
What’s the Problem? Interrogating Actors to Identify

the Root Cause of Concurrency Bugs

Carmen Torres Lopez

ctorresl@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Louise Van Verre

Louise.Van.Verre@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Elisa Gonzalez Boix

egonzale@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Abstract

Programs written using Communicating Event-Loops (CEL)

concurrency model do not su�er from low-level data races

by design but are not exempt from other concurrency bugs,

such as behavioral deadlocks and message order violations.

When programmers need to �nd the root cause of a bug,

they typically ask questions about the application’s behavior.

However, current debugging tools are mostly operational,

o�ering features at the source code level like breakpoints

and watchpoints. Consequently, understanding the program

behavior when debugging can take a lot of time for devel-

opers since questions on behaviors need to be mapped into

operations in the debugger.

Inspired by interrogative debugging, this paper proposes

an interactive debugging approach for actor-based programs

that enable developers to reason about the program output by

selecting questions from a set of prede�ned questions about

the code and the program’s execution. We present the design

of the questions and answers, and we describe a prototype

implementation in Apgar, an online debugger for actor-based

programs written in SOMns. We de�ne questions based on

key concepts of the actor model: actors, turns, messages,

and promises. The debugger then computes the answers

by analyzing a recorded trace of events about the program

execution.

CCS Concepts: • Software and its engineering → Con-

current programming languages; Software testing and

debugging;

Keywords: debugging, concurrency, user interface, bugs

ACM Reference Format:

Carmen Torres Lopez, Louise Van Verre, and Elisa Gonzalez Boix.

2021. What’s the Problem? Interrogating Actors to Identify the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request

permissions from permissions@acm.org.

AGERE ’21, October 17, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9104-7/21/10. . . $15.00

h�ps://doi.org/10.1145/3486601.3486709

Root Cause of Concurrency Bugs. In Proceedings of the 11th ACM
SIGPLAN International Workshop on Programming Based on Actors,
Agents, and Decentralized Control (AGERE ’21), October 17, 2021,
Chicago, IL, USA. ACM, New York, NY, USA, 13 pages. h�ps://doi.
org/10.1145/3486601.3486709

1 Introduction

Debugging concurrent programs is a di�cult and time-consu-

ming task. Developers need to understand how the di�er-

ent concurrent entities interact and deal with problems in-

herent to concurrency, such as non-determinism and non-

repeatability. Besides, the distance between the root cause

of a bug and its failure can be large in the program, which

requires big e�orts from developers to identify and �xing

the bug [14].

When a program fails, programmers usually reason back-

ward, starting from the failure to discover the cause of the in-

correct behavior. Programmersmostly observe the program’s

output to learn about parts of the program that have been

executed. Common techniques for examining the program’s

execution include classical logging (e.g., print statements),

online and o�ine debuggers. While online debuggers allow

doing a controlled execution of the program through break-

points and stepping operations, o�ine debuggers record

program events in a log �le or a trace for later inspecting

the past state.

Most debuggers nowadays are, however, mostly opera-

tional, as they interact with developers based on operations

like placing breakpoints on source code, step-by-step com-

mands, or writing logical predicates in watchpoints. In order

to �nd out the root cause of the bug, developers need to

translate their hypothesis and questions about the program’s

output into debugging operations which provide informa-

tion that may help them guess where the error resides. For

example, to answer the question "How did the program get
to throw an exception?", an exception breakpoint could be

placed to obtain a stack trace of the execution until the point

where the exception is thrown. Unfortunately, if the devel-

oper chooses an operation that is irrelevant to the cause of

the bug (e.g., placing a breakpoint on a line of code that halts

the execution after the failure), the debugging tool will not

help, and the debugging session needs to be restarted. That

is even more problematic in concurrent programs due to the

non-repeatability issue and the probe-e�ect [5].

https://orcid.org/0000-0002-3125-0921
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.1145/3486601.3486709
https://doi.org/10.1145/3486601.3486709
https://doi.org/10.1145/3486601.3486709

AGERE ’21, October 17, 2021, Chicago, IL, USA Torres Lopez Carmen, Van Verre Louise, Gonzalez Boix Elisa

Ko et al. proposed a debugging technique called interroga-
tive debugging which can alleviate those issues by allowing

developers to interactively ask why did or why didn’t ques-
tions about the program output to reason about the program

behavior [6, 7]. Their tool was designed for thread-based

programs written in Java.

Inspired by their work, we propose in this paper comple-

menting online debugging for actor-based programs with

interrogative debugging. We design a set of questions and

answers for actor-based programs based on the key con-

cepts of the actor model, i.e., actors, messages, turns, and

promises. We implement the questions and answers in an

existing online debugger for actor-based programs called Ap-
gar. Questions are presented to the developer in a dedicated

view when a certain entity can be inspected (e.g., questions

on actor state become available when an actor’s execution is

paused and the user selects that paused actor). The debugger

then computes the answers by analyzing the trace of events

recorded during the program execution. In our debugger, the

analysis is based on events speci�ed by the Kómpos protocol

[10].

Like Ko et al. [6], we argue that it is crucial to ease the

process of reasoning about the program output to �nd the

root cause of concurrency bugs since developers often de�ne

correctness in terms of the output. This work is the �rst step

towards a less operational and more interactive debugging

experience for actor-based programs, which can shorten the

debugging time.

2 Background

This section introduces the context of our work. It discusses

the actor variant where we focus our research, terminology

on concurrency bugs, and the system inwhichwe prototyped

our interrogative debugging approach.

2.1 Communicating Event-Loops (CEL) Model

The Communicating Event-Loops (CEL) concurrency model

is a variant of the actor model �rst proposed for the E pro-

gramming language [12]. This model has been adopted by

languages such as AmbientTalk [19], Newspeak [2] and

JavaScript [18]. In CEL, each actor is a container of objects,

and it has exclusive access to its state. Each actor also con-

tains a message queue or mailbox and a thread of control

known as event-loop, which processes messages sequentially,

one by one. A turn is de�ned as the processing of one mes-

sage by an actor, that is, when the actor dequeues a message

from its mailbox, delivers the message to its object and the

message is executed to completion [12]. Within an actor, two

objects can have direct reference to one another. Such ref-

erences are called near references and their communication

happens synchronously. Objects owned by di�erent actors

are called far references and communication between them

is non-blocking through asynchronous messages.

