overview of the state of
the art of CEP we focus on the most related work in the state of the art. Specifically, we
will continue this chapter from the SASE CEP language by Wu et al. [141], and outline the
main evolution of CEP in the last decade from that starting point.

3.3.2 A Baseline for Modern CEP: SASE

The SASE language [141] is a pattern specification language for CEP. A SASE program
can be installed on a single stream of timestamped events. Each event has a type,
corresponding to a named relation which defines which attributes the event has. The
basic syntax of a SASE program looks as follows:

EVENT <event-pattern> [WHERE <filter>] [WITHIN <window-expr>]

The event pattern can name a sequence of events. For instance, SEQ(A a, B b)matches
all pairs of events of the relation named A and of the relation named B, such that the
event of relation A occurred before the event of relation B. For each instance, the match to
relation A is bound to a logical variable a, and the match to relation B to a logical variable
b. These logical variables can be used elsewhere in the pattern, and in the WHERE-clause
and window-expression.

The WHERE-clause expresses join-constraints, e.g., EVENT SEQ(A a, B b)WHERE a
.id = b.id expresses a relational join over A and B’s id attributes, in addition to
requiring that a occurs before b. The window-expression in the WITHIN-clause expresses
a time window (cf. section 2.3.1 on page 23). For instance, EVENT SEQ(A a, B b)
WHERE a.id = b.id WITHIN 1.5 seconds restricts the previous pattern to only

41

Chapter 3: State of the Art in Event Handling

match pairs of a and b where b occurs at most 1.5 seconds after a. Finally, SASE
supports negation-as-failure: EVENT SEQ(A a, !B b)matches all occurrences of events
of relation A for which are not followed by an occurrence of an event of relation B.

The results of a SASE program is another stream of timestamped events, containing all
matches.

Among the chief limitations of SASE is its inability to express patterns which match a
variable amount of events: the multiplicity of a SASE sequence is determined by the
number of named events, and is hence static. This shortcoming is resolved in SASE+ [3].
SASE+ has a similar syntax to SASE, but allows writing e.g. SEQ(A+ a[], B b) to
signify a variation on the previous pattern where all matches to relation A are combined
with the subsequent of events of relation B.

The basic syntax of a SASE+ program is depicted in listing 3.1.

1 FROM <stream>
2 [PATTERN <event-pattern>]
3 [WHERE <filter>]
4 [WITHIN <window-expr>]
5 [HAVING <pattern-condition>]
6 RETURN <output-stream-name>

Listing 3.1: Basic syntax of SASE+

As shown, in SASE+ an output stream must explicitly be named. Furthermore, SASE+
adds a HAVING-clause, which supplements the WHERE-clause in a way analogous to the
HAVING-clause in SQL: instead of making groups using GROUP BY as in SQL, groups in
SASE+ are matches to the entire event pattern [66]. In other words: the WHERE-clause can
reason about values bound to logical variables; but the HAVING-clause can reason about
matches to Kleene closures of matches too.

3.3.3 Aggregation and Monitoring Multiple Streams: Cayuga

The Cayuga [47] CEP language is modeled even more like SQL, albeit a minimalistic
version. In their survey paper, Cugola and Margara [40] state that Cayuga “trades
expressiveness for performance, providing an extremely simple rule language, with a
small number of operators”. Despite the apparent simplicity of the language, it is an
expressive CEP language.

Like SASE+, Cayuga supports aggregation. Furthermore, Cayuga does not assume all
events occur in one single stream of events. Multiple, named streams can exist in Cayuga.
Each of those streams has its own relational schema. Cayuga programs can select events
from multiple streams by refering to the streams by name.

A formal underpinning for the matching behavior of Cayuga programs is provided in the
form of a Cayuga algebra [46].

42

3.3 Detecting Event Patterns: Complex Event Processing

Cayuga’s basic syntax looks as follows:

SELECT <attribs> FROM <stream-expr> PUBLISH <output-stream-name>

A tuple of all listed attributes is published on the named output stream, for each match
returned by the stream expression. The stream expression in the FROM-clause consists of
either a FILTER, a NEXT, or a FOLD expression:

Filter-expressions take the form FILTER{pred-expr} (stream). A filter-expression
discards all events for which the predicate does not hold from the stream to which
it is applied.

Next-expressions take the form stream-expr NEXT{some-expr} stream-expr.
Next-expressions take the “next” value of the right-hand stream for each ele-
ment on the left-hand stream, i.e., for each event which occurs on the left-hand
stream, the first event to occur on the right-hand stream is picked, and both are
returned. Cayuga uses an explicit “followed by” relation: the “next” event selected
by a NEXT-expression really means the very next element that satisfies the condition,
not just some element some time later which satisfies the constraints. We come back
to this in section 3.4.2.

Fold-expressions take the formstream-expr FOLD{selection-predicate,stop
-condition-expr, aggr-expr} stream-expr. A fold-expression selects
each element from the stream that satisfies the selection predicate, and aggregates
it using the aggregation-expression, until an event is encountered which satisfies
the stop-condition. Again: the very first occurrence of an event matching the
stop-condition terminates the match. Compare this to our driver scenarios, where
we do not want the occurrence of a non-fraudulent financial transaction to purge all
data on potentially fraudulent transaction patterns which have not yet completed.

Cayuga models events as data points with a start timestamp and an end timestamp, i.e., an
interval during which the event occurred, instead of a single timestamp. This is especially
useful for complex events which abstract over an arbitrary number of events — those
aggregated by a FOLD-expression — whose duration can vary greatly.

Consider a concrete example, inspired by our earlier work on multi-touch gesture
recognition [97]. Consider a query which detects a rightwards swipe gesture on a multi-
touch screen: it detects that the screen surface is touched at some location, and that in
a time windows of two seconds at least three touches occur, in such a way that each
successive touch is more to the right, i.e., has a larger x coordinate. The query selects
the minimum (i.e., begin) and maximum (i.e., end) x coordinate, as well as the starting y
coordinate.

This gesture is expressed in Cayuga syntax in listing 3.2:

43

Chapter 3: State of the Art in Event Handling

1 SELECT min_x, x AS max_x, start_y
2 FROM
3 FILTER{count > 3, DUR > 2sec} (
4 -- subquery saving initial `x` and `y`, initializing `count` to one
5 (SELECT x, x AS min_x, y, y AS start_y, 1 AS count FROM Touches)
6 FOLD{TRUE, -- select any next event
7 $2.x <= $.x, -- stop when the x-value would decrease this step
8 $.count+1 AS count -- aggregate the count
9 } Touches)
10 PUBLISH Swipes

Listing 3.2: The Cayuga syntax for a “swipe right” multitouch gesture

The query first selects an event from the Touches stream (on line 5). It then accumulates
(using FOLD) more Touches until the next touch has a smaller x coordinate than the
previous touch. The resulting stream is then filtered (on line 3): only streams which
accumulated a count above 3, and have a duration above 2 seconds, are retained. For
each of those streams, a tuple is formed with attributes min_x, max_x, and start_y (by
means of line 1). Those tuples are then published to a stream named Swipes (on line 10).

3.3.4 Expressive and Efficient CEP with Distributed Event Sources:

TESLA

The main contribution of Cugola and Margara [41] is their push towards a generic,
all-purpose CEP. They tackle this in two ways. First, they developed TESLA, an expressive
CEP language. Second, they built an efficient CEP algorithm for TESLA into the T-Rex
engine. We come back to the processing algorithm in section 3.4.4, when we describe the
different detection models used in CEP languages.

The TESLA Language

Primitive events are captured by event sources. These sources may be physically dis-
tributed. Cugola and Margara introduce support for such event sources “[A]t the
peripheral of the system”. This does not necessitate a distributed, parallel processing, and
indeed their system follows a single-threaded approach to the processing itself.

For the TESLA language itself, consider the code snippet in listing 3.3:

1 define Swipe(min_x: double, max_x: double, start_y: double)
2 from TouchStart(min_x, start_y) and
3 each TouchContinued(x=$x)
4 within 2 sec. from TouchStart and
5 first TouchStop(max_x)
6 within 2 sec. from TouchStart
7 where min_x<=$x and $x<=max_x and Increasing($x) and Count($x)>3
8 consuming TouchStart, TouchContinued, TouchStop

Listing 3.3: The TESLA syntax for a “swipe right” multitouch gesture

44

3.3 Detecting Event Patterns: Complex Event Processing

This snippet of TESLA syntax solves a similar, though slightly different use case than the
Cayuga snippet in listing 3.2: a Swipe event is emitted, listing its min_x, max_x, and
start_y attributes, whenever the pattern below is detected (line 1). The pattern itself
consists of a primitive TouchStart (line 2), followed by some TouchContinued events
(line 3). The values of those events’ x attributes are bound to the logical variable $x. All
TouchContinued are gathered for up to 2 seconds after the TouchStart (line 4). Hence,
$x refers to a collection of all x attributes of all continued touches in the two-second time
window. The first TouchStop event after the TouchStart concludes the pattern (line 5).
The where-clause enforces that each value bound to $x are between x attribute of the
TouchStart and the TouchStop, that the bound values form an increasing series, that
that there are at least 3. Finally, the TESLA program specifies that all events used to match
this pattern are consumed (line 8), i.e., that they are no longer available for matching by
other patterns or other instances of this same pattern.

Semantical Differences between TESLA and Earlier CEP

The TESLA snippet expresses a different program than the Cayuga snippet. First, since
Cayuga does not offer the means to specify consumption, the snippet in listing 3.2 does not
consume its input. Second, the TESLA snippet uses explicit start and stop events, whereas
the Cayuga snippet does not. This has the same cause as the last significant difference in
the snippet: the TESLA snippet allows at most two seconds for the swipe, whereas the
Cayuga snippet requires at least two seconds. We had to change the way we express a
swipe because both systems offer different features: when a Cayuga pattern is installed
on a stream, the pattern can only filter events, take the next event, or fold over events.
Cayuga cannot respond to the progress of elapsed time without the occurrence of a new
event, only to the occurrence of an event which is on the inspected stream, and which
matches the end condition of a fold. Therefore, the Cayuga example starts by eagerly
matching all sequences of touches which move rightwards, and then filters out those who
are too short in time or multiplicity of events. TESLA, instead, is more time-aware, and
can therefore immediately start gathering all events during a concrete time window of
two seconds that satisfy the conditions. When the time window is finished, it needs not
wait for a non-conforming event before recognizing the swipe gesture.

This difference is neither trivial nor unimportant. Consider a scenario akin to the one
sketched on page 12, where a pattern detects a problem occurred when an event which
satisfies some conditions fails to occur within five seconds after some other event. If such
an event does not occur, but no other event occurs either in the next day, a Cayuga-style
CEP system would detect the problem one day too late, whereas a TESLA-style CEP
system would detect it immediately at the end of the five second time window.

To conclude: while Cayuga improved upon SASE by offering aggregation and better
handling of multiple streams, Cayuga regressed by losing explicit windowing support.
TESLA brought back windowing support, which has an important benefit for live
processing.

45

Chapter 3: State of the Art in Event Handling

3.3.5 A Formal Foundation for Modern CEP: EVA

EVA [72] is an event algebra rather than a CEP language. Like Cayuga’s algebra [46],
EVA aims to provide a solid formal foundation for CEP. EVA’s aims go further than just
specifying their own language, though: EVA attempts to capture the semantics of all CEP,
enabling all CEP patterns to be expressed in EVA. Hinze and Voisard [72] identified four
issues with the state of the art of CEP:

“unspecified temporal semantics” of composition operators;

“unclear semantics” of patterns;

“lack of collaboration” between different frameworks; and

“lack of adaptivity”, both in the sense that linking up event sources to CEP systems
typically requires manual programming of adapters, and in the sense demonstrated
by listings 3.2 and 3.3: the semantics of CEP systems differ sufficiently that patterns
need to be rewritten considerably when porting from one system to the next.

Their solution is a parameterized event algebra, called EVA. In EVA, patterns of interest
are specified as “profiles” or “subscriptions”. Events gathered at event sources are sent to
the central CEP processor, where they are optionally consumed. The event algebra can
express at least sliding windows, tumbling windows, and landmark windows. Events in
a time window can be aggregated using some aggregator expression. The core features of
EVA, though, are the windowing mechanisms and event sequencing.

While EVA explicitly aims to tackle the unclear semantics in existing CEP languages, some
issues persist even in EVA itself. We discuss these in section 4.6.2 on page 90.

3.3.6 Complex Event Patterns and Reaction Logic as Declarative Rules

A trend is apparent in modern CEP languages: they focus on declarative specification
of complex event pattern. Some modern CEP language — discussed before – come
with their own, custom pattern matchers. Others use specialized descendents of the
continuous query languages stemming from the streaming database world [30, 61, 62],
which we described in the previous chapter. Another branch of systems use production
rules [25, 115, 97]. Production rule — traditionally found in expert systems — encode
if-then logic, consisting of a pattern of logical facts to match, and a number of new logical
facts to create.

Forward-chaining rule engines are a good fit for event-based systems, as they enable
incremental matching of declarative rules. In response to matching an event pattern,
a production rule can emit one or more new events. Production rules are hence more
flexible than the systems discussed above, which were limited to emitting one event onto
a (named) stream.

46

3.4 A Taxonomy of Event Handling

Through the tight integration of event detection and enactment of responses, rule-based
CEP systems are able to overcome the impedance mismatch [68, 136] which typically exists
between detection code and reaction code. Responses — by construction — are executed
whenever a match is found. Response logic — by construction — has all relevant data in
scope, insofar that the response logic should only depend on attributes of the matched
complex event detected by the pattern of the rule. In the context of CEP, production rules
essentially replicate the advantages of the Reactive Programming paradigm we described
from page 37 onwards.

3.4 A Taxonomy of Event Handling

The previous two sections briefly sketched the recent history of Complex Event Processing
languages and Reactive Programming languages. Both paradigms improve event handling
code, albeit in different ways. To enable a structured discussion on the limitations of the
state of the art, we now define a taxonomy of event handling languages. For an in-depth,
general-purpose overview of CEP languages, we refer to the papers by [40] and Hinze
and Voisard [72]. We use their terminology where applicable. This section specifically
aims to make the discussion in this dissertation self-contained. We therefore outline the
aspects that are relevant to the thesis.

To this end, we categorize existing event handling techniques along two core axes:
first, language support for expressing semantic concerns such as temporal constraints,
negation, multiplicity, etc., and second the detection model of the CEP system, i.e., how
the system is described to (operationally) match events. These two axes serve as the
foundation from which we define the semantic (language) properties (in chapter 4) and
the operational semantics (in chapter 5) of a programming paradigm fit for the domain of
our driver scenarios. We split the discussion of the detection semantics in three parts:
event consumption semantics, the semantics of “followed by”, and support for temporal
constraints.

3.4.1 Event Consumption Policies

One main property that differentiates different CEP languages’ semantics, is the event
consumption policy [147]. An event consumption policy dictates whether an event can
matchmore than one pattern. In some languages, an event which is detected as part as one
complex event, cannot be part of another complex event. In other languages, events can be
part of many complex events. Cugola andMargara [40] calls the event consumption policy
of the first category “zero consumption”. For the former case, they surveyed only systems
which make the consumption optional, and programmatically determinable. They hence
call the event consumption policy for those other systems “programmable consumption”.

All reactive programming languages we surveyed employ a zero consumption policy:
every dependent of a behavior or stream is updated for every change of the event source.

47

Chapter 3: State of the Art in Event Handling

Event Consumption in our Driver Scenarios

For the scenarios we envision, “zero consumption” is needed. Consider our driver
scenarios introduced in section 2.1. A pair of financial transactions can be suspected of
muling money between two accounts, using a third account. Yet, it is possible that another
step of muling takes place, continuing from the second transaction. Even though this
transaction was matched to a CEP pattern, it should still be available for future matches
with other transactions.

Representation of Results

Related to the event consumption, is the representation of results in event handling
systems. Results are represented in one of the following ways:

As a stream CEP systems built on top of stream processing systems typically represent
results as a single, new stream. Feedback loops are explicitly impossible: results
are generated downstream of the place where event occurrences are inspected. The
same holds for some purpose-built CEP systems, e.g., SASE and SASE+ (see page 41).
Other purpose-built CEP systems like the ones described from page 42 onwards
represent CEP programs as compositions of stream-transformations. Hence, in
addition to the final results, intermediary results are represented as streams, too.

As entries in a knowledge base In production-rule-based CEP, detected complex events
are just part of a knowledge base. By design, results can be used by any matching
pattern in the same CEP system again, as long as they are not consumed or explicitly
removed.

As records in a table Streaming databases often materialize the generated results in
whichever representation of streams or tables they use.

As behaviors or streams Reactive programming languages by design represent (inter-
mediary and final) results as either behaviors or streams.

3.4.2 Semantics of “followed by”

To express complex event patterns, CEP languages offer ways to express that one event
follows another. For instance, SASE has the SEQ operator (see page 41), Cayuga has
NEXT expressions (see page 42), and TESLA has conjunctions with time windows (see
page 44). What exactly is meant by these, differs from language to language. In some
cases, sequencing should be read as “is followed immediately by”, whereas in others it
should be read as “is followed eventually by”.

Reactive programming languages lack support for “eventually followed by” semantics.
Many reactive programming languages do offer a construct to select a sequence of events;

48

3.4 A Taxonomy of Event Handling

time
a1 c1 b1 b2 c2 b3 b4 c3 b5 b6 b7 b9 bA bB bCb8 bn cm

Figure 3.1: Matches to Kleene closure on an event stream — When the “follows by” relation

allows skipping matches, selecting the shortest match is no longer viable, as that renders b* and b? equal.

specifically: to select an event and another event that occurred before on the same stream.
Such constructs carry names like foldp (in Elm [42]) or latch (in the “Stream Processing
with a Spreadsheet” paper by Vaziri et al. [137], as well as in the Aurora stream processing
system as described on page 18). These constructs offer “immediately followed by”
semantics: one can only select an event a fixed, finite number of occurrences ago.

Semantics of “followed by” in our Driver Scenarios

The “immediately followed by” semantics are inadequate for the scenarios we envision.
Consider again our driver scenarios. When onewants to detect an incomingmoney transfer
followed by an outgoing money transfer which satisfies some constraints, arbitrarily many
other events may occur in the event stream in between those two transfers. It is even
possible that other outgoing transfers which satisfy the constraints occurred in between
the two.

Relation of “followed by” Semantics with Kleene Closure

The “eventually followed by” semantics however lead to unclear semantics for Kleene
closures, such as those designated by the “star” operator in regular expressions. When a
“followed by” relation may skip over arbitrarily many events, a Kleene closure may mean
multiple things. Consider the timeline of events in figure 3.1, which depicts events as
instances of either a, b, or c. Events have no other attribute than a timestamp. Consider a
regular expression of the form a b* c. The extent of possible matches to that expression
are depicted at the bottom of figure 3.1: all the pairs of a and c. Any selection of the b’s
between those two events may constitute a valid match. The matches are hence a1c1, a1c2,
a1b1c2, a1b1b2c2, a1b2c2, a1c3, a1b1c3, a1b1b2c3, a1b2c3, a1b1b2b3c3, etc.

Evidently, specifying the semantics of Kleene closure for events in such a way that all
options are considered as a “match” leads to an impractical and inefficient matching
behavior. Similarly, specifying that the longest match should be used, is impractical and
inefficient: it is impossible to match a b* c in a streaming fashion using those semantics:
at no point can the pattern matcher know that no other closing c will still arrive on the
event stream. Finally, opting to specify the semantics of Kleene closure to select the
shortest match is dissatisfying as there would then be no difference between a b* c
and a b? c. Under these semantics, Kleene closures are not a means of aggregating
multiple matches.

49

Chapter 3: State of the Art in Event Handling

In summary, Kleene closures is not the clean abstraction it is in the case of strings when
used on streams where a “followed by” relation allows skipping over elements, but that
semantics is themost useful for CEP. If sequencing has “eventually followed by” semantics,
Kleene closure is only a useful abstraction if it is coupled with a time window.

An analogous issue exists for the case of the positive closure (the “plus” operator in
regular expressions).

3.4.3 Support for Temporal Constraints in Event Handling Languages

A final aspect of the semantics of event handling languages is their support for temporal
reasoning. When multiple events need to be correlated, time often plays a crucial role.
Some CEP languages— like SASE [141] or Cayuga [47]— allow patterns without temporal
constraints, though many CEP languages require some form of time windows, as we
introduced in section 2.3.1 on page 23. In contrast, reactive programming languages lack
such features. As mentioned in previous section, reactive programming languages offer
operators like foldp or latch to refer to specifically the previous event, but have no
constructs for specifying, e.g., all events within 5 seconds of another event.

Timestamps vs. Time Intervals

CEP languages use one of two approaches for positioning events in time: either an event
occurs at a timestamp (e.g., in SASE), or an event occurs during a time interval (e.g., in
Cayuga). We refer to the paper by Hinze and Voisard [72] for an extensive comparison of
temporal point semantics vs. temporal interval semantics.

The different representations of time have their most significant impact in the context of
composition: when events are modeled as occurring at a timestamp, abstracting multiple
events into a complex event necessarily loses information. However, even when events
are modeled as occurring during a time interval, event composition can still discard
useful information. We discuss this in detail in section 4.6.2 on page 90, and show that
these problems can be alleviated by retaining the concrete event times of all involved
events while the pattern is being matched, and only discarding this information when
the complex event is explicitly abstracted into a complex event. This is not possible in
systems which apply implicit hierarchical composition, such as Cayuga or EVA, where every
sub-pattern implicitly abstracts its constituents into a new compound event.

Relation of Temporal Constraints with Negation

The ability to reasonwith temporal constraints— andwith the notion of actual progression
of time in the outside world — becomes even more important when negation is involved.
Consider for instance a CEP program which deals with the occurrence of a financial
transaction, and the absence of a claim that that transaction was fraudulent. Such a

50

3.4 A Taxonomy of Event Handling

pattern cannot in general be implemented in a streaming fashion: if a transaction and a
claim are found, it trivially holds that the pattern is not matched. If instead a transaction
occurred, but no claim has yet been made, the system cannot conclude anything. Consider
evaluation of this program on an event stream that contains the occurrence of a transaction,
and the occurrence of a fraud claim for that transaction 4 seconds later. It would be wrong
to initially conclude that the program’s rule is matched. Conversely, consider a situation
where the stream contains an occurrence of a transaction, but no claim for that transaction.
Evaluation of the program would have to wait indefinitely.

In the context of negation, time windows are therefore necessary. A pattern matching a
financial transaction, and no fraud claim e.g. within two weeks, can be processed in a
streaming fashion. Regardless, evaluation of that pattern may require waiting: if no fraud
claim occurs, this pattern can be successfully matched two weeks after the transaction. In
general, a CEP language which supports negated patterns must restrict negated patterns
within some time window, and matching events to those negated patterns necessarily
requires that evaluation can wait for the entire duration of the time window.

3.4.4 Event Detection Models

We now shift our focus from what the different existing event languages do, to how they
accomplish this.

Some aspects of the detection model are common across most event handling systems.
For instance, they all have two distinct phases: first, the pattern specifications are
interpreted, and data structures are built from the specifications. Second, the actual
event handling phase is started, where live events are pushed to those pre-built data
structures. These data structures can either be a.) (finite state) automata, b.) search-trees,
or c.) dependency-graphs.

The remainder of this subsection discusses these three kinds of detection model.

a.) Automata-based Models and Methods

The first kind of detection model, are automata-based models. A huge body of work exists
on matching strings using finite state automata or push-down automata. Efficient pattern
matchers can be built using these techniques, as long as the patterns can be expressed in
regular languages or as context free grammars. Finally, automata inherently match their
inputs incrementally. Thus, matching (event) streams to patterns using these techniques
is trivial. It warrants little additional explanation why the detection model of a large
number of CEP systems builds on automata and regular expressions, including the work
by Pietzuch et al. [117], SASE(+) [141, 3], Cayuga [47], and TESLA [41].

MismatchesbetweenCEPandFSA Multiplemismatcheswere soondiscoveredbetween
what traditional finite state automata offer and what CEP needs:

51

Chapter 3: State of the Art in Event Handling

• First, obviously, anything not expressible in a regular language cannot be imple-
mented using only finite state automata.

• Second, traditional finite state automata give rise to “immediately followed by”
semantics, which have the problems described in section 3.4.2.

• Third, as a result of the second point, Kleene star and Kleene plus have unclear
semantics, rendering the main point of using regular expressions moot.

• Fourth, automata typically also imply a consuming semantics, which—while fine for
many CEP application domains — is not applicable to some CEP domains including
ours, as discussed briefly in section 3.4.1.

• Fifth, traditional finite state automata operate on a reasonably small, finite input
alphabet. In contrast, transitions in CEP depend not only on small finite sets such as
the types of events. Consider a small pattern of two events, which are joined when
they share the same value for some string-valued attribute. In general, this amounts
to a pattern AnBn, which is not a regular pattern, and hence cannot be expressed by
a finite state automaton. Limiting the length of the string to some value — say, 100
bytes — makes the pattern finite-sized, and therefore expressible by a finite state
automaton. However, to support all possible values of the shared string-valued
attribute, a number of states in the order of 28∗100 should be generated, which is
clearly impractical.

• Sixth, traditional finite state automata do not support having arbitrarily many
ongoing possible matches, in such a way that all matches to all patterns will be
reported. For CEP it is often not sufficient to know that a complex event was
matched; the reaction logic invoked by a CEP program typically needs access to the
concrete attribute value of all constituent events.

Domains inwhichpatterns occurwhich cannot be expressed in regular languages evidently
cannot use models based on finite state automata. Approaches have been devised which
bypass the other mismatches, while still retaining some of the advantages of automata.

Example of Automata-based Matching For a concrete example of how CEP with (non-
deterministic) finite state automata can proceed, consider the state transition graph
depicted in figure 3.2. This graph represents the finite state automaton created by Cayuga
for the code snippet from listing 3.2 on page 44. This automaton receives events from
the Touches stream. The arc between state Q0 and Q1 is labeled with the condition on
the event from the Touches stream (“TRUE”, i.e., no additional condition) and with a
function which specifies which values have to be bound to which logical variables (“F1”,
i.e., bind the event’s attribute x to logical variables x and min_x, bind its attribute y
to logical variables y and start_y, and bind the constant 1 to logical variable count).
From Q1, each new event on Toucheswhose x attribute is larger than the value bound to
the logical variable x of Q1 causes a self-transition, which increments the value bound to
the logical variable count (using F2). The first touch whose x attribute is too small causes

52

3.4 A Taxonomy of Event Handling

where
F1 = e.x ↦ x, e.x ↦ min_x, e.y ↦ y, e.y ↦ start_y, 1 ↦ count
F2 = Q1.count+1 ↦ count

True,F1

Q2 Q3Q1

Q1.x < e.x, F2

Q1.x ≥ e.x, ID

Q0

Q2.count > 3, DUR > 2sec, ID

Figure 3.2: Cayuga automaton for Cayuga Event Language example from listing 3.2 —

States are represented as circles. Possible transitions are represented as arrows. Q0 is the start state. Q3
is an accepting state. Each transition is labeled by a condition and a function updating bindings. Functions

F1 and F2 are depicted at the bottom. “ID” is the identity, i.e., changes no binding.

a transition to Q2. If the accumulated count is larger than three, and the (implicitly
measured) duration is larger than 2 seconds, accepting state Q3 is reached. While this
specific example is expressed in Cayuga, both SASE and T-REX (TESLA’s runtime engine)
largely operate similarly.

Differences between CEP Automata and Traditional FSA To ensure that multiple
events occurring at the same time are processed correctly, Cayuga uses epoch-based
processing. This entails that events occurring at same time are processed jointly, but may
not cause automata produced in response to another event from the same time to take a
step.

To enable detecting multiple independent matches to patterns — where the events of
multiple patterns optionally interleave — systems like Cayuga and T-REX deviate from
traditional finite state automata behavior by duplicates automata instead of letting one
single automaton take a step. In response to the occurrence of an event for which a state
transition is defined for some automata, Cayuga and T-REX duplicate those automata, and
have the newly created copy take a step. The occurrence of an event does not destructively
mutate any automaton. In case of zero-consume semantics, the CEP system updates
each instance of the automata it thusly created whenever a new event occurs. Part of the
complexity of Cayuga’s and T-REX’s design comes from the creation of indexes to provide
fast access to the automata that may be affected by a certain event.

For each instance of an automaton, the set of matched events is retained. As exemplified
by figure 3.2, edges between states are labeled not only by the type of event that causes
the transition, but also by predicates on the attributes of those events. Time windows
can be enforced by having a different state transition for events outside of the current
window compared to those that still fit in the window. Language runtimes can clean up
automata which cannot make any more steps, e.g. because their last time window ended,
or because a counterexample was encountered for a negated pattern.

53

Chapter 3: State of the Art in Event Handling

b.) Tree-based Models and Methods

A second kind of detection model, are tree-based models. These are typically used for
logic programming-based event handling, such as those based on production rules.

Supporting Order-Independent Matching The CEP languages mentioned in the previ-
ous section are a great fit whenever the CEP patterns one wishes to detect can be expressed
in a regular language. One major limitation of automata-based solutions is that automata
have a fixed recognition order, i.e., the pattern order and the recognition order are the
same. Order-independent patterns have to be explicitly implemented as a disjunction
of the different orders. This opens up the option of a combinatorial explosion of states,
which in turn constitutes a performance problem.

The fact that matching happens in-order brings more subtle limitations, too. Consider the
following sequence pattern in SASE syntax:

... SEQ(..., !A a, B b)... WHERE a.attr = b.attr ...

The pattern expresses the sequence of some events, followed by the absence of an event a,
followed by an event b, where the attr attributes of a and b are the same. Informally, the
semantics of this pattern make sense. For an automata-based system, though, this pattern
is impossible to implement: it can only progress to the event b after not having found
an a whose attribute matches that of an event it has not encountered yet. A different
detection model must be used, which can implement patterns relating events to (absence
of) events regardless of which event arrives first. Time windows should be enforced, but
time windows should be able to extend forwards as well as backwards. This necessitates
moving away from the notion of a current state of the pattern matching process.

Event Handling by Incremental Logic Programming Solutions take the form of logic-
based query-planners (e.g., RTEC and its Prolog implementation [15]), or incremental
algorithms such as the Rete algorithm [59]. The former category closely approximates the
streaming databases discussed in chapter 2. As a result, they suffer the same issues in the
context of our driver scenarios. Incremental pattern matchers like Rete are a better fit.
We extensively explore their properties, how they work, and what they lack in detail in
section 5.1. The gist of these systems, however, is that matches for all sub-patterns are
tracked in parallel, and all correlation between events happens by incrementally joining
sub-patterns pairwise.

c.) Dependency Graph-based Models and Methods

A final kind of event detection model, are dependency graph-based. This is the detection
model used by reactive programming languages.

54

3.4 A Taxonomy of Event Handling

Like the other models, dependency graph-based models first build a detection data
structure, and subsequently feed events into that structure. For Reactive Programming
languages, this takes the form of propagating events to the root nodes representing the
primitive stream for that event kind.

Push-based vs. Pull-based Reactive Programming Programswritten in FRP languages
interact with the outside world in one of two ways: they are either push-based or pull-based.

In a pull-based approach to FRP, whenever an entity in the outside world requests a new
result from some output behavior or stream, the current value of the input behaviors or
streams is determined, and evaluation chains backwards from the output, triggering
reevaluation of every behavior or stream on which they depend.

Conversely, in push-based approaches, the occurrence of an event in the outside world
causes the system to chain forward from the input at which the value arrived, updating
the values associated with the intermediate behaviors or streams, until the wave of updates
reaches the outputs.

Maintaining a Consistent State In both approaches, the order normally imposed by
means of a program counter is imposed by means of a dependency graph. Care must be
taken when evaluating an FRP program to prevent glitches. The customary example —
reproduced from Cooper [36] — of an expression which requires glitch prevention in a
FRP language is the expression

seconds < seconds + 1,

where seconds is a behavior representing the current time in seconds since some epoch.

Outputs computed by FRP programs should of course reflect the state of their inputs. In
all FRP languages we discussed, it is required that a computed output can be traced back
to a consistent set of input values; a set of values that were actually the current values of
the inputs at some point in time. As such, evidently the above expression should always
evaluate to the boolean value true: the set of inputs consists of a single rational number
for the variable seconds, and any rational number is strictly smaller than its successor.

A too naive implementation of FRP logic might erroneously expose the order in which the
dependency graph is traversed, and lead to a situation where the update of the seconds
behavior on the left-hand side of the relational operator is already materialized, but the
seconds + 1 behavior a the right-hand side of the operator is not yet. Such an evaluation
scheme would cause the wrong output — false— to be momentarily produced. In a
subsequent evaluation of the behavior seconds + 1, the semantically correct value true
would be restored, making this situation an intermittent bug, i.e., a glitch.

In FRP languages these glitches can be prevented by updating the dependencies in a
topologically sorted order of the dependency graph [36]. Evidently, this has the drawback

55

Chapter 3: State of the Art in Event Handling

of sequentializing evaluation, which leads to underutilization of compute resources on
computers with multiple hardware threads, let alone in distributed settings.

In general, topological sorting no longer suffices as a glitch prevention strategy in a
distributed setting [124]. A partial solution was designed in Elm [42], which defines
a way of propagating changes through a potentially distributed graph. However, that
“technique is inherently incompatible with dynamic dependencies” [50], such as those
introduced by if conditions which depend on reactive values. A solution to that problem
was developed by Drechsler et al. [50], in the form of the SID-UP propagation protocol.
SID-UP offers guaranteed glitch-freedom in a distributed setting while allowing dynamic
reconfiguration of dependencies. In SID-UP, the propagation of events through the
reactive graph is performed in two phases: an admission phase, and a propagation
phase. The latter phase can execute multiple propagations in parallel, and can proceed
without contacting a centralized coordinator. This behavior significantly reduces the
number of messages that need to be sent to execute a turn, and reduces the depth of the
message-chain (i.e., the number of “steps” the algorithm takes), and with that: the time it
takes to process an update.

3.4.5 Summary

Wecreated a taxonomyof the state of the art of event handling, based on four characteristics:

• First, different event consumption policies exist. For our driver scenarios defined
on page 12, a “zero consume” policy is needed.

• Second, different semantics of “followed by” exist in event handling languages.
For our driver scenarios, “eventually followed by” semantics are needed.

• Third, existing event handling languages express temporal constraints either on
even timestamps or on time intervals. Our driver scenarios can be expressed in
either approach. However, to support negation we definitely need support for time
windows.

• Fourth, multiple detection models exist in the state of the art. Matching multiple
complex event patterns—as required by our driver scenarios— can be accomplished
by either tree-based or automata-based detection models.

We summarize this in table 3.1, which reproduces the right-hand side of table 1.1 on
page 3. The shortcomings of the state of the art are discussed in the next section.

3.5 Discussion: Shortcomings in the State of the Art

On page 12 we described three driver scenarios. In section 2.4 we described how the
state of the art of stream processing frameworks fails to capture the whole scope of the

56

3.5 Discussion: Shortcomings in the State of the Art

Event Handling
Reactive ProgrammingComplex Event Processing

~ average to low~ average to low

– none✓ some history

✓ constant
(depth of program)

– proportionate to
history

– unsupported✓✓ expressive pattern
language

~ possible, assuming no
loops etc. in program

– proportionate to
history

✓✓well-supported
(core of the paradigm)

– outside of the model,
or Callback Hell

Throughput

History

Cost per update

Pattern
matching

Bounds on
resource usage

Reaction logic

Table 3.1: Summary of the state of the art of event handling systems and languages

driver scenarios. Crucially, no technique provided event correlation mechanisms as well
as guaranteed upper bounds on processing time and memory requirements. In this
chapter we introduced two other research branches which can be leveraged to process
events: Reactive Programming and Complex Event Processing. We now indicate why
these techniques fall short at expressing the driver scenarios, too.

First, we note that most techniques discussed in this chapter do not offer the means of
distributed processing. In their survey, Bainomugisha et al. [16] identified only three
reactive programming languages with support for distribution, and noted that none of the
three offered glitch-freedom in a distributed setting. Among the CEP languages, support
for distribution — or even just multi-threading — is largely absent. Of course, distributed
event based systems exist; e.g. those discussed by Mühl et al. [107], or the streaming
databases discussed in chapter 2. We discussed their shortcomings in section 2.4.2. The
expressive, formalized CEP languages described in this chapter aremostly single-threaded.
SASE, Cayuga, TESLA/T-REX, and EVA all define single-machine algorithms.

The remainder of our discussion on the shortcomings in the state of the art of event
handling, is split up into a discussion on the shortcomings of (functional) reactive
programming languages, and a discussion on the shortcomings of CEP languages.

3.5.1 Shortcomings of Functional Reactive Programming

The shortcomings of reactive programming languages are twofold. We name the first
shortcoming the lack of support for pattern matching, and we name the second short-
coming a mismatch between the pace inside the dependency graph and outside of the
dependency graph:

57

Chapter 3: State of the Art in Event Handling

No support for pattern matching Consider again the driver scenarios introduced on
page 12. The plain-text description of the multiple parts that constitute a fraudulent
set of transactions, specifies a pattern of transactions. Whether a transaction fits
the pattern, depends on the amount of money transferred, but also on what other
transactions took place in the two-week time window. For driver scenario A, any
transaction of 100e or more can — in isolation — match either the incoming
or the outgoing transaction, or indeed even both. Yet, filtering events based on
their attributes is the full extent to which reacting programming languages aid the
programmer: FRP languages offer the means to exclude transactions below 100e
from the stream of transaction events, but do not aid in managing event windows —
of only implicitly defined length — let alone searching within those windows.
Consider the following example — taken from one of our papers [122] — and
the graphical depiction in figure 3.3: consider an event pattern consisting of the
occurrence of an event of a type A, together with an occurrence of an event of a type
B, and one of a type C. Let the pattern specify that

• occurrences of A and B may be up to ta−b time units removed from each other;
• occurrences of A and C may be up to ta−c removed; and
• occurrences of B and C may be up to tb−c removed. Furthermore,
• no relative order is specified for A, B, and C; only the maximum time span.

This pattern gives rise to time windows as depicted in figure 3.3. Part 1 shows how
any occurrence of an event of stream A gives rise to a time window on stream B,
selecting a− b time units before and after each occurrence of an event of type A.
Multiple events can occur in a window, e.g., events b1 through b3 all occur in the
time window around a1. The multiplicity can go the other way, too, as exemplified
by event b8: since the semantic time windows can overlap, a single event can be in
multiple time windows.
Reactive programming languages excel at combining one single event occurrence on
a stream to another single event occurrence on another stream. Retaining events for
use in different contexts, requires manual programmer intervention. Thismanual

pattern matcher state management is a cumbersome and error-prone job when
complex search patterns are involved.
Consider the remainder of the example: part 2 of figure 3.3 shows how each event
of type A gives rise to a time window on stream C. Similarly, each event of type B
gives rise to a time window on stream C. In reactive programming languages, the
programmer has tomanually create new data structures for eachwindow, add events
to them when the window is live, process the windows using stream operators, and
discard them when they become obsolete. Whenever more than two events are
involved in a pattern, the semantic time windows have to be combined, as depicted
in part 3 of figure 3.3. A programmer using reactive programming languages is left
to implement their own pattern matching algorithm, managing event state manually.
The reactive programming paradigm fails to address the complicated parts of event
correlation.

58

3.5 Discussion: Shortcomings in the State of the Art

time
a1 a2 a3 a4 a5stream A

time
stream B b1 b2 b3 b4 b5 b6 b7 b8 b9 b0

1. Time windows for matched events of type B, per matched event of type A

time
a1 a2 a3 a4 a5stream A

time
stream C c1 c2 c3 c4 c5 c6 c7 c8

2. Time windows for matched events of type C, per matched event of type A

3. Time windows for matched events of type C, per event of type B, per event of type A

time
a1 a2 a3 a4 a5stream A

time
stream B b1 b2 b3 b4 b5 b6 b7 b8 b9 b0

time
stream C c1 c2 c3 c4 c5 c6 c7 c8

a-ba-b

a-ca-c

b-cb-c

Figure 3.3: Events matching part of a complex event pattern give rise to semantic windows
on other streams — The white squares depict occurrences of events of the corresponding type, laid out

on a time line. The shaded hexagons depict the extend of a semantic time window from the event on the

top, mapped onto the stream below.

Pace mismatch inside and outside of the reactive dependency graph Conceptually, re-
active programs are not driven by an internal clock, but by the need to react to
external events. The notion that processing takes time, and with that the notion of a
“processing delay”, is not part of the abstraction. Mapping the concept of reactive
programming onto hardware introduces a problem: on real hardware, reacting
takes time. A reactive program may hence still be busy processing one event while
the next event arrives. The next event will have to wait until the reactive program
loops around to the part of its code that inspects the event streams or behaviors.
This makes reactive programming a leaky abstraction: events cannot wait to occur;
event occurrence is external to the system and happens without regard to the state
of the reactive program.

While we think that guaranteed reactivity is the crux of reactive programming, most
reactive programming languages sweep this issue under the rug. The languages
assign a separate semantics to the time at which an event occurred, at which it is
registered to the system, and at which it is processed. Events may occur, yet not be
registered and processed. Reactive programming languages reach this point in one

59

Chapter 3: State of the Art in Event Handling

of two ways: they either drop some events, or introduce a buffer where they store
events until the processing catches up.

Reactive programming languages which drop some events can maintain an illusion
of reactivity, but only by sacrificing correctness. For instance, consider again the
seconds behavior in FrTime [37]. If all code depending on the seconds behavior
takes longer than a second to evaluate, FrTime’s signal manager will skip some
updates when the next second already occurred. While this enables FrTime to
mitigate the issue of falling behind on the data, it does so at the cost of the guarantee
that all data points are processed.

Reactive programming languages which introduce an event buffer instead sacrifice
reactivity: when events have to wait to be processed by a program, that program is
not reactive. Furthermore, buffering only solves transient issues; if the reaction code
is consistently too slow, the buffer keeps growing and evaluation falls increasingly
behind on the data. In the language model of existing reactive programming
languages, the only way to resolve this issue would be to limit the size of the buffer.
This introduces the problems outlined in the previous paragraph.

By ignoring the difference in pace between the inside and the outside of the

reactive dependency graph, existing reactive programming languages risk either
falling behind on the data, or having to drop events without even inspecting
them. In a security context such as the one of our driver scenarios, such behavior
is unacceptable. Security monitoring systems may not drop events when they

cannot keep up. Instead, they have to be designed in such a way that they can keep
up. This is obviously a hard problem, as it requires one to model the outside world
as well as the reactive computation.

Shortcoming of (Functional) Reactive Programming Languages

Existing reactive programming languages do not support matching complex event
patterns. Furthermore, they cannot statically guarantee they can keep up with
incoming event streams.

In the absence of pattern matching, the driver scenarios cannot be implemented.

3.5.2 Shortcomings of Current Complex Event Processing

CEP languages evidently do not suffer from the first shortcoming of reactive programming
languages: CEP languages offer extensive support for pattern matching. Still, they suffer
from two shortcomings when used in application domains exemplified by our driver
scenarios. We name the first shortcoming the semantic unclarity, and we name the second
shortcoming a mismatch between the pace inside the matcher and outside of the matcher:

60

3.5 Discussion: Shortcomings in the State of the Art

Unclear semantics For this shortcoming, we echo the concerns raised by Hinze and
Voisard [72]. Existing CEP languages suffer from “unspecified temporal semantics”,
“unclear semantics” of patterns, “lack of collaboration”, and “lack of adaptivity”,
as we explained in section 3.3.5. Even languages like Cayuga which have a formal
algebraic specification [46] expose semantics which — while consistent — are
counterintuitive. Evidently, Hinze and Voisard set out to solve these problems by
creating EVA, an event algebra.

Future CEP languages can be specified in terms of a shared algebra such as EVA’s,
solving at least the lack of collaboration and adaptivity, and — by virtue of mapping
onto EVA’s semantics — have as clear and well-specified semantics as EVA itself.
Still, some issues persist even in EVA itself. We discuss these in detail in section 4.6.2
on page 90.

Pace mismatch inside and outside of the pattern matcher Regardless of whether the
pattern matcher is implemented as an automaton, search-tree, or dependency
graph, the need to match the pace inside and outside of the pattern matcher remains
critical. For traditional finite state automata, this is relatively simple to achieve: a
state transition can be executed in a constant amount of time, and a constructed
finite state automaton has a finite, constant number of states. As we explained in
section 3.4.4, though, CEP languages which fit our driver scenarios’ application
domain do not use traditional finite state automata. Automata-based pattern match-
ers get rid of the requirement of having a constant number of states (or rather:
automata), and keep track of the attributes of the matched events. As a result,
existing expressive CEP languages do not guarantee that any event can be matched
in constant time, and hence do not guarantee that the matcher can keep up with any
input stream.

In conclusion, current CEP languages suffer from at least one of the shortcomings of
reactive programming languages outlined above: current CEP languages either offer
limited expressivity in their patterns, or fail to match the pace inside the pattern
matcher to the pace of the outside world.

Overall, the core principles of CEP most closely match the requirements of our driver
scenarios. Expressive CEP languages with a solid formal foundation, e.g., TESLA [41]
and EVA [72], form our closest related work in many aspects.

Still, the pace mismatch in these languages makes them unable to guarantee that events
which occur, will be matched to all relevant patterns. In part due to this distinction, more
subtle differences exist in the semantics of these languages, both with respect to each
other, and with respect to the solution we propose. We delay an in-depth discussion about
the relevant differences to section 4.6, as we have to introduce more context before the
nuances can be properly explained. For now, we summarize the shortcomings as follows:

61

Chapter 3: State of the Art in Event Handling

Shortcoming of Complex Event Processing

Existing Complex Event Processing systems suffer from a pace mismatch. Because
of this mismatch, they cannot statically guarantee an upper bound on their
response time.

In the absence of such upper bounds, the hard requirements of our problem domain
cannot be guaranteed by CEP systems.

3.6 Conclusion

In this second context chapter we surveyed the state of the art in event handling. We
identified two categories of event handling languages which aim to enable programmers
to write programs which depend on multiple events: (Functional) Reactive Programming,
and Complex Event Processing.

We discussed how reactive programming languages do not aid the programmer in
expressing patterns of complex events, and searching for matches to them in streams of
events. Nor do reactive programming languages tackle the core problem of reactivity:
ensuring that the pace inside the reactive dependency graph matches the pace of the
outside world. CEP languages do aid the programmer in expressing complex event
patterns and searching for them in event streams. Yet, they too do not ensure that the
pattern matcher can keep up with the pace at which events occur in the outside world.

We hence conclude that — in addition to the Big Data stream processing system or
streaming database discussed in chapter 2 — no event handling language exists which
satisfies the requirements of live security monitoring.

62

4
Logic Reactive Programming

In chapters 2 and 3 we surveyed the state of the art in techniques by which large streams
of events can be monitored for occurrences of complex event patterns. We defined three
driver scenarios (page 12) where a financial institution monitored financial transactions
for suspected cases of fraud. Using the scenarios we demonstrated that a class of event
monitoring problems exist which are not catered to by the state of the art. This class of
problems is characterized by the combination of a.) a large volume of events; b.) patterns
involving multiple events spread out in time; c.) an unknown, attacker-controlled order of
events; d.) the need to detect the events online, as quickly as possible after their occurrence;
and e.) the need to guarantee that no transaction is inadvertently ignored.

Existing systems for detecting complex events in large, online event streams suffer a
number of shortcomings, as discussed in the previous chapters. Streamprocessing systems
and existing reactive programming languages fail to express the notion of searching for
complex event patterns. Streaming databases and Complex Event Processing languages
whose detection model is sufficiently expressive to support order-independent complex
event patterns, invariably do so at a cost: these systems do not ensure that the pace inside
of their pattern matcher logic can keep up with the pace at which events are generated.

In this chapter, we argue that a novel kind of reactive programming is needed. We call
this novel variation Logic Reactive Programming (LRP). LRP aims to offer solutions to the
class of event monitoring problems exemplified by the scenarios in section 2.1. LRP exists
at the confluence of Big Data stream processing systems, complex event processing, and
reactive programming. The next section positions LRP with respect to these precursor
paradigms (section 4.1). We then introduce the PARTE language (PARTElang), a novel

63

Chapter 4: Logic Reactive Programming

Logic Reactive programming language (section 4.2). A formal foundation for PARTElang
is laid in section 4.3, in which we define an event algebra for PARTElang. This event
algebra formally defines what patterns are, and when a stream of events matches a pattern.
We further discuss the limitations of PARTElang (section 4.5), describe future work
(section 4.5), and compare PARTElang and its event algebra to related work (section 4.6).

4.1 A Programming Paradigm for Reactive CEP

We concluded last chapter with the notion that a class of event monitoring problems (see
page 12) cannot be tackled by the state of the art in either streaming databases, Big Data
stream processing, complex event processing, or reactive programming. In this section,
we describe how concepts from these domains can be reused, and what needs to be added
on top, to produce a paradigm fit for such security monitoring use cases.

4.1.1 LRP as the Combination of CEP and Behavior-based RP

Paradigm-wise, CEP comes closest to what LRP aims to provide: CEP offers ways to
match complex event patterns to live streams of events. Many existing CEP languages
offer either the expressivity, or the constant-time processing that is required for our driver
scenarios. However, we argue that the Callback Hell [24] exists in the state of the art of CEP.
CEP languages hence need to be augmented with reactive programming principles.

In turn, we argued in a position paper to the Workshop on Reactive and Event-based
Languages and Systems workshop at SPLASH 2015 [122] that the traditional, procedure ori-
ented, reactive programming languages fall short for expressing reactions to complex event
patterns. We repeated this claim in section 3.5.1, where we demonstrated the complexity
of matching semantic windows using functional reactive programs, in figure 3.3. A new
paradigm is hence needed, which resolves the Callback Hell in CEP, or — equivalently —
enables expressing reactions to complex events in a reactive programming language.

As a reactive programming paradigm, LRP could be expressed in terms of either behaviors
or streams. Variables in a Logic Reactive program should hence either represent a single,
current value, or a stream of values. As a CEP paradigm, LRP should use declarative rules
mapping complex event patterns to reaction logic. In these complex event patterns each
bound variable represents a single event. As such, the need for expressing searchable
patterns dictates the choice of event representation: variables in LRP patterns bind a single
event at a time, thus act as behaviors, not streams. Similarly, since LRP handles discrete
events which occur in the outside world, the push-based approach to RP lends itself best.

One could thus imagine an LRP program as a behavior-based, push-based reactive
program augmented with features for searching complex event patterns. Alternatively,
one could imagine an LRP program as a rule-based CEP program whose reaction logic is
freed from the Callback Hell by means of reactive programming principles.

64

4.1 A Programming Paradigm for Reactive CEP

4.1.2 Strong Reactivity and Event Arrival Rate

We discussed in section 3.5 how current event processing techniques fail to align the pace
inside of the event processing system with the pace at which events occur in the outside
world. They (sometimes implicitly) distinguish between the time at which an event occurs,
the time at which the occurrence is reported to the system, and the time at which the
system determines which patterns the event matches. Whenever the event processing
system has finished processing an event by the time a new event arrives, this distinction is
invisible. However, if the system has not finished processing an event by the time a new
event arrives, processing of that new event has to wait until the event processor is ready.

The concept of time between occurrence and detection of occurrence is incompatible with
the semantics of reactivity. Worse, if the event processor continuously takes too long to be
ready for a next event, the processing increasingly falls behind on the event stream, and is
forced to either drop events, or fail as it runs out of storage space.

This makes reactive programming a leaky abstraction: in the abstraction, events cannot
wait to occur; the occurrence of an event is external to the system and happens without
regard to the state of the reactive program. We use the term strong reactivity to refer to a
type of reactivity where this leak in the abstraction cannot take place.

Definition 1: Strong reactivity

A reactive program is strongly reactive if the abstraction of reactivity is never broken,
i.e., if the program always reacts, immediately, whenever an event occurs.

Strong reactivity can in general only be achievedwhen the computer onwhich the program
runs is arbitrarily fast, or if the program can execute arbitrarily many tasks in parallel.
However, if an upper bound is known on the rate at which new events arrive, a program
can be strongly reactive on a real computer. To this end, the program must guarantee to
fully process an event in a constant amount of time and space, independent of the number
of events that occurred before. With this guarantee, the program is never not ready for
the next event, as long as the constant upper bound on processing time is not larger than
the minimal time between events arrivals.

We define event arrival rate as follows:

Definition 2: Event arrival rate

The rate at which events arrive at the inputs of a reactive program, i.e., the event
arrival rate is expressed as a number of events per time unit.

The event arrival rate is an absolute upper bound, not an average upper bound.
The event arrival rate is defined by the minimum time between subsequent events.

65

Chapter 4: Logic Reactive Programming

This definition imposes the requirement that events are periodic. This restriction is not
excessive, in fact it is the norm in real-time systems. Mellin [101] writes in his PhD thesis
that “[no] system can handle a completely random load. Aperiodic events, that is, events
whose interarrival time is unspecified, are not tractable in a deterministic way in terms of
resources needed to handle them”.

4.1.3 LRP means Strongly Reactive Complex Event Processing

With definition 1 formulated, we can now define the next deviation from the state of
the art that constitutes LRP: existing Big Data stream processing and event processing
techniques do not enforce strong reactivity.

While filter conditions tend to operate in constant time, stream processing system often
do not enforce this. The systems where constant time processing is enforced, do so by
only supporting limited means to specify event patterns, e.g., in the form of regular
expressions. Other models used for CEP are more expressive, but do so by exposing a
pattern language which can express programs that require arbitrarily much time to detect,
and may require arbitrarily large storage for intermediary results. The application logic
invoked in response to a pattern, too, undermines strong reactivity. Often times [142, 118]
the language exposed for writing reaction logic in, is even Turing-complete. In Complex
Event Processing, where the detection of an event pattern can cause a new complex event
to be emitted, this emission-reaction-cycle inherently constitutes an unbounded loop
when patterns may emit events of a type they may react to.

All these concerns with the state of the art explain why we consider strong reactivity to
be a core feature of the Logic Reactive Programming paradigm. At the surface level, a
declarative pattern language as used in streaming databases or rule-based CEP languages
is the best fit for expressing the scenarios described on page 12. The need for strong
reactivity however necessitates that LRP imposes a number of restrictions on the patterns
it can express. We achieve this by means of three restrictions. First, the pattern language
must be restricted in such a way that only those patterns can be expressed which match a
fixed, finite number of other events for each event. Second, the depth of the matching
process must be restricted in such a way that only a fixed, finite number of pattern
matching steps are required for each complex event. Third, no other side-effects can be
created, except emitting new complex events from the reaction logic of a rule. We use the
high-level nature of a declarative, rule-based language to enforce these restrictions: we
make it statically impossible to express LRP programs which violate these restrictions.
We discuss both cases in more detail:

Restricted pattern language In LRP, a program can only be expressed as a set of declara-
tive rules. Each rule consists of a pattern — matching one or more events — and a
set of expressions implementing the reaction logic to execute whenever a match to
the pattern is found. Matching events to a pattern can be done in time proportionate
to the number of events and to the number of events involved in a single match to

66

4.1 A Programming Paradigm for Reactive CEP

a pattern. To achieve strong reactivity, LRP must hence enforce that only a fixed,
finite number of events can be involved in a pattern for each event, and that only a
fixed, finite number of events match a pattern at a time.
The latter is easily enforced syntactically: a pattern binds events to logical variables.
Each logical variable binds a single event at a time (cf. a behavior, as discussed in
section 4.1.1), and each logical variable has to appear in the source code of the LRP
program. The source code of any LRP program is of a finite size, and is of a size
which does not change during the run time of the program. By transitivity, a pattern
hence binds only a fixed, finite number of events per match to a pattern.
To achieve the former, we make use of the fact that the event arrival rate (definition 2)
is finite and constant. Since a fixed, finite upper limit exists on the number of events
arriving in a certain time interval, any fixed, finite time window contains only a
fixed, finite number of events. If LRP requires that all patterns define a (semantic)
time window for each event, the patterns necessarily enforce that for any event, only
a fixed, finite number of other events can be involved in a match. It suffices that for
any two logical variables in a pattern a maximum distance in time between both can
be determined.

Restricted matching depth If an LRP program contains a rule which emits a complex
event in response to an event, and if the type of event that rule responds to is the
same as the type of event that rule emits, the LRP program encodes an unbounded
loop. Unbounded loops are trivially incompatible with strong reactivity, and must
hence be made impossible to achieve in LRP. To remove the option of introducing
cycles, while still retaining as much of the expressivity as possible, rules must
be disallowed to emit events of types which they may react to, either directly or
indirectly. We define the notion of stratification as a requirement for LRP programs:

Definition 3: Stratification

Let p be a Logic Reactive Program p.

The program p is stratified if there exists a numeric stratum for each type of
event which appears in p, such that if the occurrence of an event ea of type ta
can cause p to emit of a complex event eb of type tb, then the stratum sa ∈N

of type ta is strictly lower than the stratum sb ∈N of tb.

Intuitively: an LRP program is stratified if no event can influence the later occurrence
of an event of the same type. Or, from the perspective of declarative rules: an LRP
program is stratified if no rule can emit events which cause complex events to occur
which match the rule’s pattern.

Restricted side-effects Any expressions in an LRP language, other than the stratified
emission of new complex events, must be free of side-effects. Filter conditions in the
patterns — e.g., filtering out financial transactions involving less than 100e— as
well as transformations — e.g., adding 10% to a value — can be restricted to purely
functional predicates that operate in constant time and space.

67

Chapter 4: Logic Reactive Programming

The application logic invoked whenever a match is found must be restricted to
only emitting new complex events. This event emission must of course satisfy the
stratification requirement.

Even with those three restrictions put in place, the Logic Reactive Programming paradigm
would not yet be a strongly reactive Complex Event Processing paradigm. One key part is
missing: to handle the driver scenarios sketched in section 2.1, LRP programs should be
stateful. After all, if a program does not store previous events, it cannot correlate newly
arrived events with previous events, as it no longer has access to those events. However,
searching a history of previous events for matches to patterns involving new events takes
time proportionate to the size of the event history. Existing solutions — either streaming
databases or rule-based CEP languages — do not guarantee that a fixed, finite limit exists
on this history.1 In existing solutions, enumerating all matches may hence take arbitrarily
long, preventing strongly reactive operation.

To alleviate this problem, an LRP programmust ensure it stores only a fixed, finite amount
of previous events. To do this without impacting the semantics of the program, i.e.,
without changing which complex events get detected, the LRP paradigmmust ensure that
no LRP programs expresses a pattern which requires arbitrarily many events’ data to be
retained. We wrote earlier that we restrict the pattern language allowed in LRP programs
in such a way that the amount of relevant earlier events for any event is fixed and finite.
Since time moves forwards, and events must be related by relative time windows, only a
fixed, finite number of events can have any bearing on future matches.

LRP languages must leverage this property, and automatically remove data pertaining to
such events which are too old to still have any bearing on future matches. This should
not be a responsibility of the LRP programmer: the language runtimes of LRP languages
must be able to analyze the relative temporal windows expressed in the LRP program,
and extract all information necessary to manage the event storage. The system should
determine which events are still relevant, and remove those which are not as soon as
possible. A finite upper limit should exist on the number of irrelevant events which
can accumulate before being removed: together with the fixed, finite upper limit on the
number of potentially relevant events, this forms the fixed, finite upper limit on the state
size of an LRP program’s knowledge base.

A program for which no such upper limit can be determined, is an invalid LRP program.
Such a program must be rejected by the LRP language runtime before monitoring would
start.2

1Of course, whenever a streaming database or CEP language maintains only a fixed-length (tumbling or
sliding) window, the event history is limited by the size of the window, which can be fixed and finite. In cases
with more expressive patterns, though, data is retained arbitrarily long.

2While we do not explicitly present the requirements on the temporal constraints as a type system, it serves
a similar purpose. Syntactically correct programs may still be rejected prior to runtime based on the static
conformance check.

68

4.1 A Programming Paradigm for Reactive CEP

4.1.4 LRP means Distributed Processing

With the restrictions from last paragraphs put in place, Logic Reactive Programming
enables a strongly reactive form of CEP. But to be really useful in a Big Data context, it
should additionally be able to utilize the processing power of a cluster of computers.
This entails that the algorithms underlying LRP evaluation may not assume a shared
memory space, nor may they assume that any part of the program can inspect any part of
the program’s state. Synchronization between different distributed components must be
introduced, and glitches (as introduced in section 3.4.4) must be prevented in a distributed
context, where topological sorting no longer necessarily suffices [124].

