
A Parallel Worklist Algorithm and Its Exploration
Heuristics for Static Modular Analyses

Quentin Stiévenarta, Noah Van Esa, Jens Van der Plasa, Coen De Roovera

aSoftware Languages Lab, Vrije Universiteit Brussel, Belgium

Abstract

One way to speed up static program analysis is to make use of today’s multi-core
CPUs by parallelising the analysis. Existing work on parallel analysis usually
targets traditional data-flow analyses for static, first-order languages such as C.
Less attention has been given so far to the parallelisation of more general anal-
yses that can also target dynamic, higher-order languages such as JavaScript.
These are significantly more challenging to parallelise, as dependencies between
analysis results are only discovered during the analysis itself. State-of-the-art
parallel analyses for such languages are therefore usually limited, both in their
applicability and performance gains.

In this work, we propose the parallelisation of modular analyses. Modu-
lar analyses compute different parts of the analysis in isolation of one another,
and therefore offer inherent opportunities for parallelisation that have not been
explored so far. In addition, they can be used to develop a general class of anal-
ysers for dynamic, higher-order languages. We present a parallel variant of the
worklist algorithm that is used to drive such modular analyses. To further speed
up its convergence, we show how this algorithm can exploit the monotonicity of
the analysis. Existing modular analyses can be parallelised without additional
effort by instead employing this parallel worklist algorithm. We demonstrate
this for ModF, an inter-procedural modular analysis, and for ModConc, an
inter-process modular analysis. For ModConc, we reveal an additional oppor-
tunity to exploit even more parallelism in the analysis: analyses of individual
ModConc components can themselves be parallel, resulting in a doubly-parallel
exploration. Finally, we present several heuristics for the exploration order of
the analysis and discuss how they can impact its performance.

The parallel worklist algorithm and the exploration heuristics are imple-
mented for and integrated into MAF, a framework for modular program analy-
sis. On a set of Scheme benchmarks for ModF, we observe speedups between 3×
and 8× when using 4 workers, and speedups between 8× and 32× when using 16
workers, with a maximum speedup of 333× using 128 workers. For ModConc,

Email addresses: quentin.stievenart@vub.be (Quentin Stiévenart),
noah.van.es@vub.be (Noah Van Es), jens.van.der.plas@vub.be (Jens Van der Plas),
coen.de.roover@vub.be (Coen De Roover)

Preprint submitted to Journal of Systems and Software July 2, 2021

we achieve a maximum speedup of 37× with 32 workers. We observe that on
a ModF analysis, among 11 exploration heuristics, the heuristics prioritising
either components with smaller environments or with less dependencies result
in consistent speedups that can reach 20× those of a random exploration strat-
egy. We find a clear correlation between the mean number of dependencies in a
program and the speedup obtained by this heuristic.

Keywords: Static Program Analysis, Modular Analysis, Parallelism,
Concurrency, Dynamic Languages

1. Introduction

In order to be useful, static analyses require both good precision and per-
formance. High precision can be achieved through various techniques, such
as increasing context-sensitivity [1, 2, 3] or using a more precise abstract do-
main [4, 5]. Unfortunately, such precision-increasing techniques often come at5

the cost of increasing the complexity of the analysis, therefore also impacting
its performance. Consequently, a combination of high precision and high per-
formance is harder to achieve, and the lack of performance is often mentioned
as one of the prime reasons why developers eschew the usage of static analysers
altogether [6, 7, 8].10

An obvious approach to speed up the analysis is to exploit today’s prevalence
of multi-core CPU architectures and parallelise the analysis. There is ample ex-
isting work on developing such parallel analyses. However, most of the existing
parallel analysers target rather static languages such as C [9, 10, 11, 12, 13]. An
advantage when parallelising the analysis for such languages is that the control-15

flow dependencies of the analysed program are almost entirely known before-
hand (i.e., the inter-procedural call graph is available a priori). For instance, the
Saturn analyser [10] exploits these call dependencies by parallelising a bottom-
up analysis, in which a function is only analysed after all its callees have been
analysed. Such a bottom-up analysis is almost trivially parallelisable: the anal-20

ysis can start by analysing all functions at the bottom of the call dependency
graph (those without any callees) in parallel, then analyse all subsequent func-
tions whose callees have already been analysed in parallel, and so on1. Using
this approach, the authors report speedups up to almost 30× on an 80-core
machine.25

In contrast, less attention has been given so far to the parallel analysis of
highly dynamic, higher-order languages such as JavaScript or Scheme. Paral-
lelising an analysis for these languages is more challenging, as the control-flow
behaviour of the program and dependencies between analysis results are not
known beforehand, and only discovered during the analysis itself. Dewey et30

1Note that in such a bottom-up analysis, functions that are (mutually) recursive form a
strongly connected component (SCC) in the call graph, and need to be analysed together in
a single fixed-point computation.

2

al. [14] parallelise JSAI, an abstract interpreter for JavaScript, by exploring
multiple independent program states in the analysis in parallel. Compared to
parallel analyses for static languages, the speedups are more modest here: on 12
cores, most benchmarks achieve a 2− 4× speedup. Furthermore, as the explo-
ration of program states is parallelised by context, their approach is only able to35

parallelise context-sensitive analyses, and its efficiency is very dependent upon
the impact of context-sensitivity for the analysed program.

In this work, we present a novel approach to automatically parallelise a gen-
eral class of analysers for highly dynamic, higher-order languages. Specifically,
we propose the parallelisation of modular analyses. In a modular analysis [15],40

a program is split up into different components (such as the functions in the
program), and those components are repeatedly analysed in isolation. The key
insight is that the modularity of the analysis can be exploited to parallelise
the analysis: as the analysis of a single component is done in isolation, multi-
ple components can safely be analysed in parallel. We consider a general and45

modern formulation of modular analyses for highly dynamic and higher-order
languages, which has recently been used for both traditional inter-procedural
analysis [16] (referred to as ModF) and for the inter-process analysis of concur-
rent programs [17] (referred to as ModConc). Although these analyses have
been touted for their applicability and scalability, so far no attention has been50

given to their inherent opportunities for parallelisation. Note that, compared
to the bottom-up analysis of Saturn [10], these analyses are not bottom-up,
but rather top-down modular analyses, as the control-flow dependencies of the
program are necessarily only discovered during the analysis itself due to the lan-
guage’s dynamic nature. Parallelisation for such a top-down modular analysis55

proves to be less trivial. One reason is that due to the lack of a priori information
on dependencies, it becomes harder to efficiently determine which components
need to be analysed in parallel. Another reason is that such modular anal-
yses are more general than the bottom-up analyses of Saturn: components
that are analysed in parallel could lead to new dependencies or changes to the60

global analysis state, requiring other components that may be impacted by these
changes to be re-analysed. We formulate a new parallel worklist algorithm that
can analyse multiple components in parallel, while ensuring a correct coordina-
tion of the analysis to obtain the exact same result as the traditional sequential
worklist algorithm. Since this worklist algorithm is completely agnostic of the65

particular instantiation of the modular analysis (e.g., ModF or ModConc),
one can apply it to any existing modular analysis for free.

The contributions of this paper are the following:

• We propose the parallelisation of modular analyses to easily and efficiently
analyse dynamic, higher-order languages in parallel. A parallel worklist70

algorithm is given to automatically render a modular analysis parallel. We
further explore its combination with different heuristics that determine the
exploration order of the underlying analysis.

• In order to demonstrate its general applicability, we apply our novel par-
allelisation strategy to two existing modular analyses, ModF and Mod-75

3

Conc. In particular, we demonstrate how the ModConc analysis can be
made “doubly parallel” by analysing the ModConc components using a
parallel ModF analysis.

• We implement our parallel worklist algorithm in MAF, a framework to
develop modular analyses. In our evaluation on a set of Scheme bench-80

marks, most speedups range between 8× and 32× when using 16 workers
for ModF. For ModConc, we achieve speedups up to 37× with 32 work-
ers.

This is an extended version of previous work [18]. This journal article extends
the conference publication in multiple ways.85

• We have improved and optimised the baseline analysis, greatly reducing
the base sequential analysis time. This is to ensure the comparison of the
parallel worklist algorithm to the baseline sequential worklist algorithm
is fair. As the baseline analysis has already been optimised, real-world
speedups are more difficult to achieve through parallelism. The additions90

made to our implementation pertain to language support, and improve-
ments to running times are the results of various refactorings, with no
specific root cause. These improvements have been applied both to the
sequential and parallel versions of the analyses to ensure no bias is intro-
duced in our evaluation.95

• Because of the improvements to the baseline analysis (both in terms of
performance as well as language support), our empirical evaluation could
be expanded to additional benchmark programs. We have therefore ex-
tended the evaluation (Section 5) as follows:

– Our evaluation on ModF without context sensitivity is conducted100

on 28 programs instead of 7.

– We have included an evaluation with 1-CFA context sensitivity, which
was not present in the original paper.

– Our evaluation on ModF with 2-CFA context sensitivity is performed
on 15 programs instead of 7.105

– Our evaluation on ModConc is conducted on 16 programs instead
of 8.

• We have reworked the evaluation and now include a new research question
where we evaluate the impact of different heuristics for the exploration
order of an analysis on the speedup achieved through parallelisation. The110

original paper used a fixed exploration strategy that prioritises the analysis
of components corresponding to deeper function calls; we now provide an
evaluation of 11 different heuristics and changed the default heuristic to
one that assigns random priorities to components.

4

• We provide more details about our implementation in Section 4 and pro-115

vide a replication package for reproducing our evaluation2.

2. Background: Modular Analysis

A modular static program analysis splits up a program into several compo-
nents. Ideally, this enables a “divide-and-conquer” approach to program analy-
sis: all components of a given program are analysed in isolation of one another120

(using an intra-component analysis), and the analysis results of the different
components are combined to obtain the analysis result for the entire program.
The exact definition of a component can be chosen depending on the given pro-
gram and the goal of the analysis, and typically represents an abstraction of
some run-time entities in the program (such as function calls or threads). For125

instance, in ModF, a component represents (an approximation of) a function
call, and the intra-component analysis of a single component amounts to an
intra-procedural analysis of that function call.

However, the intra-component analyses of different components may depend
on one another. For instance, if components are function calls, and component130

f1 is the caller of component f2, then the return value of f2 needs to be known
for the intra-component analysis of f1. In turn, the argument values that are
supplied by f1 are necessary for the intra-component analysis of f2. We say that
component f1 has a dependency on the return value of f2, while component f2
has a dependency on the argument values supplied by f1. To deal with such135

mutual dependencies, we can employ a standard worklist algorithm [15, 19] to
compute a (least) fixed point. This fixed-point computation is referred to as the
inter-component analysis. It repeatedly analyses components (using the intra-
component analysis) with respect to the current analysis state. This is necessary
because the intra-component analysis of some component c1 may update some140

part of the analysis state that another component c2 has a dependency on. When
that happens, we say that a dependency of c2 is triggered, and subsequently c2
is re-analysed using the updated analysis state. The intra-component analysis
must be monotone to ensure that the analysis state eventually converges. The
fixed-point iteration is repeated until all components have been analysed and145

the analysis state has converged (so that no dependencies are triggered after
analysing some component). Note that for dynamic, higher-order languages,
such as JavaScript and Scheme, both components and dependencies are not
known beforehand and only discovered during the analysis itself.

A sequential algorithm for this inter-component analysis is given in Algo-150

rithm 1. In this algorithm, we leave the definition of components and the corre-
sponding intra-component analysis open as configurable parameters. Different
choices for these parameters lead to different instantiations of modular analyses,
such as ModF (Section 2.1) and ModConc (Section 2.2). The inter-component
algorithm discussed here, however, is the same for any of these modular analyses.155

2https://github.com/softwarelanguageslab/maf/tree/parallel-evaluation

5

https://github.com/softwarelanguageslab/maf/tree/parallel-evaluation

Algorithm 1: Sequential worklist algorithm computing the fixed-point
for the inter-component analysis.

Data: An initial component c0 and initial store σ0
Result: A sound, over-approximated analysis result for the behaviour

of the corresponding program
1 W = {c0}, V = {c0}, σ = σ0, D = λaddr. ∅
2 while W 6= ∅ do
3 pick any c ∈W
4 W := W \ {c}
5 (σ′, C,R, T) = analyse(c, σ)
6 σ := σ′

7 W := W ∪ (C \ V)
8 V := V ∪ C
9 foreach a ∈ R do D := D[a 7→ D(a) ∪ {c}]

10 foreach a ∈ T do W := W ∪D(a)

We assume that some initial component c0 represents the entry point of the
program. For instance, if components represent function calls, then c0 would
represent the initial call to the main function of the program. The worklist
algorithm maintains the following iteration variables (line 1):

• A worklist W of components that still need to be analysed. Initially, this160

worklist only contains c0.

• A visited set V , which is used to keep track of all components that have
already been discovered during the analysis, and initially also contains
only c0.