Asynchronous messages return promises
1
. A promise is

a placeholder for the result that is to be computed by the

receiver actor of an asynchronous message. Promises can

also receive asynchronous messages even if the result is

not yet computed. Thus, a promise resolution can depend

on another promise (returned from another asynchronous

message); this is known as promise chaining. Messages sent

to a promise are not delivered until the promise is resolved

with a value or an exception. Once a promise is resolved, the

asynchronous message is forwarded in order to the result

value of the computation.

In this paper, we use the implementation of the CEL model

in SOMns
2
, a class-based dynamically-typed language for

concurrency research that is based on Newspeak [2].

2.2 Concurrency Bugs in Actor-Based Programs

Actor-based programs are not free of concurrency bugs. In

previous work [9], we studied concurrency bugs that have

been observed in the literature. We now brie�y introduce

the terminology on bugs from that study which we employ

in this paper.

We created a taxonomy that distinguishes two families of

bugs. First, the category of lack of progress issues includes
concurrency bugs related to the conditions in which actors

are in a waiting state. In this category, we identi�ed three

subcategories:

Communication deadlock can be seen in languages

that feature blocking operations, and refers to the

condition in a system where two or more actors are

blocked forever waiting for each other to send a mes-

sage.

Behavioral deadlock is the condition in a systemwhen

two or more actors are not blocked but wait on each

other, for a message to be able to progress, i.e., the

message to complete the next step is never sent. This

kind of bug is harder to identify than traditional dead-

locks of thread-based programs because actors can still

process messages from other actors.

Livelock is a condition similar to a deadlock in which

two or more actors are not able to make progress, but

they continuously change their state, that is, actors

repeat the same interaction in response to the message

sent by each other.

Second, the category of message protocol violations in-
cludes bugs related to the order in which actors process

messages. In this category, we also identi�ed three subcate-

gories:

Message order violation is the condition in which the

order of exchanging messages of two or more actors

are not consistent with the intended behavior of the

program.

1
Some actor languages refer to promises as futures [19].

2h�ps://github.com/smarr/SOMns

https://github.com/smarr/SOMns

What’s the Problem? Interrogating Actors to Identify the Root Cause of Concurrency Bugs AGERE ’21, October 17, 2021, Chicago, IL, USA

Bad message interleaving occurs when a message is

processed between two messages which are intended

to be processed one after the other.

Memory inconsistency occurs when di�erent actors

have inconsistent views of shared resources. The ef-

fects of the turn that modi�es a conceptually shared

resource may not be visible to other actors, which also

alter the same resource.

In [9], we also identi�ed bug patterns and observable be-

haviors for 24 bugs from literature and classi�ed them ac-

cording to our taxonomy. The results of that study shaped

the design of the questions about the program’s behavior

we describe in the next section. In a nutshell, languages that

use the CEL model such as SOMns do not su�er from com-

munication deadlocks but can still su�er from the rest of

categorized concurrency bugs. The debugging technique we

present here aims to help developers to �nd the root cause

of concurrency bugs that can be seen in programs that use

the CEL model.

2.3 Apgar

Apgar [8] is a message-oriented online debugger for SOMns,

which provides advanced debugging techniques for actor-

based programs. More concretely, Apgar provides catalogs of

breakpoints and stepping operations on the level of messages,

actor state inspection through variables and mailbox, asyn-

chronous stack traces, and visualizations to show happened-

before relationship of messages. In this paper, we extend

Apgar with support for interrogative debugging for actors.

Apgar frontend has been implemented as a plugin in

the IntelliJ IDE. Apgar backend has been implemented as

part of the SOMns interpreter, which is an AST-based inter-

preter built on the Tru�e/GraalVM runtime [20]. The inter-

actions between the debugger’s frontend and backend hap-

pen through the Kómpos protocol, which is a concurrency-

agnostic debugging protocol [10]. The protocol models the

messages between frontend and backend, e.g., breakpoints,

stepping, pause and resume commands. It also provides de-

tails about the execution of a concurrent program by trace

events. Those events will be used to compute the answers to

questions we devise for actor-based programs in Apgar. In

Section 5 we will also detail extensions to the protocol that

were needed for our approach.

3 Designing Questions and Answers for

Debugging Actor-Based Programs

This section introduces the questions and answers we de-

signed inspired by the interrogative debugging approach

[6, 7], which we believe will help the developer to debug

actor-based programs.

Table 1 shows an overview of the questions and answers

we devised to be integrated in an online debugger for actor-

based programs. We categorized the questions into three

groups according to the main entities where the questions

should get activated in an online debugger, i.e., actors, mes-

sages, and variables. The �rst two categories, actors and

messages, are related to entities in the CEL model. The third

category is related to the actor’s state, which is stored in

variables (holding primitive types and promises). We now

describe the questions for each of these categories.

3.1 Actors

Questions in this category correspond to questions that can

be asked to a paused actor. Here we consider questions re-

lated to the promises owned by the actor, turns processed,

and messages sent and received. We consider that an actor

is paused when it has been suspended due to a breakpoint,

a stepping operation, or explicitly by the user with a pause

command. A paused actor will not be able to process the

next message in its mailbox, but it can still receive messages.

We designed two questions for the actors category that

involves the promise resolution state of a paused actor.

• Which promises are resolved? The answer to this

question returns all the promises that have been re-

solved inside the actor.

• Which promises are not resolved? The answer to

this question returns all the promises that have not

been resolved inside the actor.

The debugger’s answer for both questions should include

information about the properties of promises, e.g., its iden-

ti�er, information about the creation turn, and the source

coordinates in the editor of the place where the promise was

created.

The goal of these questions is to help the developer un-

derstand why parts of the program that only execute once

the promise is resolved, are or are not executed. The answer

could help to �nd the root cause of concurrency bugs since

we have observed that, for example, unresolved promises can

cause lack of progress issues such as behavioral deadlocks.

Besides questions related to promise resolutions, we de-

signed three more questions that should be enabled for a

paused actor with respect to turns and messages:

• Whichmessages were received? The answer to this

question returns all messages received by the actor

from other actors.

• Which turns were processed? The answer to this

question returns all turns processed by the actor.