LRP languages must define their own approach for guaranteeing correct and glitch-free
exchange of data among multiple distributed computers. LRP has an advantage over
other RP paradigms, though: LRP programs must specify temporal constraints, and data
in LRP programs must be tagged with a timestamp. These timestamps can be used to
order the interleaving of messages exchanged between the distributed computers. As we
will show in chapter 5, the workload of an LRP language runtime can be divided across
multiple distributed computers in such a way that the automatic removal of old events
(described near the end of section 4.1.3) can be done using only local data and a small
constant amount of meta-data added to the messages that are sent to propagate events
through the LRP program. As such, LRP programs can keep their internal state consistent
in a distributed setting.

Keeping the externally visible behavior consistent in a distributed setting, requires another
set of restrictions. Non-determinism in scheduling across multiple computers should not
impact which matches are detected. We therefore impose the requirement that matches in
LRPmust be atomic: a pattern is either fully matched, or fully unmatched. No interleaving
of processing should ever allow a rule to find some events generated in response to the
matching of a rule, but not find some other events generated by the same matching of
that rule. Consider for instance an LRP program which contains two rules: the first rule
emits a complex event of type A, and a complex event of type B when the rule is matched.
The second rule matches on the occurrence of an event of type A and the absence of an
event of type B. Consider the case where the evaluation of the first rule reached the point
where it emitted an event of type A, but not yet the point where it emitted an event of
type B,3 and consider that at that point the evaluation of the second rule commences. The
LRP program would momentarily find an A but not B, and hence erroneously trigger the
second rule. LRP prevents such glitches by combining three features we have already
introduced: stratification, correlation using temporal reasoning, and semantic windows
which automatically remove old events’ data, but retain them while they may have an
impact on the result:

• first, thanks to stratification, an LRP programmay only react by emitting new events
of types to which it itself does not react. This prevents feedback loops, and makes it

3Or if only the emission of A had been propagated to the other computers in the cluster, and the emission of
B was still ongoing.

69

Chapter 4: Logic Reactive Programming

possible to accurately determine lower bounds on which timestamps future events
of a certain type may still have (we define this in detail later, for instance from
section 5.3.3 onwards);

• second, since all correlation of events includes verifying how the events correlate in
time — based on the timestamps they are explicitly tagged with — no combination
of events which does not satisfy the pattern is detected; and

• third, since events are guaranteed to be retainedwhile they are in a semantic window
— based again on their explicit timestamps — all combinations of events which do
match the pattern are detected.

4.1.5 Requirements for a Logic Reactive Programming Language

In this section we have discussed how a novel Logic Reactive Programming language
would differ from the state of the art in distributed stream processing, streaming databases,
(functional) reactive programming, and Complex Event Processing. We conclude this
section by synthesizing the hard requirements for the Logic Reactive Programming
paradigm.

RLRP1 First, it is evident from the driver scenarios introduced in section 2.1 that LRP
languages must enable expressing patterns of events. It must be possible to relate
events to each other. The attributes of the events — e.g., the timestamp of a financial
transaction, or the destination account — should be usable in filter conditions or
as join-criteria. Beyond just using the attributes directly, a limited set of arithmetic
operations should be exposed. In the driver scenarios, this ability is required to
sum up the amount of money transferred, and to compare that sum to the amount
carried by another transaction. It must also be possible to abstract over and consult
additional domain knowledge, for instance historical information identifying trusted
accounts. Negated patterns, such as the absence of a fraud claim, must be supported
too.
LRP programs should of course be able to communicate successful matches to the
patterns to some external system. To this end, the language should be able to express
reaction logic as the consequent of matching a pattern. The reaction should be a
natural extension of the conditions: the syntax should be similar and the conditions
and reaction logic should share the same namespace and scoping rules. The reacting
logic must execute in constant time, using a constant amount of space, to allow for
strong reactivity throughout the system. Reaction logic is the only part of an LRP
program which can cause side-effects in the outside world. It may only do so by
emitting new compound events which abstract over the matching of a set of events
to a pattern.

RLRP2 Second, the language must provide the means to relate events in time. Events
— by definition — have a temporal component. When the time of occurrence is

70

4.1 A Programming Paradigm for Reactive CEP

modeled as a single timestamp attribute, this entails that each event has an attribute
which is non-decreasing over successive emissions of events of the same type.
LRP languages must provide “eventually followed by” semantics (as explained on
page 48) for event sequences.
We refer to filters and join-criteria involving events’ timestamps as temporal constraints.
LRP languages must be able to express temporal constraints such as (semantic) time
windows (as explained on pages 27 and 50). The temporal constraints must be
validated in constant time per event, using constant space for the whole system, to
allow for strong reactivity throughout the system.

RLRP3 Third, our driver scenarios require a specific event retention scheme. It is important
that events are not consumed when they match a pattern (i.e., a zero-consume policy
must be used, as explained on page 47). Consider the driver scenarios: a transaction
that seems to be part of a fraud combined with some other transaction, may also be
suspicious when coupled with another transaction. Notifying the security team in
only one of both cases, would lead to false-negatives.
At the opposite side of the same concern, events may not be retained indefinitely.
Retaining events indefinitely implies that memory consumption grows without
bounds, which precludes strong reactivity. Only part of the event history can be
preserved. All the driver scenarios offer a way to steer clear of this issue, though:
all patterns imply a duration for which events stays relevant, but events eventually
becomes irrelevant. At that point, they can automatically be purged from the system.
In LRP, the part of the event history that is still relevant must be automatically
determined from the temporal constraints specified in the program source. The
LRP language — not the programmer — is responsible for discarding irrelevant
old events. We refer to this behavior as managed event storage. A program for
which the storage cannot be managed automatically is an invalid LRP program, and
should be rejected by an implementation of a LRP language.

RLRP4 Fourth, to maximize the chance of responding to the attempted fraud in time, the
detection has to happen as soon as possible. This precludes e.g. solutions based on
running a processing batch at night, or even hourly, in favor of a streaming approach.
Note that despite the online, streaming semantics, the detection must be able to
correlate new events with events that took place some time earlier, necessitating
some way of storing historical data, with the constraints imposed by the previous
requirement. Since the number of transactions which must be cross-referenced in
the driver scenarios may grow large, the system responsible for detecting the LRP
patterns must be high-performance and scalable.

RLRP5 Fifth, while the detection runs on trusted hardware, the data it operates on is
generated by the outside world, and must be treated as potentially adversarial. It
is in the adversary’s interest to bring down the detection system, so the detection
system must be hardened against this. The system should not have any inherent
weaknesses (such as e.g., a resource consumption exponential in the number of
non-fraudulent but suspicious transactions, which would allow a cheap DDoS with

71

Chapter 4: Logic Reactive Programming

plausible deniability), and it must be possible for the entity deploying the logic
reactive program (in the driver scenarios: the financial institution) to determine
up front how high a load the detection system will be able to handle, such that
a sufficient amount of resources may be allocated for it. Using the terminology
introduced in definition 1, LRP should be strongly reactive.
It is self-evident that the requirement of bounded execution time is irreconcilable
with Turing completeness. We consider this a strength of LRP: while there are
programs which cannot be expressed in the LRP paradigm, all programs that can
be expressed in LRP are guaranteed to be strongly reactive, and hence dependable:
they will never fall behind on their inputs, nor run out of working memory.

We define the Logic Reactive Programming paradigm as follows:

Definition 4: Logic Reactive Programming

Logic Reactive Programming is a programming paradigm characterized by the
following five requirements:

RLRP1 LRP programs are expressed as declaratively specified patterns of events,
together with reactions.

RLRP2 LRP languages provide built-in support for temporal reasoning over those
events.

RLRP3 LRP language runtimes automatically manage the storage of events.

RLRP4 Deployed LRP programs are scalable and online.

RLRP5 Deployed LRP programs are guaranteed to stay online, and offer strong
reactivity.

To enforce reactivity, all parts of the program — including the reaction logic — must take
a worst-case constant execution time. If a part of the execution requires time proportional
to the size of some data structure, that data structure must have a constant upper limit on
its size. The central premise is that arrival of events should never have to wait because the
system is still processing the previous events. Informally, if a certain cluster of physical
computers cannot process a logic reactive program fast enough, it should be possible
to fix the problem by buying a faster computer. There should exist a predictable, fixed,
finite number of instructions-per-second such that a computer running at that speed can
execute the LRP program without falling behind on the event stream.

4.1.6 Conclusion

A Logic Reactive Programming language compares to the state of the art of event stream
processing as depicted in table 4.1:

72

4.1 A Programming Paradigm for Reactive CEP

Distributed Big Data & Stream Processing Event Handling
Reactive ProgrammingComplex Event ProcessingBig Data Stream Processing Streaming Databases

(Chapter 2) (Chapter 3)

~ average to low~ average to low✓✓ very high ✓ high
Throughput

– none✓ some history– none ✓✓large history size
History

✓ constant
(depth of program)

– proportionate to
history

✓ constant
(depth of program)

– proportionate to
history

Cost per
update

– unsupported✓✓ expressive pattern
language

– unsupported ✓ supported
(relational join)

Pattern
matching

~ possible, assuming no
loops etc. in program

– proportionate to
history

✓ yes
(with basic operators)

– proportionate to
history

Bounds on
resource usage

✓✓well-supported
(core of the paradigm)

– outside of the model,
or Callback Hell

– often integrated, but
Callback Hell

– outside of the model
Reaction logic

Our Contribution
Logic Reactive Programming
✓ high

✓ constant
(depth of program)

✓✓ yes
(guaranteed)

✓ some history

✓ restricted, expressive
pattern language

✓ supported
(with restrictions)

Table 4.1: Comparison between the state of the art of event stream processing and LRP

RLRP1

RLRP4

RLRP2

RLRP5

RLRP3

– no patterns
✓✓well-supported

✓✓ expressive patterns
– Callback Hell

– no patterns
– Callback Hell

✓ relational join
– outside of the model

– not scalable– not scalable✓✓ very scalable ✓ scalable

– unsupported✓✓ well-supported– unsupported ✓ supported

~ not guaranteed– unsupported~ not guaranteed – unsupported

~ no storage✓ managed storage~ no storage ✓✓ large managed storage

✓ restricted patterns
✓ supported (restricted)

✓ supported
✓ managed storage
✓ scalable
✓ guaranteed

Distributed Big Data & Stream Processing Event Handling
Reactive ProgrammingComplex Event ProcessingBig Data Stream Processing Streaming Databases

(Chapter 2) (Chapter 3) Our Contribution
Logic Reactive Programming

Table 4.2: Requirements attained by event stream processing systems and by LRP

• Compared to Big Data stream processing systems, LRP languages preserve the
history-independent cost per update. The complexity of pattern matching is greater
than that of stream processing, which will have some negative impact on the
throughput.

• Compared to streaming databases, LRP languages preserve the ability to keep
historical data, albeit in a more restricted way. This restriction is not unwanted,
though: it allows for imposing upper bounds on resource requirements.

• Compared to CEP languages, LRP languages preserve the ability to keep historical
data. LRP additionally allows imposing upper bounds on resource requirements.
This comes at a cost in language expressivity.

• Finally, compared to (F)RP languages, LRP languages preserve the property that the
cost per update is independent of the history. LRP retains the software engineering
benefit of preventing the Callback Hell, and adds support for pattern matching.

An alternative view is offered by table 4.2, which depicts which requirements of LRP are
met by the state of the art of event stream processing.

The remainder of the dissertation defines and evaluates a language and evaluation model
which enables these constraints.

73

Chapter 4: Logic Reactive Programming

4.2 A Logic Reactive Programming Language: PARTElang

In this section, we introduce PARTElang,4 a novel Logic Reactive Programming language.
PARTElang is aimed at the distributed Big Data context sketched in chapter 2, though its
syntax and semantics can be applied more generally. We use PARTElang to demonstrate
that the ideas of LRP can be put to practice.

After introducing the language itself in this section, section 4.3 defines an event algebra
for the matching behavior of PARTElang. Chapter 5 defines an operational semantics of
PARTElang programs. Chapter 6 describes a prototypical implementation of a PARTElang
runtime. Chapter 8 proves correctness of the operational semantics. Finally, in chapter 7
we explore expressing the driver scenarios in PARTElang and executing them on our
prototypical implementation.

4.2.1 Informal Semantics

This section gives a brief overview of the PARTElang semantics. The precise details are
discussed further in this dissertation.

As an LRP language (see the requirements listed on page 72), PARTElang needs to be able
to correlate large amounts of complex events, incrementally, as they occur (RLRP4), with
guarantees on availability (RLRP5). The correlation to compute — and the reaction logic
to enact — must be specified declaratively (RLRP1 and RLRP2). We opted for a language
design centered around declarative rules, but with an automatically managed knowledge
base (RLRP3). At the top level, a program in PARTElang contains two kinds of items:
definitions of the types of events the program can reason about, and named rules that
reason about events of those types.

Events and Event Templates

Event types are defined by means of event templates.5 Event templates are named, and
identify a relation (see definition 5). Event templates specify a list of attribute names and
their type. For instance, an event template could be named “MoneyTransferred”, and
could have attributes such as “amount” and “destination_account”. The types of those
attributes could be “Euros” and “AccountId”.

Each event that is inserted into the system must be tagged to identify the template it
conforms to, and the attributes of the event must match those of the template. For instance,
a MoneyTransferred event could be inserted with the amount attribute set to the constant
value 100.00e and the destination account set to some account number.

4The acronym “PARTE” used to stand for “Parallel, Actor-based ReTe Engine” in an earlier iteration, but that
description no longer applies. “PARTE” is now just a name.

5This terminology is borrowed from the logic programming language/expert system CLIPS [142].

74

4.2 A Logic Reactive Programming Language: PARTElang

Declarative Rules

Declarative rules give a name to a pattern and some reaction logic. The pattern of a rule is
a conjunctive query: each sub-pattern expresses the constraints on an event that need to
be present or the conditions on an event that may not be present for the rule to match.
Events such as money transfers or reports of fraudulent transactions can be bound to
logical variables. Only events themselves can be bound to variables. A variable cannot bind
a Euro amount, an account identifier, a name, etc. Those are instead reached by taking
the value bound to an attribute of an event bound to a variable.

Constraints can filter out events based on their types, or on the values of their attributes.
Attributes of events bound to logical variables can be compared across events, e.g., a
conjunction of patterns might match on the occurrence of a MoneyTransferred event
bound to t and an AccountClosed event bound to c, where t’s originator account is equal
to the account closed in c, and where c occurred within a day of t. We refer to constraints
which compare across event boundaries as join-criteria, and to other event-local constraints
as filters. Join-criteria enforcing only equality are functionally equivalent to unification.

Absence of an event meeting certain criteria is modeled by negated patterns. While positive
patterns enforce the presence of events matching some conditions, negated patterns require
the absence of events. A negated pattern implements a time-aware form of negation-as-
failure: an event is considered not to have occurred if and only if time progressed beyond
the latest point at which it could have occurred, and it is not yet known to have occurred.
Critically, the point beyond which an event can no longer occur is based solely on its
timestamp: an LRP program cannot determine that e.g. no more MoneyTransferred event
will occur, but it can determine that no more MoneyTransferred event with a timestamp
tm can occur if all event sources declare they have sent all events up to ts, where tm < ts.

PARTElang upholds the invariant that an event that was determined not to have occurred
cannot later be found to have occurred. Universally quantifying that no event matching a
certain pattern will ever take place, cannot possibly be done in constant time— evaluation
would have to wait indefinitely for the occurrence of the event. Therefore, a negated
pattern must always express a fixed-size time window relative to at least one positive
event. The time window is delimited by a finite minimum and a maximum duration
relative to the positive event. The minimum duration may be negative, thereby including
events gathered before the occurrence of the positive event.

Disjunction of Rules

While enforcing more than one constraint at a time is expressed by having multiple
patterns in a rule (a conjunctive query), choice is expressed by having multiple rules.
Applying the approach from previous rule-based systems, all rules of a PARTElang
program are regarded as being in an implicit disjunction. Arriving events are matched
with every rule,6 i.e., events satisfying multiple rules’ pattern, match all those rules.

6An implementation can optimize this by tracking which rules have patterns for the which event template.

75

Chapter 4: Logic Reactive Programming

Reactive Knowledge Base

To ensure strong reactivity, both the pattern matching and the reaction logic of PARTElang
program execute in constant time and space. Determining whether or not the conditions
are met, takes a constant amount of time per new event and uses a constant amount space
for the whole system. Expressions are restricted to a non-Turing complete set of arithmetic
expressions. Data may be transformed, but no constructs exist in PARTElang to, e.g.,
construct lists.

In general, the data structures available to the PARTElang programmer are purposefully
limited to guarantee bounded runtime. As a Logic Reactive Programming language
runtime, the PARTElang runtime is responsible formanaged storage. The rule programmer 7
needs not be able to indicate which events are to be preserved, and which are to be
discarded. PARTE programs consequently need only limited support for data structures.
The only available data structures in PARTE programs are event templates, which are
non-recursive records. Output streams and intermediary results are handled behind
the scenes, and have no syntactic representation. Input streams are represented by a
behavior-like approach: for each interpretation of the pattern, variables in the positive
patterns of the rule bind exactly one event.

Mandatory Temporal Constraints

Each rule which binds more than one variable must impose temporal constraints on the
events it binds. Temporal constraints impose a minimum and maximum difference in
time between events bound to two variables bound in the rule’s patterns. These temporal
constraints are obviously enforced on events — as the temporal reasoning component of
the join-criteria — but they also serve as the basis of reachability analysis used to manage
storage, i.e., the temporal constraints specify semantic windows. The timestamps of bound
events are additionally used to determine the timestamp of newly emitted events.

Reaction Logic

Finally, reaction logic identifies the template of an event to emit, an expression to compute
the new event’s timestamp, and a set of assignments of values to attributes. PARTElang
does not define any other form of reaction code, though practical systems can expose the
occurrence of a rule matching (see section 5.3.5), or emit events to an external destination.

4.2.2 Structure of a PARTElang Program

The grammar of PARTElang is depicted in figure 4.1.

7By “rule programmer” we refer to the programmer writing rules in PARTElang, to be executed on some
implementation of the PARTE model.

76

4.2 A Logic Reactive Programming Language: PARTElang

<prog> ::= <templ>+ <rule>+

<templ>::= template <ident> { <slot>* }
<slot> ::= <ident> : <btype>
<btype> ::= Integer | String | …

<rule> ::= rule <ident> where
<ppat> <pat>*

when
<∆θ>*

then
<rexpr>*

<pat> ::= <ppat> | <npat>
<npat> ::= no <ppat>
<ppat> ::= <ident> : <ident> { <cond>,* }

<cond> ::= <expr> <relop> <expr>
| <pred> “(” <expr>,* “)”

<rel_op> ::= “=” | “≠” | “<” | “>” | “≥” | “≤”
<expr> ::= (<ident> .)? <ident>

| <constant>
| <expr> <op> <expr>
| <func> “(” <expr>,* “)”

<op> ::= <rel_op> | “+” | “-” | …
<func> ::= min | max | avg | …
<pred> ::= <func>returning a boolean

<∆θ> ::= <p∆θ> | no <p∆θ>
<p∆θ> ::= <ident> in <ident> [<θ>, <θ>]
<θ> ::= <number> (ms | seconds | minutes | …)
<rexpr> ::= emit <ident> at <expr> with { <assign>,* }
<assign> ::= <ident> = <expr>

Figure 4.1: The formal grammar of PARTElang — Nonterminals are typeset in bold and enclosed

in pointy brackets.

At the top level, a program in PARTElang consists of a number of template definitions
<template>, followed by rule definitions <rule>. Template definitions identify the
kinds of events the rules can reason about, e.g., “MoneyTransferred” or “AccountClosed”.
They are named using an identifier <ident>, and list a set of slots. Each slot maps an
attribute name <ident>— e.g., “account_balance” — to a base type <btype>, e.g., the
set of whole numbers representable in 64 bits.

Rules are named (using an identifier <ident>), and list a where-clause, a when-clause,
and a then-clause.

The where clause is an implicit conjunction of patterns <pat>. Patterns exist in two
varieties: negated patterns <npat> and positive patterns <ppat>. Positive patterns
specify that an event matching the pattern must be present for the rule to match. Negated
patterns specify that no event matching the pattern may be present for the rule to
match. Syntactically, negated patterns take the form of a positive pattern, with the
constant “no” prefixed. All patterns identify a variable and a template, as well as a set
of non-temporal constraints <cond>. For instance, a pattern could bind the identifier
incoming_transaction to all events of template “MoneyTransferred”, where the
amount of money involved in incoming_transaction is greater than 100e, and
incoming_transaction occurred within two days of an event account_closed
which was bound in another pattern.

The scope of variables starts at the pattern in which they are bound. For positive patterns,
the scope extends to the end of the rule, i.e., for the remainder of the patterns and for the
entire span of the reaction logic. Variables bound in negated patterns are only in scope
in the pattern which binds the variable, and when expressing temporal constraints for
that variable in the when clause. Accessing attributes of the matches to negated patterns
outside of their scope is akin to accessing attributes of events which have been proven

77

Chapter 4: Logic Reactive Programming

absent, and is hence an error. Because of this, inter-event constraints involving negated
patterns must be expressed in the negated pattern, and the positive patterns must hence
syntactically appear before the negated pattern. Note again that this does not mean that
the negated patterns must refer to timestamps before those of events bound the positive
patterns: the implicit conjunction of patterns does not imply causality or temporal order.

Non-temporal constraints relate two expressions <expr> bymeans of a relational operator
<relop>. Expressions either

• identify an attribute of the event bound in that pattern using an <ident>, e.g.,
amount yields the value of the amount attribute of the event;

• identify a previously bound variable and an attribute of the event bound to that vari-
able using the syntax <ident>.<ident>, e.g. account_closed.account_id
yields the account number attribute of the event previously bound to the logical
variable account_closed;

• name a constant <constant>, e.g., 0, 1, or 0.3 yield those numeric values;

• apply an arithmetic operator to two subexpressions using <expr> <op> <expr>),
e.g., amount * 0.9 yields the value of the amount attribute of the current event,
scaled by 90%; or

• apply an arithmetic function to a comma-separated set of subexpressions using
<func> "(" <expr>,* ")", e.g. avg(a.amount, b.amount) yields the av-
erage of the amount attributes of the events bound to the logical variables a and
b.

The when clause of a rule contains temporal constraints <∆θ>. Temporal constraints
identify two variables and an interval of minimum and maximum difference in time <θ>
between the events bound to both variables. Any common unit of duration can be used
here, PARTElang itself currently supports milliseconds (“ms”), seconds, minutes, hours,
and days. To specify that, e.g., the event bound to logical variable amust occur within
two days before or after the event bound to b, one could write a in b [-2 days, 2
days]. Syntactically, temporal constraints are prefixed by the constant “no” if the event
on which they are specified, is bound in a negative pattern. For instance, if a rule specifies
no event amay exist, temporal constraints relative to awill take the form no a in . . .
[. . .].

Finally, the then-clause contains reaction code <rexpr>. Reaction code identifies the
template of an event to emit, an expression to compute the new event’s timestamp, and
a comma-separated set of assignments <assign> from the results of expressions to
attributes. PARTElang does not define any other form of reaction code, though practical
systems can expose the occurrence of a rule matching (see section 5.3.5), or emit events to
an external destination.

78

4.3 An Event Algebra for Logic Reactive Programming

4.3 An Event Algebra for Logic Reactive Programming

This section introduces a formal foundation for the PARTE language in the form of an event
algebra.8 An event algebra is an algebraic notation for relational event patterns. Examples
of event algebras are the works by Hinze and Voisard [71], or their later event algebra
for EVA [72]. Event algebras encode relational operators over events and their attributes
in a clean, algebraic form. This makes them less suited for direct use as a programming
language, but a better fit for formal proofs.

We show how to map patterns expressed in PARTElang onto equivalent expressions in the
event algebra in section 4.4. Proofs of correctness for PARTElang can then be expressed in
terms of the event algebra defined in this section.

4.3.1 Definitions of Base Concepts

To start, we must define the base concepts used in our algebra. Building on the common
definitions in database literature and CEP literature, we define relations, schemas, values,
and streams. Let A be the countable infinite set of attribute names, let K be the countable
infinite set of constants (i.e., all numeric constants, timestamps, etc. that can appear in
a rule), and let V be the countable infinite set of variables, such that A, K and V are
pairwise-disjoint.

Definition 5: Relation

A relation name is a set of attribute names.

Let R be a relation name. A tuple in R is a function t : A → K that maps each
attribute in R to a constant.

The set of all tuples in R is denoted by val(R).

For instance, consider a relation named “MoneyTransferred”. “MoneyTransferred”
consists of the attribute names “amount”, “destination_account”, etc. The set of
all tuples in “MoneyTransferred” is denoted val(MoneyTransferred). Each tuple in
val(MoneyTransferred) maps the attribute “amount” to some value, e.g., 75.0e, maps
the attribute “destination_account” to some account number, etc.

8This event algebra is based on joint work with Martin Ugarte (Université Libre de Bruxelles). An earlier
version of this event algebra was delivered as deliverable 1.4a of the “Scalable Processing andmIning of Complex
Events for Security-analytics” (SPICES) project, an Innoviris Bridge project.

79

Chapter 4: Logic Reactive Programming

Definition 6: Schema

A relational schemaR is a set of relation names.

The set of tuples inR, i.e.,
⋃

R∈R val(R), is denoted by val(R).

A schema could for instance be { MoneyTransferred, AccountClosed, TransferFraudDe-
tected }.

The set of types in a schemaR is defined recursively as follows:

Definition 7: Type in a schema

LetR be a schema.

The set of types inR is denoted by type(R), and consists of all of the following:

a base type, i.e, base is a type in type(R)
relation names as types, i.e., ∀R ∈ R : R ∈ type(R)
mapping types {x : τ}, i.e., ∀x ∈ V, ∀τ ∈ type(R) : {x : τ} ∈ type(R)
unions τ1 ∪ τ2 of two types mapping over disjoint sets of variables, i.e.,
∀mapping types τ1, τ2 inR : dom(τ1) ∩ dom(τ2) = ∅ =⇒ τ1 ∪ τ2 ∈ R

Unions of mapping types are hence themselves mapping types.

Using our previous example, the relation name “MoneyTransferred” is a type in a schema
that included the relation name “MoneyTransferred”. Additionally, a mapping from some
variable incoming_transaction to the relation name “MoneyTransferred” is a type in
the schema, i.e., {incoming_transaction : MoneyTransferred} is a type in the schema.
A mapping from some variable accound_closed to the relation name “AccountClosed”
is a type in that schema too, and thus the union of both us a type in the schema. The base
type, base, is always a type, in any schema. The base type abstracts over the types of
constants, as shown by the following recursive definition of the set of values of a type:

Definition 8: Values of a type

Let τ be a type. The set of values of τ is denoted by val(τ), such that
val(τ) = K if τ = base

val(τ) = val(R) if τ = R
val(τ) = {{x : v} | v ∈ val(τ′)} if τ = {x : τ′}
val(τ) = {v1 ∪ v2 | v1 ∈ val(τ1), v2 ∈ val(τ2)} if τ = τ1 ∪ τ2

80

4.3 An Event Algebra for Logic Reactive Programming

We use the common notation to denote access of data contained in values. For relation
names — i.e., when τ = R — access of the value bound to attribute a ∈ R of a tuple
t ∈ val(τ) is denoted as t.a. For mapping types, v[x] denotes the access of the value
bound to variable x ∈ dom(v) in mapping v. Finally, the event algebra supports built-in
functions which take as arguments a number of values of the types introduced above, and
return a new value. These built-in functions include simple arithmetic operators such as a
sum or difference, as well as functions to determine the minimum, maximum, or average
of the arguments.

Note that the event algebra does not support lists, sets, or other arbitrary-size container
types. The functions always range over a fixed number of arguments of constant size. In
the interest of reactivity, the built-in functions are required to operate in constant time,
with constant space requirements.

We further define the notion of an instance of a schema.

Definition 9: Instance of a schema

LetR be a schema. An instance of a schema assigns a relation to each relation name in
R.

In other words, ∀R ∈ R, an instance of R constructs an assignment from R to a finite
subset of val(R). For instance, an instance of the schema of the driver scenarios would be a
concrete dataset of financial transactions.

Finally, we introduce the notion of a stream in our event algebra.

Definition 10: Stream

A stream is an instance of a relational schema which prescribes that an attribute
named timestamp occurs in every relation. This timestamp identifies the
temporal component of the relation.

A stream has an event arrival rate (definition 2), which identifies how many events
may occur within a certain range of timestamps.

Relations in a stream have an order: relations whose timestamp is smallest, rank lower,
and are said to have “occurred first”.

4.3.2 Patterns

The event algebra EA is the set of all patterns. The following are the five different forms
of patterns and their types:

81

Chapter 4: Logic Reactive Programming

Definition 11: Pattern

A pattern and its type is recursively defined as one of the following:

Bindings of relations to variables, i.e., constructs of the form (R as v), where
relation R ∈ R and variable v ∈ V.

The type of a binding pattern of the form (R as v) is the mapping
type (v : R).

Conjunctions of patterns binding disjoint sets of variables, i.e., constructs of the
form (P1 ∧ P2), where P1, P2 ∈ EA and dom(type(P1))∩dom(type(P2)) = ∅.

The type of conjunctive patterns of the form (P1 ∧ P2) is type(P1) ∪ type(P2),
which is well defined since the sets of variables they map over are disjoint.

Disjunctions of patterns binding the same sets of variables, i.e., constructs of the
form (P1 ∨ P2), where P1, P2 ∈ EA and dom(type(P1)) = dom(type(P2)).

The type of disjunctive patterns of the form (P1 ∨ P2) is type(P1),
which by definition is the same as type(P2).

Filters consisting of a pattern P and a filter condition F, denoted by P WHERE F.

The type of filter patterns of the form P WHERE F is type(P).

Filtered negations of a pattern, called the negated pattern. A filtered negation
consists of a positive pattern Pp, a negated pattern Pn, and a filter condition F,
and take the form Pp \ Pn WHERE F.

The type of a filtered negation Pp \ Pn WHERE F is the type of the
positive pattern, i.e., type(Pp).

Intuitively: a binding pattern introduces a variable binding, which maps an instance
of a relation name to a variable, e.g., (MoneyTransferred as incoming_transaction).
Conjunctions and disjunctions operate as usual. Filters enforce constraints on an existing
pattern, e.g. requiring that the amount attribute of incoming_transaction is larger
than 100e. A pattern that matches when two financial transactions occurred, jointly
satisfying some constraints, can be modeled as a conjunction and a filter in the event
algebra. A pattern that matches when either of two transactions occurred, can be modeled
as a disjunction and a filter. The absence of contestation of a transaction can be modeled by
filtered negation of a “contested_transaction” satisfying the constraints. Filtered negation
thus encodes what PARTElang achieves using the syntax no.

82

4.4 Mapping PARTElang onto the Event Algebra

4.3.3 Evaluation

Patterns can be evaluated on a stream of relations to extract the values matching the
pattern.

Definition 12: Evaluation of a pattern

Let P be a pattern in an event algebra EA. Let S be a stream with schemaR. The
evaluation of a pattern P over S is then denoted by JPKS. JPKS is a set of values in
val(type(P)), defined recursively as follows:

JPKS = {{x : v} | v ∈ val(R)} if P = (R as x), R ∈ S
JPKS = {v1 ∪ v2 | v1 ∈ JP1KS, v2 ∈ JP2KS} if P = P1 ∧ P2

JPKS = JP1KS ∪ JP2KS if P = P1 ∨ P2

JPKS = {v | v ∈ JP′KS, v |= F} if P = P′ WHERE F
JPKS = {v | vp ∈ JPpKS, ∀vn ∈ JPnKS : (vp ∪ vn) 2 F} if P = Pp \ Pn WHERE F

To paraphrase, a binding pattern of the form (R as x) yields a binding of all relations
identified by R in the schema to a variable x; a conjunctive pattern yields the pairwise
union of the results of both conjuncts (cf. a Cartesian product); a disjunctive pattern yields
all results that occur in at least one of both disjuncts (cf. a logical or); a filter pattern
yields results for the filtered pattern, as long as they satisfy the filter condition; and
filtered negation patterns yield results for the positive pattern, as long as no results for the
negated pattern satisfy the filter condition when paired with the positive pattern. Note
that filtered negation implements negation-as-failure: absence of relations satisfying the
negated patterns is concluded when no relations can be found that satisfy the negated
pattern.

4.4 Mapping PARTElang onto the Event Algebra

Intuitively, it should be clear that the patterns in the where clause of a PARTElang
program map onto patterns in the event algebra EA defined in section 4.3. Similarly,
temporal constraints in the when clause of a PARTElang program map onto additional
filters to add into the patterns in EA. The reaction logic in the then clause, however,
does not map as straightforwardly, since EA does not specify how new events are made
to occur. Still, apart from the actual emit itself, every part of the reaction logic can be
expressed in terms of concepts defined in EA.

In this section, we specify in detail how declarative rules in PARTElang map onto
expressions of EA.

83

Chapter 4: Logic Reactive Programming

4.4.1 Mapping a Single Pattern

A positive event pattern in the where clause of a PARTElang program, with no additional
constraints specified for the pattern, takes the form

<var-name> : <template-name> {}.

The template name identifies an event template, which corresponds to a relation name in EA.
The binding of instances of the template to <var-name> corresponds to a binding of the
relation to a fresh variable. For ease of reading, we will refer to a variable in PARTElang
and its corresponding variable in EA by the same name. The type of a single, positive
pattern is therefore a mapping type from the variable name to the relation corresponding
to the template.

Non-temporal constraints may be specified in the where clause. A positive event pattern
with non-temporal constraints takes the form

<var-name> : <template-name> { <cond>* },

where <cond> is a sequence of conditions. For each condition specified in this way, a
filter must be added in the corresponding pattern in EA. By definition 12, filters do not
impact the type, so the type of a filtered pattern is still a mapping type from the variable
name to the relation corresponding to the template.

4.4.2 Mapping Multiple Patterns

We wrote before that when multiple patterns occur in a PARTElang rule’s where clause,
they are implicitly understood to form a conjunction. This conjunction of patterns naturally
maps onto the notion of a conjunction of patterns in EA.

Though timestamps of events are implicit in PARTElang, they must be made explicit when
mapping onto EA. For the sake of this mapping, the timestamp attribute of an event in a
PARTElang program is a hidden attribute, with a name different from any name given
to attributes by an event’s template. For each temporal interval a in b[l, u] given
in the when clause of a PARTElang program, two new filter conditions must be added
into the pattern in EA. One filter enforces the lower bound of the interval, by imposing
a.timestamp ≤ b.timestamp + l. The other filter enforces the upper bound of the interval,
by imposing a.timestamp > b.timestamp + u. These filter conditions have to be added to
the conjunction of pattern such that both a and b are in scope.

The number of filters that is required to encode the temporal constraints, as well as the rate
of false-positives in the intermediary matches, can be reduced by applying the technique
of Teodosiu and Pollak [133]. By first taking the transitive closure over the temporal
constraints, some filters can be made more strict without excluding valid results, and
some filters can be found to be redundant, and omitted.

84

4.5 Limitations of PARTElang and Future Work

When multiple patterns exist in a rule, some of them may be negated. Thanks to
our scoping rules, all positive events mentioned in inter-event constraints involving
negated patterns must syntactically appear before the negated pattern.9 This makes the
transformation to EA rather straightforward. Consider the following PARTElang pattern,
which encodes a negated pattern enforcing the absence of an event <neg> satisfying the
conditions in <conds>:

no <neg> { <conds> }.

Consider also an arbitrary conjunction of positive and negated PARTElang patterns, which
we will call <before>. Let Pbefore be the result of mapping <before> onto a pattern
in EA. Let Pneg be the result of mapping <neg> onto a pattern in EA. Let F be a direct
translation of <conds> from the PARTElang condition syntax to the EA filter syntax. The
pattern formed by the implicit conjunction

<before>
no <neg> { <conds> }

can then be mapped onto the filtered negation Pbefore \ Pneg WHERE F.

4.4.3 Mapping Multiple Rules

Multiple rules in PARTElang form an implicit disjunction. Consequently, the patterns
of multiple rules can be mapped onto EA by mapping the different rules’ patterns onto
EA, and then applying disjunction as defined in definition 12. In other words, the results
of matching a disjunction of patterns, is the combination of all results for each of the
patterns, i.e., a set union.

4.5 Limitations of PARTElang and Future Work

PARTElang and its event algebra EA are useful in their current form, as we show in
chapter 7. Still, there are three major limitations that need to be solved in future work.
First, when specifying time windows in PARTElang only closed time intervals can be

used. Second, PARTElang does not support aggregation constructs. Third, PARTElang

does not include the software-engineering constructs which facilitate building and
maintaining LRP software.

9Remember that PARTElang requires that each negated pattern is correlated to at least one positive pattern.
This requirement is similar to e.g. the safety condition in Datalog, which mandates that variables appearing in a
negative literal in a rule’s body must also appear in at least one positive literal.
Our event algebra enforces this at a lower level by making it syntactically impossible to not do so: the only

syntax that introduces negation is filtered negation (see definition 11), and that syntax requires both a positive
and a negated pattern.

85

Chapter 4: Logic Reactive Programming

4.5.1 Restriction to Closed Time Intervals

PARTElang and EA require specifying time windows between different event patterns.
These time windows must be written as closed intervals. PARTElang programs cannot
currently express patterns with semi-open temporal intervals. It is therefore not possible
to, e.g., specify that an event should take place any time after another event, or that an
event should take place at least three months before another event (but may take place
arbitrarily far before).

In the general case, we argue that this limitation is required, since the alternative may
require unlimited memory sizes to store old events. However, specific patterns can be
useful while requiring only constant storage, or storage linear in some reasonable size:

Constant storage requirements Consider, e.g., a pattern which matches when any event
matching certain conditions occurred ever. Such a pattern might be useful in
real-world use cases, and an implementation could keep track of this information
using only one single bit.

Linear storage requirements Consider a pattern which matches when an event occurred
for the first time for a certain bank account. Such a pattern would require storage
space linear in the number of bank accounts managed by the entity employing the
detection. While this is not strictly constant, a reasonable upper bound could be
defined on this number, and a “new account creation rate” could be defined in a
similar vein to the event arrival rate defined on page 65.

Both these cases can be useful in real-world settings. Both cases could— in principle — be
implemented in a strongly reactive way. Yet neither case can be expressed in PARTElang.

Another useful constraint which cannot yet be expressed in PARTElang, is the the notion
of absolute timestamps, such as “every Wednesday” or “on March 28th, 2019”. In general,
while PARTElang supports reasoning about historical data in its managed storage, it
currently lacks the ability to correlate events that it keeps in that managed storage with
unmanaged data. Future work may explore how this limitation can safely be relaxed.

4.5.2 Lack of Aggregation Constructs

PARTElang programs cannot currently reason about the set of events satisfying a pattern.
Every rule activation reasons about exactly onematch per pattern. Support for aggregation
is prevalent among existing databases, streaming systems, and even rule-based systems [2].
Many pattern matching systems based on regular expressions allow capturing the result
of a Kleene star of a sub-pattern, using the set of matches to the sub-pattern as the match
for the Kleene star. Its wide use suggests that it is worthwhile to explore how PARTElang
and its underlying event algebra can be extended to support matching sets of events
satisfying a pattern, and imposing intra-set conditions on the elements in the set.

86

4.6 Related work

Mellin [101] rejects the use of aggregation in real-time contexts. However, a restricted
form of aggregation could be applicable. If the aggregated sets are of static, fixed size,
operations on them need not preclude strong reactivity. Additionally, if the sets are
defined by semantic windows, where the semantic windows are expressible in PARTElang,
then this extension will not affect the strong reactive guarantees either. Future work may
explore under which constraints matching multiple events to one pattern may be allowed.

4.5.3 Lack of Software-Engineering Constructs

In addition to being a theoretical model, LRP should be useful as a paradigm for practical
programming languages. We therefore investigated how general software-engineering
principles can be applied to Logic Reactive Programming. For instance, it should be
possible for LRP programmers to write a pattern once, abstract over it, and compose it
with other patterns. However, PARTElang as described in this dissertation is purposefully
kept minimal, and does not feature all the software-engineering constructs we developed
earlier, in context of Midas. Midas [126] is a declarative gesture specification language.
Using declarative rules, a Midas programmer can specify a pattern of interaction events
and the expected response. In his PhD thesis, Hoste [74] described the design of Midas,
including some bits of language design aimed at improving the usability of the language.
We studied ways in which the usability of Midas can be further improved [121].

Because of their co-development at the same lab around the same time, the designs of
Midas and PARTElang influenced each other. Two features of Midas have not found
their way into PARTElang yet. First, the Midas gesture specification language introduces
ways of interleaving event pattern specifications with reaction code, while retaining the
straightforward mental model of variable-scope found in procedural languages. Second,
Midas provides a module system which allows reuse of patterns as attempts, in a way
reminiscent of mixins or trait composition.

PARTElang does not define amodule system, and retains a rigid division between patterns
and reaction code. However, the design from Hoste [74] is directly applicable. Future
work may formally prove that Midas’ software-engineering constructs can be ported to
PARTElang while maintaining PARTElang’s guarantees.

4.6 Related work

4.6.1 Guaranteed Constant Time Processing

The idea of a programming language with known bounds on execution time is not new.
We compare PARTElang with three main categories of language research that tackles this
problem.

87

Chapter 4: Logic Reactive Programming

Constant-Time Programming Languages

Constant-time programming languages like FaCT [28] or Jasmin [7] offer strong guarantees
on processing time of programs written in those languages: the running time of those
programs does not depend on secret data. As such, such languages guarantee resilience
against timing-attacks. This makes them invaluable in cryptographic contexts, but does
not help with LRP. Constant-time programming languages offer no specific support to the
programmer to develop complex event processing systems. In contrast, PARTElang is a
DSL which removes most of the boilerplate code for handling streams of complex events,
for managing semantic windows, etc. PARTElang’s guarantee on constant processing time
specifically leverages domain-logic to define semantic windows, whereas this logic would
have to be manually extracted and fit to the static analysis model of those constant-time
programming languages. In contrast, the real value of constant-time programming
languages, is their ability to operate under a more stringent threat model where not only
the worst-case run time matters.

Similarly, synchronous data flow [20] programming languages like Esterel [21] and
Lustre [67] provide excellent support for reasoning with time, and for formally reasoning
about run time characteristics of the programs. This makes them a good fit for real-time
domains such as safety-critical control software, e.g., in aerospace or industrial process
management. However, like the constant-time programming languages discussed above,
synchronous data flow languages do not aid programmers in expressing programs which
match complex event patterns.

Both these categories of languages hence share a similar shortcoming to the one we
described for (functional) reactive programming languages in section 3.5.1 on page 57:
they offer no support for pattern matching; the job they leave for the programmer to fix, is
cumbersome and error-prone when complex search patterns are involved.

Bounded-Size Reactive Programming

Some reactive programming languages and tools enforce bounded size. A representative
example is the work by Krishnaswami [88]. Such work removes spacetime leaks from
reactive programming languages. These leaks can cause the programs to accidentally
have a non-constant update cost per new event, as state accumulates between updates.
The language overcomes this issue by splitting an update into two categories: current
expressions which are evaluated immediately (preventing the accidental build-up of state),
and future expressions which are delayed as a constant-sized thunk. However, being
aimed at functional reactive programming, these languages do not tackle the problem of
maintaining a constant-size set of non-stale events which can match patterns at a future
step. Events are either delayed, executed once, or deleted. Reusing events in multiple
matches is not part of their model. Manually storing sets of events is allowed by their
semantics, but no guarantees are offered by the language in that case.

88

4.6 Related work

Another interesting take on reactive programming within a bounded resource budget was
explored by Vaziri et al. [137] in ActiveSheets. ActiveSheets enrich a popular spreadsheet
program with streaming semantics, and linkage to external, streaming sources and sinks.
Strongly reactive behavior is guaranteed in ActiveSheets as the spreadsheets are bounded
in size by construction. First, the number of steps required to compute an update depends
on the number of cells in which formulae are entered. This number of steps is finite
and fixed whenever an update has to be computed. Second, access to historic values
is achieved through a latch construct. Latches store exactly one value, making them
inherently bounded in size. Windows in ActiveSheets always contain a fixed number of
steps, and take the form of a contiguous row or column of cells. This offers boundedness,
but limits expressivity. In PARTE, only the upper bound on window size is fixed, and the
pattern programmer needs not manually determine that size.

Real-Time Event Monitoring

Mellin [101] describes Solicitor, an event monitoring system which guarantees limits on
resource usage. The work in many ways tackles similar problems as the ones described
in this dissertation. However, the event correlation semantics in their work is different.
Chakravarthy and Mishra [29] defines different kinds of event contexts, which decide
whether two events may be correlated. Examples are a “Most Recent” context, which only
considers the most recent event of a given type; or “Continuous” context, which may
reuse an event that was previously matched in combination with the latest match, as long
as an uninterrupted series of matching events exists for e.g. determining a trend in the
data. The “General” context is however considered as too broad to be applicable, as it
entails a Cartesian product. For this reason, Solicitor [101] omits support for such contexts.

PARTElang does support matching events in the “General” context. The size and time
cost of the Cartesian product is capped by a combination of two factors: the event arrival
rate (see page 65) and the semantic windows (see page 27) defined by the concrete event
pattern.

Static Analysis of Actor Interaction

Stiévenart et al. [130] describes a static analysis for actor languages. The work aims to
support proving upper bounds on actor inboxes. They do so even for arbitrary input,
but without taking into account the elapsed real-world time. The static analysis is not
sufficiently powerful to identify the relation between subsequent event arrivals, nor the
relation between event arrival and event expiration in the PARTE model. Lacking this
domain-knowledge, the static analysis would over-approximate the inbox size of PARTE’s
entry nodes as infinite.

89

Chapter 4: Logic Reactive Programming

4.6.2 Composition of Temporal Constraints in Event Algebras

Event algebras by necessity deal with temporal constraints: events inherently have a
temporal component. Still, different algebras offer different expressivity for certain
temporal concerns.

Whole-Pattern Constraints vs. Constraints Per Individual Composition

For instance, the SASE event language by Wu et al. [141] cannot express a pattern which
correlates three events E1, E2, E3 such that E1 occurs at most three seconds before E2 and
such that E2 occurs at most three seconds before E3. SASE offers a within clause to
impose temporal constraints, but such a clause imposes a time window on the entire
complex event. In our event algebra the pattern could be expressed as follows:

P =(EventType1 as E1)

∧ (EventType2 as E2)

WHERE (E1.timestamp < E2.timestamp)
WHERE (E1.timestamp + 3 seconds ≥ E2.timestamp)
∧ (EventType3 as E3)

WHERE (E2.timestamp < E3.timestamp)
WHERE (E2.timestamp + 3 seconds ≥ E3.timestamp)

Open vs. Closed Temporal Intervals

Conversely, there also exist patterns which are expressible in some formal models, but not
in our event algebra. Consider the seminal interval algebra by Allen [6]. Allen’s interval
algebra enables expressing how two events correlate in time. For instance, the expression

E1 < E2

denotes that event E1 occurs before event E2. Similarly, the expression

E1 ◦ E2

denotes that event E1 overlapswith event E2. Our event algebra is not capable of expressing
Allen’s event algebra, for two reasons:

1. Allen’s algebra allows for half-open temporal intervals, i.e., unbounded temporal
distances. An expression like “E1 < E2” places no limit on how long after the
occurrence of E1 the system must wait for a potential E2. To be usable in a CEP
context with the requirement of strong reactivity, PARTE is limited to expressing

90

4.6 Related work

time windows as closed intervals. There is hence no point in supporting unbounded
time windows in our event algebra, barring the exceptions mentioned in section 4.5.

2. Allen’s algebra depends on placing events in time using both a start and an end time.
PARTE uses only a single timestamp per event. This keeps the formalism shorter
and clearer, yet still allows to express realistic patterns. However, the core constructs
enabling strong reactivity in PARTElang — discussed in the next chapters — can be
applied to time intervals as well as to timestamps. The concepts introduced by this
thesis are therefore compatible with an approach to complex event processing in
which events occur during some time interval instead of at some timestamp.

Constraints Per Individual Composition vs. Constraints Per Pair of Patterns

A variation of our event algebra recording both start and end times of events — and
a variation of PARTE built on top — fully contains the event algebra with interval
constraints.10 The opposite is not the case: some patterns can be expressed in PARTE, but
not in the event algebra with interval constraints. Consider the notation

(P1; P2)[n]

for a sequence of two patterns P1 and P2, restricted to a temporal window of size n. The
compositional nature of this algebra entails that if (P1; P2)[n] is a valid pattern, then
substituting any valid pattern for either P1 or P2 yields a valid pattern too. Hence, both

(P1; (P2; P3)[nA])[nB]

and

((P1; P2)[nC]; P3)[nD]

are valid patterns too. Consider now a query of this form for events such that P2 occurs
within twenty seconds after P1, and that P3 occurs within thirty seconds after P2, in
such a way that the entire pattern takes no more than forty seconds. The forty second
requirement can be encoded in the interval nB or nD. The twenty second interval can be
encoded in nC. The thirty second interval can be encoded in nA. However, the twenty
second interval and the thirty second interval cannot be both encoded in the same pattern.
The model only allows restricting the duration of the whole pattern, and of either (P2; P3)

10By “the event algebra with interval constraints” we refer to an event algebra using Allen’s interval algebra
but imposing finite time windows

91

Chapter 4: Logic Reactive Programming

or (P1; P2). Our event algebra overcomes this limitation of the event algebra with interval
constraints, as shown by the following pattern:

P =(EventType1 as E1)

∧ (EventType2 as E2)

WHERE (E1.timestamp < E2.timestamp)
WHERE (E1.timestamp + 20 seconds ≥ E2.timestamp)
∧ (EventType3 as E3)

WHERE (E2.timestamp < E3.timestamp)
WHERE (E2.timestamp + 30 seconds ≥ E3.timestamp)
WHERE (E1.timestamp + 40 seconds ≥ E3.timestamp)

Unlike EVA, TESLA [41] offers the abstraction of a rule, and allows for correlating more
than two events at a time. Within a rule, individual events’ temporal properties can be
used, much like in PARTE.

Associativity of Temporal Constraints

A very similar problem problem exists in EVA [72], even when no time windows are
imposed.

EVA handles composition of events differently from PARTE. In PARTE, a rule programmer
has to manually code the way in which multiple events are abstracted over: to generate a
new complex event, an emit statement has to be written, specifying how the values of the
different events combine to form the new complex event. A new template may have to be
defined. In EVA, composition and abstraction happens automatically: a sequence (E1; E2)
of events E1 and E2 is itself a (complex) event. As a result of this choice for implicitness,
EVA had to provide a number of sane defaults. For instance, in EVA the timestamp of a
complex event is always the timestamp of the last of its constituents. Individual events’
timestamps are lost in the pairwise composition, only one of both is retained. In PARTE,
the timestamp of a complex event has to be explicitly computed when the new event is
created, but that timestamp can be based on any of the constituents’ timestamps. The ease
of composition offered by EVA has a more significant drawback: its means of composition
are not associative. Consider the set of events {Ea, Eb, Ec}, where Ea occurs at timestamp 2,
Eb occurs at timestamp 1, Ec occurs at timestamp 3. As depicted in figure 4.2, these events
satisfy the sequence pattern (Ea; (Eb; Ec)), but not the sequence pattern ((Ea; Eb); Ec),
which is equivalent modulo associativity.

In TESLA [41], too, complex events’ timestamps are implicitly inherited from the events
they are composed of. In TESLA, the timestamp of the first event — which they refer to as
the “anchor point” [41] — is used. As mentioned above, TESLA offers the abstraction of a
rule, and allows for correlating more than two events at a time. Within a rule, individual
events’ temporal properties can be used, much like in PARTE. It is only in between rule,

92

4.6 Related work

time

EaEb Ec

31 2

(Eb; Ec)

(Ea; (Eb; Ec))

(Ea; Eb)

((Ea; Eb); Ec)

Figure 4.2: Non-associativity of event composition as done in, e.g., EVA — Since Eb [at t = 1]

occurs before Ec [at t = 3], the first pattern holds. Since Ea [at t = 2] occurs before (Eb; Ec) [at t = 3],

the second pattern holds. Ea [at t = 2] does not occur before Eb [at t = 1]. Hence, (Ea; Eb) is empty,

and cannot be composed. In such a semantics, (Ea; (Eb; Ec)) differs from ((Ea; Eb); Ec), i.e., follows-by
composition is not associative.

after abstracting into a composite event, that TESLA’s automatic event timestamp selection
comes into play.

These issues are partially prevented in systems that model events as occurring during a
certain interval [41, 47, 93], instead of at a certain timestamp. Merging multiple events’
intervals by taking their union does not throw away as much information as merging
multiple events’ singular timestamps.

4.6.3 Event Capture Semantics in Event Algebras

EVA [72] is an event algebra and programming language for CEP. Instead of using
declarative rules, EVA programmers can express sequences of events they are interested
in using so-called profiles or subscriptions. Such subscriptions can make use of operators
for temporal disjunction (one of both events has to occur), logical disjunction (one of
both constraints has to hold), temporal conjunction (both events have to occur), logical
conjunction (both constraints have to hold), temporal sequence (like temporal conjunction,
but imposing order), temporal negation (explicitly disallowing an event from occurring),
and temporal selection (selecting the ith occurrence satisfying the constraints).

EVA defines the notion of a trace as “a semi-ordered sequence of events e ∈ E with start-
and end-points” [72]. They note that because “a trace behaves essentially as a list, we
can use” list operations such as indexing, such that “tr[i], i ∈ N refers to the ith event
of the trace tr”. Therein lies the major semantical difference between EVA and PARTE:
EVA expects to match all events (and optionally consume them). A sequence of events is
matched one-by-one, and any event that needs to be skipped must explicitly be skipped
by the subscription. This can for instance be accomplished using a wildcard instead of an

93

Chapter 4: Logic Reactive Programming

event variable. In contrast, skipping an uninteresting event is trivial in PARTE: events
that do not match are simply ignored by that rule. On the other hand, detecting the very
next event after a certain event is relatively difficult in PARTE: one must explicitly specify
a rule asking for a first event, a second event occurring later in time, and the absence of an
event that temporally occurs in between the two.

The runtime of the TESLA language, T-REX [41] implements the rules as a set of finite
state automata. Unlike normal regular expressions, T-REX does support event capture
semantics where events are not consumed when they match one pattern. The same events
can hence match multiple patterns. T-REX achieves this by storing many automata instead
of once: instead of having one single automaton per rule, there is a baseline “template”
automaton for the initial, empty state of a rule. In response to the occurrence of an event,
all automata which could transition are cloned, and the clone is transitioned according to
the event. The automata with the previous state are kept around for future matching with
other events. In essence, T-REX stores intermediate results for its incremental matching
by storing automata which partially matched a pattern.

The event capture semantics of Cayuga [47] closely match those of TESLA, as their
detection model is very similar.

4.7 Conclusion

We introduced Logic Reactive Programming, a novel reactive programming paradigm
for correlating complex events. We formulated five requirements for Logic Reactive
Programming languages. We presented PARTElang, a first LRP language. Its informal
semantics and syntax were presented, and an event algebra underlying its semantics was
defined. From these, it followed that PARTElang satisfies the first three requirements of
LRP: PARTElang programs are sets of declarative CEP patterns (RLRP1) with support for
reasoning over the events’ temporal aspects (RLRP2). Event data is automatically managed
based on semantic time windows (RLRP3).

To show that the last two requirements for LRP languages are satisfied by PARTElang
too, it must be shown that PARTElang programs are strongly reactive (definition 1) given a
certain event arrival rate (definition 2). To this end, we stated that constant-time per-event
processing is required. To be able to impose an upper bound on the time it takes to fully
process an event, the processing must be void of unbounded loops. PARTElang achieves
this by enforcing stratification (definition 3).

To show that PARTElang is scalable (RLRP4) and strongly reactive (RLRP5), the actual
evaluation model must be defined. We do this in the following chapters.

94

5
Operational Semantics for a Logic
Reactive Programming Language

In the previous chapter we introduced the novel Logic Reactive Programming paradigm.
In section 4.2, we defined an LRP language, PARTElang. We provided the formal
foundations for PARTElang in section 4.3, in the form of an event algebra. In this chapter,
we formally define the evaluation model for programs written in PARTElang, so that they
implement the semantics of the event algebra.

The architecture of a Logic Reactive Programming system takes the form depicted in
figure 5.1. This chapter defines an operational semantics for the “LRP runtime” component.
The model must hence support

• receiving primitive events from multiple event sources external to the model,

• filtering them based on the conditions specified in a PARTElang program,

• correlating them based on the conditions specified in the implemented logic reactive
program,

• generating compound events generated in accordance with emit constructs specified
in a PARTElang program, and

• exposing a distinct point at which a match to the program’s patterns can be detected,
enabling notification.

95

Chapter 5: Operational Semantics for an LRP Language

Outside world
Event
source

Event
source

Event
source

Event
source

LRP runtime

Merge sources

Filter

Correlate

primitive events

notification of match

compound
events

Figure 5.1: The architecture of a Logic Reactive Programming runtime — Primitive events

gathered by event sources are merged, filtered, correlated, and either abstracted over as compound events,

or as matches.

Of course, the model must ensure that strong reactivity is maintained during evaluation,
as defined in definition 1 (page 65). This requires constant-time processing. To enable
this constant-time processing, constant-space processing must be enforced, since some
operations in the event algebra have the complexity of relational joins. Indexing and/or
enumerating results of a relational joins take time proportionate to the size of the instance
of the schema over which they join. The model defined in this chapter therefore ensures an
upper bound on state size throughout evaluation.

For readability, we introduce the model incrementally. We first discuss a rudimentary
model in section 5.2. The rudimentary model is able to detect most patterns specified in
the PARTE language, but falls short by not correctly handling their temporal component.
As a result, the rudimentary model fails to implement negation correctly, and fails to
expire old data, precluding strong reactivity. In section 5.3 we provide a framework for
reasoning about what is missing from the rudimentary model. With that framework
in place, we move on to a full-fledged model: the Featherweight PARTE model. We
define Featherweight PARTE, fwPARTE for short, in section 5.4. A number of possible
improvements beyond fwPARTE are discussed in section 5.6. The formal validation in
chapter 8 will build on the Featherweight PARTEmodel, unless explicitly stated otherwise.

This chapter concludes by defining how a program in PARTElang can be mapped onto
the fwPARTE model.

5.1 Background: the Rete Algorithm

The fwPARTE model defines how to construct a directed acyclic graph (DAG) in which
nodes represent filtering or relational (anti-)joining operations, and edges between nodes
represent data dependencies. The use of such a DAG for guiding evaluation and for

96

5.1 Background: the Rete Algorithm

storing intermediate results is based on the Rete algorithm by Forgy [59]. Therefore,
before defining our novel model, this chapter starts by introducing the Rete algorithm,
and outlining the modifications necessary for the Logic Reactive Programming context.

5.1.1 Rete: A Forward Chaining Inference Engine Algorithm

The Rete algorithm was proposed by Forgy [59] as an improvement to existing pattern
matching algorithms used in expert systems. Rete essentially preprocesses a declarative
rule set to enable incremental matching: it compiles a set of patterns (and their reaction
logic) into a directed acyclic graph. Nodes in the graph represent part of the work
necessary to match the pattern, e.g., verifying whether conditions hold, and unifying sets
of logical variables. The edges in the graph represent the data dependencies. To match
a new logical fact to a rule set compiled by Rete, one starts at the root, and descends
through the DAG, executing the operations encountered. If one of the terminal nodes is
activated, a rule is known to be matched, and its reaction logic is executed.

Optimizing Pattern Matching using a Fixed Search Graph

The Rete algorithm achieves part of its efficiency by preparing the Rete graph only once,
and optimizing this graph by e.g., merging common prefixes of the graph (commonly
referred to as node reuse [91]), thereby preventing duplicate work. After this initial graph
construction phase, a recognize-act cycle is initialized, where the Rete algorithm alternates
between matching new data to patterns, and executing the actions specified as the
consequent of matched rules.