• The global analysis state. For simplicity, we model this using a store σ,165

although in general the global analysis state can also encompass more than
just a store. The store σ models an approximation of the run-time heap
of the program. It maps abstract addresses (addresses that approximate
real heap addresses) to abstract values (values that approximate real heap
values). We assume that an initial store σ0 (with initial bindings) is given.170

• A dependency map D. Dependencies encode some part of the global anal-
ysis state that an intra-component analysis can depend on. In this case,
the global analysis state is just a store, and so dependencies are addresses
of that store. The dependency map D tracks for each dependency (i.e.,
address) a the set of all components that depend on the value in the store175

at address a. This way, we immediately know which components need
to be re-analysed if a dependency is triggered (which happens when the
value at that address in the store is changed).

The algorithm uses a sequential worklist iteration: as long as the worklist is
not empty (line 2), it arbitrarily picks (line 3) and removes (line 4) a component180

6

c from the worklist. This component is then analysed using the function anal-
yse, which performs the intra-component analysis of component c (line 5). As
previously mentioned, this function is considered a parameter of the analysis,
returning a tuple (σ′, C,R, T):

• σ′ is the updated store after the intra-component analysis (note that the185

current store σ is also passed to analyse). After executing the intra-
component analysis, we continue the iteration with this updated store
(line 6).

• C is the set of components that have been discovered during the intra-
component analysis. For instance, if components represent function calls,190

then this is the set of all components representing the function calls that
were made by the analysed function call component. We add all unseen
components to the worklist W (line 7), and register these components in
the visited set V (line 8).

• R is the set of dependencies that the analysis of this component relied on.195

This corresponds to the set of addresses in σ that were read by the intra-
component analysis. For every address a, we add the analysed component
c to the set of components reliant on that dependency3.

• T is the set of dependencies that the analysis of this component triggered.
This corresponds to the set of addresses in σ that were written to by the200

intra-component analysis. For every address a, we must re-analyse all
potentially impacted components, and hence add all components reliant
on a (i.e., D(a)) to the worklist (line 10).

In order for the analysis to terminate, we must assume that only a finite
number of components can be discovered for a given program. Usually, this205

is ensured by approximating the actual run-time entities (e.g., function calls)
by components holding both the corresponding lexical program elements (e.g.,
function definitions), which are necessarily finite, plus some contextual informa-
tion (e.g., the call site of the function call) taken from a finite set. This context
is used to have multiple components for the same lexical program element, and210

is often referred to as the context-sensitivity of the analysis. Context-sensitivity
can be used to tune the precision of the analysis: using more contextual infor-
mation allows for more components in the analysis so that each component may
be analysed with higher precision, whereas less contextual information means
that more run-time entities need to be approximated by the same component.215

Similarly, the store σ can only use a finite number of addresses. Abstract
values should be taken from a partially ordered set (L,v) with a commutative
and associative join operator t that is monotone, such that ∀a, b ∈ L : a v
a t b. This is for example the case when (L,v,t) forms a join semi-lattice.
The choice of L depends on the target analysis: an abstract value in L can220

3We write “f[x 7→ y]” as a shorthand for “λv. if v = x then y else f(v)”.

7

approximate a set of real values, or encode other program properties (e.g., for
a reaching definition analysis) using any abstract lattice domain. The set L
should satisfy the ascending chain condition (ACC): every sequence of abstract
values l0 v l1 v l2 v ... should eventually converge: there should exist some
n so that ln = li for any i ≥ n. Values at a certain address in the store are225

never overwritten, but only joined with newer values at that address using the
join operator, so that the ACC guarantees that eventually all values in the
store will converge4, and no more dependencies will be triggered. Furthermore,
the intra-component analysis should be monotone: the result of analyse(c, σ2)
should subsume the result of analyse(c, σ1) if σ1 v σ2

5. It can be shown230

that these properties, combined with a finite number of components, ensure
that the analysis will always terminate with the same result, regardless of the
order in which components are picked from the worklist. Nevertheless, the order
in which components are analysed can influence in what sequence the abstract
values in σ will converge and how many iterations are required in the algorithm.235

In practice, it can therefore have a significant impact on analysis performance.

2.1. ModF: Inter-Procedural Modular Analysis

One instantiation of this modular analysis framework is ModF [16]. In
ModF, a component represents a function call (technically, an approximation
of several function calls). The intra-component analysis for a component in240

ModF then boils down to an intra-procedural analysis of the function call(s)
represented by that component. The resulting inter-component analysis for
ModF, obtained by using this intra-procedural analysis for the analyse func-
tion in Algorithm 1, can therefore be seen as an inter-procedural analysis.

We do not formally define the analyse function for ModF here, as it is not245

relevant to the remainder of this paper. Rather, we illustrate at a high-level
how ModF works by example.

Consider the snippet of Scheme code shown in Figure 1. For this example,
we employ a context-insensitive analysis: this means that all calls to the same
function are represented by the same component. Since we only have 3 func-250

tions in this program, that means our analysis will only discover 3 components.
Assuming that the main function is the entry point of our program, the analysis
will start with c0 = main.

During the intra-procedural analysis of this component (using the function
analyse), the call to even? does not immediately lead to an analysis of that255

function. Rather, even? is added to the set of discovered components C re-
turned by analyse, and the argument to even? is store allocated at an address
aeven?−0. As this is the only function call in main, the resulting set C for anal-
yse is {even?}. In the analysis of main, the return value of the call to even?

is immediately looked up in the store σ at an address aeven? dedicated to the260

4Our approach can trivially be extended to also support infinite ascending chains with
acceleration techniques such as widening to ensure convergence.

5We write “σ1 v σ2” if and only if “∀a : σ1(a) v σ2(a)”.

8

(define	(even?	n)
		(if	(=	n	0)
						#t
						(odd?	(-	n	1))))
(define	(odd?	n)
		(if	(=	n	0)
						#f
						(even?	(-	n	1))))
(define	(main)
		(even?	42))
		

main

even? odd?

Figure 1: A ModF analysis example (left: the Scheme program under analysis; right: the call
graph computed by a context-insensitive ModF analysis).

return value of the even? component. This value is initially ⊥ because even?

has not yet been analysed. Due to this store lookup, a new dependency is reg-
istered for this dedicated address. Hence, the set R returned by the analysis of
main is {aeven?}. Finally, at the end of the analysis of main, the current result is
stored at location amain. The set T returned by the analysis of main therefore is265

{amain, aeven?−0}, which are the two addresses that have been written to in the
analysis of main.

The inter-component analysis then adds even? to the worklist W , and
proceeds by analysing the next (and only) component in the worklist: even?.
Due to its dependency on address aeven?, the main component will be re-analysed270

if (after analysing even?) the return value of the even? component stored at
aeven? is updated.

The analysis of even? will lead to the discovery of the odd? component.
While the analysis of the odd? component discovers a different call to the even?
function, due to the context-insensitivity that call is also approximated by the275

already discovered even? component. The resulting call graph that can be
constructed from this analysis is shown on the right-hand side of Figure 1.

2.2. ModConc: Inter-Process Modular Analysis

Another instantiation of the modular analysis framework is ModConc [17],
which can be used to analyse concurrent programs that spawn multiple pro-280

cesses. In ModConc, a component represents a thread (technically, an ap-
proximation of several threads). The intra-component analysis in ModConc
then boils down to an intra-process analysis of the thread(s) represented by a
component. The resulting inter-component analysis for ModConc, obtained
by using this intra-process analysis for the analyse function in Algorithm 1,285

can therefore be seen as an inter-process analysis.
We again use an example to explain how ModConc works (Figure 2). With-

out additional context for components, the analysis uses one component per
fork expression in the program, plus one component for the (implicit) main

9

(define	(fib	n)
		(if	(<	n	2)
						n
						(let
								((f1
										(fork
											(fib	(-	n	1))))
									(f2
											(fib	(-	n	2))))
								(+	(join	f1)	f2))))
(define	(main)
		(fib	10))				

		

(fib
	(-	n	1))

main

Figure 2: A ModConc analysis example (left: the Scheme program under analysis; right: a
graph computed by a context-insensitive ModConc analysis, showing how threads fork other
threads in the program).

thread; the latter is the initial component c0. Again, when a new thread is290

forked in the fib function, this thread is not immediately analysed; rather, a
new component is created that is analysed later using another intra-component
analysis for that thread. Hence, the set C returned by analyse for the analysis
of the main thread is {(fib (- n 1))}, i.e., the expression that is evaluated
in the created thread. This new thread will spawn new threads that are all295

approximated by the same component, hence the self-loop in Figure 2. Depen-
dencies in ModConc are the same as in ModF: they are addresses. In the
case of ModConc, a thread that completes writes its resulting value in the
store at a specific address, and the join operation correspondin to that thread
reads that value. Hence, the analysis of component (fib (- n 1)) results in300

T = {a(fib (- n 1))} as it writes its result to the corresponding address, and
R ⊃ {a(fib (- n 1))} as it depends on its own return value (as well as other
addresses corresponding to variables, not discussed here).

While the intra-component analysis (i.e., the function analyse) for ModF
could easily be carried out using a simple intra-procedural analysis, it is less305

trivial to design the intra-process analysis required by ModConc. In general,
the behaviour of a single thread is as challenging to analyse as the behaviour
of any other single-threaded program, and therefore an intra-process analysis
requires a full inter-procedural analysis. We can repurpose ModF to carry out
this inter-procedural analysis, meaning that the intra-component analysis in310

ModConc can be defined using a ModF analysis.
As a final note, observe that ModF offers a full inter-procedural analysis,

10

given the definition of an intra-procedural analysis. Similarly, ModConc offers
a full inter-process analysis, given the definition of an intra-process analysis. In
general, for any definition of “component”, Algorithm 1 can be used to design315

an inter-component analysis, given a definition of an intra-component analysis.
This is one of the main strengths of the modular analysis framework, as the
former is usually several times harder to design than the latter.

3. Parallel Modular Analysis

Algorithm 1 shows how the inter-component analysis can be computed us-320

ing a sequential worklist algorithm. In this section, we propose a novel parallel
worklist algorithm to compute the inter-component analysis, obtaining the exact
same result as the sequential worklist algorithm. The core idea is simple: mul-
tiple components in the worklist W can be analysed in parallel. A key benefit
of the modular analysis design is that it automatically provides coarse-grained325

tasks (i.e., entire intra-component analyses) that can be run in parallel because
they are executed in isolation of one another.

We first present our core parallel worklist algorithm in Section 3.1. Then,
we propose some optimisations that can be applied to this algorithm to further
increase its parallel efficiency (Section 3.2). Finally, we discuss its application330

to ModF and ModConc (Section 3.3).

3.1. Parallel Inter-Component Analysis

Our parallel inter-component analysis algorithm uses several worker threads
to analyse multiple components in parallel. To avoid synchronisation costs in
updating the global analysis state (i.e., σ in Algorithm 1), each component is335

analysed using its own local copy of that analysis state. A single thread is re-
sponsible for processing the incoming results of the intra-component analyses
and subsequently updating the global analysis state. Therefore, our parallel
worklist algorithm follows the “coordinator-worker” paradigm, which can eas-
ily be implemented using several concurrency mechanisms (e.g., using actors).340

Processing results using a single coordinator thread introduces a sequential bot-
tleneck, but trivially avoids issues with race conditions. We expect throughput
to be mostly dominated by the cost of the intra-component analyses, which can
be processed in parallel using multiple workers.

Insights. There are two key insights that we leverage for the parallel work-345

list algorithm.
First, when multiple intra-component analyses are executed concurrently,

it may occur that one updates some part of the analysis state that the other
depends on. Since state is kept local to each worker during the intra-component
analysis, such updates happening in one intra-component analysis are not visible350

in another. Therefore, after each intra-component analysis, it should be checked
that no part of the analysis state that was read during that intra-component
analysis has been updated in the meantime; if so, the component should be
analysed again. We do not require any additional bookkeeping for this, as we

11

can exploit the dependencies that the intra-component analysis relied on (i.e.,355

the setR returned by the analyse function) to check if another intra-component
analysis might have interfered in its computation.

Second, we can exploit the monotonicity of the analysis when updating the
analysis state. If an intra-component analysis updates some part of the analysis
state, we can always apply these changes to the global analysis state. Even if360

the local analysis state used during the intra-component analysis is no longer
up-to-date (i.e., not using the latest σ), it would be subsumed by the newer
state (because σ only “grows”), and the monotonicity of the intra-component
analysis guarantees that all observed updates would still be valid. Moreover,
because of the associative and commutative properties of the join operator, we365

can apply those updates on a more up-to-date version of the analysis state.
Again, we do not require any additional bookkeeping for this, as we can exploit
the dependencies that the intra-component analysis modified (i.e., the set T
returned by the analyse function) to track all updates to the analysis state
after an intra-component analysis.370

Algorithm. Algorithm 2 shows a parallel variant of the inter-component
analysis.