• Whichmessageswere sent?The answer to this ques-

tion returns all messages sent by the actor.

The goal of these questions is to allow developers to in-

spect the order in which actors process messages. From re-

ported studies, we identi�ed that common bug patterns for

message order violations are the incorrect execution order

of actors and messages [9]. Hence, inspecting messages that

a paused actor is receiving could be useful to observe, for

example, messages that arrive in an unexpected order. Bug

AGERE ’21, October 17, 2021, Chicago, IL, USA Torres Lopez Carmen, Van Verre Louise, Gonzalez Boix Elisa

Table 1. Overview of questions and answers when debugging a CEL actor-based program.

Question Answer

1. Actors
1.1 Which promises are resolved? - List of resolved promises for the selected paused actor.

1.2 Which promises are not resolved? - List of unresolved promises for the selected paused actor.

1.3 Which messages were received? - List of messages received by the selected paused actor.

1.4 Which turns were processed? - List of turns processed by the selected paused actor.

1.5 Which messages were sent? - List of messages sent by the selected paused actor.

2. Messages
2.1 Which is the turn of message X? - Properties about the message corresponding to that turn; this

includes message id, message selector, actor that process that

turn, and source coordinate of the message corresponding to

that turn.

3. Variables
3.1 Why does variable X have that value? - Timeline of assignments. For each assignment show the new

value for the variable and the turn id where it happened.

Promises
3.2 What is the resolution value of promise X? - Resolution value for that promise, e.g., a string, integer, a

promise, etc.

3.3 When was promise X resolved? - Timeline of promise dependencies. For each promise selected

in the timeline show properties about the message correspond-

ing to that turn and about the resolution of the promise.

patterns for bad message interleavings include the process-

ing of one message between two other messages that should

be processed one after the other. Thus, we consider these

questions essential to unveil unexpected interleavings of

messages, which can lead to message order violations and

bad message interleavings
3
.

3.2 Messages

This category corresponds to questions related to the mes-

sages located in the mailbox of a paused actor. We designed

the following question:

• Which is the turn of message X? The question re-

turns information about the turn in which the message

was sent.

The turn information consists of properties such as an iden-
ti�er for the turn, an identi�er for the actor that processed

that turn, and the message that invoked that turn.

The goal of this question is to help developers understand

the happened-before relationship of messages, i.e., which

turn is responsible for a particular message send. This can be

very helpful when inspecting the order in which actors pro-

cess messages to discover the root cause of message protocol

violations.

3.3 Variables

This category includes questions related to the state in an

actor accessed via variables, which store objects in mem-

ory corresponding to primitive values or objects such as

promises.

3
Our questions do not target heisenbugs, i.e., bugs caused by the probe-

e�ect, in which the debugging tool itself introduces more non-determinism

when observing the program execution.

To access the state of a variable, we designed the following

question:

• Why does variable X have that value? The answer

to this question should return all assignments that

changed the value of the variable. It should be shown

chronologically in a timeline.

This question helps developers to understand why a cer-

tain variable has a certain value. Showing the timeline of
assignments for a variable and its state helps understanding
the history of updates for that variable in the program. We

designed this question considering four cases that include

local and global variables, which are detailed in Section 5.

3.3.1 Promises. Since promises are a relevant abstraction

for synchronization and to model return values of asynchro-

nous message sends, we consider it important to provide

questions that help developers reason about the execution

path that leads to a promise resolution. This can help to

�nd the root cause of a bug, especially in those cases where

promises are chained. We designed the following questions

for promises:

• What is the resolution value of promise X? The

question returns the value which resolves the promise.

The answer to this question can be either:

– the promise is resolved with a primitive value or object

(which is not a promise).

– the promise is resolved with an error
4

– the promise is resolved with another promise.

The information of the resolution value for a given promise

will be helpful for the developer when inspecting the actor

4
This promise is known as broken or ruin promise.

What’s the Problem? Interrogating Actors to Identify the Root Cause of Concurrency Bugs AGERE ’21, October 17, 2021, Chicago, IL, USA

state. In the case when a promise is resolved with another

promise, we propose a second question to learn about the

dependencies for the promise:

• When was promise X resolved? The answer to this

question consists of a timeline of promise dependen-

cies.

The timeline shows chronologically the promises that

need to be resolved before the selected promise can be re-

solved. Besides, the answer includes information about the

message responsible for the creation of the promise, i.e., the

asynchronous message sent that returned that promise. Also,

we include information about the resolution of the selected

promise in the timeline. In SOMns, promises can be cre-

ated implicitly using the asynchronous send operator <-:,
and explicitly by sending the createPromisePair message.

For promises created explicitly by the developer, we include

only the resolution information. The information about the

promise dependencies can be very helpful for the developer

to understand the history of promises that were resolved

before the given promise, which can help to identify bugs

such as message order violations.

4 A Proof-of-Concept Interrogative

Debugger for SOMns Programs

This section describes our extension to Apgar (Section 2.3),

an existing online debugger where we implemented the ques-

tions previously described. Our extension allows developers

to choose a question generated about the program execu-

tion, and compute its answer. For this purpose, we added

two new tabs in the user interface: a Question view and an

Answer view. Figure 2 shows the graphical user interface of
Apgar frontend with di�erent debugging views in the IntelliJ

IDE. In the next sections, we will explain how we integrated

the di�erent questions and answers presented in Table 1 in

Apgar by means of a concrete application.

4.1 Running Example

Our running example consists of an order purchase applica-

tion written in the SOMns programming language, which

handles purchases of orders via a website. Figure 1 shows

the actors and messages involved in the application when

the buy message, which initiates the purchase of items in

a shopping cart, is sent. The application consist of seven

actors: Platform, Customer, Website, Store, Account, Shipper,

and Database.

Before an order is placed, the Website actor veri�es three

services which are represented by three actors in the pro-

gram:

• whether the requested items are still in stock (by send-

ing the productInStock message to the Store actor),

• whether the customer has provided valid payment

information (by sending the checkCredit message to

the Account actor) and,

Website

Store AccountShipper

checkCredit

canDeliver

Platform Customer

buy

checkoutShopping
Cart

stockPromise

productInStock

Database
isShipper
Available

isValidPayment

getStock

stock

contains

remove

Figure 1. Overview of the actors and messages in the order

purchase application.