1 rule rule-1 where
2 a : A, b : B, c : C
3 then
4 make D with {}
5
6 rule rule-2 where
7 a : A, b : B, e : E
8 then
9 make F with {}
10
11 rule rule-3 where
12 c : C, no d : D
13 then
14 make G with {}

Listing 5.1: Example of a rule set

Consider for instance the rule set in listing 5.1, written in a PARTElang-like pseudocode.
Rule #1 states that if a compound logical fact matching the simple logical facts a, b, and c
is detected, then a fact of the relation D must to be created. Rule #2 states that if a complex
logical fact matching the simple logical facts a, b, and e is detected, then a logical fact of the
relation F must be created. Finally, rule #3 states that if a compound logical fact consisting

97

Chapter 5: Operational Semantics for an LRP Language

type a type b type c

join a/b

join (a, b)/c

make D

α a α b α c

Root

type a type b type e

join a/b

join (a, b)/e

make F

α a α b α e

type c type d

anti-join c/¬d

make G

α c α d

type a type b type c

join a/b

join (a, b)/c

make D

α a α b α c

Root

type e

join (a, b)/e

make F

α e

type d

anti-join c/¬d

make G

α d

Example of a Rete graph The same Rete graph after node reuse

Rule #1 Rule #2 Rule #3 Rule #2

Rule #1

Rule #3

Figure 5.2: Example of a Rete graph and of the application of node reuse — Both graphs depict

a Rete graph for the rule set listed in listing 5.1. Circles depict Rete graph nodes, cylinders depict storages

for partial matches. Solid lines depict the dependency between nodes. Dashed arrows depict dependencies

though explicit construction of complex logical facts.

of a simple logical fact c and no logical fact d is detected, a logical fact of the relation G
must be created. Figure 5.2 shows what the Rete graph for such a rule set might look like.

Optimizing Pattern Matching by Storing Partial Matches

In addition to precomputing a fixed search graph, the Rete algorithm achieves efficiency
by providing the means for incrementally computing matches to patterns as new facts
arrive. To this end, Rete prescribes how to store partial matches, i.e., matches to a part of the
pattern represented by the Rete graph. Partial matches that were previously computed in
a Rete graph need not be recomputed when new facts arrive. Along any edge in a Rete
graph, partial matches computed by the source node can be stored. When a new fact
arrives, it can efficiently be matched to all previous facts which might match a pattern
with the new fact, as partial matches to the rest of the pattern are stored along the Rete
graph. When facts are explicitly retracted from the fact base, the corresponding partial
matches must be retracted too.

One of the advantages of Rete’s way of handling partial matches is that it can store
arbitrarily many of them. Compare for instance to a finite state automaton. A finite state
automaton is at any point in time in at most one state. A Rete graph can be on its way to
matching arbitrarily many concurrent sequences to patterns: each possible sequence has
its own set of partial matches. The flip side of this behavior is that the storage requirement
of a traditional Rete graph is unbounded.

98

5.1 Background: the Rete Algorithm

5.1.2 Varying the Amount of State Stored along the Rete Graph

In addition to the traditional Rete algorithm by Forgy [59], some variations were construed
to balance the storage size requirements with execution time. A thorough exploration of
this topic is outside the scope of this dissertation, thoughwe deem it sufficiently important
to sketch the general ideas, as restricting how much data is stored is a core part of the
thesis described in this dissertation.

Recall that in Rete, the first two patterns in a rule are joined, and each subsequent pattern
is joined one-by-one with the results. In traditional Rete, intermediate results are stored
at each join in partial match histories. Evidently, it is possible to store fewer intermediate
results (saving storage space, but requiring recomputing) or to store more intermediate
results (storing not just along edges of the graph, but for every pair of patterns, for every
three patterns, etc.). We depicted this concept in figure 5.3.

Storing Fewer Partial Matches

Using traditional Rete as a baseline, fewer partial matches can be stored by (dynamically)
omitting some partial match histories (depicted in figure 5.3 by rendering the storage
semi-transparent) as done by Rete∗ [140]. Even more storage space can be saved by not
saving partial matches between activations at all, as done in TREAT [105]. As a lower
bound, there is the option of not saving any previous partial matches, and instead simply
applying a Cartesian product involving all data.

Storing More Partial Matches

Conversely, on the right-hand side of the spectrum, more intermediate results can be
stored by saving partial matches between every pair of patterns, every three patterns,
etc. We found no related work which applies this approach in the context of Rete, since
this approach deviates from the DAG structure prescribed by Rete. In the related field of
Incremental View Maintenance, this approach has been used by DbToaster [4]. Idris et al.
[76] show that such approaches do not necessarily pay off. They “presume that DBToaster
performs badly [on the dataset of the experiment by Idris et al.] because [DbToaster] needs
to actually materialize the results to sub-queries, [but they] did not confirm this”. The
time it takes to keep the intermediate results up-to-date can outweigh the time that is
saved when a query can be answered from the cache of intermediate results.

Finally, Miranker et al. [106] and Batory [18] have explored the possibility of delaying the
computation of intermediate results by evaluating them lazily.

Our work builds on the baseline Rete algorithm, since our focus lays with guarantees of
strong reactivity and the predictability that this brings. The variations tend to improve
average-case performance at the cost of worst-case performance, and at the cost of
increased unpredictability.

99

Chapter 5: Operational Semantics for an LRP Language

d. Retec. Rete✱b. TREATa. Cartesian product e. DbToaster

stored data

nothing only input input and some PMs input and all PMs input and all combinations

Figure 5.3: Different degrees to which partial matches can be stored in production systems
— Cylinders represent storage. From left to right, the amount of data stored increases. A lower bound is

offered by the option of not storing anything. The baseline — around the middle of the spectrum — is the

seminal work by Forgy [59]: Rete.

5.1.3 Adapting Rete for Strongly Reactive Evaluation

Even in its basic form, the Rete algorithm offers the means to satisfy requirement RLRP1
of Logic Reactive Programming (see definition 4 on page 72): Rete supports declarative
pattern specifications and registration of reaction logic. To satisfy the other requirements,
some adaptations are needed. For instance, consider the use of incremental computation
in Rete. This incremental computation speeds up processing of new data. Still, it is
not strongly reactive. The number of partial matches stored inside the graph can grow
unboundedly. Processing time is proportionate to the number of partial matches stored
in the nodes involved in the join. To achieve requirement RLRP5, an upper bound on

the number of partial matches stored in the graph must be enforced. This adaptation
ties in closely with RLRP3: the automatic management of stored events. Achieving this
managed storage and the strong reactivity that it enables, is one of the main adaptations we
make to Rete. The details explained further in this chapter.

5.1.4 Adapting Rete for Events

When the data fed into a Rete graph are not merely logical facts, but events, some changes
can be made to the algorithm. Foremost is the idea of temporal reasoning, i.e., RLRP2,
i.e., having join-criteria based on the timestamps of the events. Compared to general
data, event data is well-behaved in a very specific, but useful way: timestamps are
non-decreasing. If the system can preserve the order of events (at least up to causality),
then it can use that knowledge. Consider for instance a rule detecting the occurrence of a
complex event a, followed by the occurrence of a complex event b at a later timestamp.

100

5.1 Background: the Rete Algorithm

In a baseline Rete engine, if an instance of b occurs, but no instance of a occurs, then
the instance of b would indefinitely sit idly in the knowledge base. A Rete enhanced
with temporal reasoning, though, can immediately detect that no a corresponding to that
instance of b can ever take place, since its temporal window of opportunity is already past.
Such an enhanced Rete engine can then discard each partial match related to that instance
of b from its memory.

A Rete engine can also be adapted for reasoning about events by introducing time windows.
Instead of keeping an arbitrary number of partial matches for each join, a fixed number of
potential joins can be specified in an event-aware rule. Events are then only correlated
with events that occurred within the window duration.

As we discussed in section 2.3.1, the idea of time windows can be extended to semantic
windows [55]. Semantic windows are like other time windows, but do not explicitly store a
fixed number of events. Instead, they may store a dynamically determined number of
events, where the events which are concurrently in the windowwith respect to some other
events, are determined by runtime conditions extracted from the semantics specified in
the rules. Discarding events from semantic windows happens when a runtime analysis
determines the events irrelevant for the further matching. The work by Teodosiu and
Pollak [133] provides the means to do so, by demonstrating how a combination of static
analysis of the event patterns and a runtime analysis of events’ timestamps. Jointly, those
are able to determine whether an event may still be part of a complex event, either in
combination with other events being processed, or even with events that are still to occur.

In this chapter, we will extend the approach of Teodosiu and Pollak [133]. We will show
how semantic windows can be applied in a systemwhere the reasoning engine consist

of many, largely independent, concurrent units of computation, and how the need to

synchronize timing information can be localized. To maintain strong reactivity, our
semantic windows will have a determined maximum size, though the minimum size will
be variable, and the maximum size will be automatically inferred by the model.

5.1.5 Adapting Rete for a Distributed Context

To enable processing larger workloads on a distributed computer cluster (RLRP4), one must
deviate from the traditional implementations of the Rete algorithm. Such implementations
assume that the whole fact base resides in a shared memory space, where all data can be
accessed and mutated from each step of the rule processing.1 A large body of work exists
on the topic of disentangling the concepts of Rete from the ample optimizations which
only make sense in the context of sequential execution [113, 64, 92, 65, 79, 14, 97].

1In fact, PARTE’s original vision included building a parallel version of the CLIPS [142] implementation
of the Rete algorithm. It was soon revealed that it would be less effort to reimplement Rete with parallelism
and distribution in mind, than to untangle the sequential, shared memory assumptions that permeate through
CLIPS. Of course, in CLIPS’ logic programming paradigm, sequentiality is expected at the language level.
Constructs like the activation agenda and salience of rules depend on evaluation happening piecemeal.

101

Chapter 5: Operational Semantics for an LRP Language

Keeping Track of Time in a Distributed Event-Aware Rete

Moving to a distributed context leads to a whole new set of problem domains.

Amodel for Rete using a distributedmemory spacemust offer some form of fault-tolerance.
Furthermore, in a distributed setting, atomic recognize-act cycles are no longer cheap to
implement. While cycles at a per-node level are cheap (cf. turns in actors [43]), orchestrating
a cycle of the entire system entails setting up an expensive synchronization point. As
we shall demonstrate further in this chapter, such a globally synchronized cycle must
not be maintained in an event-aware Rete. A weaker form of synchronization suffices,
where distributed Rete nodes maintain a sort of logical clock [90] as part of the exchange of
event data. As long as in-order propagation of event data can be guaranteed, the temporal
constraints can be leveraged to determine whether events must be joined, and whether
old partial matches can be discarded [132]. A global view on the knowledge base is not
necessary.

Storing Partial Matches in a Distributed Memory Space

In addition to these high-level considerations, the move to a distributed memory model
also requires rethinking common implementation idioms. For instance, it is common [116]
to implement partial matches as a linked list, where partial matches to a join refer to
the two parent partial matches from which they derive, stored higher up in the graph.
This is no longer possible if the location where those parent partial matches are stored,
is in a different memory space. Similarly, downward pointers to speed up retraction
and reinsertion [116] cannot be implemented if the downward pointer would point into
storage managed by another concurrently executing entity living in a different memory
space.

To minimise the need for synchronization across Rete nodes, the nodes should be as
self-contained as possible. For this reason we decided to break with one tradition in Rete
systems: instead of considering the stores of partial matches to belong to the node that
produced the partial match, we consider this storage to belong to the node which uses
those results, i.e., the successor node in the Rete graph. While this means that partial
matches can be stored redundantly, this also entails consumers can synchronously access
them, as they need only access non-shared memory. Since partial matches are written
only once, but can be read multiple times, this leads to an asymptotic decrease in the
required synchronization points.

Rete Nodes Plus their Memories as Concurrent Units of Computation

Abstractly, the change we propose looks as follows: the process of pattern matching can
be implemented by a group of concurrent actors whose communication pattern mimics a
Rete DAG. The semantics of the Rete algorithm can be preserved, while a large degree

102

5.2 A First, Rudimentary Formal Model for PARTE

of parallelism is introduced.2 At the same time, the structure of the Rete graph offers
guarantees which are beneficial to parallelism and distribution.

Our approach has the following beneficial properties with respect to distribution:

• The use of concurrent actors means different parts of the rule set can be evaluated

in parallel. This applies both to different rules, as well as to different parts of the
same rule, owing to the emergence of a pipeline of rule elements processed in their
own thread of control.

• The Rete algorithm is stateful, and all data is stored in one of two ways: as tokens
explicitly sent between the nodes, or as private data uniquely owned by one node.
Synchronization for the latter is trivial: its owner’s thread of control can access

private data without need for any synchronization.

• At any time, only one node needs access to any given token: first the node which
creates and sends the node, and – once sent – the receiver. This entails that
synchronizing access to tokens is cheap: it suffices that the sender stops referring
to the token once the token has been enqueued.3

• No more than two nodes ever contend for the sending side of a queue: two for join-
and anti-join-nodes, one for other types of nodes. At most one node contends for
the receiving end — namely the owner of the inbox. The Rete graph hence keeps
contention low by design.
Synchronization across different machines can happen by message passing. Nodes
which happen to be scheduled on the same machine can be optimized even further:
nonblocking [69, 104, 45] or evenwait-free queues [80], coupledwith a fence between
the last write to the token and the enqueueing, suffice to enforce linearizability [70],
and are cheap in the absence of contention.

• Since the Rete graph is a directed acyclic graph (DAG), all tokens-passing happens
downwards. There are no tokens “swimming up the stream”. Implementations
hence need only offer the synchronization mechanisms common in stream pro-

cessing as described in chapter 2.

5.2 A First, Rudimentary Formal Model for PARTE

Section 4.2 presented a language for specifying declarative rules. In section 5.1 we
indicated that such declarative rules can be translated into a search graph by the Rete
algorithm. This section and section 5.4 present two models for a Rete-like directed

2Even for small rule sets — consisting of only a couple of rules — this approach give rise to more concurrent
actors than physical processors on a single node of current day hardware.

3A receiver trivially cannot access tokens that have not been sent to it yet.

103

Chapter 5: Operational Semantics for an LRP Language

acyclic graph of nodes into which the PARTE language can be compiled. The concrete
transformation steps to follow are given in section 5.5.

As we explained at the start of this chapter, we introduce the formal PARTE model
incrementally. We first present a rudimentary model of PARTE. This rudimentary model
models a system that is mostly able to detect rules specified in the PARTE language,
but fails to fully incorporate the notion of time. As a result, the models prescribes
accumulating all data it encounters, leading to arbitrarily large space consumption. Since
evaluation of the model takes a number of steps proportionate to the amount of data
stored, evaluation of the rudimentary model grows slower over time. As such, this model
cannot possibly generate a strongly reactive system as defined in definition 1. Still, a large
part of the complexity can be introduced by means of the rudimentary model — hopefully
— without overwhelming the reader.

The remainder of this section introduces a rudimentary model of PARTE. The model
is defined formally, though the behavior described by the model fails to accurately
implement the PARTE language from section 4.2. The model is defined in a top-down
fashion: we begin from the high-level constructs that make up the “PARTE graph”, then
define their constituent elements, then define those elements’ constituents, etc. until we
reach the atomic data types. Next, we define the global evaluation language, g−→, which
defines how tokens traverse the distributed PARTE graph. Finally, we define the local
evaluation language, l−→, which defines how tokens are processed locally at4 specific nodes
in the graph.

5.2.1 Graph Nodes

At its outermost level, the Rete-like graph encoding a rule set is represented by a set of
PARTE graph nodes. The edges between the nodes are encoded in the nodes: each node
stores its out-edges. Concretely, the set N of PARTE graph nodes consists of tuples of the
form

N〈ιn, s, m, t, ndata〉.

Notation

If a is the canonical element of some set, then a is a vector of elements from that set.
A vector has a fixed, finite size. The element at the ith index is typeset as a[i].

4We refer to an evaluation step by the local evaluation language where the first element of the tuple in the
domain of l−→ is a node n as “evaluation at node n”. At times, we will use terminology somewhat loosely by
implying nodes are active elements, i.e., entities which can be the subject of active verbs such as “to send” or “to
verify”. Formally, in those cases it will be the evaluation of either l−→ or g−→ which enacts those steps, at those
nodes.

104

5.2 A First, Rudimentary Formal Model for PARTE

Notation

To disambiguate different types of tuples in the formalization, we prefix a
calligraphically typeset version of the set name in front of the tuple. For instance,
nodes, which belong to the set N, are typeset as a tuple of the form N〈_, _, _, _, _〉.

We use underscores as “wildcards” to indicate that the value of a certain tuple
member is inconsequential in the current evaluation rule. Since the tuple member
is not bound to a variable, the tuple member cannot be referred to later: different
occurrences of underscores in a single formula or rule are not required to refer
to the same value. This notational convention, common in some programming
languages, hence makes it easier to follow complex formalisms, as the flow of data
is easier to follow. In other words: N〈ιn, _, _, _, _〉means “a node whose identifier
is ιn, and whose successors, inbox, outbox, and node-local data could be any value
that one of those fields of a node may have”.

Notation

Sets of identifiers are written as I_, where the kind of identifier is indicated by a
single letterwhere the underscore is. Canonicalmembers of this set arewritten as ι_.

For instance, the set IN contains node identifiers. A canonical node identifier is ιn.

A node’s tuple elements are the node’s identifier, ιn; a vector of successors, s; a vector of
messages, m; a vector of tokens, t; and the node-local data ndata. This last element is a
member of the set D. A subset of D exists for each conceptual type of PARTE graph node.
In the rudimentary PARTE model, these are alpha nodes, join-nodes, not-nodes, terminal
nodes, and production nodes.5 Formally:

ndata ∈ D = (Dalpha ∪Djoin ∪Dnot ∪Dterminal ∪Dproduction).

Nodes are identified by node identifiers, the set of which is named IN in accordance to
our notational convention. Successors are pairs of a node identifier and an activation side,
which is either “from the left” (typeset as↘), “from the top” (typeset as ↓), or “from
the right” (typeset as↙). Conceptually, a successor pair s specifies an out-edge from
the current node, along with an indicator of how the node is activated: for Rete-nodes
with two predecessors, a distinction must be made between data arriving from the left
predecessor and data arriving from the right predecessor. In PARTE, his data take the
form of messages. A message m is a pair of an activation side and a token. We define what
a token (t ∈ T) looks like in PARTE on page 109.

The vector of messages m represents the node’s inbox: m contains all tokens that need to
be processed at this node, in order, together with the side by which the node is activated

5We deviate from the model by Forgy [59] by distinguishing between “side-effecting” terminal nodes, and
event-generating production nodes. The semantics of both node types are discussed further in this chapter.

105

Chapter 5: Operational Semantics for an LRP Language

by this token. The vector of tokens t plays a complementary role, serving as the node’s
outbox. To percolate tokens through the PARTE graph, messages in a node’s outbox t have
to be appended to the inboxes of all the successor nodes listed in s, using the activation
side listed in s for the new message.

Formally, the introduced sets are the following:

Element ∈ Set Name

ιn ∈ IN Node identifier
s ∈ IN × {↘, ↓,↙} Successor

m ∈ {↘, ↓,↙}× T Message

The sizes of m and t are fixed, as is usual for vectors, but are not specified in detail here.
As we will show later, in the rudimentary PARTE model, any size is too small to deal
with arbitrary rule sets. Still, any size greater than zero produces a model that works for
some rule sets. Section 5.3.7 defines the required size of the inboxes and outboxes in the
full-fledged PARTE model, fwPARTE. In section 8.3 we prove that that size is sufficient to
guarantee proper evaluation.

5.2.2 Node-local Data

The node-local data of the five types of PARTE graph nodes in the rudimentary model, is
defined as follows:

Element ∈ Set Name

Dalpha〈ιt, cα, ιe〉 ∈ Dalpha Alpha node-local data
Djoin〈cβ, pm, e, ιe↘ , ιe↙ , dist〉 ∈ Djoin Join-node-local data
Dnot〈cβ, pm, e, ιe↘ , ιe↙ , dist〉 ∈ Dnot Not-node-local data

Dproduction〈ge
�〉 ∈ Dproduction Production node-local data

Dterminal〈〉 ∈ Dterminal Terminal node-local data

Notation

We refer to a node whose node-local data is in Dalpha as an “alpha node”, a node
whose node-local data is in Djoin a “join-node”, etc.

By design, the different types of PARTE graph nodes have a different format of node-local
data: a tuple with exactly the data that is relevant to that type of node. As a result, the

106

5.2 A First, Rudimentary Formal Model for PARTE

semantic constructs for the different types of node-local data contain mostly all types of
semantic constructs that have not been explained yet. A first, high-level overview is this:

Alpha Nodes implement an individual event pattern. In isolation, a pattern is matched
based on the type of event, and its attributes. A successful match results in the binding of
the event to a variable defined in the rule-based program. Hence, an alpha node must
accept or reject events of a certain type, and provide the identifier to bind successful
matches to. That event type is identified by a template identifier ιt. The template identifier
names a relation, as specified in section 4.2.1. Templates themselves are a vector ιa
identifying the attributes which events must have to be adhering to that template. The
predicate that accepts or rejects the event is identified by cα, and the variable to bind to is
abstracted into an event identifier ιe. Such an event identifier is a member of the set IE,
which contains identifiers for all events mentioned in a rule.

Note that ιes do not uniquely identify elements in E. Instead, they uniquely identify
an event pattern location. For instance, consider the PARTElang implementation of
driver scenario A from listing 7.2. An event identifier might identify “the pattern where
incoming is bound in rule FraudPassThrough”, not “the event at timestamp t, bound
to incoming in rule FraudPassThrough”.

Join-Nodes and Not-Nodes implement the join or anti-join between multiple patterns.
Hence, both join- and not-nodesmust check join- criteria. As a Rete-derivedmodel, PARTE
stores partial matches, which PARTE stores in the join- and not-nodes. A partial match
represents, as the name implies, a partial result of a matching operation. Specifically, a
partial match maps a set of event identifiers onto concrete events which can be bound to
the variable represented by the event identifiers.

Both join- and not-nodes store the temporal join-criteria (i.e., temporal distances between
events) as dist, and the other join-criteria as a predicate cβ. Temporal distances are
differences between timestamps, such that a temporal distance function specifies how far
from the reference event another event may occur. For a given reference event patternwith
event identifier ιea, and another event pattern with event identifier ιeb, dist(ιeb) yields a
pair 〈∆θmin, ∆θmax〉 where ∆θmin is the minimum temporal distance between the events
bound to ιea and ιeb, and ∆θmax is the maximum temporal distance.

Consider for instance a PARTElang fragment where { a in b [5s, 15s]}, which
requires that the event bound to logical variable a occurs at least 5 seconds after the
event bound to b, and at most 15 seconds after b. A call to dist(b) should return a pair
〈5s, 15s〉. For a given match to b occurring at timestamp t, each event satisfying a which
occurs in the time interval [t + 5s, t + 15s], matches the compound event. The converse
holds too: for a given match to a occurring at timestamp t, each event satisfying b which
occurs in the time interval [t− 15s, t− 5s], matches the compound event. In other words,
a call to dist(a) should return a pair 〈−15s,−5s〉. Temporal distances can be negative. A
negative minimum temporal distance means that the event may occur before the reference

107

Chapter 5: Operational Semantics for an LRP Language

element. A negative maximum temporal distance means that the event must occur before
the reference event.

Finally, the partial matches from left predecessors are stored as a vector of partial matches,
pm; and those of right predecessors as a vector of events, e. The event identifiers from left
and right predecessors are stored as ιe↘ and ιe↙ , respectively.

Production Nodes implement the emission of new events in response to matching
an entire rule. Event emission must create a new event, based on attributes of the
matched events, as specified in section 4.2 (specifically with respect to limitations such as
stratification as defined on page 67). The construction of a new event based on attributes
and temporal data of a partial match is abstracted into an event generation expression, ge

�.

Terminal Nodes represent the locations where an entire rule program is successfully
matched. Since the PARTE model does not define what to do at that point, terminal nodes
contain no additional data.

Notation

The type of a mapping, i.e., function, from a type 1 to a type 2 is typeset as
M1⇀2. For instance, a partial match is a mapping from event identifiers (i.e.,
the set IE) to events (i.e., the setE), and the set of partialmatches is typeset asMIE⇀E.

Element access is typeset using indexing notation. For instance, for a partial match
pm ∈ MIE⇀E, the element bound to event identifier ιe in pm is typeset as pm[ιe].

The semantic constructs we introduced are formally specified as follows:

Element ∈ Set Name

ιt ∈ IT Template identifier
ιe ∈ IE Event identifier

cα ∈ E→ B Alpha condition
cβ ∈ (MIE⇀E)→ B Beta condition

pm ∈MIE⇀E Partial match
ge
� ∈ (MIE⇀E)→ E Event generator expression

∆θ ∈ ∆Θ = Θ Temporal distance
dist ∈MIE⇀(∆Θ×∆Θ) Temporal distance function

108

5.2 A First, Rudimentary Formal Model for PARTE

5.2.3 Tokens

When the Rete algorithm [59] exchanges logical facts between Rete nodes, those facts are
wrapped in tokens. Similarly, PARTE wraps events in tokens when sending them between
nodes. Tokens come in two flavors: alpha tokens and beta tokens. Alpha tokens wrap exactly
one event’s data. Beta tokens wrap one partial match, which can incorporate one or more
events’ data. To define tokens, we introduce the following semantic constructs:

Element ∈ Set Structure Name

t ∈ T = Tα ∪ Tβ Token
tα = Tα〈e〉 ∈ Tα = E Alpha token

tβ = Tβ〈pm〉 ∈ Tβ = MIE⇀E Beta token

5.2.4 Events

Rules in PARTE reason about streams of events. In line with our definition in the event
algebra EA on page 81, events in a stream have a timestamp. PARTE stores the timestamp
separately from the non-temporal attributes. Finally, an event must identify its template.
To accommodate these concepts, the rudimentary PARTE model defines the following
semantic constructs:

Element ∈ Set Structure Name

e = E〈ιt, attrs, θ〉 ∈ E = IT ×MIA⇀V ×Θ Event
θ ∈ Θ ⊂ R Timestamp
ιa ∈ IA Attribute identifier

attrs ∈MIA⇀V Attributes
v ∈ V ⊂ R Value

Events are defined as a three-tuple with tuple constructor E . They contain the identifier of
the event’s template, values for each of the event’s attributes, and the event’s timestamp.
The time at which an event occurred is represented by an element from Θ, the set of
timestamps. Canonical elements of Θ are typeset as θ. A full order is defined on Θ, such
that for any two timestamps θ1, θ2 ∈ Θ : (θ1 < θ2) Y (θ1 = θ2) Y (θ1 > θ2).

An event’s attributes are represented as a mapping from attribute identifiers to concrete
values. Values are the most fundamental type of data present in the PARTE model. V
contains all primitive value which PARTE can reason about. In the formal model, this
is limited to a finite subset of the real numbers. Values can appear as constants in a
PARTElang program, or be entered into the model in the role of attributes to events.
Canonical elements of the set V are typeset as v.

109

Chapter 5: Operational Semantics for an LRP Language

5.2.5 The Global Evaluation Language

The percolation of tokens through the PARTE graph is specified by the global evaluation
language g−→.

The global evaluation language consists of two reduction rules: (Proc) and (Prop). (Proc)
specifies how each token in a node’s inbox is processed using the local evaluation language

l−→, whose rules are listed further down in this section. (Prop) specifies how tokens are
propagated from a node’s outbox to all its successors’ inboxes. Both inference rules in

g−→ transform a set of PARTE graph nodes to a new set of PARTE graph nodes, and are
hence functions in P(N)→ P(N).

Notation

We typeset inference rules using the common notation. For instance, an inference
rule named (SomeRule) which describes that a evaluates to b via language c if d
equals e and f is greater than g, is typeset as follows:

(SomeRule)

d = e f > g

a c−→ b

The Processing Rule

(Proc) specifies that an arbitrary node can be selected from the nodes N that make up the
PARTE graph, when that node has at least one item in the inbox (i.e., the vector located in
third position in the tuple has some first element, 〈side, t〉). A tuple 〈data, side, t〉 must
then be created. This tuple must be processed by executing a single step of the local
inference language l−→, resulting in a tuple 〈data′, t′〉. The first element in this tuple
represents the updated node-local data, the second element holds all tokens generated
in this step of l−→. The outbox of the selected node must have room for the produced
tuples. A replacement must be substituted for the selected node, which inherits the
node’s identifier, successors and inbox. The replacement node’s outbox is the selected
node’s outbox extended with the new tokens t′. The replacement node’s node-local data
is provided in data′.

(Proc) is specified as follows:

(Proc)

〈data, side, t〉 l−→〈data′, t′〉 has-room-for(t,
∣∣∣t′∣∣∣)

{N 〈ιn, s, 〈side, t〉 ·m, t, data〉} tNrest
g−→Nrest t {N 〈ιn, s, m, t � t′, data′〉}

110

5.2 A First, Rudimentary Formal Model for PARTE

Notation

We use syntax slightly different from what is common here: a · b does not indicate
extending the vector b with an element a in the front, but rather that b is a vector of
the same length as the vector a · b, but where

• each element in b occurs in a · b, in the same order, but at an index one less in
b than in a · b;

• the first element of a · b holds the same value as what is named by expression
a; and

• b has one more empty spot at the end of the vector than a · b.

For instance, let vector va be a vector of length 5, defined as (1 2 3 ∅ ∅) , where
empty spots are represented as empty sets. Let va = x · vb. Then x = 1 and
vb = (2 3 ∅ ∅ ∅) .

Similarly, the notation c � d does not result in a vector with a size equal to the
sum of the size of both vectors. Instead, the elements in d are inserted into the
empty spots of c. The operator � can only be applied if has-room-for(c,

∣∣∣d∣∣∣), i.e.,
if there are enough empty spots in c to store all elements of d. For instance,
(1 2 ∅ ∅ ∅) � (3 4) = (1 2 3 4 ∅) .

After (Proc), the PARTE graph consists of all nodes in N except for the selected node (i.e.,
Nrest), unioned with a singleton set containing the replacement node. Conceptually, this
can be thought of as “updating” the selected node to a new state in N. In subsequent
rules we occasionally phrase the replacement of a node by a node with the same identity,
but different state, as “updating”.

The Propagation Rule

The second inference rule in the global evaluation language g−→ specifies that an arbitrary
node can be selected from the nodes N that make up the PARTE graph, when that node
has at least one item in the outbox (i.e., the vector located in fourth position in the tuple
has a non-empty first element, t). The subset Nb of N is defined as all nodes whose
identifier ιb appears in the first position of a tuple in sa. That is to say, Nb is the set of
successor nodes of the selected node, or, equivalently, the set of nodes reachable in a single
step through an out-edge of the selected node.

If all successor nodes have room in their inboxes to receive a message, (Prop) continues
by specifying that the successor nodes must be updated, yielding N′b. N′b contains an
updated node for each node in Nb, inheriting the old node’s identifier ιb, successors sb,
outbox mb, and data datab, but appending a tuple 〈side, t〉 to the inbox, where side is the

111

Chapter 5: Operational Semantics for an LRP Language

second element in the tuple in sa where the first element is that node’s identifier. The
source node must be updated by removing t from its outbox.

(Prop) is specified as follows:

(Prop)

Nb = N ∩ {N 〈ιb, _, _, _, _〉 | 〈ιb, _〉 ∈ sa}
∀N 〈_, _, mb, _, _〉 ∈ Nb : has-room-for(mb, 1)

N′b =
{
N〈ιb, sb, mb · 〈side, t〉, tb, datab〉 | N 〈ιb, sb, mb, tb, datab〉 ∈ Nb, 〈ιb, side〉 ∈ sa

}
{N 〈ιa, sa, ma, t · ta, dataa〉} tNb tNrest

g−→{N〈ιa, sa, ma, ta, dataa〉} tN′b tNrest

After (Prop), the PARTE graph consists of all nodes in Nrest, unioned with both a singleton
set containing the updated version of the selected node, and with the set of updated
destination nodes, N′b.

5.2.6 The Local Evaluation Language

We just defined the global evaluation language g−→. Evaluation steps in g−→ transform
a set of PARTE graph nodes into an updated set of PARTE graph nodes, by either
propagating tokens to successors (through (Prop)), or by having a token processed by
the local evaluation language l−→ (through (Proc)). From the usage of l−→ in g−→, it is
evident that a step in l−→ takes a three-tuple in D× {↘, ↓,↙}× T, and produces a pair
in D×P(T). That is to say: some node-local data, an activation side, and a token gets
transformed into an updated state for the node-local data, and zero or more tokens.

The set D in the rudimentary PARTE model was defined to be Dalpha ∪Djoin ∪Dnot ∪
Dterminal ∪Dproduction (see section 5.2.2). We now describe the semantics of each of those
node types by defining the evaluation at each type of node by the local evaluation language

l−→.

Alpha Nodes

Alpha nodes filter events based on their template and attributes.

Remember from section 5.2.2 that alpha tokens whose event’s template does not match the
one specified in the alpha token are to be discarded. Alpha tokens whose events’ attributes
satisfy the constraints encoded in cα are to be wrapped in beta tokens and propagated to
successors of the alpha node. Unlike the traditional Rete model [59], the PARTE model
does not store partial matches that satisfy all constraints in an “alpha memory”. Instead, a
beta token containing the events’ data is propagated to all successors, who are responsible
for storing the data they require, and discarding it as appropriate. Refer again to figure 5.2
on page 98. Instead of storing partial matches along the edges, PARTE includes the storage
with the successor nodes.

112

5.2 A First, Rudimentary Formal Model for PARTE

Also unlike the traditional Retemodel, alpha nodes in the PARTEmodel form the boundary
between the alpha and the beta network. Some traditional Rete implementations have
two-input nodes’ right-hand-side input be alpha tokens, and let the two-input nodes be the
boundary between the alpha and beta network. The traditional approach requires that the
first two-input node of any rule performs a special “dummy” join between “nothing” on
the left, and the first pattern on the right. We did not depict this in our figure on page 98,
as this conceptually only complicates matters, and PARTE does not follow that approach
anyway. In PARTE, alpha nodes convert their input to beta tokens, and two-input nodes
always operate on streams of beta tokens. As such, the uppermost two-input nodes need
not be special-cased. Beta tokens encode events in a mapping from event identifier to
event. Since an alpha node is responsible for binding an event to a logical variable in a
pattern in a rule, a one-on-one mapping exists between alpha nodes and event identifiers.
The event identifier ιe to which matching events can be bound, is thus stored in the alpha
nodes.

Evaluation at an alpha node by the local evaluation language l−→ proceeds as follows:

(Alpha-NoMatchTemplate)

e = E〈ιte, _, _〉 ιtn 6= ιte

〈Dalpha〈ιtn, cα, ιe〉, ↓, Tα〈e〉〉 l−→〈Dalpha〈ιtn, cα, ιe〉, ∅〉

(Alpa-NoMatchConstraint)

e = E〈ιte, _, _〉 ιtn = ιte cα(e)
α−→ false

〈Dalpha〈ιtn, cα, ιe〉, ↓, Tα〈e〉〉 l−→〈Dalpha〈ιtn, cα, ιe〉, ∅〉

(Alpha-Match)

e = E〈ιte, _, _〉 ιtn = ιte cα(e)
α−→ true

〈Dalpha〈ιtn, cα, ιe〉, ↓, Tα〈e〉〉 l−→〈Dalpha〈ιtn, cα, ιe〉, {Tβ〈[ιe 7→ e]〉}〉

Evaluation of an alpha node can commence whenever an alpha token Tα〈e〉 is available.
If the alpha token’s event conforms to a different event template than the template of
the alpha node, the token is discarded without further consideration, as described in
(Alpha-NoMatchTemplate). If the event template matches the one stored, the event is
subjected to the alpha predicate cα, which verifies the alpha condition. If cα(e) evaluates
to false, the alpha token is discarded without further consideration, as described in
(Alpha-NoMatchConstraint). If instead cα(e) evaluates to true, a beta token binding the
event’s data to the event identifier ιe is produced (as seen in (Alpha-Match)), to be sent to
the successors by the (Prop) rule of the global evaluation language g−→.

113

Chapter 5: Operational Semantics for an LRP Language

Join-Nodes

Join-nodes perform a relational join between the stream of beta tokens arriving from their
left predecessor, and the stream of beta tokens arriving from their right predecessor.

The creation of these joint relations happens incrementally as new tokens arrive. To
enable the incremental joining, previous tokens must be remembered. Join-nodes are
hence stateful. Join-nodes store partial matches they receive. Tokens are stored in either a
left partial match history or a right partial match history, depending on whether the token
arrived from the left or the right predecessor. As a result, join-nodes behave significantly
differently from alpha nodes: whereas alpha nodes generate zero or one token per token
they receive, join-nodes respond to the reception of a token by producing between zero
and |pm| tokens for a right activation, and between zero and |e|) tokens for a left activation.
A boolean predicate over the attributes of the events being joined, cβ, represents the
non-temporal join-conditions, if any. The temporal join-conditions define a lifetime, and
through that a semantic window.

Evaluation at a join-node by the local evaluation language l−→ proceeds as follows:

(Join-↘)

has-room-for(pm, 1) pm′ = pm · pmtβ

window↙ = semantic-window({[ιe↙ 7→ e] | e ∈ e}, lifetime↘(dist, timestamps(pmtβ
)))

pmnew = {pmtβ
· pm↙ | pm↙ ∈ window↙, cβ(pmtβ

· pm↙)
β−→ true}

〈Djoin〈cβ, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈pmtβ
〉〉

l−→〈Djoin〈cβ, pm′, e, ιe↘ , ιe↙ , dist〉, {Tβ〈pm〉 | pm ∈ pmnew}〉

(Join-↙)

has-room-for(e, 1) e′ = e · etβ

window↘ = semantic-window(pm, lifetime↙(dist, [ιe↙ 7→ timestamp(etβ
)]))

pmnew = {pm↘[ιe↙ 7→ etβ
] | pm↘ ∈ window↘, cβ(pm↘[ιe↙ 7→ etβ

])
β−→ true}

〈Djoin〈cβ, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ etβ
]〉〉

l−→〈Djoin〈cβ, pm, e′, ιe↘ , ιe↙ , dist〉, {Tβ〈pm〉 | pm ∈ pmnew}〉

Evaluation of (Join-↘) can only commence if and only if the partial match history
has-room-for at least one more partial match. If it does, left-activation of a join-node by a
beta token Tβ〈pmtβ

〉 proceeds by appending the token’s partial match pmtβ
to the node’s

left partial match history pm, yielding pm′. Subsequently, the lifetime for the new partial
match is calculated. Using this lifetime, a semantic window window↙ is constructed: the
set of all partial matches from the right partial match history (i.e., e) which need to be
joined with pmtβ

, based only on their timestamps. A set of new partial matches pmnew is

114

5.2 A First, Rudimentary Formal Model for PARTE

intersection � : Θ2 → Θ2 → Θ2

〈a, b〉 � 〈c, d〉 = 〈max{a, c},min{b, d}〉

lifetime↘ : (IE → ∆Θ
2)→ MIE⇀Θ → Θ2

lifetime↘(dist, `map) =
⊙

ιe∈dom(`map)

〈`map[ιe] + dist(ιe)min, `map[ιe] + dist(ιe)max〉

lifetime↙ : (IE → ∆Θ
2)→ MIE⇀Θ → Θ2

lifetime↙(dist, [ιe 7→ `]) = 〈`− dist[ιe]max, `− dist[ιe]min〉

timestamp : E→ Θ

timestamp(E〈_, _, θ〉) = θ

timestamps : MIE⇀E → MIE⇀Θ

timestamps(pm) = {(ιe 7→ θ) | pm[ιe] = E〈_, _, θ〉}

semantic-window : P(MIE⇀E)→ Θ2 → P(MIE⇀E)

semantic-window(pm, 〈θstart, θend〉) = {pm | pm ∈ pm, ∀E〈_, _, θ〉 ∈ pm : (θ ≥ θstart) ∧ (θ ≤ θend)}

Figure 5.4: The auxiliary functions for the rudimentary PARTE model — Lines in green list

the types of the functions, while lines in black list their behavior.

constructed as all sets pmtβ
· pm↙ for each pm↙ ∈ window↙, for which the condition cβ

holds. Finally, each match in pmnew is wrapped in a beta token. The set of all beta tokens
so generated forms the set tokens produced by this step, which is placed in the second
place of the resulting tuple.

Right-activation of a join-node proceeds similarly if the node’s right partial match history
has-room-for at least one more partial match: the token’s partial match here is the singleton
mapping from the left event identifier ιe↙ to an event etβ

. This mappingmust be appended
to the right partialmatch history e, yielding the updatedpartialmatch history e′. Awindow
window↘ is constructed, consisting of all partial matches from the left partial match
history (pm) which are in the semantic window with respect to the new partial match. A
set of matches pmnew is constructed as all sets pm↘ · pmtβ

for each pm↘ ∈ window↘, for
which the condition cβ holds. Finally, each of these pmnew is wrapped in a beta token,
and presented as the set of produced tokens.

The auxiliary functions used in the inference rules above are defined in figure 5.4.

115

Chapter 5: Operational Semantics for an LRP Language

Not-Nodes

Not-nodes or anti-join-nodes implement negation in the PARTE model.

Not-nodes behave largely similar to join-nodes, with the crucial difference that not-nodes
propagate tokens when the relational join fails, and discards the tokens for which a join
succeeds.

Whereas in join-nodes both predecessors are in principle interchangeable,6 not-nodes
attribute a different semantics to both predecessors: the left predecessor provides the
positive tokens, and the right predecessor provides the negated tokens. Upon receipt of a
positive token, this token gets stored into the left partial match history (pm). The right
partial match history (e) is searched for matching tokens. When a matching negated token
is found, i.e., when the negated pattern is satisfied, the anti-join failed for that positive
token. The positive token hence is discarded. Inversely, upon receipt of a negated token,
that token gets stored into the right partial match history. The left partial match history is
searched for matching tokens. When a matching positive token is found, the anti-join
failed for that positive token, and the positive token gets discarded. The negated token is
kept indefinitely, as it can still match with future positive tokens.

The general structure of the rules for evaluation at not-nodes is similar to that of the rules
at join-nodes. Themajor difference is in how evaluation proceedswhen successful matches
are found. Instead of collecting all valid matches, and wrapping them in beta tokens for
propagation, the rules perform the following actions, depending on the activation side,
and on whether a match exists:

(Not-↘-Match) : when left-activated by a token for whose partial match a match exists
on the right, the negation failed. Nothing is produced;

(Not-↘-NoMatch) : when left-activated by a token for whose partial match no match
exists on the right, the negation succeeded. The incoming beta token is propagated;

(Not-↙-Match) : when right-activated by a token for whose partial match a match exists
on the left, the negation failed. Nothing is produced;

(Not-↙-NoMatch) : when right-activated by a token for whose partial match no match
exists on the left, the negation succeeded. All left partial matches in the correct
semantic window, but which do not match, get wrapped in a beta token and
propagated.

Note that (Not-↙-NoMatch) can propagate partial matches that have been propa-
gated before. This is one of the shortcomings of the rudimentary PARTE model,
and is solved in the full-fledged PARTE model defined in section 5.4.

6A relational join is associative and commutative when the resulting projection is considered as a mapping,
not an ordered tuple.

116

5.2 A First, Rudimentary Formal Model for PARTE

In the rudimentary model of PARTE, evaluation at a not-node by the local evaluation
language l−→ is nearly identical to the evaluation at a join-node. It proceeds as follows:

(Not-↘-Match)

has-room-for(pm, 1) pm′ = pm · pmtβ

window↙ = semantic-window({[ιe↙ 7→ e] | e ∈ e}, lifetime↘(dist, timestamps(pmtβ
)))

∃ e↙ ∈ window↙ : cβ(pmtβ
[ιe↙ 7→ e↙])

β−→ true

〈Dnot〈cβ, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈pmtβ
〉〉 l−→〈Dnot〈cβ, pm′, e, ιe↘ , ιe↙ , dist〉, ∅〉

(Not-↘-NoMatch)

has-room-for(pm, 1) pm′ = pm · pmtβ

window↙ = semantic-window({[ιe↙ 7→ e] | e ∈ e}, lifetime↘(dist, timestamps(pmtβ
)))

∀ e↙ ∈ window↙ : cβ(pmtβ
[ιe↙ 7→ e↙])

β−→ false

〈Dnot〈cβ, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈pmtβ
〉〉

l−→〈Dnot〈cβ, pm′, e, ιe↘ , ιe↙ , dist〉, {Tβ〈pmtβ
〉}〉

(Not-↙-Match)

has-room-for(e, 1) e′ = e · etβ

window↘ = semantic-window(pm, lifetime↙(dist, [ιe↙ 7→ timestamp(etβ
)]))

∃ pm↘ ∈ window↘ : cβ(pm↘[ιe↙ 7→ etβ
])

β−→ true

〈Dnot〈cβ, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ etβ
]〉〉

l−→〈Dnot〈cβ, pm, e′, ιe↘ , ιe↙ , dist〉, ∅〉

(Not-↙-NoMatch)

has-room-for(e, 1) e′ = e · etβ

window↘ = semantic-window(pm, lifetime↙(dist, [ιe↙ 7→ timestamp(etβ
)]))

∀ pm↘ ∈ window↘ : cβ(pm↘[ιe↙ 7→ etβ
])

β−→ false
t′β = {Tβ〈pm〉 | pm ∈ window↘}

〈Dnot〈cβ, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ etβ
]〉〉

l−→〈Dnot〈cβ, pm, e′, ιe↘ , ιe↙ , dist〉, tβ
′〉

117

Chapter 5: Operational Semantics for an LRP Language

Production Nodes

Production nodes effectuate reactions when a rule’s entire pattern is successfully matched.

They do so by producing a new event. The new event’s attributes are derived from the
values bound in the token that activates the production node. In addition to straight-
forwardly copying values, the model supports basic arithmetic operations involving the
attributes of events, as well as constants. For instance, part of the driver scenarios (page 12)
could be implemented by summing the amount of money transferred by a number of
fraudulent transfers, and emitting a new compound event that contains the sum. The exact
scope of operations needed to implement the language is described in section 4.2. Here, it
suffices to know that these transformations take the form of expressions dependent on a
partial match (which themselves are a mapping from event identifier to event), which
produces an event. We typeset those event generator expressions as ge

�.

In the rudimentary model of PARTE, the evaluation at a production node by the local
evaluation language l−→ proceeds as follows:

(Prod)

ge
�(pm) −→ e′

〈Dproduction〈ge
�〉, ↓, Tβ〈pm〉〉 l−→〈Dproduction〈ge

�〉, {Tα〈e′〉}〉

Terminal Nodes

Terminal nodes represent the point at which an entire program is successfully matched.

When the PARTE model is used in a rule engine that is deployed in the real world,
activation of terminal nodes should produce side-effects in the outside world, e.g., print
something to a computer screen, send a network package, etc. In PARTE, tokens are
consumed at terminal nodes by merely discarding them. The behavior of a terminal node
is hence as follows:

(Term)

〈Dterminal〈〉, ↓, Tβ〈_〉〉 l−→〈Dterminal〈〉, ∅〉

5.3 Formal Concepts for an Operational Semantics of the

PARTE Language

The rudimentary model of PARTE presented in the previous section has a number of
shortcomings that prevent it from correctly implementing the logic that can be expressed

118

5.3 Formal Concepts for an Operational Semantics of PARTElang

in the PARTE language from section 4.2. Furthermore, it fails to provide the guarantees
that section 4.1.2 identified as necessary for strongly reactive behavior. This section defines
the concepts necessary to reason about the shortcomings of the rudimentary model. It
further defines how the concerns identified by those concepts can be addressed.

5.3.1 Opposite Activation Side and Opposite Partial Match History

Two-input nodes have, as the name implies, two inputs. One of them is referred to as
the “left” input, the other is referred to as the “right” input. Tokens from the left input
left-activate the two-input node, and tokens from the right input right-activate the two-input
node. We typeset everything related to left-activations with “↘”, and everything related
to right-activation with “↙”.7

In some cases, values from both inputs need to be combined in some way. To ease further
discussions, we introduce the concept of opposite activation sides. While rather obvious in
context, we define it here to preclude possible ambiguity: the opposite activation side of a
left-activation, is a right-activation, and vice versa. There is no opposite activation side to
a top-activation (“↓”).

More interesting is the notion of an opposite partial match history. We refer to the vector
of previous partial matches that are stored in a two-input node as a partial match history.
When a new partial match arrives, it has to be combined with the partial matches in the
opposite partial match history, defined as follows:

Definition 13: Opposite partial match history

The opposite partial match history of the left partial match history of a two-input
node is the right partial match history of that node.
The opposite partial match history of the right partial match history of a two-input
node is the left partial match history of that node.
The opposite partial match history of a token that left-activates a two-input node is
the right partial match history of that node.
The opposite partial match history of a token that right-activates a two-input node
is the left partial match history of that node.

5.3.2 Partial Match Arrival Rate

We have previously touched upon the notion of “the rate of events” in our event algebra
(section 4.3) and in the discussion of related work (section 4.6.1). In the latter we identified
a problem with bounding input size: the input for a PARTElang program is potentially

7Activation from the top only happens in one-input nodes. As such, no disambiguation is necessary, so
arrows from the top are rarely necessary.

119

Chapter 5: Operational Semantics for an LRP Language

unbounded, and an analysis that does not take into account the interleaving of arrival of
input and discarding of results based on those inputs, can only conclude that resource
usage grows without bounds. Central to the shortcoming of a such a general analysis,
is that such analyses attempt to relate arrival of new events with evaluation steps taken
elsewhere in the program under analysis. These assumptions do not hold for event
processing system like PARTE, where new events do not arrive because of the progress of
the program under analysis, but instead new events arrive because some event occurred
in the outside world.

Evidently, in an event processing setting, a program (or any part of a program running
in parallel) had better finished processing an event before the next event reaches that
program (part), for otherwise the new event cannot yet be processed. The subsequent
event might have to wait for the previous two events to be processed. The next event
might then be delayed even more, and so on. At this point, the systems flow of control
is no longer dictated by the arrival of events, but by the internal control structure. The
system is — in other words — no longer strongly reactive. To address this, some notion
of “the progression of real elapsed time” must be included into the model. New events
arrive because time has progressed. The model executed another step because time has
progressed. The former is handled by our definition for event arrival rate on page 65, which
defines the link between the progression of time, and the arrival of new events.

In PARTE, event arrival rate is defined per event source. An event arrival rate for a certain
type of event can hence for instance be “500 events per second”. This does not only mean
that in any second at most 500 events may be emitted. It also means that during any
interval of 2 milliseconds, at most one event may be emitted. For instance: while receiving
5 events in a 1 millisecond interval, followed by 999 milliseconds where no event arrives,
has an average rate of only 5 events per second, we consider the event arrival rate of such
a setup to be at least 5 events per millisecond.

The concept of event arrival rate can be generalized: we define the rate at which (anti-)joins
are generated as the partial match arrival rate.

• For entry nodes, the partial match arrival rate is equal to the sum of the event arrival
rates of the event sources.

• The partial match arrival rate of alpha nodes is determined by the rate at which
entry nodes propagate events, i.e., alpha nodes’ partial match arrival rate is equal to
the sum of the event arrival rates for the events of the type of the pattern represented
by the alpha node.

• For the left-most join-node in a graph, i.e., the node joining the first two patterns
in a PARTElang rule, the partial match arrival rates are equal to the partial match
arrival rates of both alpha nodes whose result is joined by the join node.

• For join-nodes and not-nodes lower in the graph, as well as for production nodes

and terminal nodes, the partial match arrival rates are determined by the rate at
which predecessor (anti-)join-nodes produce partial matches.

120

5.3 Formal Concepts for an Operational Semantics of PARTElang

Upper bounds on the partial match production rates of these predecessors can be computed
as follows:

• A join node whose left partial match arrival rate is r_ml, whose right partial
match arrival rate is r_mr, whose left partial match history has size s↘, and whose
right partial match history has size s↙, has a partial match production rate of
r↘× s↙ + r↙× s↘. Plainly: for every new partial match arrival, at most the number
of partial matches in the opposite partial match history can be produced through
joining.

• Anti-joining produces only partial matches which originate from the left predecessor.
Hence, only the partial matches stored in the left partial match history need to be
considered. An upper bound on the partial match production rate of not-nodes is
hence r↙ × s↘.

Definition 14: Partial match arrival rate

The rate at which partial matches arrive at a PARTE graph node from a predecessor
node, i.e., the partial match arrival rate is expressed as a number of partial matches
per time unit.

Like the event arrival rate (definition 2), partial match arrival rate is an absolute
upper bound, not an average upper bound. The partial match arrival rate is defined
by the minimum time between subsequent arrivals of partial matches.

5.3.3 Stale Partial Matches

The PARTE language defined in section 4.2 requires all event patterns in a rule to be
temporally related to each other by fixed, finite minimum and maximum temporal
distances. For any two event patterns p1 and p2 in a rule, a finite upper bound ∆p1,p2

θ must
exist, such that any event that matches p2 may occur at a timestamp at most ∆p1,p2

θ later
than an event matching p1, if those events are to satisfy the temporal join-criteria.

When processing an event enew’s data at a two-input node, the temporal constraints place
each event eother from the opposing partial match history either before the minimum
allowed timestamp, between the minimum and maximum allowed timestamps, or after
the maximum allowed timestamp. We refer to those situations as being respectively before
the semantic time window, in the semantic time window, or after the semantic time window:

121

Chapter 5: Operational Semantics for an LRP Language

Definition 15: Semantic time window of events

Consider two event patterns p1, p2 ∈ PEA. Let the minimum temporal distance
between p1 and p2 be ∆p1,p2

θ min, and the maximum temporal distance between both
be ∆p1,p2

θ max. Consider two events e1, e2 ∈ E which match p1 and p2, respectively.

With respect to event e2, event e1 is said to be
before the semantic window if e1.θ < e2.θ + ∆p1,p2

θ min

in the semantic window if e1.θ ≥ e2.θ + ∆p1,p2
θ min and e1.θ < e2.θ + ∆p1,p2

θ max

after the semantic window if e1.θ ≥ e2.θ + ∆p1,p2
θ max

Only partial matches of which all events are in the semantic time window with respect
to the event being processed, can lead to successful matches. An event occurs “in the
semantic time window of a partial match” if the event is in the semantic time window of
each event in the partial match. Conversely, an event outside of the semantic time window
of at least one event in a partial match, occurs outside of the semantic time window of the
the partial match. We generalize this notion for pairs of partial matches:

Definition 16: Semantic time window of partial matches

Two partial matches are in each other’s semantic time window if their events are in
each other’s semantic time windows.

It follows that a partial match outside the semantic time window of all partial matches
in the opposite partial match history of a two-input node does not influence the creation
of new partial matches in the current evaluation step. A partial match outside of the
semantic time window of all partial matches that are currently in the opposite partial
match history, and those that will be in the opposite match history, will hence not influence
the creation of partial matches in any evaluation step. We call such partial matches stale:

Definition 17: Stale partial match

Consider a partial match history pm of a PARTE graph node n, and a partial match
pm which is not in pm.

The partial match pm is a stale partial match in the context of pm, as well as a stale
partial match in the context of pm extended with pm, if the set of all tokens produced
by any future sequence of evaluation steps of both the global evaluation language

g−→ and the local evaluation language l−→ at n, would be identical between the
case a.) that pm is extended with pm (growing the size of pm by one); and in the
case b.) that pm is not added to pm.

122

5.3 Formal Concepts for an Operational Semantics of PARTElang

5.3.4 Expiration

The Rete algorithm [59] defines the notion of assertion and retraction of logical facts.
Assertion and retraction are handled bymeans of positive and negative tokens respectively.
We sketched in section 5.1 how both kinds of tokens percolate through a Rete graph.
Positive tokens contribute to the construction of partial matches in the knowledge base,
whereas negative tokens cause the destruction of all partial matches depending on the
data contained in the negative token.

In PARTE, logical facts are replaced by events. For events, assertion takes the form of event
emission. However, events need not be retracted: events that occurred do so indefinitely.
Events that occurred cannot not retroactively not have occurred.8 Semantically, no event
that entered the system is ever retracted from it. However, removing stale partial matches
from the system has — by definition — no impact on which complex events are detected
by the model.9 Teodosiu and Pollak [133] introduced the notion of partial matches
whose “lifetime has expired”. Their paper shows how individual inter-event temporal
distances between pairs of event patterns can be used to construct a complete graph of
indirect distances between all event patterns. Using this graph, a reachability analysis
can efficiently be implemented for determining which partial matches are stale. Partial
matches that have been determined to be stale can then cheaply be removed: when no
logical negation is involved, it suffices to remove the partial match from the partial match
history data structure. When logical negation is involved, the removal of a fact can still
necessitate the reevaluation of a negated condition.

To prevent ambiguity, we explicitly define expiration as follows:

Definition 18: Expiration

The removal of stale partial matches from a node’s partial match histories is called
expiration.

By definition of staleness, expiring a stale partial match does not remove information that
is necessary for matching the streams of input events to the rule set implemented by the
PARTE graph.

One of the core contributions of the PARTE model is enabling the detection of stale partial
matches in a distributed complex event processing model. Crucial to this is the fact that
staleness of a partial match in a node can be determined using only node-local data and a
single token, i.e., the input provided to a single evaluation step of the local evaluation
language l−→. In the majority of the cases, this means no additional messages must

8An obvious exception to this is in the context of reasoning with uncertainty. In that context, new information
may indicate a previously held believe was unjustified, necessitating the retraction of that belief. In PARTE,
events are considered factually true: as far as the model is concerned, every event that is said to have occurred,
is considered as undeniably having occurred.

9 An implementation can be impacted, though, as without the removal of stale partial matches, the system
eventually runs out of memory.

123

Chapter 5: Operational Semantics for an LRP Language

be sent between the PARTE graph nodes to implement expiration, i.e., no additional
synchronization has to take place.

The principle of expiration in a distributed setting is as follows: despite the absence of a
global clock, each external event source knows its own local time. Each external event
source can hence determine a lower bound on the timestamps of events that it will still
generate: the current time of its local clock. This lower bound is included in alpha tokens,
such that recipients inside the PARTE graph can reason about these lower bounds. Each
node in the PARTE graph is responsible for keeping track of the oldest timestamp that its
predecessors may still send; a sort of logical clock [90] we hinted at in section 5.1.5. Each
node also informs successors of the lower bound on timestamps they can still expect
from them, by including the lower bounds in the tokens they produce. When a node is
informed by its predecessor that no more events older than some timestamp t can still
arrive for a certain event pattern, the node can run its reachability analysis to expire all
partial matches which cannot match with corresponding events younger than t. The
correctness of the distributed staleness analysis is proven in section 8.2.

5.3.5 Rule Matching

To detect complex events described in a rule set, an inferencing algorithm is required.
Pattern detection algorithm like Rete differ from other detection techniques such as finite
state automata in the way they model the notion of matching the input. For instance, DFAs
indicate that their input matched the pattern they implement by entering an accepting state.
Pattern detection models such as Rete do not have an accepting state, since evaluation is
not over once an input is matched: more inputs may match or fail, possibly even without
requiring additional input.10 Still, even though it is not a unique point, the point at which
a rule is matched, is important for real-world use cases: reaction logic must be executed,
notifications must be sent to external systems, etc.

We define rule matching as follows:

Definition 19: Rule matching

A rule is considered matched whenever the rule’s terminal node pops a token with
a partial match from its inbox.

Rule matching is a transient occurrence, taking place while the local evaluation language
l−→ evaluates at a terminal node. The PARTE model does not react in any way to the

matching of rules.

10The last event that was input, might match with multiple partial matches stored inside the Rete network.
This entails that multiple matches can be generated in response to a single new input event.

124

5.3 Formal Concepts for an Operational Semantics of PARTElang

5.3.6 Node States

Events can be emitted to a PARTE system, and the PARTE system will expire events when
they become stale. This by itself is not sufficient to prevent the storage requirements
from growing without bounds. As explained in chapter 4, this is necessary for PARTE to
remain strongly reactive.

We previously introduced one concept that helps imposing limits on storage requirements:
the event arrival rate. Without a bounded event arrival rate, the storage requirements
are trivially without limit: when events arrive faster than the system can process them,
events keep piling up. But even with a fixed event arrival rate, limiting storage size
inside a PARTE graph is far from trivial because of nondeterminism due to scheduling of
the concurrent evaluation at PARTE graph nodes. The global evaluation language g−→
describes how some PARTE graph node can be selected for evaluating a step at, but does
not specify which one.

In a real-world implementation, selecting which node to process at would be done by
a scheduling algorithm. Evaluation steps involving distinct subsets of nodes could be
executed in parallel (see section 6.1.8). Scheduling can cause temporary imbalance in
execution resources,11 which means that some subsets of the PARTE graph can make
progress while another subset does not. The side which received most compute resources
must store more data than ideal, since the lack of progress of the resource-starved side
prevents partial matches at the faster side from becoming stale, and hence prevents those
partial matches from being expired. Additionally, the resource-starved side must store
more data than ideal, in the form of messages stored into the inboxes which could not be
processed yet by lack of compute resources.