Similar to the sequential algorithm, it keeps track of a visited set V , a store
σ and a dependency map D (line 1). However, there is no longer a worklist
W : components that need to be analysed are directly sent off to a worker.375

This happens using the function Schedule (lines 2-6): a new task is forked
(which we assume is eventually assigned to a worker thread) that will analyse
the given component (using the analyse function) and send back the result
when finished. A set S of components keeps tracks of which components have
been scheduled using this function, ensuring that a single component is never380

scheduled multiple times at once.
To kickstart the analysis, we schedule the initial component c0 (line 7).

The coordinator thread then enters a loop (lines 8-26) which stops once all the
scheduled components have been analysed (i.e., when S is empty). In each
iteration, it updates the analysis state after receiving an incoming result of an385

intra-component analysis of some component c (line 9).
Analogous to the sequential algorithm, it first schedules every discovered

component that has not yet been visited6 (lines 10-14), then registers the de-
pendencies of the component that was analysed (line 15),

Updating the analysis state becomes more complicated for the parallel algo-390

rithm: we cannot just replace σ with σ′ (as in the sequential algorithm), since
it is possible that σ has been updated during the intra-component analysis of
component c (in which case σlocal 6= σ). Therefore, we need to apply each up-
date that happened during the intra-component analysis (as indicated by T) to
the current analysis state σ. We first check (line 17) for every updated address395

a, if the updated value σ′(a) is already subsumed by the current value for that
address σ(a). If so, this means that another intra-component analysis already

6Note that c′ 6∈ V implies c′ 6∈ S here.

12

Algorithm 2: Parallel worklist algorithm computing the fixed-point
for the inter-component analysis.

Data: An initial component c0 and initial store σ0
Result: A sound, over-approximated analysis result for the behaviour

of the corresponding program
1 S = {c0}, V = {c0}, σ = σ0, D = λaddr. ∅
2 function Schedule(c):
3 fork
4 σlocal = σ
5 result = analyse(c, σlocal)
6 send (c, σlocal, result) to coordinator

7 Schedule(c0)
8 while S 6= ∅ do
9 wait for next result (c, σlocal, (σ

′,C,R,T))
10 foreach c′ ∈ C do
11 if c′ 6∈ V then
12 V := V ∪ {c′}
13 S := S ∪ {c′}
14 Schedule(c′)

15 foreach a ∈ R do D := D[a 7→ D(a) ∪ {c}]
16 foreach a ∈ T do
17 if σ′(a) 6v σ(a) then
18 σ := σ[a 7→ σ(a) t σ′(a)]
19 foreach c′ ∈ D(a) do
20 if c′ 6∈ S then
21 S := S ∪ {c′}
22 Schedule(c′)

23 if ∃a ∈ R : σlocal(a) 6= σ(a) then
24 Schedule(c)

25 else
26 S := S \ {c}

updated σ(a) in a way that the current update is already incorporated in the
analysis state. Otherwise, we join the current value σ(a) with the updated value
σ′(a) (line 18). Again, we cannot just replace σ(a) with σ′(a), since σ(a) may400

have been updated, in which case both σ(a) 6v σ′(a) and σ′(a) 6v σ(a). The
monotonicity of the analysis combined with the commutative and associative
properties of the join operator allow us to join both values. By performing
updates to the analysis state in this way, the parallel analysis can speed up its
convergence. Then, as in the sequential algorithm, we also schedule all compo-405

nents that may have been affected by the triggered dependency a (lines 19-22).
Finally, we must check if component c needs to be re-analysed because some

part of the analysis state it depends on (as indicated by R) was updated. Con-
cretely, we check if any dependency a that was used during the intra-component

13

analysis has been updated in the meantime (line 23). If so, we must re-analyse410

component c to take into account this updated analysis state (line 24). If not,
the analysis result of c has been processed, meaning that we can remove it from
S (line 26).

Thread safety. We now turn to the thread safety of this algorithm. A
possible data race can occur at the level of the store: it could be the case that415

the store used for its analysis (σlocal, line 4) is out of sync with the current
version of the store (σ). If it is the case, then the analysis of the component
may have produced results based on an outdated store. The addresses of σlocal
that the worker depends upon are registered as dependencies in the analysis.
Once the worker has finished, we check for each registered dependency if the420

value at the address it depends on in the store has changed since the worker
fetched its version of the store (line 23 of Algorithm 2), comparing the store
used by the intra-component analysis (σlocal) with the current store (σ). Should
any addition to the store possibly impact the outcome in the analysis of a
component, the component will therefore have been rescheduled for analysis.425

Hence, such data races are harmless.
It should be noted that in an actual implementation (such as in Section 4),

it is necessary to make σ a volatile variable. Only the coordinator thread
modifies σ, while worker threads can only read σ. It is not necessary for a
worker to have the latest version of σ; the σlocal variable is introduced to ensure430

only a single version of σ is read.
Discussion. The parallelism that can be exploited by this algorithm will

depend on the number of components that are scheduled at the same time (i.e.,
based on the size of the set S). The analysis behaviour is non-deterministic
in the order in which scheduled components are analysed, the order in which435

concurrent intra-component analyses finish, and the order in which their results
are processed. This significantly influences in what order and in how many
iterations the analysis state will converge; however, it has no impact on the
final analysis result, which is always the same as that of Algorithm 1.

3.2. Optimising for Parallel Efficiency440

There are several optimisations that can be applied to Algorithm 2 to further
enhance its parallel efficiency.

Prioritising components. Although the order in which scheduled com-
ponents are analysed and subsequently processed does not influence the final
analysis result, it can affect performance. If two components c1 and c2 are445

scheduled, and c1 relies on some analysis state that c2 updates, then analysing
both c1 and c2 in parallel would result in having to re-analyse c1. We can avoid
such issues by prioritising which scheduled components need to be analysed first.
Xie et al. [10] analyse callees in parallel before their callers are analysed, and
other existing work [20] on parallel analysis has also confirmed the importance of450

prioritised scheduling to improve parallel efficiency. Multiple exploration heuris-
tic to prioritise certain components can be expressed, and this is a question that
we address at the end of this section.

14

Timestamped dependencies. In practice, checking if no dependencies
were changed by comparing abstract values in the store (i.e., using the equal-455

ity checks on line 23) could be somewhat expensive, at least in this context
where we want to avoid a sequential bottleneck by reducing the workload of
the coordinator. A simple workaround is to assign a timestamp to each de-
pendency (initially zero for every dependency). Whenever the analysis state is
updated (line 18), we increase the timestamp of the corresponding dependency.460

As such, we can eliminate the expensive equality checks on abstract values, in-
stead replacing them with much cheaper equality checks on the timestamps of
the dependencies. Using such timestamps for cheaper comparisons goes back to
earlier work on optimising the performance of static analysers [1, 21].

Filtering intra-component analysis results. Note that the cost of pro-465

cessing the results is directly linked to the size of the C, R and T sets returned
by the analyse function. We can reduce the workload on the single-threaded
coordinator further, by first filtering these sets in the worker after computing
the intra-component analysis. Specifically, the worker can remove all compo-
nents in C which are already included in the visited set V , since these are470

discarded anyway on line 11. Similarly, it can filter the sets R and T to only
include dependencies that are not yet registered for the analysed component or
where the corresponding updates are not yet subsumed by the current analysis
state, respectively. Note that it would not be safe to remove the corresponding
if-checks in Algorithm 2: the analysis state may have been updated after the475

filtering of the results, but before they are processed. On the other hand, the
filtering itself is always safe due to the increasing nature of the analysis (e.g.,
the set V only grows).

3.3. Application to ModF and ModConc

Since the parallelisation targets the inter-component analysis, no additional480

effort is required to parallelise existing modular analyses such as ModF and
ModConc: one only needs to replace the sequential with the parallel worklist
algorithm. For ModF, this results in an inter-procedural analysis in which
multiple function calls are analysed in parallel. For ModConc, this results in
an inter-process analysis in which multiple processes are analysed in parallel.485

However, for ModConc, the modular analysis design allows us to exploit
even more parallelism, since the intra-component analysis of a ModConc anal-
ysis can be implemented using a ModF analysis. By using a parallel ModF
analysis, both the inter- and intra-component analysis of ModConc can triv-
ially be rendered parallel.490

3.4. Exploration Heuristics

We mentioned that the order in which components are scheduled may impact
performance, although it has no impact on the final analysis results. We now
turn to the possible exploration heuristics that can be defined for both ModF
and ModConc. We therefore propose a number of heuristics for prioritizing495

components. These heuristics are either inspired by related work [10, 22], or

15

they aim at prioritizing components based on the characteristics of their depen-
dencies. We evaluate the impact of each of these heuristics on the running time
of a ModF analysis in Section 5.4.

• Rand. This heuristic assigns a random priority to each component.500

• CD. This heuristic implements an idea originally proposed by Xie et
al. [10]: it assigns a higher priority to callees than to callers in the case of
ModF. To that end, it tracks which component calls which other compo-
nents, and the priority of a component is its call depth. This heuristic is
also applicable to ModConc, by assigning a higher priority to “creator”505

threads than created threads.

• V-. This heuristic assigns a higher priority to components that have been
visited the least so far. The idea is that components that have been
visited the least will contribute the most to the analysis state, and this
might result in a faster convergence.510

• V+. This heuristic assigns a higher priority to components that have
been visited the most. It is therefore dual to the previous one, and might
result in a slower convergence.

• Ex+. This heuristic assigns a higher priority to components that con-
tain expressions that are deeper in the AST. Lyde and Might [22] have515

shown that this has a positive impact on the convergence speed of context-
sensitive state-based analyses.

• Ex-. This heuristic is the opposite of the previous one: it assigns a higher
priority to components that contain expressions that are higher in the
AST.520

• D+. This heuristic assigns a higher priority to components that have
the most dependencies. Components with more dependencies will be re-
triggered more often.

• D-. This heuristic assigns a higher priority to components that have
fewer dependencies, and is the opposite of the previous one. Components525

with fewer dependencies may be triggered less often, and scheduling them
before other components may result in fewer reanalyses.

• DR. This heuristic assigns a priority as T/(T + R) where R is the num-
ber of dependencies of the component, and T is the number of times the
component triggers dependencies. This prioritises components that have530

a higher ratio of triggering dependencies, with the aim of discovering com-
ponents that will need to be reanalysed more quickly.

• E+ This heuristic assigns a priority based on the size of the environment
of a component, as a proxy for the size of the actual component. The ad-
vantage of measuring component size through environments is that a com-535

ponent may span across many lines of code, yet only have few reachable

16

addresses. Hence, the impact of such a component on the state space will
remain small. The idea is that larger components may have a larger im-
pact on the global analysis state, therefore triggering dependencies which
lead to the analysis state converging more quickly.540

• E- This heuristic is the opposite of the previous one: components with
a smaller environment are prioritised. The rationale is that components
that have a smaller environment may stabilise faster than components
with larger environments.

4. Implementation545

We have implemented the parallel worklist algorithm presented in this paper
for the MAF static analysis framework [23] and made it available online 7 In
this section, we detail our Scala implementation of the algorithm in order to
illustrate the technicalities of implementing such an algorithm in a real-world
analysis framework. This section can be skipped for the reader not interested550

in reproducing such an implementation.
MAF is a framework for implementing modular analyses for dynamic, higher-

order languages. The framework provides a set of reusable building blocks to
define a modular analysis as a composition of Scala traits. We defined the
following trait for the parallel worklist algorithm:555

trait ParallelWorklistAlgorithm[Expr <: Expression]

extends ModAnalysis[Expr]

with GlobalStore[Expr]

with PriorityQueueWorklistAlgorithm[Expr] {

...

}

This trait extends ModAnalysis, which is the root class for all modular analyses
in MAF. In addition, it extends the following two traits:

• GlobalStore, which expresses the requirement that a parallel analysis uses
a global store. The parallel worklist algorithm can easily be generalised to
support other kinds of global analysis state in addition to a global store.560

We only require such global state to form a join semi-lattice and to grow
monotonically during the analysis, through the joining of results computed
by intra-component analyses.

• PriorityQueueWorklistAlgorithm, which represents worklist algorithms
that prioritise the analysis of certain components (i.e., using a priority565

queue) based on their priority. The definition of a component’s priority is
left open as a parameter, allowing us to plug in different heuristics for the
exploration order of components.

7https://github.com/softwarelanguageslab/maf/tree/parallel-evaluation.