• whether a shipper is available to ship the order in time

(by sending the canDeliver message to the Shipper

actor)

Through this section, we consider a version of the order

purchase application that does not terminate because it suf-

fers from a behavioral deadlock (see Listing 1), and we will

debug it with our approach
5
. To collect the answer to the

three services, a promise group is used (Line 76).

4.2 Actors

As shown in Table 1 we designed �ve questions related to

paused actors. Those questions appear in the Questions view

when the developer selects a paused actor in the Actors view

(see Figure 2 (3)). This section describes the answers to the

�rst two questions. The answer to the questions related to

turns and messages have dedicated views, i.e., mailbox, turns

and sentbox which are not yet linked to the Questions view

in our current prototype.

In a debugging session, the developer can check the body

of the callback (Line 77) with a breakpoint, e.g., in a line

breakpoint or a message breakpoint such as promise reso-

lution. However, there could be an unresolved promise in

the promise group (Line 76), indicating a program misbe-

havior but the program would not be suspended. Develop-

ers can inspect the resolved and the unresolved promises

for the Website actor upon suspension. For example, when

the Website actor pauses due to a message sender break-

point on Line 73, the questions Which promises are resolved?
and Which promises are not resolved? are visualized in the

Questions view. The developer can visualize the answer to

a question by right clicking on the question and selecting

the menu option “Answer". Figure 3 shows the answers for

these questions.

In this case, the developer can observe in Figure 3 (b) that

promise productsPP (i.e., promise with id 3221225474) is

5
The complete implementation of the application is available also

at h�ps://github.com/ctrlpz/agere-sample-program/blob/master/
OrderPurchaseBD.ns

https://github.com/ctrlpz/agere-sample-program/blob/master/OrderPurchaseBD.ns
https://github.com/ctrlpz/agere-sample-program/blob/master/OrderPurchaseBD.ns

AGERE ’21, October 17, 2021, Chicago, IL, USA Torres Lopez Carmen, Van Verre Louise, Gonzalez Boix Elisa

1

2

3

4 5

Figure 2. Graphical user interface of Apgar debugger with interrogative features. (1) The developer opens the program �le in

the SOMns project. (2) The developer adds a breakpoint where to pause the program’s execution. The Debugger tab consists

of three main parts: (3) The Actors view shows information about the actors of the program which are in run or pause state.

(4) The Mailbox view shows the messages received by the selected paused actor. (5) The Question view shows the possible

questions that can be asked to the debugger, in this case, about the paused actor.

unresolved (Line 43), which indicates that the root cause of

the problem could be located when verifying if the products

are in stock by the Store actor (Line 52).

4.3 Messages

To answer question 2.1 of Table 1 developers need to se-

lect the actor and the message in the mailbox that they

want to know the turn. Figure 4 shows the answer for the

checkoutShoppingCart message, considering the debug-

ging session visualized in Figure 2. The actor id shown cor-

responds to the Customer actor, and buy is the message

corresponding to the turn, which is sent by the Platform

actor to the Customer actor.

4.4 Variables

In this section, we show some of the questions and answers

related to variables by means of the running example.

The answer to question 3.1 of Table 1 is a timeline of assign-

ments that changed the value of the selected variable. The

assignments are sorted in chronological order and grouped

by turn. Thus, earlier assignments will be higher up in the

timeline than later assignments. Clicking on an assignment

or turn in the timeline will allow the developer to navigate

to the source code coordinate of the assignment in the editor,

or the message responsible for the turn, respectively.

The implementation class of the Store actor contains a

global variable named counter. This variable is updated ev-

ery time the productInStock method is executed. Setting a

line breakpoint on Line 97 and selecting the counter variable

will allow the developer to select the questionWhy does vari-
able counter have that value?. Figure 5 shows the answer: two
assignments have happened for the global variable counter
at this point. The turn id corresponds to the id of the message

that is being executed and where the assignment happened.

4.4.1 Promises. Questions 3.2 and 3.3 of Table 1 are en-

abled when the developer selects a promise in the Variables

What’s the Problem? Interrogating Actors to Identify the Root Cause of Concurrency Bugs AGERE ’21, October 17, 2021, Chicago, IL, USA

(a). Resolved promises for Website actor. (b). Unresolved promises for Website actor.

Figure 3. Answers for questions about promises owned by a paused actor.

Figure 4. Information about a turn corresponding to mes-

sage checkoutShoppingCart in the mailbox of the Website

actor.

Figure 5. Timeline of assignments for a global variable.

view. In the context of our order purchase program, the de-

veloper can add a line breakpoint on Line 74 of Listing 1

(or a message sender breakpoint) and select the account-
Promise local variable in the Variables view. Consequently,

the Question view displays the questions related to the acco-
untPromise.

Figure 6 shows the answer to the questionWhat is the res-
olution value of promise accountPromise?. In this case, the

answer consists of another promise because the promise is re-

solved with the promise resulting from the isValidPayment
message in the Account actor (see Line 115).

Figure 6. Resolution value for a promise.

The developer would also want to know why that promise

obtained that resolution value. This can be answered by se-

lecting question 3.3 of Table 1. Figure 7 shows the answer

which consists of the timeline of all promise dependencies

corresponding to the accountPromise promise. Each rectan-

gle in the timeline shows the method selector corresponding

to a message that returns a promise and its id. The rectan-

gles denoted with the Argument word show promise ids of

promises passed as an argument in a message. On the left

AGERE ’21, October 17, 2021, Chicago, IL, USA Torres Lopez Carmen, Van Verre Louise, Gonzalez Boix Elisa

panel, information about the selected promise in the time-

line (denoted with a green border) is given. More concretely,

information about the turn where it was created, and its

resolution value is shown. In this case, the selected promise

is the one for the new:website: message sent to the Plat-

form actor and the resolution value is a far reference to the

Customer actor (see Line 171).

5 Implementation

This section provides relevant details about the implementa-

tion of our interrogative debugging approach for actor-based

programs in Apgar
6
. We focus the discussion on how to ob-

tain the answers for the di�erent categories of questions.

To compute the answers, the debugger analyses the infor-

mation obtained from the events generated by the Kómpos

protocol regarding the di�erent concurrency concepts, e.g.,

actors, turns, promises, messages, and send operations [10].