To tackle the problem of imbalance in allocated compute resources, the PARTE model
was presented with node inboxes, node outboxes, and partial match histories of fixed,
finite size. This entails that the size of a PARTE network is finite and fixed at PARTE
graph construction time. To accommodate this restriction, both g−→ and l−→ prevent
evaluation at a node when sufficient storage is not available at the node to execute the
evaluation step. What remains to be shown, then, is that a PARTE graph whose node
inboxes, node outboxes, and partial match histories are limited to a certain maximum size,
still implements the semantics of the rule set from which the graph was compiled.

The rules outlined in section 5.4 do not allow evaluation to produce incorrect tokens (as
we prove in chapter 8). Hence, there are only two conceivable ways in which a PARTE
graph can fail to correctly implement the semantics of the rule set from which the graph
was compiled: a.) either a node takes on an erroneous configuration from which it cannot
recover, or b.) multiple nodes take on configurations which jointly form an erroneous
configuration fromwhich they cannot recover. In both cases, the result is that progress can
no longer be made by the PARTE graph, i.e., that neither g−→ nor l−→ define evaluation

11A fair scheduler will continuously balance the load to overcome these imbalances, though imbalances will
intermittently exist.

125

Chapter 5: Operational Semantics for an LRP Language

steps of which the preconditions hold. We refer to the first situation as a blocked node, and
the second as a blocked subgraph.

Since PARTE disallows circular dependencies by enforcing stratification (as defined on
page 67), blocked subgraphs which are not caused by blocked nodes cannot occur. When
evaluation at a set of nodes is only temporarily impossible, but will become possible again
once other nodes make progress, those nodes are said to be in a waiting state.12 At any
point in time, a node is either evaluating, blocked, waiting, or suspended.

Definition 20: Evaluating state

A PARTE graph node n ∈ N is in an evaluating state during the evaluation of any
rule of g−→ or l−→.

Definition 21: Blocked state

A PARTE graph node n ∈ N is in a blocked statewhen it is not in an evaluating state,
but the number of tokens that would be put in its outbox by a single step of the
(Proc) rule of g−→ is larger than the capacity of the outbox, and the number of
tokens that would be put in its inbox by a single step of the (Prop) rule of g−→ is
larger than the capacity of the inbox.

Additionally, a two-input PARTE graph node n ∈ N is also in a blocked statewhen
both its partial match histories are filled with non-stale partial matches, i.e., when
none of the partial matches can be expired (as that would mean valid matches are
not detected by the system), yet there is no room for another match, such that none
of the stored partial matches can be expired.

Definition 22: Waiting state

A PARTE graph node n ∈ N is in a waiting statewhen n is not evaluating or blocked,
but either a.) the evaluation of l−→ at n cannot be initiated by the (Proc) rule in

g−→ because of the conditions in (Proc); b.) the conditions of the (Prop) rule in g−→
cannot be satisfied with n as the source node; or c.) there is no evaluation rule in

l−→ that allows evaluating at n.

Definition 23: Suspended state

A PARTE graph node n ∈ N is in a suspended state when it is not in a blocked state,
nor in a waiting state, nor in an evaluating state.

12Crucially, those other nodes must be able to make progress despite this node’s waiting state. Otherwise, the
nodes would be deadlocked. Deadlocked nodes would constitute a blocked subgraph, not a waiting subgraph.

126

5.3 Formal Concepts for an Operational Semantics of PARTElang

When evaluation at a node cannot proceed because storage is lacking, that node is either
waiting or blocked. When the situation can be resolved, the node is waiting for other
nodes to resolve the problem. Otherwise, it is indefinitely blocked: the problem lies
with the node that is blocked, and can hence only be resolved at that node, but since no
evaluation at that node is possible, the situation cannot be resolved.

When global progress in the PARTE network becomes impossible because storage is
lacking in some nodes, the entire network is blocked. It suffices that one node is blocked
for the entire network to become blocked: being blocked is irrecoverable, and global
process in a PARTE graph is not possible if parts are irrecoverably stuck.

Definition 24: Blocked PARTE network

A PARTE network is said to be blocked if at least one node is blocked.

5.3.7 Minimum Viable Size

From the notion of a blocked node we can derive the notion of a minimum viable size for the
partial match histories, for the outboxes, and for the inboxes of nodes. The minimum viable
size for one of these vectors is a node-specific amount that indicates how large that vector
must be to prevent the node from entering a blocked state. We prove in section 8.3 that
the equation defining the minimum viable size we define here for partial match histories
indeed prevents two-input nodes from reaching a blocked state because of filled partial
match histories.

Definition 25: Minimum viable partial match history size

The minimum viable partial match history size of a partial match history pm of a node
n is the smallest integer i for which holds that n cannot become blocked by lack of
storage space in that partial match history pm if and only if |pm| ≥ i.

Every (anti-)join defines temporal (anti-)join-constraints. These constraints define a time
window. Furthermore, for each activation side of a (anti-)join, a partial match arrival rate
is defined (definition 14, on page 121). Consider a two-input PARTE graph node with a
time window of W time units, and a partial match arrival rate of r per time unit for one
of the activation sides. We prove in section 8.3 that the minimum viable partial match
history size for the opposite activation side of that node is r×W + 1.

Definition 26: Minimum viable outbox size

The minimum viable outbox size of a node n is the smallest integer i for which holds
that n cannot become blocked by lack of space in its outbox t iff

∣∣t∣∣ ≥ i.

127

Chapter 5: Operational Semantics for an LRP Language

For inboxes and outboxes, the proofs are sufficiently simple to be included in the running
text below.

Statement

The minimum viable outbox size of a two-input node is the size of the largest
partial match history.

Proof.

(i.) The (Proc) rule of g−→ transfers messages to an outbox at the granularity of one
step of l−→, the minimum viable outbox size is at least the maximal size of the set
of tokens generated in one step of l−→ at n.

(ii.) The (Prop) rule of g−→ transfers tokens out of a node’s outbox one by one, so to
ensure this can be done, the minimum viable outbox size is at least one.

(iii.) From (i.) and (ii.) it follows that the minimum viable outbox size of a node n is
the maximum of one and the cardinality of the set of tokens generated by a single
step of l−→ at n. This latter is bounded by the size of the partial match histories of
n: a relational (anti-)join between one element and a set of x elements produces at
most the Cartesian product of both sides, i.e., at most x elements.

From (iii.) it follows that the minimum viable outbox size is dictated by the partial match
history size.

The minimum viable outbox size of an entry node, an alpha node, and production node is
trivially one: for each received token, at most one token can be generated. The minimum
viable outbox size of a terminal node is trivially zero: terminal nodes cannot produce new
tokens.

Definition 27: Minimum viable inbox size

The minimum viable inbox size of a node n is the smallest integer i for which holds
that n cannot become blocked by lack of space in its inbox mn iff |mn| ≥ i.

Statement

The inbox of n, the minimum viable inbox size of all nodes is |{↘, ↓,↙}|, i.e.,
three.

Proof.

(i.) The (Prop) rule of g−→ transfers messages to an inbox one by one.

128

5.4 The Featherweight PARTE Model

(ii.) Every node except entry nodes have at most one predecessor per activation side.

(iii.) As per definition 21, a blocked two-input node whose outbox and partial match
history is not blocked, requires a single token from one of both activation sides to
become unstuck.

From (i.) through (iii.), it suffices to have one slot in a node’s inbox per activation
side.

5.4 The Featherweight PARTE Model

The rudimentary model defined in section 5.2 sketches the foundations of a model for
reactive, distributed complex event detection. As we announced at its introduction, the
rudimentary model has a number of shortcomings. In section 5.3, we provided the
foundations for reasoning about those shortcomings. This section will now make the
shortcomings more concrete, and then define a model that tackles those shortcomings:
the Featherweight PARTE model.

5.4.1 Shortcomings of the First, Rudimentary PARTE Model

With the relevant concepts introduced in section 5.3, the shortcomings of the rudimentary
PARTE model can concisely be summarized:

• Stale partial matches are not expired.

• Negation spuriously signals that no match is found, when it already signaled that
before for the same event, or when a match can still occur.

• The size of the inbox, the outbox, and the partial match histories of PARTE graph
nodes is not specified. In the rudimentary model there is no way of knowing what
the minimum viable sizes for these vectors are. At any given static size, the vectors
might be too small to perform the correct matching. In the case of dynamically
resized vectors, the size can grow arbitrarily large, preventing strongly reactive
enumeration of the elements inside.

• Evaluation in the rudimentarymodel uses expressions of the form has-room-for(_, |_|).
Such steps are not really evaluation steps: in the rudimentary model, evaluation
cannot know howmany results will be generated by an evaluation step, before taking
that step. The model can hence not determine whether there will be sufficient room.
An implementation could optimistically start evaluation, but if it then discovers
that the evaluation should enter a waiting state, issues could arise in one of two
ways: the execution stack of the evaluation either is stored, or it is discarded. The

129

Chapter 5: Operational Semantics for an LRP Language

former case introduces a hidden spatial cost. The latter case introduces a hidden
temporal cost from repeatedly starting evaluation, and stopping when the unmet
condition is reached. Either solution undermines strong reactivity. A proper model
only depends on conditions which can be checked up front.

The remainder of this section defines the Featherweight PARTE model, fwPARTE for
short. As with the definition of the rudimentary PARTE model in section 5.2, we define
all semantic constructs in detail. We reuse the notational conventions introduced in that
section. Since the big picture should be clear from that section, we structure the definition
of fwPARTE in a bottom-up fashion: we specify the semantic constructs that form the
events, then move to tokens and graph nodes. Finally, we define the local evaluation
language and the global evaluation language.

5.4.2 Events

The most basic level of the semantics remains unchanged from the rudimentary model of
PARTE: events consist of a template identifier, a mapping of attributes to values, and the
timestamp at which the event occurred:

Element ∈ Set Structure Name

v ∈ V ⊂ R Value
θ ∈ Θ ⊂ R Timestamp
ιt ∈ IT Template identifier
ιa ∈ IA Attribute identifier

attrs ∈MIA⇀V = IA ⇀ V Attributes
e = E〈ιt, attrs, θ〉 ∈ E = IT ×MIA⇀V ×Θ Event

Again, events are written as a tagged tuple E〈ιt, attrs, θ〉 whenever their constituents are
relevant to the evaluation rule, or abbreviated as e when they are not. Events consist of a
template identifier ιt, a set of values modeled as a mapping from attribute identifier to
value, and the timestamp at which the event occurred.

5.4.3 Tokens

To deal with the shortcomings of the rudimentary PARTE model, fwPARTE keeps
track of the possible timestamps of future events at any point in the PARTE graph.
Since the fwPARTE model assumes a distributed memory model, only asynchronous
communication is available. Timing datamust be communicated bymeans ofmessages. To
keep themessaging load low, timing data should be piggybacked on existingmessage send
as much as possible. Concretely, the ideal situation is one where all timing information

130

5.4 The Featherweight PARTE Model

necessary for the correct evaluation of a rule set can be communicated by adding only a
constant number of timestamps to alpha and beta tokens that would have been sent in
a system following the rudimentary PARTE model. The Featherweight PARTE model
partially achieves this goal, but cannot fully achieve it in the context of negation.13

In fwPARTE, events are often wrapped in tokens. Tokens normally wrap one or more
events. Two kinds of tokens exist: alpha tokens and beta tokens. Unlike in the rudimentary
PARTE model, in fwPARTE not all tokens wrap an event. Instead, some are merely sent
to keep the logical clocks up to date. Such tokens contain a “no change” indicator (⊥)
instead where the event data would otherwise be. Hence, alpha tokens wrap zero or one
event, and beta tokens wrap zero, one, or more events. “No change” tokens constitute a
bookkeeping overhead compared to the rudimentary model of PARTE, but are necessary
to guarantee correctness in the context of negation, as we show in section 8.4.

In addition to either the data of exactly one event, or a “no change” indicator ⊥, each
alpha token contains metadata consisting of a lower bound on timestamps `, as well as
the unique identifier of the source of this information ιs. Event sources are entities that
can either be part of a PARTE graph (production nodes, see below), or lie outside of the
PARTE model. In the latter case, the only part of the event source known to PARTE, is
their identifier. The PARTE model only needs to know which source produces a certain
event, i.e., the event source identifier ιs ∈ IS. In turn, event sources need only regularly
generate alpha tokens with non-decreasing lower bounds on event timestamps.

Each beta token wraps metadata consisting of a lower bound on timestamps `map, in
addition to either a partial match, or ⊥. A partial match pm maps an event identifier to
an event. Each beta token with a partial match contains data for one or more events. The
semantic constructs related to tokens in fwPARTE are defined as follows:

Element ∈ Set Structure Name

ιe ∈ IE Event identifier
ιs ∈ IS Source identifier

pm ∈ MIE⇀E Partial match
⊥ ∈ “No change” indicator
` ∈ L ⊆ Θ Temporal lower bound

`map ∈ MIE⇀L Lower bound map
pα ∈ E ∪ {⊥} Alpha payload
pβ ∈ MIE⇀E ∪ {⊥} Beta payload

t ∈ T = Tα ∪ Tβ Token
tα = Tα〈ιs, `, pα〉 ∈ Tα = IS × L× (E ∪ {⊥}) Alpha token

tβ = Tβ〈`map, pβ〉 ∈ Tβ = MIE⇀L × (MIE⇀E ∪ {⊥}) Beta token

13Section 5.6 discusses how the extra message sends can be omitted when no negation is involved.

131

Chapter 5: Operational Semantics for an LRP Language

5.4.4 Graph Nodes

As in the rudimentary model of PARTE, the Featherweight PARTE model represent the
graph encoding a rule set as a set of nodes. The nodes store the out-edges as part of
their state. In the Featherweight PARTE model, the set N consists of tuples of the form
N〈ιn, s, m, t, ndata〉. The Featherweight PARTE model defines an additional type of node:
entry nodes. Hence, the set D of node local data is defined as Dentry ∪Dalpha ∪Djoin ∪
Dnot ∪Dterminal ∪Dproduction. Unchanged are the node identifier, successors, and messages,
which still take the following forms:

Element ∈ Set Name

ιn ∈ IN Node identifier
s ∈ IN × {↘, ↓,↙} Successor

m ∈ {↘, ↓,↙}× T Message

Nodes are uniquely identified by their node identifier ιn. The set of successors, s, refers to
a node by its identifier, and indicates from which activation side the successor relation to
that node is enacted. A message m represents a chunk of communication between nodes
in the graph, and indicates from which side the recipient is activated, as well as the token
to be processed.

All tokens that need to be processed at this node are contained in the node’s inbox m, in
order of arrival, together with the side by which the node is activated by the message.
The vector of tokens t plays a complementary role, serving as the node’s outbox. A rule of
the global evaluation language g−→makes use of these to percolate tokens through the
graph: messages in a node’s outbox t are appended to the inboxes of all the successor
nodes listed in s, using the activation side listed in s for the new message. The size of
m must be set to the minimum viable inbox size. We proved in section 5.3.7 that a size
of three is a proper minimum inbox size for all nodes. The size of t must be set to the
minimum viable outbox size, i.e., sufficient room to accept all tokens produced by a step
in the local evaluation language at the node. For join-nodes this means the largest of both
minimum viable partial match history sizes. For not-nodes this is the minimum viable
left partial match history size. For other types of nodes,

∣∣t∣∣ = 1.

5.4.5 Node-local Data

Six types of nodes exist in fwPARTE. The semantic constructs of the six types of node-local
data are defined as follows:

132

5.4 The Featherweight PARTE Model

Element ∈ Set Name

Dentry〈`map, ιt〉 ∈ Dentry Entry node-local data
Dalpha〈cα, ιe〉 ∈ Dalpha Alpha node-local data

Djoin〈cβ, `map, `, pm, e, ιe↘ , ιe↙ , dist〉 ∈ Djoin Join-node-local data
Dnot〈cβ, `map, `, pm, e, ιe↘ , ιe↙ , dist〉 ∈ Dnot Not-node-local data

Dterminal〈〉 ∈ Dterminal Terminal node-local data
Dproduction〈ιs, ge

�, g`�〉 ∈ Dproduction Production node-local data

These are largely identical to the ones defined by the rudimentary PARTE model on
page 106, with four exceptions:

• node-local data for the new “entry node” is defined,

• the template identifiers of alpha nodes are moved to their predecessor entry nodes,

• node-local data of join-nodes and not-nodes keeps track of lower bounds for their
left and right event identifiers, and

• the partial match histories of join-nodes and not-nodes are defined to be limited in
size: they can not exceed their minimum viable size.

As with the definition of the rudimentary PARTE model higher up in this chapter, a more
detailed description of these node-local data elements will be given in the next section.
The next section describes how the local evaluation language l−→ transforms tokens and
node-local data to new tokens and a new state for node-local data.

For completeness, we first define the remaining semantic constructs:

Element ∈ Set Name

cα ∈ E→ B Alpha condition
cβ ∈ (MIE⇀E)→ B Beta condition
ge
� ∈ (MIE⇀E)→ E Event generator expression

g`� ∈ (MIE⇀L)→ L Temporal lower bound generator expression
∆θ ∈ ∆Θ = Θ Temporal distance

dist ∈MIE⇀(∆Θ×∆Θ) Temporal distance function

These elements, too, are largely identical to those defined in the rudimentary PARTE
model on page 108. One new element was added: a temporal lower bound generator
expression. In the order listed above: alpha and beta conditions can be applied to events

133

Chapter 5: Operational Semantics for an LRP Language

or partial matches, respectively, to verify whether the condition holds. Event generator
functions create new events based on a partial match, e.g., summing up amounts in a set of
financial transactions. The novel temporal lower bound generator expressions calculate a
new lower bound on timestamps, based on a set of lower bounds on timestamps. Temporal
distances are differences between timestamps, and temporal distance functions specify
how far from a reference event pattern another event pattern can match, as explained in
the description of join- and not-nodes in section 5.2.2. Note again that a temporal distance
may be negative: the order in which event patterns are specified in PARTElang does not
dictate the order in which the events must occur to match; order is only determined by
the explicit temporal distances.

5.4.6 The Local Evaluation Language

This section defines the local evaluation language l−→ of the Featherweight PARTE
model. A step in l−→ takes a three-tuple in D× {↘, ↓,↙}× T, and produces a pair
in D× P(T). D is Dentry ∪Dalpha ∪Djoin ∪Dnot ∪Dterminal ∪Dproduction. The directions
{↘, ↓,↙} indicate the side from which the node gets activated, and T are tokens.

For instance, the notation 〈ndata,↘, t〉 l−→〈ndata′, t′〉 signifies a step in l−→where a node
(represented by its node-local data ndata) gets activated from the left (↘) by token t,
resulting in the new state for node-local data ndata, namely ndata′, and the production of
all tokens in t′. All tokens in t′ are to be sent to the successors of the node of which ndata
was the node-local data, and that node has to be removed and replaced by a node with
identical identifier, successors, inbox, and outbox, but with ndata′ as the node-local data.
These last few constraints are tackled by the global evaluation language g−→, defined
in the section after this one. The local evaluation language l−→ is responsible for the
generation of ndata′ and t′.

We now define the local evaluation language l−→, organized by the type of the node-local
data it acts on.

Entry Nodes

Entry nodes manage the influx of all events of the same type from multiple sources.

One entry node must exist per event template. Entry nodes only process events of the
correct template; the event sources must send events to the correct entry nodes. Entry
nodes consolidate the distributed view held by the different event sources for a certain
event type. Specifically, they determine the global lower bound on future timestamps
of events for their type. The lower bound must be non-decreasing between consecutive
events. Events’ timestamps must be at least as large as the lower bound stored in the
previous alpha token sent along the same path of the graph. If this constraint is violated,

134

5.4 The Featherweight PARTE Model

the entry node (as well as the entire fwPARTE graph) is in an invalid configuration, and
processing cannot continue.

The node-local data of entry nodes is stateful, as they need to keep track of the non-
decreasing lower bound on timestamps. They must guarantee that tokens they receive
from a certain source are propagated in order. However, no order must be maintained
between the reception of tokens from different sources. Indeed, the order in which tokens
from multiple event sources are received, is not defined by the PARTE model up to the
point at which the interleaving between the event streams is serialized by an entry node,
thereby explicitly imposing an order. This entails that events are not guaranteed to be
processed in order when multiple sources of a single event type exist. Since the lower
bound on the timestamps is non-decreasing, however, progression of time can be tracked.
Since event correlation (and importantly: negation) must specify temporal constraints,
presence or absence of matches does not depend on the order in which events arrive. We
prove this in section 8.1.

Three invariants are assumed to hold at entry nodes:

A lower bound must be known for each event source that can activate the entry node,
i.e., the entry node must be aware of the existence of the source. If an alpha
token generated by event source ιs activates an entry node, it must hold that
ιs ∈ dom(s`map).

The lower bound for a source must not be larger than the token’s lower bound, i.e., the
lower boundmust not retroactively be lowered. If an alpha token Tα〈ιs, `, _〉 activates
an entry node, it must hold that s`map[ιs] ≤ `.

The lower bound for a source must not be larger than the token’s event’s timestamp,

i.e., the event must have occurred at a later timestamp than the timestamp up to
which the event source asserted to have presented all events. If an alpha token
Tα〈_, _, e〉 activates an entry node, it must hold that s`map[ιs] ≤ e.θ.

These invariants are enforced initially by construction (section 5.5), and afterwards by the
rules of l−→ defined below. We prove that these rules uphold the invariants in chapter 8.

Evaluation of an entry node’s data in the local evaluation language l−→ proceeds as
follows:

(Entry-NoMatchTemplate)

e = E〈ιte, _, _〉 ιtn 6= ιte

〈Dentry〈s`map, ιtn〉, ↓, Tα〈ιs, `, e〉〉 l−→〈Dentry〈s`map, ιtn〉, ∅〉

135

Chapter 5: Operational Semantics for an LRP Language

(Entry)

e = E〈ιte, _, _〉 ιtn = ιte
s`map′ = s`map[ιs 7→ `] tα = {Tα〈ιs, min(codom(s`map′)), e〉}
〈Dentry〈s`map, ιtn〉, ↓, Tα〈ιs, `, e〉〉 l−→〈Dentry〈s`map′, ιtn〉, tα〉

(Entry-⊥)

s`map′ = s`map[ιs 7→ `] tα = {Tα〈ιs, min(codom(s`map′)),⊥〉}
〈Dentry〈s`map, ιtn〉, ↓, Tα〈ιs, `,⊥〉〉 l−→〈Dentry〈s`map′, ιtn〉, tα〉

In brief, activation of an entry node can proceed in one of three ways, depending on
whether the token contains an event of the wrong template, an event of the right template,
or a “no change” indicator ⊥. When an event of the wrong template is encountered, it is
ignored without modifying the entry node’s node-local data (Entry-NoMatchTemplate).
When the token carries an event e of the correct template, evaluation proceeds as per the
rule (Entry). First, an updated source-to-lower-bound map is computed: s`map′. s`map′

records the new lower bound ` for ιe on top of the information stored previously in s`map.
Second, the singleton set tα is created containing an alpha token sharing the input token’s
source and event, but carrying the minimum of the lower bounds stored in s`map′. Finally,
a pair combining the updated state of the entry node’s local data Dentry〈s`map′, ιtn〉 and
tα is produced.

When the token carries a “no change” indicator⊥ instead of an event, evaluation proceeds
as per rule (Entry-⊥). Since no actual event is propagated, no constraint must be enforced.
(Entry-⊥) proceeds analogously to (Entry): the new lower bound for ιs is recorded into
s`map, tα is constructed carrying the data of the incoming alpha token, but with the lower
bound replaced by the lowest lower bound in s`map, and a pair containing the updated
node-local data and tα is produced.

Alpha Nodes

Alpha nodes filter events based on the event’s attributes.

Alpha nodes are the direct successors of entry nodes. As such, the type of events that
can enter an alpha node is known up front. Alpha nodes enforce a set of constraints
encoded in cα. Alpha tokens whose events conform to cα are wrapped in beta tokens to be
propagated to successors. Events whose attributes fail at least one of the constraints are
discarded.

As stated in the section on the rudimentary PARTE model above, PARTE differs from the
traditional Rete model Forgy [59] in two ways with respect to alpha nodes. First, instead
of having alpha and beta memories, events and partial matches are explicitly stored in
the PARTE graph nodes that need the data. Second, alpha nodes produce beta tokens
instead of alpha tokens. As such, an alpha node is responsible for checking all constant

136

5.4 The Featherweight PARTE Model

constraints on events (e.g., that an attribute is larger than five), as well as intra-event
constraints (e.g., that one attribute is larger than another). All these requirements are
abstracted over in the model, and must jointly be encoded in cα.

Evaluation at an alpha node by the local evaluation language l−→ proceeds as follows:

(Alpha-⊥)

〈Dalpha〈cα, ιe〉, ↓, Tα〈_, `,⊥〉〉 l−→〈Dalpha〈cα, ιe〉, {Tβ〈[ιe 7→ `],⊥〉}〉

(Alpha-NoMatchConstraint)

cα(e)
α−→ false

〈Dalpha〈cα, ιe〉, ↓, Tα〈s, `, e〉〉 l−→〈Dalpha〈cα, ιe〉, ∅〉

(Alpha-Match)

cα(e)
α−→ true

〈Dalpha〈cα, ιe〉, ↓, Tα〈s, `, e〉〉 l−→〈Dalpha〈cα, ιe〉, {Tβ〈[ιe 7→ `], [ιe 7→ e]〉}〉

The fwPARTE evaluation rules at alpha nodes differ from those in the rudimentary model
in three ways. First, more data is contained in alpha and beta tokens.14 Second, a new rule
(Alpha-⊥) is added. (Alpha-⊥) defines that “no change” alpha tokens are converted into
“no change” beta tokens, and propagated. Third, the rule (Alpha-NoMatchTemplate)
is removed, as alpha tokens of non-matching templates can no longer arrive, since they
would have been filtered out by the alpha node’s predecessor entry node. The remainder of
the semantics is the same. To reiterate, for tokens with event data, evaluation proceeds by
subjecting the event e to the alpha condition cα. Iff cα(e) evaluates to true, a corresponding
beta token is constructed. Otherwise, when cα(e) evaluates to false, no beta token is
constructed.

Join-Nodes

Join-nodes still perform an incremental relational join between the stream of beta tokens
arriving from their left predecessor, and the stream of beta tokens arriving from their
right predecessor.

In addition to storing the partial matches they receive, join-nodes track the lower bound
on event times for both the left and right predecessor.

Since join-nodes merge two streams of events, they have a non-trivial job with respect
to managing timestamps. Beta tokens created by a join-node must contain temporal

14Alpha tokens additionally contain a source identifier (omitted as a wildcard “_” in the rule) and a lower
bound `. Beta tokens additionally contain a mapping from event identifier to lower bound.

137

Chapter 5: Operational Semantics for an LRP Language

data of both the left partial match and the right partial match it is joining. The first part
hereof was already formalized in the rudimentary model of PARTE: the mapping from
event identifier to events originating from left partial matches (a pm↘), is extended with
a mapping from the right event identifier to the right event’s timestamp (a pm↙, e.g.,
[ιe↙ 7→ e↙]).

In addition, though, in the Featherweight PARTE model the lower bound on event times
must be computed and propagated to successors whenever a join is successfully made.
As mentioned before, a join-node’s behavior is exceptional in that in response to the
reception of a token from one of the predecessors, possibly multiple stored tokens that
were received from the predecessor at the opposite side must be taken into account. New
tokens generated by a join-node can depend on data from two sources:

• tokens stored in the partial match histories; and

• tokens still to receive from predecessors.

Both data sources must hence be made available.

The first is trivially available in the form of the partial match histories themselves (i.e., in
pm or in e). For tokens still to receive from predecessors, the lower bounds are stored as
`map↘ for left predecessors, and `↙ for right predecessors.15 The lower bounds on event
timestamps for each event identifier are then computed as the minimum of the lower
bound declared by the predecessor (i.e., one of the lower bounds stored in `map↘ or the
lower bound stored in `↙), and the oldest concrete event time of an event whose data is
stored in one of the join-node’s partial match histories.16

Evaluation at a join-node by the local evaluation language l−→ proceeds as follows in the
Featherweight PARTE model:

(Join-↘-⊥)

e′ = expire↙(e, expiration-time(dist, `maptβ
))

`mapimplicit = min(timestamps(pm))[ιe↙ 7→ min(timestamps(e′))]
`mapprop = min(`mapimplicit, `maptβ

[ιe↙ 7→ `↙])

〈Djoin〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈`maptβ
,⊥〉〉

l−→〈Djoin〈cβ, `maptβ
, `↙, pm, e′, ιe↘ , ιe↙ , dist〉, {Tβ〈`mapprop,⊥〉}〉

15Any complexity caused by the existence of multiple event sources for a single event identifier can be
abstracted over thanks to the work done by entry nodes.

16Because of nondeterminism in the interleaving of messages from the left and right predecessor nodes,
join-nodes can generate tokens out-of-order. A new token arriving from e.g., the left predecessors might match
with an old token that was previously received on the right side, even when an earlier left token only matched
younger right tokens. The computation of the lower bound on timestamps sketched in the preceding paragraph
takes this into account. Since PARTE’s correctness is based on the lower bounds on event timestamps instead of
on concrete timestamps, this is acceptable behavior.

138

5.4 The Featherweight PARTE Model

(Join-↙-⊥)

pm′ = expire↘(pm, `tβ
)

`mapimplicit = min(timestamps(pm′))[ιe↙ 7→ min(timestamps(e))]
`mapprop = min(`mapimplicit, `map↘[ιe↙ 7→ `tβ

])

〈Djoin〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ `tβ
],⊥〉〉

l−→〈Djoin〈cβ, `map↘, `tβ
, pm′, e, ιe↘ , ιe↙ , dist〉, {Tβ〈`mapprop,⊥〉}〉

(Join-↘)

has-room-for(pm, 1) pm′ = pm · pmtβ

e′ = expire↙(e, expiration-time↙(dist, `maptβ
))

window↙ = semantic-window({[ιe↙ 7→ e] | e ∈ e′}, lifetime↘(dist, timestamps(pmtβ
)))

pmnew = {pmtβ
· pm↙ | pm↙ ∈ window↙, cβ(pmtβ

· pm↙)
β−→ true}

`mapimplicit = min(timestamps(pm′))[ιe↙ 7→ min(timestamps(e′))]
`mapprop = min(`mapimplicit, `maptβ

[ιe↙ 7→ `↙])

〈Djoin〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈`maptβ
, pmtβ

〉〉
l−→〈Djoin〈cβ, `maptβ

, `↙, pm′, e′, ιe↘ , ιe↙ , dist〉, {Tβ〈`mapprop, pm〉 | pm ∈ pmnew}〉

(Join-↙)

pm′ = expire↘(pm, `tβ
)

has-room-for(e, 1) e′ = e · etβ

window↘ = semantic-window(pm′, lifetime↙(dist, [ιe↙ 7→ timestamps(etβ
)]))

pmnew = {pm↘ · pmtβ
| pm↘ ∈ window↘, cβ(pm↘ · pmtβ

)
β−→ true}

`mapimplicit = min(timestamps(pm′))[ιe↙ 7→ min(timestamp(e′))]
`mapprop = min(`mapimplicit, `map↘[ιe↙ 7→ `tβ

])

〈Djoin〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ `tβ
], [ιe↙ 7→ etβ

]〉〉
l−→〈Djoin〈cβ, `map↘, `tβ

, pm′, e′, ιe↘ , ιe↙ , dist〉, {Tβ〈`mapprop, pm〉 | pm ∈ pmnew}〉

In contrast to the semantics of the rudimentarymodel, in fwPARTE the rules for evaluation
at join-nodes must handle “no change” tokens. The first two rules shown above, handle
such tokens. The rules update the state of the join-nodes based on the temporal lower
bounds, andpropagate “no change” to the join-nodes’ successors. Following our notational
conventions, the rule for left activation by “no change” tokens at join-nodes is called
(Join-↘-⊥), while the rule for right activation by “no change” tokens at join-nodes is
called (Join-↙-⊥).

139

Chapter 5: Operational Semantics for an LRP Language

(Join-↘-⊥) defines that evaluation of l−→ can proceed at a join-node if a beta token
Tβ〈`maptβ

,⊥〉 is present for left activation, and room exists in the left partial match history.
Since this rule handles a left activation, it can render partial matches from the opposite
partial match history, i.e., from the right partial match history, stale. Evaluation hence
takes the following steps:

• First, an expiration time is determined: timestamp such that each right partial match
stored in e older than that expiration time is stale. The expiration time is determined
by the join-node’s static temporal distances (i.e., dist) and the concrete temporal
lower bounds of the new token (i.e., `maptβ

). What remains of the partial match
history after expiring the stale matches is called e′.

• Second, the implicit temporal lower bounds are computed. Implicit temporal lower
bounds are the temporal lower bounds due to the partial matches that are stored
in the partial match histories. Every non-stale partial match can — by definition —
still contribute to a valid partial match in a next step. Their timestamps are hence
possible timestamps for partial matches that will be generated by the join-node, i.e.,
the temporal lower bounds at that join-node are at least as small as the stored partial
matches’ timestamps.

• Third, the propagated temporal lower bounds `mapprop are computed. These are
computed as the minimum of the explicit lower bounds (i.e., the updated `map↘
and the updated `↙) and the implicit lower bounds for each event identifier. Finally,
a single “no change” token is produced wrapping `mapprop.

(Join-↙-⊥) mirrors this behavior, but for right activation. Since expiration has to happen
based on the singular right event’s timestamp, computing the expiration time is trivial, so
no call to expiration-time is needed.

Since the rules of the rudimentary model are not concerned with temporal lower bounds,
and since (Join-↘-⊥) and (Join-↙-⊥) are concerned only with temporal lower bounds,
(Join-↘) and (Join-↙) are largely just the combination of a rudimentary rule and the “no
change” rule for one of both activation sides. As such, evaluation of (Join-↘) proceeds as
follows if and only if there is room in the partial match history pm:

• First, the partial match from the beta token is added to the partial match history,
yielding pm′.

• Second, stale matches in e expire, yielding e′.

• Third, the lower and upper bound on timestamps for partial matches matching the
incoming token is computed from the temporal constraints. All partial matches in e′

between those bounds form the semantic window.

• Fourth, the new partial matches pmnew are computed as the set of all partial matches
formed by the partial match that arrived, extended with all partial matches in the
semantic window, for which the non-temporal join-criteria cβ hold.

140

5.4 The Featherweight PARTE Model

expiration-time↙ : (IE → ∆Θ
2)→ MIE⇀Θ → Θ

expiration-time↙(dist, `map) = max({−∞} ∪ {`map(ιe) + dist(ιe)min | ιe ∈ dom(`map)})

expire↘ : P(MIE⇀E)→ Θ→ P(MIE⇀E)

expire↘(pm, θexpire) = {pm | pm ∈ pm, ∀ιe ∈ dom(pm) : pm(ιe).θ ≥ θexpire}

expire-negated↘ : P(MIE⇀E)→ Θ→ (P(MIE⇀E)×P(MIE⇀E))

expire-negated↘(pm, θexpire) =

〈 {pm | pm ∈ pm, ∀ιe ∈ dom(pm) : pm(ιe).θ ≥ θexpire},
{pm | pm ∈ pm, ∀ιe ∈ dom(pm) : pm(ιe).θ < θexpire}〉

expire↙ : P(E)→ Θ→ P(E)
expire↙(e, θexpire) = {e | e ∈ e, e.θ ≥ θexpire}

Figure 5.5: The auxiliary functions that are specific to the Featherweight PARTE model —

These are used in addition to those of figure 5.4. Lines in green list the types of the functions, while lines in

black list their behavior.

• Fifth, the implicit temporal lower bounds on timestamp are computed as the
timestamps of the stored partial matches.

• Sixth, the propagated lower bounds are computed as the minimum of the implicit
and the explicit lower bounds.

• Finally, for each partial match in pmnew, a beta token is produced, communicating
the propagated temporal lower bounds.

(Join-↙) proceeds similarly, but handles a right activation instead of a left activation.

The auxiliary functions lifetime, timestamps, semantic-window↘, and semantic-window↙
used in the inference rules above are the same as those defined in figure 5.4 for the rudimen-
tary PARTE model. The functions expiration-time↙, expire↘, expire↙, and expire-negated↘
are defined in figure 5.5. Note that the definitions entail that ∀x, y : li f etime(x, y)min =
expiration-time(x, y). In other words: the expiration time of a partial match is equal to the
time at which the lower temporal bound of the opposite side irrevocably falls outside of
its lifetime. This is in line with the definition of staleness from definition 17.

Not-Nodes

Remember from page 116 that not-nodes or anti-join-nodes implement negation in the
PARTE model. We refer to that section for an explanation of their goal. We only repeat

141

Chapter 5: Operational Semantics for an LRP Language

the crucial difference between join-nodes and not-nodes: not-nodes propagates tokens
when the relational join fails, and discards tokens for which the join succeeds.

In fwPARTE evaluation at a not-node by the local evaluation language l−→ is also
somewhat similar to the evaluation at a join-node, though many subtle differences exist.

It proceeds as follows:

(Not-↘-⊥)

e′ = expire↙(e, expiration-time(dist, `maptβ
))

`mapimplicit = min(timestamps(pm))
`mapresult = min(`mapimplicit, `maptβ

)

〈Dnot〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈`maptβ
,⊥〉〉

l−→〈Dnot〈cβ, `maptβ
, `↙, pm, e′, ιe↘ , ιe↙ , dist〉, {Tβ〈`mapresult,⊥〉}〉

(Not-↙-⊥)

〈pm′, pmexpired〉 = expire-negated↘(pm, `tβ
)

`mapimplicit = min(timestamps(pm′))
`mapresult = min(`mapimplicit, `map↘)

t = {Tβ〈`mapresult, pm〉 | pm ∈ pmexpired} t {Tβ〈`mapresult,⊥〉}
〈Dnot〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ `tβ

],⊥〉〉
l−→〈Dnot〈cβ, `map↘, `tβ

, pm′, e, ιe↘ , ιe↙ , dist〉, t〉

(Not-↘-Match)

has-room-for(pm, 1)
e′ = expire↙(e, expiration-time(dist, `maptβ

))

window↙ = semantic-window(e′, lifetime↙(dist, timestamps(pmtβ
)))

∃e ∈ window↙ : cβ(pmtβ
· [ιe↙ 7→ e])

β−→ true}
〈Dnot〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈`maptβ

, pmtβ
〉〉

l−→〈Dnot〈cβ, `maptβ
, `↙, pm, e′, ιe↘ , ιe↙ , dist〉, ∅〉

142

5.4 The Featherweight PARTE Model

(Not-↘-NoMatch)

has-room-for(pm, 1)
e′ = expire↙(e, expiration-time(dist, `maptβ

))

window↙ = semantic-window(e′, lifetime↙(dist, timestamps(pmtβ
)))

∀e ∈ window↙ : cβ(pmtβ
· [ιe↙ 7→ e])

β−→ false}
pm′ = pm · pmtβ

〈Dnot〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↘, Tβ〈`maptβ
, pmtβ

〉〉
l−→〈Dnot〈cβ, `maptβ

, `↙, pm′, e′, ιe↘ , ιe↙ , dist〉, ∅〉

(Not-↙)

has-room-for(e, 1)

pm′ = {pm | pm ∈ pm, cβ(pm · [ιe↙ 7→ etβ
])

β−→ false}
〈pm′′, pmexpired〉 = expire-negated↘(pm′, `tβ

)

`mapimplicit = min(timestamps(pm′′))
`mapresult = min(`mapimplicit, `map↘)

t = {Tβ〈`mapresult, pm〉 | pm ∈ pmexpired} t {Tβ〈`mapresult,⊥〉}
〈Dnot〈cβ, `map↘, `↙, pm, e, ιe↘ , ιe↙ , dist〉,↙, Tβ〈[ιe↙ 7→ `tβ

], [ιe↙ 7→ etβ
]〉〉

l−→〈Dnot〈cβ, `map↘, `tβ
, pm′, e, ιe↘ , ιe↙ , dist〉, t〉

Evaluation rules (Not-↘-Match) and (Not-↘-NoMatch) jointly uphold the invariant
that left partial matches are stored in the left partial match history if and only if there
exists no right partial match which satisfied the anti-join-condition cβ when joined with
the new right partial match. Additionally, evaluation rule (Not-↙) filters the left partial
matches (i.e., pm) by removing those that satisfy the anti-join-condition cβ when joined
with the new right partial match (yielding pm′). This marks the first significant difference
with evaluation at join-nodes.

Upon activation from the right, expiration from the left partial match history has to
happen. Unlike in the case of join-nodes, evaluation at not-nodes uses an expire-negated↘
function. This function returns not just the non-stale partial matches, but instead splits
the partial matches into a stale and a non-stale subset: the second and first element in
the produced tuple. Due to the invariants described in the previous paragraph, the stale
partial matches that were still in the left partial match history, are stale matches for which
no matching right partial match exists. By definition of staleness, no matching right
partial matches can still occur later. Hence, these stale left partial matches are guaranteed
to not match with anything, or in other words: negation-as-failure succeeded for these
stale left partial matches. These matches are hence to be added to the outbox, to be
propagated to the successors. Note that this happens both in (Not-↙) and in (Not-↙-⊥):
the results are sourced only from the left partial match history, so even a ⊥ token on the

143

Chapter 5: Operational Semantics for an LRP Language

Side Matches in opposite? Do to pm Do to e Output

↘ matches in e - expire old -
↘ no matches in e append new pm expire old -
↙ matches in pm remove matching, expire old append new e all expired pms
↙ no matches in pm expire old append new e all expired pms

Figure 5.6: A summary of the behavior of not-nodes in fwPARTE — For each combination of

activation side and presence of matches in the opposite partial match history, changes to the partial match

histories and the tokens to produce are listed.

right suffices. Conversely, note how the rules for left activation cannot produce any tokens
containing actual partial matches: receipt of positive partial matches cannot prove the
validity of other positive partial matches. This marks the second significant difference
with evaluation at join-nodes.

The behavior of evaluation of the rules of l−→ at not-nodes is summarized in figure 5.6.

Production Nodes

As explained in section 5.2.6 on page 118, production nodes emit a new compound event
when a rule’s entire pattern is successfully matched.

Since production nodes produce events, they act as event sources. As indicated in the
definition of tokens (section 5.4.3), the Featherweight PARTEmodel requires knowledge of
event sources. Event sources must be identifiable by a unique identifier, thus production
nodes are allocated a unique event source identifier ιs ∈ IS. Similarly, to accommodate
the fwPARTE model, a lower bound ` must be computed, based on the lower bounds of
the tokens received by the production node. The expression that extracts a temporal lower
bound from the partial matches is typeset as g`�, in analog to ge

�. The temporal lower
bound generator expression must ensure that it generates non-decreasing values over
consecutive calls. It can assume that each of its arguments will receive a value at least as
large as in the previous call, since that invariant is upheld by the rest of the PARTE graph.

Of course, production nodes must have a rule for dealing with “no change” indicators as
well. To provide for all the changes listed above, the evaluation at a production node by
the local evaluation language l−→ proceeds as follows:

(Prod-⊥)

g`�(`maptβ
) −→ `

〈Dproduction〈ιs, ge
�, g`�〉, ↓, Tβ〈`maptβ

,⊥〉〉 l−→〈Dproduction〈ιs, ge
�, g`�〉, {Tα〈ιs, `,⊥〉}〉

144

5.4 The Featherweight PARTE Model

(Prod)

ge
�(pm) −→ e′ g`�(`maptβ

) −→ `

〈Dproduction〈ιs, ge
�, g`�〉, ↓, Tβ〈`maptβ

, pm〉〉 l−→〈Dproduction〈ιs, ge
�, g`�〉, {Tα〈ιs, `, e′〉}〉

Terminal Nodes

As explained in section 5.2.6 on page 118, terminal nodes represent the point at which an
entire LRP program is successfully matched. In the formal model, tokens are consumed
at terminal nodes by merely discarding them. Terminal nodes hence behave as follows:

(Term)

〈Dterminal〈〉, ↓, Tβ〈_, _〉〉 l−→〈Dterminal〈〉, ∅〉

5.4.7 The Global Evaluation Language

The previous sections defined the semantic constructs that make up the events, tokens, and
graph nodes, and defined how evaluation at a certain graph node takes place by means of
the local evaluation language l−→. This section now defines how tokens percolate through
the PARTE graph. The way tokens percolate through the PARTE graph is specified the
two inference rules of the global evaluation language g−→: (Proc) and (Prop). The graph
nodes in previous section were structurally identical to those in the rudimentary PARTE
model, save for modifications to the node-local data and the tokens. Since the global
evaluation language does not touch the internals of these structures, the rules remain
largely unchanged from those in section 5.2.5. One difference exists in (Prop): tokens are
only propagated if all recipients have room for a token of that activation side, to prevent
exhausting space in the inboxes. This effectively introduces back-pressure (see section 2.3.2)
into the system.

(Proc)

〈data, side, t〉 l−→〈data′, t′〉 has-room-for(t,
∣∣∣t′∣∣∣)

{N 〈ιn, s, 〈side, t〉 ·m, t, data〉} tNrest
g−→Nrest t {N 〈ιn, s, m, t � t′, data′〉}

(Prop)

Nb = N ∩ {N 〈ιb, _, _, _, _〉 | 〈ιb, _〉 ∈ sa}
∀N 〈_, _, mb, _, _〉 ∈ Nb : has-room-for(mb, 1),@〈side, _〉 ∈ mb

N′b =
{
N〈ιb, sb, mb · 〈side, t〉, tb, datab〉 | N 〈ιb, sb, mb, tb, datab〉 ∈ Nb, 〈ιb, side〉 ∈ sa

}
{N 〈ιa, sa, ma, t · ta, dataa〉} tNb tNrest

g−→ {N〈ιa, sa, ma, ta, dataa〉} tN′b tNrest

145

Chapter 5: Operational Semantics for an LRP Language

5.5 Compiling PARTElang Programs into Featherweight

PARTE Graphs

As mentioned repeatedly in this chapter, fwPARTE is inspired heavily by the Rete
algorithm by Forgy [59]. The Rete algorithm prescribes two phases: the first phase
analyses a set of declarative rules and compiles a DAG representing the constraints. The
second phase incrementally matches data against the rule set’s constraints by percolating
tokens through the DAG. Section 5.4 described PARTE’s version of the second, dynamic,
phase: the fwPARTE operational semantics. However, fwPARTE does not merely ascribe
different semantics to the elements of a Rete graph. Instead, fwPARTE defines a slightly
different set of elements. As such, Rete’s first, static phase cannot be reused as-is.

This section defines PARTE’s version of the static rule set analysis and graph construction
phase. We give a declarative description specifying which constraints a constructed graph
should conform to, instead of an imperative description specifying how the graph should
be created, as PARTE’s approach to constructing a DAG is neither novel nor important.

The remainder of this section separates this first phase — the construction of the graph —
into a series of logical phases. Figure 5.7 shows the skeleton of a rule written in PARTElang,
and depicts the state of the fwPARTE network after each of the four phases is completed.

5.5.1 Registering Event Templates

As a first step towards compiling the PARTE graph, the types of events referred to in the
rule set must be gathered. For each template mentioned in some rule of the rule set, an
entry node must be constructed. The entry nodes must know of all event sources that
may send events to them. For completeness, part 1 of figure 5.7 depicts the graph at that
point in the graph construction, though the graph is still just a set of disconnected entry
nodes at that point.

Consider this event source configuration:

Source #1 emits events adhering to template A;

Source #2 emits events adhering to template B, C and D; and

Source #3 emits events adhering to template B and E.

The node labeled “Entry-A” in figure 5.7 must then be initialized to the following fwPARTE
semantic constructs:

N〈ιEntry-A, ∅, ∅, ∅,Dentry〈[#1 7→ −∞], ιtemplate-A〉〉,

where ιEntry-A is a fresh node identifier for the node labeled “Entry-A”. The following three
elements hold the successors, inbox, and outbox of the entry node. These are initially

146

5.5 Compiling PARTElang Programs into Featherweight PARTE Graphs

template <template_A> {
 <attr_name> : <type_name>,
 <attr_name> : <type_name>}

template <template_B> { … }
template <template_C> { … }
template <template_D> { … }
template <template_E> { … }

rule <rule_name_n> where
 <var_f> : <template_A> { <conditions_j> }
 <var_g> : <template_B> { <conditions_k> }
 <var_h> : <template_C> { <conditions_l> }
 <var_i> : <template_D> { <conditions_m> }
when
 <var_g> in <var_f> [<min>, <max>]
 <var_h> in <var_g> [<min>, <max>]
 <var_i> in <var_h> [<min>, <max>]
 <var_i> in <var_f> [<min>, <max>]
then
 emit <template_E>
 at <θ-expr>
 with {
 <attr_name> = <expr>,
 <attr_name> = <expr>,
 <attr_name> = <expr>
 }

Entry-A Entry-B Entry-C Entry-D Entry-E

α-j
α-k α-l α-m

Entry-A Entry-B Entry-C Entry-D Entry-E

Entry-A Entry-B Entry-C Entry-D Entry-E

α-j
α-k α-l α-m

join-(f/g)

join-((f/g)/h)

join-(((f/g)/h)/i)

terminal-n production-E

Entry-A Entry-B Entry-C Entry-D Entry-E

α-j
α-k α-l α-m

join-(f/g)

join-((f/g)/h)

join-(((f/g)/h)/i)

1.) Instantiation of entry nodes

2.) Instantiation of alpha nodes

4.) Reification of reaction logic

3.) Construction of the join networkSkeleton of an example ruleset

Figure 5.7: Sketch of a rule and the phases of PARTE graph construction for that rule
— Circles represent fwPARTE graph nodes. Lines indicate predecessor-successor relations. For solid lines,

nodes higher up are the predecessors. Dashed lines depict implicit edges over which abstracted, compound

events travel. All labels apply to nodes.

empty, typeset as ∅. The entry node’s node-local data holds a mapping from event source
identifier to the lower bound on timestamps still to receive from that event source. For
“Entry-A”, the sole event source is #1, which can still send events from arbitrarily early
points in time, typeset as −∞. Finally, the entry node lists the identifier of the template of
events it may receive, which for “Entry-A” is template A.

The nodes labeled “Entry-B”, “Entry-C”, “Entry-D”, and “Entry-E” are constructed
similarly. For instance, the entry node labeled “Entry-B”, which accepts tokens from two
event sources, is initialized to

N〈ιEntry-B, ∅, ∅, ∅,Dentry〈[#2 7→ −∞, #3 7→ −∞], ιtemplate-B〉〉.

147

Chapter 5: Operational Semantics for an LRP Language

5.5.2 Implementing Individual Event Patterns

Once all entry nodes are created, for each unique event pattern,17 an alpha node is
generated. These alpha nodes are instantiated with alpha conditions cα which implement
the conditions of the rule set. For instance, the alpha node labeled “α-j” implements
condition <conditions_j>. The alpha nodes are registered as successors of their entry
nodes, such that e.g., the alpha node labeled “α-j” is a successor of the entry node for
events adhering to template A, since the event pattern identified by variable <var_f>
requires events of template A which satisfy <conditions_j>.

The fwPARTE semantic constructs for the entry nodes must thus be modified to register
the successor relations. For instance, the entry node for events adhering to template A
must be changed to the following:

N〈ιEntry-A, [ιff -j 7→ ↓], ∅, ∅,Dentry〈[#1 7→ −∞], ιtemplate-A〉〉,

where ιEntry-A is a fresh node identifier for the node labeled “α-j”. In addition, the alpha
nodes themselves must be constructed. The node labeled “α-j” is implemented by this
fwPARTE construct:

N〈ιff -j, ∅, ∅, ∅,Dalpha〈cα<condition_j>, ι<var_f>〉〉.

The node labeled “α-k” is implemented by this fwPARTE construct:

N〈ιff -k, ∅, ∅, ∅,Dalpha〈cα<condition_k>, ι<var_g>〉〉.

In this phase too — as in the next two — node reuse can be leveraged by merging identical
nodes into one.

5.5.3 Combining Event Patterns: Constructing the Join Network

Once an entry node and alpha node exist for each pattern in a rule set, the implicit
conjunction between the patterns of a rule must be made. This conjunction is achieved by
means of join- and anti-join-nodes. The first pattern is used as the left predecessor of the
first (anti-)join-node. Then, each subsequent pattern is used as the right predecessor of a
join-node, using the accumulated join graph as the left predecessor. Each (anti-)join-node
encodes the constructs of the conditions that depend on the newly joined pattern, both
temporal and non-temporal. For instance, the node labeled “join-(f/g)” contains any
inter-event constraints specified in condition_k, as well as the temporal constraints
specified between the events bound to var_g and var_f in the when clause.

17When an identical event pattern exists in multiple locations in a rule set — potentially even in different rules
— the same alpha node can represent those patterns, preventing duplicate work. The successors of this alpha
node must then consist of the union of all successors of the different alpha nodes that would have been emitted
otherwise. This notion of node reuse is prevalent in Rete and derived systems [91].

148

5.5 Compiling PARTElang Programs into Featherweight PARTE Graphs

Formally, for each join or anti-join-node, a new fwPARTE node must be constructed, and
its left and right predecessors must be modified to register that relation. For instance, the
node labeled “α-j” must be changed to the following, to register it as the left predecessor
of the node labeled “join-(f/g)”:

N〈ιff -j, [ιjoin-(f/g) 7→ ↘], ∅, ∅,Dalpha〈cα<condition_j>, ι<var_f>〉〉,

where ιjoin-(f/g) is a fresh node identifier for the node labeled “join-(f/g)”. That join-node’s
right predecessor — the node labeled “α-k” — must be changed to the following form to
register it as the right predecessor of the join-node:

N〈ιff -k, [ιjoin-(f/g) 7→ ↙], ∅, ∅,Dalpha〈cα<condition_k>, ι<var_g>〉〉.

The join-node itself is implemented thusly:

N〈ιjoin-(f/g), ∅, ∅, ∅,Djoin〈cβ, [ι<var_f> 7→ −∞],−∞, ∅, ∅, {ι<var_f>}, ι<var_g>, dist〉〉,

where cβ implements the inter-event constraints specified in <conditions_j> and
<conditions_k>, and where dist is constructed from the relations specified in the
where clause of <rule_name>, using the technique pioneered by Teodosiu and Pollak
[133]. Summarizing their work, temporal distances between every two event patterns
in a rule can be determined by constructing a graph of event patterns, whose edges
are labeled by a pair of minimum and maximum distance. Initially, all event patterns
are disconnected, with the exception of self-references labeled with the weights [0, 0],
i.e., every pattern can take place at least zero timesteps before itself, and at most zero
timesteps after itself. For every explicit dependency in the when clause, a weighted edge
is added, specifying the minimum and maximum temporal distance specified in the rule.
Subsequently the transitive and reflexive closure of the distances can be computed as
follows: repeatedly update every edge in the graph (edgei,j) to the intersection of the
current distances (edgei,j) and the addition of edgei,k and edgek,j, where intersection is
defined as

� : Θ2 → Θ2 : [a, b]� [c, d] = [max{a, c}, min{b, d}]
and addition is defined as

⊕ : Θ2 → Θ2 : [a, b]⊕ [c, d] = [a + c, b + d]

The branches extending from the nodes labeled as “Entry-C” and “Entry-D” are linked
into the graph similarly, using new join-nodes. At each step, the previous join-node’s
successor set is modified to register it as the left predecessor of the next join-node.

5.5.4 Representing the Reaction Logic

Finally, the PARTE graph construction implements the reaction logic specified by the
rules, i.e., the then clause. Neither PARTElang nor the underlying models support any
other action than emitting new compound events.

149

Chapter 5: Operational Semantics for an LRP Language

Still, fwPARTE represents the place where a rule is successfully matched as a node in the
graph. The node which represents a successful match to the rule named “rule_name_n”
is the terminal node labeled “terminal n”, which is initialized to the following form:

N〈ιterminal-n, ∅, ∅, ∅,Dterminal〈〉〉.
The fwPARTEmodel prescribes no other semantics to terminal nodes. The node will never
be updated with successors, with tokens in its outbox, or with changes to the null-ary
node-local data.

The event emission that is described by the reaction logic of the rule, is implemented
by a production node: the node labeled “production-E”. The semantic construct of the
production node itself is straightforward:

N〈ιproduction-E, [ιEntry-E 7→ ↓], ∅, ∅,Dproduction〈#4, ge
�, g`�〉〉,

where #4 is a fresh event source identifier. The θ − expr (from the at clause) and the
assignments to the attributes of the emitted event of template E (from the with clause)
get translated to an event generation expression ge

�. For each pm which is placed in a
token in the inbox of node “production-E”, an event of template E can be obtained by
evaluating ge

�(pm). Those events are then sent to the successors of the production node.
At this point in the graph construction, the set of successors is still the empty set ∅.

Also based on θ − expr, the temporal lower bound generator expression g`� is created.
Here, for each `map that is placed in a token in the inbox of the node, g`�(`map) produces
a new lower bound, which can be propagated to the successors.

In contrast to other nodes, production nodes are created in a later PARTE graph construc-
tion phase than their successors. To restore the internal consistency in the graph, the
affected entry node must still be amended to incorporate its new predecessor. After the
fourth PARTE graph construction phase completes, the semantic construct representing
the node labeled “Entry-E” will look as follows:

N〈ιEntry-E, ∅, ∅, ∅,Dentry〈[#3 7→ −∞, #4 7→ −∞], ιtemplate-E〉〉.

5.6 Limitations of Featherweight PARTE and FutureWork

Featherweight PARTE is— by design— a reduced subset of what is necessary for realizing
a practical strongly reactive complex event detection system. This is evident from for
instance the restrictions on the data types used, e.g., fwPARTE does not support text strings
or custom data structures as attributes to events. As mentioned in the sections discussing
terminal nodes, the only reaction logic explicitly supported by fwPARTE is the emission
of compound events, or the detection of a rule matching. Practical implementations will
want to register callbacks that are invoked in response to the matching of a rule.

The Featherweight PARTE model — in its current state — has a number of limitations
beyond those superficial ones.

150

5.6 Limitations of Featherweight PARTE and Future Work

Transfers/5min. PARTE size Cartesian size Triangle query size

1 244G 246140G 1G
2 1953G 1969120G 2G
3 6593G 6645780G 4G
4 15629G 15752961G 7G
5 30525G 30767501G 10G
6 52747G 53166243G 14G
7 83760G 84426025G 17G
8 125029G 126023688G 21G
9 178019G 179436071G 25G

Figure 5.8: A demonstration of how fwPARTE’s current formula yields high minimum
viable partial match history sizes — The magnitude of these sizes is inherent to the Cartesian product

underlying arbitrary joining

5.6.1 Limitations of the Minimum Viable Size Calculation

First, the formula which defines the minimum viable partial match history sizes in
Featherweight PARTE yields a correct viable size: partial match histories at at least that
size, are sufficiently large. Additionally, the minimum viable partial match history sizes
are a tight bound around the theoretical minimum required sizes: fwPARTE prescribes
r×W + 1 (maximum event arrival rate times window duration, plus one; see definition 25
on page 127), while at least r×W is required for an arbitrary pattern. However, tighter
bounds have recently been proven on specific patterns, based on fractional edge cover [111].
Whereas PARTE would currently assume that a “triangle query” [111] on a dataset of size
n has a cost in n3, Gottlob et al. [63] showed that such queries can be fully materialized
in n3/2. To make that more concrete: a triangle query joining a dataset of 1000 elements
would appear to yield 1012 results, whereas only 106 can exist.

Porting these findings to PARTE should be feasible, but is not trivial. The Featherweight
PARTE model joins each pattern individually with one other pattern, and adds a notion
of maximum event rate to the equation. It is at this time unclear how that can best be
reconciled with fractional edge cover.

This limitation makes it impractical to apply PARTE to some large applications, including
the full-blown versions of our driver scenarios. The driver scenarios are kept simplistic,
and hence match a very broad set of events. With PARTE’s current formula, the largest of
the minimum viable sizes for driver scenario C grows as shown in the first two columns
of figure 5.8. The third column compares this to the size of a naive Cartesian product,
i.e., the non-stale money-transfer database size (rate times duration, i.e., the value in the
first column times the number of minutes in a two-week period) raised to the power 3
(one for each occurrence of MoneyTransferred in the pattern), times the non-stale claim
database size (again the number of minutes in a two-week period). In the fourth column,
we depict what the largest minimum viable partial match history size would be if the
three MoneyTransferred event patterns would form a triangle query, and if PARTE were
able to detect this and adapt its minimum viable size formula to reflect this.