17

https://github.com/softwarelanguageslab/maf/tree/parallel-evaluation

We now cover the implementation of this trait before showing how it can be
used to render a modular analysis parallel.570

4.1. Intra-Component Analysis

The intra-component analysis performs the analysis of a single component.
Afterwards, the computed result is used to update the global analysis state,
which is composed of the global store, a timestamp for every dependency (as
described in Section 3.2), a map of dependencies to the set of components that575

depend on it, and the set of visited components:

1 type GlobalState = (Map[Addr, Value], // <- store

2 Map[Dependency, Int], // <- depVersion

3 Map[Dependency, Set[Component]], // <- deps

4 Set[Component] // <- visited

5)

6 @volatile var latest: GlobalState = _

7

8 // keep track for every dependency of its "version number"

9 var depVersion = Map[Dependency, Int]().withDefaultValue(0)

The latest global state is stored in a volatile variable latest. This is necessary
because all workers should retrieve the global state when the intra-component
analysis is performed, rather than when the component is scheduled for analysis,
and because accesses to the global state need to be made in one atomic read580

operation to avoid race conditions when accessed from different threads.
The intra-component analysis then simply overrides helper functions from

the intra-component analysis defined within the GlobalStore trait. Upon a
write to an address in the global store (line 6 in the code below), the time-
stamp of the dependency is increased if the value written changed something in585

the store. Upon the registration of a dependency (line 13), the dependency is
marked for inspection, and if it is the first time that the dependency is registered,
it is added to the dependencies of the current component. Upon the creation of
a new component (line 19), the new component is added to the set of compo-
nents created, in case it has not yet been visited. Finally, the intra-component590

analysis is only considered finished (line 24) when, after analysing the compo-
nent, all dependencies marked for inspection (i.e., those that were read during
the intra-analysis) have the same timestamp locally (in intra.depVersion) as
in the global analysis state (in inter.depVersion). Otherwise, the computed
result is not up-to-date with respect to the latest global analysis state, and the595

component will need to be analysed again using the latest global analysis state.

1 def intraAnalysis(component: Component): ParallelIntra with GlobalStoreIntra

2 trait ParallelIntra extends IntraAnalysis with GlobalStoreIntra { intra =>

3 val (latestStore, depVersion, deps, visited) = latest

4 store = latestStore

5 var toCheck = Set[Dependency]()

6 override def doWrite(dep: Dependency): Boolean =

18

7 if (super.doWrite(dep)) {

8 inter.depVersion += dep -> (inter.depVersion(dep) + 1)

9 true

10 } else {

11 false

12 }

13 override def register(dep: Dependency): Unit = {

14 toCheck += dep

15 if (!deps(dep)(component)) {

16 R += dep

17 }

18 }

19 override def spawn(cmp: Component): Unit =

20 if (!visited(cmp)) {

21 C += cmp

22 }

23 def isDone = toCheck.forall(dep =>

24 inter.depVersion(dep) == intra.depVersion(dep))

25 }

4.2. Worker Thread

The code below concerns the worker threads. The number of workers used
by the analysis, which determines how much parallelism can be exploited, is
defined in the workers variable (line 1). The variable currentTimeout (line 2)600

is the global timeout of the analysis: in case it is exceeded, all workers have to
terminate. The use of the (global) worklist in worker threads is protected by
a monitor (line 4). A worker is a regular thread (line 14), which continuously
takes the next component from the worklist, analyses it and then sends back the
result (using pushResult). The helper function spawnWorker (line 29) simply605

creates a new worker and starts it.

1 def workers: Int = Runtime.getRuntime.availableProcessors()

2 var currentTimeout: Timeout.T = _

3

4 object WorkListMonitor

5 def popWorklist(): Component = WorkListMonitor.synchronized {

6 while (worklist.isEmpty)

7 WorkListMonitor.wait()

8 worklist.dequeue()

9 }

10 def pushWorklist(cmp: Component) = WorkListMonitor.synchronized {

11 worklist += cmp

12 WorkListMonitor.notify()

13 }

14 class Worker(i: Int) extends Thread(s"worker-thread-$i") {

15 override def run(): Unit = try while (true) {

19

16 val cmp = popWorklist()

17 val intra = intraAnalysis(cmp)

18 intra.analyzeWithTimeout(currentTimeout)

19 if (currentTimeout.reached) {

20 pushResult(TimedOut(cmp))

21 } else {

22 pushResult(Completed(intra))

23 }

24 } catch {

25 case _: InterruptedException => ()

26 }

27 }

28

29 def spawnWorker(i: Int) = {

30 val worker = new Worker(i)

31 worker.start()

32 worker

33 }

4.3. Analysis Results

The Result trait (line 1) represents the result of an intra-component analy-
sis, which can either have completed successfully or have timed out. A successful
analysis result contains the corresponding ParallelIntra object. Results are610

stored in a priority queue (line 8), which is protected by a monitor (line 7)
as it will be used by multiple workers concurrently through the pushResult

function. The popResult function will be used by the coordinator to extract
analysis results.

1 sealed trait Result { def cmp: Component }

2 case class Completed(intra: ParallelIntra) extends Result {

3 def cmp = intra.component

4 }

5 case class TimedOut(cmp: Component) extends Result

6

7 object ResultsMonitor

8 val results: PriorityQueue[Result] = PriorityQueue.empty

9

10 def popResult(): Result = ResultsMonitor.synchronized {

11 while (results.isEmpty) ResultsMonitor.wait()

12 results.dequeue()

13 }

14 def pushResult(res: Result) = ResultsMonitor.synchronized {

15 results += res

16 ResultsMonitor.notify()

17 }

20

4.4. Analysis Coordination615

The coordination of the worker threads relies on three elements: a list of
worker threads that have been spawned (line 1), the set of components that
need to be analysed (line 2), and the set of components that are currently
queued in the worklist (line 3).

1 var workerThreads: List[Worker] = Nil

2 var todo: Set[Component] = Set(initialComponent)

3 var queued: Set[Component] = Set.empty

The addToWorkList function inherited by the ModAnalysis class is imple-620

mented (line 1) to only push a component on the worklist if it has not already
been queued.

1 override def addToWorkList(cmp: Component): Unit =

2 if (!queued.contains(cmp)) {

3 queued += cmp

4 pushWorklist(cmp)

5 }

Two helper functions are defined to deal with the result of intra-component
analyses. The processTimeout method is called when an intra-component anal-
ysis reaches its timeout: in this case, the component is removed from the set625

of queued components and will not be scheduled for analysis at that moment,
but it is added back to the todo set to track that it has not been successfully
analysed yet. The processTerminated method is called upon successful ter-
mination of an intra-component analysis. It first calls the commit method of
the intra-component analysis (line 6), which will schedule newly created com-630

ponents and trigger dependencies to reschedule components that may depend
on dependencies modified by the current intra-component analysis. Then, the
global analysis state is updated (line 7). If the intra-component analysis does
not need to be rescheduled due to its state being out of sync with the latest
global state, the corresponding component is removed from the queued compo-635

nents (line 9), otherwise it is pushed on the worklist (line 11) as it needs to be
analysed again to account for a newer version of the global analysis state.

1 private def processTimeout(cmp: Component): Unit = {

2 todo += cmp

3 queued -= cmp

4 }

5 private def processTerminated(intra: ParallelIntra): Unit = {

6 intra.commit()

7 latest = (store, depVersion, deps, visited)

8 if (intra.isDone) {

9 queued -= intra.component

10 } else {

11 pushWorklist(intra.component)

21

12 }

13 }

The main method of an analysis is the analyzeWithTimeout method. It first
initialises the timeout and the global state (lines 4 and 5), spawns all worker
threads (line 7) and populates the worklist (line 9). As long as there are compo-640

nents queued for analysis (line 12), the next result is extracted (line 13), which
possibly waits for the termination of an intra-component analysis, and calls
the appropriate helper method depending on whether the analysis succeeded or
timed out. Finally, once there are no more components to analyse, all worker
threads are terminated (line 18).645

1 override def analyzeWithTimeout(timeout: Timeout.T): Unit =

2 if (!finished()) {

3 // initialize timeout and initial analysis state

4 currentTimeout = timeout

5 latest = (store, depVersion, deps, visited)

6 // spawn the workers

7 workerThreads = List.tabulate(this.workers)(spawnWorker)

8 // fill the worklist with initial items

9 todo.foreach(addToWorkList)

10 todo = Set.empty

11 // main workflow: continuously commit analysis results

12 while (queued.nonEmpty)

13 popResult() match {

14 case Completed(intra) => processTerminated(intra)

15 case TimedOut(cmp) => processTimeout(cmp)

16 }

17 // wait for all workers to finish

18 workerThreads.foreach { t =>

19 t.interrupt()

20 t.join()

21 }

22 }

4.5. Prioritisation Heuristics

As explained previously, the order in which the components are scheduled for
analysis may have an impact on the convergence speed of the analysis. In order
to evaluate this impact in the case of the parallel worklist algorithm, we have
implemented all heuristics described in Section 3.4. Each heuristic is defined by650

implementing an ordering on components (Ordering[Component]), which will
be used by the PriorityQueueWorklistAlgorithm.

Note that with the exception of the Ex+ and Ex- heuristics, the priori-
ties of components cannot be computed before the analysis is run. Therefore,
these heuristics update the priorities as more components and dependencies are655

discovered, registered, and triggered.

22

4.6. Rendering an Analysis Parallel

Any ModAnalysis in MAF can be rendered parallel with this worklist algo-
rithm. As an example, we illustrate how one can render a k-CFA analysis par-
allel. The following code shows how a sequential analysis is instantiated, based660

on the traits already provided by MAF, such as the main trait for an analy-
sis of Scheme programs (SimpleSchemeModFAnalysis), the context sensitivity
(SchemeModFKCallSiteSensitivity), the abstract domain (SchemeConstantPropagationDomain),
and the worklist algorithm (RandomWorklistAlgorithm).

1 def kCFAAnalysis(prg: SchemeExp, kcfa: Int) =

2 new ModAnalysis(prg)

3 with SimpleSchemeModFAnalysis

4 with RandomWorklistAlgorithm[SchemeExp]

5 with SchemeModFKCallSiteSensitivity

6 with SchemeConstantPropagationDomain {

7 val k = kcfa

8 }

To instantiate a parallel version of this analysis, only a few lines have to be665

adapted, as shown in the next snippet. Rather than the sequential worklist al-
gorithm, we rely on the parallel one (ParallelWorklistAlgorithm), which is in-
stantiated with a random priority heuristic (RandomPriorityWorklistAlgorithm).
The number of workers is defined, and the intraAnalysis method has to be re-
defined to mix in the intra-component analysis provided by the parallel worklist670

algorithm.

1 def parallelKCFAAnalysis(prg: SchemeExp, n: Int, kcfa: Int) =

2 new ModAnalysis(prg)

3 with SimpleSchemeModFAnalysis

4 with RandomPriorityWorklistAlgorithm[SchemeExp]

5 with ParallelWorklistAlgorithm[SchemeExp]

6 with SchemeModFKCallSiteSensitivity

7 with SchemeConstantPropagationDomain {

8 val k = kcfa

9 override def workers = n

10 override def intraAnalysis(cmp: Component) =

11 new IntraAnalysis(cmp) with BigStepModFIntra with ParallelIntra

12 }

5. Evaluation

Our parallel worklist algorithm, including the optimisations discussed in
Section 3.2, has been integrated into the MAF framework [23] as described in
the previous section, where it is made available as a Scala trait that can directly675

be used with any existing modular analysis. We set up our experiments using
this implementation and answer the three following research questions as part
of our evaluation.

23

• RQ1: Does the proposed approach result in speedups when applied to the
ModF modular analysis, and this for all context-insensitive and context-680

sensitive configurations of the analysis?

• RQ2: Does the proposed approach result in speedups when applied to a
different modular analysis such as ModConc?

• RQ3: What is the impact of the various exploration heuristics discussed
in the previous section on the speedups?685

We cover each of these research questions in the remainder of this section,
after describing our evaluation setup. We have also verified the correctness of
the parallel implementation by running the built-in soundness tests of MAF
and by verifying that the analysis results are the same as those of the sequen-
tial implementation for all benchmarks. Our implementation, the setup for our690

experiments, and our benchmark programs are available in a replication pack-
age8.

5.1. Setup

Execution environment. All experiments were conducted on a server
using a AMD Ryzen Threadripper 3990X processor with 64 cores at 2.9GHz,695

enabling running 128 threads simultaneously in total. The server uses Java
14.0.2 (OpenJDK) and Scala 2.13.3, and we configured the JVM with a fixed
heap size of 64GB. Each experiment was preceded by up to 10 warm-up runs,
with a total warm-up timeout of 1 minute. The reported results are the mean
over 20 measurements, and we report on the standard deviation as well.700

Benchmarks. We use a total of 40 Scheme benchmarks from the built-in
benchmark suite of MAF, 24 for ModF (cf. Table 1) and 16 for ModConc
(cf. Table 2). The ModConc benchmarks are written in an extended version of
R5RS Scheme that includes special forms and primitives to support concurrency.
In contrast to some of the existing work on parallel analysis [14], our approach705

is not dependent on the choice of context-sensitivity: for ModF, we perform
an evaluation on a context-insensitive configuration of the analysis as well two
context-sensitive ones, using 1-CFA and 2-CFA [1]. For ModConc, we run all
analyses with high context-sensitivity (5-CFA), since otherwise they terminated
too quickly to produce relevant results. For our evaluation, the abstract values710

come from a constant propagation domain [4], allowing the analysis to derive
the type and, if possible, the constant value of every expression in the program.
Values such as functions and pointers are themselves approximated by a set-
based lattice.