We also extended the Kómpos protocol to capture more in-

formation about the program execution. In particular, we

added two events: MessageReception and Assignment. In
addition, we needed to extend the information captured in

the SendOperation event.

5.1 Actors

The information about promises that is needed to answer

questions 1.1 and 1.2 of Table 1 was extracted from the pas-

sive entities provided in the trace. For every promise event

that the debugger frontend receives, our implementation

checks which promise was created for the selected actor

and if it was resolved or not. To know if a promise was

resolved, we check if the send operation event correspond-

ing to promise resolution exists for the speci�ed promise in

the trace. Finally, we visualize the resolved and unresolved

promises for the selected paused actor in the Actor view.

In our current debugger frontend, the Question view does

not o�er questions 1.3, 1.4, and 1.5 when an actor is selected

in the Actors view. However, we have implemented the analy-

sis to provide answers to these questions based on the events

of the Kómpos protocol, which we detail in what follows.

To know which messages were received (question 1.3), we

added the trace event MessageReception to the protocol,

which records the actor id (that is, the receiver actor of the

message) and the message id. In the debugger backend, mean-

ing, the SOMns interpreter, we record a message reception

at two points, �rst, when the actor appends the received

message in its mailbox, and second when the actor is about

to process the messages in its mailbox. We need to record

both points because the actor can be paused and still receive

messages. Thus, the debugger keeps a list of messages in

the order the messages are received by the actor, in other

6
The prototype we present here was implemented with version 3 of Apgar.

It remains as future work to upgrade the implementation to its last version.

words, in the order of arrival [8]. The list of received mes-

sages is visualized in the frontend in the Mailbox view (see

Figure 2(4)).

To know which turns were processed by an actor (question

1.4), we use the information of the trace event corresponding

to dynamic scope ScopeStart, that is, we use the informa-

tion of the message id corresponding to the turn and actor

id of the actor that processes the message. We visualize the

turns processed by an actor in the Turns view in Apgar,

which is a graph visualization in a space-time diagram show-

ing the happened-before relationship of messages [8].

Finally, the information about which messages were sent
by the selected paused actor (question 1.5) is extracted from

the SendOperation event. When reading this event from

the trace, we obtain the turn where the message (which can

be sent to a far reference or to a promise) was sent. Thus,

we keep all send operations (or messages) sent in a turn.

We show the information of messages sent by turn in the

Sentbox view [8]. The list of messages sent is updated when

the developer clicks a turn in the graph shown in the Turns

view.

5.2 Messages

To get the information about the turn in which amessage was

sent (question 2.1), we parsed in the debugger frontend the

trace event that indicates the beginning and end of the turn.

In particular, we saved each event per actor and reordered

the events because it can happen that the bu�ers where the

events are written may be out of chronological order from

the perspective of an actor because an actor can be executed

on di�erent threads over time [8]. We obtain the properties

of the message sent corresponding to that turn from the trace

event SendOperation, such as the id, its selector, its source

coordinate. The actor that executes that turn corresponds

to the sender actor of the message that was sent in the turn,

i.e., we obtain the turn actor from the creation activity of

the SendOperation event of the message sent in the turn.

We needed to extend the SendOperation event with the

message selector and the source coordinate because they

were not provided by the original implementation of the

Kómpos protocol in SOMns.

5.3 Variables

For obtaining information related to variables assignments
(question 3.1), we added the Assignment event in the trace.

This event consists of a variable id, a location, and the new

value to which the variable is updated. We use as variable id

the source coordinate corresponding to that variable decla-

ration. The location refers to the place in the code where the

assignment happens. Thus, the debugger backend records

the variable information in the trace every time a variable

update occurs, i.e., when AST node writing for local variables

and global variables occurs. In the debugger frontend, when

parsing the Assignment event from the trace, we resolve the

What’s the Problem? Interrogating Actors to Identify the Root Cause of Concurrency Bugs AGERE ’21, October 17, 2021, Chicago, IL, USA

Figure 7. Timeline of promise dependencies and information about the selected promise.

turn for this event similarly as explained for the messages

in the previous section.

We considered four cases to answer the question of why

a variable has a certain value
7
. These cases are relevant for

CEL languages because they are based on general concepts,

e.g., turns and actors.

– When a variable is local and is declared in one turn:

in this case variables are introduced during a method

invocation in which the assignments happen in the

same turn.

– When the variable is global: in this case variables state

can be updated in multiple turns in an actor.

– When the variable is in a loop: this case refers to di�er-

ent assignments on the same local variable in a loop.

– When the variable can be updated in di�erent turns:

this case can be seen in SOMns programs in particular

for promise callbacks de�ned by the whenResolved:
message, because the operations inside a whenResolved:
block can still access the local variables outside the

block.

7
At the moment, our prototype supports case 1 and 2. Case 3 and 4 remain

as future work.

To obtain the information related to the resolution of the
promise (question 3.2) we extended the SendOperation event
with the promise resolution value. In particular, this is needed

for the cases when a promise is resolved with a value or an er-

ror. When a promise is resolved with another promise, the de-

bugger backend uses the entity id �eld of the SendOperation
event to save the promise id that is used to resolve another

promise.

Finally, to obtain the information about promise depen-
dencies for a selected promise until its resolution (question

3.3) we added support in the debugger frontend for �nding

promise dependencies using the trace information, in partic-

ular we used SendOperation and PassiveEntityCreation
events. Our implementation searches for chained promises,

and it stops when in the chain a promise is resolved with

a value that is not a promise. We identi�ed three cases of

dependencies:

– Sibling dependency: when the selected promise de-

pends on the resolution of another promise created in

the same turn.

– Parent dependency: when the selected promise de-

pends on a promise that needs to be resolved in a pre-

vious turn. For example, in SOMns this happens when

a promise is created in the body of a whenResolved

AGERE ’21, October 17, 2021, Chicago, IL, USA Torres Lopez Carmen, Van Verre Louise, Gonzalez Boix Elisa

block. Here there is a dependency to the promise that

needs to be resolved before the callback is executed.

– Child dependency: when the selected promise depends

on the resolution of another promise that is created

inside the turn of the message that returns the selected

promise.