151

Chapter 5: Operational Semantics for an LRP Language

Transfers/5min. PARTE size PARTE size with aggregation

1 122G 3k
2 976G 7k
3 3296G 11k
4 7814G 15k
5 15262G 19k
6 26373G 23k
7 41880G 27k
8 62514G 31k
9 89009G 35k

Figure 5.9: A demonstration of how fwPARTE’s lack of aggregation constructs severely
harms performance when aggregation semantics are required

5.6.2 Limitations Inherited from PARTElang and Event Algebra EA

Evidently, the limitations of the language discussed in section 4.5 apply to the model as
well: fwPARTE does not offer abstractions for dealing with aggregation and fwPARTE’s
support for temporal reasoning is limited to defining bounded relative time windows.

These limitations are not superficial. Consider the difference in the largest minimum
viable partial match size when expressing driver scenario B in fwPARTE (depicted in the
first two columns of figure 5.9) with the largest minimum viable partial match history size
when the same three-way join could be expressed as an aggregation, i.e., as “three times an
outgoing MoneyTransferred event, whose amounts SUM to approximately the amount
of the incoming” (depicted in the third column). Instead of making a 4-way Cartesian
product betweenMoneyTransferred events, a 2-wayCartesian product ismade between
MoneyTransferred events and ordered sets of up to three MoneyTransferred events.
Supporting aggregation is hence an important avenue for future research.

5.6.3 Limited Interoperability with Order-Dependent Code

Second, while fwPARTE is an operational semantics for a Rete-derived forward-chaining
interpreter for rule-based languages, it lacks the notion of rule salience that is prevalent in
Rete-derived rule-based systems such as CLIPS [142].

Rule salience is a way of prioritizing the activation of some rules in favor of others.
Featherweight PARTE, in contrast, does not even define an agenda for rule activations.
Instead, fwPARTE fires rules as soon as a token reaches the terminal node or production
node by asynchronous message passing. This is well in line with the behavior we ascribed
to Logic Reactive Programming languages: an LRP program needs only guarantee that it
emits the correct complex events; the order in which different declarative rules emit those
events is not specified. However, this does mean that fwPARTE is not compatible with
rules and logical facts from a non-reactive logic program.

152

5.6 Limitations of Featherweight PARTE and Future Work

Future work that enables PARTElang to reason about logical facts outside of the managed
event storage will need to explore how fwPARTE’s agendaless approach can be combined
with the needs of non-event data. Of particular interest will be the means by which such
a system can be kept strongly reactive and decentralized, since the ideas of salience and
an ordered agenda are by design centralized and sequentializing.

5.6.4 Lack of Failure Handling

Third, fwPARTE lacks support for distributed failure handling and fault tolerance. As
a model for distributed computing, PARTE would benefit from the means to deal with
partial failure of the computer cluster on which it is deployed. As discussed in chapter 2,
the many ways to provide this are well-researched. Many paradigms and frameworks
offer out of the box support for checkpointing, replication, replayable logs, etc. A relatively
under-researched aspect is how to reconcile these with strong reactivity.

For instance, the cost of periodic checkpointing can be incorporated into the cost model,
and restoring from a checkpoint once takes constant time and space, but restoring an
arbitrary number of times clearly cannot take only a fixed, finite amount of time. Replaying
logs suffers from the same problem: the cost of logging can be incorporated in the cost
model, and replaying once takes only time proportionate to the number of partial matches
retained, but replaying repeatedly takes time proportionate in the number of replays.
Other options, such as replication, fail to uphold strong reactivity out of the box, too:
replication cannot guarantee that a partial failure will not impact all replicas of some data,
and hence needs to be backed up by techniques such as replayable logs or checkpointing.

Resolving the lack of failure handling in PARTElang is not just an engineering effort:
whichever failure handling technique we pursue, concepts from this technique will need
to be exposed to the event algebra. Much in the way how the meta-concern of the event
arrival rate had to be exposed to fwPARTE, a fault tolerant PARTE model will likely have
to specify the meta-concern of a maximum failure occurrence rate.

5.6.5 Optimizations Lacking from the Formal Model

Fourth, there are a number of optimization opportunities which are not adopted by the
fwPARTE model, but which an implementation would likely apply. These optimizations
are in fact implemented in our prototypical implementation described in chapter 6, but —
since they are not described in the model — we still consider them to be missing from the
model. A brief overview of the most important optimization opportunities is this:

Indexes in partial match histories The bulk of the operations executed on partial match
histories requires selecting partial matches based on their timestamp. The model
abstracts over how this is done, but prescribes the use of an ordered vector. Clearly,
replacing these with a data structure which allows for O(log(n)) access and eviction,

153

Chapter 5: Operational Semantics for an LRP Language

e.g. a B-Tree, can significantly improve the performance of the system. In similar
vein, determining the current lower bounds on timestamps stored in a partial match
history can be sped up. For instance, keeping a (counting) sorted multiset of event
times that appear for each event pattern, i.e., a MIE⇀Θ→N.
We explored the option of adding multiple layers of indexes, e.g. to index based on
attributes used in the join-conditions. We also investigated the effect of introducing
the ideas described in [76], in collaboration with one of the authors of that work. We
were unable to reliably achieve improvements, and in many cases the performance
dropped noticeably. Our initial investigation suggests that the bin-size after indexing
by timestamp was too small for additional indexing to help. Phrased differently, a
simple index on timestamp captured such a large fraction of the join-criteria that
any concession on that front caused more harm than could be recovered elsewhere.
In general, indexing schemes have a non-negligible overhead. The storage re-
quirement for conjunctive queries itself is roughly proportionate in the size of the
Cartesian product of all inputs — though tighter bounds exist as discussed in
section 5.6.1. Materializing the indices themselves adds storage costs. Outputting
all matches still takes time at least proportionate to the number of matches. These
challenges will need to be resolved by future work. Fortunately, such modifica-
tions are largely tangential to the requirement of strong reactivity, as the costs are
proportionate to sizes that we prove constant for fwPARTE in chapter 8.

Above-minimum storage sizes The model specifies that inboxes, outboxes, and partial
match histories should be at theirminimumviable sizes. In practice, any constant size
greater than or equal to the minimum viable size can be used. Using larger buffers
significantly increases the worst-case costs, but may in practice also significantly
decrease average-case cost, by changing the message-passing from essentially nearly
rendezvous-semantics to a more flexible message-passing style.

Batching of multiple matches The formal operational semantics allows multiple tokens
to be created in a single step of l−→, but only propagates those tokens one-by-one in
the (Prop)rule of g−→. Since all these tokens have to arrive at the same destination,
they could be sent jointly, if the successors have enough room in their inboxes. If
the optimization described above is implemented, it becomes possible to batch up
multiple tokens, decreasing the amount of events that need sending. Concretely, if a
node has verified that the inboxes of all its successors do not contain a token from a
certain activation side, it could send all tokens produced in a single step of l−→ for
that activation side, since the number of tokens thus produced is finite and statically
known. Adapting the model and the proofs would be nontrivial, and is therefore
left as future work.

Coarsening the granularity in the fwPARTE graph Many of the nodes in a Feather-
weight PARTE graph have a trivial or near-trivial task, e.g., comparing a single
attribute to a constant, or joining two event patterns where no join-condition applies.
For practical implementation, spawning separate concurrent units of computation
for each of these nodes is inefficient, even when they are implemented as, e.g.,

154

5.7 Related Work

lightweight actors. Instead, specialized actors could be created which perform the
job of multiple conceptual fwPARTE nodes. Future work could look into how this
can be enacted. Of special interest is the means by which the correct granularity of
parallel decomposition can be achieved, and how a running system can be made
to reconfigure itself in the face of changing workloads, while remaining strongly
reactive.

Limiting ⊥-tokens There is no need to pass⊥-tokens on paths through the graph that do
not reach a negation. As we show in section 8.4, “no change” tokens must be sent on
paths that do reach not-nodes, but other paths can never become blocked awaiting
the absence of events. A simple extension of fwPARTE statically determines which
nodes are on a path to a not-node, and only propagate ⊥-tokens to those nodes.

5.7 Related Work

5.7.1 Formal Models of Production Rule Systems

Our work is not the first to introduce a formal model for production rule systems such as
the Rete algorithm. Of particular interest are the work by Snyder and Schmolze [129] and
the work by Cirstea et al. [34]. Snyder and Schmolze formalized their production rule
system as rewrite semantics for a working memory of facts, implementing the OPS5 [58]
production rules. Schmolze and Snyder [125] showed how the formal model by Snyder
and Schmolze [129] can be used as the basis for the detection of redundancy among
production rules.

A crucial distinction between our work and those earlier formal models of production
rule system algorithms, is that the earlier models represent the algorithm as a tree-
traversal, with (reads from and) writes to some abstraction of a working memory. Such
formalizations implicitly assume a shared memory space, where operations at any Rete
node can write to the state of any other Rete node or fragment of working memory.
Consequently, these models do not lend themselves to easy parallelization — let alone
distribution — as the models do not prescribe how multiple steps can be in progress
concurrently without interfering with each other.

5.7.2 Time and Event-Management in Rete-derived Systems

The incremental nature of the Rete algorithmmakes it an obvious fit for systems reasoning
over online data streams. The presence of a temporal component in the data can be
leveraged better when the processing engine understands time. Multiple publications
describe extensions to the Rete algorithm which add support for temporal reasoning.

155

Chapter 5: Operational Semantics for an LRP Language

Maloof and Kochut [96] modify Rete to reason temporally. In their extension, events
have a duration, and event patterns have built-in support for relative temporal order
(before, during or after) between events. Berstel [22] similarly extends the Rete
algorithm with operators to for event management. Their extension also offers built-in
support for relative temporal order between events, though only before or after: like
PARTE, Berstel [22] uses timestamps, not time durations. Also like PARTE, they use this
temporal knowledge to discard unneeded events. Their approach however depends on
the ability of the system to atomically inspect the global state of the system, and on the
notion of recursively asking predecessor Rete memories to remove event data. Such an
approach does not work in a distributed context, and modifying this approach to work
without introducing race conditions between the different distributed components would
be nontrivial. Additionally, the algorithm devised by Berstel [22] was not envisioned for
use in settings where strong reactivity is necessary. Their algorithm hence makes no
attempts to guarantee constant time and space bounds.

Walzer et al. [138] describe an extension to Rete exposing all thirteen temporal relations
from Allen’s interval algebra [6]. Walzer et al. [138] too use this temporal knowledge to
discard unneeded events. Like Berstel [22]’s solution, the solution by Walzer et al. [138]
depend on global timers which remove intermediate results from globally accessible
partial match storage. Their solution does not work without considerable changes in a
distributed context. Since their algorithm was not envisioned for use in settings where
strong reactivity is necessary, their algorithm makes no attempts to guarantee constant
time and space bounds.

5.7.3 Distributed Tracking of Temporal Lower Bounds

PARTE keeps track of temporal lower bounds on events, to enable it to automatically
manage the event storage. Some other systems which process event-data in a distributed
context, and keep some form of managed event storage, exist. These, too, need to keep
track of the progress of time, and relate that to the events still stored. We distinguish
between two cases: first, systems which ingest events from possibly multiple, distributed
event sources, but whose processing is not itself distributed, and second, systems whose
processing can be distributed across multiple computers.

The first category contains systems like EVA [72]. Like PARTE, EVA handles semantic
simultaneity of events from multiple event sources by assuming a global system of
reference exists for specifying relative order. While a distributed system cannot be
assumed to have a synchronized global clock, one can opt to ascribe the semantics that
any event source has the valid clock for events whose occurrence it registers. EVA, like
PARTE, includes a component responsible for merging the temporal lower bounds of the
different event sources. Using this conservative lower bound on actual clocks, the correct
results can be computed despite the lack of global clock shared by the event sources.

The second category contains systems like MillWheel [5] and Naiad [108]. Neither are
strictly CEP systems, though they are designed to work with data tagged with timestamps,

156

5.8 Conclusion

i.e., events. MillWheel explicitly keeps track of low watermarks. Low watermarks are
somewhat analogous to the lower bounds (`) in fwPARTE, in that both represent a temporal
threshold below which events are no longer relevant for the computation. In Naiad’s
timely dataflow, the logical timestamps are an event closer analogue to PARTE’s temporal
lower bound. Naiad’s logical timestamps however include both a purely temporal aspect,
and a loop iteration.

5.8 Conclusion

We introduced the Featherweight PARTE model, an operational semantics for PARTElang.

We showed how Featherweight PARTE incrementally matches events to complex patterns
using a matching algorithm derived from the Rete algorithm. Featherweight PARTE does
not depend on a shared address space for its event storage, and is able to automatically
manage that distributed event storage: fwPARTE can determine which partial matches
are stale. Stale partial matches are guaranteed to expire before the node they are stored at
reaches a blocked node state. A PARTElang implementation implementing the Featherweight
PARTE model can guarantee correct operation within a fixed, finite memory budget by
pre-allocating its buffers at their statically determinable minimum viable size.

Featherweight PARTE thus defines a strongly reactive way for correlating complex events
specified in PARTElang (RLRP5).

157

6
Implementation

Up until this point in the dissertation we focused on discussing the theoretical aspects of
Logic Reactive Programming. In this chapter we turn LRP into practice. The goal of this
chapter is to give a more detailed description of lower-level design decisions which may
impact the results in section 7.4.2, for the sake of reproducibility of those results.

The PARTE research artifact went through a number of iterations. The versions described
in this chapter differ from the one described in Marr et al. [97] in a number of ways. The
most important difference is that the final versions offer the features required to guarantee
strong reactivity (see definition 1 on page 65): using the Featherweight PARTE model, the
size of intermediate storage like inboxes, outboxes, and partial match histories needs not
be arbitrarily large, which places an upper bound on the required processing time. This
in turn allows it to guarantee a constant-time update cost per new event.

We describe two prototypical implementations of the Featherweight PARTE model. Since
both prototypes implement the same model, their high-level workings are covered by the
information from chapter 5. The distinction between both versions is as follows:

PARTE
Rust is a multi-threaded implementation of the fwPARTE model, which simulates

a distributed memory space by modeling the different PARTE nodes as independent
units of computation which communicate only by means of message passing.

PARTE
Elixir wraps the sequential PARTE nodes of PARTERust inside actors, which can be

distributed over a cluster of computers. PARTEElixir includes rudimentary support
for handling network issues.

159

Chapter 6: Implementation

6.1 PARTE
Rust

: a Single-Machine PARTE Prototype

6.1.1 Overview

Themulti-threaded prototypical implementation of fwPARTE goes by the name PARTERust.
PARTERust supports launching a PARTE runtime, defining event templates for that runtime,
creating a graph of PARTE nodes from a PARTElang program, and spawning those nodes
on a thread pool managed by the PARTE runtime.

Once a PARTE runtime is initialized, it is ready to receive events. Events are represented
as data structures mimicking the tuples described in section 5.4: they store a reference
to their template, the values for each attribute defined by the template, and the event’s
timestamp. Received events are wrapped in alpha tokens, and placed in the inbox of
the entry node for the event’s event template. Next, PARTERust executes the behavior
prescribed by the rules of the global and local evaluation languages defined by the PARTE
model. Evaluation at different nodes can happen in parallel, as each node is a distinct unit
of concurrency, scheduled in the thread pool. When no evaluation steps are applicable,
PARTERust implicitly enters a waiting state (where all nodes are waiting as defined on
page 126) until the external program either provides new input events, or calls for the
termination of the PARTE runtime.

6.1.2 Rust Primer

PARTERust is implemented in roughly 3000 lines of Rust [98] code. In-depth knowledge of
Rust syntax is not needed to follow our description of PARTERust. Rust code can broadly
be understood if one is familiar with features of ML-like languages, and the syntax of C++
or Java. For the sake of self-containedness of this chapter, we provide a short primer of
Rust semantics and syntax. Anyone familiar with Rust can safely skip this subsection.

Values and References

Values in Rust are not by default behind a reference, as they are in e.g. Java or Python, or
as classes are in C#. Hence, binding a value to a variable does not mean the variable is
set to a reference to that value. Instead, binding means that the value’s bits are copied to
the variable’s location.

A reference to a value of type T is written as &T. Each reference has lifetime. A lifetime is a
static type-level construct which represents the context in which a value is valid. Lifetimes
can be used with references, where lifetime-checking can prevent use-after-free bugs. For
instance, if a reference has a lifetime that outlives a method invocation, that method may
return the reference. If a reference’s lifetime does not outlive a method invocation, that
method may not return that reference, as the reference might not be valid when used by

160

6.1 PARTERust: a Single-Machine PARTE Prototype

the callee. The syntax &'a T is used to denote a reference with lifetime 'a, which refers
to a value of type T.

Ownership Model

An important feature of Rust is its ownership model, which gets statically checked by
the “borrow-checker”. A value is normally owned by exactly one variable. When a
value is passed to a function or assigned to a variable, the ownership of the value is
transferred to the new location. If the source of the value was a variable, that variable
cannot subsequently be read from: the variable’s value has been moved. Types can opt out
of this behavior by implementing the Clone trait. Primitive types (integers, booleans,
and characters) are Clone, as are shared references.

Shared references always refer to immutable values. Mutable references cannot alias,
except by referring to types with internal mutability, such as mutex locks or cells. Cells
and mutex locks prevent concurrent mutable access at run time. All of these features
combine to offer a system for ownership-tracking, data-race-freedom, and automatic
memory management without need for a tracing garbage collector.1

Closures

The syntax of closures in Rust is “|arg-list| body”. The arg-list is a comma-
separated list of argument names, optionally followed by a type annotation (“arg-name
: ArgType”). The body consists of one expression, whose result is returned from the

closure. A sequence of expressions can be generated by enclosing a semicolon-separated
list of expressions in a pair of curly braces. The result of the last expression is returned as
the result of the sequence.

Closures take references to variables in their lexical scope which are used in the body of
the closure. This behavior can be overridden by writing the keyword move in front of
the closure syntax; in that case the variables are moved into the closure instead being of
captured by reference.

Pattern Matching

Rust offers pattern matching on variables. Wherever a struct is bound to a variable, the
variable name can be replaced with a pattern listing the type constructor and the fields of

1The reader might notice in the code samples below that no manual memory management is performed. Nor
are any of the code’s multi-threading safety guarantees upheld manually. The synchronization mechanism used
in PARTERust is simple yet safe: data is sent to other threads using multi-producer/single-consumer queues.
Once data is handed off to another threads’ queue, the original thread loses ownership over the data. The
original thread can at that point not even syntactically express touching the data again without invoking a static
error from the borrow-checker. Obviously, a receiving thread cannot touch the data before receiving it. Since
sending and receiving is causally linked, at no point can a thread mutate data accessible by another thread.

161

Chapter 6: Implementation

that struct and variable names. The values of the fields of that struct are then bound
to the variables. Pattern matching can also be used to match on the variants of an enum.

6.1.3 Differences between PARTE
Rust

and the Formal Model

Since PARTERust schedules the PARTE nodes on threads in a thread pool, the nodes
technically share a single memory space. However, since they only communicate using
asynchronous message passing, they are behaviorally equivalent to properly distributed
units of computation. Some subtle but insignificant differences exist between the formalism
presented in chapter 5 and the code shown below. For instance, instead of maintaining
a list of identifiers of successor nodes, PARTE nodes in PARTERust maintain a list of
message-passing channels. The implementation further makes no distinction between
terminal and production nodes. Additionally, evaluation at terminal nodes deviates
slightly from what the formal model prescribes. In the model, matching a rule is a
transient state which does not “do” anything. In PARTERust, a callback function is invoked
whenever a rule is matched. This callback function receives as an argument the partial
match that activated the terminal node. This deviation from the model is necessary for
practical use cases.

The remainder of this section describes the relevant bits of the implementation in more
detail. We focus specifically on the points where the implementation differs slightly from
a naive translation of the formal model, and explain the reason for the difference, as
well as the implications of our choices. The code is reformatted to fit the width of the
pages. Error handling code is removed where it is not relevant to the discussion. Code
that simplifies debugging and profiling — e.g. by setting up descriptive names for the
threads — is removed as well. Overall we follow the bottom-up structure we introduced
in section 5.4. Section titles hence match those found there.

6.1.4 Implementing Values and Events

The most basic type offered by our model and event algebra alike are values. Values in
PARTERust are represented as an enum, i.e., a tagged union of all primitive types. Type
safety of PARTElang programs is checked at run time using those tags. A number of basic
operations are implemented for values, e.g., equality checks, inequality checks, addition,
multiplication, etc.

Timestamps are implemented as an opaque type, but identify a number of milliseconds.
The difference between two timestamps can be computed. This difference can be added to
another timestamp, yielding a new timestamp. A strict order is defined on timestamps,
but a universally highest timestamp exists (cf. an IEEE floating point’s positive infinity),
as well as a universally lowest timestamp (cf. an IEEE floating point’s negative infinity).

162

6.1 PARTERust: a Single-Machine PARTE Prototype

1 #[derive(Debug)]
2 pub struct Slot {
3 pub name: String,
4 pub type_name: &'static str,
5 }
6
7 #[derive(Debug)]
8 pub struct Template {
9 name: String,
10 id: TemplateId,
11 slots: Vec<Slot>,
12 }
13
14 impl Template {
15 pub fn new(name: &str, id: TemplateId, slots: Vec<Slot>) -> Result<Self, String> {
16 // ... check for duplicate names, empty names, and empty types
17
18 Ok(Template {name: name.to_owned(), id: id, slots: slots})
19 }
20
21 pub fn name(&self) -> &str { &self.name }
22
23 pub fn id(&self) -> TemplateId { self.id }
24
25 pub fn num_slots(&self) -> usize { self.slots.len() }
26
27 pub fn slot_at_index(&self, idx: SlotIndex) -> Option<&Slot> { self.slots.get(idx) }
28
29 pub fn index_of_slot(&self, slot_name: &str) -> Option<SlotIndex> {
30 self.slots.iter()
31 .position(|&Slot { name: ref n, .. } | { n == slot_name })
32 .map(|i| i as SlotIndex)
33 }
34 }

Listing 6.1: PARTERust’s implementation of event templates

The implementation of event templates is depicted in listing 6.1, starting at line 14. As
evidenced by the accessors, event templates are verified to be valid at construction time,
and are immutable afterwards. Note the closure syntax on line 32: this closure transforms
a single argument i by casting it to a SlotIndex. The line before it contains another
closure. This closure also takes a single argument — a reference to a Slot— but pattern
matches on it to destructure it into its constituents. Since destructuring a pattern is the
inverse of constructing a value, operators have their inversemeaning: in a value expression,
a reference operator (an ampersand) takes a reference to a value. In a pattern, that same
operator “strips off” a reference, effectively causing the argument to be dereferenced.

As depicted in listing 6.2, events store a TemplateId specifying the template, as well as
the event’s data: the values for the attributes and the time at which the event occurred.
At construction time, events are verified to conform to the specification imposed by the
template. Events are immutable, exposing only accessors for their attribute values and
their timestamp of occurrence. We implement the trait Index<usize> for Events. This
means that for a given event e and a given unsigned pointer-sized integer idx, the syntax
e[idx] resolves to the value returned by the index method defined on line 32, i.e.,
e[idx] gets the attribute value at index idx of event e.

163

Chapter 6: Implementation

1 #[derive(Debug, Eq, Ord, PartialOrd, PartialEq)]
2 pub struct Event {
3 template_id: TemplateId,
4 values: Vec<Value>,
5 timestamp: Time,
6 }
7
8 impl Event {
9 pub fn new(template: &Template, values: Vec<Value>, timestamp: Time)
10 -> Result<Self, String>
11 {
12 if values.len() != template.num_slots() {
13 Err(/* ... create error message */)
14 } else {
15 for (slot, value) in template.slots.iter().zip(values.iter()) {
16 if slot.type_name != value.type_name() {
17 return Err(/* ... create error message */);
18 }
19 }
20 Ok(Event { template_id: template.id(),
21 values: values,
22 timestamp: timestamp })
23 }
24 }
25
26 pub fn timestamp(&self) -> Time { self.timestamp }
27 }
28
29 impl Index<usize> for Event {
30 type Output = Value;
31
32 fn index(&'e self, idx: usize) -> &'e Value {
33 self.values.get(idx).unwrap()
34 }
35 }

Listing 6.2: PARTERust’s implementation of events

6.1.5 Implementing Tokens

Tokens are either alpha tokens or beta tokens. Beta tokens carry multiple events’ data: a
partial match.

Partial Matches

Our implementation of partial matches in PARTERust is depicted in listing 6.3. In essence,
a PartialMatch is a vector of atomically reference counted Events, with a number
of methods defined on the structure. This detail of the implementation shows that
PARTERust exploits the fact that all nodes exist in the same address space. This entails that
measurements of the working set size of PARTERust programs might show lower numbers
than what might be expected from a naive translation of the fwPARTE model. In turn,
this introduces the possibility for contention, as multiple threads may have to mutate the
atomic integers in which the reference counts are tracked.

164

6.1 PARTERust: a Single-Machine PARTE Prototype

1 #[derive(Clone, Debug, PartialEq, Eq, PartialOrd)]
2 pub struct PartialMatch {
3 pub events: Vec<Arc<Event>>,
4 }
5
6 impl PartialMatch {
7 pub fn new_by_joining_assuming_consistent(&self,
8 right_pm: &SingletonPartialMatch) -> Self {
9 let mut events = Vec::with_capacity(self.events.len() + 1);
10 events.extend_from_slice(&self.events);
11 events.push(right_pm.cloned_event());
12 PartialMatch { events: events }
13 }
14 }

Listing 6.3: PARTERust’s core implementation of partial matches

Since a partial match may consist of multiple events and each event may have values
for multiple attributes, values in partial matches are identified by a two-dimensional
index. Our implementation introduces an auxiliary type QualifiedSlot (see line 2
in listing 6.4 on page 166), which identifies a slot qualified by an event index into a
partial match. A QualifiedSlot is an opaque pair of two indices, together with
a number of auxiliary methods. Its fields are not publicly accessible. Instead, it
must be used as a whole: we implement the Index trait for PartialMatches us-
ing QualifiedSlots or references to them, as shown from line 31 onwards. This has
the result that for a partial match pm and a qualified slot qs, the syntax pm[qs] evaluates
to pm.events[qs.event_idx][qs.slot_idx]. This gives rise to a difference in
notation between fwPARTE and PARTERust, though the difference is inconsequential.

Alpha Tokens

We have now covered the implementation of partial matches. We move on to alpha and
beta tokens themselves.

Listing 6.5 depicts relevant excerpts of the implementation of alpha tokens. Alpha tokens
store an identifier of the entity that generated them: either a primitive source (i.e., an
external event source), or a complex source (i.e., a terminal node of the PARTERust graph).
The lower bound on future event timestamps sent along the edge the AlphaToken travels,
or ` for short, is represented as a timestamp named oldest_timestamp_to_expect.
The alpha token’s payload (see page 130) is encoded as an option type: instead of
considering it either an event or a “no change” indicator ⊥, we implement it as either
None or Some(event). This change makes the code more concise, and is more idiomatic
in Rust. The behavior is unaltered: both fwPARTE and PARTERust model the payload as a
sum type, of which one variant refers to an event, and the other carries no additional data.

To support node reuse (see figure 5.2 on page 98), it must be possible to duplicate alpha
tokens so that theymay be sent tomultiple successors. As in the case of partial matches, we
accomplish this by making the payload Event atomically reference-counted by wrapping
it: Arc<Event>. The Rust type for fields optionally containing an atomically reference-

165

Chapter 6: Implementation

1 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
2 pub struct QualifiedSlot {
3 event_idx: usize,
4 slot_idx: usize,
5 }
6
7 impl QualifiedSlot {
8 pub fn new(event_idx: usize, slot_idx: usize) -> Self {
9 QualifiedSlot { event_idx, slot_idx }
10 }
11
12 pub fn transform_from_global_to_right(self, num_left_events: usize) -> Result<Self,

String> {
13 if self.event_idx < num_left_events {
14 Err(/* ... create error message */)
15 } else if self.event_idx > num_left_events {
16 Err(/* ... create error message */)
17 } else {
18 Ok(QualifiedSlot { event_idx: 0, slot_idx: self.slot_idx })
19 }
20 }
21
22 pub fn is_within_bounds(&self, num_events: usize) -> bool {
23 self.event_idx < num_events
24 }
25
26 pub fn is_in_event(&self, event_idx: usize) -> bool {
27 self.event_idx == event_idx
28 }
29 }
30
31 impl Index<QualifiedSlot> for PartialMatch {
32 type Output = Value;
33
34 fn index<'p>(&'p self, qs: QualifiedSlot) -> &'p Value {
35 self.events[qs.event_idx][qs.slot_idx]
36 }
37 }
38
39 impl<'q> Index<&'q QualifiedSlot> for PartialMatch {
40 type Output = Value;
41
42 fn index<'p>(&'p self, qs: &'q QualifiedSlot) -> &'p Value {
43 self.events[qs.event_idx][qs.slot_idx]
44 }
45 }

Listing 6.4: PARTERust’s core implementation of qualified slots, an auxiliary structure for
indexing into partial matches

counted Event is Option<Arc<Event>>, which is hence the type of the payload field
of an AlphaToken. Since events are immutable after construction, sharing does not
modify the behavior.

Beta Tokens

Beta tokens carry not just one event’s data, but possibly multiple. We have previously
introduced the PartialMatch type to store those events’ attributes and timestamps.
One more field constitutes a beta token: a list of temporal lower bounds per event pattern.

166

6.1 PARTERust: a Single-Machine PARTE Prototype

1 #[derive(Clone, Debug)]
2 pub struct AlphaToken {
3 generator_id: GeneratorId,
4 oldest_timestamp_to_expect: Time,
5 payload: Option<Arc<Event>>,
6 }
7
8 impl AlphaToken {
9 pub fn new_with_event(generator_id: GeneratorId,
10 oldest_timestamp_to_expect: Time,
11 event: Arc<Event>
12) -> Self {
13 let payload = Some(event);
14 AlphaToken { generator_id, oldest_timestamp_to_expect, payload }
15 }
16
17 pub fn new_no_change(generator_id: GeneratorId,
18 oldest_timestamp_to_expect: Time
19) -> Self {
20 let payload = None;
21 AlphaToken { generator_id, oldest_timestamp_to_expect, payload }
22 }
23
24 pub fn generator_id(&self) -> &GeneratorId {
25 &self.generator_id
26 }
27
28 pub fn oldest_timestamp_to_expect(&self) -> Time {
29 self.oldest_timestamp_to_expect
30 }
31
32 pub fn payload(&self) -> &Option<Arc<Event>> {
33 &self.payload // Return a reference to the payload
34 }
35
36 pub fn into_payload(self) -> Option<Arc<Event>> {
37 self.payload // Return the payload, consuming the AlphaToken
38 }
39 }

Listing 6.5: PARTERust’s implementation of alpha tokens

This is in line with the formal model. Listing A.3 (on page 243 in the appendix) depicts
the relevant parts of the implementation of beta tokens.

Remember from section 5.4.4 (on page 132) that the formal model associates an activation
side with beta tokens, forming the message abstraction. This abstraction is not present
in PARTERust. PARTERust uses ActivationSides only when describing how PARTE
graph nodes should be linked up. We encode ActivationSides straightforwardly as
an enumaration of three variants: a.) Activate for successor relations activated from the
top, cf. ↓; b.) LeftActivate for successor relations activated from the left, cf. ↘; and
c.) RightActivate for successor relations activated from the right, cf. ↙.

167

Chapter 6: Implementation

1 pub enum Type {
2 Entry, Alpha, Join, Not, Terminal,
3 }
4
5 pub trait Node : Send {
6 type InToken : Token;
7 type OutToken : Token;
8
9 fn node_id(&self) -> NodeId;
10 fn node_type(&self) -> Type;
11 fn is_on_path_to_negation(&self) -> bool;
12 fn enter_processing_loop(self) -> JoinHandle<Result<(), String>>;
13 }

Listing 6.6: PARTERust’s implementation of PARTE nodes: an enumeration of types and a
trait.

6.1.6 Implementing Graph Nodes

PARTERust supports entry nodes, alpha nodes, join-nodes, not-nodes, and terminal nodes.2
An enum is defined for the different types of PARTE nodes (listing 6.6). Additionally, the
Node trait is defined.

The Node Trait

The Node trait abstracts over the different node types, enabling polymorphism. Since
different types of PARTE nodes consume and produce different types of tokens, the nodes
must specify what kind of tokens they produce. We do so using two associated types:
InToken and OutToken. The trait bound “: Token” on InToken and OutToken
constrains what an implementation of Node can look like: only types which implement
the Token trait can be used as a node’s InToken or OutToken type.

Apart from the associated types, the Node trait specifies 4 methods: one to retrieve the
node’s globally unique identifier (line 9), one to retrieve the node’s Type (line 10), a
predicate which indicates whether the node is an (indirect) predecessor of a not-node 3
(line 11), and a method which consumes the Node and starts the node’s execution loop
(line 12). Nodes are scheduled as coroutines on a thread pool. The coroutine runtime
replaces a coroutine with another one on the same thread whenever the former coroutine
performs asynchronous I/O or explicitly yields. PARTERust nodes yield when they find
their inbox empty. Hence, though Nodes seem to follow the approach of event handling
by waiting (see section 3.1 on page 35), the approach is implicitly transformed into event
handling by callbacks on a thread pool. Hence, the runtime needs not have as many OS-level
threads as there are PARTE nodes.

2PARTERust’s terminal nodes perform the job of both fwPARTE terminal nodes and fwPARTE production
nodes.

3Whether or not a node precedes a not-node in the PARTE graph determines whether “no change” indicators
need to be propagated, as explained in section 8.4.

168

6.1 PARTERust: a Single-Machine PARTE Prototype

1 use std::error::Error;
2
3 struct AlphaSuccessorCollection {
4 successors: Vec<Sender<AlphaToken>>,
5 }
6
7 impl AlphaSuccessorCollection {
8 fn new(successors: Vec<Sender<AlphaToken>>) -> Self {
9 AlphaSuccessorCollection { successors }
10 }
11
12 fn is_empty(&self) -> bool { self.successors.is_empty() }
13
14 fn send_token(&self, token: AlphaToken) -> Result<(), String> {
15 let mut i = self.successors.iter();
16 if let Some(succ) = i.next() {
17 for succ in i {
18 self.send_token_internal(succ, token.clone())?;
19 }
20
21 self.send_token_internal(succ, token)?;
22 } else {
23 Ok(()) // No successors, sending is trivially done
24 }
25 }
26
27 fn send_token_internal(&self, succ: &mut SyncSender<AlphaToken>, token: AlphaToken) ->

Result<(), String> {
28 loop {
29 match succ.try_send(token_to_send) {
30 Ok(()) => { break; /* Sent succesfully */ },
31 Err(TrySendError::Full(unsent_token)) => {
32 token_to_send = unsent_token;
33 Scheduler::sched(); // Yield coroutine
34 },
35 Err(TrySendError::Disconnected(unsent_token)) => {
36 return Err(format!("Failed to send {:?}: channel disconnected",
37 unsent_token));
38 }
39 }
40 }
41 }
42 }

Listing 6.7: PARTERust’s implementation of successor collections (s)

Successors

Each node keeps track of a set of successors. Those successors accept either alpha
tokens or beta tokens. PARTERust abstracts over sets of successors as using either
AlphaSuccessorCollection or BetaSuccessorCollection. Both these types are
wrappers around a vector of Senders. A Sender is the sending side of a channel between
coroutines. Both types of successor collection feature a constructor, a predicate method to
verify whether the successor collection contains any successor, and a method which takes
a token and sends one copy of it to each successor. Listing 6.7 shows the implementation of
AlphaSuccessorCollection. The code is nontrivial since it makes only n− 1 copies
to serve n successors. The first successor instead receives the original token.

169

Chapter 6: Implementation

The formal model abstracts over the notion of making copies. Furthermore, as demon-
strated by line 33, PARTERust deviates from the formal model by potentially yielding
during the transmission of tokens to successors. In contrast, fwPARTE uses an intermedi-
ate storage: the outbox. Featherweight PARTE ensures there is room in the outbox before
starting (Proc), and that there is room in all the successor nodes’ inboxes before starting
(Proc). Clearly, the amount of unsent tokens after processing an activation is at most the
total number of tokens produced during the processing of the activation. The variable
size of the coroutine when it is yielded is hence limited to a constant factor of theminimum
viable outbox size (see page 127). Our proofs on maximum memory usage hence apply to
PARTERust as they do to fwPARTE.

In conclusion, the representation of PARTE graph nodes in PARTERust differs significantly
from that in the formal model. Nodes in PARTERust are not constructed as a tuple
N〈ιn, s, m, t, ndata〉 of node identifier, set of successors, inbox, outbox, and node-local data.
The role of an inbox and outbox is taken over by the Receiver and Sender sides of a
bounded channel. The logic of successor collections is taken over by the types introduced
in the previous paragraph. That leaves only a node identifier and the node-type-specific
node-local data. PARTERust’s implementation incorporates those into the node-local
data-structure of each node type. While all types of nodes share a unified interface — the
trait Node — they are all implemented as separate types. This entails that we need to
duplicate the implementation of an accessor for the node identifier in each node, but that
evidently comes at only a small cost.

6.1.7 Implementing Node-local Data

As a representative example, consider the slightly simplified implementation of alpha
nodes in listing 6.8. A node’s implementation consists of three main parts: a struct
holding the node’s data, a constructor and typically some auxiliary methods, and an
implementation of the Node trait for that struct.

A node’s constructor has five tasks:

• it establishes the invariants of the node’s state — in the case of alpha nodes this
merely means checking that successors exist;

• it builds the successor collection from the provided list of successors;

• it creates the multi-producer/single-consumer channel by which tokens are sent to
this node. A channel’s constructor returns a tuple whose left element is a cloneable
object through which messages can be sent (Sender<T>), and whose right side
is a non-cloneable object from which messages can be received (Receiver<T>).
Additionally;

• it composes the struct itself;

• it starts the node’s processing loop on a background thread; and

170

6.1 PARTERust: a Single-Machine PARTE Prototype

1 pub struct AlphaNode {
2 inbox: Receiver<AlphaToken>,
3 successors: BetaSuccessorCollection,
4 condition: Box<for<'e> Fn(&'e Event) -> bool + Send>,
5 is_on_path_to_negation: bool,
6 node_id: NodeId,
7 }
8
9 impl AlphaNode {
10 pub fn new(node_id: NodeId,
11 successors: Vec<(Sender<BetaToken>)>,
12 condition: Box<Fn(&Event) -> bool + Send>,
13 is_on_path_to_negation: bool,
14) -> (JoinHandle<Result<(), String>>, Sender<AlphaToken>) {
15 assert!(!successors.is_empty(), "An AlphaNode must have successor nodes.");
16 let (sender, inbox) = sync_channel(1);
17 let successors = AlphaSuccessorCollection::new(successors);
18 let node = AlphaNode {
19 inbox,
20 successors,
21 condition,
22 is_on_path_to_negation,
23 node_id,
24 };
25 (node.enter_processing_loop(), sender)
26 }
27 }
28
29 impl Node for AlphaNode {
30 type InToken = AlphaToken;
31 type OutToken = BetaToken;
32
33 fn node_id(&self) -> NodeId { self.node_id }
34
35 fn node_type(&self) -> Type { Type::Alpha }
36
37 fn is_on_path_to_negation(&self) -> bool { self.is_on_path_to_negation }
38
39 fn enter_processing_loop(mut self) -> JoinHandle<Result<(), String>> {
40 Scheduler::spawn(move || -> Result<(), String> {
41 while let Ok(Some(token)) = self.inbox.recv() {
42 let oldest_timestamp_to_expect = token.oldest_timestamp_to_expect();
43
44 if let Some(Event(e)) = token.into_payload() { // If token contains event
45 if (*self.condition)(&e) { // If event satisfies the alpha condition
46 let outgoing_token = BetaToken::new_from_single_event(
47 oldest_timestamp_to_expect,
48 e.clone());
49 self.successors.send_token(outgoing_token)?
50 } else {
51 // Nothing to do: event failed test
52 }
53 } else { // Process "no change"
54 let outgoing_token = BetaToken::new_from_single_no_change(

oldest_timestamp_to_expect);
55 self.successors.send_token(outgoing_token)?
56 }
57 }
58 })
59 }
60 }

Listing 6.8: PARTERust’s implementation of alpha nodes

171

Chapter 6: Implementation

• it returns a handle to the spawned coroutine, as well as the sending side of the
channel to the node. Note that the Sender returned here is used when the node is
registered as a successor of its predecessor. This entails that in PARTERust the PARTE
graph is constructed from the terminal nodes up. To make this more concrete,
consider again the case of an alpha node. When an alpha node is created, a channel
of alpha tokens is constructed. The receiving side, a Receiver<AlphaToken>, is
stored in the alpha node’s inbox field. The sending side, a Sender<AlphaToken>,
is stored in the AlphaSuccessorCollection that serves as the successors-
field for some entry node. Similarly, each Sender<BetaToken> in the alpha node’s
successors-field has been returned by the constructor of a successor node such
as a join-node, not-node, or terminal node.

The last three aspects of the implementation of nodes which warrant discussion in detail
are the following: a.) the computation of lower bounds per event source in entry nodes;
b.) the processing of a left activation in a join-node; and c.) the handling of event emission
and calls to side-effecting code from terminal nodes.

a.) Computing Temporal Lower Bounds

Entry nodes keep track of the lowest timestamp for each event source they know. Sec-
tion 5.4.3 describes how fwPARTE stores this data as a mapping from source identifier to
temporal lower bound, in a field named `map. In the implementation, that trivially maps
onto a HashMap<GeneratorId, Time>. The way this mapping is maintained, as well
as how the lower bound is extracted, is depicted in listing 6.9. As entry nodes are located
at the roots of the PARTE graph, they have to deal with invalid input data. Most of the
code in update_stored_timestamps concerns data validation. The core logic consists
of getting amutable reference to the correct entry in the map, and assigning the new oldest
timestamp to it. compute_oldest_timestamp_for_any_event_source retrieves
the lower bound by taking the minimum of the values stored in the map.

b.) Processing Left-Activation of a Join-Node

Evaluation at join-nodes must achieve the behavior specified by (Join-↘-⊥), (Join-↙-⊥),
(Join-↘), and (Join-↙) (defined from page 138 onwards). To this end, any two-input node
which is in a waiting state (page 126) asynchronously selects from two inboxes: a left inbox
for left activations, and a right inbox for right activations. When either partial match
history is at capacity, the node instead only tries to receive tokens from the opposite inbox.
Beyond this, the process closely matches what the formal model prescribes by the rules of

l−→.

Listing A.4 (on page 244 in the appendix) depicts the code handling a left activation of a
join-node. First, some sanity-checks are performed on the received data. Next, the left
temporal lower bounds stored at the join-node is updated (line 16). With those lower

172

6.1 PARTERust: a Single-Machine PARTE Prototype

1 // With field oldest_timestamp_per_event_source: HashMap<GeneratorId, Time>
2
3 impl EntryNode {
4 // .. constructor etc.
5
6 fn update_stored_timestamps(&mut self,
7 generator_id: &GeneratorId,
8 oldest_timestamp_to_expect_from_generator: Time,
9) -> Result<(), String> {
10 // Determine oldest timestamp previously known for this generator
11 let mut oldest = self.oldest_timestamp_per_event_source.get_mut(generator_id)
12 if let Some(oldest_t_for_generator_in_map) = oldest {
13 // Ensure the promise on the lower bound is not invalidated,
14 // as that would be a logic error.
15 if oldest_timestamp_to_expect_from_generator < *oldest_t_for_generator_in_map {
16 Err(/* ... create error message */)
17 } else {
18 // If all is well, update the lower bound.
19 *oldest_t_for_generator_in_map = oldest_timestamp_to_expect_from_generator;
20 Ok(())
21 }
22 } else {
23 Err(format!("Received token from unknown generator {:?}.", generator_id))
24 }
25 }
26
27 fn compute_oldest_timestamp_for_any_source(&self) -> Time {
28 self.oldest_timestamp_per_event_source
29 .values()
30 .min()
31 .unwrap("Expected at least one event source")
32 }
33 }

Listing 6.9: Computing temporal lower bounds in entry nodes in PARTERust

bounds updated, stale partial matches can be expired from the right partial match history
(line 17). The stored and explicit lower bounds are combined, and stored as ls. Next,
PARTERust checks whether it should proceed as specified in (Join-↘-⊥), or as specified
in (Join-↘). In the former case, evaluation continues from line 46 onwards: “no change”
token is propagated to the successors. Otherwise, the lifetime of the newly arrived partial
match is computed (line 23). The relational join between the new partial match and those
in the right partial match storage is computed. Temporal join-constraints are checked using
the left_lifetime in combination with the concrete timestamp of each right partial
match: only valid matches are produced. The RightPartialMatchStorage keeps its
collection of partial matches sorted, which makes this selection a cheap operation. The
RightPartialMatchStorage additionally encodes the non-temporal join-constraints.
Partialmatches failing the non-temporal constraints are filtered out (line 33). For successful
matches a new token is created and propagated to the successors (line 39). Finally, the
partial match with which the join-node was activated is stored in the left partial match
history.

173

Chapter 6: Implementation

c.) Representing Reaction Logic

Whenever a terminal node is activated in fwPARTE, it means that some rule was matched.
PARTERust exposes the fact that a rule matched by calling some user-specified function.

Whenever a production node is activated in fwPARTE, a new complex event is created
from the activating partial match. Since PARTERust merges the notion of a production node
and a terminal node, it are PARTERust’s terminal nodes which implement this behavior.

Both emitting new events and calling user-specified functions, require that there exists
a notion of “some task to be executed, based on the values of a partial match”. We
implement this in PARTERust as a type Action. Action is an enumeration — i.e., a
sum type — of either EmitAlphaToken or CallForeignAction. Both variants have a
number of attributes. Their definition is listed on lines 6 to 13 in listing A.5 (on page 245
in the appendix). Each Action can be executed with either a partial match or with “no
change”.

Alpha token emission actions respond to partial matches as outlined from line 22 onwards.
First, the values for the new complex event are computed. This is accomplished using
a list of ValueProcedure; one procedure for each attribute of the new complex event.
Each function takes an iterator over (references to) the values in the partial match, and
produces a new value (line 26). Next, the new complex event’s inherited timestamp
is computed by a TimestampProcedure, a function which takes an iterator over the
timestamps of the partial match, and returns a new timestamp for the complex event.
The TimestampProcedure is also used to determine the inherited lower bound on
timestamps guaranteed by this terminal node. Note that this procedure must uphold the
constraints outlined in section 5.4.6 for the program to behave correctly. To reiterate: when
used to determine temporal lower bounds, PARTE ensures that the arguments provided
to this procedure are non-decreasing across successive calls. In turn, the procedure must
ensure its return value is non-decreasing across successive calls. Upholding this invariant
is the responsibility of the parser of the PARTE rule. The invariant is not verified at run
time by our prototypical implementation. Assuming a valid temporal lower bound is
computed, an alpha token is generated to wrap the new complex event. This event is sent
to all entry nodes which consume events of the template produced by this terminal node
(line 41).

Foreign call actions have a relatively simple response to partial matches, as shown on
line 44: they merely invoke an ActionProcedure. An ActionProcedure takes (a
reference to) a partial match, and returns either nothing (technically: (), i.e., unit, i.e.,
an empty tuple) or an error message. If the foreign action returns an error message, this
error is propagated upwards, shutting down the prototype.

Handling of activation by “no change” indicators is depicted on lines 49 to 65. If a terminal
node has an emit action, it has successors which need to be informed of the “no change”.
The EmitAlphaToken action hence takes care of this. Calls to foreign action do not
interact with “no change”. They hence take no further action.

174

6.2 PARTEElixir: a Truly Distributed PARTE Prototype

6.1.8 Implementing the Global Evaluation

In the formal model, the global evaluation language g−→ consists of two rewrite rules:
(Proc) and (Prop), as defined on page 145. (Proc) defines how a PARTE node invokes the
local evaluation language l−→when a token is available for processing. In PARTERust, this
happens implicitly in the enter_processing_loopmethod of nodes. The propagation
rule (Prop) defines how produced tokens are moved from a node’s outbox to its successors’
inboxes. This, too, is handled differently in PARTERust. We explained in section 6.1.6
that PARTERust omits explicit outboxes. Furthermore, being a practical implementation,
PARTERust can employ potential parallel execution based on the number of hardware
threads available. The formal model allows multiple steps of g−→ to be taken at the same
time, as long as they evaluate at separate nodes. PARTERust relaxes that requirement:
since the inboxes are thread safe, it is possible for, e.g., evaluation of (Join-↘) to take place
at a join-node, while simultaneously the evaluation of (Prop) takes place at both direct
predecessors of the join-node. The necessary synchronization on the inbox is handled at a
much finer granularity than evaluation steps of l−→ and g−→.

6.2 PARTE
Elixir

: a Truly Distributed PARTE Prototype

The second prototypical implementation of the Featherweight PARTE model goes by
the name PARTEElixir. PARTEElixir is a combined Rust/Elixir program which schedules
PARTERust nodes as Elixir [53] actors on a BEAM virtual machine [19]. 4

The main goal of PARTEElixir is to demonstrate that PARTE properly works in a distributed
setting such as a computer cluster. PARTEElixir demonstrates that the formal model does
not inadvertently depend on a shared global address space, a global clock, or other features
one might accidentally underspecify in a mathematical model and an implementation
like PARTERust.

As we addressed in section 5.6.4, handling partial failures in a PARTE graph is still an
unsolved problem: existing tools for fault tolerance and failure recovery do not provide
the strong guarantees PARTE requires, and PARTE’s guarantees cannot express the
uncertainty of hardware failure. As such, the failure handling in PARTEElixir is limited to
the initial graph-construction phase.

6.2.1 Overview

PARTEElixir consists of a number of core parts:

4A version of the tools that implement PARTEElixir is available at https://soft.vub.ac.be/~trenaux/
PARTE/implementation.zip.

175

https://soft.vub.ac.be/~trenaux/PARTE/implementation.zip
https://soft.vub.ac.be/~trenaux/PARTE/implementation.zip

Chapter 6: Implementation

• the core implementation of PARTERust, with some minor modifications (see sec-
tion 6.2.4);

• the Rustler library, which simplifies combining Rust code with Elixir code (see
section 6.2.3);

• an Elixir stub for each type of PARTE node (see section 6.2.5); and

• some Elixir code which reads a JSON representation of a PARTE graph — created
by PARTERust — and instantiates and links up an instance of the correct Elixir stub
for each node in the graph.

6.2.2 Elixir Primer

To understand this section, it suffices to know that Elixir is a dynamically typed actor-
based language which runs on BEAM virtual machine, i.e., the virtual machine originally
developed for the Erlang programming language. Elixir aims to be a successor to Erlang.
Elixir is homoiconic and has a powerful macro system, through which it offers language
features which are more “modern” than what Erlang offers. For our case, the distinction
between Erlang and Elixir is negligible. We only need a means of scheduling PARTE
graph nodes as distributed actors on a BEAM VM, with the minimal wrapper code that
enables this. Still, since we discuss some Elixir code, a brief look at Elixir syntax and
semantics is in place.

Program Structure

At the top level, an Elixir program consists of a module, defined using defmodule
the_module_name do the_module_content end. In a module, functions can
be defined using def the_function_name(a, comma-separated, list, of,
arguments) do the_function_body end. Additionally, closures canbe constructed
using fn an_argument_pattern -> the_function_body end, which supports
variable pattern matching on the arguments: A closure of the form fn {:sym, a, b}
-> body end expects to receive a three-tuple as its only argument, of which the first
element is the symbol :sym, and of which the second and third elements are bound to new
local variables a and b, respectively. Values can be bound to variables using var_name =
expression. No keyword is required, and no distinction is made between introducing
a new variable, or shadowing a variable with a new value.

Actors and Message Sending

Since Elixir is built on top of the BEAM VM, its main form of concurrency and parallelism
is offered by actors, or “processes”. Actors can communicate with each other by sending
messages asynchronously using send the_recipient_pid, the_message. The

176

6.2 PARTEElixir: a Truly Distributed PARTE Prototype

two arguments to send/2 5 are the BEAM process identifier of the recipient actor, and the
message to send. The message can transparently be serialized and sent over a computer
network. Actors do not share state, and conceptually live in a different address space.

Complementary to send/2 is receive/1. Actors can process messages that were sent
to them by explicitly entering a receive call. The receive construct takes as argument
a set of patterns, the expressions to evaluate when a message in the actor’s inbox matches
that pattern, and optionally a timeout delay and the expression to evaluate when no
matching message was received within the timeout delay.

6.2.3 Interfacing Rust with Elixir

The responsibility of our interface between Rust and Elixir code is to make the code of
the PARTERust implementation described in section 6.1 available to Elixir code. This is
facilitated by Erlang’s foreign function interface, which is based on NIFs. NIFs — which
stands for “Natively Implemented Functions” — form the API between the internals of
the BEAM VM—which is implemented in C — and any language which can interface
with C-language APIs. NIFs can be linked to Erlang functions, enabling Erlang or Elixir
code to call the function. The NIF API provides the functions to extract data from the
Erlang data types which are passed in as arguments to the NIF, and the functions to
construct results, possibly in the managed BEAM heap, possibly pinned to some address.
Obviously, in the latter case it is the programmer’s responsibility to later invoke a NIF
which deallocates that result.

Using NIFs, PARTEElixir can instantiate PARTERust nodes, and register functions which,
e.g., retrieve a node’s node identifier. However, it would be cumbersome and error-prone
to manually register the constructors and other methods of all node types, as well as the
means of translating tokens to and from an Elixir representation. We therefore made
use of the Rustler library [82]. Rustler automates wrapping Rust types in BEAM VM
resources, exposing Rust methods as NIFs, and inserting serialization and deserialization
methods around message-sends of Rust values.

6.2.4 Modifications to PARTE
Rust

Code

PARTERust code could not be integrated as-is. Two main modifications were required:
(de-)serialization code had to be added, and the ability to yield to the thread pool had to
be adapted to cooperate with Elixir’s runtime instead.

5Elixir does not in general support overloading functions, but functions with the same name but of different
arity can be distinguished. The arity of a function is commonly appended to the name, separated by a forward
slash.

177

Chapter 6: Implementation

1 impl NifEncoder for Time {
2 fn encode<'a>(&self, env: NifEnv<'a>) -> NifTerm<'a> {
3 self.0.encode(env)
4 }
5 }
6 impl<'a> NifDecoder<'a> for Time {
7 fn decode(term: NifTerm<'a>) -> NifResult<Time> {
8 Ok(Time(term.decode()?))
9 }
10 }

Listing 6.10: (De-)serialization of PARTERust timestamps for use in PARTEElixir

Serialization and Deserialization of PARTE Tokens

The first is straightforwardly related to PARTEElixir’s main novelty compared to PARTERust:
since PARTEElixir operates in a distributed address-space setting, messages must be
serialized and deserialized. As a result, in PARTEElixir events are no longer wrapped
as Arc<Event>, as they are in PARTERust. Instead, some new code was added to the
different data types to implement serialization and deserialization.

A manual implementation of serialization and deserialization of timestamps is depicted
in listing 6.10. Given a Time object and an BEAM NIF environment, encode produces a
NIF term which is valid while the NIF environment is valid. Rustler captures this using
Rust lifetimes. The first example hereof starts on line 2: the method encode is generic
over some lifetime 'a. Any call-site of encode determines the duration of lifetime 'a
for that call. Since the second argument — a NIF environment — specifies the lifetime
'a, that lifetime is bound to the lifetime of the NIF environment. Since the code specifies
that return value must also have lifetime 'a, it is impossible to return a term that has
been generated in some other NIF environment. Additionally, since the only information
available about lifetime 'a is that env has lifetime 'a, it would be a compile-time error to
save the NIF environment — or any term created in that environment — in some Rust
variable that outlives the execution of encode, since Rust cannot show that 'a outlives
the function call. As such, the requirement that the Erlang developers could only express
in plain English in the documentation of the NIF FFI, can be enforced by Rust’s type
checker.

The manual implementation depicted in listing 6.10 is more complicated than what is
typically necessary. For most PARTERust types, Rustler can automate the process further.
As a representative example, consider again the PARTERust implementation for Events in
listing 6.2. To add the capability of serialization and deserialization to events, it suffices
to add the line #[derive(NifMap)] in front of the definition of the struct. This line
instructs Rust to auto-derive the NifMap trait specified by Rustler. Auto-deriving causes
Rustler to generate the code for translating events to and from an Erlang map. Attribute
names get translated to Erlang atoms, values get recursively serialized and deserialized
by Rustler.

178

6.3 Revisiting the Limitations of Featherweight PARTE

Replacing the Thread Pool with the Elixir Actor Runtime

The second modification to PARTERust code that is required for PARTEElixir, is the result
of replacing the coroutine framework with an Elixir-based actor framework: nodes
no longer enter a processing loop on their coroutine. Instead, they expose an API
through which they can be informed of activations. The loop and message reception are
encoded in Elixir (as we will discuss in section 6.2.5). Concretely, this means that nodes
lose their enter_processing_loopmethod, and instead define either activate or
left_activate and right_activate. These activation-methods gather the tokens
to propagate to successors — i.e., the outbox of the nodes — and return them to their
caller. Using Rustler, the methods are exposed to Elixir code as NIFs.

6.2.5 Linking PARTE
Elixir

to PARTE
Rust

1 call_successors = fn (msg) -> call_node_successors(processes, n, msg) end
2 activate = case activation_procedures do
3 {activate} ->
4 fn token -> call_successors.(activate.(node,token)) end
5 {activate_left, activate_right} ->
6 fn {:left, token} -> call_successors.(activate_left.(node,token))
7 {:right, token} -> call_successors.(activate_right.(node,token))
8 end
9 end
10 forever(fn -> receive do t -> activate.(t) end end)

Listing 6.11: PARTEElixir’s Elixir wrappers around PARTERust nodes

The final piece of PARTEElixir to discuss, are the Elixir wrappers for each node. Listing 6.11
depicts the Elixir code accomplishing this. Each of the wrappers consists of a function
which forever loops trying to receive a token. Upon receipt of a token, the function
activates the underlying PARTERust node by calling the function registered through Rustler.
The tokens returned by the NIF are propagated to the successor nodes.

Excluding project configuration files and the code inside the Rustler library, PARTEElixir is
implemented less than 200 lines of Elixir.

6.3 Revisiting the Limitations of Featherweight PARTE

In section 5.6 we enumerated a number of limitations of fwPARTE. Since PARTERust

and PARTEElixir are implementations of the fwPARTE model, these limitations apply to
PARTERust and PARTEElixir too. In this section we briefly discuss how these limitations
manifest themselves in both prototypical implementations, and how some of these
limitations could be approached in PARTERust or PARTEElixir once fwPARTE defines how
to handle them.

179

Chapter 6: Implementation

First, we mentioned that fwPARTE is — by design — a reduced subset of what would be
necessary for a practical strongly reactive complex event detection system. Featherweight
PARTE offers only a restricted set of data types. This manifests itself by the rather spartan
implementation of Values. The only supported types of Values are 64-bit signed integers
and 64-bit signed IEEE floating-point numbers.

The only reaction logic supported by fwPARTE is the emission of newly created compound
events, or the detection of a rule matching. As explained in section 6.1.7 PARTERust

actually supports registering callbacks that are invoked in response to the matching of a
rule. Though this behavior goes beyond what the formal model prescribes, it is useful for
the prototype. It is self-evident that using this functionality to bypass the model by, e.g.,
emitting events from the callback in a way that is not compatible with prescribed event
source semantics, undoes the guarantees offered by the fwPARTE model.

Distributed failure handling is absent fromPARTERust for the simple reason that PARTERust

runs as a single process, which means that partial hardware failures cannot occur.
PARTEElixir does potentially run on multiple hardware nodes, opening the option for
handling failure of a subset of them. However, since the Featherweight PARTE model
does not define how to handle partial failure in a strongly reactive manner, PARTEElixir

lacks failure handling mechanisms. More accurately, existing mechanisms shared by the
other distributed Rete-based systems developed at the lab were removed from the code
base of PARTEElixir since they could not guarantee strong reactivity.

Section 5.6 ended with an enumeration of optimization opportunities which are missing
from the fwPARTE model, but which an implementation would likely apply. PARTERust

is such an implementation, and can hence apply some of those optimizations. We revisit
each element from the original list here. It should be noted that all these optimizations
can at most offer a constant factor speedup, since the baseline algorithm already runs in
constant time.

