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Abstract—Cloud-native applications increasingly provision in-
frastructure resources programmatically through Infrastructure
as Code (IaC) scripts. These scripts have in turn become the
subject of empirical software engineering research. However,
an often-overlooked part are the software ecosystems that have
grown around the IaC languages. For example, Galaxy is an
ecosystem for the popular Ansible IaC language. Galaxy features
a large number of so-called “roles”’, which are reusable collections
of Ansible code akin to libraries for general-purpose languages.
In contrast to, and despite their similarities, such IaC ecosystems
have enjoyed far less attention in the literature than library
ecosystems for general-purpose languages.

In this data showcase paper, we present Andromeda, the first
dataset capturing the Ansible Galaxy ecosystem, its roles, and
their evolution. Andromeda provides structural representations
of more than 125000 role versions, and upwards of 800000
concrete changes between such versions extracted from the un-
derlying git repositories. Andromeda aims to provide an extensive
view of the contributor side of the Galaxy ecosystem, which we
hope will stimulate additional research on IaC ecosystems.

Index Terms—Infrastructure as Code; dataset; mining soft-
ware repositories; change distilling; Ansible

I. INTRODUCTION

Managing large-scale digital infrastructures, such as clusters
of cloud instances, is a complicated and time-consuming
task. Fortunately, Infrastructure as Code (IaC) can automate
many of the responsibilities by enabling its users to specify
the various steps in setting up, configuring, and managing
these infrastructures, in domain-specific languages. Ansible is
one such language that has become increasingly popular in
industry over the last few years [1], and has recently caught
the attention of researchers [2]-[4].

In Ansible, an infrastructure developer can specify the steps
necessary to configure the machines in an infrastructure as a
series of rasks. For instance, to set up a cluster of database
servers, a developer could write a series of tasks to install the
necessary packages, create the database tables, and configure
the network interface. Variables can be used to parametrise
these tasks, e.g., to specify the administrator credentials,
network port, etc.

Note that regardless of the actual goal of the infrastructure,
installing database software on a certain platform will follow
roughly the same steps. To enable reuse of the tasks involved
in such a process, Ansible offers its own concept of libraries,
called roles. For example, one could write a role to install and
configure PostgreSQL on Debian and Ubuntu-based platforms.
Another developer could then easily reuse this role in their

own infrastructure definition, and customise the variables to
configure the final installation to their liking.

Such reusable roles, along with other content such as
plugins, are collected and indexed by the Ansible Galaxy
ecosystem'. Here, ecosystem contributors can publish their
open-source roles, allowing ecosystem consumers to easily
find and reuse their efforts. Although Galaxy can be compared
to Maven or npm, the interaction between the ecosystem
clients and the roles differs from what is found with traditional
programming language libraries. For instance, roles do not
offer methods to be called by users. Instead, they are included
into a task list and parametrised with concrete values. As such,
the Galaxy ecosystem is an ecosystem like no other.

Unfortunately, research into this ecosystem, and other IaC
ecosystems, is nascent [5]. To stimulate new research into this
domain, we have collected a dataset of Galaxy’s content. In
this data showcase paper, we present Andromeda, a dataset
consisting of four parts:

o Metadata harvested from Galaxy for over 140K entities
spread across seven entity types;

o Git commit and tag metadata from more than 25K repos-
itories containing roles;

o Structural models for over 125K role versions;

« Distilled changes between structural model versions, to-
talling more than 800K concrete changes categorised into
41 change types.

This dataset represents an extensive snapshot of the ecosystem
contributor side of Ansible Galaxy.

An open version of the dataset is available at https://doi.org/
10.6084/m9.figshare.13664519. In this version of the dataset,
personally identifiable information (PII) is either removed
or obfuscated. We do not provide raw API responses from
Galaxy, or the git repositories themselves, since we cannot
guarantee this data is void of any PIIL.