As we can observe, the child dependency is di�erent from

the sibling dependency in that the dependent promise is re-

solved in another turn. Parent dependencies refer to promises

created inside callbacks. Listing 1 shows a sibling dependency

of buyPromise on the Line 173 which depends on promise

customer on Line 171. A parent dependency can be observed

in the promise created on Line 100, which depends on the

promise in Line 98. A child dependency can be observed in

accountPromise on Line 73 which depends on the promise

on Line 115.

6 Related Work

To the best of our knowledge, our approach, is the �rst pro-

posal to interactively debug actor-based programs using

interrogative debugging features. This section summarizes

visualization approaches from the state of the art for actor-

based programs in two categories, standalone tools and as

part of a debugger.

6.1 Visualization in Standalone Tools

Miriyala et al. [13] proposed the use of predicate transition
nets for visualizing actors’ execution in the classic actor

model, in particular actor’s behavior and sent messages.

Coscas et al. [4] presented a similar approach in which the

predicate transition nets are used to simulate actors’ execu-

tion in a step-by-step mode.

Alimadadi et al. [1] proposed visual graphs based on dy-

namic program analysis for promises in asynchronous Java-

Script programs. Their goal is to give developers a tool to

understand the execution �ow of promises and also iden-

tify anti-patterns, e.g., unresolved promises. Similarly, Sun

et al. [17] proposed asynchronous graphs to visualize the

asynchronous execution �ow of a Node.js application.

Clark et al. [3] proposed �lmstrips pattern visualization

and implemented it for an actor language that follows the

semantics of the classic actor model. A �lmstrip is denoted

as a sequence of snapshots of objects and relationships of the

program described in state transitions derived from system

operation calls.

6.2 Visualization as Part of a Debugger

The Causeway debugger visualizes asynchronous messages

sent in di�erent views based on a trace [16]. It provides a

process order view that shows all asynchronous messages

executed for each actor in chronological order. Besides, it

o�ers a message order view that shows causal messages for

a message sent, i.e., other messages that have been executed

before the message was sent and provoked the sending of

the message we want to debug.

Shibanai et al. [15] proposed a debugger for Akka pro-

grams that visualizes message dependencies through se-
quence diagrams. The authors mention that their approach

provides an interactive aid for showing the arrival order of

messages and it enables developers to inspect past states.

The IDeA debugger [11] uses an immersive visualization
in 3D for debugging an Akka program at the message level.

The authors argue that representing actors as geometric en-

tities in 3D space requires less e�ort than a 2D environment

because it involves only moving the eye-head-bearing.

As we can observe, the visualizations that have been cre-

ated as part of a debugger for actors have been focused

mainly on representing the happened-before relationship of

messages. This feature has inspired the design of some of

our questions, e.g., 1.3, 1.4, 1.5, and 2.1 (see Table 1). Never-

theless, the mentioned approaches are limited to represent

other concurrency concepts in the context of actors, such

as unresolved promises and promises dependencies. Some

standalone tools have considered these concepts in their

features, but they are not included in a debugging session.

The questions and answers we presented in this paper allow

developers to inspect variables, messages, and turns for a

paused actor in combination with online debugging features,

i.e., using breakpoints and stepping operations.

7 Conclusion and Future Work

In this paper, we investigate how to make online debugging

of actor-based programs more interactive by means of inter-

rogative debugging. We focus on programs written in the

Communicating Event-Loops model, which can still su�er

from concurrency bugs.

We designed a set of questions and answers that develop-

ers can choose from when debugging actor-based programs

related to the main features of the concurrency model: ac-

tors, messages, turns and promises. We implemented our ap-

proach by extending the Apgar online debugger for SOMns.

To this end, we extended the Kómpos protocol with trace

events to provide the necessary debugging information to

answer the questions.

The combination of online and interrogative debugging

features presented in this paper aims to �ll the gap between

the developers’ interpretation of a failure and speculations

of where the root cause of the bug is. Hence, we believe such

a debugging approach could shorten the debugging time.

And even more, it could avoid that developers reason about

non-related paths to the root cause of the bug, e.g., using the

timelines of variable assignments and promise dependencies.

As future work, we think it will be valuable to evaluate

our proposal of questions and answers through a user study

and compare it with other debugging tools for actor-based

programs in terms of time and usability.

What’s the Problem? Interrogating Actors to Identify the Root Cause of Concurrency Bugs AGERE ’21, October 17, 2021, Chicago, IL, USA

Acknowledgments

We would like to thank Stefan Marr for his feedback on this

work and his technical support about SOMns. We would like

to thank Kevin De Porre and the anonymous reviewers for

their comments and feedback on the text.

A Order Purchase Application

1 (* W r i t t e n by C a r m e n T o r r e s L o p e z

2 * (N O T E : T h i s v e r s i o n c o n t a i n s a b e h a v i o r a l d e a d l o c k)

3 * T h i s i m p l e m e n t a t i o n has b e e n i n s p i r e d by o t h e r a c t o r

l a n g u a g e i m p l e m e n t a t i o n s

4 * s u c h as E and A m b i e n t T a l k .

5 * - S t a n l e y , T . , Close , T . , & Miller , M . S . (2 0 0 9) .

C a u s e w a y : A m e s s a g e - o r i e n t e d d i s t r i b u t e d d e b u g g e r .

6 * - G o n z a l e z Boix , E . , N o g u e r a , C . , & De Meuter , W .

(2 0 1 4) . D i s t r i b u t e d d e b u g g i n g for m o b i l e n e t w o r k s .

7 * J o u r n a l of S y s t e m s and S o f t w a r e , 90 , 76 -90.

8 *)

9

10 class OrderPurchaseBD usingPlatform: platform = Value

(

11 | private actors = platform actors.

12 private Vector = platform kernel Vector.

13 private TransferArray = platform kernel

TransferArray.

14 |)(

15

16 public class Customer new: customerId website: web =

(

17 | private customerId = customerId.

18 private website = web.

19 |)(

20

21 public buy: items = (

22 | checkoutPromise |

23 checkoutPromise :: website <-:

checkoutShoppingCart: customerId items: items.

24

25 ^ checkoutPromise whenResolved: [: result |

26 result > 1

27 ifTrue :[('- The order has been placed for '+

result + ' products.') println .]