Indexes in partial match histories As shown by listing A.4, join-nodes abstract over
the lists of partial matches they have received before: their left partial match
history is no P(MIE⇀E) as the formal model proposes, but some opaque type
LeftPartialMatchStorage. Similarly, the right partial match history is no
P(T), but some opaque type RightPartialMatchStorage. These partial match
storages store a representation of the join-conditions of the join-node (or not-node).
This enables them to handle storage and lookup of matches in a more intelligent
way. As discussed in sections 5.6 and 6.1.7, one optimization this enables, is to
keep the partial matches sorted by lifetime, which reduces the cost of looking up
potential matches based on the temporal join-condition. We have not managed to
demonstrate additional gains from indexing the data to speed up matching based
on the non-temporal join-conditions.

Above-minimum storage sizes The model specifies that inboxes, outboxes, and partial
match histories should be at their minimum viable sizes. In practice, any constant

180

6.3 Revisiting the Limitations of Featherweight PARTE

size greater than or equal to the minimum viable size can be used, as long as the
implementation takes this into account.
When using an inbox at its minimum viable size, back-pressure can prevent over-
loading the system while still guaranteeing correctness, but chances are that the
system spends a lot of its run time in a state where all the concurrent components
are running in lock-step: all components wait for the slowest component to finish,
then perform another step and all wait for whichever component is slowest this
time, and so on.
Throughput can be improved by giving the different components some leeway, in
the form of an above-minimum sized buffer. That way, components only have to
wait if a certain component consistently was the slowest for multiple activations in a
row. Such optimizations are ubiquitous in distributed systems, to the point where
it could even be considered the default. However, the non-determinism in event
arrival and in scheduling mean that this optimization does not improve worst-case
performance by even a constant factor. It hence has little value in the context of this
dissertation.

Batching of multiple matches This optimization is dependent on the one of the previous
item, and offers the same style of advantages and disadvantages. Propagating an
entire batch of matches in a single message obviously decreases the overhead, but
does not improve the worst-case scenario critical to PARTE’s strong reactivity. Since
batching up partial matches makes it more difficult to satisfy the constraints on
inbox sizes, we did not implement this optimization in PARTERust.

Coarsening the granularity in the Featherweight PARTE graph Consider aPARTElang
programwhich contains thepatternincoming : MoneyTransferred {}. The
pattern specifies no alpha conditions. Consider the case where this is the only
pattern in the LRP program subscribed to MoneyTransferred events.
When such a program is executed on our prototype, PARTERust will construct
an entry node for this pattern. This entry node’s only job is to ‘merge’ a single
timestamp. Instead, the node will maintain a hashmap (of size one), do lookups
in it, construct new alpha tokens (which are identical to the one it received), and
propagate it to its singular successor using asynchronous message passing.
The successor — an alpha node — will serve this alpha token from its inbox,
verify whether some always-true predicate holds for the token’s event, construct a
beta-token wrapping that single event, and propagate it to its successors.
The ratio of overhead to useful work is huge here. In this specific case, an improved
system would omit the useless entry node, and propagate MoneyTransferred
events straight to the alpha node. That reduces the overhead somewhat, but still
leaves room for improvement. The alpha node cannot however be removed, as it is
responsible for converting the alpha token to a beta token. Still, in the absence of an
alpha condition, there is little point in executing the alpha node’s work concurrently:
the advantage of possible parallel computation does not weigh up to the overhead.
The overhead could be reduced bymaking the PARTE graphmore coarse bymerging

181

Chapter 6: Implementation

multiple conceptual nodes into a single, multi-purpose node. A two-input node
of which a predecessor is an alpha-node without an alpha condition, could be
specialized to receive alpha tokens, and do the — essentially no-op — conversion
itself.
In a similar vein, more advanced analysis of the load on nodes might enable merging
multiple successive join- and/or not-nodes. Alternatively, if a specific join-node
or not-node is revealed to be exceptionally computationally expensive, it might be
feasible to split of the verification of some join-constraints into a separate node.
Such a modification would depend on a strong analysis of the pattern, as delaying
filtering based on join-criteria yields a larger set of intermediate results, which has a
high chance of inadvertently increasing the load.

Limiting ⊥-tokens There is no need to pass “no change” tokens on paths through the
graph that do not lead to a negation. PARTERust statically checks which nodes are
on an (indirect) path to a negation. Nodes which are not, ignore “no change” tokens.
It might seem from listing 6.8 that alpha nodes are an exception to this. This is not
the case: since they have a single predecessor entry node which is on a path to a
negation if and only if the alpha node is, entry nodes ensure that alpha nodes only
receive “no change” tokens when they are on a path to a negation. An explicit check
in AlphaNode is hence redundant, thus omitted.

6.4 Conclusion

We developed two prototypical implementations of the Featherweight PARTEmodel. One
mimics PARTE’s distributed memory space on a single machine by implementing nodes
as concurrent coroutines which exchange tokens via asynchronous message passing. The
second implementation is truly distributed across multiple machines. This ability to
distribute workload across multiple computers enables PARTE to achieve the requirement
of being scalable (RLRP4).

In the next chapter we make use of these implementations. We implement the three driver
scenarios in PARTElang, and execute them on top of our prototypical implementations.
Our implementations thus enable us to experimentally validate our formal model, and
compare it to the state of the art.

182

7
Experimental Validation

The previous chapter describes two prototypical implementations of the Featherweight
PARTEmodel. In this chapter we show how the 3 driver scenarios introduced in section 2.1
can be expressed as a PARTElang program. To this end, we first explore the driver scenarios
in detail (section 7.1). Next, we translate them into PARTElang syntax (section 7.2).

We further describe the challenges in expressing those PARTElang programs using the
mature event processing systems described in chapters 2 and 3 (section 7.3). The state of
the art either cannot express a limit on the size of the state that is retained— a requirement
for strong reactivity— or does so at the cost of missing potential matches. We quantify the
latter cost experimentally (section 7.4) to show that the PARTE model offers a measurable
benefit over the state of the art.

7.1 Revisiting the Driver Scenarios

We listed 3 driver scenarios in section 2.1 (on page 12). Each of them expressed — in plain
English text — a complex event pattern which needed to be detected in event streams that
describe financial transactions. The patterns specified filter conditions (e.g., “the amount
must be at least 100e”), joins (by describing multiple events), and anti-joins (e.g., “there
was no other transaction”). The joins and anti-joins specified semantic windows (e.g., “2
weeks”) and join-conditions (e.g., “the same amount, with a 10% margin”).

183

Chapter 7: Experimental Validation

1. Time windows for fraud claims, per occurrence of a money transfer

3. Time windows during which no other incoming money transfer may occur, per refund

time
c1 c2 c3 c4Fraud claims

timeMoney transfers t2 t3 t4 t5t1

2. Time windows for refunds, per occurrence of a money transfer

Money transfers

timeMoney transfers t2 t3 t4 t5t1

time
r2 r3 r4 r5r1

Money transfers

time
r2 r3 r4 r5r1Money transfers

time
a2 a3 a4 a5a1

4. Time windows during which no other incoming transfer may occur, per refund, per claim, per transfer

time
c1 c2 c3 c4Fraud claims

timeMoney transfers t2 t3 t4 t5t1

Money transfers

time
r2 r3 r4 r5r1Money transfers

time
a2 a3 a4 a5a1

Figure 7.1: Events matching part of driver scenario C give rise to semantic windows over
the other events — White squares depict event occurrences of the corresponding type. Shaded hexagons

depict the extent of a semantic time window from the event on the top, mapped onto the stream below them.

7.1.1 Visualizing the Temporal Aspect of the Driver Scenarios

To better understand how the temporal aspects of the driver scenarios induce time
windows on the input event streams, we adapt figure 3.3 from page 59 to depict the
situation for driver scenario C, namely the refund-scam. This results in figure 7.1. Two
aspects of this figure warrant special attention. First, note that all time windows have the
same length. The patterns specify time windows of 2 weeks for any 2 events. Second,
note that the same stream of money transfers is used as the source of 3 kinds of transfers:

• as incoming transactions, which are labeled ti (for 1 ≤ i ≤ 5);

• as refund transactions, which as labeled ri; and

• as another transaction (which the pattern expects to be absent), which is labeled ai.

184

7.1 Revisiting the Driver Scenarios

Since multiple patterns must match the same stream, the patterns must not consume
events. This is the case for PARTElang. However, conversely this means that we must, e.g.,
specify in the pattern that the event matching the refund pattern must be distinct from
the event matching the “another refund” pattern. For the case of, e.g., the incoming and
refund events, no additional work is required, since a money transfer event cannot be its
own refund: a refund’s source and destination are the opposite of those of the incoming
transaction, and a transaction’s destination cannot be the same account as its originator.

Continuing with figure 7.1, part 1 is straightforward: driver scenario C specifies the
occurrence of a fraud claim within 2 weeks after a certain money transfer. For each money
transfer, there is hence a time window of 2 weeks during which fraud claims can be
received. Part 2 of figure 7.1 depicts how the same 2-week time windows apply to the
stream of refunds, which is the same stream as the initial transfers. Part 3 depicts the time
windows during which the absence of another matching refund has to be ensured; the 2
weeks before each refund. Aswementioned in the context of figure 3.3, the real complexity
arises when all time windows are combined. Since driver scenario C only specifies time
windows of 2 weeks, all with respect to some money transfer, the combination is still
reasonably simple. It is depicted in part 4 of figure 7.1. In short: for each incoming
transaction (ti), all refund and fraud claims of the next 2 weeks are selected. Before
each refund thusly matched, a 2-week period is checked for possible other refunding
transactions. If any are found, the complex event is ignored.

Of course, the filters and non-temporal join-constraints restrict which of the remaining
matches are valid.

7.1.2 Understanding the Join Behavior of the Driver Scenarios

Next, we discuss how the driver scenarios map onto a graph of PARTE nodes. Section 5.5
on page 146 outlined abstractly how a PARTElang program gets compiled into a PARTE
graph. We now anticipate what that process should produce for the driver scenarios.
Since each of the driver scenarios describes a single complex event pattern, each scenario
gives rise to one rule, and thus to one directed subgraph of PARTE nodes.

Driver scenario A describes a pattern of 2 money transfers. In order to match the pattern,
both transfers have to satisfy some constraints with respect to the amount of money
transferred. Both transfers have to be along an uncommon route. Additionally, the
destination of one of the transfers has to be the originator of the other transfer.
This pattern gives rise to the 6 nodes on the left of figure 7.2: for both the incoming
(“in”) and outgoing (“out”) money transfer, an entry node is generated. These
nodes merge the event streams of all event sources generating MoneyTransferred
events. An alpha test node is generated for both the incoming and the outgoing
transfers. These nodes verify the aforementioned constraints on the amount of
money, and on taking place via an uncommon route. The results of both alpha test
nodes are joined. The join conditions are verified as part of the joining process.

185

Chapter 7: Experimental Validation

αin αout

joinin/out

entryoutentryin

prodFraudPassThrough

entryo2

αin αo1 αo2 αo3

joinin/o1

joinin/o1/o2

joinin/o1/o2/o3

entryo3entryo1entryin

prodFraudDiffusion

entryc

αi αa αc αr

anti-joini/a

joini/c

joini/c/r

entryrentryaentryi

prodFraudRefundScam

event sources:
MoneyTransferred

event sources:
FraudClaimed

Figure 7.2: The PARTE graph for all 3 driver scenarios — Circles depict PARTE graph nodes.

Lines depict predecessor-successor relations. Nodes higher up are the predecessors. All labels apply to nodes.

Finally, the results of the join node are propagated to a production node. When
activated with a partial match, this node produces a new event summarizing the
fraudulent pattern.

Driver scenario B describes a pattern of 4 money transfers. All 4 have to satisfy some
constraints, e.g., that the transfer happened along an uncommon route. Additionally,
the 4 transfers have to be joined, satisfying some join conditions.
This pattern gives rise to the 12 nodes in the center of figure 7.2: for all 4 subpatterns,
an entry node and a test node are generated. Then, the incoming (“in”) transfer is
joined with the first outgoing (“o1”) transfer by means of a join node. The second
outgoing (“o2”) money transfer is joined next, using another join node. Similarly,
the third outgoing (“o3”) money transfer is joined. Finally, the results arrive at a
production node, which emits a new event summarizing the fraudulent pattern.

Driver scenario C describes a pattern of 2money transfers, a fraud claim, and the absence
of a fourth. Again, all 4 patterns enforce some constraints. The first 2 transfers have
to be joined, satisfying some join conditions. The fraud claim has to be joined to
the results. The last transfer has to be anti-joined onto the results of that step. The
temporal aspects necessarily must be taken into account here: the absence of the
last transfer must hold for the 2-week period after the first event.
This pattern gives rise to the 12 nodes on the right of figure 7.2: for all 4 subpatterns,
an entry node and a test node are again generated. The incoming (“i”) transfer
is joined with the refund (“r”) transfer by means of a join node. The fraud claim
(“c”) is joined with the results by means of another join node. Next, the absence of
another (“a”) refunding money transfer is enforced by a not-node, i.e., an anti-join.
As far as the overall structure of the graph is concerned, joining and anti-joining are
identical. Finally, a production node is provided to emit a new event summarizing
the fraudulent pattern.

186

7.1 Revisiting the Driver Scenarios

timestamp id originator destination amount

2018-01-01 08:00:00 1 AAA-AAA-AAA BBB-BBB-BBB 453e
2018-01-01 08:00:00 2 CCC-CCC-CCC DDD-DDD-DDD 120e
2018-01-01 08:00:05 3 EEE-EEE-EEE FFF-FFF-FFF 1254e
2018-01-01 08:00:10 4 GGG-GGG-GGG HHH-HHH-HHH 320e
2018-01-01 08:00:53 5 III-III-III JJJ-JJJ-JJJ 350e
2018-01-01 08:01:00 6 HHH-HHH-HHH KKK-KKK-KKK 105e
2018-01-01 08:01:30 7 EEE-EEE-EEE FFF-FFF-FFF 1240e
2018-01-01 08:02:00 8 JJJ-JJJ-JJJ LLL-LLL-LLL 120e
2018-01-01 08:02:15 9 HHH-HHH-HHH MMM-MMM-MMM 105e
2018-01-01 08:04:00 10 DDD-DDD-DDD NNN-NNN-NNN 120e
2018-01-01 08:05:00 11 OOO-OOO-OOO PPP-PPP-PPP 320e
2018-01-01 08:06:00 12 JJJ-JJJ-JJJ QQQ-QQQ-QQQ 120e
2018-01-01 08:07:00 13 RRR-RRR-RRR SSS-SSS-SSS 310e
...
2018-01-01 09:00:00 200 HHH-HHH-HHH TTT-TTT-TTT 100e
2018-01-01 09:00:01 201 SSS-SSS-SSS RRR-RRR-RRR 310e
2018-01-01 09:00:20 202 UUU-UUU-UUU VVV-VVV-VVV 64e
...
2018-01-02 12:00:00 5003 SSS-SSS-SSS RRR-RRR-RRR 310e
2018-01-02 12:00:05 5004 FFF-FFF-FFF WWW-WWW-WWW 1240e
2018-01-02 12:00:07 5005 OOO-OOO-OOO JJJ-JJJ-JJJ 200e
...
2018-01-17 08:00:00 37001 JJJ-JJJ-JJJ XXX-XXX-XXX 120e
2018-01-17 08:01:00 37002 YYY-YYY-YYY ZZZ-ZZZ-ZZZ 410e

Figure 7.3: A concrete trace of MoneyTransferred events — The excerpt contains one instance

of driver scenario A, one instance of driver scenario B, and one instance of driver scenario C if a fraud claim

contesting transaction 13 would occur on 2018-01-01 at 14:00:00.

7.1.3 A Concrete Event Trace

Before we translate the patterns into PARTElang, we briefly sketch how the event patterns
of the driver scenarios are supposed to behave on a concrete event stream.

Consider the trace of MoneyTransferred events in figure 7.3. The table lists the
timestamps at which the transfers occurred, the identifier of the transaction, the originator
and destination accounts, and the amount transferred. For instance, transaction 1
occurs January 1st, 2018, at 08:00, and transfers 453e from account AAA-AAA-AAA to
BBB-BBB-BBB. For simplicity, we will write “account A” when referring to the account
whose identifier is AAA-AAA-AAA, “account B” when the identifier is BBB-BBB-BBB, and
so on.

187

Chapter 7: Experimental Validation

For driver scenario A and driver scenario B, the stream of money transfers is all that is
needed. Driver scenario C additionally requires a stream of fraud claims. For the sake of
this example, consider a single fraud claim contesting transaction 13. The fraud claim
occurs on 2018-01-01, at 14:00:00.

With that setup, the following patterns occur in the event stream:

• Transaction 1 is a candidate for the incoming transactions of all 3 driver scenarios:
it is a transaction of more than 100e. However, no other transactions involving
accounts A and B occur in the stream, so the occurrence of transaction 1 will
eventually expire without producing a match.

• Transaction 2 similarly is a valid candidate for the incoming transactions of all 3
driver scenarios. Four minutes later, transaction 10 occurs, which transfers the same
amount of money away from account D as what was transferred to account D by
transaction 2. If accounts C and D, and the accounts D and N do not customarily
transfer money to each other, transactions 2 and 10 match driver scenario A.

• Similarly, transaction 4 can be an incoming transaction for driver scenario B, with
transactions 6, 9, and 200 being the outgoing transactions. Of the 320e sent to
account H in transaction 4, 310e (105e + 105e + 100e) was diffused to accounts K,
M, and T. This is within the 10 percent margin. Of course, this is only a valid match
if the involved accounts do not customarily transfer money to each other.

• Transaction 7 transfers 1240e to account F. Transaction 5004 transfers 1240e out of
account F, some 28 hours later. This pattern would match driver scenario A, were
it not for transaction 3. Because of transaction 3, transfers from account E to F are
considered common, and therefore not suspicious.

• Transaction 13 transfers 310e from account R to account S. By means of transaction
201, the owner of account Smanually reimburses the 310e to account R on 2018-01-01
at 09:00:01. However — as mentioned above — transaction 13 is disputed by a fraud
claim on 2018-01-01, at 14:00:00. This causes the bank to automatically revert the
transaction (on 2018-01-02 at 12:00:00, by means of transaction 5003). This pattern
matches driver scenario C, unless there was another transfer for approximately
310e from R to S, in which case both refunds could be valid.

• Finally, transaction 5 transfers 350e from account I to account J. Transfers 8, 12,
and 37001 transfer 360e (3 times 120e) out of account J. Assuming these accounts
do not customarily transfer money to each other, this would be a match for driver
scenario B, were it not that transfer 37001 occurred more than 2 weeks after transfer
5. The last transfer occurs outside of the time window, and should hence not be
detected.

188

7.2 Expressing the Driver Scenarios in PARTElang

7.2 Expressing the Driver Scenarios in PARTElang

We now express all 3 driver scenarios introduced in section 2.1 on page 12 as a PARTElang
program.1 The overall structure of the program is depicted in figure 7.2 on page 186.

Driver scenario A: Detecting Pass-Through of Money

In its most straightforward form, driver scenario A deals with only two event types: first,
as inputs it handles money transfers. Second, as output it produces an event representing
a suspicious sequence of transactions. The PARTElang program for driver scenario A
hence requires only two template definitions, depicted in listing 7.1.

1 template MoneyTransferred {
2 id : TransactionId,
3 originator : AccountId,
4 destination : AccountId,
5 amount : Amount,
6 }
7
8 template SuspiciousSequenceDetected {
9 mule_account : AccountId,
10 amount : Amount,
11 incoming_transactions : [AccountId; 3],
12 outgoing_transactions : [AccountId; 3],
13 }

Listing 7.1: The event templates required to express the detection of possible mule
accounts, used in driver scenario A and driver scenario B, expressed in PARTElang.

The template MoneyTransferred introduces a relation name for money transfer events
which have an identifier, an originator account, a destination account, and an amount of
money. The template SuspiciousSequenceDetected introduces a relation name for
events abstracting over the detection of suspicious sequences, listing the suspected mule
account, the amount of money transferred in the suspicious sequence, and the transactions
involved. The base types TransactionId, AccountId, Amount, and the list of up to 3
AccountIds, [AccountId; 3], are assumed to be built-in for the sake of this example.

Driver scenario A, i.e., the potentially fraudulent pass-through of money, can be captured
by a single rule, listed in listing 7.2. This rule— named FraudPassThrough—describes
a pattern where money is transferred twice: one incoming transaction named incoming,
and one outgoing transaction named outgoing. The incoming transaction is filtered by
the condition that the amount of money transferred is at least 100.0e. Both the incoming
and outgoing transactions are filtered by the condition uncommon_route(originator,
destination).

1The complete PARTElang implementation of the driver scenarios is available at https://soft.vub.ac.
be/~trenaux/PARTE/implemented-driver-scenarios.zip.

189

https://soft.vub.ac.be/~trenaux/PARTE/implemented-driver-scenarios.zip
https://soft.vub.ac.be/~trenaux/PARTE/implemented-driver-scenarios.zip

Chapter 7: Experimental Validation

1 rule FraudPassThrough where
2 incoming : MoneyTransferred {
3 amount >= 100.0,
4 uncommon_route(originator, destination)
5 }
6 outgoing : MoneyTransferred {
7 uncommon_route(originator, destination),
8 originator = incoming.destination,
9 amount = incoming.amount
10 }
11 when
12 outgoing in incoming [0 days, 14 days]
13 then
14 emit SuspiciousSequenceDetected
15 at incoming.timestamp
16 with {
17 mule_account = incoming.destination,
18 amount = incoming.amount,
19 incoming_transactions = list(incoming.id),
20 outgoing_transactions = list(outgoing.id)
21 }

Listing 7.2: The PARTElang rule implementing driver scenario A: a suspicious
incoming and a suspicious outgoing transaction are matched, and abstracted into a
SuspiciousSequenceDetected compound event.

Note that originator and destination refer to the fields of the local event, i.e., to the
incoming transaction in the first case, and to the outgoing transaction in the second.
Assume in this example that uncommon_route(a, b) is built-in, and implements the
domain logic behind uncommon sender/receiver pairs, e.g., that a never sent money
to b before, or that b is not a registered recipient for a. The pattern binding outgoing
imposes two more join-constraints: that the originator of the outgoing transaction
matches the destination of the incoming transaction, and that the amount of both
transactions is the same. Finally, the when-clause imposes the temporal join-condition that
the outgoing transaction takes place within 2 weeks after the incoming transaction.

The then-clause of the rule abstracts the detected pattern into a new compound event
of the type SuspiciousSequenceDetected. The SuspiciousSequenceDetected
event inherits the timestamp from the incoming transaction. Other attributes are
assigned based on the attributes of the matched transactions.

This rule, when applied to the event trace of figure 7.3 on page 187, would emit a
SuspiciousSequenceDetected event whose timestamp is 2018-01-01 08:00:00 — the
timestamp of transaction 2 — and whose mule_account attribute refers to account D.
The amount would of course be 120e, the incoming_transactions a singleton list
of transaction id 2, and outgoing_transactions a singleton list of transaction id 10.

Driver scenario B: Diffusion of Money

Driver scenario B reuses the event template definitions from driver scenario A, defined in
PARTElang in listing 7.1. The potentially fraudulent diffusion of money can be captured by

190

7.2 Expressing the Driver Scenarios in PARTElang

1 rule FraudDiffusion where
2 incoming : MoneyTransferred {
3 amount >= 100.0,
4 uncommon_route(originator, destination)
5 }
6 outgoing_1 : MoneyTransferred {
7 uncommon_route(originator, destination),
8 originator = incoming.destination,
9 }
10 outgoing_2 : MoneyTransferred {
11 uncommon_route(originator, destination),
12 originator = incoming.destination,
13 id != outgoing_1.id,
14 }
15 outgoing_3 : MoneyTransferred {
16 uncommon_route(originator, destination),
17 originator = incoming.destination,
18 id != outgoing_1.id,
19 id != outgoing_2.id,
20 outgoing_1.amount + outgoing_2.amount + outgoing_3.amount >= incoming.amount * 0.9,
21 outgoing_1.amount + outgoing_2.amount + outgoing_3.amount <= incoming.amount * 1.1,
22 }
23 when
24 outgoing_1 in incoming [0 days, 14 days]
25 outgoing_2 in incoming [0 days, 14 days]
26 outgoing_3 in incoming [0 days, 14 days]
27 then
28 emit SuspiciousSequenceDetected
29 at incoming.timestamp
30 with {
31 mule_account = incoming.destination,
32 amount = incoming.amount,
33 incoming_transactions = list(incoming.id),
34 outgoing_transactions = list(outgoing_1.id, outgoing_2.id, outgoing_3.id)
35 }

Listing 7.3: The PARTElang rule implementing driver scenario B: a suspicious
incoming and 3 suspicious outgoing transactions are matched, and abstracted into
a SuspiciousSequenceDetected compound event.

a single rule. This rule, named FraudDiffusion, can be found in listing 7.3. It captures
a pattern involving 4 transactions: one incoming transfer, and 3 outgoing transfers. The
events must satisfy the following conditions:

• The incoming MoneyTransferred event must transfer at least 100.0e.

• All MoneyTransferred events must be on an uncommon_route.

• All outgoing transactions are restricted to transactions whose originator matches
the destination of the incoming transaction.

• Distinctness between outgoing_1, outgoing_2, and outgoing_3 2 is estab-
lished by requiring them to have a different id.

2Remember that PARTE has a zero consume event consumption policy (see section 3.4.1). This entails that a
single event can bematched tomultiple rules, but also that a single event can bematched tomultiple sub-patterns
in one rule.

191

Chapter 7: Experimental Validation

• The pattern of outgoing_3 enforces that the sum of the amounts of the outgoing
transactions is within ten percent of the amount of the incoming transaction.

• The when-clause imposes the temporal constraint that the outgoing transactions
takes place within 2 weeks after the incoming transaction.

• The then-clause of the rule abstracts the detected pattern into a new compound
event of the type SuspiciousSequenceDetected. The new event inherits the
timestamp from the incoming transaction. Other attributes of the new complex
event are assigned based on the attributes of the matched transactions.

This rule, when applied to the event trace of figure 7.3 on page 187, would emit a
SuspiciousSequenceDetected event whose timestamp is 2018-01-01 08:00:10 — the
timestamp of transaction 4 — and whose mule_account attribute refers to account
H. The amount would be 320e: the amount of the incoming transaction. If we had
wanted to list the amount of money transferred out of the mule account — in this case
310e—we would have to replace the expression incoming.amount (assigned to the
new event’s amount attribute on line 32) with the expression outgoing_1.amount
+ outgoing_2.amount + outgoing_3.amount. The incoming_transactions
attribute of the emitted event is of course a singleton list of transaction id 4. The
outgoing_transactions attribute is the full 3-element list containing transaction
identifiers 6, 9 and 200.

Reducing Code Duplication in Driver Scenarios A and B

The code in listings 7.2 and 7.3 shows that the common concern of the occurrence of “money
being transferred, while being suspicious” leads to code duplication in the current solution.
These events can be abstracted into events of a novel event template named for instance
MoneyTransferredSuspiciously.3 With the addition of this rule, the solutions for
the first two driver scenarios can be adapted by no longer matching on occurrences of
MoneyTransferred, but on occurrences of MoneyTransferredSuspiciously. The
now-redundant pattern conditions involving the constant constraint on the amount and
those involving the predicate uncommon_route can then be removed from the rules
FraudPassThrough and FraudDiffusion.4

Driver scenario C: Detecting Refund Scam

A PARTElang implementation of driver scenario C is listed in listings 7.4 and 7.5 on
pages 193 and 194. Two new event templates are defined: one to capture claims of
fraudulent transactions, and one to abstract the detection of possible refund scam. The

3A rule that performs this abstraction is provided in the appendix, in listing A.1 on page 241.
4The resulting code is provided in the appendix in listing A.2 on page 242.

192

7.3 Shortcomings of the State of the Art Revisited

former template lists the affected transaction and the reason for the claim. The latter
template lists the incoming transaction and the transaction through which it was refunded.

The rule FraudRefundScam specifies the reaction to a pattern involving 4 subpatterns.
The first two are money transfers, where the second transaction returns a similar amount
of money than what was sent in the first. The third subpattern concerns a claim of
fraud on the transaction matched to the incoming event pattern. The fourth and final
subpattern is a negated pattern requiring the absence of a third transaction for which the
event matched to refund could be a valid refund. The when-clause imposes the temporal
constraints we explored in section 7.1.1 and in figure 7.1 on page 184: the refund and
fraud claim must take place within 2 weeks after the incoming transaction, and restrict
the window during which no additional incoming transaction may take place to the 2
weeks before the refund.

The then-clause of this rule emits a new RefundScamSuspected compound event.
This event inherits the timestamp from the claim. Other attributes are assigned based
on the attributes of the matched transactions.

This rule, when applied to the event trace of figure 7.3 on page 187 and the fraud claim
mentioned in section 7.1.3 on page 187, would emit a RefundScamSuspected event
whose timestamp is 2018-01-01 08:07:00 — the timestamp of transaction 13. The newly
emitted event’s incoming_transaction would of course be transaction id 13, and its
refund_transaction attribute would refer to transaction 201.

1 template FraudulentTransactionClaimed {
2 transaction_id : TransactionId,
3 reason : String,
4 }
5
6 template RefundScamSuspected {
7 incoming_transaction : TransactionId,
8 refund_transaction : TransactionId,
9 }

Listing 7.4: The event templates required to express the detection of possible refund scam,
used in driver scenario C in addition to those from listing 7.1, expressed in PARTElang.

7.3 Shortcomings of the State of the Art Revisited

We have now implemented our driver scenarios in PARTElang. PARTElang programs
are by design expressive event patterns with reaction logic (satisfying RLRP1 defined in
section 4.1.5 on page 70), which relate events in time (RLRP2). Because our implementation
(from chapter 6) implements the Featherweight PARTE model, the programs can be
matched to a live stream in a scalable (RLRP4), strongly reactive fashion (RLRP5). The event
storage is automatically managed (RLRP3).

193

Chapter 7: Experimental Validation

1 rule FraudRefundScam where
2 incoming : MoneyTransferred,
3 refund : MoneyTransferred {
4 destination = incoming.originator,
5 originator = incoming.destination,
6 amount >= incoming.amount * 0.9,
7 amount <= incoming.amount * 1.1,
8 },
9 claim : FraudulentTransactionClaimed {
10 transaction_id = incoming.id
11 },
12 no additional_incoming : MoneyTransferred {
13 originator = incoming.originator,
14 destination = incoming.destination,
15 amount >= refund.amount * 0.9,
16 amount <= refund.amount * 1.1,
17 }
18 when
19 refund in incoming [0 days, 14 days]
20 claim in incoming [0 days, 14 days]
21 no additional_incoming in refund [-14 days, 0 days]
22 then
23 emit RefundScamSuspected
24 at claim.timestamp
25 with {
26 incoming_transaction = incoming.id,
27 refund_transaction = refund.id,
28 }

Listing 7.5: The PARTElang rule implementing driver scenario C: a transaction, its
refund, a fraud claim on the first transaction, and the absence of another candidate for
the refunded transaction are matched, and abstracted into a RefundScamSuspected
compound event.

One might ask whether all these steps were necessary; whether it would not suffice
to merely use the PARTE model to determine the minimum viable sizes (as defined
by definitions 25 to 27 on page 127) of partial match storages, inboxes, and outboxes.
Instead of using PARTERust or PARTEElixir, one could consider using the more mainstream
technologies described in chapters 2 and 3 as the actual implementation platform. In this
section, we demonstrate why that is not a straightforward option.

7.3.1 Issue: No Notion of Minimum Viable Sizes in the Model

Wehave explained the shortcomings of existing distributed BigData and streamprocessing
system and event handling systems throughout this dissertation: first in the description of
the state of the art (in chapters 2 and 3), then by explaining which additional requirements
an LRP language has (in section 4.1), then by highlighting relevant differences in the
related work sections (in sections 4.6 and 5.7). At this point, we can summarize the
shortcomings of the related work in a different way:

194

7.3 Shortcomings of the State of the Art Revisited

Insight

A major shortcoming of existing streaming event handling systems is that they
have no notion of minimum viable sizes.

The set of minimum viable sizes is not a global property of an event pattern; it is a
property of an event pattern and an evaluation model. In the LRP paradigm, any event
pattern is guaranteed to define a set of finite, fixed minimum viable sizes, and evaluation
is guaranteed to terminate successfully within those minimum viable sizes. This property
does not hold for arbitrary non-LRP evaluation models.

Consider a hypothetical implementation of driver scenario A on top of a stream processing
framework, e.g., Spark Streaming [146]. Let the minimum viable left partial match history
size of the single join node in driver scenario A be size↘. Let partial match histories be
represented as windows containing a number of financial transactions, upper-bounded
by the minimum viable size. Consider now a case where — due to the scheduling
of different computations on different machines in the Spark cluster — the stream of
incoming financial transactions processes size↘ + 1 elements, while the processing of the
stream of outgoing financial transactions is idle. The first of those size↘ + 1 incoming
financial transactions will be pushed out of the window without ever being joined with
outgoing transactions, leading to potentially missed results.

The remainder of this section discusses how this problem comes about in existing dis-
tributed streaming event handling systems. Single-threaded event handling technologies
which receive events from at most one source per event type, do not suffer from this
shortcoming. However, they only do so because their execution involves no scheduling,
and hence no source of nondeterminism. A hypothetical distributed version of those
technologies — using state of the art distribution technologies — would suffer the same
shortcomings, where either strong reactivity has to be sacrificed, or results are potentially
missed.

7.3.2 Case Study: Expressing the Solution in Apache Flink

Apache Flink [8] is one of the Big Data stream processing frameworks discussed in
section 2.3.3. As discussed in section 3.3, a CEP extension for Flink, FlinkCEP [9], exists.
Flink therefore looks like a promising implementation technology for our driver scenarios.
However, none of the approaches offered by Flink can guarantee strong reactivity, as the
evaluation model does not support the notion of minimum viable sizes:

FlinkCEP Amongst the different approaches available in Flink, FlinkCEP offers the
most expressive API for complex event processing. Sadly, FlinkCEP offers no way
of statically limit the number of elements retained in its internal data structures,
precluding guaranteed strong reactivity.

195

Chapter 7: Experimental Validation

Flink’s Streaming SQL The Streaming SQL-based option suffers the same shortcoming:
its declarative language offers no way of specifying a maximum number of elements
retained.

CountWindow In Flink, an upper limit can be placed on the number of elements retained
in awindowusing either CountWindows or evictors. The former specifies a tumbling
window of a certain size. Once the window is full, a processing function is applied
to all elements in the window. This is not the behavior required by our driver
scenarios, though: the scenarios require that two streams are joined, and that new
events from one stream are matched to a (sliding) window of the other stream.
CountWindows do not support joining.

Windowed Join with Evictor Joining two streams in Flink can be done in two ways:
either as a windowed join, or as an interval join. The former entails that two streams
are joined on a shared key. In driver scenario B that could take the form of pairwise
joining incomingmoney transfers (keyed by destination) to 3 streams of outgoing
money transfers (keyed by destination).

Windowed joins can use tumbling windows, sliding windows, session windows,
or manually triggered windows. CountWindows are not supported for windowed
joins, though the addition of an explicit CountEvictor can limit the number of
elements retained in the time window.

For our driver scenarios, sliding windows are needed. However, Flink’s windowed
joins with sliding windows do not give rise to the behavior needed for our driver
scenarios: the processing function applied to the window takes pairs of elements:
the function is called for each pair of elements which is still in the window. What is
required, instead, is an API for joining one new arrival with each element of the
other stream which is still in the window. As it is, Flink’s sliding windows either
duplicate matches (when the slide parameter is smaller than the window size),
or effectively become tumbling windows, thereby missing matches which span
multiple windows. Any approach to filter out the duplicates necessarily requires
manually managing another window’s worth of recent elements, defeating the point
of using Flink’s windows in the first place.

Interval Join The final approach available in Flink is using interval joins. Interval joins are
a form of semantic window, where events of one stream are joined with events of
another stream based on a time windowwith respect to individual events on the first
stream. The API is fixed, and takes the form s1.intervalJoin(s2).between(
t_min, t_max).process(f), where t_min and t_max are durations. The data
structure used to store the events is not limited in size, and not accessible to the
programmer: The processing function f gets no access to any sort of window data
structure, only to both elements’ data. For interval joins, too, it is hence not possible
to impose a limit on the number of events that is retained in the window, precluding
strong reactivity.

196

7.3 Shortcomings of the State of the Art Revisited

7.3.3 Case Study: Expressing the Solution in Spark Streaming

Spark Streaming [146] is another Big Data stream processing frameworks discussed in
section 2.3.3. It is less opinionated than Flink, requiring more manual work but offering
more flexibility. Still, when using the idiomatic approach it is impossible to limit the state
size without potentially missing some matches.

Using Idiomatic Spark Streaming

Consider implementing driver scenario A in Spark Streaming. Idiomatically, joining
the stream of incoming financial transactions with the stream of outgoing financial
transactions, could be done by using Spark Streaming’s join operator, joining incoming
transactions keyed by destination to outgoing transactions keyed by originator.
To impose an upper limit on the number of elements retained, one cannot use Spark
Streaming’s window operator, as the windows it creates are time-based, not size-based.
Additionally, it creates one window for both joined sides, which is still wrong API, as
what is needed are two windows; one for each side to be joined. Worse, limiting the size
of a window does not suffice here, as the windows are per key, but arbitrarily many keys
can exist.

Using Manual Windowing on Top of Spark Streaming

One could bypass these problems by manually implementing the join behavior, essentially
reimplementing parts of PARTE on top of Spark Streaming. To this end, one can create a
Spark RDD consisting of a tuple containing both windows of elements which may still
take part in the joining process — essentially partial match histories. In Scala syntax, the
initial Spark RDD could be created as follows:

1 val initialRDD : RDD[(List[List[TransferData]], List[TransferData])]
2 = ssc.sparkContext.parallelize(List((List(), List())))

Listing 7.6: Initial state, i.e., partial match histories, used in the manual implementation
of driver scenario B in Spark Streaming

Driver scenario B could then be implemented 5 by

• reading the money transfers from a socket (as a DStream[String]);

• parsing them into instances of the custom TransferData class (resulting in a
DStream[TransferData];

5The actual Scala code implementing this, is available at https://soft.vub.ac.be/~trenaux/PARTE/
evaluation.zip.

197

https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip
https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip

Chapter 7: Experimental Validation

• creating 4 instances of this stream: one stream filtered by the amount and bywhether
the transfer is on an uncommon route (yielding the stream of incoming money
transfers), and 3 streams filtered by whether the transfer is on an uncommon route
(yielding the 3 streams of outgoing money transfers);

• assigning an arbitrary, but consistent key to all elements, and some indication
of whether this ’token’ left-activates or right activates. The incoming stream left-
activates, the 3 outgoing streams right-activate (refer back to figure 7.2 on page 186).
All 4 streams hence have a type like DStream[(Int, (ActivationSide,
List[TransferData]))].

• These streams could then be joined by taking the union of the stream of incoming
money transfers and the first stream of outgoing money transfers, then applying
mapWithState, mapping a functionwhich stores newelements in the correct partial
match history, drops old elements past the minimum viable size of the partial match
history, checks all events in the opposite partial match history for amatch (taking into
account the join constraints, namely that incoming.dest == outgoing1.orig
and that outgoing1.timestamp >= incoming.timestamp as well as that
outgoing1.timestamp <= incoming.timestamp + window_size), then
calling update on the RDD-state with updated new partial match histories, and
yielding the successful matches, prefixed by an ActivationSide and the key;

• taking the union of the stream produced above and the second stream of outgoing
money transfers, then again applying mapWithState, mapping another custom
patching procedure updating the RDD-state; and finally

• taking the union of the stream produced above and the third stream of outgoing
money transfers, then again applying mapWithState, mapping another custom
patching procedure updating the RDD-state.

This approach works in principle, but still suffers from the issue stated in section 7.3.1:
the evaluation model has no notion of the minimum viable size, and thus does not block
execution along one path to allow another path to catch up. Models like PARTE can apply
backpressurewhen one side of a join would overshoot its minimum viable space. Models
like the one used by Spark Streaming do not apply backpressure in those cases. This makes
sense: absent the formal model of PARTE, there is no indication that processing data from
one side of the join will inevitably free up space at the other side before both sides are full.
For general-purpose stream processing libraries, blocking one side of a join because its
window is full, could easily lead to deadlocks.

A result of this lack of in-model support for minimum viable sizes, is that possible matches
are not detected by this implementation. We quantify this in the next section.

198

7.4 Quantifying the Problems with the State of the Art

7.4 Quantifying the Problems with the State of the Art

In the previous section we concluded that expressing a strongly reactive implementation
of the driver scenarios is not possible in the state of the art, as every solution either
fails to guarantee evaluation in constant space (precluding constant-time evaluation), or
risks missing matches to patterns by evicting non-stale data from its windows. We now
quantify the latter case.

7.4.1 Experimental Setup

To quantify risks of the latter case, we execute both PARTERust and the Spark Streaming
implementation described in last section on generated stream of money transfers. For
PARTERust we allocate the minimum viable size for all its inboxes, outboxes, and partial
match histories, as determined by the Featherweight PARTE model. Our experiments
show that the Spark Streaming implementation, when using partial match histories of the
same size, misses some results. The number of missed results decreases as the partial
match history size increases, until the point where the Spark Streaming implementation
also detects all matches.

Generation of Event Traces Containing Matches to the Patterns

We randomly generate a number of scenarios, in the form of event traces. Each trace
contains a number of MoneyTransferred events. Some sets of these events jointly
match the pattern specified by driver scenario B, other events do not, and act as noise.
We only generate valid matches for driver scenario B; as explained in section 7.1.2, driver
scenario A is merely a simplified version of driver scenario B, and driver scenario C
displays a very similar join behavior.

To reduce the time it takes to execute the test runs, as well as to overcome the issues
outlined in section 5.6.1, the time window specified by the pattern is lowered from 14
days to 14 milliseconds. The event arrival rate of MoneyTransferred events is in turn
raised to 10 per millisecond, spread over two event sources. The partial match arrival
rates and minimum viable partial match history sizes are depicted in figure 7.4.

The different generated traces differ in the following ways:

Number of 3-way splits: the number of sets of 4 events which jointly constitute a 3-way
split of money within the time window;

Number of unrelated events: the number of events which are not part of a 3-way split;
and

Run: for each number of 3-way splits and unrelated events, multiple “runs” are generated.
Each “run” produces a different random assignment of timestamps to the events.

199

Chapter 7: Experimental Validation

entryo2

αi αo1 αo2 αo3

entryo3entryo1entryi

event source 1 event source 2

5/ms 5/ms
5/ms 5/ms

5/ms
5/ms

5/ms

10/ms 10/ms 10/ms

10/ms 10/ms 10/ms

10/ms × 14ms + 1 = 141 10/ms × 14ms + 1 = 141

10/ms × 141 + 10/ms × 141 = 2,820/ms

2,820/ms × 14ms + 1 = 39,481 10/ms × 14ms + 1 = 141

10/ms × 39,481 + 2820/ms × 141 = 792,430/ms

792,430/ms × 14ms + 1 = 11,094,021 10/ms × 14ms + 1 = 141

5/ms

10/ms

10/ms

Figure 7.4: PARTE graph of driver scenario B, with minimum viable partial match history
sizes — The partial match arrival rates — which determine the minimum viable partial match history sizes

lower in the graph — are depicted in orange.

1 for run_id in 0..100 {
2 for num_diffusiony in &[10, 100, 1000] {
3 let num_on_common_route = num_diffusiony / 4;
4 let num_below_threshold = num_diffusiony / 4;
5 let num_full_diffusions = num_diffusiony - num_on_common_route - num_below_threshold;
6 for &num_unrelated in &[0, 1, 10, 100, 1000, 10000] {
7 let events = generate_events_with_diffusion(num_full_diffusions,
8 num_on_common_route,
9 num_below_threshold,
10 num_unrelated,
11 &template_transferred,
12 last_start_time);
13
14 let name = format!("d={}-u={}-r={}.txt", num_diffusiony, num_unrelated, run_id);
15 let events_and_sources = assign_event_source_to_event(
16 &name, num_primitive_events_sources, events.into_iter());
17 }
18 }
19 }

Listing 7.7: Rust code driving the event trace generation for the evaluation in section 7.4

For completeness, we reproduce the code of the event trace generator in this chapter.

200

7.4 Quantifying the Problems with the State of the Art

1 use rand::distributions::{Bernoulli, Distribution, Uniform};
2 let distribution_of_ce_start = Uniform::from(0..last_start_time);
3 let mut rng = rand::thread_rng(); // Pseudo-random number generator
4 let mut all_events = BTreeMap::new();
5 let mut next_id = 0;
6
7 for i in 0..num_full_diffusions {
8 let ce_start_time = distribution_of_ce_start.sample(&mut rng);
9
10 while let Err(()) = add_new_diffusion_group(&mut next_id,
11 ce_start_time,
12 true, // is_above_threshold
13 false, // is_common_route
14 &template_transferred,
15 &mut rng,
16 &mut all_events);
17 }
18
19 for i in 0..num_common_route { /* ... similarly ... */ }
20
21 for i in 0..num_below_threshold { /* ... similarly ... */ }
22
23 let distribution_of_is_above_threshold = Bernoulli::new(0.5);
24 let distribution_of_is_common_route = Bernoulli::new(0.9);
25 for i in 0..num_unrelated {
26 let ce_start_time = distribution_of_ce_start.sample(&mut rng);
27
28 while let Err(()) = add_new_unrelated_event(
29 &mut next_id,
30 ce_start_time,
31 distribution_of_is_above_threshold.sample(&mut rng),
32 distribution_of_is_common_route.sample(&mut rng),
33 &template_transferred,
34 &mut rng,
35 &mut all_events);
36 }

Listing 7.8: Rust code generating the event trace given a configuration

The main driver of the event trace generator is depicted in listing 7.7. In the configuration
shown, it prepares 100 different runs (line 1) of each scenario. Of each scenario, a version
exists generating 10, 100, and 1000 (line 2) 3-way splits. As shown on lines 3 to 5, the
number of 3-way splits is divided into 3 parts: the first quarter (rounded down) form
non-fraudulent diffusions of money, which happen along common routes. The next
quarter (rounded down) form non-fraudulent diffusions of money, which involve less than
100e. The remaining splits are generated to satisfy the pattern of a fraudulent diffusion
of money. Line 6 cycles through the different number of unrelated events to generate.
Finally, the concrete events are generated (line 7), the file name for the benchmark is
produced, and the events are assigned to event sources.

The code generating the event traces is depicted in listing 7.8. Depicted from line 7
onwards, the code produces some “full diffusions”, i.e. groups of MoneyTransferred
events which fully satisfy the constraints of a fraudulent diffusion of money. For each
group, a start time is randomly selected (on line 8) by sampling a uniform distribution
(defined on line 2). The actual creation of the diffusion group is performed by the
procedure add_new_diffusion_group (called on line 10, and defined in listing A.6

201

Chapter 7: Experimental Validation

on page 246). If that procedure would generate too many events for a certain time span,
thereby surpassing themaximum event arrival rate, the procedure returns an error instead.
If such an error is returned, the event trace generator simply calls the procedure again.

After creating the “full diffusions”, diffusions along a common route and diffusions
involving less money than the 100e threshold are generated using a similar loop. Finally,
the unrelated events are generated. The call at line 29 adds a single unrelated event to the
set of all_events, unless the randomly generated event would surpass the maximum
event arrival rate, in which case another unrelated event is generated. The probability
that an unrelated event is along a common route, or that the event is above the 100e
threshold, are respectively 90% and 50%, sampled from Bernoulli distributions (defined
on lines 23 and 24).

For the generation of the actual events, consider listing 7.9 (and listing A.6, provided in
the appendix on page 246). For a diffusion group, an incoming MoneyTransferred
event is randomly generated at a timestamp chosen uniformly within the duration of the
scenario. Then, 3 matching outgoing money transfers are randomly generated, uniformly
distributed within the semantic time window after the incoming transfer. The generator
ensures that the union of the preexisting set of events and the 4 new events is below the
maximum event rate, and either adds the new events to the set, or returns an error.

The case for the unrelated events is similar, but simpler. As depicted in listing 7.9,
depending on the configuration a random value for the amount of money transferred is
generated (on line 1), and the originator and destination of the transfer is determined (on
line 2). If the emission of the event would surpass the maximum event rate, the sample is
rejected (by returning an error on line 5). Otherwise, the event is constructed and added
to the set of events. The unrelated MoneyTransferred events operate on an entirely
separate set of account identifiers, to ensure they do not accidentally contribute to a 3-way
split. However, the pattern matchers are not aware of this distinction, and they cannot
discard the unrelated money transfers before attempting to join. The unrelated money
transfers hence do contribute to window evictions.

Searching the Event Traces for Matches to the Patterns

Each event trace generated by the process described above is first matched against the
PARTElang program for driver scenario B (defined in listing 7.3 on page 191), executed
by PARTERust. Next, it is ran against the manual implementation in Spark Streaming (in
section 7.3.3 on page 197), at increasing multiples of the minimum viable size. First, the
Spark Streaming program is ran with windows of exactly the minimum viable partial
match size determined by Featherweight PARTE, i.e. with the same memory consumption
as the run of PARTERust. Next, the Spark Streaming program is ran with windows
twice the minimum viable size, then 3 times, and so on, until the point where the Spark
Streaming program reliably finds all matches.

202

7.4 Quantifying the Problems with the State of the Art

1 let amount = if is_above_threshold {rng.gen_range(100, 999)} else {rng.gen_range(1, 99)};
2 let (orig_acc, dest_acc) = unique_account_pair_from_seed(*next_id, is_common_route);
3
4 { // Ensure it's safe to use this event w.r.t. the `EVENT_RATE`
5 if (all_events.get(&time).unwrap_or_default().iter().count() + 1) > EVENT_RATE {
6 // This random sample failed: would produce too many events in a certain timeslot
7 return Err(());
8 }
9 }
10
11 let event = Event::new(template_transferred,
12 vec![Value::from(*next_id),
13 Value::from(orig_acc),
14 Value::from(dest_acc),
15 Value::from(amount)],
16 Time::from_milliseconds(time as f64)).unwrap();
17 *next_id += 1;
18 all_events.entry(time).or_default().push(event);

Listing 7.9: Rust code generating a new unrelated event given a configuration

Though this is not a performance benchmark, we minimize measurement noise by
executing all benchmarks on the same machine. Interference by other processes are
reduced to a minimum: the machine is not used for other purposes during the benchmark.
The machine has sufficient RAM to match all event traces, and a sufficiently large heap
size is allocated for the JVM in which the Spark Streaming job runs, such that all runs of
the programs complete without errors.

7.4.2 Results

Using the experimental setup described in section 7.4.1, we obtained results for event
traceswith 10, 100, and 1000 diffusion groups (consisting of 4 MoneyTransferred events
each), each interspersed by either 100, 1000, or 10000 unrelated MoneyTransferred
events. The results we obtained are summarized in appendix B.6

Case: 10 Diffusion Groups

The graph in figure 7.5 plots the fraction of fraud cases which are detected for a given
partial match history size. In total, 10 diffusion groups occur in the event trace, of which
6 satisfy all conditions of a fraudulent money diffusion. When the event trace consists
of only the 40 MoneyTransferred events forming diffusion groups, PARTERust detects
all 6 cases of fraud when its storage is limited to the minimum viable size. The Spark
Streaming implementation also finds all of the fraud cases when its storage is limited
to the same size as PARTE at the minimum viable sizes. The same holds when the 10
diffusion groups are hidden in a stream of 100 or 1000 unrelated events.

6The raw output of our experiments, as well as the code used to process it, is available at https://soft.
vub.ac.be/~trenaux/PARTE/evaluation.zip.

203

https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip
https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip

Chapter 7: Experimental Validation

1 2 3 4 5 6 7 8 9

Multiples of minimal viable partial match history size

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

m
at

ch
es

de
te

ct
ed

PARTERust

Spark Streaming with 0 unrelated

Spark Streaming with 100 unrelated

Spark Streaming with 1000 unrelated

Spark Streaming with 10000 unrelated

Figure 7.5: Fraction of the 6 fraud cases detected for a given partial match history size —

Error bars indicate the 5% and 95% percentile of the measurements. The line connects the medians.

However, when the stream contains 10000 unrelated events, the Spark Streaming imple-
mentation only detects between 0 and 3 of the 6 fraud cases (with a median of 1 case) when
it is limited to a storage size equal to PARTE’s minimum viable size. Increasing the storage
size allocated for the Spark Streaming implementation improves the situation: at twice
PARTE’s minimum viable size, the Spark Streaming implementation detects between 1
and 5 of the cases (with a median of 3 cases). Increasing the storage size again further
improves the situation: at 3 times PARTE’s minimum viable size, the Spark Streaming
implementation finds between 3 and 6 of the 6 cases (with a median of 5 cases). With
4 times PARTE’s minimum viable size, the Spark Streaming implementation finds all 6
matches in our experiments. PARTERust detects all 6 matches regardless of the amount of
noise.

Case: 100 Diffusion Groups

The graph in figure 7.6 similarly plots the fraction of fraud cases which are detected for
a given partial match history size. In this case, 100 diffusion groups occur in the event
trace, of which 50 satisfy all conditions of a fraudulent diffusion of money. When the
event trace consists of only the 400 MoneyTransferred events forming diffusion groups,
PARTERust detects all 50 cases of fraud when its storage is limited to the minimum viable
size. The Spark Streaming implementation finds approximately 35 out of the 50 (70%)
fraud cases with its storage limited to equal PARTE’s the minimum viable sizes. Doubling

204

7.4 Quantifying the Problems with the State of the Art

1 2 3 4 5 6 7 8 9

Multiples of minimal viable partial match history size

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

m
at

ch
es

de
te

ct
ed

PARTERust

Spark Streaming with 0 unrelated

Spark Streaming with 100 unrelated

Spark Streaming with 1000 unrelated

Spark Streaming with 10000 unrelated

Figure 7.6: Fraction of the 50 fraud cases detected for a given partial match history size —

Error bars indicate the 5% and 95% percentile of the measurements. The line connects the medians.

the storage size allocated for the Spark Streaming implementation resolves the issue: all
50 cases are then detected.

The situation is similar when the 100 diffusion groups are hidden in a stream of 100 or
1000 unrelated events: in the former case, a median of 34 out of the 50 (68%) fraud cases
are found at the minimum viable size, in the latter case a median of 28 out of 50 (56%). In
both cases, doubling the partial match storage size solves the issue: all 50 cases are then
detected.

However, in the case of 10000 unrelated MoneyTransferred events, detection rates
are significantly worse: the Spark Streaming implementation only detects a median of
10 out of 50 (20%) of the cases when limited to PARTE’s minimum viable size, and at
five times that size still does not always detect all 50 cases. Only at six times PARTE’s
minimum viable size does the Spark Streaming implementation reliably find all matches.
PARTERust— in contrast — reliably detects all 50 matches in all cases.

Case: 1000 Diffusion Groups

The graph in figure 7.7 similarly plots the fraction of fraud cases which are detected for
a given partial match history size. In this final case, 1000 diffusion groups occur in the
event trace, of which 500 satisfy all conditions of a fraudulent diffusion of money. When
the event trace consists of only the 4000 MoneyTransferred events forming diffusion

205

Chapter 7: Experimental Validation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Multiples of minimal viable partial match history size

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

m
at

ch
es

de
te

ct
ed

PARTERust

Spark Streaming with 0 unrelated

Spark Streaming with 100 unrelated

Spark Streaming with 1000 unrelated

Spark Streaming with 10000 unrelated

Figure 7.7: Fraction of the 500 fraud cases detected for a given partial match history size
— Error bars indicate the 5% and 95% percentile of the measurements. The line connects the medians.

groups, PARTERust detects all 500 cases of fraudwhen its storage is limited to theminimum
viable size. The Spark Streaming implementation finds only 35 of the 500 (7%) fraud
cases with its storage limited to equal PARTE’s the minimum viable sizes. It takes 15
times PARTE’s minimum viable storage size before the Spark Streaming implementation
reliably detects all fraud cases.

As with the event traces discussed previously, the situation becomes worse as unrelated
events are added to the event trace. In the worst case studied — 10000 unrelated events
— it takes a storage size 18 times that of PARTERust before all fraud cases are reliably
matched. Again, PARTERust reliably detects all 500 matches in all cases.

7.4.3 Conclusion

Existing systems lack a built-in notion of a minimum viable size. Their execution model
hence does not provide the means to operate in a minimum viable size. As a result,
forcing state of the art systems to operate in a limited memory size, comes at the cost of
correctness: potential matches are missed. The number of missed matches grows as the
number of events to match grows. PARTE does not suffer from this shortcoming, and

can hence guarantee correctness with significantly smaller memory sizes.

PARTE is not only a formal model for finding an upper bound on memory requirements,
it is also an execution model. It does not suffice to express a program in PARTElang

206

7.5 Conclusion

syntax, and to have the Featherweight PARTE model determine the minimum viable
sizes. The actual implementation of the program must be executed according to the
Featherweight PARTE model, as existing execution platforms do not support operating
within the minimum viable sizes.

7.5 Conclusion

We explored the 3 driver scenarios in detail, and expressed them in PARTElang. We
described the difficulty of expressing those PARTElang programs in mature event process-
ing technologies. We identified the core problem to be the lack of a notion of minimum
viable sizes in the execution model of those event processing systems: existing systems
either cannot express a limit on the size of the state that is retained, or do so at the cost
of missing potential matches. We quantified this latter cost by executing a port of the
PARTElang program for driver scenario B to Spark Streaming, and measuring how many
fraudulent money diffusions went undetected when the program was limited to using
only PARTE’s minimum viable partial match sizes. We showed that the problem of the
Spark Streaming port was due to the size of the storages: by increasing the storage size,
the number of missed fraud cases decreased.

Our conclusions from this chapter are hence twofold. First, we conclude that PARTE can
be used to express cases like those exemplified by our driver scenarios from section 2.1.
Second, we conclude that the PARTE model offers a measurable benefit over the state of
the art, by offering an execution model that supports operating within a minimum viable
size.

207

8
Formal Validation

In chapter 5 we defined the Featherweight PARTE model. Featherweight PARTE is an
operational semantics for the Logic Reactive Programming language PARTElang defined
in section 4.2. In this chapter, we prove that Featherweight PARTE indeed satisfies the
property of strong reactivity defined in definition 1 on page 65. We go about this as follows:

• First, we prove that our approach implements PARTElang sans strong reactivity.
Specifically, we show that the logical clocks maintained by Featherweight PARTE
are properly maintained in a distributed address-space setting (section 8.1). We then
show that the lower bounds tracked by these logical clocks allow for a conservative
garbage collection of the managed storage (section 8.2), guaranteeing constant space
usage. Finally, we show that those lower bounds ensure that progress is possible
during evaluation (section 8.3).

• Second, we prove that our model’s use of updates in the absence of new data is
fundamentally necessary, despite not appearing in the declarative language, nor in
its underlying event algebra (section 8.4).

• Third, we prove that fwPARTE ensures a finite upper bound on spatial (section 8.5)
and temporal (section 8.6) resource usage.

• Fourth, combining those proofs, we conclude that fwPARTE does result in a strongly
reactive evaluation model for PARTElang.

209

Chapter 8: Formal Validation

8.1 Correctness of the LowerBounds onEventTimestamps

Statement

The lower bounds on event timestamps that are stored in nodes of a PARTE graph
correctly reflect the state of the PARTE graph.

We prove the correctness of the lower bounds on event timestamps by induction on the
steps in the global and local evaluation languages g−→ and l−→ (as defined in sections 5.4.6
and 5.4.7 on pages 134 and 145). First, we establish that four invariants hold in a newly
constructed fwPARTE graph, then we demonstrate that every step in g−→ and l−→
maintains these four invariants.

8.1.1 Local Invariants

The four invariants are these:

I.1 — Lower Bounds Stored in Node Reflect State at Predecessors For any node which
maintains a lower bound or a vector of lower bounds on timestamps of predecessors
in its node local data, these lower bounds correctly reflect the lower bounds of its
predecessors.

I.2 — Lower Bounds Produced by Node Reflect State at Node For any token that is pro-
duced by a step of the local evaluation language at a node, the lower bounds on
timestamps contained in that token reflect the lower bound on timestamps that is
known at that originating node.

