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ABSTRACT
Software ecosystems contain several types of artefacts such as
libraries, documentation and source code files. Recent studies show
that the Maven software ecosystem alone already contains over 2.8
million artefacts and over 70, 000 libraries. Given the size of the
ecosystem, selecting a library represents a challenge to its users.

TheMVNRepository website offers a category-based search func-
tionality as a solution. However, not all of the libraries have been
categorised, which leads to incomplete search results. This work
proposes an approach to the automatic categorisation of libraries
through machine learning classifiers trained on class and method
names. Our preliminary results show that the approach is accurate,
suggesting that large-scale applications may be feasible.
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1 INTRODUCTION
Software ecosystems are often defined as a collection of software
products developed and in constant evolution in the same environ-
ment [9]. Examples of ecosystems that collect software libraries
include Maven for JVM-based languages (e.g., Java, Scala, Kotlin,
Clojure), NPM for JavaScript, or CRAN for R. We focus on Maven1
in particular, as the popularity of its supported languages encour-
ages contributions from library developers. Benelallam et al. [1]
reported over 2.8 million artefacts in the Maven ecosystem related
to more than 70, 000 libraries. The disparity is explained by the
immutability constraint imposed by the ecosystem, which disal-
lows replacing one version of an artefact by another variant of the
same version. As a result, the ecosystem hosts several versions of
each library. Soto et al. [12] investigated the diversity in the ecosys-
tem resulting from this constraint in detail. Kula et al. proposed
visualisations to study the evolution of systems and their library
dependencies [7], as well as library popularity, adoption, and dif-
fusion within an ecosystem [8]. Decan et al. [4] study dependency

1https://repo1.maven.org/maven2/
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evolution within additional ecosystems that are supported by a
package manager application.

Given the large amount of libraries and library versions within
an ecosystem, developers can benefit from assistance in selecting
the library that is the most appropriate for a particular task. For
Maven, at least two web-based views on the ecosystem have been
developed to this end: SonaType2 and MVNRepository3. The latter
supports two types of searches for exploring the vast amount of
libraries in its database:

Metadata-based search A developer searches for an artefact
providing information such as groupId, artifactId or version.

Category-based search A developer searches for a specific
category of artefacts related to her search criteria.

Metadata-based searches are of little help without knowledge
of the precise metadata of the artefact. Category-based searches
are of help to users who do not have a specific library in mind, but
who are exploring the ecosystem or looking for alternatives to an
already adopted library.

MVNRepository features 150 library categories covering various
domains such as Databases, I/O Utilities or Mocking. The total
number of libraries in these 150 categories is 37, 934. Considering
that the number of libraries reported by [1] is 73, 653, over 30, 000
libraries in the Maven software ecosystem remain uncategorized.

In this presentation abstract, we report on the first results of
our work towards an automated means for assigning libraries to
an appropriate category by analysing the byte code of their im-
plementation. Specifically, we consider class and method names
as input to five machine learning algorithms. Our hypothesis is
that libraries in the same category have similar names for their
classes and methods. Hence, a new “uncategorised” library could
be automatically classified in one of the existing categories.

2 OVERVIEW OF THE APPROACH
Our approach is based on text classification machine learning algo-
rithms trained and evaluated on a corpus of text extracted from the
libraries. We obtain this corpus of text by extracting the identifiers
of public classes and methods from a library’s JAR file using the
Apache BCEL 4 library. For those identifiers using the CamelCase
naming convention, we separate each of the words.

To feed the extracted corpus of text to a machine learning al-
gorithm, we vectorise it using the popular word embedding ap-
proach [10] Fixed-length vectors are generated for each word in our
vocabulary (i.e., class and method identifiers extracted through the
previous step). The generated vectors capture the context around a

2https://search.maven.org/
3https://mvnrepository.com/
4https://commons.apache.org/proper/commons-bcel/
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word, hence it is possible to relate different words by the context
around them.

The task of the machine learning algorithm is to learn and pre-
dict a discrete label for each vector that corresponds to the MVN-
Repository category to which the library belongs. We consider five
machine learning algorithms to instantiate our approach: Gaussian
Naive Bayes (GNB) as well as Bernoulli Naive Bayes (BNB) [6],
Support Vector Machines (SVC) [5], k-Nearest Neighbors (KNN)
[3] and Random Forest (RF) [13].

3 EVALUATION AND VALIDATION
We train and evaluate our approach on five MVNRepository cate-
gories: Collections, Dependency Injection, Http Clients, Compression
and Json libraries. From each category, we select 15 libraries (i.e.,
jar files). These 15 libraries are divided into 10 libraries for training
and evaluation, and 5 for validation of the approach.
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Figure 1: Precision and recall of the approach.

For the evaluation, we use 10-fold Stratified Cross-Validation
[11] to train and compute the precision and recall of each classifier
model. This technique partitions the data into ten folds of equal size,
applying a stratified sampling (i.e., to avoid bias, each fold has the
same number of data instances per class to be predicted). At each
iteration, a single fold is used as the test set, while the remaining
ones are used as the training set. Figure 1 depicts the results. All
models produced rather good results, with KNN and RF achieving
the highest scores.

The goal of the validation is to further test the scenario in which
the model is queried for the category of libraries that were not
included in its training phase. Note that this scenario was already
covered in the evaluation above, as the model for each of the 10
iterations is trained using 9 training folds and queried using the
remaining test fold. In the validation, we stress this scenario further
and inspect the results manually. We use the best-performing RF
model to predict the category for the 5 unseen libraries in each of the
known categories. Out of the five categories that were considered,
the predictions for Collections, Http Clients and Json libraries were
correct in all cases. For the two remaining categories, the selected
model failed to predict the category for one library out of the five
considered for each of the categories.

4 DISCUSSION
Like most approaches based on text classification, our approach
suffers from out-of-vocabulary errors when the model is asked to
predict a label for a term it has not encountered in its training
phase. These are less likely to arise when the model is trained on
sufficiently large data sets. The NLP community has proposed miti-
gation strategies such as FastText [2], which generates a vector for
the unseen term based on the trained representations of its charac-
ters. We consider incorporating and selecting the most appropriate
mitigation strategy for our problem setting as future work.

Another limitation of our approach is its inability to propose
unseen categories. Its training phase relies on the pre-existing cat-
egories in MVNRepository. Library metadata from other sources
(e.g., keywords in repositories) might be required to overcome this
limitation. Topic modelling or NLP techniques capable of text sum-
marisation could be explored as an alternative.

5 CONCLUSION
In this presentation abstract, we have proposed a machine learn-
ing approach to categorising libraries within software ecosystems.
Once trained on a sufficiently large dataset, the approach is capable
of assigning an existing library category to a new library. A prelimi-
nary evaluation on 5 MVNRepository categories of 15 libraries from
the Maven ecosystem demonstrates its feasibility. A more extensive
evaluation is part of future work.
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