Sequential implementation. As advocated by Dewey et al. [14], we re-715

port speedups relative to the sequential implementation (which is not always
the case for speedups reported in other related work [24, 25, 9, 26]). This is done
for three reasons. First, our parallel algorithm has no sequential baseline: its

8https://github.com/softwarelanguageslab/maf/tree/parallel-evaluation

24

https://github.com/softwarelanguageslab/maf/tree/parallel-evaluation

Table 1: An overview of the ModF benchmarks. LOC indicates lines of code (as calculated
by cloc). The 0-CFA, 1-CFA, 2-CFA columns indicate the time it takes for the sequential
ModF implementation to analyse a benchmark with the given context sensitivity. ∞ indicates
that the analysis timed out after 60 minutes.

Benchmark LOC 0-CFA 1-CFA 2-CFA

scp 2504 1m28s ± 47s 10s ± 2s 13s ± 2s
scheme 767 1m21s ± 26s ∞ ∞
eceval 774 1m1s ± 55s 1m0s ± 18s 4m26s ± 1m54s
sboyer 632 31s ± 1m0s 18s ± 43s 24s ± 7s
peval 497 35s ± 19s ∞ ∞

multiple-dwelling 402 17s ± 11s ∞ ∞
decompose 412 16s ± 10s ∞ ∞
dynamic 1520 12s ± 4s ∞ ∞

prime-sum-pair 394 8s ± 4s ∞ ∞
ambeval 379 8s ± 4s ∞ ∞

meta-circ 374 6s ± 2s 2m1s ± 35s ∞
boyer 577 4s ± 2s 9s ± 4s ∞
nboyer 625 3s ± 4s 6s ± 11s 29s ± 1m15s

SICP-compiler 402 3s ± 1s 1s ± 0s 6s ± 3s
compiler 466 3s ± 1s 1s ± 0s 3s ± 0s

ad 604 1s ± 0s 0 ± 0s 1s ± 0s
leval 334 1s ± 0s 3s ± 1s 23s ± 8s
aeval 300 1s ± 0s 2s ± 1s 1m47s ± 29s
earley 469 0s ± 0s 5s ± 1s ∞
graphs 483 0s ± 0s 0s ± 0s 12m31s ± 1m26s
nbody 1250 0s ± 0s 2s ± 0s 11s ± 3s
matrix 617 0s ± 0s 0s ± 0s 1m2s ± 21s
browse 161 0s ± 0s 2s ± 1s ∞
regsim 396 0s ± 0s 0s ± 0s 0s ± 0s

25

Table 2: An overview of the ModConc benchmarks. LOC indicates lines of code (as
calculated by cloc). The last column indicates the running time using the sequential 5-CFA
ModConc implementation.

Benchmark LOC Sequential (5-CFA)

minimax 96 5m40s ± 6s
matmul 111 2m58s ± 4s
actors 105 1m28s ± 1s

stm 130 57s ± 1s
abp 72 23s ± 0s

msort 38 13s ± 2s
randomness 26 7s ± 0s

crypt 163 5s ± 0s
sieve 51 3s ± 0s

sudoku 84 3s ± 0s
life 124 2s ± 0s
nbody 136 1s ± 0s
pps 69 1s ± 0s

phild 46 1s ± 0s
pp 33 0s ± 0s

atoms 45 0s ± 0s

instantiation with a single worker uses two threads (one for the worker, one for
the coordinator), hence this would skew the results from an initial speedup that720

would not be reported in the results. Second, the work of Dewey et al. [14] being
the most closely related to ours, this enables comparing results. Finally, report-
ing speedups in such a way corresponds to the usual notion of speedups and leads
to a more natural interpretation of the results: achieving a n× speedup means
that replacing the sequential implementation of an analyser by the parallel one725

results in the analysis being n× faster.
For a fair comparison, unless specified otherwise, both the sequential and the

parallel implementations use a heuristic that randomly picks components from
the worklist. The total running time of the sequential ModF and ModConc
implementations are included in Table 1 and Table 2, respectively. Using a730

random ordering for the exploration of components, together with the fact that
we average our results over 20 runs of the analysis and report on the standard
deviation, enables comparing the analyses’ performance independently of the
exploration order picked by one actual run of the analysis.

Although one could expect that increasing context sensitivity will lead to735

an increased analysis time because the theoretical complexity of the analysis is
worsened, in practice we sometimes observe the opposite. For example, sboyer
and scp see their analysis time reduced with a higher context sensitivity. This
is an observation shared by other static analyses of both static and dynamic lan-
guages [27, 28]. In our case, we can track down this improvement to the use of740

sets of abstract addresses to encode data structures such as lists. Where an im-

26

1 2 4 8 16 32 64 128
Number of workers

1

2

4

8

16

32

64

128

Sp
ee

du
p

meta-circ
boyer
dynamic
nboyer
peval
sboyer
scheme
ambeval
multiple-dwelling
decompose
prime-sum-pair
leval
eceval
compiler
scp
SICP-compiler

Figure 3: Speedups for the context-insensitive ModF analysis.

precise analysis will collate many abstract addresses into a set of abstract values,
a more precise analysis will — thanks to its increased precision — not contain
many of the superfluous abstract addresses in this set, therefore resulting in a
reduced analysis time. In addition, when the data-flow information computed745

by the analysis impacts the control-flow behaviour, increased precision reduces
the number of (spurious) behaviours that have to be analysed further.

5.2. RQ1: Speedups on Context-Insensitive and Context-Sensitive ModF Anal-
yses

The speedups for a context-insensitive ModF analysis are given in Figure 3,750

and for context-sensitive ModF analyses, respectively 1-CFA and 2-CFA, in
Figures 4 and 5. These graphs only report speedups for benchmarks where the
base analysis terminates within 60 minutes and takes more than one second.
Each data point contains a vertical line indicating the standard deviation for
that measurement.755

In each case, we observe rather consistent speedups up to 16 workers: using
4 workers, most benchmarks achieve a speedup between 3× and 8×; using 16
workers, most benchmarks achieve a speedup between 8× and 32×. When
using more than 16 workers, performance gains are mostly dependent on the
benchmark under analysis.760

In general, longer-running benchmarks such as scheme (0-CFA), meta-circ
(1-CFA), eceval (2-CFA), and graphs (2-CFA) can benefit more from the ad-
ditional parallelism, achieving high speedups for 64 workers (80×, 60×, 53×,
and 277× respectively). Other benchmarks improve only slightly (or not at all)
when increasing the number of workers further. In particular, the compiler765

benchmark (2-CFA) appears to slow down when too many workers are added.
One reason for this slowdown could be that the sequential implementation only
takes 3 seconds to analyse this program; using 8 workers reduces this to 0.4
seconds, and it may not be possible to improve performance further through

27

1 2 4 8 16 32 64 128
Number of workers

1

2

4

8

16

32

64

128
Sp

ee
du

p
earley
meta-circ
boyer
nbody
browse
nboyer
sboyer
aeval
leval
eceval
scp
SICP-compiler

Figure 4: Speedups for the context-sensitive 1-CFA ModF analysis.

1 2 4 8 16 32 64 128
Number of workers

1

2

4

8

16

32

64

128

Sp
ee

du
p

graphs
nbody
matrix
nboyer
sboyer
aeval
leval
eceval
compiler
scp
SICP-compiler

Figure 5: Speedups for the context-sensitive 2-CFA ModF analysis.

28

parallelism. Adding more workers at that point could lead to more overhead770

or a less favourable exploration strategy. In general, we expect speedups to
become more limited for a larger number of workers: there is only a single co-
ordinator to process all incoming results, introducing a sequential bottleneck
that puts a limit on the maximum performance we can achieve, regardless of
how many workers are used. However, most benchmarks seem to consistently775

benefit from increasing the number of workers up to 64, although with a reduced
improvement as the number of workers grows.

The standard deviation of the speedups is particularly high for sboyer and
nboyer. This is also something we observe in the performance of the sequential
version of our algorithm, and indicates that the running time for these bench-780

marks are highly dependent on the exploration order of the analysis. However,
we clearly observe for these benchmarks a speedup that increases with a stan-
dard deviation that decreases in all configurations of the analysis.

Interestingly, we observe some speedups that are better than ideal (greater
than N× with N threads), which are sometimes called “superlinear” speedups785

in related work. First, it should be noted that the parallel implementation
with 1 worker is not identical to the sequential implementation. The former
uses 2 threads in total for the analysis: 1 worker thread to perform the intra-
component analyses, and 1 thread for the coordinator to process the intra-
component analysis results. The latter only uses a single thread that does both790

sequentially. For this reason, we often already notice performance improvements
up to 2× when using just a single worker. Reporting speedups relative to the
sequential implementation is advocated by Dewey et al. [14], in order to adhere
with the usual definition of speedup.

Another major factor contributing to such better than ideal speedups is the795

order in which components are explored. Both the sequential and parallel im-
plementations use the same heuristic to pick the next scheduled component to
analyse. However, as already mentioned in Section 3.1, the exploration order is
non-deterministic for the parallel implementations: the rate at which workers
execute the intra-component analyses determines which components are sched-800

uled, analysed and processed first. While this does not influence the analysis
result, it does influence the performance of the analysis (for better or worse),
as it determines how the analysis state converges. In addition, our parallel al-
gorithm exploits the monotonicity of the analysis to speed up the convergence
of the analysis state: every intra-component analysis can update the analysis805

state, even if that intra-component analysis was not using the latest analysis
state itself. The increased rate at which the analysis state converges could
in turn lead to fewer re-analyses of the same component, reducing the total
amount of work for the parallel analysis. This indeed turns out to be the case
for benchmarks with very high speedups. For instance, the scheme benchmark810

(0-CFA) performs 53 489 intra-component analyses in total using the sequential
implementation, whereas on a sample run of the parallel implementation with 8
workers, only 14 095 intra-component analyses are required. This means that for
that benchmark, the intra-component analysis workload is reduced by approx-
imately a factor of 4, which, combined with the parallelism of using 8 workers,815

29

explains why we are able to achieve a 40× speedup. Our work confirms findings
reported in related work [14, 13, 29, 24] that often attributes better than ideal
or unexpected speedups to the exploration order.

We can therefore answer our research question: the proposed approach does
indeed result in impressive speedups when applied to a ModF analysis, often820

reaching a plateau after 64 workers. Some speedups are better than ideal due
to the way the parallel algorithm exploits the monotonicity of the analysis to
speed up its convergence. These results are similar across different context
sensitivities. On average, our approach yields respectively a 15.4×, 10.6×, and
17.3× speedup on a 0-CFA, 1-CFA, and 2-CFA analysis with 16 threads.825

5.3. RQ2: Speedups for a ModConc Analysis

As discussed in Section 3.3, ModConc can exploit parallelism at two levels:
the inter-component analysis can be made parallel using Algorithm 2, while
the intra-component analysis can be made parallel by using a parallel ModF
analysis. In Figure 6, for each benchmark we show a matrix reporting the830

speedups relative to the sequential implementation for a varying number of
workers in both the intra- and the inter-component analysis. The labels on top
of each column indicate the number of workers used for the ModConc inter-
component analysis (henceforth referred to as parameter n). The labels on the
left side of each row indicate the number of workers used per intra-component835

(ModF) analysis (henceforth referred to as parameter m). Since every intra-
component analysis can use m workers, the total number of workers that can
run concurrently at any given time is m ∗ n.

The results highlight the need for this doubly-parallel strategy: when only
analysing ModConc components in parallel (i.e., keeping m = 1), we do not840

consistently achieve the same high speedups as for ModF. Some benchmarks
(such as matmul, minimax and randomness) clearly benefit from analysing mul-
tiple processes in parallel; others (such as crypt, nbody, or sieve) fail to achieve
large speedups when using the same configuration, sometimes even slowing down
compared to the sequential implementation. A reason for this could be techni-845

cal in nature: every single intra-component analysis in ModConc is a parallel
ModF analysis, which requires more overhead to setup, orchestrate and tear
down compared to the more lightweight, sequential ModF implementation. In-
deed, we notice that for most benchmarks, the parallel ModConc implemen-
tation with n = 1 and m = 1 is slower than the sequential implementation.850

However, we believe much of this technical overhead could be avoided in a more
optimised implementation.

Increasing the parallelism of the intra-component analysis (i.e., increasing
m) does seem to improve performance for many benchmarks. In general, it is
recommended to use a combination of inter- and intra-component parallelism855

(i.e., choosing both m > 1 and n > 1), as this often appears to deliver significant
(and somewhat consistent) speedups over the sequential implementation.

