
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Wassail: a WebAssembly Static Analysis Library
(Extended Presentation Abstract)

entin Stiévenart
Soware Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
quentin.stievenart@vub.be

Coen De Roover
Soware Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Keywords WebAssembly, static analysis

1 Introduction
WebAssembly is a recent web standard [4] designed to pro-
vide a portable execution environment. As of the time of
writing, more than 40 languages support WebAssembly as a
compilation target1. Initially targeted at running inside Web
browsers, WebAssembly can nowadays be run in a multitude
of runtimes targeting various usages, ranging from cloud
applications2 to IoT devices [1].
Tooling for WebAssembly is gaining traction. e We-

bAssembly website lists a number of mature tools for com-
piler writers3. e research community has produced tools
to perform dynamic analysis of WebAssembly [2] and to
fuzz implementations of WebAssembly [3]. In terms of static
analysis, there exists a simple prototype plugin for IDA Pro
to load WebAssembly modules4, as well as a code size pro-
ler that is able to construct call graphs5. However, both of
these tools are not in active development.
In this presentation, we will present our work on Was-

sail6, a static analysis library for WebAssembly. Our goal is
to facilitate the development of various static analyses for
WebAssembly, by providing a set of useful building blocks
from which analyses can be constructed. We aim to support
both lightweight static analyses such as code querying, as
well as heavyweight static analyses such as dataow analy-
ses. Wassail is still in an early development phase and we
are interested in feedback from the community to steer its
future development.

2 Design Overview
Figure 1 depicts the current design of Wassail. Boxes indi-
cate the main library modules made available byWassail,

1hps://github.com/appcypher/awesome-wasm-langs
2hps://wasmer.io/
3hps://webassembly.org/geing-started/advanced-tools/
4hps://github.com/fireeye/idawasm
5hps://rustwasm.github.io/twiggy/
6hps://github.com/acieroid/wassail

ProWeb21, Online, United Kingdom
2017. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

while text elds represent the various datatypes that repre-
sent intermediate or nal analysis results.

Given a WebAssembly le, Wasm module loads the le and
constructs a value of type Wasm module.t that represents the
static description of the loaded module. To ensure compati-
bility with the WebAssembly standard, all of the parsing is
handled by the reference implementation provided alongside
the WebAssembly standard7, which is wrien in OCaml just
like Wassail. Once a Wasm module.t has been constructed,
multiple analyses phases can be run. We describe these
phases and illustrate them with real-world usage examples.

.wasm file

Wasm_module

Wasm_module.t

Cfg_builder Call_graphInstruction_counter

Spec_analysis

Taint_analysis

unit Cfg.t

Spec.t Cfg.t

Taint.t Cfg.t

Call_graph.tInstruction_counter.t

Figure 1. Design of Wassail

2.1 Counting Instructions
As a rst example phase, the Instructions counter mod-
ule implements a lightweight analysis that solely depends on
the initial description of a WebAssembly module. It counts

7hps://github.com/WebAssembly/spec

1

https://github.com/appcypher/awesome-wasm-langs
https://wasmer.io/
https://webassembly.org/getting-started/advanced-tools/
https://github.com/fireeye/idawasm
https://rustwasm.github.io/twiggy/
https://github.com/acieroid/wassail
https://github.com/WebAssembly/spec

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

ProWeb21, March 2021, Online, United Kingdom entin Stiévenart and Coen De Roover

how oen each instruction appears in the WebAssembly
module, and can be used for simple code inspection. is
analysis can process large binaries fairly quickly: early ex-
periments show that binaries of several megabytes can be
analysed in a maer of seconds.

2.2 Call Graphs
From theWebAssembly module, it is possible to derive an ap-
proximate call graph by inspecting call and call indirect
instructions. is is what the Call graph analysis phase
does. Call graphs can then be exported in a visual repre-
sentation, where nodes denote functions with their index,
and edges denote possible calls, as depicted on the le of
Figure 2.

0

12

89

14

3

10

4

5

6

7

13

11 12 15 16

Data block 0:

0:const 1040 ;; →
1:load typ=i32 offset=0, sz=none ;; →
2:local.tee 0 ;; →
3:load typ=i32 offset=76, sz=none ;; →
4:const 0 ;; →
5:compare i32.ge_s ;; →

Control block 1:

6:if ;; →

Data block 2:

7:const 1 ;; →

t

Data block 3:

8:const 0 ;; →

f

Control block 4:

m2_4:merge ;; →

Data block 5:

9:drop ;; →

Data block 7:

11:const -1 ;; →
12:const 0 ;; →

Control block 8:

13:call 8 ;; →

Data block 9:

14:local.tee 1 ;; →
15:local.get 0 ;; →

Control block 10:

16:call 9 ;; →

Data block 11:

17:local.get 1 ;; →
18:compare i32.ne ;; →
19:select ;; →
20:const 0 ;; →
21:compare i32.lt_s ;; →

Control block 12:

22:brif 0 ;; →

Data block 15:

24:local.get 0 ;; →
25:load typ=i32 offset=75, sz=8,zx ;; →
26:const 10 ;; →
27:compare i32.eq ;; →

f

Control block 26:

m2_26:merge ;; →

t

Control block 16:

28:brif 0 ;; →

Data block 17:

29:local.get 0 ;; →
30:load typ=i32 offset=20, sz=none ;; →
31:local.tee 1 ;; →
32:local.get 0 ;; →
33:load typ=i32 offset=16, sz=none ;; →
34:compare i32.ge_u ;; →

f

Control block 22:

m2_22:merge ;; →

t

Control block 18:

35:brif 0 ;; →

Data block 19:

36:local.get 0 ;; →
37:local.get 1 ;; →
38:const 1 ;; →
39:binary i32.add ;; →
40:store typ=i32 offset=20, sz=none ;; →
41:local.get 1 ;; →
42:const 10 ;; →
43:store typ=i32 offset=0, sz=8,sx ;; →

f t

Control block 20:

44:br 1 ;; →

Data block 23:

45:local.get 0 ;; →

Control block 24:

46:call 14 ;; →

Control block 28:

m2_28:merge ;; →

Figure 2. Example call graph (le) and control-ow graph
(right) extracted by Wassail.

2.3 Control-Flow Graphs
Most heavyweight analyses require control-ow graphs to be
computed beforehand. is is handled by the Cfg builder
module, which returns a value of type unit Cfg.t. Control-
ow graphs are annotated with extra information, initially
of type unit to represent the absence of annotation, which
is lled by later analysis phases. e right part of Figure 2
depicts an example call graph extracted by Wassail.

2.4 Dataow Analyses
Wassail supports expressing dataow analyses on the CFGs
computed by the previous phases. ese analyses will pro-
duce a CFG annotated with the new information that has
been computed. In practice, while an intra-procedural dataow
analysis canwork at the level of a single CFG, inter-procedural

analyses may benet from being run on all CFGs in a boom-
up manner according to the call-graph. is is supported by
Wassail as well.

Stack Specication Analysis A rst dataow analysis in-
fers the specication of the WebAssembly stack; annotating
each instruction with the shape of the stack before and aer
it has executed, and assigning unique names to each of the
stack locations. To illustrate this, the comments among the
example instructions below correspond to the output of this
phase:
;; push 0 on the stack
i32.const 32 ;; annot: [const_0]
;; push first local on the stack
local.get 0 ;; annot: [local_0, const_0]
;; add the two top values of the stack
i32.add ;; annot: [add_0]

Taint Analysis Given the specication of the stack com-
puted by the stack specication analysis, the taint analysis
phase assigns to each unique name a set of taints denot-
ing the information it may contain. A prior publication [5]
describes the taint analysis in detail.

3 Conclusion
is presentation will cover the current design of Wassail
and aims at fostering discussion on the necessary tooling
infrastructure to support the needs of WebAssembly users
and researchers. We will greatly appreciate feedback from
the audience on how to increase the usefulness of Wassail
for the community.

Acknowledgments
is work is supported by the “Cybersecurity Initiative Flanders”.

References
[1] AdamHall and Umakishore Ramachandran. 2019. An execution model

for serverless functions at the edge. In Proceedings of the International
Conference on Internet of ings Design and Implementation, IoTDI 2019,
Montreal, QC, Canada, April 15-18, 2019. 225–236.

[2] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A Framework for
Dynamically Analyzing WebAssembly. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019. 1045–1058.

[3] Árpád Perényi and Jan Midtgaard. 2020. Stack-Driven Program Gen-
eration of WebAssembly. In Programming Languages and Systems -
18th Asian Symposium, APLAS 2020, Fukuoka, Japan, November 30
- December 2, 2020, Proceedings (Lecture Notes in Computer Science),
Bruno C. d. S. Oliveira (Ed.), Vol. 12470. Springer, 209–230. DOI:
hp://dx.doi.org/10.1007/978-3-030-64437-6 11

[4] Andreas Rossberg. 2019. WebAssembly Core Specication. (2019).
hps://www.w3.org/TR/wasm-core-1/

[5] entin Stiévenart and Coen De Roover. 2020. Compositional In-
formation Flow Analysis for WebAssembly Programs. In 20th IEEE
International Working Conference on Source Code Analysis and Manip-
ulation, SCAM 2020, Adelaide, Australia, September 28 - October 2, 2020.
IEEE, 13–24. DOI:hp://dx.doi.org/10.1109/SCAM51674.2020.00007

2

http://dx.doi.org/10.1007/978-3-030-64437-6_11
https://www.w3.org/TR/wasm-core-1/
http://dx.doi.org/10.1109/SCAM51674.2020.00007

	1 Introduction
	2 Design Overview
	2.1 Counting Instructions
	2.2 Call Graphs
	2.3 Control-Flow Graphs
	2.4 Dataflow Analyses

	3 Conclusion
	Acknowledgments
	References