I.3 — Lower Bounds Stored in Outboxes Reflect State at Node Tokens that are created
at a node convey the lower bounds on timestamps from the perspective of that node,
at the time the token is created. The lower bound (for alpha tokens) or vector of
lower bounds (for beta tokens) of any token stored in the outbox of a node is still a
lower bound on event timestamps originating from that node.

I.4 — Lower Bounds Stored in Inboxes Reflect State at Predecessors Any message that
appears in the inbox of a node, contains one lower bound (for alpha tokens) or a
vector of lower bounds (for beta tokens). This lower bound conveys a lower bound
on the timestamps which were correct for that node’s predecessor, at the time when
the token was created at that predecessor. That lower bound is still a lower bound
on event timestamps originating from that predecessor.

At PARTE graph construction time (see section 5.5), all lower bounds on timestamps
maintained in node-local data are set to −∞. By definition, −∞ is a lower bound on
any timestamp, and hence invariant I.1 trivially holds in the base case. At PARTE graph

210

8.1 Correctness of the Lower Bounds on Event Timestamps

construction time, no step of l−→ has taken place, and all inboxes and outboxes are empty.
As such, invariants I.2, I.3, and I.4 also trivially hold in the base case.

8.1.2 Proof

For this section we remind the reader of the evaluation rules of the global evaluation
language g−→ in section 5.4.7 on page 145, and to the evaluation rules of the local evaluation
language l−→ in section 5.4.6 from page 134 onwards.

We now prove that invariants I.1 through I.4 hold during evaluation of all evaluation steps
of both languages. We first discuss the two rules of the global evaluation language. Next,
for each node type we discuss the rules of the local evaluation language.

During (Proc)

Lemma 1:

I.1 is upheld by (Proc).

Proof. By the induction hypothesis, invariants I.1, I.2, I.3, and I.4 hold before a step of
(Proc). Also by the induction hypothesis, the invariants are preserved by the single
step of l−→. No other transformation touches the node-local data in (Proc). Since
timestamps are non-decreasing, any previously correct lower bound on timestamps
of predecessors contained in the node-local data, remains a correct lower bound on
timestamps regardless of what semantical state-change the predecessor undergoes.
Hence, I.1 is upheld throughout (Proc).

Lemma 2:

I.2 is upheld by (Proc).

Proof. I.2 is trivially upheld, since (Proc) is not a step of l−→.

Lemma 3:

I.3 is upheld by (Proc).

Proof. By the induction hypothesis, the tokens already in the outbox before evaluation
of (Proc), i.e., t, satisfy I.3. Also by the induction hypothesis, I.2 holds for t′. From this,
it follows that the lower bounds contained in t � t′ are correct lower bounds at n, i.e., that
I.3 is upheld.

211

Chapter 8: Formal Validation

Lemma 4:

I.4 is upheld by (Proc).

Proof. I.4 is trivially upheld, since (Proc) does not modify any node’s inbox, and correct
messages in inboxes remain correct regardless of state updates to the rest of the node,
since timestamps are non-decreasing.

During (Prop)

Lemma 5:

I.1 is upheld by (Prop).

Proof. Since (Prop) does notmodify any node’s node-local data, and correct lower bounds
on timestamps contained there, remain correct regardless of state updates to the rest of
the PARTE graph, since timestamps are non-decreasing. Hence, I.1 is trivially upheld
during execution of (Prop).

Lemma 6:

I.2 is upheld by (Prop).

Proof. I.2 is trivially upheld, since (Prop) is not a step of l−→.

Lemma 7:

I.3 is upheld by (Prop).

Proof. Since (Prop) does not add tokens to nodes’ outboxes, but only removes some
tokens from them, (Prop) cannot place incorrect lower bound into nodes outboxes.
Invariant I.3 is hence upheld throughout execution of (Prop).

Lemma 8:

I.4 is upheld by (Prop).

Proof. (Prop) moves a token t from the outbox of a node a into the inbox of the nodes
in Nb. By the induction hypothesis, I.3 holds for t at node a, since t was in a’s outbox.
Hence, the lower bounds on timestamps contained in t correctly reflect the lower bounds
on timestamps at node a. Since each node in Nb is in sa, a is the predecessor of each
node in Nb, i.e., the lower bounds on timestamps contained in t correctly reflects the
lower bounds at the successor node a, i.e., I.4 holds.

212

8.1 Correctness of the Lower Bounds on Event Timestamps

During Evaluation at Entry Nodes

Lemma 9:

I.1 is upheld by (Entry) and (Entry-⊥).

Proof. By the induction hypothesis, the node-local data of the entry node at which l−→
evaluates (Entry) or (Entry-⊥) holds correct lower bounds on timestamps for all sources
in s`map. The new lower bound ` is a correct lower bound on timestamps the entry node
will receive from its predecessor identified by source identifier s, since invariant I.4 of
the induction hypothesis ensures this. Replacing the mapping for s in s`map by the new
correct lower bound ` hence results in a new correct source-to-lower-bound mapping
s`map′. Invariant I.1 is hence upheld.

Lemma 10:

I.2 is upheld by (Entry) and (Entry-⊥).

Proof. The alpha token produced by a step of (Entry) or (Entry-⊥) wraps exactly one
lower bound on timestamps: min(codom(s`map′)). This lower bound is greater than or
equal to any previously communicated lower bound: it is equal if s`map[s] previously
held the strictly smallest value in codom(s`map), and greater than or equal to the
previously communicated lower bound otherwise. This lower bound is never greater
than any value held in s`map, by definition of min, and never greater than any timestamp
or lower bound on timestamp still to appear in s`map, by the induction hypothesis.
Together, these entail that min(codom(s`map′)) constitutes a correct lower bound on
timestamps from the entry node, and hence that the produced token reflects a correct
lower bound. In conclusion, I.2 is upheld during (Entry) and (Entry-⊥).

Lemma 11:

I.3 and I.4 are upheld by (Entry) and(Entry-⊥).

As a rule of the local evaluation language, both (Entry) and (Entry-⊥) touch neither inbox
nor outbox, trivially upholding invariants I.3 and I.4. We will not list I.3 and I.4 for the
remaining rules of l−→, as they are always trivially upheld for this same reason.

During Evaluation at Alpha Nodes

Lemma 12:

I.1 is upheld by (Alpha-⊥), (Alpha-Match), and (Alpha-NoMatchConstraint).

213

Chapter 8: Formal Validation

Proof. Alpha nodes do not store any lower bounds on timestamps in their node-local
data, trivially upholding I.1.

Lemma 13:

I.2 is upheld by (Alpha-⊥), (Alpha-Match), and (Alpha-NoMatchConstraint).

Proof. By the induction hypothesis, the node-local data of an alpha node at which l−→
evaluates a step holds correct lower bounds on timestamps for its predecessor. The
new lower bound ` is a correct lower bound on timestamps the alpha node will receive
from its predecessor entry node, since invariant I.4 of the induction hypothesis ensures
this. Alpha nodes store no state. Thus, ` retains its correctness as the lower bound
on timestamps for events for the event pattern handled by this alpha node, i.e., the
event pattern identified by ιe. Invariant I.2 is hence upheld for rules (Alpha-⊥) and
(Alpha-Match). The rule (Alpha-NoMatchConstraint) produces no tokens, trivially
upholding I.2.

During Evaluation at Join-Nodes

Lemma 14:

I.1 is upheld by (Join-↘-⊥), (Join-↙-⊥), (Join-↘), and (Join-↙).

Proof.

(i.) By the induction hypothesis, `map↘, `↙ are correct lower bounds on timestamps.

(ii.) On left-activation, the stored `map↘ is overwritten by the `maptβ
, which by the

induction hypothesis is a correct lower bounds on timestamps arriving from the
left predecessor.

(iii.) On right-activation, the stored `↙ is overwritten by the singular lower bound
mapped to the right event identifier ιe↙ in the `maptβ

, i.e, `maptβ
[ιe↙]. This is —

by the induction hypothesis — guaranteed to be a correct lower bound on future
timestamps arriving from the right predecessor.

(iv.) It follows from (ii.) and (iii.) that I.1 is upheld.

Lemma 15:

I.2 is upheld by (Join-↘-⊥), (Join-↙-⊥), (Join-↘), and (Join-↙).

Proof.

214

8.1 Correctness of the Lower Bounds on Event Timestamps

(i.) The partial matches that can be generated by a join-node, receive their data from
two origins: either from partial matches that still have to be sent to it by the node’s
predecessors (i.e., in tokens that are in its inbox, or will still arrive in its inbox),
or from partial matches that have already been sent to the node (i.e., in partial
matches already stored in its partial match histories).

(ii.) It follows from (i.) that the lower bound on timestamps for a certain event identifier
is determined by two factors in join-nodes: it is the minimum of the lower bounds
of partial matches that still have to arrive, and the lower bounds of partial matches
that are still stored.

(iii.) The former are communicated explicitly by the predecessors, and are stored explic-
itly by the join-node. By I.1, these are correct lower bounds for the predecessors,
and hence for the join-node itself.

(iv.) For the latter, it holds that the explicit lower bounds are the minima of the
timestamps actually stored for each event identifier.

(v.) It follows from (iii.) and (iv.) that I.2 is upheld.

During Evaluation at Not-Nodes

Lemma 16:

I.1 is upheld by (Not-↘-⊥), (Not-↙-⊥), (Not-↘-Match), (Not-↘-NoMatch), and
(Not-↙).

Proof. Invariant I.1 is upheld at not-nodes for the same reason it is upheld at join-
nodes.

Lemma 17:

I.2 is upheld by (Not-↘-⊥), (Not-↙-⊥), (Not-↘-Match), (Not-↘-NoMatch), and
(Not-↙).

Proof. Invariant I.2 is upheld at not-nodes in a similar way as at join-nodes, with one
difference: only the temporal lower bounds for event identifiers bound in the left
predecessor of the not-node are produced, since the event identifier from the right
predecessor is not bound, and is not used in the successors of the not-node. This does
not affect the reasoning on correctness of the lower bounds for the left event identifiers,
and hence I.2 is upheld.

215

Chapter 8: Formal Validation

During Evaluation at Production Nodes

Lemma 18:

I.1 is upheld by (Prod-⊥) and (Prod).

Proof. Production nodes do not store any lower bounds on timestamps in their node-local
data, trivially upholding I.1.

Lemma 19:

I.2 is upheld by (Prod-⊥) and (Prod).

Proof. Invariant I.2must be upheld during (Prod-⊥) and (Prod) by the concrete definition
of lower bound generator expression: if and only if g`� generates correct lower bounds
based on a mapping of event identifiers to correct temporal lower bounds, by the
induction hypothesis I.2 holds. The constraint on g`� can be achieved by ensuring
that ∀`map1, `map2 ∈ MIE⇀L : `map1 < `map2 =⇒ g`�(`map1) < g`�(`map2), where
`map1 < `map2 means `map1 is a correct lower bound mapping of mapping `map2.

During Evaluation at Terminal Nodes

Lemma 20:

I.1 and I.2 are upheld by (Term).

Proof. Terminal nodes neither store any lower bounds on timestamps in their node-local
data, nor produce any tokens, trivially upholding all invariants.

8.1.3 Conclusion

It follows from lemmas 1 to 20 that invariants I.1 through I.4 hold during all evaluation
steps on a Featherweight PARTE graph. Hence, the propagation of lower bounds on
timestamps within fwPARTE is correct.

8.2 Expiration does Not Discard Valid Matches

The semantics of expiration differ little from those described by Teodosiu and Pollak
[133]. In their paper, they show that their algorithm only discards “unused temporal
information”, which coincides with our definition of stale partial matches on page 122.

216

8.2 Expiration does Not Discard Valid Matches

In this section we demonstrate only that our migration from a centralized setting to a
distributed memory space model does not affect their conclusion.

We described in section 5.5 how the work by Teodosiu and Pollak [133] consists of a static
and a dynamic phase, and how PARTE does not deviate from their approach for the
static phase. We hence refer to their paper for the correctness of the static phase. In the
dynamic phase, they established that discarding partial matches does not affect which
valid matches are found, if and only if the “temporal information” which is discarded,
is indeed “unused”, i.e., within our nomenclature and definitions: expiration does not
discard valid matches if and only if the partial matches which are expired, are indeed
stale partial matches.1 To prove that expiration does not discard valid matches, it hence
suffices to prove the following:

Statement

Expiration in fwPARTE behaves identical to the sequential shared-memory case
described by Teodosiu and Pollak [133].

8.2.1 Proof

Proof.

(i.) Partial matches are only stored at join-nodes and not-nodes, and only inspected
and manipulated in the steps of l−→ at those nodes. In the operational model
of fwPARTE, expiration hence takes the form of removing partial matches from
a partial match history in the steps of l−→ at join-nodes or not-nodes. More
specifically, a partial match is “removed” when that partial match occurs in a
partial match history on the left-hand side of a step in l−→, but does not occur in
the corresponding partial match history on the right-hand side of that step.

(ii.) It follows trivially from the definition of functions expire and expire_negated from
section 5.4.6 that they only remove partial matches that fall outside of the semantic
window, assuming that the semantic window is computed correctly.

(iii.) It follows from (i.) and (ii.) that we can phrase the statement to prove another way:
to prove that expiration does not discard valid matches, it suffices to prove that
that the semantic window is computed correctly.

(iv.) The semantic windows computed by the shared-memory-space approach by
Teodosiu and Pollak [133] are correct, as shown in their paper.

1Of course, by definition 17 and definition 18, expiration is defined to only affect stale partial matches. In
this section, we demonstrate that the operational semantics of fwPARTE indeed ascribe the correct expiration
behavior to joining and anti-joining.

217

Chapter 8: Formal Validation

(v.) It follows from (iii.) and (iv.) that expiration does not discard valid matches in
PARTE if and only if the semantic windows computed by PARTE are identical to
those computed by the approach by Teodosiu and Pollak.

(vi.) It follows trivially from their definition that the uses of the dynamically computed
temporal lower bounds in evaluation steps of l−→ at join-nodes and not-nodes
are equivalent to those of the approach by Teodosiu and Pollak: the computation
is performed using local data, mimicking the shared-memory-space approach.
The only remaining source of difference, is hence the propagation of the temporal
lower bounds between the nodes.

(vii.) It follows from our proof in section 8.1 that the requirement of (vi.) is satisfied:
the distributed-memory-space propagation of temporal lower bounds correctly
propagates temporal lower bounds.

8.2.2 Conclusion

The proof by Teodosiu and Pollak [133] depends only on elements unmodified by the
PARTEmodel, and on correctly determining “unused”, i.e, stale, partial matches. It follows
from the reasoning sketched in previous subsection that expiration as implemented by the
fwPARTE model abides by the definition of expiration on page 123, i.e., expiration only
affects stale partial matches. Hence, expiration of stale partial matches does not cause
valid matches to be discarded.

8.3 Unattainability of a Blocked PARTE Network

The correctness of the fwPARTE model depends on the evaluation not leading to a blocked
PARTE network. We must therefore prove that nodes in the fwPARTE graph never reach
a blocked node state. The bulk of the proof was already given throughout section 5.3.6
and section 5.3.7. We have already established that — by construction — only two-input
nodes can become blocked. We now prove the part that was not proven yet, namely that
the minimum viable partial match history size we used in the fwPARTE model is a proper
minimum viable size:

Statement

The minimum viable partial match history sizes used in fwPARTE is correct, i.e.,
the minimum viable size ensures that fwPARTE can evaluate without reaching a
blocked state.

218

8.3 Unattainability of a Blocked PARTE Network

8.3.1 Proof

Every (anti-)join defines temporal (anti-)join-constraints. These constraints define a time
window. Furthermore, for each activation side of a (anti-)join, a partial match arrival rate
is defined.

Consider a two-input PARTE graph node with a time window of W time units, a left
partial match arrival rate of r↘ per time unit, and a right partial match arrival rate of r↙
per time unit. We first consider the case of left activations.

Lemma 21:

The minimum viable left partial match history size is W × r↘ + 1.

Proof.

(i.) Consider the case where left partial matches occur at their highest allowed
frequency. There are r↘ left partial matches at time t1, r↘ left partial matches
at time t2, . . . and r↘ left partial matches at time tW . These r↘ ×W left partial
matches may be all fit inside the semantic time window.

(ii.) From (i.) it follows that r↘ ×W is a lower bound on the number of left partial
matches that need to be stored.

(iii.) Consider the case where r↘ ×W + 1 left partial matches are stored. By definition
of r↘, there can be at most r↘ left partial matches with times between t1 and t2.
Similarly, there can be at most r↘ partial matches with times between t2 and t3, etc.
Finally, there can be at most r↘ partial matches between tW−1 and tW . It follows
that ∑W−1

i=0 |pm[ti, ti+1]| ≤ W × r↘, and hence that the partial match with index
r ↘ ×W + 1 necessarily must occur at a timestamp ≥ tW+1.

(iv.) From (iii.) it follows that at least one of these partial matches will fall outside of
the time window of the next opposing match the combine with. Hence, either
the oldest left partial match will expire when a new right partial match arrives, or
the youngest left partial match will be too young for the next right partial match.
Phrased differently, when storing r↘ ×W + 1 left partial matches, at least one of
those matches is either stale or not yet relevant for the matching. In the former
case, it can be expired, in the latter case, it can be left in the inbox.

(v.) From (iv.) it follows that r↘ ×W + 1 is an upper bound on the number of left
partial matches that need to be stored.

(vi.) In addition to the spots required to store the valid left partial matches, one spot
of “maneuvering space” is required. This extra space guarantees that there is

219

Chapter 8: Formal Validation

always room to serve a token from the inbox. We hence increase the lower bound
established in (ii.) from r↘ ×W to r↘ ×W + 1.

(vii.) From (v.) and (vi.) it follows that r↘ ×W + 1 is both a lower bound and an upper
bound to the number of left partial matches that need to be stored to enable
evaluation to proceed without blocking two-input nodes upon left activation.

Lemma 22:

The minimum viable right partial match history size is W × r↙ + 1.

Proof. A similar reasoning can be made for the case of right-activations. Note that —
while the direction of the semantic window is reversed when considering the opposite
activation side — the absolute duration of the semantic window is unchanged.

8.3.2 Conclusion

From lemmas 21 and 22 it follows that for a two-input PARTE graph node with a time
window of W time units, left and right partial match arrival rates of r↘ per time unit and
r↙ per time unit, the minimum viable left partial match history size is W × r↘ + 1 and
the minimum viable right partial match history size is W × r↙ + 1.

8.4 Necessity of “No Change” in Negated Subgraphs

We prove the necessity of propagating tokens even when no new events are available by
demonstrating that not using such tokens may lead to nodes remaining in a waiting state
longer than they should be. Doing so would open up the possibility of exhausting room
in the partial match histories.

Consider a variant of fwPARTE which only propagates tokens when new events are
available, i.e., which lacks support for “no change” indicators. We denote this variant as
fwPARTE\⊥. We show that fwPARTE\⊥ effectively introduces a reachable blocked state.
Evidently, a reachable blocked state precludes strong reactivity, and is hence unacceptable
for the proper fwPARTEmodel. To match negated patterns, the absence of partial matches
must be detectable. We prove the following statement:

Statement

No minimum viable size can be defined for fwPARTE\⊥, such that evaluation is
guaranteed not to reach a blocked state.

220

8.4 Necessity of “No Change” in Negated Subgraphs

rule a_rule_with_negation where
a : A { }
no b : B { attr = a.attr }

when
no b in a [0 seconds, 4 seconds]

then
do_something(a.attr)

Entry-A Entry-B

α-A α-B

A ∧ no B

terminal do_something

Example rule Event arrival per timestamp

fwPARTE\⊥ graph of example rule

7 A { attr : ‘z’ } B { attr: ‘z’ }

/6 A { attr : ‘y’ }

5 A { attr : ‘x’ } /

/4 A { attr : ‘w’ }

/3 A { attr : ‘v’ }

A { attr : ‘u’ } /2

1 A { attr : ‘t’ } /

0 A { attr : ‘s’ } B { attr: ‘s’ }

θ Occurrence with template A Occurrence with template B

Figure 8.1: Example of a rule with a negated pattern, and a series of events — On the left,

the rule is represented both textually in PARTElang, and as a graph of fwPARTE\⊥ nodes. On the right,

a table lists which events occur at a certain timestamp.

8.4.1 Proof

Proof. Consider the rule and its fwPARTE\⊥ graph depicted in figure 8.1. Assume that
the event arrival rate of both events of type A, and events of type B is 1 event per second.

Using the definitions for minimum viable size from section 5.3.7, the minimum viable size
of the inbox for the not-node is 3, the minimum viable size of the outbox is 5, and so
are the minimal viable sizes of the not node’s partial match histories. Consider now the
event arrivals depicted in the table in figure 8.1.

At timestamp 4, the left partial match history contains events of template A with values
‘s’, ‘t’, ‘u’, ‘v’, and ‘w’ bound to its single attribute attr, and timestamps 0 through 4
respectively. The right partial match history contains only the single event of template B
with value ‘s’ bound to its single attribute attr, and timestamp 0. When the event of
template A for timestamp 5 arrives, there is no room in the left partial match history.
However, in the absence of events of template B, none of the events in the left partial
match history are detected to be stale by the execution of the local evaluation language

l−→ (see section 5.4.6), despite the fact that A{attr:‘s’} is stale as per definition 17.
This undetected staleness requires the not-node to retain the token until an event of
template B arrives, requiring additional spatial resources for each such stale token.

In this example, the situation would be rectified at timestamp 7, when B{attr:‘z’}
arrives. For this specific event arrival sequence, the minimum viable left partial match
history in fwPARTE\⊥ is 7. More generally, the minimum viable partial match history
sizes in fwPARTE\⊥ depends linearly on the maximum time between events. This

221

Chapter 8: Formal Validation

runtime condition inherently preempts the possibility of statically limiting the size. The
possibility exists that no event of the template used on the negated side of a not-node
ever occurs. This by definition makes the minimum viable partial match history sizes in
fwPARTE\⊥ non-finite.

To resolve this, tokens must sometimes be produced even when no real events occurred,
which concludes our reasoning that “no change” tokens are needed. The fwPARTE\⊥
model extended with the option to propagate “no change” tokens is denoted by fwPARTE′.
We further must show what the minimum generation rate of “no change” tokens should
be to prevent exhausting spatial resources in fwPARTE′.

8.4.2 Minimum Required “No Change” Token Generation Rate

From the last proof it follows that a token — e.g. a “no change” token —must arrive at an
activation side of a not-node before spatial resources of the opposite partial match history are
exhausted. A trivially correct rate of “no change” token generation consists of generating
a “no change” token at each tick of the static event arrival rate. This “no change” token
generation rate serves as an upper bound: a higher rate is definitely not required.

The minimum required rate depends on the size of the inboxes, outboxes, and partial
match histories of the nodes along the subgraph of the fwPARTE′ graph containing
not-nodes.2 Some minimum viable size must be defined for inboxes, outboxes, and partial
match histories in fwPARTE′. For inboxes and outboxes, fwPARTE′ inherits the minimum
viable sizes of fwPARTE. For the partial match histories, given a minimum viable size in
fwPARTE, denoted m, it holds that ∀s ≥ m : s is a viable size in fwPARTE′ if a ⊥ token is
produced by all entry nodes for templates used on the negated side of a not-node at least
once per semantic time window size. This follows from the observations that exhaustion
of spatial resources in fwPARTE\⊥ only occurs when an entire semantic time window’s
worth of events are consecutively absent for the negated event pattern. Hence, fwPARTE
is nothing more than fwPARTE′ with the tightest possible minimum viable size on partial
match histories, and hence the minimum “no change” token generation rate for fwPARTE′
is the minimum “no change” token generation rate for fwPARTE.

8.4.3 Conclusion

It follows from the reasoning in this section that “no change” tokens must be generated
by nodes producing tokens that might right-activate not-nodes. Such tokens must only be
generated when no data-carrying tokens would otherwise be sent within the semantic
time window of the successor node in the fwPARTE graph.

2By this subgraph, we mean all not-nodes and their direct and indirect predecessors, up to the entry nodes,
but not sibling nodes which are not themselves direct or indirect predecessors of not-nodes. Note that this
predecessor relation includes event emission by production nodes.

222

8.5 Boundedness of State Size of Featherweight PARTE Graph

8.5 Boundedness of State Size of fwPARTE Graph

Proving that finite bounds exist on the state size is impossible for the rudimentary PARTE
model from section 5.2, as its lack of event expiration trivially leads to infinite storage
requirements. In contrast, the Featherweight PARTE model from section 5.4 has a fixed,
finite upper bound on state by construction. In the previous sections we showed that the
limits on state size of partial match histories, inboxes, and outboxes do not prevent correct
execution. In this section we exhaustively list all components found in the fwPARTE
model, and demonstrate for each one of them that a finite, static upper limit on the size of
their state exists.

8.5.1 Local Invariant

The invariant for the proof in this section is as follows:

I — Fixed, Finite Size of Subelements Each element in a fwPARTE graph consists of a
finite, statically limited number of elements, each of which has a finite, statically
limited size.

Primitive, atomic elements such as identifiers, values, and timestamps trivially have a
constant finite size. Invariant I holds for all primitive elements.

8.5.2 Proof

At the top level, a system in the fwPARTE model consists of a set of event templates,
and a set of nodes N. The set of templates is finite and immutable once the rule set is
compiled into a graph. The size of N is also limited at construction time: the graph
construction algorithm defined in section 5.5 converts a rule set consisting of a finite
number of rules into a graph with a finite number of nodes. This entails that the size of
a system implementing the PARTE model has a finite, static upper bound if and only if
each individual node has a finite, static state size. Individual nodes’ state size, in turn,
is determined by the data they store in their node-local data, as well as the number of
tokens they store in their inboxes and outboxes. By the induction hypothesis, these have a
fixed, finite limit on state size.

In the remainder of this section we survey the state size of the elements in a PARTE graph.
We do so in the order of their definition in section 5.4. We start at events, and build up to
the level of nodes.

Lemma 23:

The size of individual events and tokens has a finite upper bound.

223

Chapter 8: Formal Validation

Events As defined in section 5.4 events are tuples of the form E〈ιt, attrs, θ〉.
Proof. By the induction hypothesis, the template identifier ιt and timestamp θ have
a constant size. The size of attrs depends on the number of values, and hence on
the number of attribute identifiers for which a value is provided. The number of
attribute identifiers for an event is fixed, and specified by the template identified
by ιt. In conclusion, individual events have a fixed, finite size.

Alpha tokens The spatial resource usage of alpha tokens is similar. Remember from
section 5.4 that alpha tokens are tuples of the form Tα〈ιs, `, pα〉.
Proof. By the induction hypothesis, the source identifier ιs is of constant size. The
lower bound on future event timestamps, `, is a single timestamp, and hence also
of constant size. The alpha payload pα is either the “no change” indicator ⊥, or
an event. The symbol ⊥ is trivially of constant size. By the induction hypothesis,
events have a fixed, finite size too.
In conclusion, individual alpha tokens have a fixed, finite size.

Beta tokens We now consider beta tokens. Beta tokens take the form of a tuple
Tβ〈`map, pβ〉.
Proof. In case the beta payload pβ is a “no change” indicator ⊥, it is trivially of a
fixed size. Otherwise, both the map of lower bounds on event timestamps, `map,
and the map of partial matches carried as beta payload, are mappings whose
domains are the same set of event identifiers. This set of event identifiers represents
the event patterns whose data are represented by the beta token. By construction 3

beta tokens constructed in fwPARTE wrap a prefix of the event patterns joined by
a certain rule. As a result, beta tokens that occur at any point in the graph have a
known, fixed, and limited set of event patterns for which they carry data. Hence,
both `map and pβ have fixed number of elements.
What remains to be shown is that the elements in both mappings have a limited
size. The elements in `map are lower bounds on timestamps. By the induction
hypothesis, these are of a finite, constant size. The elements in the beta payload
are events. As established some paragraphs ago, events uphold the induction
hypothesis. In conclusion, individual beta tokens have a limited size.

Lemma 24:

The size of node-local data has a finite upper bound.

The nodes in a PARTE graph can be of a number of distinct types, each with their own
type of node-local data. Remember from page 132 that in Featherweight PARTE, graph

3 Concretely, when beta tokens are created in the evaluation rules (Alpha-⊥), (Alpha-Match), (Join-↘-⊥),
(Join-↙-⊥), (Join-↘), (Join-↙), (Not-↘-⊥), (Not-↙-⊥), (Not-↘), and (Not-↙) of the local evaluation language

l−→, as defined in section 5.4.6.

224

8.5 Boundedness of State Size of Featherweight PARTE Graph

nodes can be either entry nodes, alpha nodes, join-nodes, not-nodes, production nodes,
or terminal nodes. Resource usage of these node types’ node-local data is as follows:

Entry node-local data takes the form Dentry〈`map, ιt〉, where `map is a mapping from
event source identifiers to lower bounds on the timestamps of events that those
sources may still produce.
Proof. The set of event source identifiers that make up the domain of this mapping
is fixed at the time of PARTE graph construction. Both the event source identifiers
and the timestamps themselves are of fixed size by the induction hypothesis. The
other constituent of entry node-local data is the template identifier, ιt, for which I
holds. Hence, entry node-local data is of a fixed, finite size.

Alpha node-local data takes the form Dalpha〈cα, ιe〉, where cα is a predicate function, and
ιe is an event pattern identifier.
Proof. By the induction hypothesis, both elements are of fixed, finite size at PARTE
graph construction time, and hence alpha node-local data is of a fixed, finite size
too.

Join-node-local data takes the form Djoin〈cβ, `map, `, pm, e, ιe↘ , ιe↙ , dist〉, where cβ is a
predicate function, `map is a mapping from event pattern identifier to lower bound
on timestamps for that (left) event pattern, ` is a lower bound on timestamps for the
right event pattern, pm is the set of left partial matches, e is the set of right partial
matches, ιe↘ is the set of left event pattern identifiers, ιe↙ is the right event pattern
identifier, and dist contains the temporal distances between the left and right event
patterns.
Proof. For cβ, `, and ιe↙ , invariant I holds by the induction hypothesis. By
construction of the PARTE graph, the set of left event identifiers is finite and fixed
at PARTE graph construction time. As a result, `map, ιe↘ , and dist are of a fixed
and finite size. For pm and e, the size of individual matches is fixed and finite too:
they contain a fixed, finite number of events, which themselves are of fixed and
finite size.
The fwPARTE model imposes limits on the partial match histories. Specifically,
it restricts |pm| and |e| from outgrowing their minimum viable sizes, as defined in
section 5.3.7. Since the minimum viable sizes are finite and fixed for a given node’s
partial match histories, join-node-local data is of a fixed, finite size too.

Not-node-local data takes the form Dnot〈cβ, `map, `, pm, e, ιe↘ , ιe↙ , dist〉, with similar
fields as join-node-local data. Following a similar reasoning, we can again conclude
that all fields are of a fixed, finite size at PARTE graph construction time.

Production node-local data takes the form Dproduction〈ιs, ge
�, g`�〉, where ιs is an event

source identifier, ge
� is an event generation expression, and g`� is a temporal lower

bound generation expression.

225

Chapter 8: Formal Validation

Proof. For all three elements, invariant I holds from PARTE graph construction
time. No rule in either l−→ nor g−→ exists which mutates them, trivially upholding
I for production node-local data.

Terminal node-local data takes the formDterminal〈〉, which contains no fields and is hence
trivially of a fixed, finite size.

We conclude from this study of state size of the node-local data of nodes in a fwPARTE
graph that a finite upper bound exists on state size of node-local data, and that this bound
is fixed at PARTE graph construction time.

Lemma 25:

The size of inboxes and outboxes has a finite upper bound.

The Featherweight PARTEmodel defined in section 5.4 defines nodes as tuples of the form
N〈ιn, s, m, t, ndata〉. Each node in a fwPARTE graph hence has an inbox m of messages,
and an outbox t of tokens.
Proof. Tokens uphold invariant I, as established in our proof of lemma 23. By the
induction hypothesis, messages — being a tuple with a token and an activation side (i.e.,
↘, ↓, or↙) — have of a fixed, finite maximum size too. As with partial match histories
in two-input nodes, the number of elements in inboxes and outboxes may change during
evaluation of a PARTE graph, but — as with partial match histories — the fwPARTE
model defines that the inboxes and outboxes may not grow beyond their minimum viable
size. The minimum viable sizes are finite and fixed for a given node’s inbox and outbox.
This entails that the inboxes and outboxes uphold invariant I.

8.5.3 Conclusion

It follows from lemmas 23 to 24 that the size of state captured in a fwPARTE graph is
finite and fixed at PARTE graph construction time. An upper bound on the size can be
computed statically, by inspecting the rule set and the event arrival rate, without needing
to know the concrete runtime event values.

8.6 A PARTElang Program can be Evaluated in Constant

Time per Event

Previous sections showed that the fwPARTE evaluation model correctly implements
complex event detection in a distributed setting, with managed storage with constant space
requirements.

226

8.6 A PARTElang Program can be Evaluated in Constant Time per Event

The final requirement before we can claim fwPARTE enables a strongly reactive evaluation
of PARTElang, is constant time processing of a single event.

Statement

Evaluation of a single event by Featherweight PARTE takes a constant, finite amount
of time.

A fwPARTE graph consists of a finite number of fwPARTE nodes, determined at PARTE
graph construction time. Since the graphs are also acyclic, the graph has a constant, finite
depth. Because of stratification, evaluation of a PARTElang program requires at most a
constant, finite number of descents through the fwPARTE graph for each event. It follows
that a PARTElang program can be evaluated in constant time per event if and only if the
processing at each node takes at most a constant, finite amount of time.

We prove in this section that that condition holds, by induction over the steps in the global
and local evaluation languages of fwPARTE.

8.6.1 Local Invariant

We formalize the invariant I for the different lemmas as follows:

I — Constant-time sub-steps Each individual step in either the global evaluation lan-
guage or the local evaluation language can be evaluated in constant time.

The invariant holds for all selections, filters, enumerations, and insertions on and into the
sub-elements that constitute the node-local of all fwPARTE nodes, since a fixed upper
bound on their sizes exists, as we proved in the previous section.

8.6.2 Proof

We again remind the reader of the evaluation rules of the global evaluation language g−→
in section 5.4.7 on page 145, and to the evaluation rules of the local evaluation language

l−→ in section 5.4.6 from page 134 onwards.

During (Proc)

Lemma 26:

Invariant I is upheld by (Proc).

227

Chapter 8: Formal Validation

Proof. Checking the conditions of the (Proc) rule takes a number of steps. We list all
conditions of the inference step of (Proc), and discuss the asymptotical number of steps
— which we refer to as “time” — required to perform the check.

(i.) {. . . } tNrest: selecting a node from a set takes at most time proportionate to the
size of the set. Since |N| is fixed at PARTE graph construction time, this check takes
a constant amount of time;

(ii.) N〈ιn, s, 〈side, t〉 ·m, t, data〉: verifying whether at least one message is in the inbox,
take a constant amount of time;

(iii.) 〈data, side, t〉 l−→〈data′, t′〉: by the induction hypothesis, invariants I holds during
the evaluation of l−→;

(iv.) has-room-for(t,
∣∣∣t′∣∣∣): checking whether there is room in the outbox might take

evaluation time proportionate to the size of the outbox. Since fwPARTE imposes a
finite, constant upper bound on the size of the outbox, evaluation time has a finite,
constant upper bound; and

(v.) Nrest t {〈ιn, s, m, t � t′, data′〉}: appending results to the outbox takes at most time
proportionate to the fixed size of the outbox. Replacing a node with a new node,
in a set of fixed size |N|, takes constant time.

It follows from (i.) through (v.) that invariant I hence holds during (Proc).

During (Prop)

Lemma 27:

Invariant I is upheld by (Prop).

Proof. We repeat a similar reasoning for the parts of the inference rule (Prop):

(i.) {. . . } tNb tNrest: selecting a node from a set takes at most time proportionate to
the size of the set. Since |N| is fixed at PARTE graph construction time, extracting
a node takes a constant amount of time. Extracting Nb, once defined, also takes
constant time;

(ii.) N〈ιa, sa, ma, t · ta, dataa〉: verifying whether at least one token is present in the
outbox of the selected node take a constant amount of time;

(iii.) Nb = N ∩ {N 〈ιb, _, _, _, _〉 | 〈ιb, _〉 ∈ sa}: selecting all nodes whose node identifier
occurs in the list of successors of node a, takes at most time proportionate in the

228

8.6 A PARTElang Program can be Evaluated in Constant Time per Event

number of nodes, and the number of successors of a. Both of these are limited by
the number of existing nodes, which is finite and fixed at PARTE graph construction
time;

(iv.) ∀N 〈_, _, mb, _, _〉 ∈ Nb : has-room-for(mb, 1): verifying whether all nodes in Nb
have room in their inbox, takes time proportionate in the size of Nb, which is
constant;

(v.) N′b =
{
N〈ιb, sb, mb · 〈side, t〉, tb, datab〉 | . . . ∈ Nb, 〈ιb, side〉 ∈ sa

}
: appending mes-

sages to an inbox takes at most time proportionate to the maximum size of the
inbox. Selecting nodes from Nb takes at most time proportionate to |Nb|; and

(vi.) {N 〈ιa, sa, ma, ta, dataa〉} tN′b tNrest: the union of a singleton set, N′b, and Nrest is
by construction limited by the size of N, which is finite and constant.

The fwPARTE model assumes that a constant upper bound exists on the time it takes to
send a message to another node. Failure to do so within that time frame equates failing
a hard deadline, i.e., a fatal error necessitating a shutdown of the system. Within the
abstraction used by fwPARTE, it follows from (i.) through (vi.) that invariant I holds
during (Prop).

During Evaluation at Entry Nodes

Lemma 28:

Invariant I is upheld by (Entry-NoMatchTemplate), (Entry), and (Entry-⊥).

Proof. For the inference rules of l−→, a similar reasoning holds:

(i.) 〈Dentry〈s`map, ιtn〉, ↓, Tα〈ιs, `, e〉〉 and 〈Dentry〈s`map, ιtn〉, ↓, Tα〈ιs, `,⊥〉〉: apart from
determining whether the alpha token contains an event or a “no change” indicator,
the precondition holds trivially, so takes constant time to evaluate;

(ii.) e = E〈ιte, _, _〉: extracting the template identifier from an event trivially takes
constant time;

(iii.) ιtn = ιte and ιtn 6= ιte: comparing two identifiers for equality trivially takes constant
time;

(iv.) s ∈ dom(s`map), s`map[s] ≤ `, and s`map[s] ≤ e.θ: lookups in the source-
identifier-to-lower-bound mapping take time proportionate to the size of the
source-identifier-to-lower-bound mapping, which has a size limited by the number
of sources. The number of sources is finite and fixed at PARTE graph construction
time, providing a finite, constant bound on the lookup time;

229

Chapter 8: Formal Validation

(v.) s`map′ = s`map[ιs 7→ `]: overwriting an entry in the source-identifier-to-lower-
bound mapping is constant for the same reason;

(vi.) tα = {Tα〈ιs, min(codom(s`map′)), e〉} and tα = {Tα〈ιs, min(codom(s`map′)),⊥〉}:
selecting the minimum from a finite, constant-sized mapping take finite, constant
time. Constructing a singleton-set takes a finite, constant amount of time; and

(vii.) 〈Dentry〈s`map′, ιtn〉, ∅〉 and 〈Dentry〈s`map′, ιtn〉, tα〉: the postcondition trivially
takes a constant amount of time.

It follows from (i.) through (vii.) that invariant I holds throughout the steps of the local
evaluation language at entry nodes.

During Evaluation at Alpha Nodes

Lemma 29:

Invariant I is upheld by (Alpha-⊥), (Alpha-Match), and (Alpha-
NoMatchConstraint).

Proof.

(i.) 〈Dalpha〈cα, ιe〉, ↓, Tα〈_, `,⊥〉〉 and 〈Dalpha〈cα, ιe〉, ↓, Tα〈s, `, e〉〉: apart from determin-
ing whether the alpha token contains a “no change” indicator or an event, the
precondition holds trivially, so takes constant time to evaluate;

(ii.) cα(e)
α−test−→ f alse and cα(e)

α−test−→ true: evaluating an alpha test takes constant time
by construction: the alpha test is of fixed, finite depth at PARTE graph construction
time, and consists only of attribute accesses and trivial binary operations; and

(iii.) 〈Dalpha〈cα, ιe〉, {Tβ〈[ιe 7→ `],⊥〉}〉, 〈Dalpha〈cα, ιe〉, ∅〉, and 〈Dalpha〈cα, ιe〉,
{Tβ〈[ιe 7→ `], [ιe 7→ e]〉}〉: constructing a singleton beta token and a result-tuple
trivially takes constant time.

It follows from (i.) through (iii.) that invariant I holds throughout the steps of the local
evaluation language at alpha nodes.

During Evaluation at Join-Nodes

Lemma 30:

Invariant I is upheld by (Join-↘-⊥), (Join-↙-⊥), (Join-↘), and (Join-↙).

230

8.6 A PARTElang Program can be Evaluated in Constant Time per Event

Proof.

(i.) 〈Djoin〈. . .〉,↘, Tβ〈`maptβ
,⊥〉〉 and 〈Djoin〈. . .〉,↙, Tβ〈[ιe↙ 7→ `tβ

],⊥〉〉: determin-
ing whether a “no change” token left-activated or right-activated a join-node
trivially takes constant time;

(ii.) 〈Djoin〈. . .〉,↘, Tβ〈`maptβ
, pmtβ

〉〉 and 〈Djoin〈. . .〉,↙, Tβ〈[ιe↙ 7→ `tβ
], [ιe↙ 7→ etβ

]〉〉:
determining whether an event-carrying token left-activated or right-activated a
join-node trivially takes constant time. Destructuring a tuple — in the case of
a right-activation — takes constant time as well, as the mapping is a singleton
mapping;

(iii.) 〈Djoin〈. . . , `maptβ
, `tβ

, pm′, e′, . . .〉, {. . .}〉: replacing individual elements in a tuple
is a constant-time operation;

(iv.) e′ = expire↙(e, expiration-time(dist, `maptβ
)): by the induction hypothesis, I holds

for `maptβ
, therefore the expiration-time can be determined in constant time. The

run time of expire is proportional in the size of its first argument. By the induction
hypothesis, I holds for e. Hence, e′ can be constructed in constant time;

(v.) pm′ = expire↘(pm, `tβ
): analogously to (iv.), I holds for pm, hence pm′ can be

constructed in constant time;

(vi.) has-room-for(pm, 1) and has-room-for(e, 1): by the induction hypothesis, I holds for
pm and e, rendering capacity-checks for both vectors constant-time operations;

(vii.) pm′ = pm · pmtβ
and e′ = e · etβ

: by the induction hypothesis, I holds for pm and e,
rendering insertion into both vectors constant-time operations;

(viii.) `mapimplicit = min(timestamps(pm(′)))[ιe↙ 7→ min(timestamps(e(′)))]: selecting the
minimum from the combination of two vectors for which I holds, is a constant-time
operation;

(ix.) lifetime(dist, timestamps(pmtβ
)) and lifetime(dist, timestamp(etβ

): by the induction
hypothesis, all selections on events and partial matches are constant-time opera-
tions;

(x.) window↙ = semantic-window↙(e′, . . .) and the induction hypothesis, all selections
on partial match histories are constant-time operations;

(xi.) pmnew = {pm... · pm... | pm↘ ∈ window..., cβ(pm... · pm...)
β−→ true}: appending a

singleton set to a set for which I holds, is a constant-time operation. The run time
of filtering a vector by a constant-time boolean predicate is proportionate to the
size of the vector;

231

Chapter 8: Formal Validation

(xii.) `mapprop = min(`mapimplicit, `map...[ιe↙ 7→ `
(′)
↙]): as in step (viii.), selecting the

minimum from two vectors for which I holds, takes constant time;

(xiii.) {Tβ〈`mapprop,⊥〉}: creating a “no change” beta token takes constant time; and

(xiv.) {Tβ〈`mapprop, pm〉 | pm ∈ pmnew}: enumerating and transforming a vector
adhering to I takes constant time. By (xi.), I holds for pmnew.

It follows from (i.) through (xiv.) that invariant I holds throughout the evaluation steps
of l−→ at join-nodes.

During Evaluation at Not-Nodes

Lemma 31:

Invariant I is upheld by (Not-↘-⊥), (Not-↙-⊥), (Not-↘-Match), (Not-↘-
NoMatch), and (Not-↙).

Evaluation at node nodes proceeds similarly. The proof is hence mostly analogous, though
operating on Dnot〈. . .〉 instead of Djoin〈. . .〉. The only step deviating significantly from the
ones at join-nodes, is the following:
Proof.

(i.) expire-negated↘(pm′, `tβ
): by its definition in figure 5.5, expire-negated↘ takes time

proportionate to the size of its first argument. By the induction hypothesis, I holds
for pm′. The negated expiration hence takes a finite, constant amount of time, i.e.,
I holds for expire-negated↘(pm′, `tβ

).

It follows that invariant I holds throughout the evaluation steps of l−→ at not-nodes.

During Evaluation at Production Nodes

Lemma 32:

Invariant I is upheld by (Prod-⊥) and (Prod).

Proof.

(i.) 〈Dproduction〈ιs, ge
�, g`�〉, ↓, Tβ〈`maptβ

, . . .〉〉: detecting whether a token exists in a
production nodes’ inbox can trivially be done in constant time;

232

8.6 A PARTElang Program can be Evaluated in Constant Time per Event

(ii.) ge
�(pm) −→ e′: the event generator expression can by the induction hypothesis be

evaluated in constant time on a partial match;

(iii.) g`�(`maptβ
) −→ `: the lower-bound generator expression can by the induction

hypothesis be evaluated in constant time on a lower-bound mapping; and

(iv.) 〈Dproduction〈ιs, ge
�, g`�〉, {Tα〈ιs, `, . . .〉}〉: an alpha token can be generated in constant

time.

It follows from (i.) through (iv.) that the invariant I holds throughout the evaluation
steps of l−→ at production nodes.

During Evaluation at Terminal Nodes

Lemma 33:

Invariant I is upheld by (Term).

Proof. At terminal nodes, a single step is taken. This trivially takes constant time.

8.6.3 Conclusion

We can now prove the original statement from page 227: evaluation of a single event by
Featherweight PARTE takes a constant, finite amount of time:
Proof.

(i.) Per chapter 5, a fwPARTE graph is stratified (as defined in definition 3 on page 67)
and hence acyclic.

(ii.) Trivially (by construction and by the percolation in (Proc)), evaluation in a
fwPARTE graph proceeds strictly downwards.

(iii.) From (i.) and (ii.), evaluation of an event can percolate through the fwPARTE
graph at most once.

(iv.) From section 8.5, a fwPARTE graph has a static, finite number of nodes.

(v.) Per lemmas 26 to 33, evaluation takes a constant time at each sub-step in the
evaluation in a fwPARTE graph.

It follows from (iii.), (iv.), and (v.) that evaluation takes a static, finite amount of
time.

233

Chapter 8: Formal Validation

8.7 Conclusion

This chapter presented the proofs that the Featherweight PARTE model guarantees a
strongly reactive evaluation strategy for PARTElang programs. The constant-space and
constant-time processing of a single event, combined with a known event arrival rate, and a
finite depth of the graph (due to the constant, finite depth of an individual PARTE graph,
coupled with stratification) make it possible to statically determine whether a certain
implementation of the fwPARTE model on a physical machine will be able to keep up
with a certain stream of events.

The Featherweight PARTE model hence makes it possible to build a verifiably strongly
reactive language runtime for the PARTElang logic reactive programming language.
This entails that PARTElang programs can be deployed in scenarios that require strong
guarantees that the system can keep up with incoming event streams, for instance in
security monitoring contexts.

234

9
Conclusion

9.1 Revisiting the Problem Statement

There are many use cases for monitoring large streams of events for occurrences of specific
patterns. We explored three specific driver scenarios in the context of monitoring financial
transactions for possible cases of fraud. In scenarios such as these, there exists a clear
need to process the events immediately: the suspected fraud must be detected as soon as
it occurs.

A large research domain is dedicated to providing the tools to detect complex events, i.e.,
events which exist because of the occurrence of multiple sub-events. Similarly, many
systems are developed for this purpose by the industry. However, in our driver scenarios,
the additional constraint exists that the pattern detection system cannot cease to monitor,
even momentarily. In section 1.1 we formulated the problem statement as follows:

Problem Statement

There is a need for platforms which autonomously process complex events in
high-throughput streams of events, incrementally in a data-driven, always-listening,
strongly reactive manner.

We defined what it means to be strongly reactive on page 65.

235

Chapter 9: Conclusion

We surveyed the state of the art in event stream processing systems to determine which
solutions to that problem already exist.

Since our driver scenarios require scalable, high-throughput solutions, we first surveyed
systems which aim to tackle high loads (chapter 2). We identified two main categories of
software systems for processing large-scale event streams: Big Data stream processing,
and streaming databases. The former lacks support for matching complex event patterns
in the monitored streams. The latter lacks the means of enforcing strong reactivity.

We therefore surveyed the remainder of the state of the art of event handling systems
(chapter 3). We identified two more categories of software systems which offered features
important for our driver scenarios. First, (Functional) Reactive Programming languages
enable processing event streams by means of a predefined, constant-depth dependency
graph. Second, Complex Event Processing languages enable incrementally matching
complex event patterns to event streams. However, FRP lacks support for matching
complex event patterns, and CEP lacks guaranteed strong reactivity.

9.2 Revisiting our Contributions

9.2.1 The Logic Reactive Programming Paradigm

In chapter 4 we introduced a novel programming paradigm which solves the problem
stated in section 1.1. This novel paradigm— Logic Reactive Programming — enforces 5
requirements:

RLRP1 LRP languages provide the means for declaratively expressing complex event

patterns and the reaction logic to execute in response to matches to those patterns.

RLRP2 LRP languages offer built-in support for temporal reasoning, such that the complex
event patterns can express how the constituent events relate to each other in time.

RLRP3 LRP languages make use of the constraints specified in the declarative event
patterns to automatically manage which event data is stored, and how.

RLRP4 LRP languages offer scalable, incrementalmatching of the complex event patterns.

RLRP5 LRP languages are guaranteed to offer strongly reactive pattern matching.

Table 9.1 depicts how each of the four categories of the state of the art of event stream
processing achieves some of those requirements. Only Logic Reactive Programming
achieves all five.

236

9.2 Revisiting our Contributions

RLRP1

RLRP4

RLRP2

RLRP5

RLRP3

– no patterns
✓✓well-supported

✓✓ expressive patterns
– Callback Hell

– no patterns
– Callback Hell

✓ relational join
– outside of the model

– not scalable– not scalable✓✓ very scalable ✓ scalable

– unsupported✓✓ well-supported– unsupported ✓ supported

~ not guaranteed– unsupported~ not guaranteed – unsupported

~ no storage✓ managed storage~ no storage ✓✓ large managed storage

✓ restricted patterns
✓ supported (restricted)

✓ supported
✓ managed storage
✓ scalable
✓ guaranteed

Distributed Big Data & Stream Processing Event Handling
Reactive ProgrammingComplex Event ProcessingBig Data Stream Processing Streaming Databases

(Chapter 2) (Chapter 3) Our Contribution
Logic Reactive Programming

Table 9.1: Requirements attained by the state of the art of event stream processing, and by
our contribution: Logic Reactive Programming

9.2.2 PARTElang: a Logic Reactive Programming Language

We developed a first Logic Reactive Programming language: PARTElang (section 4.2).
PARTElang programs take the form of sets of declarative rules, encoding how a set
of declarative event patterns can be abstracted into new complex events. The formal
foundations of PARTElang are twofold. First, the semantics of what constitutes a match to
an event pattern are specified by an event algebra (section 4.3). Second, the way in which
PARTElang programs can be evaluated in a strongly reactive manner is defined by an
operational semantics: the Featherweight PARTE model (section 5.4).

9.2.3 Featherweight PARTE: an Operational Semantics for PARTElang

The Featherweight PARTE model defines how a PARTElang program can be compiled
into a set of processing nodes. Additionally, the model defines two sets of rewrite rules: a
global evaluation language which defines how event data spreads through the system,
and a local evaluation language which defines how event data is processed by individual
processing nodes. We formally prove that the Featherweight PARTE model guarantees
strong reactivity: for any PARTElang program, a fixed, finite minimum viable size exists
for all places where data is stored in a fwPARTE graph. The minimum viable size is the
smallest size for which fwPARTE can guarantee to successfully detect all occurrences of
the complex events specified in the PARTElang program. Since the minimum viable size
is fixed and finite, the cost of processing an event using the Featherweight PARTE model
is constant for a given PARTElang program (chapter 8).

9.2.4 Two Prototypical Implementations of Featherweight PARTE

We developed two prototypical implementations of the Featherweight PARTE model
(chapter 6). The first — PARTERust — is a multi-threaded testbed for the model. The
second — PARTEElixir — schedules the sequential components of PARTERust on an Erlang
actor runtime.

237

Chapter 9: Conclusion

To demonstrate how PARTElang can be applied to a real-world use case, we implemented
our driver scenarios in full in chapter 7. We experimentally validated the utility of
Featherweight PARTE as an execution model: we implement our driver scenarios using a
state of the art Big Data stream processing framework, and show that the idiomatic way
of using it either precludes strong reactivity, or is unable to operate within the bounds of
a minimum viable size.

9.3 Revisiting the Limitations and Future Work

Logic Reactive Programming provides a way of declaratively defining software systems
which autonomously monitor high-throughput streams of events in a strongly reactive
manner. Four major limitations offer opportunities for future investigation:

More flexible temporal constraints PARTElang and its event algebra EA only support
temporal constraints which define a closed time interval. This enables strongly reactive
evaluation of PARTElang programs. However, there exist other temporal constraints
which could be made compatible with strong reactivity.
Future work could explore to what extent this limitation can safely be relaxed. In
general, any temporal constraint which adds only a constant run time cost per event,
and only a constant space cost per program, can be made compatible with strong
reactivity. We describe two possible avenues in section 4.5.1 (on page 86).

Support for aggregation PARTElang and its event algebra EA can only reason about the
single event matching an event pattern, not about the set of all events which match
an event pattern. PARTElang programs hence cannot express patterns involving a
variable number of events.
Future work could explore to what extent this limitation can safely be relaxed. As we
indicate in section 4.5.2 (on page 86), general aggregation is incompatible with strong
reactivity [101], but a restricted form of aggregation can be made compatible. Since
semantic windows in PARTE have a fixed, finite upper bound on size, operations
with costs proportionate to their size, are compatible with strong reactivity. The
addition of support for aggregation over semantic windows is hence mostly a matter
of engineering effort.

Strongly reactive failure handling Featherweight PARTE defines an operational seman-
tics which assumes a distributed memory space. However, safely distributing
computations over multiple computers, e.g., in a computer cluster, introduces other
complexities on top of the distributed memory space. One important issue in
distributed computing is dealing with partial failures. The Featherweight PARTE
model lacks the capability to do so. While the guarantees of strong reactivity and
the restricted, declarative language prevent runtime software failures, the possibility
of hardware failures persists.

238

9.4 Closing Remarks

Future work could explore what is required for strongly reactive failure handling, or
the extent to which that is possible. As we pointed out in section 5.6.4 (on page 153),
we expect that a maximum failure occurrence ratewill have to be defined to enable
this. In contrast to our previous point — on support for aggregation — the addition
of strongly reactive failure handling is not just an engineering effort. New formal
work will be required.

Language and runtime engineering PARTElang is purposefully built as a minimal lan-
guage. Similarly, the Featherweight PARTE model is kept “featherweight”. Our
prototypical implementations of the model, in turn, are evidently just research
prototypes. All this contributes to the situation that PARTE lacks some marked
features. In section 4.5.3 (on page 87) we listed some language features which are
missing from PARTElang, but which would improve the software engineering aspects
of writing PARTElang programs. Similarly, in section 5.6.5 (on page 153) we listed
some optimizations which are not defined by our formal model, but which would
reduce the average-case execution time.
Future work could explore adding Midas-style [121, 74] language features, most
notably support for reusability through modules. Additionally, the optimizations
described from page 153 onwards could be added to the model and prototypes. New
theoretical work will be necessary to explore how the granularity of a fwPARTE
graph can be coarsened, and to determine how multiple results can be batched in
such a way that strongly reactive processing remains guaranteed.

9.4 Closing Remarks

In this dissertation, we presented Logic Reactive Programming, a paradigm for programs
whichmonitor high-throughput event streams formatches to complex event patterns. LRP
programs are characterized by 1.) a declarative specification of complex event patterns
and reaction logic, 2.) built-in temporal reasoning, 3.) automatic management of event
data, 4.) scalable online processing, and 5.) strong reactivity. Before LRP, there was no
event stream processing system which combined these desirable properties.

While a large focus of this dissertation was on the formal, semantical aspects of the Logic
Reactive Programming paradigm, we explored the full spectrum from event algebra,
through formally proven operational semantics, to practical implementations of real-world
driver scenarios.

In conclusion, Logic Reactive Programming presents a significant improvement over the
state of the art. We believe that this combination of expressive, declarative complex event
patterns with guaranteed strong reactivity constitutes an important new research avenue.

239

A
Additional Code Snippets

A.1 Additional PARTElang Snippets

We remind the reader that the complete implementation of the driver scenarios in PARTE-
lang is available at https://soft.vub.ac.be/~trenaux/PARTE/implemented-
driver-scenarios.zip. Some relevant snippets, referred to from the text, are repro-
duced below:

1 rule AbstractSuspiciousTransfer where
2 incoming : MoneyTransferred {
3 amount >= 100.0,
4 uncommon_route(originator, destination)
5 }
6 when
7 then
8 emit MoneyTransferredSuspiciously
9 at incoming.timestamp
10 with {
11 originator = incoming.originator,
12 destination = incoming.destination,
13 amount = incoming.amount,
14 }

Listing A.1: The PARTElang rule implementing the abstraction that reduces code
duplication in the first two driver scenarios: an occurrence of MoneyTransferred
which is suspicious is abstracted into a MoneyTransferredSuspiciously compound
event.

241

https://soft.vub.ac.be/~trenaux/PARTE/implemented-driver-scenarios.zip
https://soft.vub.ac.be/~trenaux/PARTE/implemented-driver-scenarios.zip

Appendix A: Additional Code Snippets

1 rule FraudPassThrough where
2 incoming : MoneyTransferredSuspiciously
3 outgoing : MoneyTransferredSuspiciously {
4 originator = incoming.destination,
5 amount = incoming.amount
6 }
7 when
8 outgoing in incoming [0 days, 14 days]
9 then
10 emit SuspiciousSequenceDetected
11 at incoming.timestamp
12 with {
13 mule_account = incoming.destination,
14 amount = incoming.amount,
15 incoming_transactions = list(incoming.id),
16 outgoing_transactions = list(outgoing.id)
17 }
18
19 rule FraudDiffusion where
20 incoming : MoneyTransferredSuspiciously
21 outgoing_1 : MoneyTransferredSuspiciously {
22 originator = incoming.destination,
23 }
24 outgoing_2 : MoneyTransferredSuspiciously {
25 originator = incoming.destination,
26 id != outgoing_1.id,
27 }
28 outgoing_3 : MoneyTransferredSuspiciously {
29 originator = incoming.destination,
30 id != outgoing_1.id,
31 id != outgoing_2.id,
32 outgoing_1.amount + outgoing_2.amount + outgoing_3.amount >= incoming.amount * 0.9,
33 outgoing_1.amount + outgoing_2.amount + outgoing_3.amount <= incoming.amount * 1.1,
34 }
35 when
36 outgoing_1 in incoming [0 days, 14 days]
37 outgoing_2 in incoming [0 days, 14 days]
38 outgoing_3 in incoming [0 days, 14 days]
39 then
40 emit SuspiciousSequenceDetected
41 at incoming.timestamp
42 with {
43 mule_account = incoming.destination,
44 amount = incoming.amount,
45 incoming_transactions = list(incoming.id),
46 outgoing_transactions = list(outgoing_1.id, outgoing_2.id, outgoing_3.id)
47 }

Listing A.2: Alternative PARTElang rules implementing driver scenario A and driver
scenario B: where a suspicious transfer is defined as a transfer of 100e or more along an
uncommon route.