It should be noted that some programs (e.g., sudoku, life, nbody, pps,
sieve, phild, pp, atoms) do not leave much room for speedups, as their base
analysis time is 2 seconds or less. This explains why the speedups observed860

30

1 2 4 8

1

2

4

8

n
m

2.4x 5.1x 10.8x 22.2x

3.8x 8.1x 18.1x 33.9x

5.2x 11.0x 22.4x 37.2x

5.3x 11.2x 20.2x 35.4x

minimax

1 2 4 8

1

2

4

8

n
m

1.8x 3.5x 8.3x 14.7x

3.0x 6.2x 14.0x 22.6x

4.6x 10.1x 19.5x 26.0x

5.1x 10.8x 19.3x 27.0x

matmul

1 2 4 8

1

2

4

8

n
m

0.7x 0.8x 0.8x 1.1x

1.4x 1.6x 1.5x 1.8x

2.8x 3.4x 2.8x 2.8x

5.5x 6.1x 5.1x 4.6x

actors

1 2 4 8

1

2

4

8

n
m

0.6x 0.6x 0.5x 0.8x

1.1x 1.1x 1.0x 1.4x

2.1x 2.0x 1.7x 2.2x

3.5x 3.2x 2.4x 2.9x

stm
1 2 4 8

1

2

4

8

n
m

1.2x 1.2x 1.2x 1.2x

2.5x 2.5x 2.5x 2.5x

5.0x 5.1x 5.1x 5.1x

9.0x 9.0x 9.0x 9.1x

abp

1 2 4 8

1

2

4

8

n
m

0.9x 1.3x 1.2x 1.4x

2.0x 2.8x 2.4x 2.3x

4.7x 6.3x 4.8x 4.3x

8.7x 11.9x 8.7x 8.5x

msort

1 2 4 8

1

2

4

8

n
m

6.9x 11.9x 15.7x 17.4x

8.6x 15.1x 17.2x 15.6x

7.5x 10.0x 11.4x 10.2x

4.9x 5.5x 5.7x 5.3x

randomness2

1 2 4 8

1

2

4

8

n
m

0.7x 0.9x 0.9x 1.2x

1.1x 1.4x 1.4x 1.8x

1.7x 2.1x 2.1x 2.6x

2.3x 2.8x 2.7x 3.1x

crypt
1 2 4 8

1

2

4

8

n
m

4.0x 6.5x 6.7x 6.5x

4.6x 6.1x 5.9x 5.6x

3.6x 4.1x 3.7x 3.5x

2.0x 2.1x 1.9x 1.7x

sieve

1 2 4 8

1

2

4

8

n
m

1.2x 2.5x 5.2x 11.3x

1.7x 3.5x 7.1x 11.2x

1.6x 3.0x 4.2x 6.0x

1.2x 1.7x 2.0x 2.9x

sudoku

1 2 4 8

1

2

4

8

n
m

0.8x 1.4x 2.1x 2.6x

1.2x 2.3x 3.1x 3.9x

1.6x 2.8x 3.5x 4.2x

1.6x 2.5x 3.0x 3.6x

life

1 2 4 8

1

2

4

8

n
m

0.8x 1.2x 1.7x 2.2x

1.0x 1.6x 2.1x 2.6x

1.1x 1.6x 2.1x 2.4x

0.9x 1.4x 1.5x 1.7x

nbody
1 2 4 8

1

2

4

8

n
m

1.8x 2.9x 2.9x 2.7x

1.8x 2.6x 2.5x 2.2x

1.4x 1.7x 1.6x 1.3x

0.8x 0.8x 0.8x 0.7x

pps

1 2 4 8

1

2

4

8

n
m

1.0x 1.7x 2.8x 3.8x

1.5x 2.6x 4.5x 5.6x

2.0x 3.5x 5.0x 5.7x

2.2x 3.0x 3.5x 3.6x

phild

1 2 4 8

1

2

4

8

n
m

0.8x 1.3x 1.5x 2.0x

1.3x 2.0x 2.5x 3.0x

1.8x 2.6x 3.5x 3.7x

1.7x 2.0x 2.7x 2.5x

atoms

1 2 4 8

1

2

4

8

n
m

1.0x 1.6x 3.0x 3.4x

1.4x 2.2x 4.1x 4.2x

1.7x 2.5x 3.5x 3.3x

1.4x 1.6x 1.9x 1.7x

pp

Figure 6: Speedups for the context-sensitive 5-CFA ModConc analysis, relative to the
sequential implementation. Horizontally (left-to-right), we increase the number of workers for
ModConc inter-component analysis. Vertically (top-to-bottom), we increase the number of
workers per intra-component (ModF) analysis. Color is used to emphasise the magnitude of
the speedup (or in some cases, slowdown).

for these programs are lower. In contrast, longer-running benchmarks such as
matmul and minimax achieve more significant speedups up to 27× and 37×,
respectively.

We can therefore answer our research question: when applied to a Mod-
Conc analysis, our parallel worklist algorithm also results in decent speedups,865

although less impressive ones than when applied to a ModF analysis. This is
mostly due to the more complicated orchestration of the analysis workers.

31

5.4. RQ3: Exploration Strategies and Their Effects on Speedups

We have introduced multiple exploration heuristics (Section 3.4), each of
which could potentially result in further speedups. So far, our evaluation has870

only been concerned with the random exploration heuristic (Rand). To in-
vestigate the impact of the other heuristics on the speedups, we have run the
ModF analyses with a fixed number of workers (n = 4), for various context
sensitivities (0-CFA, 1-CFA, and 2-CFA), with each of the proposed heuristics.
We report on the speedup of each heuristic compared to the time taken by the875

random exploration heuristic in the same configuration, in Tables 3 (0-CFA), 4
(1-CFA), and 5 (2-CFA). We only include results for configurations for which
Rand takes at least 1s and less than 60 minutes.

Table 3: Speedups of various exploration heuristics relative to the random exploration heuristic
for a parallel 0-CFA analysis with 4 workers. The background color indicates whether the
result is a speedup (green), or a slowdown (red).

Benchmark Rand CD DR D+ D- Ex+ Ex- V+ V- E+ E-

scheme 18s 2.79 0.43 0.66 3.00 0.97 0.98 1.19 0.88 0.23 6.31
eceval 14s 2.95 0.92 0.34 1.51 0.78 1.11 1.32 0.75 0.23 7.92

scp 5s 1.07 1.01 0.80 1.31 1.01 1.01 0.98 0.99 0.88 1.14
peval 5s 1.72 0.48 0.72 2.76 1.06 0.76 0.96 1.10 0.63 1.21

sboyer 3s 0.27 5.17 0.21 5.73 1.11 0.95 0.99 0.97 0.21 5.29
decompose 3s 1.17 1.57 0.46 1.22 1.02 1.01 0.97 1.09 0.91 1.11

multiple-dwelling 3s 1.36 2.24 0.40 0.84 0.89 1.12 0.89 1.23 0.80 2.56
dynamic 2s 1.44 0.91 0.48 2.09 1.06 0.95 1.02 1.01 0.39 3.56

Prime-sum-pair 2s 1.12 2.17 0.45 0.77 1.05 0.97 1.14 0.90 0.88 2.80
ambeval 2s 0.65 2.72 0.74 0.74 0.98 1.09 0.88 1.07 0.70 3.20
nboyer 1s 0.63 3.50 0.28 4.46 1.13 1.01 0.94 1.07 0.11 8.27

meta-circ 1s 2.60 0.56 0.45 2.42 1.09 0.95 1.02 0.91 0.53 1.58
boyer 1s 0.61 1.72 0.77 1.37 0.95 1.05 1.00 0.98 1.27 0.98

compiler 1s 0.85 2.73 0.33 2.65 1.08 0.91 1.03 1.07 0.35 1.53
SICP-compiler 1s 0.90 2.33 0.33 2.84 0.98 0.91 0.99 1.10 0.41 1.52

ad 1s 1.03 1.01 0.98 1.01 1.02 1.00 0.99 1.02 0.95 1.02

Table 4: Speedups of various exploration heuristics relative to the random exploration heuristic
for a parallel 1-CFA analysis with 4 workers. The background color indicates whether the
result is a speedup (green), or a slowdown (red).

Benchmark Rand CD DR D+ D- Ex+ Ex- V+ V- E+ E-

meta-circ 22s 2.28 0.53 0.61 3.10 1.03 1.08 0.98 1.00 0.46 1.20
eceval 14s 0.96 2.47 0.30 1.55 1.09 1.02 1.09 1.13 0.48 2.48
nboyer 7s 0.57 9.93 0.33 4.17 1.02 0.94 1.04 0.94 0.20 6.51
sboyer 5s 0.25 13.87 0.12 6.89 1.08 0.95 0.94 0.76 0.28 10.38

scp 4s 0.86 1.01 0.84 1.28 0.99 1.02 0.99 1.02 0.87 1.05
boyer 2s 0.87 1.39 0.71 1.29 1.00 1.06 1.07 0.99 1.06 1.19

earley 1s 1.22 0.91 0.70 1.50 0.98 1.12 0.93 1.09 1.27 0.99
leval 1s 1.18 0.91 0.62 2.26 1.05 1.19 0.87 0.95 0.56 1.37
nbody 1s 1.32 1.07 0.52 1.81 1.07 1.02 1.00 0.95 0.71 0.84
aeval 1s 1.23 1.04 0.60 1.47 1.15 1.14 0.80 1.19 0.57 1.08

32

Table 5: Speedups of various exploration heuristics relative to the random exploration heuristic
for a parallel 2-CFA analysis with 4 workers. The background color indicates whether the
result is a speedup (green), or a slowdown (red).

Benchmark Rand CD DR D+ D- Ex+ Ex- V+ V- E+ E-

browse 5m31s 0.89 0.66 1.04 4.11 1.01 1.06 1.06 0.90 1.59 3.51
graphs 1m14s 0.89 1.57 0.69 2.65 0.95 0.97 0.91 1.14 1.16 0.38
eceval 56s 1.47 2.49 0.16 2.47 1.48 0.91 1.05 0.84 0.35 5.54
aeval 33s 2.12 1.14 0.34 1.90 0.95 1.03 0.98 1.04 0.62 1.02

sboyer 25s 0.55 19.63 0.40 0.97 1.60 0.65 1.42 0.85 0.75 3.74
matrix 17s 4.23 0.31 0.76 2.16 1.16 0.73 1.36 0.67 3.09 0.30
leval 7s 0.49 2.85 0.42 2.78 0.89 0.88 1.61 1.00 0.42 1.07

scp 6s 0.94 1.08 0.72 1.44 0.99 1.02 0.98 1.01 0.78 1.19
nbody 3s 1.53 1.40 0.30 2.35 1.10 1.01 0.86 1.11 0.60 0.85

nboyer 2s 0.09 15.55 0.56 1.45 0.74 1.18 1.00 0.96 0.88 2.27
SICP-compiler 1s 1.06 1.23 0.48 2.74 1.11 1.06 0.83 1.10 0.32 1.29

compiler 1s 0.45 2.25 0.87 1.17 1.08 1.13 0.83 1.11 0.58 1.02

We notice that some heuristics only have a minor impact on performance:
Ex+, Ex-, V+, V- achieve running times that are generally within 10% of the880

running time of an analysis using Rand.
Two heuristics (E- and D-) are often consistently better than the random

heuristic, while their opposite heuristics (E+ and D+) are consistently worse.
On a context-insensitive analysis, E- and D- outperform Rand most of the
time, or are only slightly slower. On context-sensitive analyses, V- consistently885

outperforms Rand, achieving an extra speedup of up to 6.89× (sboyer, 1-
CFA), while E- is less consistent and can result in some slowdowns (e.g., 0.3×
on matrix, 2-CFA), but also in better speedups (e.g., 10.38× on sboyer, 1-
CFA).

The idea behind the D- and E- heuristics is to prioritise smaller components890

first, where for D- the number of dependencies is used as a proxy for component
size, and for E- the size of the environment is used as a proxy for component size.
Components that are larger will not only require more time to analyse due to
their increased size, but may also be more frequently scheduled for reanalysis due
to having more dependencies that may be triggered. Hence, prioritising smaller895

components enables the analysis to stabilise portions of its global state before
analysing the larger components, thereby requiring less reanalyses of the larger
components, and reducing the total analysis time. We have instrumented the
0-CFA analysis to log the number of dependencies of each analysed component,
and we find a clear correlation between the speedups of D- and of E- with900

the mean number of dependencies of the components encountered during the
analysis (ρ = 0.466, p-value = 0.021 for D-, and ρ = 0.672, p-value = 0.0003 for
E-): the more dependencies the average component has, the higher the speedup
obtained by these heuristics.