II. DATASET DESCRIPTION

The Andromeda dataset consists of four core parts which
are interlinked using cross-references. We provide all of the
data as YAML files, and each part is accompanied by an
index. We discuss each part individually below. For a detailed
description of each attribute in the dataset, we refer to the
documentation provided with the download. An overview of

Uhttps://galaxy.ansible.com



Type Count
Type Count Commits 2308 309
Namespaces 27030 Tags 113237
Provider namespaces 27 358 . .
Repositories 27800 (b) Git repository metadata
Content 26 769
Roles 26 834 Type Count
gommumty surveys 7 ?g? Struct. models 126 663
ags Change sets 101047
Changes 814025

(a) Galaxy metadata

(c) Structural models

TABLE I: Summary of content counts in Andromeda.

the dataset content and the number of entries for each type of
content is provided in Table I.

A. Ansible Galaxy Metadata

The first part of our dataset is an extensive collection of
metadata harvested from Ansible Galaxy, provided in the
“GalaxyMetadata” directory. Figure 1 depicts its schema.

The Galaxy metadata consists of seven core entity types.

1) Namespaces contain information on namespaces in
Galaxy, which group content;

2) Provider namespaces are similar to namespaces, but
represent users or organisations on GitHub;

3) Repositories aggregate metadata on a GitHub repository,
which may contain multiple pieces of content;

4) Content can be any type of content on Galaxy, e.g., roles,
Ansible plugins, etc.;

5) A role is a specific type of content, containing additional
metadata;

6) Community surveys contain responses to quality surveys
for repositories, submitted by Galaxy users;

7) Finally, fags contain information on all content tags
known to Galaxy.

We have removed personally identifiable information (PII),
such as full names, company names, locations, and e-mail ad-
dresses, from all of these entities due to privacy concerns. For
similar reasons, we do not provide any harvested information
on Galaxy users except for numerical user IDs.

B. Git Repository Metadata

The second part of the Andromeda dataset contains addi-
tional metadata extracted from the underlying git repositories.
This includes all commits to the main branch of the repository,
as well as tags. The information is aggregated into one file per
repository in the “RepositoryMetadata” directory, further sub-
divided into directories per GitHub repository owner.

For privacy reasons, we obfuscated commit author, com-
mitter, and tagger names and e-mail addresses. Rather than
removing this information entirely, we hashed it with the
SHAT1 hash to enable identifying different commits of the same
author, but to prevent an author from being identified as a
specific person. The same hashes also enable interoperability
with other datasets.

C. Structural Models for Roles

Andromeda’s third part contains structural models of each
role version whose tag follows the semantic versioning for-
mat, as well as for the latest commit in the repository.
These are presented in the “StructuralModels” directory in
separate files per role, named after the role’s canonical ID,
i.e., <namespace name>.<role name>. The structural
model generalises over the role’s source code, and standardises
different syntactical styles. In what follows, we provide a
brief summary of this model. A more detailed description
can be found in our previous work [2], which introduced this
structural representation, but did not actually include it in its
dataset.

At the highest level, each model contains a collection of
files, each representing one Ansible source file in the role
repository. We distinguish between five types of files. The
metadata file represents the meta/main.yml file of the
repository, containing information similar to the one found
in the role metadata from Galaxy, described in II-A. Task files
contain a sequence of blocks, in turn containing a sequence
of tasks. Blocks and tasks additionally contain the keywords
defined on them in the source code. Handler files are similar
to task files, but instead contain handler blocks and handler
tasks. The main difference between the two is their semantics,
as tasks are executed sequentially whereas handlers need
to be notified explicitly. Finally, each model contains two
types of files containing variables, namely default variable
files and role variable files. These files contain key-value
mappings of variable names to variable values. The difference
between default and role variables is again semantic, since
role variables are intended to be constants, whereas default
variables establish the role’s interface and can be overridden
by a user.

In addition to these files, the structural model contains a list
of files which could not be processed, e.g., due to syntax errors
or invalid keywords. We amended this list with the reason why
converting the file failed.

D. Distilled Structural Changes Between Role Versions

The final part of the Andromeda dataset consists of changes
between consecutive versions of the structural model. These
changes were distilled using the algorithm presented in [2].
They are stored in the “StructuralRoleEvolution” directory in
files named after the role’s canonical ID. Each file contains
a list of change sets, where each change set stores the name
of the old and new revision of the model, as well as a list of
concrete changes.