A.2 AdditionalSnippets of thePARTE
Rust

Implementation

Some relevant snippets — referred to from the text — of PARTERust, our prototypical
implementation of the Featherweight PARTE model, are reproduced below:

242

A.3 Additional Snippets of the Event Trace

1 #[derive(Clone, Debug)]
2 pub struct BetaToken {
3 oldest_timestamp_per_pattern: Vec<Time>,
4 payload: Option<PartialMatch>,
5 }
6
7 impl BetaToken {
8 pub fn new_from_single_event(oldest_timestamp_to_expect: Time,
9 event: Arc<Event>,
10) -> Self {
11 BetaToken {
12 oldest_timestamp_per_pattern: vec![oldest_timestamp_to_expect],
13 payload: Some(PartialMatch { events: vec![event] })
14 }
15 }
16
17 pub fn new_from_events(oldest_timestamp_per_pattern: &[Time],
18 events: Vec<Arc<Event>>,
19) -> Self {
20 assert!(!events.is_empty());
21 assert_eq!(oldest_timestamp_per_pattern.len(), events.len());
22
23 BetaToken {
24 oldest_timestamp_per_pattern: Vec::from(oldest_timestamp_per_pattern),
25 payload: Some(PartialMatch { events: events })
26 }
27 }
28
29 pub fn new_from_single_no_change(oldest_timestamp_to_expect: Time) -> Self {
30 BetaToken {
31 oldest_timestamp_per_pattern: vec![oldest_timestamp_to_expect],
32 payload: None,
33 }
34 }
35
36 pub fn new_by_extending_no_change(oldest_timestamp_per_pattern: Vec<Time>) -> Self {
37 BetaToken {
38 oldest_timestamp_per_pattern: oldest_timestamp_per_pattern,
39 payload: None
40 }
41 }
42
43 // ... accessors and mutators
44 }

Listing A.3: PARTERust’s implementation of beta tokens

A.3 Additional Snippets of the Event Trace

We remind the reader that a complete version of the event trace generator used in chap-
ter 7 is available at https://soft.vub.ac.be/~trenaux/PARTE/evaluation.
zip. Some relevant snippets, referred to from the text, are reproduced below:

243

https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip
https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip

Appendix A: Additional Code Snippets

1 // With field left_storage: LeftPartialMatchStorage,
2 // With field right_storage: RightPartialMatchStorage,
3 // With field oldest_timestamp_per_left_event_pattern: Vec<Time>,
4 // With field temporal_distance_to_reference_events: Vec<TemporalDistance>,
5
6 impl JoinNode {
7 // .. constructor etc.
8
9 fn process_left_activation(&mut self, token: BetaToken) -> Result<(), String> {
10 // ... check for out-of-order propagation, or wrong update of the lower bounds
11
12 let (oldest_timestamp_per_left_event_pattern, payload) = token.into_parts();
13
14 // Update the timing info and discard stale matches from the right token storage
15 self.oldest_timestamp_per_left_event_pattern
16 = oldest_timestamp_per_left_event_pattern;
17 self.discard_stale_matches_from_right_storage();
18
19 let ls = self.compute_lower_bound_on_event_times();
20
21 if let Some(left_partial_match) = payload {
22 // Compute lifetime for new token by intersecting lifetimes of each event pattern.
23 let left_lifetime = self
24 .temporal_distance_to_reference_events.iter()
25 .zip(left_partial_match.events.iter().map(|e| e.timestamp()))
26 .fold(Lifetime::unrestricted(), |lifetime, (distance, e_time)| {
27 Lifetime::from_distance_and_absolute_time(distance, e_time)
28 .intersection(&lifetime)
29 });
30
31 // For every partial match in the right storage, try to unify:
32 self.right_storage
33 .attempt_combining_with_stored(
34 &left_partial_match,
35 &left_lifetime,
36 &mut |left_pm, right_pm| {
37 let es = left_pm.new_by_joining_assuming_consistent(right_pm).events;
38 let outgoing_token = BetaToken::new_from_events(&ls, es);
39 self.successors.send_token(outgoing_token)
40 })?;
41
42 // Store the incoming partial match in the left storage
43 self.left_storage.insert_match(left_lifetime, left_partial_match);
44
45 Ok(())
46 } else {
47 let outgoing_token = BetaToken::new_by_extending_no_change(ls);
48 self.successors.send_token(outgoing_token)
49 }
50 }
51
52 fn discard_stale_matches_from_right_storage(&mut self) {
53 // Compute the lifetime of the 'oldest event' we can still expect on the left, by
54 // intersecting the lifetimes for of the 'oldest event' for each event pattern.
55 let lifetime = self.temporal_distance_to_reference_events.iter()
56 .zip(self.oldest_timestamp_per_left_event_pattern.iter())
57 .fold(Lifetime::unrestricted(), |lifetime, (distance, &oldest_time)| {
58 Lifetime::from_distance_and_absolute_time(distance, oldest_time)
59 .intersection(&lifetime)
60 });
61
62 self.right_storage.discard_older_than(lifetime.start);
63 }
64 }

Listing A.4: Processing left activation of join-nodes in PARTERust

244

A.3 Additional Snippets of the Event Trace

1 type ValueProcedure = Box<for<'a> Fn(&'a Iterator<Item=&Value>) -> Value + Send>;
2 type TimestampProcedure = Box<for<'a> Fn(&'a Iterator<Item=Time>) -> Time + Send>;
3 type ActionProcedure = Box<for<'a> Fn(&'a PartialMatch) -> Result<(), String> + Send>;
4
5 pub enum Action {
6 EmitAlphaToken {
7 entry_nodes: AlphaSuccessorCollection,
8 template: Arc<Template>,
9 value_procedures: Vec<(ValueProcedure, Vec<QualifiedSlot>)>,

10 inherited_timestamp_procedure: TimestampProcedure,
11 },
12 CallForeignAction (ActionProcedure)
13 }
14
15 impl Action {
16 fn with_partial_match(&self,
17 generator_id: GeneratorId,
18 oldest_timestamp_per_event_pattern: &[Time],
19 pm: &PartialMatch
20) -> Result<(), String> {
21 match self {
22 &Action::EmitAlphaToken { ref entry_nodes,
23 ref template,
24 ref value_procedures,
25 ref inherited_timestamp_procedure } => {
26 let vals = value_procedures.iter()
27 .map(|&(ref procedure, ref selected_slots)| {
28 procedure(&selected_slots.iter().map(|qs| &pm[qs]))
29 }).collect(),
30
31 let times = pm.events.iter().map(Event::timestamp);
32 let times = inherited_timestamp_procedure(×);
33
34 let oldest_times = oldest_timestamp_per_event_pattern.iter().cloned();
35 let oldest_times = inherited_timestamp_procedure(&oldest_times);
36
37 let outgoing_token = AlphaToken::new_with_event(
38 generator_id,
39 oldest_times,
40 Arc::new(Event::new(template, vals, times)?));
41 entry_nodes.send_token(outgoing_token)
42 },
43 &Action::CallForeignAction (ref action) => {
44 action(pm)
45 }
46 }
47 }
48
49 fn with_no_change(&self,
50 generator_id: GeneratorId,
51 oldest_timestamp_per_event_pattern: &[Time],
52) -> Result<(), String> {
53 match self {
54 &Action::EmitAlphaToken { ref entry_nodes,
55 ref inherited_timestamp_procedure, .. } => {
56 let ts = oldest_timestamp_per_event_pattern.iter().cloned();
57 let ts = inherited_timestamp_procedure(&ts);
58 let outgoing_token = AlphaToken::new_no_change(generator_id, ts);
59 entry_nodes.send_token(outgoing_token)
60 },
61 &Action::CallForeignAction { .. } => {
62 Ok(()) // Nothing to do, foreign actions don't interact with "no change"
63 }
64 }
65 }
66 }

Listing A.5: Representing reaction logic in PARTERust

245

Appendix A: Additional Code Snippets

1 let amount_ea = if is_above_threshold {
2 rng.gen_range(34, 999)
3 } else {
4 rng.gen_range(1, 33)
5 };
6
7 let (in_acc, shared_acc, out_acc_a, out_acc_b, out_acc_c)
8 = unique_account_id_set_from_seed(*next_id, is_common_route);
9
10 use rand::distributions::{Distribution, Uniform};
11 let distribution_of_outgoing_time
12 = Uniform::from(start_time .. start_time + MAX_GROUP_DURATION);
13 let time_a = distribution_of_outgoing_time.sample(rng);
14 let time_b = distribution_of_outgoing_time.sample(rng);
15 let time_c = distribution_of_outgoing_time.sample(rng);
16
17 { // Ensure it's safe to use these events w.r.t. the `EVENT_RATE`
18 let mut times_of_new_events = BTreeMap::new();
19 for time in &[start_time, time_a, time_b, time_c] {
20 *times_of_new_events.entry(*time).or_insert(0) += 1;
21 }
22
23 for (time, count) in times_of_new_events {
24 if (all_events.get(&time).unwrap_or_default().iter().count() + count) > EVENT_RATE {
25 // This random sample failed: would produce too many events in a certain timeslot
26 return Err(());
27 }
28 }
29 }
30
31 let i = Event::new(template_transferred,
32 vec![Value::from(*next_id + 0),
33 Value::from(in_acc),
34 Value::from(shared_acc),
35 Value::from(amount_ea * 3)],
36 Time::from_milliseconds(start_time as f64)).unwrap();
37 let o_a = Event::new(template_transferred,
38 vec![Value::from(*next_id + 1),
39 Value::from(shared_acc),
40 Value::from(out_acc_a),
41 Value::from(amount_ea)],
42 Time::from_milliseconds(time_a as f64)).unwrap();
43 let o_b = Event::new(template_transferred,
44 vec![Value::from(*next_id + 2),
45 Value::from(shared_acc),
46 Value::from(out_acc_b),
47 Value::from(amount_ea)],
48 Time::from_milliseconds(time_b as f64)).unwrap();
49 let o_c = Event::new(template_transferred,
50 vec![Value::from(*next_id + 3),
51 Value::from(shared_acc),
52 Value::from(out_acc_c),
53 Value::from(amount_ea)],
54 Time::from_milliseconds(time_c as f64)).unwrap();
55
56 *next_id += 4;
57
58 for (time, event) in vec![(start_time, i), (time_a, o_a), (time_b, o_b), (time_c, o_c)] {
59 all_events.entry(time).or_insert_default().push(event);
60 }

Listing A.6: Rust code generating a new three-way split given a configuration

246

B
Experimental Results

This appendix summarizes the results obtained in our experiment described in section 7.4
from page 199 onwards. The concrete results can be acquired from https://soft.vub.
ac.be/~trenaux/PARTE/evaluation.zip. For each scenario, a fraction of less than
1 for the 100% percentile indicates that the Spark Streaming implementation missed some
results at that scale factor. A fraction above 1 would indicate incorrect matches were
found. Results for PARTERust are not included here, as PARTERust detected all results (i.e.,
a fraction of “1.0”) for each scenario.

Scenario Fraction of fraud cases found per percentiles

unrelated Scale factor 0% 5% 25% 50% 75% 95% 100%

0 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

247

https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip
https://soft.vub.ac.be/~trenaux/PARTE/evaluation.zip

Appendix B: Experimental Results

Scenario Fraction of fraud cases found per percentiles

unrelated Scale factor 0% 5% 25% 50% 75% 95% 100%

100 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1000 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10000 1 0.0 0.0 0.17 0.17 0.33 0.5 0.83
10000 2 0.0 0.17 0.33 0.5 0.67 0.83 1.0
10000 3 0.17 0.5 0.67 0.83 1.0 1.0 1.0
10000 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 9 0.0 1.0 1.0 1.0 1.0 1.0 1.0

Table B.1: Fraction of the 6 fraud cases detected by the Spark Streaming implementation
— The first column lists the number of unrelated events added in the event stream in addition to the 10

diffusion groups. The second column indicates how many multiples of PARTE’s minimum viable partial

match history sizes were allocated for the Spark Streaming implementation.

Scenario Fraction of fraud cases found per percentiles

unrelated Scale factor 0% 5% 25% 50% 75% 95% 100%

0 1 0.7 0.7 0.7 0.7 0.72 0.72 0.74
0 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 1 0.64 0.66 0.68 0.68 0.7 0.7 0.72
100 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

248

Scenario Fraction of fraud cases found per percentiles

unrelated Scale factor 0% 5% 25% 50% 75% 95% 100%

1000 1 0.5 0.52 0.54 0.56 0.58 0.6 0.6
1000 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10000 1 0.1 0.14 0.18 0.2 0.24 0.26 0.32
10000 2 0.28 0.32 0.38 0.42 0.46 0.5 0.58
10000 3 0.44 0.5 0.56 0.6 0.64 0.68 0.72
10000 4 0.64 0.72 0.78 0.81 0.84 0.86 0.96
10000 5 0.94 0.96 0.98 1.0 1.0 1.0 1.0
10000 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table B.2: Fraction of the 50 fraud cases detected by the Spark Streaming implementation
— The first column lists the number of unrelated events added in the event stream in addition to the 100

diffusion groups. The second column indicates how many multiples of PARTE’s minimum viable partial

match history sizes were allocated for the Spark Streaming implementation.

Scenario Fraction of fraud cases found per percentiles

unrelated Scale factor 0% 5% 25% 50% 75% 95% 100%

0 1 0.07 0.07 0.07 0.07 0.07 0.07 0.07
0 2 0.14 0.14 0.14 0.14 0.14 0.14 0.15
0 3 0.21 0.21 0.21 0.21 0.21 0.22 0.22
0 4 0.28 0.28 0.28 0.28 0.28 0.29 0.29
0 5 0.35 0.35 0.35 0.35 0.36 0.36 0.36
0 6 0.42 0.42 0.42 0.43 0.43 0.43 0.43
0 7 0.49 0.49 0.5 0.5 0.5 0.5 0.5
0 8 0.56 0.56 0.57 0.57 0.57 0.57 0.58
0 9 0.63 0.63 0.64 0.64 0.64 0.64 0.65
0 10 0.7 0.71 0.71 0.71 0.71 0.72 0.72
0 11 0.78 0.78 0.78 0.78 0.78 0.79 0.79
0 12 0.84 0.85 0.85 0.85 0.85 0.86 0.86
0 13 0.92 0.92 0.92 0.92 0.93 0.93 0.93
0 14 0.99 0.99 0.99 1.0 1.0 1.0 1.0
0 15 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 17 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 18 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 19 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 1 0.07 0.07 0.07 0.07 0.07 0.07 0.07
100 2 0.14 0.14 0.14 0.14 0.14 0.14 0.14
100 3 0.21 0.21 0.21 0.21 0.21 0.21 0.22
100 4 0.28 0.28 0.28 0.28 0.28 0.29 0.29
100 5 0.35 0.35 0.35 0.35 0.36 0.36 0.36
100 6 0.42 0.42 0.42 0.42 0.43 0.43 0.43
100 7 0.49 0.49 0.49 0.5 0.5 0.5 0.5
100 8 0.56 0.56 0.56 0.57 0.57 0.57 0.57
100 9 0.63 0.63 0.64 0.64 0.64 0.64 0.65

249

Appendix B: Experimental Results

Scenario Fraction of fraud cases found per percentiles

unrelated Scale factor 0% 5% 25% 50% 75% 95% 100%

100 10 0.7 0.7 0.71 0.71 0.71 0.71 0.72
100 11 0.77 0.77 0.78 0.78 0.78 0.78 0.79
100 12 0.84 0.85 0.85 0.85 0.85 0.86 0.86
100 13 0.91 0.92 0.92 0.92 0.92 0.93 0.93
100 14 0.99 0.99 0.99 0.99 1.0 1.0 1.0
100 15 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 17 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 18 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 19 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1000 1 0.06 0.07 0.07 0.07 0.07 0.07 0.07
1000 2 0.13 0.13 0.14 0.14 0.14 0.14 0.14
1000 3 0.2 0.2 0.21 0.21 0.21 0.21 0.22
1000 4 0.27 0.27 0.27 0.28 0.28 0.28 0.29
1000 5 0.34 0.34 0.34 0.35 0.35 0.35 0.36
1000 6 0.41 0.41 0.41 0.42 0.42 0.42 0.43
1000 7 0.48 0.48 0.48 0.49 0.49 0.49 0.5
1000 8 0.55 0.55 0.55 0.56 0.56 0.56 0.57
1000 9 0.62 0.62 0.62 0.62 0.63 0.63 0.64
1000 10 0.68 0.69 0.69 0.69 0.7 0.7 0.71
1000 11 0.75 0.76 0.76 0.76 0.77 0.77 0.78
1000 12 0.82 0.82 0.83 0.83 0.84 0.84 0.85
1000 13 0.89 0.89 0.9 0.9 0.9 0.91 0.92
1000 14 0.96 0.96 0.97 0.97 0.97 0.98 0.99
1000 15 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 17 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 18 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 19 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10000 1 0.0 0.05 0.05 0.06 0.06 0.06 0.06
10000 2 0.0 0.11 0.11 0.11 0.12 0.12 0.12
10000 3 0.0 0.16 0.17 0.17 0.17 0.18 0.18
10000 4 0.0 0.22 0.22 0.23 0.23 0.23 0.24
10000 5 0.0 0.27 0.28 0.28 0.29 0.29 0.3
10000 6 0.0 0.33 0.34 0.34 0.34 0.35 0.35
10000 7 0.0 0.38 0.39 0.4 0.4 0.41 0.41
10000 8 0.0 0.44 0.45 0.45 0.46 0.47 0.48
10000 9 0.49 0.5 0.5 0.51 0.52 0.52 0.53
10000 10 0.54 0.55 0.56 0.57 0.57 0.58 0.59
10000 11 0.6 0.61 0.62 0.62 0.63 0.64 0.64
10000 12 0.66 0.66 0.67 0.68 0.69 0.69 0.7
10000 13 0.71 0.72 0.73 0.74 0.74 0.75 0.76
10000 14 0.77 0.78 0.79 0.79 0.8 0.81 0.81
10000 15 0.83 0.84 0.85 0.85 0.86 0.86 0.87
10000 16 0.89 0.89 0.9 0.91 0.91 0.92 0.93
10000 17 0.94 0.95 0.96 0.96 0.97 0.98 0.99
10000 18 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10000 19 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table B.3: Fraction of the 500 fraud cases detected by the Spark Streaming implementation
— The first column lists the number of unrelated events added in the event stream in addition to the 1000

diffusion groups. The second column indicates how many multiples of PARTE’s minimum viable partial

match history sizes were allocated for the Spark Streaming implementation.

250

Bibliography

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, et al. The Design of the Borealis Stream Processing Engine. In Cidr,
volume 5, pages 277–289, 2005.

[2] Anurag Acharya and Milind Tambe. Collection Oriented Match. In Proceedings of
the Second International Conference on Information and Knowledge Management, CIKM
’93, pages 516–526, New York, NY, USA, 1993. ACM. ISBN 0-89791-626-3. doi:
10.1145/170088.170411.

[3] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient
Pattern Matching over Event Streams. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pages 147–160, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376634.

[4] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. DBToaster:
Higher-order Delta Processing for Dynamic, Frequently Fresh Views. Proceedings of
the International Conference on Very Large Data Bases Endowment, 5(10):968–979, June
2012. ISSN 2150-8097. doi: 10.14778/2336664.2336670.

[5] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and SamWhittle. Mill-
Wheel: Fault-tolerant Stream Processing at Internet Scale. Proceedings of the Interna-
tional Conference on Very Large Data Bases Endowment, 6(11):1033–1044, August 2013.
ISSN 2150-8097. doi: 10.14778/2536222.2536229.

[6] James F. Allen. Maintaining Knowledge about Temporal Intervals. Commun-
umications of the ACM, 26(11):832–843, November 1983. ISSN 0001-0782. doi:
10.1145/182.358434.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. Jasmin: High-Assurance and High-Speed Cryptography. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 1807–1823, New York, NY, USA, 2017. ACM. ISBN 978-1-
4503-4946-8. doi: 10.1145/3133956.3134078.

251

Bibliography

[8] Apache Software Foundation. Apache Flink® - Stateful Computations over Data
Streams. https://flink.apache.org/, 2018. Accessed: 2018-08-08.

[9] Apache Software Foundation. FlinkCEP - Complex event processing for
Flink. https://ci.apache.org/projects/flink/flink-docs-stable/
dev/libs/cep.html, 2018. Accessed: 2018-08-08.

[10] Apache Software Foundation. Hadoop. https://hadoop.apache.org/, 2018.
Accessed: 2018-08-08.

[11] Apache Software Foundation. Kafka — A Distributed Streaming Platform. https:
//kafka.apache.org/, 2018. Accessed: 2018-08-08.

[12] Apache Software Foundation. ZooKeeper. https://zookeeper.apache.org/,
2018. Accessed: 2018-08-08.

[13] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru
Nishizawa, Justin Rosenstein, and Jennifer Widom. Stream: The stanford stream
data manager (demonstration description). In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, pages 665–665, New
York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi: 10.1145/872757.872854.

[14] Mostafa M Aref and Mohammed A Tayyib. Lana-Match Algorithm: a Parallel
Version of the Rete-Match Algorithm. Parallel Computing, 24(5–6):763–775, 1998.
ISSN 0167-8191. doi: 10.1016/S0167-8191(98)00003-9.

[15] Alexander Artikis, Marek Sergot, and Georgios Paliouras. Run-Time Composite
Event Recognition. InProceedings of the 6th ACM International Conference onDistributed
Event-based Systems, DEBS ’12, pages 69–80, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1315-5. doi: 10.1145/2335484.2335492.

[16] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stĳn
Mostinckx, and Wolfgang de Meuter. A Survey on Reactive Programming. ACM
Computing Surveys (CSUR), 45(4):52:1–52:34, August 2013. ISSN 0360-0300. doi:
10.1145/2501654.2501666.

[17] Magdalena Balazinska, Hari Balakrishnan, and Mike Stonebraker. Contract-based
Load Management in Federated Distributed Systems. In Proceedings of the 1st
Conference on Symposium on Networked Systems Design and Implementation, volume 1
of NSDI’04, pages 15–15, Berkeley, CA, USA, 2004. USENIX Association.

[18] Don Batory. The LEAPS Algorithm. Technical report, University of Texas at Austin,
Austin, TX, USA, 1994. URL ftp://ftp.cs.utexas.edu/pub/techreports/
tr94-28.ps.Z.

[19] BEAM. The Erlang Runtime System. https://happi.github.io/
theBeamBook/, 2018. Accessed: 2018-08-08.

252

https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://hadoop.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://zookeeper.apache.org/
ftp://ftp.cs.utexas.edu/pub/techreports/tr94-28.ps.Z
ftp://ftp.cs.utexas.edu/pub/techreports/tr94-28.ps.Z
https://happi.github.io/theBeamBook/
https://happi.github.io/theBeamBook/

[20] A. Benveniste and G. Berry. The Synchronous Approach to Reactive and Real-Time
Systems. Proceedings of the IEEE, 79(9):1270–1282, Sep. 1991. ISSN 0018-9219. doi:
10.1109/5.97297.

[21] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Programming
Language and its Mathematical Semantics. In Stephen D. Brookes, AndrewWilliam
Roscoe, and Glynn Winskel, editors, Seminar on Concurrency, pages 389–448, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg. ISBN 978-3-540-39593-5.

[22] B. Berstel. Extending the RETE Algorithm for Event Management. In Proceedings
Ninth International Symposium on Temporal Representation and Reasoning, pages 49–51,
July 2002. doi: 10.1109/TIME.2002.1027472.

[23] Kevin Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin,MohammedEltabakh,
Carl-Christian Kanne, Fatma Özcan, and Eugene Shekita. Jaql: a Scripting Language
for Large Scale Semistructured Data Analysis. In H. V. Jagadish, José Blakeley,
Joseph M. Hellerstein, Nick Koudas, Wolfgang Lehner, Sunita Sarawagi, and Uwe
Röhm, editors, Proceedings of the 37th International Conference on Very Large Data Bases,
Proceedings of the International Conference on Very Large Data Bases Endowment,
pages 1272–1283, Seattle, USA, 2011. VLDB Endowment.

[24] Gavin Bierman, Claudio Russo, GeoffreyMainland, ErikMeĳer, andMads Torgersen.
Pause ’n’ Play: Formalizing Asynchronous C]. In James Noble, editor, ECOOP 2012
– Object-Oriented Programming, pages 233–257, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-31057-7.

[25] Krysia Broda, Keith Clark, Rob Miller, and Alessandra Russo. SAGE: a Logical
Agent-based Environment Monitoring and Control System. In Manfred Tscheligi,
Boris de Ruyter, Panos Markopoulus, Reiner Wichert, Thomas Mirlacher, Alexander
Meschterjakov, andWolfgang Reitberger, editors,Ambient Intelligence, pages 112–117,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-05408-2.

[26] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Readings in
Hardware/Software Co-Design. chapter Ptolemy: a Framework for Simulating and
Prototyping Heterogeneous Systems, pages 527–543. Kluwer Academic Publishers,
Norwell, MA, USA, 2002. ISBN 1-55860-702-1.

[27] Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Nesime Tatbul, Stan Zdonik, and Michael Stonebraker. Monitoring
Streams—ANewClass of DataManagement Applications. InVLDB’02: Proceedings
of the 28th International Conference on Very Large Databases, pages 215–226. Elsevier,
2002.

[28] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang,
Ranjit Jhala, and Deian Stefan. FaCT: a Flexible, Constant-Time Programming
Language. In Secure Development Conference (SecDev), pages 69–76. IEEE, September
2017. ISBN 978-1-5386-3467-7.

253

Bibliography

[29] S. Chakravarthy and D. Mishra. Snoop: an Expressive Event Specification Language
for Active Databases. Data & Knowledge Engineering, 14(1):1–26, November 1994.
ISSN 0169-023X. doi: 10.1016/0169-023X(94)90006-X.

[30] S. Chakravarthy and D. Mishra. Snoop: an Expressive Event Specification Language
forActiveDatabases.Data&Knowledge Engineering, 14(1):1–26, 1994. ISSN0169-023X.
doi: https://doi.org/10.1016/0169-023X(94)90006-X.

[31] K. Mani Chandy. Theory and Implementation of a Distributed Event based Platform.
In Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems, DEBS ’16, pages 205–213, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4021-2. doi: 10.1145/2933267.2940321.

[32] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a Scalable
Continuous Query System for Internet Databases. In Proceedings of the 2000 ACM
SIGMOD International Conference onManagement of Data, SIGMOD ’00, pages 379–390,
New York, NY, USA, 2000. ACM. ISBN 1-58113-217-4. doi: 10.1145/342009.335432.

[33] Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S. Miller,
Franz Och, Christopher Olston, and Fernando Pereira. Yedalog: Exploring Knowl-
edge at Scale. In Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S.
Lerner, and Greg Morrisett, editors, 1st Summit on Advances in Programming Lan-
guages (SNAPL 2015), volume 32 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 63–78, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-80-4. doi: 10.4230/LIPIcs.SNAPL.2015.63.

[34] Horatiu Cirstea, Claude Kirchner, Michael Moossen, and Pierre-Etienne Moreau.
Production Systems and Rete Algorithm Formalisation. Contract A04-R-546 ||
cirstea04d, INRIA Lorraine, LORIA, Nancy, France, 2004. URL https://hal.
inria.fr/inria-00099850. Rapport de contrat.

[35] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy,
and Russell Sears. MapReduce Online. In Proceedings of the 7th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2010, April 28-30, 2010, San
Jose, CA, USA, pages 313–328, 2010.

[36] Gregory H. Cooper. Integrating Dataflow Evaluation into a Practical Higher-Order
Call-by-Value Language. PhD thesis, Brown University, 2008. URL http://cs.
brown.edu/people/ghcooper/thesis.pdf.

[37] Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic Dataflow
in a Call-by-Value Language. In Peter Sestoft, editor, Programming Languages and
Systems, pages 294–308, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
978-3-540-33096-7.

[38] Antony Courtney. Frappé: Functional Reactive Programming in Java. In Practical
Aspects of Declarative Languages, pages 29–44. Springer, 2001.

254

https://hal.inria.fr/inria-00099850
https://hal.inria.fr/inria-00099850
http://cs.brown.edu/people/ghcooper/thesis.pdf
http://cs.brown.edu/people/ghcooper/thesis.pdf

[39] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
Gigascope: a Stream Database for Network Applications. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, SIGMOD
’03, pages 647–651, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi:
10.1145/872757.872838.

[40] Gianpaolo Cugola and AlessandroMargara. Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM Computing Surveys (CSUR), 44(3):
15:1–15:62, June 2012. ISSN 0360-0300. doi: 10.1145/2187671.2187677.

[41] Gianpaolo Cugola and Alessandro Margara. Complex Event Processing with
T-REX. Journal of Systems and Software, 85(8):1709–1728, 2012. ISSN 0164-1212. doi:
https://doi.org/10.1016/j.jss.2012.03.056.

[42] Evan Czaplicki and Stephen Chong. Asynchronous Functional Reactive Program-
ming for GUIs. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 411–422, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.2462161.

[43] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 Years of Actors: a
Taxonomy of Actor Models and their Key Properties, pages 31–40. AGERE! 2016. ACM,
2016. ISBN 978-1-4503-4639-9. doi: 10.1145/3001886.3001890.

[44] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation, volume 6 of OSDI’04, pages 10–10, Berkeley, CA, USA,
2004. USENIX Association.

[45] DamianDechev andBjarne Stroustrup. ScalableNonblockingConcurrentObjects for
Mission Critical Code. In Proceedings of the 24th ACMSIGPLANConference Companion
on Object-Oriented Programming Systems, Languages and Applications, OOPSLA ’09,
pages 597–612. ACM, 2009. ISBN 978-1-60558-768-4. doi: 10.1145/1639950.1639954.

[46] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. Towards Expressive Publish/Subscribe Systems. In Yannis Ioannidis, MarcH.
Scholl, Joachim W. Schmidt, Florian Matthes, Mike Hatzopoulos, Klemens Boehm,
Alfons Kemper, Torsten Grust, and Christian Boehm, editors, Advances in Database
Technology - EDBT 2006, pages 627–644, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN 978-3-540-32961-9. doi: 10.1007/11687238_38.

[47] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. Cayuga: a General Purpose Event Monitoring
System. In CIDR 2007, Third Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings, pages 412–422, 2007.

[48] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu.
A Query Language for XML. Computer Networks, 31(11):1155–1169, 1999. ISSN
1389-1286. doi: 10.1016/S1389-1286(99)00020-1.

255

Bibliography

[49] Klaus R. Dittrich and Stella Gatziu. Time Issues in Active Database Systems. In
Proceedings of the International Workshop on an Infrastructure for Temporal Databases,
pages 1–6, Arlington, TX, 1993.

[50] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. Distributed
REScala: An Update Algorithm for Distributed Reactive Programming. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 361–376, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2585-1. doi: 10.1145/2660193.2660240.

[51] Jonathan Edwards. Coherent Reaction. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’09, pages 925–932, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-768-4. doi: 10.1145/1639950.1640058.

[52] Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for Modern AI.
In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers, editors, Datalog
Reloaded, pages 181–220, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-24206-9.

[53] Elixir. Elixir. https://elixir-lang.org/, 2018. Accessed: 2018-08-08.

[54] Conal Elliott and Paul Hudak. Functional Reactive Animation. In Proceedings of
the Second ACM SIGPLAN International Conference on Functional Programming, ICFP
’97, pages 263–273, New York, NY, USA, 1997. ACM. ISBN 0-89791-918-1. doi:
10.1145/258948.258973.

[55] Kyumars Sheykh Esmaili. Reflections on Almost Two Decades of Research into
Stream Processing: Tutorial. In Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems, DEBS ’17, pages 21–23, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-5065-5. doi: 10.1145/3093742.3095110.

[56] EsperTech. Esper. http://www.espertech.com/esper/, 2006. Accessed:
2018-08-08.

[57] Patrick Eugster and K. R. Jayaram. EventJava: an Extension of Java for Event
Correlation. In Proceedings of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming, Genoa, pages 570–594, Berlin, Heidelberg, 2009. Springer-
Verlag. ISBN 978-3-642-03012-3. doi: 10.1007/978-3-642-03013-0_26.

[58] Charles L. Forgy. OPS5 User’s Manual. Technical Report CMU-CS-81-135, Depart-
ment of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa, July 1981.
URL http://www.dtic.mil/docs/citations/ADA106558.

[59] Charles L. Forgy. Rete: a Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19(1):17–37, 1982. ISSN 0004-3702. doi:
10.1016/0004-3702(82)90020-0.

256

https://elixir-lang.org/
http://www.espertech.com/esper/
http://www.dtic.mil/docs/citations/ADA106558

[60] Eric Friedman, Peter Pawlowski, and John Cieslewicz. SQL/MapReduce: a Practical
Approach to Self-describing, Polymorphic, and Parallelizable User-defined Func-
tions. Proceedings of the International Conference on Very Large Data Bases Endowment,
2(2):1402–1413, August 2009. ISSN 2150-8097. doi: 10.14778/1687553.1687567.

[61] Stella Gatziu and Klaus R. Dittrich. Events in an Active Object-Oriented Database
System. In Norman W. Paton and M. Howard Williams, editors, Rules in Database
Systems, pages 23–39, London, 1994. Springer London. ISBN 978-1-4471-3225-7. doi:
10.1007/978-1-4471-3225-7_2.

[62] NarainH. Gehani, H. V. Jagadish, andOded Shmueli. Composite Event Specification
in Active Databases: Model & Implementation. In Proceedings of the 18th International
Conference on Very Large Data Bases, VLDB ’92, pages 327–338, San Francisco, CA,
USA, 1992. Morgan Kaufmann Publishers Inc. ISBN 1-55860-151-1.

[63] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and
Treewidth Bounds for Conjunctive Queries. Journal of the ACM (JACM), 59(3):
16:1–16:35, June 2012. ISSN 0004-5411. doi: 10.1145/2220357.2220363.

[64] A. Gupta, C. Forgy, A. Newell, and R. Wedig. Parallel Algorithms and Architectures
for Rule-based Systems. In Proceedings of the 13th annual international symposium on
Computer architecture, ISCA ’86, pages 28–37. IEEE Computer Society Press, 1986.
ISBN 0-8186-0719-X. doi: 10.1145/17407.17360.

[65] Anurag Prakash Gupta, Charles Lanny Forgy, Dirk Kalp, and Allen Newell. Parallel
OPS5 on the Encore Multimax. Proceedings of the International Conference on Parallel
Processing, pages 271–280, 1988.

[66] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, andNeil Immerman. On Supporting
Kleene Closure over Event Streams. In Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, ICDE ’08, pages 1391–1393, Washington, DC, USA,
2008. IEEE Computer Society. ISBN 978-1-4244-1836-7. doi: 10.1109/ICDE.2008.
4497566.

[67] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data Flow
Programming Language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, Sep.
1991. ISSN 0018-9219. doi: 10.1109/5.97300.

[68] Philipp Haller and Martin Odersky. Scala Actors: Unifying Thread-based and
Event-based Programming. Theoretical Computer Science, 410(2-3):202–220, February
2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2008.09.019.

[69] Timothy Harris. A Pragmatic Implementation of Non-blocking Linked-lists. In
Jennifer Welch, editor, Distributed Computing, volume 2180 of Lecture Notes in
Computer Science, pages 300–314. Springer Berlin / Heidelberg, 2001. ISBN 978-3-
540-42605-9.

257

Bibliography

[70] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a Correctness Condition
for Concurrent Objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, July 1990. ISSN 0164-0925. doi: 10.1145/78969.78972.

[71] Annika Hinze and Agnès Voisard. A Parameterized Algebra for Event Notification
Services. In Proceedings of the Ninth International Symposium on Temporal Representation
and Reasoning (TIME’02), TIME ’02, pages 61–63, Washington, DC, USA, 2002. IEEE
Computer Society. ISBN 0-7695-1474-X.

[72] Annika Hinze and Agnès Voisard. EVA: an Event Algebra Supporting Complex
Event Specification. Information Systems, 48:1–25, 2015. ISSN 0306-4379. doi:
10.1016/j.is.2014.07.003.

[73] Steve Hoffman. Apache Flume: Distributed Log Collection for Hadoop. Packt Publishing
Ltd, 2013. ISBN 978-1784392178.

[74] Lode Hoste. A Declarative Approach for Engineering Multimodal Interaction. PhD
thesis, Vrĳe Universiteit Brussel, 2015. URL https://soft.vub.ac.be/
Publications/2015/vub-soft-phd-15-02.pdf.

[75] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, Robots,
and Functional Reactive Programming. In Johan Jeuring and Simon L. Peyton Jones,
editors, Advanced Functional Programming: 4th International School, AFP 2002, Oxford,
UK, August 19-24, 2002. Revised Lectures, pages 159–187. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003. ISBN 978-3-540-44833-4. doi: 10.1007/978-3-540-44833-4_6.

[76] Muhammad Idris,MartinUgarte, and StĳnVansummeren. TheDynamicYannakakis
Algorithm: Compact and Efficient Query Processing Under Updates. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD ’17,
pages 1259–1274, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4197-4. doi:
10.1145/3035918.3064027.

[77] Daniel Ignatoff, Gregory H Cooper, and Shriram Krishnamurthi. Crossing State
Lines: Adapting Object-oriented Frameworks to Functional Reactive Languages. In
Functional and Logic Programming, pages 259–276. Springer, 2006.

[78] Facebook Inc. React — A JavaScript library for building user interfaces. https:
//reactjs.org/, 2018. Accessed: 2018-08-08.

[79] Toru Ishida. Parallel Rule Firing in Production Systems. IEEE Transactions on
Knowledge and Data Engineering, 3(1):11–17, March 1991. ISSN 10414347. doi:
10.1109/69.75883.

[80] Prasad Jayanti and Srdjan Petrovic. Logarithmic-Time Single Deleter, Multiple
InserterWait-freeQueues and Stacks. InProceedings of the 25th international Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS ’05,
pages 408–419. Springer-Verlag, 2005. ISBN 3-540-30495-9, 978-3-540-30495-1. doi:
10.1007/11590156_33.

258

https://soft.vub.ac.be/Publications/2015/vub-soft-phd-15-02.pdf
https://soft.vub.ac.be/Publications/2015/vub-soft-phd-15-02.pdf
https://reactjs.org/
https://reactjs.org/

[81] Q. Jiang, R. Adaikkalavan, and R. Chakravarthy. NFMi: an Inner-Domain Network
Fault Management System. In 21st International Conference on Data Engineering
(ICDE’05), pages 1036–1047, April 2005. doi: 10.1109/ICDE.2005.94.

[82] Hans Elias Bukholm Josephsen. Rustler. https://github.com/hansihe/
Rustler, 2018. Accessed: 2018-08-08.

[83] Kennedy Kambona, Thierry Renaux, and Wolfgang De Meuter. Efficient Matching
in Heterogeneous Rule Engines. In Proceedings of the 30th International Conference on
Industrial, Engineering, Other Applications of Applied Intelligent Systems (IEA/AIE 2017:
Advances in Artificial Intelligence: From Theory to Practice), volume 10350 of Lecture
Notes in Computer Science, pages 394–406. Springer, 6 2017. ISBN 978-3-319-60041-3.

[84] Kennedy Kambona, Thierry Renaux, and Wolfgang De Meuter. Harnessing Com-
munity Knowledge in Heterogeneous Rule Engines. In Tim A. Majchrzak, Paolo
Traverso, Karl-Heinz Krempels, and Valérie Monfort, editors,Web Information Sys-
tems and Technologies, volume 322, pages 132–160. Springer International Publishing,
2018. ISBN 978-3-319-93527-0. doi: 10.1007/978-3-319-93527-0_7.

[85] Kennedy Kondo Kambona, Thierry Renaux, and Wolfgang De Meuter. Reentrancy
and Scoping for Multitenant Rule Engines. In Proceedings of the 13th International
Conference on Web Information Systems and Technologies (WEBIST 2017), volume 1,
pages 59–70. Scitepress, 2017.

[86] Ju-Whan Kim and Tek-Jin Nam. EventHurdle: Supporting Designers’ Exploratory
Interaction Prototyping with Gesture-based Sensors. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems 2013, CHI ’13, pages 267–276,
New York, NY, USA, 2013. ACM.

[87] S.P.T. Krishnan and Jose L. Ugia Gonzalez. Google Cloud Dataflow. In Building
Your Next Big Thing with Google Cloud Platform, pages 255–275. Apress, Berkeley, CA,
2015. ISBN 978-1-4842-1005-5.

[88] Neelakantan R. Krishnaswami. Higher-order Functional Reactive Programming
without Spacetime Leaks. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’13, pages 221–232, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.2500588.

[89] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 239–250, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.2742788.

[90] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558–565, July 1978. ISSN 0001-0782. doi: 10.1145/359545.
359563.

259

https://github.com/hansihe/Rustler
https://github.com/hansihe/Rustler

Bibliography

[91] Ho Soo Lee andMarshall I. Schor. Match Algorithms for Generalized Rete Networks.
Artificial Intelligence, 54(3):249–274, 1992. ISSN 0004-3702. doi: 10.1016/0004-
3702(92)90047-2.

[92] Frank Lopez. The Parallel Production System. Master’s thesis, University of Illinois
at Urbana-Champaign, 1987.

[93] D. C. Luckham and J. Vera. An Event-based Architecture Definition Language. IEEE
Transactions on Software Engineering, 21(9):717–734, Sept 1995. ISSN 0098-5589. doi:
10.1109/32.464548.

[94] David C. Luckham. The Power of Events: an Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001. ISBN 0201727897.

[95] Samuel Madden and Michael J. Franklin. Fjording the Stream: an Architecture
for Queries Over Streaming Sensor Data. In Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002, pages
555–566, 2002.

[96] M. A. Maloof and K. J. Kochut. Modifying Rete to Reason Temporally. In Proceedings
of 1993 IEEE Conference on Tools with AI (TAI-93), pages 472–473, Nov 1993. doi:
10.1109/TAI.1993.634008.

[97] StefanMarr, Thierry Renaux, LodeHoste, andWolfgangDeMeuter. Parallel Gesture
Recognition with Soft Real-Time Guarantees. Science of Computer Programming, 98:
159–183, 2 2015. ISSN 0167-6423. doi: doi:10.1016/j.scico.2014.02.012.

[98] Nicholas D. Matsakis and Felix S. Klock, II. The Rust Language. In Proceedings of the
2014 ACM SIGAda Annual Conference on High Integrity Language Technology, HILT
’14, pages 103–104, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3217-0. doi:
10.1145/2663171.2663188.

[99] Dennis McCarthy and Umeshwar Dayal. The Architecture of an Active Database
Management System. InProceedings of the 1989ACMSIGMOD International Conference
on Management of Data, SIGMOD ’89, pages 215–224, New York, NY, USA, 1989.
ACM. ISBN 0-89791-317-5. doi: 10.1145/67544.66946.

[100] Erik Meĳer. Reactive Extensions (Rx): Curing your Asynchronous Programming
Blues. In ACM SIGPLAN Commercial Users of Functional Programming, page 11. ACM,
2010.

[101] Jonas Mellin. Resource-Predictable and Efficient Monitoring of Events. PhD thesis,
Department of Computer Science, University of Skövde, June 2004.

[102] SergeyMelnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,
Matt Tolton, andTheoVassilakis. Dremel: InteractiveAnalysis ofWeb-scaleDatasets.
Proceedings of the International Conference on Very Large Data Bases Endowment, 3(1-2):
330–339, September 2010. ISSN 2150-8097. doi: 10.14778/1920841.1920886.

260

[103] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a Programming
Language for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’09,
pages 1–20, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/
1640089.1640091.

[104] Maged M. Michael. Safe Memory Reclamation for Dynamic Lock-free Objects
using Atomic Reads and Writes. In Proceedings of the twenty-first annual symposium
on Principles of distributed computing, PODC ’02, pages 21–30. ACM, 2002. ISBN
1-58113-485-1. doi: 10.1145/571825.571829.

[105] Daniel P. Miranker. TREAT: a Better Match Algorithm for AI Production Systems.
In Proceedings of the sixth National Conference on Artificial Intelligence, volume 1 of
AAAI’87, pages 42–47. AAAI Press, 1987. ISBN 0-934613-42-7.

[106] Daniel P. Miranker, David A. Brant, Bernie Lofaso, and David Gadbois. On the
performance of lazy matching in production systems. In Proceedings of the eighth
National Conference on Artificial Intelligence, volume 1 of AAAI’90, pages 685–692.
AAAI Press, 1990. ISBN 0-262-51057-X.

[107] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-based Systems.
Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 3540326510.

[108] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: a Timely Dataflow System. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 439–455, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi: 10.1145/2517349.2522738.

[109] FlorianMyter, WolfgangDeMeuter, and Christophe Scholliers. Distributed Reactive
Programming for Reactive Distributed Systems. The Art, Science, and Engineering
of Programming, 3(3):1–52, 2019. ISSN 2473-7321. doi: 10.22152/programming-
journal.org/2019/3/5.

[110] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed
Stream Computing Platform. In Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, pages 170–177. IEEE, 2010.

[111] Hung Q. Ngo. Worst-Case Optimal Join Algorithms: Techniques, Results, and Open
Problems. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, SIGMOD/PODS ’18, pages 111–124, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-4706-8. doi: 10.1145/3196959.3196990.

[112] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H. Campbell. Samza: Stateful Scalable Stream Processing
at LinkedIn. Proceedings of the International Conference on Very Large Data Bases
Endowment, 10(12):1634–1645, August 2017. ISSN 2150-8097. doi: 10.14778/3137765.
3137770.

261

Bibliography

[113] Kemal Oflazer. Partitioning in Parallel Processing of Production Systems. PhD thesis,
Carnegie Mellon University, 1985.

[114] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: a Not-so-Foreign Language for Data Processing. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 1099–1110, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi:
10.1145/1376616.1376726.

[115] Adrian Paschke and Alexander Kozlenkov. Rule-based Event Processing and
Reaction Rules. In Guido Governatori, John Hall, and Adrian Paschke, editors, Rule
Interchange and Applications, pages 53–66, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. ISBN 978-3-642-04985-9.

[116] Mark Perlin. Scaffolding the RETE Network. In [1990] Proceedings of the 2nd
International IEEE Conference on Tools for Artificial Intelligence, pages 378–385, Nov
1990. ISBN 0-8186-2084-6. doi: 10.1109/TAI.1990.130367.

[117] P. R. Pietzuch, B. Shand, and J. Bacon. Composite Event Detection as a Generic
Middleware Extension. IEEE Network, 18(1):44–55, Jan 2004. ISSN 0890-8044. doi:
10.1109/MNET.2004.1265833.

[118] Mark Proctor. Drools: a Rule Engine for Complex Event Processing. In Proceedings of
the 4th International Conference on Applications of Graph Transformations with Industrial
Relevance, AGTIVE’11, pages 2–2, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN
978-3-642-34175-5. doi: 10.1007/978-3-642-34176-2_2.

[119] ReactiveX. ReactiveX — An API for asynchronous programming with observable
streams. http://reactivex.io/, 2018. Accessed: 2018-08-08.

[120] Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De Meuter. Parallel
Gesture Recognition with Soft Real-Time Guarantees. In Proceedings of the 2nd edition
on Programming Systems, Languages and Applications based on Actors, Agents, and
Decentralized Control Abstractions, AGERE! 2012, pages 35–46. ACM, 10 2012. ISBN
978-1-4503-1630-9. doi: 10.1145/2414639.2414646.

[121] Thierry Renaux, Lode Hoste, Christophe Scholliers, and Wolfgang De Meuter.
Software Engineering Principles in the Midas Gesture Specification Language.
In Proceedings the 2nd International Workshop on Programming for Mobile and Touch,
Portland, PRoMoTo 2014, pages 9–16, Portland, Oregon, USA, 10 2014. ACM. ISBN
978-1-4503-2295-9.

[122] Thierry Renaux, Lode Hoste, and Wolfgang De Meuter. Logical Reactive Pro-
gramming. In REBLS’15: Workshop on Reactive and Event based Systems 2015, Oc-
tober 2015. URL http://www.guidosalvaneschi.com/REBLS/REBLS2015/
attachments/REBLS15_paper_8.pdf.

262

http://reactivex.io/
http://www.guidosalvaneschi.com/REBLS/REBLS2015/attachments/REBLS15_paper_8.pdf
http://www.guidosalvaneschi.com/REBLS/REBLS2015/attachments/REBLS15_paper_8.pdf

[123] G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini. On the Positive Effect
of Reactive Programming on Software Comprehension: An Empirical Study. IEEE
Transactions on Software Engineering, 43(12):1125–1143, Dec 2017. ISSN 0098-5589.
doi: 10.1109/TSE.2017.2655524.

[124] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging Between
Object-oriented and Functional Style in Reactive Applications. In Proceedings of the
13th International Conference on Modularity, MODULARITY ’14, pages 25–36, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2772-5. doi: 10.1145/2577080.2577083.

[125] J.G. Schmolze and W. Snyder. Detecting Redundancy among Production Rules
using Term Rewrite Semantics. Knowledge-Based Systems, 12(1):3–11, 1999. ISSN
0950-7051. doi: https://doi.org/10.1016/S0950-7051(99)00003-9.

[126] Christophe Scholliers, Lode Hoste, Beat Signer, and Wolfgang De Meuter. Midas: a
DeclarativeMulti-Touch InteractionFramework. InProceedings of the Fifth International
Conference on Tangible, Embedded, and Embodied Interaction, TEI ’11, pages 49–56, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0478-8. doi: 10.1145/1935701.1935712.

[127] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed
complex event processing with query rewriting. In Proceedings of the Third ACM
International Conference on Distributed Event-based Systems, DEBS ’09, pages 4:1–4:12,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-665-6. doi: 10.1145/1619258.
1619264.

[128] Scarlet Schwiderski-Grosche and Ken Moody. The SpaTeC Composite Event
Language for Spatio-temporal Reasoning in Mobile Systems. In Proceedings of the
Third ACM International Conference on Distributed Event-based Systems, DEBS ’09,
pages 11:1–11:12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-665-6. doi:
10.1145/1619258.1619273.

[129] Wayne Snyder and James G. Schmolze. Rewrite Semantics for Production Rule
Systems: Theory and Applications. In M. A. McRobbie and J. K. Slaney, editors,
Automated Deduction — Cade-13, pages 508–522, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg. ISBN 978-3-540-68687-3. doi: 10.1007/3-540-61511-3_110.

[130] Quentin Stiévenart, JensNicolay,WolfgangDeMeuter, andCoenDeRoover. Mailbox
Abstractions for Static Analysis of Actor Programs. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:30, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-
95977-035-4. doi: 10.4230/LIPIcs.ECOOP.2017.25.

[131] Mark Sullivan. Tribeca: a Stream Database Manager for Network Traffic Analysis.
In Proceedings of the 22th International Conference on Very Large Data Bases, volume 96,
page 594, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc. ISBN
1-55860-382-4.

263

Bibliography

[132] Janwillem Swalens, Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De
Meuter. Cloud PARTE: Elastic Complex Event Processing based on Mobile Actors.
In Proceedings of the 3rd International Workshop on Programming based on Actors,
Agents, and Decentralized Control, AGERE! 2013, pages 1–10. ACM, 10 2013. ISBN
978-1-4503-2602-5.

[133] Dan Teodosiu and Gunter Pollak. Discarding Unused Temporal Information in a
Production System. International Conference on Information and KnowledgeManagement,
pages 177–184, 1992.

[134] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous Queries
over Append-only Databases. pages 321–330, 1992. doi: 10.1145/130283.130333.

[135] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@Twitter. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD
’14, pages 147–156, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2376-5. doi:
10.1145/2588555.2595641.

[136] Tom Van Cutsem and Wolfgang De Meuter. Event-driven Mobile Computing with
Objects, pages 324–345. IGI Global, 4 2010. ISBN 978-1-60566-697-6. Annika Hinze
and Alejandro P. Buchmann.

[137] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel.
Stream Processing with a Spreadsheet. In Proceedings of the 28th European Conference
on ECOOP 2014 — Object-Oriented Programming, volume 8586, pages 360–384, New
York, NY, USA, 2014. Springer-Verlag New York, Inc. ISBN 978-3-662-44201-2. doi:
10.1007/978-3-662-44202-9_15.

[138] Karen Walzer, Alexander Schill, and Alexander Löser. Temporal Constraints for
Rule-based Event Processing. In Proceedings of the ACM First Ph.D. Workshop in CIKM,
PIKM ’07, pages 93–100, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-832-9.
doi: 10.1145/1316874.1316890.

[139] FushengWang and Peiya Liu. Temporal Management of RFIDData. In Proceedings of
the 31st International Conference on Very Large Data Bases, VLDB ’05, pages 1128–1139.
VLDB Endowment, 2005. ISBN 1-59593-154-6.

[140] Ian Wright and James AR Marshall. The Execution Kernel of RC++: RETE*, a Faster
RETE with TREAT as a Special Case. International Journal on Intelligent Games &
Simulation, 2(1):36–48, 2003.

[141] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-Performance Complex Event
Processing over Streams. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’06, pages 407–418, New York, NY, USA,
2006. ACM. ISBN 1-59593-434-0. doi: 10.1145/1142473.1142520.

264

[142] Robert M. Wygant. CLIPS — A Powerful Development and Delivery Expert System
Tool. Computers & Industrial Engineering, 17(1):546–549, 1989. ISSN 0360-8352. doi:
10.1016/0360-8352(89)90121-6.

[143] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Ku-
mar Gunda, and Jon Currey. DryadLINQ: a System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages
1–14, Berkeley, CA, USA, 2008. USENIX Association.

[144] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster Computing with Working Sets. HotCloud’10: Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing, 10(10-10):95, 2010.

[145] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
Distributed Datasets: a Fault-tolerant Abstraction for In-Memory Cluster Comput-
ing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[146] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. Discretized Streams: Fault-tolerant Streaming Computation at Scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8.
doi: 10.1145/2517349.2522737.

[147] D. Zimmer and R. Unland. On the Semantics of Complex Events in Active Database
Management Systems. In Proceedings 15th International Conference on Data Engineering
(Cat. No.99CB36337)(ICDE), pages 392–399, 03 1999. doi: 10.1109/ICDE.1999.754955.

265

	Introduction
	Problem Statement
	Research Goal
	Approach
	Contributions
	Supporting publications
	Outline of the Dissertation

	State of the Art in Distributed Big Data and Stream Processing
	Driver Scenarios
	Setting
	Scenarios
	Conclusion

	History of Big Data Stream Processing
	Origins
	Early Stream Processing: Tribeca
	Later Stream Processing Systems
	Early Big Data Processing: MapReduce
	Data-Parallel Pipelines
	Towards Streaming Big Data Processing
	Summary

	Research Trends
	Restricting Selections by Time: Windowing
	Distribution and Fault-Tolerance
	Expressivity and Language Paradigm
	Summary

	Discussion: Shortcomings in the State of the Art
	Event Correlation in Big Data Stream Processing Frameworks
	Data Processing Guarantees of Data in Streaming Databases

	Conclusion

	State of the Art in Event Handling
	Traditional Approaches to Event Handling
	Averting the Callback Hell: Reactive Programming
	The Functional Reactive Programming Paradigm
	Beyond Functional Reactive Programming
	Active Research in Reactive Programming

	Detecting Event Patterns: Complex Event Processing
	Differentiating CEP from Streaming Databases
	A Baseline for Modern CEP: SASE
	Aggregation and Monitoring Multiple Streams: Cayuga
	Expressive and Efficient CEP with Distributed Event Sources: TESLA
	A Formal Foundation for Modern CEP: EVA
	Complex Event Patterns and Reaction Logic as Declarative Rules

	A Taxonomy of Event Handling
	Event Consumption Policies
	Semantics of ``followed by''
	Support for Temporal Constraints in Event Handling Languages
	Event Detection Models
	Summary

	Discussion: Shortcomings in the State of the Art
	Shortcomings of Functional Reactive Programming
	Shortcomings of Current Complex Event Processing

	Conclusion

	Logic Reactive Programming
	A Programming Paradigm for Reactive CEP
	LRP as the Combination of CEP and Behavior-based RP
	Strong Reactivity and Event Arrival Rate
	LRP means Strongly Reactive Complex Event Processing
	LRP means Distributed Processing
	Requirements for a Logic Reactive Programming Language
	Conclusion

	A Logic Reactive Programming Language: PARTElang
	Informal Semantics
	Structure of a PARTElang Program

	An Event Algebra for Logic Reactive Programming
	Definitions of Base Concepts
	Patterns
	Evaluation

	Mapping PARTElang onto the Event Algebra
	Mapping a Single Pattern
	Mapping Multiple Patterns
	Mapping Multiple Rules

	Limitations of PARTElang and Future Work
	Restriction to Closed Time Intervals
	Lack of Aggregation Constructs
	Lack of Software-Engineering Constructs

	Related work
	Guaranteed Constant Time Processing
	Composition of Temporal Constraints in Event Algebras
	Event Capture Semantics in Event Algebras

	Conclusion

	Operational Semantics for an LRP Language
	Background: the Rete Algorithm
	Rete: A Forward Chaining Inference Engine Algorithm
	Varying the Amount of State Stored along the Rete Graph
	Adapting Rete for Strongly Reactive Evaluation
	Adapting Rete for Events
	Adapting Rete for a Distributed Context

	A First, Rudimentary Formal Model for PARTE
	Graph Nodes
	Node-local Data
	Tokens
	Events
	The Global Evaluation Language
	The Local Evaluation Language

	Formal Concepts for an Operational Semantics of PARTElang
	Opposite Activation Side and Opposite Partial Match History
	Partial Match Arrival Rate
	Stale Partial Matches
	Expiration
	Rule Matching
	Node States
	Minimum Viable Size

	The Featherweight PARTE Model
	Shortcomings of the First, Rudimentary PARTE Model
	Events
	Tokens
	Graph Nodes
	Node-local Data
	The Local Evaluation Language
	The Global Evaluation Language

	Compiling PARTElang Programs into Featherweight PARTE Graphs
	Registering Event Templates
	Implementing Individual Event Patterns
	Combining Event Patterns: Constructing the Join Network
	Representing the Reaction Logic

	Limitations of Featherweight PARTE and Future Work
	Limitations of the Minimum Viable Size Calculation
	Limitations Inherited from PARTElang and Event Algebra EA
	Limited Interoperability with Order-Dependent Code
	Lack of Failure Handling
	Optimizations Lacking from the Formal Model

	Related Work
	Formal Models of Production Rule Systems
	Time and Event-Management in Rete-derived Systems
	Distributed Tracking of Temporal Lower Bounds

	Conclusion

	Implementation
	PARTERust: a Single-Machine PARTE Prototype
	Overview
	Rust Primer
	Differences between PARTERust and the Formal Model
	Implementing Values and Events
	Implementing Tokens
	Implementing Graph Nodes
	Implementing Node-local Data
	Implementing the Global Evaluation

	PARTEElixir: a Truly Distributed PARTE Prototype
	Overview
	Elixir Primer
	Interfacing Rust with Elixir
	Modifications to PARTERust Code
	Linking PARTEElixir to PARTERust

	Revisiting the Limitations of Featherweight PARTE
	Conclusion

	Experimental Validation
	Revisiting the Driver Scenarios
	Visualizing the Temporal Aspect of the Driver Scenarios
	Understanding the Join Behavior of the Driver Scenarios
	A Concrete Event Trace

	Expressing the Driver Scenarios in PARTElang
	Shortcomings of the State of the Art Revisited
	Issue: No Notion of Minimum Viable Sizes in the Model
	Case Study: Expressing the Solution in Apache Flink
	Case Study: Expressing the Solution in Spark Streaming

	Quantifying the Problems with the State of the Art
	Experimental Setup
	Results
	Conclusion

	Conclusion

	Formal Validation
	Correctness of the Lower Bounds on Event Timestamps
	Local Invariants
	Proof
	Conclusion

	Expiration does Not Discard Valid Matches
	Proof
	Conclusion

	Unattainability of a Blocked PARTE Network
	Proof
	Conclusion

	Necessity of ``No Change'' in Negated Subgraphs
	Proof
	Minimum Required ``No Change'' Token Generation Rate
	Conclusion

	Boundedness of State Size of Featherweight PARTE Graph
	Local Invariant
	Proof
	Conclusion

	A PARTElang Program can be Evaluated in Constant Time per Event
	Local Invariant
	Proof
	Conclusion

	Conclusion

	Conclusion
	Revisiting the Problem Statement
	Revisiting our Contributions
	The Logic Reactive Programming Paradigm
	PARTElang: a Logic Reactive Programming Language
	Featherweight PARTE: an Operational Semantics for PARTElang
	Two Prototypical Implementations of Featherweight PARTE

	Revisiting the Limitations and Future Work
	Closing Remarks

	Additional Code Snippets
	Additional PARTElang Snippets
	Additional Snippets of the PARTERust Implementation
	Additional Snippets of the Event Trace

	Experimental Results