The other heuristics (CD and DR) do not perform consistently. DR is905

the heuristic that achieves the highest speedup (19.63× on sboyer, 2-CFA).
However, for consistent results, we would recommend the use of either D- or E-

33

as the default heuristic for context-insensitive analyses, and of D- for context-
sensitive analyses.

5.5. Threats to Validity910

We discuss potential threats to the validity of our empirical findings below.
In doing so, we follow the classification recommended by Wohlin et al. [30].

A threat to external validity stems from our usage of small- to medium-sized
Scheme benchmarks. We argue that Scheme is an excellent target language
to analyse, as it is highly dynamic in nature and features higher-order func-915

tions, two characteristics that we want to support well in our parallel analy-
sis. We compensated for the smaller scale of the benchmarks by increasing the
context-sensitivity of the analysis and selecting benchmarks of interesting com-
plexity (such as programs that run an interpreter). The built-in benchmarks of
the MAF framework that we used for our experiments originate from various920

sources, including the SICP text [31] and other well-known benchmark suites9

for Scheme [32].
A threat to construct validity is linked to the non-deterministic behaviour of

the parallel analysis. Due to the non-predictable rate at which workers analyse
components, different runs of the same parallel analysis can lead to different925

exploration orders, and therefore to significant differences in performance. We
mitigate this threat by repeating every analysis 20 times, and report the mean
and standard deviation of our results, both for the sequential implementation
and the speedups obtained by the our parallel algorithm. Although some pro-
grams see a high standard deviation when analysed sequentially or with few930

workers, we observed that the standard deviation decreased with more work-
ers, indicating more stable analysis times. Moreover, we have evaluated in RQ3
whether other exploration strategies lead to improvements in running time when
compared to a random strategy, and also repeated measurements for this eval-
uation 20 times.935

6. Future Work

There are several potential improvements to our approach that could be
explored further. We discuss two of them below.

The first is related to the use of a single coordinator thread that processes
incoming analysis results. As discussed earlier, this imposes a sequential bottle-940

neck, potentially limiting speedups when using a very high number of workers.
We believe there is opportunity for parallelism in processing the analysis re-
sults, although this appears to be much harder to parallelise efficiently. Despite
this apparent bottleneck, our approach still appears to scale well up to a high
number of workers. It may however be a reason for the suboptimal speedups945

we can sometimes observe when using 64 or more workers.

9http://www.larcenists.org/Twobit/benchmarksAbout.html

34

http://www.larcenists.org/Twobit/benchmarksAbout.html

A second improvement would be to optimise thread usage in the multi-level
parallelism that we introduce in ModConc. Currently, our approach requires
specifying a number n of workers for the analysis of different threads, and a
number m of workers for the analysis of different functions applications within950

a thread. Each of the n workers has to manage the creation, coordination,
and termination of its m workers, which might incur a overhead. This could
be avoided by designing an approach that solely requires one parameter, where
workers can deal with the analysis of both threads and function applications,
without having to manage other workers. As a result, one may reach speedups955

closer to the speedups we achieved for ModF.

7. Related work

Our approach falls within the domain of modular analyses, initially pro-
posed by Cousot and Cousot [15]. In particular, we apply our approach to
function-modular analyses [16] and process-modular analyses [17]. The sequen-960

tial algorithm for the inter-component analysis (Algorithm 1) can be seen as an
instantiation of Kildall’s worklist algorithm [33, 19] for a system of equations
where variables and their dependencies are discovered dynamically. In turn, our
parallel variant of this algorithm (Algorithm 2) could also be formulated more
generically for a general class of systems of equations. We now discuss the965

extensive existing work on the parallelisation of static program analyses.

7.1. Parallelisation of Classical Dataflow Problems

Classical dataflow problems have been parallelised by Lee and Ryder [24],
achieving a speedup of 7.5× on 8 cores, and by Kramer et al. [34], computing
an ideal achievable speedup of up to 5.4×. These are applicable when the970

control-flow graphs of the program under analysis are known in advance. In
this paper, we focus on a more general problem than classical dataflow analysis,
since control-flow graphs are not available in advance and only computed during
the analysis itself.

7.2. Parallelisation With a Static Call Graph975

There have been many parallelisations of analysers for C and Java programs.
For these languages, the call and control-flow graphs of the program under
analysis are known statically, which is not a requirement of our analysis.

C analysers. Monniaux [9] described the parallel implementation of the
Astrée static analyser [35], achieving a speedup of around 2× on 5 cores. How-980

ever, Cousot et al. [36] observed that beyond 4 cores, “the cost of synchronisation
out-weigths the speedup of parallel execution” for Astrée. The Saturn program
analysis framework [10] achieved a high parallelisation by performing bottom-up
modular analysis, with speedups of up to 29× on 80 cores. McPeak et al. [11]
presented a parallel and incremental interprocedural analysis that divides the985

analysis in parallel work units, integrated within the Coverity checker, achieving

35

a speedup of up to 7× on 8 cores. Recently, Kim et al. [12] have revisited Bour-
doncle’s algorithm [37] with parallelisation, achieving a speedup of up to 11×
on 16 threads. Bourdoncle’s algorithm determines an optimal exploration order
from a predefined dependency graph; in contrast, our worklist algorithm uses990

a predefined exploration strategy, since the dependencies are only discovered
during the analysis itself. More closely related to our approach, Albarghouthi
et al. [13] parallelised a top-down interprocedural modular analysis by relying
on MapReduce-style parallelism, achieving a speedup of up to 7.4× on 8 cores.
This approach has similarities to ours: the map stage analyses procedures in995

parallel, similar to our intra-component analyses, and the reduce stage manages
inter-procedural dependencies, similar to our inter-component analysis.

Java analysers. Rodriguez and Lhoták [38] presented a parallelisation of
IFDS [39] based on actors, where each CFG node is represented by an actor.
This is a completely different parallelisation strategy compared to ours, which1000

parallelises the analysis of different components. They achieved a speedup of
6.1× on 8 cores. Edvinsson et al. [29] parallelised independent nodes (e.g., in-
dependent control-flow branches or targets with different context-sensitivities),
achieving a speedup of 4.4× on 8 cores. Again, in our approach we do not
require control-flow and call graphs to be known before the analysis.1005

7.3. Parallelisation of the Analyses of Dynamic Languages

There has been little existing work on parallelising analyses for dynamic
languages, where dependencies may not be known statically. An early effort by
Weeks et al. [26] parallelised an abstract interpreter for a parallel higher-order
dynamic language, by partitioning the state space of the analysis for different1010

workers. Similar to our approach, each worker uses its own local state, which
can be updated without synchronisation costs. They achieve a speedup of 9.4×
on 16 threads.

More recently, Dewey et al. [14] parallelised an abstract interpreter for
JavaScript, by partitioning states per context. The speedups they report range1015

from 2× to 4× on 12 threads, with a few outliers up to 37×. In contrast, our
approach does not need to partition components per context, and is therefore
also applicable to context-insensitive analyses.

7.4. Other Forms of Parallelisation

Besides the traditional parallelisation approaches that use threads or actors,1020

there have been attempts to parallelise static analyses through other approaches
such as GPU computing and distributed systems. In contrast to these, our
approach only relies on thread-based parallelism on a single machine.

Mendez-Lojo et al. [25] implemented parallel inclusion-based points-to anal-
yses on GPUs [40], achieving a speedup of up to 3× on 8 cores, and of 7× on1025

a GPU. Similarly, Prabhu et al. [41] implemented an algorithm for higher-order
context-insensitive analysis on GPUs, encoding the analysis data as vectors and
matrices. They achieved a speedup of up to 72×.

Venet and Brat [42] presented the first distributed static analysis implemen-
tation, focused on detecting out-of-bounds errors in embedded C programs. It1030

36

relies on a relational database to store the analysis data, achieving speedups
up to 2.7× on 8 distributed CPUs. They identified communication costs as the
limiting factor for a distributed analysis, showing that these costs become too
high beyond 4 distributed CPUs.

8. Conclusion1035

We have presented a novel approach to design parallel analyses for dynamic,
higher-order languages. The key insight in our work is that modular analy-
ses offer inherent opportunities for efficient parallelisation, which we exploit
with a parallel worklist algorithm that analyses different components in paral-
lel. Despite its non-deterministic behaviour, this algorithm obtains the exact1040

same result as the sequential worklist algorithm, and is able to further exploit
the monotonicity of the analysis to speed up its convergence. We applied this
parallel worklist algorithm to two existing modular analyses: ModF, a function-
modular analysis, and ModConc, a process-modular analysis. For the latter,
we reveal a further opportunity for parallelisation, resulting in a modular analy-1045

sis with both a parallel inter-component and a parallel intra-component analysis.
We also define 11 exploration heuristics that prioritise the components based
on their properties.

Our implementation in the MAF framework reveals significant speedups.
For ModF, using 16 workers usually delivers speedups between 8× and 32×,1050

with speedups up to 564×. On programs that have small environments, our
heuristic that prioritises components with small environments can lead to a
further speedup that can reach 20×. For ModConc, we observe speedups up to
37×. As such, in general our parallelisation strategy appears to achieve similar
or better speedups compared to existing parallel analyses. In addition, it does1055

not require the control-flow graph of the program under analysis beforehand,
and can therefore also be used for analyses that target dynamic, higher-order
languages. Finally, it is directly applicable to existing modular analyses, both
context-sensitive and context-insensitive ones. To our knowledge, there is no
other existing work that features all these qualities.1060

Acknowledgements

This work was partially supported by the “Cybersecurity Initiative Flanders”
and by the Research Foundation — Flanders (FWO) (grant numbers 11D5718N
and 11F4820N).

References1065

[1] O. Shivers, Control-flow analysis of higher-order languages, Ph.D. thesis,
Carnegie Mellon University (1991).

37

[2] T. Gilray, M. D. Adams, M. Might, Abstract allocation as a unified ap-
proach to polyvariance in control-flow analyses, J. Funct. Program. 28
(2018) e18. doi:10.1017/S0956796818000138.1070

URL https://doi.org/10.1017/S0956796818000138

[3] Y. Smaragdakis, M. Bravenboer, O. Lhoták, Pick your contexts well:
understanding object-sensitivity, in: T. Ball, M. Sagiv (Eds.), Proceed-
ings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, ACM, 2011, pp. 17–30. doi:1075

10.1145/1926385.1926390.
URL https://doi.org/10.1145/1926385.1926390

[4] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,
in: R. M. Graham, M. A. Harrison, R. Sethi (Eds.), Conference Record1080

of the Fourth ACM Symposium on Principles of Programming Languages,
ACM, 1977, pp. 238–252. doi:10.1145/512950.512973.
URL https://doi.org/10.1145/512950.512973

[5] Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover, Mailbox abstrac-
tions for static analysis of actor programs, in: P. Müller (Ed.), 31st Euro-1085

pean Conference on Object-Oriented Programming, ECOOP 2017, Vol. 74
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp.
25:1–25:30. doi:10.4230/LIPIcs.ECOOP.2017.25.
URL https://doi.org/10.4230/LIPIcs.ECOOP.2017.25

[6] B. Johnson, Y. Song, E. R. Murphy-Hill, R. W. Bowdidge, Why don’t1090

software developers use static analysis tools to find bugs?, in: D. Notkin,
B. H. C. Cheng, K. Pohl (Eds.), 35th International Conference on Software
Engineering, ICSE ’13, IEEE Computer Society, 2013, pp. 672–681. doi:

10.1109/ICSE.2013.6606613.
URL https://doi.org/10.1109/ICSE.2013.66066131095

[7] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, C. Jaspan,
Lessons from building static analysis tools at Google, Commun. ACM 61 (4)
(2018) 58–66. doi:10.1145/3188720.
URL https://doi.org/10.1145/3188720

[8] M. Christakis, C. Bird, What developers want and need from program1100

analysis: an empirical study, in: D. Lo, S. Apel, S. Khurshid (Eds.),
Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016, ACM, 2016, pp. 332–343. doi:

10.1145/2970276.2970347.
URL https://doi.org/10.1145/2970276.29703471105

[9] D. Monniaux, The parallel implementation of the Astrée static analyzer, in:
Programming Languages and Systems, Third Asian Symposium, APLAS
2005, 2005, pp. 86–96. doi:10.1007/11575467_7.
URL https://doi.org/10.1007/11575467_7

38

https://doi.org/10.1017/S0956796818000138
https://doi.org/10.1017/S0956796818000138
https://doi.org/10.1017/S0956796818000138
https://doi.org/10.1017/S0956796818000138
https://doi.org/10.1017/S0956796818000138
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.4230/LIPIcs.ECOOP.2017.25
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3188720
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1007/11575467_7
https://doi.org/10.1007/11575467_7
https://doi.org/10.1007/11575467_7

[10] Y. Xie, A. Aiken, Saturn: A scalable framework for error detection using1110

boolean satisfiability, ACM Trans. Program. Lang. Syst. 29 (3) (2007) 16.
doi:10.1145/1232420.1232423.
URL https://doi.org/10.1145/1232420.1232423