28 ifFalse :[('- The order has been placed for '

+ result + ' product.') println .].

29]

30)

31)

32

33 public class Website new: store account: account

shipper: shipper db: database = (

34 | private store = store.

35 private account = account.

36 private shipper = shipper.

37 private database = database.

38 |)(

39

40 public checkoutShoppingCart: customerId items:

items = (

41 | shoppingCart completionPP accountPromise

shipperPromise productsPP productsInStock resolved

|

42 completionPP :: actors createPromisePair.

43 productsPP :: actors createPromisePair.

44 productsInStock :: Vector new.

45 resolved :: false.

46

47 shoppingCart :: items.

48 ('- You will buy '+ (shoppingCart size) + '

products. ') println.

49

50 shoppingCart do:[: product |

51 | existPromise |

52 existPromise :: store <-: productInStock: product

database: database.

53 existPromise whenResolved :[: available |

54 available ifTrue :[

55 productsInStock append: product.

56 productsInStock size = shoppingCart size

57 ifTrue :[

58 resolved ifFalse :[

59 resolved :: true.

60 productsPP resolve: true

61]

62]

63]

64 ifFalse :[

65 resolved ifFalse :[

66 resolved :: true.

67 productsPP resolve: false

68]

69]

70].

71].

72

73 accountPromise :: account <-: checkCredit:

customerId database: database.

74 shipperPromise :: shipper <-: canDeliver:

customerId database: database.

75

76 productsPP promise , accountPromise ,

shipperPromise whenResolved :[: answerService |

77 ((answerService at: 1) and: [(answerService at:

2) and: [(answerService at: 3)]])

78 ifTrue :[completionPP resolver resolve:

productsInStock size]

79].

80

81 ^ completionPP promise

82)

83)

84

85 public class Store = (

86 | private counter ::= 0.

87 |)(

88

89 public productInStock: item database: database = (

90 | stockPromise existPP |

91

92 existPP :: actors createPromisePair.

93

94 counter :: counter + 1.

95

96

97 stockPromise :: database <-: getStock.

98 (stockPromise <-: contains: item) whenResolved

:[: exist |

99 exist ifTrue :[

100 stockPromise <-: remove: item.

101].

102

103

104

105 (* e x i s t P P r e s o l v e : e x i s t . *)

106].

107

108 ^ existPP promise

109)

AGERE ’21, October 17, 2021, Chicago, IL, USA Torres Lopez Carmen, Van Verre Louise, Gonzalez Boix Elisa

110)

111

112 public class Account = ()(

113

114 public checkCredit: customerId database: database

= (

115 ^ database <-: isValidPayment: customerId

116)

117)

118

119 public class Shipper = ()(

120

121 public canDeliver: customerId database: database =

(

122 ^ database <-: isShipperAvailable: customerId

123)

124)

125

126 public class Database = (

127 | private stock = init. |

128)(

129

130 private init = (

131 | s |

132 s:: Vector new.

133 s append: 'hdd'.

134 s append: 'ipad'.

135 s append: 'phone '.

136 s append: 'screen '.

137 s append: 'laptop '.

138 ^ s

139)

140

141 public getStock = (

142 ^ stock

143)

144

145 public isValidPayment: customerId = (

146 ^ true

147)

148

149 public isShipperAvailable: customerId = (

150 ^ true

151)

152

153)

154

155 public main: args = (

156 | customer store account shipper website database

items buyPromise timeout completionPP |

157 timeout :: 3000.

158

159 completionPP :: actors createPromisePair.

160

161 '[ORDER PURCHASE APPLICATION] Starting ...\n'

println.

162 items:: TransferArray new: 2.

163 items at: 1 put: 'phone '.

164 items at: 2 put: 'laptop '.

165

166 store:: (actors createActorFromValue: Store) <-:

new.

167 account :: (actors createActorFromValue: Account)

<-: new.

168 shipper :: (actors createActorFromValue: Shipper)

<-: new.

169 database :: (actors createActorFromValue: Database

) <-: new.

170 website :: (actors createActorFromValue: Website)

<-: new: store account: account shipper: shipper

db: database.

171 customer :: (actors createActorFromValue: Customer

) <-: new: 'Joe' website: website.

172

173 buyPromise :: customer <-: buy: items.

174

175 (* a c t o r s a f t e r : t i m e o u t do : [

176 ' P r o g r a m e x i t due to T I M E O U T ' p r i n t l n .

177 c o m p l e t i o n P P r e s o l v e : 1.

178]. *)

179

180 completionPP resolve: buyPromise.

181

182 ^ completionPP promise whenResolved: [: result |

183 '\n[ORDER PURCHASE APPLICATION] Ending.'

println.

184]

185)

186)

Listing 1. Order purchase application in SOMns.

References

[1] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. 2018.

Finding Broken Promises in Asynchronous JavaScript Programs. Proc.
ACM Program. Lang. 2, OOPSLA, Article 162 (Oct. 2018), 26 pages.

h�ps://doi.org/10.1145/3276532
[2] Gilad Bracha. 2009. Newspeak programming language draft speci�cation

version 0.06. Technical Report. Technical report, Ministry of Truth.

[3] Tony Clark, Balbir Barn, Vinay Kulkarni, and Souvik Barat. 2019. Mak-

ing Sense of Actor Behaviour: An Algebraic Filmstrip Pattern and

Its Implementation. In Proceedings of the 12th Innovations on Soft-
ware Engineering Conference (Formerly Known as India Software En-
gineering Conference) (Pune, India) (ISEC’19). Association for Com-

puting Machinery, New York, NY, USA, Article 13, 10 pages. h�ps:
//doi.org/10.1145/3299771.3299783

[4] Patrick Coscas, Gilles Fouquier, and Agnes Lanusse. 1995. Mod-

elling Actor Programs using Predicate/Transition Nets. In Proceedings
Euromicro Workshop on Parallel and Distributed Processing. 194–200.
h�ps://doi.org/10.1109/EMPDP.1995.389129

[5] Jason Gait. 1986. A Probe E�ect in Concurrent Programs. Softw. Pract.
Exp. 16, 3 (1986), 225–233. h�ps://doi.org/10.1002/spe.4380160304

[6] Andrew J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking

and AnsweringWhy andWhy Not Questions about Program Behavior

(ICSE ’08). Association for Computing Machinery, New York, NY, USA,

301–310. h�ps://doi.org/10.1145/1368088.1368130
[7] Andrew J. Ko and Brad A. Myers. 2010. Extracting and Answering

Why and Why Not Questions about Java Program Output. ACM
Trans. Softw. Eng. Methodol. 20, 2, Article 4 (Sept. 2010), 36 pages.

h�ps://doi.org/10.1145/1824760.1824761
[8] Carmen Torres Lopez. 2021. Advanced Debugging Techniques to Handle

Concurrency Bugs in Actor-based Applications. Ph.D. Dissertation. Vrije
Universiteit Brussel.