Each of these concrete changes are categorised into one
of 41 change types. These change types are constructed
orthogonally from a combination of change kind (i.e., addition,
removal, edit, or relocation) and the type of the structural
model element affected. Possible combinations include the
addition of a task file, the removal of a default variable, etc.
A full overview of the change types is provided in [2].

For each concrete change, we store the location of the
element. For example, tasks/main.yml[0] .block[0]
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Fig. 1: UML schema of the collected Galaxy metadata and their relationships. Attributes with a cardinality of [0..1] may

be null.

points to the first task of the first block in the
tasks/main.yml file. Addition changes additionally store
the added element, whereas removals store the removed el-
ement. Edits store the old and new values of the changed
element, and relocations store the old and new location of
the element.

III. DATA COLLECTION AND CHALLENGES

To build this dataset, we used our tool called Voyager,
available at https://github.com/ROpdebee/Voyager. Voyager’s
data collection and extraction pipeline goes through a number
of phases. We briefly summarise these phases below, and
mention the main technical challenges we encountered.

In the first stage of the pipeline, Voyager polls various
endpoints of the Galaxy API to collect raw metadata. We
collected the latest data on January 20th, 2021. The main
challenge we encountered were occasional internal server
errors returned by the API. This occurred mostly when polling
roles, and we found this error to be unrecoverable. To alleviate
the issue, we additionally polled the role search endpoint,
which did not exhibit these errors, and later deduplicated the
data returned by both endpoints based on the role ID.

The tool subsequently converts these raw API responses into
the schema presented in II-A. Most notably, this phase removes
attributes that are redundant in the sense that they can be
derived trivially from already-captured information, e.g., the
git clone URL from the GitHub URL. Moreover, it cleans up
certain values, such as null to 0 when a number is expected,
and converts timestamps to RFC 3339 format. Finally, it
converts references to other entities to cross-references for the
schema. Importantly, we do not perform any filtering on the
extracted data, since we intend this dataset to be a complete
snapshot of Ansible Galaxy suited for various applications. As

such, it would be unwise to impose our own filters, which may
hamper the dataset’s applicability.

In the next phase, we attempt to clone all git repositories
present in the Galaxy metadata. Any repository that failed to
clone, e.g., because of invalid URLSs or private repositories, is
ignored. For the remaining repositories, we extract the tag and
commit information, as presented in II-B. For any repository
whose Galaxy metadata indicates that it contains an Ansible
role, the tool builds a structural model for all extracted tags
and the latest commit to the repository.

We use Ansible’s internal parser and data structures to build
the structural model. This enables us to use its validations,
thereby preventing malformed files from being converted.
However, Ansible’s internals are not designed with analysis
in mind. For example, Ansible eagerly pre-loads dependen-
cies and statically imported files, but defers the loading of
dynamically included files until runtime. For the purposes of
the structural model, both statically imported and dynamically
included files are important to represent. On the other hand,
dependencies do not need to be loaded, and in some cases, may
not be available. Moreover, although roles contain multiple
files, if one of the files contains a syntax error, Ansible refuses
to load the role in its entirety. In previous work with the
structural model, where we did not account for this, roughly
11% of the role versions therefore failed to load [2]. To
overcome these challenges, we partially customised Ansible’s
internals to prevent aggressive pre-loading, and keep track
of any file containing an error. These changes enabled us to
(partially) parse all role versions, except for one role which
recursively loaded itself, which led to a stack overflow.

In the final phase of the pipeline, Voyager distilled the
structural changes from consecutive versions of the structural
model. We only targeted versions that matched the semantic



versioning format®. In addition, we extracted the changes
between the last version and the latest commit. We extracted
no changes for repositories without tags, as there was only
one structural model to be built.

IV. RESEARCH OPPORTUNITIES

This dataset shows that Infrastructure-as-Code languages are
supported by ecosystems. For general-purpose programming
languages, research on their ecosystems is ubiquitous. How-
ever, [aC as a whole, and TaC ecosystems in particular, are
currently understudied in academia.