[11] S. McPeak, C. Gros, M. K. Ramanathan, Scalable and incremental software
bug detection, in: Joint Meeting of the European Software Engineering1115

Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, 2013, pp. 554–564. doi:10.1145/

2491411.2501854.
URL https://doi.org/10.1145/2491411.2501854

[12] S. K. Kim, A. J. Venet, A. V. Thakur, Deterministic parallel fixpoint1120

computation, Proc. ACM Program. Lang. 4 (POPL) (2020) 14:1–14:33.
doi:10.1145/3371082.
URL https://doi.org/10.1145/3371082

[13] A. Albarghouthi, R. Kumar, A. V. Nori, S. K. Rajamani, Parallelizing
top-down interprocedural analyses, in: ACM SIGPLAN Conference on Pro-1125

gramming Language Design and Implementation, PLDI, 2012, pp. 217–228.
doi:10.1145/2254064.2254091.
URL https://doi.org/10.1145/2254064.2254091

[14] K. Dewey, V. Kashyap, B. Hardekopf, A parallel abstract interpreter for
JavaScript, in: Proceedings of the 13th Annual IEEE/ACM International1130

Symposium on Code Generation and Optimization, CGO, 2015, pp. 34–45.
doi:10.1109/CGO.2015.7054185.
URL https://doi.org/10.1109/CGO.2015.7054185

[15] P. Cousot, R. Cousot, Modular static program analysis, in: R. N. Horspool
(Ed.), Compiler Construction, 11th International Conference, CC 2002,1135

Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2002, Vol. 2304 of Lecture Notes in Computer Science,
Springer, 2002, pp. 159–178. doi:10.1007/3-540-45937-5_13.
URL https://doi.org/10.1007/3-540-45937-5_13

[16] J. Nicolay, Q. Stiévenart, W. De Meuter, C. De Roover, Effect-driven flow1140

analysis, in: C. Enea, R. Piskac (Eds.), Verification, Model Checking, and
Abstract Interpretation - 20th International Conference, VMCAI 2019, Vol.
11388 of Lecture Notes in Computer Science, Springer, 2019, pp. 247–274.
doi:10.1007/978-3-030-11245-5_12.
URL https://doi.org/10.1007/978-3-030-11245-5_121145

[17] Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover, A general method
for rendering static analyses for diverse concurrency models modular, J.
Syst. Softw. 147 (2019) 17–45. doi:10.1016/j.jss.2018.10.001.
URL https://doi.org/10.1016/j.jss.2018.10.001

39

https://doi.org/10.1145/1232420.1232423
https://doi.org/10.1145/1232420.1232423
https://doi.org/10.1145/1232420.1232423
https://doi.org/10.1145/1232420.1232423
https://doi.org/10.1145/1232420.1232423
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1145/3371082
https://doi.org/10.1145/3371082
https://doi.org/10.1145/3371082
https://doi.org/10.1145/3371082
https://doi.org/10.1145/3371082
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1109/CGO.2015.7054185
https://doi.org/10.1109/CGO.2015.7054185
https://doi.org/10.1109/CGO.2015.7054185
https://doi.org/10.1109/CGO.2015.7054185
https://doi.org/10.1109/CGO.2015.7054185
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/978-3-030-11245-5_12
https://doi.org/10.1007/978-3-030-11245-5_12
https://doi.org/10.1007/978-3-030-11245-5_12
https://doi.org/10.1007/978-3-030-11245-5_12
https://doi.org/10.1007/978-3-030-11245-5_12
https://doi.org/10.1016/j.jss.2018.10.001
https://doi.org/10.1016/j.jss.2018.10.001
https://doi.org/10.1016/j.jss.2018.10.001
https://doi.org/10.1016/j.jss.2018.10.001
https://doi.org/10.1016/j.jss.2018.10.001

[18] N. Van Es, Q. Stiévenart, Jens Van der Plas, C. De Roover, A parallel work-1150

list algorithm for modular analyses, in: 20th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2020, 2020,
pp. 1–12. doi:10.1109/SCAM51674.2020.00006.
URL https://doi.org/10.1109/SCAM51674.2020.00006

[19] C. Fecht, H. Seidl, A faster solver for general systems of equations, Science1155

of Computer Programming 35 (2-3) (1999) 137–161.

[20] D. Helm, F. Kübler, J. T. Kölzer, P. Haller, M. Eichberg, G. Salvaneschi,
M. Mezini, A programming model for semi-implicit parallelization of static
analyses, in: S. Khurshid, C. S. Pasareanu (Eds.), ISSTA ’20: 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,1160

ACM, 2020, pp. 428–439. doi:10.1145/3395363.3397367.
URL https://doi.org/10.1145/3395363.3397367

[21] J. I. Johnson, N. Labich, M. Might, D. Van Horn, Optimizing abstract ab-
stract machines, in: G. Morrisett, T. Uustalu (Eds.), ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP’13, ACM, 2013,1165

pp. 443–454. doi:10.1145/2500365.2500604.
URL https://doi.org/10.1145/2500365.2500604

[22] S. Lyde, M. Might, State exploration choices in a small-step abstract inter-
preter, in: Scheme and Functional Programming Workshop, 2015.

[23] N. Van Es, J. Van der Plas, Q. Stiévenart, C. De Roover, MAF: A frame-1170

work for modular static analysis of higher-order languages, in: 20th IEEE
International Working Conference on Source Code Analysis and Manipu-
lation, SCAM 2020, IEEE Computer Society, 2020.

[24] Y. Lee, B. G. Ryder, A comprehensive approach to parallel data flow anal-
ysis, in: Proceedings of the 6th International Conference on Supercomput-1175

ing, ICS, 1992, pp. 236–247. doi:10.1145/143369.143415.
URL https://doi.org/10.1145/143369.143415

[25] M. Méndez-Lojo, A. Mathew, K. Pingali, Parallel inclusion-based points-to
analysis, in: Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,1180

OOPSLA, 2010, pp. 428–443. doi:10.1145/1869459.1869495.
URL https://doi.org/10.1145/1869459.1869495

[26] S. Weeks, S. Jagannathan, J. Philbin, A concurrent abstract interpreter,
LISP Symb. Comput. 7 (2-3) (1994) 173–193.

[27] M. Shapiro, S. Horwitz, The effects of the precision of pointer analysis,1185

in: P. V. Hentenryck (Ed.), Static Analysis, 4th International Symposium,
SAS ’97, Vol. 1302 of Lecture Notes in Computer Science, Springer, 1997,
pp. 16–34. doi:10.1007/BFb0032731.
URL https://doi.org/10.1007/BFb0032731

40

https://doi.org/10.1109/SCAM51674.2020.00006
https://doi.org/10.1109/SCAM51674.2020.00006
https://doi.org/10.1109/SCAM51674.2020.00006
https://doi.org/10.1109/SCAM51674.2020.00006
https://doi.org/10.1109/SCAM51674.2020.00006
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/2500365.2500604
https://doi.org/10.1145/2500365.2500604
https://doi.org/10.1145/2500365.2500604
https://doi.org/10.1145/2500365.2500604
https://doi.org/10.1145/2500365.2500604
https://doi.org/10.1145/143369.143415
https://doi.org/10.1145/143369.143415
https://doi.org/10.1145/143369.143415
https://doi.org/10.1145/143369.143415
https://doi.org/10.1145/143369.143415
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1007/BFb0032731
https://doi.org/10.1007/BFb0032731
https://doi.org/10.1007/BFb0032731

[28] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino,1190

B. Wiedermann, B. Hardekopf, JSAI: designing a sound, configurable, and
efficient static analyzer for javascript, CoRR abs/1403.3996 (2014). arXiv:
1403.3996.
URL http://arxiv.org/abs/1403.3996

[29] M. Edvinsson, J. Lundberg, W. Löwe, Parallel points-to analysis for multi-1195

core machines, in: High Performance Embedded Architectures and Com-
pilers, 6th International Conference, HiPEAC, 2011, pp. 45–54. doi:

10.1145/1944862.1944872.
URL https://doi.org/10.1145/1944862.1944872

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, Exper-1200

imentation in Software Engineering - An Introduction, Vol. 6 of The
Kluwer International Series in Software Engineering, Kluwer, 2000. doi:

10.1007/978-1-4615-4625-2.
URL https://doi.org/10.1007/978-1-4615-4625-2

[31] H. Abelson, G. J. Sussman, Structure and Interpretation of Computer Pro-1205

grams, Second Edition, MIT Press, 1996.

[32] R. P. Gabriel, Performance and evaluation of LISP systems, Computer
Systems, Vol. 263, MIT Press Cambridge, Mass., 1985.

[33] G. A. Kildall, A unified approach to global program optimization, in: Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Prin-1210

ciples of programming languages, 1973, pp. 194–206.

[34] R. Kramer, R. Gupta, M. L. Soffa, The combining dag: A technique for
parallel data flow analysis, IEEE Transactions on Parallel and Distributed
Systems 5 (8) (1994) 805–813.

[35] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,1215

X. Rival, The ASTREÉ analyzer, in: Programming Languages and Sys-
tems, 14th European Symposium on Programming, ESOP 2005., 2005, pp.
21–30. doi:10.1007/978-3-540-31987-0_3.
URL https://doi.org/10.1007/978-3-540-31987-0_3

[36] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival, Why1220

does Astrée scale up?, Formal Methods Syst. Des. 35 (3) (2009) 229–264.
doi:10.1007/s10703-009-0089-6.
URL https://doi.org/10.1007/s10703-009-0089-6

[37] F. Bourdoncle, Efficient chaotic iteration strategies with widenings, in: For-
mal Methods in Programming and Their Applications, International Con-1225

ference, 1993, pp. 128–141. doi:10.1007/BFb0039704.
URL https://doi.org/10.1007/BFb0039704

41

http://arxiv.org/abs/1403.3996
http://arxiv.org/abs/1403.3996
http://arxiv.org/abs/1403.3996
http://arxiv.org/abs/1403.3996
http://arxiv.org/abs/1403.3996
http://arxiv.org/abs/1403.3996
http://arxiv.org/abs/1403.3996
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1145/1944862.1944872
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/BFb0039704

[38] J. Rodriguez, O. Lhoták, Actor-based parallel dataflow analysis, in: Com-
piler Construction - 20th International Conference, CC 2011., 2011, pp.
179–197. doi:10.1007/978-3-642-19861-8_11.1230

URL https://doi.org/10.1007/978-3-642-19861-8_11

[39] T. W. Reps, S. Horwitz, S. Sagiv, Precise interprocedural dataflow analysis
via graph reachability, in: Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1995, pp. 49–61. doi:10.1145/199448.199462.1235

URL https://doi.org/10.1145/199448.199462

[40] M. Méndez-Lojo, M. Burtscher, K. Pingali, A GPU implementation of
inclusion-based points-to analysis, in: Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP, 2012, pp. 107–116. doi:10.1145/2145816.2145831.1240

URL https://doi.org/10.1145/2145816.2145831

[41] T. Prabhu, S. Ramalingam, M. Might, M. W. Hall, Eigencfa: accelerating
flow analysis with GPUs, in: Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL,
2011, pp. 511–522. doi:10.1145/1926385.1926445.1245

URL https://doi.org/10.1145/1926385.1926445

[42] A. Venet, G. P. Brat, Precise and efficient static array bound checking for
large embedded C programs, in: Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, 2004,
pp. 231–242. doi:10.1145/996841.996869.1250

URL https://doi.org/10.1145/996841.996869

42

https://doi.org/10.1007/978-3-642-19861-8_11
https://doi.org/10.1007/978-3-642-19861-8_11
https://doi.org/10.1007/978-3-642-19861-8_11
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/1926385.1926445
https://doi.org/10.1145/996841.996869
https://doi.org/10.1145/996841.996869
https://doi.org/10.1145/996841.996869
https://doi.org/10.1145/996841.996869
https://doi.org/10.1145/996841.996869

	Introduction
	Background: Modular Analysis
	ModF: Inter-Procedural Modular Analysis
	ModConc: Inter-Process Modular Analysis

	Parallel Modular Analysis
	Parallel Inter-Component Analysis
	Optimising for Parallel Efficiency
	Application to ModF and ModConc
	Exploration Heuristics

	Implementation
	Intra-Component Analysis
	Worker Thread
	Analysis Results
	Analysis Coordination
	Prioritisation Heuristics
	Rendering an Analysis Parallel

	Evaluation
	Setup
	RQ1: Speedups on Context-Insensitive and Context-Sensitive ModF Analyses
	RQ2: Speedups for a ModConc Analysis
	RQ3: Exploration Strategies and Their Effects on Speedups
	Threats to Validity

	Future Work
	Related work
	Parallelisation of Classical Dataflow Problems
	Parallelisation With a Static Call Graph
	Parallelisation of the Analyses of Dynamic Languages
	Other Forms of Parallelisation

	Conclusion