[9] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter

Mössenböck. 2018. A Study of Concurrency Bugs and Advanced

Development Support for Actor-based Programs. In Programming with
Actors - State-of-the-Art and Research Perspectives, Alessandro Ricci and
Philipp Haller (Eds.). Lecture Notes in Computer Science, Vol. 10789.

Springer, 155–185. h�ps://doi.org/10.1007/978-3-030-00302-9_6
[10] Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez

Boix, and Hanspeter Mössenböck. 2017. A Concurrency-Agnostic

Protocol for Multi-Paradigm Concurrent Debugging Tools. CoRR
abs/1706.00363 (2017). arXiv:1706.00363 h�p://arxiv.org/abs/1706.
00363

[11] Aman Shankar Mathur, Burcu Kulahcioglu Ozkan, and Rupak Majum-

dar. 2018. IDeA: An Immersive Debugger for Actors. In Proceedings of

https://doi.org/10.1145/3276532
https://doi.org/10.1145/3299771.3299783
https://doi.org/10.1145/3299771.3299783
https://doi.org/10.1109/EMPDP.1995.389129
https://doi.org/10.1002/spe.4380160304
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1824760.1824761
https://doi.org/10.1007/978-3-030-00302-9_6
https://arxiv.org/abs/1706.00363
http://arxiv.org/abs/1706.00363
http://arxiv.org/abs/1706.00363

What’s the Problem? Interrogating Actors to Identify the Root Cause of Concurrency Bugs AGERE ’21, October 17, 2021, Chicago, IL, USA

the 17th ACM SIGPLAN International Workshop on Erlang (St. Louis,

MO, USA) (Erlang 2018). Association for Computing Machinery, New

York, NY, USA, 1–12. h�ps://doi.org/10.1145/3239332.3242762
[12] Mark S. Miller, Eric Dean Tribble, and Jonathan S. Shapiro. 2005. Con-

currency Among Strangers. In Trustworthy Global Computing, Inter-
national Symposium, TGC 2005, Edinburgh, UK, April 7-9, 2005, Re-
vised Selected Papers (Lecture Notes in Computer Science, Vol. 3705),
Rocco De Nicola and Davide Sangiorgi (Eds.). Springer, 195–229.

h�ps://doi.org/10.1007/11580850_12
[13] Shakuntala Miriyala, Gul Agha, and Yamina Sami. 1992. Visualizing

actor programs using predicate transition nets. Journal of Visual
Languages & Computing 3, 2 (1992), 195–220. h�ps://doi.org/10.1016/
1045-926X(92)90015-E

[14] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert

Hirschfeld. 2016. Studying the advancement in debugging practice

of professional software developers. Software Quality Journal 25, 1
(2016), 83–110. h�p://dblp.uni-trier.de/db/journals/sqj/sqj25.html#
PerscheidSTH17

[15] Kazuhiro Shibanai and TakuoWatanabe. 2017. Actoverse: A Reversible

Debugger for Actors. (2017). h�ps://doi.org/10.1145/3141834.3141840

[16] Terry Stanley, Tyler Close, and Mark Miller. 2009. Causeway: A
message-oriented distributed debugger. Technical Report. HP Labs.

1–15 pages.

[17] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder.

2019. Reasoning about the Node.js Event Loop using Async Graphs.

In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 61–72. h�ps://doi.org/10.1109/CGO.2019.8661173

[18] Stefan Tilkov and Steve Vinoski. 2010. Node.js: Using JavaScript to

Build High-Performance Network Programs. IEEE Internet Computing
14, 6 (Nov 2010), 80–83. h�ps://doi.org/10.1109/MIC.2010.145

[19] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni

Lombide Carreton, Dries Harnie, Kevin Pinte, andWolfgang DeMeuter.

2014. AmbientTalk: programming responsive mobile peer-to-peer

applications with actors. Computer Languages, Systems & Structures
40, 3-4 (2014), 112–136. h�ps://doi.org/10.1016/j.cl.2014.05.002

[20] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,

Doug Simon, and Christian Wimmer. 2012. Self-Optimizing AST In-

terpreters. In Proceedings of the 8th Symposium on Dynamic Languages
(Tucson, Arizona, USA) (DLS ’12). Association for Computing Ma-

chinery, New York, NY, USA, 73–82. h�ps://doi.org/10.1145/2384577.
2384587

https://doi.org/10.1145/3239332.3242762
https://doi.org/10.1007/11580850_12
https://doi.org/10.1016/1045-926X(92)90015-E
https://doi.org/10.1016/1045-926X(92)90015-E
http://dblp.uni-trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17
http://dblp.uni-trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17
https://doi.org/10.1145/3141834.3141840
https://doi.org/10.1109/CGO.2019.8661173
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1016/j.cl.2014.05.002
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Background
	2.1 Communicating Event-Loops (CEL) Model
	2.2 Concurrency Bugs in Actor-Based Programs
	2.3 Apgar

	3 Designing Questions and Answers for Debugging Actor-Based Programs
	3.1 Actors
	3.2 Messages
	3.3 Variables

	4 A Proof-of-Concept Interrogative Debugger for SOMns Programs
	4.1 Running Example
	4.2 Actors
	4.3 Messages
	4.4 Variables

	5 Implementation
	5.1 Actors
	5.2 Messages
	5.3 Variables

	6 Related Work
	6.1 Visualization in Standalone Tools
	6.2 Visualization as Part of a Debugger

	7 Conclusion and Future Work
	Acknowledgments
	A Order Purchase Application
	References