The Andromeda dataset can be used to answer the general
question of how the Ansible ecosystem differs from well-
known software ecosystems. This is, of course, a very broad
question, yet the dataset provides all the necessary information
to answer specific sub-questions in empirical studies. For ex-
ample, in previous work, we used an aggregation of extracted
git tags and distilled code changes to study the use of semantic
versioning in role evolution [2].

Likewise, tool builders can benefit from this dataset. For in-
stance, NLP-based tools can utilise the large amount of textual
content, such as content descriptions and commit messages,
as a source of information. Furthermore, the structural models
provide a solid basis for analysing the structure and evolution
of role implementations. Existing Ansible analysis tools [3],
[6], [7] have, in contrast, relied on syntactical representations
so far.

V. LIMITATIONS AND FUTURE WORK

The main limitation of our dataset is the extent of the
structural model. The model only considers the Ansible code
parts of a role. However, roles can contain auxiliary files, such
as resources that need to be installed, test code, etc. Moreover,
Galaxy contains content other than roles, such as plugins
which are often written in Python. Neither the auxiliary files,
nor the other types of content, are captured by the models
we build. Consequently, since the change distilling algorithm
inherently depends on these structural models, changes to such
content are not represented in this dataset. In future work, we
hope to overcome this limitation by expanding the scope of
the structural model.

Finally, there exist other popular IaC languages which offer
ecosystems similar to Galaxy, such as Puppet’s PuppetForge?,
and Chef’s Supermarket4. Therefore, similar datasets could be
constructed for these ecosystems.

VI. RELATED DATASETS

A number of IaC-related works have published their evalu-
ation datasets [3], [4], [8]-[10]. However, these datasets only
contain a relatively low number of projects, and consist of
mostly analysis results. In contrast, the dataset we present
in this paper consists of a large and diverse amount of

2 Although we only targeted tags, Voyager is also equipped to distil changes
between consecutive commits.

3https://forge. puppet.com/
“https://supermarket.chef.io/

content, complete with metadata aggregated from multiple
sources. Moreover, we provide structural representations of
the roles in the dataset, as well as the changes made between
their versions. Finally, apart from [9], these datasets do not
distinguish between the consumer side and the contributor
side of the ecosystem. Our dataset focuses exclusively on the
contributor side. Thus, some of these complementary datasets
could be combined with ours to study the interaction between
ecosystem contributors and consumers.

There is also some overlap between our dataset and the
well-known GHTorrent [11], since we also extract tags and
commits from git repositories. Similarly, we provide the
number of stars, forks, etc., for GitHub repositories, although
we harvested this data from Ansible Galaxy rather than from
GitHub directly. The main distinction between our dataset and
GHTorrent is that we do not aim to provide a grand overview
of all of GitHub. Instead, our dataset focuses on Ansible
roles, and thus only includes information from repositories
containing such roles. Nonetheless, since we provide GitHub
URLs for these repositories, the GHTorrent dataset can be
queried to retrieve more information about the repository.

Finally, we have previously made available an earlier ver-
sion of this dataset [2]. However, this earlier version of the
dataset included very little data from the Galaxy ecosystem,
and did not include structural models or structural differences.
Moreover, in that paper, the dataset was not described in detail.
In contrast, the dataset presented in this paper provides a much
larger collection of Galaxy metadata, and includes structural
models and changes.

VII. CONCLUSION

In this data showcase paper, we presented Andromeda, a
dataset of Ansible Galaxy metadata and its roles. Andromeda
provides metadata harvested from the Ansible Galaxy software
ecosystem. In addition, it includes metadata harvested from
Ansible role repositories, including information on more than
2 million commits. We also provide structural representations
extracted from over 125000 role versions, and upwards of
100000 change sets of concrete changes applied between
different versions of a role.

Andromeda thus provides an extensive overview of the
Ansible Galaxy ecosystem. This makes it a valuable source
of information and opens up interesting opportunities for new
research, including empirical studies and technical research.
With this dataset, we hope to stimulate research in the In-
frastructure as Code domain, and more specifically on IaC
ecosystems, an understudied domain today.
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